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ABSTRACT 

Neural Network Based Optimal Control of HVAC&R Systems 

Min Ning, Ph.D 
Concordia University, 2008 

Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems 

have wide applications in providing a desired indoor environment for different types of 

buildings. It is well acknowledged that 30% - 40% of the total energy generated is 

consumed by buildings and HVAC&R systems alone account for more than 50% of the 

building energy consumption. Low operational efficiency especially under partial load 

conditions and poor control are part of reasons for such high energy consumption. To 

improve energy efficiency, HVAC&R systems should be properly operated to maintain a 

comfortable and healthy indoor environment under dynamic ambient and indoor 

conditions with the least energy consumption. 

This research focuses on the optimal operation of HVAC&R systems. The 

optimization problem is formulated and solved to find the optimal set points for the 

chilled water supply temperature, discharge air temperature and AHU (air handling unit) 

fan static pressure such that the indoor environment is maintained with the least chiller 

and fan energy consumption. To achieve this objective, a dynamic system model is 

developed first to simulate the system behavior under different control schemes and 

operating conditions. The system model is modular in structure, which includes a water-
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cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set 

based extended transformation approach is then applied to investigate the uncertainties of 

this model caused by uncertain parameters and the sensitivities of the control inputs with 

respect to the interested model outputs. A multi-layer feed forward neural network is 

constructed and trained in unsupervised mode to minimize the cost function which is 

comprised of overall energy cost and penalty cost when one or more constraints are 

violated. After training, the network is implemented as a supervisory controller to 

compute the optimal settings for the system. In order to implement the optimal set points 

predicted by the supervisory controller, a set of five adaptive PI (proportional-integral) 

controllers are designed for each of the five local control loops of the HVAC&R system. 

The five controllers are used to track optimal set points and zone air temperature set 

points. Parameters of these PI controllers are tuned online to reduce tracking errors .The 

updating rules are derived from Lyapunov stability analysis. 

Simulation results show that compared to the conventional night reset operation 

scheme, the optimal operation scheme saves around 10% energy under full load condition 

and 19% energy under partial load conditions. 
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Chapter 1 Introduction 

1.1 Background 

Heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems have 

been used to provide desired indoor environment in buildings for decades. It is well 

acknowledged that 30% - 40% of the total energy generated is consumed by buildings 

and that HVAC&R systems alone account for more than 50% of the building energy 

consumption. These percentages are still growing. The inefficient operation of HVAC&R 

systems especially under partial load conditions, poor tuning and malfunction of 

controllers all increase the energy consumption of the system. 

The escalating energy costs have led to more and more research efforts to reduce 

the energy use of the HVAC&R systems from the design stage to the operation stage, 

such as the design of better building envelopes, the selection of energy efficient 

equipment, improved control sequence and introducing efficient energy saving operation 

schemes. However, once a building is constructed and a HVAC&R system is installed, 

energy consumption of the HVAC&R system is mainly dependent on the operation, 

maintenance and the use of the building. Knowing the functional use of the building, the 

energy efficiency of the HVAC&R system can be improved by employing improved 

control strategies and proper maintenance. There is more than one operation scheme that 

can maintain the same indoor conditions, but energy consumption may be different. 

Among these, the optimal operation scheme is the one that consumes the least energy. 
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1.1.1 Variable Air Volume Systems 

Variable air volume (VAV) systems maintain desired space temperature by 

adjusting the VAV box damper opening such that the amount of conditioned air entering 

the space is modulated to match the load requirement. Compared to its counterpart, the 

constant air volume (CAV) system where the space temperature is controlled by 

regulating the discharge air temperature (temperature of the air leaving the coil), the 

advantages of the VAV systems include the flexibility to adapt to individual space load 

requirement and huge energy saving potential, especially when the systems have variable 

speed fans run by variable speed motors. The energy savings of VAV systems come from 

the reduction of air mass flow rate under partial load conditions, which not only reduces 

fan energy consumption but also reduces the cooling load requirements for refrigeration 

systems. 

Although the VAV system has great energy saving potential, it may perform very 

poorly without good commissioning and robust control. Poor operation of a VAV system 

often results in uncomfortable indoor environment, low energy efficiency and poor 

indoor air quality (IAQ) (Klaczek et al., 2005). 

1.1.2 Building Energy Management Systems 

More and more buildings these days are equipped with building energy 

management systems (BEMS) to audit the energy performance and control the system 

operation to improve the building energy performance. There are two levels of control in 

BEMS, a higher level supervisory control and a lower level local control. Historical 

climate and operational information are recorded at supervisory level. With this 

information, the operation schemes are determined based on the pre-programmed 
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operation sequences. Local controllers implement the control strategies either according 

to the downloaded set points from supervisory control or pre-programmed logic. General 

control strategies in BEMS include optimal on-off control, night reset control, demand 

reset control, outdoor air enthalpy control etc. 

The proper selection/determination of the operation scheme is not an easy task 

because of the high coupling characteristics of the HVAC&R system and time-variant 

operating conditions. So far, most EMSs determine operation schemes at the local loop 

level independently without considering the rest of the system. Unfortunately, most of the 

time, the performance of the system is not as good as expected because of the influence 

of other interacting loops. In other words, the system doesn't work at its best. Studies of 

Hartman (1988), Braun et al. (1989A, 1990) and Zheng (1997) showed that HVAC&R 

system was a highly coupled system, the control loops had great impacts on each other. 

There are trade-offs between individual local control and overall system energy 

consumption. Therefore, the optimal operation of single loop won't result in optimal 

operation of the overall system. For example, for outdoor air enthalpy control, the basic 

idea is to take advantage of the cool outdoor air to reduce the cooling from the chiller. 

The cooler the outdoor air is, the more outdoor air is introduced into the building to 

reduce the chiller's energy use to the maximum extent. However, fan energy 

consumption may increase at the same time because more air needs to be circulated by 

the fan. Therefore, from the view point of energy consumption of the entire system, using 

more cold outdoor air does not necessarily reducing the total energy consumption. Same 

is the case in the discharge air temperature control. Increasing the discharge air 

temperature decreases chiller and chilled water pump energy consumption on one hand 
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because less chilled water required, but on the other hand, increases fan energy 

consumption due to a higher air flow rate. Therefore, the efficient operation of HVAC&R 

systems should consider the interactions of local loops and the evaluation of the system 

energy performance should be based on the system level rather than from the view point 

of saving energy of a single component or a single loop. With proper control, it is 

possible to reduce energy consumption of the entire system without sacrificing thermal 

comfort in the building. 

1.1.3 Control of HVAC&R Systems 

SISO (single-input-single-output) PID (proportional-integral-derivative) and PI 

(proportional and integral) controllers have extensive applications in industry because of 

their simplicity, cost effectiveness, robustness and reliability. In practice, PID/PI 

controllers work either with default control parameters/gains from the manufacturer or 

with fixed parameters determined at commissioning stage. However, a HVAC&R system 

is a highly non-linear, time-variant system and needs to respond to varied set points for 

different operating conditions. Using controllers with fixed parameters to control such a 

complicated system may cause control problems when working conditions are away from 

the commissioning one. To address this, variable control gains or adaptive controls are 

introduced to maintain consistent good performance. The practical methods include gain 

scheduling and auto-tuning. Gain scheduling has wide applications for systems 

(processes) whose dynamics can be characterized by measurable variables, named as 

regulator parameters. Controller gains are calibrated under different operating conditions 

through open loop tests and are stored in a lookup table. When applied on-line, control 

parameters are selected according to the real operating conditions and regulator 
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parameters (Astrom and Wittenmark, 1989). Auto-tuning adjusts controller parameters 

automatically according to certain regulation rules to respond to the variations in system 

dynamics and operating conditions. These adaptive techniques could not only solve most 

control problems encountered in HVAC&R applications, especially those caused by the 

time-varying dynamics and changes in operating conditions, but also have other 

advantages such as easy commissioning and energy saving potential compared to 

conventional control schemes. But the high coupling nature of the local loops in 

HVAC&R system deteriorates the control performance of SISO controllers because 

tuning one controller may deteriorate the performance of other controllers. To solve this 

problem, MIMO (multi-input-multi-output) control, which uses multiple feedback signals 

to generate multiple control inputs, is used. However, due to the complexity of the 

controller structure, there are not many applications of MIMO control in HVAC&R 

industry. 

The design of optimal operation strategies for HVAC&R systems is a challenging 

task. The design methodologies must compensate for the following complex dynamic 

interactions of HVAC&R systems: 

The operation is a multi-objective problem. The operation of the system not 

only needs to satisfy indoor environment requirements, but also needs to 

consider the efficiency of the operation. Multi control variables have to be 

coordinated to achieve satisfactory system responses. 

A HVAC&R system is a highly nonlinear system with different scale of time 

constants. Longer time lags have to be compensated to improve the regulation 

properties of controllers. 
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- System dynamics change with operating conditions. The control system has 

to respond to these changes. 

- The mathematical system model is subjected to uncertainties. This is because 

some dynamics are unknown and some are hard to be described 

mathematically. Also accurate values of some model parameters are hard to 

determine. Consequently, the prediction results from the uncertain model 

exhibit uncertainties. The determination of operation schemes, the design and 

tuning of controllers are based on the predictions of an uncertain model. 

1.2 Research Objectives and Thesis Outline 

The main objective of this research is to develop and realize global optimal 

operation strategies for a VAV-HVAC&R system aiming to maintain a desired indoor 

environment under time variant ambient and indoor conditions with the least energy 

consumption. This includes the determination of an optimal operation strategy at the 

supervisory level and its subsequent implementation at the local level. The dynamic 

interactions among the building, the HVAC&R system and the control system will be 

taken into account in the analysis to improve energy efficiency and achieve better 

performance. 

This thesis is organized as follows. After a brief introduction of VAV systems, and 

the operation and control of HVAC&R systems, the objectives of present research are 

stated in Chapter 1. In Chapter 2, a review of previous research in modeling, operation of 

HVAC&R systems, and controller design and tuning methods is given followed by a 

summary of the limitations of previous research work. Finally, the major steps leading to 
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the optimal operation of HVAC&R systems are presented at the end of Chapter 2. A 

dynamic model of a two-zone VAV-HVAC and refrigeration system is developed and 

open loop simulation results are presented and discussed in Chapter 3. Model uncertainty 

analysis and control sensitivity analysis are conducted in Chapter 4. Important uncertain 

model parameters and the significance of the uncertain parameters and control inputs on 

model outputs are identified. In Chapter 5, a neural network based supervisory optimal 

operation strategy is proposed and compared with the conventional night reset operation 

strategies. In Chapter 6, multi adaptive PI controllers are designed and implemented to 

realize the closed-loop optimal operation of the system. Chapter 7 summarizes 

conclusions and presents recommendations for future work. 
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Chapter 2 Literature Review and Objectives 

The increasing concern of improving building energy efficiency has motivated 

extensive research on the efficient operation of HVAC&R systems, including (1) 

modeling of HVAC&R components and systems; (2) optimal control and efficient 

operation of HVAC&R systems and components; (3) controller design for HVAC&R 

system including PI control, PID control, neural control, adaptive control, fuzzy control, 

and multiple-input multiple-output (MIMO) control; (4) fault detection and diagnosis; (5) 

energy consumption analysis and (6) efficient building and system design. This chapter 

will cover the review on the first three topics, most relevant to the research work 

conducted in this thesis. 

2.1 Modeling of HVAC and Refrigeration Systems and Components 

A good understanding of the performance of mechanical and control systems forms 

the basis for developing successful operation and control strategies for HVAC&R 

systems. Compared to the monitoring of a real plant, model based simulation provides an 

easier, faster and cheaper substitute to gather operating information, evaluate control 

strategies and the performance of HVAC&R systems and components. Intensive 

HVAC&R components and systems models, including steady state models and dynamic 

models, have been developed in the past decades. 

Most system models are modular based. Models of main components are developed 

and then connected to each other according to the input and output information to 

construct the system model. In most studies, the HVAC system and the refrigeration 
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system are treated and modeled as separate systems. The main components in a HVAC 

system include cooling/heating coil, supply/return fan, air-conditioned space and air duct. 

The main components in a refrigeration system are compressor, evaporator, condenser 

and throttling device. 

2.1.1 Modeling of Refrigeration Systems/Components 

Compressor and Expansion Valve Models 

Compressor and expansion valve models are usually used to predict the flow rate 

and state of refrigerant at the outlet of the compressor and the expansion valve. The most 

popular compressor and expansion valve models are based on a steady state analysis 

because the respective time constants of the compressor and expansion valve are much 

smaller than the time constants of other components in the refrigeration systems and thus 

their dynamics won't significantly affect the dynamics of the whole refrigeration system. 

The methodologies employed to model compressor and expansion valve are very 

similar in literature (Jian, 1996; He and Liu, 1998; Kim and Bullard 2001, Koury et al., 

2001; Jiang and Radermacher, 2003). The quasi steady state expansion valve models are 

derived from the orifice flow under the assumption of isenthalpic flow. The compressor 

models are derived from thermodynamic rules with the assumption of isentropic 

compression process and neglecting (1) the pressure losses along the refrigerant path, (2) 

the refrigerant mass variations in the compressor, (3) the oil effects on the refrigerant, (4) 

the variations in refrigerant kinetic energy and potential energy, and (5) the heat transfer 

between shells and ambient. For reciprocating type compressor, the mass flow rate of 

refrigerant is computed using compressor volumetric efficiency which accounts for the 

free expansion of vapor refrigerant trapped in the clearance volume. Energy consumption 
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is calculated with compressor isentropic efficiency which is either assumed to be constant 

(Koury et al., 2001, Fu et al., 2002) or identified with manufacturer's data (Jiang and 

Radermacher, 2003) or modeled with a simple function, for example, Kim and Bullard 

(2001) expressed the compressor efficiency as a linear function of the shell temperature 

with coefficients determined from in-situ data; Browne and Bansal (2002) expressed 

isentropic efficiency as a bi-quadratic function of refrigerant flow rate and system 

pressure with experimental data. 

Condenser and Evaporator Models 

Condenser and evaporator are heat exchange components in refrigeration system. 

The dynamics of the refrigeration system is dominated by the condenser and evaporator 

because they have large time constants. The main differences between different 

refrigeration system models come from the methodologies used to model the evaporator 

and condenser. The moving boundary approach and the finite difference approach are 

two prevailing approaches used to model the evaporator and the condenser. 

In the moving boundary approach, condenser/evaporator is divided into two to 

three sections, a super-heated section, a two-phase section and a sub-cooled section, 

according to the state of refrigerant exhibited in the heat exchanger. The length of each 

section varies with time since the saturated liquid and vapor boundaries move during 

transients. The governing equations for each section are derived from the energy, mass 

conservation principles and the momentum conservation principle if pressure variation 

along tubes is considered. Thermo-physical properties of the refrigerant and the 

secondary fluid are assumed to be uniform for each section. Consequently, heat 

exchanger models derived from moving boundary method are lumped parameter models. 
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States of the refrigerant and the secondary fluid at the heat exchanger exit and pressure 

loss in tubes are described by ordinary differential equations (ODEs). Although model 

equations are simple, the accuracy of this type of model is sufficient for most 

applications. E.g. He and Liu (1998) design a MIMO controller for a refrigeration system 

based on a system model with moving boundary heat exchanger model. Refrigeration 

system model with moving boundary heat exchanger model developed by Willatzen et al. 

(1998) was used to study the transient responses of system start-up and shut-down. Their 

model included numerical handling of the formation and disappearance of the liquid, 

two-phase or vapor zones. Cheng et al. (2005) developed a moving boundary heat 

exchanger model to calculate the heat transfer rate and the length of two-phase section in 

the heat exchanger. Rasmussen and Alleyne (2004) developed a 1 lth-order dynamic heat 

exchanger model using moving boundary approach. Simulation results showed that the 

system exhibited multiple time scale behavior and then a reduced 5th-order model was 

derived using singular perturbation techniques to eliminate the fast dynamic states. 

Simulation results showed that eliminating the states with fast responses had negligible 

impact on the transient responses of overall system. 

In the finite difference method, heat exchanger is divided into a number of control 

volumes. Governing equations of mass, momentum and energy conservation for each 

control volume are expressed as partial differential equations (PDEs) in both space and 

time domains. These equations are solved with local thermo-physical properties and heat 

transfer coefficients. Heat exchanger models derived from this method are distributed 

models. The distributions of velocity, void fraction, temperature and pressure of the 

refrigerant and the secondary fluid in both space and time domains can be simulated with 
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this type of model such as the ones developed by Oskarsson et al. (1990), Wang and 

Touber (1991), Bensafi et al. (1997), Jiang and Radermacher (2003), Bendapudi et al. 

(2005). Distributed models also have found wide applications due to the detail 

information they could provide. E.g. Distributed heat pump model developed by 

MacArthur and Grauld (1987) was used to simulate the transient responses of the system 

especially the start-up and shut-down transients. Distributed air cooler (evaporator) 

models developed by Jia et al. (1995, 1999) were used to investigate the effects of 

different flow models on the estimation of evaporator performance. Distributed 

refrigeration system model developed by Mithraratne et al. (2000) was used to study the 

stabilities of TEV controlled water cooling evaporator under typical load fluctuations 

such as changes in the return chilled water temperature. Distributed refrigeration system 

model developed by Koury et al. (2001) was used to investigate the possibility of 

controlling refrigeration system and refrigerant superheat degree at evaporator exit 

simultaneously by regulating compressor speed and throttling valve opening. Harms et al. 

(2004) developed two models for a unitary air conditioning system, one was detailed 

model that considered every circuit in heat exchangers separately, and the other was 

simplified model based on the assumption of identical performance of every circuit, to 

investigate the influences of airside heat transfer coefficient, void fraction and friction 

factors etc model parameters on model predictions. Simulation results indicated that 

model predictions were sensitive to the airside heat transfer coefficient and void fraction 

employed, while not sensitive to the friction factors. Both void fraction model and 

condenser parameters affected the compressor discharge pressure and compressor energy 

consumption; while the evaporator parameters mainly affected the refrigerant mass flow 
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rate and the heat transfer coefficients in both heat exchangers. 

Void fraction, defined as the sectional area ratio occupied by the refrigerant vapor 

in the heat exchanger, has significant effect on heat exchanger performance. However, it 

is difficult to calculate its value directly. Void fraction models were developed and used 

to compute void fraction values, especially when the effects of refrigerant charge were 

considered, as the ones developed by Tandon et al. (1985), Dowlati (1996) and Harm 

(2004). Rice (1987), Casciaro and Thome (2001) presented comprehensive reviews on the 

available analytical and empirical void fraction models and stated that there was no 

sufficient data to justify one model was better than others and no independent database 

was available for the evaluation. Due to the complexity of calculation of void fraction, 

the concept of mean void fraction was employed to describe the overall effects of vapor 

refrigerant in the two-phase section in most lumped parameter models such as the ones 

developed by MacArthur (1984), Browne and Bansal (2002). Beck and Wedekind (1981) 

stated that mean void fraction was a valid assumption for most quasi-steady transitions. 

2.1.2 Modeling of HVAC Systems 

Coil Models 

Finned-tube cross flow heating/cooling coils have wide applications in HVAC 

systems. Coil models describe the states of water and air inside the coil and/or at the coil 

outlet. Modeling of cooling coil is much more complicated than modeling of heating coil 

because of the complexity of mass transfer (condensation of the water vapor) involved in 

cooling process. The air-side tubes are wetted or partially wetted once dehumidification 

occurres. The description of this process is difficult and complex. 

Most coil models are based on steady state analysis. Steady states of air and water 
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leaving the coil are calculated with empirical relations, NTU (number of transfer units) 

method or heat transfer effectiveness approach, as in the coil models developed by Miller 

(1982), Braun et al. (1989B), Hill and Jeter (1991), Khan(1994) and Wang et al. (2004). 

Besides steady state models, there are dynamic coil models to describe the 

dynamics of the coil. One type of dynamic model uses first order plus time constant 

differential equation(s) to describe the coil dynamics with time constant determined 

through experiments and steady states of the air and water leaving the coil derived from 

steady state analysis, as in the coil models developed by Gartner (1972), Clark et al. 

(1985) and Wang (1999). This type of model is suitable for on-line applications due to its 

simplicity. The more detailed dynamic models are derived from theoretical analysis; 

differential equations are derived from the energy and mass conservation principles. This 

type of model can be further divided into lumped parameter models and distributed 

models. The coil is treated as one node or several connected nodes in lumped parameter 

modeling. Based on the assumption of uniform air and water thermo-physical properties 

for each node, ordinary differential equations are developed to describe the dynamics of 

water temperature, air temperature and humidity at the coil outlet, as in the coil model 

developed by Zheng (1997). For distributed models, heat and mass transfer analysis is 

performed tube by tube and the dynamics of water temperature, air temperature and 

humidity along the tube are described by partial differential equations in both time and 

space domains as in the coil models developed by Gartner and Harrison (1963, 1965, 

1969) and Yao (2004). 

Air-Loop Models 

Air-loop model describes air flow behavior and fan pressure rise in the system 
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which usually includes a fan model and an air flow model. Usually, air flows in VAV 

system are more complex than those in CAV system because (1) the air flow rates in 

VAV system are determined by both fan behavior and opening of VAV dampers and (2) 

the modeling of variable speed fan in VAV system is more complicated than the 

modeling of constant speed fan. 

Since time constant of fan is much less than the time constants of other components 

in the HVAC system, such as the coil and air conditioned space, most fan models are 

based on steady state analysis and derived from fan laws as in the fan models developed 

by Hill (1985) and Wang et al. (2000). However, in order to describe the dynamics of the 

air flow or fan pressure, dynamic fan model is required. Zheng (1997) developed a 

dynamic model for a variable speed fan with D.C. motor. Governing equations for fan 

motor were derived from torque balance and Kirchhoff s law. The fan speed and fan 

pressure gain were varied with applied voltage on the fan motor. 

The methods used to model the air flows in the system are similar. First the air duct 

is divided into several closed circuits or sections and the pressure losses in every 

section/circuits are computed. Governing equations for each section/circuit are then 

derived from the mass conservation and pressure balance principles. The main 

differences in different air flow models come from the way of dividing duct into sections 

and the way of computing pressure losses along the duct. Zheng (1997) divided duct 

system into independent closed circuits. Pressure losses along every section were 

described as functions of the mass flow rate of the air passing that section and friction 

loss coefficient. Liu (2003) introduced flow resistance factor, defined as the ratio of the 

pressure loss to the square of the airflow rate, to describe the pressure loss. Resistance 
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factor was set as constant except for dampers, for which the resistance factor was 

determined by damper opening. Wang (1999) divided the duct system into a number of 

sections according to the duct length and air velocity range and assumed pressure loss of 

each section was constant except for losses caused by air dampers. 

Zone Models 

Zone model aims at describing the indoor thermal behavior and/or indoor air 

quality (IAQ) under the effect of HVAC system and heating/cooling load. Existing zone 

models vary widely in complexity from simple lumped parameter models with the 

assumption of perfect air mixing in the conditioned space such as the zone model 

developed by Zheng (1997) to complex CFD (computational fluid dynamics) models 

which describe detailed airflow and temperature profiles in the zone by partial differential 

equations in both space and time domains such as the zone models developed by Ratnam 

et al. (1998), Serbric et al. (2000) and Huang and Haghighat (2005). CFD zone models 

are more suitable for comfort studies, airflow and temperature distribution predictions, 

while the lumped parameter models are more practical for control studies and on-line 

applications. Borresen (1981) developed four simple dynamic zone models based on the 

assumption of good air mixing in the conditioned zone for zone air temperature control 

analysis. Kimbara et al. (1995) developed an autoregressive zone model to simulate the 

humidity ratio and temperature of the air in conditioned space using experimental data 

from real plant. Wang (1999) developed a zone model to simulate dynamic responses of 

air-conditioned space. The space was treated as connected nodes, and each node was 

described by its thermal resistance, thermal capacity and air volume. Assuming perfect 

air mixing, differential equations were derived from the energy and mass conservation 
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principles at each node. Kasahara et al. (2000) divided air conditioned space into five 

zones and described the dynamics of each zone by lumped capacity model based on 

physical laws. Kasahara et al. further stated that the zone dynamics could be represented 

by a first-order plus dead time equation. Two typical time constants were found in their 

study, the zone containing envelopes reached steady state much faster than the interior 

zones due to the small heat capacity. Borresen (1981) and Kasahara et al. (2001) all 

concluded that simplified first order time constant models based on good air mixing 

assumption were accurate enough for most control applications. 

2.1.3 Black Box Models 

Above mentioned models are derived from thermal and physical principles. Besides 

this type of theoretical models, there are other types of models derived from mapping the 

inputs and outputs directly, such as neural network based models, fuzzy-rule based 

models and polynomial fitting models. This type of black box models requires much less 

computations than theoretical models during simulation stage; and therefore is usually 

used for on-line applications. Another advantage of black box models is that when the 

simulation process is too complicated to be described accurately by analytical methods, 

black box models provide good simulation results. The disadvantages of black-box 

models include lacking transparency, the requirement of prior knowledge (input and 

output information), and the accuracy of the model relies on the quality and range of prior 

knowledge. 

Neural networks (NNs) have been proven to be able to approximate arbitrary 

nonlinear functions with any predefined accuracy (Veelenturf, 1995). There are two 

phases to implement NN based modeling. The first phase is the training phase, 
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experimental or simulation data are collected to train the NN. The second phase is the 

application phase, the NN is used to simulate process responses with given input 

information. If the measurements are available later, the discrepancies in the 

measurements and NN predictions can be used to retrain the NN to improve the accuracy. 

NNs have wide applications in system modeling due to the universal approximation 

and error tolerance properties. Curtiss et al. (1993) modeled a reciprocating chiller and 

other HVAC equipment using NNs for energy management of HVAC plants. Parlos et al. 

(1994) developed a recurrent multi-layer NN based dynamic heat exchanger model. The 

model has a validity range of 5-100% of full capacity and an accuracy of 10% in off-line 

learning phase. Massie et al. (1998) developed a NN based chiller and ice storage tank 

model to simulate the chiller performance. Tanyolu (1999) developed a NN based inverse 

dehumidifying cooling coil identifier. NN inputs were selected through principal 

component analysis. Bechtler et al. (2001) used three recurrent MISO (multi-input-single-

output) NNs to model the COP (coefficient of performance), compressor energy 

consumption and chilled water supply temperature for a vapor-compression liquid screw 

chiller. Mei and Levemore (2002) developed a NN-based fan model to simulate the 

pressure rise of a variable speed fan under steady state with experimental data. Compared 

with polynomial curve fitting model, NN-based model was more accurate. An evaporator 

was modeled by Nanayakkara et al. (2002) with a combination of lumped parameter 

model and a NN. Dynamic synaptic unit is proposed to enhance the information 

processing capacity of neurons. A NN controller was proposed to control the evaporator 

heat flow rate and secondary fluid outlet temperature while keeping the refrigerant 

superheat degree at the evaporator exit within a suitable range by manipulating 
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refrigerant and evaporator secondary fluid flow rates. Xu et al. (2005) developed a NN 

based dynamic model for air-conditioned zones and heat exchanger to realize the optimal 

control of the air handling unit. Zhang et al. (2005) developed a NN model to simulate 

the dynamic responses of an AHU, and another NN based controller was used to control 

the indoor temperature and maintain the indoor humidity less than 70% by adjusting the 

chilled water valve opening and supply fan speed. 

