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Abstract

Formal Semantics and Verification of Use Case Maps

Jameleddine Hassine, Ph.D.
Concordia University, 2008

Common to most software development processes is that system functionalities are defined early
in the life cycle in terms of informal requirements and visual models. As requirement descriptions
evolve, they quickly become error-prone and difficult to understand leading to prolonged detrimental
effects on reliability, cost, and safety of a software system that are very costly to fix in later phases
of the software development process. Thus, the development of techniques and tools to support re-
quirement specification development, understanding, validation, verification, maintenance and reuse
becomes an important issue.

This thesis proposes a novel methodology named Early Stages V&V (Early Stages Validation &
Verification), which combines the semi-formal scenario-based Use Case Maps language with formal
techniques to help comprehend, validate and verify requirements. UCM models allow the description
of functional requirements and high-level designs at early stages of the development process. Use
Case Maps is being standardized as part of the User Requirements Notation (URN), the most recent
addition to ITU-Ts family of languages. In the first part of the thesis, we propose a concise and
rigorous formal semantics for Use Case Maps based on Abstract State Machines (ASM) formalism.
The resulting semantics are embedded in an ASM-UCM simulation engine and are expressed in
AsmL, an advanced ASM-based executable specification language, which is used to validate UCM
models through simulation.

Timing issues are often overlooked during the initial system design and treated as separate
behavioral issues and therefore described in separate models. In the second part of the thesis,
we extend the Use Case Maps language to cover timing constraints. A potential timed version
of UCM (called Timed UCM) is formalized using Clocked Transition Systems (CTS) and Timed
Automata (TA). The proposed semantics can be applied to comprehend, analyze, validate and
verify (using model checking) timed UCM models. In addition, we have proposed a novel UCM-
based property pattern system that combines qualitative, real-time and architectural properties into
a single graphical representation. The resulting pattern system is mapped to popular temporal logics
CTL, TCTL and ArTCTL (Architectural real-time temporal logic), which is an extension to TCTL
introduced in this research that provides temporal logics with architectural scopes.

In order to achieve an efficient validation and verification of UCM models and to assess the
impact of a specification change (e.g. as a result of a bug fixing or a feature upgrade), we extend
the application of the well-known technique of program slicing to Use Case Maps language.

An ongoing example of a simple telephone system is used to illustrate these concepts. The thesis
validates the Farly Stage V&V methodology by implementing it and applying it to two case studies:
IP Multicast Protocol and an Online Store application.
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Chapter 1

Introduction

The hardest single part of building a software system is deciding what to build. No other part of the
conceptual work is as difficult as establishing the detailed technical requirements, including all the
interfaces to people, to machines, and to other software systems. No part of the work so cripples
the resulting systems if done wrong. No other part is more difficult to rectify later. Jr. Frederick P.
Brooks [FPB87]

1.1 Motivation

There is a general consensus on the importance of good Regquirements Engineering (RE) for achieving
high quality software. The modeling and analysis of requirements have been the main challenges dur-
ing the development of complex systems. Requirements describe the needs or desired functionalities
of a product, i.e. what the system should do. Requirement has many definitions, each emphasizing
an aspect of requirements engineering [ZJ97]. Analysts categorize requirements into the following
types (for a more refined description, see [Poh96]):

- System. These requirements describe the type of system, such as hardware or software.
They may describe requirements concerning the development process (cost-effective, timely) or

development aspects of the resulting product (reusable, maintainable, platform independent).

- Functional and non-functional. These requirements describe the form of service. Func-
tional requirements are associated with specific functions, tasks or behaviors the system must
support. They describe a service relation between inputs and outputs. Non-functional re-
quirements do not define a service, but instead describe constraints on various attributes of
the service provision, such as efficiency and reliability. Non-functional requirements are some-

times called system qualities.

- Abstraction level. Analysts describe requirements at different levels of abstraction. By
specializing or refining abstract requirements, or by generalizing detailed requirements, they
define a requirements abstraction hierarchy.



- Representation. One requirement can have several representations. It may begin as an infor-
mal sketch, become a natural language document, and end up as a more formal representation
(e.g., temporal logic [Pnu77, MP92])

The process of defining requirements is called requirement engineering. It constitutes the first
phase of any development process and it covers all the activities involved in discovering, documenting
and maintaining a set of requirements for a computer-based system [$SS97]. A reduirement engineer-
ing process is expected to include four activities: requirements elicitation where the customers’ needs
are identified through consultation with all stakeholders; requirements analysis which, based on the
customer’s context and constraints, checks and solves potential conflicts, overlaps, omissions and
inconsistencies; requirements specification that describes formally or informally the behavior of the
system to be developed; and requirements validation which involves verifying if a specification is
complete and clear enough for the development team to understand exactly what it needs to build.

Although several approaches have been suggested to address these tasks, requirements engineer-
ing is still facing many challenges. Among many others, we cite: '

- Lack of requirement languages for eliciting and describing requirements according to their
nature (e.g. functional, non-functional), and their level of abstraction. Existing frameworks

tend to be overloaded with linguistic constructs and irrelevant details.

- There is a gap between requirement engineering research and formal methods research. Tradi-
tionally, requirement languages suffer from a lack of formal semantics. Hence, this represents a

barrier towards the adaptation of rich set of analysis methodologies offered by formal methods.

- Lack of automated analysis and validation support to detect possible ambiguities, inconsisten-

cies or undesirable interactions.

- Lack of specialized support: Several aspects of the requirements engineering process need
specialized support for requirements evolution and refinement.

Scenario-based Models

Functional requirements capture the intended behavior of a system. This behavior may be expressed
as services, tasks, functions a system is required to perform or as transformations from inputs to
outputs. Many models (Prototype model, Use Case Model, Organized by Roles Model, etc.) have
been proposed for capturing user requirements. The most commonly used model is use cases.
There are several reasons why use cases have become popular and universally adopted. According

to [JBR99] the two major reasons are:

- They offer systematic and intuitive means of capturing functional requirements and uncovering

hidden requirements.

- They drive the whole development process since most activities such as analysis, design, vali-

dation and verification are performed starting from use cases.



Although semi-formal, scenario driven approaches have raised a higher level of interest and ac-
ceptance mostly because of their intuitive representation. Scenarios are known to help describing
functional requirements, uncovering hidden requirements and trade-offs, as well as validating and
verifying requirements. Scenarios can also be applied to requirements to support different devel-
opment stages, including user requirements, system requirements, and testing requirements. Lam-
sweerde [LamO00] provides a thorough discussion on the relationships between scenarios and other
requirements models. To avoid an explosion in the number of individual scenarios describing a com-
plex system, several approaches have been developed. These approaches capture common scenario
parts (often called episodes) and describe interdependencies through relationships such as prece-
dence, alternatives, inclusion, extension, usage, etc., while at the same time improving consistency
and maintainability. Breitman et al. [BAP00] provided an extensive case study on scenario evolution
based on such relationships, and they proposed a taxonomy for classification and heuristics for the
identification of scenario relationships. The authors in [HOO03] presented an integration method
to detect the inconsistency between scenarios from different viewpoints and to provide support for
scenario evolution by generating new scenarios from an integrated scenario.

In this thesis, we focus on functional requirements described using scenario notations [AE03],
more specifically Use Case Maps notation [IT02b] that is part of the User Requirements Notation
(URN), the most recent addition to ITU-T’s family of languages. UCMs are used to._capture and
analyze system behavior at an abstraction level that is above both inter-component communication
and detailed level component behavior. They describe multiple scenarios in a single, integrated view,
as well as the relationships between scenarios and their underlying architecture. This promotes the
understanding and reasoning about the system as a whole, as well as focusing on individual scenario
description, scenario interaction, and responsibility allocation, before introducing inter-component
communication. UCMs have been successful in describing and validating a wide rangem of systems,
including Wireless Intelligent Networks [AA99, Yi00], Wireless ATM [And00], GPRS [DAF98], agent
systems [BEGM98], and Web applications [ARW05]. They have been used in other types of appli-
cations such as program comprehension [AMMO02].

Recognizing the need to incorporate non-functional aspects, and in particular time-related aspects
into requirement languages in order to correctly model time dependent applications at early stages
during system development, we extend Use Case Maps language with notion of time. This can
support quantitative analysis at early phases of the software development process. Thus, help
detecting design errors early and reduce the cost of later redesign activities when it turns out that

time constraints, for instance, are not met.

Early Error Detection

A major motive for spending time and effort on requirements engineering and its improvement
comes from the objective of doing the software development right from the beginning, instead of
patching at the end. This objective is justified by the empirical evidence supporting the following
hypotheses [Dav93].

- Many requirements errors are being made.



- Many of theses errors are detected late.
- Many of these errors can be detected early in the life cycle.
- Not detecting these errors may contribute to dramatic increase of software costs.

In [Dav93], it has been shown that the cost of detecting and repairing errors increases dramati-
cally as the development process proceeds. Table 1.1 shows a compilation of three empirical studies,
indicating that it may be up to 200 times more expensive to detect and repair errors in the operation

stage, compared to detecting and repairing them during the requirements stage [Dav93].

rStage Relative cost of error repair ]
Requirements 0.1-0.2
Design 0.5
Implementation 1
Component Verification | 2
System Validation 5
Operation 20

Table 1.1: Relative Cost of Error Repair in Different Development Stages [Dav93]

With these figures in mind, it is reasonable to believe that the highest risk is related to the
requirements specification phase of the development process. Furthermore, many of the efforts in
other stages of the system development lifecycle, for instance system test, depend on the correctness
of the requirements specification. Formal methods are very helpful at finding errors early on and

can nearly eliminate certain classes of error [Hal90}.

Formal Semantics

Many authors [NEO0O, Hal90] have identified the need to move from contextual enquiry to elicit
requirements, to more formal representations for analysis. Creating a formal specification forces the
user to make a detailed system analysis that usually reveals errors and inconsistencies in the informal
requirement specification [Som06]. The main motivation for requirement formalization is the need
for users to have a common and more precise understanding of the requirement and to remove any
existing ambiguity.” The lack of accuracy in the definition of a requirement language can cause
problems regarding the models expressed in the language, such us different interpretations, etc. A
requirement specification can be made unambiguous and clear by attaching a formal, mathematical
semantics to it (called formal semantics). Moreover, this need for formal semantics comes from a
desire to have better ways to verify properties of specifications, as well as to provide better means
to check the correctness of specifications [Hal90]. A formal description can be used to formulate
equivalence relations (semantical equivalence) between specifications. Equivalence relations defined
on models may abstract specifications from details, and provide satisfactory notions of semantics

equivalence and implementation correctness.



Validation and Verification

As requirements evolve, they quickly become error-prone and difficult to understand. The discovery
of errors in early development stages significantly reduces development time and cost. The use of
validation and verification (V&V) techniques increases our degree of assurance that the final product
meets user expectations and satisfies the given specification. V&V is usually applied to a product or
to a model. Reviews, inspections, simulation, walkthroughs and testing represent the major V&V
techniques.

Validation answers the question: Are we building the right product?. Validation is an activity
that ensures the correctness of the final product with respect to the stakeholders’ true needs and
expectations (requirements).

Verification answers the question: Are we building the system right?. Verification is an activity
that ensures that the selected design solution satisfies the specification, and that the end product
satisfies the design. Ultimately, verification is the process of determining whether a system satisfies
a given property of interest.

While simulation and testing (validation techniques) explore some of the possible behaviors and
scenarios of a system, they leave open the question of whether the unexplored trajectories may
contain fatal bugs. Formal verification conducts an exhaustive exploration of all possible behav-
iors [EMCGP99] and will be able to discover these bugs.

Today the best known verification methods are model checking [EMCGP99] and theorem prov-
ing [Duf91, CLL97], both of which have sophisticated tool support and have been applied to non-
trivial systems. Model checking [EMCGP99) is a technique to automatically verify functional re-
quirements of behavioral models. The functional requirements are specified in temporal logic [Pnu77,
MP92]. Model checkers (tools implementing model checking) verify a functional requirement against
a specific property by searching the complete state space of the behavioral model. If the model
checker does not find an error, the property is certain to hold. If the model checker does find an
error, the model checker returns a counterexample in the form of a sequence of states that violates
the property. This feedback of the model checker can help the modeler in finding the error and
repairing it. The other formal verification technique is theorem proving [CW96)]. Theorem proving
is a technique where both the system and its desired properties are expressed as formulas in some
mathematical logic. This logic is given by a formal system, which defines a set of axioms and a set
of inference rules. Theorem proving is the process of finding a proof of a property from the axioms
of the system.

Advantage of model checking over theorem proving is that with model checking, user requirements
can be verified automatically without any user interaction, whereas with theorem proving, user
interaction may be required. Also, if the functional requirement fails to hold, the model checker
returns a counterexample whereas theorem provers do not do this. The major disadvantage of
model checking is that it is only suitable for finite state spaces, whereas theorem proving can handle
both finite and infinite state spaces. The state space of the model must be finite, since model
checking requires an exhaustive search on the model state space. In Section 8.1.3, we discuss some

technique to tackle the state space explosion problem.



The broader goal of this thesis is to provide techniques to help improve requirement specification
quality, through formal prototyping and validation. More specifically, this thesis presents a method-
ology that applies proven concepts and techniques in order to describe and validate requirement

specifications at the early stages of system development.

1.2 Research Hypothesis

The past twenty-five years have seen the advent of many different requirement engineering techniques
to improve the quality of requirements. We can distinguish two classes of techniques: informal,
techniques (e.g., OMT [RBL*90], BOOCH [CC96]) which emphasize ease-of-use and comprehen-
sion, often at the cost of rigor and reliability, and the formal specification techniques (FSTs) (e.g.,
SDL {IT02a], LOTOS [ISO89]) which emphasize formality, often at the cost of ease-of-use and un-
derstandability. It has been suggested that no single method for software development is a panacea
[Jac95]. That is, there is no individual method that will meet all of the challenges presented in the
previous section. Combining formal and informal methods is a research subject where much work
has been done [Hal96, Bor99, UKMO03, Amy0la, Mau96, NN92, EW01].

In this thesis, we present an innovative approach, where we combine formal specification tech-
niques (FSTs) with the semi-formal language Use Case Maps (UCMs) [IT02b]. We selected Abstract
State Machines (ASM) [BS03] as our FST. ASMs use classical mathematical structures to model any
algorithm at its natural abstraction level. The ASM authors claim that ASMs have the following
desirable characteristics: Precision, Faithfulness, Understandability, Executability, Scalability, Gen-
erality. ASMs can be used in a wide variety of domains (e,g., sequential, parallel, and distributed
systems; abstract-time and real-time systems; finite-state and infinite-state domains) and can de-
scribe systems at several different layers of abstraction. Hence, ASM is an appropriate formalism
for the description of functional requirements at a high level of abstraction (i.e., at the Use Case

Maps abstraction level).

Research Hypothesis 1

Our first research hypothesis is denoted as follows:
At the early stages of system development, requirements described using the Use Case Map language
can be formalized in terms of Abstract State Machines (ASM). Hence, UCM models can be validated

through simulation and functional testing.

Research Hypothesis 2

Although much work has been done in the model-based verification methodologies [QS82, CES86,
Var91], many challenges such as the resolution of state-space explosion problem [McM92, Val91,
CGL92, CFJ93] still remain open research subjects. Reduction techniques have been used to solve
the state space explosion problem [MT98]. We believe that the use of reduction techniques [Wei84]
at the Use Case Maps abstraction level can help reduce the specification size allowing for a more

efficient validation and verification of requirements.



Our second research hypothesis is denoted as follows:
In the process of verifying complex systems, requirements described using the Use Case Map language

can be validated and verified efficiently through the use of reduction techniques.

Research Hypothesis 3

UCM models focus on the description of functional and behavioral requirements, as well as, high-
level designs at the early stages of system development processes. However, timing issues are often
overlooked during the initial system design. They are typically regarded as separate behavioral issues
and therefore described in separate models. We believe that timing aspects must be integrated into
the system model at an early development stage, to allow for a consistent analysis throughout all
life-cycle phases of software product. We believe also that Use Case Maps notation can be extended
to cover non-functional requirements such as timing constraints. A potential timed version of UCM
(called timed UCM ) can be formalized using Clocked Transition System (CTS) and Timed Automata
(TA) [AD94]. The theory of Clocked Transition Systems and Timed Automata provide a formal
framework to model and to analyze the behavior of real-time systems, that is, of systems whose
correct functioning is subject to and must ensure the respect of strict timing constraints such as
execution times, response times and so on.
Our third research hypothesis is denoted as follows:

Use Case Maps notation can be extended to cover non-functional requirements such as-timing con-
straints. Timed UCM can be formalized in terms of CTS (Clocked Transition System) and Timed
Automata (TA) formalisms that can be analyzed and verified.

Research Hypothesis 4

Although there exists a significant body of research in the area of formal verification and model
checking tools for software and hardware systems, there has been so far only a limited industry and
end-user acceptance of these tools. Beside the technical problem of state space explosion, one of the
main reasons for this limited acceptance is the unfamiliarity of users with the required specification
notation. Requirements have to be typically expressed as temporal logic formalisms and notations.
Property specification patterns [DAC99, GL05, KC05a, KC05b, MP92, NV90] were successfully
introduced to bridge this gap between users and model checking tools. They enable also non-experts
to write formal specifications that can be used for automatic model checking.

We believe that Use Case Maps can be used to describe a set of commonly used properties that
are presented in terms of occurrence, ordering and temporal scopes of actions. Furthermore, UCM
also supports the description of properties with respect to their architectural scope. This may be
achieved through a minimal extension of UCM language.

Our fourth research hypothesis is denoted as follows:

The visual and easy to learn syntax of UCM, can support the description of a large set of high level
properties without the need for temporal logic formalisms.



1.3 Thesis Approach

UCMs have been successfully used in describing real-time systems, with a particular focus on telecom-
munication system and services [AA99, ALBG99, Amy0la] as well as the description of business pro-
cess models [ARWO05]. We believe that they fit well in the Early Stages V&V approach proposed in
this thesis. We intend to validate the research hypothesis by developing Farly stages V&V approach
and by successfully applying it to various applications.

Change Impact

Analysis
—
Informal
: Reduction
Requirements Techniques Not
Acceptable
L
I |
UucM Validation Acceptable|  Detailed
Specification Formalization & —»<_>—>» Design
Verification

Figure 1.1: Early Stages Validation and Verification Approach

We adopt an iterative approach with a sequence of iterations. Each iteration includes all the
building blocks of our V&V approach, as shown in Figure 1.1. System functionalities, architecture
and timing constraints are captured as Use Case Maps scenarios (requirements elicitation). A UCM
model can be constructed based on informal requirements or use cases [Jac04], where separate UCMs
can be created for individual scenarios and integrated later to have a global UCM specification.

UCM system specifications are then formalized in terms of ASM and/or TA formalisms, allowing
for formal validation and verification. If logical and design errors are detected, a change impact
analysis is performed in order to locate which parts of the specification would be impacted by
the proposed fix. This process leads to a modification on both the informal requirements and its
corresponding UCM specification. If no problem is detected, then the specification is declared to be

error free and may be refined to a more detailed system design model.

1.4 Thesis Contributions

This thesis offers four main contributions:

1.4.1 Contribution 1: Early Stages V&V methodology

Different theories and techniques are involved in the support of the Early Stages V&V methodology.
Some of them, such as Slicing [Wei84] and Model Checking [EMCGP99], already exist. However,
the proposed approach extends their application. The following published papers describe some of

the used techniques.



1. An ASM Operational Semantics of Use Case Maps (IEEE International Confer-
ence on Requirements Engineering - RE 2005) [HRDO05b], Abstract Operational
Semantics for Use Case Maps (Formal Techniques for Networked and Distributed
Systems - FORTE 2005,) [HRDO5a].

These two papers propose a formal operational semantics for Use Case Maps language based
on Multi-Agent Abstract State Machines. The ASM model provides a concise semantics of
UCM functional constructs and describes precisely the control semantics. The resulting op-
erational semantics are embedded in an ASM-UCM simulation engine and are expressed in
AsmlL, an advanced ASM-based executable specification language. The proposed ASM-UCM

engine provides an environment for executing and simulating UCM specifications.

2. Applying Reduction Techniques to Software Functional Requirement Specifica-
tions (System Analysis and Modeling- SAM 2004) [HDRO04].
This paper extends the well-known technique of program slicing to Functional Requirement
Specification based on Use Case Maps notation. This new application of slicing, called UCM
Requirement Slicing is useful to aid requirement comprehension, validation, verification and

maintenance.

3. Change Impact Analysis with Use Case Maps (IEEE International Workshop on
Principles of Software Evolution - IWPSE 2005) [HIJRDO5].
This paper presents a novel approach to change impact analysis at the requirement level. Both
slicing and dependency analysis at the Use Case Map specification level are used to identify

the potential impact of requirement changes on the overall system.

4. Modification Analysis Support at the Requirements Level (IEEE International
Workshop on Principles of Software Evolution - IWPSE 2007) [SHRO7].
This paper presents a novel approach that combines UCM with Formal Concept Analysis
(FCA) to assist decision makers in supporting modification analysis at the requirements level.
The proposed approach provides support for determining the potential modification and re-
testing effort associated with a change without the need to analyze or comprehend source
code.

5. Timed Use Case Maps (System Analysis and Modeling: Language Profiles - SAM
2006) [HRDO6).
This paper introduces an approach to describe timing constraints in Use Case Maps specifica~
tions. It provides a formal semantics of Timed UCM in terms of Clocked Transition Systems
(CTS) over a discrete model of time.

6. Formal Verification of Use Case Maps with Real Time extensions (SDL Forum -
SDL 2007) [HRDO7a].
This paper presents a formal operational semantics of Timed UCM in terms of Timed Au-
tomata (TA) that can be analyzed and verified with the UPPAAL model checker tool.



1.4.2 Contribution 2: Classification of Timed Scenario Languages

The need to incorporate non-functional aspects, and in particular time-related aspects into require-
ment languages has been widely recognized. This is essential in order to correctly model time depen-
dent applications at early stages in system development. Typical examples of such applications are
communication protocols and real-time distributed systems. In this thesis, eleven evaluation criteria
were proposed to classify and compare thirteen timed scenario languages. Chapter 6 presents and

discusses the selected classification criteria.

1.4.3 Contribution 3: Use Case Maps as a Property Description Lan-
guage

We propose an abstract high level pattern-based approach to the description of property specifi-
cations based on the Use Case Maps. We present a set of commonly used properties with their
specifications that are described in terms of occurrence, ordering and temporal scopes of actions.
Furthermore, the proposed approach also supports the description of properties with respect to
their architectural scope. This contribution is published in: Use Case Maps as a property
specification language (Journal of Software and System Modeling (SoSyM) [HRDO7b].

1.4.4 Contribution 4: Illustrative Experiments of Early Stages V&V
methodology

The Early Stages V&V approach and its supporting techniques have been validated against a differ-

ent types of applications. Chapter 11 includes results and lessons learned from these experiments:
e TP Multicast Routing Protocol.

¢ Business process modeling (an online Store).

1.5 Issues not Addressed in this Thesis

The following issues are not addressed in our research:
e The use of UCMs for capturing requirements and eliciting system scenarios.
e Validation of the UCM prototype against the informal functional requirements.

e The integration of the scenarios (for instance repaired slices) into the UCM system specifica-

tion.

1.6 Thesis Outline

The remaining parts of the thesis are divided into ten chapters:
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Chapter 2 presents general definitions of concepts used throughout the thesis ag well as an
introduction to Use Case Maps and Abstract State Machines.

Chapter 3 provides a literature review covering background relevant to the thesis, in particular
information on scenario notations, on formal semantics, on formal description techniques, and

on validation and verification.
Chapter 4 presents the formalization of Use Case Maps in terms of Abstract State Machines.

Chapter 5 describes the proposed validation approach. Techniques and steps are illustrated
using the Simple Telephone System example introduced in Chapter 2.

Chapter 6 presents a literature survey of timed scenario languages. We propose eleven classi-

fication criteria to categorize and compare thirteen timed scenario languages.

Chapter 7 discusses time extension alternatives and how they fit in the context of UCM. Then,
the proposed timed version of UCM is formalized using Clocked Transition Systems (CTS) and
Timed Automata(TA) formalisms.

Chapter 8 presents an approach to formally verify properties against timed UCM specifications
using model checking technique. We show how change impact analysis combined with reduction
techniques can help verify UCM models more efficiently.

Chapter 9 presents a survey of existing specification patterns and proposed an approach to use

UCMs as a property specification language to model requirement properties.
Chapter 10 presents two experiments used to validate the Early Stages V&V methodology.

Chapter 11 recalls the contributions of the thesis, compares the Early Stages V&V method-
ology to similar approaches, and attempts to provide new insights in how to integrate Early
Stages V&V methodology to design processes with a wider scope. This chapter concludes with
some directions for future research.

11



Chapter 2

Basic Definitions and Notations

This chapter provides general definitions of concepts used throughout the thesis as well as introduc-
tions to Use Case Maps and Abstract State Machines.

2.1 Introduction to Use Case Maps

This section presents Use Case Maps notation as introduced by Buhr and Casselman [BC96], followed
by the current state of the art in Use Case Maps semantics. Finally, tools that support Use Case
Maps are presented.

2.1.1 Philosophy of UCMs

The Use Case Maps language is a high-level design language that helps humans to express and
reason about a system’s large-grained behavior patterns. UCMs link high level system behavior and
architecture in an explicit and visual way. System functionalities are expressed in terms of causal
relationships between responsibilities along scenario paths. The relationships are said to be causal
because they involve concurrency and partial ordering of activities and because they link causes
(e.g., preconditions and triggering events) to effects (e.g. postconditions and resulting events).

Use Case Maps bridge a modeling gap between requirements (expressed with prose use cases)
and design (expressing realization details) [AMO1b]. Hence, designers do not have to commit too
early on the architecture and the exchange of messages between the different entities. Buhr and
Casselman [BC96] claim that details tend to obscure the big picture at stages in the design process
where the big picture is the focus of concern. Figure 2.1 [BC96] shows the need for a level between
requirements and detailed design in a pyramid of four levels of design abstraction (requirements,
high-level design, detailed design and implementation).

Figure 2.2 [MAB*01] represents a simplified call connection to illustrate the use of UCM. This
scenario is not necessarily bound to one specific architecture and therefore called unbound UCM.
Alternative architectures can be developed for the same UCM, for early architectural reasoning. In
Figure 2.3a, for instance, the UCM path from Figure 2.2 is bound to two users connected through

12



Figure 2.1: A Suite of Design Models [BC96]

an agent-based architecture, whereas Figure 2.3b uses a more conventional architecture based on
Intelligent Networks (IN).

Startpomnt Causalpaih  End point

s

Rasponsibiltiss “Componas:

Figure 2.2: A Simple UCM [MAB*01]

These bound UCMs may be further refined in models for detailed design (e.g. with Message
Sequence Charts (MSC) [IT04]). Figures 2.3c and 2.3d refine respectively the scenarios in Figure
2.3a and Figure 2.3b in terms of MSCs where complex protocols or negotiation mechanisms are used
between different system components. Miga et al. [MAB*01] proposed a method to derive Message
Sequence Charts [IT04] from Use Case Maps scenario specifications. In a recent work Kealey and
Amyot [KA07] have proposed enhanced UCM trace transformations to Message Sequence Charts.

2.1.2 TUCM Basic Notation

As shown in Figure 2.2, the basic UCM contains at least the following constructs: start points,

responsibilities, end points and components.

e Start points. The execution of a scenario path begins at a start point. A start point is
represented as a filled circle representing preconditions and/or triggering events (e.g. req in
Figure 2.2).

13
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b) UCM path on an IN-based architecturs d) A possible MSC for {b)

Figure 2.3: UCM Path Bound to Two Different Architectures, and Potential MSCs [MAB™'01]

e Responsibilities. Responsibilities are abstract activities that can be refined in terms of

functions, tasks, procedures, events. Responsibilities are represented as crosses (e.g., chk and
upd).

e End points. The execution of a path terminates at an end point. End points are represented

"as bars indicating post conditions and/or resulting effects(e.g., ring).

e Component. A UCM component is generic and abstract enough to represent software entities
(e.g. object, agent, process, etc.) as well as non software entities (e.g. actors or hardware)
(they are represented as simple boxes in Figure 2.2).

UCMs help in structuring and integrating scenarios in various ways— sequentially, as alterna-
tives (with OR-forks/joins as illustrated in Figure 2.4(a)) or concurrently (with AND-forks/joins as
illustrated in Figure 2.4(b)).

e OR-Forks. Represent a path where scenarios split as two or more alternative paths. An OR-
Fork has one incoming hyper-edge and two or more outgoing ones. Boolean conditions, called

guard, represented as labels between square brackets can be attached to alternative paths.
e OR-Joins. Capture the merging of two or more independent scenario paths.
e AND-Forks. Split a single control into two or more concurrent scenario paths.

¢ AND-Joins. Capture the synchronization of two or more concurrent scenario paths.
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An OR-join merges two (or more) overlapping paths while an OR-fork splits a path into two (or
more) alternatives. Alternatives may be guarded by conditions represented as labels between square
brackets.

l:N: :ljl; . N:ME
:(a) ORjoin  (® OR-fﬁ (8) AND-fork  (b) AND-join  (c) Generic version

(a) OR-Fork/Joins (b) Concurrent routes with AND-
Fork/Joins

Figure 2.4: Structuring Scenarios

When maps become too complex to be represented as one single UCM diagram, a mechanism
for structuring sub-maps becomes necessary. UCM provide the stub concept allowing for hierar-
chical decomposition of complex maps. UCM path details can be hidden in separate sub-diagrams
called plug-ins, contained in stubs (diamonds) on a path. These plug-ins are reusable UCMs that

can be used (plugged) in many stubs. Figure 2.5 illustrates the stub concept.

e NS

(a) Static stubs have only one plug-in (b} Dynamic stubs may have multiple
map plug-in maps

Figure 2.5: Stubs and Plug-in Maps

There are two types of stubs:

e Static stubs. represented as plain diamonds (Figure 2.5(a)). They contain only one plug-in

map.

¢ Dynamic stubs. represented as dashed diamonds (Figure 2.5(b)}. They may contain several
plug-in maps, whose selection is determined at run-time according to a selection policy (often

described with preconditions).
The Use Case Maps language provides two explicit constructs for expressing time constraints:

e Timer: A timer is a waiting place that is triggered by the timely arrival of a specific event.
It can also trigger a time-out path when this event does not arrive in time. Figure 2.6(a)
illustrates the Timer construct, where a timer should start after inserting an ATM card into
the bank machine. If the user enters his/her PIN within a 10 Time Units (TU) time frame
(EnterPIN(10TU)), the PIN will be checked otherwise the card is returned to the user (i.e.,
time-out path is triggered).
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Figure 2.6: UCM Timed Notation

o Time Stamp: A time stamp denotes the time at which a certain event occurred. It can be

used to describe response time requirements (see Figure 2.6(b)).

2.1.3 UCM Component Notation

One of the strengths of UCMs resides in their ability to bind responsibilities to components. The
default UCM component notation is abstract enough to represent dependencies (for instance con-
tainment), different types (passive, active, etc.), and it even allows to represent run-time instances
(without data). Components can be of different types and possess different attributes. Buhbr
in [Buh98] suggests several types and attributes that are relevant for complex systems (real-time,
object-oriented, dynamic, agent-based, etc.).

Figure 2.7 illustrates some of these component types and attributes proposed by Buhr [Buh98]:

e Teams (boxes with sharp corners) are the most generic component that are also most typically

used in UCMs. Teams are operational groupings of system-level components.

o Objects (boxes with rounded corners) are data or procedure abstractions that are system-level

components to support the system comprehension.
e Processes (Parallelograms) are active components.

e Slots (boxes with dashed outlines) may be populated with different instances of components

at different times. Slots are containers for dynamic components (DC) in execution.

e Pools are containers that hold components in readiness to occupy slots (e.g., not executing
DC, they act as data).

e Dynamic components (see Figure 2.7(c)) can be created, moved, stored, and deleted with dy-
namic responsibilities such as create, put, get, and move. Move arrows (small arrows between
paths and pools or slots) are used to indicate the possibility of component movement that
may cause slots to become occupied or empty. Movement is a metaphor for changing visibility.
Moving a component into a slot allows to make this component visible to those who must

interact with it at the slot location level.

The slot notation-does not indicate whether slots are empty or not. This requires an analysis
of the corresponding paths. Therefore, slots can be seen as places where different components may

play the same role at different times.
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Figure 2.7: Component Types, Attributes and Movement Notation [Amy01b]
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Use Case Maps is not an Architecture Description Language (ADL), but a high level visual spec-
ification language that helps stakeholders to document and reason about a system-wide architecture
and behavior. ADLs represent a formal way of representing architecture with a primary mission of
describing components and their connectivity. ADLs permit analysis of architectures completeness,
consistency, ambiguity, performance and support automatic generation of software systems. Use
Case Maps focus on the behavior of the whole system rather than on their parts.

UCM component relationships depend on scenarios to provide the semantic information about
their dependencies. Components are dependent if they share the same scenario execution path. To
illustrate the fact that a responsibility is the result of a collaboration among two components, the
shared responsibility construct is used (see Figure 2.8(a)). The execution of a shared responsibility
requires message-like interactions between the involved components. Figure 2.8(b) shows one possible

refinement of the shared responsibility in terms of a sequence diagram.

=] =]
c1 2 N
] Message2
R
» HU || ] Message3
| I
(a) Shared Responsibility R (b) Refinement of R in

terms of sequence diagram

Figure 2.8: Shared Responsibility and One Possible Refinement

Note: Communication links (e.g., physical links) between components are usually not required,
but they can be added.

2.1.4 Running Example: A simple Telephone System

This section illustrate some of the basic UCM concepts using a UCM model (originally introduced
in [MAB701]) describing the connection request phase in an agent based telephony system with
user-subscribed features. This UCM model will be used as an ongoing example throughout the
thesis.

It contains four components (originating/terminating users and their agents) and two static stubs.
Upon the request of an originating user (req), the originating agent will select the appropriate user
feature (in stub Sorig) that could result in some feedback. This may also cause the terminating
agent to select another feature (in stub Sterm) which in turn can cause a number of results in the
originating and terminating users. Stub Sorig contains the originating plug-in map whereas stub
Sterm contains the Terminating plug-in map. These sub-UCMs have their own stubs, whose plug-in

maps are user-subscribed features.

1. Stub Sscreen:

¢ OCS (Originating Call Screening): blocks calls to people on the OCS filtering list.
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Figure 2.9: Simple Telephone System Root Map

o Default: used when not subscribed to any other originating feature.
2. Stub Sdisplay:

e CND (Call Name Delivery): displays the caller’s number on the callee’s device (display)
concurrently with the rest of the scenario (ringing).

e Default: used when not subscribed to any other terminating feature.

The set of global variables for the UCM map are: Busy (the callee is busy), InOCSList (the
callee is on OCS list), subCND (the callee is subscribed to CND), subOCS (the caller is subscribed
to OCS).

Note: Use Case Maps does not have a notion of local variables.

Each plug-in map (Fig. 2.10) is bound to its parent stub, i.e. stub input/output segments (IN1,
OUT1, etc.) are connected to the plug-in map start/end points, as follows:

e Sorig Stub: Originating UCM. Condition: true.
Binding: ((IN1, start), (OUT1, success), (OUT?2, fail}))

— Sscreen Stub:
* OCS UCM: Condition: subOCS. Binding: ((IN1, start), (OUT1, success), (OUT2,
fail))
* Default UCM: Condition: - subOCS. Binding: ((IN1, start), (OUT1, continue))

e Sterm Stub: Terminating UCM. Condition: True. Binding: ((IN1, start), (OUT1, success),
(OUT2, fail), (OUTS3, reportSuccess), (OUT2, disp))
— Sdisplay Stub:
* CND UCM: Condition: subCND. Binding: ((IN1, start), (OUT1, success), (OUT2,

disp))
* Default UCM: Condition: — subCND. Binding:((IN1, start), (OUT1, continue))
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Figure 2.10: Simple Telephone System Plug-in Maps

2.1.5 Use Case Maps Properties

The main properties and strengths of UCMs can be summarized as follows:

e Scenarios are represented as architectural entities that combine both behavior (set of paths)
and structures (UCM components) into a big picture. This promotes system comprehension

without having to mentally integrate information from different diagrams [Buh98].

e UCMs provide an integrated view of scenarios. This makes the notation more abstract and

more useful with respect to architectural considerations [BC96].

e UCMs provide a visual and explicit way to represent causality. This reduces the mental effort
required to draw the big picture. Within one component a causal path is viewed as a state

transitions, while between components a causal path is viewed as a messages exchange [Buh98].

e UCMs abstract the system behavior and architecture from details. System behavior is ex-
pressed above the level of inter-component message exchange (i.e., communication protocols),
objects creation and deletion, communication constraints, data and control. While in [BC96]
a number of different universal component types is provided, system architecture can still be
expressed in terms of rectangular boxes representing any type of runtime component imple-

mented in either software or hardware.

o UCMs may provide helpful visual patterns that stimulate thinking and discussion about system
issues and that may be reused [Buh98].

e UCM dynamic stubs help specify how alternative scenarios could evolve at run time. It pro-

motes the early thinking (i.e., at design time) about potential conflicts that could arise during
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the system dynamic execution. The selection policies can help avoid or resolve these con-
flicts [AMO1b].

¢ UCMs may be usefully integrated with other high-level techniques such as Message Sequence
Charts [MAB*01, KAQ7].

2.1.6 Use Case Maps Semantics

UCM abstract syntax and static semantics are informally defined in the draft standard (Z.152)
[IT02b). This draft includes an XML Document Type Definition (DTD) for UCM. This DTD [AMO01a]
proposes an XML-based interchange format for UCM tools. However, implementation details are
absent from this document. Another XML DTD [AHHCO03] was proposed to describe the export
format of scenarios resulting from a UCM traversal. Based on the Z.152 draft and the UCM sce-
nario DTDs, a UCM meta-model was proposed by Zeng [Zen05] and Bo [Jia05] as a result of a joint
collaboration (depicted in Figure 2.11).

Figure 2.12 illustrates a more recent UCM meta-model that is part of URN meta-model [jUC07].
PathNode represents the parent class for all UCM constructs. For UCM performance annotated
meta-models, the reader is invited to consult [Jia05].

Dynamic semantics in UCM are still informal, although it has been indirectly introduced in terms
of the formal language LOTOS [ISO89]. [ABBL95] and [Amy94] formalized UCMs using LOTOS.
UCMs have been baptized URN-FR, while another and complementary notation for non-functional
requirements [CNYM99] (GRL — Goal-oriented Requirements Language [IT03b]) is called URN-
NFR. URN-NFR is out of the scope of this thesis.
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2.1.7 UCM Tools

The UCM language is supported by a freely available editing tools: UCMNav (UCM Naviga-
tor) [Mig98] and jUCMNav [jUCO06]. In this thesis, both tools were used to create and maintain
UCM models.

Figure 2.13: UCMNav GUI

UCM Navigator

UCMNav [Mig98], developed by Andrew Miga at Carleton University, supports the creation, nav-
igation, and maintenance of UCMs. The following list summarizes some of the functionalities of
UCMNav:

e Both the path and component notations are fully supported. It gives the possibility to add

comments and descriptions of the design and/or individual elements.
o It ensures the syntactical correctness of the UCMs manipulated with respect to DTD [AMO01a).

o It maintains various kinds of bindings (plug-in maps to stubs, responsibilities to components,

sub-components to components, etc.).
o It allows users to visit and edit the plug-in maps related to stubs at all levels.

e It generates XML descriptions and exports UCMs in different formats (e.g. Encapsulated
Postcript(EPS), Computer Graphics Meta-file(CGM), Scalable Vector Graphics(SVG), and
Maker Interchange Format(MIF)).
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e It supports a simple data model and scenario definitions. This feature enables the highlight of
specific scenario paths in a UCM specification.

o It allows the generation of refined models in terms of MSCs [MAB*01].

In recent years, there has been many additions to UCMNav. For instance, Petriu [PW02] added
an UCM2LQN export mechanism to UCMNav. Ul CMQLQN is an automated conversion tool that
converts UCM performance annotated models into LQN performance models. It works as a link
between the UCMNav and two LQN analysis tools: LQNS and ParaSRVN. Jiang [PAWJ03] recently
added an export mechanism to integrate UCM models with other requirements in a requirements
management system (Telelogic DOORS [AB02]). Echihabi [DAHO04] developed a complementary
tool called UCMEzporter to transform UCM scenarios into TTCN [IT03a] and MSC [MAB*01].
Multiple platforms are currently supported by UCMNav: Solaris, Linux (Intel and Sparc), HP/UX,
and Windows (95, 98, 2000, XP and NT). Figure 2.13 shows UCMNav graphical user interface.

jUCMNav

jUCMNav [jUCO06] is an open-source tool for editing and analyzing URN models. This tool is
a plug-in developed with and for the Eclipse framework [IBM06a, IBMO6b], an extensible Java-
based development platform. jUCMNav [RKAO06] was first developed to support the creation and
maintenance of Use Case Maps scenario models, but GRL [IT03b] was recently added to achieve
complete coverage of URN.

The integration of UCM and GRL views in the same tool allows for the creation of various types
of traceability links between elements of both notations. These links can be used to measure the
impact of a modification to any evolving GRL/UCM diagram on the other aspects of the model.
For instance, links can be defined between GRL intentional elements or actors as source, and UCM
responsibilities, components, or maps as target. Very recently, jUCMNav was extended to support
scenario definitions [KA07]. Figure 2.14 shows jUCMNav graphical user interface.
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Figure 2.14: jUCMNav GUI

2.2 Introduction to Abstract State Machines

Abstract State Machines (ASM) aim to bridge the gap between informal and formal descriptions.
ASMs have a precise semantics in order to prevent ambiguities and lead to understandable models.
They are expressive enough for modeling various problems and can describe large systems through
structuring mechanisms. ASMs provide abstraction and refinement techniques to support modeling
at different abstraction levels.

2.2.1 ASM Thesis

Abstract State Machines (ASMs), formerly known as Ewvolving Algebras, have been discovered by
Yuri Gurevich [Gur88} in an attempt to improve on Turing’s thesis [Tur36) so that:

Every algorithm is an ASM as far as the behavior is concerned. In particular the given
algorithm can be step-for-step simulated by an appropriate ASM [Gur04]. (This is the
ASM Thesis)

This means that an activity which is conceptually done in one step can be executed in the model
in one step. This is in contrast to Turing machines where simple operations might need any finite
number of steps.

Abstract State machines have been used to capture sequential, parallel and distributed algo-
rithms. The definition of sequential ASMs was formulated in [Gur94, Gur99, Gur00]. It stipulates

that for every sequential algorithm, there exists an equivalent sequential ASM (i.e. with the same
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set of states, the same set of initial states, and the same state transformation rules). This Sequential
ASM Thesis relies upon the following three postulates for sequential algorithms from which it can
be proved:

e Sequential Time Postulate [Gur00]. The sequential time postulate expresses that the
behavior of a sequential time algorithm is determined by the set of states, the subset of initial
states, and the state transition function.

Postulate 1 (Sequential Time Postulate) An algorithm A is determined by:

- A set S(A) of states,
- A subset Z(A) of states, called the initial states of A,

- A function T4:S(A) =S8(A) called the one-step transformation of A.

o Abstract State Postulate [Gur00]. The abstract-state postulate requires that the states of
a sequential algorithm are first-order structures, with fixed domain and signature, and closed

under isomorphisms (respecting the initial states and the state transformation law).

Postulate 2 (Abstract State Postulate) Let A be an algorithm.

- States of A are first-order structures.
- All states of A have the same vocabulary.
- The one-step transformation 74 does not change the base set of any state.

- 8(A) and Z(A) are closed under isomorphisms. Further, any isomorphism from a state

X onto a state Y is also an isomorphism from 74(X) onto T4(Y).

¢ Bounded Exploration Postulate [Gur00]. The bounded exploration postulate states that
for every sequential algorithm, the transformation law depends only upon a finite set of terms
over the signature of the algorithm, in the sense that there exists a finite set of terms such
that for arbitrary states X and Y which assign the same values to each of these terms, the

transformation law triggers the same state changes for X and Y.

Postulate 3 (Bounded Exploration Postulate) Let A be an algorithm. There exists a
finite set T of terms in the vocabulary of A such that A(A,X) = A(4, Y) whenever states X,
Y of A coincide over T. A is a set of updates.

e Parallel Characterization Thesis [BG03]. The definitions of parallel ASMs and dis-
tributed ASMs were formulated in [Gur94, BG03]. The authors in [BGO3] define a parallel
algorithm as anything satisfying the sequential time postulate, the abstract state postulate,
and several other postulates describing how the parallel subprocesses communicate with each
other. The definition of parallel ASMs in [BGO3] is a variant of that in[Gur94]. In either
version, parallel ASMs are parallel algorithms.
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Postulate 4 (Parallel Characterization Thesis) [BG03/ For every parallel algorithm,
there is a behaviorally identical parallel ASM.

The axioms provided in [BGO03] do not allow a parallel algorithm to create components on the
fly. In [BGO7] the authors removed this restriction by liberalizing the axioms provided in [BG03].
Both sequential and parallel ASM thesis have been confirmed theoretically [Gur00, BG03] and
Experimentally [Hug06, BS03]. For a rigorous mathematical definition of the semantic foundations
of ASMs, we however refer to [BS03, Gur94, Gur00, BG03].

ASMs have been used to specify semantics of a wide variety of programming languages in par-
ticular C++ [Wal95] and Java [BS98], logic programming languages such as Prolog [BR95] and its
variants, and hardware languages such as VHDL [GBM95]. ASMs have been also used to define
the operational semantics of UML activity diagrams [BCR00a] and the formal definition of ITU-T
standard SDL 2000 [GK97, EGG*01].

Part of the ASM definition given in this section, was the one-step tranformation 74. There was
no restriction on how 7 should be defined as long as this was done unambigously. In the following
section, the semantics of tranformation 7 will be given in the context of an abstract programming

language.

2.2.2 ASM Program

An ASM define a state-based computational model, where computations (runs) are finite or infinite

sequences of states {S;} obtained from a given initial state Sy by repeatedly executing transitions
d;-

é I3 [
50_;51_2>52 R

An ASM A is defined over a fixed vocabulary V, a finite collection of function names and relation
names. Each function symbol has a fixed arity n and type T1,...,T, — T where T; and T are basic
types. Functions in V may be:

e Static: having the same (fixed) interpretation in each computation state of A,

e Dynamic: where function names can be altered by transitions fired in a computation step.
Dynamic functions can be further classified into:

- Input functions functions that A can only read, which means that these functions are
determined entirely by the environment of .A. They are also called monitored.

- Controlled functions of A are those which are updated by some of the rules of A and are

never changed by the environment.

- Output functions of A are functions which A can only update but not read, whereas the

environment can read them (without updating them).

- Shared functions are functions which can be read and updated by both A and the envi-

ronment.
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Given a vocabulary, A is defined by its program P and a set of distinguished initial states Sp.
The program P consists of transition rules and specifies possible state transitions of A in terms of
finite sets of local function updates on a given global state. Such transitions are atomic actions. A
transition rule that describes the modification of the functions from one state to the next has the

following form:

if Condition then < Updates> else < Updates> endif (1)

Where Updates is a set of function updates (containing only variable free terms) of form:
flt1,t2,- - tn):=t which are simultaneously executed when Condition (called also guard) is true.
In a given state, first all parameters ¢;, t are evaluated to their values, v;, v, then the value of
f(v1,-..,vn) is updated to v. Such pairs of a function name f, which is fixed by the signature, and an
optional argument (v1,...,v,), which is formed by a list of dynamic parameters value v;, are called
locations.

Ezample: The following rules yield the update-set {(x, 2), (y(0), 1)}, if the current state of the
ASM is {(x, 1), (y(0), 2)}:

if (x=1) then z:=y(0)
y(0) =2 (2)

In every state, all the rules which are applicable are simultaneously applied (if the updates are
consistent) in one step to produce the next state. Each function update changes a value at a specific
location given by the left-hand-side of the update.

A set of updates is called consistent if it contains no pair of updates with the same locations,
i.e. no two elements (loc,v),(loc,v’) with v#v’. In the case of inconsistency, the computation does
not yield a next state.

Ezample: The following rules yield the inconsistent update-set {(x, 1), (y, 3), (x, 2)}, due to the
conflicting updates for x:

z:=1
y:=3
z:=2 (3)

ASM Universe. ASMs are multi-sorted based on the notion of universes (or domains). Funec-
tions are defined over these universes. We presume the standard mathematics universes of Booleans,
integers, lists, etc., as well as the standard operations on them such as the usual Boolean operations
(A, V, etc.). A universe can be dynamically extended with individual objects by:
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extend Universe with v
< Rule >
end extend 4)

where v is a variable which is bound by the extend constructor.

Synchronous Execution. Simultaneous updates provide a convenient way to abstract from
sequentiality. This feature allows for the possible description of parallel and distributed systems. It
is enhanced by the ASM construct forall allowing the simultaneous execution of a rule R for each

element v satisfying a given condition ¢.

forall = with ¢
Rule (5)

Non-determinism in ASMs. A convenient way to abstract from details of scheduling of rule
executions is to use non-determinism. In ASM, non-determinism can be introduced in two ways: by
using input function (external functions), which serve as oracles in that their value is determined
through the environment, and by using the choose constructor which defines an arbitrary selection

of one element in a universe:

choose v in Universe with ¢

Rule (6)

where v is non-deterministically selected from the given universe. The choose constructor can

be qualified by a condition.

2.2.3 Multi-Agent ASMs

Multi-Agent Abstract State Machines, also called distributed ASMs, allow for multiple concurrent
sequential computations of single agents, each executing its own sequential ASM.

For Multi-Agent ASMs, the notion of run, which is defined for sequential ASMs as sequence of
computation steps of a single agent, is replaced by the notion of a partial order of moves of finitely
many agents.

Two types of multi-agents are defined in the literature [BS03]:

- Synchronous Multi-Agent ASMs: Defined as a set of agents running in parallel synchronized
using an implicit global system clock. The sequence of events determining a run is the sequence
of states forming the run of the underlying multi-agent synchronous ASM, where the global

clock plays the role of a step counter.
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- Asynchronous Multi-Agent ASMs: Defined as agents proceeding in parallel at their own pace
and with atomic actions applied in its own local states, including input from the environment
as monitored functions. More formally an asynchronous ASM is given by a family of pairs (a,
ASM(a)) of pairwise different agents, elements of a possibly dynamic finite set AGENT, each
executing its basic program ASM(a)

2.2.4 ASM Properties

The main properties and strengths of ASMs are summarized in the following points:

e Using ASMs, we can express a system structure as well as its dynamics within the same
notational framework.

o ASM are easy to understand and can be used by engineers that are not familiar with algebra
and logic since the overall framework is kept much simpler.

e ASM can be seen as a general purpose notation. It is suitable for various kinds of systems in
terms of the problem to be solved and also in terms of size (the broad range in the literature
shows this, see [Hug06]).

e Model on a natural level of abstraction. Details may be abstracted in the model for the benefit

of conciseness and readability.

e ASMs provide a proof of correctness of the system model in several steps. The system is
described at different levels of abstraction, where each level is an extension or refinement
of the next upper level by means of an additional feature that is specified. By proving the
correctness between models on each two adjacent levels of abstraction, we obtain the global

proof.

2.2.5 ASM Tools

Several ASM engines were designed to develop and validate Abstract State Machines specifications.

. The main known ones are:

- ASM Workbench (ASM-WB) [Cas99] designed by Giuseppe Del Castillo at the University of
Paderborn (Germany).

- ASM Gopher [Sch06] designed by Joachim Schmid and Wolfram Schulte at the University of

Ulm, (Germany). It is an extension of the functional programming language Gofer.

- XASM (eXtensible Abstract State Machines) [Anl00] designed by Matthias Anlauff at the
Technical University of Berlin (Germany). XASM became an open-source ASM tool.

- AsmL (Abstract State Machines Language) [ASMO06], developed by the Foundation of Software
Engineering group at Microsoft Research.

More information about these and other ASM tools can be found in [Hug06]. In the following
section, we provide a brief introduction to AsmL [ASMO06], which is utilized in this thesis.
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AsmL: The Abstract State Machine Language

AsmL is an executable specification language based on the theory of Abstract State Machines.
The current version, AsmL for Microsoft .NET, is embedded into Microsoft Word. It uses XML
and Word for literate specifications. It is fully interoperable with other .NET languages. AsmL
generates .NET assemblies which can either be executed from the command line, linked with other
.NET assemblies, or packaged as COM components. AsmL is integrated with Spec Ezplorer [Spe06],
a software development tool for advanced model-based specification and conformance testing. Spec
Explorer is the successor of AsmL for Microsoft .NET. It contains a compiler for AsmL, and a tool
to explore models written in AsmL.

AsmL has a strong mathematical component. It is fully object-oriented as well, and it provides
complex data types such as sets, finite mappings, sequences and structures.

The crucial features of AsmL, intrinsic to ASMs, are massive synchronous parallelism and finite
choice. ASMs steps are transactions, and in that sense Asml programming is transaction program-
ming.

Here are some additional features of AsmL:
e Advanced type system: disjunctive types, semantic subtypes, generics,
e Pattern matching for structures and classes,

o Intra-step communication with outside world and among sub-machines,

Reflection over execution,

Data access, structural coverage,

States as first class citizens.

2.3 Chapter Summary

This chapter introduced material for readers who want to familiarize themselves with UCMs and
Abstract State Machines. It covers the philosophy behind each notation, the information needed to
use them, elements of the notation (paths and components for UCMs; universes and rules for ASM),

and tool support.
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Chapter 3

State of the Art

This chapter provides a literature survey of state of the art methodologies that are closely related to
our Early Stages V&V approach. First, we provide an overview of several high level scenario based
notations, discuss scenario integration approaches and present existing classification approaches.
Then we provide an overview of formal semantics approaches as well of some formal specification
techniques. Finally, we present the SPEC-VALUE approach proposed by Daniel Amyot in his PhD
thesis [Amy0lal.

3.1 Scenario Notations

Scenarios are known to help requirements engineers to elicit functional requirements, uncovering
hidden requirements and trade-offs, as well as comprehend and validate requirements. Scenario-based
models are intuitive to use and improve the communication of requirements to stakeholders. They
go beyond the requirement phase by covering the whole software development life cycle. They drive
the specification, design, testing, validation, and the evolution of systems. The exact definition of a
scenario may vary depending on purpose, contents and used semantics [RP96], but most definitions
include the notion of a partial description of system usage as seen by its stakeholders.

With the advent of Object-oriented design modeling more than a decade ago, the concept of use
cases [JBR99] become a widespread practice for capturing functional requirements. Most authors
agree that, in broad terms, use cases and scenarios are descriptions of a sequence of actions or
events of some generic task which the system is meant to accomplish. However, there is no agreed
distinction between the meanings of use case and scenario.

Jacobson et al. [JEJ94], define use cases as follows: “a use case is a sequence of transactions in
a system whose task is to yield a measurable value to an individual actor of the system.”. In UML
context, Rumbaugh et al. [RJB99] define a scenario as a sequence of actions that illustrates behavior.
A scenario may be used to illustrate an interaction or the execution of a use case instance [RJB99]. A
slightly different distinction between “use cases” and “scenarios” is stated by Maiden et al. [Mai98].
They treat use cases as a collection of actions and the temporal rules that govern how the actions

can be linked together. In contrast, a scenario is one sequence of events, the ordering of which is
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tied to the start and the end events or actions in the use case.

Note: In this thesis, the terms use cases and scenarios are used interchangeably.

In the following section, we give a short overview of some high-level scenario-based notations
(e.g., MSC, UML sequence Diagrams, etc.) as well as a literature review of their main formalization

attempts.

e Message Sequence Charts (MSCs) Message sequence charts (MSCs), standardized by the
ITU-T [IT04] in recommendation Z.120, is a popular language for specifying scenarios that
describe interactions between system entities. MSCs have been particularly useful in the early
stages of system development in domains such as telecommunication. Message Sequence Charts
may be used for requirement specification, simulation and validation, test-case specification

and documentation of real-time systems.

Basic MSCs (bMSCs) model the communication behavior of system components (vertical lines)
and their environment through message message exchanges (arrows). An MSC is completely
characterized by the sequences of events it allows. An event may be a local action, message
events (i.e. sending a message, receiving a message, a lost message and a found message),

creation and termination of an instance and timer events (i.e. set, reset and time-out) [Mau96].

A set of bMSCs usually covers a partial system behavior only. However, they can be combined
to form more complete specifications by means of High-level Message Sequence Charts (HM-
SCs) [MR97]. HMSCs enable the structuring and hierarchical decomposition of basic MSCs
through alternative, sequential and parallel composition, a family of loop operators, and oper-
ators for describing optional behavior and exceptions. MSCs with structures is another MSC
variant that contains some structures, such as coregions, references, inline expressions. It mixes
events and bMSCs.

