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ABSTRACT 

Introducing Angles in Grade Four: A Realistic Approach based on the van Hiele 

Model 

Angela Smart 

This thesis is a study of teaching and learning Geometry, and, in particular, 

angles. The theoretical framework used in the research is a combination of a teaching 

theory called Realistic Mathematics Education (RME) and a learning theory called the 

can Hiele Model of Geometric Thinking. These frameworks, backed up by a historical 

study of geometry, were used in the design, experimentation and evaluation of a lesson 

where fourth grade students were introduced, for the first time, to the idea of angle and 

relations between angles of different sizes. The in-class experiment was conducted in 

two different fourth grade classrooms. The lessons were taught by teachers of the 

respective classrooms, based on a detailed script and materials prepared by the 

researcher. At the end of the lesson the students answered, in writing, questions on what 

they had learned during the lesson. These answers, combined with the classroom 

observations, provided a basis for the evaluation of the experiment. The written answers 

were categorized into analytical and narrative statements. The analytical statements were 

divided into the different levels of the van Hiele Model. The narrative statements were 

divided into whether or not they mentioned angles. The research findings suggest the 

usefulness of using lesson plans based on the two theoretical frameworks in helping 

students develop an analytical conceptualization of mathematics. 
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INTRODUCTION 

Geometry, Angles, Realistic Mathematics Education 

and the van Hiele Model 

The Research Questions 

Geometry is one of the oldest and best-documented subjects in mathematics. 

Geometry was so important in ancient times that Plato is even credited with writing 

ArEWMETPHTOI MHAEII EIIITW 

or "Let no one unversed in geometry enter here" (Sibley, p. 2) over the door of his 

Academy of philosophy. This shows that one of the smartest men of ancient times 

believed in the value of knowing Geometry. This value is still recognized today, as 

evidenced in the ICMI initiative of mounting, in the 1990s, a study on perspectives and 

prospects of teaching and learning geometry for the 21st century and in the papers 

published in the related edited book (Mammana & Villani, 1998). However, this book 

also shows that geometry remains a difficult subject to teach and to learn, although a lot 

of research has already been done and many ingenious proposals - put forward and 

sometimes experimented. Even special "dynamic geometry" computer software has 

been developed for educational purposes. This software did not solve any of the 

problems of geometry teaching and learning but created new and very interesting ones 

for educational research and development. 

This historical and modern day importance of geometry is two aspects that 

motivated me to developing a research project on the topic of teaching and learning 
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Geometry. The objectives of the project are not unrelated with theory of mathematics 

education, and therefore I have to talk about the theory before I can formulate my 

objectives. 

Several theoretical frameworks for research and development in mathematics 

education hold particular relevance to the subject of Geometry. One of them is 

Realistic Mathematics Education - RME (Cooper and Harries, 2002; Fyhn, 2008; 

Gravemeijer and Doorman, 1999; Treffers, 1993; van den Heuvel-Panhuizen, 1994; 

2001; 2003; Wubbels, Korthagen and Broekman, 1997). Another is the van Hiele 

Model of Geometric Thinking, extensively applied in research (Burger and 

Shaughnessy, 1986; Cannissaro and Menghini, 2006; Fyhn, 2008; Gutierrez, Jaime and 

Fortuny, 1991; Hoffer, 1983; Mayberry, 1983; NCTM, 1988; Senk, 1989). Using these 

frameworks I have developed a context for my research objectives: 

1. To show how the history of geometry, and especially the history 

of the concept of angle, supports the principles of RME and the 

van Hiele Model of geometric thinking. 

2. To use the teaching theory of RME in a teaching experiment 

aimed at initiating a successful conceptualization of Geometric 

concepts, particularly the concept of angle, as outlined by the van 

Hiele Model of Geometric Thinking. 

For the second objective of this thesis a lesson plan about angles was developed. 

Two separate teachers then taught this lesson according to the plan to their own grade 

four classes in an Ontario elementary school. This was done during their regular class 

time. The reason for having the lesson plan taught by the students' regular teacher and 
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during the regular class time was to evaluate whether this teaching method would be 

effective in real time classroom situations and not just in controlled research 

environments. 

Outline of Thesis 

The first chapter provides a survey of literature on, first, the concept of angle, 

and, then, the theories of RME and the van Hiele Model. 

In the second chapter I address the first objective of the thesis, by trying to see 

how RME and the van Hiele Model are aligned with the historical development of 

Geometry. 

The third chapter presents the theoretical framework of the thesis. To begin, a 

combination of the van Hiele Model and Realistic Mathematics Education is developed 

in order to provide a framework that includes both the teaching and learning aspects of 

Geometry. Then, the chapter outlines the concept of angle that will be used throughout 

the research. 

Chapter four discusses the methodology of the empirical part of the research 

(objective 2). Here, a detailed summary of the lesson plan as well as all other materials 

used in the research study are presented. 

Chapters five and six consist of the quantitative and qualitative results of the 

empirical study. A closer look is given here to the in-class observations, and the 

students' productions. A qualitative method of categorizing the written responses is 

given. 

Chapter seven is devoted to a discussion of the results. Separate conclusions are given 

to the different data that were collected, namely the in-class observations, the students' 
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transparencies and the students' written responses. As well, some implications of the 

research findings taken as a whole are proposed. This chapter also contains 

recommendations for future research on similar subjects. 

4 



CHAPTER ONE 

Survey of Literature 

The main themes of this thesis, which include angle conceptualization, the van 

Hiele Model of Geometric Thinking and teaching according to the Realistic 

Mathematics Education theory, have been popular topics for mathematics education 

researchers over the last few decades. Conducting research on the conceptualization of 

angles seems like a never-ending task. This is probably due to the fact that the notion 

of angles is quite complex. Just defining angles is a problem, not to mention the notion 

of how to teach angles effectively. Researchers have focused on a wide variety of ideas 

when it comes to teaching angles, such as teaching with Logo or using physical 

examples. As well, literature has focused on the more basic ideas of angles, for 

example, how it should be defined and in what context it should be presented to 

students. Likewise, the van Hiele Model of Geometric Thinking has also received a lot 

of attention among mathematics education researchers. Some researchers have tried to 

provide support for the van Hiele Model, some have tried to disprove it, and yet others 

have tried to adjust or improve the model. Mostly, the van Hiele Model has just been 

used as a theoretical framework in research that has studied a number of different topics 

in Geometry. 

Realistic Mathematics Education has received much notice recently with the 

trend towards problem solving becoming an integral part of compulsory mathematics 

education. Most research on Realistic Mathematics Education is in support of the use 

of context problems as the initial teaching tool. Some research has focused more in 
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depth on the whole theory of Realistic Mathematics Education and in particular the 

theories of model development. Overall, the core subject matter of this thesis has been 

much researched and written about by mathematicians and educators alike. 

1.1. Angles 

Research on Angles 

As mentioned, the amount of research conducted on angles and teaching angles 

is overwhelming. Here, I will focus on a selection of papers only. The specific articles 

mentioned here were chosen because they represent a good overview of the variety of 

the different types of research available. 

In the late 1980's and early 1990's there was a shift in angle research to 

incorporate the new accessibility of angle making computer software. Forefront of 

these software systems was Logo or Turtle Geometry. Extensive research was 

conducted on the educational potential of the Logo environment. For example, in 

(Clements & Battista, 1989) third grade students were given 26 weeks of Logo 

instructions and interaction. At the end of this time period, these students were 

interviewed and their responses were compared to a control group of students who were 

not instructed in Logo. One of the goals of the research was to see if Logo could be 

helpful in assisting students' conceptualization of angles, shapes and motion. The 

researchers found that although the Logo group of students preformed higher than the 

control group, neither group reflected a strong conceptualization of angle and angle 

measure. The Logo group, however, tended to conceptualize angles in terms of the 

action or procedure involved in making the angle. In other words, these students held 

the notion of angle as rotation. This could be attributed to their experience with Logo 
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where angles are created based on the amount of rotation in which the user instructs the 

Turtle to turn. 

In another article by the same authors (Clements and Battista, 1990), the 

research focused mainly on what each child's concepts of the notion of angle and 

polygons were after 40 sessions with Logo. The authors now found that students who 

were instructed with Logo tended to conceptualize geometric objects as the product of 

the pieces that make up the object as well as the processes involved to make the pieces 

and combine them to make the object. In other words, the students instructed with 

Logo had a perception that geometric objects had to be created the same way as when 

they are created with the Logo program. With regard to angles, the students developed 

the concept that angles were made up of an amount of turning and of a measure (of the 

ray after the turn). This is consistent with how angles are created using Logo as well as 

consistent with these authors' findings in their 1989 article. 

Another research involving Logo (Hillel & Kieran, 1987) looked at how 

students chose their inputs when instructing the turtle to make an angle. Hillel and 

Kieran found that students input the commands on either a visual decision or an 

analytical decision and that the visual decisions were predominant. In other words, the 

students tended to use a guess and check method to see if the turtle would accomplish 

the given task. I tend to think that this has something to do with how young children 

approach computers. In my limited experience, children tend to be very comfortable 

with the idea of "guess and check", or in other words, just pressing buttons to see what 

the results are and learning by this method. Thus, I have interpreted the results from 

Hillel and Kieran's article as consistent with my observations. 

7 



As the 1990's came to a close and the areas of research investigation with Logo 

seemed to be exhausted, some researchers turned to the area of investigation with 

physical realistic models. For example, Mitchelmore (1998) examined how students in 

grades two, four and six conceptualize the concept of angle as rotation or turn. The 

experiment involved the students studying three-dimensional physical models that they 

could manipulate and move providing the students with a reality based foundation on 

which to examine angles. All of the models created some sort of angle through rotation 

or turning. Thus, in this research, the author used the notion of angle as a rotation. One 

of his conclusions was that introducing angles as rotations or turns seems premature in 

elementary school. In a follow up of this research, still using physical models, 

Mitchelmore & White (2000) asked whether students could move from a 

conceptualization of angles as turnings or rotations to a more abstract conceptualization 

of angles in general. This research highlighted the fact that there is more than one 

conception of angle. 

Research that uses physical or realistic models to teach the notion of angle is 

still being conducted today. In one of the most recent articles, Fyhn (2008) takes an 

entire class of grade eight students to a climbing wall for a day in order to help them 

conceptualize the concept of angle. The students were responsible for investigating the 

different angles they created with the ropes and their bodies, while scaling the climbing 

wall. Through this investigation, the goal was to have the students reinvent for 

themselves some informal theories on angles and the best angles to use while climbing. 

This theoretical framework of using physical or realistic models in the hope of 

promoting student reinvention was based on the framework of Realistic Mathematics 
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Education. Fyhn also analyzed the students' results using the framework of the van 

Hiele Model of Geometric Thinking. As was already mentioned, both these 

frameworks were used as a foundation for my own thesis research. However, it is 

important to note that Fyhn's research article only became available after my research 

was already completed and any similarities are purely coincidental. 

Literature and the Many Definitions of an Angle 

If an examination of the above literature shows anything, it is that, in order to 

think about teaching angles, the meaning of this concept must first be clarified. A quick 

search through some of the available literature shows that there is no consensus on how 

to define an angle (Brown, Simon and Snader, 1970; Hartshorae, 1997; Sibley, 1998; 

Sobel, Maletsky, Golden, Lerner and Cohen, 1986; Webster Dictionary and Thesaurus, 

2002). Instead, there are many different definitions covering a variety of concepts of 

what is an angle. 

The Webster Dictionary gives two definitions of an angle, the first being; "The 

figure formed by two lines extending from the same point," and the second as; "A 

measure of an angle or the amount of turning necessary to bring one line or plane into 

coincidence with or parallel to another" (Webster Dictionary & Thesaurus, 2002, p. 37-

38). The first definition defines a physical two-dimensional geometric object made up 

of three parts; two lines and a point. It refers only to the figure that is the angle and 

nothing else. The second definition does not talk about what an angle is but what an 

angle is measuring. Thus, these two definitions define the same object by completely 

different characteristics. 
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Throughout history, mathematicians have used their own definitions of angle in 

conjunction with geometric systems. Two of the most famous axiomatic systems of 

Geometry are the systems of Euclid and David Hilbert. In the Elements, Euclid defined 

an angle as 

"A plane angle is the inclination to one another of two lines in a 
plane which meet one another and do not lie in a straight line" 
(Definition 8, Book I, The Elements; see also Sibley, 1998, p. 287). 

In comparison, Hilbert's definition states that, 

"By an angle is meant a point (called the vertex of the angle) and 
two rays (called the sides of the angle) emanating from the point" 
(Sibley, 1998, p. 294). 

Like the dictionary definitions, these two definitions also focus on different 

characteristics of angles. Hilbert's definition is very similar to the first definition in 

Webster's Dictionary (2002). It only differs in that it gives specific names to the 

objects that make up the angles, that is, the vertex and the sides. On the other hand, 

Euclid's definition defines an angle as a ratio of, or difference between, the inclinations 

of the lines. According to Euclid, an angle is the relationship between the positions in 

the plane of two intersecting lines, or their relative position. While, when thinking of 

angles as figures, one can see four angles in a pair of intersecting lines, there is only 

one angle according to Definition 8: knowing one of the figure-angles implies knowing 

them all; what matters, really, is the mutual position of two straight lines, and this is 

Euclid's notion of angle. Euclid's plane has no fixed frame of reference, no coordinates 

(so the "slope" of a straight line is not defined), no orientation, and therefore it does not 

matter which of the two lines is first and which is second. So, again, a pair of 
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intersecting straight lines is inclined to each other in a unique way, and this is the 

Euclid's angle. The measure of this angle can be given in two ways, but each way 

determines the other one uniquely. Another interesting feature of Euclid's angles is that 

parallel lines do not determine an angle, since Definition 8 requires that the two lines do 

"not to lie in a straight line". There would therefore be no angles of measure 0 in 

Euclid's system (see Hartshorne, 1997, p. 28), while, such angles are perfectly 

acceptable in Hilbert's system (Sibley, 1998). Thus, we see that there are important 

differences between these two definitions. 

Examining a few secondary school mathematics textbooks also reveals a 

number of different definitions for angles. Two examples of these include the 

definition that "An angle is formed when two rays begin at the same point...The 

measure of an angle depends upon the amount of rotation and not upon the length of the 

sides..." (Brown, Simon and Snader, 1970, p. 205) and "A figure formed by two non-

collinear rays with a common endpoint. The two rays are the sides of the angle. The 

common endpoint is the vertex of the angle" (Sobel, Maletsky, Golden, Lerner and 

Cohen, 1986, p. 578). The first definition is specifically interesting in that it defines the 

angle as an object and then discusses the notion of putting measurement to the angle 

based on the amount of rotation of one line-ray to the other. The second definition has 

a similar characteristic to Euclid's, in that it specifies that the rays are non-collinear. 

The first definition corresponds a lot to Hilbert's definition in how it gives names to the 

pieces or parts that makes up the angles. Overall, it is clear that textbooks, a very 

important teaching tool in most classrooms, do not even have a consensus as to how an 

angle should be defined. 
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As was already mentioned, angles are also the topic of many different research 

studies described in academic journal articles (Clements and Battista, 1989, 1990; 

Clements and Burns, 2000; Hillel and Kieran, 1987; Mitchelmore, 1998, Mitchelmore 

and White, 2000; Munier and Merle, 2007; Simmons and Cope, 1990). It would be 

impossible to mention every journal article that discusses a different definition for an 

angle. The articles that are mentioned here were chosen as examples because of the 

diverse way in which they define angles. It is interesting to note here that in some 

research articles no definition of what the researchers actually meant by angle is given. 

This is not the case of Mitchelmore (1998), where the concept is explicitly discussed. 

The author states how "...many curriculum documents now recommend treating angle 

in terms of turning..." (ibidem, p. 265) and goes on to define angle as "the amount of 

turning between two lines about a common point" (ibidem) According to Mitchelmore, 

"A focus on turning (a) emphasizes the relative inclination of the arms of an angle 

while showing that their length or orientation are irrelevant and (b) could make the arc 

marking the angle more meaningful" (ibidem). 

In (Clements & Burns, 2000) two different definitions for an angle are 

described. The article states that "Angles have been defined as a part of the plane 

included between two rays meeting at their endpoint (static definition) and as the 

amount of rotation necessary to bring one of its rays to the other ray without moving 

out of the plane (dynamic defmition)"(ibidem, p. 31). Here the researchers have 

defined an angle in two very different ways, similar to the many previous examples of 

angle definitions. The difference here is that researchers categorized the definitions 

depending on the context in which the angle is being examined. This special attention 
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to context introduces the idea that the notion of angle will change depending on the 

situation. 

Lastly, in a more recent article by Mitchelmore and White (2000), many 

definitions for an angle are given. At the beginning of the article it mentions that 

"Three particular classes of angle definitions occur repeatedly: an amount of turning 

about a point between two lines; a pair of rays with a common end-point; and the 

region formed by the intersection of two half planes"(Mitchelmore & White, 2000, p. 

209). Later on Mitchelmore and White describe some findings of Davey and Pegg 

(1991) saying that these authors have "obtained a sequence of four definitions of angle: 

(a) a corner which is pointy or sharp; (b) a place where two lines meet; (c) the distance 

or area between two lines; and (d) the difference between the slope of the two lines" 

(Mitchelmore & White, 2000, p. 218). Thus, Mitchelmore and White also categorize 

different definitions. Overall, there seems to be a trend towards having more than one 

definition for an angle, depending on context. 

From the above findings I was motivated to conduct a simple experiment. This 

experiment strictly involved asking a class of students enrolled in a college level 

"Vectors and matrices" course to write down what they understood to be an angle. The 

instructions that were given were "Please write down how you would define an angle." 

All of the students who participated were aspiring to major in either Engineering or 

Computer Science. This experiment was done only on a volunteer basis with nobody 

being forced to participate and with no penalties for those who chose not to take part. 

As well, all of the results were given anonymously. The students were made aware that 

the results could potentially be used in my thesis research. 
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This experiment resulted in an entire spectrum of different definitions for 

angles. For example, one student defined an angle as "Two unparallel rays that share a 

common point (vertex of the angle) and the value of this angle defines how far the 

second ray is from the first one, expressed in terms of degrees or radians" (see the list 

of all students' responses in Appendix A). This student understands an angle as an 

object and has concluded that this angle can have a value of measurement associated 

with it. Another student defined an angle to be the process where "I would take two 

lines that intersect and I would think about the angle as the rotation that it would take 

one of the lines to 'merge' with the other - basically so that they are one". This student 

does not define an angle as being an object but as rather something this object has the 

potential to do, the rotation of the lines. Another interesting definition given by a 

student was "An angle as the measure of the space between any two straight lines that 

meet up at one point". Thus, now we have an angle as a space or area between two lines 

that meet. But this last definition is confusing because it is seems impossible to define 

area in a plane with only two lines (at least in Euclidean Geometry). So this definition 

leaves us questioning what was actually meant and if in some way maybe the "space" 

referred to in the definition is a different concept of space or area when it refers to 

angles than to other geometric objects. 

After examining the different definitions of angles in the literature and looking 

at the different results from my students, categories start to appear in which the angle 

definitions fit. One of these very noticeable categories includes definitions that discuss 

angles as a rotation or turning. Definitions in this category look at some physical 

attribute of the angle. That is, there is some type of movement, like a rotation, turning 
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or revolution that is used to describe the angle. This movement is not necessarily 

involved in the construction of the angle, but could be potential movement (that is, how 

much it would have to move or could move). A review of the literature shows us that 

'angle as rotation' is not a new mathematical concept. There have been many empirical 

studies conducted to gauge students understanding of the concept. For example, all 

three of the studies mentioned previously in this chapter cover the concept of angles as 

rotation or turning. As was previously mentioned, the article by Clements and Burns 

(2000) uses a classification by Kieren (1986) and distinguishes all definitions 

encompassing a movement aspect as "dynamic definitions." (Clements & Burns, 2000, 

p.31) In the postsecondary mathematics textbook by Henderson & Tainmina (2005), 

we have the explanation that "a dynamic notion of angle involves an action: a rotation, 

a turning point, or a change in direction between two lines" (ibidem, p. 38). Overall, 

dynamic definitions of an angle are probably the easiest definition category to 

recognize. 

The obvious dual category to dynamic definitions is "static definitions" 

(Clements & Burns, 2000, p. 31). Like the name suggests, static definitions do not 

imply any movement at all. These definitions tend towards a more abstract concept. 

Clements and Burns state that static angles are "defined as part of the plane included 

between two rays meeting at their endpoint" (2000, p. 31). This explanation tends to 

beg the question as to the size of the part of the plane that is the angle. In Euclid's 

Geometry rays are infinitely long within a plane (although we do not tend to draw them 

as such). As well, there is no explanation as to which side of the two rays is the angle. 

Consider the picture below (Figure 1). Let's assume the rectangle is an infinite plane 
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and the blue lines represent the two rays meeting at an endpoint. The red line arrows 

extending from the angle represent the infinite aspect of the rays that makes up the 

angle. Thus, from the picture we see that the Clements and Burns (2000) explanation 

of a static angle is very unclear as to what is actually meant to be the angle. 

Is this area the "part of the 
plane" that is the angle? 

Figure 1. Illustration of Clements & Bums (2000) definition of angle 

For another example of how the Clements and Burns (2000) explanation is 

confusing, consider the situation of a child being sent to stand in the corner. If we 

consider corners as a byproduct of angles, then a child being sent to stand in the corner 

is really being told to stand within the angle. Thus, according to the Clements and 

Burns (2000) definition of a static angle (p. 31), within a finite space (like a room) a 

child could potentially stand anywhere and still be standing in the corner. 
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Overall, categorizing angle definitions as "static," using Clements and Burns 

(2000) explanations does not give a very clear understanding of static angles. Other 

literature resources offer some alternative categorizations. For example, Mitchelmore 

and White (2000) take the categorizing of angles one step further and name not two but 

three particular classes of angle definitions. These include "an amount of turning about 

a point between two lines; a pair of rays with a common end-point; and the region 

formed by the intersection of two half-planes" (Michelmore & White, 2000, p.209). 

The first classification is clearly part of the dynamic category, as there is some 

movement involved and it is very similar to the Clements and Burns (2000) explanation 

of a dynamic angle definition. The next two classifications can both be considered as 

static definitions since there is no movement mentioned. The Clements and Burns 

(2000) definition of static angles is similar to the third definition used by Mitchelmore 

and White (2000). In contrast, Mitchelmore and White (2000) have actually divided the 

category of static angles into two sub-categories. 

Another look at these two sub-categories of static angle definitions can be found 

in (Henderson & Tainmina, 2005). Here the authors have described static angle 

definitions as either concerning a measure or a geometric shape (Henderson & 

Tainmina, 2005, p. 38). "Angle as a measure may be thought of as the length of a 

circular arcs or the ratio between areas of circular sectors...[Angles] as a geometric 

shape...may be seen as the delineation of space by two intersecting lines" (ibidem, p. 

39). In other words, angle definitions that concern measuring a distance or area 

between two intersecting lines or planes can be categorized as a static angle in the 

measure subcategory. Thus we can see that Mitchelmore and White's (2000) third 
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definition can be categorized as a measure definition. Looking again at one of the 

definitions submitted by a university student we see that the definition, "An angle as the 

measure of the space between any two straight line that meet up at one point," 

(Appendix A) is an example of an angle as a measure type of definition. The other 

subcategory of angles as a geometric shape refers to definitions that only concern how 

the angle looks visually or physically. One of the best examples of this type of angle 

definitions is Hilbert's definition of "By an angle is meant a point (called the vertex of 

the angle) and two rays (called the sides of the angle) emanating from the point" 

(Sibley, 1998, p. 294). Overall, dividing angle definitions into three categories as in 

Henderson & Tainmina, 2005) seems like the best way to ensure that all different 

possible types of definitions of an angle are included. 

One interesting feature of having three different categories of angle definitions 

is that each category has a unique way for determining whether two angles are 

congruent. With a dynamic angle it can be verified that two angles are congruent if the 

action required to create or recreate the angles is equal or if the potential movement 

available to the angles is equal. Two angles that are considered measurements are easy 

to examine for congruency by simply seeing if the measurement associated with each 

angle is equal (as long as the measuring is done with the same units). Lastly, if the 

angles are described as strictly geometric shapes then a process of superimposing one 

onto another will let you examine if they are equivalent. This last process is similar to 

Euclid's method of superposition used in proof 1.4 (side-angle-side criterion for 

congruence of two triangles) (Hartshorne, 1997, p. 31). Thus, depending on which 

category the angle is being defined in will determine features like congruency as well 
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as other geometric properties. Features like this are what promote some of the 

difficulties when trying to teach angles. 

Overall, research involving the conceptualization of teaching of angles is a 

dynamic field. The research has been approached from numerous different directions, 

involving many different definitions for an angle or angle categorization. Researchers 

have tried to answer questions such as, how teachers should first introduce angles, 

whether angles should be presented as abstract or physical, what definition of angle is 

most appropriate or best suited to ensure students' understanding, what tools teachers 

should use and whether there is one method more suited than another. It seems that the 

notion of angles and hence the notion of teaching angles is such a dynamic concept in 

itself that the research possibilities might never be completely exhausted. 

1.2. The van Hiele Model of Geometric Thinking 

Description of the van Hiele Model 

In the 1950's in Netherlands, a married couple of mathematics teachers started 

to question why it was that so many high school students struggled with Geometry. 

Pierre van Hiele and Dina van Hiele-Geldof published companion dissertations in 1957, 

describing their research and insightful findings. Their work came to be known as The 

van Hiele Model of Geometric Thinking. This forthcoming description of the van Hiele 

Model of Geometric Thinking was mostly taken from the literature provided by the 

NCTM Monograph Number 3, "The Van Hiele Model of Thinking in Geometry Among 

Adolescents" (1988). 

