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ABSTRACT 

Signaling for Conferencing in Mobile Ad Hoc Networks 

Chunyan Fu, Ph. D. 
Concordia University, 2008 

Mobile Ad hoc NETworks (MANETs) are networks that do not need to be pre-

configured. They are composed of transient nodes connected through wireless interfaces. 

Due to their flexibility, the ease to build and the associated low cost, they are gaining 

more and more momentum. They are also seen as part of the fourth generation wireless 

networks. New applications, such as conferencing, are emerging for such networks. 

Conferencing enables a set of applications such as audio/video conferencing, debating, 

distance-learning and multi-party gaming. The implementation of conferencing in 

MANETs is not an easy task due to scarce network resources, heterogeneous devices, 

frequently changing topology and unstable wireless connections. It challenges each 

technical aspect of conferencing: signaling, media handling and conference control. 

Signaling is the control component of conferencing. It handles the session initiation, 

modification and termination. 

In this work, we focus on signaling for conferencing in MANETs. Two types of 

MANETs are considered: standalone MANETs and integrated MANETs/3G networks. 

Background information is provided, requirements are derived and the state of the art, 

including signaling protocols such as SIP and H.323, are reviewed. Since there is no 

existing solution that meets all of the derived requirements, we propose a novel cluster-

based signaling architecture that meets the requirements of signaling for standalone 
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MANETs. The clusters are application-layer clusters that are dynamically created and 

deleted for a conference. We also propose a signaling architectures for integrated 

MANETs/3G networks. The solution is based on conference gateways. We implement 

the architectures using SIP extensions. Experimental results are obtained from prototypes 

and OPNET based simulations. In the prototype, we built the signaling system on a small 

scale network using IEEE 802.11 ad hoc settings. In the OPNET simulation, we use 

MANET features. From experiments, we found that clustering is a very promising 

approach for solving signaling problems in MANETs. Being aware of several 

performance issues of our signaling systems, we further propose optimization schemes 

that are based on cross-layer design. We also implement some of these schemes and 

apply them to our signaling systems. The evaluation shows that the schemes significantly 

improve the signaling performance. 
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Chapter 1 : Introduction 

1.1 Motivations 

Mobile Ad hoc NETworks (MANETs) are networks that do not need to be pre-

configured. They are composed of transient nodes connected through wireless interfaces. 

MANETs have originated from military scenarios where no infrastructure can be pre-

deployed. A typical example is the battle field. They have also been proposed for 

emergency or disaster situations. In the last decade, with the appearance of low-cost 

wireless interfaces (e.g. IEEE 802.11 and Bluetooth), MANET gained more momentum 

outside of the military domain and disaster relief situations. In this section, we first 

present the expected benefits and new uses of MANETs. We then provide the status of 

MANET researches and MANET applications before we pinpoint out our research focus. 

As a self-organizing network without the need of a backbone or a centralized 

administration, MANET offers unique benefits and versatility for certain environments 

and applications [1]. First, since there is no fixed infrastructure, they can be created and 

used anytime and anywhere. Second, the cost of building an ad hoc network is low as the 

network only involves end-user devices. Third, such networks can be intrinsically fault 

resilient because they do not operate under the limitation of a fixed topology. Addition 

and deletion of nodes occurs only by interactions with other nodes, and no additional 

agent is involved. Fourth, heterogeneous devices can be involved in such networks. This 

encourages a wide range of users to participate. 

Other than the military and emergency applications, the perceived advantages of 

MANETs elicited more and more interests among the commercial, educational and even 

the personal domains. Examples of new applications are the mobile office, the distance-
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learning, the virtual conference rooms, the transmission of road conditions, news, 

weather and music in vehicles, the multi-user gaming, the anywhere printing and the 

shows trading. In the wireless communications domain, MANETs have been envisioned 

as a part of the fourth generation wireless systems (4G). The 4G system integrates the 

existing systems, such as the second-generation cellular system (2G) and the third-

generation wireless systems (3G), with new access-networks so that advanced services 

can be provided [1]. As a type of access networks, MANETs contribute to their flexibility 

and high bandwidth. 

The flexibility and convenience of MANETs come at a price [2]. The deployment of a 

MANET faces many challenges, e.g. the heterogeneous devices, frequently changing 

network-topologies and unstable wireless connections. Research issues have been 

identified for each of the protocol layers [3], ranging from physical layer to application 

layer. These issues led into a large amount of research works in the last decade. However, 

most of the researches have focused on lower-layer issues such as physical [4], MAC [5] 

and routing [6]. Application layer issues have been less addressed. The existing research 

works usually assume a general purpose MANET without considering any specific 

application. Conti et al. [2] show that the lack of realism is the main reason for the 

insufficient deployment of MANET in reality even after a decade of research. 

New services and applications are the driving-force of MANETs. The gap between 

MANET theory and practice motivated us to investigate how to deploy an application in 

a real MANET environment. Conferencing enables a wide range of 'killer' applications 

such as video conferencing, gaming and distance-learning. It allows participants to 



exchange multimedia streams in real time. It is composed of three parts: conference 

control, signaling and media handling. 

Conference control focuses on the conference management such as policy, floor control 

and voting. It is not a mandatory part for conference applications. For example, an ad hoc 

conference may not have a conference control part. In such a conference, the first two 

parties create a conference arbitrarily and participants can join, exchange media and leave 

freely. 

Signaling is a control component of conferencing. It is concerned with session 

management including the session initiation, modification and termination. In a multi­

party conference, the signaling is also responsible for coordinating the participant 

information in all the parties. Media handling is a mandatory part of conferencing. 

Without it, no media can be transferred. It focuses on the techniques of media 

transmission, trans-coding and mixing. The characteristics of MANETs challenge each 

technical aspect of conferencing. Our focus here is about signaling. 

1.2 Problem statement and goals 

As aforementioned, conferencing enables applications such as multimedia games and 

public debates. These applications may comprise different media types and involve 

different numbers of participants. They may be public or private, for pre-selected 

members only. They may be pre-arranged or established in an ad hoc manner. 

Figure 1.1 illustrates an ad hoc conference scenario in an airport. Passengers waiting for 

their flights wish to play a multiparty multimedia game using their handheld devices 

(laptop, PDA or cell phone). We assume that the game is pre-loaded on their devices, 

which are connected through IEEE 802.11 wireless cards. Passenger A starts the game by 
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inviting passenger B and they establish an audio session. Then, passenger B invites 

passenger C to join the session and then informs passenger A that C has joined. Finally, 

passengers D, E, F and G are invited to join the game and a seven-party game is 

established. Various media are exchanged among the parties. In this scenario, the 

signaling system is responsible for establishing sessions, negotiating media types and 

propagating participant information. The media handling system is responsible for 

transmitting the designated type of media among participants in real time and performs 

trans-coding if necessary. 

Figure 1.1: An example of conferencing in MANET 

From the aforementioned scenario, we can see that deployment of a conferencing-based 

service in a MANET is not an easy task. First of all, conferencing is resource-demanding. 

For example, the exchange of multimedia (such as audio and video) streams requires high 

bandwidth. Meanwhile, the stream transmissions have real-time constraints. Even in an 

infrastructure-based network, the deployment of conferencing system is not easy. Related 

issues, such as quality of services, have been discussed for several years. 

There is no doubt that the implementation of multimedia conferencing in MANETs is 

more difficult. The difficulties are presented in two aspects. First, a real-time 

transmission is not easy because the topologies of MANETs change frequently and the 
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wireless links break frequently. A serious application layer delay happens when there is a 

delivery failure or there is a re-formation of the network structure in lower layers. Second, 

the available resources for multimedia conferencing are very limited in MANETs due to 

the scarce network resources and heterogeneous node capabilities. 

As previously introduced, we only focus on the signaling aspect. Our target is to propose 

signaling solutions that can be used to organize conferences in standalone MANETs and 

in integrated MANETs/3G networks. We consider these two network architectures 

because they have a high probability of deployment. 

Research challenges related to a signaling system for conferencing can be classified into 

four categories. The first one is the signaling architecture. In standalone MANETs, the 

issue is how to set up a signaling architecture in a transient, distributed environment so 

that a signaling system can support from tens to hundreds and even to thousands of 

conference participants. In an integrated MANETs/3G networks, the issue is whether the 

two networks maintain a unified signaling architecture or they maintain different 

architectures. A further issue is that if different architectures are used, how they inter-

operate. 

A second category of challenges is associated to session control. The issues are how to 

handle the frequently changing conference membership (e.g. participants often move out 

of the network range), how to propagate session-related information (e.g. participant 

information) and keep its freshness, how to handle the mobility of a conference 

participant, and how to resume a session when a participant recovers from a temporal link 

break. In integrated MANETs/3G networks, a further issue is how to setup a session in 

which participants are located in the two different networks. 
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A third set of challenges is from the implementation point of view. Several issues have to 

be considered for the deployment of a signaling system in a real MANET environment. 

For instance, how signaling entities discover and locate each other, how to find new 

participants when they are online, and what kind of routing protocol should be selected 

for the application. 

The last category of challenges is related to the performance. We have already seen how 

performance is important for MANETs. Thus, how to reduce the signaling overhead and 

how to optimally use network resources and node capabilities are non-trivial issues. 

1.3 Contributions of this thesis 

The main contributions of the thesis are described as follows, with references to 

corresponding publications. 

• Signaling requirements for conferencing in MANETs: Signaling for conferencing 

in infrastructure-based network cannot be applied to MANETs. In this thesis, we 

identify the specific requirements for signaling in MANETs (i.e. in standalone 

MANETs [7] and in integrated MANETs/3G networks [8]). The requirements 

include those related to the signaling architectures and session management. They 

also contain the ones related to the optimal use of networks and node resources. 

Furthermore, the session failure handling, the scale and the performance are 

considered in requirements. 

• Signaling architecture for conferencing in standalone MANETs ([7],[9],[10],[11], 

[12]): We propose a signaling architecture based on clustering. The architecture is 

different from the traditional, infrastructure-based signaling architectures. It does not 

rely on permanent central control points. The clusters are created and deleted 
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dynamically. Related to the architecture, in order to fulfill the requirements, we also 

propose a solution for session failure detection/recovery and a scheme for node 

capability exchange. 

• Signaling architecture for conferencing in integrated MANETs/3G networks 

([8],[13]): Based on the signaling solution for standalone MANETs, we propose an 

architecture for integrated MANETs/3G networks. The architecture is based on 

conference gateways and it does not require significant upgrade from existing 3G 

and MANET conferencing entities. 

• Implementation of the architectures: We selected Session Initiation Protocol (SIP) 

as an implementation technology for both standalone MANETs ([7],[14]) and 

integrated MANETs/3G networks ([8],[15]). We propose extensions to SIP so that 

the signaling entities can support the clustering architecture. We build the proof-of-

concept prototype in which we implement every signaling entity that we proposed. 

We also test the signaling procedures for small scale conferences. In order to further 

evaluate the architectures, we build up simulations in OPNET [9]. The session delays 

and session overheads are evaluated for different cases/scenarios. The study shows 

that the cluster-based architecture is a promising approach for solving the issue and 

the extended SIP is an appropriate technology to implement the architectures. 

• Optimization of the architectures ([16] [17]): After the identification of several 

performance issues and weaknesses of the aforementioned signaling architectures, 

we propose a cross-layer design architecture for optimization. Comparing to other 

cross-layer design solutions, this architecture is especially appropriate for solving the 

application-layer issues in MANETs. We define six optimization schemes that are 
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the examples of applying the architecture. These schemes are independent with each 

other. Two of them are specific to integrated MANETs/3G networks. By applying 

part of optimization schemes in the prototype and in the simulation, we found that 

significant performance gains are obtained without requiring a large footprint 

overhead. 

1.4 Thesis organization 

The rest of the thesis is organized as follows. 

Chapter 2 presents the necessary background information. We provide an overview of 

MANETs, including a brief history, technologies and classifications. The solutions of 

integrated MANETs/3G networks are also presented. Two approaches: clustering and 

cross-layer design, are often used to solve MANET issues. We introduce them in this 

chapter because our solutions are related to these approaches. We conclude this chapter, 

by introducing conferencing and describing conferencing technologies. 

Chapter 3 introduces the derived signaling requirements and provides a review of the 

state of the art. The requirements include signaling requirements for conferencing in both 

standalone MANETs and integrated MANETs/3G networks. The review of the related 

work is in light of the requirements. This related work includes the signaling for 

conferencing solutions from standard bodies (ITU-T and IETF) and other solutions 

outside of these bodies. 

Chapter 4 is devoted to the signaling architecture for standalone MANETs. The 

architecture is based on application-layer clustering. The general principles, the detailed 

operational procedures and the signaling scenarios are presented. Special issues such as 

capability exchange and session recovery are also discussed. 
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Chapter 5 proposes a signaling architecture for integrated MANETs/3G networks. The 

architecture integrates the conferencing architectures for standalone MANETs and 3GPP 

3G networks. A conference gateway is introduced as a mediator. The principles and 

signaling scenarios are presented and discussed. 

Chapter 6 is devoted to the implementation of the signaling architectures for both 

standalone and integrated MANETs/3G networks. The implementation is based on SIP 

and SIP extensions are introduced. In the chapter, we also present the proof-of-concept 

prototypes and evaluation results. 

Chapter 7 evaluates the performance of the signaling architectures through simulations 

using OPNET. The simulation setups and performance metrics are presented and 

simulation results are analyzed. 

Chapter 8 proposes optimization schemes for the architectures introduced in Chapter 4 

and 5. It discusses performance issues, introduces optimization architecture and offers 

optimization schemes. It also provides some optimization results. 

Chapter 9 draws conclusions with a summary of the research contributions and potential 

future research directions. 
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Chapter 2 : Mobile Ad Hoc Networks: Architecture, Protocols 
and Applications 

In this chapter, we present the background information that helps to understand the 

content of this thesis. Four types of information are introduced. First, we introduce the 

evolution, definition, classification, standards and technical issues of MANETs. Second, 

a survey of the clustering technologies used in MANETs is provided. Third, we introduce 

the concept of cross-layer design and its uses in MANETs. Finally, we give an 

introduction to conferencing and its technical components. 