Several approaches to formalizing MSC have been studied. For basic MSCs, semantics have
been given in terms of Petri Nets [Hey00, GRG93], Abstract Execution Machine [JP01],
automata [LL93a], partial order [AHP96]. The most extensive semantics are based on Process
algebra [MR94, Mau96, MR99]. Katoen et al. [KL98] provide a compositional denotational
semantics for bMSCs and HMSCs. A bMSC is mapped onto a partially ordered multiset
(pomset). The constructors of HMSC correspond to the appropriate operations on pomsets.
S. Heymer [Hey98] use labeled partially ordered sets (lposets) to define the semantics of bMSCs
and HMSCs.

e UML Sequence Diagrams. UML Sequence Diagrams [OMGO03] can be seen as OO vari-
ants of the ITU-T standard language Message Sequence Chart (MSC). A sequence diagram

represents the interaction among the different objects of a system.

In UML 1.x such sequence diagrams were quite simple. A sequence diagram represents the
interaction among the different objects of a system, where horizontal arrows represent the mes-
sages between the life-lines represented by vertical lines. Loop and alternative are constructs
introduced in UML 2.0 called interaction fragments. This feature allows to concisely describe

within one diagram a set of traces, which would otherwise require a number of diagrams.
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Other improvements include nesting capabilities and extended control constructs, make UML

2.0 sequence diagrams and MSCs have more or less the same expressiveness.

A number of papers address the problem of formalizing UML sequence diagrams. In [CSB01] a
formal translation of Sequence Diagrams into Petri Nets is proposed, based on the UML Collab-
orations package meta-model. A Similar approach was proposed by Bernardi et al. [BDMO02]
who proposed an automatic translation of Sequence Diagrams into Generalized Stochastic Petri
Nets. Aredo [Are02] presented formal semantics of UML sequence diagrams using PVS (Proto-
type Verification System) [OSR95]. Tahir et al. [TSBCO05] proposed an operational semantics
for UML Sequence diagrams based on a relation of causality between the actions of emis-
sion and reception of messages. This semantics are claimed to avoid unnecessary scheduling

constraints and so ease the elaboration of high level specifications.

UML Use Cases Diagram. The UML use case diagram captures Jacobson’s use cases [Jac04].
A use case diagram describes a collection of use cases (given by a graphical and textual de-

scription) and external actors that interact with the system.

[Lar01] distinguish two types of use cases:

- Essential Use Cases [CL99]: they are abstract, lightweight, relatively free of technology
and implementation detail; design decisions are deferred and abstracted, especially those
related to the user interface [Lar01]. Essential use cases are of primary importance early
in a project’s analysis. Their purpose is to document the business process that the system
must support without bias to technology.

- Real Use Case: concretely describes the process in terms of its real current design, com-
mitted to specific input and output technologies, and so on. When a user interface is
involved, they often show screen shots and discuss interaction with the widgets [Lar01].

UML use-case models supports reuse through four generalization relationships: (1) Extend
dependencies between use cases, (2) Include dependencies between use cases, (3) Inheritance
between use cases, and (4) Inheritance between actors. These relationships have given rise to
a great deal of confusion because they do not have precise semantics. Génova et al. [GLO04]

revealed these ambiguities and imprecisions and they proposed a solution.

Overgaard et al. [OP98] provide an operational semantics of Use Case constructs and their
specific types of relationships, namely Uses, Extends, Association, Dependency and Constraint,
using an object-oriented specification language named ODAL, which has been formalized using
the p-calculus [MPW92].

Operation schemas [SS00] have been proposed to formalize use cases based on the observation
that use cases provide an informal description of interactions between a system and its actors,
whereas operation schemas precisely describe a particular system action which executes atom-
ically. Since operation schemas are more precise and formal than natural language, they offer

some rigorous basis which makes some reasoning possible.
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Shen et al. [SLO3] provided a new formal language (High-level Constraint Language)(HCL)
[SGY*04] which can be used to describe the pre- and post- condition for a use case. Further-
more, if the pre- and post- condition in a use case diagram are executable, then the resulting
model can be translated to AsmL language which allows for requirement model execution. The

resulting HCL model can be tested and simulated.

UML Activity Diagrams. Activity Diagrams capture the dynamic behavior of a system
within the UML framework. The purpose of the activity diagram is to model a workflow

process and/or to model operations.

UML 2.0 has introduced significant changes and additions to activity diagrams. One of the
most novel concepts introduced, are so called structured nodes (StructuredActivityNodes in
the meta-model). This concept includes features like loops, expansion regions, collection valued
parameters, and data streaming. UML 2.0 activity diagrams are typically used for business
process modeling, for modeling the logic captured by a single use case or usage scenario, or
for modeling the detailed logic of a business rule. In many ways UML activity diagrams are
the object-oriented equivalent of flow charts and data flow diagrams (DFDs) from structured

development.

Activity diagrams share many characteristics with UCMs: focus on sequences of actions,
guarded alternatives, and concurrency; complex activities can be refined; and simple map-
ping of behavior to components can be achieved through vertical swimlanes. However, activity
diagrams do not capture dynamicity well, they do not support time constructs, and the binding

of actions to components is semantically weak in the current UML standard.

Many approaches to formalize Activity Diagrams have been proposed. Early work deals
with formalizing UML1.x activity diagrams: Boerger et al. [BCR00a] propose a semantics
of UML activity diagrams in terms of Abstract State Machines. The authors in [YsZ03]
present a m-calculus [MPW92, Mil89] semantics for UML 1.4 activity diagrams. Eshuis
and Wieringa [EWO04] define two semantics approaches: requirements-level [EW01] and an
implementation-level semantics [Esh02] for activity diagrams, intended for workflow modeling.
These two semantics are based upon the STATEMATE semantics of Statecharts. Activity

diagrams semantics have been also given in terms of Petri nets [GGW98].

An almost complete formalization of UML2 activity diagrams using Petri nets is described by
Storrle. He applies procedural Petri nets to formalize control flow [Sto04a], data flow [St605],
exceptions and structured nodes [St604b]. Recently, Stoorrle and Hausmann [SH05] have
identified several problems when formalizing UML 2.0 activity diagrams with Petri nets. They
have shown that in principal, a Petri net formalization suffers from several problems such as

inadequate support for streaming and traverse-to-completion.

The authors in [VK05] proposed a formal semantics of a subset of UML 2.0 Activity Diagram
relevant for business process modeling. They defined an Activity Diagram Virtual Machine
(ADVM) based on the token flow (Petri net like) semantics. The Activity Diagram Virtual

machine is defined by means of a meta-model, with operations defined by a mix of pseudocode
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and OCL pre- and postconditions.

Chisel Diagrams. The CHISEL notation [AGG*98] was developed by Bellcore (now Telcor-
dia Technologies) as an informal graphical notation for describing telecomms services and fea-
tures. Chisel notation has been used in the first feature interaction detection contest [GBGOO00]

and it demonstrated that it is capable of describing a wide variety of features.

CHISEL diagrams are directed cyclic graphs that describe the sequences of events taking place
on component interfaces. A diagram has numbered event nodes that contain input or output
signals (but not both). Multiple signals in a node may be processed independently in parallel.
Event nodes are linked by arcs which can be labeled with a boolean condition as a guard on
the occurrence of a transition. Multiple abstract scenarios and actors can be involved, but
internal actions are not covered. Decomposition is partially supported through references, and
there is no language construct for the explicit support of time. CHISEL is supported by the
Sculptor tool developed at Bellcore.

Turner [TURQO] proposed an enhanced version of CHISEL with tightly defined rules for the
syntax and static semantics of diagrams. The resulting notation is called CRESS (CHISEL
Representation Employing Systematic Specification). CRESS has been formalized using SDL
(Specification and Description Language) [IT02a] and LOTOS (Language Of Temporal Order-
ing Specification) [ISO89].

UML State Diagrams. A UML state diagram is used to describe a system behavior in terms
of its events and state changes. Its notations and semantics are substantially those of Harels
Statechart [Har87, HP98] except it is an object-based variant of Harels.

A UML State Diagram specifies the states a system may reside in and the transitions from one
state to another. In addition, it also specifies what causes activities to start and stop, and how
the system responds to various triggering events (An event may be generated by the system
or by the environment). One statechart describes the behavior of a single class of objects.

Statecharts may be synthesized using sequence, alternative, iteration and concurrency [ZHJ04].

Much work has been carried out to give a formal semantics to the UML State Diagrams.
These include those of J.Lilius et al. [Pal99] and D.Latella et.al [LMM99] which translate UML
State Diagrams to Promela/SPIN that allow linear temporal logic model-checking. The works
in [SZ02, LS02] formalize UML State Diagrams in B, [BCRO0b] in ASM, [NB03, YLWDO5]
in CSP and [vdBO01] uses labeled transition systems [NB03]. Jansamak and Surarerks [JS04]
proposed transformation rules for formalizing UML statechart diagrams in terms of Concurrent
Regular Expressions (CREs) [GR92]. Concurrent Regular Expressions are extensions of regular
expression with four operators- interleaving, interleaving closure, synchronous composition and
renaming. [CDO05] presents a comparative literature survey on approaches to formally capture
the semantics of UML state machines; it categorizes and compares 26 different approaches.
Michael von der Beeck [vdB94] provides a comparison of 24 statecharts variants base on 19

criteria.
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¢ Live Sequence Charts (LSCs). Live Sequence Charts (LSCs) [DHO1] are introduced by
Damm and Harel to overcome the shortcomings of MSCs. MSCs do not provide means to
distinguish mandatory and possible behavior. LSCs introduce the distinction between scenarios
that must happen, scenarios that may happen and scenarios that should never happen (i.e.
negative scenarios). LSCs distinguish conditions that must be fulfilled (called hot conditions)
from conditions that may be fulfilled (called cold conditions). Furthermore they provide means
to specify an activation scenario, called prechart, which if successfully executed, forces the

system to satisfy the scenario given in the actual chart body.

[HMO1, MHKO02] extend the initial LSC version with assignments (which allow values of object
properties or functions to be stored at one point in a chart), loops (which provide means
for iteration within a single chart), variables (which allow for symbolic representation of the
information exchanges between objects and thus to represent several instantiations of the same
scenario with different actual values for each one) and symbolic object instances (which allow
for the instances to be symbolic and parameterized). These extensions are part of a play-in/out
methodology [HMO1}, which is supported by a tool, called the play-engine [HMO1].

LSCs have been applied to the automotive, telecommunication, and hardware domains [BGS05,
CHKO5].. The semantics of LSCs is briefly discussed in [DHO1] using skeleton automata and
program-like pseudo-codes. However, the first executable semantics for LSCs is described
in [HM03]. Bontemps and Heymans [BH02] use Biichi automata to define High-level LSCs, a
language expressed by a set of LSCs, so that standard algorithm for automata can be used
to check consistency and refinement. Klose and Wittke [KW01] derive a similar timed Biichi
automaton to capture the semantics of an LSC chart in isolation. [SDO05] propose formal
semantics of LSCs in terms of CSP.

e Petri Nets (PNs). Petri Nets were invented in 1962 by Carl Adam Petri in his Ph.D the-
sis [Pet62]. Petri Nets language [Pet77] is a graphical and mathematical modeling language
used to capture functional requirements (sequential, alternative, asynchronous, distributed,
parallel, non deterministic and concurrent scenarios) in a component-independent environ-
ment. It is also a formal specification technique with powerful methods for qualitative and

quantitative analysis [Mur89].

PNs consists of places, transitions, and directed arcs. Arcs run between places and transitions.
The places from which an arc runs to a transition are called the input places of the transition;
the places to which arcs run from a transition are called the output places of the transition.
Places may contain any number of tokens. A distribution of tokens over the places of a net is
called a marking. Transitions act on input tokens by a process known as firing. A transition
is enabled if it can fire, i.e., there are tokens in every input place. When a transition fires,
it consumes the tokens from its input places, performs some processing task, and places a

specified number of tokens into each of its output places.

Petri Nets have been used in a large variety of different areas. Their application ranges from

informal to formal systems and from software to hardware systems and from sequential to
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concurrent systems. Petri Nets are used in communication protocols, distributed algorithms,
computer architecture, computer organization, human-machine interaction and many others
areas. Various kinds of Petri net classes with numerous features and analysis methods have
been proposed in literature for different purposes and application areas. Amongst these ex-

tensions we find:

— Colored Petri Nets (CPNs) [Jen94, Jen92]. CPNs introduces the notion of token types,
namely tokens are differentiated by colors, which may be arbitrary data values. Each
place has an associated type, determining the kind of data that the place may contain.

— Hierarchical Colored Petri Nets (HCPNs) [HJS91]. HCPNs introduce a facility for build-
ing a PN out of subnets or modules. The idea behind the HCPNs theory is to allow the
construction of a large model by using a number of small PNs, which are related to each

other in a well-defined way.

— Object Petri Nets (OPNs) [Lak94]. OPNs are presented as an extension of colored Petri
Nets made in a similar way to Hierarchical colored Petri Nets, but in an object-oriented
perspective. OPNs support a complete integration of object-oriented concepts into Petri
Nets, including inheritance and the associated polymorphismn and dynamic binding. A
class is defined as a Petri net, which can be, as usual, instantiated. In addition to places
and transitions, a class contains data fields and functions. Data fields have types that
may be simple (integer, real Boolean), class, or multi-set, which generalizes classical
Petri net, places. New functions can be defined assuming predefined types and functions.
Petri Net has at least, two-object-oriented extensions:(1) LOOPN (Language for OO
Petri-Nets) and LOOPN++ [LK91] (2) COOPN (Concurrent OO Petri-Nets) and CO-
OPN/2 [Bib97].

— Petri Nets with Time. The two main extensions of Petri Nets with time are Time Petri
Nets (TPNs) [Mer74] and Timed Petri Nets(TdPNs) [Ram74]. TPNs associate with each
transition a time interval. A transition can be fired if its enabling duration lies in its
interval and time can elapse only if it does not disable some transition: firing of an
enabled transition may depend on other enabled transitions even if they do not share
any input or output place, which restricts a lot applicability of partial order methods in
this model. Moreover, with this urgency requirement, all significant problems become
undecidable for unbounded TPNs. Timed Petri Nets (TdPN), also called timed-arc Petri
Nets, associate with each arc an interval (or bag of intervals). In TdPNs, each token has
an age. This age is initially set to a value belonging to the interval of the arc which has
produced it or set to zero if it belongs to the initial marking. Afterwards, ages of tokens
evolve synchronously with time. A transition may be fired if tokens with age belonging

to the intervals of its input arcs may be found in the current configuration.
High-Level Petri Nets [ISO04] have been standardized by ISO/IEC.
e CREWS. CREWS (Cooperative Requirements Engineering With Scenarios) is a RE research
project funded by the European Community (21.903) of the ESPRIT framework programme.
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Its goal is to develop, evaluate, and demonstrate the applicability of methods and tools for coop-
erative scenario-based requirements elicitation and validation. Natural language is used to elicit
stakeholders requirements (i.e. textual scenarios) [RA98]. These scenarios are validated by the
use of cooperative requirements animation, and by systematic comparison of the specification
with usage test scenarios. This notation is supported by a tool called L’Ecritoire [RAC*98].
The CREWS-LEcritoire approach aims at eliciting requirements through a bi-directional cou-
pling of goals and scenarios. The result will be Requirement Chunks (RC) which are pairs (G,
Sc) where G is a goal and Sc is a scenario. A requirement chunk is a possible way of achieving

a goal. Requirement Chunks (RCs) are related through:

— Composition: AND relationships among RCs link together those chunks that require each
other to define a completely functioning system.

— Alternative: RCs related through OR relationships represent alternative ways of fulfilling
the same goal.

— Refinement relationships: Relates requirement chunks at different levels of abstraction.

Dardenne et al.(KAOS Approach) [DvLF93] use a set of predefined levels of abstraction to link
high level goals and operational requirements. However, goals are operationalized with logical

predicates.

The Behavior Tree Notation. The Behavior Trees (BT) notation [Dro03] is a graphical
notation to capture the functional requirements of a system (provided in natural language) in a
simple tree-like form. A behavioral tree is composed of nodes and edges. A node may be one of
the following five types: a state realization; a selection (or condition); a guard; an internal event
modeling communication and data flow between components within the system; an external
event modeling communication and data flow with the environment of the system. A node
refers to a particular component, C, and a behavior, B. In addition, each node can be labeled
by one or more flags. A flag can specify:(a) a reversion in case the node is a leaf node, indicating
that the control flow loops back to the matching node (i.e., a node with same component name,
type and behavior);(b) a macro node, indicating that the flow continues from the matching
node;(c) killing of a thread, which kills the thread that starts with the matching node, or (d)
a synchronization point, where the control flow waits until all other threads with a matching
synchronization point have reached the synchronization point [LKR07]. Dromey [Dro03] claims
that BTs provide a direct and clearly traceable relationship between what is expressed in the
natural language representation and its formal specification. Translation is carried out on a
sentence-by-sentence basis.

Individual requirement behavior trees (RBTs) for individual functional requirements are inte-
grated, one-at-a-time, into an evolving design behavior tree (DBT). Integration of requirements
trees [Dro03, WD04] is carried out on the graphical level. An RBT is merged with a DBT if
its root node matches one of the nodes of the DBT. This process is called genetic design pro-

cess [DP05]. Semantically, the merging step takes place when the matching node provides the
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point at which the preconditions of the merged RBTs are satisfied. Kirsten [Win04] developed
a formal semantics for a subset of Behavior Trees using CSP.

The notation, as introduced by Dromey [Dro03], does not support the concept of time and
consequently its application is limited to non-real-time systems. Lars et al. [LKRO7] have

recently extended it to include timing constraints.

Use Case Maps (UCMs). The Use Case Maps notation [BC96] is a high level scenario
based modeling technique that can be used to specify functional requirements and high-level
designs for reactive and distributed systems. UCMs are expressed by a simple visual notation
that allows for an abstract description of scenarios in terms of causal relationships between
responsibilities (e.g. event, operation, action, task, function, etc.) along paths allocated to a
set of components. These relationships are said to be causal because they involve concurrency,
partial ordering of activities, and they link causes (e.g., preconditions and triggering events) to
effects (e.g. post-conditions and resulting events). In UCM, scenarios are expressed above the
level of messages exchanged between components, hence, they are not necessarily bound to a
specific underlying structure (these types of UCMs are called Unbound UCMs). Components
are also generic and can represent software entities (objects, processes, databases, servers,
functional entities, network entities, etc.) as well as non-software entities (e.g. users, actors,
processors). UCMs can also capture run-time behavior through dynamic stubs and dynamic
responsibilities, and they have partial support for time constructs with timers and time-out
paths. Concrete scenarios can be extracted using a simple path data model (Boolean variables)
and scenario definitions, where initial values and triggered start points are provided. For a

detailed description of many aspects of the UCM notation the reader is referred to Section 2.1.

Scenario Trees. Hsia et al. [HSG'94] describe user oriented scenario trees that represents
all scenarios for a particular user. Scenario trees are composed of nodes, which capture system
states, and of directed arcs representing events that allow the transition from one state to the
next. The scenarios are created by tracing events from the node at the top of the tree through
a unique path to a terminal node on the bottom of the tree. All the scenarios are logically
associated with the user views, and a formal BNF like grammar is created for each user view.
This approach is effective when applied to a single thread of control and well-defined state
transition sequences that have few alternative courses of action and no concurrency. However,

this is not the case for industrial application especially telecommunication systems.

Somé’s Scenarios. Somé et al. [SDV95, SDV96] describe a scenario as a sequence of opera-
tions and time of occurrence, that - may depend on conditions in the system and environment.
From a user point of view, two kinds of operations may be distinguished in a scenario: actions
on a system interface (stimuli), and reactions to them. The time of occurrence of operations
can be constrained by interaction initial delays and timeouts and scenario timeouts. An in-
teraction initial delay specifies a minimal, a maximal or an exact amount of time that must
pass between the interaction first operation, and the last operation of the interaction preceding
it. This notation is implemented in the Use Case Editor tool (UCEd)[Som04]. Furthermore,
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Somé et al. [SDV95, SDV96] have provided a formal interpretation of a scenario as a quadruple
(Bnum, Rp, Rr, Rp) where Rpyp, is a scenario number, Rp is the scenario precondition, Ry is
a sequence of interactions and Rp is a scenario timeout. The resulting scenarios are then

translated into a timed automata specification.

3.2 Scenarios Integration

In the area of scenario integration, most research has only addressed the problem of sequential
integration [DFKM98, SDV95, KM94b], and few researchers have been interested in a more general
form of integration which consider composition of state machines synthesized from scenarios.

Desharnais et al. [DFKMO98] defines a scenario as the union of two relations Re and Rs where
Re represents the relation of the environment which captures all the possible actions of the en-
vironment and Rs the relation corresponding to the system reaction. The scenario integration is
given by the composition of the scenarios relations. Koskimies and Makinen [KM94b] presents an
algorithm for synthesizing a Statechart for an object of a system from a list of scenarios. They infer
a Statechart that is able to execute all traces corresponding to the input scenarios. Somé et al.
[SDV95] proposed sequential, alternative and parallel composition of textual timed scenario. Dano
et al. [DBB97] proposed a formalization of use cases with Petri nets, the authors defined a list of
temporal relations between use cases (begin at the same time, end at the same time, one after the
other, etc.). Klein et al. [KCHO5] proposed a merge operator for behavioral requirements expressed
by Message Sequence Charts and showed how this product can be systematically used to integrate
new behaviors in an existing one. Glinz [Gli95] presented a way for composing scenarios represented
by Statecharts using some operators (conditional, iterative and concurrent), but without supporting
scenarios overlapping.

Standard scenario-based modeling diagrams such as UML2 Interaction Overview Diagrams(IOD)
[OMGO05] and ITU high-level MSCs [IT04] address the scenario integration problem. These diagrams
are essentially graphs whose nodes represent scenarios and edges show the control flow between them.
Behaviors specified by nodes are considered as non-overlapping.

Use Case Maps addresses inter-scenario overlapping but does not provide an integration algo-

rithm.

3.3 Classifications of Scenario Notations
Many classification approaches have been proposed to categorize and compare scenario notations.

e Amyot et al. [AEO03] define nine criteria to categorize and compare fifteen scenario-based

notations. The proposed criteria are:

- Component focus: Scenarios can be described in terms of communication events be-

tween system components or independently from components, in a pure functional style.
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- Hiding: Scenarios could describe system behavior with respect to their environment only
(black-box), or they could include internal (hidden) information as well (gray-box).

- Representation: Scenarios can be described in various ways, for instance with semi-
formal pictures, natural language, structured text, logic, grammars, trees, state machines,

tables, visual paths, and sequence diagrams.

- Ordering: Scenarios represent a collection of events that can be ordered sequentially or

causally.

- Time: Support for expressing time constraints with appropriate data types and evalua-

tion mechanisms.

- Decomposition: Decomposition can be hierarchical (which improves scalability) or be

achieved through dependencies (e.g. references, contains, etc.).

- Abstraction: An abstract scenario is generic, with formal parameters, whereas a con-

crete scenario focuses on one specific instance, with concrete data values.

- Identity: Scenarios can focus on one actor (useful for component-oriented implementa-

tions) or target many actors at once (useful when describing end-to-end situations).

- Dynamicity: A scenario notation is dynamic when it enables the description of behavior

that modifies itself at run-time, otherwise it is said to be static.

o The authors in [LDD06] have presented a comparative survey of 21 approaches found in the lit-
erature based on two sets of comparison criteria. One set of criteria is for assessing approaches
from a user’s perspective. The other set of criteria compare the approaches from a more
technical perspective, by focusing on the synthesis of scenario-based models into state-based
models.

- Criteria Relevant From a User’s Perspective:

* Intended use. Approaches are classified as intended for analysis only, or for both
analysis and code generation.

* Source notation. The choice of source notation (syntax and semantics) may influ-
ence the users’ ability to describe scenarios with different levels of expressiveness as
well as affect the synthesis algorithms.

* Support of composition mechanism. By using composition mechanisms some
scenario notations have the ability to express behavior of complex systems more
comprehensively.

* Support of parallelism. Parallelism is either implicitly supported by means of the
underlying semantics or explicitly supported by means of parallel composition con-
structs. By supporting parallelism, scenario notations can describe reactive systems
more realistically.

*x Target notation. The choice of a target notation is mainly influenced by the in-

tended use as well as the previous experience of the designer.
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*

Model type. This criterion is closely related to the intended use. For instance, an
approach may concentrate on deriving a set of object state models, or try to generate
one single global state model for the whole system.

Synthesis path: Scenario-based models are categorized into either basic scenarios
(BS) without using any composition mechanisms, or global scenarios (GS) obtained
through the composition of BSs. These scenario-based are synthesized into state-
based models: object state machines (OSM) and global state machines (GSM) which
are composed of OSMs. Four synthesis paths from scenario-based models to state-
based models were proposed: BS— OSM, BS—GSM, GS—O0SM, and GS—GSM).
Degree of automation: The generation of state-based models from scenario-based

models can either be semi-automatic or fully-automatic.

Tool support: We list whether a synthesis approach is supported by a tool.

- Criteria Relevant From a Technical Perspective:

*

Inter-scenario relationships. The authors have identified five different ways to
identify the Inter-scenario relationships. The designers can implicitly infer the re-
lationships from the scenarios by using events or from the semantics of scenario
notations. Additionally, the designers can explicitly define the relationships among
scenarios by composition mechanisms, conditions, or a combination (hybrid) of both
composition mechanisms and conditions.

Consistency check. Approaches may allow checking the consistency of scenario-
based models before or during the synthesis processes.

Completeness check. Completeness checks on implied scenarios (extra behaviors)
or missing scenarios (fewer behaviors) may be provided by the approaches.

State space reduction. Depending on how the inter-scenario relationships are

identified, an approach may merge states and thus reduce the state space to various
degrees.

e Rolland et al. [RAC*98] propose a scenario classification based on four views:

Content View: what part of the work activity is captured in a scenario ?
Form View: How is it represented in the development environment ?
Purpose View: For what usage in the design process is it captured (purpose view) ?

Life-cycle view: How is it developed and evolved ?

e Cockburn [Coc97] uses four dimensions to use case descriptions, namely purpose, content,

plurality, and structure. Purpose can be either for stories (explanations) or for requirements.

Content can be contradicting, consistent prose, or formal content. Plurality is either one or

multiple, in a way similar to multiplicity. Structure can be unstructured, semi-formal, or

formal.
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e In a European industrial survey, Arnold et al. [AEG'98] proposed a classification taxonomy
for scenarios usage in industrial projects. Their criteria are grouped under five main divisions:
project properties, scenario contents and representation, goals, process, and experiences and
expectations. They surveyed twelve industrial projects from various domains (telecommunica-
tions, sales, medical, software development, insurance, banking) where scenarios are used.

e Chance and Melhart [CM99] introduced a taxonomy of scenarios with the objective to im-
prove understanding of scenarios and their usage. This taxonomy is organized into a hierarchy
according to the purpose of the scenario. Scenarios can describe basic functionality (opera-
tional scenario), describe abnormal conditions (failure scenario), help evaluate system response
(performance scenario), aid in requirements analysis and elicitation (refinement scenario), or
be used to explain the system behavior to others (learning scenario). Each type of scenario
is described in terms of key attributes: (1) Description: This describes how this category of
scenarios differs from all other categories; (2) Creators/Users: This lists the architects and
developers most likely to create or use the scenario category; (3) Information Needed: This
lists the information that is useful to create scenarios of this category; (4) Uses: This lists the

most common uses of scenarios of this category.

3.4 Formal Semantics

Formal semantics is concerned with the rigorous mathematical study of the meaning of programming
languages and models of computation. Formal approaches use mathematical and logical techniques

to more precisely define language semantics. There are three basic approaches:

e Axiomatic semantics [Hoa83] is an approach based on mathematical logic to proving the
correctness of computer programs. Axiomatic semantics provide an abstract semantics defi-
nitions of the language entities and their relations to each other in terms of axioms that are
concise and understandable. Specific properties of the effects of executing the constructs are
expressed as assertions - predicates with variables, where the variables define the state of the
program. However, axiomatic semantics remain very complex for real languages (i.e., large

descriptions for many basic constructs) and they has little or no guidance to tool developers.

e Denotational semantics [Mos90] consist on translating an expression from the language into
an expression in some mathematical domain (i.e., usually functions). This mapping allows for
formal manipulation and deriving properties. Denotational semantics build on known domains

using syntactic structures, however it is still too complex for users.

e Operational semantics [Plo81] consists of a procedure to transform an expression into a
behavior (an execution step) and a new expression (the result after executing this step). In-
formally, the goal of an operational semantics is, given an expression denoting a process in a
certain state, to describe all possible activities that can be performed by the process in that
state and to describe the state of the process after such an activity. An operational semantics

may be easier to understand than an equivalent denotational one, because the computational
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model can be more intuitive than the abstract mathematical components of a denotational

semantics. In this thesis, we focus on formal operational semantics.

3.5 Formal Description Techniques

Formal methods are mathematical specification languages with formal syntax and semantics, which
offer rigorous support of system development leading to the early detection of errors. They focus
on reliability and correctness of systems by using formal validation and verification techniques.
The benefits of formal methods have been discussed many times in the literature supported by
the existence of a significant body of research in the area. Nevertheless, its industry and end-user
acceptance remain limited in practice since the tradeoff between productivity and reliability is still
too large.

Abstract State Machines, LOTOS, SDL, MSC and Petri Nets represent five formal specification
techniques that are particularly relevant to the scenario-based description of high-level requirement
specifications. While MSC and Petri Nets (PN) have been introduced in Section 3.1 and Abstract
State Machines(ASM) in Section 2.2, this section provides a brief overview of LOTOS and SDL.

3.5.1 LOTOS

LOTOS (Language of Temporal Ordering Specification) [ISO89], an algebraic specification language,
was developed by the FDT experts of the working group ISO/TC97/SC21/WG1 during the 80s. It
is a specification language developed for the formal description of the various elements of the OSI
(Open System Interconnection) architecture such as services and protocols. Nowadays, the LOTOS
application area has been applied extensively in both universities and industry to cover various
domains such as distributed and concurrent systems in general.

The basic idea of LOTOS is that systems can be specified by defining the temporal relations
among the actions that constitute the system externally observable behavior. LOTOS language

consists of:

e A control component in which LOTOS behavior expressions are described. It is based on
Milners Calculus of Communicating Systems (CCS) [Mil89] and Hoare’s Communicating Se-
quential Processes (CSP) [Hoa85], which include the concepts of action prefix, choice, parallel

composition, multi-way synchronization, hiding, process instantiation, and a few others.

o A data type component, which is based on the formal theory of algebraic abstract data types
ACT ONE [EMBS]. It deals with the description of data structures and value expressions.

LOTOS is suitable for the integration of behavior and structure in a unique executable model.
LOTOS allows the use of many tool-supported validation and verification techniques such as CADP
(CESAR-ALDEBARAN Distribution Platform) [RLO07a}, ELUDO (Environnement LOTOS de I"Universite
D’Ottawa) [Gar96] and LOLA (LOtos LAboratory) [PN91]. A number of excellent LOTOS tutorials
exist in the literature [LFHH91, BB87).
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Daniel Amyot [Amy0Ola), in his PhD thesis, claims that Use Case Maps and LOTOS represent a
good match and presents several factors that motivate the choice of LOTOS as a formal framework
for Use Case Maps. In Section 3.6, we give a brief introduction to SPEC-VALUE [Amy0lal, an
iterative and incremental scenario-driven approach for the description and validation of complex

system functionalities at the early development stages using Use Case Maps and LOTOS.

3.5.2 SDL

The Specification and Description Language (SDL) [IT02a] is an object-oriented, formal language
defined by The International Telecommunications Union-Telecommunications Standardization Sec-
tor (ITU-T) (formerly Comité Consultatif International Telegraphique et Telephonique [CCITT])
as recommendation Z.100. The language is intended for the specification of complex, event-driven,
real-time, and interactive applications involving many concurrent activities that communicate us-
ing discrete signals. SDL covers different levels of abstraction, from a broad overview down to
detailed design. The basic theoretical model of an SDL system consists of a set of extended finite
state machines (EFSMs) that run concurrently. These machines are independent of each other and
communicate by means of asynchronous discrete signals and synchronous remote procedure calls.
Both mechanisms can carry parameters to interchange and synchronize information between SDL
processes and their environment. He et al. [HAWO03] present an approach to synthesize SDL models
from MSCs generated from UCM specifications.

3.6 UCM Validation: SPEC-Value Approach

SPEC-VALUE [Amy01a] is an iterative and incremental scenario-driven approach for the descrip-
tion and validation of complex system functionalities at the early development stages. Functional
requirements are captured using UCM notation. The responsibilities defined in the UCMs are then
allocated to the components in the selected underlying structure. Then the UCM scenarios are
translated into detailed LOTOS specifications that are validated with the help of tools. The vali-
dation testing approach introduced in SPEC-VALUE proposes the generation of test cases at the
design stage from the information provided by the users’ requirements. Figure 3.1 illustrates the
SPEC-VALUE approach.

The authors claim that the gap between UCM and LOTOS is small, and a translation from
UCMs to LOTOS is straightforward. The synthesis of the LOTOS specification from UCMs is per-
formed manually. Later, Guan [Gua02] provided a synthesizer for the generation of LOTOS models
from UCMs. Her work automates many of the construction rules proposed in SPEC-VALUE. The
SPEC-VALUE approach follows a well-established method of mapping a semi-formal language to a
formal language. However, mapping requires a manual verification step to decide about the com-
pleteness and details of the resulting LOTOS specification. While there is no “incorrect” semantics,
inconsistent mapping rules can introduce unexpected behavioral consequences.
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Figure 3.1: Specification-Validation Approach with LOTOS and UCMs (SPEC-VALUE) [Amy01la]

3.6.1 Testing Approach in SPEC-VALUE

The testing approach in SPEC-VALUE is illustrated in Figure 3.1. Since LOTOS is the targeted
FDT for SPEC-VALUE, LOTOS test cases are generated manually from UCMs (step 5). Abstract
sequences of actions are extracted from unbound UCMs and transformed into LOTOS test processes.
The testing is performed by composing the test cases with the LOTOS prototype (step 6). This
operation is performed automatically by using a LOTOS testing tool called LOLA, which then
outputs the resulting verdict for each test (i.e. pass, may pass or fail). If a verdict is not satisfactory,
then appropriate modifications might be brought to the requirements (step 8), which may result in
cascading modifications to the scenarios, the tests and the prototype.

The testing approach in SPEC-VALUE is claimed to be validation testing rather then confor-
mance testing. In SPEC-VALUE, the test suite is derived from informal requirements and semi-
formal scenarios (the UCMs), and the goal is to create and check the LOTOS specification model
(prototype). This test suite is used to validate the model against the requirements, hence the term
validation. Conformance testing can be used at a later stage of the design cycle, when an imple-

mentation is required to be declared conformant to the formal model.

3.6.2 UCM-Oriented Testing Patterns

Daniel Amyot [Amy0la] proposed eight UCM-oriented testing patterns to cover alternatives, con-
current paths, loops, multiple start points, single stubs, and causally linked stubs. These patterns
aim to cover functional scenarios at various levels of completeness: all results, all causes and all

results, all path segments, all end-to-end paths, all plug-ins, and so on. The patterns are inspired
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partly from various existing test selection strategies for implementation languages constructs such
as branching conditions and loops. Hence, this UCM-based test selection shares many concepts with
white-box testing. The author claims that the proposed set of patterns can be applied to a multitude
of contexts, and can be combined together (e.g. in a pattern language) for dealing with complex
UCMs. The proposed set of patterns has been revisited and refined later in [ALWO05].

3.7 Chapter Summary

This chapter reviews existing work and concepts in four areas of interest to Early Stages V&V
approach. In Section 3.1, we have covered many high level scenario based notations. Section 3.2 dis-
cussed scenario integration approaches and Section 3.3 presented existing classification approaches.
Section 3.4 focused on types of formal semantics while Section 3.5 discussed formal specification
techniques especially LOTOS, which is used in SPEC-VALUE approach [Amy01a] and SDL which
is largely used in the telecommunication domain. Other formal description techniques such as MSC
and Petri Nets (PN) have been introduced in Section 3.1 while Abstract State Machines(ASM) have
been introduced in Section 2.2. Finally, in Section 3.6, we have presented briefly the SPEC-VALUE
approach [Amy0la.
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Chapter 4

An ASM Operational Semantics
for Use Case Maps

In this chapter!, we present a formal operational semantics for Use Case Maps language based on
Abstract State Machines. We present two possible ASM-based solutions: (1) Multi-Agent ASM
solution and (2) Single-Agent ASM solution with non deterministic interleaving. Our ASM model
provides a concise semantics of UCM functional constructs and describes precisely the control se-

mantics.

4.1 ASM-based UCM Formal Syntax

4.1.1 Use Case Maps Formal Syntax

Before defining the ASM formal semantics of UCM specifications, we define a UCM specification as
follows:

Definition 1 (Use Case Maps.) We assume that a UCM specification is denoted by a 7-tuple (D,
H, \, C, GVar, B, B;) where:

e D is the UCM domain, composed of sets of typed elements. D= SP U EP U R U AF U
AJUOFU OJU TsU Tm U ST. Where SP, EP, R, AF, AJ, OF, OJ, Ts, Tm and ST
are respectively the sets of Start Points, End Points, Responsibilities, AND-Fork, AND-Join,
OR-Fork, OR-Join, Time Stamps, Timers and Stubs.

e H is the set of edges connecting UCM constructs to each other.
e ) is a transition relation defined as: A=Dx HxD.

e (C is the set of components.

1This chapter content is published in IEEE International Conference on Requirements Engineering - RE
2005 [HRDO5b] and in Formal Techniques for Networked and Distributed Systems - FORTE 2005 [HRDO05a]
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o GVar is the set of global variables.

e B, is a component binding relation defined as B, =Dx C. B, specifies which element of D is

associated with which component of C. B, is empty for unbound UCM.

o B, is a stub binding relation and is defined as Bs =STxIN/OUTxSP/EP. B; specifies how
the start and end points of the plug-in map would be connected to the path segments going into
or out of the stub.

The definition of the ASM formal semantics of UCM consists of associating each UCM construct
with an ASM, which models its behavior. In this section, we associate first an ASM signature with
each UCM construct and then assign execution rules to them.

4.1.2 ASM Signature of UCM Constructs

The UCM maps are modeled using the abstract sets: StartPoint, EndPoint, Responsibility, AND-
Fork, AND-Join, OR-Fork, OR-Join, Stub and Timer. The abstract set H represents the set of

edges connecting UCM constructs.

e Start Points are of the form StartPoint(PreCondition-set, TriggerringEvent-set, StartLabel,
in, out), where the parameter PreConditions-set is a list of conditions that must be:satisfied in
order for the scenario to be enabled (if no precondition is specified, then by default it is set to
true). The parameter TriggeringBEvents-set is a list that gives the set of events that can initiate
the scenario along a path. One event is sufficient for triggering the scenario. The parameter
StartLabel denotes the label of the start point. A start point should not have an incoming
edge except when connected to an end point (called a waiting place). In such situation, we
use the parameter in € H to represent the connection with an end point. The parameter out

€ H is the (unique) outgoing edge.

e End Points are of the form EndPoint(PostCondition-set, ResultingEvent-set, EndLabel, in,
out), where the parameter PostConditions-set is a list of conditions that must be satisfied
once the scenario is completed. The parameter ResultingEvent-set is a list that gives the set of
events that result from the completion of the scenario path. The parameter EndLabel denotes
the label of the end point; the parameter in € H is the (unique) incoming edge. End points
have no target edge except when connected to a start point (i.e. a waiting place). In such a

case, out € H represents such connection.

o Responsibilities are of the form Responsibility(in, Resp, out), where in € H is the incoming
edge, Resp is the responsibility to be executed (to be defined by a set of simultaneous ASM
function updates), and out € H is the outgoing edge. A responsibility is connected to only
one source edge and to one target edge.

e OR-Forks are of the form OR-Fork(in, [Cond;li<n, [0out;]i<n), where in denotes the incoming
edge, [Cond;)i<n is a finite sequence of Boolean expressions, and [out;];<n is a sequence of

outgoing edges.
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e OR-Joins are of the form OR-Join({in;}i<n, out), where {in;};<, denotes the incoming edges
and, out is the outgoing edge.

e AND-Forks are of the form AND-Fork(in, {out;};<, ), where in denotes the incoming edge,

and {out;}i<n is a sequence of outgoing edges.

o AND-Joins are of the form AND-Join({in;}i<n, out), where {in;};<, denotes the incoming
edges, and out is the outgoing edge.

e Timers are of the form Timer(in, TriggerringEvent-set, out, out_timeout), where in denotes
the incoming edge. The parameter TriggeringEvents-set is the list that defines the set of events
that can trigger the continuation path (i.e. represented by out) and the parameter out_timeout
€ H denotes the timeout path.

e Stubs have the form Stub({entry;}i<n , {€xit;};<m, isDynamic, [Condilk<i , [pluginklk<i)
where {entry;}i<, and {exit;};<m denote respectively the set of the stub entry and exit
points. isDynamic indicates whether the stub is dynamic or static. Dynamic stubs may contain
multiple plug-ins, [pluging]x<; whose selection can be determined at run-time according to a
selection-policy specified by the sequence of Boolean expressions [Cond|x<;. The sequence
Cond is empty for static stubs (i.e. isDynamic=false).

4.2 ASM-based UCM Formal Semantics

In this section, we present two possible ASM-based solutions: (1) Multi-Agent ASM solution and
(2) Single-Agent ASM solution with non deterministic interleaving.

4.2.1 Multi Agent ASM-based Solution

The current AsmL version does not support interleaving between concurrent agents. Each agent
should run to completion before a new one can start executing. Before presenting the Multi-Agent
ASM based rules that describe the operational semantics of UCM constructs, we present the abstract

sets and functions necessary for encoding UCM specifications.

Access functions

For each UCM construct we use a (static) function Param which, when applied to a UCM construct
(ie., C(Params,...,Param,)) yields the parameter. For example out(StartPoint) yields the outgo-
ing edge of the construct StartPoint, in(Responsibility) yields the incoming edge of the construct
Responsibility, Cond(OR-Fork) yields the sequence of conditions of construct OR-Fork. We often

suppress parameters notationally.
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Encoding UCM Hierarchy

We formalize UCM maps by an abstract set MAPS. It contains the root map (i.e. the main UCM
map) and all its submaps (i.e. plug-ins). The nesting structure of a UCM specification is encoded

in the following functions:

- UpMap: MAPS — MAPS U {undef}, assigns to a plug-in its immediately enclosing map, if
any. We assume that this function yields undef for the root map which is not enclosed in any
map. Thus, UpMap(rootMap)=undef.

- StubBinding:{{entry; JU{EndPoints}} x MAPS —{{StartPoints}U{exit;}} specifies how a
plug-in EMAPS is bound to a stub. The path segments that are connected to the stub need
to be bound to the paths of the plug-ins in order to express continuity. This is done through
explicit binding. An entry edge joins a stub entry with a start point from the plug-in. An exit
edge joins a stub exit with an end point from the same plug-in.

Agent Decomposition

Let AGENT be the abstract set of agents a which move through their associated UCM map, by
executing the UCM construct at the current active edge, i.e. the edge where the agent’s control
lies. Each sequential UCM segment can be represented by an independent agent. Figure 4.1 shows
a UCM with five agents (i.e., Agent,, Agents... Agents). Every agent can mainly be characterized
by three dynamic functions:

- active: AGENT— H represents the identifier of the active edge leading to the next UCM
construct to be executed.

- mode: AGENT— {running,inactive}. An agent may be running in normal mode or inactive
once the agent has finished its computation.

- level: AGENT—MAPS provides the submap that the agent is currently traversing.

Agent 1 Agent 4
-0, i
.___'____I___._l .
« P B —
Agent2 Agent3 Agent5

Figure 4.1: A UCM decomposition into five agents

For the root map, it is required that there is an agent for each starting point, in running
mode with active edges positioned on the corresponding start points of the root map (ie. ac-
tive=in(StartPoint)). The creation of the initial ASM agents, their initialization and the initializa-

tion of the global variables used in the scenario definitions represent the initialization phase.
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Typically, a running agent has to look at the target of its currently active edge to determine the
next action. me refers to the current agent and CurrConstruct denotes the current UCM construct

to be executed, i.e. the UCM construct where (me.active=in(construct)) A (me.mode=running).

ASM Rules of UCM Constructs

e Start points. If the control is on the edge in(StartPoint), the PreCondition-set is satisfied and
there occurs at least one event from the triggeringEvent-set, then the start point is triggered
and the control passes to the outgoing edge of the StartPoint (Otherwise nothing happens and
the control stays at the StartPoint). Figure 4.2 describes the start point rule.

if CurrConstruct is StartPoint(PreCondition-set, TriggerringEvent-set, StartLa-
bel, in, out) then

if (EvaluatePreConditions & EvaluateTrigger) then me.active:= out
where:

StartLabel  out - EvaluateTrigger: TriggerringEvent-set x {events} — Boolean; evaluates

whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.

- EvaluatePreConditions: PreCondition-set — Boolean evaluates whether all
preconditions are satisfied.

Figure 4.2: Multi Agent Solution: Rule of Start Point

* Responsibilities. If the control is on the edge in(Responsibility) then Resp is performed and
the control passes to the outgoing edge. Figure 4.3 illustrates the responsibility rule.

if CurrConstruct is Responsibility (in,Resp,out) then
out Resp
me.active:= out

Resp

in

Cal

Figure 4.3: Multi Agent Solution: Rule of Responsibility

if CurrConstruct is OR-Fork(in, [Cond:)i<n,[outi)i<n)
then if NonDeterministicChoice([Cond;)i<») then
out1 me.active:= (choose out; in [outy)r<;)
else if Cond; then me.active:=out;
Outi .
if Cond,, then me.active:= out,
Outn where NonDeterministicChoice:{Cond}—Boolean is a dynamic function that
checks whether more than one condition evaluates to true and [outx]x<; is the

sequence of edges associated to satisfied conditions.

Figure 4.4: Multi Agent Solution: Rule of OR-Fork

e OR-Fork. If the control is on the incoming edge of an OR-Fork, the conditions are evaluated

and the control passes to the edge associated to the true condition. If more than one condition
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evaluates to true (i.e. nondeterministic choice), the control passes randomly to one of the

outgoing edges associated to the true conditions. Figure 4.4 illustrates the OR-Fork rule.

e OR-Join. When one or many flows reach an OR-Join, the control passes to the outgoing
edge. Figure 4.5 illustrates the OR-Join rule.

Note: An UCM loop can be modeled as an OR-Fork followed by an OR-Join. Their respective

rules should be executed once encountered.

in1

- \ out if CurrConstruct is OR-Join({in; }i<n, out) then
n J me.active:= out

inn —

Figure 4.5: Multi Agent Solution: Rule of OR-Join

e AND-Fork. When the control is on an incoming edge of an AND-Fork synchronization bar,
then the flow is split into two or more flows of control. The currently running agent creates
the necessary new subagents and sets their mode to running, then sets its mode to inactive.
Each new ASM subagent inherits the program for executing UCMs, and its control is started
on the associated outgoing edge of the AND-Fork.

if CurrConstruct is AND-Fork(in, {out;}i<») then
out 1 me.mode:=inactive
extend AGENT with a1, ..., an
do for alla;, 1 <i<n
a;.mode := running
a;.active := out;

outi
outn

Figure 4.6: Multi Agent Solution: Rule of AND-Fork

if CurrConstruct is AND-Join({in;i}i<n, out)
then if not (Vai,...,an in; = active(a;)) then
o out me.mode:= inactiYe ‘
ini else me.mode:= inactive
inn extend AGENT with an41
Qn41.active:= out

int

Qn41-mode:= running
Figure 4.7: Multi Agent Solution: Rule of AND-Join

e AND-Join. When many subagents running in parallel reach an AND-Join, their parallel
flow must be joined. When all incoming edges become active, a new agent is created and the
control passes to the outgoing edge. The last agent arriving at the AND-Join will fire the rule.
Inactive agents are deleted after each rule’s execution.
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e Stub. Once the control reaches a stub, the control passes to the selected plug-in and the
execution continues following the UCM semantics. No extra agents are needed to execute a

Stub unless the selected plug-in contains a concurrent flow..

i Sta:t}imb o if CurrConstruct is Stub({entry;}i<n,{ezit; }i<m, isDynamic,
[Condk]ksl,[plugink]kgz) then
ous if not(isDynamic) then add(plugin, me.level) to MapHierarchy
me.level := plugin
‘rI\,BFnan}l;CSUlB,m me.active := in{StubBinding(entry;, plugin)
f: Ky else add(plugin, me.level) to MapHierarchy
"W me.level := SelectionPolicy(Condx k<))
me.active := in(StubBinding(entry: , SelectionPolicy( Condi)x<1))
Entry={IN1} Where SelectionPolicy:{Cond} — M APS is the selection policy function.

Exit={OUT1,0UT2}
Figure 4.8: Multi Agent Solution: Rule of Stub

o End point. When the control reaches an end point, four cases have to be considered, depend-
ing on whether the end point is connected to a start point (i.e. a waiting place) and whether

it is inside a plug-in or part of the root map:
1. If the end point is connected to a start point(i.e. a waiting place), then the control passes
to the out edge.

2. If the end point is inside a plug-in and it is bound to a stub, then the control passes to

the stub’s exit point bound to the plug-in end point.

3. If the end point is inside a plug-in but it is not bound to a stub, then the running agent
is stopped.

4. If the end point is part of the root map (and not connected to a start point), then running
agent is stopped.

if CurrConstruct is EndPoint(PostCondition-set, ResultingEvent-set, EndLabel,

in, out)
then
i . t' =
; EndLabel if (out72undef) then me.active := out
n else
I if UpMap(me level)=undef) then me.mode:= inactive
else

if (StubBinding(EndPoint,me.level))Aundef then
me.active:= out(StubBinding(EndPoint, me.level))
else me.mode:= inactive

Figure 4.9: Multi Agent Solution: Rule of End Point

The exit from nested maps should be performed in the correct order of the stub structure.

However, one control may exit the stub while another one is still inside the stub.
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if CurrConstruct is Timer(in, TriggerringEvent-set, out, out_timeout) then

in out if (Triggered) then me.active:= out
else me.active := out_timeout
5 where Triggered: TriggerringEvent-set—Boolean determines whether a trig-
out timeOut ger occurs within a predefined time frame.

Figure 4.10: Multi Agent Solution: Rule of Timer

e Timer. The timer rule is very similar to a basic OR-Fork rule with only two disjoint branches
(out and out_timeOut).

4.2.2 Single Agent Non Deterministic Interleaving Solution

The Multi-Agent solution assumes that each agent maintains a single active edge at every execution
point(i.e., a.active is a singleton). In the single agent solution, we consider a unique thread of
execution and a unique set of active edges (i.e., a.active is a set of edges). Contrary to the multi-agent
solution, the single-agent solution ensures a full non-deterministic interleaving between concurrent
threads.

ASM rules are modified to reflect the existence of one global set of active edges.

ASM Rules of UCM Constructs

e Start points. If the control is on the edge in(StartPoint), the PreCondition-set is satisfied and
there occurs at least one event from the triggeringEvent-set, then the start point is triggered
and the control passes to the outgoing edge of the StartPoint. The set of edges active is
updated with the addition of edge out and the removal of edges in. Figure 4.11 describes the

start point rule.

if CurrConstruct is StartPoint(PreCondition-set, TriggerringEvent-set, StartLa-
bel, in, out) then
if (EvaluatePreConditions & EvaluateTrigger) then add out to active

remove in from active where:

Start.Label out - EvaluateTrigger: TriggerringEvent-set x {events} — Boolean; evaluates

whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.

- EvaluatePreConditions: PreCondition-set — Boolean evaluates whether all
preconditions are satisfied.

Figure 4.11: Single Agent Solution: Rule of Start Point
o Responsibilities. Responsibilities represent atomic actions, not to be decomposable, and

their execution is not interruptible. If the control is on the edge in(Responsibility) then Resp is
performed and the control passes to the outgoing edge. The set of edges active is updated with
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the addition of edge out and the removal of edges in. Figure 4.12 describes the responsibility

rule.
» if CurrConstruct is Responsibility (in,Resp,out) then
in Resp o Resp ,
”~ add out to active

remove in from active

Figure 4.12: Single Agent Solution: Rule of Responsibility

o OR-Fork. If the control is on the incoming edge of an OR-Fork, the conditions are evaluated
and the control passes to the edge associated to the true condition. If more than one condition
evaluates to true (i.e. nondeterministic choice), the control passes randomly to one of the
outgoing edges associated to the true conditions. The set of edges active is updated with
the addition of edge out; that corresponds to the true condition and the removal of edges in.
Figure 4.13 illustrates the OR-Fork rule.

Out 1
if CurrConstruct is OR-Fork(in, [Cond;]i<a,[outi}i<n)

Outi then add (choose k in [outr]x<i) to active
remove n from active

Outn

Figure 4.13: Single Agent Solution: Rule of OR-Fork

OR-Join. When one or many flows reach an OR-Join, the control passes to the outgoing edge.
The set of edges active is updated with the addition of edge out and the removal of edges in;
from which the control reached the OR-Join. Figure 4.14 illustrates the OR-Join rule.

1= if CurrConstruct is OR-Join({in;}i<n, out) then
. out add out to active
ni —.-J/

forall k in {in;}

inn remove k from active

Figure 4.14: Single Agent Solution: Rule of OR-Join

e AND-Fork. When the control is on an incoming edge of an AND-Fork synchronization bar,
then the flow is split into two or more flows of control. The main and unique agent adds all

the outgoing edges (i.e., {out;}) to the set active and removes edges in from it. Figure 4.15
illustrates the AND-Fork rule.

e AND-Join. When all incoming edges of an AND-Join are active, their parallel flow must

be joined and the control passes to the outgoing edge. The set of edges active is updated
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if CurrConstruct is AND-Fork(in, {out;}i<n) then

n out 1 forall k in {out;}
outi add k to active
outn remove in from active
Figure 4.15: Single Agent Solution: Rule of AND-Fork
with the addition of edge out and the removal of edges in; from which the control reached the
AND-Join. Figure 4.16 illustrates the AND-Join rule.
. if CurrConstruct is AND-Join({in:}i<n, out) then
in1 i active i 1) = {im.) th
o out if active intersect {in;}) = {in;} then
mi forall k in {in;}
inn remove k from active

add out to active
Figure 4.16: Single Agent Solution: Rule of AND-Join

e Stub. Once the control reaches a stub, the control passes to the selected plug-in and the
execution continues following the UCM semantics. The set of edges active is updated with
the addition of edge in(startpoint) of the selected plug-in map and the removal of edges entry;
from which the control reached the stub. Figure 4.17 illustrates the stub rule.

oL

M if CurrConstruct is Stub({entry; ti<n.{€xit; }j<m, isDynamic,
[Condg]i<i,[pluginilr<i) then

. Steit}r{tub

add (plugin, level) to MapHierarchy

pynesieStily o ; ) S :
RAXN add (in(StubBinding(entry; , SelectionPolicy( Condi)r<:))) to active
"\, 3 LTS remove entry; from active
\ Where SelectionPolicy:{Cond} — M APS is the selection policy function.
Entry=(IN1}

Exit={OUT1,0UT2}
Figure 4.17: Single Agent Solution: Rule of Stub

e End Point. When the control reaches an end point, four cases have to be considered, depend-
ing on whether the end point is connected to a start point (i.e. a waiting place) and whether

it is inside a plug-in or part of the root map:

1. If the end point is connected to a start point(i.e. a waiting place), then the out edge is
added to the global list of active edges (i.e. active) .

2. If the end point is inside a plug-in and it is bound to a stub, then the stub’s exit point,
bound to the plug-in end point, is added to the global list of active edges (i.e. active).
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3. If the end point is inside a plug-in but it is not bound to a stub, then the control passes
either to any triggered start point part of the plug-in or to the next active edge in the
global list of active edges(i.e.active) if any.

4. If the end point is part of the root map, then the control passes to the next active edge
in the global list of active edges, if any.

if CurrConstruct is EndPoint(PostCondition-set, ResultingEvent-set, EndLabel,
in, out) then
if out#undef then remove in from active

add out to active

else
if UpMap(level)=undef) then remove in from active
in EndLabel else
___l if (StubBinding(EndPoint, level)7undef)
then remove in from active
add out(StubBinding(EndPoint, level)) to active
else

if in(triggered(startpoints)#undef
then remove in from active

add in(triggered(startpoints)) to active
else remove in from active

Figure 4.18: Single Agent Solution: Rule of End Point

e Timer. The timer rule is very similar to a basic OR-Fork rule with only two disjoint branches

(out and out_timeOut).

if CurrConstruct is Timer(in, TriggerringEvent-set, out, out_timeout) then
Timer if (Triggered) then add out to active

in out
q; else add out_timeout to active
else remove in from active
where Triggered: TriggerringEvent-set—Boolean determines whether a trig-
out_timeOut ger occurs within a predefined time frame.