Central to the van Hiele Model is the concept that there are five levels or stages 

(level 0-4) of Geometric Thinking that any one student could be at. These levels are 
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assumed to be sequential and in order to ensure success at a higher level, a student 

should be successful at all of the levels below it. From their experience as teachers and 

researchers the van Hieles found that the majority of high school Geometry was being 

taught at a very high level of Geometric Thinking, while at the same time the students 

did not have the needed understanding of the lower levels. Overall, the van Hieles 

believed that if teachers were able to understand the five levels of Geometric Thinking, 

they would be able to assess at what level their students were at and adjust their 

teaching accordingly. As well, the van Hiele Model allows educators to develop lesson 

plans that move through the different levels sequentially. 

The basic idea underlying the van Hiele levels is that each next level focuses on 

properties of the objects of attention in the previous level. Therefore, it is conceivable 

to generalize the van Hiele levels to topics other than Geometry. Understanding the 

levels in general is the first step to being able to identify the characteristics to look for 

when using the model to describe other topics in mathematics. It is this generalization 

that is targeted in the description of the levels below. 

Level 0: Visualization Stage 

Level 0 is the base stage. It is the first encounter with the objects of the 

mathematical domain. These objects will function as the foundation elements of 

everything that will be studied. 

As the name of the level describes, comprehension at this stage involves 

visualizing these base objects. The visualization that is defined at this level can be 

described in terms of the students seeing or understanding these initial objects in their 

minds. For example, a base object in the domain of Real Numbers for students could 
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be the number line. In the domain of Linear Algebra, the base objects would be 

vectors, perceived as, for example, directed segments, or n-tuples, and matrices, 

perceived as rectangular tables of numbers. 

As any elementary teacher will know, it can take a few years of school for 

students to come to visualize real numbers in a number line format. Likewise, 

perception of an ordered pair of points, or an ordered list or array of numbers is not 

something that occurs to an untrained eye and mind. Thus, Level 0 objects are not 

assumed to be obvious or trivial for students. Their introduction requires serious 

teaching effort. 

Geometry in elementary school begins by recognizing geometric characteristics 

in objects that can be physically seen. The Level 0 objects here are geometric shapes, 

such as circles, squares, triangles, straight lines, etc. At this level students are assumed 

to be able to categorize geometric shapes by visual recognition, and know their names. 

For example, if shown a picture of a square a student would be able to say that it is a 

square because it looks like one for him or her. A this stage, it is not required to think 

of a square, or any other geometric object, in terms of its properties, like saying a 

square has four sides. With visual recognition a student would be able to make a copy, 

by drawing or using some sort of physical manipulative, of a shape or configuration of 

shapes if they could be shown or told what it is they were supposed to be copying. The 

instructions would have to be based on the name the child has memorized for the object 

and not the object's properties. For example, the instruction would have to be, 'draw a 

square', not 'draw a polygon with four equal sides and angles'. 

Level 1: Analysis Stage 
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At Level 1, students begin to analyze objects that were only visually perceived 

at Level 0, identifying their parts and relations among these parts. The focuses of 

attention are properties of these objects. Using the example of the Real Numbers again, 

it is at this stage that properties of order, as well as closure under operations could be 

noticed, leading to distinguishing subsets of Integers and Rational Numbers inside the 

set Real Numbers. 

In elementary geometry, the analysis stage is where students begin seeing the 

properties associated with the different shapes or configurations. A square will now 

become a shape with four equal sides and four right angles or a parallelogram will 

became a shape with four sides where opposite sides are parallel, and having opposite 

sides and opposite angles equal, as well as having the diagonals intersect in their 

middle. However, at this stage, it is not assumed that students will be seeking logical 

relationships between properties such as knowing that it is enough to define a 

parallelogram as a quadrilateral with parallel opposite sides and all the other properties 

follow. Neither is it assumed that students will think about a square as a special type of 

parallelogram. Therefore, students will identify shapes and configurations based on the 

entirety of their properties. In other words, relationships between shapes and 

configurations remain solely on the list of properties they have. At this stage if a 

student were asked to describe a shape or configuration, the description would be based 

on the objects properties. At the same time, if a student were asked to reproduce a 

shape or configuration based on the list of properties, they would be able to do so. 

Students would also be able to use the properties of a shape or configuration to solve 

some simple geometric problems. For example, knowing the property that the angles of 
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a triangle add up to 180°, the student would be able to deduce that the angles of a 

quadrilateral add up to 360° since a quadrilateral can be made by putting two triangles 

together. 

Level 2: Informal Deduction Stage 

A full understanding of Level 1 is concluded when the objects of study have 

become the properties of the base elements, introduced at Level 0. At Level 2 the focus 

of attention are "properties of sets of properties", that is, relations among properties. 

Students functioning at this level will try to group properties into subsets based on 

relationships between them. They will aim to recognize properties that are equivalent 

in certain situations and also be able to recognize the minimum amount of properties 

needed to describe one of the initial base elements. Overall, the main focus here is on 

the many different mathematical relationships between the properties. Finding and 

understanding these relationships is a type of informal deduction. 

For the Real Numbers, it would be at this level that students would start to 

develop the idea that some properties of operations and order in real numbers follow 

from a small set of basic properties, thus making a step towards understanding the 

axioms of the Real Numbers as an ordered commutative field. But it only at the next 

stage that they would be able to produce proofs of such informal observations. That's 

where using the tools and techniques of algebra would start to play an important role. 

Understanding Geometry at the informal deduction stage is a big leap for most 

students. Students would now be able to place properties into sets and identify the 

minimum amount of properties needed. A square, which might have had at Level 1 the 

properties of four equal sides, four equal angles, equal diagonals and parallel sides 
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would now be described with a smaller set of properties like four equal sides and four 

equal angles. From this, students would now start formulating definitions for classes of 

figures. For example, a triangle would be defined as an enclosed shape with three 

rectilinear sides and a right triangle would be defined as a triangle where one of the 

angles is a right angle (or two sides are perpendicular). Students would also be able to 

recognize subsets of geometric objects or figures. Rectangles and parallelograms 

would no longer be independent shapes. Instead, rectangles would now be a special 

type of parallelogram. Students would also start to recognize which properties were 

subsets of each other. For example, having four parallel sides and four equal angles 

infers that the diagonals are also equal. 

One of the most important aspects of this level of Geometric thinking is that 

students start to think deductively about Geometry. At this level a student would be 

able to give informal arguments to prove geometric results. These arguments might 

follow the simple logic of something similar to stating that if angle A = angle B and 

angle B = angle C then angle A = angle C. Or given a triangle ABC, if the midpoint of 

AB was T and the midpoint of AC was S and if TS was parallel to BC then BC = 2TS. 

Students would also be able to justify arguments they are presented with informal 

logical relationships. Thus, at this level a student can use and give informal deductive 

arguments about previously known properties. As well, a student could use deductive 

arguments to discover new properties. Overall, students now start to recognize the 

importance of logic and deduction in Geometry. 

Level 3: Deduction 
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The objective of Level 3 is the organization of the statements about 

relationships from Level 2 into deductive proofs. At Level 2, relationships among 

properties of the base elements were discovered. At Level 3 these relationships are 

used to deduce theorems about the base elements according to the laws of deductive 

logic. 

Referring to the Real Numbers example, it would be at this level that students 

would be expected to prove, for example, that for all real numbers a and b, (-a)(-b) = 

ab. 

At this stage students are ready to accept a system of definitions, axioms (or 

postulates) and theorems. What was previously informally proved at Level 2 using 

diagrams and informal arguments can now be formally proved using definitions and 

axioms. Students can now create the proofs from the axioms and only use diagrams or 

models as a support for the argument. Students also begin to recognize the need for 

undefined terms in Geometry, which can be a very hard concept to understand in a 

purely logical system. At this level students also start to identify and understand the 

difference between a theorem and its converse, and contrapositive. They would also be 

able to prove/disprove any of these relationships. Students would also be able to see 

connections and relationships between theorems and group these accordingly. Thus, 

we have now reached the level at which traditionally high school Geometry has been 

taught in North America. 

Level 4: Rigor 

Level 4 looks at relationships among the organizations identified at Level 3. In 

other words, the deductive proofs from Level 3 are now hyper-analyzed. This analysis 
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looks for associations between the proofs. For example, at this level the questions of 

"are the proofs consistent with each other", "how strong of a relationship is described in 

the proof and "how do they compare with other proofs" would be asked. The level of 

Rigor involves a deep questioning of all of the assumptions that have come before. 

This type of questioning also involves a comparison to other mathematical systems of 

similar qualities. For example, in Level 4 if we considered Real Numbers we would 

begin to compare them as a field to other fields in general. It is fair to say that this level 

is usually only undertaken by professional mathematicians. 

Level 4 of geometric understanding is very rarely met by high school students 

and is usually only attributed to further postsecondary education at college or 

university, if even then. Here, students have the ability to work in geometric systems 

that are non-Euclidean and thus, the system usually is not able to produce a lot of visual 

models for recognition or rather that the models produced are not very useful and thus, 

focuses mainly on the abstract. Most of the Geometry done at this level is strictly 

theoretical, done on an abstract, proof-oriented basis. At this level students are able to 

compare axiomatic systems, like Euclidean and non-Euclidean. Students who have also 

reached this level are able to carefully develop theorems in different axiomatic 

geometric systems. Therefore, as was mentioned initially, this is usually the work of 

professional mathematicians and their students who conduct research in different areas 

of geometry. 

As previously stated, the van Hieles began their research after they observed 

that the majority of high school students struggled with Geometry, even if other 
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mathematical topics were easily understood. From their research, they concluded that 

most high school Geometry is taught at Level 3. The van Hieles were then able to 

deduce that most students did not have a good enough grasp of Geometry at Level 2 to 

be able to move onto comprehending Level 3. Thus, from the van Hieles research it 

can be concluded that more focus needs to be placed on the pre-deduction, informal 

argument stage of geometric thinking, with more emphasis on informal everyday 

reasoning in order to expect students to be able to succeed at the deduction level. 

Overall, the van Hiele Model provides us with a unique learning theory that can 

be related to Geometry and other areas of mathematics as well. The hope is that 

teachers who understand the different levels of the van Hiele Model will be able to 

recognize the level their students are currently functioning at and adjust their teaching 

accordingly. At the same time, the van Hieles always professed that success is very 

much based on adequate teaching. 

Research Involving the van Hiele Model of Geometric Thinking 

The van Hiele Model of Geometric Thinking has shown up in a variety of 

different ways in research. Some researchers have used the van Hiele Model as the 

theoretical framework on which to base some of their research. An example of this was 

already mentioned above with Fyhn (2008), where the author categorized students' 

responses according to the van Hiele Levels. Mayberry (1983) designed tasks to see at 

what levels of the van Hiele Model pre-service teachers were functioning. In this 

research, like in Fyhn's (ibidem), the model was neither proved nor disproved but just 

accepted as an analytic framework. 
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Research that used the van Hiele Model as an accepted framework covers an 

assortment of different topics. For example, Senk (1989) discusses how secondary 

school students were tested at the beginning of the school year and at the end of the 

school year to judge at what level of the van Hiele Model they were functioning. This 

was then related to whether the students had the ability to compose appropriate 

geometric proofs. In another article, Burger and Shaughnessy (1986) discuss how 

students from grade one all the way to first year university were tested to ascertain at 

what level the students were functioning with regard to triangles and quadrilaterals. As 

the topics and combination of topics in Geometry are pretty much endless, the research 

possibilities in this area could potentially be never ending, although the usefulness of 

this is debatable. 

A massive three-year research project that strictly focused on the van Hiele 

Model, was undertaken by professors at Brooklyn College, City University of New 

York. Their goal was to develop a working foundation of the van Hiele Model so 

curricula could be developed using the Model. This project was published as a Journal 

for Research in Mathematics Education Monograph under the title "The van Hiele 

Model of Thinking in Geometry Among Adolescents" (1988). As was already 

mentioned, the previous in depth description of the van Hiele Model was adapted from 

this research projects publication. Like the previously mentioned research, this 

research took the van Hiele Model as being the correct way in which to categorize 

Geometric Thinking. 

Alternatively, some research has not taken the van Hiele Model as being correct 

and instead tried to prove whether it is or is not an appropriate model of Geometric 
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Thinking. An example of this approach can be found in (Gutierrez, Jaime & Fortuny, 

1991). Here the researchers propose an adjustment to the van Hiele Model that they 

believe will improve its use as an analytic tool. Thus, the different levels of the van 

Hiele Model are subdivided into even more categories with the goal of reflecting more 

accurately exactly where specific students are functioning. This is just one example of 

how the van Hiele Model has been scrutinized or adjusted in different research settings. 

In general, the van Hiele Model has been used in research as an analytic tool; it 

has been used to prove the possible correctness of research results; it has been applied 

as a foundation for developing curricula and it has been scrutinized and adjusted to fit 

different researchers projects. Overall, it is a topic that has been very thoroughly 

studied in mathematics education research and covered in a lot of available literature. 

1.3. Realistic Mathematics Education 

This section will first describe the RME approach to teaching and then 

survey the literature on this approach. 

Description of Realistic Mathematics Education as a theory of teaching 

Mathematics education researchers have long felt that the traditional methods of 

teaching mathematics are not best suited for a student's education. This is at least the 

case from a Western Culture point of view. Traditional mathematics education is 

sometimes referred to as mechanistic mathematics education (van den Heuvel-

Panhuizen, 2001, p. 1). Students tend to be introduced to mathematics as though it 

were a ready made system of symbols and solutions, where they mechanically drill 

problems by mimicking the procedure the teacher has demonstrated for them. Thus, 
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mathematics becomes a very mechanical process in which a true understanding is never 

really achieved. 

Realistic Mathematics Education is the Dutch response to such mentioned 

traditional mathematics education techniques. Founded from the works of Hans 

Freudenthal, Realistic Mathematics Education (hereafter denoted as RME) places an 

emphasis on making mathematics education a relatable, usable experience for the 

students. According to RME, this is achieved by emphasizing the connections between 

the real world and the mathematical world. By staying close to reality, educators are 

able to give mathematics a sense of value in which students can find real life 

associations. If students are able to see how mathematics applies in real life situations 

they might better understand the importance of the topic. It is important to mention 

here that these realistic situations that RME proposes do not refer to the so-called 

"everyday life" contexts. It refers to situations that are "experientially real" to students, 

and these include mathematical situations they are familiar with, and which they see as 

making sense and important. For a graduate student in mathematics, groups, rings and 

fields may be "experientially real" objects; they are usually not part of the reality for 

high school students. One researcher described the RME teaching approach as the 

"emphasis on making something real in [the students] mind" (van den Heuvel-

Panhuizen, 2001, p. 3). 

Freudenthal believed that a true understanding in mathematics would come 

through the process of 'mathematizing' knowledge. Mathematizing or mathematization 

can be defined as the process of "organizing from a mathematical perspective" 

(Gravemeijer & Doorman, 1999, p. 116). In other words, as a student takes the 
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knowledge of mathematics and organizes it to be able to think about it in a 

mathematical perspective the student will develop a true understanding. Having a true 

understanding of concepts in mathematics will almost guarantee the student the ability 

to apply the concepts successfully. Since Freudenthal initially developed the idea of 

mathematization, it has been formulated into two distinct types, namely horizontal 

mathematization and vertical mathematization. Marja van den Heuvel-Panhuizen 

describes these two types in the following way: "In horizontal mathematization, the 

students come up with mathematical tools, which can help to organize and solve a 

problem...Vertical mathematization is the process of reorganization within the 

mathematical system itself, like, ... finding shortcuts and discovering connections 

between concepts and the strategies and then applying these discoveries" (van den 

Heuvel-Panhuizen, 2001, p. 3). Overall, the key features of RME can be summarized 

as mathematizing or thinking mathematically, about reality-based mathematical 

problems. 

The teaching theory of RME can be shown to have five main characteristics, all 

of which include some form of the key features mentioned above (van den Heuvel-

Panhuizen, 2001). First among these is the dominating use of context problems in the 

teaching/learning process. In other words, the mathematical concepts are taught using 

applications from real life situations, or experientially real situations. This differs from 

traditional methods of mathematical education in that context problems or applications 

were usually only found as end-of-the-chapter problems, where it was implicitly 

assumed that students are supposed to apply the concepts and theorems presented in the 

chapter, but were not expected to develop any new ones. Also, in the practice of 
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teaching, such context problems tended not to be focused on and were often just 

considered for extra credit. Thus, the shift to using context problems as the initial tool 

to convey the mathematical concepts is quite a radical methodological change from the 

traditional way of teaching. The major reason for this focus on context problems goes 

along with Hans Freudenthal's belief in instilling human value or importance in 

mathematics education. If the students are able to relate to the context problems, if they 

recognize that the problems could potentially appear in real life situations or are 

experientially real, then they are better able to accept the importance of learning how to 

solve such problems. This use of context problems is thus used to apply an element of 

realism to the mathematics process. 

Another role of context problems is to help students in the reinvention process 

of mathematics. This emphasis on the reinvention of mathematics is a characteristic 

that will be discussed later. For now, it is sufficient to say that context problems 

facilitate the processes of reinvention. As the students come into contact with a context 

problem they examine the knowledge that they already have, apply this knowledge 

where they can and generally, reinvent a method for solving this new mathematical 

situation. This very much mimics the methods mathematicians have followed 

throughout history when presented with new mathematical problems to solve. 

Some examples of successful use of context problems in elementary school can 

be found in van den Heuvel-Panhuizen (2001) paper. The examples include the use of 

context problems in introducing long division to students who have no previous 

experience with division. One problem, which the author names the "Stickers 

Problem" is as follows: "342 match stickers are fairly distributed among five children. 
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How many does each of them get?" (van den Heuvel-Panhuizen, 2001, p. 6). This is a 

context problem to which elementary school children can definitely relate. It involves a 

familiar item (match stickers) and a familiar process (fair or equal sharing of objects 

among several people). Thus, there is little question as to whether young school aged 

children can find human value to this type of question. The problem requires students 

to mathematize this familiar situation. 

On a different note, if we consider Geometry there is an endless amount of 

context problems available. Geometry initially developed from physical (realistic) 

situations. An example of how to introduce students to the idea of thinking about 

Geometry in a non-traditional sense is "Rush Hour Geometry" (I have also heard it 

called "School Bus Geometry" or "Taxi Cab Geometry", which are all essentially 

identical). Rush Hour Geometry takes place on a grid of city streets, thus placing the 

constraint that you must stay on the road (no driving through backyards or buildings) to 

get from one point to another. As students start to investigate geometric concepts like 

circles, midpoints and distances between points relative to this new notion of distance, 

they come to recognize that these geometric concepts look and behave differently in the 

world of Rush Hour Geometry than in a Geometry that takes place on a surface or a 

plane. This situation has strong connections to both the everyday life experience and 

the mathematical experience of students, yet, at the same time, it gives students a 

chance to go beyond this experience and understand it better by becoming aware of the 

existence of different notions of distance. 

The next key characteristic of RME is the development of models as part of the 

mathematics education. Using models might not seem like a new characteristic of 
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mathematics, but RME does not just use models, it develops the models in a very 

specific way to help facilitate the learning processes. When a student is first presented 

with a context problem, they are encouraged to use the knowledge they have to develop 

a method for solving the problem. This is where the first type of model is introduced. 

Here students work out an answer using a particular model of the situation in the given, 

concrete problem. Here it is interesting to note that when students use the knowledge 

they already have to obtain a model of a problem, they are undertaking horizontal 

mathematization. Once this initial model of the context problem is developed students 

are encouraged to refine the process over a number of steps until they obtain a model 

that will solve other similar problems. This has been termed as going from the "model 

o f to the "model for" stage of mathematical learning (van den Heuvel-Panhuizen, 

2001, p. 4). Also, being able to go from a model of a particular question to a model for 

a general concept undertakes the process of vertical mathematization. 

We can use the previously mentioned examples to demonstrate this idea more 

fully. In the situation of the Stickers Problem, van den Heuvel-Panhuizen (2001) 

illustrates how students begin solving this problem by developing a model of the 

particular problem. Students begin by repeatedly allocating stickers to five positions on 

a table until they would have exhausted the pile of 342 stickers and were left with 2 

stickers. They would count the number of stickers in one of the five equal groups they 

thus formed, or they would count the number of times they had subtracted 5 from 342, 

where division becomes understood as repeated subtraction. Both are time consuming 

procedures. So some students start keeping tract of the process in a symbolic graphical 

form (van den Heuvel-Panhuizen, 2001, p. 6, Figure 3), and subtracting multiples of 5, 
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not just 5 each time. For example, they subtract 10 times 5 or 50, from 342, obtaining 

292; then subtracting 50 times 5 from 292, obtaining 42; and then subtracting 8 times 5 

from 42, obtaining 2. Adding the number of times 5 was subtracted, 10+50+8 gives 68 

and the remainder is 2. Students here use only previous knowledge they have learned, 

namely grouping and repeated subtraction, as well as their understanding of the concept 

of fairly distributing, to develop a model of this context problem. These are their 

"models o f the given problem. 

The next step involves teacher intervention aimed at engaging students in the 

process of "progressive schematization" of their strategies to arrive at a "model for" 

solving this type of division problems, namely the strategy of long division. 

The process is generally the same if we consider Rush Hour Geometry as a 

context problem that can introduce the concepts of alternative metric spaces in 

Geometry. Initially, students begin with the grid world of Rush Hour Geometry and 

investigate common geometrical definitions. Once these geometrical definitions have 

been shown to produce different results or characteristics in Rush Hour Geometry than 

in ordinary plane Geometry, a model with the attributes of Rush Hour Geometry can 

start to be developed. Following this process and investigating other metric spaces or 

by placing different types of constraints on Rush Hour Geometry (roads that are closed, 

time constraint when traveling a certain distance, etc.) the student can begin to develop 

a model for understanding metric spaces in general. Thus, the student has moved from 

a model of one type of geometrical space to a model for defining and working with 

many different types of geometrical spaces. Unlike the long division example that 

seems very systematic and straightforward, this example of Rush Hour Geometry might 
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not seem to have the same simplicity. It must be remembered that Geometry is a very 

unique type of mathematics that constantly requires an understanding of the space in 

which the problems are taking place. Thus, Geometry examples might tend towards the 

more abstract. 

As was mentioned previously, another of the five characteristic of RME is the 

trend of student reinvention. The fundamental idea of student reinvention is that 

students undertake the same process of investigation that mathematicians initially took 

when certain concepts were first discovered. By following along the same path as 

mathematicians, it is believed that students will be able to come to a better 

understanding of the concepts. This is in contrast to the usual approach where what 

mathematicians discovered is the starting point for students' learning and understanding 

of mathematics. The student contribution comes from students using their previous 

knowledge as well as the techniques they know for solving specific problems to help 

reinvent a new method for solving the new problem. 

It is thus rather clear why context problems play such a central role in the 

process of reinvention. If we think about the historical processes of discovery we can 

see that in many situations, the desire to find an answer to a specific problem is because 

the problem arose in a real life situation. For example, the Egyptians became masters 

of finding areas of land plots when it became necessary to know the area of a certain 

amount of land for tax purposes (Coolidge, 1963, p. 9). These methods for figuring out 

the amount of taxes someone should pay were refined into general formulas for finding 

the areas of specific geometric shapes. Thus, we have the invention of area formulas. 

By using context problems students are able to retrace the steps of former 
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mathematicians and reinvent the mathematical concepts for themselves. The process of 

reinvention also helps students travel through many steps of horizontal and vertical 

mathematization. 

Considering once again the example of long division from van den Heuvel-

Panhuizen (2001) we can see that once the students have developed the model for 

solving long division problems they would have actually reinvented the long division 

algorithm. Traditional mathematics education methods would usually dictate that the 

long division algorithm be the starting point for teaching long division. A teacher 

would demonstrate the method with some problems involving only numbers and would 

then expect the students to be able to mimic the method. By the method of reinvention 

the students are helped to develop the algorithm on their own and thus have a very solid 

understanding of how it works and where it can be applied. Another really good 

example is the use of triangle tessellations to help students rediscover that the angles of 

a triangle add up to a straight angle. This is accomplished by instructing the students 

cover an entire area with identical triangle tiles (leaving no gaps). Then, usually with 

some teacher direction, students are asked to find some straight lines throughout the 

tiled area. It will be discovered (through a process of discussion and investigation) that 

the straight lines are produced whenever the three different angles of the triangles meet. 

Thus, through reinvention, the students can now physically see that the angles of a 

triangle add up to a straight angle. 

All of the previous characteristics discussed would not amount to much if RME 

did not also emphasize the characteristics of strong interactive learning processes. In a 

traditional mathematics education setting students are usually left to work alone and 
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silently in their individual workspaces without any interaction whatsoever (unless it 

involved asking the teacher a question). In a RME classroom, student interaction is a 

necessary and encouraged part to learning mathematics (although usually strongly 

supervised and sometimes redirected by the teacher). It is easy to recognize that most 

mathematical problems can be solved with a variety of different techniques, some more 

efficient than others. To be able to move through the processes of developing a model 

of a problem to refining a model for some general problems, students will pass through 

a number of different techniques for solving specific problems. It is too much to hope 

that each individual student will be able to come up with every step of the solution by 

him or herself. Instead, some sort of external stimuli is usually necessary to help 

students make these cognitive leaps. By utilizing student interaction, students can have 

the opportunity to learn from their peers. This can help students who are solving a 

problem in a less efficient manner recognize the process for solving the same problem 

in a more efficient manner. It is thus very evident that the interactive learning process 

is one of the main characteristics in the progression of vertical mathematization. 