2.1.4 Software Packages 

Besides all kinds of models developed by individual researchers, there are also 

some simulation packages available to simulate HVAC&R systems, e.g. HVACSIM+ for 

HVAC system/component simulation plus HVAC controls, building envelope, and 

energy management and control system algorithms; TRNSYS for transient building and 

mechanical system simulation; BLAST for building load and system thermodynamics 

simulation; DOE-2 for building hourly energy consumption simulation; ESP-r for 

building energy consumption and environmental performance simulation and EE4 CBIP 

for building load calculation and energy consumption simulation 

(http://www.eere.energy.gov/buildings/tools directory/ alphalist.cfm; DOE-2, 1981; 

Klein et al., 1983; Park et al., 1985). Some of these simulation packages are based on 

sequential modeling technique, such as TRNSYS and DOE-2; some are modular based, 

such as EenergyPlus, HVACSIM+; computer codes are developed for standard HVAC 

components. Users can create their own component models and store them in the 

database to make the platform more suitable for their case as in the study by Garde 

(2001). 
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2.2 Uncertainty analysis 

The accuracy of the model prediction directly relates to model based applications. 

However, existing theoretical HVAC&R system models exhibit more or less 

uncertainties coming from three facts: (1) inadequate knowledge about complicated 

HVAC&R process; (2) insufficient existing theories for describing HVAC&R process 

precisely; and (3) lack of accurate data of some model parameters. Correspondingly, 

there are two types of uncertainty, one type is model based uncertainty caused by 

neglecting and/or inaccurately describing the process, and the other type is parameter 

based uncertainty caused by uncertain model parameters. Although parameter based 

uncertainties can be partially avoided or reduced through system identification with 

experimental or operating data, there are still some parameters that cannot be determined 

either because the relating data is not available for measurement or the experimental data 

scatters in certain range and the scatter range is varied from case to case, such as 

refrigerant mean void fraction, heat transfer coefficients and cooling loads. As a 

consequence, simulation results obtained from solving model equations with parameters 

having predetermined fixed values cannot accurately represent the possible responses of 

the system. In other words, the model based predictions exhibit uncertainties. 

Investigating the possible range of the simulation results is very important to ensure the 

accuracy of the model predictions. 

In the last decade, fuzzy-set based approach was proposed and used to study system 

uncertainties caused by uncertain parameters with satisfactory results, as shown in the 

studies by Abdel-Tawab and Noor (1999), Biondini (2004), Bondia and Pico (2004). In 

these studies, the uncertain parameters are treated as fuzzy-valued parameters, bounded 
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by suitable minimum and maximum extremes. The extremes and membership function 

ju(x) = [0 l ] , which represents the probability distribution, vagueness, ambiguity or 

imprecision of the parameter, are determined from experimental data or expert 

knowledge. The model is then expressed as fuzzy-valued equations and analyzed using 

fuzzy mathematics. 

The foundation of the fuzzy mathematics is the extension principle introduced by 

Zadeh (1965). For a fuzzy mapping, y - f(xx ,•••, xn): 

u( v) = | s uP(m i n(>"(*i )>•••> Mi* J ) ) # f ' (30 exist
 ( 2-1) 

[O otherwise 

Based on the extension principle, a set of algebraic operations on a family of fuzzy 

sets are defined. Thus, standard mathematical concepts are extended to compute fuzzy-

valued equations. But this method is not practical, especially for nonlinear problems, 

because of the significant computational time and expense it required (Bonarini and 

Nontempi, 1994). 

More recent and practical method is based on a-cut concept and interval 

mathematics, in which the fuzzy-valued parameters are decomposed into intervals at 

different a-cut level and the fuzzy algebraic computations are therefore decomposed into 

interval calculus at each a-cut level. The results are the a-cut of the fuzzy results at the 

same a-cut level. But interval mathematics based fuzzy arithmetic has two main 

drawbacks. One is 'over-estimation', the range of solutions obtained are more or less 

wider than the correct one because the interactions between fuzzy-valued parameters are 

neglected; and the other is so called 'wrapping effects' arising from decomposing fuzzy 

parameters on the corresponding domain according to a-cut and express the fuzzy 

21 



numbers as a number of intervals, as shown in Biondini (2004), Hanss (2002, 2003), 

Bondia and Pico (2004). 

Several algorithms were developed to reduce or minimize the solution range, such 

as the vertex method for monotonic functions proposed by Dong (1987) and interacting 

algorithm proposed by Bonarini and Nontempi (1994). Interacting algorithm aims at 

solving model equations described by ODEs with fuzzy parameters. Connection matrix 

between the solution and fuzzy parameters is constructed for every time step. The 

elements of the connection matrix represent the sensitivity of the solution with respect to 

small changes in the parameters. With this matrix, the directions of the tangents to the 

uncertainty region change in time can be computed, thus, the range of the solution based 

on interval mathematics is narrowed. Vertex method is further developed by Otto (1993), 

Yang (1993) and Hanss (2002, 2003). To reduce the computational expense, Hanss 

(2002, 2003) introduced a transformation method for both monotonic, non-monotonic 

and mixing problems. In this approach, fuzzy variables are classified into monotonic or 

non-monotonic type variable and treated differently to reduce the number of simulations. 

Klimke (2004) extended the vertex method to a sparse grid-based fuzzy arithmetic to 

further reduce the number of simulations while maintaining certain accuracy providing 

that the system is sufficiently smooth. 

2.3 Optimal Control/Operation of H V A C & R Systems 

With the increasing cost of energy, more and more attention has been paid to the 

energy consumption in buildings and therefore motivated intensive studies on efficient 

operation of different HVAC&R systems or components under different operating 
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conditions. As a consequence, various optimal or near-optimal operation schemes have 

been proposed. Braun et al. (1989A, 1990), Ahn and Mitchell (2001) investigated the 

optimal operation of chilled water systems on the supervisory level. In the study of Braun 

et al. the optimal set points of relative cooling tower airflow rate, supply air temperature, 

supply water temperature, relative condenser water flow rate and the number of chillers 

in operation were determined; in the study of Ahn and Mitchell, the optimal set points for 

supply air temperature, chilled water temperature and condenser water temperature were 

determined such that the energy consumption of the plant was minimized. Shelton (1991) 

and Kirsner (1996) investigated the optimization of the condenser water flow rates under 

varied operating conditions and stated that a high condenser water flow rate provided 

good performance under full load condition and a lower flow rate provided better 

performance under partial load conditions. Lu et al. (2004) presented a model-based 

optimization strategy for a condenser water loop. Their study illustrated that energy 

efficiency of condenser water loop can be maximized by regulating the water flow rate 

and fan air flow rate. Hugh and Crowther (2004) investigated the optimal operation of the 

chilled water and cooling tower at supervisory level. Austin (1993) studied partial load 

characteristics of individual chillers for a multi-chiller system, the operation of the 

system was optimized through maximizing the performance of individual chillers. Ke et 

al. (1997) simulated eight ventilation control strategies in a VAV system and concluded 

that the supply air temperature and supply air flow rate were two proper optimization 

parameters on the air side of the HVAC system. Engdahl and Johansson (2004) 

determined the optimal discharge air temperature with respect to the energy consumption 

of the HVAC unit and examined the proposed schemes on a VAV system with 100% 
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outdoor air. Zheng (1997) investigated the optimal operation of a multi-zone VAV system 

with multi-stage operating conditions, the optimal set points for the discharge air 

temperature, supply water temperature, flow rates of air entering zones were determined 

and examined through open-loop simulations. Cascia (2000) proposed a near-optimal 

control strategy to determine global set points for chilled water temperature, hot water 

temperature, coil discharge air temperature, variable speed fan static pressure and 

variable speed chilled water pump differential pressure based on data collected by EMS 

with the assumption of quasi-steady-state load, fixed chilled water temperature 

difference, and fixed enthalpy difference of the air leaving and entering the cooling coil 

during the optimization calculations. Wang and Jin (2000) realized on-line optimal 

control of a HVAC system which included CAV and VAV AHUs, a chiller, a pump, a 

supply fan and a return fan. Based on identification models, the optimal AHU supply air 

temperature, fresh air flow rate and chilled water supply temperature were determined. 

Lu et al. (2005) investigated the optimal operation of a HVAC&R system. With the 

assumption of constant mass flow rate of condenser water, constant supply temperature 

of condenser water and using the air temperature at the cooling coil inlet, the number of 

chillers, chilled water pumps and cooling coil fans in operation, air flow rate into each 

zone and chilled water supply temperature were determined to minimize the energy 

consumption of the chillers, fans and pumps. Simulation or experimental results from 

these studies all indicated significant energy savings through optimal operation of 

HVAC&R components or systems, such as simulation results of Lu et al. (2004) showed 

that compared to operation schemes with fixed condenser water flow, the optimal 

operation scheme saved nearly 50% and 10% energy for very low partial load conditions 
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and full load condition respectively. Energy saving was mainly from operating the 

condenser water pump and the cooling tower fans at low speeds. The study of Engdahl 

and Johansson (2004) showed that compared to the constant discharge air temperature 

scheme, at least 8% energy saving could be achieved by optimizing the discharge air 

temperature. A monthly saving of 3%-14% in KWH, with an average saving around 4.5% 

for a real plant was observed in the study by Cascia (2000). 

The main difference between optimal control and conventional control is that in 

optimal control, a performance index or cost function is minimized or maximized over a 

given operation horizon through regulating controlled variables. A popular cost function 

is the total energy consumption of the system or operation cost during operation hours as 

the ones used by Braun et al. (1990), Zheng (1997), Cascia (2000) and Lu et al. (2004). 

Besides energy consumption, some studies also included system performance index, such 

as indoor thermal comfort and indoor air quality (IAQ), as part of the cost function as the 

performance functions used by Wang and Jin (2000) and Cui (2004). 

One of the key issues in solving optimal control problems is how to find the 

solution(s) which minimize or maximize the cost function. In order to simplify the 

process of searching solutions, linear or quadratic cost functions were used in some 

studies for which analytical solutions exist. Cui (2004) expressed the energy consumption 

of an AHU as a linear function of outside air intake ratio. Linear optimization approach 

was used to identify the optimal outdoor air flow rate aiming at minimizing the energy 

consumption and improving IAQ for a laboratory AHU. Braun et al. (1990), Ann and 

Mitchell (2001) assumed that total energy consumption of the system could be expressed 

as a quadratic function of controlled and uncontrolled variables. The analytical solutions 
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of quadratic optimization problems were applied directly to determine the optimal set 

points. 

However, a nonlinear cost function is inevitable in most optimal control problems 

because energy consumption of HVAC&R systems cannot be accurately expressed as a 

quadratic function or linear function. Therefore, numerical methodologies for nonlinear 

optimization problems have to be used. For example, House and Smith (1995) optimized 

the operation of a two-zone VAV heating system using traditional derivative-based 

method. This approach became very complicated when the number of zones increased. 

Sun and Reddy (2005) employed sequential quadratic programming (SQP) method to 

find the optimal operation solutions for a HVAC&R system based on simulation results. 

Cumali (1988) adopted Pontryagin maximum principle to solve the optimization 

problems for several buildings in real time; same methodology was used by Zheng (1997) 

to find the optimal control set points for multi-stage operation of multi-zone VAV 

systems based on a full system dynamic model. Xu et al. (2005) presented a LR 

(Lagrangian relaxation, a decomposition and coordinated approach) based optimization 

method to find the near-optimal room temperature set point schedule. Chen et al. (2005) 

solved optimization problem for an ice-storage air conditioning system using dynamic 

programming method. This method is usually applied to multi-stage, sequential decision 

problems, particularly for optimization problems where the objective functions are 

undifferentiable. 

Besides above mathematical methods, generic algorithm (GA) and NNs were used 

to find the optimization solutions as well. GA has great success in solving mixed integer 

constrained nonlinear optimization problems by incorporating the operation state of a 
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device into chromosome as 1 (represent device in operation) and 0 (represent device 

standby) and therefore has wide applications in optimal control of HVAC&R systems. 

Sakamoto et al. (1999) employed GA to determine the optimal operation of a electric-

type district heating and cooling plant based on discrete system model. Chang (2005) 

adopted GA to decide the optimal chiller loading for multi-chiller system through 

maximizing every chiller's performance efficiency. Lu (2005) and Nassif et al. (2005) 

used GA to find solutions for global optimal control of HVAC systems. Integrated neural 

network and GA was employed by Chow (2002) to optimize the operation of absorption 

chiller systems. Ahmed and Al-Dajani (2000) used a multi-layer feed forward NN as 

feedback controller to realize the optimal control of nonlinear systems. The network was 

trained to directly minimize a cost function comprised of the system outputs, states and 

inputs. Plant states were fedback to the NN as part of NN inputs. By doing so, closed-

loop control was realized. Compared to the conventional control strategies such as 

dynamic programming, this approach is more robust in term of reducing model error and 

handling uncertainties in initial conditions. Block partial derivatives instead of chain rule 

were used to calculate the gradient of the cost function with respect to the control signals 

and plant states such that the interconnections of control scheme and dynamics of the 

plant were taken into account. Massie et al. (2004) described a neural network based 

optimal controller for ice thermal storage systems. In his study, four neural networks 

were employed, three of them were used to model the chiller and ice tank; the last one 

acted as a global controller, which determined hourly controller settings that minimized 

the total cost over prediction horizon. The supervisory controller consisted of two 

networks, one for training and the other for the operation, working in parallel. The 
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training network learned the relationship between controlled variables, uncontrolled 

variables and plant characteristics. The weights of the training network were passed to the 

predictor network. For the predictor network, the weights of uncontrolled variables were 

fixed and the weights of the controlled variables were adjusted to minimize the cost 

function. Values of controlled variables can be calculated from the corresponding 

weights. 

2.4 H V A C & R System Controller Design 

PI/PID controllers have been the most popular controllers in industry because of 

the simple structure and reliable control performance. Considerable studies on PID 

controller tuning and applications have been done, e.g. Shavit and Brandt (1982), Nesler 

and Stoecker (1984), Ahmed (1991), Roberts and Oak (1991), Kamimura (1994, 2002), 

Krakow et al. (1995), Jette et al. (1998), Kasahara et al. (1998, 2000, 2001), Rahmati et 

al. (2003), Virk et al. (1991), Wang et al. (2001). Before applied to a real system, PI/PID 

controller needs to be tuned to ensure control performance, such as reduce overshoot and 

rise time. Tuning methods include Ziegler-Nichols method, the ultimate sensitivity 

method, step response method, frequency response method, partial model matching 

method, optimization method, and Al techniques such as neural network, fuzzy logic 

control (FLC), genetic algorithm and evolutionary algorithm. 

One of the challenges in PID control applications is how to deal with the time-

variant conditions because not only operating conditions are varied within a wide range, 

but also the dynamics of the HVAC&R system are changing with both time and operating 

conditions. PID control with fixed control gains cannot apply consistent control 
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performance, especially when the operation conditions are far away from the 

commissioning conditions. In order to solve the control problems caused by fixed control 

gains and variable operating conditions, adaptive controls have been proposed and 

implemented in HVAC&R industry since 1980s. For example, Kamimura et al. (1994) 

developed a computer-aided tuning software to tune PID controller parameters if the 

transfer function of the controlled process is known. Seem (1998) proposed a pattern 

recognition adaptive-control method which adjusted proportional gain on the basis of 

closed-loop responses to set-point changes or load disturbances. Chen (2002) proposed an 

improved general predictive control (GPC) algorithm to control a floor radiant heating 

system. GPC law was derived from minimizing an objective function comprised of 

tracking error and control cost. Simulation results demonstrated that GPC had better 

performance than on-off and PI control in term of reducing settling time and overshoot. 

Xu et al. (2005) developed a two-level controller to control the discharge air temperature 

in VAV systems. The lower level was a conventional PID control, initial gains of the 

controller were determined at the commissioning stage; the higher level updated the gains 

to minimize of the GPC criterion once the operating conditions had large deviation from 

the commissioning condition. Simulation and experiment results indicated that compared 

to a well-tuned conventional PID controller, the proposed controller had a faster setting 

time and a smaller overshoot. Neural network, fuzzy logic and genetic algorithm are all 

found applications in the adaptive controller design and controller gains tuning, e.g. 

adaptive controllers proposed by Curtiss et al. (1994, 1996), Dexter and Haves (1989), 

Shin (1995), Huang (1997), Huang and Nelson (1999), So et al. (1995), Zaheeruddin 

(2004). In general, the auto-tuning process can be summarized as follows: 

29 



(1) Develop a mathematical model that represents the controlled process. The 

common models are first-order plus dead time models, on-line identified models and 

dynamic models. 

(2) Define a performance index to evaluate the control performance with different 

controller parameters, such as the integral mean square tracking error, overshoot, rising 

time and settling time. 

(3) Derive a mathematical formula or regulation rule to compute the optimal 

controller parameters based on model predictions and performance index. 

(4) Perform in-situ tests or simulations to evaluate the proposed tuning method and 

compare it with other tuning methods. 

Although SISO (single-input single-output) controllers are dominant in HVAC&R 

system control, neglecting coupling effects between control loops is detrimental to their 

performance. Since control loops are interconnected, tuning one controller may 

deteriorate the performance of other controllers. Krakow et al. (1995) pointed out that in 

order to successfully control the zone air temperature and humidity at the same time, the 

compressor speed and evaporator fan speed should be adjusted simultaneously due to the 

adverse effects between the control loops. Jette et al. (1998) studied the effects of one 

poorly tuned controller on the performance of other control loops in a dual duct system. 

Experimental results showed that tuning one control loop had different effects on other 

control loops. To solve the problems brought by single loop control, MIMO (multi-input-

multi-output) control was proposed. He et al. (1998) designed a MIMO controller for a 

vapor compression refrigeration system. The nonlinear refrigeration system model was 

linearized around different operating points. For each selected operating point, a MIMO 
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controller was designed offline using linear-quadratic Gaussian (LQG) technique. Control 

gains and corresponding operating points were stored in a lookup table. For online 

application, one set of controller gains was selected from lookup table according to the 

operating conditions to ensure MIMO controller adapt to different operating conditions. 

Anderson et al. (2002) designed a MIMO controller based on robust control theory to 

control hot water temperature, discharge air temperature and airflow rate for heating 

systems. Experimental tests showed that the MIMO controller significantly improved the 

transient behavior of the system compared to the conventional SISO control in term of 

reducing response time, rejecting disturbances and improving control stabilities. Semar et 

al. (2003) developed a MIMO controller for a single zone VAV HVAC system based on 

feedback linearization and back-stepping techniques. The mass flow rates of discharge air 

and chilled water were manipulated to maintain desired zone air temperature and 

discharge air temperature in the system. Simulation results showed that the MIMO 

controller was able to overcome the load disturbances and maintain good tracking 

performance. 

Generally speaking, compared to controller design of SISO systems, the controller 

design of nonlinear MIMO systems is much more complicated due to the coupling nature 

of the nonlinear systems, especially when the coupling matrix contains uncertain 

parameters or even uncertain functions (Betzaida et al., 1995; Zhang et al., 2002). 

Therefore, much less studies are available in literature for broader class of nonlinear 

MIMO systems. Kokototic et al. (2001) reviewed the development of the controller 

design of nonlinear systems and Isidori (1995) discussed different controller design 

methods for different types of nonlinear systems. 
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The design of adaptive MIMO controller for nonlinear systems remains an open 

question due to the complexity of such systems. Even though back stepping and feedback 

linearization techniques have been used to design adaptive controllers for certain MIMO 

systems as in studies by Ge and Wang (2004), Tong et al. (2005), Zhang (2004), the 

extension of such techniques to HVAC&R system control is impractical because 

HVAC&R system cannot satisfy the strict limitation on the system, such as the model 

equations should be convertible into parametric strict feedback canonical form, without 

over simplification and neglecting lots of important dynamics. 

2.5 Summary and Conclusions 

From above review, we can conclude that in order to realize optimal operation of 

HVAC&R systems, following three steps are indispensable: (1) developing a system 

model to predict the system responses under different control schemes and operating 

conditions; (2) selecting an optimization method to find the optimal set points and (3) 

designing local control to implement the optimal operation. Furthermore, it is noted that 

previous studies on modeling, control and operation of HVAC&R systems have one or 

more of following limitations: 

(1) Although extensive steady state and dynamic models were developed, most 

models were developed either for HVAC systems or refrigeration systems or individual 

components. The static and dynamic behavior of HVAC systems and refrigeration 

systems were well studied with the assumptions of constant inlet conditions, e.g. constant 

supply water temperature and flowrate for HVAC system modeling and constant return 

water temperature for refrigeration system modeling. The overall behavior of the 
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HVAC&R system is neglected. In other words, the interactions between HVAC system 

and refrigeration system are neglected. 

(2) Most studies on optimal operation of HVAC&R systems were focused on 

component or subsystem level, the interactions between components, control loops and 

interactions between buildings and HVAC&R systems were ignored or over simplified. 

(3) In order to simplify the optimization process, most optimal control studies 

employed steady state models or adaptive models based on identification techniques to 

predict system behavior. The steady state models may inaccurately predict the responses 

and energy consumption of the HVAC&R systems since the systems are working under 

time-variant operating conditions. Online identification model on one hand confines its 

application from the long term predictions, on the other hand may result in non-optimal 

solution because the termination criteria for simulation and optimization problem are 

different. The former is based on function values, while the later is based on the gradient 

of the objective function and constraints. Using simplified identification models for 

which performance function gradients may different from those of the rigorous models 

and may lead to a situation where the optimality conditions are satisfied at non-optimal 

points (Sun, 2005). It follows that the dynamic modeling is more suitable for the optimal 

control of HVAC&R systems. 

(4) Most studies focused either on the supervisory level to determine global 

optimal set points or on the local controller design and tuning. There were not many 

studies covering the closed loop optimal control of HVAC&R systems. The open-loop 

optimal control may yield unacceptable or non optimal solutions for closed-loop systems. 

(5) Although many adaptive controllers were designed to control HVAC&R 

33 



systems, most of them were focused on separate control loops without considering the 

dynamic effects of other loops. Being a system with high coupling effects, the 

performance of the overall system under adaptive control is worth studying. And the 

results will be more instructive for controlling and operation of the real systems. 

From the view point of on-line prediction, the dynamic model should not only be 

able to capture process dynamics accurately but also need to be simple enough to save 

computational time. Thus lumped parameter models are preferred over distributed models 

since distributed models are computationally complex and finding realistic solutions 

within a reasonable period is not an easy task. Although the application of NN model is 

very simple, NN model is not suitable for optimal control because the accuracy of NN 

model is doubtful once the operating condition is beyond the training data range. Based 

on above analysis, the main objectives of this thesis for developing and realizing online 

optimal control strategies for HVAC&R system can be stated as follows: 

(1) Develop a full scale dynamic model of a HVAC&R system. The system 

includes a water cooled variable speed vapor compression chiller and a two-zone VAV 

system. The model will be able to simulate the dynamics of overall HVAC&R system 

and will be used to evaluate the control strategies and calculate energy consumption of 

the system. 

(2) Study the effects of uncertainties in modeling and operating parameters on the 

HVAC&R system responses. 

(3) Develop a model based supervisory optimal control strategy for the HVAC&R 

system. Through minimizing the energy consumption of the system over a predefined 

prediction horizon, the optimal set points for controlled variables including chilled water 
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supply temperature, discharge air temperature and AHU fan static pressure will be 

determined. The interactions between different subsystems of the HVAC&R system will 

be taken into account when determining the optimal control strategy. 

(4) Design an adaptive PI control system to implement the optimal set points. The 

parameters of the controllers will be computed and updated on line to minimize the 

tracking errors. 

(5) Conduct simulation runs under different conditions to investigate the dynamic 

responses of the system and compare the optimal control with conventional control 

schemes. 
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Chapter 3 Dynamic Model of a VAV-HVAC System with Water-

Cooled Vapor Compression Chiller 

A good understanding of the performance of HVAC&R mechanical and control 

systems is the basis of developing successful operating and control strategies for the 

system. In this chapter, a dynamic model is developed for a two-zone VAV-HVAC&R 

system to simulate the dynamic responses of the system. The model is based on energy, 

momentum and mass balance principles. As a modular system model, the HVAC&R 

model is component based; dynamic model for each component is developed first and 

then connected to each other according to the physical layout and corresponding input 

and output information to form the integrated model for the whole system. The integrated 

HVAC & refrigeration system model is composed of a two-zone VAV system model and 

a water cooled vapor compression chiller (WCVCC) model. The two-zone VAV model 

includes a zone model, a cooling and dehumidifying coil model, a variable speed fan 

model, and an air duct model. The chiller model includes an evaporator model, a 

condenser model, a variable speed compressor model and a thermal expansion valve 

model. 

Open-loop simulations are performed to investigate the dynamics of the VAV 

system, the chiller and the integrated system. The dynamic interactions between the 

chiller and the VAV system and the dynamic responses under step changes in cooling 

load and control inputs are also presented. 
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3.1 Description of a Two-Zone VAV-HVAC and Refrigeration System 

Figure 3-1 illustrates the schematic of a typical two-zone VAV-HVAC & 

refrigeration system to be considered in this study. The system consists of a water-cooled 

vapor compression chiller and a two-zone VAV system. The VAV system includes a 

cooling and dehumidifying coil, a variable speed fan, two air-conditioned zones and 

connecting duct. One zone represents interior zone for which the cooling load is mainly 

affected by internal heat gain, and the other zone represents exterior zone for which the 

cooling load is directly affected by the outdoor conditions. The chiller, working with 

Freon 22 (R22), is composed of an evaporator, a condenser, a variable speed 

reciprocating compressor and a thermostatic expansion valve (TEV). The variable speed 

fan and variable speed compressor are run by DC motors. The speed of the motor varies 

with the energy input. 

The VAV system and the chiller are connected through chilled water. Chilled water 

extracts the heat from the air when flowing through the cooling and dehumidifying coil 

and then sent to the evaporator where the heat is delivered to the refrigerant. The cooled 

air from cooling coil is delivered to the air-conditioned zones. Part of the return air is 

exhausted to the environment; and the rest is recirculated, mixed with outdoor fresh air 

and sent back to the cooling coil where it is cooled by the chilled water. At the same time, 

refrigerant in the evaporator absorbs the heat from the water and evaporates. Vapor 

refrigerant is delivered to the compressor where it is compressed. The high pressure and 

high temperature vapor refrigerant discharged from the compressor is sent to the 

condenser where it is cooled by the water and condenses. The condenser water gains heat 

from the refrigerant and sent to the cooling tower where it is cooled by air and 
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recirculated to the condenser. The refrigerant leaving the condenser flows through a 

thermal expansion valve which causes significant pressure loss and enters the evaporator 

at low pressure. This cycle is repeated and thus rejecting heat from indoor air to outdoor 

environment. 
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Figure 3-1 Schematic Diagram of a Typical Two-Zone VAV-HVAC&R System 

In order to maintain desired indoor environment under variable operating 

conditions, the system has to be well controlled to operate properly and efficiently. 