Figure 4.19: Single Agent Solution: Rule of Timer

4.3 ASM-UCM Simulation Engine

The ASM-UCM simulation engine is designed for simulating and executing UCM specifications. It
is written in AsmL [ASMO06] (see Section 2.2.5).

Figure 4.20 shows the architecture of the ASM-UCM simulation engine, which is composed of
the following three components: UCM Specification, Data Structures and ASM Program.
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UCM Spec

(XML Format) Environment
Data ASM UCM Spec Spec variables
Structures Program (Hyper Graph) *  initialization

Simulation
traces

Figure 4.20: ASM-UCM Simulation Engine Architecture

4.3.1 UCM Specification

In order to apply ASM rules defined in Section 4.2.1, the UCM specification (originally described
in XML format) should be translated into a hyper graph format according to the syntax defined in
Section 4.1.

Note: The translation from the XML format to hyper-graph format is done manually. Before a

simulation can be run, the specification’s global variables are initialized.

4.3.2 Data Structures

The data structures maintained by the ASM-UCM engine are AsmL structures and dynamic sets.
They encode the attribute information of UCM constructs and the structures that handle the dy-
namic flow of execution. In what follows, we present the data structures that are common to both
single-agent and multi-agent solutions. Table 4.1 describes the UCMConstruct structure that incor-
porates many case statements as a way of organizing different variants of UCM constructs. Note
that the AsmL set Hyperedge denotes the set H of UCM edges.

Table 4.2 describes the following data structures:

- UCMElement illustrates the structure of the transition relation A.

Maps is used to encode the plug-in map details.
- Stub_Selection describes the dynamic stub selection policy.
- OR_Selection describes the condition-based edge selection of an OR-Fork.

Stub_Binding is used to encode the plug-in/stub binding relation.

- Mode is a static universe (where each element is a static nullary function) used to describe the

state of an agent.
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structure UCMConstruct
case SP_Construct
in_hy as HyperEdge
out_hy as HyperEdge
label as String
preCondition as BooleanExp
location as Component
case R_Construct
in_hy as HyperEdge
out.hy as HyperEdge
label as String
location as Component
case EP_Construct
in_hy as HyperEdge
out_hy as HyperEdge
label as String
postCondition as Boolean
location as Component
case OF_Construct
in_hy as HyperEdge
Selec as Set of OR._Selection
label as String
location as Component
case OJ_Construct
in_hy as Set of HyperEdge
out_hy as HyperEdge
label as String
location as Component

case Stub_Construct
entry_hy as Set of HyperEdge
exit_hy as Set of HyperEdge
Selec_plugin as Set of Stub_Selection
Binding_Relation as Set of Stub_Binding
label as String

case AF_Construct
in.hy as HyperEdge
out hy as Set of HyperEdge
label as String
location as Component
case AJ_Construct
in_hy as Set of HyperEdge
out_hy as HyperEdge
label as String
location as Component

case Timer
in_hy as HyperEdge
Selec as Set of OR.Selection
label as String
location as-Component

Table 4.1: UCMConstruct Data Structure

structure UCMElement
source as UCMConstruct
hyper as HyperEdge
target as UCMConstruct
structure Maps
label as String
ele as Set of UCMElement
ep as Set of EP_Construct
structure Stub_Selection
stub_plugin as Maps
stub_cond as BooleanExp

structure Stub_Binding
plugin as Maps
stub_hy as HyperEdge
start.End as UCMConstruct
structure OR_Selection
out_hy as HyperEdge
out_cond as BooleanExp

enum Mode
running
inactive

Table 4.2: Common Data Structures
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Data Structures specific to Multi-Agent Solution and Corresponding Variables

Table 4.3 describes three data structures specific to the multi-agent solution: (1) MAP_Hierarchy is
used to monitor the run-time transfer of control between stubs and plug-in maps; (2) STUB_Hierarchy
is used to monitor the run-time hierarchy of traversed stubs during UCM execution;(3) AJoin_str
is used to monitor the arrival of multiple agents to an AND-Join construct, since an AND-Join is
executed only when all its incoming edges are active (by independent agents).

structure MAP Hierarchy structure AJoin_str
current as Maps Ajoin as AJ_Construct
up as Maps in_hy as HyperEdge

structure STUB _Hierarchy
current as Stub_Construct
up as Stub_Construct

Multi-Agent Specific Global Variables:

var Map_Hierar as Set of MAP _Hierarchy={}

var STUB_ Hierar as Set of STUB_Hierarchy={}

var AJActive_ hyper as Set of AJoinstr = {}

var active as Set of HyperEdge={}

Table 4.3: Multi-Agent Data Structures

Data Structures specific to Single-Agent Solution and Corresponding Variables

Table 4.4 describes two data structures specific to the single-agent solution: (1)SPLUG is used to
handle the run-time hierarchy of both plug-in maps and stubs. (2) activ is used to track the set of

active edges during the system execution.

structure SPLUG structure activ
st as Stub_Construct edge as HyperEdge
plu as Maps level as Maps
pl as Set of EP_Construct

Single-Agent Specific Global Variables:
var set.stub_plug as Set of SPLUG ={}
var act as Set of activ = {}

Table 4.4: Single-Agent Data Structures

4.3.3 ASM Program

Table 4.5 illustrates the AsmL functions used to access different data structures:

- GetInHyperEdge returns the set of incoming edges of a specific UCM construct. It is used in
both solutions (i.e., single and multi agents).

- HyperEzists returns whether an edge is within a set of Edges and it is used to determine which
construct to be executed next. This function is common to both solutions.

- ExecuteResponsibility executes the chosen responsibility. If the responsibility does not update
any variables, EzecuteResponsibility simply prints the name of the responsibility. This function

is common to both solutions.
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- UpUCMMap returns the upper map in the run-time map hierarchy. It is used in the multi-
agent solution.

- UpStub returns the upper stub in the run-time stub hierarchy. It is used in the multi-agent

solution.

- EP_Ezists is used in the ASM rule that corresponds to the case of an end point which is part
of a plug-in (i.e., not the rootmap). This function is common to both solutions.

GetInHyperEdge returns the set of incoming edges
GetInHyperEdge(i as UCMConstruct) as Set of HyperEdge
match i
SP_Construct (a,b,c,d,e): return {a}
R_Construct (a,b,c,d): return {a}
EP_Construct (a,b,c,d,e): return {a}
OF _Construct (a,b,c,d): return {a}
Stub_Construct(a,b,c,d,e): return a
AF _Construct (a,b,c,d): return {a}
AJ_Construct (a,b,c,d): return a
0OJ_Construct (a,b,c,d): return a
TM_Construct (a,b,c,d): return a
HyperEzists returns whether an edge is within a set of Edges
HyperExists(i as HyperEdge, j as Set of HyperEdge) as Boolean
return (exists k in j where k=i)

EzecuteResponsibility executes the chosen responsibility
ExecuteResponsibility(R as R.Construct)
WriteLine(” Responsibility:” + R.label + ” in component:” + R.location)
if (R = R1) then
Varl.value := true
if (R = R2) then
Var2.value := false

UpUCMMap returns the upper map in the run-time map hierarchy
UpUCMMap(i as Maps) as Maps
choose v in Map_Hierar where v.current = i
return v.up

UpStub returns the upper stub in the run-time stub hierarchy
UpStub(i as Stub-Construct) as Stub.Construct
choose vl in STUB _Hierar where vl.current = i
return vl.up
ifnone return i

EP_Erists returns whether an end point is part of a set of end points
EP_Exists(i as EP_Construct, j as Set of EP_Construct) as Boolean
return (exists k in j where k=i)

Table 4.5: Asml Access Functions

Multiple Agent Solution Figure 4.21 illustrates the class Agent, a sketch of the ASM rules and
the main program of the ASM-UCM simulation engine.

Single Agent Solution Figure 4.22 illustrates a sketch of the ASM rules and the main program
of the single agent solution.
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class Agent
const id as String
var active as Edge
var mode as Mode
var level as Maps
Program()
step
until me.mode = inactive
do
choose h in level.ele where HyperExists(active, GetInEdge(h.source))
match (h.source)
// Rule of Start Point
SP_Construct (a,b,c,d): step
if d.Value() = true
me.active := b
else
WriteLine(”Start Point:” + ¢ + "Check the preconditions”)
me.mode := inactive
// Rule of Responsibility
R.Construct (a,b,c): ExecuteResponsibility (h.source as R_Construct)
me.active := b
// Rule of OR-Fork
OF_Construct (a,b,c,d): step
choose v in b where (v.out_cond).Value() = true
me.active := v.out_hy
ifnone
me.mode := inactive
Main()
var todo = StartPoints
step while todo.Count > 0
choose a in todo
todo(a) := false
let ag = new Agent(”Tel System:”, a.in_hy, running, RootMap, init_stub)
ag.Program()

Figure 4.21: Multi-Agent Solution: ASM-UCM program
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class Agent

const id as String
var active as Edge
var mode as Mode

Program()

step

until ((act = {}) or (me.mode = inactive))
do

let h = {tl.edge || t1 in act }

choose z in act

choose h in level.ele where HyperExists(active, GetInEdge(h.source))
match (s2.source)
// Rule of Start Point
SP_Construct (a,b,c,d): step
if d.Value() = true
add activ(b, z.level) to act
choose r in act where r.edge = a

remove r from act
else

WriteLine(” Start Point:” + ¢ + ” Check the preconditions”)
me.mode := inactive

// Rule of Responsibility

R_Construct (a,b,c): ExecuteResponsibility((s2.source) as R-Construct)
add activ(b, z.level) to act

choose r in act where r.edge = a

remove r from act

// Rule of OR-Fork

OF_Construct (a,b,c,d): step

choose v in b where (v.out_cond).Value() = true
add activ(b, z.level) to act
choose r in act where r.edge = a

remove r from act
ifnone

WriteLine(” Please check conditions of OR-Fork:” + ¢)
me.mode := inactive

Main()
step
forall i in StartPoints

add activ(GetInHyperEdge(i), RootMap) to act
step

choose a in StartPoints

let ag = new Agent("Tel System:”, a.in_hy, running, RootMap, init_stub)
ag.Program()

Figure 4.22: Single-Agent Solution: ASM-UCM program
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4.4 General Discussion

4.4.1 Interpretation vs. Compilation

Our ASM-UCM simulation engine is based on the interpretation concept of execution. It looks at
each element of the UCM specification, works out what it means, executes its corresponding rule
and then goes onto the next UCM element, while the approach proposed in [Amy94] is based on
a compilation concept. Indeed, the modification of the semantics of a UCM construct will result
in changing the corresponding ASM rule without modifying the original specification. However
in [Amy94], one needs to redesign the mapping between UCM to LOTOS and to regenerate the
LOTOS specification.

4.4.2 Language Evolution

Our ASM rules can be easily modified to accommodate language evolution. Indeed, the modification
of the semantics of a UCM construct or the addition of a new construct result in the modification

or the addition of a new ASM rule that describes the semantics of the new construct.

4.4.3 Semantic Variations

The proposed ASM-UCM simulation engine may support different semantic variations at minimal
cost. In the context of concurrency models, agents may behave either in interleaving semantics with
atomic actions (i.e. comparable to LOTOS processes [ISO89]) or in true concurrency mode. The
choice of the suitable alternative depends on the application domain and the ASM program (i.e.,
ASM Scheduler) is designed accordingly.

4.4.4 Extraction of Information

The ASM-UCM simulation engine can be instrumented to capture all aspects of UCM specification.
This includes the name and the type of each executed construct, values of variables of interest at each
computation step, names of traversed stubs and plug-in maps, and component names. In Chapter
7, we will introduce the notion of time into UCMs and will show how an ASM-based semantics will

help capture the specification temporal aspect as well.

4.5 AsmlL Specification of the Simple Telephony System

Table 4.6 shows two abstract types:(1) Edge that contains all the edges of the specification and (2)
Component that contain all the components of the specification. Four Boolean variables are defined
as well. For instance, we consider that the originating user is subscribed to OCS (i.e., subOCS :=
true) and the terminating user is subscribed to CND (subCND := true).

Figures 4.23, 4.24, 4.25, 4.26 and 4.27 illustrate respectively the AsmL implementation of
the default plug-in map, the OCS plug-in map, the stub SOrig, the stub Sterm and the root map.
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enum Hyperedge | enum Component
el UserOrig
e2 UserTerm
e3 AgentOrig
ed AgentTerm
. Unbound

Global Variables:
subOCS = new BooleanValue(true)
subCND = new BooleanValue(true)
OnlList = new BooleanValue(true)
busy = new BooleanValue(true)

Table 4.6: Edges, Components and Global Variables

var DEF start as SP_Construct=SP_Construct(DEF_inl, DEF1 ,"Start”, BooleanVar(pre_cond start),
AgentTerm)

var DEF _continue as EP_Construct=EP_Construct(DEF1, h0, ”continue”, true, AgentTerm)

var DEF_Plugin as Maps=Maps("DEF.Plugin”, {UCMElement(DEF.start, DEF1, DEF_continue),
UCMElement (DEF _continue, h0, DEF_continue)}, {DEF _continue})

Figure 4.23: AsmL Default Plug-in Map

var OCSstart as SP_Construct=SP_Construct(OCS_inl, OCSI, "Start”, BooleanVar(pre_cond.start),
AgentOrig)

var checkOCS as R_Construct=R_Construct(OCS1, OCS2, ”checkOCS”, AgentOrig)

var OCS.OF1 as OF_Construct=OF Construct(OCS2, {OR._Selection(OCS3, -BooleanVar(OnList)),
OR _Selection(OCS4, BooleanVar(OnList))}, "OCS.OF1”, AgentOrig)

var deny as R_Construct=R_Construct(CCS4, OCS5, "deny”, AgentOrig)

var OCSfail as EP_Construct=EP._Construct(OCS5, h0, "fail”, true, AgentOrig)

var OCS._success as EP_Construct=EP_Construct(OCS3, h0, "success”, true, AgentOrig)

var OCS Plugin as Maps=Maps(”OCS_plugin” {UCMElement(OCS_start, OCS1, checkOCS),
UCMElement(checkOCS, 0CS2,0CS_OF1), UCMElement(OCS-OF1, OCS3, OCS.success), UCMEle-
ment(OCS_OF1, OCS4, deny), UCMElement(deny, OCS5, OCS_fail), UCMElement(OCS_fail, ho,
OCS_fail), UCMElement(OCS_success, h0, OCS.success)}, {OCS.success, OCS_fail})

Figure 4.24: AsmL: OCS Plug-in Map

var Origstart as SP_Construct=SP_Construct(Orig_inl, O1, "Start”, BooleanVar(pre_cond.start), Agen-
tOrig)

var snd.req as R_Construct =R.Construct(02, 03, "snd_req ”, AgentOrig)

var Origfail as EP.Construct==EP_Construct(O4, h0, "fail”, true, AgentOrig)

var Orig_success as EP_Construct=EP_Construct(O3, h0, ”success”, true, AgentOrig)

var Sscreen as Stub_Construct=Stub_Construct({01},{02, 04}, {Stub_Selection (OCS_Plugin, Boolean-
Var(subOCS)), Stub_Selection (DEF_Plugin,-BooleanVar(subOCS))}, {Stub_Binding(OCS_Plugin, OI,
OCS.start), Stub_Binding(OCS_Plugin, 02, OCS_success),Stub_Binding(OCS_Plugin, 04, OCSfail),
Stub_Binding(DEF Plugin, O1, DEF start),Stub_Binding(DEF_Plugin,02,DEF continue)}, ”Sscreen”)

var Orig Plugin as Maps =Maps(”Orig-plugin”, {UCMElement(Orig.start, O1, Sscreen), UCMEle-
ment(Sscreen, 02, snd_req), UCMElement(Sscreen, O4, Orig-fail), UCMElement (snd_req, O3, Orig_success),
UCMElement(Orig_success, h0, Origsuccess), UCMElement(Orig_fail, ho, Orig_fail)},{Orig_success,
Orig_fail})

var Sorig as Stub_Construct=Stub_Construct({el},{e2,e4}, {Stub_Selection(Orig.Plugin, Boolean-
Var(.true))}, {Stub_Binding(Orig_Plugin, el, Origstart), Stub_Binding(Orig_Plugin, €2, Orig_success),
Stub_Binding(Orig_Plugin,e4, Orig_fail)}, ”SOrig”)

Figure 4.25: AsmL: Stub SOrig
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var term_start as SP_Construct=SP_Construct (term_inl , T1, ”Start”, BooleanVar(pre_cond_start), Agent-
Term)

var term_OF1 as OF_Construct=OF.Construct(T1, = {ORSelection(T2, = -BooleanVar(busy)),
OR_Selection(T3, BooleanVar(busy))}, ” term.OF1”, AgentTerm)

var term.AF1 as AF_Construct=AF._Construct(T2 ,{T5,T9}, "term_AF1”, AgentTerm)

var ringTreatment as R_Construct=R.Construct(T6, T7, "ringTreatment”, AgentTerm)

var ringingTreatment as R-Construct=R_Construct(T9, T10, "ringingTreatment”, AgentTerm)

var reportSuccess as EP_Construct=EP_Construct(T10, h0 , "reportSuccess”, true, AgentTerm)

var busyTreatment as R_Construct=R_Construct(T3, T4, ” busyTreatment ”, AgentTerm)

var term_fail as EP_Construct=EP_Construct(T4, ho , "fail”, true, AgentTerm)

var term_success as EP_Construct=EP_Construct(T7, h0 , "success”, true, AgentTerm)

var term_disp as EP_Construct=EP.Construct(T8, h0 , ”display”, true, AgentTerm)

var term_Plugin as Maps=Maps(”term_Plugin”,{UCMElement(term_start, T1, term_OF1),
UCMElement (term_OF1, T2, term_AF1), UCMElement(term.OF1,T3 y busyTreat-
ment), UCMElement(busyTreatment, T4, termfail), UCMElement(term AF1l, T5,  Sdis-
play),UCMEIlement(Sdisplay, T6,ringTreatment,), UCMElement (ringTreatment,T7, term.success),
UCMElement(Sdisplay, T8, term.disp), UCMElement(term AF1, T9, ringingTreatment), UCMEle-
ment(ringingTreatment, T10, reportSuccess), UCMElement(term disp, boO, term_disp), UCMEle-
ment (reportSuccess, h0, reportSuccess), UCMElement(term.fail, h0, term_fail), UCMElement (term_success,
hO, term_success)}, { reportSuccess, term_fail, term_success, term_disp})

var Sterm as Stub.Construct=Stub_Construct({e2},{e3, €5, €7, €9},{Stub_Selection(term_Plugin, Boolean-
Var(_true))}, {Stub_Binding(term Plugin, €2, term.start), Stub.Binding (term.Plugin, €3, term_success),
Stub_Binding(term_Plugin, €9, term.disp), Stub_Binding (term_Plugin, €5, term.fail),Stub Binding
(term_Plugin, €7, reportSuccess)}, ”Sterm”)

Figure 4.26: AsmL: Stub Sterm

var root_req as SP_Construct=SP_Construct (inl, el, "Req”, BooleanVar(pre_cond start), UserOrig)

var root_fwd_sigl as R_Construct=R._Construct(e5 , e6, ”fwd_sig” ,AgentOrig)

var root_fwd_sig2 as R_Construct=R-Construct(e7 , €8, ”fwd_sig”, AgentOrig)

var root_ring as EP_Construct=EP_Construct(e3 , h0, "ring”, true, UserTerm)

var root_display as EP_Construct=EP_Construct(e9 , h0, "display”, true, UserTerm)

var root_notify as EP_Construct=EP_Construct(e4 , h0, ”notify”, true, UserOrig)

var root_busy as EP_Construct=EP_Construct(e6 , h0, "busy”, true, UserOrig)

var root_ringing as EP_Construct=EP_Construct(e8 , h0, ” ringing”, true, UserOrig)

var RootMap as Maps = Maps(” RootMap”, {UCMElement(root_req , el, Sorig), UCMElement(Sorig , e4,
root_notify), UCMElement(Sorig , 2, Sterm), UCMElement(Sterm , €3 , root.ring), UCMElement(Sterm,
€9, root.display), UCMElement(Sterm, e5, root.fwd.sigl), UCMElement(Sterm, €7, root_fwd sig2),
UCMElement(root_fwd_sigl, €6, root-busy), UCMElement(root_fwd.sig2, €8, root.ringing), UCMEle-
ment(root_ring, h0 ,rootring), UCMElement(root_display, h0, root_display), UCMElement(root.ringing,
h0, root_ringing), UCMElement(root_busy, h0, root_busy), UCMElement(rootnotify, h0, root.notify)},
{root.ring, root_display, root_ringing, root_notify}) :

Figure 4.27: AsmL implementation of the Root Map
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4.6 Chapter Summary

In this chapter, we have presented a formal syntax and a formal operational semantics for Use Case
Maps language based on Abstract State Machines. Our ASM models provide a concise semantics of
UCM functional constructs and describes precisely the control semantics. Two possible ASM-based

solutions were presented:

- Multi agent ASM solution: Each sequential UCM segment is represented by an independent
agent that runs to completion before a new one can start executing. Each agent maintains a

single active edge at every execution point.

- Single agent ASM solution with non deterministic interleaving. This solution considers a
unique thread of execution and a unique set of active edges (i.e., a.active is a set of edges).
Contrary to the multi-agent solution, the single-agent solution ensures a full non-deterministic

interleaving between concurrent threads.

Both solutions are implemented within the ASM-UCM simulation engine (see Section 4.3), de-
signed for simulating and executing UCM specifications. Finally, Section 4.5 presents the AsmL
specification of the Simple Telephony System.
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Chapter 5

Early Stages Validation Approach

As requirement descriptions evolve, they quickly become error-prone and difficult to understand.
Errors in a requirements model have prolonged detrimental effects on reliability, cost, and safety of
a software system. It is very costly to fix these errors in later phases of software development if
they cannot be corrected during requirements analysis and design [SL03]. Thus, the development
of techniques and tools to support requirement specification development, understanding, testing,
maintenance and reuse becomes an important issue.

Among the rigorous validation techniques, testing and simulation are the most powerful methods
because the behavior of a system can be tested and observed. Execution is a powerful and direct
mechanism to observe a system and its behavior. When practitioners execute a system and, find
some unexpected results or their understanding of the system requirements was wrong, it usually
means that errors exist in a system.

In this chapter?, we combine well-known techniques (i.e., slicing, step by step simulation and trace
generation) to validate requirement specifications described using the Use Case Maps notation. In
the next section, an overview of the validation approach is described. In Section 5.2, we extend the
well-known source code analysis technique program slicing [Wei84, KL88] to functional requirement
specifications, based on the UCM notation. This new application of slicing, called UCM Requirement
Slicing helps reduce the complexity of the requirement specifications and facilitates requirement

comprehension and maintenance.

5.1 High Level Validation Approach

Figure 5.1 illustrates the proposed validation approach. The approach is iterative and composed
of four iterations:(1) Instrumenting the execution environment; (2) Simulation and generation of

traces; (3) Inspection of traces ; (4) Fixing errors.

17This chapter content is published in System Analysis and Modeling- SAM 2004 [HDRO04], in IEEE International
Workshop on Principles of Software Evolution - IWPSE 2005) [HJRDO05] and in IEEE International Workshop on
Principles of Software Evolution - IWPSE 2007) [SHRO07]
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5.1.1 Instrumenting the ASM-UCM simulation engine

One technique for collecting programs run-time information consists of instrumenting the execution
environment in which the system runs. The ASM-UCM simulator can be instrumented to collect

information of interest such as:
e Executed UCM constructs.
e Values of selected global variables after the execution of specific types of constructs.
e Executed stubs and plug-in maps.
e UCM components.

The simulator can also be instrumented to record how many times a given construct or plug-in
has been exercised in each simulation trace. The coverage data collected from the traces can be used
to analyze the design.

5.1.2 Simulation and Generation of Traces

The use of traces or execution histories as an aid to debugging, testing and analysis is a well
established technique for programming languages. It is very common that traces, once generated,
are saved in text files. In the context of UCM specifications, a trace file starts with a start point
of the root map and terminates with one end point of the root map (in between, we can have
additional start points and end points executions). A trace is composed of a sequence of lines. Each
line records the name of the UCM construct and its location (ie. UCM component). Values of

variables of interest can also be printed at each computation step.

5.1.3 Inspection of Traces

The resulting traces are then inspected (by an analyst). At the UCM abstraction level the following

design errors can be discovered:

- Lock situations: At the Use Case Maps level of abstraction, no distinction is made between
deadlock, livelock and other liveness error situations. A UCM trace should usually terminate
with the execution of an end point that is part of the root map. A lock situation is detected
when the trace does not terminate with an end point that belongs to the root map. Such lock

may be due to wrong conditions at a branching construct or plug-in selection policy.

- Violations of user specified correctness assertions: in the context of UCMs, concurrency and
non-determinism may impact causality assertions. For instance, analysts may use a generated
trace to check for assertions of the following form: responsibility R2 should always be preceded
by responsibility R1. Furthermore, invariants can be checked by parsing the values of variables

at each computation step and computing the invariant expression.
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- Violations of postconditions: trace-based testing is efficient to validate that a postcondition
holds for every execution of a responsibility that satisfies a precondition. To validate postcondi-
tions we need to accomplish the following steps:(1) Identify the execution of the responsibility
that is a target for postcondition validation (2)ensure the precondition and (3)validate the

postcondition.

- Unreachable specification parts: in computer programming, unreachable code, or dead code, is
code that exists in the source code of a program but can never be executed. In the context of
UCMs, unreachable specification parts may be detected, for instance, by exercising all possible
combinations of the values of global Boolean variables and with all combinations of sequences

of start points.

Note: Replaying execution traces and measuring how thoroughly a specification has been exer-

cised are out of the scope of this thesis.

5.1.4 Fixing Errors and/or Design Improvement

For a number of reasons, the number and size of generated traces can be too large making the speci-
fication difficult to validate. In our research, we address these issues by introducing a new approach
to reduce the complexity of the requirement specifications. Our new approach is based on slicing
techniques to guide requirement engineers, designers and programmers during the comprehension
and analysis process of requirement specifications.

A large UCM specification may be reduced to reflect only parts that are relevant to some spe-
cific criteria. The obtained slice is then analyzed (through simulation and trace generation) and
potential errors can be fixed. UCM slices help analyze to what extent the behavior and/or archi-
tecture of the system might be affected by a specific validation/maintenance task. For each slice,
the analyst/maintainer can identify the part of the particular scenario that contributes to the slic-
ing criterion (on both architectural and behavioral parts). Therefore, step by step execution can
be executed once we have a reduced specification. Furthermore, fixing errors may introduce new
collateral errors. We propose a UCM-based Change Impact Analysis technique to assess the impact
of a change in order to minimize the probability of introducing new errors.

5.2 Slicing Use Case Maps Requirement Specifications

5.2.1 Traditional Program Slicing

Program slicing was originally introduced as a technique to simplify programs to provide support
during debugging and program comprehension [Tip95, Wei84] and has been applied to a wide variety
of problems including: program understanding, maintenance [GL91], debugging, differencing, inte-
gration and testing [Tip95]. Program slicing, a program reduction technique, allows one to reduce
the size of the source code of interest by identifying only those parts of the original program that are
relevant to the computation of a particular function/output of interest [Wei84]. Moreover, slicing

preserves the program semantics of the original program with respect to the slicing criterion [Weig4].
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The notion of program slicing originated in the seminal paper by Weiser [Wei84]. Weiser defined
a slice S as a reduced, executable program P’ obtained from a program P by removing statements
such that S replicates parts of the behavior of the program. Informally, a static program slice
consists of those parts of a program that potentially could affect the value of a variable V at a point
of interest. The resulting slice shown in Table 5.1 indicates which statements influence the output

of the variable sum at line 12.

[ [ Original Program | Resulting Slice |

1 | begin begin

2 read(n); read(n);

3 ii=1; i:=1;

4 sum:=0; sum:=0;

5 pro:=1;

6 while (i<n) while (i<n)
7 begin begin

8 sum:=sum-i; sum:=sum-i;
9 pro:=pro*i;

10 Li=i41; i=i+1;
11 end; end;

12 | write(sum); write(sum);
13 | write(pro);

14 | end end

Table 5.1: Example of Program Slicing

Backward Slicing vs. Forward Slicing. Having picked a slicing criterion one of two forms
of slice can be constructed: a backward slice or a forward slice. The former consists of all the
statements of the program that affect a given point in the program (i.e. the slicing criterion),
whereas a forward slice contains those statements of the program which are affected by the slicing
criterion. Backward slices can assist a developer by helping to locate the parts of the program which
contain a bug. Forward slicing can be used to predict the parts of a program that will be affected
by a modification.

Dynamic Slicing vs. Static Slicing. Korel and Laski introduced in [KL88] the notion of dy-
namic slicing that can be seen as a refinement of the static approach. The dynamic slice preserves
the program behavior for a specific input, in contrast to the static approach, which preserves the
program behavior for the set of all inputs for which a program terminates. Dynamic program slicing
may significantly reduce the size of a program slice because run-time information, collected during
program execution, is used to compute program slices. Dynamic program slicing was originally
proposed only for program debugging, but its application has been extended to program compre-
hension, software testing, and software maintenance. Different types of dynamic program slices,
together with algorithms to compute them, have been proposed in the literature.

Chopping. A related operation is program chopping [JR94, RR95]. A chop consists of all program

points affected between one point (the chop source) and another (the chop target). A chop answers
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questions of the form: which program elements serve to transmit effects from a given source element
S to a given target T?. In the example of Table 5.1, the chop between the initialization of variable
sum and the output of variable ¢ is empty, reflecting the fact that there is no information flow
between the source and the target.

5.2.2 Related Work: Model Based Slicing

Different slicing techniques and criteria are required because various applications require different
properties of slices. In recent years, the application of slicing has been extended to other software
artifacts [SH96] including: software architecture[Zha98], requirement models [HW97, KSTV03] and
formal specification [CR94, MT98]. A detailed survey of different slicing techniques and their appli-
cations can be found in [Luc01, Tip95, LRG04].

Slicing of Hierarchical State Machines. Heimdahl et al. [HW97] apply slicing to the require-
ment specification language RSML (Requirement State Machine Language). Their proposed method
consists on reducing the requirement specification based on a specific scenario of interest. The re-
duced specification contains only the behaviors that are possible when the operating conditions
defining the reduction scenario are satisfied. Such a reduced specification is called the interpretation
of the specification under this scenario. Next, the produced interpretation is sliced based on different
entities in the model to highlight the portions of the specification affecting an output variable or
a specific transition. This is achieved through a data and control flow information analysis. The
slices can be arbitrarily combined using standard set of operations to construct a combined slice

containing the information of interests.

Slicing of State Based Models. Korel et al. [KSTVO03] presented an approach of slicing EFSM
(Extended Finite State Machines) models. Their approach produces an EFSM slice based on EFSM
dependence analysis. The resulting slice may further be reduced by merging states and transitions
to construct a non-deterministic EFSM. This is called non-deterministic slicing.

RSML and EFSM slicing emphasizes only the behavioral part of the requirement specification.
The architectural part is left aside. Use Case Maps scenarios combine both aspects (i.e. behavioral
and architectural) in a single representation. Our proposed technique takes advantage of this dual

representation.

Architectural Slicing. Zhao [Zha98] introduced a new form of slicing called Architectural slicing
to aid architectural understanding and reuse. He applied slicing to an architectural specification of
a software system written in WRIGHT, which is an Architectural Description Language (ADL). A
WRIGHT architectural specification of a system is defined by a set of component and connector
type definitions, a set of instantiations of specific objects of these types, and a set of attachments.
Attachments specify which components are linked to which connectors. Each component has an
interface defined by a set of ports and each connector has an interface defined by a set of roles. In

order to compute an architectural slice, an architecture information flow graph is constructed then
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a traversal algorithm is applied. The reduced architectural description contains only the lines of
ADL code that could be associated with a particular slicing criterion. In [SW98, Zha98] the slicing
criterion is either a set of ports of a component or a set of roles of a connector. Stafford et al.
[SW98] presented a closely related method to Zhao’s work. They introduced a software architecture
dependency technique called chaining. Their work consists on extracting a chain of dependences
(called links) between the specification’s elements based on a set of ports of a component (Slicing

criterion).

5.2.3 UCM Slices

In contrast to traditional program slicing, requirement slicing is designed to operate on the require-
ment specification of a system, rather than the source code of a program. The resulting requirement
slice provides knowledge about high-level structure of a system, rather than its low-level implemen-
tation details.

Our work on UCM slicing builds on from prior work in the following two primary areas: functional
requirement slicing and architectural slicing. Intuitively, a UCM slice may be viewed as a subset of
the behavior of a global UCM. While a traditional slice intends to isolate the behavior of a specified
set of program variables, a UCM slice intends to isolate a set of scenarios that lead to a specific
behavior.

When a UCM slicer is invoked, it takes as input:
1. A complete system requirement specification based on the UCM notation.
2. A slicing criterion.

Depending on the user’s interest, the UCM slicer computes a backward or forward slice with
respect to the selected slicing criterion. In order to define a UCM slice, we introduce the concepts
of reduced UCM elements.

Definition 2 (Reduced UCM elements) Let RS = (D, H, A\, C, GVar, B;, Bs) be an UCM
Requirement Specification(see Definition 1).

o A reduced domain is a set DY that is derived from D by removing zero, or more elements (i.e.

D C D).

A reduced set of edges is a set H that is derived from H by removing zero, or more elements

(i.e. H C H).

A reduced transition relation X' 1is a relation derived from A\ by removing zero or more tuples.

o A reduced component ¢’ is a component that has less functionalities than the original compo-

nent.

A reduced quard set GVar' is a set GVar' C GVar that is derived from GVar by removing zero,

OT MoTe eTPressions.
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o A reduced component binding relation B.' is a relation derived from B, by removing zero or

more couples.

o A reduced stub binding relation B, is a relation derived from B, by removing zero or more

tuples.

o A reduced stub is a stub that contains reduced plug-in maps and may have fewer plug-in maps

than the original stub.

Given a UCM, our goal is to compute a UCM slice which corresponds to a subset of the original
UCM that preserves the semantics of the UCM with respect to chosen slicing criterion.
Note: We can have as a result a set of flat scenarios (i.e. sequential traces where neither

concurrencies nor choices are involved). However the original UCM semantics will not be preserved.

Definition 3 (Reduced UCM) Let RS = (D, H, )\, C, GVar, B,, B;) and RS = (DY, H, X,
C', GVar', B, By') be two UCM requirement specification. RS’ is a reduced specification of RS if:

e I is a reduced set of D.
e H is a reduced set of H.
e )\ is a reduced transition relation of A

o O'=c,cr,..., cn' is a subset of C such that for k=1,2,...,n. ¢t/ is a reduced component of

Ck.

e GVar is a reduced set of GVar.

B, is a reduced component binding relation of B,.

By’ is a reduced stub binding relation of B,.

Note: Since a plug-in is also a stand alone UCM, a reduced plug-in can be defined in the same

way as a reduced UCM.

5.2.4 UCM Slicing Criteria

The selection of a slicing criterion depends on the particular analysis task. The focus is frequently on
examining the requirement with respect to a particular system functionality, e.g a particular system
feature or a particular behavior.

Based on the task and the degree of system understanding a user may choose between specifying
(1) a UCM construct as a slicing criterion (regardless of its location), or (2) a UCM component to
focus the analysis on one specific component, or (3) a construct and a specific component to focus

the analysis on one construct specific to one component).

Definition 4 (UCM Slicing criteria) Let RS be a UCM requirement specification. A slicing cri-
terion (SC) for RS may be:
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o A UCM construct (e.g., responsibility, start/end point, etc.). If the chosen UCM construct is
not part of the root map, the stub and the plug-in to which it belongs must be defined as well.

e A UCM component.

o A combination of a UCM construct and a UCM component.

Note: For bound UCM specifications, the computed slice is also bound even when the slicing

criteria do not involve a specific component.

5.2.5 Slicing UCM Constructs

Figure 5.2 shows different UCM constructs and their potential reduced versions after applying back-
ward slicing. FE is a generic end point which is added after the SC to form a valid reduced UCM.
In the reduced OR-Fork (Figure 5.2(aa)), only one path is included in the reduced UCM. In the
reduced OR-Join (Figure 5.2(bb)), the non-determinism is preserved. In the reduced AND-Fork
(Figure 5.2(cc)), the interleaving semantics is preserved, since concurrent responsibilities SC and d
may occur in different order(SC;d or d;SC).

Figure 5.2(gg) shows the slice obtained for a UCM with a dynamic stub. The selection policy
between plug-in 1 and plug-in 2 is based on the value of global variable C:(1) (C=true) — Plug-in
1 (connects IN1 to OUT1)(2) (C=false) — Plug-in 2 (connects IN1 to OUT2). Plug-in 1 is sliced
out because its end point is bound to end point E2. The resulting stub is a reduced stub with only
one exit point E1 containing Plug-in 2.

5.2.6 UCM Backward Slicing

In what follows, we present our UCM backward slicing algorithm, which is based on a backward
traversal of the UCM specification. While performing the backward traversal, the slicer collects all
the logical predicates, defined on UCM global variables, leading to the execution of the targeted
criterion and produces what we refer to as reachability expression. The reachability expression is
solved by finding the initial variable values and/or the sequence of inputs that the environment has
to provide to be able to reach the slicing criterion. Table 5.2 describes the high level schema of the
UCM slicing algorithm.

Logical conditions are collected as the traversal progresses. Each stub defines a level of abstrac-
tion and is treated separately. Therefore, we obtain reduced stubs at different abstraction levels.
Since a plug-in can be installed in many stubs according to the chosen scenario, the targeted stub
and plug-in to which the SC belongs. This information is essential because of the *Many-Many’
association between plug-in maps and stubs.

It should be noted that the presented algorithm is not necessarily the most time and space efficient
approach to compute UCM slices. The algorithm will terminate due to the backward traversal step
and the fact that there is a finite number of responsibilities in the UCM.

UCM slices based on the other two types of slicing criteria are obtained as follows:
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Input:UCM Spec + (Slicing criterion SC, level, stub)
Output: Reduced UCM Spec, Reachability Expression

Stepl:(* Searching SC ¥)
while (target(elem) # SC) do /* elem of type UCMElement */
elem := next(elem) /* nezt is defined such that target(elem)=source(next(elem)) */
end while
if (level=RootMap) then
ReducedSlice := elem U (SC,e,E)
goto step2
else
ReachabilityExp := SelectionCond(Stub) /* Selection policy for stubs */
ReducedPlugin := el U (SC,¢e,E)
end if
Step2:(* UCM Backward Traversal 4 collect conditions *)
if (level=RootMap) then
while (type(source(elem))7# StartPoint) do
if (type(source(elem))= OF) then ReachabilityExp := ReachabilityExp A Cond(source(elem))
ReducedSlice:=ReducedSlice U elem
if (type(source(elem))= OJ) then ReducedSlice:=ReducedSlice U elem
if (type(source(elem))= AF) then
ReducedSlice:=ReducedSlice U elem
ele:=elem
while (type(target(ele)) # AJ) A (type(target(ele)) # EP) do
ReducedSlice:=ReducedSlice U ele
ele := next{ele)
if (type(source(elem))= AND-Join) then ReducedSlice:=ReducedSlice U elem
if (type(source(elem))= Stub) then
ReducedSlice := ReducedSlice U elem
Select only Stub’plugins bound to the exit point of source(elem)
ReducedSlice := ReducedSlice U elem

elem = previous(elem) /* previous is defined such that
source(elem)=target(previous(element)) */
end while
else

while (type(source(elem))# StartPoint) do
if (type(source(elem))= OF) then
ReachabilityExp := ReachabilityExp A Cond(source(elem))
ReducedPlugin:=ReducedSlice U elem
if (type(source(elem))= OJ) then ReducedPlugin:=ReducedPlugin U elem
if (type(source(elem))= AF) then
ReducedPlugin:=ReducedPlugin U elem
ele:=elem
while (type(target(ele)) # AJ) A (type(target(ele)) # EP) do
ele := pext(ele)
ReducedPlugin:=ReducedPlugin U elem
end while
if (type(source(elem))= AND-Join) then ReducedPlugin :=ReducedPlugin U elem
if (type(source(elem))= Stub) then
ReducedPlugin := ReducedPlugin U elem
Select only Stub’plugins bound to the exit point of source(elem)
ReducedPlugin :=ReducedPlugin U elem
elem := previous(elem)
end while
level:=UpMap(level)
goto step2
end if

Table 5.2: Backward Slicing Algorithm
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o A UCM construct and a UCM component: The resulting UCM slice obtained by applying the
backward slicing algorithm is further reduced by keeping only UCM constructs bound to the

underlined component.

¢ A UCM component: The resulting UCM slice is obtained by a simple projection of the UCM

specification based on the component name.

The use of UCM component part of the slicing criteria may result in more than one non executable
slice. Indeed, there is no guarantee that all UCM constructs that belong to one specific component
are causally related.

5.2.7 Solving the Reachability Expression

The resulting UCM slice is considered to be correct, if and only if the set of computed conditions
are satisfied. Given a reachability expression the question is: Ezist there any true/false assignments
that will change the entire expression to true?:

e The Boolean Satisfiability Problem (SAT). Since UCM deals only with boolean vari-
ables, the reachability problem can be reduced to an instance of the Boolean Satisfiability
Problem (SAT) [Coo71]. SAT is the first known NP-complete problem, as proved by Stephen
Cook [Coo71] in 1971. There are many approaches for solving instances of SAT in practice.
Just to name few: Davis-Putnam, GRASP, WALKSAT, GSAT, CHAFF and SATO. Finding
a solution to the reachability expression is outside the scope of this thesis. For a detailed
coverage of this problem refer to [GPFW97].

e Conflicting conditions and non-determinism. We may obtain unsatisfiable reachability

expressions in the following situations:

1. Conflicting conditions: unsatisfiable set of conditions in successive alternatives found
in OR-Forks (For example: C1 and -C1), in selection policies of nested dynamic stubs,
ete.

2. Non-determinism: UCMs may contain some non-deterministic behavior due to overlap-
ping conditions (For example: in an OR-Fork, conditions Cond1:(Cl=true) and Cond2:
(C1=true and C2=true) overlap when C2=true. This will result in a non-deterministic
execution. Hence, the resulting initial condition does not guarantee the execution of the
computed slice.

Note: Parnas tables can be applied at specification time to determine, if a collection of condi-

tions is deterministic and complete [PMI94].

5.2.8 UCM Data Flow

¢ Variable Assignment. So far, global boolean variables were assigned values only at initial-

ization time. However, UCM responsibilities may affect the content of value identifiers. As a
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result, the reachability expression may not hold and the correctness of the computed slice is
affected.

[C=false]

Figure 5.3: Responsibilities Updating Boolean Variables

- Case 1: Suppose that in the UCM of Figure 5.3, responsibility a:C«— —C. Consequently,
the new definition of variable C should be considered in the reachability expression :
C=true, C — —C.

- Case 2: Suppose that in the UCM of Figure 5.3, responsibility b:C+— —C. The update
happened after a path has been taken. The reachability expression should not be affected

and should remain: C=true.

This mixture of predicates and assignment statements should be eliminated before applying a
satisfiability algorithm[GPFW97]. In order to obtain a reachability expression containing only
predicates, we substitute the affected variable of the assignment statement in the logical pred-
icates(also called unification). For example: C=true, C+— —C ==> true=—C. This problem
is formalized and solved by the two following rules:

Rule 1 If a variable has been assigned a new value before participating in a choice condition,

then the variables of the choice are substituted with the new variable assignment.

v <'_f(mlr . -)xn)y g(yl)' . -7yn)v):g(ylz- . ~;ymf(331;- . ':-’L"n.))
where v is a boolean variable, f and g are logical expressions.

Rule 2 If a variable has been assigned a new value after participating in a choice condition,

the predicate condition is retained in the reachability ezpression and the assignment is ignored.

g(ylr . ~:me)’v ‘_f(xly' . ')xn):>g(y1 3. -;Zl/mU)
where v is a boolean variable, f and g are logical expressions.

e Limitations. While the underlined rules are easy to apply and help reducing the reachability

expression, they are not applicable in the following circumstances:

1. Loops: When a UCM contains loops, the number of times a loop is visited is known only
at Tun time. Such information, which depends on the variable’s initial values and guard’s

evaluation, is needed in order to compute the slice and to solve the reachability expression.
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For example, in the simple UCM of Figure 5.4(a), the number of times the loop is entered
(zero or one time) is not available when the backward traversal is performed.

In a more complex situations, where instead of having only a responsibility like R2 in
Figure 5.4(a), we have a dynamic stub, where the selection of plug-in maps depends on
the values of the variables at run-time. Hence, non executable plug-in maps may be part

of the resulting slice, whereas they should be left out.

R2:V<-not(¥) vl

(a) UCM with a loop

R1:C<-false 5¢C E1

[C=False]
(b) Non-deterministic UCM

Figure 5.4: UCM Data Flow: Special Cases

2. Non-determinism: Figure 5.4(b) shows a UCM with two interleaving responsibilities
R1 and R2. SC is reached only when R2 is executed after R1. One possible option
is to investigate all possible alternatives (i.e. execution paths). Each alternative will
be evaluated separately and considered in the resulting slice if it is a consistent one.
Therefore, the resulting slice will be the union of all consistent executions. Another
option is to keep the non-determinism. Users can then further analyze the resulting slice

and make the appropriate decision.

5.2.9 UCM Forward Slicing

In what follows, we present our two phase UCM forward slicing algorithm. The first step consists
on localizing SC. the 2°4 step consists of a forward traversal of the specification starting from SC.
A transition closure is applied to the transition relation A staring from the tuple containing SC. We
obtain as result a reduced transition relation containing only UCM transitions occurring after the
execution of SC. In order to obtain a valid reduced UCM, we add a start point (referred to as S) to
the obtained slice. Table 5.3 describes the high level schema of the UCM forward slicing algorithm.

5.3 Change Impact Analysis

Fixing specification errors may introduce new collateral errors. Change Impact Analysis technique

is used to assess the impact of a change and to prevent the introduction of new errors.
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Input:UCM Spec + (Slicing criterion SC, level, stub) J
Output: Reduced UCM Spec
Stepl:(* Searching SC ¥)
while (source(elem) # SC) do /* elem of type UCMElement */
elem := next(elem) /* next is defined such that target(elem)=source(next(elem)) */

end while
if (level=RootMap) then

ReducedSlice := (S, e, SC) U elem

goto step2

else
ReducedPlugin := (S, e, SC) U elem
end if
Step2:(* UCM Forward Traversal *)
if (level=RootMap) then
while (type(target(elem))# EndPoint) do
ReducedSlice := ReducedSlice U elem
elem := next(elem)
end while
Compute transition closure else
while (type(target(elem))# EndPoint) do
ReducedPlugin:=ReducedSlice U elem
elem := next(elem)
end while level:=UpMap(level)
goto step2
end if

Table 5.3: Forward Slicing Algorithm

Impact analysis techniques can be partitioned into two categories: traceability analysis and de-
pendence analysis [Arn96]. Dependence-based impact analysis found in [CR94, GPFW97, PC90,
RTO01] attempts to assess the resulting changes on semantic dependencies among program entities.
This is done by identifying the syntactic dependencies that may signal the presence of such se-
mantic dependencies [AB93]. The techniques used to identify these syntactic dependencies include
static [Wei84] and/or dynamic [KL88] slicing techniques. Other techniques using transitive closure
on call graphs [Arn96] attempt to approximate slicing-based techniques, while avoiding the cost
associated with dependency analysis. Approximate dependence-based impact analysis techniques
include expert judgment and code inspection. These approaches may often be incorrect [LS98], and
performing impact analysis by inspecting source code can be expensive [Pl01], due to a lack of
automation.

In our validation method, we focus on combining a UCM forward slicing algorithm with the
dependency analysis techniques introduced in this section to address some of the shortcoming of the
existing approaches [Arn96, GPFW97, Wei84]. The dependency analysis algorithm uses as input a
UCM specification and the necessary slicing criterion (based on the change request) that will provide
the set of impacted UCM elements. In what follows we provide a detailed discussion on UCM based
dependency analysis at the scenario level.

5.3.1 UCM Scenario Dependencies

Scenarios in UCM inherently contain dependency information as part of their modeling. Scenario
dependencies can be applied in assessing the ripple effects of a change at the scenario level of under-
standing. At the UCM level of abstraction, we distinguish three types of dependencies: functional,
containment and temporal.

¢ Functional dependency. UCMs integrate many individual scenarios. We can define system
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level scenarios as being end to end scenarios, where each scenario starts at a start point and
ends at an end point. Scenario definitions are used to describe particular scenarios, representing
them as partial orders of UCM elements (i.e. sequence and concurrency are preserved, but
alternatives are resolved). System level scenarios make use of a path data model composed
of global variables used on guarding conditions. A scenario definition contains an identifier,
a name, initial values for the global variables, a list of start points, and (optionally) post-
conditions expressed using the global variables.

variables
o
. P
e, | 2 g E i I
g3 | § 3z la|z|8
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Figure 5.5: System Scenarios Definitions

From the case study of the telephone system introduced in Section 2.1.4, one can identify seven
system level scenario definitions that are summarized in Figure 5.5. All scenarios start at the
start point req. Variables Busy and InOCSList are used to guard the two OR-forks found
in the plug-in maps, whereas subOCS and subCND are used to define the selection policies
found in the dynamic stubs. No postconditions are necessary here. These scenarios cover all
the paths found in this UCM model and they are organized in functional groups. Functional
dependencies capture the coexistence of two or more scenarios inside a same conceptual (or
logical) cluster. For instance, we have grouped scenarios according the features they are
describing.

Containment dependency. A containment dependency exists between a scenario S2 and a
scenario S1, if S2 is used in the description of S1. Stub plug-in maps are contained in system
level scenarios since they describe disjoint pieces of the system scenarios. For instance, CND
plug-in is part of the terminating plug-in which is part of all system level scenarios except the
OCSdenied. Default plug-in is part of both “Originating plug-in” and “terminating plug-in”.

Figure 5.6 illustrates the containment dependency graph.

Temporal dependency. Temporal dependency capture different types of temporal rela-
tionships that may exist between scenarios (e.g., one scenario excludes, waits for, aborts,

rendezvous or joins another, concurrent, mutually exclusive, etc.). For the sake of generality
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Figure 5.6: Scenario Containment Dependency

temporal dependencies may be defined between system level scenarios, plug-in maps or even
sequential pieces of behavior. We denote the precedence relation by “«”, the concurrency re-
lation by “|||”, the alternative relation by “[]”, abort relation by “[>” etc. Figure 5.7 illustrates

some examples of temporal dependencies between scenarios of the simple telephone system.

Precedence relation: <<

Originating plugin << Terminating plugin

OCSdenied << Terminating plugin
BCbusy << CND plugin

Concurrency relation: |||

CND plugin ||} (RingingTreatment;
reportSuccess)

(Display ; disp) ||| success

Alternative relation: [}
OCSBusy [] OCSsuccess

Figure 5.7: Temporal Dependencies

5.3.2 Ripple Effect Analysis

Impact analysis techniques based on source code analysis have the clear advantage of being very
accurate in the analysis as they identify impacts in the final product; however, they have the dis-
advantage of being very time consuming, limited in scope, and they require implementation of the
change before the impact can be determined [BLO03).

Change impact analysis, also often referred to as ripple effect analysis, is generally performed
after the change has been implemented [Arn96]. However, during change impact analysis, it is useful
to see the potential effect that performing a change might have on the rest of the system. Ripple

effect analysis is an iterative process which continues until no further ripples can be determined.
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We apply the UCM slicing algorithm to the UCM specifications to determine the ripple effect of a
change.

For component ripple effect determination the output is the set of components that are related
to the change component through its scenario paths. The execution of the slicing algorithm adds to
the impact set any new components that are encountered along the execution path. This impact set
contains all the components that relate to the change component through any of the scenario paths

that it is contained within.

5.3.3 Related Work: Model Based Change Impact Analysis

Lehman provides an in-depth analysis of different aspects of software evolution in [LRO1]. He
addresses the different types of systems and how they evolve; the evolution of the system in its
context; the evolution of the development process. Requirements evolution is highly focused on
tracing changed requirements to design, but there is little mention of how to assess the impact of
changes at the requirement or design level. Requirements change analysis is discussed in [SS96]
with a focus on assessing the information and techniques useful in assessing the risk of a changed
requirement. Both sensitivity analysis and impact analysis are needed in a pro-active approach to
change analysis. Settimi et al. present in [SCHK™04] their work on software evolution, with a
similar aim than ours - to provide a higher level of understanding of the change impact. However,
they focus on Information Retrieval (IR) methods to facilitate traceability analysis to UML models.
Similarly in [vKO01] a fine-grained trace model for requirements impact analysis in embedded systems
is presented.

Bai et al. [BTF*02] propose a scenario-based functional regression testing. In their approach,
they have also integrated scenario based ripple effect analysis, traceability information, and slicing
to determine affected components. Their focus however is on identifying components that have to
be retested, limiting the analysis to a subset of the slicing criterion supported by our approach.
Furthermore their approach requires the availability of source and being able to create traceability
links between scenarios and source code.

Ecklund et al. [EDF96] propose the notion of change cases, an adapted version of use cases, to be
developed and maintained at the time of design to identify and incorporate expected future changes
into the design to enhance the long-term robustness of the design. This idea provides an idealistic
view, since it assumes that there are no time constraints on the development, and that it is possible
to provide a conclusive prediction of future requirement changes. Furthermore it also requires that
the change cases are maintained during the software and design evolution.

Briand et al. [BLOO03] propose a change impact analysis method that is based on UML models
and can be applied before implementing the changes. They have defined impact analysis rules to
determine the directly and indirectly affected model components that depend on the type of change
for which the impact analysis has to be performed. They also defined one rule for each change
type. This approach focuses on defining rules using OCL that can be used on static UML models
to formally determine the impact of a change. As well, very detailed UML models are used in
this approach, requiring that detailed design descriptions are completed. Furthermore the approach
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focuses on the functional requirements rather on design changes.

5.4 Applying the Validation Approach

In this section, we apply the proposed validation approach on the simple telephone system presented
in Section 2.1.4.

5.4.1 Simple Telephone System Traces

Suppose that we want to validate the behavior of CND feature in isolation and later validate its
behavior in presence of OCS feature. Figures 5.8 and 5.9 show two execution traces of the telephone
system with the callee party subscribed to CND only. Each scenario provides the initial values of

the specification variables.

