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Abstract 

Development, Implementation and Testing of an Expert System for 

Detection of Defects in Gas Turbine Engines 

Choucri-Gabriel Taraboulsi, Ph.D. 
Concordia University, 2008 

Unbalance and misalignment are the major causes of vibration in rotating 

machinery, yet only limited research has been conducted on misalignment. The 

literature reports that misalignment results in an increase in the vibration at a 

frequency corresponding to two times the rotating speed (2x responses). The 

research on misalignment conducted so far has modeled the rotor as two 

coupled shafts supported on linear and non linear bearings, while misalignment 

is at the coupler. The results reported to date are inconsistent and the vibration 

response of a misaligned rotor system is not clearly understood. This dissertation 

presents a study on the effects of a single shaft misalignment on the dynamic 

response of a rotor-shaft system. A rotor system supported on two rigid bearings 

with unbalance and misalignment is modeled using the energy method, and 

Lagrange formulation is used to establish the equations of motion. The 

misalignment is modeled through introduction of pre-load and nonlinear shaft 

stiffness in the direction of pre-load. The model is validated by comparing the 

natural frequencies predicted using the simulation to the rotor system eigenvalue 

and the forced response from the simulation is verified using finite element 

method. A response due to perfectly aligned case is compared with those for 

parallel and angular misalignments of various magnitudes. Simulations are 
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carried out for a speed range of 0 to 10,000 rpm, and the response of the rotor at 

the 2x is carefully examined to establish the effects of various misalignment and 

non-linear parameters on the response. Experiments are conducted using a rig 

test to compare with analytically predicted trends. Various gas turbine engine 

data gathered from the field are also used to confirm the vibration pattern 

predicted by the simulations. The simulated results are finally used to develop an 

expert system that can identify unbalance and misalignment in a rotor system. 

The expert system is developed using Neural Network. Two types of Neural 

Networks are explored, the back-propagation and the Logicon Projection 

Network. Finally, both networks are modified, trained and tested using simulation 

data. The Logicon projection network showed superior performance during 

training, and was chosen over the back-propagation network. The developed 

expert system is tested using field test data of gas turbine engines to 

demonstrate its effectiveness. 
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Chapter 1 

1 Introduction and Literature Review 

1.1 Introduction 

Rotating components are one of the most common elements in mechanical 

systems. They vary from simple configurations such as in fans, pumps etc. to 

highly complex ones such as turbine engines. A rotating system typically consists 

of shafts, bearings, rotors, blades, seals etc., and is required to operate at a 

fixed speed or over a range of speeds. Such systems are exposed to self 

induced vibrations due to defects at manufacturing or due to the defects that 

develop during operations. Simplified models of rotating systems are extensively 

investigated to examine their dynamic responses. There has been significant 

development in the methodology to establish the dynamic responses of rotating 

system under various conditions. The primary causes of vibration response in 

rotating system are unbalance, and misalignment that are inherent in the system 

or that may also develop with the usage of the equipment over time. Although 

these defects may not be crucial for many low speed rotating systems, they can 

be detrimental for systems that operate at very high speeds. Presence of these 

defects in numerous possible configurations may lead to excessive deflection 

and bearing force to cause failure. A diagnostic system with some success has 

been explored in attempts to identify specific problems while in use. Most studies 

were, however, limited to only academic interest. 
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The proposed research focuses on one of the most complex rotating machines, 

namely gas turbine engines. A gas turbine engine of 50 MW typically costs in 

excess of 10 million dollars, and consists of multiple shafts rotating relative to 

each other while attached to many different components. The most common 

problems with such machines are unbalance and misalignment. Although extra 

efforts are made to avoid such defects at manufacturing, they may develop 

during the normal running of the machine. This in turn may lead to excessive 

vibration and dynamic forces resulting in premature failure if remained 

undetected. The cost of such repair and unexpected down time for such 

machinery is excessive. 

The objective of this investigation is to analyze the dynamic behavior of a rotor 

under some common defects, mainly unbalance and misalignment, in order to 

develop an expert system for on-line monitoring and diagnostic purposes. The 

research proposes to develop logics based on the dynamic responses that can 

be utilized for the diagnosis of a specific problem. A properly developed and 

trained Neural Network (N.N.) can be utilized to establish a reliable expert 

system. Such a developed tool will be a highly valuable addition to the reliability 

and operation of a gas turbine engine. Further more, the methodology developed 

can be easily extended to develop expert system as a diagnostic tool for other 

rotor defects. 
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In order to develop the scope of the proposed research, an extensive review of 

literature on related topics has been carried out. Due to lack of published work 

on a single uncoupled shaft with misalignment, a rotor system with a single disk 

and single flexible shaft supported on two bearings is considered for 

development of model for rotor system with misalignment. A model based on 

preload due to shaft misalignment and resulting additional non linear stiffness in 

the direction of misalignment is used in generating rotor responses to unbalance 

in the presence of varying misalignment. The time domain simulation results 

were extensively analyzed in frequency domain to examine the influence of 

misalignment on the rotor responses at multiples of rotating frequency. 

Experiments were also performed with test rig to validate the response obtained 

through model simulations. Response data from a real turbine is also collected to 

aid with the development and testing of the expert system using Neural Network. 

A Neural Network was developed and trained using simulation data to 

demonstrate its effectiveness in identifying a specific problem in the rotating 

system. Finally the trained Neural Network is tested against simulated data and 

real turbine response data to examine its effectiveness. The proposed research 

in developing the expert system for identification of unbalance and misalignment 

in rotor systems is carried out in steps as follows: 

1. State of the art relevant to rotor dynamic, neural networks and expert 

systems were reviewed, 
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2. A model of an out of balance rotor and a misaligned shaft were 

developed, 

3. The developed models were simulated and validated using a finite 

element model, 

4. The validated model was used to generate time and frequency domain 

responses for varying misalignments, 

5. Results from a rig was used to verify the effect of misalignment on rotor 

system response, 

6. Neural Network (N.N.) was developed and trained to detect unbalance 

and misalignment based on the responses. 

7. The developed N.N. was tested using simulation and engine data. 

1.2 Literature Review 

The life and usefulness of rotating machinery can be adversely affected by its 

dynamic behavior. Excessive vibration in rotating machinery could lead to 

premature failure and loss of availability and reliability of the machine. Rotating 

machines are thus extensively investigated by researchers to understand the 

causes and effects of defect in rotor systems. A solution or a monitoring system 

for rotating machinery is highly sought after by manufacturer and operators of 

expensive rotating machineries. Such tool can, however, be only developed 

through in depth understanding of rotor dynamics and response signatures from 

specific defects. This section of the dissertation presents a detailed review of 

literature on relevant topics. 
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The literature review presented deals with three main subjects: 

1. Rotor system dynamics, 

2. Neural Network, 

3. Expert system and their application to gas turbines. 

1.3 Rotor System Dynamic 

Reliable dynamic analysis is an essential requirement for design of any rotor 

system. Furthermore, it is a highly complex mechanism consisting of blades, 

disk, shaft, and multiple bearings that support the assembly. The blade dynamics 

is studied to determine the natural frequencies and to ensure that an operating 

condition will not excite any modes that will lead to a failure. Studies of blade 

only dynamics leads to inaccurate results, because of the simplistic 

representation of the blade boundary conditions. Disk dynamics is studied for the 

same reason as blades to ensure that during operation the disk does not fail due 

to vibration. Similarly, a disk only model does not predict the dynamic behavior 

accurately because the mass and stiffness of the blade is not taken into account. 

Hence dynamics of bladed disks have been studied. These models have 

resulted in better results for both the blades and the disk. These models despite 

their better accuracy were still not adequate for the requirements imposed on 

today's rotating machines. This resulted in the study of rotors where the blades, 

disks, shaft and bearings are modeled and a full system approach is considered. 
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Hence the literature dealing with the general subject of rotor dynamics could be 

divided into five distinct sub-topics: 

1. Blade dynamics, 

2. Disk dynamics, 

3. Blade/disk interaction, 

4. Rotor dynamics, 

5. Misalignment effect on rotor dynamics 

The literature dealing with above sub-topics of rotor systems are reviewed in the 

following sub-sections. 

1.3.1 Blade dynamics, 

Blade failure on an engine could lead to catastrophic event especially in case of 

multiple blade failures. The ability to predict blade vibration could help reduce the 

risks of such failures in gas turbine engines. William Carnegie [1] presents a 

theoretical expression of the work done due to centrifugal effects when a rotating 

cantilever blade executes small vibrations. Using Rayleigh's method an equation 

for the fundamental frequency is established and a solution is deduced for a 

straight blade of uniform symmetrical cross-section. M. M. Bhat, V. Ramamurti 

and C Sujatha [2] present in their paper a comparison between blade and bladed 

disk models and compare the analyzed results with the results obtained from 

tests performed on a 235 MW steam turbine. The turbine consisted of five high 

pressures and five low-pressure stages. The results of the research show that a 
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simple blade alone model fixed at the root gives slightly higher natural frequency 

than a blade fixed to a disk since it assumes that the blade is rigidly fixed. A 

single blade disk model gives a more accurate prediction of the natural 

frequency but cannot predict coupled modes. A model that has more blades can 

predict the coupled modes more accurately. The paper also presents the effect 

of lacing wires and lacing chords, which increases the natural frequency as the 

running speed increases. Depending on the aspect ratios the blade can be 

modeled as a beam or a plate. R.B. Bhat [3] presents a method to determine the 

natural frequencies of rectangular plates using a set of beam characteristic 

orthogonal polynomials in the Rayleigh Ritz method. Natural frequencies 

calculated using the orthogonal polynomial functions are compared with those 

obtained using other methods showing that the orthogonal polynomial method 

yields better results for lower modes, particularly when plates have some of the 

edges free. Vyas and Rao [4] present a mathematical model of bladed disk 

rotating at a variable speed. The model takes into account the Coriolis forces. 

The derived equations are useful in analyzing the dynamics of long slender 

blades. A.G. Henried [5] presented a computer program to determine the small 

deflection in a blade subjected to an arbitrary dynamic load. The model of the 

blade used is developed using a linearly elastic Bemoulli-Euler beam fixed at 

one end and rotating with constant angular velocity. S.V. Hoa [6] investigates the 

vibration of a rotating beam with a tip mass. A finite element model is used, and 

a third order polynomial is assumed for the lateral frequency. The effect of the 

root radius, the tip mass and the setting angle is incorporated in the finite 
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element model. The results are compared with results from other investigations 

using the Myklestad and extended Galerkin methods. The paper shows that the 

setting angle has a significant effect on the first mode frequencies but not on the 

high frequencies. The tip mass tends to decrease the frequencies at low speeds 

of rotation and tends to increase the frequencies at high speed of rotation. R. B. 

Bhat [7] studies the natural frequencies and mode shapes of a cantilever beam 

with tip mass using beam characteristic orthogonal polynomial in the Rayleigh-

Ritz method. The set of orthogonal polynomials that satisfy the boundary 

conditions is generated using the Gram-Schmidt process. The results are 

compared with the results obtained by the Myklestad and extended Galerkin 

methods and finite element methods. 

1.3.2 Disk Dynamics 

A disk modeled as a thick plate is used by Sinha [8] to establish the natural 

frequencies using Rayleigh Ritz method. Celep [9] presents a study on the 

behavior of a free circular plate subjected to a non-conservative radial load with 

the purpose of studying the stability of a circular plate. Iwan and Moeller in their 

paper [10] present an investigation in the effect of a transverse load on the 

stability of a spinning elastic disk. The investigation shows that the disk is 

unstable for speeds in a region above the critical speeds of vibration of a 

spinning disk due to the effects of the load stiffness. Adams in his paper [11] 

studies the dynamic of a flexible disk. The paper shows that at certain critical 
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speeds the disk is not able to support arbitrary spatially fixed transverse loads. 

The paper deals more with flexible disks (floppy disks) and is only mentioned 

here for reference. Chonan [12] in his paper develops a theory for the vibration 

of an elastic disk subjected to a conservative load on its edge. The theory shows 

that a disk under a non-conservative tangential radial load has several flutter 

instability loads in addition to divergence instability load. Lehmann and Hutton 

[13] present the results of an experimental and analytical study into the dynamic 

(vibrational) characteristic of guided rotating saws that are not perfectly flat. 

Tonshoff and Jendryschik [14] study the dynamical behavior of rotating cutting 

tool to improve the surface quality after the machining operation. In the paper the 

dynamic behavior of rotating cutting tools is investigated via experimental and 

analytical methods. 

1.3.3 Blade/disk interaction 

In the previous two sections the literature review on blade dynamics and disk 

dynamics was presented. The interaction of the blades and the disk result in a 

complex system requiring more extensive modeling. The lack of proper 

understanding of the dynamic properties of a bladed disk during the design 

phase of a gas turbine engine could lead to operational problems. Work was 

done to understand the dynamic properties of a bladed disk. J. T Wagner [15] 

presents mathematical models of blade attached to a flexible disk and on a rotor 

with finite mass. The model developed in this paper demonstrates the effect of 
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coupling on blade frequency and demonstrate that the frequency of the blade is 

reduced due to the flexibility of the disk. D. J Ewins [16] in his paper presents an 

analysis of a bladed disk to establish its vibration characteristics. The analysis 

shows that there are more blade natural frequencies than those predicted by the 

blade cantilever modes. S. J. Wildheim [17] presents a method to estimate the 

natural frequencies of a bladed disk using a dynamic sub-structuring method 

employing the free modes of the disk and the clamped free modes of the blade. 

V. Omprakash and V. Ramamurti [18] present a Reyleigh Ritz and cyclic 

symmetry method for the analysis of a rotating bladed disk system. The method 

predicts the few lowest frequencies accurately. Since the blades mounted on a 

disk do not alter the rotor response significantly, a bladed disk can be modeled 

as a simple disk, for the purpose of studying rotor response, as long as the blade 

masses are accounted for. This modeling method will yield equally good trend in 

the responses due to unbalance in the rotor and shaft misalignment. 

1.3.4 Rotor Dynamics 

A shaft supported on a bearing may have multiple critical speeds that the system 

will pass through before it reaches its operating speed. The design of such a 

system must ensure that no critical speeds are in the vicinity of the operating 

speed. The main task of an engineer is to make sure before the execution of the 

design that the previously stated condition is respected. The dynamic 

characteristic of a rotor is greatly affected by the support stiffness. In most cases 

10 



rotors will be supported on bearings that will contribute to the whole system 

damping and stiffness. The bearing location and dynamic characteristic could 

improve or deteriorate the system dynamic behavior. It is therefore very 

important to model the rotor support in a way that would lead to predicting proper 

dynamic properties of the whole system during the design phase. 

Rajalingham, Xistris and Bhat [19] in their paper investigate the effect of the fluid 

film bearing and the shaft material damping on the rotor dynamics. Vazquez, 

Barrett, and Flack [20] present in their paper a study about the effect of bearing 

support flexibility on the stability and response of a flexible rotor. Lees and 

Friswell [21] present in their paper a method of evaluating the imbalance of a 

rotating machine using the measured pedestal vibration. The method requires a 

good numerical method for the rotor and an approximate model for the bearing 

behavior. Bansal and Kirk [22] present in their paper a method to calculate the 

critical speed and stability of a rotor-bearing system. The paper takes into 

account the effect of bearing and bearing support flexibility. The present study 

will focus on the effect of shaft misalignment neglecting bearing compliance, 

since the flexibility of the shaft is significantly less than the flexibility of the 

bearing support system. 
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1.3.5 Misalignment effect on rotor dynamics 

Misalignment is one of the major causes of machinery vibration in the field, yet 

only limited research has been conducted on misalignment. The literature reports 

that misalignment results in an increase in the 2x response (at a frequency two 

times the rotating frequency) and the presence of harmonics. The research 

conducted so far has modeled rotor, bearings and coupling using non-linear 

properties to explain the rotor response due to misalignment. 

Al-Hussain [23] in his paper studies the effect of angular misalignment between 

2 rigid rotors connected by a flexible coupling on their stability. Xu and 

Marangoni [24, 25] present a theoretical model of a complete motor-flexible 

coupling-rotor system. The theoretical model and the experimental validation 

results are in agreement. They also show that the 2x component is magnified 

when close to a system natural frequency. The source of the 2x component is 

the universal joint that is used as a coupling. Sekhar and Prabhu [26] present a 

rotor bearing system modeled using higher order finite element. The model 

shows the effect of misalignment on harmonics and the increase of the 2x 

component. The dominance of the 2x component is attributed to the unbalance 

excitation that had a second harmonic and the location of the coupling with 

respect to the bending mode shape. Y.-S. Lee and C.-W. Lee [27] present a 

rotor-ball bearing system. A dynamic model is derived and experiments are 

carried out with a laboratory test rig. Both the model and laboratory tests agree in 
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that the orbit tends to collapse toward a straight line and that the natural 

frequency of the system associated with the misalignment direction tends to 

increase due to the bearing non linear stiffness. Rao [28] attributes the response 

due to misalignment to coupling forces, shaft preload, and bearing nonlinearities. 

Al-Hussain and Redmond [29] study the effect of parallel misalignment on the 

lateral and torsional responses of two rotating Jeffcott rotors. The results show 

that misalignment affects the torsional and lateral responses. The study, 

however, did not reproduce the effect of misalignment in the form of the 2x 

component. El-Shafei [30] showed that misalignment affects the second-

harmonic using examples from misaligned industrial equipment. Saavedra and 

Ramirez [31, 32] present a theoretical model of a misaligned rotor coupling 

system. The coupling stiffness matrix was established using tests. They show 

that the vibration that resulted from misalignment is due to variation of the 

coupling stiffness during rotation. Harmonics (1x, 2x, 3x, etc..) are observed in 

their results. Muszynska [33] in her book attributes the 2x and harmonics to a 

nonlinear stiffness. The nonlinear stiffness is presented as a function of square 

of the displacement. The nonlinear stiffness generates 2x and harmonics. A.W. 

Lees [34] models two misaligned rigidly coupled rotors. In his model, the forces 

are developed in the coupling due to misalignment. The model shows that 

misalignment results in the 2x response but does not show harmonics except 

under certain rotational speeds. The harmonics were explained as an interaction 

between torsional and flexural effects. 
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From the review of literature presented thus far it is evident that, the effect of 

misalignment in a rotor system is not well understood. Clearly, there are 

discrepancies in establishing the existence of an increase in the 2x component 

due to misalignment and its natural cause. From the review of literature it is also 

established that it is adequate to consider a simple rotor modeled as a disc in 

order to carry out in depth investigation of rotor misalignment and its effect on 

the rotor responses. A clear understanding of the effect is a prerequisite for 

developing any expert system using tools such as Neural Network. 

1.4 Neural Network 

Neurocomputing and Neural Networks (N.N.) in simple terms is an attempt to 

simulate the human brain. It is however important to mention that in no way the 

N.N. is a match to the human brain. Human brain is formed of neurons, where 

each neuron is formed of an input area the dendrites, a processing area the 

synapse and an output area the axons which is connected to other neurons. 

Similarly, the N.N. is formed of artificial neurons (A.N.), where each neuron is 

formed of an input area, a processing element and an output area. A 

systematically linked network of A.N. is carried out in the construction of N.N. 

The present research is focused on the application of the advance 

neurocomputing technology to identify specific vibration problems that could 

arise in a rotor system. 
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The beginning of neural computing and N.N. is often considered to be the paper 

by McCulloh, Walter and Pitts [35]. In their work, although practical application of 

such work was not apparent, they were able to show that a simple type of N.N. 

could compute any arithmetic or logical function. Other researchers [36, 37] 

suggested that research in brain-like computers might have wider applications. 

D.O. Hebb [38] proposed that the connectivity of the brain neuron is continually 

changing as an organism learns. He proposed that a specific learning law be 

introduced for processing area or the synapses of neurons. N.N. is most 

effective when the problem to be solved depends on many parameters and 

where physical properties could not be expressed in equations. The theoretical 

concept of N.N. has been around since 1940s, but its development has been 

slow due to computational limitations. The first successful neurocomputer (the 

Mark I Perceptron) was developed during 1957 and 1958 by Frank Rosenblatt, 

Charles Wightman and others [39]. Following that period, N.N. research went 

into a quiet phase from 1967 to 1982. With the development of algorithms, 

programming techniques and fast computers, it gained momentum in the 1980s. 