Following controls are considered in this study: 

The AHU fan speed is controlled by modulating the normalized voltage input 
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to the fan motor to maintain certain static pressure at fan outlet and ensure 

enough air circulates in the system. 

- The flow rate of the air entering each conditioned zone is controlled by 

modulating the corresponding VAV box damper opening to maintain the 

desired indoor temperature. 

- The flow rate of chilled water entering the cooling coil is controlled by 

modulating the chilled water valve opening to maintain a given 

discharge/supply air temperature at the coil outlet. 

- The compressor speed is controlled by modulating the normalized voltage 

input to the compressor motor to maintain a given supply chilled water 

temperature at the evaporator outlet. 

- The outdoor air damper is maintained at desired opening to introduce enough 

fresh air into the system to satisfy the indoor air quality (IAQ) requirements. 

3.2 Dynamic Model of a Two-Zone VAV System 

A dynamic multi-zone VAV system model developed in an earlier study by Zheng 

(1997) is used to model the two-zone VAV system. The model includes a zone model, a 

cooling and dehumidifying coil model, an air flow model, a variable speed fan and DC 

motor model. The VAV system is divided into three subsystems, an airflow subsystem, a 

thermal subsystem and a water flow subsystem. The subsystems are modeled separately. 

Following assumptions are made to simplify the model development: (1) ideal gas 

behavior and perfect air mixing in the conditioned zones; (2) negligible infiltration and 

exfiltration effects; (3) no leakage from ductwork. 
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3.2.1 Airflow Subsys tem Model 

The airflow subsystem includes the variable speed fan and air duct. The airflow 

model describes the dynamics of the fan motor and the air flows. As illustrated in Figure 

3-2, the representative air flows in the two-zone VAV system include outdoor fresh air, 

exhaust air, recirculated air, total supply air, return air, air entering zonel and zone2. The 

corresponding mass flow rates are noted as moa, mex, mre, ma, mreturn, mz] and mz2. 

Based on the assumption of no air leakage, and from the mass conservation principle, we 

have: 

™oa = ™ex , ™ex + ™re = ™a = ^return > ™zl + ™z2 = K 

. 1 Doa 2 ma 
« „ — • - % — | <o?HX( — • . 
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Figure 3-2 Air Flow Loops in a Two-Zone VAV-HVAC System 

Therefore, three independent air flow loops are sufficient to describe the airflow 

characteristics of the two-zone system. Mass flow rate of the fresh air moa, mass flow 

rate of the air entering into zonel mzl and zone2 mz2 and three circuits, loopl-2-7-8, 

loop 2-3-6-7-2 and loop 2-3-4-5-6-7-2 (Figure 3-2) are selected in this study. Governing 

equations for selected airflow loops are derived from principles of continuity, momentum 

conservation and pressure balance as follows: 
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where, ADoa, ADex, ADre, ADzl and ADz2 are pressure loss at outdoor air damper, exhaust 

air damper, return air damper, zonel and zone2 VAV box damper respectively. 

Relationship of damper pressure loss and damper opening is derived from damper's 

characteristic curves. APfan is air pressure gain from fan; APloss is pressure losses when air 

flowing through corresponding duct; L is duct length and Ac is duct cross-sectional area. 

The speed of the fan is modulated by regulating the input voltage to the motor. The 

governing equations for the motor are derived from torque balance, power balance and 

Kirchhoff s law, and they are given below. 

dNe k- f I f B f 
fan i,fan fan eqjan 

dt InJ' ,-„ J 
N 

m APr 
a fan fan 

eq,fan eq,fan {In) paNfanrifanJeqJan 

W i t h Jea.fan = J m.fan + Jfan (^fan Y J Bea.fan = Bm.fan + B fan i ™ fan ) 

L 
dl fan 

a, fan 
dt 

= Ufe-R f„Jf„„ -2nkh fN 

eg,fan mj'an fan V fan > 

fan a, fan fan by fan fan 

APf =Chp D , Nf (RNf ) 
^ ^ fan hr a fan fan \ fan J 

(3-5) 

(3-6) 

(3-7) 
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where Nfan is fan rotational speed; Ifm is motor current; Ufan is normalized voltage 

input to fan motor; Dfan is diameter of fan blades; Tjfm is fan efficiency; Ch is fan 

pressure head coefficient; RNfm is speed ratio of motor and fan; kifan is torque constant; 

J fan is equivalent moment of inertia; Beq fan is equivalent frictional factor; Lafan is 

armature inductance; e is armature voltage, Rafan is armature resistance, kbJan is back 

emf constant; and pa is air density. 

3.2.2 Thermal Subsystem Model 

The thermal subsystem includes the typical counter-cross-flow cooling and 

dehumidifying coil and two conditioned zones. Governing equations are derived from 

energy and mass conservation principles. 

Cooling and Dehumidifying Model 

Eq. (3-8)-(3-ll) describe the dynamics of the cooling and dehumidifying coil, in 

which Eq. (3-8) and (3-9) describe dynamics of discharge air temperature and humidity; 

Eq. (3-10) describes time responses of mean tube wall temperature; Eq.(3-ll) describes 

dynamics of return water temperature. 

dT 
ma,ccCa,v ~7 - ~™a Ca,p (Ta.sup ~~ ̂ a.cc.tn ) ^a^cJIs,ov^a,cc (Ta,cc Tt,cc ) 

" K P - ca, )mafa,cc (Wa_suv - WatCcM ) ( 3-8 ) 

+ hmccrimmAacc{cw +Cav -Cap)Tacc\Wa,cc -Wt,sat)Jwl 

dW — — 
m „ . . ^ = -ma{Waccout - Waccin) -hm c crim t 0 VAa t C C(Wa ,Cc - Wt,sal)fwt ( 3-9 ) a,cc dt 
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dTwre 
mw,ccCw ~T ~ mw,ccCw V* w,sup — *w,re) "•" 'lv/,cc"-vi,cc\^ t,cc ~' * w,cc) (. J - l 1 ) 

where, T and Twre are chilled water supply temperature and return temperature, they 

are same as water temperature at the coil inlet and outlet; Taccin, Waccin, Ta sup, and Wasup 

are temperature and humidity ratio of the air entering and leaving the coil; Tacc, Twxc and 

Tt cc are mean temperature of air, water, tube wall and fins in the coil; Wacc is mean 

humidity ratio of the air in the coil; Wi,sat is humidity ratio of saturated air at wall 

temperature; ma and rhwcc are mass flow rates of the air and the water flowing into the 

coil; mnr, and m„„ are mass of the air and the water contained in the coil; m.^and 

mfin ccare m a s s of tubes and fins of the coil; ca v and ca are specific heat of air under 

constant volume and constant pressure respectively; cw, ct and cfm are specific heat of 

water, tube material and fin material; hacc and hwcc, Aacc and Awcc are heat transfer 

coefficients and total heat transfer areas at coil air-side and water-side respectively; hmcc 

is mass transfer coefficient; TJS and r]sm are fin efficiency and coil surface effectiveness 
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in sensible heat transfer;, r\mov is coil surface effectiveness in mass transfer; ifg wis water 

latent heat of vaporization; fwt accounts for whether moisture condensation occurs on the 

tube and fin surface or not: 

Jl Wa,cc ttWtjt condensation occures 

[0 otherwise 

Equations for calculations of heat transfer coefficients, fin efficiency and surface 

effectiveness were adapted from McQuiston (2000). 

Environmental Zone Model 

The following equations describe the time rate of changes in zone air temperature 

and humidity ratio. 

dt 
PaKica,p-r

L = rhzicaJTa^p -T2i) + qsi (i =1,2) (3-12) 

dW a 
P.v«-ZT = 'h«<y.~-wJ+-r]L- 0' = 1>2) (3-13) 

Ul l , 
fg,w 

where, Tzl and Wzi are temperature and humidity ratio of the ith zone; qsi and qu are 

sensible and latent load of the zone; Fziis the volume of the zone and ^>wis water latent 

heat of vaporization. 

3.2.3 Water Flow Subsystem Model 

The mass flow rate of the chilled water circulating in the system is determined by 

the chilled water valve opening. The relationship between water flow rate and valve 

opening is derived from valve characteristic curves through polynomial curving fitting as 

follows: 
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mw = mw>max (a0 + axU
x
val + a2U

2
val + aJJlal) (3-14) 

where mw is chilled water mass flow rate; m,, mQV is water flow rate when chilled water 

valve is fully open; Uml is normalized valve opening; and a0... a3 are fitting parameters. 

3.2.4 VAV System Model 

The two zone VAV system is described by Eq.(3-2)-(3-14). After establishing the 

geometrical parameters through steady state calculations, the dynamics of the two air 

conditioned zones and VAV system can be simulated by solving model equations for a 

given set of inputs, including control inputs such as normalized voltage input to the fan, 

normalized opening of air dampers and normalized chilled water valve opening; working 

conditions like cooling loads profiles and supply water temperature and initial conditions. 

Model dynamic responses include time responses of fan motor current and speed, air flow 

rates in the system, temperature and humidity ratio of the discharge air, chilled water 

flow rate, return water temperature, zone air temperature and humidity ratio. Open-loop 

simulation results are presented in section 3.4. 

3.3 Dynamic Model of a Water Cooled Vapor Compression Chiller 

The water-cooled vapor compression chiller works with R22 and is composed of a 

variable speed reciprocating compressor, a thermostatic expansion valve (TEV) and two 

heat exchangers, one is evaporator and the other is condenser. Same as the variable speed 

fan, motivated by a DC motor, the speed of the compressor is adjustable by modulating 

the energy input to the motor. The condenser and the evaporator are shell and tube type 

heat exchangers. In the evaporator, the refrigerant flows inside the tubes, the water flows 
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in the shell. In the condenser, the refrigerant flows in the shell and the condenser water 

flows inside the tubes. 

The condenser and evaporator are modeled using the moving boundary approach. 

The condenser and evaporator are divided into super-heated (SH) section, two-phase (TP) 

section and sub-cooled (SC) section according to the exhibited refrigerant states. The 

length of each section varies with time since the saturated liquid and vapor boundaries 

move during transients. Governing equations for each section are derived from mass and 

energy conservation principles. 

Following assumptions are made to simplify the real process: (1) one dimensional 

fluid flow in heat exchangers; (2) negligible pressure drop along heat exchangers; (3) 

negligible heat conduction along axial direction in heat exchangers; (4) uniform physical 

properties of fluids along transversal direction; (5) mean void fraction remains invariant 

in two-phase section during transient; (6) uniform tube wall temperature; (7) perfect 

compressor shell insulation; (8) negligible density variations of superheated vapor and 

sub-cooled liquid refrigerant with the change of refrigerant temperature. 

3.3.1 Evaporator Model 

Refrigerant enters evaporator as mixture of vapor and liquid, where it is heated by 

the chilled water and evaporates inside the tube. According to the refrigerant state inside 

the tube, the evaporator is divided into TP section where liquid and vapor refrigerant co­

exist and SH section where only vapor refrigerant exists. The boundary between the TP 

and SH section moves with the evaporation of liquid refrigerant. Figure 3-3 illustrates 

refrigerant phase change and heat flow direction within the evaporator. 
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Figure 3-3 Refrigerant Phase Change and Heat Flow Direction within Evaporator 

Evaporator Refrigerant Side Equations 

From the mass conservation principle, for refrigerant flowing in the evaporator, 

following equation holds, 

tn • — m 
r,eva,m 

_ rl'p>e j opr , cLe . 
r,eva,ou< ~ JQ

 Ac,r,eva - "X + )Llp
Ac,r. 

dt 

_C 
dt 

fa 
lUp,e Qt 

dx 

^ A d^ePr,satv,Pe + 0 ~ 7' e)Pr,satl,Pe) ^ | CL* ^ ^El-fa 

JO c,r,eva - ^ luP,e c'r'eva Qf 

( 3 - 1 5 ) 

where, Lt is length of TP section in the evaporator; Acrem is inside cross-sectional area 

of evaporator tube; ye is refrigerant void fraction; prsatv Pe and pr^atUPe are densities of 

saturated vapor refrigerant and saturated liquid refrigerant at evaporator pressure Pe 

respectively. Assuming there is no accumulator in the system, refrigerant leaving the 

evaporator enters the condenser, vice versa. Therefore, the refrigerant mass flow rate at 
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the evaporator inlet mremi„, mass flow rate of refrigerant passing through the TEV 

mrTEr and refrigerant mass flow rate at the condenser outlet mrconoul are equal. Mass 

flow rate of refrigerant at the evaporator outlet mrevaoM is equal to the mass flow rate of 

the refrigerant compressed by the compressor mr C0M, and is equal to the refrigerant mass 

flow rate at the condenser inlet mrconjn. 

Eq.(3-15) involves integration of time-dependent variable Ltpe. Assume the density 

of superheated vapor refrigerant prv is equal to the density of saturated vapor refrigerant 

Pr,satv under same pressure, prv = prsatv, based on Leibniz integral rule: 

M lXff(x,z)dxy f(1) ^fdX + f(x2(Z),Z)^-f(Xl(Z),Z)^ (3-16) 
dZ\JxM J 3xM dz dz dz 

Eq.(3-15) is rewritten as: 

dL ^ 
mr,TEV mr,COM ~-™c,r,eva\ j ^ \ J n \YePr.satv.Pe "*" U Ye) Pr,satl,Pe)"X J Pr,satv,Pe , [ d ( cUp.e \ 

-Jt[ J 0 (rePr.saN.Pe + (l ~ Ye) Pr .sa,l ,Pe ) < & J ~ Pr, 
( d ( rLe \ dLlp 

A c r A - ^ { \Upfr,dx) + Pr,a.,Pe ~ £ 

dLtpe 
~ A;,r,evaM ~ Ye)\Pr,satl,Pe ~ Pr.satv.Pe> ~7. 

+ A 
c.r.eva 

IT i o"7 r \ ®Pr,satv,Pe . /1 - \ 7- ^Pr.satl.Pe 
(Lsh.e + YeLtP.e) J + (l ~ Ye)

L,P,e J 

(3-17) 

where Lsh e - Le - Llpe is length of evaporator SH section, fe is mean void fraction of 

refrigerant in evaporator TP section . 

With chain rule dP<r**>* =
 dPr**>* ^ ^ dprM = dpr^Pe d£_ R 

dt dPe dt dt dPe dt 

is rewritten as, 
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mr,TEV mr,COM ~ ^c,r,eva 0- Ye )\Pr,satl,Pe Pr,satv,Pe ) " 

dL 
tp,e 

dt 

+ 4. 
, _ r dp Pe _ dp 

(L
Sh,e + YeL<p,e) ' + 0 " Ye) V 

«*P. <*P. 

dP 
(3-18) 

e / 
fifr 

Similarly, w e have following mass conservat ion equation for the refrigerant 

f lowing in the evaporator SH section: 

™r,v,Up,e-m r.COM ~ . , A wa ^ "X — A J Pr,v^X \ + Pr,salv,Pe 
JLlp,e Qf \ dt\ JL'P'e J dt 

c,r,eva sh,e 

dpr dPe 

dP„ dt 

(3-19) 

where, mrvMpe is mass flow rate of the refrigerant passing through the boundary of TP 

section and SH section. 

In addition, from the energy conservation principle, for refrigerant flowing through 

the evaporator TP section, we have following energy equation: 

Jo d t
 Acr,evaaX+]0 Q%

 dX JQ ?fr W * * ~ U (3-20 ) 

equivalent to: 

mr,TEVlr,eva,in mr,v,Ltp,elr,satv,Pe """ X?tr,eva,tp c,r,e 
d_( r**.« . , ) _ . dLlpe 
, I J0 PrlrUX I Pr,satv,Pelr,satv,Pe 

dt , 
( 3 - 2 1 ) 

where ir eva jn is enthalpy of the refrigerant at the evaporator inlet which is equal to the 

enthalpy of the refrigerant leaving the TEV; irsatvPe is enthalpy of saturated vapor 

refrigerant at evaporator pressure. Qlr>eva tp is the total heat transferred from tube wall to 

the refrigerant in TP section, given as, 
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z£tr,eva,tp r,eva r,eva\ t,e r.sat.Pe) lp,i (3-22) 

where Areva is heat transfer area per unit length between the refrigerant and tube wall; 

Tle is mean temperature of tube wall; TrsatPe is refrigerant saturation temperature at 

evaporator pressure. hreva is refrigerant evaporating heat transfer coefficient, which is 

calculated with following equation for forced convection evaporation in tubes (ASHRAE, 

2005): 

/j = 1.8(co(0.38Fr/"
a3)")"0'8/z/ 

with C„ = 
0.8/ \»-5 

Fr,= 

\ - x \ I p, 

G2 

P, vj 

n = 

P,gd 

0 if Frt > 0.04 

1 if Frt < 0.04 

hf -

Re.PrJ 
\a j 

l.Ol + UJ^r^-li^-
x0.5 

if 0.5 < Pr, < 2000, 104 < Re, < 5 * 106 

(R^-IOOO)?^ 7YV 

l + 1 2 . 7 ( p r /
2 / 3 - l ^ 

with f = (l.58111^) -3.28)' 

if 0.5 < Pr; < 2000, 2300 < Re, < 104 

( 3-23 ) 

where x is refrigerant quality, G is mass velocity, g is gravitational acceleration, d is tube 

internal diameter, Re,, Pr,, p, and k, are Reynolds number, Prandtl number, density and 

thermal conductivity of the liquid refrigerant, pv is density of vapor refrigerant. 

By substituting mrvLtpe from Eq.(3-19) into Eq.(3-21), and rearranging the 
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equation yields, 

mr,TEVlr,eva,in ~ mr,COMlr,satv,Pe ~"~ iilr,eva,tp 

d ( fltp,e \ 
= -^c,r,eva ~T I J 0 \7 ePr,satv,Pelr,satv,Pe "*" V ~ Ye )Pr,satl,Pelr,satl,Pe )®X J 

dL tp,e 
A n i p + A I i 

c,r,evaHr,satv,Pe r,satv,Pe j c,r,eva sh,e r,satv,Pe 

dPr,satv,Pe dPe 

dP„ dt 
(3-24) 

•™c,r,eva\ Ie )\PV ,satl ,Pelr ,satl ,Pe Pr,satv,Pelr,satv,Pe ) ' 

dL 
tp,e 

dt 

+ A„ 

— j ®lr,satv,Pe . , j — j x "-Pr,satv,Pe 
/e^tp,ePr,satv,Pe ^ J n lr,satv,Pe \^sh,e + /e^tp.e)' 

dPe 

f 

+Q-rJLtp,t r,satl,Pe 

dPe 

®Pr,satl,Pe "lr,satl,Pe 
+ Pr.satl.Pe J r > 

dPe J dP 

dP 

dt 

Similarly, following energy equation holds for the refrigerant flowing through 

evaporator SH section: 

rie d(prir) 

SLtp,e Qt 

equivalent to: 

rLe drhj rLe Qffl l rLe 
Ac,r,evadX + I — ^ d x - I q,r,eva>shdx = 0 

JLtD.e r i v JLtp.e 
}L'P,e dx 

(3-25) 

mr,Ltp,elr,v,Pe mr,COMleva,out "*" *ltr,eva,sh 

'' d_( fie 

Kdt 
A, I ) u ePr,satv,Pelr,v,Pe^X I ~*~ Pr,satv,Pelr, 

dL, 
tp,e 

satv,Pe 
dt 

(3-26) 

where ir v Pe is enthalpy of superheated refrigerant at evaporator pressure; Qtr<em<sh is total 

heat transferred from tube wall to the refrigerant in SH section, given as, 

z£tr,eva,sh r,v,e r,eva V t,e r,eva,sh * sh,e (3-27) 

where Tr eva sh is mean temperature of the refrigerant in SH section, approximated as, 

T —0 5(T +T ) 
r,eva,sh v.~ry r,sat,Pe r,eva,out / 

(3-28) 

and hrve is refrigerant side heat transfer coefficient in SH section, which is computed 
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with Eq.(3-28) for fully developed turbulent flow inside tubes given by Dittus and 

Boelter (ASHRAE, 1993): 

fir \ 
h = 0.023 * / 

ya j 
Reu 8 Pr" (n = 0.4 for heating and n = 0.3 for cooling) ( 3-29 ) 

where Re, Pr and k, are Reynolds number, Prandtl number and thermal conductivity of 

the fluid, evaluated at mean bulk temperature, d is tube inside diameter. 

By substituting mrvUpe from Eq.(3-19) and £?fr>ewMA from Eq.(3-27) into Eq.(3-26), 

and rearranging the equation yields, 

mr,COM \lr,satv,Pe lr,eva,out ) "•" SZtr eva.sh 

~ ^c,r,eva , \Pr,satv,Pelr,v,Pe I A ; ^tp,e ))~^ Pr,satv,Pelr 

= A ry [ i j )_ ^ 
c,r,evarr,satv,Pe V r,satv,Pe rysh,Pe' 

"^tp,e j . dPr,satv ,Pe 

dt dt 

+ A L 
c,r,eva sh,e 

dt 

I ,T . *. "Pr,satv,Pe "lr,sh,Pe 
\lr,sh,Pe ~lr,satv,Pe) ~T. *" Pr,satv,Pe 

dt r'""v're dt J 
(3-30) 

where ir sh Pe is mean enthalpy of the refrigerant in evaporator SH section, approximated 

as: 

^r,sh,Pe lr,satv,Pe ~*~ £p,r,v,Pe\* r,eva,sh * r, sat, Pe) \^~~>^) 

where cprvPe is specific heat of vapor refrigerant at evaporator pressure. 

Substituting Eq.(3-31) into Eq.(3-30) yields, 
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mr,COM \lr,satv,Pe lr,eva,oul ) "•" iltr.i eva,sh 

A (' ~ \ *P'e _L n < A T r,eva,out 
~-™c,r,evaPr,satv,Pe\''r,satv,Pe ~lr,sh,Pe) T r\J.J-^c r eva-

L'sll,ePr,salv,PeCp,r,v,Pe T 

dt at 
r 

+ A L 
c,r,eva sh,e 

(I •. ®Pr,satv,Pe 
r,sh,Pe ~ lr,satv,Pe ) 77^ "" Pi 

di \ 
r,satv,Pe 

dp 
r,satv,Pe 

dP„ 
( 

~*~^'~>Pr,satv,Pe \*r,eva,out ^r,sat,Pe>' 

dc p,r,v,Pe 

dP 

dT 
— c 

r,sat,Pe 
p,r,v,Pe 

dp e J 

dP 

dt 

(3-32 ) 

Refrigerant thermal properties are evaluated at evaporator pressure with polynomial 

functions. Coefficients of the polynomial functions are derived through curve fitting with 

published ASHRAE data. With these polynomial equations, the derivatives of the thermal 

properties with respect to the pressure are computable. 

Evaporator Tube Wall Equations 

Based on the assumption of uniform tube wall temperature, the dynamics of tube 

wall temperature is formulated from energy conservation principle as, 

C, 
dt -Q, ,eva,. sh (3-33) 

where C, is thermal capacity of tubes; Q„, is total heat transferred from chilled 

water to tube wall in the evaporator, given as, 

z£wl,eva w,eva w,eva\ w,e t,e' e ( 3-34 ) 

where Awem is heat transfer area per unit length in the evaporator water side; Twje is mean 

temperature of water in the evaporator; hweva is water side heat transfer coefficient and 

computed with Eq. (3-35) for fluid flowing across tube banks (ASHRAE, 1993). 

h = 0.33 Re °'6 Pr036 

^ e m a x r r 

' P r ^ 
0.25 

vPr.y 
(3-35) 
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where Pr and PrK are fluid Prandtl numbers evaluated with fluid mean temperature and 

inlet temperature respectively; Remax is fluid Reynolds number evaluated with maximum 

velocity; k is fluid thermal conductivity; and d is tube outside diameter. 

Evaporator Water Side Equations 

For the water flowing through the evaporator, from the energy conservation 

principle, we can derive following equation: 

w.eva i. w,eva v w,evajn w.eva.out s z£wt,eva \ ' 
dt 

where C a is thermal capacity of the water contained in the evaporator; mweva is chilled 

water mass flow rate, Twevain and Twevaout is temperature of the water at the evaporator 

inlet and outlet respectively. 

The evaporator is then described by Eqs.(3-18), (3-24), (3-32), (3-33) and (3-36). 

Given chilled water mass flow rate, temperature of water and refrigerant at the evaporator 

inlet, we can simulate the dynamics of the evaporator, which include the evaporator 

pressure, length of TP and SH sections, temperature of the refrigerant and water at the 

evaporator outlet, and mean temperature of the tube wall. 

3.3.2 Condenser Model 

The high pressure and high temperature vapor refrigerant discharged by the 

compressor is cooled by the water in the condenser and condenses at tube outside surface. 

According to the refrigerant state, the condenser is divided into two to three sections 

depending on cases, a SH section, a TP section and a SC section, if exists. In the SC 

section, only liquid refrigerant exists. Figure 3-4 illustrates refrigerant phase change and 
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heat flow directions within the condenser. 