2.1 Mobile Ad Hoc Networks 

Mobile ad hoc networks (MANETs) can be defined as transient networks formed 

dynamically by a collection of arbitrarily located wireless mobile nodes, without the use 

of existing network infrastructure or centralized administration [3]. They rely on wireless 

technologies such as IEEE 802.11 and Bluetooth. An important assumption for ad hoc 

network is the multi-hop routing. Each node in MANETs may play roles of both router 

and host. Devices in an ad hoc network can be heterogeneous, such as Personal Digital 

Assistants (PDAs), laptops, palm PCs and cell phones. 

2.1.1 A brief history of MANETs 

The concept of MANET has originated from military. DARPA Packet Radio Network 

(PRNet in 1972) [1] can be considered as the first ad hoc network, which features a 

distributed architecture consisting of network having broadcast radios with minimal 
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central control. In addition, by using multi-hop store-and-forward routing techniques, the 

radio coverage limitation is overcome. In the following twenty years, ad hoc networking 

technology has been under sporadic development. The typical scenario was setting up a 

communication network in a battlefield. 

The term "ad hoc network" did not appear until the development of IEEE 802.11 in the 

1990s, a standard for Wireless Local Area Networks (WLAN). The IEEE replaced the 

term "packet radio network" with "ad hoc network". With the adoption of the new name, 

the IEEE hoped for entirely new scenarios other than traditional battlefield. References 

[1] and [18] show several examples. New scenarios include disaster-relief networks, 

construction-site networks, inter-vehicle networks, home-environment networks, 

emergency networks, networks for visitors at airports, conference centers and shopping 

malls. The term MANET was first used by IETF as a name of the working group for the 

researches on IP-based routing protocols for mobile ad hoc networks. It now becomes a 

widely used term in the domain. 

2.1.2 Taxonomy 

We introduce two primary classifications for MANETs in this section. The first one is 

related to coverage area. The second one focuses on the relationships with other networks. 

In terms of coverage area, ad hoc networks can be classified into four types: Body, 

Personal, Local, and Wide Area Networks [19] as shown in Figure 2.1. Wide Area ad hoc 

Networks (WAN) are large-scaled mobile multi-hop wireless networks. They generally 

interest the military users. On smaller scales, Body Area Network (BAN) is strongly 

correlated with wearable computers. The components of a wearable computer are 
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distributed on the body (e.g., head-mounted displays, microphones, earphones, etc.), and 

BAN provides the connectivity among these devices. Personal Area Network (PAN) is a 

network in the environment around the person. PAN connects mobile devices to other 

mobile and stationary devices. The typical communication range of a PAN is 10 meters. 

Wireless LAN has communication range of 100 - 500 meters so it is the solution for 

home and office automation. 

• _ • - • - • 

~ lm ~ 10m ~ 500m Range 

Figure 2.1: Classification of MANETs with respect to coverage 

In relation to other networks, mobile ad hoc networks can be classified into standalone ad 

hoc networks or integrated ad hoc networks [20]. A standalone ad hoc network is a 

network in which every node only communicates with other nodes in the same 

networking area. It does not have a connection with other networks, such as Internet. An 

integrated mobile ad hoc network is a MANET that connects with some infrastructure-

based networks, such as 3G networks and Internet. The integration of MANETs and 3G 

networks is of special interest for us because it is one of the important scenarios in 4G 

wireless system. The benefit of it includes extending the coverage of the 3G wireless 

cells and balancing the load between these cells. We introduce the integration technology 

in the next section. 
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2.1.3 Integrated MANETs/3G Networks 

An integrated MANETs/3G network is also recognized as a type of Multi-hop Cellular 

Network (MCN) in the wireless network domain. MCN is a concept contrasting with the 

traditional Single-hop Cellular Network (SCN) such as 2G, 2.5G and 3G wireless 

networks. Lin et al. [21] first posed the concept. After that, many other research works 

have contributed to the lower layer connection techniques ([22],[23],[24],[25],[26],[27]), 

routing strategies ([28],[29],[30]) and mobility management [31]. 

Cavalcanti et al. [32] summarize the connection alternatives of a MANET and a 3G 

cellular network. In these alternatives, a general assumption is that users have two 

wireless interfaces: one to MANET and the other one to 3G. The users may communicate 

directly through 3G interfaces. They may also communicate directly through MANET 

interfaces. Furthermore, a user in a MANET may connect to a gateway or a relay, which 

can establish a connection with another user in 3G network. Another assumption is that 

MANETs and 3G networks are tightly-connected, i.e. all the users share the same 3G 

core network. Figure 2.2 shows an example of integrated MANETs/3G networks. 

Figure 2.2: An example of Integrated MANETs/3G networks 
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To illustrate how the integration is concretely done at the lower layers, we use two 

examples, iCAR [22] and UCAN (a Unified Cellular and Ad-hoc Network) [23]. They 

take different advantages of the integrated 3G/MANETs and they use different methods 

for integration. 

In iCAR, MANETs are used to balance the traffic load between the wireless cells. An 

entity, Ad hoc Relaying Station (ARS) is defined to divert the traffic from congested cells 

to lightly loaded ones. ARSs are wireless devices deployed by the network operator. 

They have two air interfaces, one to communicate with the cellular Base Transceiver 

Stations (BTSs) and the other to communicate with Mobile Host (MH) and other ARSs. 

Three strategies are defined for traffic relaying. First, an ARS directly relays new calls 

from a congested cell to a neighboring cell. This is called primary relaying. However, if a 

MH is not close to an ARS, the system will resort the traffics and follow the second 

strategy, i.e. release the channel from the MHs that are close to the ARSs, relay their 

traffic to neighboring cells, and allocate the channel to the MH in need. In this case, an 

MH-to-MH call via ARSs only (i.e. without BTSs involved) is defined. The third relaying 

strategy called cascaded relaying is the double uses of the second strategy. It covers the 

situation when both cells, where the calling party and the called party are located, are 

congested. 

In UCAN, MANETs are used to extend the coverage of the wireless cells. The system 

aims at improving the throughput using multi-hop routing when the quality of the signal 

in the downlink channel between the BTS and the MH is poor. Dissimilar to iCAR, it 

does not define the deployed entity. Instead, it uses proxy clients and relay clients to relay 

packets toward the destination MH. Proxy clients are the MHs that have better downlink 
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signals with the BTS and act as the interface between the MANET and the cellular 

network. Relay clients are hops to relay the traffic between proxies and destination MHs. 

In order to find a proxy client, two discovery protocols have been proposed, a proactive 

greedy scheme and a re-active on-demand protocol. These protocols use the pilot burst 

information (that reflects the downlink channel condition) collected by the MHs to 

discover a proper proxy MH. 

2.1.4 Technologies and standards 

Technologies and standards for MANETs are emerging. In physical and data link layers, 

there are two standards for wireless PAN and wireless BAN. One is IEEE 802.15.3 [33], 

which provides high data-rate personal area ad hoc networks. The other is Bluetooth [34], 

which intends to serve as universal low-cost air interfaces that will replace the plethora of 

proprietary interconnecting cables between personal devices. 

A major WLAN standard is the IEEE 802.11 (or WiFi as marketing term) [35], which is 

commercially successful and widely used in enterprises and educational organizations. 

There are two possible settings in the IEEE 802.11. One is infrastructure-based setting in 

which the Access Point (AP) is defined. The AP is normally connected to a wired 

network, thus providing Internet access. The other is the ad hoc setting in which nodes 

are dynamically configured to set up a temporary network. MANETs is only related to 

this setting. Other standards of WLANs are Digital Enhanced Cordless 

Telecommunications (DECT), HiperLAN, Infrared WLANs and Ultra Wide Band 

(UWB). Further details about these technologies can be found in [36]. 
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The standards for WANs are under development. Three of Wireless Metropolitan Area 

Networks (WMANs) are emerging: IEEE 802.16 (or WiMax as marketing term), ETSI 

HiperMAN, and WiBro (from South Korea). There is no ad hoc network setting in the 

current versions of WMAN. However since a MANET built by a WMAN technology 

especially interests the military users [37], a MANET extension of IEEE 802.16 has been 

proposed in [38]. 

At the network layer, IETF MANET working group has standardized four IP routing 

protocols. They are Ad hoc On-Demand Distance Vector (AODV) routing [39], 

Optimized Link State Routing Protocol (OLSR) [40] and Topology Dissemination Based 

on Reverse-Path Forwarding (TBRPF) [41], Dynamic Source Routing Protocol (DSR) 

[42]. OLSR and TBRPF are proactive link state routing protocols, while AODV and DSR 

are reactive routing protocols. 

2.1.5 Research Challenges of MANETs 

Because of the unique characteristics of MANETs, i.e. the absence of an infrastructure, 

the unreliable network links, the scarce network resources and the mobile, transient and 

heterogeneous network nodes, research challenges can be found in each of the network 

layers. Liu et al. [3] summarize these challenges and highlights research issues in each 

layer as shown in Figure 2.3. 
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Figure 2.3: Research issues in MANETs 

2.2 Clustering in MANET 

Clustering in MANET is a scheme in which MANET nodes are divided into different 

virtual groups. Each group is called a cluster. Each cluster has a cluster head that acts as a 

coordinator. Clustering is an important research topic because it makes it possible to 

guarantee basic levels of system performance, such as throughput and delay, in the 

presence of both mobility and a large number of mobile terminals [43]. Therefore, it has 

been widely used for solving different issues such as mobile ad hoc routing [44], 

topology control [45] and network management [46]. 

A typical structure of clustering is shown in Figure 2.4 where clusters are formed in 

accordance with the geographical adjacency of nodes. Cluster-heads serve as local 

managers and cluster-gateways are non-cluster-heads with inter-cluster links, so they can 

access neighboring clusters and forward information between clusters. Cluster-members 

are non-cluster-head node and they do no have inter-cluster links. 
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Figure 2.4: An example of clustering in MANET 

2.2.1 Classification of clustering schemes 

Clustering schemes can be classified according to different criteria. We introduce two of 

them in this section. The first one is the number of hierarchical levels. A clustering 

scheme that supports only one level of cluster-head, such as the example shown in 

Figure2.3, is called flat clustering. A clustering scheme that maintains multi-levels of 

cluster-heads is called hierarchical clustering. Most of the clustering-based schemes in 

MANETs, such as those presented in [44], [45] and [46], are flat clustering schemes. 

Ramanathan et al. [47] present a solution that uses hierarchical clustering. The cluster-

heads in the solution are organized into a tree structure. The cost of maintaining a 

hierarchical clustering scheme is much higher than that of maintaining a flat clustering 

scheme. However, the hierarchical scheme may significantly enhance the scalability of a 

system. 

Another classification criterion is based on the objectives of clustering schemes. Yu et al. 

[43] gives a survey to these schemes. In the survey, six types of clustering schemes are 

presented: DS-based clustering, low-maintenance clustering, mobility-aware clustering, 

energy-efficient clustering, load-balancing clustering and combined-metrics based 

clustering. In these schemes, the DS-based clustering is a scheme in which clusters are 
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formed according to geographically adjacent dominating sets. The purpose of DS is to 

reduce the routing search and routing table maintenance. In mobility-aware clustering, 

mobile nodes with a relatively low speed are put into a same cluster in order to tighten 

the connections. The algorithms such as WCA (Weighted Clustering Algorithm) [48] 

consider multiple metrics in cluster configuration, including node degree, battery energy, 

cluster size, etc. Moreover, it adjusts its weighting factors for different application 

scenarios. 

2.2.2 Overhead of clustering 

Although clustering achieves scalability, its overhead is a non-trivial issue. It may affect 

the effectiveness and scalability of a MANET. The cost of clustering includes the 

following aspects. First, explicit messages are required for maintaining a cluster structure. 

In MANETs, if the network topology changes frequently and nodes are highly mobile, 

the messages exchanged increase drastically. This will consume a large share of the 

network bandwidth and device energy. Second, some clustering algorithms (such as the 

one presented in [49]) may cause ripple effect, i.e. one re-election of a cluster-head brings 

up the cluster-head elections over the network. Great performance degradations will then 

happen. Third, the formation of a cluster usually requires a period of time in which no 

changes to the network structure are made. This enables the exchange of some important 

cluster parameters. However, the requirement is hard to meet in a realistic scenario. 
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2.3 Cross-layer design and its uses in MANETs 

Cross-layer design refers to protocol design done by actively exploiting the dependence 

between protocol layers to obtain performance gain. This is unlike layered design, where 

the protocols at different layers are designed independently [50]. Layered design has 

obtained great successes in today's infrastructure-based networks such as telephony 

networks and Internet, while cross-layer design is mainly motivated in wireless networks. 

Wireless networks have their distinctive characteristics such as user mobility, frequent 

link failure, limited link capability and limited battery power of mobile devices. The 

argument is that applying layered design in wireless networks usually causes sub-optimal 

performances, but a careful cross-layer design helps to solve the issue. A cross-layer 

design may remove the duplicate functionality or data in layers. It may also optimize the 

parameters in each layer so that the performance in a single layer or in a whole system is 

enhanced. In this section, we first introduce different types of cross-layer designs. We 

then discuss the uses of cross-layer designs in MANETs. We end this section by potential 

issues in cross-layer design. 

2.3.1 Classification of cross-layer design 

Srivastava et al. [50] classify the cross-layer designs into four types: interface breaking, 

merging of adjacent layers, design couplings and vertical calibrations. The interface 

breaking can further be sorted into three types: upward information flow, downward 

information flow and back-and-forth. The purpose of vertical calibration is to perform 

adjustment in each layer in order to achieve a global performance gain. Figure 2.5 

illustrate these techniques. 
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Figure 2.5: Cross-layer design methods 

Cross-layer design can also be classified based on how much it is used in system designs. 