In the early 1980s the Defense Advanced Research Projects Agency (DARPA) 

began funding neurocomputing research. DARPA funding opened the door for 

neurocomputing to demonstrate its potential and effectiveness in a wide range of 

applications. Today neurocomputing and N.N. have found their ways into various 

types of applications like system modeling, control, classification, medical 

diagnostics, robotics, automation and many other fields. Several articles and 

books [40, 41, 42, 43] have appeared on various aspects of N.N. algorithms, 
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applications and software in the 1990s. Zurada [40], Hechlt-Nielsen [41] and 

Freeman [42] have published books in the area of N.N. These books present a 

complete introduction to N.N. along with different types and their applications. 

Some of these N.N. types are: 

Adaline and Madaline: has gained application in adaptive signal processing. It is 

a N.N. algorithm that can be implemented as filters to perform noise removal 

from information-bearing signals. 

Back-propagation: has an application in problems requiring recognition of 

complex patterns and performing non-trivial mapping. It is a network that adapts 

itself to "learn" the relationship between a set of example patterns, and is able to 

apply the same relationship to a new input pattern. Back-propagation network, 

therefore, has potential application in simulation, control of dynamical systems 

and reverse dynamics. Taraboulsi [44] successfully applied this method in 

modeling, simulation and control of vehicle dynamics. 

General regression network: is a general-purpose network. It gained applications 

in system modeling and prediction. A main advantages of general regression 

network are fast learning, can be used effectively with sparse data and can 

handle non-stationary data. 
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Modular neural network: is a generalization of back-propagation neural network. 

It is applied to system modeling, prediction, classification, and filtering. The 

modular neural network is a generalization of the back propagation network. 

Among various N.N. developed to date, back-propagation network can be easily 

adapted for application to simulation of dynamical system, control optimization 

and expert systems. Hunt and Sbarbro [45] present the use of N.N. as a 

controller. The N.N. is used as a representation framework for modeling 

nonlinear dynamical systems; it is then possible to use these nonlinear models 

within nonlinear feedback control structure. 

In developing a N.N. application one should take into consideration that success 

of N.N. to learn is not guaranteed. Sometimes for no apparent reason N.N. might 

not learn and will not give adequate results [41]. Developing a N.N. application is 

carried out by trial and error until the best results are obtained. It is important to 

note that there should be no similar inputs to the N.N. with different outputs; if 

such a case is presented to the N.N. learning would be impossible. 

1.5 Expert system and application to Gas Turbine Engines (GTE) 

Gas Turbine Engines (GTE) are highly complex machines with numerous 

components and are very expensive. It is therefore essential that the GTE 

function properly and efficiently for a long period of time. GTE could suffer from 
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mechanical breakdown that could lead to long period of shutdown and costly 

repairs. For example a bearing failure or blade failure could lead to an engine 

removal and a long period of shutdown. Today companies rely on Long Term 

Service Agreement (LTSA) and power/hour performance. It is essential that GTE 

failure rate be minimized and be predicted. The predictions of a failure ahead of 

time would give the engineering team an opportunity to schedule proper 

maintenance and/or engine change out when the engine is not needed. This 

could be accomplished by the introduction of expert systems that can monitor 

engine health and diagnose engine problems. 

Edwards, Lees and Friswell [46] present a complete literature review of the state 

of the art in fault diagnosis techniques. The review emphasizes on the use of 

expert system in the field of rotating machinery. DePold and Gass [47] first 

present in their paper the application of statistical analysis and neural networks 

filters to improve data quality collected from a gas turbine engine. They also 

present the use of neural networks for trend change detection and classification 

to diagnose engine performance change (loss of power, compressor and turbine 

efficiency) and finally they present an expert system to diagnose, provide alerts 

and to rank maintenance action recommendations. Lu, Zhang, Hsu and Zhang 

[48] present in their paper the use of back-propagation and feed forward neural 

networks to develop engine condition monitoring and diagnostic tools. Their 

results indicate that neural networks fault diagnosis cannot achieve more than 

50-60% success rate if the data contained high levels of noise. Botros, Kibrya 
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and Gtover [49] present the successful use of neural networks to perform various 

data mining on a Rolls-Royce RB-211 gas turbine. Multilayer perceptron, radial 

basis function and general regression neural networks are used. The radial basis 

function neural networks are capable of backing up critical engine parameters, 

detection of sensor faults, prediction of complete engine health with few 

variables, and estimation of parameters that cannot be measured. Volponi, et al. 

[50] present a comparative study between the Kalman filter and neural networks 

for the gas turbine performance diagnostics. The study outlines the pros and 

cons of each method and that the Kalman filter method have a very slight 

advantage over neural network. Tan [51] present two novel approaches to the 

fault classification problem using first Fourier neural networks and second using 

generalized single hidden layer networks. The networks are used to diagnose 

multiple modular faults on the F404 engine components. Both methods show 

successful results and are superior to the back propagation networks at least for 

this application. Verma, et al. [52] develop a genetic fuzzy system using a 

linearized model of the gas turbine engine for performing gas turbine fault 

isolation. A radial basis function neural network is also used to preprocess the 

measurements taken on the engine before faults isolation. The radial basis 

function neural network shows significant noise reduction and when combined 

with the genetic fuzzy system the result is a fault diagnostic tool that is robust 

against the presence of noise. 
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Chu and Wang [53] present a method to detect rubbing in rotating machinery 

and to identify the location of the rub using acoustic emission and wavelet 

transform. Seibold and Weinert [54] present in their paper a time domain 

identification algorithm that uses a series of extended Kalman filters to identify 

crack location. Yang et al. [55] present an ART-Kohonen neural network that 

performs fault diagnosis on rotating machinery. In their research, a wavelet 

transform is used instead of a fast Fourier transform (FFT) because it is more 

tolerant to the presence of noise and drift in sensor response and more effective 

in terms of data compression. The neural network is trained and tested in a 

laboratory using a fault generator rig to detect unbalance, misalignment, 

resonance and, bearing damage. This method relies on the availability of 

considerable amount of data for different failures, in this case 80 sets of data 

representing different failure scenarios is used. In gas turbine engines generating 

such data is not possible. In addition the developed method is only used in a 

laboratory on a specific machine, and is not tested on real machines. Yang, et al. 

[56] present an ART-Kohonen (KNN) neural network that is integrated with a 

case-base reasoning to enhance fault diagnosis. The ART-KNN is used to make 

hypotheses and to guide the case base reasoning to learn based on the findings 

that are commonly observed for each diagnosis considered. This in turn is used 

to guide the case base reasoning module in the search for similar cases. Hend 

and Nor [57] propose a method of detecting bearing damage using sound and 

vibration signals. These signals are analyzed using statistical methods to identify 

bearing problems. The methods developed are successfully validated and tested 
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on a rig. Krodkiewski, et al. [58] present in their paper a method of identifying a 

change in the unbalance of a rotor using a non-linear mathematical model 

coupled with change in the displacement of the rotor. The method allows the 

identification of the amount of unbalance and its location, assuming it is in one 

plane. The method furthermore, provides the modification required to reduce the 

unbalance. Openheimer and Dubowsky [59] present in their paper a method for 

predicting the noise and vibration of machines and their support structures. 

Hoffman and Merwe [60] evaluate in their paper three different neural network 

classification techniques to detect bearing problem and unbalance. The three 

techniques are Kohonen self organizing maps, nearest neighbor rule classifiers, 

and radial basis function. Among the techniques self organizing maps yields the 

best results when compared to the other methods. The validation tests are 

conducted on a rig. 

Literatures found in the field deals with theoretical methods of detecting rotating 

machine problems and are based on simple pattern identification. In addition, 

most of the papers present experiment done in labs in a controlled environment. 

These experiments rarely represent a real environment where a lot of noise is 

present in the signal recorded from the transducer. Hu, et al. [61] present in their 

paper a feed forward N.N. using back propagation, node decoupled extended 

Kalman filter (NDEKF) and support vector machines to create an inverse 

dynamic model of a propulsion system rotor that is capable to identify unbalance 

and its location. A simulation is used to provide the data to train and test the NN. 
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Filippetti, et al. [62] present in their paper a NN trained and tested using a 

mathematical model of an electric machine to identify rotor problems. In this 

work, four models are used, three to train the network and one to test it. Tse and 

Wang [63] present in their paper a combination of recurrent back-propagation 

(RBP) NN and fuzzy adaptive resonance theory to create a machine condition 

forecaster and classifier that is able to detect fault through vibration monitoring. 

The developed method was used on compressor connected to an electrical 

motor. Crupi, et al. [64] present in their paper a method to diagnose rotating 

machinery using NN. The method proposed consists of two sections; the first is 

an analysis section using self organizing map and the second a diagnostic 

section using radial basis function - probabilistic neural network. The method 

was used in the diagnosis of an overhung fan used at the refinery of Milazzo. 

McCormik and Nandi [65] present in their paper a N.N. that provides the mean of 

capturing stationary statistical information about machine vibrations in the form 

of non-linear autoregressive models. These models are then used as one step 

predictors allowing comparison of signals for the purposes of fault detection and 

diagnosis. The experimental setup used to generate vibration time series for this 

work consists of a small electric motor that drives a shaft with a flywheel. Two 

faults are introduced; unbalance and rubbing. Li, et al. [66] present in their paper 

a back propagation neural network to detect mass unbalance. The expert system 

uses acoustic signals as input. The system is tested and validated using a rig in 

a lab using proximity probes and acoustic signal. The system performs as 

expected but has some limitations in discriminating between faults near the 
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natural frequencies. Seker, et al. [67] present a study on the use of recurrent 

neural network (RNN) for condition monitoring and diagnosis of nuclear power 

plant system. Their study is split into two parts; the first part presents the use of 

RNN in detection of anomalies in simulated power operation of a high 

temperature gas cooled nuclear reactor. The second part presents the use of 

RNN in the diagnosis of bearing problems on a 5 HP electric induction motor. 

1.6 Scope and Objective of the Present Research 

It is evident from the above literature review, that there have been numerous 

attempts in using N.N. for expert system in applications to diagnostics. There 

also has been limited success in its applications where it is tested using 

simulation results or very simple test rig in controlled laboratory environment. 

Some literature present methods and application for rotor system unbalance. 

However, there is no evidence of any significant attempts in the diagnosis of 

misalignment in a rotor system. Furthermore, the author did not find any 

literature that directly addresses the vibration problems associated with a GTE. 

The proposed research will focus on an expert system that will be developed 

using NN and that will be applied for identification of engine problems using 

available engine data from engines running in the field. 

Reports from the field show that shaft misalignment results in a shaft response 

that has a 2x component as well as harmonics. The first objective of this 
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research is thus aimed at developing a rotor model with unbalance and 

misalignment to examine their effects. Shaft misalignment regardless of being 

parallel or angular essentially introduces a preload and nonlinear stiffness to the 

shaft. This nonlinear stiffness is proportional to the misalignment magnitude and 

will introduce a response at a frequency two times the rotational speed 

commonly referred to as 2x response. This is accomplished by modeling a rotor 

in a way to emphasize the effect of the nonlinear stiffness. The second objective 

of this research is to develop an expert system that can identify unbalance and 

misalignment using N.N. The developed N.N. trained off-line will allow its 

implementation on any engine. In addition, the method developed can be 

extended to detect other defects in a rotating system or other systems. The final 

objective of the proposed research is to test the developed expert system for 

diagnosis based on field data obtained from a GTE. 

1.6.1 Organization of the Thesis 

In chapter 2, the different strain and kinetic energy equations that are needed to 

develop the mathematical model of a rotor system are presented. The stiffness 

matrix for different shaft configurations is also established in this chapter. 

Chapter 3 is devoted to the development of equations of motion for three 

different configurations. The first sets of equations of motion are developed for a 

perfectly aligned rotor supported on two rigid bearings, ignoring the higher order 
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terms. The second sets of equations of motion including higher order terms are 

developed in order to examine their influence. The third sets of equations of 

motion are developed for a misaligned rotor supported on two rigid bearings. 

In chapter 4, the equations of motion are solved theoretically to establish the 

natural frequencies of the rotor at different speeds. The natural frequencies 

obtained from the solution of the equations are used to validate the simulation 

results in time domain. The effect of the second order terms is then studied and 

the rotor response with and without the second order terms are compared. 

Finally the simulations are validated against a finite element model and the 

limitation of the finite element model to simulate the effect of misalignment on 

the rotor response is examined. 

In chapter 5 a study is carried out on the effect of nonlinear stiffness and 

damping on the rotor response. The nonlinear stiffness and damping for the 

rotor are chosen and simulations are carried for the rotor system with and 

without misalignment to systematically examine the effect of misalignment on the 

rotor response. The simulated results of rotor responses due to misalignment are 

discussed in details. 

Chapter 6 is devoted to laboratory experiment using an available test rig. The 

test results are obtained for misaligned shaft in terms of responses at the 

bearing. The test results are compared with those established in chapter 4. 
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Chapter 6 also presents field test data from real GT Engines which are known to 

have a shaft misalignment. 

An introduction to neural network is presented in chapter 7. Back-propagation 

and logicon projection, the two neural network used to develop the expert system 

are presented in detail. The different parameters used to develop the neural 

networks are also discussed and presented in this chapter. Finally, the steps 

adopted in developing the expert system using the N.N. are discussed and 

presented. 

In Chapter 8, the detection logic is developed and the method to filter the data is 

presented. Two neural networks presented in chapter 7 are developed and 

trained using simulation data. The developed neural networks are then tested 

using data from the simulation as well as field test data of a GTE. The 

performance of both developed neural networks is compared. 

Finally chapter 9 presents general and specific conclusions related to the present 

study. A list of recommendation for further work is also included in this chapter. 
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Chapter 2 

2 Energy Formulation for a Rotor System 

2.1 Introduction 

A rotor system consists of a rigid disc within the span of a shaft which is flexible. 

The shaft in turn may be supported at one or both ends on a set of bearings. The 

bearings in reality are also flexible elements that can be represented by spring 

and damper with linear or non linear characteristics. In considering response due 

to misalignment in the shaft support system, where misalignment introduces a 

nonlinear stiffness to the shaft, it would be more meaningful to consider the 

bearings as rigid. The proposed rotor model thus consists of flexible shaft with a 

rigid disk and rigid bearings. 

The most general approach for formulating the mathematical model for the rotor 

system is the Lagrange's equation based on energy. The energy method is used 

in this study to formulate the equation of motion due to its simplicity and 

generality. To be able to formulate the equation of motion using the Lagrangian 

all the energy terms need to be established. This chapter presents the strain and 

kinetic energy terms that are required to formulate the Lagrangian for a rotor. In 

chapter 3, the energy terms formulated in this section are used to formulate the 

equations of motion. Expressions for strain energy for the shaft and kinetic 

energy for the disk with and without unbalance are developed in this chapter for 

a rotor system with misalignment. 

27 



2.2 Strain Energy 

2.2.1 Strain Energy of Shaft 

In this section, the strain energy for a simple flexible shaft subjected to bending 

is formulated. Bending of the shaft attributed to force and moment acting at the 

rotor location is used to obtain the energy expressions. Based on the deflection 

at the disk location the stiffness matrix for the shaft under a given boundary 

condition can be established. 

2.2.1.1 Strain energy of a shaft due to bending 

When a flexible shaft is subjected to vertical / lateral force or moment, the strain 

energy in term of deflection and stiffness is: 

U = \{y\[k]{y} 2-1 

Where {y} is the displacement vector and {k} is the stiffness matrix and ' 

denotes the vector transpose. Furthermore, the deflection of the shaft can be 

related to the moment ( M ) within the elastic limit by: 

**y- = -*L 2-2 
dx2 EIy 

For a simple rotor system supported on two bearings, the reaction to a force F 

at the disk is shown in Figure 2-1. Similarly the reaction forces due to pure 
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moment acting at the rotor are shown in Figure 2-2. Using the moment 

expression along the shaft in Figure 2-1, equation (2-2) can be expressed as: 

d2y _ Fb 

And 

y 

Fb 

(a + b) 
a 

EI y J..2 dx a + b 

EI 
d2y Fb 

y J„2 dx a + b 

F 

0<x<a 2-3 

x + F(x-a) a < x<b 2-4 

Fa 

(a + b) 

Figure 2-1 Rotor subjected to a force 

y 

M 

(a+b) 

M 

(a + b) 

Figure 2-2 Rotor subjected to a Moment 
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The slope and deflection at any point along the shaft can be established by 

integrating the expressions in equations (2-3) and (2-4). The integration constant 

can then be established using the boundary conditions and validity of both 

equations at x = a. In doing so, the deflection and slope of the shaft due to force 

F valid for 0 < x < a are: 

y 
Fbx 

6(a + b)EI 
-(a2+2ab-x2) 0<x<a 2-5 

^ = ^ = Fb 

dx 6(a + b)EI} 

At the disk, for x = a, the deflection and slope due to F is: 

Fa2b2 

(a2+2ab-3x2) 0<x<a 2-6 

y = 3(a + b)EI 

Fba 
0 = — (b-a) 

2-7 

2-8 
3(a + b)EIy 

Similarly for the shaft subjected to a pure moment (M) as shown in Figure 2-2, 

the deflection and slope at the disk location are: 

Mba 
y = 

0 = 

3(a + b)EI 

M 

-(b-a) 

3(a + b)EI 
(al+b2-ab) 

2-9 

2-10 

The total deflection of a shaft subjected to a force F and moment M at location 

a is: 

a2b2 ba(b-a) 

HEIy 3lEIy 

ba(b-a) (a2+b2-ab) 

31EI, 31EL, 

F 

M 
2-11 
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where l = a + b. 

From the above equation the stiffness matrix of the simply supported rotor is: 

F 

M 

31ET (a2+b2- ab) 31EI (a - b) 

a3b3 

3lEI(a-b) 
2 1.2 alb 

a2b2 

VEIy 

ab 

y 2-12 

Following the same procedure, one can find the stiffness matrix for a shaft with 

one end fixed and one end simply supported to be: 

F 

M 

3EIy(a
3 + Ab3) 3EIy(a

2 - 2b2) 

7b3 7b2 

3EI(a2-2b2) EI (3a + Ab) 
2 L 2 

alb ab 

y 2-13 

Similarly, for fixed boundary conditions at both bearings the stiffness matrix is 

established as: 

F 

M 

l2lEIy(a
2-ab + b2) 

a b 
6lEIy(a-b) 

7b2 

6lEIy{a-b) 

a2b2 

4lEIy 

ab 

y 2-14 

In general, the stiffness matrices given by (2-12), (2-13), (2-14) can be written 

as: 

F 

M K2l K22^ 

y 2-15 

Since the rotor is free to move along the y and z directions, the total strain 

energy using equation (2-1) must be expressed as: 

U = \{ym{yh\{znk]{z} 2-16 
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For symmetric stiffness matrices (Kn =KU), the total strain energy for the shaft 

is: 

1 ' " • .2 , T TS A . . , IS A2 \ . 1 / » - _2 l 1 r , v 2 > £/ = - ( # , y + 2 i : i 2 ^ + ̂ 2 2^2) + - ( ^ 1 1 z 2 + 2 ^ 1 2 ^ z + ̂ 2 2 ^ ) 2-17 

where ^ represents the slope corresponding to deflection y and y/ represents 

slope corresponding to deflection z. 

2.3 Kinetic Energy 

2.3.1 Kinetic Energy in a Disk 

The kinetic energy in a disk will be caused by its linear and rotational velocities. 

The disk shown in Figure 2-3 rotates about the xi axis along the shaft. Due to 

the flexibility of the shaft the disc is further free to rotate about y3 and z3 axis. 