Following the same procedure used in deriving the evaporator model, the 

governing equations for the condenser model are derived as follows with the assumption 

that density of sub-cooled liquid refrigerant and superheated vapor refrigerant is equal to 

the density of saturated liquid and saturated vapor at the same pressure respectively: 

PrJ = Pr,satl J Pr,v = Pr 

condenser p. m^m \ ^m ^m • ^m ^mT# —fa j ^ 
water 

refrigerant 

(L) mm 

^22?2ZZZZ2ZZI 

condenser 
water 

fmW^7J?m^m'Wffm777>//;/;sAi 

refrigerant 
" (V) 

A\ '\ •' A" •• -> A i " - i ' 
T 

I i 
l< •!< - *W-

A 

V 

V 

one tube 

tube bank 

one tube 

subcooled two-phase section superheated 
section section 

^ : condenser water flow 

• •» : refrigeration flow 

^A : heat flow direction 

E3: vapor refrigerant (V) 

PU: liquid refrigerant (L) 

: tube 

Figure 3-4 Refrigerant Phase Change and Heat Flow Directions within Condenser 

Condenser Refrigerant Side Equations 

According to the mass conservation principle, we have following three mass 

equations for the refrigerant flowing through the condenser SH section, SC section and 

entire condenser respectively: 
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mr,COM mr,v,con 

_ e^Kc dpr , 

= 4. 
d ( rteh,-

dt 

rLsh,c \ 

)0 Pr,vdx)-P> 
dL 'sh,c 

r,satv,Pc dt 
— A I "•Pr,satv,Pc dr 

(3-37) 

•c,r.can sh,c d p ^ 

mr,I,con mr,TEX j £ „L _--c,r,con 

PLC 

JLtp-sh,c c dt 
dx 

' Ac,r,con df [ \Llp_shc PrAj Pr,sa,l,Pc " 

dL, , ^ 
tp-sh,c 

dt 

— A T ®Pr,satl,Pc C*PC 

c,r,con sc.c ^ ^ 

(3-38) 

mr,COM mr,TEV ~ Ac,r,con 

I 
Uh'c dPr,sa<v,Pc 

dt 

+ 

dx+ f 

CLc dPr,satl,Pc 

JLtp-sh,c 

L,p-sh,c d(ycPnsatvPc + ( 1 - Yc)Pr,sa<l,Pc) ^ 

Lsh,c dt 

dt 
dx 

A ( \ _ ~ \ ( _ \ ®^sh,c A - / _ , dLlp_sh<c 

•™-c,r,con^ ~ 7'c)\Pr,satv,Pc ~ Pr,satl,Pc) ~~7. ' •^c,r,con/c\Pr,satv,Pc Pr,sall,Pc) » 

( 
+ A 

c,r,con (Vc+rcLtp,c)^^+((i-rc)Llp,c+LKtCfa sall.Pc 

dP„ dP, c J dt 

( 3-39 ) 

where mr v con is mass flow rate of the refrigerant passing through the boundary of SH 

section and TP section, where the refrigerant starts to condense; mrlcon is mass flow rate 

of the refrigerant passing through the boundary of TP section and SC section, where all 

refrigerant is condensed. Ac r con is inside cross-sectional area of condenser tube; Lshc is 

length of condenser SH section; Ltp.st,iC is total length of condenser SH section and TP 

section; L^c = Ltp_shc -Lshc is length of TP section; and Lscc =LC -Ltp_shc is length of 

condenser SC section; Pc is condenser pressure; priSatViPc and prySatlyPc are density of 

saturated vapor refrigerant and saturated liquid refrigerant at condenser pressure; yc is 

refrigerant mean void fraction in condenser TP section. 

According to the energy conservation principle, following energy equation holds 
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for the refrigerant flowing through condenser SH section: 

ruh,c d(prirdx) f 
lr,COMi'r,con,m f"'r,v,conl'r,satv,Pc z£rt,con,sh Jr. "I* r / i A / L ,™ ,-« tYl„ ., ~n„lv 

A 
c,r,con 

rd T . dLsh^ 
\<rr,satv,Pcr,v,con,shsh,cs rr,satv,Pcr,satvyPc 

dt 
(3-40) 

dt dt 

where ir con in is enthalpy of refrigerant at the condenser inlet, which is equal to the 

enthalpy of refrigerant discharged by the compressor, ir^conM is mean enthalpy of 

refrigerant in condenser SH section and approximated as: 

r,v,con,sh r,satv,Pc p,r,v,Pc\r,con,sh r,sta,Pc ' v / 

where ir satv Pc and cprvPc are enthalpy and specific heat of saturated vapor refrigerant at 

condenser pressure. Trcmsh is mean temperature of refrigerant in SH section and 

approximated as, 

-*r,con,sh = " X i r,con,in "*" *r,sat,Pc) v J_4Z ) 

where Trconin is temperature of the refrigerant at the condenser inlet, and TrsalPc is 

refrigerant saturation temperature at condenser pressure; QrttCOn<sh is total heat transferred 

from refrigerant to tube wall in condenser SH section: 

*£rt,con,sh ~ r,con,sh r,con\ r,con,sh t,c> sh,c \ / 

where Arcon is condenser refrigerant side heat transfer area per unit length; Tlc is mean 

temperature of condenser tube wall; and hrconsh is condenser refrigerant side mean heat 

transfer coefficient in SH section, and is calculated with Eq.(3-35). 

By substituting mrvcon from Eq.(3-37) into Eq.(3-40), and rearranging the equation 

yields, 
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r,COM\r,con,in r,satv,Pc' *Zrt,con,sh c,r,conrr,satv,Pc\r,v,con,sh r,satv,Pc) 

dL :sh,c 

dt 

+ A T 
c,r,con sh,c 

{ r,v,con,sh r,satv,Pc s 

dPr ,satv,Pc 

v 
dP„ 

+ Pr, 
di 

,satv,Pc 
r,satv,Pc 

dP. 
(3-44) 

<T — T N aCp,r,v,Pc r\ e n r "•^r,sat,Pc 
' Pr,satv,Pc\* r,con,sh r,sat,Pc) Jr> "'^ Pr,satv,Pc^ p,r,v,Pc 

dR dR 

dR 

c J dt 

Similarly, the following energy equation holds for the refrigerant flowing through 

the condenser TP section: 

TH I —171 I 
r,v,con r,satv,Pc r,l,con r,satl,Pc 

*^rt,con,tp J , 

uP-sh,c d(prirdx) 
Lsh,c dt 

"•c,r,con ,AYcPr,satv,Pclr,satv,Pc~T~\'- Yc )Pr,satl,Pclr,satl,Pc\-^tp-sh,c ^sluc)) 

dt 
(3-45) 

' c,r,conPr,satl,Pc r,satl,Pc 

dL, 'tp-sh,c 

dt 
r.conrr 

dL 
'c,r,conrr,satv,Pc r,satv,Pc 

'sh,c 

dt 

where i^satltPc is enthalpy of saturated refrigerant liquid at condenser pressure; QrttevaJp is 

total heat transfer from refrigerant to condenser tube wall in condenser TP section: 

±lrt,eva,tp ~ ^r,con^r,con\*r,sal,Pc ~~ *t,c)*-'tp,c V - 5 " ^ ' 0 / 

where hr con is condensation heat transfer coefficient computed with following equation 

for film type condensation (Stoecker and Jones, 1989): 

h = 0.725 
C 1 3 2 A 

*/ Pi g 

Mi 

0.25 ,0.25 
lfs 

yNdAt j 
(3-47) 

where, kl, pt and ju, are thermal conductivity, density and dynamic viscosity of the 

liquid fluid; if is latent heat of vaporization; N is number of tubes in vertical row; d is 

outside diameter of tube; g is gravitational acceleration; At is temperature difference 

between tube wall and the fluid. 

By substituting mrvcon from Eq.(3-37) and mrlcon from (3-38) into Eq.(3-45), and 
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rearranging the equation yields, 

mr,COMlr,satv,Pc mr,TEXlr,satl,Pc iCrt,con,tp 

-^cr.conU Yc)\Pr,satv,Pclr,satv,Pc Pr,satl,Pclr,satl,Pc)" 

dL sh,c 

c,r,con'c\Pr,satv,Pcr,satv,Pc Pr,satl,Pc r,satl,Pc)~ 

dL 
dt 

tp-sh,c 

dt 

+ A„ 

(T J- T ~ \ Pr,satv,Pc . , j \ ( \ _ ~ \T \ Pr,satl,Pc 
lr,satv,Pc \Lsh,c + Ltp,cY c ) ~7^ V lr,satl,Pc \Lsh,c + \\ ~ Tc )Ltp,c ) 

+ L tp,c 

di 
YcPr ,satv,Pc 

di A 

r,satv,Pc , / ! - \ "lr,satl,Pc 
+ 0--rc)Pr,satl,Pc , p 

dPc j 

dP 

dP 

dP 

dt 

(3-48 ) 

Again, for the refrigerant flowing through condenser SC section, we have the 

following energy equation: 

m 
rLc 

i — 77i i — O = I r,1,con r,satl,Pc r.TEV r,con,out *£<rt,con,sc \Tt JLtD-. 

LC d(prirdx) 
Llp-sh.c di 

d i - _ \_ dLtpcon 
\Pr,satl,Pclr,l,con,sc\*-'c ^tp,con)) Pr,satl,Pcl, 

dt r,sattyPc dt 

(3-49) 

J 

where ir con out is enthalpy of the refrigerant leaving condenser; ir, consc is mean enthalpy 

of the refrigerant contained in condenser SC section, approximated as: 

r,con,out r,satl,Pc p,r,l,Pc\ r,con,out r,sat,Pc' (3-50 ) 

r,l,con,sc r,satt,Pc p,r,l,Pc\r,con,sc r,sat,Pc) (3-51) 

where isatl and c , are enthalpy and specific heat of saturated liquid refrigerant at 

constant pressure, Tsat is saturation temperature, Trconoul is temperature of the refrigerant 

leaving the condenser, and Tr con sc is mean temperature of refrigerant contained in SC 

section, approximated as, 
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T = 0 5(T +T ) 
r,con,sc \. r,con,out r,sat,Pc / 

(3-52) 

Qrt,co»,sc *s m e total heat transferred from refrigerant to tube wall in condenser SC section, 

j^rt,con,sc r,con,sc r,con\ r,con,sc t,c) sc,c ( 3 - 5 3 ) 

where hrconsc is refrigerant side heat transfer coefficient of in condenser SC section, 

which is computed with Eq.(3-35). 

By substitute mrlcon from Eq.(3-38) into Eq.(3-49), and rearranging the equation 

yields, 

r,TEV v r,satl>Pc r,con,out ,con,sc 

- A n (J _j \ <P-sh'c I Q 5 A V C r,con,out 
c,r,conrr,satl,Pc\r,l,con,sc r,satl,Pc' i, c,r,con sc,c p,r,l,Pc dt 

+ 0-5A,r,conLsc,cP, 'c,r,con sc,crr,sail,Pc 

di r,satl,Pc dCp,r,l,Pc 
+ (T -T ) 

, p V r,con,sc r,sat,Pc> j p 

-°-5 cw dT r,sal,Pc 
p,r,l,Pc 

dP 

dt 

dP„ 
dt 

J 

(3-54) 

Condenser Tube Wall Equations 

Assuming uniform tube temperature, we have the following energy equation holds 

for tubes: 

„ dTlc C, 
l,con dt 

Qr, ,con,sh *£rt,con,tp ,con,sc *£tw,a (3-55) 

where Ctcon is thermal capacity of condenser tubes; QWtCon is total heat transferred from 

tubes to the water in the condenser: 

*^tw,con w,con w,con v (,c w,c ' c (3-56) 

where A con is condenser water side heat transfer area per unit length; Tw c is mean water 
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temperature in the condenser; hwcon is condenser water side heat transfer coefficient, 

calculated with Eq.(3-29). 

Condenser Water Side Equations 

For the water flowing through the condenser, we have the following energy 

equation holds: 

dfwc 
w,con i. *^tw,con w,con\ w,con,in w,con,out ' V / 

at 

where Cwcon is thermal capacity of the water contained in the condenser; mwcon is 
condenser water mass flow rate, Tw cm jn and Tw cm oul are temperatures of the water at the 

condenser inlet and outlet respectively. 

The condenser model is described by Eqs.(3-39), (3-44), (3-48), (3-54), (3-55) and 

(3-57). For a given mass flow rate and temperature of the water and refrigerant at the 

condenser inlet, we can simulate the dynamics of the condenser with this model. The 

dynamic outputs include the time variation of the condenser pressure, length of TP, SH 

and SC sections, temperature of the refrigerant and the water at the condenser outlet, and 

mean tube wall temperature. 

3.3.3 Thermal Expansion Valve (TEV) Model 

TEV is a pressure reducing component, which connects condenser and evaporator. 

The main functions of TEV include: (1) regulate the flow rate of the liquid refrigerant 

entering the evaporator to match the rate of evaporation in the evaporator and (2) 

maintain certain pressure difference between the condenser and the evaporator. The flow 

through the TEV can be simplified as orifice flow. Based on Bernoulli and continuity 
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equations, the mass flow rate of the refrigerant flowing through the TEV mrTEV is 

modeled as: 

mrJEV = CV(SH -SHss)(jprJEV,n(Pc-Pe)) ( 3-58 ) 

where, Cvis orifice coefficient of the TEV, prJEVM is density of the refrigerant at the 

TEV inlet. SHss is static superheat degree required to overcome the spring force, which is 

one of TEV characteristic parameter and is assumed equal to 4°C in this study. SH is 

refrigerant degree of superheat at the evaporator outlet: 

SH = Tr,eva,out ~ K,sal,pe ( ^ ' ^ ) 

Based on the assumption of isenthalpic flow in TEV, we have: 

"rTEV,out ~ "r,TEV,in V J"OU ) 

3.3.4 Variable Speed Compressor Model 

Assuming isentropic compression process, neglecting refrigerant mass variations in 

the compressor and heat transfer between the shell and environment, the refrigerant mass 

flow rate at the compressor inlet and outlet is modeled as: 

mr,COM = ""*comPr,suc^comr\v,com (J-01 ) 

where Ncom is compressor rotational speed; Vcom is piston displacement volume, prsuc is 

density of the refrigerant at suction condition, rjv com is volumetric efficiency of the 

cylinder, which accounts for the re-expansion effect of the refrigerant vapor trapped in 

the clearance volume and is calculated as follows: 
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7 v . « m = 1 + ^ | 
f p \* 

r.suc 

i A 

\K,dis ) 
- 1 (3-62) 

V 
where CL = clearance

 IS clearance volume ratio, assumed to be equal to 5%. 
V -V 

com clearance 

c 
K = — is effective cylinder isentropic exponent and is evaluated at inlet condition. Pr suc 

and Pr dis are compressor suction and discharge pressure, which are assumed to be equal 

to evaporator pressure Pe and condenser pressure Pc respectively. 

As mentioned before, the variable speed compressor is run by a D.C. motor. By 

regulating the voltage applied to the motor, the motor speed is modulated, which in turn 

causes the variations in refrigerant mass flow rate and refrigerant cooling capacity. 

Therefore, the chiller cooling capacity is regulated to match the cooling load requirement 

by modulating the voltage input. Governing equations for the compressor motor are the 

same as governing equations for the variable speed fan motor described earlier and given 

as: 

dN k- I B W 
u l " com _ i,com com eq.com ^ r " com / -5 zr-i \ 

dt ~ 2nJ J com (2;r)2N ' 
eq,com eq,com K"'* / com 

W i t h Jea.com = Jm.com + Jcom (RNcom)2 I Bea.com ~ Bm.com + Bcom (RNcom f 

L -LSSL = U e-R I -2nkh N (3-64) 
a,com j . com a,com com b,com com V ^ 

where Icom is input current of motor; Ucom is normalized input voltage to the motor; 

RNcom is speed ratio of motor and compressor; kicom is compressor motor torque constant; 

J*t com a n < i B e q com a r e equivalent moment of inertia and equivalent frictional factor of the 
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motor; Lacom is armature inductance; e is armature voltage, Racom is armature resistance, 

khcom is back emf constant; and Wcom is the compressor work: 

Wcom = ™r,COM ihut ~ hn ) ' Vcom ( 3-65 ) 

where, rjcom is adiabatic efficiency of the compressor, accounts for the deviation of real 

compression process from the ideal adiabatic one, which is assumed to be equal to 80%; 

iout and iin are enthalpy of the refrigerant at the compressor inlet and outlet, which are 

assumed to be equal to the enthalpy of the refrigerant discharged from the evaporator and 

entering the condenser. 

In addition, refrigerant discharge temperature is calculated based on the assumption 

of isentropic compression as: 

T =T 
r,dis r,suc 

(p V 
r,suc 

P 
\ * r,dis J 

(3-66) 

3.3.5 Water Cooled Vapor Compression Chiller Model 

The chiller model is described by Eqs.(3-18), (3-24), (3-32), (3-33), (3-36), (3-39), 

(3-44), (3-48), (3-54), (3-55), (3-57), (3-58), (3-61), (3-63) and (3-64). Chiller's 

geometric parameters were established through steady state calculations. By solving 

above equations together, we can simulate the chiller dynamics under a set of operating 

conditions, which include the normalized voltage input to the compressor motor, water 

mass flow rate and temperature at the condenser and evaporator inlet. The dynamic 

outputs include condenser and evaporator pressure, refrigerant mass flow rate through the 

TEV and compressor, refrigerant superheat degree at the evaporator outlet, water 

temperature at the evaporator and condenser outlet, length of SH, TP and SC sections in 
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the evaporator and condenser; and speed of the compressor. Simulation results are 

presented in section 3.4. 

3.4 Combined System Model and Open-Loop Simulation Results 

After establishing the two-zone VAV system model and the chiller model, the 

integrated system model is obtained by connecting the VAV model and the chiller model 

together through the chilled water circuit. We assume: 

(1) There is no bypass chilled water loop, therefore, the mass flow rate of the 

chilled water flowing through the cooling coil is equal to the mass flow rate of water 

flowing through the evaporator, and is determined by the chilled water valve opening. 

(2) There is no heat loss during water transportation. Water temperature at the 

evaporator inlet is equal to the water temperature at the cooling coil outlet (return water 

temperature) and water temperature at the cooling coil inlet is equal to the water 

temperature at the evaporator outlet (supply water temperature). 

Model equations are programmed using Matlab 6.0 and solved with ODE solver -

ODE 15s with given control inputs, loads profiles, outdoor air temperature profile and 

initial conditions. 

Simulations were performed to investigate the HVAC & chiller dynamics under 

different inputs and the dynamic interactions between the chiller and VAV system. Two 

simulation results are presented in this section. CASE 1 focuses on the interactions 

between the chiller system and the VAV system. CASE 2 focuses on the dynamic 

responses of the system under step changes in cooling loads and control inputs. 
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3.4.1 Simulation - CASE 1 

Chiller receives water with higher temperature from the cooling and dehumidifying 

coil and supplies the same amount of chilled water with lower temperature to the coil. 

The changes in one system affect the other through the chilled water circuit. In order to 

investigate the interactions between the chiller and the VAV system, three simulations 

were performed. The chiller and the two-zone VAV system were simulated 

independently first and then the integrated system was simulated with the same operation 

conditions. Simulation results from the integrated system and individual systems are 

presented and compared in this section. 

Chiller Simulation 

Chiller start-up process under full load condition was simulated with fully open 

chilled water valve, fixed water temperature and mass flow rate at the condenser inlet and 

fixed water temperature at the evaporator inlet as: 

" Ucom=l,Uml=\ 

- Tw>re= 12.32 °C 

~~ T = 28 °C 
wycon,in ' 

Simulation results including the responses of compressor speed, chilled water mass 

flow rate, water temperature at the condenser and evaporator outlet, refrigerant mass flow 

rate, evaporator and condenser pressure, superheated degree, length of SH, TP and SC 

sections in the condenser and evaporator are presented in Figure 3-5. 
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From Figure 3-5, we note that; 

(1) With the opening of chilled water valve, the water mass flow rate increases 

from zero to the steady state value in 30 seconds (Figure 3-5 (a)). The steady state value 

is determined by the chilled water valve opening and the dynamics is related to the 

characteristics of the valve and the actuator. A linear valve with time constant equal to 30 

seconds was assumed. 

(2) Soon after the system start up, the compressor motor speed increases very fast 

from 0 to 1854 rpm in about 25 seconds (Figure 3-5 (b)). The mass flow rate of the 

refrigerant flowing through the compressor is directly related to the compressor speed, 

compression ratio and refrigerant states at the evaporator outlet, soon after the 

compressor start-up, with the increase of the compressor speed, more refrigerant is drawn 

into the compressor, compressed and delivered to the condenser. The mass flow rate of 

the refrigerant flowing through the compressor increases and reaches the steady state in 

about 40 seconds (Figure 3-5 (d)). With refrigerant flowing out of the evaporator and 

entering the condenser, the pressure and temperature of the refrigerant increase in the 

condenser while decrease in the evaporator. The evaporator and condenser pressure 

reaches steady state in about 50 seconds (Figure 3-5 (c)). 

(3) The mass flow rate of the refrigerant flowing through the TEV is directly 

related to the degree of superheat at the evaporator outlet (Figure 3-5 (e)) and the 

pressure difference between the condenser and the evaporator. At the beginning, the 

refrigerant superheat degree is not high enough (less than SHSS) to overcome the spring 

force and TEV remains closed and no refrigerant enters the evaporator. With the 

evaporation of the refrigerant, the mass, temperature and pressure of the refrigerant in the 
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evaporator decrease, the superheat degree at the evaporator outlet and the pressure 

difference between the evaporator and the condenser increase; the TEV starts to open. 

With the opening of the TEV, more refrigerant enters the evaporator. The mass flow rate 

of the refrigerant flowing through the TEV reaches steady state in about 75 seconds 

(Figure 3-5 (d)). 

(4) As the refrigerant temperature decreases in the evaporator, the chilled water is 

cooled and the water temperature decreases exponentially. The heat is transferred to the 

condenser water through the circulation of refrigerant such that the condenser water 

temperature increases. Water temperature reaches steady state in about 100 seconds 

(Figure 3-5 (f)). The fast responses result from the high heat transfer coefficients. 

(5) Figure 3-5 (g) is the changes of length of TP and SH sections with time in the 

evaporator and the condenser. Figure 3-5 (h) shows the calculated system performance 

parameters, including the refrigerant capacity (CAPACITY), compressor work (Wcom) 

and COP (coefficient of performance) defined as: 

CAPACITY = mr,C0M (iM - i ^ ) ( 3-67 ) 

cop= CAPACITY 

W 
com 

Two-Zone VAV System Simulation 

For better comparison, in VAV system simulation, the water temperature at the 

cooling coil inlet was set to be equal to the steady state value of the water temperature at 

the evaporator outlet from above chiller simulation; at the same time, the cooling loads 

were selected such that the steady state value of the chilled water temperature at the coil 

outlet was close to the water temperature at the evaporator inlet in the chiller simulation. 

69 



Chilled water valve was kept fully open. Simulation results, including dynamics of 

airflows in the system, fan speed, air and water temperatures at the coil outlet, and the air 

temperature in two zones, under following operating conditions are presented in Figure 

3-6: 

uml=\,ufan=\, uzX=\,u22=\ 

T = 7 1 °C 
1 w,sup ' • l *-" 

r„ = 28 °c 

Qsl=4.5kW, Qlx=\kW 

Qs2 =3.6 kW , Qn =0.8kW 
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Figure 3-6 Open-Loop Simulation Results of VAV System 

From Figure 3-6, we note that: 

(1) Soon after the start-up, the fan motor speed increases very fast from 0 to 2070 

rpm in 50 seconds (Figure 3-6 (a)). With the increase of fan speed, the fan pressure 

increases (Figure 3-6 (b)) causing air circulation in the duct. The dynamics of air flow 

follow the fan dynamics but the magnitudes are dependent on dampers' position and fan 

pressure gain (Figure 3-6 (c)). 

(2) With the chilled water flowing through the coil, the air is cooled; the 

temperature and the humidity ratio of the air start to decrease while the temperature of the 

water increases exponentially. The magnitude of the decrease in air temperature and 

humidity ratio depends on the cooling capacity of the chilled water and coil efficiency. 

The time rate of change of air temperature and humidity ratio is determined by the coil 

characteristics. The steady state is reached in about 500 seconds (Figure 3-6 (d)). 

(3) With the cold and dry air flowing into the air conditioned zones, the 

temperature and humidity ratio of zone air decrease and reach the steady states in about 

1000 seconds (Figure 3-6 (e) and (f)). The dynamics depend on the zone air capacity; the 

higher zone air capacity, the longer it will take for the zone air to reach the steady state. 
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(4) The results show that there are two time scales involved in the VAV system 

dynamics, the dynamic responses of the fan and air flows (tens of seconds) are much 

faster than the responses of the coil and zone (thousands of seconds). Therefore, the 

dynamics of the VAV system is determined by the dynamics of the cooling coil and the 

air-conditioned zone. 

Integrated System Simulation 

In order to investigate the interactions between the VAV system and the chiller, the 

integrated system responses were examined with the same control inputs, initial 

conditions, outdoor air temperature profile and loads profiles as used in the individual 

systems simulations. Simulation results are presented in Figure 3-7 and Figure 3-8. 
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Figure 3-8 Open-Loop Simulation Results of Integrated System - VAV System 

By comparing Figure 3-5 with Figure 3-7, Figure 3-6 with Figure 3-8, results reveal 

that: 

(1) There are no significant variations in the final steady state values before and 

after system integration. 

(2) The integrated system responses also show a two-time scale property in that 
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the responses of compressor speed, airflow rate, chilled water flow rate, and condenser 

water are much faster than the responses of chilled water, discharge air and zone air 

temperature. However, compared to individual systems, the ratio of time-scale in the 

integrated system is found to be larger. 

(3) Dynamics of the compressor and the fan remain the same before and after 

integration because motor's dynamics are independent from the rest of the system. 

Consequently, there is no change in the dynamic responses of air flows. So does the 

responses of the chilled water flow rate which is determined by the chilled water valve 

and actuator, and is independent of the rest of the system. 

(4) The responses of the evaporator are comparatively slower after the system 

integration. Compared tens of seconds before integration, chilled water supply 

temperature and evaporator pressure reach steady state in about 1000 second after 

integration. This is because the dynamics of the chilled water leaving the cooling coil 

affects the dynamics of the evaporator. 

(5) Consequently, the responses of the refrigerant mass flow rates in the chiller are 

much slower after integration, reach steady state in about 1000 seconds, since refrigerant 

flow rate through the compressor and the TVE are directly related to the pressure 

difference between the condenser and the evaporator. 

(6) On the other hand, dynamics of the evaporator affects the coil dynamics also. 

The responses of the discharge air are slower after integration, discharge air temperature 

and return water temperature reach steady state in about 1500 seconds. 

(7) The responses of the condenser pressure and the length of TP and SH sections 

are slower after integration also because of the impact of the dynamics of the refrigerant 
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discharged from the evaporator. However, the responses of the condenser water remain 

fast without showing significant changes before and after integration because of the small 

impact of the dynamics of the evaporator and the VAV system on condenser dynamics. 

Compared to the evaporator and the VAV system, condenser water loop is more 

dependent on the cooling tower. 

Above results are of interest in designing control systems. First, discharge air 

temperature control loop will not only be influenced by airflow and water flow 

modulations in the VAV system but also influenced by the compressor speed modulation 

in the chiller through chilled water loop, which make it more susceptible to load changes 

in the integrated system. Second, the condenser control loop is expected to be more stable 

compared to the evaporator control loop in the integrated system and therefore it is 

justified to decouple it in the optimization analysis. Third, the long time lags have to be 

compensated to improve regulation properties of controllers. 

3.4.2 Simulation - CASE 2 

In real buildings, the cooling load changes all the time. Consequently, in order to 

maintain a desired indoor environment, the operation of the HVAC&R system has to be 

adjusted to match the load variations. The classic on-off control usually impairs the 

performance of the system and increases the energy consumption. Varying the power 

input to the system by regulating the motor voltage input to the fan and compressor to 

match cooling requirements and maintain indoor temperature not only improves the 

performance of the system but also reduces the energy consumption at the same time. 