For example, an extreme use of cross-layer design is to discard layers and build a new 

system [51]. Some proposals apply comprehensive cross-layer design solutions but they 

still keep layered design in mind. For examples, CLASS [52] provides a 'punch hole' 

signaling protocol that can be used between any two layers. As another example, 

MobileMan [53] proposes a share-memory based solution in which each layer contributes 

to and as well benefits from a shared, network status database. The lowest level of using a 

cross-layer design is to solve a specific problem in specific layers. For instance, an 

interaction between routing and middleware is explored in CrossROAD [54]. 

2.3.2 Cross-layer design in MANETs 

Cross-layer is of special interest for MANETs, because the network resources in such 

networks are very limited and performance optimization is essential. Actually, cross-layer 

design has been used to optimize performance either globally ([53][55][56][57]) for all 

the layers or locally for some specific layers ([54][58][59][60][61]) in MANETs. The 

approach used in each of these proposals can be associated with one of the methods 

shown in Figure 2.4. We will further discuss some of these proposals in Chapter 8. 
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2.3.3 Issues in cross-layer design 

Cross-layer design is a promising technique that helps to improve performance and 

reduce overhead. However, unbridled cross-layers can lead to spaghetti design, which can 

further hinder system innovation and update [62]. We summarize the issues caused by 

cross-layer design as follows. 

The first issue is the design loops. For example, in back and forth interface breaking (see 

Section 2.3.1), if there is a condition that triggers application layer to call a routing 

protocol, and meanwhile the routing protocol checks its status and decides to call back 

the application layer, a loop may then be created. The loop will not end until both the 

application and the routing functions are blocked. This issue may significantly degrade 

the system performance. The second issue is that whenever layer independency is broken, 

it is hard to control the level of dependency between layers. This may introduce the 

'ripple effect', i.e. a change to one layer does not only lead to a change to neighboring 

layers, but also arouse changes to all the other layers. Therefore, it becomes hard to 

update and add new features to a system. The last issue is related to inter-operability. 

Since many cross-layer design methods and schemes have been proposed, it is difficult to 

standardize them and to insure interoperability between the deployed systems. 

Because of all these issues, Kawadia and Kumar [62] believe that defining principles, 

such as keeping a global graph in mind and considering trade offs between system 

architecture and performance, are essential in cross-layer design. 
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2.4 Multimedia Conferencing 

Multimedia conferencing (also known as multimedia multiparty sessions) can be defined 

as the conversational exchange of multimedia content between several parties. It consists 

of three components: conference control, signaling and media-handling. Conference 

control is related to conference policies, admission control, floor controls and voting. 

Signaling is used to set up, modify and tear down sessions. It is required before, during 

and after the media transmission. Media handling is concerned with the transmission and 

the mixing of the media streams. It also performs the possible trans-coding between 

different types of media streams. 

2.4.1 Classification of conferencing 

There are many classification criteria for conferencing. The most commonly used are 

presented in this section. 

Conferences can be with or without floor control. Floor control is a technology that deals 

with conflicts in shared work spaces [63]. It coordinates the concurrent usage of shared 

resources and data among participants of a conference. A typical example of floor control 

is the management of the turn of speaking in a conference, i.e. how and when to allocate 

the audio channels to involved parties in order to ensure fairness and avoid collisions. 

Conferences can be pre-arranged or ad hoc. A pre-arranged conference starts at a pre­

determined time and is sponsored by specific parties. The duration of a conference may 

also be pre-defined. An ad hoc conference starts when the first two parties decide to 

create a session. Parties may join and leave during the conference, and it ends when the 

last two parties leave. 
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Another criterion is whether the conference is private (closed) or public (open). A closed 

or private conference does not welcome parties to join freely. Only the parties who are 

invited by the conference participants can join. An open or public conference on the other 

hand publishes its information to all parties in a network. Any party can join the 

conference if and when it wishes. Yet another criterion is whether the conference has 

sub-conferencing capabilities. The sub-conferencing capability simulates a conference 

with different rooms as in the real world. In each room, called a sub-conference, parties 

can hear/see each other, but they cannot hear/see others that are in different sub-

conferences. 

The remaining commonly used criterion is the topology used for signaling and media 

handling. Schulzrinne et al. [64] have discussed four main topologies for signaling and 

media handling: end-system mixing, full mesh, multicast and centralized. In end-system 

mixing, one of the participants in the conference does the mixing for all the other 

participants. In general, due to the limited capability of participants, very few participants 

can be supported in this type of conferences. In full mesh, every end-system does its own 

mixing and has a signaling link with every other end-system. Multicast is an enhanced 

form of full mesh. Every end-system still does its own mixing. However, packets are sent 

to a multicast address instead of being sent point-to-point. In centralized conferences, a 

conference bridge is defined to do mixing for all the end systems. Each end system has a 

direct signaling connection with the bridge. In this model, a participant may either call 

the bridge to join a conference (dial-in) or be called by the bridge to join (dial-out). A 

similar but more recent classification has been presented in IETF RFC 4353 [65]. Three 

models are defined and different names are used, loosely coupled conference (use of 
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multicast), tightly coupled conference (centralized model) and fully distributed 

conference (full mesh model). 

2.4.2 Techniques and standards 

IETF and ITU-T have elaborated standards for each aspect of conferencing. We present 

them one by one. 

Conference control has been defined by ITU-T in T.120 Series [66]. The control policies 

are mainly focused on centralized conferences. From a historical point of view, early 

conference control contributions in IETF are based on loosely coupled, multicast 

conferences. Protocols such as MMCC [67], Agreement Protocol [68] and CCCP [69] 

were defined. SCCP (Simple Conference Control Protocol) [70] was the first draft that 

tried to map loosely coupled conference into ITU-T T.120 series. However, it still relies 

on multicast. Recently, IETF has changed its focus from loosely coupled to tightly 

coupled conference, known as a Common Conference Information Data Model for 

Centralized Conferencing (XCON [71]). It also defines Conference Policy Control 

Protocol (CPCP) [72] for centralized conference control. 

Signaling protocols have also been defined by both ITU-T and IETF. The most widely 

applied signaling protocols are H.323 [73] from ITU-T and Session Initiation Protocol 

(SIP) [74] from IETF. H.323 is a set of specifications. It is actually the very first set of 

signaling standards created after SS7 (Signaling System 7 that is used for circuit 

switching networks). Liu et al. [75] provide an overview. H.323 defines four entities: 

terminal, gateway, gatekeeper and Multipoint Control Unit (MCU). Basic signaling and 

media handling functions of H.323 are located in terminals. A gateway is a component 
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that bridges H.323 sessions to other types of networks. A gatekeeper, although it is not a 

mandatory entity, may have many functions such as user admission, zone management, 

bandwidth control and address translation. The specifications of H.323 cover more than 

signaling. The H.323 protocols are binary encoded and include three different signaling 

protocols: Registration Admission and Status (RAS), H.225 and H.245. RAS is used 

between end-points and gatekeepers. It enables gatekeeper discovery and registration/un-

registration of end-points with gatekeepers. H.225 is the protocol for call establishment 

and teardown. H.245 enables media capability negotiation. 

SIP is specifications including a baseline protocol and a set of extensions. In baseline 

protocol, it defines four entities: User Agent (UA), proxy server, location server and 

registrar. Session control functions are located in UAs. SIP servers are non-mandatory 

entities that help to route SIP messages and to locate SIP user agents. Schulzrinne et al. 

[76] give an overview of SIP. SIP is lightweight and extendible and it has been adopted 

by the two main standards bodies for 3G networks (i.e. 3GPP and 3GPP2) as the sole 

signaling system for multiparty sessions. It is a text-based request/reply protocol. We will 

further discuss H.323 and SIP in terms of their uses for conferencing in Chapter 3. 

The most widely used media transmission protocols are RTP and RTCP, which are 

defined by IETF RFC 3550 [77] and RFC 3551 [78] respectively. They are also included 

in H.323 series as real-time media transport protocols. RTP provides end-to-end network 

transport functions that are suitable for applications that transmit real-time data, such as 

audio, video or data, over multicast or unicast network services. It supports the use of 

translators and mixers. RTCP allows monitoring of the data delivery of RTP. 

26 



The Media Gateway Control Protocol (or Megaco) is a signaling protocol between 

conference signaling and media handling. It is defined by IETF RFC 3525 [79] and ITU-

T H.248.1 [80]. The idea is a separation of call control and media handling logics, adding 

the control commands between them. This separation introduces more flexibility for 

deploying multimedia conference services. The 3GPP has also used this protocol for 

conferencing. We will further discuss the conference model of 3GPP in Chapter 3. 
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Chapter 3 : Signaling for Conferencing in MANETs: 
Requirements and Evaluation of Existing Solutions 

The particularities of MANETs make signaling for multimedia conferencing very 

challenging. A signaling scheme does not only need to establish, modify and terminate 

sessions, but it also has to consider the network statuses such as the lack of infrastructure, 

the frequently changing participants and the limited resources. In this chapter, we derive 

signaling requirements for conferencing in both standalone MANETs and integrated 

MANETs/3G networks. We also review existing signaling solutions in light of these 

requirements. The related work is organized into two categories: the work from standard 

bodies (the ITU-T and the IETF) and the proposals from outside of these bodies. 

3.1 Signaling requirements for MANETs 

Due to the infrastructure-less, the first requirement is that none of the involved entities 

can be a permanent or static central-control point. The second requirement is that the 

system should be able to dynamically propagate conference-related information (e.g. who 

joins, who leaves) to all the involved parties. This is not an easy task, as conferences are 

normally very dynamic in MANETs. Parties can join and leave at any time and very 

frequently. A party may leave the conference when it decides to do so or when it is forced 

to because it has moved out of the coverage area or its battery power is used up. In this 

thesis, we term the first case (which is general to all networks) "voluntary departure" and 

the second (which is specific to MANETs) "unintentional departure". A signaling system 

for multimedia conferencing in MANETs should treat both situations as normal cases and 
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handle them gracefully. If a party in a conference temporally moves out of range or if its 

link breaks for a very short time, the sessions that it has maintained should be recovered 

after its connections are recovered. 

The third requirement is scalability. A high level of scalability is expected from 

MANETs, especially in military applications. The signaling system should scale 

automatically and in the same manner as the network in which it is implemented. 

Due to the heterogeneity of MANET nodes and the limited network resources, two more 

requirements are derived. One is that the system should be lightweight. The other is that 

the use of the resources available to the system should be optimal. 

The last requirement is the independence from the lower layer protocols. There is a 

plethora of lower layer protocols in MANETs. The signaling system is at the application 

level and it cannot afford to rely on the features of specific lower layer protocols because 

these lower layer protocols may not be available in some environments. 

3.2 Specific requirements for integrated MANETS/3G networks 

In the case of integrated MANETs/3G networks, in addition to the aforementioned 

requirements, four more requirements are derived. One is related to the basic signaling 

functionality, i.e. a signaling system should support different conferencing scenarios: all 

participants in 3G networks, all participants in MANETs, or some participants in 3G 

networks and some others in MANETs. Another requirement is related to performance 

issue. That is, when a signaling scheme is used, system performance should not depend 

on the network (3G or MANET) where the participants are located. For example, 
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participants in the MANET should not be forced to connect to a far away 3G conference 

control center because this will certainly degrade performance in terms of response time. 

The third requirement is that signaling scheme should be backward compatible with the 

existing signaling system in 3G. This means that the nodes that support the new signaling 

system should still be able to establish sessions with nodes that have not yet been 

upgraded. In addition, the changes for upgrading the legacy signaling entities in 3G 

should be minimal. The last requirement is that the system should be able to locate 

participants in both MANETs and 3G networks. This is necessary to route signaling 

messages to correct destinations. 

Table 3.1 summarizes all the signaling requirements for conferencing in MANETs. In the 

table, Rl to R6 are general requirement for conferencing in MANETs, and R7 to RIO are 

extra requirements for integrated MANETs/3G networks. 

Signaling requirements for MANETs 

Rl 

R2 

R3 

R4 

R5 

R6 

No permanent central entity 

Dynamic session control 

Scalability 

Lightweight 

Optimal use of resource 

Independent of lower layer protocols 

Specific signaling requirements for integrated MANETs/3G networks 

R7 

R8 

R9 

RIO 

Handling sessions with participants in both MANETs and 3G networks 

System performance does not depend on the network where the participants are located 

Backward compatibility 

Capability of locating participant in both MANETs and 3G networks 

Table 3.1: Signaling requirements for conferencing in MANETs 
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3.3 Related Work 

Nine signaling schemes for conferencing are introduced and reviewed in this section. We 

present them in three subsections: signaling protocol from ITU-T, signaling protocols 

from IETF and signaling solutions from outside of standard bodies. 

3.3.1 Signaling protocol from ITU-T 

Multimedia conferencing over packet-switched networks is specified by ITU-T, as a sub­

set of the H.323 series of recommendations [73]. We have introduced the entities of 

H.323 in Chapter 2. Multimedia conference control in H.323 is done via MCU. An MCU 

can be further divided up into two entities: Multipoint Controller (MC) and Multipoint 

Processor (MP). MC handles signaling while MP handles media. MP is an optional entity. 

It is not required in a decentralized conference model in which media are distributed 

through multicast. MC is mandatory. It is a central control point for both centralized (i.e. 

where media mixing is done in a central MP) and decentralized models. The conference 

models defined in H.323 are shown in Figure 3.1. 

H.323 does not meet our first requirement (Rl) because it has a central controlling entity 

- MC. In addition, MC can easily become a bottleneck and hinder scalability. 