For linear motion the disk is free to move laterally in the y2 and z3 direction due 

to self excitations. To establish the instantaneous rotational speed around the 

three main axes, Euler angles are used. In Figure 2-3, first the disk rotates by an 

angle y/ around the Z axis, then by an angle ^ around the y] axis and finally by 

an angle 9 around the x2 axis. The rotation matrix for the 3 described rotations 

are [70, 71]: 

A = rot(x2,6) = 

1 0 0 

0 cos(#) -sin(0) 

0 sin(6>) cos(#) 

2-18 
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and 

B = rot(yv </>)•• 

cos(^) 0 sin(^) 

0 1 0 

- sin(^) 0 cos(^) 

C = rot{Z, y/) •• 

cos(^) - sin(^) 0 

sin(^/) cos(^) 0 

0 0 1 

2-19 

2-20 

*\"J a •A-T ^ ^ 

Figure 2-3 Reference frames for a disk rotating around the x axis 

The instantaneous angular velocity of the x3y3z3 frame is: 

(o = \j/Z + (j> yx + 9 x2 2-21 

In order to calculate the kinetic energy of the disk about its center of mass, it is 

necessary to establish the angular speeds using frame x3y3z3, as: 
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CO 
w^ 

cor 

CO., 

CO, 

2-22 

Each component of the angular speeds in equation (2-22) are obtained in the 

following manner. The first angular rotation y/ about the Z axis occurs at an 

angular velocity of if/: 

co=C 

"0" 

0 

y. 

= 

"0" 

0 

y. 

Where C is the rotational matrix given by equation (2-20). 

The second rotation is then about the y1 axis: 

co, = Bco, = B 
zb za 

"0" 

0 

y. 
= 

^sin(^) 

0 

if/cos(<f>) 

2-23 

2-24 

where the rotational matrix B is presented in equation (2-19). The third rotation 

for if/ is about the x2 axis: 

co, -Ceo, =C\ 
Zc Zb 

- y> sin(^) 

0 

If/ COS(<f>) 

if/ sin(^) 

- if/ s in^) cos(<f>) 

if/ cos(#) cos(^) 

2-25 

Similarly the first rotation <f> about the yx occurs at an angular velocity of ^: 

%b=
B 

"0" 

i> 
0 

= 

"0" 

</> 

0 

2-26 

The second rotation is about the x, axis: 
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°>yc=
Co>n=A 

"0" 

* 

0 

= 

0 

^cos(6*) 

^sin(6>) 

2-27 

Finally, the rotation 9 occurs around the x2 axis at an angular velocity of 0: 

a =A 0 = 

~6 

0 

0 

= 

~e 
0 

0 

2-28 

The total angular velocity for the disk can now be expressed using equation 

(2-22) as: 

co = 

cor 

CO 
y% 

CO. 

= cox +cov +coz 2-29 

Substituting for the components from equations (2-25), (2-27) and (2-28) yields: 

co. *n>& 

G)„ 

CO., 
y-$ 

CO, 

0 + iysin(</>) 

(j> cos(6>) - if/ sin(#) cos(^) 

0 sin(#) + if/ cos{9) cos(^) 

2-30 

Along with the above three rotational motions, the disk is also allowed to move in 

the ^and z directions. Hence the total kinetic energy assuming no dynamic or 

static unbalance of the disk is defined as: 

TD=±MD(f +i2) + I(4X3 + V < +/*<) 2-31 

For a symmetrical disk IDv = IDz. Assuming small angles y/ and <f> and that the 

angular velocity of the disc is constant i.e. Q = 0, equation (2-31) becomes: 

TD=^MD(y2
 + i 2 ) + l / ^ 2 + ^ ) + I / f l x ( n

2 + 2 Q # ) 2-32 
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The term IDxQ.y/</> in equation (2-32) represents the gyroscopic (Coriolis) effect. 

2.3.2 Kinetic energy of the disk with unbalance forces and moments. 

The unbalance force on a rotor is due to the imperfect manufacturing and/or 

assembly of the rotor system. There are 2 types of unbalance: 

1. Static unbalance that is due to the center of gravity of the disk not 

coinciding with the center of rotation of the shaft, 

2. Dynamic unbalance that is due to the disk not rotating around the major 

axis of inertia. 

1. Static unbalance: 

During rotation the mass will exert a centrifugal force on the shaft that is 

proportional to its mass and the square of the rotational speed. Figure 2-4 shows 

a shaft rotating around the X axis while the center of the disc is at C. The 

instantaneous location of the rotor mass due to static unbalance is at D. The 

position of the rotor mass centre is defined by the vector: 

OD = 

X 

y + e cos(<91) 

z + e sin(# /) 

2-33 

The velocity of the rotor mass with unbalance is: 
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v = 
d(OD) 

dt 

0 

y-e8s\n{6t) 

z + e0cos{Ot) 

2-34 

The kinetic energy of the disc mass due to linear motion represented by first part 

of equation (2-31) is thus: 

T = -MDV2 = -MD(y2+z2+92e2-20eysin0t) + 20ezcos(0t)) 2-35 

where e represents the eccentricity from the mass center due to static 

unbalance. 

O 

y 

Figure 2-4 Mass unbalance on shaft rotating around the X axis 

2. Dynamic unbalance 

The dynamic unbalance is due to the rotor not rotating around the principal axis 

of the rotor as shown in Figure 2-5. In that case there is an angle t between the 
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disk principal axis and the rotation axis. Assuming that at the beginning of the 

motion the y\ axis coincide with j 3 axis and the angular velocity is defined by 

equation (2-30) presented earlier. 

Figure 2-5 Dynamic unbalance 

In order to include the dynamic unbalance parameter r, the rotation matrix 

around the y^ axis is defined as: 

rot(y3,r) = 

cos(r) 0 sin(r) 

0 1 0 

-sin(r) 0 cos(r) 

2-36 

The angular velocity matrix can now be established by multiplying equation (2-

30) by the matrix (2-36) to yield: 

CO 

CO 

CO, 

y* 

cos(r)(# + if/ sin(^)) + sin(r)(^ sin^) + if/ cos(#) cos(^)) 

<j> cos(6>) - if/ sin(#) cos(j^) 

- sin(r)(<9 + if/ sin(^)) + cos(r)(fzJ sin(#) + if/ 003(6*) cos(^)) 

2-37 
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The total kinetic energy of the disc for the presence of static and dynamic 

unbalance with misalignment is thus given by: 

TD =-MDV2 =-MD(y2 + z2 + 02e2 + 20 ey cos(01) - 20 ez sin(01)) 
2 2 2-38 

where the angular velocity terms in equation (2-38) is given in equation (2-37) for 

a disc with dynamic unbalance. 

2.4 Summary 

In order to formulate the equations of motion for a rotor system using Lagrange, 

the necessary energy equations were derived in this section. Assuming the shaft 

as mass less, the strain energy of the shaft from its flexibility as a result of force 

and moment applied at disc location was formulated. The resulting stiffness 

matrix for the shaft was also established. The kinetic energy associated with the 

disc motions in two linear and three angular directions had been formulated for 

rotor with unbalance while the shaft is misaligned. The energy expressions are 

used in the next chapter for developing the equations of motion for the rotor 

system. 
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Chapter 3 

3 Rotor System Analytical Model 

3.1 Introduction 

The equations of motion for the rotor system are developed in this chapter using 

the energy expressions developed for the shaft and rotor in the previous chapter. 

The primary objectives in deriving the equation are to examine the effect of 

misalignment in the shaft support systems. This can be achieved by comparing 

the responses of a perfectly aligned shaft to that of misaligned shaft. The 

misalignment can further be parallel or angular misalignment. The possible 

contribution of higher order terms typically neglected in such investigation are 

also considered in this study in order to examine the consequences of their 

presence. 

In order to facilitate the objectives, three sets of equation of motion are 

developed. The first set represents a perfectly aligned shaft where higher order 

terms are neglected. The second set includes the higher order terms due to 

dynamic unbalance that can be readily compared with the first set. Finally 

equations are developed for misalignment introduced between support bearings. 

As discussed earlier, the misalignment in this study introduces a preload and 

nonlinear stiffness to the shaft. Equations of motion are developed taking into 

consideration the non linear stiffness and the damping. The initial position of the 
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disk is derived using the shaft properties. All the equations are derived and 

discussed in the following sub sections. These equations are used in the next 

chapter for simulations of response. 

3.2 Equation of Motion for Aligned Rotor System 

Figure 3-1 presents a rotor system supported on two bearings. The flexible shaft 

of length / is attached to a rotor at a distance a and b from the left and right 

support, respectively. The rotor is free to move along y and z directions while 

rotates about the x axis at an angular velocity co. The rotor is also free to 

generate angular motions about y and z axes represented by <j> and y/, 

respectively. For constant angular velocity of the rotor, the four equations of 

motion can be derived using Lagrangian defined as: 

L = T-U 3-1 

where T and U are the total kinetic and strain energy of the system. 

Using the above Lagrangian the equations of motion are derived from the 

general expression: 

d_ 
dt 

(dL\ 8L 3_2 

V^„y 

where 5n is the general response vector for the rotor given as: 
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s„ = 

Vn. 

For the case of one rotor considered, n is equal to 1. 

3-3 

x 
w 

pa M 

>4 

a 

I 

b 

K 

Figure 3-1 Simple shaft with no misalignment 

Using the energy terms derived in chapter 2 the Lagrangian (Equation 3-1) is 

expressed as: 

L = -MD(y2 +z2 + D.2e2 +2Q.eycos(Qt)-2Q.ezsm(Qt)) 

+ ̂ (IDX(°i + V*£ +IDzK) 3-4 
*3 Dy y, 

\(„ 7 - „ , „ „ \ 1 
2{K^y+2Knfa + K22f)+~{Knz

2+2KnVz + K2y)\ 
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Where the angular velocity terms are given by equation (2-30) when there is no 

unbalance. In the presence of unbalance, the angular velocity terms are 

represented by equation (2-37). 

3.2.1 Equations of Motion for a Perfectly Aligned Shaft Neglecting Higher Order 

Terms 

In majority of dynamic studies, the high order terms are neglected assuming that 

their contribution is small. For the present study of rotor system with unbalance 

and misalignment, its validity is explored to ensure that the influence of high 

order terms do not influence the responses. For this, the equations of motion are 

first derived here assuming that all the terms that are raised to a power greater 

than 1 are equal to zero. Furthermore it is assumed that all angles associated 

with motion and rotor unbalance are small. The equation of motion are obtained 

by applying equation (3-2) to equation (3-4) where the angular velocity term for 

perfectly aligned shaft is given in equation (2-37). In doing so, the equations of 

motion are found to be: 

MDy + Kny + Kn0 = MDco2ecos(cot + /?) 3-5 

M Dz + Kuz + Kny/ = MD(o2esin(o)t + (3) 3-6 

!DJ - h^V + K2iy + K22<t> = -(JDXl ~ hy, W* COS((Dt) 3"7 

h^f + 4 ,3W + K2xz + K21y = (IDX} - IDz; )o)2r sin(e*) 3-8 
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Where distance e and angle p define the position of mass center for the 

unbalanced rotor as shown in Figure 3-2. 

Figure 3-2 Unbalance phase angle jB 

3.2.2 Equations of Motion for a Perfectly Aligned Shaft with Higher Order 

Dynamic Unbalance Terms 

The next set of equations of motion are developed assuming that all terms raised 

to a power greater than one are equal to zero except the dynamic unbalance 

term r . The equations of motion are derived again following the steps outlined in 

section 3.2.1. For small angle assumption, the equations of motion are found to 

be: 
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MDy + Kny + Kn</> = MDm2e cos(o)t + p) 3-9 

MDz + Knz + Kni// = MDco2esin(cot + /?) 3-10 

JDy30 ~ h^W + K2iy + K22<f> = HI*, ~ *'Dy, Wt COS(COt) 

+1^ (<f>ry) sm(cot) - rif/2 cos(etf) + cor2\j/ + co^tx// cos(<s#)) 

+ IDx {T2coxf/ + T\f/2 cos(cot) - xcpxj/ sin(c#) -r20- T<j>\j/co cos(ctf) 3-11 

+ r2<f> cos2 (cot) - T2y/sm(cot)cos(a>t) - 2T2I[/CO COS2(cot) 

-T20cosin(2cot)) 

IDzi¥ + IDx®<l> + K2xz + K22\// = (IDXi - IDZ})a
2rsin(cot) 

+ 1^ (02r sin(cot) + 0TCO0 cos( cot) + <J>T(/> sin(cot) + 2r(j)\jf cos( cot) 

+ 20Ti//cos(cot)-20Ti//cosin(cot)-T2co<f>) +IDx (T2CO(/)-<j)2rs\r\(cot) o 1 9 

-z2i// cos2(cot) - 0rco0 cos(cot) - <j>T<j) sin(cot) - 2x<j)\[f cos(cot) 

- 20rip cos( cot) + 20TCO iff sin( cot) - 2r2co0 cos2 (cot) 

-T2</> sin( cot) cos( cot)+ r2 co iff sin( 2 cot)) 

3.3 Equation of Motion for a Misaligned Shaft 

Figure 3-3 and Figure 3-4 show the models for a misaligned shaft. The 

misalignment can be defined by an offset of one of the bearing with respect to 

the other. This is referred to as parallel misalignment as shown in Figure 3-3. 

The level of parallel misalignment is designated by an offset A. The angular 

misalignment shown in Figure 3-4 is the result of an angle a for the bearing 

support with respect to the vertical plane. For a rigidly supported rotor system it 

is assumed that the shaft is supported on 2 bearings that are infinitely stiff. Due 

to either parallel and/or angular misalignment, the shaft is subjected to bending 

and deflection. 
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yt 

Figure 3-3 Rotor model with parallel misalignment 

The resulting deflection and bending at the disk location as shown in Figure 3-3 

and Figure 3-4 are designated by yi and $., respectively. The shaft is deformed 

due to misalignment, and an internal force and moment are created in the shaft 

due to the misalignment. 
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Figure 3-4 Rotor with angular misalignment 

The internal force and moments are calculated using the shaft properties and 

boundary conditions. Depending on the bearing support system used, a 

misaligned shaft may have one of three possible boundary conditions. It can be 

either simply supported, or fixed-simply supported or fixed-fixed. For the simply 

supported case there are no internal loads that develop due to bearing 

misalignment hence this case is not considered. The internal forces and 

moments developed due to misalignment for the fixed-simply supported and 

fixed-fixed boundary conditions are evaluated and summarized in the following: 
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1) Fixed-Simply Supported Boundary Condition 

For a simple rotor system, if one side of the shaft is supported on a fixed bearing 

while the other side is mounted on self aligning bearing, it can be modeled as a 

fixed-simply supported boundary configuration. This geometry for misalignment 

A as shown in Figure 3-5 (i) where the misaligned end of the shaft will tend to 

develop a slope as misalignment is introduced. The misalignment in turn will 

introduce a preload on the shaft in the form of a shear force and moment. The 

force and moment at end A of the shaft are: 

F . = - ^ 3-13 

3 E I A O A A 

Similarly for end B, the forces and moments are: 

Ft-™ 

Mb=0 3-16 
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Figure 3-5 Shaft geometries for different boundary conditions 
The force and moment at the disk location due to misalignment A can be used 

to establish the initial position of the disk. The initial position of the disk is defined 

in terms of deflection and slope at the disk location of the shaft and is given by: 

Aa2(3l-a) 
y. 

4 = 

2/3 

3Aa(2/-a) 
2p 

3-17 

3-18 

The preload force and moment at the disk are calculated using the stiffness of 

the shaft developed in chapter 2 along with the disk initial displacement and 

rotation. 
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Combining equations (3-17) and (3-18) with equation (2-13) and substituting / 

for a + b the preload forces and moments at disk location are: 

F 

M 

~3IEA~ 

b3 

3IEA 

l b2 J 

3-19 

The above preload force and moment are due to misalignment in a shaft with 

fixed and simply supported boundary condition. The present investigation will, 

however consider bearing support system where the boundary condition is fixed-

fixed. 

2) Fixed-Fixed Boundary Condition. 

The shaft geometry for both ends with fixed support is shown in Figure 3-5 (ii). In 

this case the misalignment is represented by parallel offset A and an angle a 

as shown in the figure. The parallel and/or angular misalignment will lead to a 

force and moment along the shaft length. For the support at A, the force and 

moment as function of misalignment are: 

12EIA 6EIa 
F„ = ;— + • r v 

M=-
6EIA 2EIa 

I2 I 

3-20 

3-21 

Similarly at support B the force and moment are: 

12E7A 6EIa 
Fb=-

/3 I2 3-22 
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6£/A 4EIa 

lz I 
3-23 

The initial position of the disk in terms of deflection and slope due to 

misalignment A and a are: 

a2(3/A - al2 - 2aA + aal) 
yt 

*, 

P 

a(6lA - 2al2 - 6aA + 3aal) 

3-24 

3-25 

The preload force and moment at the disk can now be calculated using the 

stiffness of the shaft established in chapter 2 along with the disk initial 

displacement and rotation and substituting l = a+b: 

F 

M 

6IE(2A-ab) 

b3 

2IE(3A-ab) 
3-26 

As discussed above, the misalignment, regardless of parallel and/or angular, 

essentially introduces a preload and moment in the shaft. This in turn introduces 

a change in the equilibrium position of the disk by an initial position and angle of 

the disk due to the misalignment. In addition, the preload introduces additional 

stiffness to the shaft in the direction of misalignment. This stiffness denoted by 

Kn is known to be nonlinear [33] and should be function of misalignment 

magnitude. The misalignment feature can, therefore, be introduced to the 

equations of motion derived in equations (3-5) to (3-8) by introducing the preload 

and corresponding nonlinear stiffness parameter Kn. Furthermore it is essential 

to introduce damping to the rotor system to account for material and possible 
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bearing clamping to ensure stable finite response of the rotor system simulations. 

The equations of motion for the misaligned rotor system are thus finally obtained 

by modifying the equations (3-5) to (3-8) in the following manner: 

MDy + Kny + Kn(l> + Knny
2 + Knl2f+ Cuy + Cl20 

MDcD2ecos(cDt + /?) + Fv 

MDz + Knz + Kny/ + Knnz
2+Kniy + Cnz + Cl2iy 

3-27 

MDco2e sm(a)t + J3) + Fj 
3-28 

Prz 

^ - ID*i®V' + K21 y + K22(/) + Kn2ly + Kn220
2 + C2ly + C2J = 

3-29 

^y.V + IDX^ + Ki\z + K2i¥ + Kn2lz
2 + Kn22y/2 + C2Xz + C22\j/ = 

^ ( ^ 3 -IDyi)(Tsm(c)t)) + MPrz 

3-30 

Where Kn is a non linear stiffness, C is the damping coefficient and FPr and 

MPr are the forces and moments developed due to parallel and/or angular 

misalignment that can be established from the following equations: 

1 Pry 

M?ry_ 

_ ^ P r z _ 

= 

= 

X 

X 
_K21 

K\2 

K22_ 

K\2 

K22_ 

y> + 

+ 

Xn 
_Kn2\ 

X. 
X21 

Kn\2 

K„\2 

Kn22_ 

'A' 

3-31 

3-32 

52 



Selection of Kn and its influence on the rotor responses will be discussed in 

chapter 5. 