In this section, simulations are performed to investigate the system responses under 

time-changing operating conditions. These simulations represent a practical operation 
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situation in which the cooling loads decrease and therefore the HVAC&R system is 

controlled to respond to the load change in one of the following three schemes: 

- increase supply water temperature by reducing the energy input to the 

compressor Ucom; 

- increase discharge air temperature by reducing the chilled water mass flow 

rate flowing through the cooling coil through reducing the chilled water valve 

opening Uval 

decrease the air mass flow rates to the zones by reducing energy input to the 

fan Ufan and VAV boxes damper opening Uzl and Uz2 

The simulation conditions are noted below: 

for t< 25005: 

- mw,con= 0.6 kg/s ,TWiCon.n=28°C 

- Qsl=4.2kW, Qn = 1 kW 

- Qs2 = 3.4 kW, Ql2=0.8kW 

" Ucom = 1 , Uval =\,Ufan = 1 , UA =1 and U,2 =1 

for t >= 25005 : 

- mW;CO„ = 0.6 kg/s ,rw,con,„=28°C 

- Qsl =3.9 kW, Qn =0MW 

- Qs2 = 3.1 kW,Ql2= 0.7kW 

One of the following operation schemes: 

-Scheme 1: Ucom = 0.9, Uml =1, Ufan = 1 , UA = 1 , U,2 =1 
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-Scheme2: Ucom = 1, Uml =0.5 , Ufm = 1, Uzl=l, Uz2 =1 

-Scheme 3: Ucom = 1 , ^ = 1 , t//(m = 0.5, £/zl = 0.8, Uz2 = 0.7 

Simulation results of three operation schemes are illustrated in Figure 3-9, Figure 

3-10 and Figure 3-11 respectively. In Table 3-1 list of steady state responses of the 

system before and after step changes in loads and control inputs is given. 'Base Case' 

indicates the steady states of the system before the step change. 

Table 3-1 Effects of Step Variations of Control Inputs and Loads on System Responses 

f ' 

Tzh/;T*<$i;; , •'.• 

Total Energy ,(kW)'" : ••v • 
• - . . , ! - 1 • . i - • •• . • 
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^JkgVs) .:?':;• ••• . . " " 

mzlM,{(tys) • 

* a,sup:\>?) • '• . . . ; . ' , 
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T*&(:$}*-£i:".';•'..' \ 
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Figure 3-10 Open-Loop Simulation Results Due to a Step Change in Load & Uval 
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Ufan 

81 



From Figure 3-9 to Figure 3-11 we note that: 

(1) All of the three schemes can maintain zonel air temperature around 22.5°C and 

zone2 air temperature around 22.8°C. In three cases, the refrigerant mass flow rate 

decreases and causes the reduction in the refrigeration capacity and therefore matches the 

reduced cooling requirement. In the case of Ucom control (schemel), the reduction of the 

refrigerant mass flow rate is caused by the decrease of the compressor speed, while in the 

cases of Uval control (scheme2) and Ufan /Uzl/Uz2 control (scheme3), the reduction of 

the refrigerant mass flow rate is caused by the lower refrigerant density at lower 

evaporator pressure. 

(2) In the case of Ucom control, the chilled water temperature at the evaporator 

outlet Tw increases because the reduction of the refrigeration capacity causes the 

increase in the evaporating temperature. And the temperature of the return water Twre 

and supply air temperature Tdjs increase consequently since the mass flow rates of the 

chilled water and the air are unchanged. In this scheme, zone air temperature is 

maintained through regulating the supply air temperature. 

(3) In the case of Uml control, with the decrease of Uval, less chilled water enters 

the cooling coil which causes the increase in discharge air temperature. With the same 

energy input to the compressor, the reduction in the chilled water flow rate causes the 

decrease of chilled water temperature as well. In this scheme, zone air temperature is 

maintained through regulating the supply air temperature also. 

(4) In the case of Ufan /Uzl IUz2 control, with the reduction of Ufan,Uz] and Uz2, 

less air circulates in the system. The reduction in air flow rate causes the decrease of 
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discharge air temperature and chilled water temperature as well. In this scheme zone air 

temperature is maintained through regulating the air flow rate. 

(5) By comparing the refrigeration capacity and total energy consumption of the 

three cases, we can see that, scheme 2 consumed more energy than scheme 1 and scheme 

3 because of the higher energy inputs to the fan and the compressor in scheme 2. 

Above results also indicate that there is always more than one operation scheme 

that can achieve the same control objectives, however, the energy consumption could be 

different. Therefore, it is possible to reduce the total energy consumption by designing 

good control strategies while maintaining desired indoor air conditions. 
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Chapter 4 Fuzzy-Set Based HVAC&R Model Uncertainty and 

Sensitivity Analysis 

As mentioned before, existing theoretical HVAC&R system models exhibit more 

or less uncertainties coming from neglecting and inaccurate description of the dynamic 

processes and the use of inaccurate model parameters. And therefore, simulation results 

obtained from traditional methods by which model equations are solved with 

predetermined crisp numbers cannot accurately represent the possible responses of the 

system. Since the accuracy of the model prediction plays an important role in model 

based applications, investigating the possible ranges of the simulation results and 

evaluating the uncertainties of the results are very important to ensure the accuracy of the 

model predictions. 

In addition, since HVAC&R systems have strong coupling effects among 

subsystems and control loops, the conventional method of designing controllers 

independently as separate loops could seriously limit the regulation properties and control 

performance of local loop controllers. The effects of individual control variables on the 

controlled variables and on the dynamic responses of the system are worth to be 

investigated. Such information is helpful for designing and tuning the control system. 

In this chapter, a fuzzy-set based extended transformation approach proposed by 

Hanss (2002, 2003) is employed to investigate the uncertainties of the proposed model 

caused by pre-selected uncertain parameters and the sensitivities of the control inputs. 

The uncertain parameters are treated as fuzzy-valued numbers and the propagation of the 

uncertain parameters is assessed using fuzzy arithmetic. The probability distributions of 
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HVAC&R model outputs are constructed based on simulation results. The upper and 

lower bounds of model dynamic outputs are functions of the fuzziness in selected 

uncertain parameters. These bounds can help achieve better predictions of the responses 

of the HVAC&R system by quantifying the range within which the responses fall and 

provide potential variations in measurements under parameter uncertainties. 

4.1 Background of Fuzzy-Set Theory 

In fuzzy set theory, a variable with probability distributions is considered as a 

fuzzy-valued parameter, and the characteristics of the distribution or uncertain 

information of the variable is described by its membership function, /uF (u), which is a 

curve that defines how each point in the input space is mapped to a membership value 

between 0 and 1. Zadeh (1978) interprets the fuzzy sets in terms of probability as: F is 

the set of possible values of a variable p , and juF (u) is the grade of probability of 

choosing u as a suitable value for p . Obviously, the construction of the membership 

function depends on the context of the problem. The membership function can be any 

arbitrary curve. The most commonly used membership functions include triangular 

function, the Gaussian distribution function, sigmoid function and polynomial functions. 

In order to use extended interval mathematics to evaluate fuzzy-valued functions, 

the continuous fuzzy-valued variable is decomposed into a set of intervals based on the a-

cut concept. An a-cut of a fuzzy variable p at membership level juJ (0 < /u1 < 1) is 

represented by the interval 
[aU) b0)] 

(a^' < frJ'), in which the probability of p is at 

least equal to juJ. Assume a fuzzy number p is described by a symmetric triangular 

membership function, according to the a-cut concept, p can be decomposed into a family 
85 



of m+1 intervals as shown in Figure 4-\.p is now expressed as: 

P = {[«(°UW],-,[«W fcwl-,[«w,&w]} 
with membership level piJ = — (j = 0,1 • • • m) 

m 
a{0) = Pl and b® = pu 

M(x) . 

| j / m 

<L> 

2 

(4-1) 

a
( < y 

a(m)= 

_ « $ 

LJ 

/ 

=b(m) 

—-N b® 

S \ b ( 0 ) 

P/ Pu X 

Figure 4-1 a-cut Decomposition of a Fuzzy Parameter with Triangular Membership 
Functions 

Using a-cut, all fuzzy variables appearing in the fuzzy-valued function are 

decomposed into intervals at different a-cut levels and the fuzzy algebraic computations 

are therefore decomposed into interval calculus at each a-cut level. The results are the a-

cut decomposing of the fuzzy results at the same level. (Bonarini and Bontempi, 1994) 

4.2 The Transformation Method 

The transformation method is one of the methods used to evaluate fuzzy valued 

functions. Transformation method has two forms, one is general form used to evaluate 

non-monotonic fuzzy-valued functions; the other is reduced form used to evaluate 

monotonic functions where the function is monotonic with respect to all fuzzy 

parameters. A brief description of the transformation method is given in this section, 

detailed description is given in Hanss (2002, 2003). 

Assume a model having n independent uncertain parameters, represented by n 
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fuzzy variables px, p2, • • • pn, is represented by following equation: 

y = F(j>x,p2,-pn) (4-2) 

where y is fuzzy-valued output of the model. The implementation of the transformation 

method is described in the following three steps. 

STEP 1: Parameter Decomposition 

Given a refinement number m, decompose every fuzzy variable into a set of m+1 

intervals using the a-cut concept. For the i'h fuzzy variable pt, the family of intervals is 

expressed as: 

P, ={k ( 0 ) * , ( 0 ) ] , - ,kW *,W l- ,[fl ,W *,W]} (i = l-,n and a? < b^) (4-3) 

STEP 2: Construct Transformation Matrix 

Case 1 - Transformation Matrix in General Form 

In general form of the transformation method, at every membership level juJ, in 

addition to the boundary points a\j' and by', point(s) cyjgiven in Eq.(4.4) are added to 

each intervals because for non-monotonic problems, besides the boundary points, the 

extreme point may exist inside the argument domain. Figure 4-2 illustrates the 

decomposition of a fuzzy parameter by inserting additional points for each interval. 

ay' j = 0,l---m and 1 = 1 

c0+i) + c0+0 
c(j)=}_Ltl 'J— j = Q,\...m-2 and l = 2,3,---m-J (4-4) 

bjj) j = 0,1 • • • m and I = m- j +1 
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flw=ftM 

Figure 4-2 Insertion of Additional Point(s) in General Transformation Method (m=4) 

The corresponding transformation vector of pi at membership level juJ, Py', is 

composed of (m + l-j)1 repeated sets of tuples (y}y,yy2',••• yy^+i^), each tuple is 

composed of (m + l-j)n~l repeated elements c)y. In all, Py' contains (m + l-j) 

elements as: 

PU)=\LU) yU) ... yU) ) ... (yU) yU) ... yU) )] 
* v ' 

(m+l-j)? tuples 

with rjf= ( c j / U y . - c y ) , 1 = 1,2, ••• m + 2-j 

(m+l-j)"-' elements 

(4-5) 

The transformation matrix PJ at membership level /JJ is composed of the 

transformation vectors of all fuzzy variables: the /'* row of PJ is the transformation 

vector of the i'h fuzzy variable at the same membership level, Py'. 

PJ = 

pUY 

PU) 
r 2 

>(J) 

(4-6) 

Each column of the transformation matrix Pj represents one of the possible 
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combination of the possible extreme points of all uncertain parameters, geometrically 

corresponds to a vertex point or an extrama. 

For example, for three independent fuzzy variables, px,p2,p3, assume m = 4, at 

membership level ju - 0.5 with j = 2 , as shown in Figure 4-2, intervals of the fuzzy 

variables are: 

PlM*l3c$bH />N«S)'gA&)]; pfHagcMb®] (4-7) 

simply denoted as: p {
x
2)= [ dx d2 d3 ] ; p {

2
2)= [ ex e2 e3 ] ; pf=\ / , f2 / 3 ] 

The corresponding transformation vectors (each contains 33 = 27 elements) are: 

P\ — \dx dx di dx dx dx dx dx dx d2 d2 d2 d2 d2 d2 d2 d2 d2 d3 d3 c/3 di di c/3 d3 c/3 J3 J 

A *j ~~~ I t i i C i t i *^9 9 9 1 "K "\ I 1 1 9 9 9 ^ 1 "\ 1 1 I 9 9 9 ^ 1 1 I 

" 3 = L/l / 2 ^3 / 1 / 2 -O / l J 2 J3 J\ J 2 J 3 J I J 2 J1 J\ J 2 J 3 J\ J 2 JI J\ J 2 J 3 J\ J 2 J 3 \ 

and the transformation matrix is: 

>W 
dx dx dx dx dx dx dx dx dx d2 d2 d2 d2 d2 d2 d2 d2 d2 c/3 e?3 d2 J3 di d3 t/3 <a?3 d3 

ex ex ex e2 e2 e2 e3 e3 e3 ex ex ex e2 s2 e2 e3 e3 e3 ex e, ex e2 e2 e2 e3 e3 e3 

_ / l / 2 -/3 J\ J 2 J 3 J\ J 2 J 3 J\ J 2 J 3 JI J 2 J 3 J\ J 2 J 3 J\ J 2 J 3 J\ J 2 J 3 J\ J 2 J 3 

(4-8) 

Case 2 - Transformation Matrix in Reduced Form 

For monotonic problems, the extreme point is one of the boundary points. Thus the 

transformation vector in reduced form is composed of 2'"1 repeated pair \a\J' /?, ), each 

pair contains 2"~'+1 elements; the first 2"~' elements are equal to the lower boundary a)J' 

and the second 2n~' elements are equal to the other boundary b\J'. All together, Py' 

contains 2 elements: 
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total 2i_1 pairs 

with a\l] = (flW, • • • flW) , # w = (fiW, • • • zf >) 
(4-9) 

2 n" x elements 2 n _ 1 elements 

For three fuzzy variablesp l,p2,p3, m = 4 and 7 = 2 , the intervals of the fuzzy 

variables in reduced form are: 

^N'ijAff]; PN«#A8M; ^2)=N2^] 

Simply denoted as: /? f'= [ a, &, ]; p 2 [ a2 2̂ ] > ^ 3 [ ai 3̂ ] 

(4-10) 

The transformation vectors (contains 23 = 8 elements) are: 

"M [°1 a\ U\ a\ ^1 1̂ \ ^l] ^ 2 [a2 fl2 ^2 ^2 ^2 fl2 ^2 ^2 J -^ 3 [°3 ^3 fl3 ^3 fl3 ^3 fl3 ^3 J 

and the corresponding transformation matrix is: 

p(2) 
ax a, at a, 6, 6, fy 6, 

a2 a2 b2 b2 a2 a2 b2 b2 

a3 63 a% by a3 Z>3 a3 b3 

(4-11) 

STEP 3: Model Evaluation and Outputs Retransformation: 

At each a-cut level, evaluate the model with every column of the corresponding 

transformation matrix using the conventional arithmetic for crisp numbers and construct 

the outputs in the format: 

'U) 
[Y^,Y^,.:J^] ; = 0,l,-m-l;z = fc (m +1 - j')n in general form 

in reduced form (4-12) 
y(«) j = m 

The minimum and maximum extremes of the outputs at each a-cut level are given 

as: 
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¥orj = m: a
{m) =b(m) =Y}m) 

'aU)=mm(au+i\ Y^) 
For y = 0 , l,"-w-l:^ ... / , , . ,N 

\b(j)=max(b{j+i), YW) (4-13) 

with k = l,2,---(m + \-j)n in general form 

k = l,2,---2" in reduced form 

4.3 The Extended Transformation Method 

By comparing transformation vector in general form (Eq.(4-5)) and in reduced 

form (Eq.(4-9)), we can see that the general transformation matrix for non-monotonic 

problem has much larger scale than the reduced transformation matrix for monotonic 

problem and therefore causing much more computations. With the increase of the number 

of uncertain variables, the difference can be huge. In order to reduce the computational 

cost, the reduced transformation approach is always preferred whenever it is applicable. 

To handle the problems containing both monotonic and non-monotonic parameters, 

Hanss (2003) extended the transformation method by combining the reduced 

transformation method with the general transformation method. In the extended method, 

fuzzy-valued parameters are classified into general type ('G-type') and reduced type ('R-

type'). Parameter which causes monotonic behavior with respect to all interested outputs 

is classified as R-type parameter; otherwise, it is classified as G-type parameter. 

Transformation vectors and transformation matrix are then constructed according to the 

types of the fuzzy parameters. The extended transformation fuzzy analysis is briefly 

described in the following four steps. 

STEP 1: Parameter Decomposition 

Given a refinement number m , every continuous fuzzy variable is decomposed 
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into m +1 intervals as in Eq.(4-3). 

STEP 2: Parameter Classification 

In order to determine the type of the fuzzy-valued parameter, all fuzzy parameters 

are assumed to be G-type first and transformation matrix is constructed according to Eq. 

(4-5) and Eq.(4-6). Evaluate the fuzzy function with every column of the transformation 

matrix P° with membership level /u = 0. Express the results in the format: 

ry (0 ) y(0) y ( 0 ) i 
1^1 >22 > > 7 ( m + i ) " J 

The i'h parameter is classified as 'R-type' parameter if it satisfies the following 

criteria; otherwise, it is classified as 'G-type' parameter: 

min(i;.)max(7;.) 
Ti~m(m + iy-l(bl0)-al0))>£ 

with 7) = { * , ( U 1 ) , - , tl((m + iy-,,(m + l)'-\m)} (4-14) 

t,(k,l,r) = ^(tj/>r+1) - Ys(k,i,r) 

s(k,l,r) = k + [(m + V)(l-\) + r-i\(m + \y-' 

where s > 0 is a small threshold value. 

STEP 3: Construct Transformation Matrix 

At each a level, construct the transformation vectors for every fuzzy variable 

according to its type. Assume there are 'rig' G-type parameters and '(n-ng)' R-type 

parameters. 

The transformation vector for G-type parameter in the extended method is still 

composed of (m + l — j)1 repeated sets of tuples (/}y, yy2', •• • f,-^+1_j)); and each tuple is 

composed of 2"~ng(m + l- j) ng~l repeated elements c\j> . In all, P^ contains 
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2"-ns (m +1 - j)ns elements as: 

p(j)-\(yU) yU) ...yU) \ ... (yU) yU) . . . yU) \\ (i = \ • • • HiA r i LV/i,l »//,2 > /iXm+l-j))' > \fi,\ >fi,2> 'i,(m+\-j))\ V l nS) 
v J 

(m+l-j)l tuples 

with rii)= ( c i j U J ' . - c J ' ) , / = 1,2, - m + 2-j 

(4-15) 

2"-"* (m+l-j) "*-'' elements 

The transformation vector for R-type parameter in the extended method is 

composed of (m + l-j)ng 21""8"1 repeated pair \a^ J3^j, each pair contains 2"_/+1 

elements. All together, PY' contains (m + l-j)"8 2n"ng elements also: 

P^=[(a^j3^),--,(a^j3^)} {i = ng + l-n) 
total (m+l-j) "S 2ins-1 pairs 

with a\j)= (a\j),---,a\i]) , fi\s) = (b\i],••• ,b\])) 
(4-16) 

2 n " l elements 2 n " J elements 

The transformation matrix P' is constructed as follows: the first 'ng' rows are 

transformation vectors of the G-type parameters and the last l(n-ngY rows are 

transformation vectors of the R-type parameters. Each transformation vector contains 

(m + l-j)"g2n"ng elements. 

/>' = 
p\J) 

ng 

P(J) r ng+l 

>(;) 

(4-17) 

STEP4: Model Evaluation and Outputs Retransformation 

At each a-cut level, evaluate the model with every column of the transformation 
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matrix, construct the outputs in the format of Eq,(4-12). The minimum and maximum 

extremes of the outputs at each a-cut level are: 

F o r / = m: a(m) = b{m) = Yx
[m) 

For j -0,\,---m-\ 

»M =rnW„t'+ 1) y0> a^=mm(a^l>, ¥?>) ( 4 - 1 8 ) 
, , * . . . ... k = l,2,---(m + l-j)ng2n-ng 

Z>W=max(^+l), Yj)) 
k 

Thus, the outputs of the model are expressed in the decomposed and transformed 

forms. The probability distributions of the fuzzy-valued function outputs can thus be 

constructed by sweeping a set of a-cuts at different membership levels ranging from 0 to 

1. The accuracy of the distributions is directly related to the number of a-cuts employed. 

4.4 Fuzzy-Set Based HVAC&R System Model Uncertainty Analysis 

4.4.1 Uncertain Parameter Analysis 

The majority of parameters appearing in HVAC&chiller model equations given in 

Chapter 3 are uncertain variables. These parameters include (1) system configuration 

parameters, i.e. size of heat exchangers and air duct; (2) operation conditions, i.e. cooling 

load and outdoor air temperature; and (3) parameters which can only be calculated using 

empirical equations or derived from experience or experimental data, i.e. mean void 

fraction, heat transfer coefficients. In theory, all uncertain parameters could be treated as 

fuzzy variables with membership functions describing the probability distributions of the 

uncertainties in certain range. However, considering the computational cost, it is 

impractical and unnecessary to include too many uncertain parameters in the uncertainty 

analysis because the significance of different uncertain parameters on model outputs is 

different and the influence of some uncertain parameters can be neglected. In this study, 
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only those parameters which have significant impacts on system behavior or model 

predictions are considered and treated as fuzzy variables. 

The objective of HVAC&R system is to remove the heat from the air-conditioned 

areas; therefore, the cooling load directly affects the operation of the system. However, 

the predictions of the cooling load hardly represent the real operating conditions because 

too many unpredictable factors affect the actual load. To account for the influence of 

uncertain cooling load on system responses, the sensible loads of both zones are included 

in the uncertainty analysis. 

Since the air-conditioning process is basically a heat transfer process, the 

performance of the heat exchangers, including cooling and dehumidifying coil, 

evaporator and condenser, has profound effect on the performance of the system. For a 

heat exchanger with given size and working fluids, the heat transfer rate depends on fluid 

mass flow rates and temperature difference of two fluids. To account for the effects of 

uncertainties in the heat exchangers, chilled water mass flow rate mw cM , cooling coil air 

side heat transfer coefficient ha cc and condenser water mass flow rate rhwcon are selected. 

rhwchj is selected because chilled water connects the chiller and the VAV system and the 

variations in mw chi affect the performance of both cooling coil and evaporator. ha cc is 

selected because on one hand, compared to cooling coil water side heat transfer 

coefficient, the air side heat transfer coefficient ha cc is much smaller, and therefore the 

performance of the cooling coil is dominated by hacc; on the other hand, hacc could 

represent the overall effects of the air flow rate and fin efficiency of the coil. The 

condenser water mass flow rate rhwcon is selected to represent the effects of the 
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uncertainties in the condenser on the overall system behavior. 

Meanwhile, the indoor heat is discharged to the environment through condenser 

water loop. The performance of the cooling tower affects the performance of the 

HVAC&R system. Therefore, the water temperature at the condenser inlet Twconin is 

selected to include the influence of the performance and uncertainties of the cooling 

tower on the performance of the HVAC&R system. In summery, all together six 

uncertain parameters were selected for the uncertainty analysis, they are: 

- mass flow rate of condenser water, mwcon, denoted as /?, 

- mass flow rate of chilled water rhw<chi, denoted as p2 

- water temperature at the condenser inlet, Twconin, denoted as p3 

- cooling coil air side heat transfer coefficient, hacc, denoted as p4 

sensible cooling load of zonel, Qsl, denoted as p5 

- and sensible cooling load of zone2, Qs2, denoted as p6. 

Since we don't have sufficient data and knowledge to establish the probability 

distributions of above uncertain parameters, for simplicity, we assume that the probability 

distributions of px - p6 can be represented by symmetric triangular membership 

functions, as shown in Figure 4-1, with pc equal to the nominal value (most likely value) 

and interval base is ±20% of the pc (worst deviations from the nominal value), that is to 

say, pu =120%/?, and p, =80%pc. 

4.4.2 Numerical Results 

By replacing mwcon , mwchi , Twconin , hacc , Qsi and Qs2 appeared in model 
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equations given in the previous chapter with fuzzy-valued parameters p] -p6, we have 

the system model described by fuzzy-valued ODEs. The extended transformation 

approach is now applied to evaluate the uncertainties in the model outputs. The outputs of 

interest include the air temperature in both zones TzX and Tz2; discharge air temperature 

Ta sup; chilled water temperature Tw and Twre; water temperature at the condenser outlet 

Twconre. Both nominal values and variations of fuzzy variables are assumed to be constant 

throughout the simulation process. 

The application of the extended transformation method starts with the 

decomposition of the fuzzy-valued parameters. Given refinement number m = 3 , the 

corresponding membership level is equal to ju = 0, 0.33, 0.67, and 1, which means the 

variation of the uncertain parameters are equal to ±20%, ±13%, ±7% and 0% of the 

corresponding nominal values respectively. And then the types of uncertain parameters 

are determined as described in Section 4.3 STEP 2. The resulting time histories of the 

effectiveness of every fuzzy variable on interested outputs are plotted in Figure 4-3. r. is 

scaled as follows for better fitting in the same figure: r,2 /100, r\ /10, x\ *10, x\ *10, 

z] *100, r4
2 *100, T\ *100, r5

5 /10, T\ xlOO, and r6
6 /100. Subscript ' i ' represents the 

i,h fuzzy variable, superscript ' j ' represents the j ' h interested output: 

j = 1 for chilled water supply temperature, Tw sup; 

j = 2 for water temperature at the condenser outlet, Twconre; 

j -3 for discharge air temperature, Ta ; 

7 = 4 for chilled water return temperature, Twre; 
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7 = 5 for zonel air temperature, Tz] 

j = 6 for zone2 air temperature, T2 z2 • 
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Figure 4-3 Results of Classification of Uncertain Parameters ~ r, - r6 V.S. Model 
Predictions 

Since system dynamics in first few seconds are mostly dependent on the initial 

conditions used to solve model equations, it is justified to neglect early dynamics in the 

uncertainty analysis. Neglecting dynamics of the interested outputs for t < 40s, from 
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Figure 4-3, we note that, when t > 40s, z\{t) and x\(t) experience sign changes, and 

all other remain positive: r{ (t) > 1CT10 for i, j = 1, 2, • • • 6. According to the classification 

criteria Eq. (4-12), p2 chilled water mass flow rate rhwchi is classified as G-type 

parameter, while the rest parameters pl, pi - p6, condenser water mass flow rate mw con, 

water temperature at the condenser inlet Twconin , cooling coil air side heat transfer 

coefficient ha cc, zone loads Qsl andQs2 are classified as R-type parameters. 

This result is consistent with theoretical analysis. For example, providing other 

conditions are kept unchanged except the cooling load, the higher cooling load causes 

higher return air temperature; which in turn causes higher discharge air temperature, 

higher water temperature at the evaporator inlet and condenser outlet. If cooling coil air 

side heat transfer coefficient haccis the only changing parameter, with the increase of 

hacc, more heat is transferred from the air to the water in the coil, therefore, the discharge 

air temperature decreases; which in turn causes decrease in zone air temperature and 

increase in return water temperature. Since other working conditions of the chiller remain 

unchanged, with the increase of return water temperature, the supply water temperature 

and water temperature in the condenser increase. 