This scenario is generated with the following
initial values:

subCND:True

subOCS:False

busy:False

Start Bxecuting: Telephone System:Req

Start Point:Req in Component:UserOrig
Stub_Construct: SOrig

Plugin: Orig plugin

Start Point:Start in Component:AgentOrig
Stub_Construct: Sscreen

Plugin: DEF_Pliugin

Start Point:Start in Component:AgentTerm

End point: continue in Component:AgentTerm
Responsibility: snd req in component: AgentOrig
Bnd point: success in Component:AgentOrig
Stub_Construct: Sterm

Plugin: term Plugin

Start Point:Start in Component:AgentTerm
OR-FPork: term OF1

AND-Pork: term AF1l

Stub_Construct: Sdisplay

Plugin: CND_Plugin

Responsibility: ringingTreatment in component:
AgentTerm

End point: reportSuccess in Component:AgentTerm
Responsibility: fwd_sig in component: AgentOrig
Bnd Point: ringing part of root map reached in
Component :UserOrig

Start Point:Start in Component:AgentTerm
AND-Pork: CND_AF1

Responsibility: display in component: AgentTerm
Bnd point: success in Component:AgentTerm
Responsibility: ringTreatment in component:
AgentTerm

End point: success in Component:AgentTerm

End point: disp in Component:AgentTerm

End point: display in Component:AgentTexm

End Point: display part of root map reached in
Component :UserTerm

End Point: ring part of root map reached in
Component :UserTerm

This scenario is generated with the following
initial values:

subCND:True

sub0CS:Palse

busy:True

Start BExecuting: Telephone System:Req

Start Point:Req in Component:UserOrig
Stub_Construct: SOrig

Plugin: Orig_plugin

Start Point:Start in Component:AgentOxig
Stub_Construct: Sscreen

Plugin: DEF_Plugin

Start Point:Start in Component:AgentTerm
End point: continue in Component:AgentTerm
Responsibility: snd_req in component:
AgentOrig

End point: success in Component:AgentOrig
Stub_Constrxuct: Sterm

Plugin: term Plugin

Start Point:Start in Component:AgentTexrm
OR-Fork: term OF1

Responsibility: busyTreatment in component:
AgentTerm

End point: fail in Component:AgentTerm
Responsibility: fwd_sig in component:
AgentOrig

End Point: busy part of root map reached in
Component : UsexrOrig

Figure 5.8: CND Trace (with busy = False) Figure 5.9: CND Trace (with busy = True)

Figures 5.10 and 5.11 show two execution traces of the telephone system with the callee party
subscribed to CND and the caller subscribed to OCS.
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8ubCND: True
sub0OCS:True
InOCSLigt:False
busy:False

This scenaric is generated with the following initial values:

Start Bxecuting: Telephone System:Reg
Start Point:Req in Component:UserOrig
Stub_Construct: SOrig
Plugin: Oxig_plugin
Start Point:Start in Component:AgentOrig
Stub_Construct: Sscreen
Plugin: OCS_plugin
Start Point:Start in Component:AgentOrig
ibility: ch S in H ig
OR-Fork: 0CS_OF1
Bnd point: success in Component:AgentOrig
Responsibility: snd xeq in component: AgentOrig
Bnd point: success in Component:AgentOrig
Stub_Construct: Sterm
Plugin: term Plugin
Start Point:Start in Component:AgentTerm
OR-Pork: texm OF1
AND-Pork: term AFl
ibility: ringi

Stub_Construct: Sdisplay

Plugin: CND_Plugin

Bnd point: report in C A

Start Point:Start in Component:AgentTerm

AND-Pork: CND_AF1

Bnd point: success in Component:AgentTerm

Responsibility: display in component: AgentTerm
ibility: ringT in : AgentTerm

Bnd point: success in Component:AgentTerm

Bnd point: disp in Component:AgentTerm

Bnd point: display in Component:AgentTerm

Bad Point: display part of root map reached in
Component: UserTexrm
Responsibility: fwd_sig in component: AgentOrig
Bnd Point: xinging part of root map reached in
Component :UsexrOrig

Bnd Point: ring part of root map reached in Component:UsexTerm

This scenario is generated with the
following initial values:

subCND: True

5ubOCS: True

InOCSList:True

busy:False

Start Executing: Telephone System: Req
Start Point:Req in Component:UserOrig
Stub_Construct: SOrig

Plugin: Orig_plugin

Start Point:Start in Component: AgentOrig
Stub_Construct: Sscreen

Plugin: 0CS_plugin

Start Point:Start in Component: AgentOrig
Respongibility: checkOCS in component:
AgentOrig

OR-Fork: OCS_OP1

Respongibility: deny in component: AgentOrig
End point: fail in Component: AgentOrig
End point: fail in Component: AgentOrig
End Point: notify part of root map reached
in Component :UserOrig

Figure 5.10: CND-OCS Trace (with InOCSList = Figure 5.11: CND-OCS Trace (with InOCSList =

False)

True)
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5.4.2 CND Feature upgrade: A Closer Look

Suppose that we want to perform an upgrade to the CND feature. The upgrade will involve the
display not only of the caller’s name but also of his/her service provider. This maintenance task
cannot take place until the maintainer understands how the particular feature works and how it
interacts with other system features. Knowing all the details of the requirement specification is
almost never necessary; an experienced maintainer will try to extract only just enough information
to perform the task at hand. The goal is to extract the scenarios leading to the display function.
Hence, the slicing criterion is the responsibility display. Figure 5.12 describes the resulting UCM
obtained from the original UCM of Figure 2.9 with respect to the slicing criteria display.

Red User:OrigRed_Agent:Orign  Red_Agentterm Red_User:Term
req PN msm“;‘;{ﬁ“d ouT! ring
- © = o—
ringin: T2 L
{ & fwd_sig OUTY display
I S v o .
: E2
start &?df.m}fr&?; sndreq  SUCCess start display 1
.—-e_". : .__w
(34

wt dff*ilay oUTi Ell

start notBus
P ) v start  checkOCS suctl:ess

: |
(14
reportSuccess } M L 2 ) i
ringing Treatment

Figure 5.12: Simple Telephony System Slice with Respect to SC:display

Figure 5.13 shows its corresponding Reachability Ezpression. The first part of the reachability
expression ((1) in Fig 5.13) illustrates the fact that the default plug-in is selected (subOCS = false)
and the second part of the expression ((2) in Fig 5.13) expresses the fact that the OCS plug-in was
selected.

((subCND = true) AND (Busy =false) AND (subOCS = false)) (1)
OR
((subCND=true) AND (Busy=false) AND (subOCS=true) AND (InOCSList=false)) (2)

Figure 5.13: Reachability Expression for Responsibility display

In our example the reachability expression provides the initial values of global variables leading
to the slicing criterion and no further computation is needed.
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5.4.3 Simple Telephone System: Change Impact Analysis

Suppose that the system’s maintainer wants to assess the possible impact of changing the semantics
of the Terminating plug-in, for instance changing the AND-Fork by an OR-Fork. The UCM Slicer
computes the UCM forward slice with the AND-Fork of the terminating plug-in as slicing criterion.
The resulting forward slice is described in Figure 5.14. All the four components are impacted by
this change. It can be observed that the resulting forward slice no longer includes stub Sorig within
Agent:Orig, also the corresponding start and end points in the User:Orig component are excluded
from the slice. As with traditional program slicing approaches [KL88, Wei84], the slice size is
directly affected by several factors. As shown in [BHO3] the slicing criteria, its position within a
scenario/component and the overall cohesiveness of the system play an important role for the slice
reduction. Furthermore, compared to the more traditional program slicing techniques, where the
slicing criterion is restricted to a single variable, our UCM slicing approach supports multiple types
of slicing criteria at different levels of granularity, that are also influencing the slice size.
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Figure 5.14: Telephony System Slice for SC=AND-Fork

Substituting the AND-Fork by an OR-Fork will alter the stored temporal dependencies. For
example, scenarios “CND plug-in” and “RingingTreatment; reportSuccess” behave now as alterna-
tives not concurrently as initially described in figure 5.7. Hence, both parts composing the temporal
dependency (i.e., both scenarios) may be affected and then should be investigated with respect to
functional and containment dependencies.

On the one hand, based on the identified containment graph (see Figure 5.6), the CND plug-in
is enclosed in all system level scenarios (except OCSdenied) and in the terminating plug-in as well.
All these identified scenarios may be affected by the planned change and should be communicated
to the user. On the other hand, the introduction of the new OR-Fork may also alter the table of

functional dependencies (see Figure 5.5). In our example, the maintenance task has also an effect of
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increasing the number of functional dependencies within the system since by applying our scenarios
definitions alternatives are resolved whereas concurrencies are preserved. Therefore new system level
scenarios have to be defined. Once the user commits the changes these new scenarios are integrated

in the Scenario Dependency Manager.

5.5 Chapter Summary

In this chapter, we have presented our Early Stages Validation Approach which combines validation
techniques (i.e., step by step simulation, trace generation) with slicing techniques to validate early
requirement specifications described using the Use Case Maps notation.

Section 5.1 described our high level validation approach. In Section 5.2, we extend traditional
program slicing to functional requirement specifications. This new application of slicing, called UCM
Requirement Slicing helps reduce the complexity of the requirement specifications and facilitates
requirement comprehension and maintenance. Our approach is two tiered: First, we allow an analyst
to reduce a UCM specification according to a slicing criterion. Second, a reachability expression is
attached to the slice, which insight on the feasibility of the selected scenarios. However, the choice
of the appropriate slicing criteria remains the big challenge that a designer/maintainer have to face.
Indeed, not choosing the right slicing criterion may lead to chopping parts of the specification that
contain design flaws, leaving them uncovered.

Furthermore, we have illustrated the potential use of UCM slicing in assessing the impact of a
change (i.e., fixing errors, upgrade a feature, add a new feature, etc.). Moreover, we see potential
application domains of UCM slicing in feature extraction and reuse of requirements. In fact, while
reuse of code is important, more significant improvements in productivity and quality can be ex-
pected from reuse of software designs and requirement patterns. By slicing a UCM requirement
specification, a system designer can extract reusable parts from it, and reuse them into new system
designs for which they are appropriate.

Finally the proposed approach is not limited to Use Case Maps specifications. The approach
is general enough to be applied to all languages with guarded transitions such as UML activity

diagrams.
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Chapter 6

Timed Scenario Languages

The ability to perform quantitative analysis at the requirements level supports the detection of
design errors during the early stages of a software development life cycle. Thus, reducing the cost of
later redesign activities in case some of the required time constraints, for instance, are not met. In
order to achieve this goal, non-functional aspects and in particular time-related aspects have to be
incorporated at the software requirement phase. This is essential in order to correctly model time
dependent applications at early stages in system development. Typical classes of such applications
are communication protocols and real-time distributed systems.

In this chapter, we survey thirteen timed scenario notations and we propose a collection of eleven

criteria to categorize and compare various timed notations.

6.1 Evaluation Criteria

In Chapter 3, we have presented some classification approaches of untimed scenario notations [AE03,
LDD06, RAC*98, Coc97, AEGT98]. In this section, we focus on the timing aspects of scenario
notations. We propose a collection of eleven criteria that will help categorize and compare many

timed scenario notations.

6.1.1 Timed Action/Event Enabling

Intuitively, an action/event is enabled (i.e. offered) when the execution of its predecessor is com-
pleted. However, a time constraint can be specified to define when an action/event is offered relative
to the execution of its predecessor action/event. Three types of enabling can be defined [BG06]:

- Simple enabling: The instant an action becomes enabled may be associated with a time con-
straint. For example, an action b can be taken at any time 5 time units after action a. However,

no upper bound can be imposed on enabling.

- Initiation and termination of enabling: both lower and upper time bounds can be imposed on
enabling. Thus, an action is offered within a specific time interval. For example, an action a

can be enabled immediately and will be offered for 5 time units.
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- Punctual enabling: This type is a restriction of the Simple enabling. An action/event is
enabled with respect to its associated time constraint then the enabling retracts if the action
is not taken. For example, an action b is offered 5 time units after ¢ and should be taken
instantaneously, otherwise the enabling is retracted. Punctual enabling are used as abstractions
of real-world systems. An important class of applications that use punctual enabling are those

employing periodic behavior.

Another notational alternative to express enabling classes is:

Delays: An action/event can be explicitly delayed by using a delay operator, such as 6t or WAIT?.
Using such operator, lower bounds on enabling can be defined. In their work on timed process
algebra, Leonard and Leduc’s motivation for including an explicit delay operator is to enable delays
to be imposed that do not resolve the choice on expiry of the delay [LL93b]. For example, the
following behavior (65 B) [] (§7 B’) imposes 5 time unit (respectively 7) delays on B (resp. B’), but
it is important to note that the choice between B and B’ cannot be resolved solely by the expiry of
either of the delays.

6.1.2 Instantaneous (atomic) vs. Durational Actions

Actions can take a given amount of time, called duration, to be performed [GRS95, CFP01]. Hence,
the time passes due to the execution of these actions. Approaches that use durational actions may
support true concurrency. Alternatively, actions can be instantaneous (atomic) and the passage of
time is explicitly modeled by a special tick action [RR88, NS94].

In an interleaving semantics, concurrency is reduced to non-determinism where the behavior of
a system that performs two actions a and b concurrently is considered the same as the behavior
of a system that either does an a followed by b, or a b followed by a. However, in the context of
durational actions, Hoare [Hoa85] suggests that time-consuming actions should be represented by a
pair of events, the first denoting its start and the second denoting its finish. |

6.1.3 Relative vs. Absolute Time

The time of occurrence of an action/event of a system execution can be related to the value of the
global clock, in this case, the time features as absolute. Alternatively, they can be relative to the
execution of a causally preceding action, in this case, the time features as relative. In this case,
the preceding action/event enables (directly or indirectly, i.e. via some intermediate events) the

subsequent action/event.

6.1.4 System Clocks: Local vs. Global, Physical vs. Logical

The elapsing of time in a system can be modeled by a unique centralized global clock that increases
uniformly. However, in a distributed system, many local clocks are used to track time in different
locations. This raises the problem of clock synchronization [Mes90]. To address this issue, Lamport
[Lam78) has introduced the concept of logical clocks, so partial ordering of events can be obtained

without recourse to any physical “real” time.
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6.1.5 Urgency

Urgency is a well-accepted and extensively documented time requirement [NS92, HR95, Sin04,
BST98, BS00]. Urgency offers an abstraction that can be used to influence the behavior of a system
as time progresses. It allows for expressing assumptions on the environment and on the underlying
execution system, such as action durations, communication delays, or time constraints on external

inputs. We distinguish two main approaches:

1. Action Urgency. This type of urgency is studied extensively in the process algebra theory.
Three main approaches have been identified [BGO6]:

- Urgent Actions. In this approach, all observable and unobservable actions (i.e. internal
to the system) are interpreted as urgent. Hence, it is possible that observable actions
will become urgent, but will be prevented from executing by an environment that is not
offering the action. This leads to a timelock situation in which time is not able to pass.
Urgent actions are largely rejected in timed process calculi.

- Ezplicit Urgency Operator. In this approach, a specific operator, such as urge [BL92],
is used to make an action urgent. urge is associated to an action and is placed in
the beginning of a process behavior. This approach constraints the environment more

selectively but timelocks can still occur [BG06].

- Urgent Internal Actions. This approach restricts urgency to internal actions (i.e. un-
observable to the environment) and all observable actions are interpreted as non-urgent.
Internal actions can always execute urgently without the possibility of timelock since they
are not controlled by the environment. This approach is now the most common approach

in timed process algebra [ISO97]. Variants of this class of urgency are Mazimal progress,

asap(as soon as possible) and Minimal Delay.

2. Transition Urgency. A transition can be regarded as urgent, if it will be taken or disabled
before time progresses. There exist three main types of transition urgencies:

- Eager transitions. Eager transitions are urgent as soon as they are enabled, i.e. they
never wait. They have to be executed as soon as possible and time should not progress

as long as an eager transition is enabled.

- Lazy transitions. Lazy transitions do not prevent time progress in any system state, i.e.
they can wait. Whenever a lazy transition is enabled, it can be taken, or likewise time

can progress and possibly disable it.

- Delayable transitions. Delayable transitions are a combination of both eager and lazy
transitions. They can wait, but they become urgent when time progress would disable
them.

The distinction between these three types of transitions is depicted in Figure 6.1 [Sin04].

96



q0 N eager
y ger

ql
t=2 1,
1 2 3
: y (e
! Yovro—2 urgency

gl
t 15143
0 ! Z:g ’ delayabl Cl
....................... gelayable 4
ql

t
1 2 3

Figure 6.1: Transition Urgencies [Sin04]

6.1.6 Time Domain

The expression discrete or continuous time often refers to the empirical description of a so-called

physical time. There are three types of physical time:

- Discrete Time. Empirical time is composed of indivisible instants, such that the passage
from one instant to another implies an irreducible jump. In this sense, discrete time is a
model isomorphic (i.e. structurally identical) to a discrete series of natural numbers. This
type of time model is appropriate for synchronous systems, where all the components are
synchronized by a single common clock. This model has been successfully used for reasoning
about the correctness of synchronous hardware design especially synchronous digital circuits,
where signal changes are considered to change exactly when a clock signal arrives. One of the
advantages of this model is that it can be transformed easily into an ordinary formal language.
Each timed trace can be expanded into a trace where the times increase by exactly one at
each step, by inserting a special silent event as many times as necessary between events in
the original trace. Once this transformation has been performed, the time of each event is the
same as its position [EMCGP99].

- Continuous Time. The jump between two instants is a smooth and uninterrupted process. In
this sense, the model of continuous time is isomorphic to a continuous series of non negative
real numbers. Continuous time model is appropriate for asynchronous systems, because the
separation of events can be arbitrarily small. This ability is desirable for representing causally
independent events in an asynchronous system. Moreover, no assumptions are needed about

the speed of the environment when this model of time is assumed.

- Dense (but countable) Time. A model of dense time is isomorphic to a dense series of non
negative rational numbers, meaning that there is always a rational number between any two

rational numbers.
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6.1.7 Time Representation/Measurement

Time can be represented by three classes: point-based, interval-based or both of them. In point-
based models, the elementary units are points in a time space. Each event in the model has its
associated time point (a single concrete time value). The time points arranged according to some
relations such as precede or after. The ability to reference the time instant at which an action/event
occurs is important in certain classes of real time specifications. In interval-based models, two
different approaches can be considered. In the first, intervals are assumed to consist of points, and
hence, the corresponding systems may be considered as models of point-based time theories [KM94a).
The second approach takes intervals (i.e. ranges of time values within given bounds) as primitive
objects, without any reference to the definitions of internal-point structures. Interval-based models
are mainly based on the relations defined by Allen [All81]: before, meets, overlaps, finishes, during,
starts, equals.

Time observations are described by measurements. Measurements are used to observe the delay
between the enabling and occurrence of an event/action (for relative timing) and to measure the

absolute time of the occurrence of an event/action (for absolute timing).

6.1.8 Timed Constructs/Constraints

A timed scenario requirement language is expected to offer a set of constructs that help:

- Express time dependent system behavior, such as execution times of tasks and actions. These

are often modeled by means of timers or explicit access to a system clock.

- Express time constraints on the internal system execution such as end-to-end delays of the

system.

- Express time related assumptions on the external environment of the system, mainly response

times and inter occurrence times of stimulus.

6.1.9 Formal vs. Semi-formal Semantics

The nature of semantics (formal or semi-formal semantics) offered by an approach, as well as their

expressiveness power represents an important and useful classification criterion.

6.1.10 Time Analysis and Verification

The quantitative analysis of requirement models allows the early detection of potential behavioral
(time dependent) and performance problems. This criterion aims to identify what kind of timing
analysis (such as validating timing assignment, verifying timing consistency, etc.) scenario notations
offer.

Different approaches have proposed algorithms and methods to analyze and ensure that timing
requirements are met. These approaches can be classified as follows:
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- Model-Based Scheduling Analysis: The first contribution to real-time scheduling theory was
made by Liu and Layland [LL73], who developed optimal static and dynamic priority schedul-
ing algorithms for hard real-time sets of independent tasks. Since then, much work on schedu-
lability analysis has been done which includes various extensions of these results [HKL94,
TBW94, JP86]. Schedulability analysis techniques are based, amongst others, on worst case
execution times (WCET) [PB00] and stochastic task execution times [GL99)].

Note: End-to-end system behavior description is necessary to conduct schedulability analysis.

- Formal Verification Approaches: These approaches are based on a translation of the timed
requirement model into a formal description technique supporting time, such as timed au-
tomata [AD94]. The resulting models are checked against timing requirements using formal

verification techniques, such as model checking [EMCGP99].

6.1.11 Specification Executability and tool support

Using scenario approaches to describe timing requirements may lead to:

- Executable specifications with appropriate operational semantics that can be simulated and
tested.

- Off-line specifications that are not testable but offering a rich expressive power of time con-

straints.

6.2 Survey of Selected Timed Scenarios Languages

In Section 3.3, we have presented a literature review of untimed scenarios classification approaches
[LDDO06, AE03, RAC198, Coc97, AEG*98]. In this section, we focus our survey on selected timed
scenario languages.

6.2.1 Timed (variants of) MSCs

Basically, timing constraints in (variants of) MSCs notations are expressed using timers [IT96,
AHP96), delay intervals [AHP96, MS93] and timing markers [GBJ96, LL99a).

o Timers. Timer support in the early standard version of MSC language (MSC-96 [IT96}) is
very basic. A timer can be set to an optional duration, reset to zero, and observed for timeout.
Figure 6.2 illustrates the stand-alone occurrences of the timer events in MSC-96 standard as
well as combined timer events. A timer set event (labeled by the timer name and with an
identifier for the duration) is denoted by an hourglass symbol attached to the instance axis by
means of a horizontal or bent line. A timer reset event is denoted by a cross which is attached
to the instance axis by means of a horizontal or bent line. A timeout is represented by an
hourglass symbol which is attached to the instance axis by means of an horizontal or bent

arrow from the hourglass symbol to the instance axis.
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Figure 6.2: Timer Handling in MSC-96 [IT96]

The current standard (MSC-2004 [IT04]) describes some syntactic and semantic changes and
refinements. The set event has been renamed to start timer and reset has been renamed to
stop timer. Timer duration is specified with an interval having an optional lower bound and
an optional upper bound allowing the timer to expire within the specified interval. The upper
bound for a timeout can be defined to be infinity which is represented by the keyword inf. A
timer can be used to express a maximal delay between two or more consecutive events in one

process. A timer cannot be shared among concurrent processes in a basic MSC (bMSC).

o Delay Intervals. Delay intervals are used to express three types of timing constraints: (1) event-
associated intervals [MS93] which are denoted as an interval that is as associated with an event
(ie. minimal and maximal delays within which the event should occur with respect to any
previous event, whenever it occurs in an execution trace); (2) message delivery delays [AHP96,
MS93] indicate the minimal and maximal delays allowed from the moment a message is sent
until it is received (expressed as a time interval over a message arrow); and (3) Processor’s speed
constraints [AHP96, MS93] which are expressed as time intervals between two consecutive
events along an instance line. In MSC-2004 standard [IT04], the delay between any pair of
events can be constrained by defining a minimal or maximal bound for the delay between
the two events. An interval must define at least one of the two bounds. An absolute time
interval can be of the form [@1,@3) or @[1,3). Figure 6.3 shows an example of time constraints
and measurement. A relative time measurement is used to observe the message duration of
the resolve_request call (the time variable rel?). The measurement on the duration of the

call is subsequently used to restrict the message duration for resolve_reply. The relative time
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constraint (0,0.7*rell] allows the message to take at most 70 percent of the time it took to
issue the call resolve_request from TC to SUT. In addition, the measurement on the duration
of the call is used to constrain the execution of the instance TC: the relative time constraint
(rel1,3%rell] requires that after the output of the requestNamedAccess call, it takes at least
rell and at most 8*3rell to get the reply.

msc Get_NamedAccess;

| e 1l suT
decompolsed as AS_Server_GNA

cal resolve_requgsttime Srelt

gf)time (0,0.7°rel1]

efiAccess_request{userld,password)
freh 3rel] /5 P
H i

I uestNamedA ess_reply(UAref)

Figure 6.3: Time Constraints and Measurements [IT04]

e Timing marks is a boolean expression on event labels [GBJ96]. For instance the time marker
a< e;-e;<b, where e; and e; are event labels and a and b are real numbers, expresses that
event e; must occur within [a,b] time frame after event e;. For basic MSCs, timing marks can

be used to describe any timing constraints expressed by timers or delay intervals [LL99a).

In [MS93], the author have used the notion of consecutive events to generalize the message
delivery and processor speed delay intervals. He extended the syntax of MSC with precedence edges
that connect unrelated events and thus allow the user to provide delay intervals for them. These
edges may result in a cumbersome and cluttered graph.

Li and Lilius [LL99a] define the behaviour of an MSC specification as the timed event sequences
which are the concatenation of the timed event sequences representing the behaviour of the bM-
SCs which make up the High-Level MSC specification. Timing constraints are interpreted by local
semantics: select one path at a time and analyze its timing requirements, independently of other
paths that may branch out of the selected one. The authors [LL99a] provide an algorithm to decide
about timing consistency.

Alur et al. [AHPO6] interpret timed MSC as partial orders with timing functions that map each
pair of events in the partial order to a time interval. In their timed MSC, time constraints can
only be imposed on pair of events. They do not consider absolute time constraints at which events
occur, and only bMSCs with sending and reception events are addressed. The authors provide also
an algorithm for analyzing basic MSCs. Furthermore, the authors propose an MSC analyzer tool

that offers timed analysis based on a semantics that accounts for the queuing strategies in a bMSC
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and hMSC. Similarly, Ben-Abdallah and Leue [BAL97] use timing delay intervals and timer events
to express timing constraints. A MSC is interpreted as traces that are consistent with the partial
order of events. They define a timing assignment that assigns a time stamp to each event in a trace.
They also do not consider absolute time constraints. The authors augmented the timing analysis for
bMSCs presented in [MS93] and [AHP96] to handle the possibility that a timer is set in a bMSC but
not reset nor timeout follows the timer setting in the bMSC. This timing analysis is extended further
with branchings and iterations. To address timing consistency, the authors proposed an approach
that consists on translating bMSCs into a directed labeled graph, that they call, temporal constraint
graph. Then this graph is checked to ensure that it didn’t contain any cycles with negative cost.

[GDOY8] define semantics of Timed MSCs in terms of Constraint Diagrams [Die96], a graphical
notation for real-time properties stated in the Duration Calculus [CHR91].

MSC-2004 [IT04] standard assumes the following time concepts:

o Time progress (i.e. clocking) is equal for all instances in a MSC. Also, all the clock values are
equal, i.e. a global clock is assumed.

o All events are instantaneous (i.e. atomic) and do not consume time.

o The time domain can be dense or discrete. It must be a total order with a least element, or
origin, of time zero. It must be closed under an addition operation, used to compute time

offsets.

e Time constraints can be used to specify the delay between any two events (relative delay), or
to specify the time of occurence of an event (absolute delay). When specifying a relative delay,
the time constraint can be an interval with minimal and maximal bounds or a concrete time
value. Furthermore, Time constraints can be specified by the use of arbitrary expressions of

type Time, i.e. referencing parameters, wildcards and dynamic variables.

In the MSC-2004[IT04] standard, the semantics of a timed MSC is represented by event traces
with special time events between normal events. Hence, If there is no time event between two
normal events, it means they occur simultaneously. Maigat et al. [LMHO0] associate each pair of
communication events in MSC with a duration. They propose partial order and (max,+) automaton
based semantics and analysus for timed MSC considering HMSC and compositions.

Zheng et al. [ZKHO02] provide formal semantics to timed MSCs in terms of timed labelled partially
ordered set (Iposet). First, they define the semantics of events as timed Iposets. Then the semantics
of bMSCs, MSCs with structures and hMSCs, are obtained using the operations defined on timed
Iposets. However, their semantics do not cover some MSC standard concepts such as general ordering,
instance decomposition, gate and condition. In a related work [ZK02], the authors extend MSCs
with a construct, called instance delay, to specify repeated MSC scenarios (i.e. specifies how long
the scenario takes and the interval between the repetitions). The semantics of this construct is
expressed in terms of labelled partially ordered set (lposets).

Kim et al. [KCO6] proposed timed high-level message sequence charts (THMSC) which includes
an unambiguous subset of time constraints and timed edges as a new complementary notation.

Timed edges are directed time constraints between two consecutive MSCs.
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They claim that THMSC is effective in accurately specifying popular requirement patterns such
as watchdog timers and periodic tasks. The formal semantics of THMSC is defined using labelled
partially ordered set(lposets).

6.2.2 Time-Enriched LSCs

Harel and Marely [HMO02] extend LSCs with time. The authors adopt (1) the approach presented
by Alur and Henzinger [AH97], according to which a real-time system can be viewed as a discrete
system with clock variables and (2) the synchrony abstraction hypothesis according to which system
events consume no real time and time may pass only between events. A single clock object with one
property, Time, and one operation/method, Tick, are used in combination with assignments and
conditions to define timing constraints. Time can be stored in time-variables (i.e. Time-Variable
:= Time) and compared with time values (for instance the condition: Time > Time-Variable +
Min-Delay is used to specify relative minimal delay whereas whereas Time < Time-Variable +
Maz-Delay is used to specify relative maximal delay). The authors distinguish three basic timing

constraints:

e Vertical Delay: In a single object instance, time is stored upon the occurence of an event,
then the following event is bound by two hot conditions defining the minimum and maximum

delays of its occurence.

e Message Delay: A message delay is specified similarly, except that the time is stored in one

instance line and is checked in another.

e Timer: A timer is also specified in the same manner as a vertical constraint, except that the

maximal delay condition can be placed arbitrarily far from the place where the time is stored.

Conditions (hot and cold) can be used to combine timing constraints with conventional constraints
to express complex timing constraints.

The timed LSC synchrony hypothesis (i.e. zero-time actions) is implemented in the play-engine
simulation tool [HMO01]. Indeed, while executing a timed LSC model, the clock keeps ticking and
the system waits for external stimuli. When such a stimulus arrives, the execution freezes the clock
and performs the sequence of events that constitutes the systems response to that stimulus. As
the sequence is completed, the clocks operation is resumed. However, the authors [HMO02] have
mentioned that the synchrony assumption could be easily droped by letting the clock continue to
tick when events and functions from the model are applied.

In another work by Klose and Wittke [KWO01], LSCs are annotated by timers and by delay
intervals (both a minimum and a maximum delay) expressing quantitative local liveness properties.
However, these intervals are limiting the timing constraints to pairs of events that are either on the
same instance line or are connected by a message. The operational semantics of an LSC is defined
in terms of a symbolic timed Biichi automaton with unique clocks serving for each constraint. The
procedure of deriving an automaton from an LSC is called unwinding [KWO01].
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6.2.3 Timed Annotations in UML

In the following subsections, a survey of timing annotations in UML1.x and UML2.0 diagrams is
presented.

UML 1.x

UML 1.x offers nine different diagram types for specifying both structure and behavior of a system.
To support real-time modeling, UML 1.x included graphical representation for timing mark to denote
event occurrence time, time expression that evaluates to an absolute or relative value of time, and
timing constraint which is a semantic statement about the relative or absolute value of time [GBJ96].
However, these added timing constraints are not available in all UML diagrams of the same model
and they are generally informal in nature. In UML1.x, there is no time model that describes the
way time is progressing. In the following subsections, a survey of timing annotations in UML1.x

diagrams is presented.

UML Timed Sequence Diagrams. UML sequence diagrams use the drawing rules of message
arrows and timing markers to express timing constraints [GBJ96]. A horizontal message arrow
indicates the simultaneous occurrence of the send and receive events of the message. A downward
slanted message arrow, on the other hand, indicates a required delay between the send and receive
events of the message. In addition, within each object outgoing message arrows can be drawn at a
single point to indicate the simultaneous sending of a message. Timing markers, boolean expressions
placed in braces and attached to the sequence diagram, can also be used to constrain particular events
or the whole diagram. These labels (interpreted as time stamps) can be attached at the beginning
and the end of a message arrow to specify the minimum or maximum time gap between two marked
points in the diagram.

Firley et al. [FHD*99] extend UML timed sequence diagrams to express loops. The sequence of
messages which is repeated several times is surrounded by a rectangle with the loop condition (i.e.
LOOP N TIMES expr) placed at the top or at the bottom of the rectangle. The following convention
is used to deal with different occurrences of a labelled event in loops: before aloop, afirst can be used
in constraints to refer to the first occurrence time of an event with time stamp a in the loop. After a
loop, aiqes: refers to the last occurrence of the tagged event in the loop. Within a loop, apez: denotes
the time of the event occurrence in the following iteration. The resulting diagrams are translated
into observers and implemented in UPPAAL [LPY97]. UPPAAL models are then instrumented to
be composed with the observers allowing for formal verification using model checking. However, the
presented construction only supports totally ordered sets of events.

In [HHRS03, HHRS05] a trace based denotational semantics for timed sequence diagrams is
formalized, called the timed STAIRS semantics (Steps to Analyze Interactions with Refinement
Semantics). A timed trace is a sequence built from three kinds of events: events for transmis-
sion, reception and consumption. Each of these events may have an associated timestamp. The
authors [HHRS03, HHRS05] claim that these three types of events are introduced to express dis-
tinction between black-box and glass-box view of a system. Li and Lilius [LL99b] study timing
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consistency of both basic UML sequence diagrams and composed sequence diagrams. They showed
that the problem of time consistency checking can be reduced to linear programming (i.e. by solving

systems of linear inequalities).

UML Timed Activity Diagrams. Eshuis et al. [EW01, Esh02] have proposed a formal semantics
of UML activity diagrams in terms of Clocked Transition Systems (CTS) [MP96] that is suitable
for workflow modeling. The authors [EW01] proposed two special event labels, when(tezp) and
after(tezp), denoting an absolute and a relative temporal event respectively, where global clock gc
measures the current time and texp is an integer expression counting time-units of the global clock
and the local clocks. These events are attached to activity diagram transitions. The authors consider
also periodic events, events that are not specified at a single point in time but at a sequence of points.
These events are modeled with the when(cond) each period construct.

Guelfi and Mammar [GMO05] extend UML activity diagrams with timing constraints. Timing
constraints include a time duration attached to each activity diagram node and two types of tem-
poral event expressions After(t) and When(t) similar to the ones proposed in [EWO01, Esh02]. The
authors propose a formal semantics of UML timed-activity diagrams by mapping them to a Clocked
Transition System (CTS) [MP96] restricted to integer variables modeling discrete real time aspects.
The resulting semantics are translated into PROMELA language for formal verification. One of the
limitations of this approach is that external events are not considered.

Xuandong et al. [XMY*01] extend UML activity diagrams by introducing timing constraints.
They introduce a time interval [a,b] that can be attached to a state s. The times a and b are relative
to the moment at which the activity state s starts. Assuming that s starts at time c, then s may
complete only during the interval [c+a, ¢+b] and must complete at the time c+b at the latest (i.e.
must proceed to the next activity state at the time c+b at the latest). The authors propose a timing
analysis method based on linear programming for UML activity diagrams (containing no loop) and
an integer time verification technique for checking more general activity diagrams.

UML profile TURTLE [ACLdASS04], which is discussed in Section 6.2.3, supports temporal op-

erators in activity diagrams.

UML Timed Statecharts. Timed Statecharts, proposed by Kesten and Pnueli [KP91], extend
the traditional statecharts [Har87] by specifying time limits for the execution of transitions. Their
semantics are defined with reference to a dense time domain. Transitions are classified into immediate
transitions and timed transitions. Immediate transitions are triggered by inputs, but abstract from
time consumption at all. Whenever an immediate transition is enabled, it must be executed before
time can proceed. Timed transitions do not depend on inputs. Therefore, they focus on the modeling
of time consumption and they are associated with a time interval (l,u) providing a minimum and
a maximum waiting time. The lower bound signifies the minimum time that must be spent in the
current state before a transition can be taken, while the possibly infinite upper bound limits the
time during which the transition must be taken, if it is to be taken at all. Kesten and Pnueli [KP91]
propose a so called weak time semantics, i.e., transitions requiring no enabling event and with an

associatd delay 7 and timeout v may be performed (non deterministically) at any time between 7
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and v. The concept of a step is associated with the execution of an immediate transition; a reaction
to an event may occur several steps after its generation, but still within the same timestamp. This
kind of semantics is based on the fact that every generated event persists until the time no longer
flow. The time may flow only if all the enabled transitions by that event have been executed.
Peron and Maggiolo-Schettini [PMS94] considered a version of statecharts with real-time fea-
tures such as delays and timeouts and by allowing communicated signals with durations. Though
occurrencies of actions are related to a dense time domain (i.e., positive rationals), the behaviour
of statecharts is forced to be discrete. They have also extended the standard notion of reaction
by allowing sequences of transitions to be performed instantaneously. Later, the authors [MSP96)
proposed an approach that assigns a precise duration to transitions instead of time interval [KP91],
and enforced a strong time semantics which avoids enabled transitions from being arbitrarily delayed
and required that a non-deterministic choice among transitions performance is done only if they can
be really performed at the same time. Their idea is to increase the duration of transitions having
null duration, and to decrease duration of transitions having nonnull duration, so that the time

necessary to perform each chain of transitions remains unchanged.

UML Profiles. In addition to the many aspects of UML 1.x that have been criticized (e.g. the
metamodel, the usability, the potentially inconsistent diagrams and views, the composition of models,
and the insufficient support of error handling, etc.) [HR00, MLLGO1], Berkenkotte [Ber03] identified
the following four weaknesses related to real-time development:

1. The definition of hardware-software interdependencies: deployment diagrams are too imprecise
as they do not provide information on the hardware (except the information that there is
hardware at all).

2. The specification of timing constraints like deadlines and periods.

3. Communication structures: messages exchange can be specified in various ways (sequence
diagrams, collaboration diagrams, etc.), but detailed information like periodicity and protocols

cannot be given.

4. Task management policies: UML does not provide mechanisms to describe certain aspects of
task management like priorities.

To address some of these weaknesses, UML 1.x has been combined with other techniques like
ROOM [SGW94] (discussed in Section 6.2.5) or SDL [IT02a] (discussed in Section 6.2.4). UML
Profiles represent also an alternative to address some of these shortcomings [GK06]. The following

subsections list some of the existing UML profiles for real-time modeling:

UML profile for Schedulability, performance and Time (SPT)

UML profile for Schedulability, performance and Time (SPT profile) [OMGO02] was requested and
later adopted by OMG in 2002 to support real-time modeling. UML/SPT is a framework to model
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resource, time, concurrency schedulability and performance concepts and to support quantitative
analysis of UML models.

SPT time domain model identifies the set of time-related concepts and semantics that are sup-

ported, directly or indirectly, by this profile. The time domain model is partitioned into the following
separate but related groups of concepts [OMGO02]:

- Concepts for modeling time and time values.
- Concepts for modeling events in time and time-related stimuli.

- Concepts for modeling timing mechanisms (clocks, timers). In SPT, clocks were implicitly
bound to the physical time.

- Concepts for modeling timing services, such as those found in real-time operating systems.

The underlined concepts are grouped into a set packages as shown in Figure 6.4.

TimingSenices’

TimedEvents l
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B __),ﬁmingMe'chani'smg
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Figure 6.4: The Modules of the Time Domain Model [OMG02]

The sub-profile < RTtimeModeling> defines a metamodel representing time, as depicted in Fig-
ure 6.5, and time-related mechanisms, as illustrated in Figure 6.6, Figure 6.7 and Figure 6.8. The

profile provides a set of stereotypes and associated tagged values that the modeler could apply to
UML modeling elements:

o TimeValue. There are two ways to specify time values: (1) Use the RTtime stereotype to
identify model elements that represent time values. The kind of time (discrete or dense) can
be specified with an optional tag RTkind, which is an enumeration consisting of two elements:

dense and discrete. (2) Use instances of the TVL data type RTtimeValue (or its subclasses),
which is defined in this profile.

e Timelnterval. RTinterval stereotype is used to identify instance-based concepts that represent
time intervals.

o TimingMechanism. The RTtimingMechanism stereotype is defined as an abstract stereotype

that captures the common characteristics of timers and clocks.
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Figure 6.5: Time Modeling in UML/SPT [OMG02]

o Clock. They are modeled by applying the RTclock stereotype. An instance of a clock can be
identified using the RTclockld tag.

e Timer. Timers are modeled by applying RTtimer stereotype.

o TimedAction. This concept is modeled by applying the RTaction stereotype to any model
element that specifies an action execution or its specification. This includes action executions,
methods, actions, action states, subactivity states, states, and transitions. It can also be
applied to model stimuli that take time to arrive at their destination. The start and end times
of the action are specified by appropriate tagged values (RTstart and RTend respectively).
Alternatively, they may be tagged with the RTduration tag.

e TimedEvent. This concept is modelled by applying the RTevent stereotype to any model

element that implies an event occurrence.

o TimedStimulus. This concept is useful for modeling any stimulus that has an associated
timestamp. This includes invocations of operations, the sending of signals, etc. as well as their
descriptors. The stereotype used for this purpose is the RTstimulus stereotype which can be

attached to stimuli or action executions of actions that generate stimuli.

o ClockInterrupt. This is a special type of timed stimulus that is generated by a clock. The
stereotype is called RTclkInterrupt and it can be applied either to stimuli or messages. The
start time (RTstart) represents the time of the interrupt.

e Timeout. Timeouts are modeled by stimuli or messages that are stereotyped as RTtimeout.

The start time RTstart represents the time of the timeout.

e Delay. This is modeled by a model element that is stereotyped as RTdelay. It can only have
an RTduration tag associated with it. Delays can be placed on the same model elements as

timed actions.
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Figure 6.6: Timing Mechanisms In UML/SPT [OMGO02]

e TimeService. This is represented by stereotype RTtimeService. Invocations of the operations
of the time service are identified by corresponding stereotypes of ActionExecution or any model

element that implies an action execution: RTnewTimer and RTnewClock.

Figure 6.9 illustrates an example of time annotations in sequence diagrams.

The SPT profile supports schedulability analysis of UML models by using <SAprofile»>. SPT
Schedulability analysis may use modifiers on some parameters, such as: (1) worst-case values (as
in, worst-case execution time), (2) special parameters of a task, such as its release time, its relative
and absolute deadlines and laxity, and (3) special measures such as blocking time, pre-empted
time. Woodside and Petriu [CP04a] address SPT Schedulability analysis capabilities and limitations.
Other research attempts [KCHO01, SKWO00] integrate the schedulability theory with object-oriented
real-time design.

In addition to SPT, OMG proposes another profile that supports the assessment of non-functional
properties of software systems, called the Quality of Service and Fault Tolerance Characteristics and
Mechanisms (QoS&FT) [OMGO06] profile. QoS&FT allows the user to define a wider variety of
QoS requirements and properties. However, QoS&FT requires a tremendous effort to be applied by
the final users (software analyst, designer) [BP04]. For a comparative analysis between SPT and
QoS&FT, the reader is invited to consult the work by Bernardi and Petriu [BP04].
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Figure 6.9: Time Annotations in Sequence Diagrams [OMGO02]

Modeling and Analysis of Real-Time and Embedded Systems (MARTE)

The OMG has also recently issued a request for proposal (RFP) for a new UML profile for Modeling
and Analysis of Real-Time and Embedded Systems (MARTE) [BMO7b] in order to upgrade the
SPT profile to UML2.0 [OMGO05] and to extend its scope with real-time embedded system (RTES)
modeling capabilities. MARTE goes beyond the SPT quantitative model of physical time and adopts
more general time models. In MARTE, time can be physical (used by chronometric clocks), and
considered as dense or discretized, but it can also be logical (i.e., bound to any recurrent event),
which focus on the ordering of instants, possibly ignoring the physical duration between instants.

Espinoza et al. [EDG105] provided a framework for MARTE by adopting the modeling practices
of the SPT and QoS&FT, and proposed a domain model for annotating non-functional properties to
support temporal verification of UML based models. Other UML profiles for different quantitative
analyses have been proposed in the literature, such as reliability profile [CP04b] and dependability
analysis profile [BMO07a].

A UML Profile with the OCL

The Object Constraint Language (OCL) is part of the UML since version 1.3. In UML 1.x versions,
OCL was used for specifying invariants attached to classes, pre- and post conditions of operation,
and conditions on state transitions. However, it does not provide support for temporal constraints
over the dynamic behavior of objects. It is not possible to reference different time instants in a
single OCL formula. Only invariant properties can be formalized, which at most include references
to attribute values before or after method execution. This lead to several OCL extensions [LMMO5,
Fla03, CK02, FM02a, FM02b] to address this limitation.

Lavazza et al. [LMMO5] have proposed OTL (Object Temporal Logic) as a temporal logic
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extension to OCL. OTL provides the typical basic temporal operators of temporal logics, i.e., Always,
Sometimes, Until, etc. In addition, OTL allows the modeler to reason about time in a quantitative
fashion. OTL extends OCL 2.0 standard library by adding three new classes: Time, Duration and
Interval. Class Time models time instants, which are defined based on the current time taken as the
time origin. Class Duration models duration of time intervals, i.e., the distance between two time
instants. Therefore, a time Interval can be defined by its initial time instant and its duration.

Cengarle and Knapp [CK02] extended OCL by satisfaction operators @n to refer to the value in
the history of an expression at the instant when event 7 occurred, as well as the modalities always
and sometime. However, their approach deals with time only from a qualitative viewpoint where no
notion of temporal distance between events is provided.

Flake and Mueller [FM02b] proposed a UML profile based on an extension of OCL 2.0 metamodel
for the specification of real-time constraints. The formal semantics of this profile is given by means
of a mapping to time-annotated temporal logic formulae expressed in CTL, which allows the formal
verification of properties. The authors use a discrete time approach.

Sendall and Strohmeier [SS01] proposed an approach to specify concurrent operations through
operation schema calculus based on OCL. They have introduced pre- and postcondition assertions,
invariants, synchronization on shared resources, signals, and exceptions of system operations written
in OCL. The authors have also introduced timing constraints on UML state machines in the context
of a restricted form of UML protocol state machines called System Interface Protocol (SIP). A SIP
defines the temporal ordering between operations. Five time-based attributes on state transitions
are proposed, e.g., (absolute) completion time, duration time, or frequency of state transitions. In a
related work, Marcel and de Boer [MdBFS04] define extension of OCL with a notion of event history

that can be used for defining arbitrary constraints on such histories.

Non OMG Profiles

In addition to the aforementioned UML profiles, there are several unofficial proposals from the

academia considering time modeling.

OMEGA-RT profile. This profile, part of the OMEGA project [OME07], aims to provide a
concrete UML profile with formal semantics. It is a refinement of the SPT profile. It introduces
events based time modeling, TimedEvent, where an event is used to represent an instant of state
change and allows the expression of duration constraints between occurrences of events [GOO06].
OMEGA-RT profile defines a syntactic classification of events called Event kinds. For instance, in a
signal exchange, three event kinds can be identified: send, receivesignal and acceptsignal events.

The profile is based on the existence of two basic types, time representing points in time instants
and duration representing distances between time points. Sets of instants and durations are expressed
by means of predicates. These predicates are formalizaed using OCL-like expressions. OMEGA-RT
profile define the following duration patterns [GOO06]:

- execution time, execution delay, client response time, server response time, transmission delay

which are associated with actions.
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- reactivity and period which are associated with a trigger
- transmission delay associated with a communication channel
- lifetime associated with an object, and many more.

For requirements involving conditions, which are more complex than the distance between two
events, OMEGA-RT introduce the observer formalism, defined by the stereotype class of state
machine (<observer:>). An observer is an object which executes synchronously with a system and
monitors its state and the events that are occurring. Note that the OMEGA-RT event is different

from the UML event, which poses a compliance issue.

TURTLE profile. TURTLE (Timed UML and RT-LOTOS Environment) [ACLdSS04] is a real-
time UML1.5 [OMGO03] compliant profile with formal semantics given in terms of RT-LOTOS. TUR-
TLE profile extends class/object diagrams and activity diagrams of UML1.5 [OMGO03]. TURTLE
class diagram consists of Tclasses having special attributes called Gates. Gates are used by TClass
instances, TInstances, to communicate and are specialized into InGate and OutGate. In addition,
TURTLE introduces stereotypes called composition operators that are used to explicitly express
parallelism, synchronization, and sequence relationships between T'Classes. In TURTLE profile,
activity diagrams implements the behaviour of a T'Class. These activity diagrams use logical and
temporal operators that allow expressing synchronization on gates with data exchange. For real time
modeling TURTLE offers the following temporal operators: deterministic delay, nondeterministic
delay, timelimited offer, and time capture operator(see Fig. 6.10). Time intervals are expressed by

combining the deterministic and nondeterministic delays.

" AD.
ted  Time caple

Figure 6.10: TURTLE Temporal Operators

TURTLE has been extended to include UML component and deployment diagrams. The resulting
profile is called TURTLE-P [ALSS*06], which addresses the concrete description of communication
architectures including quality of service parameters (delay, jitter, etc.). TURTLE-P allows the eval-
uation and formal validation of UML components and deployment diagrams. TURTLE is supported
by TTool [TTo07]. TTool is linked to RTL [RLO7b], the RT-LOTOS validation toolkit developped
at CNRS, and to CADP [RLO07a), a formal validation toolkit developed at INRIA.

EAST-EEA. The European EAST-EEA (Electronic Architecture and Software Technology — Em-
bedded Electronic Architecture) [EE04] is an ITEA (Information Technology for European Advance-
ment) project [ITE04]. It provides a development process and automotive-specific constructs for the

design of embedded electronic applications. It provides the concepts of Triggers, Period, Events,
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End to End Delay, Physical Unit that can be applied to any behavioral EAST elements. In practice,
some of these concepts, such as the event triggering, make the timing analysis very complex. In
the EAST-ADL (Architecture Description Language) document, it is recommended to use event
triggering carrefully or even to avoid it [AMPF07]. EAST-EEA is compliant with UML2.0.
Roubtsova et al. [RVKWRO1] define a UML profile with stereotyped classes for dense time as well
as parameterized specification templates for deadlines, counters, and state sequences. Each of these
templates has a structural-equivalent dense-time temporal logics formula in Timed Computation
Tree Logic (TCTL). The authors [RVKWRO01], though, do not use OCL for constraint specification

in their formal approach.

IF language

The IF language [BFG199, BFGT00] and the associated toolset developed at VERIMAG were
developed for modeling and validating distributed systems that can manipulate complex data and
both involve dynamic aspects and real time constraints. The IF language describes the operational
semantics of higher level formalisms such as UML or SDL, and is also used as a format for inter-
connecting model-based tools. An IF description defines the structure of a system and the behavior
of its components. A system is composed of a set of communicating processes that run in parallel.
IF provides support for real time constraints expressed using clock variables and guard conditions on
them. The values of such variables increases with time. The underlying semantics is based on finite
timed automata with urgency [AD94, BS00]. The IF language and tool-set [0GOO06] translates timed
UML models into timed automata in which UML level concepts are mapped into more primitive
concepts. IF language format is used for the mapping and existing model-checking tools can be used
for validation.

UML 2.0

UML 2.0 [OMGO5] provides two data types: Time and TimeEzpression to express timing constraints.
It includes also time related concepts such as timer and clock. These timing statements can be used
either in state diagrams or sequence diagrams as described in the previous sections. Moreover, UML
2.0 [OMGO5] introduces a new diagram called Timing Diagram to allow reasoning about time and
visualize conditions or state changes over time. Figure 6.11 illustrates an example of a Timing

Diagram.

6.2.4 Time in SDL

The standard semantics of SDL, as presented in Z.100 [IT02a] (expressed by means of Abstract
State Machines), is very abtract in the sense that it makes no assumptions on time consumption
and progress. Tasks may take an indeterminate amount of time to execute, and a process may stay
an indeterminate amount of time in a certain state before taking the next firable transition. Control
over these durations is left to particular implementations by tool vendor (depends on application
domain, implementation architecture, or purpose of simulation). However, SDL has some features
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Figure 6.11: Timing Diagram Example [OMGO05]

that can be used to model aspects of timed systems, such as global system time (represented by a
system clock (now) and allows to measure durations throughout the system by means of appropriate
time stamps). SDL supports two time-related data types: Time and Duration; Time should be used
to denote a point in time, while Duration should be used to denote a time interval. System clock
(now) is external to the specification. For example the system clock cannot be reset within the
specification, nor does it progress in an orderly fashion. Rather, the only means for any form of
control over the system clock is through the usage of timers.

SDL allows the description of time dependent functional behaviours by means of timers, enabling
conditions and continuous signals. A timer expires when some delay has been exceeded, resulting
in an input signal being placed in the input queue of the associated process. However, there is
no guarantee when the signal will be consumed [BGM*01]. SDL timer primitives are set and
reset operations, the active funtion (which gives the state of a timer) and timeouts that are always
transmitted in the form of asynchronous signals. An enabling condition, referring to the system
time now, can be attached to an input signal. A continuous signal can also refer to now, where
the intention is that when some time constraint is satisfied in a state, the behaviour of the process
can evolve without environmental interaction (i.e. without an input signal). However, these two
constructs do not allow the specification of transitions which are taken at a specific point of time
(or within a specific time interval), as there is no notion of urgency in SDL. The current SDL
semantics [IT02a] treats all transitions as lazy since it places no constraints on time progress. Most
SDL tools however implement an eager semantics where transitions are fired as soon as they are
enabled without letting time progress. Part of the European IST project INTERVAL (1999-2002),
Bozga et al. [BGM'01] propose a more flexible time semantics for SDL based on timed automata
with urgencies [BST98].

Real-time distributed systems lack the notion of a global system clock, and thus global time.
Graf [Gra02] proposed to introduce the notion of local time (defined by a drift and/or offset with
respect to the global time now). She suggested that a defined relationship between the external
reference time (now) and local time must always exist.

The QSDL [DHHMC95] defines an extension of SDL with probabilistic execution time constraints

attached with tasks and a notation for some minimal deployment information. QSDL defines time
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durations (deterministic and probabilistic), timed transitions (using an action called request) and
timed states (using the awake-construct). The resulting models are then fed into the tool QUEST,
which transforms a QSDL-specification into an automatically assessable model (called an evaluator)

for performance and time related verification.

6.2.5 Real-time Object Oriented Modeling (ROOM)

ROOM (Real-Time Object-Oriented Modeling), originally introduced in [SGW94], is a methodology
that was developed primarily for distributed real-time systems based on the object paradigm. Mod-
eling of systems with ROOM is performed by modeling actors (the central component of ROOM),
which are encapsulated concurrent objects, communicating via point-to-point links. The behav-
ior of an actor is represented by an extended state machine called a ROOMChart, based on Harel
statechart formalism [Har87].Inter-actor communication is performed exclusively by sending and re-
ceiving messages via interface objects called ports. A message is a tuple consisting of a signal name,
a message body (i.e., data associated with the message), and an associated message priority. The
original ROOM [SGW94] does not provide any mechanisms to constrain the behaviour of actors (for
instance to specify and enforce timing constraints). Instead system behaviour may be derived using
Message Sequence Charts, which can be annotated with timing constraints [BAL97, SFR97]. The
ROOM developers use the term transaction, to describe end-to-end computations on which timing
constraints such as periodicity and deadlines may be specified. MSCs are used to express: (1) ac-
tivation periods of methods (which represents either the inter-arrival time of the periodic timer, or
a minimum inter-arrival time for aperiodically triggered transactions) and (2) end-to-end deadlines
on sequences of message invocations (which represents the response time of the transaction). Using
these two types of timing constraints and a few design guidelines, the authors in [SFR97] show how
scheduling theory can be applied to ROOM models.

ROOM concepts were supported by a commercial CASE tool called Objec Time(ObjecTime Ltd.,
Kanata, Ontario, Canada). They have been also incorporated into the CASE tool Rational Rose
Real-Time (RoseRT) in the form of a UML profile, commonly called UML-RT.

6.2.6 Visual Timed Event Scenarios(VTS)

Alfonso et al. [ABKOO04] introduced VTS, a visual language to define event-based requirements such
as freshness, bounded response, event correlation, etc. The underlying language is based on partial
orders and supports real-time constraints in a dense time domain. Figure 6.12 summarizes the VTS
graphical notation.

The authors [ABKOO04] provided a declarative (denotational) semantics of VTS, where a set of
traces are assigned to each VTS scenario and labelled points represent events in the traces. Points
that are not labelled are called instants. They represent moments in the execution not necessarily
associated with an event. The resulting semantics are not executable. VTS is supported by a
tool that translates visually specified scenarios (the ones violating the requirements) into observer
timed automata. The resulting automata can be composed with a model under analysis in order

to check satisfaction of the stated scenarios. However, describing graphically all possible scenarios
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that violate a given requirement is an error prone activity and the resulting set of scenarios may be

incomplete.

Unlike other timed notations, such as LSC and timed sequence charts, VTS does not use the

Figure 6.12: VTS Graphical Notation [ABKO04]

timer concept and it abstracts from the instances that perform events (e.g. message exchange).

6.2.7 Property Sequence Chart (PSC)

Property Sequence Chart (PSC) [AIP06] is a scenario-based visual language that extends the graph-
ical notation of a subset of the UML 2.0 Interaction Sequence Diagrams. The authors in [ATPO6]
provide a comparison between PSC, UML 2.0 Interaction Sequence Diagrams and MSC, based on
the existence of the following features: undesired/mandatory/provisional message, strict/weak se-

quencing, restrictions on intraMSGs, all of messages but one, simultaneous messages, interaction

construct, parallel operator.

Although PSC provides a simple and user friendly formalism for specifying temporal properties,
time support remains weak since the language does not allow the description of timing constraints.
As shown in Figure 6.13, the only offered time notation consists of a set of horizontal dotted lines

Figure 6.13: Property Sequence Chart [ATPG6]
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to, - .., tn called time-lines. No timing constraints are defined in order to be able to define a lower
and an upper bound between two subsequent messages on one instance. The language is supported
by a tool, called CHARMY, that can be used to translate specified properties into a test automaton

(i.e., Biichi automaton).

6.2.8 Real-time Graphical Interval Logic (RTGIL)

Real-time graphical interval logic (RTGIL) [MRK™"97], and its corresponding textual representa-
tion, real-time future interval logic (RTFIL), are real-time extensions to graphical interval logic
(GIL) [RMSM™96], and its textual representation, future interval logic (FIL), respectively. RTGIL
is a propositional linear-time temporal logic, interpreted over dense time. In RTGIL, a time line
is used to show the progression of a computation. Intervals can be constructed on this time line;
an interval is represented by a segment of the time line delimited by two states and is left-closed
and right-open. Intervals are constructed using search patterns with associated target formulae. A
search locates the first state in the future from the current position on the time line where the target
formula holds (which might be the current state if the formula holds there). Formulae are read from
top to bottom and from left to right, and can be combined using standard logical infix operators.
Initial properties (Figure 6.14(a)) as well as henceforth or eventuality properties can be assigned to
an interval. Figure 6.14(a) asserts that h holds at the first state if the interval that begins with the
first state at which f holds and ends just prior to the next state at which g holds. The only real-time
operator supported by RTGIL is the len predicate, for example (len(d, D] in Figure 6.14(b) implies
that the duration of the interval, if it can be constructed, is greater than d time units and less than
or equal to D time units (d and D represent non negative rational constants, where D can also be
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(b) RTGIL Duration Constraint

Figure 6.14: RTGIL Examples [MRK*97]

RTGIL is supported by the RTGIL environment [MRK*97], which includes a graphical editor,
an automated theorem prover, and a data base and proof manager component. Because the RTGIL

environment is a homogeneous analysis tool, a model and its correctness properties are both specified
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in terms of RTGIL formulae.