3.4 Summary 

In this chapter the kinetic energy and potential energy terms for a shaft and rotor 

developed in chapter 2, were used to formulate the Lagrangian. Using the 

energy method the equations of motion were developed for a perfectly aligned 

shaft first ignoring the second order terms for the unbalance and then taking into 

account the second order terms. In addition, the equations of motion were 

developed for a misaligned shaft. For misaligned shaft, equations were 

developed to model fixed-simply supported as well as fixed-fixed boundary 

conditions. The equations of motion for the misaligned shaft were obtained by 

introducing preload force and moment to the shaft, modifying the equilibrium 

position of the disk due to misalignment and introducing additional nonlinear 

stiffness for the shaft. The equations of motion developed in this chapter are 

simulated in the next chapter in the time domain, and are analyzed both in time 

and frequency domain. Attempts are made in the next chapter to validate the 

developed lumped mass time domain model by comparing the results with those 

of eigenvalue solutions and finite element analysis of the rotor system. 
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Chapter 4 

4 Model Validation 

4.1 Introduction 

The rotor system considered in this investigation consists of a flexible shaft 

supported at each end by rigid bearings. The shaft in turn carries a thick disk 

with static and dynamic unbalance. The equations of motion for the rotor system 

were developed using Lagrange's energy method. For this, the energy terms 

form the shaft deflections and disk motions were derived in chapter 2. Assuming 

constant shaft speed, the disk is assigned four degrees of freedom. The final 

equations of motion for the rotor were developed in chapter 3 using the energy 

expressions presented in chapter 2. In developing the model, one of the 

objectives was to examine the influence of high order terms due to unbalance on 

the rotor system responses. For this, the first set of equations were developed 

neglecting all the higher order terms. The higher order terms due to rotor 

unbalance were retained in the second set of equations, which can be readily 

compared with the first set. Finally, equations of motion were derived from the 

rotor system incorporating both unbalance and misalignment. 

This chapter is devoted to validation of the rotor system model developed in 

chapter 3 for time domain simulations. Prior to any simulations, eigenvalues 

formulation is used to establish the system natural frequencies as function of 
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speed. The eigen solutions are compared with dynamic model simulation results 

in time domain. The FFT of time domain response is then validated against the 

eigenvalues solutions. 

Further attempt of validation is made against the finite element analysis (FEA) of 

the rotor system considered. The software used to construct the geometry and 

mesh is Patran and the software used to analyze the finite element model is 

Nastran. The data for the FEA is carefully selected to closely resemble the 

model developed for time domain simulation. The analysis is used to establish 

both the natural frequencies and mode shapes. The results are compared with 

those established from eigenvalue solutions and time domain responses. Finally 

an attempt is made to introduce misalignment in the shaft for FE model to 

examine its effectiveness for such simulations. 

4.2 Identification of the natural frequencies 

The natural frequencies of the rotor system are established for a perfectly 

aligned shaft. Further assumptions include negligible mass of the shaft where all 

mass is due to the rotor and that the bearings are rigid. An eigenvalue 

formulation is thus carried out using the equations of motion from aligned shaft 

presents in equations (3-5) to 3-8) with all forcing functions set to zero: 

MDy + Kuy + Kn0 = O 4-1 
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MDz + Kuz + Kny/ = 0 4-2 

IDyi<i> - ID*®^ + K2ly + K22(f> = 0 4-3 

^W + IDx^ + K2iz + K22y/ = 0 4-4 

Based on the coordinate system used, the phase between y,z,0, and y/ are 

known. The motion y and z are 90° out of phase while </> and y/ are in phase 

with y and z, respectively. Therefore we can assume that the solutions for free 

oscillations are of the form: 

y = Asm(co„t + g) 4-5 

z = Acos(a>nt + g) 4-6 

</> = Bsm{(ont + ^) 4-7 

y/ = B cos(d)j + £) 4-8 

Substituting equations (4-5) to (4-8) and their derivatives into equations (4-1) to 

4-4) will yield: 

-MDAco2
n sin(a>nt + £) + KnAsm(coj + Q + KnBsin(#y + Q = 0 4-9 

-MDAco2
n cos(cont + £) + KuAcos(a>nt + £) + Kl2Bcos(a>nt + Q = 0 4-10 

4-11 

4-12 

~ JDy3
B®n s i n O / + O + IDX3(oBcon sin(©„/ + Q 

+ K2lA sm(coj + C) + K22B sin(a>nt + £) = 0 

- JDy3
B(Dn cos(ant + C) + IDX}coBcon cos(cont + £) 

+ K2lAcos(cont + £) + K22Bcos(cont + £) = 0 

For a symmetric rotor system, equations (4-9) and (4-10) simplifies to: 

-MDAm*+KnA + Kl2B = 0 4-13 
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While equations (4-11) and (4-12) simplifies to: 

" IDyBo)l + LDXaZ®n + K2lA + K21B = 0 4-14 

Writing the above equations (4-13) and (4-14) in a matrix form lead to eigenvalue 

problem: 

-MDa>2
n+Kn 

K 21 lDya
2
n+IDx®con+K22 

A 

B 4-15 

The natural frequencies of the system can now be easily determined from the 

roots of the characteristic equation: 

( - M X +Kn)(-IDy®
2

n+IDx3a)con +K22)-K
2
U = 0 4-16 

Equation 4-16 yields four values for the natural frequencies. Two of these values 

are negative and correspond to the backward whirl frequencies and two positive 

corresponding to the forward whirl frequencies. Using rotor system baseline 

parameters presented in Table 4-1, equation (4-16) is solved for different shaft 

speed. The computed natural frequencies for different shaft speeds are plotted 

in Figure 4-1. As seen from the figure the natural frequency of the shaft will 

change with the rotational speed due to the Coriolis or gyroscopic effect. 

4.3 Validation of Time Domain Simulation 

Sine the equations of motion derived for shaft with misalignment are nonlinear, 

all simulations are to be carried out in time domain. For this, Simulink in Matlab is 

adopted using Runge-Kutta for solution of differential equations. A code is 
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written in Matlab to perform an FFT and extract the amplitude corresponding to 

the first and second order rotating speeds. The rotor acceleration response is 

thus obtained for various shaft speeds. Sample results of frequency response at 

3000 and 9000 rpm are shown in Figure 4-2 and Figure 4-3, respectively. 

Table 4-1 Rotor physical properties 

Physical property 

Distance from Bearing A to rotor (a) 

Distance from Bearing A to rotor (b) 

Rotor Diameter 

Rotor width 

Shaft diameter 

Young Modulus 

Material Density 

e Disk CG offset from geometrical center 

T Angle between disk and shaft 

Value 

0.160 m 

0.200 m 

0.075 m 

0.024 mm 

0.010 m 

2E11 Wmz 

8000 kg/mJ 

0.45E-3 m 

0 Degree 



Natural Frequency of Rotor 

600 f=-

Rotation Speed {rpm) 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

- w 1 — — OJ2 - - - w3 ^ - w 4 

Figure 4-1 Rotor natural frequency versus shaft speed in rpm 

As shown in the figures five distinct peaks could be clearly identified from the 

frequency responses obtained from the simulations. One of the peaks in these 

responses corresponds to the frequency of the rotation speed. The other four are 

identified as the rotor system natural frequencies. 

The natural frequencies identified from the time domain simulation and FFT 

analysis at two selected speed are compared with those obtained earlier from 

eigenvalue solution referred to as analytical results. A quantitative comparison of 

the natural frequency results is presented in Table 4-2 
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Figure 4-2 Amplitude versus frequency for the rotor at 3000 rpm 
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Figure 4-3 Amplitude versus frequency for the rotor at 9000 rpm 
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Table 4-2 Natural frequencies computed using analytical method and simulation 
results. 

First Mode (Hz) 

Second Mode (Hz) 

Third Mode (Hz) 

Fourth Mode (Hz) 

3000 rpm 

Analytically 

111.76 

111.89 

565.08 

664.95 

Simulation 

111.2 

111.7 

565 

664.8 

9000 rpm 

Analytically 

111.62 

112.02 

481.31 

780.91 

Simulation 

111.7 

112 

481.3 

781.1 

The comparison between the simulation and the analytical model shows that the 

simulation predicts the rotor natural frequencies that are similar to those 

predicted by eigenvalue solution. 

4.4 Effect of second order terms on the simulation results 

It is clear from the surveyed literature that the equations of motion for a rotor 

ignore the second order terms and assume that the higher order terms are 

negligible based on the fact that the higher orders of a small term are too small 

to contribute in the shaft response compared to other terms. Due to conflicting 

results in literature in the presence of misalignment, the present investigation 

reconsidered the higher order unbalance terms to examine its effect on 

responses at two times the rotating speed. Equations (3-9) to (3-12) developed 

in chapter 3 take into account the second order terms for dynamic unbalance. 

Simulations are carried out using equations (3-9) to (3-12) and equations (3-5) to 

(3-8) in order to compare responses with and without higher order terms, 
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respectively. Identical parameters as presented in Table 4-1 are used in both 

cases where the dynamic unbalance parameter r was assigned a value of 0.1 

degree, for shaft speeds in the range of 0 to 10,000 rpm. 

In each case, the acceleration response of the rotor is established in time 

domain. The rotor exhibits a response at a frequency that corresponds to the 

shaft rotational speed. For example, a shaft rotating at 3,000 rpm will have a 

forced excitation that corresponds to 50 Hz due to the inherent unbalance in the 

rotor. The amplitude that corresponds to this frequency is called the 1x response. 

Similarly the shaft could have amplitude that corresponds to twice the rotational 

speed (2x response) if the rotor has a natural frequency close to twice the 

rotation speed, and so on. 

Figure 4-4 shows the 1x shaft response against the shaft rotational speed for a 

rotor model where the higher order terms are ignored. A similar plot is shown in 

Figure 4-5 for a rotor model that takes into account the higher order terms and 

hence could be considered more accurate. A comparison of the results clearly 

shows that the higher order terms do not contribute to the rotor 1x response. It 

should be pointed out that the significantly large response near system natural 

frequencies is the result of considering an undamped system. 

Similarly Figure 4-6 and Figure 4-7 show, respectively, the 2x response for a 

rotor model where the second order terms are ignored and for the rotor model 
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where the second order terms are included. Similar to the 1x response, the 2x 

response for both the models are found to be identical throughout the speed 

range. 

In order to have a quantitative assessment, the percentage error due to 

neglecting the higher order terms is established for both 1x and 2x responses as 

shown in Figure 4-8. The results confirm that there is hardly any error in the 1x 

response when higher order terms are ignored in the equations of motion. 

4000 

-500 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Shaft speed (rpm) 

Figure 4-4 Rotor 1x response neglecting higher order terms 
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Figure 4-5 Rotor 1x response with higher order terms 
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Figure 4-6 2x Rotor response neglecting higher order terms 
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Figure 4-7 2x Rotor response with higher order terms 

The results further show that there are small errors in the 2x responses 

throughout the speed range considered. The change in the 2x response is due to 

the introduction of the sm(2(ot) term in equations 3-11 and 3-12. The error 

however remains less than 1% except around 7,000 rpm where it is found to be 

just above 2%. The increase in relative error for 2x response, compared to 1x 

response is the fact that relatively smaller response amplitude at 2x response 

contribute to an increase in percentage error. Such magnitude of error, however, 

can be neglected in a study involving extensive numerical computations. 
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Figure 4-8 Percentage error for 1x and 2x 

It is therefore, concluded that higher order terms due to unbalance can be 

neglected without any effect on the responses due to shaft misalignment. 

4.5 Finite Element Analysis 

The simplified parametric model developed for this investigation is next validated 

against a Finite Element (FE) model of the rotor system. A geometrically identical 

model to the one described by parameters in Table 4-1 is constructed using 

Patran. 

The shaft is meshed using bar elements and each element is given a circular 

cross section. The disk is meshed using quadratic elements and the elements 
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are given a thickness representing the disk thickness. The shaft is assigned a 

material with zero density and the disk is assigned a material with a density of 

8000 kg/m3. The mass of the rotor and inertia matrix, calculated from the finite 

element model and those used in the simulation, are compared and the 

comparison is shown in Table 4-3. Figure 4-9 shows the finite element model 

created in Patran. The finite element model consists of 36 bar elements 

representing the shaft and 215 elements representing the disk. The extremities 

of the shaft were fixed to the ground via very rigid springs to replicate the fixed-

fixed boundary condition. 

4.5.1 Natural Frequencies of the Rotor 

The created model in Patran is analyzed using Nastran to find the eigenvalues. A 

subroutine is used to include the gyroscopic effect. Solution 107 [74] is used, 

which calculates the rotor natural frequencies at different rotating speed and 

takes into account the gyroscopic effect. The natural frequencies are compared 

to the natural frequencies established in section 4.2 and 4.3 for rotor speeds 

3000 and 9000 rpm. The three sets of natural frequencies calculated from 

eigenvalue analysis referred to as "Analytical", from time domain simulation of 

lumped parameter model referred to as "Sim" and finite element method referred 

to as "FEM" are presented in Table 4-4. The results show that all three methods 

predict very similar natural frequencies for the first two modes. For higher 

modes, all the methods generate comparable results, where FEM generated 
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slightly lower values. This can be easily attributed to the fact that the mass and 

stiffness generated by FEM are not identical to lumped parameter model due to 

geometry approximation. Figure 4-10 to Figure 4-13 show respectively the first 

four mode shapes for the rotor rotating at 3000 rpm. The first two frequencies 

shown in Figure 4-10 and Figure 4-11, are the first bending modes. The third and 

fourth frequencies shown in Figure 4-12 and Figure 4-13, are disk modes. 

Table 4-3 Comparison between FEM model and Simulation model 

Mass 
(Kg) 

l p
2 (Kg-m2) 

I 
(Kg-m2) 

FEM Model 
0.8458 

5.93E-04 

2.965E-04 

Simulation Model 
0.8482 

5.96E-04 

2.98E-04 

Figure 4-9 Finite element model 
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Table 4-4 Comparison of natural frequency using different methods of calculation 

First Mode (Hz) 

Second Mode (Hz) 

Third Mode (Hz) 

Fourth Mode (Hz) 

3000 rpm 

Analytical 

111.76 

111.89 

565.08 

664.95 

Sim. 

111.2 

111.7 

565 

664.8 

FEM 

111.38 

111.51 

557.9 

654.3 

9000 rpm 

Analytical 

111.62 

112.02 

481.31 

780.91 

Sim. 

111.7 

112 

481.3 

781.1 

FEM 

111.4 

111.8 

476.8 

765.7 

SC1 :CRITICAL SPEED ANALYSIS, A1 :Mode 1 : Freq. = 111.38: Eigenvectors, Translational-(NON-LAYERED) 

Figure 4-10 Mode shape for first frequency. 
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SC1 CRITICAL SPEED ANALYSIS, A1 :Mode 3 : Freq. = 111.51: Eigenvectors, Translational-(NON-LAYERED) 

Figure 4-11 Mode shape for second frequency 
SC1 :CRITICAL SPEED ANALYSIS, A1 :Mode 5 : Freq. = 557.96: Eigenvectors, Translational-(NON-LAYERED) 

Figure 4-12 Mode shape for third frequency 
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SC1 CRITICAL SPEED ANALYSIS, A1 :Mode 7 : Freq. = 654.31: Eigenvectors, Translational-(NON-LAYERED) 

Figure 4-13 Mode shape for the fourth frequency. 

4.5.2 Dynamic Response of the Rotor 

The FEM model, developed in the previous section, is modified to study its 

dynamic response. An unbalance is introduced and the model was run in the 

time domain assuming that the shaft is perfectly aligned. The time domain data 

is imported into Matlab and then transferred to the frequency domain using FFT. 

The analysis method used is modal transient response (solution 129 [74]). The 

unbalance used corresponds to 3.8 le'4 kg m similar to the unbalance used in the 

Matlab/Simulink simulation. A sample frequency response result for rotor speed 

3000 rpm is presented in Figure 4-14 for a perfectly aligned shaft. This result can 

be readily compared with those from lumped parameter simulation model 
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presented in Figure 4-2. As these results show, both models predict very similar 

response amplitude for the rotor at a selected speed. 
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Figure 4-14 Perfectly aligned rotor response using FEM 

1000 

Finally, in order to examine the applicability of the FEA for misaligned shaft the 

FEM model developed for validation is extended to include misalignment. This is 

achieved by introducing a linear displacement at one end of the shaft by 0.1 mm 

in the y direction. Similarly to frequency response for aligned shaft in Figure 

4-14, Figure 4-15 presents the frequency response for the misaligned shaft. 
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Frequency 

Figure 4-15 Shaft response with 0.1 mm using FEM 

As the results show, misalignment in FEM leads to slightly higher response 

amplitude at the same frequency as the perfectly aligned shaft. More importantly 

FEM with misalignment do not exhibit response at harmonics which is frequently 

observed in field [28, 29, 30]. The failure of FEM model in exhibiting 

misalignment rotor behavior is also reported in the literature [29]. 
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4.6 Summary 

The rotor system model developed in chapter 3 was validated by comparing the 

natural frequencies of the system with those predicted through eigenvalue 

analysis. For further validation of the model in frequency domain, a finite element 

of the rotor system was developed using Patran and analyzed using Nastran. 

Best effort was made to ensure that the finite element model represents the 

developed model. 

The natural frequencies predicted from eigenvalue analysis, finite element 

analysis and frequency response of lumped parameter model in time domain 

simulation was used to validate the model. Comparable results were obtained by 

all three methods over a speed range of 0 to 10,000 rpm. The finite element 

model was also used to generate time domain response for a given unbalance to 

compare the response of the developed model. Both models were found to give 

comparable results both in terms of magnitude and frequency. 

A section in the chapter is also devoted to examining the influence of higher 

order unbalance terms in the equations of motion. The results in terms of 1x and 

2x response over the speed range showed that the higher order terms had 

negligible influence on the above responses of interest and hence could be 

safely neglected for the purpose of this study. Finally in this chapter, the 
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effectiveness of finite element method in simulating shaft with misalignment was 

examined. The results showed that the introduction of misalignment in finite 

element model had little effect on the amplitude response. However, it failed to 

exhibit responses at harmonics which have been reported in literature based on 

experimental tests and field studies. 
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Chapter 5 

5 Dynamic Response of Rotor System Due to Misalignment 

5.1 introduction 

In chapter 4, the lumped parameter model of the rotor system was validated 

against eigenvalue solution as well as comparison with natural frequencies and 

responses of an equivalent finite element model (FEM). In chapter 4 it was also 

shown that FEM can not predict the known trend in the response of a rotor 

system in the presence of misalignment. 

The validated lumped parameter model in chapter 3 was extended to include 

shaft misalignment, which could be parallel and/or angular or combined type. 

The equation of motion for the misaligned rotor system developed as equations 

(3-27) to (3-30) in chapter 3 included preload force, nonlinear stiffness Kn and 

damping C. While the preload force that due to a given parallel and/or angular 

misalignment, is well defined, there is a lack of methodology in establishing a 

value for Kn. In the literature [33] the nonlinear stiffness is acknowledged to fluid 

film bearing properties. Furthermore, the values for damping parameter C, which 

is essential for stable response, is difficult to estimate accurately. The first part of 

the misaligned rotor study is thus devoted to a sensitivity analysis of the 

parameters Kn and C on the rotor responses of interest. 
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Based on literature review, the most general and useful response of rotor system 

to misalignment is considered to be 1x, 2x, ... nx responses at a selected 

rotational speed. For the nonlinear rotor model, it is obtained by time domain 

simulation of the model for a selected rotational speed followed by FFT of the 

steady state response. The magnitude of acceleration response of the rotor at 

frequency corresponding to rotational frequency is referred to as 1x response. 

Similarly, the response at frequency corresponding to n times the rotational 

speed is referred to as nx response. Since dominant responses are found only at 

1x and 2x frequencies, only 1x and 2x responses are considered in this 

investigation as response measures for the rotor system. 

The sensitivity analysis to Kn and C on the response measure is carried out in 

the next subsection is used to establish the parameters Kn and C for this 

investigation. 

The following subsections use these parameters for a detailed investigation of 

response measures for different levels of misalignment. The results obtained in 

this chapter for misalignment are compared with those without misalignment and 

are compared with experimental and field test data in chapter 6. 
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5.2 Sensitivity of nonlinear stiffness and damping 

The equations of motion derived for the rotor system with misalignment contain a 

nonlinear stiffness term Kn and damping parameter C. Prior to examining the 

influence of misalignment, it is necessary to establish these two parameters. 

Although, the existence of Kn is acknowledged and attributed to bearing 

properties [33], an effective value of this parameter has not been explored. This 

section is thus devoted to examination of its effect on the 1x and 2x responses of 

the rotor system with misalignment. For this, the rotor system parameters used 

are same as those presented in Table 4-1, with dynamic unbalance ( r ) being 

0.15 degrees. 