After the types of fuzzy variables are determined, the transformation matrix at each 

a-level are constructed according to Eq.(4.15) - (4-17). The model equations are then 

solved with the same initial conditions, control inputs and every column of the 

transformation matrix at different membership levels. 

Given m = 3 , the upper and lower bounds of the possible distributions of the model 

dynamic responses (preclude some impractical results, e.g. chilled water supply 
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temperature < 0°C) at /J, = 0,1/3, 2/3 and 1 are shown in Figure 4-4 (left column). 
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Figure 4-4 System Dynamic Responses and Approximate Distributions under Uncertain 
Model Parameters 

At any given time, approximate distributions of the responses can be constructed by 

connecting the upper and lower bounds of the responses for that time at different a-cut 

levels. The probability distributions at t = l00s,\000s and 3000s (steady state) are 

illustrated in Figure 4-4 (right column). With this information, the approximate 

distributions of outputs at other membership levels are derivable. For example, if 

uncertain parameters under consideration have a variation range of ±10% of 

corresponding nominal values, in other words, the membership level is LI - 0.5 , the 

approximate distribution range of the supply water temperature under steady state is 

derived as follows: 
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- In the probability distributions figure, draw a horizontal line from ju = 0.5, 

- This line intersects with the profile of the probability distributions of T at 

t =3000^. 

- Get the readings from x axis of the intersections. They are lower and upper 

limits of the range of supply water temperature falls. 

From Figure 4-5, we know that the steady state value of the supply water 

temperature is in the range [1.64°C, 4.33°C] if the uncertainties of the uncertain 

parameters are ±10% of corresponding nominal values. 
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Figure 4-5 Derive Approximate Distributions from Distribution Figure 

From Figure 4-4 we can state the following: 

(1) The overall impacts of the uncertain parameters on different outputs are 

different, for example, the steady state supply water temperature falls in the range [0.1°C, 

5.6°C], with nominal value equal to 3.0°C, the variation base is [-2.9°C, 2.6°C] of the 

nominal value; the steady state zonel air temperature falls in the range [19°C, 28.4°C] 

with nominal value equal to 23.5°C, the variation base is [-4.5°C, 4.9°C] of the nominal 

value. The nominal value, lower and upper bounds of the interested outputs under steady 



state and corresponding variability are summarized in Table 4-1. 

Table 4-1 Model Steady State Prediction Variations with Uncertain Parameters 

T : • . •• • 

-* w.sup 

'Norminal Value 

3.0 

.* w.co'n.re • J 4 . U 

. • • •'••a.iup/'.," j 1 3 . 1 

• T 
x w,re > 

•• ~TZ1\': 

" T.j ' ' 

8.5 

23.5 

23.5 

. Upper Bound (?C) '._ 

^alue. '. 

5.6 

36.7 

15.9 

10.6 

28.4 

28.4 

Deviation' 

2.6 

2.7 

2.8 

2.1 

4.9 

4.9 

'/Lowjep Bound (°G) 

.!;;-\Value--" ' 

0.1 

31.8 

10.7 

6.4 

19.0 

19.0 

Deviation 

-2.9 

-2.2 

-2.4 

-2.1 

-4.5 

-4.5 

(2) Comparing the probability distributions at t = 100s, 1000s and 3000s , we can 

see that the distribution ranges of the dynamic responses tend to increase with time, and 

reach the maximum variations when the system reaches steady state (t = 3000s). The 

variations of distribution ranges of a specific output are directly related to the dynamics 

of the output. For an output with fast response, such as condenser water outlet 

temperature, the distribution range at t-lOOs and membership level // = 0 is [32.TC, 

36.8°C], which is rather close to the distribution range of [31.8°C, 36.7°C] at t = 1000s 

and /u = 0. Since condenser water reaches the steady state around t = 400s , the profiles 

of the membership function of the condenser water outlet temperature at t = 1000s and 

t - 3000s almost overlap with each other. However, for an output with slow response, 

such as discharge air temperature, compared to the distribution range of [11°C, 16°C] at 

t = 1000s and /J = 0, the distribution range [15.3°C, 17°C] at t = 100s and /u = 0 is much 

smaller. Since discharge air temperature reaches steady state around t = 1500s , the 
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distribution range at t = 1000s is much closer to the distribution range of [10.7°C, 

15.9'C] at t = 30005 and // = 0. 

Above results reflect the integrated effects of the six uncertain parameters. In order 

to find the contribution of individual uncertain parameter to the variation of a specific 

model output, following sensitivity coefficient is computed: 

for G - type parameter, i = \,2,---,ng 

1 2"-(«+!ry)*-'(«+wy-y . . \ 

^' '" ~ 2n-ng(m + l-j)ng-\b^-alJ)) h M V ' d^)~y" »(*.') J 

with c(k, l) = k + (l- \)2"-ng (m +1 - j)ng-M 

d(k,l) = k + [(m + l- j)l - \]2n-ng (m +1 - _/)"*-' 

for R - type parameter, / = ng +1, ng + 2, • • •, n 

i \ 1 2"-Y(«+wr2'-"*-y O 

^ '" = 2"-"g-1(m + l - ; r ' ( ^ 0 ' ) - a , ° ' ) ) ^ [ M V " "(w) ~ ^ ' *J)J, 

with c(A:,/) = A: + (/-l)2"-''+1 

</(*,/) = Jfc +[2/-l]2"-' 
(4-19) 

where \s{) represents the impact of the /'* uncertain parameter on the p"' output y at 

membership level of y..; b\j) and a\J) are upper and lower bounds of the intervals of the 

/'* parameter at the same membership level of y.}; y J and yp
J are the c"' and 

the d'h element of the output array Y (J) as illustrated in Eq. (4-18). The second term of 

Eq.(4-19) computes cumulative differences between two outputs yp for all possible 

(m + l-y)""1 combinations of uncertain parameters: pl,p2,...,pj_l,pj+l,...,pn . This 

cumulative differences divided by 2"~ng (m +1 - j)ng'x or 2"~ng~x (m +1 - j)"g yields mean 

difference, which is then divided by b\]) - a\j), the difference of maximal value and 
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minimal value of thei'"1 parameter /?,.. Therefore, {sj)p can also be interpreted as mean 

gradient or mean sensitivity of the i'h parameter with respect to the p'h interested model 

output at membership level of jUj. The overall effects [sf) for all membership levels 

Sf is weighted average of [sj j , the higher the membership level, the greater the weight 

is. 

S,p = • 

m ̂  v 7=0 

17+1 

m 
(4-20 ) 

To evaluate the relative significance of the influence of individual uncertain 

parameters on a certain model output, the normalized effect of uncertain parameter is 

computed as: 

NSf 
Sf 

1=1 

(4-21) 

where subscript T represents the ith uncertain parameter, and superscript '/?' represents 

the p'h output. Normalized effects of every uncertain parameter with respect to all 

interested outputs are computed and depicted in Table 4-2. 

Table 4-2 Normalized Effects of Uncertain Parameters on Model Predictions 
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By comparing the values in the same row in Table 4-2, we can see the effects of 

individual uncertain parameters on different outputs: 

(1) Uncertainties in condenser water flow rate thwcon and inlet temperature Twconin 

have great impact on the variations of the condenser water temperature prediction, 

accounts for 45% and 42% of the variation respectively, while have very small effects on 

other model predictions. 

(2) Uncertainties in chilled water flow rate mwchi has great impact on the variation 

of the water supply temperature prediction, accounts for 45% of the variation. rhwcM also 

affects the variations in the discharge air temperature, return water temperature and air 

temperature in zones, while has small effect on the condenser water temperature. 

(3) Uncertainties in the cooling coil air side heat transfer coefficient hacc affects 

the predictions of discharge air temperature, chilled water temperature and air 

temperature in both zones. However, compared to other parameters, its effects are not 

significant. 

(4) Uncertainties in the zone loads, Qsl and Qs2, have significant impacts on 

corresponding zone air temperature, discharge air temperature and return water 

temperature, accounts for 60% of the zone air temperature variation, 30% of the 

discharge air temperature variation and 30% of the return water temperature variation. 

Qsl and Qs2 also affect the supply water temperature and the air temperature of another 

zone. Again, their impacts on the condenser water temperature prediction are small. 

In addition, by comparing the values in the same column of Table 4-2, the 

significance of uncertainties in model parameters with respect to the variations in the 

106 



interested model predictions can be ranked as follows: 

(1) Supply water temperature variation is mainly caused by the uncertainties in the 

chilled water mass flow rate, and also affected by the uncertainties in cooling loads. The 

effects of variations in air side heat transfer coefficient, condenser water temperature and 

mass flow are insignificant. 

(2) Variations in water temperature at condenser outlet are mainly caused by 

variations in the condenser water mass flow rate and condenser water inlet temperature. 

Variations in other parameters don't affect it much. 

(3) Discharge air temperature variation is mainly caused by the variations in the 

cooling loads and the second most significant impact is coming from the variations in 

chilled water mass flow rate. Air side transfer coefficient also affects its distribution. But 

the impacts of condenser water temperature and flow rate are not significant. 

(4) Variations in return water temperature is mainly caused by the cooling loads. 

The other significant sources causing its variations are chilled water mass flow rate and 

cooling coil air side transfer coefficient. The impacts of condenser water temperature and 

condenser water flow rate are not significant either. 

(5) Zone air temperature variations are mainly caused by the variations in the 

cooling loads of that zone; and the variations in cooling load of the other zone is the 

second main sources causing the zone air temperature variations. The mass flow rate of 

the chilled water also affects zone air temperature distributions through the discharge air. 

In addition, from Table 4-1 and Table 4-2, we can see that the variations in the 

condenser water temperature are mainly caused by the variations in the condenser water 

mass flow rate and water temperature at the condenser inlet. This further justified our 
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assumption of excluding condenser water loop from the optimization analysis. 

4.5 Fuzzy-Set Based Control Variable Sensitivity Analysis 

Similarly, by replacing control variables with fuzzy variables in model equations, 

the transformation method is used to investigate the sensitivities of the control inputs 

aiming at identifying the impacts of control variables on system responses. The following 

control inputs are considered: 

- energy input to compressor motor Ucom; 

- chilled water valve opening Uval; 

energy input to fan motor Ufm ; 

zonel and zone2 damper opening Uzl and Uz2. 

The outputs of interest include: 

- chilled water temperature, Tw and Twre; 

- water temperature at the condenser outlet, Tw con re; 

cooling coil discharge air temperature, Ta sup; 

air temperature in zonel and zone2, TzX and Tz2; 

- mass flow rates of the air entering zonel and zone2, mzl and mz2; 

- mass flow rate of chilled water, mw chi. 

We assume that the variations of control inputs can be described with symmetric 

triangular membership functions as: 

Ucom, Uval and Ufan are varied in the range of [0.6 0.8] with nominal value 
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equal to 0.7, 

UzX, Uz2 are varied in the range of [0.7 0.9] with nominal value equal to 0.8. 

All control inputs are treated as G-type variables and the general transformation 

method is used to calculate the sensitivities of control variables. Given refinement 

number m = 3 , the control inputs are decomposed into intervals at membership levels 

ju = 0, 1/3, 2/3 and 1. The model equations are solved with the same initial conditions, 

load profiles and all possible combinations of control inputs for different membership 

levels. The upper and lower bounds of model dynamic responses at different membership 

levels are illustrated in the left column of Figure 4-6 and the probability distributions of 

the outputs under steady state are plotted on the right column of Figure 4-6. 

o 
•12r 

Dynamic Responses Probability Distributions under Steady State 

— 

— 
— 

u=1 
u=2/3 
u=1/3 
u=o 

1000 2000 
Time (s) 

3000 0 2 4 6 8 10 
Chilled Water Supply Temperature (°C) 

fi 
-—a 

33 

32.5 

32 

31.5 

31 

30.5 

30 

:tvr-r.7T~--a^™-

f 

0 100 200 300 400 500 
Time (s) 

1 

0.8 

1 °-6 

2 

0.2 

1 

i 

31.6 31.8 32 32.2 32.4 32.6 
Water Temperature at Condenser Outlet (°C) 

109 



a 

3 

F> 

X 
F 
<D 

< C> 
P> 
ro 
o 

22 

20 

1H 

1fi 

14 

a. 12 

I I 

V- -
s 

I 

_̂J 

* ^ _ - - -

1000 2000 
Time (s) 

3000 

se
rs

hi
p

 

E 
(D 

1 

0.8 

0.6 

0.4 

0.2 

i 1 T ^ r 

i i i 
_ i i J 

i i i 

12 14 16 18 20 
Discharge Air Temperature (°C) 

o 

E 

£ 
<D 

£ 

12 

10 

8 

N.T^^ r̂"'"""'*"* r 

'"'*•»'- ! 

1000 2000 
Time (s) 

3000 6 8 10 12 
Chilled Water Return Temperature (°C) 

1000 2000 
Time (s) 

3000 22 24 26 28 
Zbnel Temperature (°C) 

30 

1000 2000 
Time (s) 

3000 

1 

0.8 

1 °-6 

0.4 

0.2 

n 

20 22 24 26 28 
Zone2 Temperature (°C) 

30 

110 



1 

0.8 

|"0.6 

§0 .4 

0.2 

m 
i i i 

100 
Time (s) 

200 0.25 0.3 0.35 0.4 0.45 
Air Mass Flow Rate to Zonel (kg/s) 

O) 
0.5 

2 0.4 
o 
N 
o 
» 0.3 

5 0.2 

,-Tr.r.. 
i ! 

1 

" BP'~""'1 

/ i 
i J 

J 
50 100 

Time (s) 
150 200 

1 

0.8 

0.6 

0.4 

0.2 i i \ J 

0.25 0.3 0.35 0.4 0.45 
Air Mass Flow Rate to Zone2 (kg/s) 

(i) Chilled Water Mass Flow Rate 

- t — 

50 100 150 
Time (s) 

200 

0.8 

a. 
E 0. 
12 
CD 

J3 

| 0 . i 

0.2 0.25 0.3 0.35 0.4 0.45 
Chilled Water Mass Flow Rate (kg/s) 

Figure 4-6 Model Dynamic Predictions and Approximate Distributions under Variations 
of Control inputs 

The upper and lower bounds plotted in Figure 4-6 reflect the combined effects of 

variations in all control inputs at the same membership level. The contribution of 

individual control inputs with respect to a specific model output variations is computed 

using Eq.(4-21) and results are depicted in Table 4-3. 
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Table 4—3 Normalized Effects of Variation of Control Inputs on Model Predictions 
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By comparing the values in the same row listed in Table 4—3, we can see the 

impacts of individual control inputs on different model outputs: 

(1) The compressor energy input Ucom has dominant effects on the water 

temperature at the condenser outlet, chilled water supply and return temperature, 

discharge air temperature and zone air temperatures, while has no influence on the chilled 

water and air mass flow rates. Higher energy input to the compressor results in higher 

refrigeration capacity, therefore, more heat can be transferred from the building to the 

environment; and the higher refrigeration capacity also causes lower supply water 

temperature, which in turn causes lower discharge air temperature, lower zone air 

temperatures, and higher condenser water temperature because mass flow rates of the 

chilled water, condenser water and air are unchanged. 

(2) The chilled water valve opening Uval fully controls the chilled water mass flow 

rate, and also influences the condenser water temperature, chilled water supply 

temperature, discharge air temperature and zone air temperature. With the opening of the 

chilled water valve, more chilled water circulates in the system and causes higher heat 

transfer rate in both cooling coil and evaporator; which results in higher condenser water 
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temperature, lower discharge air temperature and lower zone air temperature. Uval 

doesn't affect the air flow rates either. 

(3) Fan energy input Ufan has strong impact on the air mass flow rates; 20% 

change in Ufan accounts for 38% changes in the air mass flow rates. Ufm also affects the 

chilled water temperature and discharge air temperature through modulation of the mass 

flow rate of the air entering the cooling coil and the condenser water temperature through 

the chilled water. The more energy input to the fan, the more air is circulated in the 

system, the more heat is transferred from air to water in the coil, which results in a higher 

chilled water temperature and a higher discharge air temperature. The influence of Ufan 

on zone air temperature is not significant because of the reverse effects of Ufan on the air 

mass flow rate and the discharge air temperature. 

(4) The change in VAV damper opening UzX or U2l not only has significant 

influence on that zone air temperature and the flow rate of the air entering the 

corresponding zone but also affects the zone air temperature and flow rate of the air 

entering the other zone. The influence of Uzl and Uz2 on chilled water temperature and 

discharge air temperature is insignificant. For condenser water temperature, the influence 

of Uz] and Uz2 is negligible. 

By comparing the values in the same column of Table 4—3, the significance of the 

control inputs with respect to the interested model predictions can be ranked as follows: 

(1) Variations in chilled water mass flow rate are caused by the change of Uval 

only; the changes in other control inputs don't affect the chilled water mass flow rate. 

(2) Mass flow rate of the air entering zonel/zone2 is not only determined by 
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damper opening of that zone UzXIUz2 and fan energy input Ufm but also influenced by 

the opening of the neighboring damper UzlIUzX. Ucom and Uval don't affect the air mass 

flow rates. To change the mass flow rate of the air entering zonel/zone2, the control 

variables with the greatest impact are ordered as UzlIUz2, Ufan, and then Uz2/Uzl. 

(3) Supply water temperature variation is mainly caused by the energy input to the 

compressor Ucom since supply water temperature is directly related to the refrigeration 

capacity of the chiller which in turn is determined by Ucom. Uval has great effects on 

supply water temperature also because the change in Uval causes the change in chilled 

water mass flow rate. In addition, Ufm affect the supply water temperature as well 

because Ufm causes changes in air flow rate flowing through the coil and the air mass 

flow rate affects the coil efficiency and therefore affects the chilled water temperature. 

The influence of Uzl and Uz2 on supply water temperature are small. To change the 

supply water temperature, the control variables with the greatest impact are ordered as 

Ucom > Uval, and then Ufan. 

(4) Although there is no control on condenser water temperature, the changes in 

control inputs reflect on the condenser water temperature variations through the flow of 

refrigerant. Variations in water temperature at the condenser outlet is mainly caused by 

the change of Ucom, Uml and Ufan, in which Ucom has the greatest impact. Compared to 

other control inputs, the impacts of Uz] and Uz2 are small. 

(5) Discharge air temperature variation is mainly caused by Ucom, Uval and Ufan 

also. Ucom affects the temperature of the chilled water entering the coil. Uval affects the 
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chilled water flow rate passing through the coil. With the change in chilled water 

temperature and flow rate, the coil capacity changes and thus causes change in the 

discharge air temperature. Ufm affects the air flow rate passing through the coil and 

therefore affects the discharge air temperature. The impacts of UA and Uz2 on discharge 

air temperature are not significant. To change the discharge air temperature, the control 

variables with the greatest impact are ordered as Ucom , Uml, Ufan and then Uzl and Uz2. 

(6) The water temperature at the coil outlet (return water temperature) is not a 

controlled variable, changes in control inputs reflect on chilled water return temperature 

through air loop and chilled water loop. Variations in return water temperature is mainly 

caused by the change of Ucom and Ufan. Uzl and Uzl affect the return water temperature 

also but not significantly. Compared to other control inputs, the impacts of Uml is very 

small. 

(7) Ucom, Uval, Uzl and Uz2 all affect zone air temperature and the impact of Ucom 

is the greatest. Ucom and Uml affect the zone air temperature because they affect the 

discharge air temperature. UzX and Uz2 affect the zone air temperature through 

modulating the air mass flow rate entering the zone. To change zonel temperature, the 

control variables with the greatest impact is ordered as Ucom, UzX, Uml and then Uz2. To 

change zone2 temperature, the control variables with the greatest impact are ordered as 

Ucom , Uz2 , Uval » a n d t h e n Uzl • 

From above analysis, we can further note that: first, since chilled water mass flow 

rate is regulated by Uval, and air flow rates in the system are determined by UzX, Uz2 and 

Ufm, air flow loop and chilled water flow loop can be treated as independent loops, 
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regulating one loop won't affect the responses of another loop. Second, supply water 

temperature, discharge air temperature and zone air temperature are integrated results of 

all control inputs to the system rather than results of individual control inputs. That 

means adjusting one of them by regulating the corresponding control input will affect the 

responses of other loops. The discharge air temperature control is not only influenced by 

airflow and water flow modulations but also influence by chilled water temperature 

modulation. The zone air temperature control is not only influenced by the airflow 

modulation but also influenced by the discharge air temperature modulation and the 

supply water temperature modulation. The chilled water supply temperature control is not 

only influenced by the refrigerant flow modulation but also influenced by the discharge 

air temperature modulation. 

From the uncertainty analysis, it is apparent that model output predictions vary 

depending on the uncertainties in the input parameters. To deal with these modeling 

uncertainties, it is necessary to design adaptive controllers to regulate the system outputs 

in the presence of uncertainties. The design of proposed adaptive controller will be 

presented in Chapter 6. 
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Chapter 5 Neural Network Based Optimal Control of HVAC&R 

Systems 

For HVAC&R systems, there are many variables that can be controlled to provide 

desired indoor environment in buildings. The controlled variables affect the energy use of 

the system. With the increase concern on energy cost, there has been a trend to use 

computational methods to design improved control strategies for more efficient operation 

of the HVAC&R systems in recent years. Optimal control of HVAC&R systems, aiming 

at operating HVAC&R system with the least energy while maintaining the desired indoor 

environment, is one of the areas of significant research interest. Such control strategies 

can be integrated into building energy management control systems (EMCS) as 

supervisory control. The optimal set points from the optimal operation scheme are 

downloaded to corresponding local controllers, which execute the control action and 

track the set point. The optimal set points are dependent on the uncontrolled variables 

such as outdoor air temperature, desired indoor temperature and building loads. 

In this chapter, an optimal supervisory control algorithm for the two-zone VAV-

HVAC & refrigeration system is developed, aiming at reducing the total energy 

consumption of the fan and the compressor while maintaining a desired zone air 

temperature. The set points for supply air temperature, supply water temperature and air 

handler fan static pressure are determined. The developed optimal control strategy 

integrates model-based prediction and neural network based optimization techniques. 

This approach allows the coupling of a detailed simulation model instead of empirical 

models with an efficient NN based optimization method. 
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The assumptions made in the development of optimal strategy are listed below: 

(1) In addition to the independent optimization control, there exist local controls 

that could maintain the controlled variables at desired set points. 

The compressor speed is controlled such that the a specific supply water 

temperature is maintained. 

- The cooling coil water flow rate is controlled to maintain a given discharge 

air temperature. 

- The mass flow rate of air entering air-conditioned zone is controlled to 

maintain a desired zone air temperature. 

And fan speed is controlled to maintain the static pressure set point. 

Theoretically, the dynamics of the local loop controls must be considered in order 

to maintain the prescribed set points in an efficient manner during the optimization 

process. However, for systems without significant thermal storage, these dynamics can be 

neglected in optimization analysis. (Braun et al. 1989) 

(2) Quasi steady-state load is assumed during each optimization step. This 

assumption justifies because time constants for chilled water temperature, discharge air 

temperature, zone air temperature control loops are of the order of 20 minutes or less and 

HVAC plants can usually hold load at approximate steady state conditions for 15-20 

minutes at a time. (Cascia, 2000) 

(3) The condenser water loop and cooling tower fan speed control are excluded 

from the optimization analysis. Braun et al. (1989b, 1990) have shown that the coupling 

between optimal values of the chilled water loop and the condenser water loop is not 

strong and a near-optimal tower airflow calculation depends solely on the load of the 
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chilled water loop. These results justify treating the chilled water loop and condenser 

water including cooling tower as separate loops and including only the chiller and air 

handling units in the optimal operation analysis. Similar decoupling was adopted by 

Cascia (2000) in finding the near optimal chilled water temperature and discharge air 

temperature setpoints for HVAC plant. 

(4) Outdoor air damper is held at 40% open during occupied hours. 

5.1 Background of Neural Networks 

The robustness and the ability of mapping arbitrary nonlinear functions make 

neural network (NN) an attractive candidate for nonlinear system control. 

There are different types of neural networks but basically they all consist of simple 

elements (neurons) working in parallel. The architecture of NN, which includes the 

number of layers, the number of neurons in each layer, the connection of neurons, and the 

transform functions used to evaluate the layer outputs, is one of the key factors ensuring 

the success of its application. Figure 5-1 illustrates the structure of a three-layer feed 

forward neural network with biases. The three layers are an input layer, a middle/hidden 

layer and an output layer. Each layer has a weight matrix W, a bias vector b and an output 

vector A. A more complicated network may contain more than one middle layer and 

feedback between neurons. 

For a given input vector IN, the output of a three-layer feed forward neural 

network, OUT, is computed as follows: 

OUT = f2{LW*fx{IW*IN + bl) + b2) (5-1) 

where, IW and LW are weights of the input layer and hidden layer respectively; 6, and 
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b2 are biases to be added to the weighed network inputs and weighted hidden layer 

outputs; / , and f2 are transfer function for input layer and hidden layer respectively. 

Input Layer Hidden Layer Output Layer 

IN 

IN 
(Inputs) 

i w t - ^ - ^ r-i LW 

b2 

A = fi(lW*IN + bl) 

OUT 

OUT = f2(LW*A + b2) 

Weights: IW 
Bias: bi 

Transfer Function: f 

Weights: LW 
Bias:b2 

Transfer Function: f2 

OUT 
(Outputs) 

Figure 5-1 Architecture of a Three-Layer Feed forward Neural Network 

Linear Transfer Function Log-Sigmoid Transfer Function Tan-Sigmoid Transfer Function 
1 t 

y = x y = 1 + e" y 
l + e~ 

Figure 5-2 Transfer Functions 

Figure 5-2 illustrates graphs of three typical transfer functions; they are linear 



transfer function in (a), log-sigmoid transfer function in (b) and hyperbolic tangent 

transfer function in (c). The hyperbolic tangent function and log sigmoid function are 

monotonic S-shaped functions, the hyperbolic tangent function maps numbers in the 

interval (-00, +00) to a finite interval (-1, 1) and the log sigmoid function maps numbers 

in the interval (-00, +00) to a finite interval (0, +1) (Matlab, 2006). 

A neural network can be trained to perform a particular function by adjusting the 

values of the weights and/or biases, such that a particular input leads to a specific target 

output. There are two types of training; one is supervised training and the other is 

unsupervised training. Supervised training has been the mainstream of neural networks 

development and applications, for which the training data consist of many pairs of input 

and output training pattern. The weights and/or biases are adjusted based on a comparison 

of the network output and the target, until the network output matches the target. For 

unsupervised training, the training data consist of input information but not with desired 

output information. The network adapts itself (adjusts its weights and/or biases) to 

minimize a cost function/performance index which could be any function of the input(s). 