Furthermore, H.323 is complex and heavy. Optimal use of resources is not taken into 

account. On the other hand, H.323 is independent of the lower layer protocols. 
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3 
Centralized Conference Distributed Conference Hybrid: Centralized audio, 

distributed video 

Figure 3.1: Conference models for H.323 

3.3.2 Signaling protocols from IETF 

In this section, we discuss two signaling protocols from IETF: Connection Control 

Protocol (CCP) and SIP. For the latter, we further discuss its uses in different conference 

models: loosely coupled model, tightly-coupled model and fully distributed model. 

The first conference approaches proposed by IETF date back to the early 1990s. A 

common property of these approaches is multicast. These approaches usually do not 

explicitly use a signaling protocol for session management. However, among them the 

CCP is an exception. It is a transaction-based protocol that is used to create sessions and 

refresh participant status. It is used together with the Multimedia Connection 

Management system (MMCC). Schooler et al. [67] give an introduction to MMCC and 

CCP. Only one conference scenario is considered by CCP, i.e. the conference initiator 

creates a conference. The initiator has the responsibility to create a session with each of 

the conference participants. A list of participants is pre-established via the conference 

initiator's user interface. The conference initiator is also responsible for propagating 

conference-related information. If we evaluate CCP in terms of our requirements, we find 

that there is no permanent centralized entity, but because a conference is controlled by an 

initiator (an end system), CCP cannot scale to conferences that contain a large number of 
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participants. Other requirements cannot be fulfilled. For example, CCP requires the 

network layer to support multicast. 

IETF has been working on new approaches since early 2000, as part of the work on SIP. 

SIP has been used for three conference models — loosely coupled, tightly coupled and 

fully distributed. 

A loosely coupled conference is based on multicast. IETF draft [70] describes SCCP, a 

loosely coupled conference control protocol that uses SIP as the signaling protocol. The 

signaling architecture is centralized. Signaling messages are exchanged between a 

controller and a participant through multicast. If we evaluate SIP within SCCP, it does 

not meet most of our requirements, e.g. there is a permanently central point and multicast 

is required at the network layer. 

A tightly coupled conference is central-server based. Rosenberg et al. [65] defines the 

SIP usage in this sort of conference model. SIP creates sessions between each participant 

and a conference focus (i.e. the central server). This conference model is also used by 

3GPP [81]. Fig 3.2 shows the 3GPP conference architecture. In the architecture, the 

conference focus can be implemented in the Media Resource Function Controller (MRFC) 

and/or in the conferencing Application Server (AS). The MRFC is the functional entity 

that handles signaling. It considers the Media Resource Function Processor (MRFP) as a 

default media mixer. The AS hosts conference applications. Any party that wants to 

participate in a conference should either invite the conference focus, i.e. following the 

dial-in model, or be invited by the conference focus, i.e. following the dial-out model. In 

addition to the MRFC and the AS, there is another functional entity, User Equipment 
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(UE). A UE is a conference participant that has the required conferencing functionality in 

the end-users' terminals. 

This conference model does not meet our first requirement because it has a pre-

configured central entity. However, because of SIP, it is lightweight. Another 

requirement met is that it is independent of lower layer protocols. The remaining three 

requirements for isolated MANETs are not met. As a 3G conference model, we also 

review it with respect to the signaling requirements for integrated 3G/MANETs. It does 

not meet the first requirement because its current version does not support sessions that 

include MANET participants. A conference focus may be extended to support MANET 

parties (by adding the functionality of discovery and management of MANET users). 

This extension does not require a big effort and after the extension, it is possible for the 

signaling system to be backward compatible. However, the second requirement is not met, 

i.e. a MANET user is forced to connect to a far away server. 

Figure 3.2: 3GPP 3G Conference Architecture 

SIP has also been discussed for a fully distributed model. In the model, each participant 

maintains a SIP session with other participants. Kelley et al. [82] describe this approach 

in detail. The approach is of special interest for us because it only involves SIP end 

systems (UAs) and no server is required. Thus, the first requirement - no permanently 
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central point - is met. In addition, the approach is lightweight because there is no extra 

control message added to the base-line SIP, but the session-related information is carried 

by the basic SIP messages. However, this approach has several limitations. A first 

example is the way that the session-related information is dynamically propagated to 

parties. There is a problem when two (or more) parties are invited to join an on-going 

session at the same time. There is no general solution to ensure that each of the invited 

parties is made aware of the other invited parties. The problem is identified in [82] as the 

'coincident joins problem', and no solution is provided. A second example is that 

unintentional departures are not considered and are not handled gracefully. The approach 

does not scale and the number of signaling connections increases exponentially with the 

number of participants in the conference. Furthermore, it has not considered the optimal 

use of network resources. 

3.3.3 Approaches from outside of the standard bodies 

Several approaches have been proposed from outside of the standards bodies. Some of 

them target specific issues that are not solved by the standard approaches while others 

propose more comprehensive solutions. The works proposed in [83] and [84] are 

examples of the former while GlobalMMCS [85] and ICEBERG [86] are examples of the 

latter. 

The framework defined in [83] is the only work that we can find for conferencing in 

MANETs. It is a SIP-based solution that addresses the "coincident joins problem" 

identified in [82]. It proposes a conference leader that propagates session-related 

information to all participants. The 'coincident joins problem' is then solved. However, it 
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still has other issues such as scalability due to the fully distributed structure. As a solution 

in MANETs, we also evaluate it in light of the requirements for integrated MANETs/3G 

networks. We find that the solution does not meet any of our requirements. First, it does 

not handle the sessions with 3G participants. Second, it is difficult to extend to support a 

session with 3G participants because its architecture is very different from the existing 

3G conference architecture. 

The SIP-based conference defined in [84] is another example of work for using SIP for 

conferencing. It extends the tightly coupled conference model of SIP in order to improve 

the scalability. Multiple conference focuses are proposed and each focus manages a set of 

local participants. The conference focuses are inter-connected and form a tree structure. 

This work solves the scalability issue of the work defined in [65], but it does not solve 

other issues. For example, the approach relies on pre-configured central entities. 

GlobalMMCS [85] is designed to bridge H.323, SIP, Access Grid clients and 2.5G/3G 

cellular phones in audio-visual collaborative applications. The system makes use of a 

publication/subscription-based message delivery middleware, the NaradaBroking overlay 

network. As far as multimedia conferencing is concerned, the system borrows the ideas 

of MCU, MC and MP from H.323. However, unlike H.323, the MCs can be distributed. 

There can be several in the same conference, each one managing a sub-set of participants. 

Although this distribution brings more scalability, our first requirement is still not met, 

because each MC is a pre-configured central entity for the sub-set of participants it 

manages. 

ICEBERG signaling [86] proposes a signaling system for the management of dynamic 

and multi-device multiparty sessions. Unlike the other signaling protocols such as SIP, it 
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is a signaling system that is directly designed for multimedia conferencing. Two entities 

are defined: call agent and call session. They are both dynamic entities created during call 

session establishment. The call session entity is the control center that manages all the 

information related to that session. There is one call agent per party. It manages the 

information related to that party. Changes related to the session are propagated as follows. 

A designated serving call agent periodically receives a report from each party in the 

session, and forwards the report to the call session entity. The call session entity 

maintains the states of all of the parties in a table, and updates the table when it receives 

the reports. It also propagates the information to each of the call agents. If we review the 

ICEBERG signaling, we can find that it does not have pre-configured central control 

entities, thus the first requirement is met. However, the system does not take into account 

the heterogeneity of the devices. Session-related information is dynamically propagated 

to the parties. However, it does not consider the unintentional departures. It is also rely on 

the routing layer multicast. Another advantage, the system scales. 

3.4 A review of related work 

Table 3.2 shows a review of the existing signaling solutions. We can find that no 

signaling solution can meet all of our requirements for standalone MANETs. Furthermore, 

the related signaling schemes in MANETs and in 3G networks cannot meet our 

requirements for integrated MANETs/3G networks. 
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H.323 CCP 

SIP 

(loosely 

Coupled) 

SIP (3G 

conf-

model) 

SIP (full-

mesh) 
ICEBERG 

GlobeMM 

CS 

SIP server 

distribution 

SIP 

framework 

for 

MANETs 

Signaling requirements for MANETs 

Rl 

R2 

R3 

R4 

R5 

R6 

No 

No 

middle 

No 

No 

Yes 

Yes 

No 

unintenti 

onal 

departure 

detection 

and 

session 

recovery 

small 

Yes 

No 

No, use 

multicast 

No 

No 

unintention 

al departure 

detection 

and session 

resume 

middle 

Yes 

No 

No, use 

multicast 

No 

No 

unintention 

al departure 

detection 

and session 

resume 

middle 

Yes 

No 

Yes 

Yes 

No 

unintention 

al departure 

detection 

and session 

resume, has 

concurrent 

join issues 

small 

Yes 

No 

Yes 

Yes 

Yes, but no 

session 

resume 

Large 

Yes 

No 

No, use 

Multicast 

No 

No 

Large 

No 

No 

No, use 

Naradabrok 

ing 

No 

No 

unintention 

al departure 

detection 

and session 

resume 

Large 

Yes 

No 

Yes 

Yes 

No 

unintention 

al departure 

detection 

and session 

resume 

Small 

Yes 

No 

Yes 

Signaling requirements for integrated MANETs/ 3G Networks 

R7 

R8 

R9 

RIO 

-

-

-

-

-

-

No, no 

MANET 

users 

supported 

No, 

performanc 

e will 

depend on 

networks 

Yes, 

possible. 

Extension 

effort is low 

No, cannot 

location 

MANET 

users 

-

-

-

-

-

-

-

-

No, no 3G 

users 

supported 

Hard to be 

extended to 

support 3G 

users 

No, 

hard to be 

extended 

No, cannot 

locate 3G 

users 

Table 3.2: A critical review of related work 
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On the other hand, some of the aforementioned signaling solutions do provide us valuable 

ideas. For examples, the ICEBERG presents an interesting solution for controlling 

dynamic sessions based on soft states, and the SIP server distribution proposes a division 

of signaling control into sub-servers. With these ideas in mind, we propose a novel 

signaling system - a cluster-based signaling architecture, which is not a pre-configure 

architecture but it is dynamically formed and deleted. We present it in Chapter 4. 
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Chapter 4 : A Cluster-based Signaling Architecture for 
Conferencing in Standalone MANETs 

Clusters enable scalability without centralization and we believe that they can help in 

solving the signaling issue in MANETs. In this chapter, we present a cluster-based 

signaling architecture for conferencing in standalone MANETs. The clusters are formed 

in the application layer and only when there is a conference. We first present the 

architectural principles, followed by a description of the clusters' operational procedures. 

We then discuss two critical issues related to the operational procedures - how to 

exchange node capabilities and how to handle unintentional departure and session 

recovery. In the last section, we will analyze the potential of the architecture with respect 

to our signaling requirements. 

4.1 Architectural principles 

4.1.1 Network assumptions and conference type 

A MANET in this thesis refers to the network in which a node can be reached by any 

other nodes through a direct wireless connection or through multi-hops. The capability of 

a MANET node does not refer to any specific capability such as battery power or 

memory or processing power, but it is a comprehensive capability value. We assume that 

a node always 'knows' its capability value, and we do not consider what factors are used 

to calculate the value or how to calculate it. 

All the scenario examples and signaling procedures in this chapter are in ad hoc 

conferences. Such conferences fit quite well in MANET settings and they are the basis of 
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numerous applications such as gaming. It should be noted that the proposed signaling 

architecture can be applicable for different types of conferences, such as private/public 

conferences, pre-arranged/ad hoc conferences and conferences with/without floor control, 

but we do not consider sub-conferencing. 

4.1.2 The architecture and general principles 

Figure 4.1 gives an overall view of the proposed cluster-based signaling architecture. The 

only functional entity is the Signaling Agent (SA). There is one per party, or more 

generally, one per node in a MANET. They are grouped in clusters that we call signaling 

clusters. These clusters are application-level clusters and are independent of lower layer 

clusters such as routing clusters. In each cluster, at any given time, there is one and only 

one cluster head (we refer to as super-member), and all the other members of the cluster 

are connected to it. A super-member has direct signaling links to the super-members of 

the neighboring clusters. 

Figure 4.1: A signaling architecture for standalone MANETs 

There are two general parameters of a cluster: Split value (Sv) and Merge value (Mv). 

Every node in a conference maintains the same Sv and Mv. If the size of a cluster reaches 



Sv, the cluster will split into two clusters. If it reaches Mv, the cluster will find another 

cluster to merge with. 

A super-member is responsible for keeping track of the information of its members and 

its neighboring super-members. It also propagates the information when there is a change 

in membership. In addition, it detects the eventual unintentional departures of the nodes 

connected to it by sending periodic heartbeat messages. 

In our architecture, it is the node with the most capabilities that is elected as the super-

member. A participant that initiates a conference is responsible for collecting the 

capabilities of the called party before the conference is initiated. Super-members keep 

track of the capability changes of their members and neighboring super-members during 

the conference. 

4.2 Operational procedure of clusters 

In our signaling architecture, clusters are dynamically created and deleted for 

conferencing. The signaling system is responsible for maintaining the state of conference 

and clusters. Each signaling cluster has a life cycle. The first phase is its creation. A 

super-member is elected in this phase. After its creation, the cluster moves to an active 

phase. The membership of the cluster evolves (parties join and leave). These changes 

may lead a cluster to split into two, or to merge with another cluster. Ongoing activity 

may also lead to the election of a new super-member, triggered by the departure of the 

super-member, for example. The life cycle ends with the deletion of the cluster. In this 

section, we describe the signaling procedures related to each of the phases of the cluster 

life cycle. 
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4.2.1 Cluster creation and deletion 

The first cluster is created when a conference starts. The creation procedure is as follows: 

first, the party (called the initiator) that wishes to establish a session collects the 

capability of the called party. It compares its own capability to the capability of the called 

party and designates the one with more capability as the super-member. Second, it 

requests the super-member (itself or the called party) to create a session. The initiator 

needs to set the Sv and Mv and passes the parameters to the called party. After the first 

session is set up, the super-member starts to periodically collect the capabilities of its 

members. 