Referring one more time to the long division Sticker Problem example of van 

den Heuvel-Panhuizen (2001), it is easy to believe that in a classroom of students the 

problem could initially be undertaken in many different ways. While most students 

will begin by repeated subtraction of small numbers of fives, some students might be 

able to initially comprehend that using bigger numbers will limit the number of steps 

the process will take. When each method is then discussed in the classroom setting, the 

students who did not use bigger numbers at first will now have the opportunity to 

experiment with this technique and draw their own conclusions. 
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The last defining characteristic of RME is its unique tendency to focus not only 

on the micro-didactic perspective of the learning process but on the macro-didactic 

perspective as well. This characteristic stems from the concern that teachers focus too 

much on meeting a list of educational objectives they are required to teach to their 

specific grade level while giving no thought as to what has come before or what might 

come after. With respect to mathematics, this means that a teacher would focus on the 

specific topics in mathematics that need to be taught to the grade level they are teaching 

as a separate piece of knowledge with no foundation whatsoever. Thus, with this 

method, as the school years progress, students tend to see mathematics as individual 

chunks of knowledge, or random facts, which are only vaguely related. In contrast, 

RME emphasizes the need to demonstrate to students the connections within 

mathematics. This might not seem like a specifically unique characteristic as the 

assumption can be made that teachers should have this goal in mind already. But with 

the constraints placed on educational systems it is very common to find that teachers 

only focus on the present material without much thought given to the future 

mathematics the students will study in the coming years. RME curricula are written to 

incorporate what has been taught previously and to leave space available to add to the 

knowledge in later years. This type of long term curriculum planning hopes to allow 

students to recognize recurring patterns of previous knowledge. The goal of providing a 

long-term perspective on the learning/teaching process of students is put in place with 

hope to help students move with ease from one subject to the next in mathematics. 

Overall, RME is a teaching theory that combines the aspects of the short term 

teaching goals with the long term teaching goals. It focuses on how students can play a 

39 



role in their own education and encourages interaction and questions. This interaction 

also provides the teachers with many opportunities to judge whether or not the students 

actually understand the concept that is being taught. Thus, alone the many 

characteristics of RME do not have much to offer the education setting, but combined 

in the proper way they provide a very "mathematized" approach to teaching 

mathematics. 

Research involving Realistic Mathematics Education 

Literature related with Realistic Mathematics Education suggests that most 

research has been conducted to determine whether using context realistic problems is, 

in fact, helpful. For example, the research outlined in (Cooper & Harries, 2002), 

proposes that children are suited for context or realistic problems as long as they are 

written in such a way to persuade appropriate realistic responses. Thus, Cooper and 

Harries support Realistic Mathematics Education as long as the initial context problems 

are suitable for the situation. Similar to Cooper and Harries, Marja van den Heuvel-

Panhuizen also conducted research on the approach to take when choosing context 

problems. In (van den Heuvel-Panhuizen, 1994) she outlines how improving the 

context problems that students are asked to solve will improve a teacher's ability to 

assess at what level the student is working. Treffers (1993) also studied finding 

appropriate or improved context problems. In this article Treffers makes obvious how 

a simple newspaper article can be used as a very good context problem. Thus, Treffers 

attempts to demonstrate a successful way in which to develop an appropriate context 

problem from a realistic situation, just like the ones searched for by Cooper and Harries 

(2002) and van den Heuvel-Panhuizen (1994). 
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Realistic Mathematics Education research has also looked at the aspect of 

developing models of context problems. This is a vital part of the teaching theory of 

Realistic Mathematics Education. Another article by van den Heuvel-Panhuizen 

(2003), discusses how the use of context problems will come to nothing if students do 

not develop appropriate models with which to expound the initial problems. According 

to this research, models of the initial problem must be developed in such a way that 

they can be adjusted and formed to fit the general situation represented by the context 

problem. 

Lastly, some literature has been devoted to the implications of implementing the 

teaching theory of Realistic Mathematics Education. Wubbles, Korthagen and 

Broekman (1997) investigate the changes taken to prepare prospective teachers to be 

able to teach according to the principles of Realistic Mathematics Education. Since 

Realistic Mathematics Education has become the predominate theory for teaching 

mathematics in the Netherlands, preservice teaching programs had to be adjusted to 

accommodate these changes. These researchers found that while most prospective 

teachers quickly warmed up to the concept of teaching using realistic or context 

problems, they struggled at being able to help students move through the stages of 

model development, which is deemed a necessary part of Realistic Mathematics 

Education. Overall, the literature suggests that there are still many more topics that 

could still be studied with regard to Realistic Mathematics Education. 
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CHAPTER TWO 

How the history of geometry, and especially the history of 

the concept of angle, supports the principles of RME and the 

van Hiele Model of geometric thinking 

There are many external influences that affect the development of any type of 

knowledge. This can be shown and will be shown in this chapter to be the case even 

with the historical development of Geometry. The following interpretation of the 

history of Geometry was composed from facts taken from the resources which include 

"A History of Geometrical Methods" by Julian Lowell Coolidge (1963), "Space 

Through the Ages: The Evolution of Geometrical Ideas from Pythagoras to Hilbert and 

Einstein" by Cornelius Lanczos (1970), "The Geometric Viewpoint: A Survey of 

Geometries" by Thomas Q. Sibley (1998), "Euclid's Window: The Story of Geometry 

from Parallel Lines to Hyperspace" by Leonard Mlodinow (2001), "Geometry: Euclid 

and Beyond" by Robin Hartshorne (1997) "Mathematical Visions: The Pursuit of 

Geometry in Victorian England" by Joan L. Richards (1988) and "The Changing Shape 

of Geometry: Celebrating a Century of Geometry and Geometry Teaching," Edited by 

Chris Pritchard (2003). 

The development of Geometry was immensely influenced by the different world 

cultures during its time, like most knowledge has been throughout history. With this 

comes the fact that Geometry knowledge has developed in stages. In this chapter I 

intend to demonstrate, among other things, that the historical development of Geometry 
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very much follows a pattern similar to the five stages of the van Hiele Model of 

Geometric Thinking. At the same time, it is possible to take ideas from the historical 

development and apply them to the teaching of Geometry in modern day classrooms in 

order following the stages of van Hiele. These examples can also help facilitate the 

development of context problems needed when teaching according to the methods of 

RME, as RME is strictly based around using context problems. Throughout history, 

Geometry has made developmental leaps when certain context problems needed to be 

solved. Thus, the history of Geometry can provide ample sources of context problems 

that were successful in developing the understanding of Geometry at one time and 

might have the potential of still being successful now. Overall, the history of Geometry 

and the historical development of Geometry can provide an abundant amount of 

learning and teaching material to any educator as long as the educator with these 

histories. 

2.1 Ancient Geometry (Pre-Euclid) 

Ancient Geometry was a science of observation and experiment. There is a 

limited amount known about ancient, pre-Euclid Geometry, because of the lack of 

records that would have survived to our day. Those records that survived can give 

anthropologists and mathematicians a lot of insight into what a certain society actually 

knew in relation to Geometry. Deductive proofs were not a characteristic of Geometry 

found in early civilizations' records. Instead, many records pertaining to Geometry 

discuss ways of solving specific problems and then comment on how similar problems 

can be solved in the same fashion. This is similar to the RME teaching method of using 

models to solve a specific problem and then developing the model to solve similar 
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problems. Approximation was a very common approach among ancient Geometers; 

with every culture having its own approximation for n. Some records, not just from the 

same society either, have very significant mistakes in them as well. This demonstrates 

to us that Geometry was still in a development stage (or at the very least the authors of 

the surviving documents were). There has also been speculation that certain cultures 

may have influenced each other's knowledge of Geometry. Almost all cultures in one 

way or another knew the Pythagorean Theorem, but the question is whether each 

culture developed it from their own experimentation or observation or whether it was a 

result transferred over from a sharing of knowledge with another culture. A few 

specific cultures are mentioned below in more detail but it should be kept in mind that 

many other cultures probably had similar knowledge of Geometry even if records have 

not survived to this day. From simply examining how African tribes built huts with 

perfect right angle corners or how Inuit built igloos from blocks laid in a spiral it is easy 

to see that Ancient Geometry knowledge is probably not limited to only what we have 

on record. 

Babylonian Geometry 

The earliest records in the field of Geometry come from the Babylonians. These 

are clay tablets from approximately 3000 B.C. The dates of these records are estimates 

with a margin of error of ± 500 years (Coolidge, 1963, p.5). These records show 

significant knowledge in the field of Geometry. They also show that the Babylonians 

were generally interested in studying and recording their findings in Geometry. These 

Babylonian records deal with a lot of plane Geometry, showing measurements such as 

finding areas of regular polygons, subdividing irregular plots of land and measurements 
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of quadrilaterals (Coolidge, 1963, p.5-8). The Babylonians had formulas with two 

variables, for rectangles, and three variables, for parallelograms. There are also some 

records pertaining to volumes, but not as many. One example of this is finding the 

volume of a basket (Coolidge, 1963, p.7). Some surveying and area problems even 

lead to systems of linear equations (Coolidge, 1963, p.5). The Babylonian had an idea 

of the Pythagorean Theorem and understood the essential principle behind it (Coolidge, 

1963, p. 8). They also took n to equal 3 in calculations, but were aware that this was an 

estimate (Coolidge, 1963, p.6). Probably the most remarkable feature is the fact that 

the Babylonians solved all of these problems with a base 60 numerical system, showing 

their extraordinary arithmetic abilities (Lanczos, 1970, p.8). 

The clay tablet records that have survived represent probably only a fraction of 

what the Babylonians actually knew. But what they do show can be pieced together to 

demonstrate what the Babylonians felt was important. All of the knowledge of 

Geometry that we can attribute to the Babylonians falls into the first two levels of the 

van Hiele Model, namely Level 0 and Level 1. Babylonian Geometry deals with shapes 

or objects in a flat (Euclidean) universe. Thus there must have been an understanding of 

the visual aspects of all of these shapes or objects or a Level 0 comprehension. As 

well, the activity of finding areas, volumes and doing general measurement can be 

attributed to Level 1 of the van Hiele Model. Measurement is an activity usually 

attributed to a deeper analysis of the Geometric figure or objects that are of concern. It 

can also be assumed that the Geometry that the Babylonians undertook was done so for 

practical, real life application purposes. There was probably no reason to explore 

further (if Geometry was explored further no records have survived). Measuring areas 
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of land can help when knowing how much land each person has and so forth. Thus, we 

are provided with an idea for a context problem. 

Egyptian Geometry 

The records of Egyptian Geometry have survived to our day on a few different 

pieces of papyrus. These records are dated between 1900 and 1800 B.C. (Coolidge, 

1963, p.9). Like the clay tablets of the Babylonians, a lot of Egyptian records concern 

plane Geometry and problems of area and volume for shapes or objects, again all in a 

Euclidean universe. For example, one papyrus discusses the area of a rectangle as well 

as a formula for finding the volume of a truncated pyramid with V=l/3h(a2+ab+b2) 

(Coolidge, 1963, p.9). There is also mention of right triangles with 3, 4, 5 side 

measurements and many more such "Pythagorean triples", showing at least a beginning 

understanding the Pythagorean Theorem. One of the best examples of the Egyptians 

using Geometry for practical purposes occurred in their surveying of land. Every 

farmer was allocated an equal amount of land along the Nile. But the Nile tended to 

flood a lot and recede to different levels or flow along different paths. Thus the 

Egyptians would resurvey the land and reallocate the appropriate amount to each 

farmer (Coolidge, 1963, p.8-9). This alone shows an extraordinary understanding of 

measurement and plane Geometry. The Egyptians also had a much more accurate 

estimation of %, taking it to be (16/9) which is approximately 3.16. Despite all of this, 

even if no records had survived at all we would still be able to conclude that the 

Egyptians were wonderful architectural Geometers by simply examining the complex, 

yet painfully accurate, constructions of the great pyramids. 
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It would be easy to understand that Egyptian Geometry grew out of an 

observation from the world around them by their desire to create geometric structures. 

A very simple context problem could be developed using the idea of a river changing 

course and needing to re-divide land. Students would be able to relate to a problem 

such as this and history has shown that it was once successful in helping people 

discover the mathematics needed to solve these problems. From the viewpoint of the 

van Hiele Model, the Egyptians were very much working at the Level 1 stage of 

Analysis. Beginning deductive thinking was not necessarily needed for the activities 

for which the Egyptians used Geometry. Understanding the properties of the objects 

and shapes was enough for them. Therefore, the Egyptians seemed to have no desire to 

move beyond the practical uses of Geometry as it was not culturally necessary. 

Indian Geometry 

Indian records about Geometry date back to approximately 800 B.C. (Coolidge, 

1963 p. 13). Like the Babylonians and Egyptians, the Hindus had an understanding and 

interest in areas and volumes of shapes and objects, again in Euclidean space. This 

understanding was well developed and the Hindus used it to help solve other problems 

of a similar nature. In India, the practical side of Geometry was used mostly in the 

construction of sacrificial altars and other religious artifacts, which could be likened 

with the Egyptians' use of Geometry to build pyramids as tombs for their pharaohs. 

This was done by the technique of rope stretching or "rules of the cord" (Coolidge, 

1963, p. 13). For example, finding a right triangle or right angle was done by stretching 

ropes of particular lengths. This also provided records of the Pythagorean Theorem. 

Unlike the previously mentioned cultures, the Hindus have recorded more than one 
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approximation for n. The oldest records give n = 3.088. This value was calculated 

from the problem of constructing a circle with area equivalent to the area of a given 

square. According to Coolidge, "When it comes to constructing a circle equivalent to a 

given square, we are told to increase half the length of one side by one-third of the 

difference between itself and half the length of the diagonal, an easy, but inaccurate 

construction with gives n = 3.088" (Coolidge, 1963, p. 15). Then there are records 

dating from approximately the 6th century A.D. which give 71 as equal to 62,832/20,000 

= 3.1416. There is however, a lot of speculation as to whether this result is original or 

if it was influenced by Greek mathematics. Nevertheless, it is the best approximation 

of 7i by any non-Greek society. 

The example of the Hindus using Pythagorean Theorem to solve similar 

problems is a step towards the Level 2 stage of the van Hiele Model. At the Level 2 

stage the deep understanding of the properties would allow the geometer to relate the 

situation to a similar situation. This characteristic of pre-deductions shows that the 

Geometry knowledge is coming together into a comprehensive system and is no longer 

just a collection of unrelated facts. The other example of the Hindus changing their 

calculation of % shows that they were not satisfied with an approximation and wanted 

more accuracy. Such work would also reflect the pre-deduction stage of the van Hiele 

Model, demonstrating a move towards accuracy and consistency and a move away from 

the purely practical sphere. 

Chinese Geometry 

In 213 B.C. the Emperor of China decreed that all books in the Empire were to 

be burned (Coolidge, 1963, p. 19). Therefore, although we can assume that it would be 
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hard for the Emperor to enforce this completely, it is really difficult to be sure if 

something from China is dated correctly if it is older than 213 B.C. Despite this 

misfortune to record keeping, we can still confidently point out some strong points in 

Chinese Geometry. For one thing the Chinese were and still are excellent Astronomers. 

Instead of using the Earth, the Chinese used the stars to trace out shapes. They studied 

right triangles, quadrilaterals and many other objects from patterns in the stars. The 

Chinese are also the only culture, other than the Greeks, to give an attempt at a proof 

for the Pythagorean Theorem, although a different type of proof than the Greek 

undertook. The picture in Figure 2 shows the main idea of the proof. 
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Figure 2. Hsuan thu - the diagram used to demonstrate the Pythagorean relation 
(cf. Swetz, 1994, p. 323)1 

This proof is a simplified informal deductive proof using diagrams (like the 

Hsuan thu diagram). It uses a special case of the right triangle of dimensions 3, 4, 5 

(Coolidge, 1963, p. 20-21), but the diagram schematizes the reasoning so that it can be 

generalized to any right angled triangle. If we look at the above diagram we see that 

the oblique square is made of four congruent right triangles and a little square in the 

middle, whose side is the difference between the sides of the triangles. Let us use 

1 This picture was downloaded from http://en.wikipedia.org/woki/Pythagorean theorem. This picture is 
similar although not identical with Figure 6 in the cited chapter by Swetz. 
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modern letter notation and algebra, to explain the main idea of the proof. Suppose the 

sides of the triangles are a, b, (b > a) and the hypotenuse is c. Then the side of the little 

square is b - a, because the oblique square is inscribed in a large square of side a + b. 

So c2 - 4(l/2)ab + (b - a)2 = a2 + b2. 

The records also indicate that the Chinese mathematicians were satisfied using 3 

for n, which is not surprising given the practical context of land surveying and 

elementary engineering work in which it appeared (Coolidge, 1963, p. 21). One 

interesting, unique feature of Chinese Geometry, however, was their interest in similar 

triangles and the many complex results they could obtain from this. 

This brief account of Chinese Geometry shows that these mathematicians were 

able to progress through a few levels of the van Hiele Model. From discovering or 

visualizing shapes to making informal proofs and relating similar triangles, the Chinese 

moved from Level 0 through Level 1 to Level 2, at least when it relates to these few 

topics. Why the Chinese were able to advance to Level 2, while other cultures were 

satisfied staying at Level 1 could probably be attributed to their culture. The Chinese 

were philosophers in their own way and sought after knowledge not just for its practical 

applications. One idea we can take from the Chinese and use in the classroom as a 

context problem is the idea of connecting points to make shapes. This is similar, 

although not exactly the same, as connecting stars. Already many early elementary 

school classrooms do this by using pegboards and rubber bands. With a bit of teacher 

instruction and expansion on the activity, the geometric concept of area could be 

developed out of the use of pegboards. 
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2.2 Greek Geometry and Euclid 

According to the surviving records, the Greek approach to Geometry was the 

first of its kind. Using the knowledge from the Egyptians and Babylonians that was for 

practical purposes as well as some knowledge they had discovered on their own, the 

Greeks developed a deductive system of mathematics based on axioms, theorems and 

most importantly, proofs. Geometry was no longer strictly an applied science of the 

physical world. For the Greeks, Geometry represented fundamental truths of the 

universe. Many elements of the Greek culture influenced their need for mathematical 

proofs. The Greeks tended to be "thinkers" or philosophers who would debate ideas 

using arguments, counter-arguments, and reductio ad absurdum forms of reasoning 

This different way of approaching thought allowed the Greeks to abstract to the 

appropriate level needed to look at Geometry in a deductive perspective. For example, 

it was no longer necessary to represent a rectangle by the base of a house; there could 

just be an abstract rectangle. The Greek philosophers organized themselves into 

"schools" dedicated to the study of philosophy of nature and Geometry. These schools, 

including those of Pythagoras (approximately 500 B.C.), Plato (429-348 B.C.) and 

Aristotle (384-322 B.C.), helped guide Greek Geometry to its climax, around 300 B.C., 

of Euclid's Elements (Sibley, 1998, p.2-4). 

Pythagoras has become a household name in western culture to anyone with at 

least a middle school education. One part of the history of Pythagoras' Theorem that is 

usually left out of a child's education is that the Theorem is attributed to a cult-like 

secret society, the Pythagoreans. The Pythagoreans were made up of the followers of 

the teachings of the philosopher and mathematician, Pythagoras. As it has already been 

shown, many cultures held an understanding of Pythagoras' Theorem, at least in its 

51 



most basic applicable context. The reason this knowledge is attributed to Pythagoras is 

because of the simple fact that he was the very first person to prove it. That is to say, he 

was the first to provide a deductive proof based on logic, not diagrams. This reflects on 

our current mathematical cultural idea of mathematics needing proofs to be considered 

true and complete. Previous cultures, like the ones mentioned above, were content 

knowing that a2 + b2 = c2, at least for specific number combinations, like 3, 4, 5 or 5, 12, 

13, and used these facts successfully in architectural pursuits. Pythagoras offered a 

simple geometric proof based on the Greek system of deduction. Thus, it has been 

named the Pythagorean Theorem. 

This theorem offered much more to the advancement of Geometry than simply 

its statement. Once a theorem is proved using deduction it is easy to conclude the truth 

of the statement in every situation. The Greek philosophers now used the Pythagorean 

Theorem to calculate the hypotenuse of a right triangle with sides both equal to 1. This 

lead them to the irrational number we now call V2, but which the Greeks did not 

understand (Sibley, 1998, p. 4). This brought with it all sorts of problems, 

mathematically and philosophically. All numbers previously known in mathematics 

were either whole numbers or fractions of whole numbers. The Greeks looked at 

numbers as ratios of magnitudes. Since V2 is not a number that can be written as a ratio 

of integers, the Greeks had never come across it before. Irrational numbers jeopardized 

the Greek thesis that all mathematics could be built from whole numbers. They needed 

a new foundation. This would eventually become Geometry combined with careful 

proofs (Mlodinow, 2001, p. 25-26). 
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The Pythagoreans would now adopt Geometry as their new basis for 

mathematical philosophy. They continued their studies and proved many more 

Geometry results. As time progressed, philosophers like Plato and his student Aristotle 

also embraced Geometry as essential to mathematics as well as appropriate for 

philosophical thought. Plato was known for teaching Geometry and encouraged 

Geometric proofs as vital for any philosopher (Sibley, 1998, p.5). Aristotle thought that 

all mathematics held its certainty in careful proof (Sibley, 1998, p.5). Thus, the Greeks 

took Geometric knowledge that had been around for over 2000 years and proved the 

accuracy of results around which many pre-Greek cultures had built a great deal of their 

applied science. 

The new philosophy of proving Geometry continued in Greece and eventually 

led one Greek man to write a book, which would become one of the most famous 

mathematics books every written. Euclid lived in about 300 B.C. and very little is 

known about him other than the fact that he was a philosopher who loved Geometry 

and that he wrote down what is assumed to be everything the Greeks knew about 

Geometry at that time (Mlodinow, 2001, p.29). What was revolutionary about Euclid's 

book was not so much its content, but its format. Euclid's method defined the way in 

which we still approach mathematics to this day. Euclid never credited himself with 

any of the proofs in the Elements, but simply acted as the organizer as he systematized 

all of the Greek knowledge of Geometry. Thus, we do not know who truly discovered 

the majority of the proofs within the Elements, only who compiled them. 

Despite its revolutionary impact, Euclid's arrangement of the proofs of the 

geometric facts is very simple. He begins by listing twenty-three definitions 
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(Hartshorne, 1997, p.27). These definitions covered everything from a point and line to 

the different types of quadrilateral figures. Some people have argued that a few of the 

definitions are not needed as they do not say much and the knowledge is just intuitively 

known. But Euclid's ultimate goal was to design a system free of guesswork, 

inexactness and preconceived ideas. Thus, we have the very precise definitions of 

terms never before thought to need a definition. This was Euclid's attempt to do away 

with any misunderstandings. 

After the definitions come the five postulates and the five common notions. 

Another name used for postulates or common notions in mathematics is axioms. 

Axioms describe how to use terms and how they relate to each other. They do not need 

to be proved as they usually stem from logical common sense. Euclid probably 

separated his axioms into postulates and common notions because postulates are 

specific to geometry and common notions refer to general relations between 

magnitudes of any kind, whether geometric or arithmetic. There is also the fact that 

Aristotle had used this distinction before. Euclid's common notions are thus common 

to all of mathematics. They may also be seen as representing the most general common 

sense notions. For example, common notion #5 states, "The whole is greater than the 

part." (Sibley, 1998, p.289) It is hard to logically argue that this statement is false. The 

postulates, on the other hand, formed the foundation of the geometric content of the 

Elements. 

As was mentioned above, axioms tend to make some sort of logical common 

sense. Euclid's first four axioms appear, at least on the surface, to be obviously true. 

This is not the case for the fifth postulate. This postulate is long-winded and wordy and 
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has been nicknamed the "parallel postulate" over the years. For years mathematicians 

were convinced that it should not be a postulate at all but instead it should be proved 

from the previous definitions and axioms. Many mathematicians spent years trying to 

prove just that, with no success. It is now known that Euclid's fifth postulate cannot be 

proven (which will be discussed in more detail later). Mathematicians now assert that it 

is necessary to the nature of the Geometry Euclid describes and shows just how much 

of a genius Euclid actually was for including it as a postulate in the first place. 

What we get as an end result of the definitions, common notions and postulates 

are 465 Geometric theorems all proved using only diagrams and logical reasoning. 

Armed with only these tools, as well as a straight edge and collapsible compass, Euclid 

changed the way the world would forever view mathematics. Mathematics had now 

crossed into the domain of the abstract. No longer did a line have to represent the edge 

of some physical object, a line could just be a line in a space. Mathematicians took 

Euclid's system of using logic and developed future mathematics in such a way that 

applications and examples were no longer considered creditable until they could be 

associated with a proof. This is the system that is still used today. As well, a lot of the 

essentials of Euclid's Elements are still seen as an accentual key part of a complete 

Geometry education. 

The Greek development of deductive proofs is a textbook example of moving 

from the lower levels of the van Hiele Model to Level 3, the stage of Deduction. As 

was already mentioned, the Greeks used knowledge that had previously been 

discovered, as well as knowledge they discovered on their own to develop proofs. Thus, 

they followed the characteristic of the van Hiele Model of using prior understanding to 
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move from one level to the next in sequential steps. As well, Euclid developed his 

deductive system exactly how the van Hieles describe a full comprehension of Level 3 

(Deduction) should be developed. Of course, it can be speculated here that the van 

Hieles took these ideas of development from the success of the Greek system. At the 

same time, the van Hieles observed systems successfully being developed in such a 

way throughout their research experiments. Thus, according to the van Hiele Model, 

following the example that the history of Geometry has demonstrated up to this point 

could be a successful way to help students progress through the levels of Geometric 

thinking. The Greek history of Geometry also provides us with many ideas of context 

problems to initiate the development of models in the classroom. For example, 

following along with the Pythagoreans it can be demonstrated that the length of the 

hypotenuse found from a right triangle with two sides equal to 1 is a number previously 

unknown. This is an excellent way to introduce irrational numbers to students. 

2.3 Post-Euclid to Analytical Geometry 

Despite the phenomenal revolutionary advances the Greeks and especially 

Euclid made for the subject of Geometry, after the fall of the Greek Empire it took 

close to two millennia for Geometry to progress much further. There are many reasons 

for this delay in academic progress. The initial source can be thought to be the Roman 

Empire. The Roman Empire looked on mathematics as something that only held 

practical purposes (Mlodinow, 2001, p. 45-46). The Romans felt that mathematics was 

not a necessary component of education or worth their philosophers' time unless it 

could be used to help defeat an enemy Rome was trying to concur or improve exchange 

rates on international trade. Thus, any previous advances in abstract mathematics were 
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disregarded. Euclid's Elements was translated into Latin but excluded any proofs 

(Mlodinow, 2001, p. 45-46). Only the theorems and their practical applications were 

felt to be of any worth. Where the Greeks had produced some of the best 

mathematicians ever known to mankind, the Romans produced none at all. 