When misalignment is introduced at one of the bearing support, a preload is 

introduced in the shaft due to its deformation. This preload in the form of a force 

F and a moment M at the disc location can be established following the 

derivations presented in section 3.3 by equation (3-26) for a fixed-fixed boundary 

condition. The total preload in the shaft, as defined in the equations of motion (3-

27) to (3-30) is the summation of the preload due to shaft bending and the 

preload due to the non-linear stiffness as described in the equations (3-31) and 

(3-32). Since there are no guidelines to establish the value of the nonlinear 

stiffness Kn it is assumed that the nonlinear stiffness parameter is a percentage 
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of the preload due to the shaft misalignment. As a starting point, for a parallel 

misalignment, the values of KniJ can be established from: 

Knn = A 
Kn 

\yi 
• J 

Kn\2 ~ Kn2\ ~ 0 

Kn22 = A 
K22 

+t 

5-1 

5-2 

5-3 
V ri J 

Where A represents a percentage ratio, y{ and $ are respectively the 

displacement and slope at the disk location due to a given parallel misalignment. 

For parallel misalignment of 0.1E-03 m and A taken as 0.008, the initial value of 

K„ are established as: 

K„ = 
K, 0 

K. nil. 

8.4684£ + 07 0 

0 86957 
5-4 

In order to examine the influence of Kn the matrix shown in equation (5-4) is 

varied from: 

K„ -

K 

8.4684£6 0 

0 8696 
to 

1.6937^8 0 

0 173916 
5-5 

Where the ratio ^ ^ = 9.74 x 102 is maintained as a constant. 
K "»22 

The damping parameter for the rotor system is selected in order to realize a 

reasonable damping ratio. For this, the effect of the damping ratio in the range of 

1% to 10% is considered. The damping coefficients are thus established using: 
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\B(2jKnMD) 0 1 5 6 

[ 0 B(2jK22I^ )J 

Where Ku and K22 are elements of stiffness matrix in equation (2-14) 

established for fixed-fixed boundary condition. The parameter B in equation 

(5-6) is the damping ratio. 

Simulations are carried out for rotor speed 2000 rpm using baseline parameters 

and 5% damping for Kn in the range of 8.5E6 to 1.7E8, where Kn refers to KnU, 

while Kn22 is obtained by maintaining the ratio —^- constant. The 1x and 2x 
Kn22 

frequency response at 2000 rpm computed from the steady state time history for 

the range of Kn is presented in Figure 5-1. 

The 1x response for the simulation presented in Figure 5-1 shows that while 

there is a small 1x response of the rotor at this speed, there is no noticeable 

effect of Kn on its magnitude. The 2x response at 2000 rpm shown in the same 

figure indicates that there is negligible response at 2x frequency while effect of 

Kn is also negligible. This is expected due to relatively small unbalance force at 

this rotor speed. 
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Kn (N/mA2) 

•1x 2x 

Figure 5-1 1x and 2x Responses at 2000 rpm for different Kn at 5% damping. 

Similar results generated for rotor speed 4000 rpm is shown in Figure 5-2. The 

results show that as the speed is increased, the 1x response of the rotor 

increases significantly due to increase of the unbalance force. However, the 1x 

response remains relatively unaffected as the value of Kn is increased. The 

results further show that at this speed, the 2x response appears and tend to 

increase steadily as the value of Kn is increased. 
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Figure 5-2 1x and 2x responses at 4000 rpm for different Kn at 5% damping. 

The 1x and 2x responses for identical simulations carried out fro 6000 rpm are 

shown in Figure 5-3 and Figure 5-4. The results for 1x response as a function of 

Kn presented in Figure 5-3 show significantly larger response for the damping 

considered. It further shows that there is a slight increase in the 1x response as 

the parameter Kn is increased. The 2x response at 6000 rpm as shown in Figure 

5-4 is found to increase significantly with the increase in nonlinear parameter 

Kn. At this speed the 2x response is also found to be significantly larger than at 

other rotational speeds. 
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Figure 5-3 1x response at 6000 rpm for different Kn at 5% damping 
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Figure 5-4 2x response at 6000 rpm for different Kn at 5% damping 
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The 1x response at a higher speed of 8000 rpm, shown in Figure 5-5, exhibits 

even a higher response due to larger unbalance force. As far as the effect of Kn 

is concerned, the results in Figure 5-5 show that the 1x response of the rotor 

decreases slightly as the magnitude of Kn is increased. Although the decrease 

is minimum, a general trend in 1x response can be noted as the following. 

At lower speeds 1x response is low due to low unbalance force, and the 1x 

response increases with the increase in the rotational speed. Furthermore, Kn 

has negligible influence on the 1x response for low speeds. As the speed is 

increased, Kn tends to increase the 1x response very slightly until around 6000 

rpm is used. For the considered rotor, speeds beyond 6000 rpm an increase in 

Kn tend to reduce the 1x response very slightly. It should be noted that 6000 

rpm for the considered rotor system is in the vicinity of the rotor system critical 

speed. 

The 2x response at the higher speed of 8000 rpm is presented in Figure 5-6. 

Once again the 2x response as shown is found to increase with an increase in 

the Kn value. When compared to the 2x response at 6000 rpm it is evident that 

the 2x response at 8000 rpm is lower than that observed at 6000 rpm. 
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Figure 5-5 1x response at 8000 rpm for different Kn at 5% damping 
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Figure 5-6 2x response at 8000 rpm for different Kn at 5% damping 
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Again a general trend in the 2x response as function of speed and magnitude of 

Kn can be noted as follows. 

At lower speeds, the 2x response is not present where Kn also shows no 

influence. As the speed and resulting unbalance force is increased in the 

presence of misalignment, the 2x response appears even for lower end of Kn 

values. The 2x response also increases as the value of Kn is increased. It is 

also observed that near 6000 rpm, the 2x response is most prominent with most 

sensitivity to Kn values where the response increases significantly as Kn is 

increased. At speeds higher than 6000 rpm or as the speed increases beyond 

the system critical speed, the 2x response decreases and the sensitivity to Kn is 

lower than that near the critical speed. 

The above simulation results presented are for a 5% damping. The influence of 

damping parameter on the response sensitivity of Kn is next examined. The 

damping parameter is selected for damping ratio of 1, 5, and 10% based on 

equation (5-6). 

The effect of Kn on the 1x and 2x responses for the three damping parameters 

are shown in Figure 5-7 and Figure 5-8. It was found that typically the response 

at 1x and 2x will reduce with the increase in damping while the slope of the 

response with respect to Kn will reduce with the increase of the damping ratio. 
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The sensitivity of Kn to the 2x response thus reduces significantly when the 

damping is large. For further investigation of responses due to misalignment the 

damping parameter is taken to yield 5% damping to account for structural and 

bearing damping. This is accomplished by equating parameter B in equation (5-

6) to 0.05 

70 
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Figure 5-7 1x response for different damping at 6000 rpm 
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Figure 5-8 2x response for different clamping at 6000 rpm 

The introduction of the damping terms in the equations of motion will alter the 

dynamic properties of the rotor. To evaluate the effect of damping (5 = 0.05 in 

equation 5-6) on the natural frequency of the rotor the equations of motion (4-1) 

to (4-4) were rewritten with the introduction of the damping terms: 

MDz + Kuz + Kny/ + Cnz + Cniy = 0 

IDyj> ~ IDX30>V' + K2iy + ^ 2 2 ^ + C2\)> + C 2 2 ^ = ° 

JDy^ + I D ^ + K2\Z + K2l¥ + C21Z + C^lj/ = 0 

5-7 

5-8 

5-9 

5-10 
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The complex eigenvalues for the above equations were calculated using the 

rotor properties shown in Table 4-1. The results were compared to the natural 

frequency of the systems and the damping ratio was calculated for each mode. 

Table 5-1 shows in the first column the natural frequency of the system without 

damping, the second column shows the natural frequency of the damped rotor 

and finally the third column shows the damping ratio for each mode. The result 

show that the damped frequency does not change significantly due to the 

introduction of the damping. It is also important to note that the rotation speed 

does not affect the damping ratio significantly. 

Table 5-1 Comparison of the effect of damping on natural frequency 

First 
Mode 

Second 
Mode 

Third 
Mode 

Fourth 
Mode 

3000 rpm 

Natural 
Freq. 
(Hz) 

111.76 

111.89 

565.02 

665.01 

Damp. 
Natural 
Freq. 
(Hz) 

111.61 

111.75 

564.32 

664.19 

<? 

0.051 

0.051 

0.049 

0.049 

9000 rpm 

Natural 
Freq. 
(Hz) 

111.62 

112.02 

481.18 

781.13 

Damp. 
Natural 
Freq. 
(Hz) 

111.4 

111.8 

476.8 

765.7 

<? 

0.051 

0.051 

0.048 

0.048 

5.3 Rotor Response with Misalignment 

Prior to any simulation of misaligned rotor system it is essential to determine a 

methodology to select appropriate value for nonlinear stiffness Kn as a function 
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of preload. In general the analysis on the sensitivity of Kn presented in section 

5.2 indicates that at the lower end of Kn values used the 1x response of the 

rotor is relatively unaffected while the 2x response is always found to increase. 

Based on the literature review and experimental studies presented in chapter 1, 

it is clear that misalignment invariably results in an increase in the 2x component 

of the response while 1x is relatively unaffected. Furthermore, the increase in the 

2x response is known to be a function of misalignment magnitude. Hence it was 

decided to adopt the value for Kn as a function of misalignment while Kn will be 

in the lower range of the range considered in section 5.2. 

For this, Kn is established using equation (5-1) to (5-3) for parameter A taken 

as 0.0014, with a parallel misalignment of 0.1 mm at bearing B as shown in 

Figure 3-5 (ii), the deflection and slope at disk location are found to be: 

y, 

A 

And the corresponding value of Kn is established as: 

'IAH4E + 01 0 1 
K«= 5 " 1 2 

" |_ 0 1449.28J 

For other magnitudes of misalignment, the computed values of deflection and 

angle at rotor location is used to establish the new Kn matrix. For this the new 

location of the disk ym and slope <f>Di is calculated. Then the Kn matrix is 

modified using the following equation: 

4.17£-5(m) 

4.12£-4(rad) 
5-11 

90 



K. = 

1.4114£ + 0 7 ^ - 0 

1449 .28^ 
5-13 

1449.28 

Where y. and fa are defined in equation (5-11). 

Simulations are carried out with different misalignment magnitude to show the 

effect of misalignment on the 1x and 2x responses. Similar to the previous 

sections the differential equations of motion are solved in time domain using 

Runge Kutta method. The time domain data is then transferred to the frequency 

domain. The simulation is run at different rotation speed and the amplitude at 1x 

and 2x are plotted. 

The first two simulations examine the effect of parallel misalignment on the 1x 

and 2 x responses. Two misalignment are introduced the first being 0.2E-3 m 

and the second 0.4E-3 m. Figure 5-9 shows the 1x rotor response at different 

rotational speed. As the result shows, the introduction of misalignment dies not 

change the response significantly. In fact the response remains identical 

regardless of the level of misalignment except in the vicinity of the critical speed, 

where there is a slight change in the response. The effect of parallel 

misalignment on the 2x response is shown in Figure 5-10, which clearly shows a 

significant increase of the 2x response due to misalignment. The 2x responses 

observed from the simulation show that as misalignment is introduced a 

dominating 2x response appear over a wide speed range where the response is 

91 



largest when the rotational speed corresponds to the critical speed. The results 

further show that the increase in this response is significantly more for larger 

magnitude of misalignment. This trend is in line with the experimental 

observations reported in the literature. 

The next set of simulations examines the effect of angular misalignment on the 

rotor response. For this an angular misalignment of 0.2 and 0.4 degree is 

introduced at bearing B. Similar to the response observed for parallel 

misalignment the 1x response shown in Figure 5-11 does not change 

significantly with the introduction of the angular misalignment. The 2x response, 

shown in Figure 5-12, on the other hand increases with the increase in 

misalignment magnitude; this is in line with the response observed due to 

parallel misalignment. 
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Figure 5-9 1x Disk response versus shaft speed for parallel misalignment 
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Figure 5-10 2x Disk response versus shaft speed for parallel misalignment 
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Figure 5-11 1x Disk response versus shaft speed for angular misalignment 
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Figure 5-12 2x Disk response versus shaft speed for angular misalignment 
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It should be pointed out that both parallel and angular misalignment essentially 

introduce a preload in the shaft with resulting deflection and slope at the disk 

location. Hence a very similar rotor response is expected in both parallel and/or 

angular misalignment. 

The next case examines the effect of the combined parallel and angular 

misalignment on the rotor response. To accomplish this, the simulation is run 

with a combined parallel misalignment of 0.2E-3 m and angular misalignment of 

0.2 degree. The 1x response is shown in Figure 5-13, and again for the 

misalignment values used the 1x response does not show any change due to 

misalignment. The 2x response on the other hand, shown in Figure 5-14 

indicates a sharp increase in the 2x response in the presence of misalignment. 
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Figure 5-13 Rotor 1x response due to combined angular and parallel 
misalignment 
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Figure 5-14 Rotor 2x response due to combined angular and parallel 
misalignment 

This result, when compared to 2x response due to pure parallel (0.2 mm) 

misalignment (Figure 5-10) or pure angular (0.2 deg) misalignment (Figure 5-12), 

show relatively smaller 2x response when both are present at the same time. 

This is attributed to the fact that the preload created by a parallel misalignment in 

this case was reduced by the considered angular misalignment. 

Finally to investigate the effect of severe misalignment, a simulation is run with a 

misalignment of 0.005 m and without misalignment. The FFT of the rotor 

response at 6500 rpm is shown in Figure 5-15 and Figure 5-16, for aligned and 

misaligned rotor system, respectively. 
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The aligned rotor response shown in Figure 5-15 shows only one peak that 

occurs at the rotation speed, there is no sign of other peaks at 2x or 3x. On the 

other hand, the response of the misaligned shaft, shown in Figure 5-16 shows 

clearly a distinctive 1x, 2x and 3x. Comparing the frequency response between 

the aligned rotor and the misaligned rotor indicates that the 1x frequency may 

decrease to some extent due to sever misalignment while a significant 2x 

response is introduced by misalignment. At the same time higher harmonics 

such as 3x response may be present when the misalignment is severe. Such 

behavior is also considered with some reported experimental results. 

For a close look on the effect of severe misalignment on the 1x and 2x response 

over a wider rotational speed range the response results are presented in Figure 

5-17 and Figure 5-18 for 5 mm misalignment. These results clearly show 

significant decrease in the 1x response with very significant increase in the 2x 

response over a wide rotational speed range. 
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Figure 5-15 FFT of rotor response at 6500 rpm without misalignment 
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Figure 5-16 FFT of rotor response at 6500 rpm with 0.005 m misalignment 
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The results obtained so far indicate that in a perfectly aligned rotor system there 

will be no significant 2x response. If there is a misalignment, it will be 

accompanied by a significant increase of the 2x components. An increase in the 

2x component is a clear indication of an increase in the misalignment. 

Furthermore if the misalignment is severe, there will be a change in the 1x 

response with significant 2x response along with nx response. 
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Figure 5-17 1x rotor response due to 0.005 m misalignment 
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Effect of Excessive Misalignment 
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Figure 5-18 2x response due to 0.005 m misalignment 

The final set of results in this section present the time domain steady state 

response in absence and presence of misalignment. Figure 5-19 presents the 

rotor response time history at 6500 rpm when there is no misalignment. As 

expected the response is due to unbalance and results in a pure sinusoidal 

response of the rotor. For the same rotor system, the introduction of 5 mm 

misalignment leads to a time history response shown in Figure 5-20. This result 

clearly shows that the misalignment and resulting preload and nonlinear stiffness 

causes an offset and clipping of the response which yields the higher harmonics 

in the response in frequency domain. 
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Figure 5-19 Rotor response without misalignment at 6500 rpm in time domain 
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Figure 5-20 Rotor response with 0.005 m misalignment at 6500 rpm in time 
domain 
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5.4 Summary 

The validated rotor system model was extended to include misalignment in this 

chapter to examine rotor responses. The inclusion of misalignment involved 

introduction of preload, resulting deflection and shape at the rotor location and 

introduction of nonlinear stiffness. Kn as a function of preload. It was first 

necessary to establish the methodology for selecting reasonable values for Kn 

and damping for the system. 

To accomplish this, the first step was to study the effect of the non linear 

stiffness Kn and damping C on the shaft response. It was established that an 

increase of the nonlinear stiffness leads to an increase of the 2x response, but it 

also can slightly increase or decrease the 1x response in a nonlinear manner. 

The damping effect was also examined and the simulations showed that an 

increase of the damping will lead to a decrease in the 1x and 2x magnitude and 

slope. A methodology was established to select Kn based on misalignment 

magnitude. Using the selected Kn, the second step was to study the effect of 

misalignment on the shaft response, by running the simulation for different 

misalignment cases, which include parallel, angular and combined misalignment. 

The result showed that the 2x response increased with the increase of 

misalignment. Finally a case of severe misalignment was examined and it 

showed that the 1x response was altered significantly while 2x response also 
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increased. At the same time severe misalignment was found to introduce higher 

harmonics. 

In the next chapter results from a rig test will be presented along with data 

obtained from a gas turbine engine that was misaligned on purpose to examine 

its response. In addition two case studies of engines that suffered from severe 

misalignment are presented to show the effect of misalignment on the 2x 

response. The analytical results obtained in this section can be readily compared 

with the experimental and field observed data prior to development of the 

proposed expert system. 
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Chapter 6 

6 Experimental Rig and Field Engine Data 

6.1 Introduction 

A detail time and frequency domain analysis of a rotor system in the presence of 

misalignment was presented in chapter 5. The results in general show that 

regardeless of parallel or angular misalignment, it introduces a preload on the 

shaft and introduces additional nonlinear stiffness. Furthermore, the nonlinear 

stiffness parameter is a function of the magnitude of misalignment. The 

simulation results over a wide range of rotating speed show in general that the 

presence of misalignment introduces a rotor response at a frequency 

corresponding to two times the rotating speed referred to as 2x response. 

Furthermore there is always 1x response due to excitation generated from 

rotating unbalance. The 1x and 2x rotor responses, extensively investigated in 

the previous chapter, clearly show that misalignment has little influence on the 1x 

response which may reduce or increase slightly depending on the magnitude of 

misalignment. The 2x response on the other hand increases as the misalignment 

is increased. 

In order to qualitatively confirm the trend in the response observed from 

simulations, this chapter is devoted to experiment with an available test rig. For 

this a Bentley-Nevada rig was used where misalignment could be realized by 
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introducing shims under one of the bearings. However the rotor response being 

difficult to measure, the rotor system response at one of the bearing was 

selected as a measure of response trend. Thus only a qualitative trend in the 

response could be compared with those obtained as rotor response in 

simulations. 

Further to test rig responses to misalignment, data was also collected from field 

tests of full scale gas turbine engines with and without known misalignment. 

These results can also be readily compared with the trend observed from 

simulations and test of a simple rotor system. This chapter presents the details 

of the rig and field test results to confirm the trends observed in simulation. The 

confirmed simulation results are finally used in the next chapter for development 

of an expert system for identification of misalignment in rotor system such as gas 

turbine. 

6.2 Rig layout 

The geometrical specification of the Bentley Nevada test rig used for the 

experiment is shown in Figure 6-1. A photograph of the test rig is presented in 

Figure 6-2. The rig consists of an electric motor coupled to a rotor via a flexible 

shaft. The shaft is supported by two dry friction bearings made of brass. The rig 

is capable of a maximum speed of 10,000 rpm. The electric motor is controlled 

via an external controller and motor speeds can be pre-selected. The controller 
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can achieve a speed rate of 10,000 rpm/min, or can be selected to run at a fixed 

speed. Although a given unbalance can be easily introduced to the rotor, no 

intentional unbalance was introduced in consideration of the very high speed of 

operation. For the present investigation, the rig was modified to accommodate a 

given misalignment by shimming one of the bearings. Hence a parallel 

misalignment could be easily realized. Although simulated response of the rotor 

was considered a measure of misalignment effect it could not be done for test rig 

due to lack of instrumentation. As an alternative, response was measured at one 

of the bearings. For this an accelerometer was attached at bearing B as shown 

in Figure 6-1 and Figure 6-2. The accelerometer signal was passed through a 

charge amplifier and the signal was analyzed using a spectrum analyzer made 

by Hewlett Packard. The specifications of the electronics used for testing are 

detailed in Table 6-1. 