6.2.9 Timeline Notation

A timeline [SHEO1] is represented by a wide horizontal bar, with time progressing from left to right.
Descending from the timeline bar are vertical bars, called marks, which mark the interesting event
occurrences, ordered in time. Timeline defines two types of system events: regular events (denoted
by the letter e) and required events (denoted by the letter r). The events can be generated anywhere
in the system, by any one of many concurrent processes in the distributed system. Therefore, no
fixed time-interval can be assumed between subsequent marks (there is no hidden assumption of
a global clock). Timeline notation allows for describing constraints represented as black horizontal
lines positioned beneath the timeline bar. These constraints are used to specify the occurrence of
particular events over certain intervals. Figure 6.15 describes the fact that when the system must
respond to an offhook by providing dialtone, the constraint lonhook must be placed within the
interval between the ofhook and the dialtone event.

ofthook dialtone

=

Figure 6.15: Timeline example [SHEO1]

START

Timeline notation is supported by a graphical tool called TimeEdt [SHEO1]. It was developed
to capture series of events and required system responses. These complex chains are placed on a
timeline and may be converted into a test automaton, that can be used directly by a logic model
checker, or for traditional test-sequence generation. Even if intuitive, TimeEdt do not feature partial

ordering of events and does not support complex timing constraints.

6.2.10 Regular Timing Diagrams (RTD)

Regular Timing Diagrams [AEN99, AEKNO1] are a known notation in the context of hardware
design. RTD diagrams describe, over a finite time period, changes of signal values, and precedence
and timing dependencies between such events, such as signal a rises within 5 time units of signal b
falling and signal b is low when signal a rises. Such events can be causally constrained and time-
constrained by a number of ticks of a given clock where the time intervals are specified by constants,
ensuring that the diagram defines a regular language.

A RTD may be either asynchronous or synchronous. A synchronous diagram (SRTD) includes
one or more clocks with fixed periods and ensures that the time interval between any pair of events
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Figure 6.16: Synchronous Regular Timing Diagram [AEKNO1]

is determined up to the clock period (see Figure 6.16). Any change in the signal value must occur at
either the rising edge or falling edge of the clock waveform (which is between 0 and 1). The ordering
between events is in general partial; such RTDs are considered as ambiguous. An unambiguous RTD
has a total ordering on events.

6.2.11 Action Diagrams (Timing Diagrams)

An action diagram (AD) [Kho96, KC98] specifies in a declarative manner the interface behavior of
a system. The specification comprises the interface behavior of the system itself (its commitments),
as well as the assumptions that the system makes on its environment. Both commitments and
assumptions are described by ports, actions, and timing constraints. Ports are abstractions of the
logic signals used by the system to communicate with its environment. A direction (in or out) and
a sequence of actions is associated with every port. Actions occur instantaneously; they represent
punctual changes of the logic values of these signals. An action a has a time stamp variable denoted

by t(ax) which is a finite real value (dense time model).

i 1 iz
portin | (1, 10] ,
assume constraint
[1,10] \\[l 5] — e

% 02 commit constraint

port.out l {1,531 ]

Figure 6.17: Example of Action Diagram [KC98]

In the graphical representation of action diagrams, an action is represented by a short vertical
bar (e.g., Figure 6.17). Actions on the same port are horizontally aligned. The action sequence of a

port is shown in left-to-right order. A constraint (ai, aj, 7} is represented by an arrow labeled with
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the interval m and pointing from a; to a;. The constraint arrowhead is hollow (filled) for assume

(commit) constraints.

6.2.12 Timed Behavior Trees

In a recent work, Lars et al. [LKRO7] extended the Behaviour Trees (BT) notation [Dro03] to include
timing constraints. A timed BT model is equipped with a number of clocks which evaluate to a real

number. All clocks progress simultaneously. A clock can be reset to zero or can constitute a guard

J S
Component]
behaviour

x<10

x=0
Xx<=5

P

Figure 6.18: Timed BT Node [LKR07]

on a transition or an invariant on a location.

=

BT nodes [Dro03], as introduced in chapter 3, are extended with three additional slots (see
Figure 6.18): a guard G over clock values, a reset R of clocks, an invariant I over clocks. Nodes in
a timed Behavior Tree describe transitions from one location to the next as they describe a state
change, a guard or message passing. The semantics of timed BTs are defined through a mapping to
timed automata where each language concept has an equivalent automaton or a network of automata.

The resulting semantics can be used as an input for the model checker UPPAAL.

6.2.13 Somé’s Scenarios.

Somé et al. [SDV95, SDV96] represent timed scenarios with structured text, but also with a formal
interpretation where preconditions, triggers, sequence of actions, reactions and delays are specified
[SDV96]. Scenarios are interpreted as timed sequences of events, which make them appropriate for
real-time systems. External events represent interactions between components, including actors,
whereas actions can be internal. The time of occurrence of operations can be constrained by in-
teraction initial delays and timeouts and scenario timeouts. An interaction initial delay specifies a
minimal, a maximal or an exact amount of time that must pass between the interaction first opera-
tion, and the last operation of the interaction preceding it. Specifications described in this notation
can be implemented in the Use Case Editor tool (UCEd)[Som04] and can be translated into a timed

automata specification.
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6.3 Summary of Evaluation of the Selected Timed Scenarios

Languages

Tables 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 summarize the timed features of the thirteen timed scenario

languages presented in the previous section. We use the following scale:

- ——: Absence of the feature: The language does not support the feature.

-: Weak to basic existence: The language has a very basic support of the feature.
- +: Rich set of features: The language provides a fair/rich support of the feature.
- 7: Not specified: The notation does not specify the criteria.

- N/A: Not applicable: The feature does not apply to the notation.
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6.4 Chapter Summary

The need to incorporate non-functional aspects, and in particular time-related aspects into require-
ment languages has been widely recognized. In this chapter, we have proposed a collection of eleven

criteria that will help categorize and compare many timed scenario notations. These criteria are:

o Timed Action/Event Enabling

e Durational vs. Instantaneous Events/Actions

e Absolute vs. Relative Time

e Clocks: Local vs. Global and Physical vs. Logical
e Urgency

Time Domain

Time Representation and Measurement

Time Constructs/Constraints
e Time Analysis and Verification
e Specification Executability and tool support

e Formal vs. Informal Semantics

Based on the proposed criteria, we have surveyed and compared thirteen timed scenario notations.
The proposed criteria and classification represent a corner stone towards the extension of Use Case

Maps language with time, presented in the next chapter.
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Chapter 7

Timed Use Case Maps

UCM models focus on the description of functional requirements and high-level designs at early
stages of the development process. Time based requirements can affect a system with respect
to its correctness and performance. However timing issues are typically introduced later in the
development process, which may result in considerable changes at the design or even worse at the
requirements level. We believe that timing aspects must be integrated into the system model, and
this must be done already at an early stage of development. The motivations for extending Use

Case Maps language with time can be summarized as follows:

1. The existing UCM language does not describe semantics involving time, allowing for different
interpretations of timing information, such as the time needed for a transition or a responsibility

to complete.

2. The integration of timing aspects at an early stage of development allows for a consistent

analysis throughout all lifecycle phases of software product.

3. Modeling of time semantics helps support further time related analysis (such as schedulability
analysis) of UCM models.

4. Extending UCMs with time represents a first step towards the construction of a formal frame-
work for using UCM to describe, simulate, analyze and verify real-time systems at high level

of abstraction.

This chapter’ introduces an approach to describe timing constraints in Use Case Maps speci-
fications. First, an outline of the decision points related to time extensions is presented. Then,
an extension of the syntax of UCM constructs with time is provided. The operational semantics
of timed UCM are formalized in terms of Clocked Transition Systems (CTS) [MP96] (Section 7.3),
Abstract State Machines (ASM) [Gur88] (Section 7.4) and Timed Automata (TA) [AD94] (Section
7.5). These three formalisms have different expressive power and tool support.

1This chapter content is published in System Analysis and Modeling: Language Profiles - SAM 2006 [HRDO6]
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7.1 Modeling Time in UCMs: Decision points

Considering the nature of UCM language and based on the set of criteria presented in Section 6.1,

the following decision points are discussed:

1. Timed responsibility enabling. Initiation and termination of enabling [BG06] may repre-
sent a flexible and suitable choice for UCM abstraction level. Both a lower and upper bound
may be imposed on the enabling of a responsibility. Four options may be considered (discrete

time domain is used for illustration purpose only):

(a) A responsibility R may be associated with a tuple (7,7°). Responsibility R is enabled
(i.e. can start executing) 7 units after the completion of its predecessor. This enabling is
offered for 7’ units and is retracted after.

(b) A responsibility R may be associated with a tuple (7,0). This type of enabling is called
punctual enabling, where the enabling retracts if the responsibility is not taken immedi-
ately.

(c) A responsibility R may be associated with a tuple (7,.L). This type of enabling is called
simple enabling, where no upper bound is imposed on enabling. The responsibility is
enabled 7 units after its predecessor and never retracts. This may involve major (even

infinite) system execution delays.

(d) A responsibility R may be associated with a tuple (minDL,mazDL). This is a variant of
the first option (a) but with an upper bound relative to the completion of the preceding
construct.” Responsibility R may be enabled any time between minDL and mazDL time
units after the completion of its predecessor. In this case, minDL should be less or equal

to mazDL. This option is equivalent to option (a) with minDL=7 and mazDL = 7 + 7.

For simulation and validation purposes and in order to ensure a maximal progress semantics,

only options a, b and d can be selected.

2. Instantaneous (atomic) vs. durational actions. Approaches that adopt instantaneous
action semantics make the modeling more compact and easier to reason about. However, in
the context of UCMs, it would be more suitable to consider durational semantics. Indeed,

using durational semantics would help:

o Realistically describe various system requirements ranging from real time system where
actions take micro seconds to business process models where actions take days and even
weeks.

e Describe truly concurrent systems where at any given time ¢ more than one action may
be executing.

In the context of Use Case Maps, time is only consumed by responsibilities. minDur and
mazDur denote respectively the best and worst case execution time of a responsibility. Re-
sponsibility with a fixed duration have minDur=mazDur=duration. All other UCM constructs

take one clock tick to complete.
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3. Relative vs. absolute time. A timed constraint may be expressed using either an absolute
time, where the time of occurrence of a responsibility refers to the execution starting time,
or a relative time where the time of occurrence of a responsibility refers to the execution of a
causally preceding responsibility. However, in the context of UCMs, relative time is preferred

over absolute time because:

- In an absolute time model context, changing the origin of time would impact all the

constraints in the model.

- In UCM models that contain loops, using absolute time would not be possible, because
a responsibility is part of a loop and may be traversed multiple times with different time
stamps. In addition, placing an absolute time constraint on a responsibility after a loop
would constraint the number of times a loop is traversed. However, such information is

only known at run-time. Figure 7.1 illustrates this situation.

b(..)

StartPoint ( :: EndPoint

Resp(...,MClock=20}

Figure 7.1: Absolute Time Constraint in Presence of UCM Loop

A UCM model may have more than one start point. In such a case, an absolute time is required
and the user may choose the time stamp of one start point to fix the origin of time, or have
an independent origin. However, special attention should be given to such decisions, since it

may impact the overall system constraints and behavior.

4. Time representation and measurement. Both interval-based and point-based representa-
tion can be used. An interval-based representation is used to estimate the execution time of
a responsibility (i.e. [minDur, maxDur]) and to measure the execution time of an end-to-end
scenario (e.g. latency measurement). Either a point-based or an interval-based representation
can be associated to UCM timestamps (for instance MClock=10 or 1<MClock < 10).

5. Dense vs. Discrete Time. Apart from the complexity of reasoning in the verification and

refinement area, using dense or discrete time will have minor effect on the proposed semantics.

6. Global vs. Local Clocks. A global and centralized clock for measuring and increasing time
globally over the system is used (MasterClock (MClock) initially equal to zero). Local clocks
are used to measure the time taken by a responsibility and in timers to set a duration, reset to
zero and to observe for timeout. The smallest time unit used to track system evolution over
time is named §. It represents the clock tick and it also defines the granularity of the master
clock.

7. Urgency. The concept of urgency is introduced into timed UCM semantics as follows:
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- A responsibility R which is associated with a constraint (r,7’) or (minDL,maezDL) (as
introduced in options (a) and (d) of the first criteria) is considered as urgent when enabled
immediately after the execution of its predecessor (7 = 7’ = 0) or (minDL= mazDL = 0).
Alternatively, it is considered as delayable when a delay is introduced (7’ # 0 or mazDL
# 0).

- Except responsibilities, all UCM constructs (i.e. control constructs such as OR-Fork,

OR-Join, AND-Fork, etc.) are considered as urgent once enabled.

- Transitions are urgent and instantaneous: Transitions are processed as soon as they are
enabled allowing for a maximal progress. Therefore, transitions can be considered as
eager according to the definition of urgency introduced in [BST98].

7.2 Syntax of Timed Use Case Maps

Based on the discussion points presented in the previous section, our original Use Case Maps syntax

presented in Section 4.1 is extended with time as follows:

Definition 5 (Timed Use Case Maps) . We assume that a timed UCM is denoted by an 8-tuple
(D, H, A, C, GVar, B., Bs, MClock) where:

e D is the timed UCM domain, composed of sets of typed elements. D= SP U EP U R U AF
UAJU OFU OJU TSU Tm U ST. Where SP, EP, R, AF, AJ, OF, OJ, TS, Tm and ST
are respectively the sets of Start Points, End Points, Responsibilities, AND-Fork, AND-Join,
OR-Fork, OR-Join, Time stamps, Timers and Stubs.

e H is the set of edges connecting UCM constructs to each other.
e ) is a transition relation defined as: A=Dx HxD.

o C is the set of components (C = 0 for unbound UCM).

o GVar is the set of global variables.

e B, is a component binding relation defined as B, =DxC. B, specifies which element of D is
associated with which component of C. B, is empty for unbound UCM.

o B; is a stub binding relation and is defined as By =STxIN/OUTxSP/EP. B, specifies how
the start and end points of the plug-in map would be connected to the path segments going into
or out of the stub.

o MClock is the system master clock.

The modeling of time is added as an orthogonal feature to the untimed UCM syntax presented
in Section [HRDO05a]. The untimed syntax can be restored simply by removing all execution delays

as well as durations of responsibilities. The signature of timed UCM constructs is defined as follows:
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Definition 6 (Timed UCM Constructs)

e Start Points are of the form SP(PreCondition-set, TriggerringEvent-set, SP-label, in, out,
minDL, mazDL), where the parameter PreConditions-set is a list of conditions that must be
satisfied in order for the scenario to be enabled (if no precondition is specified, then by default
it is set to true). The parameter TriggeringEvents-set is a list that provides a set of events that
can initiate the scenario along a path. The parameter SP-label denotes the label of the start
point. A start point should not have an incoming edge except, when connected to an end point
(called a waiting place) or an entry edge of a stub. The parameter in € H represents such
incoming edge. The parameter out € H is the (unique) outgoing edge. minDL and mazDL
are respectively an optional absolute time lower and upper bound delay. They may be used
to introduce a delay in the presence of more than one start point. minDL and mazDL are

expressed relatively to the master clock MClock.

¢ End Points are of the form EP (PostCondition-set, ResultingEvent-set, EP-label, in, out),
where the parameter PostConditions-set is a list of conditions that must be satisfied once the
scenario is completed. The parameter ResultingEvent-set is a list that gives the set of events
that result from the completion of the scenario path. The parameter EP-label denotes the
label of the end point; the parameter in € H is the (unique) incoming edge. End points have
no target edge, except when connected to a start point (i.e. a waiting place) or to an exit edge

of a stub. In such a case, out € H represents such connection. End points are not delayed.

¢ Responsibilities are of the form Resp (in, R-label, out, minDL, mazDL, minDur, mazDur),
where in € H is the incoming edge, R-label is the activity to be executed, and out € H is the
outgoing edge. minDur and mazDur are respectively the minimal and maximal time allowed
for a responsibility to complete its execution. As stated in Section 7.1, minDL and mazDL
represent respectively a lower and an upper bound imposed on the enabling of a responsibility.

e OR-Forks are of the form OR-Fork (in, [Cond;}i<n, [out;}i<n) where in denotes the incoming
edge, [Cond;)i<n is a finite sequence of Boolean expressions, and [out;];<, is a sequence of

outgoing edges. Conditions may involve timed constraints such as 'MClock < 5.

e OR-Joins are of the form OR-Join ({in; };<n, out) where {in;};<, denotes the incoming edges

and, out is the outgoing edge.

o AND-Forks are of the form AND-Fork (in, {out;};<») where in denotes the incoming edge,
and {out;}i<n is a set of outgoing edges.

e AND-Joins are of the form AND-Join ({in;};<n, out) where {in;};<, denotes the incoming
edges, and out is the outgoing edge. Time elapses in AND-Join while waiting for all incoming
edges to synchronize). Such delays are conditioned by the internal execution of the system

and do not represent a user requirement.

Note: OR-Fork, Or-Join, AND-Fork and AND-Join are executed without delay. No relevant

user requirements may suggest such delays.
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o Timers are of the form Timer (in, TriggerringEvent-set, cont_path, to_path, TO). The syn-
chronous timer is similar to a basic OR-Fork with two outgoing disjoint branches. The pa-
rameter TriggeringEvents-set is the list that contains the set of events that can trigger the
continuation path (i.e. cont_path) and the parameter to.path € H denotes the timeout path.

TO is the timer’s expiration time.

e Stubs have the form Stub({entry;}i<n , {€xit;}j<m, isDynamic, [Condglk<i , [pluginglr<i)
where {entry;}i<n and {ezit;};<m,m denote respectively the set of the stub entry and exit
points. isDynamic indicates whether the stub is dynamic or static. Dynamic stubs may contain
multiple plug-ins [pluging|x<; whose selection can be determined at run-time according to a
selection-policy specified by the sequence of Boolean expressions [Condi]x<;. The sequence
Cond is empty for static stubs (i.e. isDynamic=false). No time constraints are defined for stubs
since a stub is a simple container for plug-ins and the execution of a stub is the execution of
the selected plug-in.

7.3 Formal Semantics of Timed UCM Models in Terms of:
CTS

In this section, we define the formal semantics of timed UCM models in terms of Clocked Transition
Systems (CTS) [MP96]. The proposed semantics consider a discrete time model to be divided into
clock ticks indexed by natural numbers. The elapsed time between the events is measured in terms
of ticks of a global digital clock which is increased by ¢ with every single tick. This time model
corresponds to the fictitious-clock model from [AD94] or the digital-clock model from [HMP92].

The following sub-section provides an introduction to Clocked Transition Systems (CTS) [MP96]
formalism.

7.3.1 Clocked Transition Systems
A clocked transition system is a tuple &= (V, ©, T, II) that consists of the following components:

e System Variables V: V is a finite set of system variables. It is divided into two subsets -
discrete variables, which can be of any type, and clock variables. One special clock variable is
the master clock T. The possible values of the system variables are called states. We use the

term assertion to refer to a first-order formula, whose free variables belong to V.

e Initial Condition ©: © is an assertion, characterizing the possible initial states. The initial

condition implies that the master clock T = 0.

e Transitions T: T is a finite set of transitions. Transitions 7 € T assign new values to the
system variables. Each transition is described by the assertion p,, which is called transition
relation. Transitions can be constrained by an enabling condition - an assertion that describes
when a transition can take place. Transitions are discrete and happen instantaneously. That
is why they are not allowed to modify the master clock T.
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e Time-Progress Condition II: II is an assertion which specifies a global restriction on the

passage of time.

7.3.2 CTS-based Semantics of Timed UCM

Definition 7 (Timed UCM’Clocked Transition System) Formally a timed UCM CTS is de-
fined as: &= (V, oinit, —, I1) consisting of:

e V = H-taken U C-active U H-enabled U C-timers U T-trigger U MClock.
Where:

— H-Taken represents the set of already traversed edges. This set grows during the ezecution
of a UCM model. It is specially useful in determining whether an AND-Join is triggered

or not (all its incoming edges are already traversed).

— C-active represents the UCM constructs currently executing. C-active is implemented as

a sequence.

— H-enabled represents the set of enabled edges (i.e. to be traversed during the next transi-
tion) '

— C-timers represents the remaining execution time (i.e., local clocks) of currently ezecuting
constructs contained in C-active. C-timers is initialized with the duration of ezecution of
every construct in C-active. The duration of a responsibility is chosen randomly within
interval [minDur, mazDur], while the duration of all other control constructs is assumed

to be equal to one clock tick é.

— T-trigger represents the set of timers associated with the delay of the next UCM construct
to be executed. For responsibilities, the delay is chosen randomly within [minDL, mazDL]
interval. All control constructs should be executed as soon as they are triggered. Hence,
once a UCM control construct is added to the set C-active, a value of one clock tick & is
associated to it in set T-trigger. This way, the control construct is executed during the

subsequent clock tick.

— MClock is the Master Clock.

The elements of sets T-trigger and C-timers are decremented by § in every transition. Values

that reach zero are not decremented further.

Note that a bijection function is established between sequences C-active and C-timers (see
figure 7.2(a)), and between sequences H-enabled and T-trigger (see figure 7.2(b)). During a
system transition, if an element is added to C-active (respectively removed from C-active), a

corresponding element is added to C-timers (Trespectively removed from C-timers).
o ;nit: Tepresents the initial state. It is required that for the initial state MClock = 0.

e —: A finite set of transitions. Each transition is a function —CX(V)xZ(V) mapping each

state s€X into a set of successors states §'€S. Instead of writing (0,0') €—, we write c—0’.
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C-active C-timers H-enabled T-trigger

c-active 1 c-timer 1

h-enabled 1 t-trigger 1

c-acflve i o-tlTer i h-enabled i ttrigger i

c-timern h-enabled n

c-active n t-trigger n

(a) Bijection between C-active and C-timers (b) Bijection between H-enabled and T-trigger

Figure 7.2: Bijections Functions within V

Informally, states are assignments of values to variables, called valuations. A valuation maps
a variable to a value. A transition from one state to another represents that some variables

are assigned a different value, i.e., the valuation changes.

e II: The master clock MClock is incremented by a clock tick & at every transition. No time
progress is allowed without ezecuting a transition (configuration or time transition). Transition

types will be discussed in Section 7.3.3.
Definition 8 (Run) A run of ® is an infinite sequence of valuations, m = o¢0. .. satisfying:
e Initiation : 0g = Cinst
o Consecution: For each i=0,1,. .. the valuation 0,4, is a — successor of g;, i.€, 0;— yy1.
A computation of @ is a run satisfying:

o Time divergence: The sequence oo(MClock) a1 (MClock). . . grows beyond any bound. That is,
as i increases, the value of MClock at o; increases beyond any bound.

We assume that the run-to-completion principle applies to the execution of a construct. The
execution of a UCM construct cannot be interrupted until it is completed.

7.3.3 CTS Transition Relation

In order to define the transition relation (i.e., —), the following access functions are defined to access
different elements of the proposed timed UCM data structures. These access functions abstract the
transition relations from cumbersome details.

Definition 9 (Access functions)

1. enables: D — H". Given a UCM construct, function enables provides the set of edges that
the construct enables after it completes its execution (i.e., enables(Resp)={out}). Outgoing
edges may be associated with guard conditions (i.e., OR-fork and dynamic stubs). Function

enables evaluates the guards and chooses the outgoing edge associated with the true condition.
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2. incoming: D— H™. Given a UCM construct, incoming provides the set of edges directly
leading to the construct.

3. target: H — D. Gives the subsequent construct directly connected to a given edge.

4. delay: D —N x §. Computes the delay associated with a UCM construct. The delay is chosen
randomly within [minDL, maxDL] interval. delay= Random(Resp(..., minDL, mazDL)).

5. triggered: D™ — D™, such that n>m. Given a set S of UCM constructs, Triggered produces
the set °C S of UCM constructs that are triggered at the present time. A UCM construct is

said to be triggered if and only if the following two conditions are met:

- Its incoming edges are enabled.

- No explicit delay is associated to it.

6. duration: D — N x §. Gives the duration of execution of a construct. For a responsibility,
the function returns a random value between minDur and mazDur. For all control constructs,

it returns & (one clock tick).
7. type: D—{SP, R, EP, AJ, AF, OJ, OF, Tm, Ts, ST} specifies the type of a UCM construct.
We distinguish two types of transition relations:

1. Configuration Transitions: When a Configuration Transitions is taken, the system configu-
ration defined by the three sets: H-taken, C-active and H-enabled is updated to indicate which

transition has just been taken.
(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H'-taken, C'-active, H'-enabled,
C’-timers, T'-trigger, MClock’).
Where (H'-takens#H-taken) A (C’-active#C-active) A (H'-enableds<H-enabled) A (T'-trigger#T-
trigger) A (C’-timers=C-timers - §) A (MClock’=MClock + 9).
In sections 7.3.5 and 7.3.6, we describe the rules that govern the update of the underlined sets.
Generally, a configuration transition is executed upon the expiration of:

- One of C-timers elements (i.e., 3 ¢ € C-timers such that, ¢ < §). Hence, the system

configuration is changed after one clock tick.
- One of T-trigger elements (i.e., 3 t € T-trigger such that, t < §). Hence, the system

configuration is changed when the delay associated with a construct elapses.

Note: In the rest of this chapter and for the sake of simplicity, the condition '3 ¢ € C-timers
such that ¢ < &’ is expressed by ’c < &’ and the condition '3 t € T-trigger such that t < ¢’ is
expressed by 't < §.

2. Time Transitions: When a time transition is taken, the system configuration remains un-

changed.

A time transition is executed, when one of the following conditions is met:
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- One responsibility, part of C-active, is still executing (i.e., 3 t € C-timers such that, ¢ >
5).

- One construct is delayed (i.e., 3 t € T-trigger such that, t > §).

The global time MClock is incremented by a clock tick &, while the set elements of C-timers
and T-trigger are decremented by a clock tick 4.

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H'-taken, C'-active, H'’-enabled,
C’-timers, T'-trigger, MClock’)

Where (H'-taken=H-taken) A (C'-active=C-active) A (H'-enabled =: H-enabled) A (C'-timers=C-
timer-6) A (T'-trigger=T-trigger-6) A (MClock’ = MClock -+ )

In sections 7.3.5 and 7.3.6, we describe the rules that govern the update of the underlined sets.

7.3.4 Concurrency Model and Time Evolution

The UCM construct AND-Fork allows many paths to execute concurrently. Considering the as-

sumption of run to completion introduced earlier, different scenarios may behave either in:

e Interleaving Semantics. At any given time t, only one responsibility is currently executing.

Or

e True concurrency Semantics. At any given time t, more than one responsibility is currently

executing.

[

€1

€z
e —

(a) Interleaving Semantics (b) True-Concurrency

Figure 7.3: Concurrency Semantics

We assume that in presence of UCM components, concurrent paths bounded to the same compo-
nent are sharing also the same component resources. Therefore, these concurrent paths must behave
in interleaving semantics. Figure 7.3(a) illustrates a UCM with two parallel paths bounded to one
component. At any time, no more than one responsibility should be active. However, in this case,
the choice of which responsibility goes first is non deterministic. Adding timing constraints may
eliminate this non determinism (i.e., if responsibilities @ and b have different values in T-trigger).

Parallel paths bounded to different components may behave either according to interleaving

semantics or to true concurrency semantics. Figure 7.3(b) illustrates two parallel paths allocated
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to two different components. Responsibilities a and b can be executed in true-concurrency model,
since they are enabled at the same time and they don’t share the same resources. However, the
decision to go with either semantics depends on the timing information that may be attached to
these responsibilities.

Note: We assume interleaving concurrency model for unbound UCMs.

In what follows we provide the detailed semantic rules for both concurrency models. For the
sake of simplicity, we consider only unfolded UCMs, where all stubs in the root map were already
replaced with their corresponding plug-in maps.

7.3.5 Step Semantics for Interleaving Model

The choice of an interleaving semantics reduces the size of the CTS variables. Indeed, allowing
only one construct to be executed in a given configuration, reduces the size of the used variables.
Therefore, sets C-active and C-timers are reduced to singletons, since only one variable per set is
necessary to track the configuration evolution.

As stated in the previous sections, a configuration transition is executed upon the expiration of
one of the elements of either C-timers (i.e. a UCM construct finished executing) or trigger(ie. a
UCM construct should start executing). Alternatively, time transitions are taken.

Four possible conditions can be initially distinguished:

- Condition 1: (t < 8) A (¢ < §). This condition triggers a configuration transition.
- Condition 2: (t > 8) A (¢ < §). This condition triggers a configuration transition.
- Condition 3: (t > 0) A (c > §). This condition triggers a time transition.

- Condition 4: (t < é) A (¢ > ). This condition triggers a time transition since the execution of
a construct (e.g. execution of a responsibility) take precedence over configuration transitions.

Hence, allowing for run to completion.

Since time may elapse in AND-Join constructs, where incoming flows should synchronize (time
passes by while waiting for all incoming edges to be enabled), a special attention should be paid when
an AND-Join is encountered. In what follows, different rules are devised to take care of AND-Join
specificity.

Initial State: o0in;; is defined with the following valuation: H-taken = @, C-active = @), H-enabled
= incoming(StartPoints), T-trigger = delay(H-enabled), C-timers = 0, MClock = 0.

In a given system state, the configuration transition (rule 1) is executed if all the following
conditions hold:

(a) Condition 1 or Condition 2

(b) V e € H-enabled, type(target(e))#AJ
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Rule 1 h:={any e € H-enabled, such that delay(e)=minimum(H-enabled) and delay(e)<é}
H -taken:=H-taken U {h}
C -active:=triggered(target(h))
H'-enabled:=H-enabled U enables(C-active)-{ h}
T -trigger:= (T-trigger-8) U delay(target(H -enabled))
C -timers:= duration(C -active)
MClock :=MClock + ¢

(H-taken, C-active, H-enabled, C-timers, T-trigger,MClock)— (H'-taken, C'-active, H'-enabled,
C -timers, T -trigger, MClock')

Note: The edge h € H-enabled, is non deterministically chosen amongst eligible edges.
In given system state, the configuration transition (rule 2) is executed if all the following condi-

tions hold:
(a) Condition 1 or Condition 2

(b) 3 e € H-enabled, such that type(target(e))=AJ and incoming(target(e))C H-enabled

Rule 2 h:={all e € H-enabled, such that type(target(e))=AJ and incoming(target(e))" H-enabled}
H'-taken:=H-taken U h
C -active:=triggered(target(h))
H'-enabled:=H-enabled U enables(C-active)-{h}
T -trigger:= (T-trigger-6) U delay(target(H -enabled))
C'-timers:= duration(C -active)
MClock :=MClock + 6

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H -taken, C'-active, H -enabled,
C -timers, T -trigger, MClock )

In given system state, rule 1 is executed if all the following conditions hold:
(a) Condition 1 or Condition 2
(b) 3 e € H-enabled, such that type(target(e))=AJ and incoming(target(e))< H-enabled

In given system state, the time transition (rule 3) is executed if all the following conditions hold:
(a) Condition 3 or Condition 4

(b) V e € H-enabled, type(target(e)) # AJ
Rule 38 (' -timers:=C-timers-6
T -trigger:=T-trigger-6
MClock :=MClock + 6

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H-taken, C-active, H-enabled,
C' -timers, T -trigger, MClock )
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Note: In time transitions, AND-Join is treated the same way as any other UCM construct.
Interleaving Model: Illustrative Examples:

This section illustrates the execution of configuration and time rules to produce system runs. For
the sake of clarity, clock tick ¢ is chosen to be equal to 1 in the following timed UCM examples.

1. Urgent responsibilities (no delay). Figure 7.4 illustrates a simple timed UCM having
an urgent (i.e., minDL = maxDL = 0) responsibility a with a duration interval [2,4]. In its
corresponding run, described in table 7.1, the function duration assigns the value 3 to the

duration of responsibility a.

m

5(0) a([2,4],0)

® ¥
L

el

e2

Figure 7.4: Urgent Responsibility

Transition type | H —taken | C — active | H — enables | T — irigger | C — timers | MClock

Initial State {} {} {in1} {} {3 0
Configuration {inl} {S} {} {} {1} 1
Configuration {in1} {} {el} {0} {} 2
Configuration {z:nl, el} {a} {} {} {3} 3

Time | {in1,e1} {a} 0} 0 {2} 2
Time {inl,el} {a} {} {} {1} 5
Configuration {inl,el} {} {e2} {0} {} 6
Configuration | {inl,el,e2} {E} {} {} {1} 7
Configuration | {inl,el,e2} {} {} {} {} 8

Table 7.1: Urgent Responsibility-Execution

2. Delayed responsibility. Figure 7.5 illustrates a simple timed UCM having a delayed (i.e., 7
= 3) responsibility a with a duration interval [2,4]. Its associated run is described in table 7.2.

5(0) a([2,4],3)

® >

i

el e2

Figure 7.5: Delayed Responsibility
3. Parallel Flows. Figure 7.6 illustrates a simple timed UCM having two parallel flows. Its
associated run is described in table 7.3.

4. Synchronization of flows. Figure 7.7 illustrates a simple timed UCM having two parallel

flows synchronizing at an AND-Join. Its corresponding run is described in table 7.4.

7.3.6 Step Semantics for True Concurrency Model

Contrary to the interleaving semantics, sets C-active and C-timers may have more than one element
in presence of concurrent paths. Indeed, C-active contains UCM constructs that are being executed

currently and C-timers contain their respective set of timers (i.e. local clocks).
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Transition type | H — taken | C — active | H — enables | T — trigger | C — timers | MClock |

Tnitial State {} {} {in1} {} {} 0

Configuration {in1} {S} {} {} {1} 1

Configuration {inl} {} {e1} {3} {} 2

Time {inl} {} {el1} {2} {} 3

Time {inl} {} {el} {1} {} 4

Configuration {inl,el} {a} {} {3} {3} 5

Time {in1,el} {a} {} {} {2} 6

Time {inl,el} {a} {} {} {1} 7

Configuration {inl,el} {} {e2} {0} {3 8

Configuration | {inl,el,e2} {E} {} {} {1} 9

Configuration | {inl,el,e2} {} {} {} {} 10

Table 7.2: Delayed Responsibility Execution
al[2,41,3) od El
b{[1,31,2)
e5
Figure 7.6: Parallel Flows
[ Transition type | H —taken | C —active | H —enables | T —trigger | C — timers | MClock |

Initial State {} {} {in1} {} {} 0
Configuration {inl} {S} {} {} {1} 1
Configuration {in1} {} {el} {0} {} 2
Configuration {inl,el} {OF} {} {} {1} 3
Configuration {inl,el} {} {e2, e3} {3, 2} {} 4
Time {inl,el} {} {e2, e3} {2,1} {} 5
Configuration {inl,el,e3} {b} {e2} {1} {2} 6
Time {inl,el,e3} {b} {e2} {0} {1} 7
Configuration {inl,el, e3,e2} {a} {e5} {0} {2} 8
Time {inl,el,e3,e2} {a} {e5} {0} {1} 9
Configuration {inl1,el, e3,e2,e5} {E2} {ed} {0} {1} 10
Configuration | {inl,el,e3,e2,eb,ed} {E1} {} {} {1} 11
Configuration | {inl,el,e3,e2,e5,ed4} {} {} {} {} 12

Table 7.3: Parallel Flow Execution

()]

al[2,4],3)

el

52(0) b([1,3],2)
e2

Figure 7.7: Synchronization of Flows
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[ Transition type | H —taken | C —active | H —enables | T —trigger | C — timers | MClock

Initial State {3 {} {in1,in2} {0,0} {1} 0
Configuration {inl} {S1} {in2} {0} {1} 1
Configuration {in1,in2} {52} {e1} {3} {1} 2
Configuration {inl1,in2} {} {el, e2} {2,2} {} 3

Time {inl,in2} {} {el,e2} {1,1} {} 4
Configuration {inl,in2,el} {a} {e2} {0} {3} 5
Time {inl,in2,el} {a} {e2} {0} {2} 6
Time {inl,in2,el} {a} {e2} {0} {1} 7
Configuration {inl,in2,el,e2} {b} {e3} {0} {2} 8
Time {inl,in2,el,e2} {b} {e3} {0} {1} 9
Configuration {in1,in2,el, e2} {} {e3,e4} {0,0} {} 10
Configuration {inl,in2, el, e2, e3,e4} {OF} {} {} {1} 11
Configuration {inl1,in2,el, €2, e3,ed} {} {e5} {1} {} 12
Configuration | {inl,in2,el,e2,e3,e4,€e5} {E} {} {} {1} 13
Configuration | {inl,in2, el,e2, e3,e4,e5} {} {} {} {} 14

Table 7.4: Run of Synchronized Flows

Three possible conditions can be distinguished:

- Condition 1: (t < §). This condition triggers a configuration transition.
- Condition 2: (¢ < ). This condition triggers a configuration transition.
- Condition 3: (t > ) A (¢ > §). This condition triggers a time transition.

Similarly to interleaving semantics, a special attention should be paid when an AND-Join is
encountered.

Initial State: g,y is defined with the following valuation: H-taken = ), C-active = {, H-enabled
= incoming(StartPoints), T-trigger = delay(H-enabled), C-timers = {), MClock = 0.

All triggered edges are selected and taken in one single transition. In the given system state, the

configuration transition (rule 4) is executed if all the following conditions hold:
(a) Condition 1 or Condition 2
(b) V e € H-enabled, type(target(e))#AJ

Rule 4 h:={ all e € H-enabled, such that delay(e)<5}
H'-taken:=H-taken U {h}
C -active:=triggered(target(h))
H'-enabled:=H-enabled U enables(C-active)-{h}
T -trigger:= (T-trigger-8) U delay(target(H -enabled))
C' -timers:= duration(C' -active)
MClock :=MClock + 6

(H-taken, C-active, H-enabled, C-timers, T-trigger,MClock)— (H -taken, C-active, H -enabled,
C -timers', T -trigger, MClock')

In given system state, the configuration transition (rule 5) is executed if all the following condi-
tions hold:

(a) Condition 1 or Condition 2
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(b) 3 e € H-enabled, such that type(target(e))=AJ and incoming(target(e))< H-enabled

Rule 5 h:={all e € H-enabled, such that type(target(e))=AJ and incoming(target(e))C H-enabled}
H'-taken:=H-taken U h
C -active:=triggered(target(h))
H -enabled:=H-enabled U enables(C-active)-{ h}
T -trigger:= (T-trigger-6) U delay(target(H -enabled))
C -timers:= duration(C -active)
MClocK :=MClock + ¢

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H -taken, C'-active, H -enabled,
C -timers, T -trigger, MClock')

In given system state, the configuration transition (rule 4) is executed if all the following condi-
tions hold:

(a) Condition 1 or Condition 2
(b) 3 e € H-enabled, such that type(target(e))=AJ and incoming(target(e))& H-enabled
In given system state, the time transition (rule 6) is executed if all the following conditions hold:
(a) Condition 3 holds
(b) V e € H-enabled, type(target(e))#AJ

Rule 6 ' -timers:=C-timers-6
T -trigger:=T-trigger-6
MClocK :=MClock + 6

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)— (H-taken, C-active, H-enabled,
C -timers, T -trigger, MClock/ )

Note: In time transitions, AND-Join is treated the same way as any other UCM construct. Note:
Runs of the true concurrency semantics model have less states compared to the same runs in the

interleaving semantics.

7.3.7 Example of CTS run

Figure 7.8 illustrates the CTS run of the UCM presented in Figure 7.6 according to true concurrency

semantics.
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[ Transition type | H —taken | C — active | H — enables | T — trigger | C — timers | MClock |

Initial State {3 {S} {} {} {1} 0
Configuration {} {} {el} {0} {} 1
Configuration {el} {OF} {} {} {1} 2
Configuration {e1} {} {e2, e3} {3,2} {3 3

Time {e1} {} {e2, e3} {2,1} {3} 4
Configuration {el, e3} {b} {e2} {1} {2} 5
Configuration {el,e3, e2} {b,a} {} {} {1,3} 6
Configuration {el, e3, e2} {a} {eb} {0} {2} 7
Configuration {el,e3,e2,e5} {a, B2} {e4} {0} {1,0} 8
Configuration | {el,e3,e2, 5, e4} {E1} {} {} {1} 9
Configuration | {el,e3,e2,e5,ed} {} {} {} {} 10

Figure 7.8: Parallel Flow Execution in True Concurrency Mode

7.4 Formal Semantics of Timed UCM Models in Terms of
ASM

When slightly modified, most of the untimed ASM rules presented in Section 4.2.1 can be applied to
timed UCMs, except for start points, responsibilities and timers. Indeed, only a global clock advance
statement (i.e. MClock:=MClock +1) is added to all ASM rules of UCM control constructs (OR-
Fork, AND-Fork, etc.) to reflect the fact that these constructs take a single clock tick to complete.
A start point, part of a plug-in map and bound to a stub entry point, should be executed without
delay (similar to untimed start point) since stubs are used for structuring purpose. In the contrary,
root map start points as well as unbound start points (part of a plug-in map) may be delayed. In

what follows, we present the timed ASM rules for start points, responsibilities and timers.

 Start points (part of a root map or part of a plug-in map and bound to a stub entry
point). If the control is on the incoming edge (i.e. in), the PreCondition-set is satisfied, there
occurs at least one event from the triggeringEvent-set and no additional delay is required (i.e.
minDL <MClock < maxDL), then the start point is triggered and the control passes to the
outgoing edge. Figure 7.9 describes the start point rule.

if CurrConstruct is StartPoint(PreCondition-set, TriggerringEvent-set, StartLa-
bel, in, out, minDL, maxDL) then
if (EvaluatePreConditions & EvaluateTrigger & ( minDL <MClock < maxDL)
then MClock := MClock + random({minDL,maxDL)
Startl abel st ,,,,me.ac.tive:,: out
- . where:
- EvaluateTrigger: TriggerringEvent-set x {events} — Boolean; evalu-
ates whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.
- EvaluatePreConditions: PreCondition-set — Boolean evaluates whether all
preconditions are satisfied.

Figure 7.9: ASM Rule of Timed Start Point

e Responsibilities. If the control is on the incoming edge (i.e. in) then the master clock
MClock is increased by the value of the delay (i.e. random(minDL,maxDL)). After Resp is
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executed, MClock is increased by a random value from interval [minDur,mazDur] and the
control passes to the outgoing edge.

if CurrConstruct is Responsibility (in, Resp, out, minDL, maxDL, minDur,
maxDur) then

MClock:= MClock + random(minDL,maxDL})

Resp

Rﬁ? ot

In xr

me.active:= out
MClock:= MClock+ random(minDur,maxDur)

Figure 7.10: ASM Rule of Timed Responsibility

e Timer. The timer rule is modified to reflect the increase of the global clock MClock (see

Figure 7.11).
if CurrConstruct is Timer(in, TriggerringEvent-set, out, out_timeout, TO)
then
in Timer . if (Triggered) then me.active:= out
MClock:= MClock+ random(0,TO)
else me.active := out_timeout
MClock:= MClock+TO
out timeOut

where Triggered: TriggerringEvent-set—Boolean determines whether a trig-
ger occurs within a predefined time frame.

Figure 7.11: ASM Rule of Timer

7.4.1 An AsmL Implementation of Timed UCM Semantics

Most of the data structures that have been presented in Section 4.3.2 are applicable to both untimed
and timed UCM specification. Figure 7.12 shows the addition of time constraints to start point,
responsibility and timer constructs.

structure UCMConstruct

case SP_Construct case R_Construct
in_hy as HyperEdge in_hy as HyperEdge
out_hy as HyperEdge out.hy as HyperEdge
label as String label as String
preCondition as BooleanExp minDL as Integer
minDL as Integer maxDL as Integer
maxDL as Integer minDur as Integer
location as Component maxDur as Integer

location as Component

case SP_PL_Construct case Timer
in.hy as HyperEdge in_hy as HyperEdge
out_hy as HyperEdge Selec as Set of OR_Selection
label as String label as String
preCondition as BooleanExp TO as Integer
location as Component location as Component

Figure 7.12: Timed UCMConstruct Data Structure
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Assuming a single-agent based solution with interleaving semantics, Figure 7.13 presents the
timed version of ASM-UCM program (modifications are in underlined font). Contrary to the untimed
version where the next edge to be executed is chosen randomly from the set of active edges, in the
timed version the choice of subsequent edge is based on the delay of the target construct (next
construct to be executed). Indeed, the edge leading to the construct with the minimum delay is

selected.

7.4.2 Applying AsmL Semantics to the Simplified Telephone System (timed
version)

Figure 7.14 shows a timed version of the trace presented in Figure 5.8. We assume that the root
map start point has a delay within [2,5], responsibilities have a delay within [3,6] and a duration
within [2,15).

148



class Agent
const id as String
var active as Edge
var mode as Mode
Program()

ep
until ((act = {}) or (me.mode = inactive))
4

o
let h = {tl.edge || t1 in act }
let del = {tl.delay || t1 in act }
let minimumDL = (min x || x in del)
choose z in act where z.delay= minimumDL
choose h in level.ele where HyperExists(active, GetInEdge(h.source})
match (s2.source)
// Rule of Start Point
SP_Construct (a,b,c,d,e,f,g): step
if d.Value() = true and (MClock < f) and (MClock > e)
MClock := MClock + random(e,f)
add activ(b, z.level, GetDelayTargetConstruct(b, z.level)) to act
choose r in act where r.edge = a
remove r from act
else
MClock := MClock + 1
// Rule of Plug-in Start Point
SP.PL_Construct (a,b,c,d,e): step
if d.Value() = true
add activ(b, z.level, GetDelayTargetConstruct(b, z.level)) to act
choose r in act where r.edge = a
remove 1 from act
MClock := MClock + 1
else
me.mode := inactive
// Rule of Responsibility
R_Construct (a,b,c,d,e,f,g,l): step
MClock := MClock 4 random(d,e)
step
ExecuteResponsibility((s2.source) as R_Construct)
step
MClock := MClock + random(f,g)
add activ(b, z.level, GetDelayTargetConstruct(b, z.level)) to act
choose r in act where r.edge = a
remove r from act
// Rule of Timer
TM-_Construct (a,b,c,d,e): step
choose v in b where (v.out_cond).Value() = true
add activ(v.out_hy, z.level, GetDelayTargetConstruct(v.out_hy, z.level)) to act
choose r in act where r.edge = a
remove r from act
MClock := MClock + random(0,d)
ifnone
choose v2 in b where (v2.out_cond).Value() = false
MClock := MClock + d
add activ(v2.cut_hy, z.level, GetDelayTargetConstruct(v2.out_hy, z.level)) to act
choose r in act where r.edge = a
remove r from act

/] o

Figure 7.13: Timed ASM-UCM Program
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This timed trace is generated with the following initial values:
subCND:True

subOCS:True

InOCSList:False

busy:False

Start Executing: Telephone System:Req

MClock=0

MClock=1

Start Point:Req in Component:UserOrig; MClock=2

Stub._Construct: SOrig; MClock=7

Plugin: Orig-plugin; MClock=8

Start Point:Start in Component:AgentOrig

Stub_Construct: Sscreen; MClock=9

Plugin: OCS_plugin; MClock=10

Start Point:Start in Component:AgentOrig;MClock=11

Start Executing Responsibility: checkOCS in component: AgentOrig at MClock=17
OR-Fork: OCS_OF1;MClock=32

End point: success in Component:AgentOrig; MClock=34

Start Executing Responsibility: snd_req in component: AgentOrig at MClock=40
End point: success in Component:AgentOrig

Stub_Construct: Sterm;MClock=56

Plugin: term_Plugin; MClock=57

Start Point:Start in Component:AgentTerm

OR-Fork: term-OF1;MClock=58

AND-Fork: term_AF1;MClock=59

Stub_Construct: Sdisplay;MClock=60

Plugin:: CND_Plugin;MClock=61

Start Point:Start in Component:AgentTerm

AND-Fork: CND_AF1;MClock=62

End point: success in Component:AgentTerm;MClock=64

Start Executing Responsibility: display in component: AgentTerm at MClock=70
End point: disp in Component:AgentTerm;MClock=86

End point: display in Component:AgentTerm;MClock=87

End Point: display part of root map reached in Component:UserTerm; MClock=87
Start Executing Responsibility: ringTreatment in component: AgentTerm at MClock=93
End point: success in Component: AgentTerm;MClock=98

End Point: ring part of root map reached in Component:UserTerm; MClock=98
Start Executing Responsibility: ringingTreatment in component: AgentTerm at MClock=104
End point: reportSuccess in Component: AgentTerm;MClock=120

Start Executing Responsibility: fwd_sig in component: AgentOrig at MClock=126
End Point: ringing part of root map reached in Component:UserOrig;MClock=141

Figure 7.14: Timed Trace
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7.5 Formal Semantics of Timed UCM Models in Terms of

Timed Automata

Many approaches have been introduced to model timing behaviour of real-time systems, mostly de-
rived from conventional finite state automata which are expanded to describe timing properties of the
transition behavior. Although a number of different models have been proposed, e.g., several classes
of timed transition systems [HMP91], timed graphs [ACD93], event clock automata [AFH94], state
clock automata [RS97|, timed transition graphs [SE94], quantitative temporal structures [FKG96],
interval structures [RK97], or statecharts [Har87], the timed automata model of Alur and Dill [AD94]
has become the standard.

7.5.1 Timed Automata

The theory of timed automata was introduced by Alur and Dill [AD94]. A timed automaton is a
finite-state Biichi automaton extended with a finite set of real-valued variables modeling clocks. In
its original version [AD90], constraints on the clock variables are used to restrict the behavior of
an automaton, and Biichi accepting conditions are used to enforce progress properties. A simplified
version, namely Timed Safety Automata is introduced in [HNSY94], to specify progress properties
using local invariant conditions. Timed Safety Automata has been adopted in several verification
tools for timed automata including UPPAAL [LPY97], SGM [WHO02], RED [WWHO05), KRONOS
[Yov97] and HyTech [HHEWT97].

A timed automaton is structured as a directed graph containing a finite set of nodes (called
locations) and a finite set of labeled edges (called transitions). The logical clocks in the system are
initialized with zero and then increase synchronously at the same rate. Clock constraints, represented
by guards on edges, are used to restrict the behavior of the automaton. A guard is only an enabling
condition of the transition and cannot force the transition to be taken. In the initial work by Alur
and Dill [AD90], to avoid the fact that an automaton stays forever in any location, a subset of the
locations in the automaton are marked as accepting (called Biichi-acceptance conditions) and only
those executions passing through an accepting location infinitely often are considered valid behaviors
of the automaton. Instead of accepting conditions, in timed safety automata [HNSY94], locations
may be add local timing constraints called location invariants. An automaton may remain in a
location as long as the clocks values satisfy the invariant condition of this location. Transitions may
be labeled with an action and clocks may be reset to zero, when a transition is taken. Transitions
occur instantaneously. Semantically, a state of a timed automaton is a recording of its present
location and the readings of all clocks.

Figure 7.15 shows a timed automaton with two locations and two transitions. The timing behav-
ior of the automaton is controlled by a clock a. The transition from the Initial location to Location
won’t occur unless a > 2 invalidating the invariant a<2’. The same transition is guarded by a
condition a>4 making the transition possible only if the local clock is greater or equal to 4. During
the transition from Location to Initial Location, the clock a is reset.

In the following section, we give the formal syntax and semantics of timed automata as defined
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Transition.  8>=4 «— Guard
InttiatLogabion ™ il

AE=ZEN
1 2 0
‘invariant w®

N C}Q@K reset

Figure 7.15: Example of a Timed Automaton
in {[BYO03].

7.5.2 Timed Automaton Formal Syntax and Semantics

Assume a finite set of real-valued variables C ranged over x, y, ete. that represent clocks and a finite
alphabet ¥ ranged over by a, b, etc. representing actions.

Clock constraints. A clock constraint is a conjunctive formula of atomic constraints of the
form x ~ nor x - y~n for x, y € C, ~€ {<,<,=,>,>} and neN. A clock constraint is downward
closed if ~€ {<,<,=}. We use #(C) to denote the set of clock constraints, ranged over by g.

Guards and Invariants. A guard is a finite conjunction over data constraints and clock
constraints. An invariant is a finite conjunction over downward closed clock constraints. Both
contain additionally the constants true and false.

Assignments. A data assignment is of the form v:= A, where veéV and A is an arithmetic

expression over V. A clock reset is of the form x:=0, where x€C.

Definition 10 (Timed Automaton) A timed automaton A is a tuple {N, ly, C, Z, E, I) where:
e N is a finite set of locations (or nodes),
e [y € N is the initial location,

e (C is the set of clocks,

Y is a set of actions,

EC N x B(C) x £ x 2€ x N is the set of edges connecting different locations

I: N — B(C) assigns invariants to locations

There are two types of transitions between states: delay transitions (the automaton stays in a
location) and action transition (an enabled edge is taken).

Clock assignments functions are used to track the changes of clock values. Let u, v denote such
functions, and use u € g to mean that the clock values denoted by u satisfy the guard g. For d €
R, let u + d denote the clock assignment that maps all z € C to u(z) + d, and for r C C, let [r
— 0] u denote the clock assignment that maps all clocks in r to 0 and agree with u for the other
clocks in C-{r}.
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Definition 11 (Timed Automaton Operational Semantics.) The semantics of a timed au-
tomaton is a transition system (also known as a timed transition system) where states are pairs
(Lu) and transitions are defined by the rules:

- Delay transitions correspond to the elapsing of time while staying at some location: (I,u) 4,
(Lu+d) if u € I(1) and (u+d)EI(l) for a non-negative real d in Ry

- Action transition correspond to the ezecution of a transition from E: (Lu) 2 (U,w) if 12250,
u € g, w'=[r —0u and vel(l’)

Definition 12 (Timed action and timed trace) A timed action is a pair (t,a), where a € T is
an action taken by an automaton & after t € Ry time units since &/ has been started. The absolute
time t is called time-stamp of the action a. A timed trace is a (possibly infinite) sequence of timed
actions £=(t1,a1)(t2,02). .. (ti,a:). .. where t;>t; 4y for all i>1.

Definition 13 (Run of Timed Automaton) A run of a timed automaton A= (N, ly, C, X, E,
Iy with initial state (lo,uo) over a timed trace E=(t1,a1)(t2,a2)(t3,03) ... is a sequence of transitions:
di a d2 a2 d3 a3
(lojuo ) = — (lu1 ) = 5 (lus ) = — (lauz ) ...

satisfying the condition t;=t;_; + d; for all i>1.

Definition 14 (Semantics of a network of Timed Automata) Let A;=(N;, ¥, C, %, E;, I;)
be a network of n timed automata. Let lo=(12, ..., I) be the initial location vector. The semantics
of A; is defined as a transition system ( S, so, — ) where § = (N1 x ... x Np) x R is the set of

nodes, so=(lo,u0) is the initial state, and — C § x § is the transition relation defined by:
- (w)—lu+d)ifVd: 0<d’<d= u + d’ € I(l).
- (Lw)— ([, /l:]w’) if there exists [;—21; such that u€g, u’=[r — OJu and v’e I(I).

- (Z,u)—+(7[l;~/lj,£;/l¢/,u’) if there exists li—d—gﬁd; and lj%l; such that ue (g; A g;), u'=/r;
U r; = 0fu and vw'e I(1).

such that u€g, w'=[r — OJu and v'e I{l).

7.5.3 Timed Automaton Clock Region

Clock regions [ACD90, AD94], represent sets of clock assignments that are defined in order to obtain
a finite representation for the infinite state space of a timed automaton.

Definition 15 (Extended State) [AD9/]. The behavior of a transition relation is determined by
its state and the values of all its clocks. An extended state is a pair {n, v) where n€ N and v is a

clock interpretation for the set of clocks C.

If two extended states, which correspond to the same location of the timed automata A, agree
on the integral parts of all clocks values, and also on the ordering of the fractional parts of all clock

values, then the runs starting from the two extended states are very similar. The integral parts of
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the clock values are needed to determine whether or not a particular clock constraint is met. whereas
the ordering of the fractional parts is needed to decide which clock will change its integral part first.
This is because clock constraints can involve only integers, and clocks increase at the same rate.