The last cluster is deleted when the last two parties leave the session. All the states and 

parameters of the cluster are cleared. 

4.2.2 Super-member election 

An election algorithm is used whenever there is a need to select a new super-member 

among several candidates. This happens when a new cluster is created or when a cluster 

merges with another cluster or when a super-member leaves. The basic rule is that the 

candidate with the most capability is selected as a super-member. We assume that a party 

that wishes to select a new super-member knows a list of n candidates 

{candidate]...candidate„}. Assuming that the respective capabilities of these candidates 

are {Capi...Cap„j, the algorithm is given in Table 4.1. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Cap™, <- Cap, 

loop i (from 2 to n) 

/ / (Cap m l I is less than Cap,) 

Capmal <- Caps 

max <- i 

return candidatemax 

• Capm„: Maximum capability 
• candidate™,,: Candidate with most 

capability 
• {candidate,...candidate): n candidates of 

super-member 
• {Capi...Cap„}, capability of n candidates 

Table 4.1: Super-member election 

4.2.3 Member joining and leaving 

Both members and super-members can invite parties to join a conference. If it is a super-

member that is inviting and it is capable of handling more members, the super-member 

directly establishes a session with the party. If the super-member cannot handle more 

members, it may ask a neighboring super-member to do so. If a member invites a party, 

that member will ask its super-member to establish the session. A new member is then 

added to the cluster. The super-member of the cluster propagates the membership change 

to neighboring clusters. 

Any participants, including members and super-members, may leave a conference 

whenever they want to. In the case of a member departure, the member terminates its 

connection with its super-member and the super-member propagates the membership 

change to the neighboring clusters. With the departure of a super-member, that super-

member designates a new super-member (choosing the member with most capability 

among the member list) before leaving. It passes its member-list and neighboring super-

member list to the new super-member. The new super-member sets up a session with 

each member and each neighboring super-member and forms a new cluster. After this 
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procedure, the old super-member terminates all its connected sessions. In the case where 

there is no member in a cluster, the super-member that wishes to leave simply terminates 

all its connected sessions. An example of super-member departure is shown in Figure 4.2. 

In the figure, the super-member of cl leaves the conference. 

(b) (c) 

(~\ super-member candidate (~\ non-participant 

Figure 4.2: Super-member leaving (a) designate a super-member candidate, (b) the 
candidate creates connections, (c) old super-member leaves, the candidate becomes super-

member 

Frequent changes of clusters' super members can lead to instability. The clustering 

algorithm described in [87] has proposed rules to make sure that the cluster head changes 

as less frequently as possible. Similarly, we set as a rule that when a party joins a cluster, 

it does not replace the super-member, even if it has more capability. This helps to 

maintain the stability of the clusters, but does not prevent the super-member from leaving, 

if it decides to do so. 

4.2.4 Splitting 

When a new member is added to a cluster, the super-member initiates a split procedure if 

the size of the cluster reaches Sv or if the super-member does not have enough capability 

to handle more members. A cluster may also split when its super-member does not have 
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enough capability to handle its existing members. This happens, for instance, when the 

battery power of the super-member decreases. First, the super-member selects a new 

super-member, based on capabilities. It also selects half of its members that are to 

become members of the new cluster. The selection may be by random or according to 

some rules, such as the sequence number of members. Table 4.2 shows a selection 

procedure based on odd/even sequences of cluster members. We assume that there are n 

cluster members in the cluster member-list Cm and the list is denoted as {Cnti,..., Cm„}. A 

new super-member has been selected using the super-member selection procedure 

defined in Section 4.2.2 and the new super-member has been removed from the member 

list Cm. The selected members are stored in an empty member-list Cm'. 

1. //(n<=l) 

2. return Cm' 

3. else loop i (from 1 to n) 

4. if{\ mod 2 = 0) 

5. remove Cmj from Cm 

6. insert Cmj into Cm' 

7. end 

8. end 

9. return Cm' 

Table 4.2: Selection of cluster members to create a new cluster 

The super-member that wishes to split the cluster then asks the new super-member to 

form a new cluster that contains the selected members, passing the selected member list 

and neighboring super-member list to the new super-member. The new super-member 

creates a new cluster by establishing sessions. The super-member then terminates 

sessions with the selected members. Figure 4.3 shows signaling architectures before and 

after splitting. 
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(a) (b) 

^ super member ( " ) member Q Newly added member 

Figure 4.3: Cluster splitting (a) before splitting (b) after splitting 

The setting of Sv is critical for the signaling system. For example, if the Sv too small, the 

system may exhibit poor performance due to frequent splitting. If the Sv is too large, the 

signaling will have a centralized structure. On one hand, we expect a minimum number 

of clusters so that the overall signaling overhead is low. On the other hand, a centralized 

architecture is unacceptable for a large-scale conference. We will further discuss the 

setting of Sv in Chapter 7. 

4.2.5 Merging 

If the size of the cluster diminishes to Mv, the super-member initiates a merger procedure. 

This procedure starts by a searching for an existing cluster with which to merge, with the 

constraint that the size after the merger will be less than Sv. The searching algorithm is 

shown in Table 4.3. We denote the cluster that wishes to start a merger as C and assume 

that the cluster C has n neighboring clusters {C],..., C„j. The selected cluster Cseiect is 



initially set to null. The merger begins only when the returned Cseiecl is not a null value. In 

the table, Smin is used to store the size of the cluster after merging. 

1. Smin *- Sv 

2. »/(n<=0) 

3. return Cx]ea 

4. else loop i (from 1 to n) 

5. //(sizeof(Ci)+sizeof(C)) < Smin) 

6. Smin 4- (sizeof(Cj)+sizeof(C) 

/ . ^-select ^~ *~i 

8. end 

9. end 

10. return Cx]ca 

Table 4.3: Searching for a cluster to merge with 

A new super-member is elected as soon as the merger begins. The new super-member 

will be one of the two super-members (the one with more capability) of the two clusters. 

The procedure continues as follows: the elected super-member establishes sessions with 

the members of the cluster to merge with. The un-elected super-member then terminates 

sessions with its members and sets the elected super-member as its super-member, and it 

becomes a regular member. The merger information will then be propagated to the 

neighboring super-members. 

4.2.6 Information propagation 

In order to maintain a signaling cluster system, efficient information propagation is 

required, i.e. rapid propagation with as little introduced overhead as possible. In our 

architecture, super-members are responsible for propagating membership and capability 

information whenever there is a change. The information can be propagated to all the 

signaling agents in no more than two hops. Figure 4.4 shows an example. An option that 
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can further reduce the propagation overhead is that only part of the information is 

propagated and only to super-members. This is realistic because it is not necessary for 

every member to have knowledge of every system change, e.g. a splitting of a cluster. 

' ' ." ~-^v (fffa super member 

Q ^ W 
member 

s~\ newly added member 

N ^ ,•>' X±£ ^ , ' ^ propagation flows 

Figure 4.4: Information propagation as a new party joins 

4.2.7 The issue of coincident behavior of participants 

One issue of a distributed signaling architecture is the state synchronization when there 

are coincident behaviors of participants in the conference. Such behaviors may cause 

inconsistent states among participants, e.g. with a coincident joining (defined in [82]), 

two newly joined parties have no way to know each other and no session will be 

established between them, and thus the fully distributed signaling architecture cannot be 

maintained. However, with the information propagation procedure, the cluster scheme 

defined in this article can handle most coincident behaviors. In some cases, protection 

mechanisms should be used to prevent inconsistencies. We discuss this issue case by case. 

Case I: Coincident join — two or more parties join a conference at the same time. They 

may join the same cluster or different clusters. Our scheme can handle this case because 

the coincidently joined parties do not have a direct session with each other. Instead, they 

establish sessions with the super-members that are already in the cluster and later they 

can 'know' each other from their super-member(s). 
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Case II: Coincident departure - two or more participants leave a conference at the 

same time. They may leave the same cluster or different clusters. Similar to the first case, 

our scheme can handle the coincident departure of members and less than two super-

members. Our scheme cannot handle the coincident departure of super-members because 

the newly selected super-members cannot already have knowledge of each other. In order 

to avoid such a case, we define a protection phase when a super-member leaves. A super-

member should reject any session establishment or termination request when it starts to 

leave. The protection phase ends when the super-member has completed the leaving 

procedure. Within this protection phase, a super-member leaving procedure will fail if 

another super-member is leaving at the same time, because the newly selected super-

member cannot establish a session with a leaving neighboring super-member. If a super-

member fails to leave, it will retry after a random period of time. 

Case III: Coincident splitting - two or more clusters split at the same time. With the 

mesh structure of super-members, the super-members in older clusters maintain a session 

with every newly split super-member. After a run of the information propagation 

procedure, a newly split super-member will have knowledge of the other new super-

members. The logic to be added in order to handle this case is that if a super-member 

finds that it has not established a session with a neighboring super-member and if it has a 

higher address, it will establish a session with that super-member. Figure 4.5 shows an 

example of the coincident splitting. In the figure, cl and c2 split at the same time. The 

super-members of c3 and c4 'know' each other after a run of information propagation. 

The super-member of ci then establishes a session with the super-member of c4. 
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^ super member f~~\ member * Information propagation flow 

Figure 4.5: Coincident Splitting (a) before splitting (b) after coincident splitting and 
propagation of cluster information (c) the missing session established 

Case IV: Coincident merging - two or more pairs of clusters merge at the same time. 

Our scheme can handle this case because there is no new super-member elected. The 

cluster state can be propagated to all neighboring super-members. 

There are two other critical issues related to the signaling procedures. The first is the 

participant capability discovery that is critical to super-member election, and the second 

is the detection of unintentional departure and session recovery. We will detail the 

solutions for these issues in the next sections. 

4.3 Capability exchange mechanism 

The election of a super-member is based on the node capabilities. In this section, we 

discuss how the capabilities of participants are exchanged and how the capability 

information is maintained and refreshed. We start by looking into the existing service 

discovery approaches. Then we propose a simple mechanism that is lightweight and 

especially suitable for our cluster-based architecture. 



4.3.1 Related approaches for capability exchange and discovery 

As we have assumed that each participant knows its own capability, there are several 

ways for a participant to discover the capabilities of other participants. The simplest 

approach is broadcast, i.e. every participant periodically broadcasts its capability to the 

network and a participant that receives the information stores it and forwards it. The 

drawback here is flooding. Therefore, too much network overhead will be introduced. 

Another approach is to embed capability information in the routing layer and use the 

routing protocol for capability publication and discovery (e.g. LSD [88]). This approach 

saves network resources, but it does not meet our requirement of independence of lower-

layer routing protocols. Still another approach is to deploy general publication/discovery 

protocols (such as Konark [89]) that can provide capability exchange services for 

signaling protocols. However, this approach is not worthwhile because these protocols 

are generally loaded with functions that are not required and they may significantly slow 

down the signaling procedures. 

4.3.2 Proposed mechanism for capability publication and discovery 

We propose a simple application-level capability publication/discovery mechanism that 

specifically fits the cluster-based signaling scheme. The entity involved is the SA. We 

define three types of messages: Capsubscribe, Capnotify and Cap_publish. 

Capsubscribe is a request message containing a subscription interval. Capnotify is a 

response message containing a sequence number and the current capability level, and 

Cap_publish is a message containing the current capability level. 

Capsubscribe is used in the following three cases: 
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• When the initiator of a conference establishes the first session, it sends the message 

to the called party and sets the subscription interval to zero. In this case, the called 

party sends only one Capnotify back to the initiator with its current capability 

loaded in the message. 

• A super-member sends a Capsubscribe message to a member when a session is 

established. In this case the subscription interval is set to a non-zero value and in 

each interval period, the member sends back a Capnotify message loaded with its 

current capability. 

• A super-member sends a Capsubscribe to a member with a zero subscription 

interval value. The member sends back a Capnotify response and stops the periodic 

Capnotify messages. 

Cap_publish is sent between super-members. When its capability is changed, a super-

member sends a Cap_publish to every neighboring super-member. 

4.4 Unintentional departure detection and session recovery 

In Section 4.2, we have presented the normal cases of user departure, i.e. the voluntary 

departure. In the normal case, the participant informs the system before leaving. The 

system can then react and handle the session. In the case of unintentional departure of 

participants, the signaling system is not informed. The departure may have several causes 

and it may happen often in MANETs. A timely detection of such departures is necessary 

for the signaling system. It helps the signaling system in handling the session gracefully, 

i.e. termination of a failed session, reconstruction of a cluster, update of the cluster state, 

and update of the participant status. 
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In this section, we focus on the issue of the unintentional departure of participants. In 

order to tackle the issue, a failure-detection and a recovery mechanism have to be added 

to our signaling architecture. This mechanism should meet the following requirements. 

First, it should be able to work in the cluster environment of our signaling architecture. 

Second, it should be able to detect every session failure caused by unintentional departure 

of either a super-member or a member. Third, the failure detection should be fast. Fourth, 

the mechanism should be lightweight and should not introduce too much overhead in the 

network. In the next sub-sections, we first introduce the concept of heartbeat and review 

the approaches in the literature with respect to the requirements. We then propose a 

session recovery mechanism that is based on a request/reply heartbeat protocol. 

4.4.1 Heartbeat and related failure detection approaches 

Heartbeat protocols are often used to detect failures in distributed systems (e.g. 

[92][93][94][95]). Recently, they have also been used in MANETs for node failure 

detection ([91][96]). A heartbeat mechanism relies on a heartbeat rate and this rate may 

change according to different conditions. Heartbeat protocols are numerous, and they 

usually follow three communication modes: 'push' mode (e.g. [91]), request/reply mode 

(e.g. [92]), and counter-based mode (e.g. [96]). In the push mode, a failure monitor and a 

monitored node are defined. The monitored node periodically sends a heartbeat message 

to the monitor. The monitor treats a node as failed when it has not received a pre-defined 

number of heartbeat messages. 