Even after the Roman Empire fell, abstract mathematical knowledge had been 

such an ignored and abused subject that it would take many centuries to heal those 

wounds of neglect. The Roman Empire ended (approximately 476 A.D.) at about the 

same time that the Catholic Church started to gain a true hold on the political and social 

dealings of European life (Mlodinow, 2001, p. 49). Anyone who felt brave enough to 

propose new theories in science, mathematics or astronomy was quickly silenced by the 

Catholic Church. Ironically, the Catholic Church did have one attribute that became a 

stepping-stone to the progression of academic freedom, their tendency to insist on at 

least a basic education for all of their clergymen. Charles the Great, a European 

Emperor who reigned during the late eighth and early ninth century, was a conquering 

monarch and imposed Roman Catholicism wherever he went (Mlodinow, 2001, p.60). 

With the new ideals of the Church also came the education and academic pursuits that 

the clergymen felt necessary in order to interpret the Bible appropriately. Thus, Church 

schools were established all across Europe, many of which would become the 

Universities we still know today (Mlodinow, 2001, p.61-62). Charles the Great had 

started a small boulder rolling, which, although it would take another 800 years, would 

eventually bring down a mountain. 

Over the next 800 years academic importance in Europe would increase while 

the Church's stronghold over knowledge would slowly lessen as more and more people, 
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not just clergymen, came to the Church schools to be educated. This would eventually 

help some great thinkers come up with innovative new themes in mathematics. 

Unfortunately, anyone proposing ideas seen as too radical, opposing the Bible or just 

heresy would bring the wrath of the Catholic Church upon their heads. Many people 

were skeptical and passive in their academic pursuits beyond the basics. On a positive 

note, Euclid's Elements was restored to include proofs and was considered necessary 

for a young man's well-rounded education (Mlodinow, 2001, p. 62). 

One of these young men who got a "well rounded education" was Rene 

Descartes. Born in 1596, at the age of eight Descartes was sent to La Fleche, a Jesuit 

school (Mlodinow, 2001, p.79). According to the history related in "Euclid's Window" 

by Leonard Mlodinow (2001), Descartes was a good student and keen about 

mathematics, but always seemed bored with what he was learning. He was also 

skeptical, even at such a young age, that a lot of what he had been taught was either 

useless or mistaken. Upon finishing La Fleche and strictly to comply with his father's 

wishes, Descartes spent two years receiving a law degree. This, again, did not really 

interest him. Therefore he joined the army to try to find some adventure and give 

himself time to think about mathematics, his favorite subject. 

Descartes' military career took him to many places in Europe and eventually led 

to Holland in 1618 (Mlodinow, 2001, p.80). On a notice board in a small town he was 

stationed in, there was a poster advertising a mathematical challenge to the public. 

Descartes mentioned out loud that it looked easy and an old man standing near by 

challenged him to solve it. To the old man's astonishment Descartes did solve the 

problem and thus began Descartes' relationship with the greatest Dutch mathematician 
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of this time, Isaac Beekman; the old man (Mlodinow, 2001, p. 80-81). Descartes now 

had someone to correspond with and discuss the mathematical ideas that came to his 

mind. He credits Beekman for inspiring a lot of his studies and the letters between 

them are filled with references to Descartes' realization of a relationship between 

numbers and space (Mlodinow, 2001, p.81). 

Another factor that helped motivate Descartes towards developing his system of 

Analytical (or Coordinate) Geometry was the fact that Descartes always liked to do as 

little work as possible. He was known to constantly complain about the Greeks and 

Euclid's proofs, finding them tiresome and too complicated. He felt that for such 

simple ideas there should be an easy way to prove they were true without having to do 

so much intellectual work. Descartes began his process of simplification by 

introducing a coordinate system into the plane. With a horizontal axis and a vertical 

axis, any point in the plane could be represented by a horizontal distance and a vertical 

distance or an ordered pair of numbers. Essentially, Descartes took the model of 

deductive Geometric proofs and changed and adapted it to fit into a new system of 

mathematics. It is interesting to note that this adapting of the model is basically a 

progression along vertical mathematization, as mentioned in the theory of RME. 

This method might seem a long way away from Euclid's proofs but as Descartes 

developed his new system further he was able to find algebraic formulas to represent 

lines and curves in a space. With these algebraic formulas representing geometric 

properties Descartes was able to prove a lot of Greek Geometry using his new 

coordinate system and algebra. Thus, Descartes bridged the divide between Geometry 

and Algebra that would open the door towards the invention of Calculus and the 
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modern age of Physics. It is a fact that can easily be proven that without Analytical 

Geometry, our modern engineering accomplishments would be impossible. Analytical 

Geometry helped bring forth the development of Calculus, which is an integral part of 

modern engineering. Descartes is also credited with creating a system so simple to use 

that students find it easy to understand and apply. When it comes to the van Hiele 

Model of Geometric Thinking, it can be shown that Descartes began by having a full 

comprehension of Level 3. He then developed his coordinate system and undertook a 

progression through all of the Levels of van Hiele again up to Level 3, this time looking 

at Euclidean Geometry in terms of a coordinate system. Or, as was already mentioned 

above, Descartes refined the model and moved vertically through mathematization. 

It is known that another mathematician, Pierre de Fermat, invented a system 

very similar to Descartes' Analytical Geometry at about the same time (Sibley, 1998, 

p.60). Although most of the credit is given to Descartes, as Fermat never published any 

of his work, probably because he was worried about the consequences he would face 

from the Catholic Church (who was very public about silencing Galileo at this time in 

history). For this very same reason Descartes delayed publishing his discoveries until 

he was 40 years old. At that time he was still very cautious of the assertions he made 

and probably never published his findings to their fullest (Mlodinow, 2001, p.87). 

Despite receiving a massive amount of negative feedback from the Church after 

publishing, as well as criticism from other mathematicians, Descartes was not punished 

as some of his predecessors had been before him. Descartes continued his work until 

he passed away at the age of 53 (Sibley, 1998, p. 61). 
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This example of Descartes and the development of Analytical Geometry is a 

perfect way to demonstrate the forever-intertwining branches that represent 

mathematical knowledge. Quite simply, Descartes did not change the knowledge or 

disagree with the knowledge; he just found a different way to represent what was 

already proved in Euclid's Elements. Ideally, it would seem best to teach both types of 

Geometry at the same time to help demonstrate the ties between them. Students would 

still need to progress through the stages of the van Hiele Model but instead of being 

introduced to Analytical Geometry in high school and never recognizing the 

connections with Euclidean Geometry, it would seem to make more sense to introduce 

coordinate systems earlier in the education system. Descartes' way of approaching 

Euclid's Geometry can also provide a good base for developing context problems and 

models to hopefully ensure vertical mathematization through the topic. 

2.4 The Introduction of Non-Euclidean Geometry 

Geometry can be thought of as the science and mathematics of objects in a 

space. Geometry overcame a major hurdle when a few mathematicians in the 19th 

century were able to realize that space did not necessarily have to be the space of 

Euclid's Geometry or Descartes' Analytical Geometry. Euclid's space can be 

described in many ways with one of its defining characteristics being the behavior of 

parallel lines. Euclid recognized this and included his fifth postulate that specified how 

parallel lines behave in flat Euclidean space. It was mathematicians' never ending lack 

of satisfaction with Euclid's fifth postulate, more commonly called the Parallel 

Postulate, that led to the discovery of alternative Geometries. Throughout the centuries 

mathematicians never considered Euclid was wrong. Euclid's Elements was revered in 
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the world of mathematics as being the pure language of Geometry. The problem was, 

however, that axioms are supposed to be obvious enough so that they do not need 

proof. The Parallel Postulate, on the contrary, is not really an intuitively obvious fact. 

Thus, mathematicians tried for centuries, without success, to prove the Parallel 

Postulate from Euclid's other four postulates and common notions. A major leap was 

made the day one mathematician decided that Euclid's fifth postulate could be changed 

and that there could exist a space in which parallel lines behaved differently. This 

introduced a step towards the last van Hiele Level of Rigor. 

This mathematician was Carl Friedrich Gauss (1777-1855). According to 

Mlodinow (2001), Gauss began showing genius mathematical characteristics at the 

young age of two (ibidem, p. 108). By the age of three his father was getting him to 

check his payroll arithmetic. Gauss had a teacher at the age of seven who recognized 

his genius for what it was. This teacher was not a genius but was able to introduce 

Gauss to tutors and companions with whom Gauss could pursue higher mathematics 

and discuss his ideas with. Because of the age in which Gauss lived, Euclid's Elements 

was definitely an area of which he, and all mathematicians, were expected to have a 

very comprehensive knowledge. 

At the age of 18 Gauss entered the University of Gottingen. It was here that he 

received a Ph.D. degree and eventually spent his career teaching mathematics 

(Mlodinow, 2001, p.l 13). Gauss made many outstanding discoveries and advances to a 

number of fields of mathematics. Ironically, he never published his findings in the area 

of Geometry (they were discovered after this death). Gauss did have plenty of people 

he corresponded with and kept in frequent touch with them. He discussed his findings 
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on what would later be known as Hyperbolic Geometry with many different people. 

One of the reasons Gauss might never have published is because he lived at a time 

when, although he no longer needed to fear the church, science and philosophy were 

not completely separated. This caused issues because philosophers were known to be 

strict critiques of new ideas that might contradict their foundations of logic or were not 

logically obvious. Some philosophers even believed that only intuition needed to be 

embraced and that proofs should be done away with altogether. This, combined with 

the fact that Gauss was already recognized for many other accomplishments in 

mathematics, probably stayed his hand in publishing his discoveries in Geometry. 

Two mathematicians did publish on Hyperbolic Geometry during Gauss' time. 

They were Janos Bolyai andNikolay Ivanovich Lobachevsky (Mlodinow, 2001, p. 100). 

Both men were in contact with some of the same mathematicians Gauss corresponded 

with and it is believed that the spirit of the idea entered their thoughts that way. Neither 

works these men published received much attention, mostly attributed to the fact that 

they were not published in very well known journals and that both men were not very 

well known mathematicians themselves. But after Gauss' death and the discovery of 

his notebooks, these previous articles were also dug back up and received great notice 

at that time. 

The Geometry that Gauss, Bolyai and Lobachevsky discovered takes place in 

what we call Hyperbolic Space. What makes this space Non-Euclidean is a 

straightforward changing of the axiom that describes the behavior of parallel lines in 

the space, namely, the Parallel Postulate. Quite simply, these men thought about what 

would happen if there were many lines parallel to a given one through any given point 
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and not just one as postulated in Euclid's Elements. The result was a system of 

Geometry that was just as consistent as Euclidean Geometry but described a different 

type of space. This change in postulates produced some interesting geometric results. 

For example, triangles no longer had angles that added up to 180°, but instead every 

triangle's angles added up to less than 180°. However, it would take many years before 

there was an uncomplicated way to visualize hyperbolic space. In the 1880's Henri 

Poincare began the same way as Euclid had by defining lines, points and planes but 

with different definitions. He then constructed a model of the new theory, using what 

we now call a Poincare circle, which is an infinite space with a finite boundary (Sibley, 

1998, p. 104). This model is now commonly used today when studying Hyperbolic 

Geometry. 

Just how some mathematicians questioned what would happen if parallel lines 

behaved such that each line had many parallel lines through one point; some other 

mathematicians questioned what would happen if we never had parallel lines at all. 

The result was another type of Non-Euclidean Space and Non-Euclidean Geometry that 

we call Spherical Geometry. The Greeks and other civilizations had known about 

spherical spaces, but because of the simplicity that Euclid's Elements offered, Spherical 

Geometry was hardly given any attention at all (Mlodinow, 2001, p. 135). It was Georg 

Friedrich Bernhard Riemann (1826-1866), who developed the theory into a workable 

comprehensive type of Geometry (Mlodinow, 2001, p.135). Ironically, Riemann first 

presented these ideas at a job interview at the University of Gottingen in 1851, for 

which Gauss was actually evaluating him (Mlodinow, 2001, p. 139). Gauss, who was 

known for hardly being impressed with anything, sincerely enjoyed the theories 
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Riemann put forward. Unlike Hyperbolic Geometry (the Poincare disc was not 

invented until the 1880's), Riemann did have a working visual model. Like Euclid, 

Riemann began by defining points, lines and planes along with a unique rule that 

parallel lines did not exist. To visualize Spherical Space, we simply need to visualize 

the surface of a sphere. Like Hyperbolic Space, Spherical Space also has some 

interesting geometric results. One example is that angles of triangles add up to more 

than 180°. Another is that in Euclidean Geometry we can only ever have one right 

angle in a triangle whereas in Spherical Geometry we can make triangles where all 

three angles are right angles. 

Non-Euclidean Geometry led the way for many other advances in mathematics 

and Geometry. For the first time, people started to question whether Euclidean 

Geometry was consistent. This was a question that nobody had felt the urge to ask for 

more than 2000 years. There were quite a few logical errors and taken for granted 

implicit assumptions throughout Euclid's proofs that Non-Euclidean Geometry helped 

to point out and clarify. Some of these errors were not spotted beforehand because 

nobody had questioned the nature of the space in which this Geometry was defined. 

With this new reexamination of Euclid's proofs, mathematicians were able to mend 

these logical mistakes and improve the existing Geometry. Hence, this groundbreaking 

new way to think about space also meant an improvement to Euclid's Geometry. 

The discovery of non-Euclidean Geometry only came about because certain 

mathematicians were now able to advance to Level 4 of Geometric Thinking. Level 4 

of the van Hiele Model is the stage of Rigor. It is at this stage that the knowledge 

shown to be true at Level 3 is questioned. The consistency of the axioms are examined 
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and changed. Overall, it is the stage of complete scrutiny where everything is 

questioned. These types of investigations are exactly what happened to Euclidean 

Geometry in order to bring about the discovery of non-Euclidean Geometry. This level 

is not usually the goal of most high school curricula. Non-Euclidean Geometry is a 

subject that tends to get left for university. At the same time though, the ideas of non-

Euclidean spaces can be introduced at the high school level by using context problems. 

One of these context problems could be the activity of drawing triangles and other 

shapes on spherical surfaces and analyzing how the different surface makes the shape 

change. 

2.5 The Continuing Evolution of Geometry (Beyond Non-Euclidean) 

Advances in Geometry did not end with the distinction between Euclidean and 

Non-Euclidean Space. There have been developments in other areas of Geometry for 

about the past 500 years. It is true however, that a lot of the most recent advances were 

encouraged by the revolutionary ideas of Non-Euclidean Geometry. Just like the 

Greeks were revolutionary in developing a new way of looking at Geometry when they 

started insisting on proofs, non-Euclidean Geometry was revolutionary in helping 

mathematicians look at Geometry from a mainly abstract perspective. The following 

types of Geometry were all either further developed or newly discovered when 

mathematicians were able to reach Level 4 of the van Hiele Model. 

Projective Geometry 

The biggest distinction between Renaissance art and Pre-Renaissance is the use 

of perspective employed by the artists to paint the way people saw the world. Pre-

Renaissance art tends to have a flat, two-dimensional perspective, whereas Renaissance 
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artists were able to convey a three dimensional effect on canvas. Artists like Albrecht 

Diirer (1471-1528) and Leonardo da Vinci (1452-1519) developed the geometric rules 

of painting with perspective (Sibley, 1998, p. 226). These geometric rules did tend to 

be a bit contradictory to Euclid's Geometry in that all parallel lines meet at a point on 

the horizon. But Euclid understood this effect of perspective and had written briefly 

about it in his work The Optics. 

The first person to prove Geometric properties about perspective that were not 

needed by artists was Girard Desargues (1593-1662) (Sibley, 1998, p.226). Few 

mathematicians paid his work any attention or built on it any way. This might have 

been because perspective Geometric facts were seen as the tricks artists used and not 

serious mathematics. At the same time, there were such immense advances in 

Analytical Geometry and Calculus that a lot of good mathematics was overshadowed. 

Another mentionable person, who understood the mathematics of perspective, at least 

as far as it refers to conies, was Johannes Kepler (1571-1630) (Sibley, 1998, p. 226). 

Kepler saw conies as a perspective transformation from one shape to another. To 

illustrate this, imagine shining a flashlight on a wall. When the flashlight is held 

perpendicular to the wall the light shines in a circle. As we change the angle in which 

we shine the light at we move from a circle to an ellipse to a parabola and finally to a 

hyperbola. This idea was a focal point of many of Kepler's discoveries. Using a 

flashlight in the way described could easily be done in a classroom to introduce the 

subject of conies to students as a context problem2. 

2 Ideas and materials for such context-based approach can be gleaned from many websites devoted to the 
teaching of conies. A particularly interesting and rich one is 
http://britton.disted.camosun.bc.ca/ibconics.htm 
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As was already mentioned, these early breakthroughs were largely ignored by 

the mathematics world. A few hundred years later, in the 1800's, Gaspard Monge and 

one of his students, Jean Victor Poncelet, began a revitalization of the study of 

perspective, which would become Projective Geometry (Sibley, 1998, p.226). This time 

the work was not overlooked. Poncelet developed the subject comprehensively and 

published a book on his research which would help fuel others doing research in this 

area. One of the most important ideas from Poncelet is the idea of duality; the concept 

that lines and points are completely interchangeable and have the same function 

(Sibley, 1998, p.226). Some mathematicians were critical of Projective Geometry 

because it did not work within Analytical Geometry methods. Augustus Mobius and 

Julius Plucker, solved this problem by developing a coordinate system for Projective 

Geometry on its own (Sibley, 1998, p.226-227). Mathematicians eventually came to 

realize that both Projective and Analytical Geometries were valid, consistent models 

that actually complement each other. Mathematicians would also eventually show that 

Euclidean, Hyperbolic, Spherical and even the Geometry of the special theory of 

relativity are all contained within Projective Geometry. 

Differential Geometry 

Once mathematicians were able to recognize that consistent models of 

Geometry could exist in Non-Euclidean Spaces, it opened the imagination to the 

possibility of a number of different types of curvature. If we consider that Euclidean 

Geometry is flat, then Spherical Geometry is curved positively and Hyperbolic 

Geometry has a uniform negative curvature. Riemann started to investigate Geometries 

in a number of different dimensions and with non-constant curvature (Sibley, 1998, p. 
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102). To simplify, Differential Geometry combines Geometry and Calculus in a way 

that we are able to study the geometric properties of curved space. When investigating 

a model of Geometry it is important to investigate measurement within that model. 

Einstein would later use these ideas of measurement, initiated by Riemann, to develop 

his General Theory of Relativity that integrated measurement of space with gravity 

(Sibley, 1998, p.102-103). 

Finite Geometries 

The same way Non-Euclidean Geometry influenced the investigation of our 

notion of space, it also influenced the way we look at axioms. Axioms no longer had to 

be self-evident truths. Mathematicians began looking at what could be proved given a 

limited number of axioms. Geometers found this subject particularly interesting. They 

discovered that when only a specific few axioms are to be satisfied, the results could 

lead to a model with only a finite amount of points, hence Finite Geometry. Gino Fano 

developed the first Finite Geometry in 1892 (Sibley, 1998, p.264). This system was 

three dimensional with only 15 points. Since then many Finite Geometries have been 

discovered and have been applied to many different areas in mathematics. For 

example, Finite Geometry in combination with Algebra, Combinatorics or Group 

Theory provides insights into Geometry that traditionally could never be understood. 

As well, many famous mathematical problems have been solved because of the 

combination of Combinatorics and Finite Geometry. One example is Euler's problem 

known as the Seven Bridges of Konigsberg. 

These alternative areas of Geometry, the old and the new, are now progressing 

through levels of "super-analysis". At Level 4 when the rigorous analysis of the 
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Geometric system produces a new idea to be investigated, mathematicians will then 

begin their progression again at the beginning of the van Hiele Model, this time with 

these new ideas. Thus, these are at the level of hyper-analysis since they are developed 

from previous complete analysis of other Geometric ideas. Therefore, the levels of van 

Hiele progression of Geometric Thought do not end with a high school education. 

They are ongoing even in modern research in Geometry. As well, some of the more 

modern topics in Geometry are probably not the best place from which to draw 

educational material. Since these modern topics only came about after thousands of 

years of development of previous Geometric knowledge, a thorough comprehension of 

original, older Geometry is probably necessary before studying the more modern topics. 

Conclusion to Chapter 2 

Overall, it seems evident that the history of Geometry should not be ignored 

when analyzing and developing Geometry curricula. History has demonstrated that 

some of the biggest advances in Geometry followed a developmental pattern similar to 

the van Hiele Model. Thus, it could be concluded that the history of Geometry could 

have a significant influence when studying Geometry topics in a school setting, 

especially if the goal is to progress through the levels of the van Hiele Model. 

Likewise, history also demonstrates that context problems play a vital role in 

stimulating the investigation of certain topics in Geometry. Overall, both the van Hiele 

Model as well as context problems in the nature of RME can be supported by historical 

facts. 
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CHAPTER THREE 

Theoretical Frameworks 

Research in mathematics education, and in particular Geometry education, has 

been conducted with many different theoretical frameworks including Realistic 

Mathematics Education and the van Hiele Model of Geometric Thinking. Realistic 

Mathematics Education is a teaching theory that provides a good framework in which 

to study different teaching approaches. The van Hiele Model of Geometric Thinking is 

a theory of learning that can illustrate the steps students go through in their learning of 

Geometry, or any domain of mathematics. Alone, these two frameworks do not help 

much with the goal of figuring out a way to teach mathematics which will likely ensure 

that the students will learn it. On the other hand, taken together these two theories have 

the potential to do just that. In this chapter I will propose a combination of these two 

theories, Realistic Mathematics Education and the van Hiele Model, which should 

hopefully provide a working theory for teaching mathematics that takes into account 

the laws of learning mathematics. 

This chapter will also describe the notion of angle and angle definition that I 

intend to use throughout my research study. Choosing an appropriate definition 

depends on many factors including the context in which the students will be examining 

angles and the van Hiele Level at which the teaching will be taking place. As well, 

other challenges with regard to teaching angles should also be addressed when 

determining an appropriate angle definition. Overall, using my research goals and the 
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above-mentioned determining factors, I have been able to choose an angle definition 

that I am confident was best suited to the planned research experiment. 

3.1 Teaching with RME and Learning with The van Hiele Model 

RME and the van Hiele Model are very unique theories in mathematics 

education. RME is a teaching theory that can be applied to probably any mathematical 

teaching situation. The van Hiele Model of Geometric Thinking is a learning theory 

that was initially designed to describe a student's learning of Geometry but with some 

adaptation it can also be applied to other areas of mathematics as well. Separately these 

theories do not provide us a lot of concrete substance to go about teaching Geometry, 

so that we can hopefully ensure that the students will be able to learn it. On the other 

hand, it might prove successful to take a combination of the two theories and develop a 

theoretical framework for which the teaching and learning of Geometry are both 

considered. Recognizing where the learning progression within the van Hiele Model 

takes place with respect to the teaching steps of RME and situating them appropriately 

can carry out the combination of the theories. 

As was stated previously, to begin teaching a topic or area of mathematics 

according to RME there must be a stated problem. According to RME, this problem 

should be presented in a contextual situation. A context problem does not necessarily 

have to be a real life application. It is considered a context problem as long as it has the 

potential to be experientially real to the student. In other words, when thinking about 

geometric shapes, we do not need to provide objects that have certain shapes. For 

example, we do not need to produce the top of a book or a window frame if we want to 

speak about a rectangle. Shapes in their abstract form can constitute a sufficiently real 
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context for the students. For the sake of this theoretical framework combination, let us 

consider the example of studying the different types of quadrilaterals with students. 

Therefore, the problem is to identify quadrilaterals, to eventually group them, be able to 

recognize the differences between them and develop some theoretical understanding of 

them. 

Once we are presented with a problem we can identify the objects of it. These 

objects represent the base elements of the problem to be studied. For quadrilaterals, 

these base elements would be any four-sided two-dimensional geometric figure. The 

RME teaching method now expects an initial model of this problem to be developed. It 

is here that the student would be developing a comprehension at Level 0, 

(visualization), of the van Hiele Model. It is also at this stage that the students undergo 

horizontal mathematization of the problem at hand. This initial model of the problem 

to be solved will be developed as the student begins to visualize the base elements of 

the problem. The initial model will eventually be made of a visual understanding of the 

base elements in the problem. For the problem of studying quadrilaterals, at the 

visualization stage students would be able to pick out from pictures which shapes are 

quadrilaterals. This would be done on the basis of memorization sense. That is, 

students would include squares, rectangles, parallelograms, and so on because they 

have been told that those are quadrilaterals and they can visually recognize them. 

According to RME, this model is considered a "model o f the problem. 

The next step in RME is to develop or refine the initial model. This is where 

the majority of the learning Levels of the van Hiele Model are situated. This is also 

where the majority of the mathematization that goes on is vertical mathematization. 
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RME teaches that to refine the initial model the class should engage in a comparison of 

ideas and an open discussion. If we consider Level 1, the level of analysis, the class 

would begin to analyze, through open discussion, the different properties they 

recognized from the base elements in the initial model. For example, it could be here 

that students start to recognize that all quadrilaterals have four sides. At the same time, 

the analysis might lead to them seeing that a square has four equal sides and four equal 

angles. A full analysis would be complete when the students are able to recognize all of 

the properties of each different type of quadrilateral (multiple classroom discussions 

would probably be necessary). This new understanding of recognizing quadrilaterals 

by their properties and not just memorizing how they look can now be developed into a 

new model. 

The next step, according to RME, would be to refine the model once again. In 

this new model students should be able to identify any relationships between the 

properties of the base elements. This is similar to Level 2 of the van Hiele Model. 

Level 2 is considered the Pre-deduction or informal deduction stage in which students 

find connections and links between the properties. Using these connections, 

relationships can be developed that describe a particular aspect of the base elements. 