6.3 Testing procedure 

The accelerometer response at the bearing "B" was measured and recorded for 

selected rotor system speeds in the range of 0 to 10,000 rpm, using 500 rpm 

increments. Before each recording, time was allowed to stabilize the response of 

the system at each speed. The time response was then analyzed to establish the 

1x and 2x response at each selected speed. Tests were carried out for aligned 

as well as misalignment of 0.2 and 0.4 mm. Each run was repeated for three 

times to ensure repeatability of the tests preformed. 
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Figure 6-1 Rig layout all dimensions in meter 

Figure 6-2 Picture of the Bentley Nevada rig 
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Table 6-1 Specification of the test components 
Accelerometer type 

Sensitivity 

Charge amp 

Specification of charge amp 

Endevco Model 7240B 

2.59 pC/g 

PCB 

9.96 mv/Pc 

6.4 Test Results 

The test results in terms of acceleration response for zero and 0.2mm 

misalignments are shown in Figures 6-3 and 6-4. Figure 6-3 shows the 

measured acceleration at bearing "B" at the frequency corresponding to the shaft 

rotation speed (1x). The 1x response for aligned system shows 4 distinct peaks. 

When this is compared with the simulated rotor response for zero misalignment 

in Figure 5-9 it clearly shows that the test produces 2 additional peaks at 3000 

rpm and 4500 rpm in addition to the peaks expected at around 6000 rpm and 

7000 rpm. The peaks are due to rig characteristics and associated with rig 

natural frequencies. As shown in Figure 6-3, when the 0.2 mm misalignment is 

introduced, it is found that the peaks corresponding to the rig natural frequencies 

are reduced. However the peak at 6000 rpm increased by the presence of 

misalignment. Similar trend was observed in simulation for moderate levels of 

misalignment. It should be pointed that no attempt is made here to compare the 

magnitude of the response from experiment to those of simulations, since the 
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experimental response is at the bearing while simulated results are for the rotor 

response. 

Figure 6-4 shows the measured acceleration at bearing B at the frequency 

corresponding to twice the shaft rotation speed (2x). Similar to 1x response the 

rotor system 2x response at the bearing also show peaks at speeds other than 

6000 rpm due to rig resonances. It is however clear that there is very little 

response at 6000 rpm when there is no misalignment. When misalignment of 0.2 

mm is introduced, the results in Figure 6-4 show that peaks corresponding to the 

rig resonance decreases slightly while the response around 6000 rpm is 

significantly increased. This effect of misalignment on the 2x response of the 

rotor was clearly identified from the simulation results. 
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Figure 6-3 Support acceleration response 1 x component 

Similar results for a more severe misalignment of 0.4 mm is shown in Figure 6-5 

and 6-6. The 1x response shown in Figure 6-5 shows a slight reduction of the 1x 

component due to misalignment over the speed range except at around 7500 

rpm where the response increases slightly. The 2x response shown in Figure 6-6 

shows a behavior similar to the one obtained from the simulation in Figure 5-18 

where the 2x response increases drastically due to the introduction of 

misalignment. In the simulation the increase in the 2x response occurs close to 

critical speed and is accompanied with a shift of the critical speed of the rotor 

system as it is clearly seen in Figure 5-17. 
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Figure 6-5 Support acceleration response 1x component 
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Figure 6-6 Support acceleration response 2x component 

It must be admitted that there were several difficulties in performing the 

experiment due to limitations of the rig. Further increase in the misalignment 

beyond 0.4 mm was not possible due to locking of the bearings. Speeds beyond 

8000 rpm were not possible due to excessive rig vibrations. Interpretation of 

results was also difficult due to various responses of the rig and its components. 

In general, however, when the response of the rotor system which is expected 

around the rotor system natural frequency is examined closely it yielded 

reasonably good results that are in agreement with the simulation. It is important 

to note that comparing the 2x response of the rig at 0.4 mm misalignment with 

the 2x response of the rig at 0.2 mm misalignment we clearly notice a drastic 
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change in the response that suggests that nonlinear stiffness variation with 

misalignment does not seem to be linear. The change of the nonlinear stiffness 

with the severity of misalignment will need to be further investigated. 

6.5 Data Collected from Engines 

The researcher having access to real gas turbines engines was able to acquire 

data from field test. Data from two different types of engine were examined, the 

first engine is connected directly to the generator as shown in Figure 6-7 and the 

second type of engine drives the generator via a power turbine and is not directly 

coupled to the generator as shown in Figure 6-8. Both engines are equipped with 

accelerometers at the front close to the LPC, at the center close to the 

combustor and at the rear close to the LPT. The accelerometers are mounted on 

top of the bearing support as close as possible to the load path. 

HPC^l 
CQMBUSTDRS 

p HPT 

GENERATOR 

Figure 6-7 Three spool gas turbine connected to a generator 
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Figure 6-8 Two spool engine layout 

6.5.1 Misalignment test 

The first engine is a gas turbine that is connected to a generator using a flexible 

coupling as shown in Figure 6-7. The data presented here was generated from a 

test conducted to evaluate the sensitivity of a gas turbine to misalignment when 

connected to a generator using a flexible coupling. The engine is equipped with 

three accelerometers as standard equipment. These accelerometers are CE132 

front, CE132 center and CE132 rear, in addition to these accelerometers and for 

the purpose of the test four more accelerometer were added to the engine center 

axial, center radial, rear axial and rear radial. The engine was at first aligned with 

the generator to ensure that the maximum misalignment is less than 0.3 mrad. 

The engine was run to maximum power and data from the different 

accelerometers was collected and stored. The engine was then the misaligned. 

The maximum misalignment achieved during the second test was 0.87 mrad. It is 

important to note that in both tests the misalignment were within the limits of the 

flexible coupling. At no time during this experiment the engine was aligned 
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beyond the limits of the coupling because such a test could damage the engine. 

Figure 6-9 and Figure 6-10 show respectively the engine response at baseload 

for a 0.3 mrad and 0.87 mrad misalignment. The engine shafts that is connected 

to the generator rotates at a speed of 3000 rpm, the 1x correspond to 50 Hz and 

the 2x correspond to 100 Hz. Both figures show the data collected from different 

accelerometers that are positioned at different location on the engine as 

explained. 
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Figure 6-9 Engine accelerometer response for a misalignment of 0.3 mrad 
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Figure 6-10 Engine accelerometer response for a misalignment of 0.87 mrad 

Examining both graphs there is no noticeable change into the engine vibration 

response due to the misalignment. Data was also collected during engine startup 

to baseload. Figure 6-11 and Figure 6-12 show the data collected from the 

CE134 rear production accelerometer. Similarly to the data collected at 

baseload, the data presented in Figure 6-11 and Figure 6-12 did not show any 

noticeable change to the engine response. 
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Figure 6-12 Data collected from Rear CE134 accelerometer at 0.87 mrad 
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One can only notice a very slight change into the 2x component and a very small 

component of 3x appearing in the misaligned condition, but because the engine 

and the generator were not misaligned beyond the flexible coupling limits the 

preload generated in the coupling is so small that it does not affect the nonlinear 

stiffness of the rotor significantly and hence the vibration response does not 

change significantly. These results can therefore be considered as those for no 

misalignment in the rotor system. 

6.5.2 Data from Severely Misaligned shafts 

Data was collected from two engines that have suffered from severe 

misalignment. The type of engine in question is a gas turbine that has 2 spools. 

Figure 6-8 shows the layout of a two spool engine. The low pressure compressor 

(LPC) is connected to the low pressure turbine (LPT). The high pressure 

compressor is connected to the high pressure turbine. The combustor takes the 

compressor air and mixes it with fuel that ignites. The combustion energy is 

transferred in useful work to rotate the compressors and the turbine. The excess 

energy is then sent to the power turbine that is connected to a generator. The 

engine drives a free turbine or a compressor, in the presented data the engine 

was driving a compressor. 

The first engine had suffered an internal fire and was rebuilt and repaired by the 

owner according to the manufacturer recommendation. The engine was then 
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recommissioned. The vibration monitoring system on the engine monitors the 

broad band vibration. During the recommissioning the engine exhibited high 

vibration above the recommended limits of the manufacturer. 

An investigation was launched and more data was collected from the engine. 

The engine was accelerated to power and stabilized for about 15 minutes. The 

vibration data was collected from the accelerometer and then integrated and 

transformed into velocity. 

Figure 6-13 shows a plot of the frequency content, the x axis is the frequency in 

kHz and the y-axis is the vibration data in m/sec zero to peak. The vertical lines 

numbered 1 to 12 are the rotation orders also known as the engine orders (nX). 

The rotation of the high speed shaft was 9272 rpm. This corresponds to a 1x of 

154.5 Hz. The figure shows clearly the existence of 1x and 2x components. It 

also shows the harmonics at 3x, 4x, 5x etc. Table 6-2 shows the summary of the 

engine vibration, the first column of the table shows the engine order, the orders 

correspond to 1x, 2x up to 12x, the second column present the frequency in 

Hertz, the third column present the vibration amplitude in m/sec zero to peak, 

and finally the fourth column present the presentation of the amplitude compared 

to the 1x amplitude. The table shows that the 2x and 4 x components are larger 

than 1x components, with the 2x component being 6.3 times larger. 
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In order to reconfirm the results, the engine was operated again with a different 

accelerometer and support bracket. Similar results were observed confirming 

that vibration signal is real. Figure 6-14 shows the vibration signal obtained with 

a different bracket and accelerometer at a rotation speed of 9335 rpm this 

corresponds to a 1x of 155.8 Hz. 

Table 6-3 shows the summary of the engine vibration and it confirms the 

existence of 2x and harmonics. The engine was returned for more repairs and 

the misalignment problem was corrected upon which the engine went back to 

service and the vibration signal was normal. 

Figure 6-13 Engine vibration at a rotation speed of 9272 rpm 
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Table 6-2 Summary of engine vibration data 
Engine orders 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Frequency (Hz) 

154.5 

309.1 

463.6 

618.1 

772.7 

927.2 

1081.7 

1236.2 

1390.8 

1545.3 

1699.8 

1854.4 

Vib. (m/sec) 0-Pk 

2.447E-3 

15.50E-3 

646.7E-6 

9.051 E-3 

896.8E-6 

1.651 E-3 

304.6E-6 

316.4E-6 

1.483E-3 

295.3E-6 

536.1 E-6 

787.4E-6 

% of 1 EO 

100 

633.43 

26.43 

369.88 

36.65 

67.47 

12.45 

12.93 

60.60 

12.07 

21.91 

32.18 

Figure 6-14 Engine vibration at a rotation speed of 9353 rpm. 
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Table 6-3 Summary of engine vibration data with new accelerometer 
Engine orders 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Frequency (Hz) 

155.8 

311.6 

467.3 

623.1 

778.9 

934.7 

1090.5 

1246.2 

1402.0 

1557.8 

1713.6 

1869.4 

Vib. (m/sec) 0-Pk 

2.718E-3 

30.74E-3 

847.6E-6 

6.512E-3 

1.819E-3 

674.9E-6 

353.8E-6 

1.241E-3 

1.092E-3 

316.7E-6 

620.5E-6 

458.9E-6 

% of 1 EO 

100 

999.99 

31.18 

239.59 

66.92 

24.83 

13.02 

45.66 

40.18 

11.65 

22.83 

16.88 

The second engine had suffered gradual misalignment over its life period. This 

engine has undergone several overhauls over the span of its life and stored for a 

period of time without operation. When the engine was put back into service, it 

exhibited higher than normal vibration mainly harmonics with high first and 

second order, with smaller vibration at higher harmonics. Figure 6-15 shows a 

snapshot of the vibration after 10 minutes stabilization. The shaft was rotating at 

9600 rpm. The first order frequency is hence 160 Hz. The snapshot shows 

clearly the first and second order. It also shows the existence of harmonics. 

Table 6-4 shows a summary of the vibration shown in figure above. It shows that 

the second engine order (2x) has a value that is 65.24% of the first engine order. 

This is clearly an indication of misalignment. Because the monitored vibration did 
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not exceed the manufacturer recommendation, this engine was accepted as is 

and the customer continued running the engine. 

Figure 6-15 Engine vibration at a rotation speed of 9600 rpm. 

In the presence of misalignment a consistency is identified from simulation, 

simple rig test and field test of highly complex rotor system. In brief it can be 

summarized as having significant influence on the 2x response of the rotor 

system while some effect on the 1x response. It is found that the 2x component 

of response invariably increases with misalignment and the increase is a function 

of the magnitude of misalignment. 
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Table 6-4 Summary of vibration from engine data 
Engine orders 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Frequency (Hz) 

159.8 

319.7 

479.5 

639.4 

799.2 

959.1 

1118.9 

1278.7 

1438.6 

1598.4 

1758.3 

1918.1 

Vib. (m/sec) O-Pk 

22.84E-3 

14.9E-3 

5.22E-3 

4.98E-3 

3.713E-3 

1.027E-3 

38.74E-6 

144.0E-6 

303.5E-6 

927.3E-6 

605.6E-6 

46.85E-6 

% of 1 EO 

100 

65.24 

22.89 

21.80 

16.26 

4.50 

0.17 

0.63 

1.33 

4.06 

2.65 

0.21 

6.6 Summary 

In this chapter a comparison between the results of the simulation and the rig 

was presented. The simulation predicted a change in the 1 x component and an 

increase of the 2 x component. The rig produced similar results where the 1x 

response over the rig test changed in value either by increasing or decreasing 

due to misalignment and the 2 x component increased. In general the simulation 

and the rig show that: 

1) Misalignment alters the 1x response, 

2) Misalignment in general increases in the 2x response, 
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3) The existence of higher harmonics. 

Data from real engines was also presented showing that misalignment produces 

higher harmonics and a significant increase in the 2x component. The increase 

in the 2x component was closely linked to the severity of misalignment. It is 

therefore concluded that the response predicted by simulation of simple rotor 

system with misalignment developed for this investigation could be effectively 

used to develop and train an expert system for identification of misalignment in a 

complex rotor system such as a gas turbine engine. 
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Chapter 7 

7 Neurocomputing and Neural Network 

7.1 Introduction 

As discussed in chapter 1, Neurocomputing and Neural Network (N.N.) is an 

attempt in emulation of the human brain at a very basic level. Like the human 

brain, N.N. is formed of a number of interconnected artificial neurons, where each 

neuron has an input, processing and output areas. The technology for N.N. has 

been around for some time, but its application is being explored only over the last 

few years. This is made possible with the advancement of computers with fast and 

parallel processing capabilities. Neurocomputing and N.N. has been defined by 

experts as follows: 

Neurocomputing: "is the technological discipline concerned with information 

processing systems that autonomously develop operational capabilities in adaptive 

response to an information environment" [41] 

Neural Network: "is a parallel, distributed information processing structure 

consisting of processing elements interconnected via unidirectional signal 

channels called connections." [41] 

Neurocomputing by itself is a subject of research extensively investigated by 

computer scientists, and is not within the scope of the present investigation. 

Several version of the N.N. technology has been developed as a tool, and applied 
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to a wide range of applications including pattern recognition, control classification, 

diagnostics, automation, system dynamics, etc. 

The application of N.N. in the development of an expert system has been 

carried out by few researchers only in the very recent years as discussed in the 

literature review. The objective here is to apply an appropriate N.N. to develop an 

expert system to differentiate between unbalance and misalignment. As discussed 

in the literature review, there are many types of N.N. that are suitable for specific 

types of applications. In selecting a N.N. various aspects that must be considered 

include: 

• Types of N.N. and their possible applications. 

• Types of learning rules for the N.N. 

• Transfer functions that can be used in the network. 

• Various N.N. parameters and their selection. 

• The procedure and steps used in building a N.N. 

Each of these aspects are discussed in the following subsections in relation to the 

present application of N.N. 

7.2 Types of N.N. and their Application 

As discussed in the literature review, different types of N.N. have been developed 

over the years. Some books [40, 41, 42] have been published in the recent years 

with detailed introduction to various types of N.N. and their possible applications. 

Some of the well known N.N. includes: 
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Adaline and Madaline: has gained application in adaptive signal processing. 

It is a N.N. that can be implemented as filters to perform noise removal from 

information-bearing signals. 

Adaptive Resonance Theory (ART): Has application in problems requiring 

clustering and pattern recognition. 

Back-propagation: has application in problems requiring recognition of 

complex patterns and performing non-trivial mapping. It is a network that adapts 

itself to "learn" the relationship between a set of examples patterns, and able to 

apply the same relationship to a new input pattern. Back-propagation network, 

therefore, has potential application in pattern recognition, and expert systems. 

General regression network: is a general purpose network. It gained 

applications in system modelling and prediction. 

Modular neural network: is a generalization of back-propagation neural 

network. It is applied to system modelling, prediction, classification and filtering. 

Among various N.N. developed to date, back-propagation network (BPN) has been 

used in a wide range of applications. It can be used in addressing problems 

requiring recognition of complex patterns and performing non-trivial mapping 

function, dynamic system modelling, control and optimization. This network has 

been demonstrated to be most successful in system modelling, control, and 

pattern recognition [41]. In basic terms a BPN can be trained through a set of 

input-output relationship to develop artificial intelligence. An adequately trained 

BPN can then be used to make prediction of the network output by providing the 

network input. 

For the application of N.N. to the development of an expert system in this 

investigation BPN and a modified Logicon Projection, a network that combines the 
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advantages of an open boundary network such as ART and closed boundary 

network such as BPN, are selected. The rest of this chapter is devoted to 

description of BPN; selection of learning rule, transfer function and parameters for 

its use; and a flow chart for the BPN algorithm as well as a description of logicon 

projection is presented. 

7.3 Back Propagation Network (BPN) 

Back-propagation network (BPN), formalized by Werbos [76], and later by Parker 

[77], Rumelhart and McClelland [78], operate as a multi layer feed forward 

network using supervised learning. A detailed discussion of BPN and its 

architecture is not discussed here and is available in references [40, 41, 42]. 

The network architecture is formed of a number of layers the first one is the input 

layer, the last one is the output layer and the ones between them are called 

intermediate layers. Figure 7-1 shows a BPN formed of an input layer, two 

intermediate layers and an output layer. Each node of the network has a variable 

weight, and there is a predefined transfer function between nodes. In general 

terms, after an input pattern with known output is applied to the first layer of the 

network, it is then propagated through each upper layer until the network output 

is generated. 
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Figure 7-1 A Four layer BPN 

The process of propagation through each layer is also shown in figure 7-1, where 

x is the input to the network, x and JC" are the outputs of the first and second 

layers, and y is the network output. Here / represents the transfer function, 

where w is the weight and 9 represents noise. The network output is compared 

to the desired known output and the mean square error is calculated for each 

output unit. The error is then transmitted backward to each node of intermediate 

layers that contribute directly to the output. The process is repeated and the 

internal values (weights) of the network are updated until a reasonable error is 

achieved. 
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After training, when presented with an arbitrary input pattern the network should 

be able to calculate the correct output. It must be noted, that trained network can 

not work properly if the relation between the arbitrary input and the required 

output is not similar to what it learned. Also sometimes a N.N. would not learn 

and minimize the error without any apparent reason [41]. 

In the implementation of the BPN, one should choose two major specification of 

the network. These specifications are the learning rule and the transfer function. 

The following subsections discuss each one of them briefly. 