For example, let A be a timed automata with two clocks z and y. Let s be a location in 4 with
an outgoing transition e to some other location. Consider two extended states (n,v) and (n,v’) in the
transition relation that corresponds to the location n. Suppose that v(z)=5.3, v(y)="7.5, v'(z)=5.5
and v’(y)=7.9. Assume that the guard ¢ associated with e is x>8 A y>10. It is easy to see if (n, v)
eventually satisfies the guard, then so will (n, v').

The integral parts of clock values can get arbitrarily large. But if a clock z is never compared
with a constant greater than ¢, then its actual value, once it exceeds ¢, is of no consequence in
deciding the allowed paths. For instance, if a clock z is never compared to a constant greater than
100 in the invariant associated with a location or in the guard of a transition. Then, it is impossible
to distinguish between z having the value 101 or having the value 1001.

Alur and Dill [AD94] showed how to formalize this notion. For any t€R, fract(t) denotes the
fractional part of t, and |t] denotes the integral part of t; that is, t = |t| + fract(t). We assume
that every clock in C appears in some clock constraint. For each x€C, let ¢, be the largest integer ¢
such that (x<c) or (c<x) is a subformula of some clock constraint appearing in E. The equivalence
relation ~ is defined over the set of all clock interpretations for C; v~v’ iff all the following conditions
hold:

1. For all xeC, either |v(x)] and |[v’(x)| are the same, or both v(x) and v’(x) are greater than c,

2. For all x,y €C with v(x) < ¢; and v(y) < ¢, fract(v(x))< fract(v(y)) iff fract(v’(x))<
fract(v’(y)).

3. For all x €C with v(x) < ¢, fract(v(x))=0 iff fract(v’(x))=0

YA

v

Figure 7.16: Clock Region Example

The equivalence classes of ~ are called regions [AD94]. Each region can be represented by

specifying:

1. For every clock x, one clock constraint from the set { x=c | ¢ =0,1,... ;} U {c-l<x<c|
c=1,...c.}U{x>¢r },
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2. For every pair of clocks z and y such that c-1<x<c and d-1<y<d are clock constraints in the
first condition for some c,d, whether fract(z) is less than, equal to, or greater than fract(y).

Example: Figure 7.16 [AD94] shows the clock regions for a timed automaton with two clocks
z and y where ¢;=2 and c,=1. In this example, there are a total of 28 regions: 6 corner points
(e.g-[(1,0)]), 14 open line segments (e.g.[1<x<2 A y=x-1]), and 8 open regions (e.g.,[1<x<2 A O<y<x-

1)).

7.5.4 TA-based Semantics of Timed UCM Constructs

In this section, we model a timed UCM specification as a set of concurrent timed automata (called
also processes). Processes interact with each other through synchronization channels and read-write
operations to global variables. We intend to implement our proposed semantics using UPPAAL
model checker [LPY97]. Since UPPAAL does not support mazimal progress semantics, synchro-
nization channels are used (instead of read-write operations to global variables) to coordinate the
transfer of control between UCM constructs. A detailed discussion about UPPAAL and its semantics
is given in Chapter 8. In what follows, we define a TA template for each timed UCM construct:

e Start Point. The start point is triggered when the PreCondition-set is satisfied, and there
occurs at least one event from the triggeringEvent-set, and the delay constraint is met. This is
described by a conjunction of Boolean conditions attached to the transition guard: PreCondi-
tion_set A triggeringEvent.set A (MClock>minDL). The location invariant MClock < mazDL
is used to make the process leave the start location whenever the master clock becomes greater
than mazDL. The process writes into the channel out and the control passes to the next con-
struct. Figure 7.17(a) illustrates the TA of a start point. If the start point is part of a plug-in
map bound to a stub entry point, then the start point process must synchronize with the

entry edge of the stub by reading from én channel, no time constraint is required (see Figure

7.17(b)).
star Gt end:
b oyt n . .
@ . = Of i 4“’)‘[@?’ out! . ’Ehg
.. =¥ . PreCondition_sst88. ” — —— -
MClacke=maxDL. TrggenngEvant set &2 = PreCondiion seta&
ST Mctacks=minDL TriggerngEvent set
(a) TA of Start Point (b) TA of Plugin’Start Point
trggert

i%ég frlgger? s e end “
k PreCondition_Set8& Q g
MClagk<=maDL  MClaek>=minbL

Staft
(c) Start point triggered by the environment

Figure 7.17: TA Templates for Start Points

Usually, a UCM describes the resulting interaction of a system and its environment in one sin-

gle map (i.e., interactions between the different actors and the system under design). However,

155



we may consider to model the environment in a separate map. For the sake of illustration,
Figure 7.17(c) shows a start point that interacts with the environment through channel syn-

chronization.

¢ Responsibility. Each responsibility has two local clocks:(1) delay: used to measure the delay
that a responsibility may have and (2) LClock: used to monitor the execution duration of a
responsibility. The process synchronizes with the preceding construct through the én channel.
During this transition, local clock delay is reset (i.e., initialized to zero). The process stays
in location waiting for an amount of time between minDL and mazDL, then start executing
for an amount of time within [minDur, maxDur] interval. The location invariant LClock <
mazDur is used to make the process leave the executing state whenever the local clock becomes
greater than mazDur. The control passes to the next construct after writing to the out channel
(see Figure 7.18(a)). Responsibilities may have global variable assignments attached to them.
These updates are attached to the transition between locations ezecuting and end. Figure
7.18(b) illustrates such a TA with assignment ’varl:=x1’ and ’var2:=x2’. Other variants of
responsibilities may be considered (where the automaton is reduced to only three states and
two transitions): Untimed responsibility with no clocks (Figure 7.18(c)), Atomic responsibility
with a unique delay clock (Figure 7.18(d)) and Urgent responsibility with a unique LClock
clock (Figure 7.18(e)).
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‘oufl end

FEEVEGING ey ’Q
delaye=maxDl.

(d) TA of Atomic Responsibility

At end

- LGlocke=MInDuy @
‘Lelock<=MaxDur
(e) TA of Urgent Responsibility

Figure 7.18: TA Templates for Responsibilities

e OR-Fork. When the control passes to the OR-Fork through reading from én channel, the

conditions are evaluated and the control passes to the edge associated with the true condition.
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If more than one condition evaluates to true (i.e. nondeterministic choice), the control passes
randomly to one of the outgoing edges associated to the true conditions. Figure 7.19(a)
illustrates the automaton of an OR-Fork with two outgoing edges.

e OR-Join. When one or many flows reach an OR-Join (i.e., through synchronization on in
channels), the control passes to the outgoing edge through out channel. Figure 7.19(b) shows
the automaton of OR~Join with two incoming edges.
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Figure 7.19: TA Templates of UCM Constructs

e AND-Fork. When the control reaches the AND-Fork (by reading from in channel), the
process writes repeatedly to the outgoing channels. Figure 7.19(c) illustrates the automaton

of an AND-Fork with two outgoing parallel flows.

e AND-Join. When parallel flows reach an AND-Join, it is required that the process reads
from all incoming channels. The last flow arriving to the AND-Join will fire the outgoing

transition (i.e. process writes into the out channel). Figure 7.19(d) shows the automaton of
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an AND-Join with two incoming parallel flows.

e Stub. The stub automaton implements the binding relation between a stub and a plug-in(i.e.,
B;), allowing for the control to pass from a stub’entry point to a start point and from a plug-in
end point to a stub’exit point. Figure 7.19(e) illustrates the timed automaton for a stub with

one entry point entry and one exit point ezit.

e End Point. If the end point is inside a plug-in, then the control passes to the stub’s exit point
bound to the plug-in end point (Figure 7.19(h)). Otherwise, the flow is stopped (Figure 7.19(i)).

e Timer. The timer construct is illustrated in Figure 7.19(f). The timer stays for TO in
location waiting. The control passes to the continuation path in case an event occurs before
TO. Otherwise, the control moves to the time out path (i.e., TO_path). There are situations
where an action is required as soon as the timer expires (i.e., timeout event and the action are
atomic). Figure 7.19(g) shows a timer template with action (i.e. global variable assignment)
attached to it.

7.5.5 Applying TA-based Semantics to the Simple Telephony System

Our running example presents three types of stubs: static stub with one entry point and two exit
points (i.e.,SOrig stub), static stub with one entry point and 4 exit points (i.e., Sterm Stub), dynamic
stub with one entry point and two exit points which contains two plug-in maps (i.e., SScreen and

SDisplay). Figure 7.20 shows the TA templates for these stub types.
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pE

(c) Dynamic Stub with one entry and two exit points (2 plug-in
maps)

Figure 7.20: TA Templates for Stubs of the Simple Telephone System
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Figure 7.21 shows the textual UPPAAL implementation of the simple telephone system intro-
duced in Section 2.1.4. For an introduction to UPPAAL model checker [LPY97], the reader is
referred to Section 8.1.5 in the subsequent chapter.

[ // Root map: ]

req = StartPoint(precond SP, TriggEvent, el, 1, 3);

Sorig = StaticStubl_2(el, Orig-inl, Orig-success_out, €2, Orig_fail-out, e4);
notify = EndPoint(e4);

fwd_sig-busy = Responsibility(e5, €6, 1, 2, 1, 4);

fwd_sigringing = Responsibility(e7, €8, 1, 2, 1, 4);

busy_root = EndPoint(e8);

ringing.root = EndPoint(e8);

ring.root = EndPoint(e3);

display_root = EndPoint(e9);

// Originating plug-in: |
Orig_start = StartPoint_plugin(Orig_inl, precond_SP, TriggEvent, O1);

SScreen = DynamicStubl.2_2plugins(0O1, sub_OCS, OCS.inl1, O1, not_sub_OCS, DEF.in1,
OCS_success_out, 02, OCS_fail_out,04, DEF_continue_out, 02, chl);

snd.req = Responsibility (02, 03, 1, 2, 1, 4);

Orig.success = EndPoint_plugin(O3, Orig.success_out);

Orig_fail = EndPoint_plugin(O4, Orig_fail.out);

// OCS plug-in:

OCS._start = StartPoint_plugin(OCS_in1, precond.SP, TriggEvent, OCS1);

CheckOCS = Responsibility(OCS1,0C32, 1, 2, 1, 4);

OCS_OF1 = OR_Fork(OCS2, InOCSList , OCS4, not_InOCSList, OCS3);

deny = Responsibility(OCS4,0CS5, 1, 2, 1, 4);

OCS_success = EndPoint_plugin(OCS3,0CS success_out);

OCS_fail = EndPoint_plugin(OCS5,0CS_fail_out);

[ // Terminating plug-in: ]

(e

Sterm = StaticStubl_4(e2, term_inl, Sterm_success.out, €3, Sterm_display_out, e9,
Sterm_busy_out, €5, Sterm_ringing_out, e7);

Sterm.start = StartPoint_plugin{term_inl, precond _SP,TriggEvent, T1);

term.OF1 = OR_Fork(T1, busy , T3, not.busy, T2);

term_AF1 = AND Fork (T2, T5, T9);

SDisplay = DynamicStubl_-2_2plugins(T5, sub_.CND, CND_in1, T5, not_sub_CND, DEF_inl,
CND.success_out, T6, CND_disp-out, T8, DEF_continue_out, T6, ch2);
term_ringingTreatment = Responsibility (T9, T10, 1, 2, 1, 4);

term_reportSuccess = EndPoint.plugin(T10, Sterm ringing_out);

term_busyTreatment = Responsibility(T3, T4, 1, 2, 1, 4);

term._ringTreatment = Responsibility (T6, T7, 1, 2, 1, 4);

term.fail = EndPoint_plugin(T4, Sterm.busy.out);

term._disp = EndPoint_plugin(T8, Sterm_display_out);

term.success = EndPoint_plugin(T7, Sterm_success_out);

// CND plug-in: ]
CND_start = StartPoint_plugin(CND._inl, precond_SP,TriggEvent, CND1);
CND_AF1 = AND_Fork (CND1, CND2, CND4);

CND_display = Responsibility(CND2,CND3, 1, 2, 1, 4);

CND_success = EndPoint_plugin(CND4,CND _success-out);

CND_disp = EndPoint_plugin(CND3,CND.disp-out);

// default plug-in: ]
l DEF _start = StartPoint_plugin(DEF_inl, precond_SP,TriggEvent, DEF1);

DEF_continue = EndPoint_plugin(DEF1,DEF_continue.out);
// List one or more processes to be composed into a system. ]

system req, Sorig, Orig_start, SScreen, OCS.start, CheckOCS, OCS.OF1,

deny, OCS_success, snd_req, Orig_success, Sterm, Sterm_start, term_OF1, term_AF1,
term.ringingTreatment, term_reportSuccess, OCS_fail, Orig_fail, notify,

SDisplay, CND_start, CND_AF1, CND_display, CND.success, CND_disp,

fwd_sig_busy, fwd_sig-ringing, busy_root, term_ringTreatment, term_busyTreatment, term_fail,
DEF_start, DEF_continue, term_disp , term_success, ringing root, ring._root, display_root;

Figure 7.21: UPPAAL Textual Implementation of the Simple Telephone System
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7.5.6 Limitations

A timed UCM specification is represented as a collection of timed automata where each timed UCM
construct is translated into an instance process based on the underlined templates. This design
solution is simple to implement and provides a great level of flexibility. However, the following

shortcomings are worth noting:

1. This approach is costly in terms of number of concurrent processes, number of locations,

number of transitions and number of local clocks.

2. This approach does not support cycles (i.e., loops). Indeed, once a construct is executed (i.e.,
reaches its TA end location), it cannot be executed a second time because there is no extra
transition connecting its end location to its start location. This limitation can be partially
solved, if we merge the start and end locations of some UCM constructs. Figure 7.22 illustrates

a responsibility that can be executed multiple times within a loop.

autl
‘LClack >= MinDir

start

Figure 7.22: Responsibility that Supports Loops

In Chapter 8, we propose an approach that reduces considerably the number of processes and
allows the description of cycles. The resulting optimized approach is used to verify properties using
model checking.

7.6 Chapter Summary

In this chapter, we have extended the Use Case Maps language with time. We have introduced
an approach to describe timing constraints in UCM based on the criteria discussed in Section 6.1.

Three formalization approaches for timed UCM language were presented:

o CTS [MP96] based semantics: Based on a discrete time model, CTS provides an easy, natural
and flexible way to reason about system execution over time. Indeed, the proposed transition
rules provide an insight into the system state at every single clock tick which eliminates hidden
ambiguities. Furthermore, we have defined two step semantics (i.e. two sets of transition rules)
for timed UCM models, to cover both interleaving and true concurrency models. However, the
major drawback of this approach is that there is a lack of tool support for CTS.

e ASM [Gur88] based semantics: Based on a discrete time model, we have extended the untimed

ASM semantics introduced in Chapter 4 to cover time extensions. This approach has two
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advantages. First, it is relatively cheap to implement since it is built upon the untimed ASM
operational semantics presented in Chapter 4). Second, it provides an environment (AsmL
based) to simulate (one shot or step-by-step simulation) and to capture various aspects of a
system run (e.g. execution time, executed constructs, components, etc.) in one single timed

trace. However, this approach does not support true concurrency model semantics.

o TA [AD94] based semantics: Based on a dense time model, we have defined a timed automaton
template for each timed UCM construct. Timed Automata (TA) formalism has proved to be
rich enough to express timing constraints for many real-life examples. Furthermore, UCM
models expressed in TA can be validated and verified using UPPAAL model checker {LPY97].

Extending UCMs with time represents a first step towards the construction of a formal framework
for using UCM to describe, simulate, analyze and verify real-time systems at high level of abstraction.
In the next chapter, we propose an approach to formally verify timed UCM specifications using model
checking.
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Chapter 8

Model Checking Timed UCM

Specifications

In the previous chapter, we have extended Use Case Maps language with real-time constraints to
allow for supporting quantitative analysis at early phases of the software development process. Model
checking [EMCGP99] has proven to be a successful technology to verify requirements and design
for a variety of real-time embedded and safety-critical systems. In this chapter!, we combine model
checking technique with UCM requirement slicing (introduced in Chapter 5) to formally verify timed
Use Case Maps specifications.

The structure of this chapter is as follows: the subsequent section provides a brief introduc-
tion to model checking, temporal logics formalisms (standard temporal logic formalisms such as
CTL*/CTL/LTL and real-time temporal logic such as MTL and TCTL) and supporting tools.
Section 8.1.3 reviews the problem of state space explosion and provides an overview of existing tech-
niques to cope with it. A full Section (Section 8.1.5) is devoted to UPPAAL model checker [LPY97]
which is our selected verification tool. Section 8.2 describes our early stages verification approach,
discusses sequential vs. parallel control flows and proposes a mechanism to sequentially compose
timed automata in the context of UCM. A discussion on UPPAAL lack of maximal progress and
how our proposed solution overcomes this limitation can be found in Section 8.4. Finally, we apply

our proposed approach to our running case study of the simple telephone system (Section 8.5).

8.1 Model Checking

Model checking is a formal-verification technique based on state exploration. Given a state tran-
sition system and a property, model checking algorithms exhaustively explore the state space to
determine whether the system satisfies the property. The essential idea behind model checking is
shown in Figure 8.1. A model checker accepts a model of the specification and a property (called
also specification) that the final system is expected to satisfy. The result is either a claim that the

1This chapter content is published in SDL Forum - SDL 2007) [HRD07a]
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property is true or else a counterexample (a sequence of states from some initial state) falsifying
the property. In practice, counter examples often provide valuable debugging information, and can
be used by the software engineer to modify the specification, the model, or the property checked.
The idea is that by ensuring that the model satisfies enough system properties, we increase our

confidence in the correctness of the model.

System I System I
Requirements Model

Answer:

» Yes if model satisfies the specification
» Counter example if the mode! does not
satisfy the specification

Model
Checker

Specification
(System Property)

Figure 8.1: The Model Checking Approach

Model-checking operates on Kripke structures [Kri63], that is finite state automata with an
additional labeling function associating atomic propositions with states.

Definition 16 (Kripke Structure) A Kripke structure M is a 4-tuple M = (S, So, R, L), where

e S is a finite set of states,

So C S is the set of initial states,
e R C S x §is a total transition relation, and

o L: S — 24F s q labeling function that labels each state with the set of atomic propositions
(AP) true in that state.

The formal definition of the model-checking problem is [EMCGP99]:

Definition 17 (The Model-Checking Problem) Given a Kripke structure M = (S, Sy, R, L),
that represents a finite-state concurrent system and a temporal-logic formula f expressing some de-
sired specification, find the set of all states in S that satisfy f: { s€S ~ M,s |=1f} The system satisfies
the specification provided that all the initial states are in the set.

The model checking approach depends on the logic used for the specification. Each approach
requires its own algorithm. Within the branching time logic, properties are related to sets of states.
Thus, fixpoint computations can be used as efficient algorithms for a state space exploration in finite
transition systems. Formulas of a linear temporal logic are related to single paths. Hence, the notion
of semantical tableau [LP85] is adapted for linear temporal logics. In the next section, syntax and

semantics of the most commonly used temporal logics (i.e. CTL, LTL) are introduced.

8.1.1 Temporal Logics

Temporal logic is used in order to specify properties of state transition systems (or Kripke structures).

The logic uses atomic propositions and boolean operators such as conjunction, disjunction and
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negation to construct expressions that describe sequences of transitions between states. Temporal
logic does not consider explicit time but rather a notion of sequences of states which describe possible
computations (or behavior) of the system. Temporal logic differ in the semantics and the operators

that they provide.

The Computational Tree Logic (CTL)

CTL [CESS86] is a propositional branching-time temporal logic. Two types of formulas can be
distinguished: (1) state formulas, expressing a property of a specific state, and (2) path formulas,
modeling a proposition over a specific path. The set V denotes the set of atomic propositions (i.e.,
boolean variables for characterizing states).

The syntax of a CTL formula is given by the following rules.

Definition 18 (Syntax of CTL) .

State formulas:
i. If o € V, then v is a state formula.
it. If ¢ and 9 are state formulas, then — ¢ and @ V 9 are state formulas.
i If ¢ is a path formula, then Eyp is a state formula.
Path formulas:
i. If ¢ and v are state formulas, then X and p U are path formulas.
it. If ¢ is a path formula, —is a path formula.

Formulas are composed of path quantifiers and temporal operators. The path quantifier are used
to describe the branching structure in the computation tree. There are two such quantifiers:

e A: For all computation paths
e E: For some computation path

These quantifiers are used in particular state to specify that all of the paths or some of the paths

starting at that state have some property. There are four basic operators:
e X ( next time): requires that a property holds in the second state of the computation path,

o F ( in the future): asserts that a property will hold in some future step on a computation
path,

o G ( globally): specifies that a property holds at every state on the computation path,

o U ( until): It holds if there is a state on the path where the second property holds, and at
every preceding state on the path, the first property holds.
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In CTL a state formula is not also a path formula (in contrast to CTL* which comprises CTL
and LTL, see Section 8.1.1). Thus, temporal operators cannot be combined arbitrarily: E and A are
only allowed for prefixing path formulas, whereas X, U, F and G are only allowed in combination
with state formulas. For instance, formulas of the form (X¢) or (A(X¢p V Fy )) are not allowed.
Hence, eight basic temporal operators can be used in CTL: AX, EX, AG, EG, AF, EF, AU, and
EU. These can be expressible with EX, EU, and EG only:

EF ¢ < E(true U p)
AX v <= -EX(-yp)
AG p < - EF(-p) < =(E(true U —p))
AF ¢ < -EG(—p)
Alp Ug) <> B $ U-pAp) A(BG(-))

The four operators that are used widely are illustrated in Figure 8.2.

Figure 8.2: Basic CTL Operators

Some typical CTL formulas that might arise in verifying a finite state concurrent system are

e Liveness: All computation paths satisfy that if a request reg occurs, then it will be eventually
acknowledged (ack): AG (reg — AF ack)

e Safety: In each state, which can be reached, system crash never occur (the bad thing will

never occur). AG(—crash)

e Absence of Livelock: In every state there is a path on which eventually the system is able
to proceed. For instance, proceeding may be specified as being able to get to restart state, i.e.,
restart is satisfied. AG(EF restart)
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Linear Temporal Logic (LTL)

Linear-temporal logic (LTL) [MP92] is related to linear rather than branching time. LTL consists
of formulas that have the form Af where f is a path formula in which the only state subformulas
permitted are atomic propositions.

The syntax of a CTL formula is given by the following rules.

Definition 19 (Syntax of CTL) . With V as the set of atomic propositions, the syntaz of an
LTL formula is given by the following rules:

i. If o € V, then ¢ is a path formula.

it. If ¢ and ¥ are path formula, then — v, o V9, ¢ AN, Xy, Fp, Gy, ¢ Uy are path formulas.

The Computational Tree Logic CTL*

CTL and LTL are two sublogics of CTL*. CTL* provides two different kinds of temporal operators.
Linear temporal operators stating propositions with respect to a path and temporal operators of
branching-time referring to several branching paths that start in the current state. These operators
can be found in LTL and CTL sub-logics as well.

The syntax of a CTL* formulas is given by the following rules.

Definition 20 (Syntax of CTL¥) .

State formulas:
i. If p € V, then @ is a state formula.
it. If ¢ and ¢ are state formulas, then = @, v V ¢ and @ A ¢ are state formulas.
ii. If ¢ is a path formula, then Ep and Ag are state formula.
Path formulas:
i. If ¢ is a path formula, —pis a path formula.
it. If p and ¢ are state formulas, then 4, 0 V ¥, ¢ A Y, X, Fo, Go, ¢ U are path formulas.

The major difference to CTL is that in CTL* every state formula is a path formula as well.
Thus, in CTL* every formula can be combined with the quantifying operators over paths (E and
A) which does not hold for CTL. For example, the formula E (¢ A X4) is syntactically correct in
CTL* but not in CTL. In CTL every state formula has to be preceded by a path quantifier.

The three logics (CTL, LTL and CTL*) have different expressive powers [CD89, EH86]. For
instance, There is no CTL formula that is equivalent to the LTL formula A(FGp). This formula
expresses the property that along every path, there is some state from which p will hold forever.
Likewise, there is no LTL formula that is equivalent to the CTL formula AG(EFp). The disjunction
of the two formulas A(FGp)v AG(EFp) is a CTL* formula that is not expressible in either CTL
or LTL [EMCGP99]. Figure 8.3 depicts the expressiveness of the three temporal logics.
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CcTL*

A(FG ¥) V AG(EF y)

Figure 8.3: Expressiveness of the Three Temporal Logics

8.1.2 Real-time Temporal Logic

Standard temporal logics, such as CTL [CES86], ACTL [NV90] and LTL [MP92], which are subset of
p-calculus, are inadequate for real-time applications because they only deal with qualitative timing
properties. Real-time temporal logics extend standard temporal logics with temporal operators that
allow the definition of quantitative temporal relationships such as distance among events in time
units.

In [AH90, BMNOO] many real-time temporal logics have been surveyed and a series of criteria
for assessing their capabilities was presented. Among these criteria are the logic expressiveness, the
logic’s order, decidability of the logic, the use of temporal operators, the fundamental time entity and
the structure of time. In the following, we give a brief overview of MTL [Koy90] and TCTL [Alu92].
For a detailed description, we refer the reader to [Alu92, Koy90].

Metric Temporal Logic (MTL)

Metric temporal logic (MTL) [Koy90] is an extension to LTL [MP92] in which the temporal op-
erators(always (0), eventually (o), next (o), strong until (/) and weak until(W)) are replaced by
time-constrained versions. For example, the formula Uz expresses that ¢ holds for the next
k time units. MTL is interpreted over a discrete time line and assumes integer time. MTL is
undecidable [AH90].

Timed Computational Tree Logic (TCLTL)

Timed computational tree logic (TCTL) proposed by Rajeev Alur [Alu92] is a propositional
branching-time logic. TCTL extends computational tree logic [CES86] by allowing timing con-
straints on the temporal operators (always (G), eventually (F), strong until (U), and weak until
(W) operators, which are either existentially (F) or universally (A) quantified). For example, the
formula AG(P = AFy(S)) expresses the time-bounded response property ’Globally, S responds to
P within k time units’. The semantics of TCTL is defined over a dense time line. MTL is decidable.
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8.1.3 State Space Explosion

The main disadvantage of model checking is related the state explosion problem that can occur if the
system being verified has many components that can make transitions in parallel. In this case the
number of global system states may grow exponentially with the number of processes and it becomes
computationally infeasible to store all states in memory or to produce a solution in a reasonable

time. To solve the state explosion problem many approaches have been proposed:

¢ Symbolic representation: McMillan [McM92] proposed the use of symbolic representation
for the state transition graphs to reduce the space of states to a smaller sub-set. So much larger
systems could be verified. The new symbolic representation was based on Bryant’s ordered
binary decision diagrams (OBDDs) [Bry86]. In order to check the satisfiability of a given
formula, one needs to consider true and false assignments to all the variables, and evaluate the
whole expression for each such combination of all the variables. Such an approach results in
computing a binary tree that has an exponential size in terms of the number variables. Bryant
suggested reducing the tree to only those branches, which may have an effect on the outcome
of the Boolean formula. For example, if the left side of an ”or” operation has evaluated to one,
then there is no need to evaluate the right side. The model checking system that McMillan
developed is called SMV (Symbolic Model Verifier) [Bry86]. It is based on a language for
describing hierarchical finite-state concurrent systems. The model checker extracts a transition
system represented as an OBDD from a program in the SMV language and uses an OBDD-

based search algorithm to determine whether the system satisfies its properties.

e Partial order reduction: This technique exploits the independence of concurrently executed
events [GP93, Val91]. Two events are independent of each other when executing them in either

order results in the same global state.

e Abstraction [CGL92]: This technique is essential for reasoning about reactive systems that
involve data paths. The abstraction is usually specified by giving a mapping between the

actual data values in the system and a small set of abstract data values.

e Symmetry [CFJ93)]: Finite state concurrent systems frequently contain replicated compo-
nents, (such as protocols, a protocol may involve a network of identical communicating pro-
cesses). Having symmetry in a system implies the existence of a non trivial permutation group
that preserves the state transition graph. Such a group can be used to define an equivalence

relation on the state space of the system and to reduce the state space.

e Parallelization (or distribution) of the state space search: To overcome the space
problem of BDD-based model checkers, a promising approach is to parallelize (or distribute)
the state space search to exploit the accumulative computation power and memory of a number
of machines that work in parallel. Heyman et al. [HHGGS00] proposed an based on an initial
partitioning of the state space among all processes in the network and on a continuous load
balancing that keeps the workload among the processes relatively balanced. Each process

iteratively applies image computation to its set of new states N, exchanging non-owned states
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with other processes, and collecting o owned states in its set of reachable states R. Load balance
is available at the end of each iteration. It balances the sizes of the sets of reachable states
in the different processes. Later, Grumberg et al. [GHS06] have claimed that the success of
Heyman et al. [HGGS00] approach strongly depends on an effective slicing procedure (Slicing
is said to be effective if it avoids duplication and if it results in evenly split, smaller BDDs).
To overcome this limitation, Grumberg et al. have proposed an algorithm that dynamically
allocates and reallocates processes to tasks. Furthermore, the algorithm provide a recovery
mechanism from local state explosion. The authors have claimed that, in addition to its
efficiency, its high adaptability makes it suitable for exploiting the resources of very large and
heterogeneous distributed, non-dedicated environments [GHS06].

e Modular decomposition [SG91]: The properties of a complex system are decomposed into
properties that describe the behavior of small parts of the system. Local properties are checked
using only the part of the system that it describes. If the conjunction of the local properties
implies the overall specification, then the complete system must satisfy the system properties.
This compositional reasoning is not feasible, when there are mutual dependencies between
components. In such cases, when verifying a property of one component, assumptions should
be made about the behavior of other components. The assumptions must later be discharged

when the correctness of the other components is established.

e Slicing [Wei84]: Slicing, a program reduction technique, can be a useful way of reducing
program size to allow more efficient mode} checking. The BANDERA tool [CDH™*00] is one of
the examples of the use of slicing to reduce Java programs for model checking. Slicing alleviates
the state explosion by removing system parts (based on the slicing criterion) that cannot
affect the truth (or falsity) of the temporal logic formula. This is similar to the motivation

for removing clauses in traditional logic programs: it reduces the length of computations of
individual intentions.

8.1.4 Model Checking Tools

There are a wide variety of model checkers available, with a number of different capabilities suited
for different kinds of problems. In what follows, we provide a brief overview of the most popular
model checking tools. However, we devote a full section (Section 8.1.5 to UPPAAL [LPY97], which
is the selected model checker in this thesis.

e Spin [Hol97]: SPIN was developed at Bell Labs starting in 1980. It is written in ANSI
Standard C, and is portable across multiple platforms. Spin targets software verification,
not hardware verification. In SPIN, the system models are described in a modeling language
called PROMELA (Process Meta Language) where systems can be seen as a set of synchronized
extended finite state machines. Spin works on-the-fly, which means that it avoids the need to
preconstruct a global state graph, or Kripke structure, as a prerequisite for the verification of
system properties. It offers a full LTL model checking system. To optimize the verification runs,
the tool uses partial order reduction techniques, and (optionally) BDD-like storage techniques.
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SPIN does not support quantitative timing relations. However, SPIN is still well suited for
modeling the untimed aspects of the protocol processes and for expressing the relevant (un-
timed) properties. Tools like UPPAAL [LPY97] and KRONOS [Yov97] are more suitable for

dealing with quantitative time constraints.

¢ NuSMV [CCGR99]: NuSMV, an open source software, has been developed as a joint project
between ITC-IRST (Istituto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecno-
logica in Trento, Italy), Carnegie Mellon University, the University of Genoa and the Uni-
versity of Trento. NuSMYV is an extension of the SMV symbolic model checker [McM92]. In
NuSMYV, the system models are described in SMV language, a simple circuit description lan-
guage, allowing for reachability analysis, BDD based CTL model checking (under fairness),
computation of quantitative characteristics of the model, and generation of counterexamples.
Furthermore, NUSMV supports bounded model checking with LTL (including past operators).
Other NuSMV features include deadlock checking, computing the number of reachable states
and simulation. NuSMV is mainly used to verify digital circuits (or systems easily modeled as

circuits).

e Muryp: Murp [DDHY92] is an explicit model checker (represents states ezplicitly where each
visited state is stored in the hash table). When a state is generated that is already in the
hash table, the search algorithm does not expand its successor states (they were expanded
whenever the state was originally inserted in the table). Mure description language consists
of declaration of constants, types, global variables and procedures; a collection of transition
rules; a description of the initial states; and a set of invariants. Each transition rule is a
guarded command which consists of a Boolean condition and an action that are both written
in a Pascal-like language. A Mury state is an assignment of values to all global variables of
the description.

To reduce the number of reachable states, Mury uses symmetry reduction, reversible rules [ID96a]
and repetition constructors ID96b).

¢ KRONOS [Yov97]: KRONOS is a timed model checker developed by Sergio Yovine at
VERIMAG. In KRONOS, systems are modeled by timed automata and properties can be
specified either in TCTL-formula as a logical approach or in timed automata as a behavior
approach. KRONOS implements a symbolic model-checking algorithm, where sets of states

are symbolically represented by linear constraints over the clocks of the timed automaton.

KRONOS provides both backward and forward analysis. To reduce the size of the explored
state space, KRONOS optimizes the number of clocks in the model, uses on-the-fly exploration,
partial-order techniques and binary decision diagrams. Since KRONOS is purely based on
timed automaton, it does not support some data types such as boolean and integer variables.
This limitation is addressed by UPPAAL [LPY97] which extends the timed automata with
more general data types.

Other famous model checking tools include:
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- Petri net tools: INA, Lola, PEP, Design/CPN, etc.

Caesar Aldebaran (CADP): A set of model checking tools based on LTSs.

Java Pathfinder 2: Model checker for Java programs.

- Bandera: Java abstraction and slicing system, with model checking back-ends.

Slam: A (Microsoft) tool for model checking C programs.

8.1.5 The Model Checker UPPAAL

UPPAAL [LPY97] is an integrated tool environment for modeling, validation and verification of
real-time systems modeled by a network of timed automata. Developed in conjunction with Uppsala
University, Sweden and Aalborg University, Denmark, it consists of a Java based graphical user
interface and a verification engine written in C++. It is freely available at http://www.uppaal.com/.
Figure 8.4 shows the UPPAAL GUI It enables the user to model a real time system as a network
of timed finite states automata, with global, local variables, synchronization channels and clocks.
The automata templates have to be entered by means of a graphical notation. Then, users have to
specify the instances of the templates that are in the model and they can specify parameters that

are passed to the templates.
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Figure 8.4: The Simulator in the UPPAAL GUI

The simulator offers the possibility to interactively run the system and check for errors introduced

during modeling. The simulator shows a graphical representation of all the automata that compose
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the system, their current control nodes and the enabled transitions. The simulator allows the user
to decide which of the enabled transitions will be executed next. Furthermore, it provides an MSC
view of the execution (in the lower right part of Figure 8.4). In the simulator the user can also
retrieve the values of all global and local variables and clocks. For the clocks the intervals of possible

values are shown.
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Figure 8.5: The Verifier in the UPPAAL GUI

The verification engine uses on-the-fly verification combined with symbolic techniques to over-
come the state space and region space explosion problem caused by parallel composition of timed
automata. UPPAAL can verify safety, bounded liveness and reachability properties on real time
systems. The result of the model checking may include a diagnostic trace (showed in the simulator
GUI), if the property is not satisfied. Figure 8.5 illustrates the verifier GUIL

UPPAAL Extended Timed Automata
The UPPAAL modeling language extends timed automata with the following additional features:

e Templates automata are defined with a set of parameters that can be of any type (e.g., int,

chan). These parameters are substituted for a given argument in the process declaration.

o Constants are declared as const name value. Constants by definition cannot be modified and
must have an integer value.

e Bounded integer variables are declared as int[min,maz] name, where min and maz are

the lower and upper bound, respectively. Guards, invariants, and assignments may contain
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expressions ranging over bounded integer variables. The bounds are checked upon verification
and violating a bound leads to an invalid state that is discarded (at run-time). If the bounds
are omitted, the default range of -32768 to 32768 is used.

e Binary synchronization channels are declared as chan c¢. An edge labeled with ¢! synchro-
nizes with another labeled c?. A synchronization pair is chosen non-deterministically if several

combinations are enabled.

¢ Broadcast channels are declared as broadcast chan ¢. In a broadcast synchronization one
sender ¢/ can synchronize with an arbitrary number of receivers ¢?. Any receiver than can
synchronize in the current state must do so. If there are no receivers, then the sender can still

execute the ¢/ action, i.e. broadcast sending is never blocking.

e Urgent synchronization channels are declared by prefixing the channel declaration with the
keyword urgent. Delays must not occur if a synchronization transition on an urgent channel
is enabled. Edges using urgent channels for synchronization cannot have time constraints, i.e.,
no clock guards.

e Urgent locations are semantically equivalent to adding an extra clock x, that is reset on all
incoming edges, and having an invariant x<0 on the location. Hence, time is not allowed to

pass when the system is in an urgent location.

¢ Committed locations are even more restrictive on the execution than urgent locations. A
state is committed if any of the locations in the state is committed. A committed state cannot
delay and the next transition must involve an outgoing edge of at least one of the committed
locations. Main purpose of committed locations is to create atomic sequences of transitions.

Committed locations reduce the state space considerably by eliminating interleaving.

e Arrays are allowed for clocks, channels, constants and integer variables. They are defined by
appending a size to the variable name, e.g. chan c[4]; clock a[2]; int[3,5] u[7};.

e Initializers are used to initialize integer variables and arrays of integer variables. For instance,
int i:= 2; or int i[3] := {1, 2, 3};. Only integers are assigned to clocks.

UPPAAL Symbolic State Exploration

Based on timed automata semantics introduced in Section 7.5.2, it is easy to notice that the state

space is uncountable. However, it is a well-known fact that timed automata have a finite-state

symbolic semantics [AD94] based on countable symbolic states of the form (1,D) where D € 2(C):

- (1LD) — {Lnorm(M,(D A I(1)) T A I()).
- (I,D) — (x(g A D A Q) A I()) if 1250,

where DT = {u+d | u € D A d € Ry } (the future operation) and r(D) = {[r »0Ju |u € D }. The

function norm: N xZ(C) — %(C) normalizes the clock constraints with respect to the maximum
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constant M of the timed automaton. Normalizing the clock constraints guarantees a finite state
space. We refer the reader [AD94] for in-depth treatment of the subject.

The state space exploration algorithm is shown in Figure 8.6. The waiting list (i.e. WAITING)
contains unexplored but reachable symbolic states and the passed list (i.e. PASSED) contains all
explored symbolic states. UPPAAL searches for states in the passed list that either cover the new
state (in this case the new state is discarded) or is covered by it (in this case replaces the existing
state covered by it).

PASSED = &
WAITING = {(lo,Do)}
repeat
get (1,D) from WAITING
if D ¢ D’ for all (1,D’) € PASSED then
add (1,D) to PASSED
SUCC :={(’'D): (D) » I'D)AD # 2}
for all (I’')D’) € SUCC do
put (1,D’) € WAITING
od

end if
until WAITING = @

Figure 8.6: The Symbolic State Space Exploration Algorithm

UPPAAL Property Verification
Properties in UPPAAL have one of the following forms:
- A[] Expression; A<> Expression ; E<> Expression ; E[] Expression.

- Expression --» Expression: this is 'Leads to (response)’ operator. ¢ ~» 1 is equivalent to:
All{le = A<> )

- A[] not deadlock: A deadlock is a state in which no action transition will ever be enabled
again. In other words:

(I,uv) = deadlock if f ¥V d >0,a € Act : (l,u+d) » (7)

Where the expressions must be type safe, side effect free, and evaluate to a boolean. Only
references to integers variables, constants, clocks, and locations are allowed (and arrays of these).

Bounded Liveness Checking: Bounded liveness checking establishes that the property in ques-
tion will hold within a certain upper time-limit. UPPAAL offers time-bounded leads-to operator
¢ ~<t ¢ expressing that whenever the state property ¢ holds then the state property + must hold
within at most ¢ time-units thereafter. There are three solutions to implement bounded liveness
properties in UPPAAL:

1. Reduction to unbound liveness: The model under verification is extended with an addi-

tional clock z which is reset whenever p starts to hold. The time-bounded leads-to property
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p ~»<: q is simply obtained by verifying p ~+ (g A x < t). Figure 8.7(a) shows the correspond-
ing timed automata. Note that z should not reset several times before ¢ becomes true.

b =false

b =false
(a) Reduction to Unbound Liveness (b) Reduction to Simple Safety Property

Figure 8.7: Reduction to Unbound Liveness

2. Reduction to simple safety property: The model under verification is extended with a
boolean variable b and an additional clock z. The boolean variable b must be initialized to
false. Whenever p starts to hold b is set to true and the clock z is reset. When ¢ commences
to hold b is set to false. Thus the truth-value of b indicates whether there is an obligation of
g to hold in the future and z measures the accumulated time since this unfulfilled obligation
started. The time-bounded leads-to property p ~»<; q is simply obtained by verifying the
UPPAAL safety property: A[] (b implies x < t). Figure 8.7(b) shows the corresponding timed

automata.

3. Reduction to reachability with test automaton: This solution is based on augmenting
the model under verification with a test-automaton. The model under verification is extended
with two broadcast channels a and b such that when p becomes true, the automaton sends on
channel ¢ and when ¢ becomes true, the automaton sends on channel b. The test automaton
should go to an error state when the time between a signal on a and b reaches t. Then it is
sufficient to check : A[] not Test.bad. Note that this solution works even when p becomes true

several times before ¢. Figure 8.8 shows the corresponding timed automata.

Figure 8.8: Reduction to Reachability with Test Automaton
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Verification Options: UPPAAL supports many verification options:

- Breadth-first: A state space exploration method that uses a queue to implement the waiting
list (see algorithm in Figure 8.6).

- Depth-first: A state space exploration method that uses a a stack to implement of the waiting
list (see algorithm in Figure 8.6).

- State space reduction: For acyclic systerms, a passed list is not needed to guarantee termination.
However, it is useful for efficiency. Options for state space reduction include:(1) None: Store all
states; (2)Conservative: Store all non-committed states; (3) Aggressive: Only symbolic states

involving loop-entry points need to be stored in the passed list to guarantee termination.

- Reuse state space: When checking a property, UPPAAL searches in existing passed list before

continuing search.
- State space representation

- DBM
- Compact
- Under approximation

- Over approximation
- Diagnostic trace

Experiments showed that breadth-first search is often much faster than depth-first search when
generating the complete state space [BHV00] because depth-first search order causes higher degree
of fragmentation of the zones that breadth-first order, resulting in a higher number of symbolic
states being generated. We refer the reader to [LPY97] for a detailed introduction to UPPAAL.

UPPAAL Extensions
Many extensions of UPPAAL have been proposed to address validation related areas:

e UPPAAL CORA is a branch of UPPAAL for Cost Optimal Reachability Analysis developed by
the UPPAAL team as part of the VHS and AMETIST projects. Whereas UPPAAL supports
model checking of timed automata, UPPAAL CORA uses an extension of timed automata
called LPTA. LPTA allows you to annotate the model with the notion of cost. This can be
the cost of delay in certain situations or the cost of particular actions. UPPAAL CORA then

finds optimal paths matching goal conditions.

e UPPAAL TRON is a testing tool, based on UPPAAL engine, suited for black-box conformance
testing of timed systems, mainly targeted for embedded software commonly found in various
controllers. By online we mean that tests are derived, executed and checked simultaneously

while maintaining the connection to the system in real-time.
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o UPPAAL TIGA is an extension of UPPAAL and it implements an efficient on-the-fly algorithm
for solving games based on timed game automata with respect to reachability and safety
properties. Though timed games for long have been known to be decidable there has until now

been a lack of efficient and truly on-the-fly algorithms for their analysis.

e UPPAAL CoVer is a tool for creating test suites from UPPAATL models with coverage specified

with coverage observers (i.e., observer automata).

8.2 Early Stages Verification Approach

Figure 8.9 illustrates our proposed early stages verification approach. The approach is iterative
and is composed of four iterations. First, the UCM system specification is formalized in terms of
timed automata. System properties are initially defined in natural language or as UCM maps 2.
These properties are then formalized in terms of TCTL temporal logic. Next, both timed automata
specification and TCTL properties are fed to UPPAAL model checker. The result is either a claim
that the property is true (resulting in a valid model with respect to the checked property) or else a
counter example falsifying the property. In the third iteration, the obtained counter example can be
used as an input to our ’closer look’ step where UCM slicing (introduced in Section 5.2) is applied
to reduce the specification size to help pinpoint the design flaw. However, choosing an appropriate
slicing criterion based on the counter example remains a challenge. Once the error is discovered,
change impact analysis is applied to assess the impact of fixing the specification. This results in
fixing the specification or/and the property to be checked.

2chapter 9 discusses how Use Case Maps can be used as a property specification language
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8.3 Optimizing TA Specifications

8.3.1 Sequential vs. Parallel Control Flows

The transfer of control between sequential constructs occurs in a deterministic way (i.e., in complete
order), while concurrent executions result in different execution orders (i.e., partial order). Conse-
quently, a UCM specification may be decomposed into a collection of sequential paths. For instance,
the generic UCM in Figure 8.10 may be decomposed into five segments resulting in five processes,
one process for AND-Fork and one process for AND-Join. Concurrent control constructs such as
AND-Forks, AND-Joins and OR-Joins (in the case of merging concurrent flows) represent the glue
that connects different UCM segments.

1 YR ) R3 EP1 Segment 1: [SP1;R1;R2]
|‘%F"| gy Segment2: [SP2,RS]
Il Segment 3: [R3;EP1]
5 X Segment 4: [R4]

P2 RS Segment 5: [R6; EP2]

Figure 8.10: UCM Parallel Flows Decomposition

Note: A further decomposition based on UCM component bindings may be considered, but it is

optional.

8.3.2 Sequential Composition of Timed Automata

The sequential composition of UCM TA templates is based on the resolution of all synchronizations.
The transfer of control from one UCM construct to another is done through synchronization (i.e.
offer(al) and acceptance(al)) on the channel representing the edge connecting the construct to each
other. This synchronization takes place in the transitions leading to locations labeled end. Figure
8.11(a) illustrates such a generic sequential composition for processes having a single end location,
while Figure 8.11(b) illustrates a sequential composition for processes having multiple end locations,
as they typically result from the use of OR-Forks and Timers.

One of the challenges that we faced in building our models is UPPAAL lack of maximal progress.

In the upcoming section, we present solutions to overcome this challenge.

8.4 Maximal Progress in UPPAAL

In UPPAAL, communication between two automata can be achieved through rendezvous synchro-
nization, broadcast synchronization and/or shared variables. In rendezvous synchronization, there
is a handshake between two automaton on the same channel. The transition having the sending
action won’t be enabled unless there is a receiver waiting on the same channel on which the sender
is sending, and vice-versa. Many real-time systems need to communicate asynchronously by means

of events that are triggered by change of some state variable or by time passing. UPPAAL supports
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Figure 8.11: TA Sequential Composition

the notion of guarded transitions, where an automaton can wait on some state-variable or time based
condition to be satisfied.

In our first attempt to model edges connecting UCM constructs, we have considered the use
of shared global variables. This solution is easy to implement but it does not guarantee maximal
progress semantics. The use of shared variables was substituted by the use of rendezvous synchro-
nization on entering and exiting automaton transitions (for transfer of control between processes).
Invariants are assigned to intermediate states and guards are added to outgoing transitions. This
solution preserves system functionalities and ensures maximal progress from a simulation perspec-
tive.

From a verification point of view, the lack of maximal progress semantics causes the UPPAAL
verifier to give false positives and makes the state space larger than necessary by introducing in-
appropriate non-determinism, where time based transitions are also enabled apart from the shared
variable based guarded transitions. This situation happens especially in stubs, plug-in start points
and plug-in end points. Indeed, the fact that no time constraint is attached to plug-in start point
may lead to a plug-in spending an infinite amount of time in its start location. To force UPPAAL
to trigger the plug-in start point (hence achieve maximal progress), we use the concept of urgent
locations (since time does not progress in an urgent location) in all stub TA locations (except the
start location), plug-in start point intermediate location and plug-in end point intermediate location.
One potential limitation of the use of urgent locations is that they cannot be used in conjunction

with timed invariants, which in our case is not a problem since we are using them only in stubs
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locations, plug-in start and end points. This solution is applied while verifying the simple telephone
system in Section 8.5.2.

8.5 Applying Early Stages Verification Approach

In this section, we apply the verification approach presented in the previous section on the simple
telephone system (Section 2.1.4).

8.5.1 Simple Telephone System Decomposition

Figure 8.12 shows the decomposition of the simple telephone system. Sequential sequences of UCM
constructs are grouped to form separate segments. Stubs and AND-forks are represented by single
templates as implemented in Section 7.5.4.

The root map (Figure 8.12(a)) is composed of start point regq; stubs SOrig and Sterm; end points
busy, ring and display; and two segments Root_Segl (composed of responsibility fwd_sig and end
point busy) and Root_Seg2 (composed of responsibility fwd_sig and end point ringing).

The Originating plug-in SOrig (Figure 8.12(b)) is composed of start point start, dynamic stub
Sscreen, end point fail and segment Orig_Seg! which is composed of responsibility snd-req and end
point success. Plug-in (Figure 8.12(c)) is represented by one single sequential segment OCS_Seg.

Terminating plug-in Sterm is composed of dynamic stub Sdisplay, end point disp, AND-Fork
AF_term and segments Term_Segl,Term.Seg2 and Term_Seg3.

CND plug-in is composed of start point start, AND-Fork AF_term, end points disp and success,
and segment CND_Segl.
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Figure 8.12: Sequential Composition of Simple Telephone System
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8.5.2 Simple Telephone System: Network of Timed Automata

Figures 8.13,8.14,8.15,8.16 and 8.17 illustrate respectively the UPPAAL implementation of the root
map, the originating plug-in, the OCS plug-in, the terminating plug-in, the CND plug-in and the
default plug-in. We assign a duration between 1 and 3 to all responsibilities with a delay between
0 and 6. For instance responsibility fwd_sigB has a duration between 1 and 2 with delay between 1
and 4.
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(d) End Point: fail

Figure 8.14: UPPAAL Implementation of Originating Plug-in

2\ Clatks=3

1Eiock==1

Figure 8.15: UPPAAL Implementation of OCS Plug-in
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Figure 8.16: UPPAAL Implementation of the Terminating Plug-in

187



(e) DEF_Seg

Figure 8.17: UPPAAL Implementation of CND and DEFAULT Plug-in Maps
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8.5.3 Simple Telephone System: Property Verification

In this section, we verify selected properties against the simple telephone system implemented in
Section 8.5.2.

e Safety Properties:

- Property 1: The call is allowed to proceed only when the caller in not on OCS list (i.e.
InOCSList=false). This property is translated into the following UPPAAL formula:

All(ocs.pl.end_success) imply ({InOCS List) (8)

This property is checked to be true by the UPPAAL verifier.

- Property 2: The caller is subscribed to OCS and the callee is subscribed to CND. The
caller’s number is displayed (i.e. responsibility display) only when the callee is not busy.
This property is translated into the following UPPAAL formula:

Al](cnd_segl.display) imply (IInOCSList and lbusy) 9)
This property is checked to be true by the UPPAAL verifier.

¢ Liveness Properties:

- Property 3: When both OCS and CND are enabled and active (i.e. InOCSList = false,
subCND=true and busy=true), the caller should receive a ringing tone. This property is
translated into the following UPPAAL formula:

A<>(ringing.root.end imply (IInOCSList and lbusy and subCN D)) (10)

This property is checked to be true by the UPPAAL verifier.

- Property 4: Both OCS and CND are enabled and active. When the caller is busy a busy-
tone is sent to the caller (responsibility root_seg!.fwd_sigB). This property is translated
into the following UPPAAL formula:

(subOCS and InOCSList and subCND and busy) --» root_segl.fwd_sigB  (11)
This property is checked to be true by the UPPAAL verifier.

¢ Response Properties:

- Property 5: When the callee is in OCSList, the deny operation is followed by a notifica-
tion sent to the caller. This property is translated into the following UPPAAL formula:

(subOCS and InOCSList and ocs.pl.deny) ~-+ notify_root.end (12)

The property was verified by UPPAAL as expected.
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e Bounded Liveness Property:

- Property 6: No more than 7 time units elapse between the OCS checking (i.e. respon-
sibility checkOCS) and the display operation (i.e. responsibility display). As explained
in Section 8.1.5 bounded liveness properties cannot be expressed directly in the logical
property language of UPPAAL without adding additional clocks. We introduce clock z
to measure the time between checkOCS and display. Clock z is reset before entering
location checkOCS and it is read at location display part of CND plug-in map. This
property is translated into the following UPPAAL formula:

IInOCSList and (ocs.pl.checkOCS) --» (cnd_segl.display and z <7)  (13)

This property was not satisfied by the model and the diagnostic trace shows that x
should be greater than 12 when reaching display operation. The trace (shortest trace)
starts at the start point reg_root and ends at root map end point ringing_root. In order
to investigate the reason of this failure and pinpoint where the delay was introduced,
the specification is sliced according to slicing criterion ringing.roof. We obtain the same
UCM slice as the one presented in Figure 5.12. The resulting UPPAAL processes (as a
result of the slicing) are shown in Figure 8.18. The OCS plug-in map is reduced to 4
states from 8 states, term.segl is reduced to 3 states from 6 states, processes orig_fail,
notify_root and term_busyTreatment are sliced out. This reduced UPPAAL specification
allows for a reduced state space. Hence, more efficient verification.
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Figure 8.18: Sliced UPPAAL Implementation of OCS and Terminating Plug-in Maps

From the analysis of the reduced UPPAAL specification one can observe that it is nec-
essary to reduce the duration of responsibility checkOCS to 2 from an initally maximum
value of 3, to satisfy the property.

8.6 Chapter Summary

In the beginning of this chapter, we have provided an introduction to model checking, temporal logics
formalisms (standard temporal logic formalisms such as CTL*/CTL/LTL and real-time temporal
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logic such as MTL and TCTL) and supporting tools. We have devoted a full section to UPPAAL
model checker which is our selected verification tool. Then we have discussed the problem of state
space explosion and provided an overview of existing techniques to cope with it. The core of this
chapter consists on the combination of model checking technique with UCM requirement slicing
(introduced in Chapter 5) to formally verify timed Use Case Maps specifications. The UPPAAL
model is derived manually from the UCM specification according to the TA templates presented
in Chapter 7. To be able to efficiently verify UCM models, we have addressed UPPAAL’s lack of
maximal progress issue and we have proposed a mechanism to sequentially compose timed automata.
Finally, we have applied our approach to verify some properties of the simple telephone system.
The automatic generation of UPPAAL model from UCM specification is left for future work.
Furthermore, as discussed in Chapter 5, the choice of the appropriate slicing criterion to reduce the
UCM specification (for uncovering design flaws and change impact analysis) remains a challenge

that needs to be addressed properly.
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Chapter 9

Use Case Maps as A Property

Specification Language

Although there exists a significant body of research in the area of formal verification and model
checking tools of software and hardware systems, there has been only a limited industry and end-
user acceptance of these tools. Besides the technical problem of state space explosion discussed in
the previous chapter, one of the main reasons for this limited acceptance is the unfamiliarity of users
with the required specification notation. Requirements have to be typically expressed as temporal
logic formalisms and notations. Property specification patterns were successfully introduced to
bridge this gap between users and model checking tools. They enable also non-experts to write
formal specifications that can be used for automatic model checking. In this chapter!, we propose
an abstract high level pattern-based approach to the description of property specifications based
on Use Case Maps. We present a set of commonly used properties with their specifications that
are described in terms of occurrence, ordering and temporal scopes of actions. Furthermore, our
approach also supports the description of properties with respect to their architectural scope. We
provide a mapping of our UCM property specification patterns in terms of CTL [CES86], TCTL
[Alu92] and ArTCTL (Architectural TCTL), an extension to TCTL, introduced in this research that

provides temporal logics with architectural scopes.

9.1 Introduction

Model checking has been widely used as a method to formally verify finite-state concurrent systems,
such as communication protocols. System properties are expressed as temporal logic formulas,
and efficient algorithms are used to traverse the resulting model to check whether the system is
consistent with the specified properties. Many temporal logics, such as linear-time temporal logic
(LTL) [MP92], computational tree logic (CTL) [CES86] and ACTL [NV90] have been suggested

as formal languages for property specifications. However, the use of temporal logics is still limited

1This chapter content is published in the Journal of Software and System Modeling (SoSyM) [HRDO7b]
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to users with a good mathematical background because temporal logic formulae are difficult to
understand and even more difficult to create. To bridge this gap between practitioners and model
checking tools, many authors have proposed property specification patterns [ABKO04, DAC99,
GL05, KC05a, KCO05b] to guide users in expressing system requirements directly in temporal logic.