Students really begin to move towards a "model for" the initial problem at this stage. It 

is here that we would find relationships such as; the diagonals of a rectangle are equal, 

all squares are rhombuses but not all rhombuses are squares, opposite angles of a 

parallelogram are equal, and any other types of relationships that a quadrilateral might 

hold. 

74 



A completely refined finished "model for" the initial problem will depend at 

what Level of the van Hiele Model the students need to be able to function. If the end 

goal is to have students be able to use deduction and prove results about the 

relationships found at Level 2, a completely developed model would come once a 

student is able to perform and operate at Level 3 or at the stage of Deduction. At Level 

3, the relationships from Level 2 that were deduced are now proved, leaving no doubt 

as to their truth. Thus, the model would represent a system of deductive proofs with 

necessary definitions and axioms included. In the case of our example, these proofs 

would have to do with quadrilaterals. Also contained inside the model would be any 

definitions, axioms and postulates that are needed to prove the theorems regarding 

quadrilaterals. There is however, one more level of the van Hiele Model that can be 

reached. This highest level, Level 4 or Rigor, is usually not sought in high school 

curricula. It would, however, still be possible to situate this Level within the teachings 

of RME. Basically, once a student has reached Level 3 the teacher would introduce the 

next task that would involve the rigorous analysis of the final model obtained in Level 

3. Nevertheless, once this final model is reached, be it the model at the Deduction 

Level or the model at the Rigor Level, the end result is a complete model for the initial 

problem. When this final model is developed the students have also undertaken one 

other characteristic of RME, namely the rediscovery or reinvention of the knowledge. 

It is important to understand that the progression through the Levels of the van 

Hiele Model as well as this refining and developing of new models can take many years 

of education to accomplish. For example, students in the early elementary grades might 

spend their time memorizing the names of different quadrilaterals and recognizing them 
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from pictures. In the later elementary grades the focus might shift to looking at the 

properties of these different quadrilaterals. Early secondary school is probably the time 

when the relationships between the properties are first examined. Finally, in the later 

years of secondary school, near graduation, proofs and proving relationships about 

quadrilaterals could be introduced. The problem of understanding quadrilaterals is a 

very long-term example. Other mathematical problems might not require the 

dedication of years of education. It would all depend on the subject being taught. Thus, 

just like the last characteristic of RME focus on the long-term, macro-dynamic aspects 

of the mathematics education, it is essential to keep the long-term goals of the 

education in mind. 

3.2 Notion of Angle and Angle Definition 

Angles are a fundamental concept of Geometry. From classic Euclidean shapes 

to modern day Fractals, angles play a key role in almost all geometric objects. Angles 

also play a major role in the modern day mathematics curricula. This includes the 

elementary school curricula, where angles are first introduced, all the way to the 

curricula of university mathematics courses where the concept of angles is still used. 

Angles are also a foundational topic in Geometry. They are not a stand-alone topic, but 

a topic that arises repeatedly as students progress through mathematics. Thus, a good 

understanding of angles can be deemed necessary for successful conceptualization of 

Geometry. 

Angle Context Situations 

To determine what type of angle definition is appropriate to use in a particular 

teaching setting will depend on the context of the situation in which the angles are 
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represented. Beginning with the dynamic notion of angle, as it is probably the most 

simple, it can easily be simplified to the fact that all dynamic angle context situations 

must require some sort of action. For example, what if a class of students were asked to 

examine the angle created by the hands of a clock? The arms of the clock would 

represent two line segments and the angles created would be determined by how much 

one arm (or line segment) rotates around the central point with respect to the other arm. 

Then again, sometimes angles are just required to represent a context situation in a 

visual or physical form. When this is the case, the notion of angles as geometric shapes 

is most appropriate. An angle as a geometric shape could represent a context situation 

like how steep a hill is in comparison to the flat ground. In a more abstract domain, an 

angle as a geometric shape can represent two lines or planes intersecting at a point. In 

both of the previous examples, a measurement for the angles could then be determined. 

Angles are thought of as measures in context situations where a measurement is 

required. A measurement might be required to know how far one arm has rotated from 

another or the difference between the slopes of two lines. Once a measurement label is 

given to the rotation then the rotation is no longer being examined by its movement but 

by a quantitative (measured) amount. Likewise, once a measurement label is given to a 

geometric shape, the angle is then represented by that measurement, or the 

measurement is a measurement of the geometric shape (which is the angle). 

Another interesting context that sometimes arises with regard to angles is that of 

directed angles. Directed angles can be categorized along with angles as measurement. 

However, in the case of directed angles, the angle's measurement is also determined by 

the direction of a previous or potential rotation. Thus, two angles can have the same 
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magnitude measurement but different direction measurements. Directed angles are 

similar to the three previous categories of angles the same way line segments are 

similar to vectors. But just like line segments and vectors, one of the most useful 

features of angles and directed angles is the magnitude and thus directed angles usually 

only arise in situations where the direction is absolutely necessary to the context of the 

problem at hand. Interestingly, no university student in my small survey defined angle 

as a directed angle (Appendix A) and I only found one mention of them in all the 

resources (Henderson & Taimina, 2005, p.39). Overall, it can be concluded that the 

definition of an angle that should be used in research studies and classroom teaching 

should depend on the context of the situations the angles are presented. 

The Challenges of Teaching Angles 

As was demonstrated in the literature review, there is no single way to define 

angles. Hence, this provides one of the biggest challenges when it comes to teaching 

angles. The common way of categorizing the different angle definitions is through 

their context. This leaves students needing to develop an understanding of the different 

angle context situations in order to successfully understand what an angle is. Likewise, 

the angle definitions are ambiguous. An angle that is defined in one context can also be 

defined in another context. Therefore, students would need to be able to move between 

the different angle contexts as well. Overall, angles are naturally an abstract concept in 

terms of Euclidean Geometry, which just compounds their difficulty. These reasons, to 

name a few, contribute to the difficulty in teaching angles. 

To look into why the different definitions would cause issues in teaching we 

need to look into the definition context categories in a bit more detail. The context 
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categories are divided into dynamic, measure and geometric shape (Henderson & 

Taimina, 2005, p.38). In order to understand these different context situations a student 

will need to be able to identify which angles are represented in a dynamic sense, which 

angles are measures and which angles are just geometric shapes. In the dynamic 

situations difficulties can arise when the angle is a product of a single-armed (or no 

armed) object being moved. Let's consider the wheel of a ship. If the wheel is turned a 

quarter turn this movement has actually produced a 90° (or right) angle. But this angle 

is with respect to what? We could consider the point at the very top of the wheel as a 

starting place and see how far it has turned after the rotation is complete. Likewise, any 

point on the wheel would produce the same result. By labeling this quarter turn as 90° 

we are jumping ahead of ourselves and assigning a measure to the angle. First, students 

need to be able to recognize that this situation and others like it produce angles. 

Therefore, in dynamic context situations involving angles, students will have to learn to 

recognize which situations have dynamic angles. 

When it comes to angles as measurements it is not as simple as pulling out a 

ruler and lining it up properly. We are not measuring a line or an area. Measuring an 

angle involves measuring the arc or amount of rotation it would take to get from one 

line ray to another. But there is a problem with this as well. We need to know whether 

we are to measure the smaller arc contained between the two rays (like the one marked 

by the blue arrow in Figure 3) or the larger arc on the outside of the two rays (like the 

one marked by the red arrow Figure 3). 
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— Ax 
Figure 3. Marked angles 

If we were to consider the idea of teaching angles following through the levels of van 

Hiele, then measuring angles (a property of the angles) should not even be considered 

until the student has a sense of angles at the Level 0, that is, where to locate them and 

how to identify them (the visual aspects of angles). 

Angles as a geometric shape are probably the most commonly used angle 

context. Using the word shape to describe an angle might be misleading. Angles are 

better considered as geometric objects. It can be challenging to teach angles as 

geometric objects since they are objects that represent an abstract concept. Thus, 

students should not become too familiar with the visual aspects of angles or this could 

cause a hindrance to being able to conceptualize the abstract notions that angles can 

represent. 

One of the most important features about angles and another teaching challenge 

is the fact that any angle can been thought of in any context. If we are presented with 

an angle that was developed from a rotation of a wheel then we can physically draw 

that angle as a geometric object and eventually take a measure of that angle. The 

measure of the angle can then be interpreted as the amount of the rotation. This is a 
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wonderful characteristic of angles but could be challenging to students. In order to be 

able to successfully use the characteristic of ambiguity the students would need to have 

a thorough comprehension of each individual angle context. But as was mentioned 

above, understanding the angle context situations does not happen at the same stage 

within the van Hiele Model. As well, if the teacher did not understand the ambiguity 

between angle definitions it would be very difficult for the teacher to be able to identify 

where a student's knowledge was lacking. 

Lastly, teaching angles is difficult because of their abstract nature. Angles are 

not like geometric shapes in that they have physical properties that must remain 

constant (that is, a triangle must always have three sides, etc.) The properties of an 

angle depend on the context they are in. In the situations of dynamic angles and angles 

as measurement they are nonfigurative. Angle as a geometric object is a little less 

abstract in that it does maintain the physical property of two rays crossing. But at the 

same time, teaching young students the difference between a line segment and a line 

ray is also an abstract concept. By and large, the challenges presented by teaching 

angles can provide researchers with an ample amount of experiment ideas. 

Chosen Angle Definition 

I have chosen to focus my research project on angles because of the challenges 

and difficulties outlined above. Since angles are such a challenging topic in Geometry 

to understand and to teach, I believe focus should be placed in this area to help find 

improvements for the current educational methods. I have chosen to use Euclid's 

definition of an angle for my research purposes. That is, "A plane angle is the 

inclination to one another of two lines in a plane which meet one another and do not lie 

81 



in a straight line." (Sibley, 1998, p.287) I have chosen this definition because I believe 

it will best convey the physical and visual properties of an angle in a context manner. 

My research does not cover angle measurement so this is not a necessary part of the 

definition which is used. Likewise, the different contexts in which the angles are 

examined in the research are all visual or physical. Thus, a static definition of an angle 

is appropriate. The research does, however, introduce the notion of a flat angle. 

Euclid's definition particularly mentions that the rays of an angle do not lie in a straight 

line. Thus, in my research, I have introduced a flat angle as the result of adding angles 

together that produce a straight line. Overall, angles are introduced by the focus being 

placed on recognizing the different inclinations between two lines, which is exactly 

how Euclid defined an angle. 
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CHAPTER FOUR 

Methodology and Materials of the Research Study 

The aim of the study was to determine whether using the theoretical foundation 

of RME to develop a lesson plan would help promote conceptualization of angles. This 

conceptualization was to be judged according to the van Hiele Model of Geometric 

Thinking. The lesson plan, which was the primary tool used for the study, was meant 

to get students to be able to understand angles in an analytical sense. The particular 

classrooms were chosen because according to curriculum the students should not have 

had any prior formal instruction with regard to angles. Of course, some students might 

have had some informal instruction on angles in previous school years or outside of the 

school system. This could not be helped. Lastly, it was also essential to the aim of the 

study that the lesson plans take place outside of a controlled (experimental) 

environment. This was in order to help judge the success of the lesson plan in ordinary 

classes. 

4.1 Materials and Methods 

The study consisted of a classroom experiment in which two grade-four classes 

participated one week apart from each other. The students in these classrooms were all 

fluent in English. The students in both classrooms were from many different racial 

backgrounds and may have spoken a language other than English in their homes. 

The experiment consisted in implementing a lesson plan to be taught by the 

respective teachers in their own classrooms. The lesson was designed to take close to 

83 



an hour to complete and be taught to the students during their normal mathematics 

period. It was imperative to the goals of this thesis that the lesson plan was written in 

such a manner that it may be used in the ordinary classroom setting and not a controlled 

research setting. 

It was not required that I receive written consent from the parents of the 

individual students in the classrooms in order to conduct this experiment. This is 

because the lesson, which was the foundation of the experiment, was taught by the 

students' actual teacher. The teachers also had the choice to agree or not agree to 

implement the lesson plan in their classrooms, and they could agree as long as they felt 

it was appropriate and covered the material they needed to teach. My lesson plan did 

both these things. As well, the lesson plan took place during the regular class time. I 

received permission from the school to attend the classes as a volunteer. I checked in 

and out of the office every time I was at the school. 

Lesson plan 

The lesson plan, which is reproduced in Appendix B, consisted of five activities 

to be done sequentially in the classroom. The materials needed for the lesson included 

a handout booklet for each student (Appendix D), a set of blank transparencies for each 

student, a pen for each student to write on the transparencies and the teacher's set of 

transparencies that were used for the different activities in the lesson (Appendix C). 

The intention of Activity 1 in the lesson plan is to introduce the concept of 

angles and right angles to the students using transparencies on the overhead. Following 

the theory of RME, angles are introduced in a realistic context situation, namely 

different roads. The activity includes showing roads that have a turn and so form an 
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angle and those that do not. As well, the activity also shows roads intersecting at 

different angles and specified how to identify right angles. This notion of angles and 

right angles is taken from Euclid's method of defining angles and right angles. Activity 

1 also consists of an activity for the students. Using the roadmap on the first page of 

the student's booklet and a blank transparency students are supposed to copy different 

angles they recognize onto the transparency and identify the right angles. The process 

of identifying, recognizing, finding and reproducing angles is consistent with teaching 

the topic of angles beginning with the first level (Level 0) of the van Hiele Model of 

Geometric Thinking. 

The next activity, Activity 2, is intended to help solidify student's visual 

recognition of angles. Thus, this activity is designed to ensure students are functioning 

at or within the visual level of the van Hiele Model. As well, this activity continues to 

use context situations as the model from which to teach, consistent with RME. In this 

activity students continue to use transparencies to find angles in different context 

pictures, namely in mountains and a pair of scissors. These context pictures are also 

found in the students' booklet. 

Activity 3 is designed to introduce another notion of angles; the flat angle. 

Using the overhead, the teacher uses two right angles and slides them together to make 

a flat angle. After using the overhead to demonstrate this concept the teacher also gets 

the students to stand up and, with a partner, use their arms to make two right angles and 

bring them together in order to make a flat angle (Figure 4). Students also use their 

arms to make different angles in groups of two and four. A diagram is provided for the 

teacher at the end of lesson plan to clarify the body actions for this activity. 

85 



Figure 4. Embodied supplementary angles 

This activity is partially in both the first and second levels of the van Hiele 

Model. The activity is in the first level or the visual level in that a new notion of angles 

is introduced, a flat angle, and the students are taught to visually recognize and 

reproduce this type of angle. Likewise, the activity covers some of the second level or 

the properties level in that it uses the property of adding up two angles to make a 

different angle. This activity also stays within the theory of RJVIE in that the realistic 

context used to teach flat angles are the student's bodies themselves. It is hard to find a 

more realistic situation than those produced by your own body. This type of activity is 

a way to embody the notion of angles and give a tangible or visible form to something 

abstract. 

The fourth activity, which is the last activity to teach anything new, is designed 

to see if the students can use the visual knowledge they have received in the previous 

activities to discover specific properties about angles. Students are asked to draw an 

arbitrary triangle and quadrilateral in their booklets in the space provided and copy the 

angles each onto separate pieces of transparency. They are then told to "add up" the 
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angles and see what they produce. This activity assumes that the students have a good 

visual understanding of angles (van Hiele Level 0). It then asks the students to perform 

an action (adding up the angles) and interpret the results. This is also consistent with 

the teaching theory of RME in that it uses a hands-on activity to promote discovery of 

mathematical properties. 

The last activity that the students are asked to complete is to answer two 

questions at the back of the student's booklet (Appendix D). These questions are 

"What was math class about today?" and "What did you learn?" The students should 

be asked to answer both questions in full sentences. This activity is mainly designed so 

that data can be collected at the end of the lesson plan to analyze what the students 

learned. 

As was mentioned above, two teachers, in the same school, implemented this 

lesson plan in two separate grade four classes. The lessons were taught a week apart 

from each other. Initially the teachers were presented with a folder, which contained 

the lesson plan (Appendix B), a set of all of the transparencies to be used by the teacher 

(Appendix C), a copy of the student's booklet (Appendix D) and a set of the 

transparencies to be used by the students. Each teacher was given instructions to read 

the lesson plan and attempt the activities themselves. This instruction to attempt the 

activities themselves was given so that the teachers would have a very clear idea of 

activities and be able to answer student's questions from their own experience. The 

teachers were given an opportunity to talk with me a few days before the experiment 

was to take place in case they had any questions or concerns. On the day of the 
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experiment I brought all of the other materials required for the students and had them 

waiting on the student's desk for them when they began their regular math period. 
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CHAPTER FIVE 

Classroom Observations 

The observations were gathered from two in-class experiments, prepared as 

described in Chapter 5. On the days of the respective experiments I collected written 

data from my observations as the lesson plan was taking place, recorded data in the 

form of a digital voice recorder to have a record of what was said and the students' 

transparencies when the lesson plan was complete. The booklets in which the students 

recorded their written responses were collected immediately after class in the first class 

and a few days after the lesson was completed from the second class. 

A comparison of the two classrooms is important because it outlines just how 

differently the two teachers taught the same lesson plan. To ensure an appropriate 

analysis of the collected results it is important to understand how these results were 

affected by the presentation of the material. Thus detailed descriptions of the in-class 

observations are given below. 

5.1 Observations in Classroom 1 

The teacher from classroom 1 (hereafter denoted Teacher 1) spoke to me briefly 

a few days before I was to come to her classroom. At this time she wanted to clarify 

how the experiment would take place. That is, we clarified that she would be teaching 

the lesson plan provided and that I would be attending the class and silently observing. 

When I spoke to her at this time she had still not yet completely read through the lesson 

plan or attempted any of the activities. Teacherl also informed me at the time that I 
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should not expect anything out of the ordinary from her students and in her opinion 

they were not very smart. She did not get into details about why she felt this way about 

her class. She felt that she was simply warning me that I might be "wasting my time" 

in her classroom. 

On the day of the experiment I arrived early to the classroom in order to place 

the booklets and transparencies on each student's desk. The students were at lunch 

during this time. Teacher 1 had the overhead projector ready in front of the board with 

the lesson plan and transparencies on a table next to it. Teacherl had read through the 

lesson plan but had still not tried the activities herself. 

To begin the lesson Teacherl asked all of the students to sit on the floor in front 

of the board and all look at the overhead projector. Thus, for the initial stages of the 

lesson, the students were not at their desks. Teacherl made this decision because she 

felt that the students would all be able to see the board better if they were all on the 

floor in front of it. At the beginning of the lesson Teacherl followed along with the 

instructions given in the lesson plan for the first two slides. She then started talking 

about roads crossing perpendicular to each other before she had actually put up slide 

#2a (Appendix C). She noticed her mistake and quickly changed the slides and 

continued the description of roads that cross at right angles and those that do not. 

At this point Teacherl instructed the class to look at the roads that do not cross 

at right angles (on slide #2a, Appendix C) and instructed them to call the smaller angle 

an acute angle and the bigger angle an obtuse angle. This is a complete divergence 

from the lesson plan provided because there is no mention of acute or obtuse angles in 

the plan at all. My observations are that Teacherl must have felt that this was an 
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appropriate time for her to provide her students with these categorizations of angles 

based on size. Being a veteran teacher, Teacher 1 probably felt comfortable diverging 

from the lesson plan at this time. 

Teacherl then skipped slides #2b and #3 completely and jumped right to slide 

#4, the roadmap (Appendix C). Interestingly, when Teacherl placed the roadmap slide 

on the overhead she did so with the words written at the bottom of the slide. The 

students started to say that Teacherl had it sideways. At this point, Teacherl asked the 

class whether it really mattered which way the road map was facing if we are just 

examining the angles. The class decided that it did not matter and that the angles did 

not change depending on the way they were facing. In the end, however, Teacherl did 

rotate the road map to place the words the right way up. Teacherl then demonstrated to 

the students how to find and copy a few angles from the road map. When she placed 

her blank transparency over the road map she did not move it or shift it in any way as 

she was demonstrating copying angles. Also, Teacherl verbally instructed her students 

to draw a square in the corner of all angles that were right angles and to draw an arc in 

all of the angles that were not. In my opinion she explained this in a way that would 

make the students perceive that they had not drawn their angles correctly unless they 

had either the square or the arc in the corner. 

The students then all returned to their desks to complete the copying phase of 

Activity 1. While the students were copying the angles from the roadmap, I observed 

that they did not move their transparencies at all. In fact, it was almost as though they 

placed the transparency on top of the picture and were tracing the road map exactly. To 

confirm this, when one student realized that she was going to have to shift the 
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transparency in order to copy all of the angles, this student promptly asked if she could 

start again. This student explained that she had made a mistake because the picture was 

not going to "line up" properly because she would have to move it "off track". This is 

interesting because as a class they had previously decided that it did not matter which 

way the angles were facing because it did not change them. 

One interesting occurrence happened when a student asked if angles could be 

straight and if so, were straight angles included. The teacher responded by saying that 

anything he thought was an angle should be copied. Thus, before the class even spoke 

about straight angles, one student had recognized that they could exist. After this 

communication passed between the student and the teacher, the other students in the 

class began including straight lines as angles to copy. 

Teacher 1 kept all of the students in their desks and moved them onto Activity 2 

immediately after completion of Activity 1. When she was describing the activity to 

the students, one student said that he did not think there were any angles in the picture 

of the mountains. Many other students in the class quickly corrected him and said that 

they could see angles in the mountains. This activity caused no serious problems for 

any of the students. 

Once completed, Teacherl moved her class back to the floor in front of the 

overhead projector. The students seemed to do this quickly and quietly with no serious 

difficulty. When Teacherl placed transparencies #5a and #5b (Appendix C) on the 

overhead (the identical right angles) she asked the students if they could predict what 

they would make if she slide them together. No student was able to predict that it 

would make a straight line. Teacherl slid the transparencies together to show this to 
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the class. She then skipped slides #6a and #6b (Appendix C) and moved on to the 

students creating angles with their arms. Teacherl had two girls demonstrate to the 

class how to make a straight angle with two people before she instructed the rest of the 

class to join in and try. 

After making angles with their arms the students were sent back to their desks 

and told to turn to the page in their booklets that asked them to draw a triangle and a 

quadrilateral. Teacherl instructed each student to draw a triangle and then to copy the 

angles onto little transparencies and put them together and add them up. Teacherl 

initially gave no other explanation as to how to add up angles. Once the students began 

with the activity and Teacherl realized that they did not know what she meant by 

adding up angles she rephrased and told the students roughly to put all of the points 

together and line up the outside lines. Many students still struggled but as a few 

students realized how to do this they helped the students sitting around them. Teacherl 

asked the class to tell her out loud what the angles of a triangle made and then 

confirmed with them that it was a straight line by demonstrating it on the overhead with 

one student's transparencies. At this point Teacherl felt that she was running out of 

class time and rushed the students through the quadrilateral. She did not take the time 

to walk around and talk to students about it and she did not discuss the results out loud. 

On the final activity, the one where the students were asked to write what they 

did in math class and what they learned Teacherl instructed her students that they 

would not be finished unless they had written four lines. More than one student raised 

their hand and asked Teacherl to come and check whether they had written the correct 

answer. Many students found it difficult to understand that the correct answer was 
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what they felt was correct and that they were just supposed to answer the questions 

from their own perspective. I was under the impression that the students are not asked 

to answer questions of this nature very often. 

I am not able to judge whether the students reacted differently to this math 

lesson than to their regular math lessons. The class, however, was attentive and well 

behaved. They raised their hands when they asked questions or had comments. They 

seemed interested in the hands-on activities and were excited to have their own 

transparencies and pens to individually work with. The students all worked pretty 

silently and individually on the different activities with the transparencies. 

5.2 Observation of Classroom 2 

I will refer to Teacher2 when I comment on the teacher in the second classroom 

I attended. From the very first time I spoke to Teacher2 about the possibility of using 

her classroom for an experiment she expressed great interest and excitement about the 

idea. When I spoke to Teacher2 prior to the lesson plan she had thoroughly read the 

plan and tried all of the activities herself. Her only question was to clarify how the 

students were to make the angles with their arms. She said it was a little hard trying 

this part of the lesson plan by herself. As with Teacher l 's classroom I came early and 

placed all of the materials on each student's desk while they were at lunch. I also asked 

Teacher2 how she perceived the intelligence of her students so that I could compare 

with Teacherl 's volunteered information. Teacher2 referred to her students as average. 

She said they were neither over intelligent or under intelligent but just an average group 

of forth grade students. 
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Unlike the experiment conducted in Teacherl's classroom, Teacher2 did not 

deviate from the lesson plan very much. Teacher2 did not miss any slides, rush any 

parts or skip through any explanations. There were only a few major differences. 

Teacher2 used sticky notes to cover up the words in slides #la and #2a (Appendix C). 

She then asked the class if they could tell her the difference between the different roads 

pictured, instead of her just stating the differences. Teacher2 used this method of 

asking the students what they thought throughout most of the lesson plan. When I 

enquired about this afterwards, she said that is just how she teaches and she did not 

even really notice that she was doing it, other than when she purposely covered up the 

words. Teacher2's students also stayed in their desks the entire time, except for when 

they made angles with their bodies. Teacher2's classroom was better suited to have the 

students stay at their desks and watch the overhead projector at the same time. 

I observed that when Teacher2 drew her angles she automatically drew an arc in 

with them or a square, depending on whether the angle was right or not. Unlike 

Teacher 1, Teacher2 did not instruct the students to do so or even mention why she was 

drawing the arcs or squares. It was my impression that Teacher2 did not even realize 

what she was doing. Teacher2 never actually instructed the students how to draw an 

angle and realized once the class had started copying the angles from the road map that 

some of the students did not know how she wanted them to be copied. When she was 

instructing the students on the overhead projector she used the word "find" and told the 

students to find the angles. She never actually told them to copy them once they were 

found. Also, when Teacher2 was demonstrating on the overhead projector she put a 

little dot next to the angles she found that were right angles. To rectify the fact that she 
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never told the students how to copy or draw an angle, Teacher2 walked around and 

privately demonstrated how to copy the angles to a few groups of the students who 

needed help. This seemed to be successful and on Activity 2 there were no problems 

with copying the angles. 