Back propagation (BP) is one of the most popular and simplest training methods. 

BP is a gradient descent algorithm based on chain rule of derivative estimation, in which 

the network weights and/or biases are adjusted along the direction of the negative of the 

gradient of the cost function with respect to the weights and/or biases. There are many 

variations in application of the BP algorithm, such as the steepest descent algorithm, 

gradient descent with momentum, conjugate gradient algorithm and Broyden-Fletcher-

Goldfarb-Shanna (BFGS) quasi-Newton algorithm and Levenberg-Marquardt algorithm. 
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5.2 Formulation of Optimization Problem for HVAC&R System 
Operation 

The difference between normal operation and optimal operation is that in optimal 

operation, the system is controlled not only to satisfy certain physical constraints but also 

a predefined performance index (PI) or cost function, which is a function of controlled 

and uncontrolled variables, is minimized or maximized at the same time. 

For an HVAC&R system to maintain a comfortable indoor environment, the most 

important concern is the energy used to achieve the desired indoor environment, the 

smaller the energy use the better. Therefore, the total energy use during operation period 

is selected as the performance index for the optimal operation of HVAC&R system. To 

simplify the model and optimization analysis, energy use by chilled water pump is 

neglected. Other energy components in the HVAC&R system are fan and compressor. 

The performance index is defined as the total of energy use of compressor Ecom and 

VAV fan Efm over the prediction period 0 - T , and is represented mathematically as: 

Min E,,, -E +Ef (5-2) 
total com fan v ' 

with, 

E = f e U I dt (5-3) 
com J,, com com V / 

E, = f eUf If dt (5-4) 
fan J fan fan \ ' 

where Ucom and Ufan are normalized voltage input to the compressor and fan motor; Icom 

and Ifan are current of the compressor motor and fan motor; e is armature voltage. 

The energy consumption of the compressor and the fan is obtained by time 



integration of the product of voltage and current. We introduced two states to represent 

the energy consumption rate of the compressor and the fan such that the energy 

consumption can be computed directly when the augmented model equations are solved. 

The state space equations are given as: 

dt 

dE 

com 
• — K l / . com com = eU I (5-5) 

~ ^ com com \ " " J 

—f— = eUf I, (5-6) 

dt fm fan 

with initial values are set to zero, since at t = 0, the energy use of the fan or compressor 

is zero. 

In addition to the energy use, the operation of the HVAC&R system is subjected to 

constraints for proper operation of the mechanical system and constraints for maintaining 

indoor thermal comfort. 

Thermal Comfort Constraints 

From the view point of thermal comfort, zone air temperature floating in a certain 

range around the desired temperature won't sacrifice much comfort while the operation 

will be much more stable. A small range, for example, ±1°C from the desired temperature 

for occupied hours and a wider range for unoccupied hours is applied. 

Mechanical System Constraints 

(1) From the view point of proper operation of the mechanical system, the 

discharge air temperature Ta should be held in a certain range with the upper limit 

TaMgh coming from thermal comfort requirements, and the lower limit Talow based on 

avoiding insufficient ventilation and overcooling in the night. A range of 12-18°C is 
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normally recommended (Engdahl, 2004). 

(2) The chilled water supply temperature Tw should be high enough to avoid 

freezing in the evaporator and low enough to provide dehumidification of the air in the 

cooling coil. A generally acknowledged range of the lower limit is 3-7°C and the upper 

limit is 3-16°C(Lu, 2004). 

Control Inputs Constraints 

For proper operation of diffusers and achieving good air mixing in the zone, 

damper opening is confined in the range of [0.4, 1], while other control inputs are 

normalized in the range of [0, 1]. 

Mathematically the optimal operation problem is now defined as: 

Min J = Ecom+Efan 

subject to : 0.4 < Uzl, Uz2 < 1 

o * ucom, ufm, uval < i 
T < T < T (5-7 "> 

a,low — a.sup — a,high V / 

T <T <T 
w,low — w.sup — w,high 

T <T <T 
z,low — z ~ z,high 

X = f(X,U,Q) 

where the last differential equation represents HVAC&R system model. 

Generally, local controls may not ensure stable control performance if the control 

set points are reset too frequently and by too great magnitudes even the controller is well-

tuned or an adaptive one (House et al., 2003). Therefore, if time span of each stage is 

short enough, it will be justified converting the continuous optimization problem into a 

multi-stage optimization problem and the constraints on continuous variables are replaced 

by constraints on discrete variables, the final values of the variables at each stage. 
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Meanwhile, according to the penalty function theorem (Lillo et al., 1993), by adding a 

penalty term to the original performance equation whenever one or more constraints are 

violated, the constrained optimization problem can be approximated by an unconstrained 

optimization problem if the positive penalty parameter is large enough. Thus, above 

continuous constrained optimization problem defined in Eq. (5-7) is converted into an N-

stage discrete unconstrained optimization problem as: 

Min J = Ecom +Efan+- V V G,.2 

com fan ~ Z—iZ—l J / c o \ 
z N j K. ->-o ) 

subject to:X = f(X,U,Q) 

where S > 0 is penalty parameter, the choice of S is a trade off between convergence 

speed and algorithm stability. The larger the S, the closer the unconstrained solution is to 

the constrained solution. However, a too large penalty parameter causes instability of the 

algorithm. G} is the magnitude of the j ' h constrained variable from the corresponding 

constraint: 

G = -

T-

0 

T-

Uov, 

-T 
1high 

if T<Tl0W 

if Tl0W<T 

if Thigh < T 

lhigh (5-9) 

Note that the penalty term doesn't account for the control inputs violating their 

ranges. Control inputs are automatically confined in the range of [0, 1] by the 

optimization algorithm described in later sections. If damper opening is less than 0.4, the 

optimization algorithm will simply set it back to 0.4. 

Both energy consumption of the HVAC&R system and the penalty term in Eq. (5-

8) are functions of the controlled and uncontrolled variables, in other words, the 

performance function J is a function of the controlled and uncontrolled variables. The 
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significant uncontrolled variables include cooling loads, ambient temperature and desired 

zone air temperature. The controlled variables include chilled water supply temperature, 

discharge air temperature, zone air temperature and fan static pressure. Therefore, the 

optimization problem in this study is stated as: find the optimal set points for chilled 

water supply temperature, discharge air temperature and fan static pressure such that for a 

given desired zone air temperature, zone loads and outdoor temperature profiles, the 

HVAC&R system maintains zone air temperature around the desired temperature with 

the least compressor and fan energy consumption. 

5.3 NN Based Optimization Algorithm 

The accuracy and reliability of the optimal supervisory control strategies depend 

strongly on the method used for finding the optimal control variables. Unlike linear 

systems, finding optimal control solutions for nonlinear systems is a difficult task, since 

analytic solution usually is not available for nonlinear system, numerical techniques, such 

as dynamic programming, gradient methods, have to be employed for most cases. 

Projected and augmented Lagrange multiplier methods do not perform well because of 

the equality constraints used in the problem formulation and the generalized reduced 

gradient method appears to provide consistent results if it starts with a feasible solution 

(Cumali, 1988). To this end, in this study, a neural network based approach is used to 

minimize the above cost function. Figure 5-3 illustrates the NN based optimization 

process and Figure 5-4 is the flow chart of the optimization algorithm. 
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Figure 5-3 Neural Network Based Optimization Process 

The optimization horizon is divided into N stages. At the beginning of each stage 

t(t), a set of control inputs U = [ Ucom; Uval; Ufan; Uzl; Uz2 ] is calculated using current NN 

weights and input vector, which includes fedback states, desired zone air temperature and 

outdoor air temperature; the system responses for the next time span (from N(t) to 

N(t +1) ) is simulated with this set of control inputs. Model predictions at N(t +1) are 

initial conditions for the next stage. The supply water temperature, discharge air 

temperature and zone air temperature at N(t +1) are fedback to the network as part of 

NN inputs for the next stage. At the same time, the penalty term is evaluated with model 

outputs at JV(£+ 1) . At the end of optimization horizon, the performance index is 

evaluated and the derivatives of the performance index with respect to NN weights are 

computed and used to adjust the NN weights such that the weights move along the 

direction in which J decreases. Obviously, the network is adjusted in unsupervised 

mode. The adjusting is stopped when constraints on temperature are fulfilled and the 



difference in J of two successive adjustments satisfies the following criteria: 

\\j(k + V)-J(k)\\<£ (5-10) 

where s is a small positive number. 

Obviously, the accuracy of the models used to predict system responses also plays 

an important role in the accuracy of the optimization solutions. Although simplified 

models, i.e. neural models and models derived from identification techniques, can usually 

guarantee the convergence of the solution, the solution derived based on predictions from 

such models may not be the optimal one. Therefore, in order to improve the accuracy of 

the optimization solutions, in this study, the dynamic model developed in Chapter 3 is 

employed to simulate the system behavior and the sensitivity derivatives of the system 

outputs with respect to the control inputs are evaluated with simulation results also 

though this may result in more calculations. 
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Figure 5-4 NN based Optimization Algorithm Flow Chart 



5.3.1 Network Construction 

A three layer feed forward neural network without biases is constructed and used to 

search the solutions for the optimization problem defined in Eq.(5-8). Together with 

dynamic model prediction, this network can be used as a supervisory optimization 

controller. The outputs of the neural network are control inputs to the system: Ucom , 

Uval , Ufan , Uzl and Uz2 . And the inputs of the neural network include energy 

consumption related controlled and uncontrolled variables: 

Outdoor air temperature, Toa 

Desired zonel temperature, Tz] 

* 

Desired zone2 temperature, Tz2 

Supply water temperature, Twsup 

- Discharge air temperature, T 

- Zonel air temperature, TzX 

Zonel air temperature, T2l 

Among these inputs, outdoor air temperature and desired zone air temperature are 

uncontrolled variables. They affect system energy use and system operation mode, and in 

turn determine the optimal set points of the controlled variables to be set by the 

supervisory control. The rest of the inputs, supply water temperature, discharge air 

temperature and zone air temperature are feedback states. The state feedback makes this 

optimization approach more robust than the open loop techniques. 

In order to improve the training efficiency and avoid dominating of the outputs by 

some inputs, the network inputs are normalized in the range of 0 to 1 as: 
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max min 

The network has seven inputs and five outputs. The transfer function of the input 

layer is hyperbolic tangent function and the transfer function of the hidden layer is log 

sigmoid function. The outputs of the network automatically fall in the range of (0, +1), 

which means the control inputs are confined in the range of (0, +1) automatically. 

After trying different numbers of neurons in the hidden layer, 40 hidden neurons 

were used, thus a three-layer (7-40-5) feed forward neural network was constructed and 

trained unsupervised to solve the optimization problem. 

5.3.2 Adjusting the Network Weights 

The weights of the network are initiated with a set of random numbers. The error 

back propagation (BP) algorithm is used to adjust the weights along the direction in 

which the performance index decreases. The basic BP algorithm adjusts the weights 

along the steepest descent direction (negative of the gradient). However, the steepest 

descent direction does not necessarily produce the fastest convergence. In order to 

achieve both fast decrease and fast convergence, two adjusting methods are used in this 

study, one is the gradient descent with momentum and variable learning rate algorithm, 

and the other is BFGS quasi-Newton algorithm. At the beginning of training, the weights 

of the neural network are adjusted using the gradient descent algorithm for fast decrease 

in the performance index and then the weights of the neural network are adjusted using 

the BFGS quasi-Newton algorithm for fast convergence. 

The gradient descent algorithm adjusts the weights as follows: 
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Wk,x=Wk-mcdWk_x-lr(\-mc) dJ 
dWk 

where mc is training momentum coefficient and Ir is learning rate. 

The BFGS algorithm adjusts the weights as followings: 

(5-12) 

Wk+x=Wk-lrHk 
-l 

f dJ^ 

KdW
kJ 

(5-13) 

where, Hk is approximate Hessian matrix of the performance function J. Hk is updated 

as follows: 

Hk+\ z=Hk + 
dWkdWk

T HkAgk(HkAgk)
T 

dWk
TAgk Agk

THkAgk 

with dWk =Wk- Wk_x = lrHk 

H0=I 

yWkJ 
^gk = 

dJ dJ 

dwk dwk_x 

(5-14) 

where Agk is differential change in the derivative of performance function J with 

respect to weights, and dWk is change in the weights. 

For the gradient descent algorithm, proper selection of the learning rate dominates 

the performance of the algorithm and the selection of learning rate is a trade off between 

stability and fast convergence. A high learning rate could result in unstable results, and a 

low learning rate could reduce convergence speed. However, it is impossible to determine 

the optimal learning rate before training because the optimal learning rate changes during 

the training process as the algorithm moves across the performance surface. To improve 

the performance of gradient descent algorithm, instead of using fixed learning rate, the 

gradient descent algorithm is modified to include an adaptation of the learning rate during 

the training process. At each weight adjustment, new weights are calculated using current 



learning rate and momentum, if the new value of the performance function is higher than 

the previous value, the new weights are discarded and the learning rate is decreased. 

Otherwise, the new weights are kept and the learning rate is increased. Thus the learning 

rate increases during the training process, but only to the extent that won't cause unstable 

process. 

5.3.3 Derivative Calculation 

For BP training algorithm, the computation of derivative of the performance index 

with respect to NN weights is indispensable. The computation is given as follows: 

From the performance function Eq.(5-8), we have, 

dJ 
= dJ E + dJp (5-15) 

with, 

dJ' „ =• 
dJ 8E„ 

- + -
dJ dE fan 

dE dWh dE, dWk 
com ^ " k fan ^ " k 

(5-16) 

dJP=T I 
N( ( dJ dGj{t) dTj(t + l)dU(t)^ 

M W 

(5-17) 
)) dGj(t)dTj(t + l) dU(t) dWk 

The total energy consumption of the compressor and fan during optimization 

horizon can be approximated as the sum of energy consumption of the compressor and 

fan during each stage, therefore, 

dJt 
(=i 

^ dEcom(t)dU{t) t dJ 8Ecom(t) dIcom(t + \)dU(t) 
• + 

dEcom(t) du(t) dwk dEcom(t)dicom(t + \) dU{t) dwk 

dJ SEfan(t) dU(t) , dJ dEfan(t) dIfan(t + \)dU{t) 
• + 

dEfan(t) dU(t) dWk dEfan(t)dIfan(t + \) dU(t) dWk 

(5-18) 
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From Eq. (5-3), (5-4) and (5-8), we have, 

a / dEcom(t) 

dEcom(t) dU{t) 

8J dEfan(t) 

= elam(t + l) (5-19) 

dEfan{t) 8U(t) 

dJ dEcom(t) 

SEcom(t)dIcom(t + \) 

dJ dEfan(t) 

dEfan(t)difan(t+\) 

dJ dGjjt) 

dGjiOdXjit + l) 

= eIM(t + l) (5-20) 

= eUcom{t) (5-21) 

= eUfm(t) (5-22) 

2S*Gj(t) (5-23) 

The partial derivatives are computed using the conventional BP algorithm 

. . . . . . dI(t + \) , 8T(t + l) 
The sensitivity derivatives — and — ! : are computed from model equations 

dU(t) dU(t) 

using perturbation method as follows: for current initial condition and control inputs, 

record the simulation results and denote the final values of the interested outputs as XF"; 

then giving a small disturbance to one control input Ul at a time, such as a decrease by 

AUj, using the same initial conditions and the new set of control inputs, run the model 

and record the final values of the interested outputs as XFi, then the sensitivity derivative 

is computed from: 

dX{t + \)_XF°-XFi 

dU,(t) AUt 
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5.4 Simulation Results 

To evaluate the performance of the proposed neural network based optimal 

supervisory strategy, two cooling days operations were simulated. One represents full 

load operation and the other represents partial load operation. Simulation results were 

compared with night reset operation strategy. 

Figure 5-5 and Figure 5-6 illustrate the load profiles and outdoor air temperature 

profile of two simulation days under the full load (simulation easel) and partial load 

(simulation case2) respectively. Zonel represents the exterior zone and its load profile 

follows the outdoor air temperature shape, which is approximated as a sine function. 

Zone2 represents the interior zone, for which load is determined by the building operation 

schedule. The building and system operating conditions are depicted in Table 5-1. 
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Table 5-1 System Operation Conditions 

1 

.'.Schedule 7^up (°C) ' ?a,SuP(°.C) 1 . ~T',r$C§^ 

Occupied EKfrlrs. •• ; 9am-18pm 

UriQccupied ,-Rours 

Transition-Hours 

19pm-8am 

8-9am, 18-19pm 

4-10 

^ 8 

4-20 

10-17 

10-23 

10-23 

23±1 

24-27 

23-25 

The simulation day is divided into 72 time stages. The optimal set points are 

updated every 20 minutes. Simulation results from proposed optimization method are 

depicted in Figure 5-7 (for full load case) and Figure 5-8 (for partial load case), which 

include the energy consumption of compressor and fan in figure (a), fan static pressure in 

figure (b), discharge air temperature in figure (c), supply water temperature in figure (d), 

zone air temperature in figure (e) and figure (f), mass flow rate of air to each zone in 

figure (g), chilled water flow rate in figure (h) and control inputs in figure (i)- (j). From 

Figure 5-7 and Figure 5-8, we note that: 

(1) From figure (b)-(d), we can see that the optimal supply water temperature, 

discharge air temperature and static pressure change with the variations of total load. The 

influence of the total load on the optimal set points is relatively high. The higher the load, 

the lower are the supply water and discharge air temperatures. The temperature difference 

between the optimal discharge air and chilled water set points increases with load. 

(2) From figure (b)-(d) and (i), we can see that the chiller and the fan operation 

follow the load variations. The chiller and fan operates at lower capacity when the load is 

low, as such high chilled water temperature and discharge air temperature are maintained. 

With the increase in cooling load, the chiller operates at higher capacity to maintain a 

lower chilled water temperature and discharge air temperature. However, the fan is 

136 



operated at a higher rate than the chiller, especially during the unoccupied hours. That is 

because compared to the chiller energy consumption; the fan energy consumption is 

much smaller, higher air flow rate results in higher coil heat transfer efficiency and thus 

improves the overall efficiency of system, especially under the partial load conditions. In 

addition, during the unoccupied hours, ambient temperature is lower than the indoor 

temperature, with fixed outdoor air damper opening, the higher fan pressure gain in the 

system, the more outdoor air is introduced into the building and therefore reduces the 

load on the chiller and in turn reduces the chiller energy consumption. 

(3) From figure (i), we see that once the chiller is in operation, the chilled water 

valve tends to open fully. This is because we neglect the energy consumption of the 

chilled water pump. Therefore, whenever the chiller is start-up, the chilled water valve 

tends to be fully open to enable the chilled water transfer as much heat from VAV system 

to chiller as possible. At the same time, the higher water flow rate brings higher cooling 

coil efficiency. The cooling generated by the chiller can be used to the greatest extent. 

(4) Figure (e) and (f) show that the optimization strategy minimizes the energy 

consumption by keeping the zone air temperatures near the high limit. From figure (j), we 

see that the zonel damper is almost fully open throughout the day, while the zone2 

damper opening experiences large variations. With the same supply air temperature, the 

zone with higher load requires more conditioned air and therefore opens the damper fully. 

The zone with lower load adjusts its damper opening according to the load difference of 

two zones. When the load difference is low, the damper opens more towards full open 

position. 
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Figure 5-7 Simulation Results from Optimal Operation - Full Load Case 
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Figure 5-8 Simulation Results from Optimal Operation - Partial Load Case 

To evaluate the performance of the optimal operation strategy, system responses 

under conventional night reset operation scheme are simulated with the same operating 

conditions as illustrated in Figure 5-5, Figure 5-6 and Table 5-1. During the unoccupied 

hours, the zone air temperature, supply water temperature and discharge air temperature 

are set to higher values as depicted in Table 5-2 to save energy. Ucom , Uval, Uzl and Uz2 

are adjusted every 20 minutes to maintain the water and air temperature set points. U fan 

is fixed as indicated in Table 5-2. 



Table 5-2 Night Reset Operation Scheme 
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Simulation results from night reset operation are shown in Figure 5-9 and Figure 

5-10, which also include time history of energy consumption of fan and compressor, fan 

static pressure, supply water temperature, discharge air temperature, zone air temperature, 

mass flow rate of the air entering each zone, chilled water flow rate and control inputs. 
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Figure 5-9 Simulation Results from Night Reset Operation Scheme - Full Load 
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Figure 5-10 Simulation Results from Night Reset Operation Scheme - Partial Load 

By comparing the responses in Figure 5-7 with Figure 5-9, Figure 5-8 with Figure 

5-10, we note that both control strategies maintain zone air temperatures around the 

desired value and fulfill other operating constraints, however, the energy consumption is 

different. Table 5-3 summarizes the energy consumptions of two cases. 

Table 5-3 Energy consumption Comparison of Two Operation Schemes 

, 1 

Full 
Load 
Case 

. Eneruv 
Comppncni I 

Fan 
• 

Compressor 

Total 

n •• i. Fan Partial 1 
Load 

Case 

Compressor 
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I !noceupied 
Hours 

24.7 

30.1 

Operation (kwh) 

Obcuupied 
I lours 

20.5 

130.2 

11.9 

14.4 

23.5 

71.2 

Total 

51.5 

160.3 

211.8 

35.4 

85.6 

121.0 

Night Reset Operation (kwh) 

'Unoccupied Ooecupied." , 
' „ : • ' • . . • • T o t a l 

Hours | Hours 

13.7 

49.3 

19.2 

137.1 

42.9 

186.4 

229.3 

19.6 

17.7 

26.9 

79.3 

46.5 

97.0 

143.5 

The daily total energy consumption under the optimal operation strategy is 8% and 

19% less than the energy consumption under the night reset operation for full load 

condition and partial load condition respectively. In the full load operation, the energy 
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consumption of the chiller in optimal operation is less than that in the conventional 

operation of the order of 47% and 5% saving during the unoccupied hours and occupied 

hours respectively. However, the energy consumption of the fan in the optimal operation 

is higher than that in the conventional operation, especially during the unoccupied hours. 

This is because the optimal operation scheme tends to take full advantage of the cold 

outdoor air in the early morning and late night to reduce the chiller load. In partial load 

operation, the energy consumption of the chiller in optimal operation is 23% and 10% 

less than the night reset operation during unoccupied hours and occupied hours 

respectively; the energy consumption of the fan in the optimal operation is 65% and 14% 

less than the night reset operation during unoccupied hours and occupied hours 

respectively. 

For the conventional night reset operation strategy, the selection of chilled water 

temperature is directly related to the energy consumption of the compressor. The higher 

the supply water temperature, the less will be the energy consumption of the chiller. 

However, there are no general rules available for operators selecting proper water and air 

temperature set points. In practice, the selection of temperature set points is based on 

engineering experience and cannot ensure greatest energy saving. The optimization 

operation algorithm presented above provides a method to find control set points that 

could ensure the energy saving. Comparing the two simulation cases, we can see that for 

the full load operation, the temperature set points in the night reset operation scheme is 

closer to the optimal values, and therefore, the energy saving potential of the optimal 

operation scheme is not very high. However, for the partial load operation, the 

temperature set points in night reset operation scheme are away from the optimal values 
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and therefore the saving potential of the optimal operation scheme is much higher. 
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Chapter 6 Adaptive Control Design for HVAC&R Systems 

So far, the optimal operation scheme of the two-zone HVAC&R system has been 

determined at the supervisory level with the assumption that existing local controls can 

maintain the controlled variables at desired optimal set points. In this chapter, we will 

discuss the design of local controllers to implement the optimal operation at the local 

loop level. PI and PID controllers have been the most popular controllers in HVAC&R 

applications for decades because of their simple structure and reliable control 

performance. However, HVAC&R systems are complicated multi-input-multi-output 

(MIMO), time-varying, highly non-linear systems with different scale of time constants. 

The conventional PI/PID controllers are therefore not able to provide consistent good 

performances even when they are well tuned because: 

(1) The conventional PI/PID controllers are designed for single-input-single-output 

individual control loops without counting in the influence of other control loops. 

However, neglecting the strong coupling effects between control loops in the HVAC&R 

systems is detrimental to the performance of the PI/PID controller. 

(2) The PI/PID controllers designed for different local control loops with different 

scale of time constants (from tens of seconds to thousands of seconds) have to work 

together. Therefore, the longer time lags need to be compensated to improve regulation 

properties of controllers. 

(3) The conventional PI/PID controllers are tuned under certain conditions and can 

provide good performance for certain range of operation conditions. However, the 

dynamics of the HVAC&R system are changing with time and the operation conditions 



which vary within a wide range. The conventional PI/PID controller with predefined 

control parameters is unlikely to provide consistent satisfactory control performance for 

all possible operating conditions. To address these problems, adaptive control that adjusts 

the control parameters on-line is designed in this chapter. 

To this end, in this chapter, five neural network model based auto-tuned PI 

controllers are designed to effectively stabilize the HVAC&R system and track the 

desired reference set-points at local control level. The five controllers are used to control: 

zone air temperature by modulating corresponding VAV damper opening; 

- discharge air temperature by modulating the chilled water valve opening; 

supply water temperature by modulating the energy input to the compressor; 

and static pressure at the fan outlet by modulating the energy input to the fan. 

This auto-tuning method integrates a PI control, an auto-tuning algorithm and an 

adaptive neural network model prediction. Control parameters (proportional gain and 

integral gain) of the PI controller are adjusted to reduce the predicted tracking error. 

From the viewpoint of on-line application, the less calculations, the better. In this sense, 

neural network model is more appropriate than the complicated dynamic model 

developed in Chapter 3 for on-line updating of controller's parameters. Furthermore, the 

universal mapping property of neural network makes it preferable as well because of the 

inability of the theoretical model to describe or identify the system dynamics and 

uncertainties accurately. The weights of the NN model are updated on-line to learn the 

local loop dynamics once operating data is available such that the accuracy of the NN 

model prediction is ensured. The auto-tuning algorithm computes new control parameters 

to minimize the predicted tracking errors. Lyapunov stability analysis is performed to 



derive the auto-tuning algorithm so that the convergence of the predicted tracking error is 

guaranteed. 

6.1 NN-Based auto-tuning PI Control 

6.1.1 The Structure of NN Model Prediction Based Adaptive Control 

Standard PI Control 

YSet(t) t® 

New Control 
Parameters [kp, ki] 
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Figure 6-1 Block Diagram of Neural Network Based Adaptive Control 

As shown in Figure 6-1, the NN model based predictive auto-tuning control 

contains two levels, a lower level and a higher tuning level. The lower level contains a 



conventional PI control. This process is represented with dark solid line in the figure. The 

higher level, represented by dash line in the figure, computes a set of new control 

parameters for the PI controller through minimizing the predicted tracking error e(t +1) 

from the neural network model prediction once the operating condition changes or the PI 

control with current control parameters cannot maintain satisfactory control performance. 