Previously published pattern systems vary from simple specification patterns dealing with oc-
currences of events or states (describing what must occur) and scopes (describing when the pattern
must hold) [DAC99], to real-time pattern properties considering information about time [GLO5,
KC05b, TYZP05]. However, to the best of our knowledge, the existing pattern systems deal mainly
with behavioral aspects of systems but fail to capture the architectural scope of a system (describ-
ing where the pattern must occur). Applying an architectural scope allows to describe architecture
related issues, like “action P is executed in component C”. Building a property pattern system that
considers functional, timing and architectural aspects all together will improve the verification of
distributed real-time embedded systems. Such systems often are based on an heterogeneous system
architecture; they consist of components that range from fully programmable processor cores to fully

dedicated hardware components for time-critical application tasks.

‘Propeity Patterns

Abisence: Chiain
Precedence . Response

Figure 9.1: Pattern Hierarchy by Dwyer et al. [DAC99]

Our research builds upon previous work on property patterns introduced in [DAC99, DAC98,
GLO05). We propose an abstract high level pattern-based approach that supports the description of
property specifications using Use Case Maps language (UCM).

In what follows, we present a novel approach that addresses the following concrete issues:

e The Use Case Maps language was extended to simplify the writing and understanding of
properties, by providing a UCM property pattern system with templates that explicitly capture
functional, timing and architectural property patterns. The proposed UCM property patterns
system offers users a visual and an easy to learn framework for the specification of complex

properties without the use of textual temporal logic formalisms.

e Having both, the requirement specification and properties described using the same formalism
(i.e. Use Case Maps) will allow for a more detailed analysis while preserving a high level of
abstraction.

e A mappings for the UCM property specification patterns in terms of CTL and TCTL temporal
logics is provided.
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e We provide an extension to the well-known TCTL [Alu92] temporal logic formalism by includ-
ing additional architectural constraints. The proposed extension is named ArTCTL (Architec-
tural TCTL). However, the definition of a general formal framework for architectural temporal

logic is left for future work.

9.2 Specification Patterns

In this section, we overview the specification patterns by Dwyer et al. [DAC99, DAC98], the
timed property patterns by Gruhn et al. [GL05] and the real-time property pattern by Konrad
et al. [KCO5b).

9.2.1 Untimed Specification Patterns

In [DAC99], Dwyer et al. collected over 500 specifications from several sources and observed that
nearly all the properties could be classified into a hierarchy of basic patterns based on their semantics.
This hierarchy, illustrated in Figure 9.1, distinguishes properties that deal with the occurrence and
ordering of states/events during a system execution. FEach of these patterns describes an intent
(the structure of the specified behavior), a scope (the extent of program execution over which the
pattern must hold), mappings into some specification formalisms for finite-state verification tools
(LTL [MP92], CTL [CES86], QRE [0090]), some known uses, and relationships to other patterns.
For instance, the intent of the Precedence pattern is a relationship between a pair of events/states
where the occurrence of the first is a necessary precondition for the occurrence of the second (also
known as Enables).

In what follows we describe briefly the property patterns and their scope as introduced by Dwyer’s
et al. A more detailed description of these patterns can be found in [DAC99].

e Absence. A given event/state P does never occur within a scope.
e Universality. A given event/state P occurs throughout a scope.
¢ Existence. A given event/state P must occur within a scope.

¢ Bounded Existence. A given event/state P must occur at least/exactly or at most k times

within a scope.
e Precedence. An event/state P must always be preceded by an event/state Q within a scope.
¢ Response. An event/state P must always be followed by an event/state Q within a scope.

e Chain Precedence/Chain Response. A sequence of events or states P, ...,P, must

always be preceded/followed by a sequence of events/states @1, ..., @, within a scope.

Dwyer et al. identified five scopes, or segments of system execution:

e Global. The pattern must hold during the complete system execution.
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o Before. The pattern must hold up to a given event/state Q.
e After. The pattern must hold after the occurrence of a given event/state Q.

¢ Between. The pattern must hold from the occurrence of a given event/state Q to the occur-

rence of a given event/state R.

e After-Until. Like between, but the designated part of the execution continues even if the

second event/state R does not occur.

The pattern catalog allows for reasoning about occurrence and order of events. However, it does
not support quantitative reasoning about time due to the fact that real-time properties cannot be
specified using these existing patterns. In Dwyer’s pattern system, properties like 'P must always
be followed by Q within k time units’ cannot be expressed. In the following section, we present
an overview of the work of Gruhn et al. [GL05] and Konrad et al. [KCO05b] who addressed this
shortcoming. We also survey some UML-based approaches for property description.

9.2.2 Timed Specification Patterns

Konrad et al. [KC05b] have proposed real-time specification patterns that can be classified into three
categories of real-time properties: duration (captures properties that can be used to place bounds
on the duration of an occurrence), periodic (describes properties that address periodic occurrences),
and real-time order (captures properties that place time bounds on the order of two occurrences).

Figure 9.2 illustrates this pattern classification.

| Duration | | Periodic |} | Real-time Order |

\

l Minimum Maximum Bounded Bounded Bounded
Duration Duration Recurrence Response Invariance

Figure 9.2: Real-Time Specification Patterns by Konrad et al.

The authors have also provided a pattern description template similar to the one proposed in
[DAC99] consisting of a pattern name and classification, a pattern intent, a mapping to timed tem-
poral logics (i.e., MTL [AH90, Koy90], TCTL [Alu92] and RTGIL [AH92]), examples of known
uses, relationships and a structured English specification. The structured English specification cap-
tures the scope (globally, before, after, between, or after-until) followed by the type (qualitative or
real-time) then the category (duration, periodic, or real-time order for real-time properties, and for
quality properties (occurrence or order) of the property. An example of such an English description
is: “Globally, it is always the case that if P holds, then S holds after at most ¢ time unit(s)”. Ob-
taining such description is the result of the execution of six rules (e.g., property, scope, specification,

real-time Type, real-time order category and bounded response pattern).
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In [GLO5], Gruhn et al. proposed another catalog of patterns for real-time requirements. For
each pattern, a timed observer automaton is constructed to describe the desired behavior. The
observer runs in parallel with the model under verification. The observer reaches an Error state if
and only if the property can be violated. Therefore, in order to prove that a property holds, it is
sufficient to check that the observer cannot reach some location. The catalog adds the notion of time
constraints to the patterns introduced by Dwyer et al. to be able to specify properties like: “Starting
from the current point of time, P must occur within k time-units”. The corresponding automaton
is illustrated in Figure 9.3. The catalog covers many interesting timed patterns and proposes their
corresponding timed automata. The use of temporal automata for specifying temporal properties
have also been used by several authors [BF99, OKO01].

urgent
P

urgent
resef X

ERROR

Figure 9.3: Timed Automaton for Time-bounded Existence

A similar observer concept is used in [ABKOO04], where Alfonso et al. introduced VTS, a visual
language to define complex event-based requirements such as freshness, bounded response, event
correlation, etc., and a tool that translates these requirements into the input language of the model
checker KRONOS. The user has to graphically describe the scenarios violating the requirements,
which is in our opinion a major drawback. Indeed, deriving all possible scenarios that violate a given
requirement is an error prone activity and the resulting set of scenarios may be incomplete. Tsai et
al. [TYZPO05] describe a testing approach based on scenarios and verification/robustness patterns
(SP, VP/RBP). These are temporal patterns (or cause-effect relations) that allow the specification
of pre- and post-conditions as well as timing constraints (e.g. optional timeout, time slices, ...), and
are expressed both visually and in LTL temporal logic.

Several approaches for describing properties with UML models have been proposed. These
approaches either extend OCL for temporal constraints specification or express behavioral real-time
constraints in UML diagrams. Ramakrishnan et al. [RM99] extend the OCL syntax by additional
grammar rules with unary and binary future oriented temporal operators (e.g., always and never)
to specify safety and liveness properties. Flake and Muller. [FM02a] have developed a temporal
OCL extension that enables modelers to specify state-oriented real-time constraints. This extension
covers the consecutiveness of states and state transitions as well as time-bounded constraints.

Schifer et al. [SKMO1] describe systems using UML state machines and use UML collaboration
diagrams to specify properties. In order to verify properties using model checker SPIN, state ma-
chines model is compiled into a PROMELA model while collaborations are compiled into sets of
Biichi automata (i.e “never claims”). Graf et al. [OGOO04] proposed a mapping of UML models
into a framework of communicating extended timed automata (stereotyped as observers) to serve as
property specification language. Although, these UML models have the advantage to be simpler and
easier to use for experienced UML users, they suffer from the same drawback as other observer-based
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approaches. The models require for example the user to describe manually all the scenarios violating
the requirements.

9.3 Use Case Maps Property Pattern System

In this section, we present a graphical specification pattern catalog based on the Use Case Maps nota-
tion. Our proposed pattern system covers all qualitative specification patterns introduced by Dwyer
et al. [DAC99] as well as real-time specification patterns presented in [ABKO04, GL05, KCO5b].
The research is motivated by the goal to capture both qualitative properties and quantitative timing
requirements. Furthermore, as the structural aspects of a system can be captured without the user
having to be familiar with temporal logic for the representation of the properties and the description
of scenarios that violate the requirements [ABKO04, GLO5].

Although, Use Case Maps is primarily a functional description language (i.e., behavior oriented),
it can be used to reason about atomic propositions as well. In addition to the UCM representation, we
provide a mapping of our pattern catalog to temporal logics CTL and TCTL. When reasoning about
responsibilities/actions, our UCM-based pattern system can be easily mapped to ACTL [NV90],
which extends CTL with actions. Like CTL, ACTL is a propositional branching-time temporal
logic. While CTL is interpreted over Kripke structures, ACTL is interpreted over labeled transition
systems (LTSs). A more detailed description of the relationship between CTL and ACTL can be
found in [NFGR92]. Real-time properties may also be mapped to a real-time version of ACTL called
ATCTL [JW02].

In the context of our research, one important aspect for us was not to have to extend the existing
UCM language by introducing additional new notations. Instead, we extend the use of existing UCM
notations. For example we extended the use of UCM labels that are typically applied to identify
different UCM constructs (e.g. construct’s name), by existential and universal quantifiers. These

quantifiers can be then applied to specify the scope of our specification patterns.

9.3.1 Patterns

In this section, we describe the qualitative properties of the patterns introduced by Dwyer et
al. [DAC99] using an UCM based representation and their mapping to CTL logic. For clarity
purpose we will use a “global scope” to represent these properties. Temporal scopes will be discussed
in Section 9.3.2.

e Absence. In order to describe that a given responsibility/event P never occurs within a
defined scope, we extend both the UCM responsibility labels with the negation operator not(P),
which represent any sequence of responsibilities not containing P. The label “not(Pi, ...,P,)”
denotes any sequence of responsibilities that does not contain the set of responsibilities P,
...,P,. Figure 9.4(a) illustrates this absence property.

Mapping to CTL : AG(—P) (14)
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-~ 1 There exists P
L o 1 e % |
(a) Absence Property (b) Universality Property

Figure 9.4: Absence and Universality

e Universality. Universality is a dual of the absence property stating that a given responsibil-
ity/event P occurs (Figure 9.4(b)). Adding, an existential quantifier (i.e., there exists) to the
start point label shows that responsibility /event P should occur at least once during a possible
execution (e.g., at least one path).

Mapping to CTL : AG(P) (15)

e Existence. The start point is labeled with the universal quantifier to state that for all possible

execution paths P must occur (Figure 9.5(a)).
Mapping to CTL : AF(P) (16)

e Bounded Existence. Responsibility P must occur at least/exactly/most k times. This is
achieved by adding cardinalities to the responsibility label. “P(n ...m)” denotes that P is

repeated at least n times and at most m times (Figure 9.5(b)).

One instance of the bounded existence pattern, where P occurs at most 2 times, is represented
by the following CTL formula:

Mapping to CTL : ~EF(~P A EX(PAEF(-P A EX(P AEF(-P AEX(P))))  (17)

For af P ' P{n..m) '
® % 1 L 9% 1
(a) Existence Property (b) Bounded Existence

Figure 9.5: Existence and Bounded Existence

e Response. A directed arrow between responsibilities P and @ shows that when P occurs
then an occurrence of @ should follow. The star in front of the responsibility label means: “if
P occurs” (Figure 9.6(a)).

Mapping to CTL : AG(P = AF(Q)) (18)
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Causality is always defined by construction in UCMs. However, the arrow is added to dis-
tinguish the general response property from a restricted response property (i.e., @ should
immediately follow P). In the later, the directed arrow is omitted.

Precedence. The precedence property represents a restriction of the response property in the
sense that @ can only follow P (Figure 9.6(b)). The star in front of the responsibility label

means “if @ occurs”.

Mapping to CTL : ~E[-P U(Q A —P)) (19)
) . Q ’ » R Q*
® — > 3¢ | » 2 > * ]
(a) Response Property (b) Precedence Property

Figure 9.6: Response and Precedence

Chain Precedence/Chain Response. A sequence of responsibilities P, ... ,P, must always
be preceded/followed by a sequence of responsibilities Q1, . .. ,Qn. In addition to its name, each
responsibility is labeled with the name of the chain it belongs to. Figures 9.7(a) and 9.7(b)
illustrate the chain Precedence/Response. Pi,P,, ...,P, belong to chain S1 while Q1,Q2,
...,@Qn belong to chain S2.

PI{SD P2ASY) Pn{SD Q{827 QAs2%) Qm{s7) PY{81%) P2(S1%) Pn{S1%) Qus?) Qs Om{sd)
O3>
(a) Chain Precedence (b) Chain Response

Figure 9.7: Chain Precedence and Chain Response

Note: The chain precedence/response makes only sense for cases with non overlapping chains.

The CTL mapping of the precedence chain: P; precedes () and ()2, is as follows:

~E[-P, U(Q, A ~P, AEX(EF(Q.)))] (20)

The CTL mapping of the response chain: Q1,Q2 responds to Py, is as follows:

AG(P, = AF(Q. NAX(AF(Q.)))) (21)

We now have introduced the elements necessary to describe a more complex requirement:

Separated Response. Describes that a responsibility P is followed by two responses @ and
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R, which are not separated by S. An AND-Fork is used to specify that @ and R may occur in
any order (Figure 9.8).

Mapping to CTL : AG(P = AF(Q A-S A AX(A[-S U R)))) (22)

not(s) Q  not(s)
——Te o H
Figure 9.8: Separated Responses

9.3.2 Specification Pattern Scopes
Temporal Scopes

The optional temporal scopes define when the above patterns must hold. The scope is determined
by specifying a start and an end state/event for the pattern. Dwyer et al. [DAC99] defined five
different types of scope. For each temporal scope, we present only the mapping of the precedence
property in terms of CTL. For a complete CTL mapping of the qualitative properties with respect
to all the described scopes, we refer the reader to [SAn07).

o Global: Start and end point labels are left blank to state that the pattern must hold during
the complete system execution (Figure 9.9(a)). The CTL Mapping for “S precedes P” is given
by:

A[-PWS) (23)

e Before: The end point is labeled with the event X to state that the pattern must hold up to
a responsibility /event X (Figure 9.9(b)). The CTL mapping for “S preceded P Before R” is:

A[(~PV AG(-R))W(S V R)] (24)
1 1 o I o 1
® 1 & | © 1 e |
(a) Global Scope (b) Before Scope (c) After Scope (d) Between Scope
¥(..1)
. i

(e) Until Scope

Figure 9.9: Temporal Scopes
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o After: The start point is labeled with the event X to describe that the pattern must hold
after the occurrence of a responsibility/event X (Figure 9.9(c)). The CTL mapping for “S
preceded P After Q” is:

A-QW(Q A A[-PWS]) (25)

e Between: The start point is labeled with X and the end point is labeled with Y to describe
that the pattern must hold from the occurrence of X to the occurrence of ¥ (Figure 9.9(d)).
The CTL mapping for “S precedes P Between Q and R”:

AG(Q A-R = A|[(-PV AG(-R))W (S V R))) (26)

e Until: The same as “between”, but the pattern must hold even if ¥ never occurs. The end
point is labeled with Y having a cardinality of either 0 (in case ¥ never occurs) or 1 (in case
Y occurs) (Figure 9.9(e)). The CTL mapping for ’S preceded P After Q until R’:

AG(Q A-R = A[-PW(SV R))) 27)

Note: A scope label may coexist with a pattern related label on a start point. For instance, the
start point of a UCM describing “an existence property that should hold after the occurrence of an
event X7, is labeled with “There exists—X”.

Examples of Timing Requirements

¢ Bounded Response: Figure 9.10(a) describes a bounded response, where P is followed by Q
after 10 time units and neither RI1 nor R2 should occur between P and Q. Its corresponding
TCTL mapping is:

AG(P — (AF<10Q) A ~R1 A -R2) (28)

Figure 9.10(b) describes the same property but with a relaxed interval for responsibility Q.
Q is supposed to occur 20 TU after the occurrence of P but not more later than 30 TU. Its
corresponding TCTL mapping is:

e Periodic Recurrence: Figure 9.10(c) illustrates a periodic occurrence of responsibility P
where P occurs every §TU.

Mapping to TCTL : AG(AF<;P) (30)
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(a) Bounded Response (b) Bounded Response with interval (c) Periodic Recur-

rence

Figure 9.10: Examples of Timing Requirements

Architectural Scopes

Architectural descriptions are playing an increasingly important role in the ability of software engi-
neers to describe and comprehend software systems. Architecture is generally considered to consist
of components and the connectors (interactions) between them. Architectural reasoning needs to
cope with evolving system requirements, where systems evolve to migrate to new technologies or/and
to include new features. These changes may modify the assumptions on which system functionalities

are based. Therefore, test engineers may want to:

o Ensure that the desired topology is preserved for a specific feature (e.g., feature functionalities

should be bound to a specific topology).

o Ensure that components that are intended to interact can indeed do so (e.g., there exists a
scenario that is divided into many components).

In an effort to address these architectural issues, we introduce architectural scopes with the goal
to increase the understandability and reasoning about architectural designs. At the same time we
allow for improved analysis and testing while preserving a high level of abstraction. Use Case Maps

have the benefit of integrating both behavioral and architectural aspects in one representation.

ProcessPl  Object1

Figure 9.11: Three Scopes: Occurrence, Temporal and Architecture

A user may for example want to express a response property, where @ should follow the occur-
rence of P and this should happen between any occurrence of X and Y. In addition, the property
should hold only and only if the responsibility/event P is executed by Process! while responsibil-
ity/event @ is executed within Objectl. This generic response property can be described as shown
in Figure 9.11.

We can define five distinctive architectural scopes:
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e Component Specific: The pattern must take place within a pre-defined component. The
architectural property is violated when the responsibility /event occurs within a different com-
ponent. Figure 9.12(a) illustrates a generic property where responsibility R should occur as a

part of process “Process 1”.

Agent1
Process 1 {Agent}, Agent2} Process 1

et

(a) Component Specific (b) Multiple Same Type Compo- (c) Multiple Different Type

-

nents Components
* Processi
R P
R J
o ® | O——1—x—]|
[ D
(d) Any Component (e) Unbound

Figure 9.12: Architectural Scopes

e Multiple Same Type Components: The Component Specific scope is relaxed to give
the user the possibility to specify more than one component of the same type for a certain
event /responsibility. Figure 9.12(b) illustrates a generic property where responsibility R should

occur as a part of either Agentl or Agent2.

e Multiple Different Type Components: The Component Specific scope is relaxed to give
the user the possibility to specify more than one component of different types for a certain
event /responsibility. Figure 9.12(c) illustrates such a generic property where responsibility R
should occur as a part of either agent Agent! or process Processl.

¢ Any Component: The property may occur within any component of a predefined type. This
is described by using “*” as the name of the component. Figure 9.12(d) illustrates a generic
property, where responsibility R should occur as a part of an actor. The actor name in this

case is not specified.

e Unbound: For unbound event/responsibility (i.e., not attached to any component), the com-
ponent name or type are not relevant. The event/responsibility can take place within any
component of any type. The focus is on the behavior and timing aspects rather than the
architectural aspect. Figure 9.12(e) illustrates a generic property, where responsibility R is
not attached to any other component.
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Note: A component may be part of another component (For instance a process can fork to have
childs). This architectural containment dependency may be represented as part of the property
definition. Figure 9.13 illustrates a property with a responsibility R performed by object! which is

part of process Process!.

Process 1

=
Figure 9.13: Architectural Containment Dependency

In the following Section, we give a general overview on how to extend real-time temporal logics
with architectural aspects. We extend TCTL, one variant of real-time temporal logic, to include
architectural constraints. We describe the formal syntax and semantics of what we name ArTCTL
(Architectural TCTL).

9.4 Architectural Real-time Temporal Logic

Labeled transition systems (LTSs) are used to reason about non-real-time systems. For real-time
systems, timed transition systems (TTS) are used, which can be seen as an extension of labeled
transition systems. The passing of time is modeled by labeling transitions with non negative real
numbers. The semantics of timed automata [AD94] are usually described in terms of timed transition
system (TTS).

We slightly modify the classical definitions related to TTS and TA by adding the architectural
scope.

Definition 21 (Architectural TTS) An Architectural timed transition system T is a tuple { S,
t, B, ®, — ) where S is a (possibly infinite) set of states, ¢ € § is the initial state, ¥ is a finite set of
labels, ® is a finite set of components and —C § x ZU S URZ x § is the transition relation where

R2C is the set of positive real numbers. If (q,0,q) €—, we write q—2> g -

A trajectory of an Architectural TTS T= (S,, %, ®, —) is a sequence 7 = (¢,tp),---,(Sk,tx) such
that for 0 < i < k, (si,ts) € S x Roand for <4 < k, 5, %, 5;,; and either 0 € ¥ U ® and
tiz1 =t;, or o € R>® and t;4; = t;+0. A state s of 7 is reachable if there exists a trajectory = =
(50,t0);---»(Sk,tx) such that so = ¢ and s, = s.

Definition 22 (Architectural TA) An Architectural timed automaton is a tuple A = (Loc, C,
qo, Lab, Comp, Edg) where:

e Loc is a finite set of locations representing the discrete states of the automaton.
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C ={c1,..,¢cn } is a finite set of real-valued variables.
e go = (lo,v0) where lo € Loc is the initial location and vy is the initial clock valuation.
o Lab is a finite alphabet of labels.

e Comp 1is a the set of architectural constraints.
Comp C Compld x CompType. Where Compld represents the explicit component Id or “*”
(to denote the any component scope) and CompType = {Process, Agent, Actor, Slot, team,
ete.}.

e Edg C Loc x Loc x G x Lab x Comp x 2€ is a set of edges. An edge (I, U, g, o, cp, R)
represents a jump from location [ to location I with guard g, event o, component cp and a
subset R C C of variables to be reset.

Architectural constraints can be associated with any qualitative or quantitative temporal logic
since no new operators are introduced. In what follows, we present the syntax and the semantics of
what we name Architectural TCTL (ArTCTL).

9.4.1 Architectural TCTL (ArTCTL)

We extend TCTL logic with an architectural dimension by associating an architectural scope to

atomic propositions.

Definition 23 (Syntax of ArTCTL formulas) Let A be a timed automaton, AP a set of atomic
propositions, Comp a set of architectural constraints (as defined in Definition 22) and D a non-empty
set of clocks that is disjoint from the clocks of A, i.e. CN D=Q. ~ denotes one of the binary relations
<, 5, = 2, >.

An ArTCTL formula ¢ has the following syntaz rules.

¢=pep | 7P| 6V Y| 2.6 | BlpUnct)] | AlpUnct)] (31)

where p € AP, ¢p € Comp, and z € D. z is called the freeze identifier and bounds the clock z in
¢. For instance, using the freeze identifier the formula Alpc1U<s Yo2f can be defined by:
zin Al(¢c1 A z < 5) Uvca]

Definition 24 (Semantics of ArTCTL) The satisfaction relation (A,s)= ¢ (i.e. ¢ is satisfied
at state s in TA A) is defined inductively as follows:

o A,s = pep iff p is true in state s and satisfies constraint cp (i.e. let cp = (cpType, cpld), p is
true within component cpld of type cpType)

o Askiff Ask ¢
e As k= oV iff either Aisi=@ or As =
o Assk 2.0 iff A,s{z} = ¢
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o As k= Elp Usc ] iff there exists a run (s1, t1)(s2, t2) ... such that s;= s in A and there
exist an ©>1 and a & € [0,t;41-t;] such that

- A;Si +6 l’—; /(p
— for all §, &', if either (1<j<i) A (6” € [0tj41t;]) or (7=i) A (8’ € [0,8)), then A,s; + &’
¢

o As | Alp Uvc ] iff for all runs (s1, t1)(s2, t2) ... such that s1= s in A and there exist an
i>1and a § € [0t;41-t;] such that

— A +6 }= P
— for all §, 8°, if either (1<j<i) A (87 € [0,tj11-t5]) or (j=i) A (67 € [0,6)), then A,s; + &’
= ¢

For instance, the absence property “P does never occur within the component Cpld of type
CpType” can be expressed in ArTCTL with: AG(=Pcpra,cpType))-

9.5 Applying Property Patterns

In this section, we apply our pattern system to the case study of IP Header Compression feature.
This example is more suitable to illustrate our property pattern approach than the running case
study of the telephone system presented in Section 2.1.4.

9.5.1 Case Study: IP Header Compression Feature

As networks evolve to provide more bandwidth, the applications, services and the consumers of those
applications are competing for that bandwidth. In many services and applications, such as voice
and video over IP, several fields in the header of a given flow remain constant for the length of the
flow. IP header compression (IPHC) achieves major gain in terms of packet compression because
although some fields in the header change in every packet, the difference from packet to packet is
often constant, and therefore the second-order difference is zero. The decompressor can reconstruct
the original header without any loss of information. IPHC is a hop-by-hop compression scheme (i.e.,
works on a point-to-point link). IP header compression can improve throughput and reduce packet

loss and delay.

IPHC Preconditions

Before any IP packets may be communicated, PPP (which allows two machines on a point-to-point
communication link to negotiate various parameters for authentication) and IPCP (responsible for
configuring, enabling, and disabling the IP protocol modules on both ends of the point-to-point link)
negotiations must be completed successfully. Figure 9.14 describes this negotiation phase using the
shared responsibility construct.
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Figure 9.14: PPP and IPCP Negotiation

Compression/Decompression Types

Mainly three types of compression were presented in RFC 2507 [DNP99], RFC2508 [CJ99] and
RFC1144 [Jac90]: RTP (RTP compression: Real Time Protocol), cUDP (UDP compression) and
¢TCP (TCP compression). For nonRTP traffic another type of compression called nonTCP can be
used as well.

Compression/decompression takes place either in the fast Path (ASIC forwarding) or the slow
path (software forwarding) depending on the type of traffic. A possible design of IPHC may consider
compressing/decompressing cRTP and cUDP traffic on a fast path while compressing/decompressing
¢TCP traffic on slow path since protocol packets over the TCP transport would constitute a signif-
icantly lower percentage of all traffic in typical application profiles that use IPHC.

IP Header Compression Requirements

Compression Scenario

Figure 9.15 illustrates a high level view of the compression scenario. UCM start point Rec- Uncompr-
Packet denotes the reception of a non compressed packet. Then the router checks whether the egress
interface (towards the destination) is IPHC enabled. If the egress interface is not IPHC-enabled,
the packet is then forwarded uncompressed towards its destination (i.e. Dynamic responsibility
Send-Uncompressed). Otherwise, the compressor checks the packet type to distinguish compressible
packets. The design presented in Figure 9.15 does not consider plain IP packets and IP packets with
options for compression.

Compressible packets (RTP, UDP and TCP) are looked up in a repository of packet headers
(i.e., UCM responsibility HeaderLookup). If a matching header (that corresponds to the context of
a given flow) is found, the incoming packet is compressed. If no match is found, the packet header is
copied into that repository and a new context is defined. Then depending on the protocol type the
corresponding compression type is selected and applied to the packet (i.e., cRTP, cUDP or ¢TCP).

Compression latency is expected to be within 100usec.
Decompression Scenario

Figure 9.16 illustrates a high level view of the decompression scenario. The decompressor should
handle two types of packets: (a) Full Header and (b) Compressed packet. The start of a compressed
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Ts<T+70us

Rec-Uncompr-Packet [IPHC enabled]

Headerlookup

{HeaderNotMatching

Send-Uncompressed v [
SentUncompr
ASIC
RTP Compression
[HeaderMatching] [RTP]
CheckProtocol Ts<T+100us
pend-Copressed
——y—— — V|
UDP Compression / +
SentCompr

Saved Headers

Slow Path j{

Egress

N.CP Compression ’l

Figure 9.15: IPHC: Compression Scenario

flow is indicated by the arrival of a Full header. The decompressor will store the contents of the header
from the Full header packet (i.e., responsibility StoreContextID). Subsequent compressed packets will
be decompressed by using the stored context from the Full header packet (i.e., RetrieveContextID)
and the information present in the compressed packet. If there is no matching with the stored
context ID or the packet is out of sequence, then the packet is discarded and a context state packet
(CS packet) is sent to the compressor to notify that something wrong happened (i.e., GenerateCS-

Packet).
Ts<T+70us
StoreContextID Forward v [ ]
+
Forwarded
[FullHeader] dropPacket ~ GenerateCS-Packet CS-sent-src
[notInSequence]
T CheckHeader CheckPacket  RetrieveContextID
PA \v4 3 se s ASIC
Ea C ) r o
Rec-Compr-Packet [ComprHeader] [rTP] | RTP Decompression
[InSequence l ¥ ‘\ Ts<T+100us
Forard V
UDP D i + :
P Decompression l ‘J Forwarded
Slow Path
Egress

TCP Decompr
‘POptions Decompr )

Figure 9.16: IPHC: Decompression Scenario
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9.5.2 IPHC System Properties

¢ Requirement 1: An RTP packet is compressed in the fast path (ASIC) and the
latency is less than 150usec.

This requirement is described in Figure 9.17. Its corresponding architectural TCTL formula
is:
~E[-~RT Ppacket U (RT Ppacket(ream,as1¢) N EG<150RT Pcompr)] (32)

The design shown in Figure 9.15 satisfies this property since RTP flows are compressed in the
fast path (ASIC) and the latency is within the acceptable range (100usec<150usec).

ASIC
RTP packet RTP compr I
= al A1
T Ts<T+150us

Figure 9.17: Bounded Existence Property Satisfying IPHC Design

¢ Requirement 2: A TCP packet is compressed in the fast path (ASIC) and the
latency is less than 50usec.

This requirement is described in Figure 9.18. Its corresponding ArTCTL formula is:

~E[~TCPpacket U (TC Ppacket(peam,as1c) N EG<5o—~TC Pcompr)] (33)

In this case the design in Figure 9.15 violates this property since TCP flow compression takes
place in slow path (software) and the latency is lower (50usec<100usec) than the one specified
in the property.

ASIC
TCP packet TCP compr
= % oY
T Ts<T+50us

Figure 9.18: Bounded Existence Property Violating IPHC Design

¢ Requirement 3: In the compression scenario, the header lookup is followed by a

protocol check.

This requirement is described in Figure 9.19. Its corresponding CTL formula is:
AG(Header Lookup = AF (CheckProtocol)) (34)

The design in Figure 9.15 satisfies this property since responsibility HeaderLookup is followed
by responsibility CheckProtocol for all paths that contain HeaderLookup.
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Rec-Uncompr-Packet HeaderLookup®*  CheckProtocol
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Figure 9.19: Response Property Satisfying IPHC Design

e Requirement 4: IP options packets are not compressed.

This requirement is described in Figure 9.20. Its corresponding architectural CTL formula is:

AG(~IPOptionsCompression ream,s)) (35)
The design in Figure 9.15 satisfies this property since IP options packets are not compressed.

*

Rec-Uncompr-Packet | 1t(1p options Compression)

® ¥

Figure 9.20: Absence Property Satisfying IPHC Design

¢ Requirement 5: In the decompression scenario, packet drop is always preceded by

storing the context ID
This requirement is described in Figure 9.21. Its corresponding CTL formula is:
—E[-StoreContext]I D U(dropPacket A negStoreContextl D)) (36)

This property is not satisfied since responsibilities StoreContextID and dropPacket belong to
two distinct paths in Figure 9.16.

Rec-Compr-Packet  StoreContextID  dropPacket®

® S S« a— |

Figure 9.21: Precedence Property Violating IPHC Design

9.6 Chapter Summary

Specification building is one of the most difficult activities of model-based verification. The work
presented in this chapter has yielded two main contributions. First, we have presented a UCM based

specification pattern that can simplify this activity and make it available to the novice practitioner.
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The specification pattern system uses templates to cover most common expected properties found
in requirements specifications. We have provided a mapping of our UCM-based system to popular
temporal logics CTL and TCTL. These templates combine qualitative, real-time and architectural
properties into a single graphical representation. To the best of our knowledge, no existing pattern
system has considered these three scopes together. However, we do not claim that our real-time
specification pattern system is complete. Second, we have extended the traditional real-time tempo-
ral logics to include architectural aspects. We have given an overview of the semantics of the systems
targeted by what we call “Architectural real-time temporal logic”. Moreover, we have provided for-
mal syntax and semantics of ArTCTL, an extension of TCTL with architectural aspects. We believe
that having the requirement specification and properties described using the same formalism will

enable greater degrees of analysis while preserving a high level of abstraction.
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Chapter 10

Experiments with Early Stages
Validation and Verification
Methodology

In the previous chapters, we have explained how the Early Stages V&V Methodology can be applied
to validate and verify UCM specifications. We have used the simple telephone system as a running
example to illustrate the different steps of our proposed methodology.

Use Case Maps have been used to model the dynamics of complex systems in domains as telecom-
munications and e-business process modeling. In this chapter, we show that our proposed method-
ology can be applied to more complex applications and various domains. We present two case

studies:

e Real-time Systems: We will investigate the use of our proposed approach to describe, validate
and verify the IP Multicast routing protocol! (see Section 10.1).

e Process Business Models: we will investigate the use of our proposed approach to validate and
verify an existing online store business model that was introduced in [ARWO05] (see Section
10.2).

10.1 Case Study 1: IP Multicast Routing Protocol

10.1.1 Introduction to IP Multicast

IP Multicast is a technique for many-to-many communication over an IP infrastructure. Typical
Multicast applications include VAT (Visual Audio Tool), VIC (Video conferencing) and WB (white
board). Figure 10.1 [Inc04], illustrates a network topology with two sources (source 1 and source
2), two receivers (receiver 1 and receiver 2) and six multicast routers (A, B, C, D, E and F). This

1 One scenario of this case study is published in SDL Forum - SDL 2007) [HRD07a)
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topology will be used throughout the cast study to illustrate different scenarios. To send data to
multiple destinations using unicast, the sender has to send for each receiver its own data flow. The
sender has to make copies of the same packet and send them once for each receiver. In multicast,
the sender sends only one copy of a single data packet addressed to a gr()up'of receivers - multicast
group. Multicast transmission provides many advantages over unicast transmission in one-to-many

or many-to-many environment:

- Enhanced efficiency: Available network bandwidth is utilized more efficiently because multiple
streams of data are replaced with a single transmission.

- Optimized Performance: Fewer copies of data require forwarding and processing.

- Distributed Applications: Multipoint applications will not be possible as demand and usage
grows, because unicast transmission will not scale.

Multicast routers replicate and forward the packet to all the branches where receivers may exist.
Receivers express their interest in multicast traffic by registering at their first-hop router using the
Internet Group Management Protocol (IGMP)for IPv4 hosts or Multicast Listener Discovery (MLD)
for IPv6 hosts (Receivers 1 and 2 register respectively with routers C and E and Last-hop routers
(leafs: C and E) communicate group membership to the network). The multicast network routers
learn about their multicast-enabled neighbors to build appropriate distribution tree (Distribution
trees are shown with arrows in Figure 10.1) to prevent loops and to apply scoping and filtering. Inside
the multicast network, there are various multicast routing protocols used. They may be separated
into these two groups: Intra-domain (for example PIM, Distance Vector Multicast Routing Protocol
(DVMRP), Multicast Open Shortest-Path First (MOSPF), Core Bases Trees (CBTs)) and inter-
domain (for example, Multi-protocol BGP Extension for IP Multicast [MBGP]).

Source 1
»
-

wunes  Source 2

B "D @P F
/

L
E
(RP) PIM Rendezvous Point
vwmn 3 Shared Tree
Receiver 1 Receiver 2 Source Tree

LZITINY

Figure 10.1: Example of a Multicast Enabled Network [Inc04]
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The multicast addresses are within the class D and are in the range 224.0.0.0 through 239.255.255.255.
The range of addresses between 224.0.0.0 and 224.0.0.255, inclusive, is reserved for the use of routing
protocols and other low-level topology discovery or maintenance protocols, such as gateway discov-
ery and group membership reporting. Multicast routers should not forward any multicast datagram
with destination addresses in this range, regardless of its TTL (Time to Live). In this case study,
we treat only IPv4 Multicast and we focus only on PIM protocol.

10.1.2 IP Multicast: UCM Scenarios Specifications

In this section, we present IP multicast scenarios and their corresponding UCMs.

e Multicast Forwarding Scenario:
In unicast routing, when a router receives a packet, the decision about where the packet should
be forwarded to depends on the destination address of the packet itself. In multicast routing,
the decision on where a particular packet should be forwarded to depends on the origin of the
packet.

— Reverse Path Forwarding (RPF): Multicast routing uses a mechanism called Reverse
Path Forwarding (RPF) to prevent forwarding loops and to ensure the shortest path from
the source to the receivers. Routers perform an RPF check, by examining the unicast
routing table, to ensure that arriving multicast packets were received through the interface
that is on the most direct path to the source that sent the packets. If the RPF check
succeeds, the datagram is forwarded on each interface in the outgoing interface list (the
packet is never sent back out of the RPF interface). If RPF check fails, the datagram is
typically silently discarded. This scenario is illustrated in Figure 10.2.

Start_RPF i .
. * Check, iterf Checking [Correct_interface] RPF_siJccess
|
packet_source_Lookup
[Wrong_Interface]
drop_packet
RPF_failure

Figure 10.2: RPF Check Plug-in Map

The checking of the incoming interface may result in a wrong interface (i.e., guard
wrong-interface) that leads to the packet drop (i.e., responsibility drop_packet) and RFP
failure (i.e., end point RPF failure). A packet arriving at the right interface leads to a
successful RPF check. RPF _check scenario represents a plug-in of a larger collection of
scenarios (i.e., Multicast Forwarding), whose root map is shown in Figure 10.3. Start
point Start.RPF is bounded to INI, end point RPF_success is bounded to OUTI and
end point RPF_failure is bounded to QUT2.

— TTL Threshold: In order to keep some external multicast traffic out of their network,
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RPF_Packet_Drop TTL_Packet_Drop

Figure 10.3: Multicast Forwarding

service providers use a TTL threshold mechanism to define boundaries for certain mul-
ticast traffic. All incoming IP packets first have their TTL decremented by one. If the
resulting TTL is less than or zero, it is dropped. If a multicast packet is to be forwarded
out of an interface with a non-zero TTL threshold, then its TTL is checked against the
TTL threshold. If a packet TTL is less than the specified threshold, it is not forwarded
out of the interface. Figure 10.4 shows the corresponding UCM plug-in.

drop_below_th

TTL_threshold_drop
[below_threshol
Start_TTL Packet_TTL
® [non_zero] sbove Threshold] 3¢ J packet Forwarded
| &

Decre?ngnt_TTL TTL_Threshold Forward

drop_TTL_zero

TTL_drop

Figure 10.4: TTL Check Plug-in Map

e Reporting Group Membership: The primary purpose of IGMP is to permit hosts to
communicate their desire to receive multicast traffic to the IP multicast router(s) on the local
network. This action, in turn, permits the IP multicast router(s) to join the specified multicast
group and to begin forwarding the multicast traffic onto the network segment. The scenarios
given below are specific to IGMPv2 defined in RFC2236 [Fen97).

— Group-specific queries: A group-specific query allows the router to query memberships
only in a single group instead of all groups, illustrated by Figure 10.5. In this example
it is assumed that Receiver 1 and Receiver 2 are part of one rmulti-access connection and
that last_hop_Router denotes the leaf router connected to this multi-access connection
(e.g., Ethernet connection). The last-hop router sends a single query group message (i.e.,
responsibility Query_group) to receiver 1 and receiver 2. When a receiver receives the
query and he is not a member of the queried group, he ignores the query. Otherwise, the

receiver starts a randomized count down timer. When the timer reaches zero, the receiver
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sends a Membership Report to notify the router that the group is still active. However if
a host receives a Membership Report (from another receiver) before its associated count-
down timer reaches zero, it cancels the count-down timer thereby suppressing its own
report. These two concurrent scenarios (located in receivers 1 and 2) are illustrated in
Figure 10.5 by using the AND-Fork construct.

Last_hop_Router Receiverl

End-maintainl i x
B ipdatel-group-G  peceivel-REP send1-REP

Timert Report-suppressedl

[mermbert]

ceivel-REQ [rot{memnber )]
Stan-Maintain  REQ-group-G lf’ Receiver2
*—— A=
- receive2-REQ

[not{rmember2)]

J silentz
| ]

[meraber2]

update2-group-G  receive2-REP Timer2 Repor-suppressed2

End-Maintainz I

send2-REP

Figure 10.5: IP Multicast Group Membership Maintenance

— Joining a multicast group: Receivers joining a multicast group do not have to wait
for a query and send an unsolicited report indicating their interest in joining a multicast

group. This scenario is illustrated in Figure 10.6.

Router . Receiver
Add_to_group Send_report Start_Join
| 3% 3¢ 3¢ ®
Group_Updated Receive_report]

Figure 10.6: Join IP Multicast Group

— Leaving a multicast group: IGMPv2 leave group message allows hosts to tell the
local multicast router that they are leaving the group. This scenario is illustrated in
Figure 10.7. Upon receipt of the Leave Group message, the router sends out a group-
specific query (see Figure 10.5) and determines whether there are any remaining hosts
interested in receiving the traffic. If there are no replies, the router times out the group

and stops forwarding the traffic.

¢ Protocol Independent Multicast (PIM): PIM-SM is defined by the IETF ? in RFC2362
[EFHT98]. Protocol Independent Multicast (PIM) has two modes Sparse Mode and Dense
Mode. In this case study, we focus on the Sparse Mode (PIM-SM) model. PIM-SM is in-

dependent of underlying unicast protocols. PIM uses a rendezvous point (RP) to coordinate

2http: / /www.ietf.org
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Figure 10.7: Leave IP Multicast Group

forwarding of multicast traffic from a source to receivers. Senders register with the RP and
send a single copy of multicast data through it to the registered receivers. Group members are
joined to the shared tree by their local designated router (DR). A shared tree is built which is
rooted at the RP.

— PIM-SM Shared Tree Join: The last-hop router knows the IP address of the RP
router for a group G, and it sends a join for this group toward the RP. The join travels
hop-by-hop toward the RP building a branch of the shared tree (by adding (*, G) to
multicast table, **’ denotes any source) that extends from the RP to the last-hop router.
At this point, group G traffic may flow down the shared tree to the receiver. In the
example given in Figure 10.1, the router E sends a join to router D which is the defined
RP. The join travels through router C resulting in the construction of the shared tree.

Last-hop router intermediate-router RP

Start_PIM_Join receive_PIM_Join G Forward_to RP add_(*,G)
*—Xx —¢ 3¢ ——— x——-!
send_PIM_Join_G add_(*,G) receive_PIM_Join_G shared_Tree_Buik

Figure 10.8: PIM-SM Join

— PIM-SM Sender Registration: In the case of an active source for group G starts
sending multicast traffic, its designated router (DR) registers this source with the RP. In
the example given in Figure 10.1, Routers A and F, which are respectively the designated
routers for source 1 and source 2, register to router D (defined RP). This process results
in the construction of the source tree. To register the source, the DR encapsulates the
multicast packets in a Register message and unicast it to the RP. When the RP receives
the Register message, it decapsulates the multicast packets and starts sending them down
the shared tree towards the receivers. At the same time, the RP starts building a shortest-
path tree (SPT) by sending joins towards the source. After the SPT is built from the
designated router to the RP, the multicast traffic starts to flow from the source to the RP
without being encapsulated in Register messages. RP sends a Register Stop message to

the source’s designated router to inform it may stop sending unicast Register messages.

PIM-SM has the capability for the last-hop router to switch to the shortest-path tree
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Figure 10.9: PIM-SM Sender Registration

(SPT) and bypass the RP, if the traffic rate is above a set threshold called the SPT
threshold. The resulting scenarios are not described in this thesis.

10.1.3 AsmL Specification of IP Multicast Protocol

Figure 10.10 illustrates the AsmL specification of the Multicast Forwarding scenario introduced in
Figure 10.3.
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/Global Variables

var TTL_zero = new BooleanValue(false)
var TTL_below_threshold = new BooleanValue(true)
var RPF_correct.interface = new BooleanValue(true)

7] Stub RPF : RPF Check Plug-in

var Start_RPF as SP_Construct = SP_Construct (RPFnl, r1, "Start_ RPF”, BooleanVar(pre_cond_start),Router)
var packet_sourcelookup as R_Construct = R_Construct(rl, r2, ” packet_source_lookup”, Router)

var check_interf as R_Construct = R_Construct(r2, r3, ”check.interf’, Router)

var drop.packet as R.Construct = R_Construct(sr5, r6, ”drop.packet”, Router)

var RPF_success as EP.Construct = EP.Construct(r4 , h0 , "RPF_success”, true, Router)

var RPF_failure as EP_Construct = EP_Construct(r6 , h0 , ”RPF_failure”, true, Router)

var RFP.OF as OF_Construct = OF_Construct(x3 , {OR_Selection(r4, BooleanVar(RPF_correct_interface)) ,
OR_Selection(r5, -BooleanVar(RPF _correct-interface))}, "RFP_OF”, Router)

var RPF_checkplugin as Maps = Maps ("RPF.check-plugin”, {UCMElement(Start_RPF, rl,
packet.source_lookup), UCMElement(packet.source_lookup, r2, check.interf), UCMElement(check_interf, r3,
RFP_OF), UCMElement(RFP_OF, r4, RPF_success), UCMElement(RPF_success, h0, RPF_success), UCMEle-
ment(RFP_OF, r5, drop_packet), UCMElementi(drop_packet, r6, RPF_failure), UCMElement(RPF failure, hO ,
RPF_failure)}, {RPF_success, RPF _failure})

var SRPF_Check as Stub_Construct = Stub.Construct(el,e2,e3,{Stub_Selection (RPF_check.plugin, Boolean-
Var(.true))}, {Stub.Binding(RPF.check_plugin, el, Start.RPF), Stub.Binding (RPF_check_plugin, e2,
RPF _failure), Stub_Binding (RPF_check_plugin, e3, RPF _success)}, " SRPF_Check”)

// TTL Check plug-in map

var Start.TTL as SP.Construct = SP_Construct (TTL_inl , t1, ” Start_TTL”, BooleanVar(pre_condstart},
Router)

var Decrement_TTL as R_Construct = R_Construct(tl , t2, ” Decrement.TTL”, Router)

var TTL.zero.OF as OF_Construct = OF_Construct(t2 , {OR-Selection(t3, -BooleanVar(TTL_zero))
OR._Selection(t9, BooleanVar(TTL_zero))}, ” TTL_zero_OF ”, Router)

var TTL_Threshold. OF as OF.Construct =  OF_Construct(t3, {OR_Selection(t4, Boolean-
Var(TTL._below.threshold)), OR-_Selection(t6, -BooleanVar(TTL_below_threshold))}, »TTL_Threshold OF”,
Router)

var drop-TTL_zero as R.Construct = R_Construct(t9, £10,” drop_.TTL_zero”, Router)

var drop_below_threshold as R_Construct = R_Construct(t4, t5,” drop_below_threshold ”, Router)

var Forward as R_Construct = R_Construct(t6, t8,” Forward ”, Router)

var TTL_threshold.drop as EP_Construct = EP_Construct(t5 , h0 , "TTL_threshold.drop ”, true, Router)

var Packet_forwarded as EP_Construct = EP_Construct(t8 , h0 , ”Packet_forwarded ”, true, Router)

var TTL_drop as EP_Construct = EP_Construct(t10 , h0 , ”TTL_drop”, true, Router)

var TTLplugin as Maps = Maps(”TTL_plugin ”,{UCMElement(Start.T'TL, t1, Decrement.TTL),
UCMElement(Decrement_TTL, t2, TTL._zero.OF), UCMElement(TTL_zero OF, 3, TTL_Threshold.OF),
UCMElement(TTL_zero.OF, 9, drop-T'TL_zero), UCMElement(drop-TTL_zero, t10, TTL_drop),

)

UCMElement(TTL_Threshold.OF, t4, drop-below_threshold), UCMElement(drop-below_threshold,
15, TTL.threshold_drop), = UCMElement(TTL_Threshold.OF, t6, Forward), UCMElement(Forward,
t8 , Packet_forwarded), UCMElement(TTL.threshold_-drop, h0 , TTL._threshold_drop), UCMEle-

ment(Packet_forwarded, h0 , Packet_forwarded), UCMElement(TTL.drop, h0 , TTL_drop)}, {TTL_threshold_drop,
Packet_forwarded, TTL.drop})

var STTL.Check as Stub_Construct=  Stub.Construct({e3},{e4,e5,e6},{Stub_Selection  (TTL_plugin,
BooleanVar(-true))}, {Stub_Binding(TTL-plugin, €3, Start.-TTL), Stub.Binding (TTL_plugin, e4,
Packet_forwarded),Stub_Binding (TTL_plugin,e5, TTL_threshold_drop), Stub.Binding (TTL.plugin, e6,
TTL_drop)}, "STTL_Check”)

// Root map constructs

var Packet_Received as SP_Construct = SP_Construct (inl, el , "Packet Received”, BooleanVar(pre.cond_start),
Router)

var RPF_Packet.Drop as EP.Construct = EP_Construct(e2 , h0 , ”RPF_Packet.Drop”, true, Router)

var Packet_Forwarded_root as EP_Construct = EP_Construct(e4 , h0 , ” Packet_Forwarded.root”, true, Router)
var TTL_th_drop as EP_Construct = EP_Construct(e5 , h0 , ” TTL_th_drop”, true, Router)

var TTL_Packet Drop as EP_Construct = EP_Construct(e6 , h0 , " TTL_Packet.Drop”, true, Router)

var RootMap as Maps = Maps("RootMap”, {UCMElement(Packet_Received, el, SRPF-Check), UCMEle-
ment(SRPF_Check, e2 , RPF_Packet.Drop), UCMElement(RPF_Packet.Drop, h0, RPF_Packet_Drop),
UCMElement(SRPF_Check, e3, STTL_Check), UCMElement(STTL.Check, e4, Packet Forwarded._root),
UCMElement(STTL_Check, e5, TTL_th_-drop), UCMElement(STTL_Check, e6, TTL_Packet.Drop), UCMEle-
ment(TTL_Packet_Drop, h0, TTL_Packet_Drop), UCMElement(TTL_th.drop, h0, TTL.th.drop), UCMEle-

ment (Packet_Forwarded.root, h0, Packet_Forwarded_root)}, { Packet_Forwarded_root, TTL_th_drop,
TTL.Packet_Drop})

Figure 10.10: AsmL Implementation of the Multicast Forwarding Scenario
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Figure 10.11 illustrates the AsmlL specification of the Group Maintenance scenario described in
Figure 10.5.

/Global Variables
var Recl.member = new BooleanValue(true)
var Rec2.member = new BooleanValue(false)
var Report.sent = new BooleanValue(false)

/ Root map constructs:
var start_maintain as SP-Construct = SP.Construct (inl, ml ,start_maintain”, BooleanVar(pre_cond.start),
Last_hop_Router)
var REQ_group.G as R_Construct = R_Construct(ml, m2,” REQ.group.G ", Last_hop_Router)
var Maintain.AF as AF.Construct = AF_Construct(m2 ,m3, m12, ”Maintain.AF”, Last_hop_Router)
var Receivel REQ as R_Construct = R_Construct(m3, m4,” Receivel_REQ ”, Receiverl)
var Receiverl_member_OF as OF_Construct = OF_Construct(m4 , {OR_Selection(m5, BooleanVar(Recl_member))
, OR._Selection(m§, -BooleanVar(Recl_member))}}, ”Receiverl_member ”, Receiverl)
var Timerl as Timer_Construct = Timer_Construct(m5 , {OR_Selection(m?7, BooleanVar(Report_sent)) ,
OR_Selection(m8, -BooleanVar(Report_sent))}, "Receiverl_member”, Receiverl)
var Sendl_REP as R_Construct = R_Construct(m8, m9,” Send1_REP”, Receiverl)
var Silent1l as EP_Construct = EP_Construct(mé , h0 , ” Silentl ”, true, Receiverl)
var Report_suppressedl as EP_Construct = EP_Construct(m7, h0 , ”Report_suppressedl”, true, Receiverl)
var Receivel REP as R_Construct = R_Construct(m9, m10,” Receivel_REP”, Last_hop_Router)
var Updatel_group.G as R_Construct = R_Construct(m10, m11,” Updatel_group_G”, Last_hop_Router)
var End_maintainl as EP.Construct = EP_Construct(m11 , hO , ”End_maintainl”, true, Last_hop_Router)
var Receive2_ REQ as R_Construct = R-Construct(m12, m13,” Receive2_ REQ ”, Receiver2)
var Receiver2_member OF as OF_Construct = OF.Construct(m13 , {OR_Selection(ml5, Boolean-
Var(Rec2_member)) , OR_Selection(m14, -BooleanVar(Rec2_member))}, ” Receiver2.member ”, Receiver2)
var Timer2 as Timer_Construct = Timer.Construct(m15 , {OR.Selection(m16, BooleanVar(Report_sent)) ,
OR._Selection(m17, -BooleanVar(Report_sent))}, ” Receiver2.member”, Receiver2)
var Send2_REP as R_Construct == R_Construct(m17, m18,” Send2_REP”, Receiver2)
var Silent2 as EP_Construct = EP_Construct(m14 , h0 , ” Silent2 ", true, Receiver2)
var Report_suppressed2 as EP_Construct = EP_Construct(m16, h0 , "Report_suppressed?2”, true, Receiver2)
var Receive2_ REP as R_Construct = R_Construct(m18, m19,” Receive2 REP”, Last_hop_Router)
var Update2_group-G as R_Construct = R_Construct(ml9, m20,” Update2_group.G”, Last_hop_Router)
var End_maintain2 as EP_Construct = EP_Construct(m20 , h0 , "End_maintain2”, true, Last_hop_Router)

var RootMap as Maps = Maps(’ RootMap”, {UCMElement(start_maintain, ml, REQ_group_G), UCMEle-
ment(REQ_group-G, m2, Maintain_AF), UCMElement(Maintain . AF,m3 , Receivel REQ), UCMEle-
ment(Maintain-.AF, ml2 , Receive2.REQ), UCMElement(Receivel REQ, m4, Receiverl.member_ OF),
UCMElement(Receiverl_member.OF, m6, Silentl), UCMElement(Receiverl_member. OF, m5, Timerl),
UCMEIlement(Timerl, m7 , Reportsuppressed2), UCMElement(Timerl, m8 , Sendl_REP), UCMEle-
ment(Sendl REP, m9, Receivel REP), UCMElement(Receivel REP, m10 , Updatel_group.G), UCMEle-
ment(Updatel _group-G, mll, End_maintainl), UCMElement(Receive2 REQ, mi13, Receiver2_.member OF),
UCMEIlement(Receiver2_member_OF, ml4, Silentl), UCMElement(Receiver2_member_ OF, m15, Timer2),
UCMElement(Timer2, ml16 , Reportsuppressed2), UCMElement(Timer2, ml7 , Send2_.REP), UCMEle-
ment(Send2_REP, m18, Receive2_.REP), UCMElement(Receive2.REP, m19 , Update2_group-G), UCMEle-
ment(Update2_group_G, m20, End_-maintain2), UCMElement(End-maintain2, h0, End.maintain2), UCMEle-
ment (End.maintainl, h0, End_maintainl), UCMElement(Report_suppressedl, h0, Report_suppressed1), UCMEle-
ment (Report_suppressed2, h0, Report_suppressed2), UCMElement(Silentl, h0, Silentl), UCMElement(Silent2, ho,
Silent2)}, {End_maintainl, End.maintain2, Silent1, Silent2, Report_suppressedl, Report_suppressed2})

Figure 10.11: AsmL Implementation of the Group Maintenance Scenario
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Figure 10.12 illustrates the AsmlL specification of the PIM-SM Sender Registration scenario
introduced in Figure 10.9.

var start_PIM as SP_Construct = SP._Construct (inl, pl , start_PIM”, BooleanVar(pre_cond.start), DR)
var send_Register as R.Construct = R_Construct(pl, p2,” send_Register ”, DR)

var decap-Register as R_Construct = R_Construct(p2, p3,” decap Register”, RP)

var add_S_G as R_Construct = R_Construct(p3, p4,”add.S_G”, RP)

var PIM_AF1 as AF Construct = AF_Construct(p4 ,{p5, p6}, ” PIM_AF1 7, RP)
var send.join.S_G as R_Construct = R_Construct(p6, p7,” send_joinS5.G ”, RP)

var send_native_data as R_Construct = R.Construct(p7, p8,” send_native.data ”, DR)
var PIM_AF2 as AF_Construct = AF_Construct(p8 ,{p9, p10}, ” PIM_AF2 ", RP)
var register_stop as R_Construct = R_Construct(p10, p11,” register_stop ”, RP)

var forwardedl as EP_Construct = EP_Construct(p5 , h0 , ” forwardedl ”, true, RP)
var forwarded2 as EP_Construct = EP_Construct(p9 , h0 , ” forwarded2”, true, RP)
var stop as EP_Construct = EP_Construct(pl1, h0 , "stop ”, true, DR)

var RootMap as Maps = Maps(”RootMap”, { UCMElement(start. PIM, pl, send Register), UCMEle-
ment(send_Register, p2, decap_Register), UCMElement(decap Register, p3, add_S.G), UCMElement(add_S_G,
p4, PIM_AF1), UCMElement(PIM_AF1, p5, forwardedl), UCMElement(forwardedl, h0, forwardedl),
UCMElement(PIM-AF1, p6, send.join-S.G), UCMElement(send_join.8_.G, p7 , send.native_data), UCMEle-
ment(send._native.data, p8 , PIM_AF2), UCMElement(PIM_AF2, p9, forwarded2), UCMElement(PIM_AF2, p10
, register_stop), UCMEIlement(register_stop, p11, stop), UCMElement(stop, h0, stop), UCMElement(forwarded2,
ho, forwarded?2)},{forwardedl, forwarded2, stop})

Figure 10.12: AsmL Implementation of PIM-SM Sender Registration

10.1.4 IP Multicast Protocol Scenarios Generation

Figure 10.13 illustrates four traces of the IP multicast forwarding scenario described in Figure 10.3.