Teacher2 spent more time than Teacher 1 on the Activity 3 where the students 

make angles with their arms. She really spent a lot of time making sure that the 

students understood that they were making a straight angle and that by moving their 

arms that were touching, the straight angle was not changing. She walked through the 

groups of students and helped wherever it was necessary. 

With Activity 4, Teacher2 also found that the students had some initial trouble 

understanding how they were supposed to add up the angles. Teacher2 did demonstrate 

adding up angles on the overhead projector but still found that she needed to walk 

around and help a lot of students with the task. Teacher2 had left more time for this 

activity and the students were able to spend their time on both the triangle and the 

quadrilateral. 

At the end of the lesson plan it was time for the students to go to recess. 

Teacher2 told me that she would give the students' time to fill in the last page of the 

booklet after recess and that I could pick them up in a few days. Thus, where 

Teacherl's class answered the questions immediately following the lesson plan, but 

were rushed for time, Teacher2's class took a recess break and answered the questions 

afterwards and were given as much time as they needed. I collected the students' 

transparencies while I was in the classroom and collected the booklets from Teacher2 a 

few days later. All of the booklets were accounted for. 
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The students in Teacher2's class also reacted well to the lesson. Like 

Teacherl's class, they were excited to each have their own materials to work with. I 

supposed that the alternative is watching the teacher work with materials or having to 

share materials in a group. Teacher2's class was a little less disciplined than 

Teacher l's classroom. Students would shout out comments or questions and were 

much more apt to talk to each other while performing the activities. This behavior did 

not seem to bother Teacher2 in any way. She mostly ignored it and sometimes would 

mildly remind a student to get back on task. I was under the impression that this is just 

the way Teacher2 allows her classroom to be and has no problem with that type of 

behavior. 
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CHAPTER SIX 

Analysis of the Classroom Observations 

The data used for this analysis came from the students written responses to the 

two questions at the end of the work booklets, the transparencies that the students used 

throughout the lesson's activities, my personal observations of the students performing 

these activities on the days I was in the classrooms and the audio transcripts from the 

recording made during the classroom experiments. 

6.1 Written Responses 

Each student was asked to answer two questions at the end of the work booklet 

that they were using throughout the lesson (Appendix D). The questions were "What 

was math class about today (answer in full sentences)?" and "What did you learn 

(answer in full sentences)?" The responses to these questions were categorized as 

either Analytical or Narrative. 

Narrative Responses 

A student's response was categorized as Narrative if it did not contain any 

mathematical descriptions in response to the question asked. Instead, a Narrative 

response describes what took place or tells a story. This category also contains 

responses that express a personal opinion of the student. Narrative responses are 

divided into two types, namely Nl or N2. An Nl response is a completely narrative 

response that includes some mention of angles. An N2 response is a completely 

narrative response that has no mention of angles in it at all. 
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Analytical Responses 

A student's response was categorized as Analytical if it contained words that 

describe angles in an appropriate mathematical context. Analytical responses were 

divided into three types, Al, A2 and A3, based on the corresponding level of the van 

Hiele Model. A response was considered Al if the response contained at least one 

comment of an analytical nature that describes angles at the stage of van Hiele Level 0 

(visual). That is, the description included mention of angles in a visual sense. Some 

guidelines for assigning a response as Al included whether the student mentioned 

anything about finding angles in pictures, because that can be taken to imply that the 

student can visually recognize angles. As well, a response was considered Al if the 

student mentioned different types of angles because that can be taken to imply that the 

student has an understanding that the angles have different name categories, which is 

also a visual (recognition) trait. 

A response was considered to be A2 if the response contained at least one 

comment of an analytical nature that described angles at the stage of van Hiele Level 1 

(descriptive, describes properties). That is, the description included mention of some 

sort of property pertaining to angles. The best guideline for assigning a response as A2 

is if the student mentioned anything about adding angles up to get different angles or 

putting angles together. This implies that the student understood the property about 

angles that two angles added together make a different angle. 

The category of A3 was very rare but included, for those situations that the 

response mentioned, at least one comment at the stage of van Hiele Level 2 (informal 

deduction). The only responses considered in this experiment as A3 were responses 
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that mentioned the results from Activity 4. That is, if the student mentioned that the 

angles of a triangle make a straight line or that the angles of a quadrilateral make a 

circle. 

Other Categories 

There are two other categories used to classify the student's responses. One is 

the category of N/A or not applicable. This was saved for responses that were either 

left blank, incomplete, or illegible. The other is the category of AE or "Analytical with 

Error." A response was considered AE if it made mathematically analytical statements 

about angles but the statements were false. For example, one student stated, "Math 

class was about right angles and left angles..." (Appendix F). 

A complete list of all of the students written responses along with the 

categorization they were given can be found in Appendix F. The student's responses 

are represented below in Tables la and lb and Graphs 1 and 2. 

Class 2 (26 Total) 

A l 
A2 
A3 
N l 
N2 
AE 
N/A 

Q l 
15 (57.8%; 
1 (3.8%) 
1 (3.8%) 
7 (27%) 
1 (3.8%) 
1 (3.8%) 
0 

Q2 
10 (38.5%; 
9 (34.6% 
1 (3.8%) 
3 (11.6%) 
1 (3.8%) 
0 
2 (7.7%) 

Class 1 (25 Total) 

Al 
A2 
A3 
Nl 
N2 
AE 
N/A 

Ql 
11 (44%) 
6 (24%) 
1 (4%) 
3 (12%) 
1 (4%) 
2 (8%) 
1 (4%) 

Q2 
3 (12%) 
11 (44%) 
0 
1 (4%) 
5 (20%) 
3 (12%) 
2 (8%) 

Table la. Classroom 1 written responses Table lb. Classroom 2 written responses 
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6.2 Analysis of students' transparencies 

The transparencies that the students drew on were collected after the activities. 

They were analyzed based on whether or not the angles were drawn correctly and 

whether the angles included arcs or squares (for right angles) in the corners. Arcs or 

squares in the corners were included because it was interesting to see whether the 

students thought this was necessary to complete a drawing of an angle. Drawing an arc 

is not something I preserved to be a significant part to learning of the notion of angle. 

In general, all students drew relatively the same number of angles on each of the 

transparencies used to copy angles from pictures. As well, the students each drew their 

angles with rays of relatively the same length. Graphs 3 through 6 represent the results 

collected from the students' transparencies. 

Responses for the Roadmap Activity 

30 

25 

20 

15 

10 

Class 1 
1 • Class 2 

Angles with arcs Some angles with arcs Angles without arcs 
Response 

Graph 3. Transparency Results for Roadmap Activity 
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Responses for the Scissors Activity 

25 
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Angles Some Angles Blank 
with arcs angles without 

with arcs arcs 
Response 

Angles Missing 
drawn 

incorrectly 

Graph 4. Transparency Results for Scissors Activity 

Responses for the Mountain Activity 
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Graph 6. Transparency Results for Activity 4 

There were some interesting results with the transparencies that are not 

represented in the graphs. With regard to the Roadmap, only one student in Classroom 

1 drew less than 20 angles (this student drew only seven). In Classroom 2, the students 

who drew their angles with no arcs had a variety of ways in which they labeled their 

right angles. Two students marked their right angles with a dot (like the teacher 

initially did in front of the entire class). Eight students marked their right angles with a 

big 'R'. One student coloured in a complete triangle for the each of their angles. With 

the Scissors, the tables do show that two students in each class drew some of their 

angles incorrectly, but it does not describe how these were drawn. In Classroom 1, one 

student drew lines on the sides of the scissors but did not connect the lines at the tip of 

the scissors, thus excluding what is actually the angle. The other student copied the 
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round shape from the scissors handles and identified those as angles. In Classroom 2, 

both students drew the angles incorrectly with more than two rays. The results from the 

Mountains transparencies are represented accurately by Graph 5, with no other 

variations to mention. In Activity 4, the only thing worth mentioning is that of the two 

transparencies that had angles drawn incorrectly from Classroom 2, one set had the 

edges of the shapes copied but the edges did not meet up with the corner and the other 

set had coloured in triangles for the angles. 

6.3: In-Class notes and Audio Transcripts 

The observations I made from the in-class visits were analyzed in a suggestive 

manner with no categorization assigned. I made note of observations which I felt were 

important to mention. The complete audio transcripts of the experiments are 

reproduced in Appendix E. There were quite a few differences between the two class 

experiments, as would be expected in an uncontrolled classroom setting. Some of these 

differences include the fact that Teacherl gave me the impression of not being very 

impressed with my lesson plan and was only doing it as a favor to me. Teacher2 was 

excited about the lesson plan and wanted to know more about my research and whether 

I had developed other lesson plans she could try in her classroom. Teacherl was an 

older lady who had actually returned from retirement to teach one more year of school. 

Teacher2 was relatively young and near the beginning of her career as a teacher. 

Teacherl missed a number of transparencies during the lesson, namely #2b, #3, #6a, 

and #6b (Appendix C). Teacher2, on the other hand, did not miss any transparencies at 

all while implementing the lesson plan and did everything in the order that I had 

provided it in. Teacherl instructed her students to find as many angles as they could in 
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the roadmap, mountains and scissor pictures. Teacher2 limited the amount of angles 

the students were supposed to find and gave them a shorter amount of time to do the 

activity. Teacherl acted as though she found the activity where the students form 

angles with their arms was a waste of time. Teacher2 was very enthusiastic about that 

part of the lesson plan and spent quite a bit of time on it to ensure that all the students 

could form the angles correctly with their arms and that all the students understood the 

purpose of the activity. Teacherl maintained a very high level of discipline in her 

classroom and barely allowed any extra talking from the students while they were 

completing the activities at their desks. Teacher2 was very lenient about discipline. She 

ignored the extra chatter that was going on when the students were working at their 

desks, even though it largely had nothing to do with the activity and mainly just 

reflected that students were off task. Overall, the two classrooms were probably as 

different as you expect two random classrooms to be. 

There was also a big difference in the length of the audio transcripts -

containing mainly whole class teacher-student interchanges - and the amount of student 

responses on the transcripts. The audio transcript from Classroom 1 typed up to 11 

pages, while the audio transcript from Classroom 2 typed up to just over 7 pages. Both 

of the transcripts were typed up in the exact same format. Thus, this reflects the 

amount of verbal instructions that were actually given to the students. As well, there 

were 50 recorded responses made by students in Classroom 1 (some students responded 

more than once) and in only 23 recorded responses made by students in Classroom 2 

(again, some students responded more than once). Thus, in Classroom 1 there was 

more interaction between individual students and the teacher while the entire class was 
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listening. On the other hand, I observed that Teacher2 spent a lot more time helping 

students individually during the time that the students were to be completing the 

activity tasks. Unfortunately, the audio recording did not catch the conversations 

between the teacher and individual students because of the background talking that was 

prevalent in Classroom 2. 
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CHAPTER SEVEN 

Discussion of Research Study Results and Conclusions 

This chapter discusses the major findings from the research study and the 

implications of these findings. As well, some suggestions for future 

experimentation are suggested. Suggestions are made in regard to both the lesson 

plan used for this thesis as well as for other research involving a similar theoretical 

framework. 

7.1 Discussion and Findings 

The written responses suggest that the majority of students finished the lesson 

with an analytical understanding of angles. In Classroom 1 a total of 20 students (out 

of 25), or 80%, answered analytically to at least one of the questions and twelve 

students answered analytically to both. Only one student made an analytical response 

with an error on both questions. As Table la in the Chapter 6 shows, only 1 student 

gave a response that could be classified as A3. I am inclined to think that this was 

because of the way in which Teacherl rushed through activity 4 in the lesson plan. 

Another interesting feature is that a lot more students give A2 responses for Question 2 

than Al responses. That makes me conclude that the students might have had some 

previous experience with angles and thus the knowledge that they considered they 

learned was the new information they have been shown, like adding up angles. 
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In Classroom 2 a total of 21 students (out of 26), or 81%, answered analytically 

to at least one of the questions and sixteen students answered analytically to both. I am 

inclined to believe that more students answered analytically to both question in Class 2 

than in Classroom 1 because of the comment Teacher 1 made when she instructed the 

students to be "very detailed" when filling in their answers (Appendix E). Only one 

analytical response with an error was made overall. One student answered both 

questions at an A3 level (Appendix F). This is not very different from Classroom 1, 

even though more time was spent on the activity. However, Teacherl did particularly 

point out to the entire class the results of adding up the angles of a triangle. In 

Classroom 2, Teacher2 specifically left out the conclusions. Thus, it could be 

concluded that the student in Classroom 1 was repeating the information Teacherl told 

the class, while in Classroom 2 the student had to discover the information on his or her 

own. Another remarkable feature is that Classroom 2 had less N2, AE and N/A 

responses than Classroom 1. From my personal observations and a review of the audio 

transcripts, I can see no evident reason for this difference in responses. 

From these results I have concluded that the majority of students in both classes 

gained an analytical understanding of the first van Hiele Level, at the very least. 

Despite the differences in how the lesson plans were implemented and the different 

classroom settings, it seems that the activities provided did help with the initial 

conceptualization of the notion of angles. I also consider the lesson plan to be a success 

in introducing the concept of angles to students because it was tested in two real 

classroom experiments with different external variables and the overall results were 
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Class 1 Question 1 

• A l , A2, A3 
• AE 
• N l , N2, N/A 

Graph 7. Written results distribution on Question 1 for Classroom 1 

Class 1 Question 2 

• A l , A2, A3 

• AE 

• Nl, N2, N/A 

Graph 8. Written results distribution on Question 2 for Classroom 1 
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Class 2 Question 1 

• A l , A2, A3 

• AE 

• N l , N2, N/A 

Graph 9. Written results distribution on Question 1 for Classroom 2 

Class 2 Question 2 

• A l , A2, A3 

• N l , N2, N/A 

Graph 10. Written results distribution on Question 2 for Classroom 2 

The transparencies can be analyzed from the perspective of whether or not the 

students drew their angles correctly and whether they included arcs or not. Drawing (or 
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replicating) a geometric figure properly is a skill designated at the van Hiele Level 0 

stage (visual). After reviewing the transparencies it is apparent that the majority of 

students can draw an angle correctly, which correspond with the written responses that 

suggest the majority of students understand angles at least at the visual stage. 

Whether or not arcs were included is a different subject. As is shown in Tables 

la and lb in Chapter 6, a lot more students drew angles without arcs in Classroom 2, 

where the teacher never mentioned it. It is interesting though that some students still 

drew their angles with arcs. I am under the impression that these students have 

probably seen pictures of angles elsewhere, e.g. in math textbooks or workbooks, and 

picked up the idea of drawing arcs from these sources. Although I do not know why, 

the majority of the class (Classroom 2) resorted to drawing arcs in activity 4. I do not 

recall whether the teacher drew arcs with her angles when she was demonstrating this 

activity. On the other hand, maybe some students picked this up from their peers as the 

activity was taking place. 

Classroom 1 had a very interesting outcome in this regard on the majority of 

their transparencies. If you recall from the observations as well as the audio transcript, 

during Activity 1 while the students were copying the angles from the roadmap, one 

student asked if angles could be straight (Appendix E). The teacher responded with, "I 

said do whatever angle you can find" (Appendix E). I believe that since the teacher did 

not answer this question with a direct "no" that the students got the impression that 

straight lines contain angles. Thus, the majority of the transparencies from Classroom 1 

have straight lines drawn with arcs in the middle of them as though they are straight 

angles. 
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The interesting results on the transparencies from Classroom 2 were mostly on 

the roadmap transparencies. As was mentioned in the observations, the teacher did not 

instruct the students on how to draw an angle and marked the right angles with a dot. A 

few of the transparencies reflected this in that the students drew dots to point out which 

angles they thought were right angles. Another variation was that some students 

marked their right angles with an R. This was the instruction that the teacher gave to 

the students as she was walking around helping them with the activity after the general 

instructions to the entire class. It is easy to conclude that the students identified their 

right angles this way because of how they were instructed by the teacher. In Classroom 

1, the majority of students identified their right angles with a square in the corner. 

Nonetheless, the angles marked with dots and R's in Classroom 2 are for the most part, 

right angles. Thus, despite the difference in identifying the right angles between the 

two classes, it seems the students were successfully able to find right angles. 

I got the impression from the sets of student transparencies from both classes 

that the transparencies that had some angles with arcs and some angles without arcs 

were a result of the student not recognizing that they had actually drawn an angle. For 

example, in the picture of the mountains, some students drew a straight line along the 

bottom of the mountain with a half circle arc in the middle (to indicate a straight angle) 

as well as the sides of the mountains with the arc at the mountain peak. The students 

however did not draw an arc where the mountainside meets the ground and I am under 

the impression that this is because they did not recognize that there was actually an 

angle there. 
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On the subject of the mountain picture it is remarkable that not one student in 

either class actually drew an angle from the mountainside to the horizon intentionally 

(as I mentioned above, in a few cases it appeared it seemed unintentional). Maybe they 

considered that the horizon is fixed and does not produce angles with what is on top of 

it. At the same time, it may be unreasonable to expect grade 4 students to think of 

slope in this context. Overall, I get the impression from the transparencies used to find 

angles in the pictures that the students have a very good understanding at the visual 

stage of the van Hiele Model. Some students still need some work on finding angles 

and drawing angles, but that is consistent with the findings from the written responses. 

The angles drawn on transparencies for Activity 4 also show a very good 

understanding at the visual stage with only two errors. The only remarkable thing 

worth mentioning in this case is that the majority of the students (18 out of 25 from 

Classroom 1 and 21 out of 26 from Classroom 2) felt that they needed to include arcs 

with their angles with this activity. Thus I get the impression that teachers need to be 

careful when demonstrating to students how to draw angles and need to make sure to 

clarify that the arc is not a necessary part of the angle and is actually used to mostly 

demonstrate where the angle should be measured. Because this activity had nothing to 

do with angle measuring and since angle measuring is not part of the first level of the 

van Hiele Model, it was not necessary for the teachers to insist on draw the angles this 

way. 

In-class Observations and Audio Transcripts 

Despite the differences in how the lesson plans were implemented, the results 

from the two classes were strikingly similar. This leads me to conclude that the 
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activities were at least initially successful in helping the students conceptualize 

analytically the notion of angle. I cannot even conclude that there were deficiencies in 

the students' knowledge in Classroom 1 where the teacher skipped instructions or 

rushed through activities. This also means that there are certain instructional 

transparencies that could be taken out of the lesson and still have a high level of 

success. Likewise, the sometimes un-attentive behavior of the students in Classroom 2 

does not seem to have made a big difference either. 

7.2 Implications and Conclusions 

The results of this research show that the RME approach to teaching using 

realistic context problems is a promising method when introducing angles. The 

research in this thesis supports the hypothesis that using the RME approach can help 

students gain an appropriate understanding of the angles as determined by the van Hiele 

Model of Geometric Thinking. I have concluded, at least for the classrooms where the 

lesson plan was tried, that this research has been a success. I also have no reason to 

believe that the results would be much different in other classrooms of the same type. 

There are some improvements that could be appropriate to make to the lesson 

plan if it were to be used in the future. I feel that it would be appropriate to insert 

instructions on how to draw or copy an angle within the first activity of the lesson plan. 

This can be done while the teacher is demonstrating how to find the angles within the 

Roadmap. On the same note, students tended to struggle with adding up the angles in 

activity four. It might be necessary to leave this as a separate lesson altogether. If 

students were given more instruction on angle congruency before adding up angles, I 

believe it would help facilitate this activity. Thus, if activity four were removed from 
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the lesson plan, an activity on angle congruency could be added. I can also assume that 

using transparencies would be a very successful way to teach angle congruency, as 

students would again be able to compare different angles by moving them to coincide 

on one of their arms. 

More research could be conducted on the topic of angle conceptualization. A 

teacher could develop more lesson plans using the methods of RME to help students 

discover more properties pertaining to angles. The concept of measure of angles is also 

important and a natural next step after the initial conceptualization of what an angle is. 

Likewise, it would be interesting to conduct future research pertaining to other subjects 

in Geometry but using the same theoretical frameworks as this thesis. 

Overall, using realistic context problems and the teaching theory of Realistic 

Mathematics Education, seems to be able to help shape a student's understanding of 

angles in the particular ways outlined by the van Hiele Model of Geometric Thinking. 
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Appendix A 
University Students' Angle Definitions 

This appendix contains the responses to the question of "How do you define an angle?" 
All of the responses were collected from university students in the same first year 
Linear Algebra course. I asked the class to write their responses on pieces of paper that 
I collected. All of the students who responded were either majoring in Engineering or 
Computer Science. The students were told that it was completely voluntary to respond. 
The entire class was informed that the responses would be used informally in my thesis 
research. 

Student Responses (in no particular order): 

1. The amount of rotation that is formed from the point where 2 lines intersect. 

2. An angle is the degree at which two intersecting lines rotate off each other. 

3. An angle is any straight lines intersecting together forming a corner between them it 
could be 2 or more lines intersecting together. 

4. The opening created at the point of intersection between two lines, planes, surfaces, 
etc. 

5. Its one aspect of an event or problem. An angular projection (projecting corner). 
Maybe to turn in a different angle? 

6. Two unparallel rays that share a common point (vertex of the angle) and the value 
of this angle defines how far the second ray is from the first one, expressed in terms 
of degrees or radians. 

7. Later it became clear to me that value of an angle is defined by dependence between 
length of the arc formed by the rays mentioned above and distance to the arc from 
the common point these rays share (radius of the circle). 

8. The figure formed when 2 "vectors" or "lines" share a common endpoint. 

9. An angle is any spaces formed by 2 lines that have 1 point in common. 

10. An angle is the measurement of rotation between two lines that intersect. 

11. An angle is the magnitude between two rays that are connected at a vertex. The 
magnitude can be described as the amount of rotation of one ray in relation to the 
other 

12. Any 2 lines that coincide at one point and then each one goes in a different direction 
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will form an angle. 

13.1 would take two lines that intersect and I would think about the angle as the 
rotation that it would take one of the lines to "merge" with the other - basically so 
that they are one. Easier to visualize rather than describe. 

14. Angle is the part formed by the joint point of two lines. 

15. An angle is the inclination between two lines (or planes) measured in degrees. 

16. An angle is the union of two rays having the same end point which is called a vertex 
of the angle, these rays are called the sides of the angle. 

17. An angle is the distance in degrees, between two lines that intersect at one end. 

18. Angle is a length of arc cut from unit circle by two intersecting lines of some 
length. 

19. An angle is a pair of lines that intersect at one point to form a corner (of sorts) that 
can be measured by the arc the two lines create from their center point. 

20. An angle as the measure of the space between any two straight lines that meet up at 
one point. 

21.1 would define an angle as 2 line segments with one common vertex, the angle is the 
degree of separation between the two lines. 

22. The assumption of things that between some lines starting from one point are 
angles. 

23. The term angle means, two lines that cross at a point in space, which can be 
perpendicular, acute, or obtuse. Two lines cannot be parallel (usually written in 
degrees). 

24. An Angle: Measurement of a circle from some origin. By going clockwise or 
counter clockwise from some origin. 

25. An angle is the difference of inclination of two segments. 

26. An angle is the distance between 2 lines when the 2 lines are connected at a point. 

27. Its an intersection of two lines at a point, or two lines that start at one point and goes 
in different directions and by that they form an angle. 

28. Measures the rate of how sharp or unsharp two lines intersect. 
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29. Angle is the measurement of space between two intersecting lines. 

30. A angle is the relationship between two intersecting lines and their direction of 
path. 

31. An angle is the opening between two lines that have the same initial point. 

32. An angle is the steepness of a slope. 

127 



Appendix B 
Lesson Plan 

Directions: Follow the activities in order listed. 

Materials needed: 
-Handout containing context pictures and worksheets for each student 
-Set of blank transparencies for each student 
-Non-permanent pen for each student 
-Transparencies referred to throughout the lesson for teacher 

Activity 1: Introducing angles and right angles as well as identifying them. 

Place transparency #la on the overhead 
Refer to the first picture and tell the class "This road has a turn, or an 
angle." 
Refer to the second picture and tell the students "This road does not." 
Place transparency #lb onto #la on the overhead 
Refer to the first picture and tell the class "The red line and the blue line 
cross." 
Refer to the second picture and tell the class "The red line and the blue line 
do not cross." 

Place transparency #2a on the overhead 
Refer to the first picture and tell the students "These roads cross at an 
angle." 
Refer to the second picture and tell the students "These roads cross at a 
right angle; they are perpendicular." 
Place transparency #2b onto #2a on the overhead 
Refer to the first picture and tell the class "The lines cross at an angle." 
Refer to the second picture and tell the class "The line cross at a right 
angle." 

Place transparency #3 on the overhead 
Refer to the first picture and tell the students "Where the lines cross the 
angles are not equal on both sides." 

128 



Refer to the second picture and tell the students "Where the lines cross the 
angles are equal on both sides. When the angles on equal on both sides, 
they are right angles." 

Place transparency #4 (Road map) on the overhead 
Ask the students to turn to his or her copy of the road map that is in the 
handout. 
Tell the class "This road map is full of angles, some of them are right 
angles and some of them are not." 
Using a clean transparency, ruler and non-permanent pen, demonstrate to 
the class how to copy an angle from the road map. 
Ask the class to follow your example and copy a number of angles (maybe 
10) from the road map onto the clean transparency labeled "Road Map". 
Ask the students to label the right angles in the angles they have copied. 

Activity 2: Finding angles in context pictures. 

Ask the students to look at the pictures on page 2 of the handout. 
Tell the student "Each of these pictures have angles in them." 
Ask the students to find the angles in the pictures and copy the angles onto 
the clean transparencies labeled "Scissors" and "Mountains". 