In request/reply mode, a failure monitor is also defined, but it is different from 'push' 

mode. The monitor sends heartbeat queries to the monitored node and gets responses. 
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The monitor treats a node as failed when it sends a number of heartbeat requests but does 

not get any response. This mode is sometimes called 'pinging' (e.g. [95]). 

In counter-based mode, every node has a heartbeat counter. It increases the counter value 

in each period of time and propagates the counter to a sub-set of nodes in the network. A 

node that receives the counter will update a list of counters. The failure detection scheme 

is as follows: a nodep is treated as failed by a node q if the p's counter in #'s list has not 

been updated for a period of time. 

4.4.1.1 Failure detection and recovery in signaling 

The unintentional departure detection and session recovery are specific to MANETs. We 

have not found related work for infrastructure-based signaling systems such as H.323 

[73] and SIP [74]. These signaling systems handle failures during the session 

establishment phase, but they do not have any explicit session failure detection 

mechanism after the session has been established. 

ICEBERG signaling [86] is the only signaling system that has defined an explicit failure 

detection mechanism. The mechanism is based on a heartbeat protocol, following a two-

way 'push' mode. It is illustrated in Figure 4.6. 

The iPOP (iceberg Point Of Presence) is a call control point in ICEBERG. It dynamically 

creates call agent processes. Each call agent handles a session for an end point. The 

failure of a call agent is detected by the iPOP upon the reception of periodical heartbeat 

messages from the Iceberg Access Point (IAP). The message contains an updated session 

status. 

The heartbeat message sent from iPOP to IAP has as purpose to detect if the iPOP is still 

alive. If the heartbeat has not been received after a timeout, the IAP will communicate 
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with another iPOP. There are also heartbeats between two iPOPs in order to detect if each 

one is still alive. 

Heartbeat 
(Call State) 

Heartbeat 

Heartbeat 

Heartbeat 

I API 

• IAP: ICEBERG Access Point 
iPOP: ICEBERG Point Of Presence 
^ : Call Agent 

Heartbeat 
(Call State) 

IAP2 

Heartbeat 

Figure 4.6: Iceberg signaling: failure detection mechanism 

This solution cannot be used in our signaling architecture because it assumes that an IAP 

never fails and the heartbeat message from the IAP can always be received by an iPOP. 

This is not case for MANETs. Moreover, the heartbeat message from IAP to iPOP is 

heavily loaded because it carries a full session state. The advantage of this mechanism is 

that it is able to quickly detect and recover a failed session process. 

4.4.1.2 Failure detection and recovery for cluster-based architectures in MANETs 

Cluster-based routing protocols, such as in [48] and [94], have introduced cluster update 

and re-affiliation mechanisms that handle link failures between a cluster-head and a 

cluster member. All the cluster members continuously monitor their signal strength as 

received from the cluster-head. When the signal strength decreases, a cluster member 

notifies its current cluster-head that it is no longer able to attach itself to it. The cluster-
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head tries to hand-over the member to a neighboring cluster. If a cluster-head crashes or 

moves out of range, a cluster re-formation procedure is performed. 

This mechanism is based on the detection of physical wireless link status and it is not 

applicable at the application layer. It is therefore not applicable in our clustering 

environment because our clusters are application level clusters. 

Authors in [90] have proposed a SIP-based multicast framework for MANETs. They 

defined a ping-timeout mechanism in order to detect the abrupt disconnections between a 

cluster head and a cluster member. The mechanism is comparable to a two-way 

request/reply heartbeat protocol. If a node fails to send or respond to a SIP NOTIFY-like 

message in a predetermined period, it is assumed to have left the network ungracefully 

and then the node will be removed from the host list. The removed node may later re­

connect to the network by re-broadcasting a request to join the network. 

This mechanism is applicable to the cluster-based signaling architecture. It meets the first 

three requirements that we derived. However, it introduces a significant network 

overhead, i.e. for each period of time four messages (two requests and two responses) are 

exchanged between a cluster-head and a cluster-member. 

A cluster-based failure detection mechanism has been proposed in [91]. It defines a 

'push'-style heartbeat failure detection service, which includes three phases: heartbeat 

exchange, digest exchange and health-status-update broadcast. A cluster member is 

determined to be failed if its cluster head has not received its heartbeat or digest message 

and none of the other members in the cluster is aware of the heartbeat of the member. A 

Deputy Cluster-Head (DCH) is defined to detect the failure of a cluster-head. A cluster-
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head is determined to have failed only if its DCH did not receive its heartbeat or digest or 

the health-status-update. 

This mechanism is applicable for the cluster-based signaling system. It is capable of 

detecting every node failure, but it cannot handle node mobility and link failures. 

Furthermore, its overhead is non-trivial because it broadcasts heartbeat and digest 

messages. 

We find out that none of the aforementioned solutions meet all our requirements. 

Therefore, we propose our solution. 

4.4.2 Proposed failure detection and session recovery mechanism 

We define a session as a signaling link between two participants. A conference may 

consist of two or more sessions. Our basic idea is to use a one-way request/reply 

heartbeat protocol. It reduces the overhead of the ping scheme defined in [90]. 

We believe the one-way request and reply is enough to detect a session failure. Authors 

in [91] have shown that it is impossible to ensure accuracy (i.e. no false detection) for a 

failure detection mechanism in MANETs. Actually, it is not necessary in our case. When 

a session has failed, either participant that maintains the session may have unintentionally 

departed. What we require and believe important is to recover the session as soon as 

possible, but not to accurately determine which party really has left the conference. Thus, 

our principle is that a participant is responsible for detecting if a maintained session is 

still alive. A participant also has the responsibility to recover a maintained session when 

the later has failed. 
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We define a heartbeat as a periodic exchange of a request and a reply. Each session in a 

conference maintains a heartbeat. A heartbeat starts when a session is established and it 

stops when the session is terminated. We define two entities for a heartbeat: a sender that 

sends the heartbeat requests and receives heartbeat replies and a responder that receives 

requests and sends replies. When a new session is created and if the session is between a 

super-member and a member, the super-member becomes a heartbeat sender and the 

member, becomes a responder. If it is a session between two super-members, the one 

with more capability becomes the sender and the other super-member becomes the 

responder. A heartbeat request message contains a sequence number and a super-member 

list that includes the identification and resource level of every super-member in the 

conference. A heartbeat reply messages only contains the sequence number received from 

the last request. We define three timers: heartbeat rate Th, transaction timer Tt and 

recovery timer Tr. 

The heartbeat mechanism can be described as follows: 

• In each period of Th, a heartbeat sender sends a request to its responder, and starts 

a timer Tt. If Tt fires and no reply received from the responder, the sender re-

sends the request and restarts Tt. If there is no reply upon a number of requests, 

the sender will determine that the responder has unintentionally departed, so it 

will terminate the session and delete the session states. The super-member will 

then propagate the departure information to the neighboring super-members 

following the information propagation scheme. The cluster status is updated 

accordingly. 
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• When a session is created, a heartbeat responder starts a timer with the value 

Th+n*Tt. If it receives a heartbeat request before the timer fires, it retrieves the 

super-member list from the request, sends a reply and resets the timer. If the timer 

fires and no heartbeat request is received from a sender, the responder will 

terminate the session with the sender. The member then starts a timer Tr and tries 

to establish a session with one of super-members in the super-member list in each 

period of Tt, until a session is successfully established. In the case that the super-

member list contains only one super-member (i.e. there is only one cluster in the 

conference), the member simply waits for the super-member to establish a session 

with it. If the timer Tr fires and no session has been established, the member 

clears all the conference states and leaves. 

• If a super-member finds that it has just terminated the last session it maintains due 

to the unintentional departures of its members and neighboring super-members, it 

keeps the conference state and starts the timer Tr. In each period of Tt, it tries to 

establish a session with one of the super-members in the neighboring super-

member list until one session has successfully established. The super-member 

then becomes a cluster member and a heartbeat responder. If there is no 

neighboring super-member, or the timer Tr fires and no session has been created, 

the super-member deletes all the states and leaves the conference. 

We further illustrate the mechanism through scenarios. 
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4.4.3 Scenarios of failure detection and recovery 

Figure 4.7 shows a scenario in which Member D has unintentionally departed. When D 

has recovered later, it joins super-member A's cluster. Figure 4.8 shows a scenario where 

super-member B has unintentionally departed. Member D then re-joins super-member 

A's cluster. After a while, when B has recovered, it joins super-member A's cluster and 

becomes a cluster member. 

It should be noted that the mechanism does not always ensure session recovery from 

transient departures. For example, if all the super-members in a conference 

unintentionally depart at the same time and none of them is able to re-connect to the 

network in a short period of time, the conference sessions cannot be recovered. We 

believe this is fair because super-members play a key role in cluster-based signaling 

system. In this case, the sessions are at least terminated gracefully. 

The three timers that we defined should be set very carefully. The value of Tt should be 

larger than the round-trip transmission delay between two participants. The value of Th 

should be determined by a balance of heartbeat overhead and departure detection time. 

The value of Tr should be less than the duration of a conference. 
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4.5 Conclusions 

In this chapter, we have proposed a cluster-based signaling architecture and shown how 

the clusters operate during each phase of the signaling procedure. If we analyze the 

architecture with respect to the signaling requirements, we can find that the architecture is 

a very promising solution. 

First, there is no permanent centralized entity. The signaling agents act as super-members 

on a transient basis. Second, the sessions are maintained in a distributed and dynamic 

manner. Session-related information is dynamically propagated to all of the parties. 

Furthermore, the architecture can handle both voluntary and unintentional departures of 

participants. A session recovery mechanism is also provided. Third, the signaling system 

can scale automatically in the same manner as the network in which it is implemented. 

The clusters can automatically split and merge, fitting the scale of the conference. 

Fourth, the architecture can be lightweight if the appropriate technology such as SIP is 

selected for its implementation. Fifth, resource usage is optimal because the super-

member election is based on node capabilities. Finally, our signaling clusters are 

independent of the lower layer clusters and the signaling system does not rely on any 

specific lower-layer protocols. 

In Chapter 6 and Chapter 7, we will further discuss the implementation and performance 

measurement of the cluster-based signaling architecture. 
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Chapter 5 : A Signaling Architecture for Conferencing in 
Integrated MANETs/3G Networks 

Based on the signaling architecture described in Chapter 4, we propose the signaling 

architecture for integrated MANETs/3G networks. We first present the network structure 

that we consider. We then introduce the integrated signaling architecture, the entities and 

the general principles. After that the scenarios of conference establishment, participant-

joining and conference termination are illustrated, through which we demonstrate how 

the architecture work under different cases and how the entities behave. We will conclude 

by a summary of the architecture and analyze its potentials in meeting the requirements. 

5.1 Network assumptions 

The integrated MANETs/3G network we consider is shown in Figure 5.1. In this figure, 

we define a multihop routing area as an area in which all the nodes are working on a 

MANET interface and the nodes can reach each other by direct wireless connections or 

multihop routing. We also assume that there is more than one multihop routing area in the 

system. As introduced in Chapter 2, there exist different physical connection techniques. 

For our work, we do not specify any lower-layer technology, i.e. the signaling 

architecture will be independent of the lower layers. In fact, from an application-layer 

point of view, no matter what technique the network uses, the integrated signaling system 

should provide an identical service to all users. Therefore, the network we assume 

supports devices with only MANET interfaces, devices with both MANET and 3G 

interfaces and devices with only 3G interfaces. We define the first two types of devices as 

the multihop Mobile Station (MS) and the third as the single-hop MS. 

64 



Figure 5.1: Considered Integrated Network 

5.2 Architectural principles 

We use the solution for signaling in standalone MANETs as basis for the solution in the 

integrated MANETs/3G system because of two reasons. First, it enables conferences with 

MANET participants. Second, the architecture is centralized with respect to each cluster, 

which is applicable for conferencing in 3G networks. We also assume that the cluster-

based signaling architecture is the default signaling architecture used by the MANETs' 

side of the integrated network. 

5.2.1 The proposed architecture 

The proposed architecture is depicted in Figure 5.2. We define three entities: the 

Signaling Agent (SA), the Conference Focus (MRFC/AS), and the Conference Gateway 

(CGW). The MRFC/AS is the entity defined in the 3GPP standard [81]. In our 

architecture, its functionality as per the 3GPP standard is enhanced. The enhancement is a 

CGW discovery functionality, i.e. the ability to find a suitable CGW that can handle 
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sessions with the participants in MANETs. The SAs are conference participants. They 

are either 3GSAs, i.e. participants in 3G, or MSAs, i.e. participants in MANETs. 3GSAs 

are the signaling parts of the 3G User Equipment defined in [81]. They can establish 

sessions with the MRFC/AS. MSAs are the same as the SAs defined in chapter 4. An 

MSA can either be a super member or a simple member. Here also the CGW discovery 

functionality is needed in addition to the functionality of the MSA defined in chapter 4. It 

should be noted that 3GSAs and MSAs may run different signaling protocols. 
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Figure 5.2: Integrated conferencing architecture 

The CGW is a new entity that we introduce. It is a mediator deployed by the 3G network 

operator (or a trusted third party). It has an infrastructure-based interface that is 

connected to the 3G conference focus. It also has a MANET interface that is connected to 

MANET SAs. Unlike the client proxy defined in UCAN or the ARS defined in iCAR, the 

CGW is an application layer entity. Its two interfaces are not physical air interfaces, but 

application layer interfaces to signaling components. A CGW has six major functions. 

First, it has the functionality of a signaling agent that is capable of establishing sessions 

with MSAs and with the conference focus. Second, it understands the signaling protocols 
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for multimedia conferencing in both MANET and 3G, and performs the translation (if 

required). Third, it understands the conferencing signaling architectures (e.g. centralized 

versus distributed) used in both MANET and 3G, and does the mapping (if required). 