Figure 10.14 illustrates four traces of the IP Multicast Group Membership Maintenance described
in Figure 10.5. A simple inspection of the fourth trace reveals that both receivers have sent reports.
Hence, the group membership is updated twice. This specification flaw is due to the fact that the
timer timeout event and responsibility SEND_REP occur in two distinct steps. The non atomic
execution of these two events resulted in an interleaving of SendI_REP and Send2_REP. In the
following section, we will show how this flaw is detected using model checking.

Figure 10.15 illustrates the execution trace of the PIM-SM sender registration scenario described
in Figure 10.9.
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This scenario is generated with the following initial values:

TTL_zero:False
TTL_beiow_threshold:False
RPF_correct_interface:True

Start Executing: IP Multicast:Packet Received

Start Point:Packet Received in Component:Router
Stub_Construct: SRPF_Check

Plugin: RPF_check_plugin

Start Point:Start_RPF in Component:Router

Responsibility: packet_source_lookup in component: Router
Responsibility: check_interf in component: Router

OR-Fork: RFP_OF

End point: RPF_success in Component:Router
Stub_Construct: STTL_Check

Plugin: TTL_plugin

Start Point: Start_TTL in Component:Router

Responsibility: Decrement_TTL in component: Router
OR-Fork: TTL_zero_OF

OR-Fork: TTL_Threshold_OF

Responsibility: Forward in component: Router

End point: Packet_forwarded in Component:Router

End Point: Packet_Forwarded_root part of root map reached
in Component:Router

This scenario is generated with the following initial
values:

TTL_zero:False
TTL_below_threshold:False
RPF_correct_interface:False

Start Executing: IP Multicast:Packet Received

Start Point:Packet Received in Component:Router
Stub_Construct: SRPF_Check

Plugin: RPF_check_plugin

Start Point:Start_RPF in Component:Router
Responsibility: packet_source_lookup in component:
Router

Responsibility: check_interf in component: Router
OR-Fork: RFP_OF

Responsibility: drop_packet in p
End point: RPF_failure in Component:Router
End Point: RPF_Packet_Drop part of root map
reached in Component:Router

4 Rt
ent:

(a) Multicast Forwarding Trace 1

(b) Multicast Forwarding Trace 2

This
values:

iois g ted with the following initial

This scenario is generated with the following initial values:

TTL_zero:True
TTL_below_threshold:False
RPF_correct_interface:True

Start Executing: IP Multicast:Packet Received

Start Point:Packet Recelved in Component:Router
Stub_Construct: SRPF_Check

Plugin: RPF_check_plugin

Start Point:Start_RPF in Component:Router
Responsibility: packet_source_lookup in component: Router
Responsibility: check_interf in component: Router
OR-Fork: RFP_OF

End point: RPF_success in Component:Router
Stub_Construct: STTL_Check

Plugin: TTL_plugin

Start Point: Start_TTL in Component:Router
Responsibility: Decrement_TTL in component: Router
OR-Fork: TTL_zero_OF

Responsibility: drop_TTL_zero in component: Router
End point: TTL_drop in Component:Router

End Point: TTL_Packet_Drop part of rocot map reached in
Component:Router

TTL_zero:Faise
TTL_below_threshold:True
RPF_correct_interface:True

Start Executing: IP Multicast:Packet Received

Start Point:Packet Received in Component:Router
Stub_Construct: SRPF_Check

Plugin: RPF_check_plugin

Start Point:Start_RPF in Component:Router
Responsibllity: packet_source_lookup in component:
Router

Responsibility: check_interf in component: Router
OR-Fork: RFP_OF

End point: RPF_success in Component:Router
Stub_Construct: STTL_Check

Plugin: TTL_plugin

Start Point: Start_TTL in Component:Router
Responsibllity: Decrement_TTL in component: Router
OR-Fork: TTL_zero_OF

OR-Fork: TTL_Threshold_OF

Responsibility: drop_below_threshold in component:
Router

End point: TTL_threshold_drop in Component:Router
End Point: TTL_th_drop part of root map reached in
Component:Router

(c) Multicast Forwarding Trace 3

(d) Multicast Forwarding Trace 4

Figure 10.13: Multicast Forwarding Scenario Generated Traces
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This scenario is generated with the following initial
values:

Rec1_member:True
Rec2_member:True

Start Executing: IP Multicast:start_maintain

Start Point:start_maintain in
Component:Last_hop_Router

Responsibility: REQ_group_G in component:
Last_hop_Router

AND-Fork: Maintain_AF

Responsibility: Receive2_REQ in component: Receiver2
OR-Fork: Receiver2_member

Timer: Receiver2_member

Responsibility: Send2_REP in component: Receiver2
Responsibility: Receive2z_REP in component:
Last_hop_Router

Responsibility: Receive1_REQ in component: Receivert
Responsibility: Update2_group_G in component:
Last_hop_Router

OR-Fork: Receiveri_member

Timer: Receiveri_member

End Point: End_maintain2 part of root map reached in
Component:Last_hop_Router End Point:
Report_suppressed1 part of root map reached in
Component:Receivert

This scenario is generated with the following initial
values:

Rec1_member:True
Rec2_member:False

Start Executing: IP Multicast:start_maintain
Start Point:start_maintain in
Component:Last_hop_Router

Responsibility: REQ_group_G In component:
Last_hop_Router

AND-Fork: Maintain_AF

Responsibility: Receive2_REQ in component:
Receiver2

Responsibility: Receivet_REQ in component:
Receiver1

OR-Fork: Recelver1_member

Timer: Receiver1_member

Responsibility: Send1_REP in component: Recelvert
Responsibility: Receivel_REP in component:
Last_hop_Router

Responsibility: Updatet_group_G in component:
Last_hop_Router

OR-Fork: Receiver2_member

End Point: Silent2 part of root map reached in
Component:Recelver2

End Point: End_maintain1 part of root map reached in
Component:Last_hop_Router

(2) Multicast Group Membership Maintenance Trace 1

(b) Multicast Group Membership Maintenance
Trace 2

This scenario is generated with the following initial values :

This scenario is generated with the following initial
values:

Rec1_member:True
Rec2_member:True

Start Executing: IP Multicast:start_maintain
Start Point:start_maintain in
Component:Last_hop_Router

Responsibility: REQ_group_G in component:
Last_hop_Router

AND-Fork: Maintain_AF
Responsibility: Receive2_REQ in
OR-Fork: Receiver2_member

R ibility: Receivel_REQ in component: Receivert
OR-Fork: Receiver1_member

Timer: Receiver1_member

Responsibility: Send1_REP in component: Receiver1
Responsibility: Receivel_REP in p it

Last hop_Router

Timer: Receiver2_member

End Point: Report_suppressed2 part of root map reached
in Component:Receiver2

Responsibility: Update1_group_G in component:

Last hop_Router

End Polint: End_malintain1 part of root map reached in
Component:Last_hop_Router

ent: Receiver2

Rec1_member:.True
Rec2_member:True

Start Executing : IP Multicast:start_maintain

Start Point:start_maintain in Component:Last_hop_Router
Responsibility: REQ_group_G in component:
Last_hop_Router

AND-Fork: Maintain_AF

Responsibility: Receive2_ REQ in component: Receiver2
Responsibility: Receive1_REQ in component: Receiver1
OR-Fork: Receiver1_member

OR-Fork: Receiver2_member

Timer: Receiver2_member

Timer: Receiver1_member

Responsibility: Send2_REP in component: Receiver2
Responsibility: Send1_REP in component: Receiver1
Responsibility: Receive1_REP in component:
Last_hop_Router

Responsibility: Receive2_ REP in component:
Last_hop_Router

Responsibility: Update2_group_G in component:
Last_hop_Router

Responsibility: Update1_group_G in component:
Last_hop_Router End Point: End_maintain1 part of root
map reached in Component :Last_hop_Router

End Point: End_maintain2 part of root map reached in
Component:Last_hop_Router

(c) Multicast Group Membership Maintenance Trace 3

(d) Multicast Group Membership Maintenance Trace 4

Figure 10.14: Multicast Forwarding Generated Traces
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Start Executing : IP Multicast:start_PIM

Start Point:start_PIM in Component:DR

Responsibility: send_Register in component: DR

Responsibility: decap_Register in component : RP

Responsibility: add_S_G in component: RP

AND-Fork: PIM_AF1

End Point: forwarded 1 part of root map reached in Component :RP
Responsibility: send_join_S_G in component: RP

Responsibility: send_native_data in component: DR

AND-Fork: PIM_AF2

End Point: forwarded 2 part of root map reached in Component :RP
Responsibility: register_stop in component: RP

End Point: stop part of root map reached in Component :DR

Figure 10.15: PIM-SM Sender Registration Trace

10.1.5 UPPAAL Specification and Property Verification
IP Multicast Forwarding Scenario

Figures 10.16 and 10.17 illustrate UPPAAL specification of the UCM described in Figures 10.2, 10.4
and 10.3.

e Liveness Property: When a packet arrives to the correct interface with a TTL above the

threshold and different from zero, then it should be forwarded. This property is translated
into the following UPPAAL formula:

(CorrectInter f and !zero and !below thr) --» Packet_Forwarded_root.end  (37)

This property is checked to be true by the UPPAAL verifier.

e Safety Property: Packets should not be forwarded if they fail RPF check (come from a wrong

interface).
All(ICorrectInterf) imply Packet.Forwarded_root.end (38)

This property is checked to be false by the UPPAAL verifier, which is expected.

e Precedence Property: A TTL check must be preceded by an RPF check. This property is
translated into the following UPPAAL formula:

A<>TTL. pl.start imply RPF pl.Check_inter f (39)

This property is checked to be true by the UPPAAL verifier.

¢ Time Bounded Property: Packets must be forwarded within 14 time units after arrival to

an ingress interface.
(Packet_rcv_root.start) --» (Packet_Forwarded_root.end and MClock <= 14) (40)

This property is checked to be true by the UPPAAL verifier.
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Figure 10.16: UPPAAL Implementation of IP Multicast Forwarding Scenario
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Figure 10.17: UPPAAL Implementation of IP Multicast Forwarding Scenario(2)
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IP Multicast Group Membership Maintenance

Figure 10.18 shows UPPAAL specification of the UCM described in Fig 10.5. Figure 10.18(a)
shows the timed automata of the segment composed of the start point start-maintain followed by
responsibility REQ-group-G. Figure 10.18(b) shows the timed automata of the segment starting
at responsibility receive-REQ and ends with the end points Silent, Report-suppressed and End-
maintain. The later is instantiated twice, one for each receiver. We assume that both receivers are
members of the same multicast group and all responsibilities have a duration between 1 and 2 with
a delay of 1. The three processes are connected through an AND-Fork TA template 7.19(c).

Mokmk <= gk Malntain bl ;
‘deley= B W REQ ;grgup_ Lclar:‘," autl

W vararerecond g8 GRlay>REG_ DL ¥ [ Clocko-MnRED |

WMl tain Triggs delay<=REQ_DL LciazkaMaxREa
MClack: »=min. ] Mamtaln DL )

REQ jraup <2

(a) Segmentl

) 4 ﬂetay>~UF*DATE Dz
delay%:»UPDA'EE Bl Lﬂmakn:—MaxUPDATE

LE:lmcK@MaxF&ch
(b) Segment2

Figure 10.18: Timed Automata of IP Multicast Group Membership Maintenance

e Precedence Property: For any receiver, the sending of a report is always preceded by a
reception of a query. This property is translated into the following UPPAAL formula:

A<>(recl.Send_Rep imply segl. REQ_group_G) (41)

This property is checked to be true by the UPPAAL verifier.

e Liveness Property: In the presence of receivers, the multicast group should be updated.
This property is translated into the following formula:

E<>(reclL.UPDATE or rec2UPDATE) (42)

This property holds since one of the two receivers responds to the router query and the group
is eventually updated.
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e Time Bounded Property: Sending a report occurs at least 10 time units after the start of

the scenario. This property is translated into the following UPPAAL formula:

Al](recl.Send_Rep imply MClock > 10) (43)

This property is not satisfied and UPPAAL generates an execution trace of a counter example
showing that the responsibility send.REP may occur as soon as MClock is greater or equal to
7.

e Safety Property: In the presence of more than one receiver, only one and only one receiver

should send a report. This property is translated into the following UPPAAL formula:

Al]not(recl.Send_Rep and rec2.Send_Rep). (44)

This property fails leading to the generation of a counter example. This failure is due to the
fact that the timer timeout event and responsibility Send_Rep occur in two distinct steps.
Hence, timer timeouts in Receiver 1 and Receiver 2 may be triggered one after the other. In
such a case, both receivers will send a report. This behavior is corrected by replacing the plain
timer by a timer with action (Fig. 7.19(g)) which makes the action of sending a report part of
the timeout transition. Therefore, the property becomes true.

PIM-SM Sender Registration
Figure 10.19 illustrates UPPAAL specification of the UCM described in Figure 10.9.

¢ Liveness Property: Both register packets and native data packets are forwarded. This prop-
erty is translated into the following UPPAAL formula:

A[|(PIM _Forwardedl_root.end and PIM _Forwarded2_root.end) (45)
This property is checked to be true by the UPPAAL verifier.

e Response Property: A register packet must be followed by a stop_register packet. This

property is translated into the following UPPAAL formula:

Register_seg.send_register --» Stop_seg.register_stop (46)
This property is checked to be true by the UPPAAL verifier.

¢ Time Bounded Property: PIM-SM Sender registration scenario should not take more than
17 time units. This property is translated into the following UPPAAL formula:

Register_seg.Start_register --» (Stop_seg.end_stop and MClock < 16) (47)

This property is not satisfied and UPPAAL generates an execution trace of a counter example

showing that this scenario takes at least 18 time units to complete.
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Figure 10.19: UPPAAL Implementation of PIM-SM Sender Registration Scenario
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10.2 Case Study 2: Online Store

The second case study is a web application for an online store [ARWO05] (named widgets.com) where

users can purchase license keys for software components (or widgets).

10.2.1 Online Store: System Overview and UCM Specification

The online store implements four use cases: Browse Catalog, Checkout, Process Payment, and
Download. Browse Catalog comprises selecting categories, selecting products to request product
detail, adding products to a shopping cart, and editing the cart. Checkout includes signing in for an
account, building an order summary, and confirming the order. Process Payment involves asking the
bank to process the payment information associated with the account. Download comprises going

to a download area, and downloading the purchased licenses.

Customer

enterSite  fuvz Bm“%mog ot w1 Chxko“t oUT! Y Doﬂmd oUT1 Exi;site
¢ 4 N 1

IN2 ouT?

Figure 10.20: Root Map for the Widgets.com Online Store [ARWO05]

Figure 10.20 shows the root map for the widgets.com applications. It contains three stubs, one
for the Browse Catalog, one for the Checkout, and one for the Download use case. Figures 10.21
to 10.23 show the plug-ins for the BrowseCatalog, Checkout, and Download stubs. Start points in
the Customer component correspond to events (e.g., hyperlinks and buttons) that customers can
trigger. The end points correspond to page updates visible to the customers.

Selecting goCheckout will terminate Browse Catalog, and initiate the Checkout use case which
is described in Figure 10.22. Checkout plug-in map requires the customer to input a valid account
number. Once the order is confirmed, the payment done and the invoice displayed (i.e. stub
ProcessPayment), the customer proceeds to the Download scenario, where the bought widgets and
license keys are available for download (Figure 10.23).

Several global variables are used in this case study. They are listed in Table 10.2.1.

Preconditions were added to many start points to reflect the situations under which they can be
triggered. For instance, the preconditions for the start points in the BrowseCatalog plug-in map are
described in Table 10.2.1.

Several responsibilities in this case study also modify the content of these variables. Table 10.2.1

shows, for the same map, how these variables are updated by the responsibilities.
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goCheckout goCheckout
L ol

toCheckout {OUT1}

Figure 10.21: Plug-in for BrowseCatalog Stub [ARWO05]

checkont {IN1}
Customer System
viewLogin promptAccount
signln [InvalidAccount]
®
ccouat]
orderDisplayed
|sp 4 buildOrder
placeOrder ProcessPayment
ouTL
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° o ]
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Figure 10.22: Plug-in for Checkout Stub [ARWO5]

231



downloadArea {IN1}

Customer System
showDownloadArea " processDownloadArea
downloadWidget sendDownload _»
exit

\, end {OUT1}

Figure 10.23: Plug-in for Download Stub [ARW05]

| Variable | Description
CanAddProd Products can be added on this page
CanGoDownload Can go to the download area
CanPlaceOrder An order can be placed on this page
CanSignln The customer can sign in
CartAvailable The cart is visible
CategoryAvailable Categories can be selected on this page
InBrowser In the browser page
InCheckout In the checkout page
InDownloadArea In download area
ProductsDisplayed | Products are displayed
SuccessfulDownload | The download was successful
ValidAccount The customer account is valid

Table 10.1: Online Store: Global Boolean Variables [ARW05)

[ Start Point | Precondition |
enterSite -
browse InBrowser
selectCategory InBrowser A CategoryAvailable
selectProduct InBrowser A ProductsDisplayed
addToCart InBrowser A CanAddProd
editCart InBrowser A CartAvailable
viewCart InBrowser
goCheckout InBrowser A CartAvailable
downloadWidget InDownloadArea

Table 10.2: Online Store: Start Point Preconditions for Browsecatalog Plug-in [ARWO05]
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Responsibility Modification (T for True, F for False) |
getCategoryProducts ProductsDisplayed « T

goCheckout InBrowser + F, CartAvailable + F, CategoryAvailable « F
showCart CartAvailable « T, CanAddProd « F, ProductsDisplayed « F
showDetail CanAddProd «+ T, ProductsDisplayed «— F
showWelcome InBrowser « T, CartAvailable « F, CategoryAvailable « T
promptAccount CanSignln «+ T

buildOrder CanSignIn « F, CanPlaceOrder «+ T

Pay CanPlaceOrder — F
processDownloadArea InDownloadArea «— T

sendDownload SuccessfulDownload « T

Table 10.3: Online Store: Variables Modified by Responsibilities in BrowseCatalog Plug-in [ARW05]

10.2.2 AsmlL Specification of the Online Store

Figure 10.24 describes the AsmL implementation of the global variable defined in the previous
section.

var InBrowser = new BooleanValue(false) // In the browser page

var CartAvailable = new BooleanValue(false) // The cart is visible

var CategoryAvailable = new BooleanValue(false) // Categories can be selected on this page
var ProductsDisplayed = new BooleanValue(false) // Products are displayed

var CanAddProd = new BooleanValue(false) // Products can be added on this page

var CanGoDownload = new BooleanValue(false) // Can go to the download area

var CanPlaceOrder = new BooleanValue(false) // An order can be placed on this page

var CanSignln = new BooleanValue(false) // The customer can sign in

var InCheckout = new BooleanValue(false) // In the checkout page

var InDownloadArea = new BooleanValue(false) // In download area

var SuccessfulDownload = new BooleanValue(false) // The download was successful

var ValidAccount = new BooleanValue(false) // The customer account is valid

var WidgetDownloaded = new BooleanValue(false) // Widget is downloaded

var CartUpdated = new BooleanValue(false) // Widget is downloaded

var Browse.from_checkout = new BooleanValue(false) // enables browsing from the checkout plug-in
var Max.SelectCatalog = 5

var Select_Catalog = new BooleanValue(true)

Figure 10.24: AsmL Implementation: Online Store Global Variables
Figures 10.25, 10.26, 10.27, 10.28 and 10.29 describes respectively the AsmL implementation of

BrowseCatalog plug-in, Checkout plug-in, ProcessPayment plug-in, Download plug-in and the root
map.
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var sp-enterSite_browse as SP_Construct = SP_Construct (Browsedinl , e2 , "sp_enterSite_browse”, Boolean-
Var(pre_cond_start), Customer)

var sp_Browse as SP_Construct = SP_Construct (Browse.in2 , e3 , ”sp_Browse”, BooleanVar(_true) , Customer)
var showWelcome as R_Construct = R_Construct(e4 , 5, ”showWelcome” ,System)

var viewWelcome as EP_Construct = EP_Construct(e5 , h0 , " viewWelcome”, true, Customer)

var OJ_Browse as OJ_Construct = OJ_Construct(e2,e3,e4, ”OJ-Browse”, System)

var sp-selectCategory as SP_Construct = SP_Construct (selectCategory.inl , e6 , ”sp_selectCategory ”, Boolean-
Var(InBrowser)+BooleanVar(CategoryAvailable)-+ BooleanVar(Select_Catalog), Customer)

var getCategoryProducts as R.Construct = R.Construct(e6 , e7, ”getCategoryProducts” ,System)

var viewCategory as EP_Construct = EP_Construct(e7 , h0 , ”viewCategory”, true, Customer)

var sp.selectProduct as SP_Construct = SP_Construct (selectProduct.inl , e8 , "sp_selectProduct”, (Boolean-
Var(InBrowser)+BooleanVar(ProductsDisplayed)), Customer)

var showDetail as R_Construct = R_Construct(e8 , €9, "showDetail”,System)

var viewProductDetail as EP_Construct = EP_Construct(e9 , h0 , ” viewProductDetail”, true, Customer)

var sp.addToCart as SP_Construct = SP_Construct (addCart_inl , el0 , ”sp_addToCart”, (Boolean-
Var(InBrowser)+BooleanVar(CanAddProd)), Customer)

var sp-editCart as SP_Construct = SP_Construct (editCart.inl. , ell , sp_editCart”, (Boolean-
Var(InBrowser)+BooleanVar(CartAvailable)), Customer)

var sp.viewCart as SP_Construct = SP_Construct (viewCartiinl , el2 , ”sp_viewCart”, Boolean-

Var(InBrowser)+BooleanVar{CartUpdated), Customer)

var OJ_add_edit as OJ_Construct = OJ_Construct(el0,ell,e13, ”OJ_add.edit”, System)

var OJ.add._edit_view as OJ_Construct = OJ_Construct(el2,e14,e15, " OJ_add_edit_view”, System)

var updateCart as R_Construct = R_Construct(el13 , el4, "updateCart”,System)

var showCart as R_Construct = R_Construct(el5 , el6, "showCart”,System)

var showCart_EP as EP_Construct = EP_Construct(el6 , h0 , ”showCart_EP”, true, Customer)

var sp-goCheckout as SP_Construct = SP_Construct (goCheckout_inl , el7 , ”sp_goCheckout”, (Boolean-
Var(InBrowser)+BooleanVar(Cart Available)), Customer)

var goCheckout as R_Construct = R-Construct(el7 , €18, ” goCheckout”,System)

var toCheckout as EP_Construct = EP_Construct(el8 , h0 , ”toCheckout”, true, Unbound)

var BrowseCatalog Plugin as Maps = Maps (”BrowseCatalog _plugin”, {UCMElement(sp_enterSite.browse, e2
, OJ.Browse), UCMElement(sp.Browse, e3 , OJ.Browse), UCMElement(OJ.Browse, e4 , showWelcome),
UCMElement (showWelcome, e5 , viewWelcome), UCMElement(viewWelcome, h0 , viewWelcome), UCMEle-
ment (sp-selectCategory, e6 , getCategoryProducts), UCMElement(getCategoryProducts, e7 , viewCategory),
UCMElement(viewCategory, h0 , viewCategory), UCMElement(sp-selectProduct, e8, showDetail), UCMEle-
ment(showDetail, €9, viewProductDetail), UCMElement(viewProductDetail, h0 , viewProductDetail), UCMEle-
ment(sp-addToCart, €10 , OJ_add_edit), UCMElement(OJ_add_edit, el3 , updateCart), UCMElement(sp_editCart,
ell , OJ.add.edit), UCMElement(updateCart, el4 , OJ.add_edit_view), UCMElement(sp.viewCart, el2 ,
0J_add_edit_view), UCMElement(OJ.add-edit_view, el5 , showCart), UCMElement(showCart, €16 , show-
Cart.EP), UCMElement(showCart_EP, h0 , showCart_.EP), UCMElement{sp_goCheckout, el7 , goCheckout),
UCMElement (goCheckout, €18 , toCheckout), UCMElement(toCheckout, h0 , toCheckout)})

Figure 10.25: AsmL Implementation: Browse Catalog Plug-in
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var sp_checkout as SP_Construct = SP_Construct (sp-checkout.inl, 19, "sp_checkoui”, BooleanVar (InCheckout),
Customer

var sp_gignln as SP_Construct = SP_Construct (spsignln.inl, €22 , ”spsignln”, Boolean-
Var(CanSignIn)+BooleanVar(InCheckout), Customer)

var sp-placeOrder as SP_Construct = SP_Construct (sp_placeOrder.inl, e27 , ”sp_placeOrder”, Boolean-
Var(CanPlaceOrder)+BooleanVar(InCheckout), Customer)

var sp_goDownload as SP_Construct = SP_Construct (sp-goDownload_inl, €29 , ”sp.goDownload”, Boolean-
Var(CanGoDownload)+BooleanVar(InCheckout), Customer)

var sp_Browse_checkout as SP_Construct = SP_Construct (sp-Browse.checkout_inl, e31 , ?sp_Browse_checkout”,
BooleanVar(Browse_from_checkout), Customer)

var promptAccount as R-Construct = R_Construct(e20 , e21, " promptAccount”,System)

var buildOrder as R_Construct = R_Construct(e25 , 26, *buildOrder” ,System}

var buildDownload as R_Construct = R_Construct(e29 , €30, ”buildDownload” ,System}

var goBrowse as R_Construct = R_Construct(e31 , e32, ”goBrowse ”,System)

var viewLogin as EP_Construct = EP_Construct(e21 , h0 , ”viewLogin”, true, Customer)

var orderDisplayed as EP_Construct = EP_Construct(e26 , h0 , “orderDisplayed”, true, Customer)

var showInvoice as EP_Construct = EP_Construct(e28 , h0 , ”showlnvoice”, true, Customer)

var end_checkout as EP_Construct = EP_Construct(e30 , h0 , "end_checkout”, true, Unbound)

var toBroswe_checkout as EP_Construct = EP_Construct(e32 , h0 , "toBroswe_checkout”, true, Customer)

var OJ_checkout as OJ_Construct = OJ.Construct(el9,e23,e20, ” OJ_checkout”, System)

var OF._checkout as OF_Construct = OF_Construct(e22,0R. Selection(e23, -BooleanVar(ValidAccount)),
OR _Selection(e25, BooleanVar(ValidAccount)), ” OF checkout”, System)

var ProcessPayment as Stub.Construct= Stub_Construct(e27,e28,{Stub_Selection (ProcessPayment_Plugin,
BooleanVar(_true))}, {Stub_Binding(ProcessPayment_Plugin, €27, sp.ProcessPayment), Stub_Binding (Process-
Payment_Plugin, 28, ep_ProcessPayment)}, ” ProcessPayment”)

var Checkout_Plugin as Maps = Maps (”Checkout_Plugin”, {UCMElement(sp.checkout, €19 , OJ.checkout),
UCMElement(OJ_checkout, €20 , promptAccount), UCMElement(promptAccount, e21 , viewLogin), UCMEle-
ment(viewLogin, hO , viewLogin), UCMElement(sp.signln, €22 , OF._checkout), UCMElement(OF checkout,
€23 , OJ.checkout), UCMElement(OF_checkout, €25 , buildOrder), UCMElement(buildOrder, €26, or-
derDisplayed), UCMElement(orderDisplayed, hO, orderDisplayed), UCMElement(sp-placeOrder, €27 , Pro-
cessPayment), UCMElement(ProcessPayment, €28 , showlnvoice), UCMElement(showInvoice, h0 , showln-
voice), UCMElement(sp-goDownload, €29 , buildDownload), UCMElement(buildDownload, €30 , end_checkout),
UCMEIlement (end_checkout, h0 , end-checkout), UCMElement (sp_Browse_checkout, €31 , goBrowse), UCMEle-
ment (goBrowse, e32 , toBroswe_checkout), UCMElement (toBroswe_checkout, h0 , toBroswe_checkout)})

Figure 10.26: AsmL Implementation: Checkout Plug-in Map

Var sp_ProcessPayment as SP_Construct = SP_Construct (sp.ProcessPayment_inl , t6 , "sp_ProcessPayment”,
BooleanVar(InCheckout), System)

var Pay as R_Construct = R_Construct(t6 , t7, ”Pay”,System)

var ep-ProcessPayment as EP_Construct = EP_Construct(t7 , h0 , "ep.ProcessPayment”, true, System)

var ProcessPayment_Plugin as Maps = Maps (" ProcessPayment.Plugin”, {UCMElement(sp-ProcessPayment, t6 ,
Pay), UCMEIlement(Pay, t7 , ep-ProcessPayment), UCMElement (ep_ProcessPayment, h0 , ep.ProcessPayment)})

Figure 10.27: AsmL Implementation: Payment Plug-in

var sp.downloadArea as SP-Construct = SP_Construct (sp-downloadArea.inl , €33, "sp.downloadArea”, Boolean-
Var(CanGoDownload), System)

var sp_downloadWidget as SP_.Construct = SP_Construct (sp-downloadWidget_inl , €37 , ”sp-downloadWidget”,
BooleanVar (InDownloadArea)-+BooleanVar (SuccessfulDownload), System)

var sp_exit as SP_Construct = SP_Construct (sp_exit.inl, 38 , "sp_exit”, BooleanVar(WidgetDownloaded), Cus-
tomer)

var processDownloadArea as R-Construct = R_Construct(e33 , e34, " processDownloadArea” ,System)

var sendDownload as R_Construct = R_Construct(e37 , 36, "sendDownload” ,System)

var OJ_download as OJ_Construct = OJ_Construct(e34,e36,e35, "OJ_download”, Customer)

var showDownloadArea as EP_Construct = EP_Construct(e35 , h0 , "showDownloadArea”, true, Customer)

var ep_Download as EP_Construct = EP_Construct(e38 , hO , "ep_Download”, true, Unbound)

var Download_Plugin as Maps = Maps (" Download-Plugin”, {UCMElement(sp-downloadArea, €33 , processDown-
loadArea), UCMElement(processDownloadArea, €34 , OJ_download), UCMElement(OJ_download, €35 , show-
DownloadArea) , UCMElement (showDownloadArea, h0 , showDownloadArea), UCMElement(sp-downloadWidget,
e37 , sendDownload) , UCMElement(sendDownload, €36 , OJ_download), UCMElement(sp-exit, e38
ep-Download), UCMElement(ep-Download, h0 , ep_Download)})

’

Figure 10.28: AsmL Implementation: Download Plug-in Map
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var sp-enterSite_root as SP_Construct = SP_Construct (inl, t1, "sp_enterSite_root”, BooleanVar(pre_cond_start),
Customer)

var ExitSite as EP.Construct = EP.Construct(t5 , h0 , ”ExitSite ”, true, Unbound)

var BrowseCatalog as Stub_Construct= Stub_Construct(t1,t3,t2,Stub_Selection (BrowseCatalog Plugin, Boolean-
Var(_true)), Stub_Binding(BrowseCatalog-Plugin, t1, sp_enterSite_browse), Stub_Binding (BrowseCatalog_Plugin,
t2, toCheckout), Stub_Binding(BrowseCatalog.Plugin, t3, sp_Browse), ” BrowseCatalog” )

var CheckoutStub as Stub_Construct= Stub.Construct({t2},{t3,t4},{Stub_Selection (Checkout.Plugin,
BooleanVar(_true))}, {Stub_Binding(Checkout_Plugin, t2, sp-checkout), Stub.Binding (Checkout_Plugin, t4,
end_checkout), Stub_Binding (Checkout_Plugin, t3, toBroswe_checkout)}, ” CheckoutStub”)

var DownloadStub as Stub_Construct= Stub_Construct({t4},{t5},{Stub_Selection (Download_Plugin, Boolean-
Var(.true))}, {Stub_Binding(Download Plugin, t4, sp.downloadArea), Stub.Binding (Download_Plugin, t5,
ep-Download)}, ” DownloadStub”)

var RootMap as Maps = Maps(”RootMap”, {UCMElement(sp_enterSite_root ,t1 , BrowseCatalog), UCMEle-
ment(BrowseCatalog, t2 , CheckoutStub), UCMElement(CheckoutStub, t4 , DownloadStub), UCMEle-
ment (DownloadStub, t5 , ExitSite), UCMElement(CheckoutStub, t3, BrowseCatalog), UCMElement (ExitSite, h0
, ExitSite)})

Figure 10.29: AsmL Implementation: Online Store Root Map

10.2.3 Online Store Scenarios Generation
The following traces are generated from the AsmL specification:

o Figure 10.30 describes one possible trace of scenario where all responsibilities are executed

once and the costumer has a valid account.

o Figure 10.31 describes one possible trace of scenario where the customer selects browse from

the checkout plug-in map to go again into browse Catalog plug-in map.

e Figure 10.32 describes one possible trace of scenario where the customer has an invalid account.
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Start Executing: Online Store

Start Point:sp_enterSite_root in

Component :Customer
Stub_Construct:BrowseCatalog

Execution of Plugin: BrowseCatalog plugin
Start Point:sp_enterSite browse in

Component : Customer

OR-Join:0J-Browse

Responsibility:showWelcome in component:System
End point:viewWelcome in component:Customer
Start Point:sp selectCategory in

Component : Customer
Responsibility:getCategoryProducts in
component : System

End point:viewCategory in component:Customer
Start Point:sp_selectProduct in
Component : Customer

Responsibility:showDetail in component:System
Bnd point:viewProductDetail in

component : Customer

Start Point:sp addToCart in Component:Customer
OR-Join:0J_add_edit

Responsibility:updateCart in component:System
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCart_EP in component:Customer
Start Point:sp_editCart in Component:Customer
OR-Join:0J_add edit

Responsibility:updateCart in component:System
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCart EP in component:Cusiomer
Start Point:sp_viewCart in Component:Customer
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCarxt_EP in component:Customer
Start Point:sp_goCheckout in

Component :Customer

Responsibility:goCheckout in component:System
End point:toCheckout in component:Unbound
Stub_Construct:CheckoutStub

Execution of Plugin: Checkout Plugin

Start Point:sp_checkout in Component:Customer
OR-Join:0J_checkout

Responsibility:promptaccount in
component:System

End point:viewLogin in component:Customer
Start Point:sp signIn in Component:Customer
OR-Fork:OF_checkout
Responsibility:buildOrder in

component : System

End point:orderDisplayed in

component : Customexr

Start Point:sp_placeOrder in

Component : Customer
Stub_Construct:ProcessPayment

Bxecution of Plugin: ProcessPayment_Plugin
Start Point:sp_ProcessPayment in
Component:System

Responsibility:Pay in component:System

End point:ep_ProcessPayment in

component :System

End point:showInvoice in component:Customer
Start Point:sp goDownload in

Component : Customer
Respongibility:buildbDownload in

component :System

End point:end checkout in component:Unbound
Stub_Construct:DownloadStub

Execution of Plugin: Download_Plugin
Start Point:sp downloadArea in

Component :System
Responsibility:processDownloadArea in
component : System

OR-Join:0J _ download

End point:showDownloadArea in

component : Cusgtomer

Start Point:sp downloadWidget in
Component:System
Responsibility:sendDownload in

component : System

OR-Join:0J_download

End point:showDownloadArea in

component : Cugtomer

Start Point:sp_exit in Component:Customer
End point:ep DPownload in component:Unbound
End point:ExitSite in component:Unbound
Execution Terminated successfully

Figure 10.30: Online Store: Trace 1




Start Bxecuting: Online Store

Start Point:sp_t te_xroot in O H!
Stub_Construct:BrowseCatalog

Execution of Plugin: BrowseCatalog_plugin

Start Point:sp_t _browse in O 2 QY
OR-Join:0J-Browse
ibility: in :System
End point:viewWelcome in component:Customer
Start Point:sp_selectC: Yy in Comp Het
p ibili Y in :System
End point:viewC: Yy in Heb
Start Point:sp_sel roduct in C: He

Responsibility:showDetail in component:System
End point:vi 1 in P He!
Start Point:sp_addToCart in Component:Customer
OR-Join:0J_add_edit
ponsibility:up Cart in
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCart_EP in component:Customer
Start Point:sp_editCart in Component:Customer
OR-Join:0J_add_edit
ibility:upd: art in
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCart EP in component:Customer
Start Point:sp viewCart in Component:Customer
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
Bnd point:showCart_EP in component:Customer
Start Point:sp in C Hat
bility:goCh in :System
Bnd point:toCh in H
Stub_Construct:CheckoutStub
Bxecution of Plugin;: Checkout Plugin
Start Point:sp in C Qe
OR-Join:0J_checkout
ponsibility:promp in
End point:viewLogin in He
Start Point:sp_signIn in Component:Customer
OR-Fork:OF_checkout
Raspongibility:buildOrder in component:System
End point: splayed in
Start Point:sp_placeOrder in Component:Customer
Stub_Construct:ProcessPayment
Bxecution of Plugin: ProcessPayment Plugin

:System

:System

p :System

Start Point:sp_] Y in C :System
ibility:Pay in :System
End point:ep_ in :System

End point:showlnvoice in component:Customer
Start Point:sp_Browse check in c Oy
Respongibility:goBrowse in component:System
End point: _check in He
Stub_Construct:BrowseCatalog

Bxecution of Plugin: BrowseCatalog_plugin
Start Point:gp_Browse in Component:Customer
OR-Join:0J-Browse

Responsibility:showWelcome in component:System

End point:viewWel in P He!

Start Point:sp_select(: ¥y in C sy
ibility >4 in :System
BEnd point:viewC: ¥ in 1O
Start Point:sp_salectProduct in Component:Customer
ibility: il in :System
Bnd point:vi il in He!
Start Point:sp_addToCart in Component:Customer
OR-Join:0J_add_edit
ibilid. art in :System
OR-Join:0J_add_edit_view
Respongibility:showCaxt in component:System
End point:showCart EP in component:Customex
Start Point:sp_editCart in Component:Customer
OR-J0in:0J_add_edit
ibility: Cart in :System
OR-Join:0J add edit view
Responsibility:showCart in component:System
BEnd point: t_EP in P He!
Start Point:sp_viewCart in Component:Customer
OR-Join:0J_add_edit_view
Responsibility:showCart in component:System
End point:showCart_EP in component:Customex
Start Point:sp_goCh in Comp H!
ponsibility:gaCh in :System
Bnd point:toChecks in :
Stub_Construct:CheckoutStub
Exscution of Plugin: Checkout_Plugin
Start Point:sp_t in Comp Hs!
OR-Join:0J_checkout
P ibility:promp in P :System
Bad point:viewlogin in component:Customer
Start Point:sp_signI¥n in Component:Customer
OR-Fork:OF_checkout
Responsibility:buildOrder in component:System
Bnd point: isplayed in e
Start Point:sp placeOrder in Component:Customer
Stub_Construct:ProcessPayment
Execution of Plugin: ProcessPayment Plugin
Start Point:sp_P: yment in Ct :System
ibility:Pay in 1System
End point:ep_ Pr in :System

Y
Online Store:UpStub executed
End point:showinvoice in component:Customer
Start Point:sp_goDownload in Component:Customex
Responsibility:buildDownload in component:System
BEnd point:end_check: in :Unbound
Stub_Construct:DownloadStub

Execution of Plugin: Download Plugin

Start Point:sp_downloadArea in C :System
ibility: load in :System

OR-~Join:0J_download

End point: loadArea in H!

Start Point:sp_downloadWidget in Component:System
ibility: load in :System

OR-Join:0J_download

End point: loadArea in Oy

Start Point:sp_exit in Component:Customer
Bnd point:ep_Download in component:Unbound
Bnd point:ExitSite in component:Unbound
Execution Terminated successfully

Figure 10.31: Online Store: Trace 2
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Start Executing: Online Store

Start Point:sp_enterSite_root in Component:Customer
Stub_Construct:BrowseCatalog

Bxecution of Plugin: BrowseCatalog_plugin

Start Point:sp_enterSite_browse in Component:Customer
OR-Join:0J-Browse

Responsibility:showWelcome in component:System

End point:viewWelcome in component:Customer

Start Point:sp_selectCategory in Component:Customer
Responsibility:getCategoryProducts in component:System
End point:viewCategory in component:Customer

Start Point:sp_selectProduct in Component:Customer
Responsibility:showDetail in component:System

End point:viewProductDetail in component:Customer
Start Point:sp_addToCart in Component:Customer
OR-Join:0J_add_edit

Responsibility:updateCart in component:System
OR-Join:0J_add_edit_ view

Responsibility:showCart in component:System

End point:showCart_EP in component:Customer

Start Point:sp_editCart in Component:Customer
OR-Join:0J_add_edit

Responsibility:updateCart in component:System
OR-Join:0J_add_edit_view

Responsibility:showCart in component:System

End point:showCart EP in component:Customer

Start Point:sp viewCart in Component:Customer
OR-Join:0J_add_edit_view

Responsibility:showCart in component:System

End point:showCart EP in component:Customer

Start Point:sp_goCheckout in Component:Customer
Responsibility:goCheckout in component:System

End point:toCheckout in component:Unbound
Stub_Construct:CheckoutStub

Rxecution of Plugin: Checkout_Plugin

Start Point:sp_checkout in Component:Customer
OR-Join:0J_checkout

Responsibility:prompta t in comp t:System
End point:viewLogin in component:Customex

Start Point:sp_signIn in Component:Customer
OR-~Pork:0F_checkout

OR-Join:0J_checkout

Responsibility:promptAccount in component:System
End point:viewLogin in component:Customer

Figure 10.32: Online Store: Trace 3
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10.2.4 UPPAAL Specification and Property Verification

Figure 10.33 illustrates UPPAAL specification of the root map for widgets.com online store.

Hiowsslaaig: s

wsebataioy ol

fiis]: S
(a) Enter Site Start Point (b) Browse Catalog Stub

W W Do

(c) Checkout Stub (d) Download Stub (e) Exit Site End Point

Figure 10.33: UPPAAL Implementation of Root map for Widgets.com Online Store

Figures 10.34 and 10.35 illustrate UPPAAL specification of the BrowseCatalog plug-in.
Figure 10.36 illustrates UPPAAL specification of the Checkout plug-in.
Figure 10.37 illustrates UPPA AL specification of the Download plug-in.
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Figure 10.34: UPPAAL Implementation of BrowseCatalog Plug-in
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Figure 10.35: UPPAAL Implementation of BrowseCatalog Plug-in(2)
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Figure 10.36: UPPAAL Implementation of Checkout Plug-in
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exit_in

—
DowosdAredN1  w ProcDownidArea ProchownidArea showDwiciArea
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(a) Download Segment

sy Downlosdolal a{’

25y

(b) Exi’t\ Segment
Figure 10.37: UPPAAL Implementation of Download Plug-in

For the purpose of verifying timed properties, we assume that all responsibilities have a delay

equal to 1 and a duration between 1 and 2 time units.

e Precedence Property: Adding a product to cart must be preceded by viewing the product
details. This property is translated into the following UPPAAL formula:

A <> Cart.addToCart imply Select Prod.ViewProduct Detail (48)

This property is checked to be true by the UPPAAL verifier.

e Response Property: A payment is followed by a widget download (i.e. responsibility send-
Downld). This property is translated into the following UPPAAL formula:

ProcessPayment.Pay --» Download.sendDownld (49)

This property is checked to be false by the UPPAAL verifier. Indeed, nothing can force the
customer to exit the download area even after paying for the product. UPPAAL generates
an execution trace of a counter example showing that after reaching location showdwnldArea
there is a possible transition to the exit segment. This is the intended behavior not a design

flaw.

¢ Fairness Property: There is a scenario where the customer selects a product, pays for it and

proceeds to a download. This property is translated into the following UPPAAL formula:

A <> Download.showDwnldArea (50)
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This property is not satisfied because of UPPAAL’s lack of fairness. After signing in, a customer
can go back to browse plug-in without placing an order. UPPAAL has no means to exit a loop

and to force the execution of leftover behavior.

e Safety Property: Customers with invalid accounts cannot proceed with a payment. This
property is translated into the following UPPAAL formula:

A<>ValidAccount imply ProcessPayment.Pay (51)

This property is not satisfied and this is expected.

¢ Time Bounded Property: The welcome screen appears within 3 time units after the cus-

tomer enters the site.
enterSite.start --» Browse.viewWelcome and MClock < 3 (52)

Having a delay equal to one time unit for responsibility showWelcome and a duration between
1 and 2, this property is checked to be true by the UPPAAL verifier.

10.3 Lessons Learned

In the preceding sections, we have applied our methodology to two case studies, one case study
of a telecommunication protocol and one case study of web application. The model construction
process in both cases was very instructive. We gained insights in various aspects of system modeling,
scenario integration, dealing with hierarchical specification and property specification. From these

experiments, we were able to distill some useful rules:

e Formal modeling. The modeling phase is very important and as useful as the validation and
verification phase. As many before us, we experienced that the construction of a formal model
of the system typically allows for the comprehension of the system and may expose weaknesses

and inconsistencies in the design of the system.

— AsmL Models: The use of AsmL as target implementation language helped to cap-
ture many specification details such as variables values, components traversed, conditions
computation (i.e. logical conditions on OR-Forks and plug-in selection policies at dy-
namic stubs) and timing information (for timed UCM models). Depending on the user
needs, more specific information can be retrieved from an UCM-AsmL specification. Such
information may involve the UCM component dependencies (backward and forward com-
ponent dependencies), number of times a loop is traversed, the number of times a specific
plug-in is selected, etc.

— Timed Automata Models: Our optimized timed automata model involves the sequen-
tial composition of UCM constructs to form a set of parallel processes. Hence, many
intermediate locations can be suppressed allowing for a reduced state space and more

efficient verification step. When UCM specification contains loops, TA processes may be
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executed multiple times. To avoid deadlock situations, we add a transition between the

end and start location in each process involved in loops

e Property Specification. A model checker is used to check whether a property ¢ holds for
a model M. The total set of properties S which the model M should satisfy is important as it
constitutes the contract that the model M should satisfy. Theoretically, the set S should be
defined before the actual verification with a model checker is started and should not be formu-
lated on-the-fly during the verification process. In practice, when specifying TCTL properties
in UPPAAL, the process name should be appended to the location name (for instance A[] Pro-
cessName.locationName, etc.). However, the process name is only known after the sequential

composition step.

e Reduction Techniques: The purpose of using reduction techniques in Early Stages V&V
is two-fold. First, it reduces the size of the specification (in both AsmL and TA formalisms)
allowing for a more focuses analysis. Second, UCM-based change impact analysis benefit from
reduction techniques to assess the impact of a change when the specification is modified to fix
a design flaw or to perform an upgrade.
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Chapter 11

Conclusions and Future Work

In this chapter, we first review the main contributions of the thesis, relate them to the research
hypothesis and discuss whether our initial goals have been met. In Section 11.2, we briefly compare
Early Stages V&V methodology to SPEC-VALUE and we provide insights on how both methodolo-

gies can be integrated. Finally, we propose some directions for future research.

11.1 Hypothesis and Contributions of the Thesis

This thesis presents Early Stages V&V, which is a methodology for the validation and verification
of specifications at early stages of development process. Our approach combines formal specification
techniques (FSTs) with the semi-formal language Use Case Maps. Our first research hypothesis is

denoted as follows:

At the early stages of system development, requirements described using the Use Case
Map language can be formalized in terms of Abstract State Machines (ASM). Hence,
UCM models can be validated through simulation and functional testing.

Chapter 4 presents a formal syntax and a formal operational semantics for the Use Case Maps
language based on Abstract State Machines. Two possible ASM-based solutions were proposed: (1)
Multi Agent ASM solution and (2) Single agent ASM solution with non deterministic interleaving.
Both solutions are implemented within the ASM-UCM simulation engine (see Section 4.3), designed
for simulating and executing UCM specifications.

Different theories and techniques are involved in the support of the Farly Stages V&V method-
ology. Trace generation, reduction techniques (Slicing) and model checking were successfully applied
in our methodology.

Our second research hypothesis is denoted as follows:

In the process of verifying complex systems, requirements described using the Use Case
Map language can be validated and verified efficiently through the use of reduction
techniques.
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Indeed, we showed that the use of reduction techniques at Use Case Maps abstraction level can
help reduce the specification size, allowing for more efficient validation and verification. In particular
Chapter 5 describes how slicing (i.e. both backward and forward slicing) is applied to efficiently
validate a UCM specification and to assess the impact of a change (i.e. for instance a bug fix or an
upgrade).

The need to incorporate non-functional aspects, and in particular time-related aspects into re-
quirement languages has been widely recognized. We believe also that Use Case Maps notation can
be extended to cover non-functional requirements such as timing constraints.

Our third research hypothesis is denoted as follows:

Use Case Maps notation can be extended to cover non-functional requirements such as
timing constraints. Timed UCM can be formalized in terms of CTS (Clocked Transi-
tion System) and Timed Automata (TA) formalisms that can be analyzed and verified.

In Chapter 6, we have proposed a collection of eleven criteria that we have used to categorize
and compare thirteen timed scenario notations. In Chapter7, we have extended the Use Case
Maps language with time. Two formalization approaches for timed UCM language were presented:
(1) Clocked Transition System (CTS) based semantics for both interleaving and true concurrency
models (2) Timed Automata (TA) based semantics. Chapter 8 proposes an approach to formally
verify timed UCM specifications using model checking.

These three research hypothesis were validated through the theoretical framework supporting
the used techniques (i.e. ASM, CTS and TA formalisms) and through the successful application
of this methodology to the simple telephony system (our running case study) and two case studies
presented in Chapter 10.

Although there exists a significant body of research in the area of formal verification and model
checking tools of software and hardware systems, there has only a limited industry and end-user
acceptance of these tools. Beside the technical problem of state space explosion, one of the main
reasons for this limited acceptance is the unfamiliarity of users with the required specification nota-
tion. We believe that Use Case Maps can be used to describe a set of commonly used properties that
are presented in terms of occurrence, ordering and temporal scopes of actions. Furthermore, UCM
also supports the description of properties with respect to their architectural scope. This may be
achieved through a minimal extension of UCM language. Our fourth research hypothesis is denoted

as follows:

The visual and easy to learn syntax of UCM, can support the description of a large set

of high level properties without the need for temporal logic formalisms.

Chapter 9 has yielded two main contributions. First, we have presented a UCM based spec-
ification pattern that can simplify this activity and make it available to the novice practitioner.
The specification pattern system uses templates to cover most common expected properties found
in requirements specifications. We have provided a mapping of our UCM-based system to popular

temporal logics CTL and TCTL. These templates combine qualitative, real-time and architectural
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properties into a single graphical representation. To the best of our knowledge, no existing pat-
tern system has considered these three scopes together. Second, we have extended the traditional
real-time temporal logics to include architectural aspects. We have provided an overview of the se-
mantics of the systems targeted by what we call ‘Architectural real-time temporal logic’. Moreover,
we have provided formal syntax and semantics of ArTCTL, an extension of TCTL with architectural
aspects. We believe that having the requirement specification and properties described using the

same formalism will enable greater degrees of analysis while preserving a high level of abstraction.

11.2 Integrating Early Stages V&V with SPEC-VALUE

When it comes to the capture, specification, validation and verification of requirements and high-
level designs, many existing methodologies can benefit from Early Stages V&V techniques and vice
versa. In this section, we focus on a potential integration with SPEC-VALUE approach since both
are based on Use Case Maps.

Early Stages V&V and SPEC-VALUE [Amy0la] share the following similarities:

e Requirements are captured with Use Case Maps, which visually describe causal scenarios bound
to component structures.

e Both are iterative and incremental scenario-driven approaches.

e Mapping UCM specifications to a formal language. SPEC-VALUE uses LOTOS as formal
specification technique whereas Early stages V&V uses Abstract State Machines, Clocked

Transition System and Timed automata.
e Both methodologies use simulation as part of their validation step.
However, there are some differences between the two methodologies:

e Early Stages V&V is based on simulation and trace generation techniques while SPEC-VALUE
uses testing as validation approach supported by a well-established LOTOS theory and a rich
set of testing tools.

e Early Stages V&V assumes that the UCM system specification is available and ready for
validation, whereas SPEC-VALUE provides several guidelines for the use of the UCM language
and the integration of scenarios. One of SPEC-VALUE contribution is the separation of

concerns between system functionalities and underlying structure.

e Early Stages V&V can be applied to both untimed and timed Use Case Maps versions, whereas
SPEC-VALUE targets untimed UCM specifications only.

e Early Stages V&V integrates both validation and verification in a single methodology. Indeed,
it combines simulation and model checking in order to gain confidence in the correctness of
UCM models.
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» SPEC-VALUE does not address the issue of requirement modification (step 8 in Figure 3.1).
Early Stages V&V combines reduction techniques with change impact analysis to ensure that
a specification change does not introduce new issues.

Looking at the underlined similarities and differences between our approach and SPEC-VALUE,
we can conclude that both methodologies can potentially benefit from each other. In what follows,

we provide some insights on how these two methodologies can be integrated:

e The initial step of our approach (from requirement to UCM specification) can benefit from
steps 1, 2, 3 and 4 of SPEC-VALUE (see Figure 3.1) to build the UCM specifications from

functional scenarios and architecture.

o SPEC-VALUE provides guidelines on the generation of generic test suites from UCM functional
scenarios (step 5 in SPEC-VALUE). Eight UCM-oriented testing patterns were proposed to
cover alternatives, concurrent paths, loops, multiple start points, single stubs, and causally
linked stubs. The resulting test suites may be used to validate the AsmL model against the

requirements.

e Both LOTOS and ASM provide a formal framework for validating specification. The user may
use either language as target FDT depending on his/her familiarity the language concepts, tool
support and his/her ultimate goal. If code generation is the ultimate goal, ASM represents
the best choice.

o SPEC-VALUE deals only with untimed models and does not consider formal verification. Qur
approach introduces the notion of time in Use Case Maps and allows for the verification of
timed/untimed UCM models using UPPAAL model checker.

o SPEC-VALUE may benefit from the UCM based change impact analysis (and ripple effect
analysis) when it comes to the modification of the original specification. We have showed that
this can be done through the use of reduction techniques at the UCM level.

11.3 Future Work

Many items left for future work are distributed among the previous chapters. The following list
recalls the most important ones, which target the full automation, optimization and generalization
of this work.

e Automated generation of AsmL specification from UCM model that would implement the

signature of UCM constructs along with the transition relation (as discussed in Section 4.1.2).

e We will investigate the use of dynamic slicing that may significantly reduce the size of a UCM
slice. Providing inputs helps reducing the domain of the UCM and only the parts that comply
with the input values are kept in the final slice. Consequently, the reachability expression is

also reduced.
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e Automated generation of TA specification from UCM models.

e Evaluate the completeness and the effectiveness of our UCM-based pattern system by surveying

real-world specifications.

e Define a complete formal semantics for architectural real-time temporal logic and investigate

the integration of architectural aspects into existing model checking algorithms.
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