Activity 3: Introduce the flat angle 

Place transparencies #5a and #5b (the identical right angles) on the 
overhead. Make sure the right angles open in opposition directions and are 
on the same axis. (See diagram 1 for an example) 
Tell the students "Two right angles make a flat angle." While you tell 
them this, slide the two transparencies so that the two transparencies line 
up and form a t-intersection. 
Refer to the new figure and tell the students "The arms of a flat angle lie in 
a straight line." 
Place transparencies #6a and #6b on the overhead 
Like with the previous transparencies, slide these two together to line up. 
Tell the students "If two angles are added together and make a straight line, 
their sum is a flat angle." 
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Ask two students to stand up. Have both students make a right angle with 
their arms in opposition directions. Have the two students slide shoulder to 
shoulder to demonstrate that the two right angles make a flat angle. Then 
have the students hook pinky fingers on the hands that are held out in front 
and touching. Then demonstrate how the students can move those arms 
back and forth to form different sizes and angles that will still sum up to a 
flat angle. Get the rest of the class to stand up and try the activity with a 
partner. (See diagram 2 for an example) 

While students are still standing, have two groups of two students each 
stand back to back and have the students with the outside arms hook pinky 
fingers. This demonstrates to the students that the flat angle is definitely a 
line. 

Activity 4: Adding up other angles 

Adding up a triangle's angles: Have the students draw any type of triangle 
in the handout on the page labeled "triangle". Make sure that each student 
makes a triangle that is different than his or her neighbor's. Tell them to 
use three little pieces of transparency to copy the three different corner 
angles. Then have students add up the angles and see if they can see 
something special about the resulting added up angle. Ask the students to 
look at his neighbors work and see if there is something special about their 
added up angles. If they do not come to the conclusion that the angles add 
up to make a straight line (or some variation of that conclusion), then have 
the students repeat the exercise with a different triangle. 

Adding up quadrilateral angles: Have students draw any four-sided shape 
(does not have to be a square or even have right angles) in the handout on 
the page labeled "quadrilateral". Make sure that each student makes a 
quadrilateral that is different than his or her neighbor's. Tell them to use 
four little pieces of transparency to copy the four corner angles. Then have 
the students add up the angles and see if they can see something special 
about the resulting added up angles. Ask the students to look at his 
neighbor's work and see if there is something special about their added up 
angles. If they do not come to the conclusion that the angles add up to 
make a complete circle (or some variation of that conclusion), then have 
the student repeat the exercise with a different four-sided shape. 

130 



Activity 5: Journal entry 

On the last page of the handout ask students to answer the two questions in 
complete sentences. 



Appendix C 
Teachers' Transparencies 
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Transparencies #la and #lb were meant to be shown together as in the figure 
below. 
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Transparencies #2a and #2b were meant to be shown together as in the figure below. 

137 



4 * 

138 



#q 

Roodi ^owf 

•fir\d angles CA +k<2-

are. o^ki av\̂ l€S 

139 



9 

m 

i 

140 



*hk. 

*feb. 

141 



Appendix D 
Students' Work Booklet 
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Triangle: 

Quadrilateral (four-sided shape): 
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What was math class about today (answer in full sentences)? 

What did you learn (answer in full sentences)? 



Appendix E 
Audio Transcripts from In-Class Studies 

Part I: Classroom 1 

Classroom 1 audio transcript 

Note: The audio recording was done as the lesson took place in the classroom during 
school time. The students were unaware that they were being recorded and were note 
distracted by the recording device. The "T" stands for audio responses that were made 
by the teacher and "S" followed by a number refers to a response given by a student in 
the class. The number does not refer to any particular student, only to the chronological 
order in which the response was made. As well, if it was very obvious that the same 
student made two comments in a row, the number was repeated to show this. 

T: Boys and girls come up to the front and be quiet please. Face the board and make 
sure you can see. 

Hear background noise of people moving around. 

T: Okay Boys and girls. Now we have a picture of some roads up here. The road on 
this side has a turn or it could also be called an angle (teacher points to the road on the 
left of transparency Ma), if we put the lines on properly. (Can hear one student make 
an awing sound like they are seeing something new for the first time. Cannot really tell 
if it is sincere.) The road on the other side does not (teachers points to the road on the 
right of transparency Ma). Okay. Now as we put lines on here (teacher puts 
transparency Mb on top of Ma) and you look at this one (teacher points to the road on 
the right) we can see that is does not have any turns in it because the two lines go side 
by side. What is it called when lines goes sides by side? Hands up! 

SI: Parallel 

T: Parallel, perfect. But if you look at the second picture over here the red line and the 
blue line cross (teacher is referring to the road on the left.) And what do they form 
when the two lines cross? 

S2: It forms a triangle so it is able to measure the angle. 

T: It is not forming a triangle honey. Just over here (teacher points specifically to the 
areas where the lines intersect). The red and the blues lines cross and what do they 
make. 

S3:A"T". 
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T: It does make a "T" and what does it form with the "T". What is it making? 

S4: It is making a little "X" 

T: (teacher doesn 't respond to that student and calls on another student to answer). 

S5: An angle 

T: Nice and loud dear. 

S5: An angle 

T: It is making an angle. Okay. These roads cross at an angle. The roads cross at a 
right angle. If the roads cross at a right angle, if they cross like thing. Does anyone 
know what the words are that tell what these line are like? 

S6: Parallel 

T: Um, we talked about parallel lines, we really didn't talk about these. They are 
perpendicular. That is a great big huge math term. And they are perpendicular when 
they cross like this (teacher is still referring to slides #la and #lb) 

Silence and pause while the teacher gets organized 

T: Okay, here we have some more roads (teacher is referring to slide #2a). These 
roads cross at an angle. These roads cross at a right angle. And what kind of lines are 
they when they cross at a right angle. 

S7: Um they are... (student trails off and doesn't answer immediately so the teacher 
calls on someone else.) 

S8:1 think they are perpendic... (trails off as though he does not remember how to say 
the word.) 

T: They are perpendicular. Now if you look at the angles here what can you tell me 
about them (teacher is referring to the roads on the right of slide #2 a). Hands up if you 
can tell me. The lines are perpendicular. What kind of angles are made? Only one 
hand. I don't think so. I'm going to wait for some more. (Pause while teacher waits 
for students to think and then calls on one student). 

S9: They form right angles. 

T: They form right angles. They are equal on both sides. One is not larger than the 
other, which is what is happening over here (referring to he roads on the left of slide 
#2a). We have what type of angle right here? The little small angle. 
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S10: Acute angle 

T: Acute angle. What type of angle do we make over here? 

SI 1: Obtuse 

T: Obtuse, good job! But over here if you look where the lines are perpendicular all of 
the angles are equal and they are all right angles. 

Silence as teacher moves onto the slide 

T: Okay, we have a roadmap here (referring to slide #4). 

SI 2: It is upside down!! (other students join in and agree). 

T: Let's put it that way (puts transparency #4 so that the words are on their side). 

S13: No! Look at the words. 

T: But let's put it that way. 

Many students start calling out that it is upside down and yelling for it to be turned. 

T: Do you think it makes a difference? 

Some students call out yes and some students call out no. 

T: Explain why? Hands up. Other than the words. Forget the words. Does it make a 
difference? 

S14: Umm, I'm trying to guess. 

T: Okay, look at the angles. If they are this way, this way, this way or this way 
(teacher rotates the transparency while saying this)? Do the angles change? 

S14:No 

T: No, so it really does not matter. But we will put it this way if that is what you would 
like (puts the transparencies so that the words are facing the right way). 

T: Alright. Now, this roadmap is full of angles. Some of them are right angles and 
some of them are not. Opps, I think I missed something (teacher realizes right now 
that she missed slides #2b and #3 previous but does not go back to them and keeps 
referring to slide #4). Anyway, some of them are not. Now if I put this transparency 
over this (places a blank transparency over slide #4), which is what you are going to be 

148 



doing in a few moments. What you will need to do is go through like that and outline 
the angles (teacher copies an angle from the Roadmap). What type of angle did I just 
make? 

SI5: 90 degree (student shouts out without being called on and the teacher ignores 
him) 

SI6: (Teacher actually calls on this student) Right angle 

T: A right angle. This angle (teacher refers to a different angle she has copied onto the 
transparency), hands up. Yes? 

SI7: A right angle 

T: No, this one right here. 

SI8: Acute angle 

T: Acute angle. Umm, this one (teacher refers to a different angle she has copied onto 
the transparency). 

SI 9: Do we have to do all of them (student interrupts and is ignored by the teacher) 

S20: A right angle 

T: A right angle. This one (teacher refers to a different angle she has copied onto the 
transparency). 

S21: Obtuse 

T: Obtuse angle. Now in a moment I am going to have you go back. In the little 
booklet you have on your desk there is this very same roadmap on paper. And in it is a 
blank transparency. I want you with the marker and the transparency to find at least ten 
angles. Now, any one that is a right angle I want you to mark it. Now who can 
remember how we mark right angles. Other than just saying it is a right angle. What 
little thing did we do with them? 

S22: We made a bump. 

T: No (teach calls on someone else). 

S23: We do a square. 

T: We put a square in there (referring to the corner of the angle). So that is what I 
would like you to do, if it is a right angle. If it is not just do the hump. 
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S24: Do we need to write the number? 

T: No, we are not measuring. Now are there questions. 

S25: Do we have to do like those lines? 

T: (Teacher did not really understand what the student was asking and neither do I) I 
want you to go over and trace over top of every angle you can find and you should have 
at least 10. If it is a right angle you put the square in there (referring to the corner). If 
it is not you put the curve. Now are there any questions. Okay (teacher dismisses 
students by name to go back to their desks.) 

Noise of students moving around and going back to their seats 

S26: What do we do with these things on our desk? (referring to the materials on the 
desk) 

T: You use them (teacher responds in a very irritated voice) 

T: Boys and girls, find the overhead that says roadmap and use it (when the says 
overhead she is referring to a transparency). You don't need anything else except that. 
Now I did put a ruler on your desk if you need it to help you make the lines a little 
straighter. Use it please. 

Noise of activity taking place 

T: (teacher stops at one desk) You have to mark the right angles. I don't want the 
words, I want a square. 

S27: Umm, are there really right angles on these. 

T: Well, that's you job to find out. 

Noise of activity taking place 

S28: Are we allowed to do more than 10? 

T: You do as many as you can. 

Noise of activity continuing 

S29: Do we do straight angles too? (this was asked about halfway through the activity) 

T: I said do whatever angle you can find. 
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Noise of activity continuing (classroom is relatively very quiet and teacher can be 
heard shushing students as well) 

T: (after about five minutes) Boys and girls put your hand up if you think you need a 
little bit more time. Okay, how about one more minute. If you are finished just wait 
nicely. 

Noise of students finishing up and getting a little restless 

T: Boys and girls, put the lid of your market back on, put it on the table and just watch 
from in your seat. Now, just turn so you can see me. Marker away, let go. Now, I 
want you to turn to the second page and then look back at me. (Noise of pages 
turning). The picture of the top is what? 

S30: Scissors 

T: Bottom picture is what? 

S31: Mumble 

T: Can't hear you! 

S31: Mountains 

T: Mountains, right. So if you are looking at those, hands up if you can tell me if they 
have any angles or not. If you look at the scissors, hands up if you think there might be 
some angles in there. 

S32: Do you want me to show you? 

T: No, just do you think that you can find angles in a pair of scissors or in every day life 
things. How about the picture at the bottom, the mountains, do you think we will find 
angles in the mountains? 

S3 3: Do you mean in the picture. 

T: Yes, in the picture 

S3 3: Then I would say probably not. 

T: What do you think (teacher asks a different student)? 

S34:1 think we are going to. 

T: Can you give me an example of what you think might end up being an angle in that 
picture? 
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S34: The clouds 

T: Possibly some portion or some point of the clouds. How about you (referring to a 
different student)? 

S3 5: The tip of the mountain. 

T: Yes, the tip of the mountains. Anything else you think you might find in there. Well 
actually, I'm going to let you do that and you might see. On your desk you have a little 
overhead that says scissors and one that says mountains (again, by overhead the 
teacher actually means transparency). Use your marker and let us see how many 
angles you can create from those pictures. Make sure you put them on the right 
overheads or the right little transparencies. 

Noise of activity taking place (students working pretty quietly). 

T: Boys and girls if you are finished with your roadmap would you just hold it up in the 
air please and we will collect them. (Noise of teacher collecting roadmap to give more 
room on the desks) 

Noise of activity taking place (about five minutes) 

T: Hands up if you need a little bit more time. Okay, take your time. 

Noise of activity continuing 

T: Boys and girls, hold the mountain one up (noise of teacher going around and 
collecting them). Just your mountain one right now. 

Noise of students continuing to work. 

T: Now hold your scissors one up. And put the lid on your marker. (Teacher moves 
around and collects scissors transparency). Boys and girls, for a couple of minutes I 
need you to come and sit again on the carpet. Leave your marker where it is. 

Noise of students moving 

T: Now boys and girls, what types of angles are these (referring to slides #5a and #5b, 
the two right angles). 

S3 6: Right angles 

T: They are right angles. What do you think might happen if I slide them over together 
so that they line up? What do you think might happen? 
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S37: They will make a triangle. 

T: What do you think (referring to a different student)? 

S3 8: They will make a square if you put that one on top. 

T: Yes, if I turn them around. But what if I just slide them over easily like this 
(demonstrates sliding the slides a bit). What do you think is going to happen? What is 
it going to make? 

S39: An upside down "T" 

T: No, what if I slide them like this (slides the angles again). What if I slide them all of 
the way together (slides the angles all of the way together)! 

S40: A straight angle. 

T: We have a straight angle. So if we put two right angles together the line is flat, it is 
nice and straight. When you put them together it makes a straight angle. 

S41: And it also makes two right angles. 

T: Yes, you are right but we are talking about putting the angles together. It is just a 
total straight line, isn't it? 

Teacher pauses before moving on to next activity 

T: I need two volunteers, (calls on two students) 

T: Now stand up, right up there in front. I will turn off the overhead for a moment so 
you are not in the spotlight. Now if you used your arms, do you think you could make 
a right angle. Let's see, how could you do that. 

The students try but don't really succeed. 

T: No, make them with two arms. Okay, there is one way. No, you need to put both 
arms. Can you do it in a different way? Does anyone have a different way? 

Student stands up and does a right angle in different ways. 

T: But I said you needed to use two arms hon. 

Teacher gets some other students to try it. Nobody comes up with the configuration 
that is in the lesson plan. 
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T: What if I put my arm out like that (teacher puts arm straight in front)! Where 
would I put my other arm to make an angle. Can you show me now? If you have one 
arm out straight where would the other one go. Okay, but where else could it go. 
(Teacher let's some students try). Okay, how about we do it like this (teacher just 
shows the students the configuration that is in the lesson plan). 

T: Okay, (turning back to the two students upfront), let's see if you both do that. Now 
girls slide together. What are they making? What type of angle are they making when 
they put the two together? 

S42: A straight angle. 

T: A straight angle. See, from the tip of this hand, straight across to the tip of that hand, 
we got that to work. Now let's see if you can with whoever you are closest to stand and 
up see if you can also make two right angles and bring them together to make a straight 
angle. Whoever you are beside. 

Noise of students trying the activity and the teacher helping out where necessary. A lot 
of background noise. 

T: Alright (teacher pauses as though reviewing what to do next and then makes a sigh 
of irritation), I need you four boys to stand up. The rest of you sit down. You two put 
your backs to them and do the exact same thing with two right angles and a straight 
angle. Now, lock your hand together and there you might even be able to see a little bit 
better how the line goes from here straight across to here. Okay. Now you need to sit 
down. Actually you can return to your desk and turn to the page that says triangle and 
just wait there for me. 

Noise of students going back to their desks 

T: Now, rulers down, pencils down, markers down, everything down. 

Noise of students putting odd items back on their desks 

T: Nothing in your hands and make sure you are listening. Now, what I need you to do 
on this page at the top, not at the bottom, is I need you to draw a triangle with the ruler. 
If you don't have a ruler on your desk you have a protractor which is something you 
can make a straight line with. When you are finished that, in the pocket, in the 
envelope, you need to take out three of the pieces of transparency and trace your angles 
(does not demonstrate this at this point). 

Teacher pauses 

T: With those three pieces of paper (teacher holds up three pieces of transparencies) I 
want you to put them together, move your angles together here and see them here and 
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see what happens. Make sure you use three little transparencies to trace the angles 
from the triangle you have drawn. 

Noise of students starting to work 

T: We are not measuring the angles, we are tracing them and putting them together to 
see what happens. Draw the triangle with the pencil and then trace each of your angles. 

Noise of students working 

T: Any triangle, does not matter what triangle. 

A lot more background noise of the teacher having to help individual students with the 
initial tracing of the angles. A lot of students did not understand what to trace. 

T: Now see if you can fit the angles together in some way. Put your hand up when you 
put your angles together to make some (teacher does not explain how to put the angles 
together). 

Background noise of work going on 

T: Okay, boys and girls look up at the board and see how these angles are touching 
(referring to the two right angles on the board from transparencies #5a and #5b). All 
of your angles should touch. 

Noise of teacher moving around and helping out 

T: We have someone who has discovered what it makes. How about anyone else? 

Noise of some students making responses, but nothing that is understandable. 

T: Okay, Billy (name has been changed) put his angles together. Can I use yours on 
the overhead Billy. Billy put his angles together and it ended up like this. 

S43: That's what mine did too (sounded excited). 

T: What did they end up making when they were all together. 

S44: A straight angle 

T: It ended up making a straight angle. They all fit. When they are all side-by-side like 
that they make a straight angle. 
T: Now on the bottom of that page I need you do draw a quadrilateral, which is what? 

S45: A four-sided figure 
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T: Perfect. Remember it doesn't matter what the shape is as long as it has four sides. 
Do the same thing as the triangle and see what shape you can make or what will happen 
when you put the angles all together. 

Noise of activity taking place 

T: Boys and girls, when you are finished with little transparencies they go back in your 
envelopes. 

Noise of activity taking place 

T: Once you have your quadrilateral trace your angles and fit them together and see 
what happens. 

Noise of activity taking place 

T: Okay, we have a few people who got it. It works out to be a complete circle around. 
Now boys and girls please stop and look over here. I need you to put the little pieces 
back in the envelope. On the last page it says, "What was math class about today 
(answer in full sentences)?" and "What did you learn (answer in full sentences)?" 
Write on every other line. You finish this before you go to recess. I expect at least four 
lines. 

Noise of students completing activity. 

S46: Um, I want to know if this is right (asking the teacher to come and look at what he 
had written). 

T: You know what, it is not my answer but what you think is right. 

Noise of students completing activity. Can hear the teacher encouraging students to 
keep working when they were getting distracted and off task. 

T: Boys and girls, be very detailed. We just spent an hour doing this activity so I 
should be able to see more complete answers then what I am seeing. 

Noise of students completing activity. No more instructions given to the class in 
general. Recorded a few minutes of the students finishing up and handing in their 
booklets. 
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Part II: Classroom 2 

Classroom 2 audio transcript 

Note: The audio recording was done as the lesson took place in the classroom during 
school time. The students were unaware that they were being recorded and were note 
distracted by the recording device. The "T" stands for audio responses that were made 
by the teacher and "S" followed by a number refers to a response given by a student in 
the class. The number does not refer to any particular student, only to the chronological 
order in which the response was made. As well, if it was very obvious that the same 
student made two comments in a row, the number was repeated to show this. 

T: So before we begin does anybody have any idea what we are going to talk about 
today? We are going to talk about Geometry. So first of all, you all seem very bright 
and awake, which is important. Can you guys tell me what is different or what major 
difference there is between these two roads (teacher refers to slide #la). Yes (teacher 
calls on student). 

SI: One is straight and one curved 

T: Yes, this first one is curved (refers to road on the left) and the second one is straight 
(refers to road on the right). So this road has a turn or an angle (refers to the road on 
the left of transparency Ma). Who has heard the word angle before? Raise your hands 
if you have. (A majority of the students raised their hands). Good, okay. Now, this 
one of course, does not have an angle (Refers to the road on the right of transparency 
Ma). 

T: Now if I put another transparency on top (teacher puts up transparency Mb on top 
of Ma) and see where it has drawn two lines in the middle of the road you will see that 
over here (refers to the road on the left of transparency Ma), as you already have seen, 
these two lines form an angle and over here these two lines do not cross so they do not 
form and angle. 

T: Okay, moving on to the next slide (teacher puts up transparency #2a but actually 
places it on opposite of how the roads are drawn. That is, the transparency is ink side 
down. This does not make a big difference by is opposite to how it is discussed in the 
lesson plan). Who can tell me what the major difference is between these two roads? 
Or if you can even explain to me how it looks to you. (Teacher calls on a student) 

S2: Um, one is a complete straight four-way and the other one is a diagonal four-way. 

T: Okay, which one, the first one is the (teacherpoints to the roads on the left)... 

S2: The first one is the straight four-way. 
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T: What do you mean by four-way. 

S2: It is like a four-way stop. 

T: Okay, and these roads (referring to the diagonal intersection or the roads on the 
right) are four-way as well. 

S2: But they are across. 

T: But these ones (referring to the right angle intersection) are across as well. 

S2: Yes, but that one is straight across and the other one is diagonal at an angle. 

T: Okay, can you tell me which one has an angle (referring to the roads that cross 
diagonal)? 

S2: The one going that way (referring to the line that is not horizontal in the diagonal 
intersection roads). 

T: Okay, so we all see that these roads cross at an angle. Can everyone see that? If not, 
I'll show it on another transparency in a minute. These roads cross at a right angle. Do 
they remind you of a letter perhaps? 

S3: It looks like a "T" 

T: Looks like a "T", okay. And when we have these roads crossing straight like this 
they are perpendicular. So we can see that if I put this other transparency over it we see 
that this one is like a "T" and a right angle (teacher places transparency #2b on top of 
#2a). Who can point to the right angles for me? (calls a student up to the board to find 
a right angle) 

S4: This one 

T: That's right. Okay, I'm going to show you something else with another transparency 
(teacher puts up transparency #3 and takes away transparency #2b). So you see where 
I've drawn those little curves. Now if you look at over here at the first picture, the 
angle over here and the angle over here are. Who can tell me if A is a bigger angle or if 
B is a bigger angle? Who says B, raise your angles if you say B (most students raise 
their hands). Oh boy, I guess I can't trick you guys. Okay, so angle B is larger than 
angle A. Now how about this one over here? We see that B is equal to A. So these 
angles are exactly the ... 

Class: Same 
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T: Same, very good. So now that I have seen how much you guys know about angle, 
which is a lot, I would like you to look on your desk. You will find a package of 
sheets. Now on the first page you will find a picture of a roadmap. The page should 
look like this (teacher puts up transparency #4). Now what you need to do with the 
little transparency you have that is called roadmap, it is blank and says roadmap at the 
top. Did everyone find it? Okay, hold it up once you have it. Now I want you to lay it 
on the picture. And we should probably just find two angles together up on the board 
first. So I need somebody to come up and here and tell me where on this roadmap you 
see angles, (teacher calls on a student) 

S5: Here (student follows a straight line) 

T: Are you sure here? How about over here? (teacher points to an angle and the 
student agrees) So there is one over here. (Teacher copies the angle onto her 
transparency and automatically puts an arc in). And now let's try to find another one. 
Now is there another angle somewhere in this roadmap? (teacher calls on a student to 
come up and point). Ahh, over there, there is another one. So let's copy it and if you 
need to use a ruler to copy it you should. So we have another angle over there. So 
once you have drawn those two angles you can find eight more angles and I'm giving 
you three to four minutes. And if the angles are right angles I want you to label them 
(teacher puts a little dot up by the right angle she had previously copied). 

Noise of children working 

S6 (question): Do you mean that if it goes to the right hand side I label it right? 

T: No, remember the roads we looked at and what a right angle looks like. Look for the 
letter "T" to find the right angles. And then label all of those you think are right angles. 

Noise of children working 

T: You could also write a big R for a right angle to label those that are right angles. 

Noise of children working 

T: Okay great. Now, can everyone look up here. My next question is, do we only find 
angles in textbooks and math workbooks. Raise you hands. 

S7:No 

T: Okay, so can anybody give me some other examples of where we can find angles? 

S8: Your leg. 

T: Okay, your leg. Next? 
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S9: Umm, with your hand. 

T: Can you show me? (student points to angles between their fingers) Good. Anyone 
else? 

S10: With your arm. 

T: Can you show me how? (student bends their elbow and makes an angle) Pretty 
good. Okay I would now like you all to turn to this page of your handout (shows the 
students the page with the pictures on it). We have scissors and we have mountains. 
Now before everyone just mentioned body parts, I want to know from your guys, can 
you find angle in these two things, the scissors and the mountains. Raise your hand if 
you think you can only find angles in the scissors (some students raise their hands 
approx. 5-6). Okay raise your hand if you think you can only find angles in the 
mountains (again some students raised their hands, about the same amount). Raise 
your hand if you think you can find angles in both of them (many more students raised 
their hands making me think some people changed their answers once this became an 
option). Okay, the task for you is for you guys to find all of the angles. You have two 
transparencies, one labeled mountains and one labeled scissors. Okay, you have two of 
them. Lay them on your picture and you do exactly the same thing you did with the 
roadmap and you are going to trace the angles that you find. Okay, whatever size they 
may be, whether they are right angles or not. So you have two minutes for that. 

S11: How much do we do 

T: As many as you can find. 

Noise of students working 

T: Someone just had a good question. Does the reflection of the mountain count. 

Class: Yes 

Noise of students working 

T: Okay, 60 more seconds. 

Students working 

T: Okay, time is up please. Eyes up front. Over here now, I have two angles which are 
called what again? (Teacher is referring to slides #5a and #5b) There lines are 
perpendicular to each other so what are they. 

SI2: "can't hear what is being said" 
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T: That's true that it starts with the letter R. Can you tell it to me (teacher asks the 
class in general)? 

Class: Right angle. 

T: Now what would happen if I push these transparencies closer and closer together? 
What is going to happen? I have haven't pushed them all of the way together yet. 
What is going to happen? (Teacher slides the transparencies slowly together but not all 
of the way.) 

S13: They are going to have a car accident (students tone suggests that he knows he is 
making a silly comment). 

T: These are not roads, they are just lines (teacher responds as though the comment was 
not silly at all). 

S13: Okay, so they will bump into each other (still has a silly tone of voice). 

T: Okay, so they will bump into each other. Anything else? 

S14: The lines with meet up with each other. 