7.3.1 N.N. Learning Rules 

The N.N. learning rules are used to adjust the weights and biases of the N.N. 

that minimizes the error between the network output and the desired output 

during training. There are several learning rules available [40, 79] that can be 

applied. Some of them include: 

1. delta rule, 

2. normal cumulative, 

3. extended delta-bar-delta, 

4. delta-bar-delta, 

One of the difficulties in using a N.N. is that their behaviour is not very well 

understood. In practice, the learning rule is selected based on trial, where the 
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rule that leads to lowest error is used. For the present application, delta rule and 

normal cumulative were found to be most efficient. 

7.3.1.1 Delta Learning Rule 

The BPN error in the output layer is calculated as the difference between the 

desired output and the network output. This error, transformed by the derivative 

of the transfer function is back-propagated to prior layers where it is 

accumulated. This back-propagated and transformed error becomes the error 

term for that prior layer. The process of back-propagating the errors continues 

until the first layer is reached. The Delta learning rule changes the weights of the 

network by multiplying the error at each weight by the learning coefficient. The 

difference between the current weight and the previous weight is multiplied by a 

momentum to accelerate the minimization of the error. The following equation 

illustrates how the delta rule updates the weights of the BPN: 

w(t + l) = w(t) + aS x]+y(w(t)-w(t-l)) 7-1 

where w(t + l) is the updated weight, w(t) is the current weight, w(t-l) is the 

previous weight, a is the learning coefficient, 8 is the error, x] is the input to 

that connection and y is the momentum. 

132 



7.3.1.2 Normal Cumulative Learning Rule 

The normal cumulative learning rule is similar to the delta rule, the only 

difference is that instead of updating the weight for every set of data presented, 

the user specifies a number of presentation (Epoch) after which the weights are 

updated. The weights are updated in two phases: 

1) at each data presentation: 

m(t +1) = m(t) + a 5 x] 7-2 

where m(t + \) is the updated dummy weight, m(t) is the current weight, a is the 

learning coefficient, S is the error and x] is the input to that connection. 

2) after a certain number of presentation when the epoch number is 

reached, 

w(t +1) = w(t) + m(t) + ya(i) 

a(t) = m(t) 7-3 

m(/ + l) = 0 

Where y is the momentum and a{t) is the dummy load at the beginning of the 

cycle. 
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7.3.2 Types of Transfer Functions 

The transfer function is the function that relates the neuron output to the net 

output. Figure 7-2 shows the location of a transfer function in a N.N., from the 

figure, the neuron output x is defined as [79]: 

N-l 

x = ^wiXi-e 7-4 
1=0 

Where w, is the weight, x. is the input, and 0 is an offset or a noise function. 

The transfer function is applied to the neuron output and the network output is: 

fN-\ 
y = transf(x) = transf\ ^wjXi-0 

V<=o 

7-5 
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Figure 7-2 Transfer function location in a NN. 
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BPN is based on continuous change of the biases and weights of the network in 

the direction of steepest descent with respect to the error. It therefore requires a 

function with continuous differentiable non-linearity. 

Different transfer functions can be used [40, 41], some of which include: linear 

transfer function, Sigmoid transfer function, step transfer function, tanh transfer 

function, etc. Although any continuous differentiable non-linear function can be 

used, Sigmoid transfer function is found to give, the best results in the present 

application. The sigmoid transfer function is a 'S' shaped continuous 

differentiable function shown in Figure 7-3, which can be expressed as: 

/ ( * ) = T - ^
 7 " 6 

1 + e 
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The step transfer function shown in Figure 7-4, yields an output from the neuron 

that is equal to 0 or to 1 depending on the neuron input. It can be expressed as: 

f{x) = 0 for x < 0 

f{x) = 1 for x > 0 
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Figure 7-4 Step transfer function 

7.4 The BPN Parameters 

As expressed in equation 7-1, there are two main parameters required to operate 

the N.N., they are the learning coefficient a , and the momentum y. 

The learning coefficient a, controls the rate at which the error modifies the 

weights. If the value of the learning rate is too high, the network can become 

unstable. On the other hand, if the rate is too low, an extremely long training 

136 



period is required. The value of the learning coefficient between 0 and 1 is best 

selected by trial to achieve fast learning of stable network [40]. 

The other parameter, momentum y, is a factor that dictates the speed of error 

minimization. This allows the network to respond not only to the local gradient 

but also to recent trend in error minimization. The momentum parameter is also 

selected by trial to achieve satisfying performance of the network [40]. 

7.5 BPN Algorithm and Flow Chart 

The back-propagation N.N. learns by propagating the error between the N.N. 

output and the desired output. The propagated error is used to modify the 

weights; the rate by which the weights are modified depends on the learning 

coefficient and the momentum. 

The method by which the back-propagation N.N. works is shown in the flow chart 

Figure 7-5 and the following steps. (The learning rule and the transfer function in 

the following steps are respectively the delta rule and Sigmoid). 
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STEP 1: Specify the number of inputs, outputs, nodes (layers) and number of 

neuron per layer, Figure 7-1. 

STEP 2: Initialize the weights and offsets, 

STEP 3: Present inputs x^x^...^^ and desired outputs d0,dx,....dN_x to the N.N., 

STEP 4: Calculate the error between the N.N. output yQ,yv....yN^ and the 

desired output. The N.N. output is calculated by summing the weights at each 
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node then the transfer function is used to transfer the summation to the next 

node if there is any, or to get the N.N. output. 

STEP 5: Back-propagate the error to all the nodes and neurons. The weights are 

updated using the calculated error, the learning coefficient and the momentum, 

w(t + l) = w(t) + aSjx] 7-8 

where w(t + l) is the updated weight, w(t) is the initial weight from hidden node / 

or from an input to node j, a is the learning rate, Sj is an error term of node j 

and x\ is either the output of node i or is an input. If node j is an output node, 

then 

SJ = yJ(l-yj)(dj-yj) 7-9 

where dj is the desired output of node j and yt is the actual output. (N.N. 

output) 

If node j is an internal hidden node, then 

8j=x){\-xJJYJSkwjk 7-10 
k 

where k is over all nodes in the layer above node j . Convergence is sometimes 

faster if a momentum y term is added and weights are smoothened by: 

w(t +1) = w{t) + a 8j x, + y(w{t) - w(t -1)) 7-11 

where 

0<y<\ 

and w(t-l) is the previous weight. 

STEP 6: Repeat the steps from 3 to 5 until the error calculated is acceptable. 
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7.6 Logicon Projection Algorithm 

The logicon projection algorithm was developed by Wilensky and Manukian [80] 

to improve the performance of the back propagation network. The logicon 

projection algorithm combines the advantages of a closed boundary network 

such as ART and the advantages of an open boundary network like BPN. The 

network has many advantages, it is faster than BPN, it initializes the weights and 

thresholds to prototype of the input set, it partitions the input space which allows 

easy separation of inputs into different classes. 

The logicon projection projects the TV dimensional input vector x into an iV + 1 

dimensional input vector x'. The projected inputs x' serve as the input to a 

feedforward neural network. The projection of the N dimensional vector into the 

N + l dimensional vector can be expressed as [80]: 

xk=R 
1 + ^ / t f J . 

7-12 

and the extra term is expressed as: 

'H*l//?J 
i+dx|/*j_ 

7-13 

where R0 is the radius of the inner sphere onto which the original input vectors 
are projected form the north pole as shown in Figure 7-6. 
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Figure 7-6 Logicon projection transformation 

R is the overall scaling of the input vector and is the radius of the outer sphere 

and the projected vector x' is subjected to the following constraint: 

\x'\ = R 7-14 

Since x' is an N + \ dimensional vector, the weight vector W that connects it to 

any node to the first hidden layer must also be an JV+1 dimensional vector and 

it is also forced to lie on the N + l -dimensional hypersphere so that its magnitude 

is always equal to the radius R: 

\w'\ = |JC'| = R 7-15 

The x' vector and the weight W are then used as an input to feedforward 

network. 

7.7 The Logicon Projection Parameters 
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Logicon projection as described in section 7.6 projects the input from a N 

dimensional vector to a N+l dimensional vector. The projected vector is then 

passed to a feedforward network like BPN. Hence all the parameters that are 

used in BPN are still used for a Logicon projection network; in addition the 

projection sphere radius R and the inner sphere radius R0 are required for a 

Logicon projection network to be built. 

The sphere radius R is an overall multiplicative constant of the inputs. A large R 

may be useful for constructing tight sharp prototypes with small regions of 

influence in an area where the output varies rapidly and requires many 

prototypes. It was found that [81]: 

7? = 7.0 7-16 

would yield good results. If a larger value of R is required it can be scaled with 

the typical prototype radius: 

R = — 7-17 

where ap, is the typical prototype radius in the original scaled but not projected 

input space. Equation 7-17 can yield a large value for R. Since R is used to set 

up the initial weights as defined in equation 7-15, the result could be large 

weights and the network might not achieve proper learning. It is therefore 

advisable to trade the sharpness of the prototypes for learning speed. In such 

case R can be scaled as the square root of the radius: 
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i? = - j L 7-18 

The inner radius R^ must be set so that the input vector can be projected onto a 

reasonable portion of the hypersphere in one higher dimension and separation of 

the input classes can be performed. It was found that the following equation 

yielded good results [81]: 

R0=4N 7-19 

where N is the input dimension. Generally it is best to set tf0 to be greater than 

each component of every input point: 

R0 > xi 7-20 

For all i and all x. 

7.8 Steps in Building a N.N. 

The way to build a N.N. could be stated in the following steps: 

1. Determine the problem type the inputs and the outputs that will be given 

to the N.N. to learn. It is important that the inputs and outputs be related. 

2. Construct a data training file and a testing file, the training file could be 

used as a testing file. Be sure not to have similar inputs with different 

outputs or vice versa. 

3. Determine the purpose of building the N.N. For this research the N.N. was 

needed for creating a network that can identify between three different 
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patterns, no fault, unbalance, and misalignment i.e. perform pattern 

recognition, this helped to determine that back-propagation N.N. and 

logicon projection are the most suitable for this problem. 

4. Determine the number of neuron needed, the input and output neurons 

are equal to the number of inputs and outputs of the problem. The 

number of neuron and the number of layers are chosen by trial and error. 

5. Determine a learning rule that will update the weights of the N.N., and 

achieve learning. For the N.N. the choice of the learning rule is done by 

trial. 

6. Determine the most suitable transfer function. 

7. Determine the N.N. parameters by trial. 

8. Start the learning process and test the N.N. if error is acceptable the 

training is over if not change parameters and restart training until reaching 

the minimum error. 

9. The trained N.N. can now be used for the needed application. 

7.9 Summary 

This chapter primarily presented the N.N., specially the BPN and Logicon 

projection. The chapter gave a general idea about the N.N. and the parameters 

which are essential in building a BPN and a Logicon projection network. The 

learning rules used in the research were explained. The transfer functions were 

explained and the Sigmoid and step transfer functions were formulated. The 
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BPN algorithm and Logicon projection were explained in detail. The steps to 

build a N.N. application were explained in a simple manner. The N.N. will be 

applied to create an expert system and evaluate the performance of the expert 

system using data from simulation and real engine date. 
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Chapter 8 

8 Development of a N.N. to Identify Unbalance and Misalignment 

8.1 Introduction 

Typical rotating machinery will exhibit problems that result in excessive vibration. 

If left unaddressed the result is often very expensive repair. Most of the vibration 

problems in a rotating machine results from unbalance and misalignment as 

shown in Table 8-1. The instrumentation, used in most rotating machinery, is 

used to detect a sudden and excessive change in the vibration signature and 

shutdown the machine safely. The main problem with this type of protection is 

that it does not identify the problem that causes the vibration and often results in 

days of investigation to identify the reason for the vibration. 

In this chapter an expert system is developed using N.N. to identify unbalance 

and misalignment. Both those defects represent 70% of defects seen in the field 

[82]. The methodology developed in this chapter can be extended to the 

detection of other failures. 

Two tools are considered in the developing of the N.N. The first is Matlab and 

the second is Neural Ware. The tool of choice for the development of the N.N. is 

Neural Ware because of its flexibility and capabilities. Then, two types of N.N. 

were considered. The first is Back Propagation Network (BPN) and the second is 
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a Logicon Projection Network (LPN). The Networks developed are tested using 

simulation data and the engine data. 

Table 8-1 Typical vibration problems and their approximate percentage of 
occurrence [82]. 

Typical Vibration problems 

Unbalance 

Misalignment (on Coupled Machines) 

Resonance 

Belts and pulleys 

Bearings 

Motor vibrations 

Cavitation in pumps 

Fan and duct turbulence 

Oil whirl 

Sympathetic vibrations 

Gears 

False brinnelling 

Piping 

Bent shaft/bowed rotor 

Looseness 

Soft foot 

Beats 

Torsional vibrations 

Vane passing 

Approximate percentage of 
occurrence 
40 

30 

20 

30 

10 

8 

2 

5 

2 

3 

2 

3 

3 

3 

5 

5 

2 

2 

3 
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8.2 Detection Logic 

From the simulation carried on chapter 4 and the data presented in chapter 5 it 

was shown that: 

1. Unbalance will result in an increase in the 1x vibration component. 

2. Misalignment will result in an increase in the 2x vibration component and 

the existence of harmonics. 

Since all rotating machinery will have an inherent unbalance and misalignment 

due to machining imperfection, errors in the balancing, and accuracy of 

machining, it is expected that all rotating machinery will have a certain level of 1x 

and a 2x vibration. If this vibration is above a certain level it can cause damage 

to the mechanical equipment and it mainly results in shorter bearing life or under 

extreme condition it can cause component premature failure. 

The following parameters are defined: 

1. AnJs the threshold amplitude at 1x determined based on machine type 

and specs (Each machine will have a pre-determined amplitude that is an 

acceptable limit of operation) at the frequency that corresponds to the 

engine rotating speed. 

2. An is the threshold amplitude at 2x determined based on machinery type 

and specs. 
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3. Aa is the measured amplitude at the frequency that corresponds to the 
engine rotating speed. 

4. 4,ffl is the measured amplitude at the frequency that corresponds to 2 

times the rotating speed. 

An unbalance fault exists if the first dimensionless amplitude ratio at 1x is: 

-4L->1 8-1 
A 

And a misalignment fault exists if the second dimensionless amplitude ratio at 2x 

is: 

-4»- > l 8-2 
ATh10, 

In case the above 2 conditions are not met there is no fault. 

8.3 Neural Network Development 

There are different methods to create N.N., for example, a code in C++, 

FORTRAN or any other language can be used. There are also tools that can 

create N.N. like Matlab or Neural Works. In this thesis two tools are considered, 

the first is Matlab and the second is Neural Works. 

An attempt was made to use NN in Matlab. The NN in Matlab was not user 

friendly and did not have the flexibility found in Neural Works. For example, the 

data files in Neural Works are simple ASCII files and each row contains 
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consecutively the input followed by the output in a vector form. NN in Matlab 

requires a matrix for the input and a matrix for the output. 

It is preferable to have a learning coefficient that will change over the training 

process to allow for quick adaptation of weights at the beginning of the learning 

process. As the learning process progresses and the error between the N.N. 

output and the given output reduces, it is desirable that the learning coefficient 

reduces so that the N.N. does not overshoot to a local minima. The learning rate 

in Matlab is fixed during the learning process, this could be changed but requires 

special functions, while in Neural Works the learning rate will change based on a 

gradient coefficient and the number of training iterations. The learning rate will 

change so that it reduces after a certain number of training sets. This is done 

through the graphical user interface. In Neural Works the connection between 

neurons can be altered and modified, different learning rules can be used 

between layers, in general it was found that Neural Ware offers more flexibility 

compared to Matlab, it was therefore chosen for this application. 

8.3.1 Neural Network Development 

Two types of N.N are studied and developed using Neural Ware, the first is a 

back propagation N.N., and the second is a Logicon projection N.N. Both N.N. 

are trained using the same training data set and evaluated with the same data. 

The data is created using the simulation presented in chapter 4. 
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The data used for training the NN is created using the following step: 

1) Establish a threshold value: A threshold value for 1x and 2x was chosen. 

The curves defining the 1x threshold and 2x threshold are shown in Figure 

8-1 and Figure 8-2 consecutively. The two figures represent a shaft 

response with a misalignment of 0.8E-3 m, a mass offset of 0.09E-3 m and 

a dynamic unbalance of 0.3 radian. 

2) The simulation is run at different conditions for unbalance and 

misalignment. 

3) An FFT is performed on the time domain data, the rotation speed is known 

from the simulation. If real data is used the rotation speed will be known 

from the rotation speed sensor. 

4) A filtering code is created to extract from the FFT 3 amplitudes close to the 

1x rotation speed and 3 amplitudes close to the 2x rotation speed. 

5) The extracted data is then compared to the threshold value as defined in 

equations 8-1 and 8-2. 

6) Knowing for each simulation the condition at which the shaft is running 

(perfectly aligned, unbalance, and/or misalignment) the output 3x1 vector is 

created as follows: 

No Fault = 8-3 
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Unblanace 8 

Misalignment = 8 

7) The created data is then presented to different NN for training. 
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Figure 8-1 Threshold amplitude for creation of NN Data at 1x 
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Figure 8-2 Threshold amplitude for creation of NN Data at 2x 

During training the NN output is monitored and the network output is compared 

to the training output data set. When the root mean square of the error between 

the NN output and the training set output is very small (usually close to zero) the 

network has then completed its training, and is ready for testing. 

Table 8-2 shows the training data set that is generated using the simulation. The 

output of the simulation is filtered and 3 values close to 1x and 3 values close to 

2x are extracted. These values are then divided by the threshold value shown in 

Figure 8-1 and Figure 8-2 at the same rotation value to create the N.N. input 

vector. The N.N. output is created from the known condition. 
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Table 8-2 Training set 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Simulation condition and output in m/secA2 
e=0.06E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 3000 
1x 0.43 1.51 0.09 
2x 0.01 0.03 0.01 

e=0.08E-3 m, thau=0.3 deg, mis-axial=2.00E-3 m 
rpm 3000 
1x 0.562623 1.983056 0.119804 
2x 0.122054 0.235572 0.046237 

e=0.1E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 3000 
1x 0.696814 2.456819 0.148455 
2x 0.0331 0.07589 0.017264 

e=0.06E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 4000 
1x 1.261591 4.519979 3.879391 
2x 0.025056 0.132991 3.02E-04 

e=0.08E-3 m, thau=0.3 deg, mis-axial=2.00E-3 
rpm 4000 
1x 1.660556 5.946251 5.100798 
2x 0.222797 1.137417 0.001032 

e=0.1E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 4000 
1x 2.057691 7.371789 6.326658 
2x 0.066943 0.349864 5.02E-04 

e=0.06E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 5000 
1x 0.512505 21.2889 3.519473 
2x 0.012274 0.361668 0.096378 

e=0.08E-3 m, thau=0.3 deg, mis-axial=2.00E-3 m 
rpm 5000 
1x 0.678862 28.18797 4.658691 
2x 0.11607 3.171921 0.794977 

e=0.1E-3 m, thau=0.3 deg, mis-axial=0.4 E-3 m, 
rpm 5000 
1x 0.836262 34.73581 5.742321 
2x 0.033714 0.960398 0.248546 

e=0.06E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 6000 
1x 43.39403 79.27275 14.73081 
2x 0.533558 2.267886 1.286961 

e=0.08E-3 m, thau=0.3 deg, mis-axial=1.00E-3 m 
rpm 6000 
1x 59.09754 1.08E+02 20.0662 
2x 2.246325 10.192 6.233068 

e=0.1E-3 m, thau=0.3 deg, mis-axial=0.4E-3 m 
rpm 6000 
1x 71.19294 1.30E+02 24.16933 
2x 1.363098 6.001707 3.549185 

NN Input NN output 

0.194 0.680 0.041 1.000 0.000 0.000 
0.083 0.249 0.083 1.000 0.000 0.000 

0.253 0.893 0.054 0.000 0.000 1.000 
1.014 1.958 0.384 0.000 0.000 1.000 

0.314 1.107 0.067 0.000 1.000 0.000 
0.275 0.631 0.143 0.000 1.000 0.000 

0.189 0.679 0.583 1.000 0.000 0.000 
0.044 0.233 0.001 1.000 0.000 0.000 

0.249 0.893 0.766 0.000 0.000 1.000 
0.390 1.993 0.002 0.000 0.000 1.000 

0.309 1.107 0.950 0.000 1.000 0.000 
0.117 0.613 0.001 0.000 1.000 0.000 

0.016 0.678 0.112 1.000 0.000 0.000 
0.008 0.230 0.061 1.000 0.000 0.000 

0.022 0.898 0.148 0.000 0.000 1.000 
0.074 2.015 0.505 0.000 0.000 1.000 

0.027 1.106 0.183 0.000 1.000 0.000 
0.021 0.610 0.158 0.000 1.000 0.000 

0.362 0.661 0.123 1.000 0.000 0.000 
0.053 0.225 0.128 1.000 0.000 0.000 

0.493 0.900 0.167 0.000 0.000 1.000 
0.223 1.011 0.618 0.000 0.000 1.000 

0.593 1.084 0.201 0.000 1.000 0.000 
0.135 0.595 0.352 0.000 1.000 0.000 
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To test the N.N. a new set of data is prepared in the same way the training set of 

data is created. It is important that the testing data be different than the training 

set as much as possible. If the N.N. is properly trained the output generated from 

the N.N. will match the output expected. I.e. the N.N. will identify the fault. 