Fourth, it collects the membership information in both networks, converts it (if required), 

and distributes it. Fifth, it provides the functionality of publication and discovery so that 

MSAs and the conference focus can find and use its services. Sixth, it provides 

registration functions and manages the repository of MANET participants. 

Our architecture relies on three main principles. First, participants in MANET see the 

CGW as a special super member that never leaves, splits or merges with other super 

members. Second, participants in 3G (i.e.3GSAs) see the MRFC/AS as a centralized 

control point to which every participant, in 3G networks or in MANETs, is connected. 

Third, the MRFC/AS sees the CGW as a sub-focus that aggregates and manages sessions 

for MANET participants. We assume that participants that are not 3G users are implicitly 

seen by the 3G conference focus as MANET participants, to which sessions are created 

through a CGW. The same assumption is made for MSAs. 

5.2.2 CGW discovery mechanism 

The CGW can be discovered by the 3G conference focus and by the MANET participants. 

Since the CGW is deployed by either the 3G network operator or by a trusted party, the 

CGW and the conference focus can be pre-configured to have knowledge of each other. 

However, a MANET participant has to find and register with an appropriate CGW when 

it wishes to establish a session with a 3G participant or when it wishes to be invited by 

3G participants. A CGW discovery and publication mechanism is therefore needed. It 
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should support two basic scenarios. First, a CGW should be able to periodically publish 

its location and capability to MANET nodes - necessitated by the frequent membership 

changes in MANET. The MANET node can cache the CGW information when it first 

receives it, and registers with the CGW. Second, a MANET node should be able to send a 

CGW request message that contains CGW capability requirements to the network. A 

MANET node that has the proper CGW capability information or a CGW that matches 

the capability requirements can respond. The MANET node that receives the responses 

then registers with the CGW. 

CGW location information contains the CGW's address and listening port. CGW 

capability information includes parameters such as the signaling protocols supported, 

conference type supported, network information, architectures supported and encoding 

supported. Service discovery and publication in MANET has been extensively 

investigated. A simple scheme to implement the two scenarios is broadcasting, i.e. a node 

that has a service periodically broadcasts its service advertisement to all the nodes, and a 

node that needs a service broadcasts a discovery message to all the nodes and then waits 

for responses. A major issue in this scheme is the extra load induced on the network by 

the flooding of messages. To solve this problem, new proposals such as Konark [89] and 

Allia [97] have emerged. Any of them can be used in our architecture. 

In an integrated 3G/MANET network, CGWs can be collocated with the conference 

focus, or deployed as standalone nodes. The number of CGWs to be deployed is to be 

determined by network planning and design. We will further discuss the issue of CGW 

deployment in Chapter 7 and Chapter 8. 
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5.3 Conferencing scenarios in integrated MANETs/3G networks 

Under the considered network environment, the integrated signaling architecture can be 

applied as a use case shown in Figure 5.3. In this figure, two CGWs are deployed and 

each of them handles the sessions from a multihop routing area. 

Figure 5.3: A use case for applying the signaling architecture in considered networks 

The use case enables four different scenarios: conferencing with 3GSA parties, 

conferencing with both 3GSA and MSA parties, conferencing with MSA parties in the 

same multihop routing area and conferencing with MSA parties in different routing areas. 

The first and the third scenario do not require the use of a CGW. The second scenario 

requires CGWs to perform protocol translations and signaling routing. The last scenario 

does not require a protocol translation, but it uses CGWs and the 3G conference focus as 

signaling routing mediators. 

We are only concerned with the new scenarios that require a participation of CGW(s) 

because the other scenarios are the same as the conference scenarios in standalone 

MANETs or in pure 3G networks. 
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5.3.1 Conference initiation 

Figure 5.4 depicts conference initiation sequences between an MSA and a 3GSA. In 

Figure 5.4-a, 3GSA1 initiates a conference. It first creates a session with its MRFC/AS 

using the 3G signaling protocol. Then it requests the conference focus to create a session 

with MSA1. The conference focus finds that MSA1 is in a MANET. It then creates a 

session with the CGW and asks the CGW to create a session with MSA1. Finally, the 

CGW creates a session with MSA1 using the signaling protocol of MANET and 

designates MSA1 as a super member. Figure 5.4-b illustrates the case where MANET 

user MSA1 initiates a session with 3G user 3GSA1. In both cases, the CGW translates 

protocols and maps the two architectures. 

Figure 5.5 shows an example of conference initiation between two MSAs (MSA1 and 

MSA2) that are located in different multihop routing areas and are registered with 

different CGWs. The session set up request is first forwarded from the CGW1. Since the 

CGW1 does not know the location information of MSA2, it forwards the request to the 

MRFC. The MRFC finds that the MSA2 is registered with CGW2, so it forwards the 

request to CGW2. The request finally reaches MSA2 and a response message is sent back 

following the request route. Since the two parties are located in different routing areas, 

both parties become super-members when the first session is set up. The conference state 

is stored in both parties and it is stored in both CGWs as well. 
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Figure 5.4: Conference initiations with participants in different networks 
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Figure 5.5: Conference initiation with MSAs in different routing areas 

5.3.2 Participant joining 

3G and MANET users are allowed to join an existing conference when they are invited. 

A 3GSA that wants to invite a new participant needs to request the conference focus to do 

so. The conference focus then determines which network the called party is in. If it is in 

MANET, the conference focus requests the CGW to create a session with the called party. 

The CGW then decides to which cluster the called party will join. Finally, it asks the 

super member of the cluster to create a session with the called party. An example of the 

scenario is illustrated in Figure 5.6-a. If a MSA wants to invite a 3GSA to join the 

conference and the MSA is a super member, it simply sends a request to the CGW, which 

will then request the conference focus to invite the 3GSA. If the MSA is not a super 

member, it has to request its super member to do this. Figure 5.6-b shows an example of 

this scenario. In the figure, the MSA that invites the 3GSA is a super-member. 
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Figure 5.6: Inviting a participant in a different network 

Figure 5.7 shows the case that a MSA invites another MSA located in a different 

multihop routing area. In the case, the MSA3 is located in the same routing area as MSA2 
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and MSA1 wishes to invite it. The MSA1 that has not found the MS A3 in its routing area 

does not directly create a session with MS A3. Since it does not know where MSA3 is 

located, it simply sends a 'request to invite' to its local CGW (CGW1) with the 

conference ID included. Then, the message is sent to the MRFC and the MRFC finds that 

MSA3 is managed by the CGW2. It forwards the request to CGW2. The CGW2 finds 

that the conference exists and the MSA2 is the super-member in the same routing area. It 

further forwards the request to MSA2. Finally, the MSA2 sets up a local session with the 

MSA3 and the MSA3's joining information is sent back to MSA1. 
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Figure 5.7: Inviting an MSA in a different routing area 

5.3.3 Conference termination, party leaving and information propagation 

The procedure for a 3G or a MANET party leaving has no difference from the party 

leaving procedures defined in a pure 3G network or in standalone MANETs. The 

difference is that the conference information has to be propagated correctly between the 
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two networks when parties leave. This requires the translation and transmission of 

conference events between the 3G conference focus and the MANET super members. 

This functionality is performed in the CGW. 3GSAs and MSAs (cluster members) can 

subscribe the information from the conference focus and from super members, 

respectively, during a conference. When the last two participants terminate a conference, 

any sessions between the CGW and the conference focus, the MSA and the CGW, and 

the conference focus and the 3GSA are torn down. 

A conference involving both 3G and MANET participants terminates only when the last 

participant leaves the conference. The relative sessions between CGW and MRFC should 

be released and all the conference state should be cleared. 

5.4 Conclusions 

In this chapter, we have proposed a signaling architecture for conferencing in integrated 

MANETs/3G networks. The architecture combines the cluster-based signaling 

architecture for standalone MANETs with the centralized signaling architecture for 3G 

networks. A CGW is proposed as a mediator. The architecture is very promising in 

meeting the specific signaling requirements for conferencing in integrated MANETs/3G 

networks. First, it supports all the required conferencing scenarios. Second, a MANET 

participant can directly create sessions with other MANET participants in the same 

routing area without a need to connect with a far away conference server. Third, the 

upgraded signaling entities that support the new architecture can be easily backward 

compatible with the signaling entities that have not been upgraded. This is due to the 

changes for upgrading the legacy signaling entities are not significant, i.e. the MSAs and 
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the CF only need to load the CGW discovery functionality and the 3GSAs do not need to 

upgrade at all. The complexity of the architecture is put into the newly defined entity -

CGW. Finally, the system can locate participants in both MANETs and 3G networks. 

This is also performed in CGW. 

In Chapter 6 and Chapter 7, we will discuss the implementation and performance 

evaluation of the architecture. 
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Chapter 6 : Proof of Concepts and Evaluations 

We have presented the signaling architectures for conferencing in both standalone 

MANETs and integrated MANETs/3G networks in Chapter 4 and Chapter 5, respectively. 

The implementation and evaluation of these architectures have to be addressed. In this 

chapter, we first discuss the implementation of the two architectures. We use SIP as an 

implementation technology. We then introduce the proof-of-concept prototypes we built. 

Results are collected from the prototypes. We also discuss how to build a real conference 

application. The cooperation of our signaling system and the media handling system in 

MANETs is addressed. 

6.1 Implementation of signaling for conferencing in standalone 

MANETs 

6.1.1 Implementation technology 

We select SIP as an implementation technology. We also devise extensions to SIP so that 

the cluster-based architecture can be supported. The choice of SIP is based on the 

following reasons. First, SIP is a lightweight protocol. This fulfills the lightweight 

signaling requirement for MANETs. Second, SIP has been designed with extensibility in 

mind. Actually, there already exist several SIP extensions. Rosenberg [98] summarizes 

all these extensions. A guideline for the authors of SIP extensions is presented in the 

IETF draft [99] and it is not difficult to extend the core SIP and existing SIP extensions. 

Third, an implementation as extensions to SIP will ease inter-working with legacy 

systems, given that SIP is the sole signaling system used in the 3GPP 3G system. Fourth, 
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extension to an existing signaling protocol reduces the validation workload comparing to 

development of a new protocol. Next, we introduce our SIP extensions. 

6.1.2 Extensions to SIP 

We identify our extensions by a new key word "clustering" in the "Supported" header 

field. The only functional entity we keep from SIP is the User Agent (UA). In addition to 

the UA, we introduce a new entity, the Super User Agent (SUA). UA maps naturally onto 

member and SUA onto super member. All the key concepts of SIP (e.g. dialog, call) 

remain unchanged. In addition, we introduce two new concepts: cluster and conference. 

At any given time a UA or an SUA is in one and only one cluster. The information 

regarding this cluster is maintained in a UA. It consists of a unique cluster-ID, a set of 

parameters (Sv and Mv) related to the cluster, and a unique super-member ID. In the case 

of a SUA, the information includes in addition, the list of members and the list of 

neighbors. The newly introduced concept of conference facilitates the sequencing of the 

messages exchanged in a conference. It is uniquely identified in each UA and SUA with a 

conference ID. This ID is made up of a conference ID value, a set of dialogs and a 

cluster-ID. 

We propose no new message, but extend the existing messages with new header fields. 

We use INVITE, ACK, BYE, CANCEL messages from core SIP [74]. We also use 

REFER [100], INFO [101], and SUBSCRIBE/NOTIFY [102] from existing SIP 

extensions. The INVITE, ACK, BYE and CANCEL handle the basic session 

establishment. The INFO and SUBSCRIBE/NOTIFY are used for information 

propagation. The former is used between SUAs and the latter is used between an SUA 

and a UA. A UA can subscribe to the conference membership information from its SUA. 
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We define a new event type: update-participant to identify this request event. 

The REFER message is used in the following scenarios: 

• When a UA wishes to invite a party to join, it needs to send a REFER to its SUA; 

• When an SUA decides to leave, it sends a REFER to a newly selected SUA; 

• When an SUA splits the cluster in which it locates, it sends a REFER to a new 

selected SUA; 

• When two clusters merge, the SUA that wishes to merge may send a REFER to the 

SUA in the other cluster. We will illustrate the scenarios in detail in section 6.1.3. 

We define four new headers: Conf-ID, Participant-In-Cluster, Neighbor and Cluster-

Parameters. Conf-ID field acts as a unique identifier for all the messages exchanged 

during the multiparty session. Participant-In-Cluster represents all the members of a 

cluster and consists of a cluster-ID, a super-member, and a member-list. Neighbor 

represents a neighbor of the cluster represented by Participant-In-Cluster. Cluster-

Parameters represents the parameters of the cluster, such as Sv and Mv. Table 6.1 shows 

the relationship between the new header fields and the SIP request methods. 

Conf-ID 

Participant-In-Clustei 

Neighbor 

Cluster-Parameters 

INVITE 

M 

M 

C 

M 

ACK 

M 

M 

C 

C 

BYE 

M 

M 

C 

C 

CANCEL 

M 

M 

C 

C 

REFER 

M 

M 

C 

C 

SUBSCRIBE 

M 

M 

C 

-

NOTIFY 

M 

M 

C 

-

INFO 

M 

M 

C 

-

"M": Must appear in a method "-": Cannot appear in a method "C": May appear in a method 

Table 6.1: Relationship between new header fields and SIP request messages 

Implementation of the capability publication and discovery mechanism (see Section 4.3) 

is still based on SIP. We use the SIP event framework (SUBSCRIBE and NOTIFY) to 
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implement the mechanism of Capnotify and Capsubscribe. We use the SIP INFO to 

implement Cap_publish. There is no extra extension required. We only define a new 

event type, called node-capability, and the event type should be presented in the 'Event' 

header field of the SIP messages if messages are used to discover or publish node 

capabilities. 

6.1.3 Signaling scenarios in standalone MANETs 

In this section, we will present six scenarios: conference initiation, participant joining, 

splitting, super-member leaving, merging and conference termination. All the scenarios 

are for ad hoc conferences. 