6.1.2 Adaptive Neural Network Model 

The basis of this adaptive control is the on-line prediction of the responses of the 

control loop. Multilayer feed forward neural network as shown in Figure 5-1 is used to 

model the dynamics of the control loop. The accuracy of the model predictions is directly 

related to the performance of the controller. To reduce the discrepancies between the 

actual process and the model predictions and better capture the time-varying dynamics of 

the process, the neural network is online updated with available data using BFGS BP 

algorithm to reduce the network prediction error Y(t)-Y(t) . The network model 

updating process is represented by light solid line in Figure 6-1. 

6.1.3 Adaptation Rules 

The PI control algorithm is described by: 

u(t) = kpe(t) + klYde(t) (6-1) 

where kp represents proportional gain and &, represents integral gain, e(t) is the process 

tracking error defined as: 

e(t) = Yset(t)-Y(t) (6-2) 
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with Yset (t) being the control set point. For conventional control, control parameters kp 

and &,. are determined in advance and applied to the system; for auto-tuning control, new 

kp and ki are calculated on-line through minimizing the predicted performance index. In 

this study, kp and kt, are derived from minimizing the predicted tracking error: 

e(t + l) = Ysel(t + l)-Y(t + l) (6 -3) 

with Ysel(t + Y) being the set point for next time step, and Y(t + l) being the network 

prediction with control input U(t +1) calculated with current control parameters, k (») 

and kt , and past process error e(t) using Eq. (6-1) as: 

U(t + \) = kp
(m}e(t) + ki

{m)Yje(i) (my (6 -4) 

The optimal kp and kt are derived iteratively. To do this, a new argument 'm' is 

introduced to denote the iterative step of updating k and kt between control intervals. 

k: 

(m+1)' 

(m+1) 

k {m) 
KP 

+ 
Ak 

Ak, 

a 

(») 
e(t + \) (») (6-5) 

Denote T̂ = above equation is rewritten as: 

K{m+])=K{m)+AK{m)e(t + \){m) (6-6) 

where e(^ +1) ̂  is the predicted NN model tracking error for t +1 at iterative step m : 

i(t + i)(-)=Yset(t + l)-Y(t + l) (m) ( 6 - 7 ) 

with Y(t + l)(m} being the NN model output at iterative step m for t +1 

Select a discrete Lyapunov function as: 
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V(m) = -(e(t + \){m))2 (6-8) 

Obviously, V(m) is positive defined. Then the increment of the Lyapunov function is: 

AV(m) = V(m + l)-V(m)=-((e(t + l)(m+l))2 -(e(t + l){m))2) (6-9) 

Define 

Ae(t + l ) w = e(t + l)(m+1) - e(t + l)(m) = -Y(t + l)(m+l) + Y(t +1)( 

(6-10) 

Then we have, 

AV(m) = -((e(t + l)(m+,))2 -(e(t + l)(m))2)= Ae(t + \){m)(2e(t + l)(m) + Ae(t + \)H) 

m^t\^ 
QK(m) 

- ( ^ + DW ) 2 

AKwe(t + \) (») 
» 

2 ^ + l)W-^i^LA^W^ + l)W 

/ ^ („) # v er(*+iy 
dio 

-A/r 
afe+nw w^ 

â : («) 

Set adaptation law as: 

(6-11) 

K{m+l)=K{m)+AK{m)e(t + \)(n 

with AK{m)=S\ 
rdY(t + Y){m)^ 

- i 

dK[ 0<S<2 
(6-12) 

the Jacobian vector is computed as follows: 

vM aF(^+ i ) w dY(t+iym> du(t) dY(t+iy 
dK w Quit) d[kp

w,kp
w] du(t) 

e(t) 

te(i) 
n=\ 

( 6 - 1 3 ) 

57(f+ l ) w 

where — — can be computed from the multi-layer NN model using BP algorithm. 
du(t) 
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then we have: 

AV(m) = -S(2-S)(e(t + \){m))2 <0 (6-14) 

According to Lyapunov stability analysis, the predictive tracking error is 

guaranteed to converge to zero. 

For a given control set point, the auto-tuning procedure is described as follows: 

STEP1: 

At sample time t +1 and iteration step m , obtain set point Yset (t +1) , the past 

tracking error e(t) and newest control parameters k^ and ki . 

STEP 2: 

- calculate control variable U(t +1) according to Eq. (6-4); 

construct the neural network model input vector; 

- calculate the network model output, which is the prediction of the process 

output for the next sample time Y(t +1) at current updating step; 

- calculate the predicted tracking error e(t + \ym> according to Eq. (6-7); 

STEP 3: 

Calculate new control parameters according to Eq. (6-12) and Eq. (6-14), set 

m — m + l. 

STEP 4: 

Repeat STEP 1 - STEP 3 until the predicted tracking error e(t + l)(m) is less than a 

pre-specified threshold or the maximum iteration step m is reached. 

Figure 6-2 is the flow chart of the adaptive control process. 
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•y 

Update NN 
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Calculate next step control U(t +1) 
using current kp, ki and e(t) 

New NN weights 

New [kp,ki] 

Simulate control process 
responses for next time step 

Calculate predicted tracking error e(t+l) 

Figure 6-2 Flow Chart of Neural Network Based Adaptive Control 



6.1.4 Simulation Results 

To verify the effectiveness of above adaptive algorithm, an adaptive PI controller 

and a well-tuned PI controller are applied to control the discharge air temperature of the 

two-zone VAV system to track set point step changes. Simulations are performed under 

following conditions: 

- The control interval is 120s for both controllers. 

- Constant chilled water temperature at the cooling coil inlet, Twsup =5°C 

- Constant zone loads: QaX =3kW , Qn = 0.75 kW , Qsl = 2.6 kW and 

Qui = 0.6 kW 

- Constant outdoor air temperature, Toa =21° C 

- Discharge air temperature set points decrease from 16°C to 14°C after 40 

minutes and increases from 14°C to 15°C after another 40 minutes. 

Simulation results are shown in Figure 6-3 and Figure 6-4 respectively, in which 

figure (a) is the responses of the discharge air temperature and figure (b) is the 

normalized chilled water valve opening. 

From Figure 6-3 and Figure 6-4, we can observe that both controllers provide good 

performance under fixed operating conditions. The offset bands between the set point and 

responses after the transient phase for both controllers are negligible. However, the 

response of the adaptive control is superior to that of the PI control. The response of 

adaptive control to the set point change is faster than the PI control and the overshoot is 

smaller. The rise time for PI control is 15-20 minutes, while the rise time for adaptive PI 

control is 2-8 minutes. The cost for this advantage is the requirement of model prediction 
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and on-line updating of control parameters. 
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Figure 6-3 Response of Discharge Air Temperature with Adaptive PI Control 
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Figure 6-4 Response of Discharge Air Temperature with PI Control 

Comparisons between PI controller and adaptive PI controller applied to the 

discharge air temperature control are summarized in Table 6-1. The responses of PI 

control could be different with different control parameters. 

Table 6-1 Comparisons of adaptive PI and PI controllers 
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6.2 Implementation of the Optimal Set Points - Local Control Design 

In Chapter 5, we have calculated the optimal set points for the supply water 

temperature, discharge air temperature and fan pressure at the supervisory level with the 

assumption that existing local controls that can maintain the controlled variables at 

desired set points. In this section, five adaptive PI controllers are designed to control the 

local loops and realize the optimal operation scheme. The five controllers are used to: 

modulate air flows into the air-conditioned zones by adjusting corresponding 

VAV damper opening to maintain the desired zone air temperature; 

- modulate chilled water flow rate by adjusting the chilled water valve opening 

to maintain the discharge air temperature set point; 

- modulate the compressor speed by adjusting the energy input to the 

compressor motor to maintain the supply water temperature set point; 

- and modulate the fan speed by adjusting the energy input to the fan motor to 

maintain the static pressure at the fan outlet. 

6.2.1 Construction of Local Neural Network Models 

The basis of this adaptive control is the availability of robust neural network model 

which could predict the responses of the control process with certain accuracy. The 

implementation of the adaptive control design starts with constructing NN models. To 

simplify the structure of the neural network and reduce the calculations of on-line 

updating and predictions, instead of using one neural network with complicated structure 

to model the overall responses of the two-zone VAV-HVAC&R system, four NN models 

are constructed to simulate local control loops separately. All neural networks are three-
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layer feed forward networks. 

Network Model 1:NN-PM 

Neural network model, NN-Pfan, is constructed to model the fan pressure gain in the 

two-zone VAV system. The output of NN-Pfan is the pressure at fan outlet, Pfan (t +1). As 

mentioned in Chapter 3, the air flow loop is independent of other loops, the total air flow 

rate and fan pressure gain are determined by the normalized energy input to the fan 

motor, the opening of both dampers. NN-Pfan has three inputs: 

- the normalized energy input to the fan motor, Ufan it) 

- the opening of two zone dampers, Uz}(t) and Uz2(t) 

Network Model 2: NN-T^ 

Neural network model, NN-TZ, is constructed to model the zone air temperature. 

For a given load, the zone air temperature is determined by the flow rate and temperature 

of the air entering the zone. From the analysis in Chapter 4 (refer to Table 4-3), we can 

see that for two zone system, the air flow rate of one zone is not only the result of 

corresponding damper opening, but also influenced by the damper opening of the other 

zone. Variation in one zone damper position affects the mass flow rates of both zones and 

in turn affects the temperature of the other zone. Therefore, instead of using two models 

to simulate zone air temperature separately, one network model is constructed to simulate 

the air temperatures in both zones. The outputs of NN-TZ are temperature of two zones, 

Tzl (t +1) and Tz2 (t +1). The responses of the zone air temperature is very slow, the time 

constant of zone is much larger than the control intervals. For an on-line model used for 

one-step ahead prediction, the present zone air temperature has great impact on the zone 
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air temperature for the next time-step. Therefore, the inputs for NN-TZ include: 

- the opening of both dampers, UzX(t) and Uz2(t) 

discharge air temperature, T (t) 

current zone air temperature Tzl (t) and Tz2 (t) 

Network Model 3: NN-Tr,.n 

Neural network model, NN-TasUp, is constructed to model the discharge air 

temperature at the cooling coil outlet. The outputs of NN-TasUp is the discharge air 

temperature, Ta sup (t +1). The discharge air temperature is affected by the flow rate and 

temperature of the chilled water and air at the coil inlet. The chilled water flow rate is 

determined by the chilled water valve opening, and the air flow rate is determined by fan 

pressure and damper opening. Since the time constant of the coil is much larger than the 

control interval, current discharge air temperature is useful for better prediction of the 

discharge air temperature for the next time step. Therefore, the inputs for NN-TasUp 

include: 

- the normalized chilled water valve opening, Uml (t) 

- the normalized energy input to the fan motor, Ufan (t) 

- the opening of both dampers, U2l(t) and Uz2(t) 

- current supply water temperature, Twsup(t) 

current discharge air temperature, T (t) 

- current air temperature at coil inlet, Taccin (t) 

Network Model 4: NN-T^„n 
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Neural network model, NN-Twsup, is constructed to model the supply water 

temperature. The outputs of NN-Twsup is the supply water temperature, T (t +1). The 

supply water temperature is determined by the compressor work, the chilled water flow 

rate and the water temperature at the evaporator inlet. The inputs for NN-Twsup include: 

- the normalized energy input to the compressor, Ucom (t) 

- the normalized chilled water valve opening, Uval (t) 

- current return water temperature, Twre(t) 

- current supply water temperature, T (t) 

It is noted that all the input data and outputs of above four NN models are either 

measurable system states or control inputs which make the on-line NN model updating 

possible. The structural details of above NN models are summarized in Table 6-2. 

Table 6-2 Structural Details of Neural Network Models 

•NN Model . , ' 

. -: N/3, of Inputs"'-'. \"'. • i 

No. of Neuidns in Hidden Layer , 

No. of Oulput(s) 

NN-Pfan 
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1 

NN-Tz 
X 

5 

9 

2 

NN-Tasup 

7 

10 

1 

,ls[N-Twsup 

4 

7 

1 

6.2.2 Simulation Results 

After determining the structure of the on-line NN models, the adaptive PI control 

algorithm is implemented on the full order two-zone H V A C & R system to track the 

temperature and pressure set points. Simulation is performed with the same operation 

conditions used to derive the optimal set points for full load operation given in Chapter 5, 

including the loads profiles, outdoor air temperature profile and initial conditions used to 
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solve the model equations as well. 

The simulation results are shown in Figure 6-5. Figure (a) shows the supply water 

temperature responses, figure (b) is normalized energy input to the compressor; figure (c) 

shows the discharge air temperature responses, and figure (d) is normalized chilled water 

valve opening; figure (e) and figure (g) show the zonel and zone2 temperature responses, 

figure (f) and figure (h) are normalized VAV damper opening of zonel and zone2; figure 

(i) shows the fan pressure responses and figure (j) is normalized energy input of the fan. 
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Figure 6-5 Response of Integrated Two-Zone VAV-HVAC&R System with Adaptive PI 
Control (Full Load) 

From Figure 6-5, we can see that the adaptive control works pretty well. After 

oscillations during the first hour, the system responses are very stable and the setpoints 

are well traced. From these figures, we note that: 

(1) The offsets of the responses are almost negligible except for the Zonel 

temperature responses after 19pm. From Figure 6-5 (e) and (f), we can see that after 
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19pm, zonel temperature is around 26.8°C and the zonel damper is fully opened while 

the set point is 26°C. This means that discharge air temperature is higher than it should 

for maintaining the zonel temperature at 26°C with the same fan speed and zone2 damper 

opening. Recall the analysis in Chapter 5 (refer to Table 5-1), during the unoccupied 

hours, the optimal set points are derived with the assumption of zone air temperature 

allowed to float in the range of 24-27°C. Zonel temperature is still in the acceptable 

range. And at the same time, the higher zone air temperature is explainable because in 

order to decrease the energy consumption, the chiller and the fan operate at lower 

capacity and as such high chilled water temperature and high discharge air temperature 

are maintained. 

(2) From Figure 6-5 (i), we can see that compared to temperature responses, the 

pressure responses have higher offsets and oscillation. This is because the time constant 

of the air flow is much less than the time constant of the thermal loop and the control 

intervals. Reducing the control intervals will improve the pressure responses, but further 

reducing the control interval is impractical because it may cause unstable temperature 

responses. 

(3) From Figure 6-5 (a), (c), (e) and (g), we can see that the settling time of zone 

air temperature responses is much longer than the settling times of discharge air 

temperature and supply water temperature; this is the result of larger capacity of the zone 

air. 
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Chapter 7 Conclusions and Suggested Future Work 

7.1 Summary and Conclusions 

With the growing concerns on energy consumption, computational based control 

schemes are widely applied for more efficient operation of HVAC&R systems, which 

include the model simulation and simulation based applications, e.g. controller design, 

FDD and optimization. 

The objective of this thesis is to design and realize a robust and efficient 

simulation-based optimal operation of a two-zone VAV-HVAC and refrigeration system 

under variable operating conditions from the viewpoint of improving overall system 

performance, in the sense of providing desired indoor environment with the least energy 

consumption. The proposed methodology integrates dynamic model simulation, neural 

network based optimization and neural model based adaptive control. The major steps 

that lead to realize the stated objective are summarized in the following subsections. 

Development of a Dynamic Model for the Two-Zone VAV-HVAC&R System 

Model prediction is the basis of this study. Chapter 3 described the development of 

a dynamic two-zone VAV-HVAC and refrigeration system model. The overall system 

model was achieved by integrating a two-zone VAV system model and a water cooled 

chiller model. Both VAV system model and chiller model are component based and 

derived from the energy, momentum and mass conservation principles. Dynamic models 

for main components were developed first and then connected to each other according to 

the physical layout and corresponding input and output information to form the integrated 

164 



system model. The two zone VAV system model includes a zone model, a variable speed 

fan with DC motor model, a cooling and dehumidifying coil model and an air flow 

model. The chiller model includes an evaporator model, a condenser model, a compressor 

model and a thermal expansion valve model. Considering model accuracy and 

computational efforts, moving boundary approach was used to model the evaporator and 

condenser. 

From the open-loop simulation results presented in Figure 3-5 - Figure 3-9, we can 

conclude that: 

There are two distinct time scales involved in the system, the dynamics of the 

airflow loop and water flow (tens of seconds) are much faster than the 

thermal loop, including cooling and dehumidifying coil, zone, evaporator and 

condenser (hundreds to thousands of seconds). 

- The integration of VAV system and refrigeration system results in slower 

overall system responses. The dynamic responses of thermal loop are slower 

after the integration due to the coupling effects between the coil and the 

evaporator. Since the refrigerant flow is directly related to the evaporator 

pressure, the dynamics of the refrigerant flows are much slower after the 

integration also. 

- In the integrated system, the discharge air temperature is not only influenced 

by the air flow and chilled water flow, but also influenced by the chilled 

water temperature. Therefore it is more susceptible to load changes in the 

integrated system. 

Condenser water loop is pretty stable before and after the integration and 
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therefore it is justified to decouple it in the optimization analysis. 

- There are more than one operation scheme that could maintain the same 

indoor environment; however, the energy consumption is different. 

Therefore, it is possible to reduce the total energy consumption by proper 

operation while maintaining desired indoor air conditions. 

Extended Transformation Approach to Identify Uncertainties in Model Predictions 

Caused bv Pre-Selected Uncertain Parameters (Model Uncertainty Analysis^ 

Mathematical model exhibits more or less uncertainties caused by neglecting and 

inaccurately description of some dynamics and using inaccurate parameters. Fuzzy-set 

based extended transformation approach was used to evaluate the probability 

distributions of model outputs caused by the following selected uncertain parameters: 

mass flow rate of condenser water rhwcon, mass flow rate of chilled water mwchi, water 

temperature at the condenser inlet Twconin, cooling coil air side heat transfer coefficient 

hacc, and sensible cooling loads Qsi and Qs2. The uncertain parameters were treated as 

fuzzy variables and assumed to have symmetric triangular membership functions. The 

integrated effects of all uncertain parameters on model outputs were calculated, and 

sensitivity coefficients of the interested model outputs with respect to certain uncertain 

parameter were computed to evaluate the impacts of individual uncertain parameters on 

corresponding outputs. The approximate distributions of water, air and zone air 

temperatures at different a-cut levels and different time were derived and illustrated in 

Figure 4-4. In addition, from simulation results we can note that: 

The ranges of the distributions of the model outputs also illustrate dynamics 
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and the dynamics are directly related to the dynamics of corresponding output 

responses. The distribution range tends to increase with time and reaches the 

maximum range when the corresponding output reaches steady state. 

- The uncertainties of system outputs caused by the uncertain model parameters 

are different and the effects of individual uncertain parameters on the 

interested temperature are different as well. The variations in condenser water 

temperature are mainly caused by the variations in the condenser water mass 

flow rate and condenser water inlet temperature. This justified our 

assumption of excluding condenser water loop from the optimization 

analysis. 

Transformation Approach to Identify the Impact of Control Variables on System 

Responses (Sensitivity Analysis of Control Variables') 

HVAC&R system is a highly coupled system; the coupling effects in local control 

loops affect the control performance. The sensitivities of control inputs were computed 

using the same extended transformation approach to identify the impact of individual 

control variables on system responses. The control inputs were treated as fuzzy variables 

with symmetric triangular membership function. The significance of control inputs with 

respect to the interested model outputs were ranked in Chapter 4. From the simulation 

results illustrated in Figure 4-6 and Table 4-3, we can conclude that: 

Airflow loop is independent of the rest of the system. Ucom and Uml do not 

influence the air mass flow rates. The air flow is the result of Uzi, Uz2 and 

Ufan. Zone VAV damper opening and Ufm have great influence on the air 
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flow rate for that zone, but the air flow rate is affected by the opening of the 

neighbouring VAV box damper as well. 

- Water flow loop is independent of other loops in the system also. The chilled 

water flow rate is determined by Uml only. 

- The thermal loops, including the discharge air loop, zone air temperate, 

chilled water loop and condenser water loop are interconnected. Thermal 

responses of the system are determined by the integrated effects of Ucom, 

Uval, Ufan, UzX and Uz2 , but Ucom has the dominant effect. Adjusting one of 

these temperatures by modulating the corresponding control input affects the 

responses of other temperatures as well. 

Neural Network Based Optimal Operation 

Chapter 5 demonstrated the implementation of a three-layer feed forward neural 

network as supervisory controller to achieve optimal operation of the HVAC&R system 

at the supervisory control level aiming at maintaining the desired zone air temperature 

with the least energy consumption and satisfying the mechanical system constraints at the 

same time. A neural network was trained unsupervised to minimize the cost function. The 

cost function was composed of weighted energy consumption of current operation 

scheme and a penalty term which accounted for the violation of constraints and/or when 

the zone air temperature was away from the desired values. In order to improve the 

training efficiency and avoid domination of the outputs by some inputs, the network 

inputs were normalized in the range of 0 to 1. In order to achieve both fast decrease in 

cost function and fast convergence, two training methods were used to adjust the network 

weights, the gradient descent with momentum and variable learning rate algorithm was 



used at early stage to achieve fast decrease of the cost function, the BFGS quasi-Newton 

algorithm was used after to achieve fast convergence. The outputs of the neural network 

were control inputs, with these control inputs, the optimal set points for the static pressure 

at fan outlet, discharge air temperature and supply water temperature were derived from 

simulations. This optimal operation scheme was compared with the night reset operation 

strategy. From simulation results presented in Figure 5-7 and Figure 5-9, we note that: 

- Compared to the night reset operation strategy, the optimal operation scheme 

consumes less energy while maintaining the indoor temperature in an 

acceptable range. Unoccupied hours have high energy saving potential than 

occupied hours because of 'free cooling' during the night. In addition, by 

keeping the zone air temperatures near high limit also saves energy. 

The cooling loads directly affected the optimization set points. The lower the 

load, the lower are the capacity of the fan and the compressor and the smaller 

is the difference between the supply water and the discharge air temperature. 

Design of Adaptive Control System to Realize the Optimal Operation 

Besides finding the optimal operation set points, local controllers are needed to 

implement the optimal operation, track the desired optimal set points. To overcome the 

deficiencies of PI control with fixed control parameters, five on-line adaptive PI 

controllers were designed in Chapter 6 based on neural network model predictions. This 

adaptive control integrated PI control, auto-tuning algorithm and adaptive neural network 

model prediction. The adaptive control had two control levels; the lower level 

accomplished a conventional PI control process, the higher level computed control 

parameters to reduce the model prediction tracking errors. In order to simplify the 

169 



network updating and predicting process, instead of using one network with complex 

structure to model the dynamics of overall system, four three-layer feed forward neural 

networks were used to perform on-line one-step forward predictions of the fan pressure 

gain, zone air temperatures, discharge air temperature and supply water temperature 

respectively. The weights of neural models were updated on-line for better capturing the 

time-varying dynamics of the control loops. The updating rule for control parameters was 

derived from Lyapunov stability analysis and therefore the convergence of the predicted 

tracking error was guaranteed. Simulation results indicated that adaptive PI control 

worked pretty well in term of good tracking and stable control. 

7.2 Contributions of This Study 

Compared to other studies in modeling and operation of HVAC&R systems, the 

main contributions of this study are summarized as: 

(1) In most studies, the HVAC system and refrigeration system were investigated 

separately without considering the interactions between them. However, the interactions 

between HVAC systems and refrigeration systems have great impacts on the overall 

system performance and control design. In order to achieve the optimal operation of the 

HVAC&R system, a dynamic model for two-zone VAV-HVAC&R systems, which 

integrates a VAV model with a water cooled vapor compression refrigeration system 

model, is developed in this study. The optimal operation schemes derived from model 

simulations better represent the dynamic behavior of the overall system. 

(2) The interactions between the VAV system and refrigeration system are 

investigated with the help of integrated system model. The open-loop simulation results 
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from separate systems and integrated system are compared. 

(3) Fuzzy-set based extended transformation method is used to evaluate the 

uncertainties in model predictions caused by pre-selected uncertain parameters. The 

probability distribution ranges of model outputs are determined. These bounds can help 

us to achieve better predictions of the responses of the HVAC&R system by quantifying 

the range within which the responses fall. At the same time, the contributions of 

individual uncertain parameters to the uncertainties of model outputs are computed as 

well. This information could help us to identify important parameters in term of 

improving model accuracy. 

(4) The sensitivities of the control inputs with respect to the interested model 

predictions are computed using fuzzy-set based general transformation method and the 

impacts of control parameters on controlled variables are identified as well. This 

knowledge provides guidelines to design control system. 

(5) A neural network based optimization algorithm is developed to search the 

optimal operation solutions for the two-zone VAV-HVAC&R system at the supervisory 

level. With the feedback of states and control errors, this supervisory control strategy is 

more robust than the solutions derived from open-loop simulations. Compared with the 

night reset operation scheme, the optimal operation strategy consumes less energy for 

maintaining the desired indoor temperature without violating operation constraints. 

(6) Five neural model based adaptive PI controllers are designed to implement the 

optimal set points. Control parameters are updated on line to reduce the predicted 

tracking errors. The updating rule for control parameters is derived from Lyapunov 

stability analysis and therefore guarantees the convergence of the tracking errors. 
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Simulation results showe good control performance. 

7.3 Recommendations for Future Work 

This work presentes a simulation-based optimal operation and adaptive control of 

the HVAC&R system as an integrated system. This study also indicates some areas worth 

further investigation. Meanwhile there is still lot of work needs to be done before we can 

advance the method presented in this thesis into practical applications. 

(1) The cooling load plays an important role in HVAC&R system operation and 

the optimal set points are directly influenced by the loads. It is worth to integrate a load 

prediction model into the system model. Accurate load prediction helps improving model 

prediction results and the optimization results will be closer to the optimal values. 

(2) As we concluded in Chapter 4, uncertain parameters cause uncertainties in 

simulation results and the influence of uncertain parameters on simulation results is 

different. In this study, only six uncertain parameters are selected and their impacts are 

investigated. It would be interesting to include more uncertain parameters in model 

uncertainty analysis and identify their impacts on the model outputs. 

(3) A three-layer feed forward neural network is 'trained' unsupervised to find the 

optimization solutions. The calculation of the gradient of the cost with respect to the 

network weights involves the calculation of the sensitivity derivatives of the system 

outputs with respect to control inputs. The perturbation method used in this work needs 

large number of calculations. Therefore, more efficient algorithms to compute the 

derivatives of the performance index are of interested and will help improving the 

algorithm efficiency. 
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(4) As discussed before, HVAC&R systems are multi-input multi-output (MIMO) 

systems consisting of interconnected subsystems with nonlinear uncertain coupling 

matrix. Design of MIMO controllers for HVAC&R would be an interesting topic for 

future work. 

(5) HVAC&R system model are subjected to uncertainties; develop an improved 

robust adaptive control algorithm to include model uncertainties would be beneficial. 

(6) Experimental work is needed in the future to evaluate the proposed optimization 

method and adaptive control algorithm. 
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