It is possible that the NN output does not identify all the failures this is normal if 

the testing data differs significantly form the training set. 

8.3.2 Back-propagation N.N. as an expert system 

8.3.2.1 Development of the back-propagation N.N. 

A back propagation N.N. is used to create a neural network. To create the back 

propagation N.N. the quick network setup option is used. The N.N. has six inputs 

and three outputs. The inputs correspond to the number of extracted data from 

the simulation. The outputs correspond to the output vector that is established in 

equations 8-3 to 8-5. Two hidden layers are used to create the N.N. All transfer 

functions are sigmoid except for the output layer transfer function which is a step 

function because the output of the N.N. is binary. The neurons from each layer 

are connected to the layers from all the prior layers. Table 8-3 shows the 

optimum parameters for the back propagation network that are obtained after 

numerous trials of different parameters. 
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The network is trained using the data presented in Table 8-2. During the training 

the roots mean square of the error is monitored until it reaches a value close to 

zero, at that point the network is fully trained. 

Table 8-3 Neural Network Parameters 
Input 

First Hidden Layer 

Second Hidden Layer 

Output 

Learning coefficient for input 

Learning coefficient for second hidden layer 

Learning coefficient for output 

Momentum 

Transfer point 

Learning coefficient ration 

Offset 

Learning rule 

Transfer function for all layers except output 

Transfer function for output 

6 

4 

3 

3 

0.9 

0.25 

0.15 

0.4 

10,000 

0.5 

0.1 

Delta Rule 

Sigmoid 

Step function 

8.3.2.2 Testing the back-propagation N.N. 

The network is then tested in using the training set shown in Table 8-2 and with 

the testing set shown in Table 8-4. The data is presented to the trained N.N. and 
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the data input, the output of the N.N. and the expected output are stored and 

analyzed for both training sets. 

Table 8-5 presents the testing results of the N.N. when tested using the training 

set data. The N.N. managed to predict the required output of the data vectors. 

Table 8-6 presents the testing result of the N.N. when tested with a set of data 

that is not used to train the network. The results show good performance of the 

N.N. considering that only 12 data sets are used to train the network. The N.N. 

predicted the fault presented to it accurately. Back-propagation network can be 

used as shown to identify different faults presented to it. 

Table 8-4 Data used for testing the N.N. and its expected output 

1 

2 

3 

4 

5 

6 

7 

Simulation condition and output in m/secA2 
e=0.03E-3 m, thau=0.2 deg, mis-parallel=0.2E-3 m 
rpm 9000 
1x 41.93424 44.78001 1.33E+01 
2x 0.012319 0.097818 0.026819 

e=0.07E-3 m, thau=0.1 deg, mis-parallel=0.2E-3 m 
rpm 8500 
1x 14.16806 1.36E+02 49.26809 
2x 0.18391 0.555444 0.369973 

e=0.07E-3 m, thau=0.25 deg, mis-parallel=1.5E-3 m 
rpm 5500 
1x 8.922258 39.82725 26.2288 
2x 1.672039 3.927243 0.53434 

e=0.08E-3 m, thau=0.08 deg, mis-parallel=2.0E-3 m 
rpm 5500 
1x 10.31343 46.03347 30.31343 
2x 2.966593 6.961579 0.946388 

e=0.1E-3 m, thau=0.6 deg, mis-parallel=0.5E-3 m 
rpm 4500 
1x 7.178746 17.76568 2.2326 
2x 0.510162 0.471135 0.117359 

e=0.2E-3 m, thau=0.6 deg, mis-parallel=0.5E-3 m 
rpm 6500 
1x 6.63E+01 6.28E+02 4.84E+01 
2x 21.25308 1.77E+02 11.28716 

e=0.2E-3 m, thau=0.3 deg, mis-parallel=0.2E-3 m 
rpm 7500 
1x 3.22E+02 4.46E+02 1.08E+02 
2x 0.666227 7.983178 3.145781 

NN Input 

0.324 0.346 0.103 
0.004 0.030 0.008 

0.080 0.766 0.278 
0.053 0.159 0.106 

0.176 0.785 0.517 
0.491 1.153 0.157 

0.203 0.907 0.597 
0.871 2.043 0.278 

0.462 1.143 0.144 
0.875 0.808 0.201 

0.553 5.233 0.404 
0.309 2.581 0.164 

1.621 2.249 0.545 
0.052 0.623 0.245 

NN output 

1 0 0 

1 0 0 

0 0 1 

0 0 1 

0 1 0 

0 1 1 

0 1 0 
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Table 8-5 Testing results using training data. 

N.N. Input 

0.194 

0.253 

0.314 

0.189 

0.249 

0.309 

0.016 

0.022 

0.027 

0.362 

0.493 

0.593 

0.68 

0.893 

1.107 

0.679 

0.893 

1.107 

0.678 

0.898 

1.106 

0.661 

0.9 

1.084 

0.041 

0.054 

0.067 

0.583 

0.766 

0.95 

0.112 

0.148 

0.183 

0.123 

0.167 

0.201 

0.083 

1.014 

0.275 

0.044 

0.39 

0.117 

0.008 

0.074 

0.021 

0.053 

0.223 

0.135 

0.249 

1.958 

0.631 

0.233 

1.993 

0.613 

0.23 

2.015 

0.61 

0.225 

1.011 

0.595 

0.083 

0.384 

0.143 

0.001 

0.002 

0.001 

0.061 

0.505 

0.158 

0.128 

0.618 

0.352 

Expected 
Output 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

N.N. 
Output 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

Table 8-6 Testing results using unseen data by the network 

N.N. Input 

0.324 

0.08 

0.176 

0.203 

0.462 

0.553 

1.621 

0.346 

0.766 

0.785 

0.907 

1.143 

5.233 

2.249 

0.103 

0.278 

0.517 

0.597 

0.144 

0.404 

0.545 

0.004 

0.053 

0.491 

0.871 

0.875 

0.309 

0.052 

0.003 

0.159 

1.153 

2.043 

0.808 

2.581 

0.623 

0.008 

0.106 

0.157 

0.278 

0.201 

0.164 

0.245 

Expected 
Output 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

N.N. 
Output 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 
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8.3.3 Logicon Projection N.N. as an Expert System 

8.3.3.1 Development of the Logicon Projection Network. 

The Logicon projection network is chosen for its robustness, ability to learn with 

minimum data and quick convergence. The network is created using the quick 

setup menu. The number of input neurons is six and the number of output 

neuron is three. The network has two hidden layers, the first is the Logicon 

projection layer and it has seven neurons (input + one) and three neurons in the 

hidden layer. The connect prior option is used. The network is trained using the 

same data used to train the back-propagation network and is presented in Table 

8-2. 

During the training process numerous parameters are used and it is found that 

the parameters presented in Table 8-7 resulted in the network converging and 

achieving good results. 

8.3.3.2 Testing the Logicon Projection N.N. 

The exact same method used to test the back-propagation N.N. is used to test 

the Logicon projection N.N. First the Logicon projection N.N. is tested using the 

data that is used to train it. 
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Table 8-7 Neural Network Parameters 
Input 

Logicon projection 

Hidden Layer 

Output 

Learning coefficient for input 

Learning coefficient for output 

Learning rule 

Transfer function for input 

Transfer function for output 

Projection Radius 

Inner projection Radius 

Default prototype radius 

6 

7 (Input+1) 

4 

3 

0.9 

0.15 

Delta Rule 

Sigmoid 

Step function 

6 

2.4495 

0.1 

The results of the test are presented in Table 8-8. The output of the Logicon 

projection N.N. is identical to the output expected. This shows that the N.N can 

identify the fault presented to it. 

The Logicon projection N.N. is then tested using the data presented in Table 8-9. 

This Logicon projection N.N. has not been trained with this set of data. The 

results of testing the N.N. are presented in Table 8-9. 

Comparing the Logicon projection and the back-propagation N.N. performance 

by comparing the data in Table 8-9 and the data set in Table 8-6 it is clear that 
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the Logicon projection N.N. has achieved the same performance compared to 

the back-propagation N.N. During training the Logicon projection outperformed 

the back-propagation network in learning speed. From the literature surveyed 

logicon projection is more robust and less likely to get stuck at a local minima 

because its weight are pre-initialized using the training set. 

Table 8-8 Logicon projection testing results using training data. 

N.N. Input 

0.194 

0.253 

0.314 

0.189 

0.249 

0.309 

0.016 

0.022 

0.027 

0.362 

0.493 

0.593 

0.68 

0.893 

1.107 

0.679 

0.893 

1.107 

0.678 

0.898 

1.106 

0.661 

0.9 

1.084 

0.041 

0.054 

0.067 

0.583 

0.766 

0.95 

0.112 

0.148 

0.183 

0.123 

0.167 

0.201 

0.083 

1.014 

0.275 

0.044 

0.39 

0.117 

0.008 

0.074 

0.021 

0.053 

0.223 

0.135 

0.249 

1.958 

0.631 

0.233 

1.993 

0.613 

0.23 

2.015 

0.61 

0.225 

1.011 

0.595 

0.083 

0.384 

0.143 

0.001 

0.002 

0.001 

0.061 

0.505 

0.158 

0.128 

0.618 

0.352 

Expected 
Output 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

N.N. 
Output 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 
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Table 8-9 Testing results using unseen data by the network 

N.N. Input 

0.324 

0.08 

0.176 

0.203 

0.462 

0.553 

1.621 

0.346 

0.766 

0.785 

0.907 

1.143 

5.233 

2.249 

0.103 

0.278 

0.517 

0.597 

0.144 

0.404 

0.545 

0.004 

0.053 

0.491 

0.871 

0.875 

0.309 

0.052 

0.003 

0.159 

1.153 

2.043 

0.808 

2.581 

0.623 

0.008 

0.106 

0.157 

0.278 

0.201 

0.164 

0.245 

Expected 
Output 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

N.N. 
Output 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

8.4 Testing the N.N. with engine Data 

The N.N. of choice to be tested with real engine data is the Logicon projection 

network. The Logicon projection N.N. has demonstrated quicker learning. The 

data that will be used to test the Logicon projection was presented in chapter 5 

and it is for two engines that are diagnosed with misalignment. 

To be able to test the N.N. the vibration threshold value must be established. 

The following steps are followed to establish the vibration threshold: 

1) Vibration amplitude from engines that are known to be healthy are 

examined and recorded in the time domain and the data is then 

transferred into the frequency domain using FFT. This will give an 

idea on what typical engine vibration amplitude is, 
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2) The maximum value of the vibration amplitude that the engine can 

tolerate without any damage is established from safety criteria, 

design limitation, 

3) The threshold value is established to be somewhere in between 

these two maximum value and the typical value. 

Figure 8-3 and Figure 8-4 shows the vibration response for a typical engine and 

the very low 2x component. The engine is known to be in good condition and the 

data shows very low vibration amplitude for 1x, 2x compared to the values 

reported in chapter 5 (shown in figures 5-12 to 5-14). 

For the engine presented in chapter 5 the threshold value for the vibration 0-

Peak for the 2x and 1x is established to be: 

An =7 mm/sec 8-6 

An =7 mm/sec 8-7 

From the data presented in Figure 6-13 and Figure 6-15 the data to test the N.N. 

is extracted and divided by the threshold value established above. Table 8-10 

shows the data extracted and the input data for the N.N. 

The data extracted show two cases the first one of an engine with misalignment 

where the 2x components is above 7 mm/sec and the second case of an engine 

with high 1x and 2x. It is expected that the N.N. output will be [0, 0, 1] and [0, 1, 

1]. 
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Table 8-10 Data used to test the Logicon projection N.N. 

First engine data (m/sec) 
N.N. Input first engine 

Second engine (m/sec) 
N.N. Input second engine 

1x 

2.10E-3 
0.30 

2.10E-2 
3.00 

2.45E-3 
0.35 

2.28E-2 
3.26 

2.00E-3 
0.29 

2.30E-2 
3.29 

2x 
1.45E-2 

2.07 

1.40E-2 
2.00 

1.55E-2 
2.21 

1.49E-2 
2.13 

1.30E-2 
1.86 

1.37E-2 
1.96 

Table 8-11 N.N. input and output. 

N.N. Input first 
engine 

N.N. Input 
second engine 

1x 

0.30 

3.00 

0.35 

3.26 

0.29 

3.29 

2x 

2.07 

2.00 

2.21 

2.13 

1.86 

1.96 

N.N. output 

0 

0 

0 

1 

1 

1 

Table 8-11 shows the data input to the N.N. and the output from the N.N. It is 

clear from the table that the developed N.N. is able to diagnose the engine 

problem. The N.N. that is developed for predicting engine problems was 

developed using a simple rotor and simulation to train the N.N. yet it managed to 

predict the engine fault when real life data is presented from a multi rotor engine. 

The logic used to create the N.N. can also be expanded to add more fault 

detection like, bearing and gear defect. 
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8.5 Summary 

In this chapter two N.N. were developed the first using a back-propagation and 

the second using Logicon projection. Both N.N. were developed using a simple 

rotor simulation data. The data was normalized and used to train the N.N. A very 

limited number of samples was used. 

Both N.N. were tested using the data from the training set and a testing data set 

that was not used to train the N.N. The Logicon projection learned faster than the 

back-propagation network. 

The logicon projection N.N. was then tested using data from two real engines in 

the field. The first engine was diagnosed with misalignment and the second was 

diagnosed with misalignment and excessive unbalance. The Logicon projection 

managed to diagnose both engines correctly. The work presented in the 

chapters shows that: 

1) N.N. can be trained off line to diagnose engine problems as long as 

the data presented to the N.N. is dimensionless 

2) N.N. managed to predict engine problems and combination of 

problems 
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3) Few data sets are required to achieve adequate learning as long as 

the data presented to the N.N. is representative of the problem 

being diagnosed. 
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Chapter 9 

9 Conclusions and Recommendations for Future Work 

9.1 General 

Unbalance and misalignment create majority of vibration problems seen in the 

field [82]. They result in excessive repair cost. In addition, to diagnose these 

problems seen in the field it is very time consuming and results in excessive 

down time and cost. There is very limited research conducted on misalignment 

with sometimes contradicting results. Most research shows the existence of 2x 

components, and harmonics [24, 25, 26, 27, 28]. Hussein and Redmond [29] 

could not show the existence of harmonics in their model. Research from the 

field reported the effect of misalignment on the 2x component [30]. 

In this study a rotor model was developed using the energy method to show: 

• The effect of neglecting the higher order terms in developing the 

equation of motion, 

• The effect of nonlinear stiffness caused by misalignment on the 

shaft response. 

An experimental rig was used to confirm the results obtained from the simulation 

and showed that misalignment results in an increase in the 2x component and a 
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change of the 1x component. Real engine responses were presented showing 

the effect of misalignment and unbalance. 

The rotor was modeled using finite element and the response of the shaft due to 

unbalance was confirmed. 

The developed rotor model was then used to train and test two different type of 

N.N. The developed N.N. that showed the best performance was then tested 

using real engine data and predicted both presented cases accurately. 

9.2 Major Highlights and Conclusions 

The study presented in this thesis is an investigation of the effect of unbalance 

and misalignment on the response of a rotor and the development of an expert 

system using N.N. to detect these two defects on real gas turbine engines. The 

thesis presents the method to develop a shaft rotor dynamic model and evaluate 

the effect of ignoring the higher order terms, in the formulation of the equations 

of motion, on the shaft response. The success of the N.N. and its ability to detect 

these two defects, which represent the majority of engine problems in the field, 

show that the developed method can be successfully extended to detect other 

problems in the field thus shortening the diagnostic time and cost of operating 

gas turbine engines. The major highlights of the thesis are summarized as 

follows: 
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1) The different energy terms required to formulate the rotor model are 

presented in detail. Shaft stiffness matrix was formulated for a shaft under 

different support configuration, 

2) Three sets of equations of motion for the rotor were developed the first 

ignoring all the higher order terms, the second taking into account the 

higher order terms for the dynamic unbalance, and the third for a 

misaligned rotor. The third set of equation of motion introduces damping 

and nonlinear stiffness caused by misalignment, 

3) Validation of the developed equations was carried out using analytical 

solution, and finite element, 

4) The effect of the higher order terms on the rotor response was examined 

and it was established from this study that the higher order terms did not 

affect the 1x and 2x response of the rotor significantly, 

5) The use of finite element to predict the effect of misalignment on rotor 

response was presented. It was shown in this research that the finite 

element model does not predict the effect of misalignment on the rotor 

response because of the lack of the nonlinear stiffness, 

6) Simulation for the third sets of the equation of motion was carried out and 

the results showed that: 

a. Misalignment of the shaft results in an increase or decrease of the 

1x components, 

b. Misalignment of the rotor leads to an increase of the 2x response. 

The increase is a function of the severity of misalignment. 
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7) Limited testing was performed on a rig with results confirming the trend 

seen from the simulation. In addition data from the field was presented 

showing the effect of misalignment on the rotor response, 

8) Neural networks theory is then presented showing different types of 

neural networks and their applications. Special attention is given to back-

propagation and Logicon projection. Details of how to create these two 

N.N. are presented as well as the method to specify their parameters to 

achieve good performance and quick learning, 

9) The development of N.N. is then carried out using back-propagation and 

Logicon projection. The logic to detect both failures was developed. The 

N.N. are trained and tested showing good results with the Logicon 

projection and back-propagation detecting all the failure cases presented 

to it. The Logicon projection N.N. is then tested using engine data and 

managed to detect the failure case correctly. 

9.3 Recommendations for Future Studies 

This research has presented a model of a rotor where the dynamics of the 

bearings are not considered to emphasize the effect of the nonlinear stiffness on 

the shaft response due to misalignment. The rotor dynamics in the future can be 

expanded to study: 

1) The effect of the nonlinear stiffness coupled with bearing non linear 

properties, 
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2) A shaft supported on multiple bearings, 

3) Multiple shafts can be modeled to study the effect of misalignment, 

4) In this study a nonlinear stiffness was introduced as a result of 

misalignment. It is recommended to further study the characteristic of the 

non linear stiffness and perform a sensitivity analysis on the factors that 

affect the nonlinear stiffness, 

5) The rig testing used in the study can also be expanded to add multiple 

shafts and bearings. 

In view of the N.N. potential to be used as a diagnostic tool in rotor dynamics a 

list of future work recommended are as follows: 

1) Create a N.N. to diagnose bearing and gear problems 

2) Evaluate the use of N.N. to diagnose the existence of oil in rotating drums 

3) Evaluate the use of N.N. to identify other problems on gas turbine 

engines, like surge, combustion issues, rubs, etc. 

4) Use the N.N. created in this research and add to it other networks to 

create an integrated expert tool that can identify a wide range of vibration 

problems as shown in Figure 9-1. 
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Figure 9-1 Layout of N.N. to identify multiple faults 
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