T: Okay, that's right. So they will meet up with each other (Teacher slides 
transparencies #5a and #5b together). And if I stop them right there (teacher stops 
them when they are just touching), now who can tell me (nobody responds) ... okay 
I'm going to do it again (teacherpulls the transparencies apart). I had two right angles 
and I pushed them together and then what happened (demonstrates pushing the right 
angles together again). (No students respond). So you see these two lines here, I put 
them together and how can tell me about this line on the bottom. 

SI5: It has turned into one line that is straight. 

T: So together when they fit together if I had to draw an angle here and here (referring 
to the straight angle) would they be bigger or smaller. 

SI6: Bigger 

T: That's right. So when you have two right angles together they make a bigger angle 
called a straight angle. Does that make sense? A straight angle. It is easy to 
remember. It is straight because it is flat. Okay now, I need two volunteers. Come up 
to the front please. 

Noise of two students coming up the front 
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T: Okay, so can everybody see. If you can't see you can stand up at your desks. I want 
you girls (teacher is referring to the volunteers) to make a right angle with your arms. 
Just by yourselves. Try to make a right angle with your arms. Okay, now put your 
arms like this (teacher demonstrates making a right angle with her arms for the 
students). 

Noises of helping the students get their arms right 

T: Now, just like we did on the overhead, get closer, closer, closer and you touch. Can 
anyone see what they made? Can you all see this straight angle? (Teacher refers to the 
angle made from the tip of one student's hand to the tip of the other student's hand) 
Good, we are going to try it in just one moment. Actually I want everybody to try it 
right now. Everybody stand up. 

A lot of noise as the students try this. The teacher can be heard walking around 
helping some students and asking other students to get back on task. Can't hear the 
actually directions 

T: (Once the teacher regains control) Okay I want you to stay where you are and I look 
at these two different angles here (teacher has transparencies #6a and #6b on the 
overhead). What would happen when I move the smaller angle and the bigger angle 
toward one another? What is going to happen? 

SI7: a student responds but it is inaudible 

T: Okay, so the same thing basically. Now what happened here, these are two different 
angles but I still have a straight angle. Even though we have two different size angles 
we have a straight angle. Now what I want you to do is with your partner and with 
your pinkies attached I want you to move your arms so you can see the different angles 
that will make a straight angle (teacher demonstrates this with a group of students that 
are near the front of the room). 

Noise of the students doing this. Again, very loud!!! Can't clearly make anything out. 
Sounds like a lot of students are off task 

T: Okay back in your seats please (teacher is shouting over the noise). 

Still a lot of noise as the students settle down 

T: For this next activity I would like you... Okay, I'm just going to demonstrate first. 
I'm going to draw a triangle with the ruler. You are going to draw a triangle on your 
paper on the page that say triangle. So I want you all to flip over to the page that says 
triangle. Don't draw one yet because I'm not done explaining. Then once you are 
going to do after you have drawn your triangle, you are going to ... Um, you should all 
have little pieces of transparencies in an envelope. Can everyone take out only three? I 
know you have more than three, just take out three transparencies. 
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Noise of students finding their transparencies 

T: Okay, now you are going to...no what I'm going to do first, so everyone watch me 
now, I'm going to draw the angle that I find in the triangle (the teachers cell phone 
rang in her purse at this moment and all of the students were completely distracted). 

Noise of students as the teacher breaks to turn off her cell phone 

T: Okay moving on. You are going to draw each of the three angles and then I want 
you to try to put these angles together so that... well we are trying to put them together 
to see what will happen if you put them together. However, do not draw your triangle 
too small and make sure when you copy the angles you draw them bigger. You can 
start. Use a pencil on the paper and use the pen on the transparencies. 

Noise of student doing activity. Sounds of teacher helping out individual students. 
Noise level slowly raises 

T: Okay now. Eyes up here please. Now you are going to do the same thing except 
with a quadrilateral. Now who can tell me what a quadrilateral is? 

SI8: A four-sided shape 

T: A four-sided shape. Yes. We can draw a rectangle or a square or whatever you may 
wish. And you do the exact same thing. You line the points together and the outside 
lines of the angles. You should have four more transparencies in the envelope. 

Noise of students working. Sounds of teacher helping out individual students but can't 
make out what is said. Noise level slowly raises. Can even hear some students singing 
at one point. 

T: Okay, look up here. Settle down. Now that you are having done those little 
experiments with the angles with two different shapes I haven't really told you what the 
answer is or what I want you to discover because it was up to you to discover. So now 
I need you to flip over to the last page. 

Can hear students moving paper. Hear general groans when the students realize there 
is some writing involved. 

T: Exactly... "Can't hear what the teacher is saying because someone is making loud 
groans and boos right near the recorder." 

Noise of class, very loud. 

T: Okay, now that there are no more activities and only writing everyone needs to quite, 
mouths closed, eyes on your paper and pencils writing. 
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After about two minutes the recess bell went. 

T: Okay, leave your booklets on your desk please. 

Sounds of the class leaving for recess. Since nobody was finished with their write ups 
the teacher asked if she could have the students finish them later in the day and then I 
could get the booklets from her later in the week. I agreed and only took the students 
transparencies with me at that this time. I received that the booklets three days later 
and all were accounted for. 
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Appendix F 
Student's Written Responses 

What the students wrote is written first in normal writing. The italicized writing in 
brackets is how I interpreted what the student wrote. The words and/or phrases that are 
underlined are what determined the categorization of the responses. If nothing was 
underlined then the entire responses contributed to the categorization. Note that the 
numbers correspond to students. That is, Question 1, #1 and Question 2, #1 is the same 
student and so on. 

Part I: Classroom 1 student responses 

Question 1: What was math class about today (answer in full sentences)? 

1. Math class was about agles. And droing angles. Like a pare of sizers. And a road 
map and a maotin one. Obtuse angle, acute angle and a right angle. And a straight. 
(Math class was about angles. And drawing angles. Like a pair of scissors. And a 
road map and a mountain one. Obtuse angle, acute ansle and a right angle. And a 
straight.) - Al 

2. In math class I lernd aboute side and someone came in to are class. We talke about 
everything it was preetey fun I love it a little bit it was fun. (In math class I learned 
about side and some came into our class. We talked about everything it was pretty 
fun. I love it a little bit, it was fun.) - N2 

3. Math was about angels and that we can find angels in pictures. We traced angels in 
fake roads it was one of the best math classes no make it the best. I loved it. I hope 
we can do it again. I liked that we used the overhear pejuctor because it helps you 
understand, (replace angels with angles andpejector with projector) - Al 

4. Math is about angels and right angels and obtuse angels and straight angels and 
acute angel. We saw that there are a lot of angels in pictures. Everything you see 
sometimes has a angels. We have worked with a lot of angels and sometimes you 
see know angels but there could be a lot in one picture, (replace angels with angles) 
- A l 

5. Today in math class we did some activities on angles. We had to trace some angles 
on a see through-piece of paper. We traced the angles off of a picture of a pair of 
scissors, some mountains and a road map. We had to try and find as many as we 
could. Next we traced some angles on some shapes that we made. There was also a 
lady here today who collected our results. - Al 

6. Math calass was about angles and linig up lines a cugelteralls and math ageling and 
we put stuff together and we merde it was kiof hard and... (Math class was about 
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angles and lining up lines and quadrilaterals and math angling and we put stuff 
together and we made it was kind of hard and ...) - Nl 

7. Math class was about angals and we had a book of it and we lirend how to measer 
angals like a strate, right and acoute angle and it was rilly fun. (Math class was 
angles and we had a book of it and we learned how to measure angles like a 
straight, right and acute angle and it was really fun.) - AE 

8. Math class was adout angels, right angels and strat angels. It was like what we did 
last time. And we put them together and they mad strat angels and angels, and right 
angels. It was also adout montens, scissors and rodes. (Math class was about 
angles, right angles and straight angles...And we put them together and they made 
straight amies and angles and right angles. It was also about mountains, scissors 
and roads.) - A2 

9. Measuring angles and using plastic sheets. We measured angles. If the lines are 
cruvid (curved) you can use the rulers. You measure pictures like a mountain, 
sissors (scissors) and we measure angles with the pictures. - AE 

10. Math class was about angles. We had to copy the angles on to plastick pices 
(plastic piece) of paper and then we had to draw a shape and out line the angles. 
After that we had to wright (write) what we did in class today after that we wroght 
(wrote) what we learned. - Al 

11. Math class today was about angles and making your own and then putting them 
together to make a shape with pen and we answered on the overhead. - Nl 

12. Today math class today was about looking at shapes and pictures and being able to 
find all sorts of angles. We also made our own shapes and finding the angles that 
we made ourselves. We also did some stuff on the overhear projector. - Al 

13. In math class today we wored whith angols. We allso did some fan ateifates. The 
ativaties were to fiended lots of other angols in to pethers. We did some thing weth 
awer amies it was to make a strat angol and a right angol. (In math class today we 
worked with angles. We also did some fan activities. The activities were to find a 
lot of other angles in to pictures. We did some thins with our arms it was to make a 
straight angle and a right angle.) - A2 

14. Today math class was about angles and roads and if you attach some angles 
together you make different angles. On one of them it made this circle shape and at 
first we looked a picture of two different roads one of them had a angle of a turn 
one didn't and if you put a line thru (through) it makes a angle. - A2 

15. Math class was about angles and how to put things tighter to see another shape. 
Drawing shapes and finding angles and drawing the angles in the shapes. - Al 
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16. Math class was about quadrilateral and angles. We used those see thow (through) 
paper for a projucteure (projector). We found the angles in mountains and scissors. 
There was all these lines on the first page and we used a see throw (through) paper 
and saw how many angles there are and I counted 34 lines in the see throw paper 
that we had. - Al 

17. Math class was about teching (teaching) us... - N/A 

18. It was about angles and what they are, how to find one, finding angles in picshurs 
and objaiets and combinding angles to maek new angles. (It was about angles and 
what they are, how to find one, finding angles in pictures and objects and 
combining angles to make new angles.) - A2 

19. Math class was about angle. We used roads and diffrint (different) stuff to find 
angles. I fond that the roads were very esey (easy). We also lerand (learned) that if 
you put angels together you could make a straigt (straight) angle by putting to two 
angles together. - A2 

20. Today math class was about looking at angles. When we stated math we looked at 
a road map. We looked for angles in the road map. After that we did sisers 
(scissors) and montenos (mountains). We made a triangle and trased (traced) all of 
the angles, then tried to make a angle. We did a 4 sided shape and did the asact 
(exact) same thing as the triangle. - A2 

21. Today in math class we were doing angels. We had to traces and find. First we had 
to do the car map then we had to do sissors (scissors) and montams (mountains) and 
last of all we made triangles. - Al 

22. Math class was about angles. We also did shining on mekering all defrent cands of 
things like montens sesers and roeds. (We also did something on marking all 
different kinds of things like mountains, scissors and roads.) - Nl 

23. Math class was about angles and what they make when you put them together. We 
learned that a four sided shapes angle can make different angles. We had to use a 
picture to trase (trace) the angles and make a shape. - A3 

24. Today's math class was about finding strat, right, obtos and acut angls. (Today's 
math class was about finding straight, right, obtuse and acute angles.) - Al 

25. It's about angles. Today we looked for angles on a road map, scissors and a 
mountain. I found a lot. - Al 

Question 2: What did you learn (answer in full sentences)? 

1. What we learn is the learning all the angles agien (again). - N2 
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2. We lernd adoute it side shaps and we had lerd adoute angles I had a preety hard 
time. It was not bad I like it. (We learned about it side shapes and we had learned 
about angles. I had a pretty hard time...) - N1 

3. I learned that if we look close anoufe (enough) we can find angels anywhere. I 
learned that we can find angels with our body and in shapes. I knew most of this 
already and I can't waite (wait) till we do something like this any time again. 
(replace angels with angles) - Al 

4. I learned that there are many angels everywhere you see and on drive way there are 
many angels. We learned that when you pout (put) it together you can get other 
angels. I learned all ready a lot about angels but I learned more then before. 
(replace angels with angles) - A2 

5. I learned that anything can have angles if you look hard enough. I also improved 
my tracing skills with the excersises (exersice). I also learned that if you take all of 
the angles from a shape and connect the sides, it makes a straight angle at first I 
didn't understand but then they explained what everything really ment (meant). I 
learned a lot today. - A2 

6. I lerd how to put liners on the rite sopet and how to mersh other stat that wert shaps 
and we shaped and linde up line to put them str and make them rite. (I learned how 
to put lines on the right spot and how to make? other stuff? that weren 't shapes and 
we shaped and lined up line to put them straight and make them right.) - N2 

7. We learnd how to measer angles. We used prowtraters to make the angles like the 
cute, strate, and the strate angles. (We learned how to measure angles. We used 
protractors to make the angles like the acute, straight and straight angles.) - AE 

8. I learned that if you put stuff together it maches biffrent angels like strate angels 
and right angels and the ordinary angels. We learned that theres all cinds of angels 
and there's not guste one. (I learned that if you put stuff together it makes different 
angles like straight angles and right angles and the ordinary angles. We learned 
that there's all kind of angles and there's not just one.) - A2 

9. I learned that you use plastic to measure you could use a inky pen and measure. I 
allso (also) learned to measure better and to help me learned I think it is good to do 
this type of math. - N2 

10. In class today I learned that if you put two right angles together you can make a 
straite (straight) angle. - A2 

11.1 learned in this math class that you can two right angles make a straight angle. -
A2 
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12. Today we learned how to make angles with ordinary things like our hands. We also 
learned how to find angles in sissors (scissors) and mountains. - Al 

13.1 learnt that if you put to right angols together it makes a strat angol. If you crose to 
liese together it will make a pendikler angol. (I learned that if you put two right 
angles together it makes a straight angle. If you cross to lines together it will make 
a perpendicular angle.) - A2 

14.1 learned if you use some angles and attach them together it makes anothere 
(another) angle and if you draw a line thru (through) a road that has a angle it 
makes a angle. - A2 

15.1 leaned (learned) that two strait (straight) angles can attach and make a strait 
(straight) angle. (I mosiety (mostly) knew all this.) AE 

16.1 learned that 2 right angles make a straight angle. Two girls went up front and put 2 
right angles to make a straight angle. (Names of girls were removed for 
confidentiality reasons.) - A2 

17.1 learned about angles in pictures and solving the right angles, acute angles, straight 
angles and obtuse angles. I also learned what every body learned is that there is a 
lot of angles everywhere you go and maby (maybe) its on you or even close to you. 
- A l 

18.1 learned that there is angles all aroad us, combing angles togastr can maek one 
single angle and how to nontis a angle. (I learned that there is angles all around us, 
combining angles together can make one single angle and how to notice an angle.) 
- A 2 

19. We learned that you don't have to use angels. You can use different stuff like 
sissers (scissors) or montins (mountains) or even roads. Those were the one that we 
use today. We also learned that if you put two angels together you can make a big 
one, (replace angels with angles) - A2 

20. Today we learned how to make angles. We made angles with a road map. We did 
sisers (scissors) and monteons (mountains). We learned that angles can make other 
angles. - A2 

21. Illegible.-N/A 

22.1 leaned adout angles veters lining paring. It was so much fun but it could have 
been a little bite esiyer. (I learned about angles veters?? lining pairing. It was so 
much fun but it could have been a little bit easier.) — N/A 

23.1 didn't learn much. - N2 
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24.1 learnt that combinding (combining) two thing together can make diffent (different) 
things like 4 thing make a corkol (circle). - AE 

25.1 didn't learn much. Actually, I learned nothing. - N2 

Part II: Classroom 2 student responses 

Question 1: What was math class about today (answer in full sentences)? 

1. It was about difrent kins of egels like right egels and dieganel egels with tips of 
shapes. And we fond egels with pecturs of motins and sisers. (It was about different 
kinds of amies like right angles and diagonal angles with types of shapes. And we 
found angles with pictures of mountains and scissors.) - Al 

2. It was abut tow diffit kind of angels. It was very fun! The angles was the right 
angel. (It was about two different kinds of angles. It was very fun! The angles were 
the right angle.) - Al 

3. In math class today we learned about angles and a little bit of geometry. The angles 
we learned about were straight angles and right angles. In geometry, we found 
angles in a triangle and a quadrilateral. It was fun to do the example. - Al 

4. I drew a triangle and a rectangle. I fond angles in a road in a picture and in sisors. I 
drew. (I drew a triangle and a rectangle. I found angles in a road in a picture and 
in scissors. I drew.) - A1 

5. Math class was about angles. - Nl 

6. Today in maths class we did setaf with sapas and it was fun. It was with agles. 
And with a road map. (Today in math class we did stuff? with shapes and it was fun. 
It was with angles. And with a road map.) - Nl 

7. Today math class was about straight angles, right angles, how to draw angles and 
where to find angles. - Al 

8. Math class was about right angles and left angles. And what pesishion ther in. And 
how they cross. And where they go. (Math class was about right angles and left 
angles. And what position they 're in. And how they cross. And where they go.) -
AE 

9. It was about angales and we hade to finde the angales in the drin. We hade to make 
one stra line wath tow peoples. We allso hade to finde right angales. (It was about 
angles and we had to find the angles in the drawing. We had to make one straight 
line with two people. We also had to find right angles.) - Al 
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10. Math class whas about right angles and non right angles. Math class whas how to 
know what is a right angle and a non right angle. Math class whas also about if you 
mix right angles then what do you get? In math class we made right angles with our 
hands. (Math class was about right angles and non right angles. Math class was 
how to know what is a risht ansle and a non angles. Math class was also about if 
you mix right angles then what do you get? In math class we made right angles 
with our hands.) - Al 

11. Math class was about angles. We talked about right angles. We also talked about 
strate angles. We talked about evrything you can do with angles. (Math class was 
about angles. We talked about right angles. We also talked about straight angles. 
We talked about everything you can do with angles.) - Al 

12. The math class was about angels. The left angle and the right angle. It was fun. We 
had to find angeles in roads and cloud and sissors. Then we had to wight about it. 
(The math class was about angles. The left angle and the right angle. It was fun. 
We had to find angles in roads and cloud and scissors. Then we had to right about 
it.) - A l 

13. Today I learned about angles. We did lots of experiments that were fun. We used 
lines and roads. I dident quite get what a angle was but I had fun. (...Ididn 't quite 
get what an angle was but I had fun.) - Nl 

14. Math class was about different angles. And also different shapes. It was partly 
about writing sentences. It was partly about a booklet. - Nl 

15. This math class has been about all kinds of lines. I loved doing the first activity 
because I love doing math. I like it because it think that youring lines is really fun. 
(...I like it because I think that drawing? lines is really fun.) - N2 

16. The math was about angels and right angles. We learned that right angles form a 
difrent way. Math class was also about finding angles anywhere. The most 
intresting part was that angles can be anywhere. (The math was about angles and 
right angles. We learned that right angles form a different way. Math class was 
also about finding angles anywhere. The most interesting part was that angles can 
be anywhere.) - Al 

17. There is many names to sai that well math was about angles, roads, shapes, pictures 
and writing. Well I like that we can talk in English. And I guess that I sort of liket 
the writing. And I felt comfribel beacus I know people in that classe. (There is 
many names to say that well was about angles, roads, shapes, pictures and writing. 
Well I like that we can talk in English. And I guess that I sort of liked the writing. 
And I felt comfortable because I know people in the class.) - Nl 
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18. Angles was today's math class. Also to discover of angles. We found angles in the 
mountains, siccors and roads. We also found angles in shapes. (...We found angles 
in the mountains, scissors and roads...) - Al 

19. Today's math class was about discovering angles. We found angles in charts, 
pictures and different shapes. We looked for angles in triangles and quadrilaterals. 
A quadrilateral is a four-sided shape. - Al 

20. It was about geometry and angles. Plus combinding angles to make new angles. 
Plus we did experiments. Plus it was about shape angles. (...Plus combining amies 
to make new angles...) - A2 

21. In math class today it was about geometry. Today is was about.. .angles. Today it 
was also about if you trace a four sided shape and put all the angles together what 
you got. Today was also about what you get if you put a three angled shape 
together what shape you get. - A 3 

22. Math class was about geometry. It was about angles, right angles. We had partners 
to make angles with our body. - Al 

23. Math class was about learning how to know about right angles, strait angles and an 
angle. (Math class was about learning how to know about right angles, straight 
angles and an angle.) - Al 

24. It was about angles. It was about dricton. It was about lings. It was about turns. 
(...It was about direction. It was about lines...) - N1 

25. The class was about angle. I liked it. We learned about angles. We learned about 
shapes. - N l 

26. It was about left and right angles and a few shapes. Now I know that you can't only 
find angles in: Maths text books and sheets of paper and pictures and other stuff. I 
must be realy hard to make a city without angles. (...Math textbooks and sheets of 
paper and pictures and other stuff. It must be really hard to make a city without 
angles.) - Al 

Question 2: What did you learn (answer in full sentences)? 

1. I learnd how to find egels. And I learned tips of egels. And I leard how to ad up 
egels. And where to fined egels. (I learned how to find angles. And I learned types 
of angles. And I learned how to add up angles. And where to find angles.) — A2 

2. That I lernd to draw angels and I lernd how to ade up angels. It was fun! (That I 
learned to draw angles an I learned how to add up angles. It was fun!) - A2 
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3. I learned that when two right angles crash you get a bigger forme. I also learned 
that you can find angles anywere, even in your body. (I learned that when two right 
angles crash you set a bigger form. I also learned that you can find angles 
anywhere, even in your body.) - A2 

4. "Student left section blank" - N/A 

5. I learnt that angles... - N/A 

6. I learn about the agles. (I learned about the angles.) — Nl 

7. I learned about straight angles, how to draw angles. - Al 

8. I learned that when two angles cross tgether the botom lines macke a streigt line. 
And that angles and be enywhere. (I learned that when two angles cross together 
the bottom lines make a straight line. And that angles can be anywhere.) — A2 

9. I learned how too make one right angale. (I learned how to make one right angles.) 
- A l 

10.1 learnt how to tell the diffrinsis between the angles. I learnt how to find angles. I 
learnt how to find angles out of... (I learned how to tell the difference between the 
angles. I learned how to find angles. I learned how to find angles out of...) - A l 

11. I learned that you can add angles up. I learned that you can make angles out of 
parts of your body. I learned that you can see angles in mountins. I learned that 
there are angles in a pair of siscors. (...I learned that you can see angles in 
mountains. I learned that there are angles in a pair of scissors.) - A2 

12. I learned nothing. I new you could find angeles in mountins and sirssors. I also 
knew that right angles and left angles agsistied. (I learned nothing. I knew you 
could find angles in mountains and scissors. I also knew that right angles and left 
angles existed.) - Al 

13. Today I learned about angles. She (the teacher) showed us what angles were with 
lots of examples. It was fun learning about angles. I would love to learn more. -
Nl 

14. I learned how to drawn an angle. I learned that there was this booklet. I learned to 
hard this was. I learned that scissors have angles. - Al 

15. I learned lots of kinds of line lake right lines. Ther was one of the best activities 
that was the one with the mountains and the scissors. You would put one of these 
on one of the angels and then we had to go and do a triangle and then do one of 
these and then you would do 3 of them and then thy to put them together. (I learned 
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lots of kinds of lines like right lines. There was one of the best activities that was 
the one with the mountains and the scissors. You would put on of these on one of 
the angles and then we had to go and do a triangle and then do one of these and 
you would do of them and then they to put them together.) — Nl 

16. I learned that angles can be anywhere. I learned that when you put them together it 
will form a difrent angle. I learned that there are many difrent typs of angles. I also 
learned that can come out of difrent shapes. (I learned that angles can be 
anywhere. I learned that when you put them together it will form a different angle. 
I learned that there are many different types of angles. I also learned that can come 
out of different shapes.) - A2 

17. I learned about angles, shapes, math and lignes. Wene two whrite angles crash it 
makes one big lingn at the bottom and tow lingnes that will make one ligne. Well I 
don't know what els I lerned. At my classe learned about most of that. And it was 
entertaining. (I learned about angles, shapes, math and lines. When two right 
angles crash it makes one big line at the bottom and two lines that will make one 
line. Well I don't know what else I learned. At my class learned about most of that. 
And it was entertaining.) - A2 

18.1 learned that when you push an angle together it becomes this (student drew two 
right angles together, making a straight angle). Also you can find angles in your 
body. You can find angles in reflections you can find angles in almost anything. -
Al 

19.1 learned that angles are everywhere. Angles can be found in things such as on your 
body, in maps and in pictures. When you put two right angles together, it makes a 
bigger angle. I also learned you can find angles in shapes. - A2 

20. I learnd that you can find angles on body parts. Plus you can find angles anywere. 
Plus you can find angles in shapes. Plus on roads. Plus angles are in angles. (I 
learned that you can find angles on body parts. Plus you can find angles 
anywhere...) - Al 

21. Today I learnt that if you put a four angled shape and traced all the angles and put 
them together you get a circle. Also I learned that you have angles that you can 
make angles out of your arm body. I also learned that if you put two right angles 
together you can make a strait angle. Also I learned that almost everything has an 
angle in it. (...I also learned that if you put two right angles together you can make 
a straight angle...) - A3 

22. I learned a lot about angles. It was so fun that I wish I can do it everyday. I learned 
that almost everything has angles include our body's too. Shapes have angles as 
well! (...I learned that almost everything has angles including our bodies too...) — 
Al 
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23. I learned that when two road that cross strait is a strait angle and a cruved road with 
a strait road is a right angle. (I learned that when two roads that cross straight is a 
straight angle and a curved road with a straight road is a right angle.) - Al 

24. I learned some weird roads. I learned some drictons. I learned some shapes. I 
learned some turns. (...I learned some directions...) - N 2 

25. I learned about angles. I also learned about shapes. I also learned about when two 
right angles cross they make a straight angle. Angles are everywhere. Two objects 
can make angles. - A l 

26. We learned about angles that could easyly colide into each other and that its almost 
impossible to make stuff without angles. (We learned about angles that could 
easily collide into each other and that it is almost impossible to make stuff without 
angles.) - Al 
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