Conference initiation - Figure 6.1 depicts conference initiation scenario. Party A starts a 

conference with party B. Before establishing a session, it collects B's capability and 

elects itself as an SUA. It then invites UA B and sets up a session. In the INVITE 

message, it passes the conference ID and the cluster information to UA B. UA B uses the 

information to build up its conference and cluster states. Whenever a session is 

established, the heartbeat of the session starts. The heartbeat messages are not shown here 

as they have been presented in Section 4.4.3. Once the session is established, the SUA A 

subscribes to the capability of the UA B and SUA A maintains a member capability list. 

This list may be used for future super-member elections. UA B may also subscribe to the 

conference membership from SUA A. 
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Figure 6.1: Conference initiation scenario for standalone MANETs 

Participant joining - Figure 6.2 shows an example of participant joining. Party A and B 

are already in the conference. Party B wishes to invite a new party C to join the 

conference. UA B finds that it is not an SUA, so it asks its SUA A to establish a session 

with C. This is done by sending a REFER message. SUA A accepts this request and 

establishes a session with UA C. After the session is successfully established, C is added 

to the cluster member list. SUA A then notifies UA B, in response to the previous REFER 

messages. UA B receives the message and adds C to its local cluster. Similar to the first 

scenario, the heartbeat messages and capability subscriptions are exchanged between 

SUAAandUAC. 

If it is a SUA that wishes to invite a new party to join, the SUA directly invites the party 

if it has enough processing capability. If it cannot handle more sessions, it will find a 

neighboring SUA, send a REFER message to the SUA and request it to invite the party. If 

there is no neighboring SUA available, the SUA will invite the party first. A splitting 

process will be performed right after the session establishment. 
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Figure 6.2: Participant joining scenario for standalone MANETs 

Splitting - Figure 6.3 shows an example of splitting. Party A, B, C, D and E are already 

in a conference. Party A is the SUA and it finds that its cluster size has exceeded the Sv. It 

decides to split the cluster into two clusters: {A, D, E} and {B, C} and party B has been 

selected as the SUA of the new cluster. The splitting starts by sending a REFER message 

to B. This is to ask party B to invite party C. Party B that receives REFER finds that it 

will become a new SUA. It establishes a session with C and then starts to subscribe to C's 

capability. After that, it notifies party A that it has completed the invitation. Party A that 

receives the NOTIFY terminates the session with party C. This is done by sending a BYE 

message. It also stops subscribing party C's capability after the session is terminated. 

The example shows the splitting of the only cluster in a conference. If there are other 

clusters in the conference, Party B also needs to create a sessions with the SUAs of these 

clusters. Party A also needs to send INFO messages to the neighboring SUAs after 
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splitting finishes. The neighboring SUAs that receive the INFO will update their cluster 

states. 
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Figure 6.3: Cluster splitting scenario for standalone MANETs 

Super-member leaving - Figure 6.4 shows an example of super-member leaving. Party 

A, D and E are in one cluster and party A is the SUA of the cluster. Party B and C are in 

another cluster and party B is the SUA. Party A wishes to leave the conference. It first 

selects party D as a new SUA and sends a REFER message to party D. Party D that 

receives the message starts to invite cluster member E and cluster neighbor B. After the 

invitation, it notifies party A. Party A then terminates sessions with its cluster members D, 

E and its neighboring SUA B by sending BYE messages. After all the sessions terminated, 

party A leaves the conference. Now there are still two clusters in the conference, party D, 

E in one cluster and party B, C in another. 
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Figure 6.4: Super-member leaving scenario for standalone MANETs 

Merging - Figure 6.5 shows examples of cluster mergers. There are two clusters in the 

conference. Party B (SUA) and C are in one cluster and party D (SUA) and E are in 

another. The merging procedure is triggered by the leaving of party C. Party B finds that 

its cluster size has reached Mv so it checks if there is a neighboring cluster that it can 

merge with. It then finds that it can merge with party D's cluster. 

Figure 6.5-a depicts that party B elects party D as a new SUA. In this case, no session 

needs to be established or terminated, but only cluster states updated in both party B and 

D. A REFER message is used for this merger. 

Figure 6.5-b shows that party B elects itself as a new SUA. The merger still starts by a 

REFER message. Party D that receives the REFER message updates its cluster state and 

asks its old cluster member E to establish a session with the new SUA B. This is still 

done by a REFER message. In this message, the 'Refer-To' header field is set to B. Party 

E that receives this REFER changes its super-member to B and send an INVITE message 
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to party B. After party E and B's session established, party E notifies party D and finally, 

party D terminates its connection with party E. 
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Figure 6.5: Cluster merging scenario for standalone MANETs 

Conference termination - Figure 6.6 shows an example of conference termination. In 

the example, the conference termination is triggered by the leaving of SUA A. Party A 

finds that there is no cluster neighbors and there is only one cluster member left. Instead 
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of electing a new SUA, it directly sends a BYE message to party B. Party B that receives 

this message responds to the message and then leaves the conference because it has 

terminated the last session it maintains. 
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Figure 6.6: Conference termination scenario for standalone MANETs 

6.1.4 SIP deployment in MANETs 

We have shown that the proposed SIP extension can implement the cluster-based 

signaling architecture in difference conference scenarios. However, when we wish to 

implement these scenarios in a real MANET environment, we face the problem of SIP 

deployment, i.e. without fix servers such as proxy servers or registrars deployed, there is 

no way for SIP UAs to discover and locate each other. This issue can be divided into 

three sub-issues. First, a UA should be able to become aware of the presence of other 

UAs in the network. Second, a UA should know the location of a destination UA. Third, 

a UA should be able to forward the SIP messages to a correct destination. 

In the literature, we have found five solutions for deployment of SIP in MANETs. We 

denote them as SI, S2, S3, S4 and S5. We will present these solutions, analyze their 

advantages and disadvantages and choose the most appropriate ones for our 

implementation. 
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51 is presented in [83]. It is a very simple mechanism that relies on the lower-layer ad 

hoc routing protocol. The basic idea is as follows: a participant that wishes to establish a 

conference broadcasts REGISTER messages. The REGISTER message contains the user 

name, IP address and listening port. The REGISTER message are flooding, using the 

underlying ad-hoc routing protocol. This solution can solve all the sub-issues of SIP 

deployment and it is easy to implement. However, the flooding of REGISTER message 

may significantly increase the system overhead. 

52 [103] defined a solution for peer-to-peer SIP-based services over wireless ad hoc 

networks. The solution still relies on lower-layer routing protocol. Its difference from SI 

is that it designates a cluster-based ad hoc routing protocol. It then integrates SIP severs 

with the routing layer clusters. Cluster heads act as SIP proxies and as the forwarding 

nodes. They also act as registrars for their cluster members. The request messages are 

sent to the corresponding proxy of the request node. The proxy then sends the messages 

to neighboring cluster heads in order to discover a route to the destination. One 

disadvantage of this solution is that SIP UAs have no ways to know each other. Also, the 

solution relies on specific routing schemes that a MANET might not support. 

53 [ 104] proposed a decentralized approach in which SIP registrars and proxy servers are 

distributed in each participant. When a new participant joins the MANET, it broadcasts a 

REGISTER message to all the participants. The registrar in each party will store the 

information. It will also respond the message with its own location information. The 

"broadcast" here refers to a general concept. In more specific, it may be a link-layer 

broadcast if every two participants are directly linked. It may be multicast if all SIP UAs 

have registered to pre-defined multicast address. It may also be selective flooding. A 
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user location stored in each registrar has a limited validity time. When the location 

information expires, a refreshed REGISTER message should be sent. Any request 

message is forwarded to local proxy. The proxy is responsible for contacting the local 

registrar, getting the location information of the destination and then sending the message. 

The solution can solve all the sub-issues of SIP deployment in MANETs. It provides a 

way to reuse all the SIP entities in SIP layer. However, since the registrar and proxy 

server are fully distributed in participant, the complexity of end system has increased. 

Also, the broadcast of REGISTER messages may introduce flooding problem. 

Leggio et al. [104] also provide an alternative solution S4, which uses an existing service 

discovery platform. The platform provides a set of APIs for the SIP UAs to issue service 

discovery queries. These queries may include a service-query (i.e. finding a user that is 

online and provides a SIP service) or a location-query (i.e. finding IP address of a user by 

a user name). The user that provides a SIP service should first register the service with 

the platform. Examples of such platforms are JXTA [105] and SIP multicast framework 

[90]. This solution can solve all the sub-issues of SIP deployment in MANETs, but a 

platform that provides service discovery in MANETs should be deployed first. 

The last solution S5 is from IETF P2P SIP [106]. It builds a peer-to-peer overlay layer 

that provides a distributed resource placement and search for SIP. The overlay layer 

serves the SIP layer but it is independent of the SIP layer. The DHT (Distributed Hash 

Table) is used for the P2P overlay layer. DHT algorithms such as Chord [107] and Pastry 

[108] can be used. Two types of peers are defined: Super Nodes (SNs) and Ordinary 

Nodes (ONs). Only the SNs participate in building and maintaining the DHT. Each 

ordinary node is associated with one or more super nodes. Super nodes are not 
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necessarily become proxy or registrar, but they are good candidates to be. The 

registration procedure follows two steps. First, a UA uses P2P layer API to store its user 

location information in the P2P overlay network. Second, the UA periodically refreshes 

the user location record. The session establishment process can be described as follows: 

upon the receipt of a call establishment command from the application, a UA (ordinary 

node) sends a request of the location of callee to a super node connected. The super node 

then starts a search procedure in the overlay network (the procedures is based on what 

DHT algorithm is used). After that, it sends back a response with the callee's location 

information included. As the last step, the caller directly sends an INVITE to callee. 

S5 is a comprehensive solution that can not only be used for MANETs but also for other 

types of P2P networks. It can solve all the sub-issues of SIP deployment in MANETs. 

However, it is not easy to implement an overlay network. In addition to this, the protocols 

between SN and SN and between ON and SN are yet to be defined. 

In Table 6.2, a review of the five SIP deployment solutions is presented. In these 

solutions, we do not want to choose SI as our implementation approach because it has 

flooding problem and it cannot scale. S2 is not suitable because it relies on specific 

routing protocol and it cannot handle UA discovery. S5 is not easy to implement and the 

related specifications have not been completed yet. 

53 and S4 are possible solutions to be selected. For our prototype, we choose the solution 

54 because a use of existing platform reduces time and workload in the prototype 

development. We have selected JXTA as a platform. JXTA is a well developed, open-

source middleware for peer-to-peer service publication/discovery. It can also run in 

MANETs. We will discuss it further in Section 6.1.5.2. We choose S3 for simulation 
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because JXTA cannot be directly used in the OPNET simulation environment. In order to 

overcome the issue of register flooding, we modify the registration procedure of S3 as 

follows. 

Only selected participants in the MANETs act as real registrars. They broadcast a 

subscription for registration. If a participant receives such a subscription, it will 

periodically send back a REGISTER message that contains its current location 

information. Upon receipt of REGISTER messages, a participant will update its local 

registrar. Periodically, the party that acts as a real registrar publishes the information 

stored in its registrar, i.e. it sends a message (containing the updated locations of parties) 

to every participant that has registered. Any party that receives this message will use the 

information to update its local registrar. 

Functionality 
supported 

Registration 

Discovery 

Addressing 

SI 

Yes 

Yes 

Yes 

S2 

Yes 

No 

Yes 

S3 

Yes 

Yes 

Yes 

S4 

Yes 

Yes 

Yes 

S5 

Yes 

Yes 

Yes 

Other Pros and Cons 

Pros 

Cons 

Simple 

Flooding, 
Small scale 

performance 

Rely on 
specific 
routing 
protocol 

Reuse all SIP 
entities 

End point 
complexity 

(UA+Proxy+Regis 
trar), Flooding of 

REGISTER 

Reuse the 
discovery service 

or middleware that 
may already exist 

The performance of 
the discovery 

protocol may be an 
issue 

Applicable for all 
the P2P networks 

(MANET and 
infrastructure based) 
Complexity of the 
overlay network 

deployment, 
SN-SN, ON-SN 

protocols are yet to 
be defined 

Table 6.2: Review of solutions for SIP deployment in MANETs 

6.1.5 A signaling prototype for standalone MANETs 

We have built a prototype for signaling in standalone MANETs. This work allows us to 

prove the concept. In this section, we will first introduce the setting of the prototype and 
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the tools that we use for implementing the prototype. We will then introduce the design 

and software architecture. After that, some results will be presented. 

6.1.5.1 Environment settings 

We have created a MANET environment using 4 PCs and 3 laptops with IEEE 802.1 lg 

adaptive cards. These machines are Pentium 4s or mobile Pentium 4s with 512 MB 

RAMs running Windows XP. The machines are located in two different rooms on the 

same floor. The settings are shown in Figure 6.7. 

Node 7 

IEEE 802.11g 

Node 3 
Node 2 

LJ~ 
Node 1 N o d e 4 

Room A 

Nodes 

< ^ 

Node 6 

• V 

Room B 

Figure 6.7: Prototype settings 

6.1.5.2 Programming language and tools 

We use Java as a programming language and two types of Java freeware are used in the 

prototype. One is JAIN SIP that is the basis for implementing our SIP extensions and the 

other is JXTA that is used for participant discovery. 

JAIN SIP implements SIP stack using Java. Its source code can be found for download at 

[110] and reference [111] provides a specification. JAIN SIP provides developers a 

standardized Java interface for SIP services. The latest version of it supports core SIP 
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(RFC 3261), as well as INFO method (RFC 2976), reliability of provisional responses 

(RFC 3262), Event Notification Framework (RFC 3265), the UPDATE method (RFC 

3311), the Reason Header (RFC 3326), the Message method defined for instant 

messaging (RFC 3428) and the REFER method (RFC 3515). Since JAIN SIP has 

implemented all the messages defined in core SIP and major SIP extensions, it is a good 

choice for us to use as a basis of our signaling system. We use the headers, messages, and 

dialog that it provides. We also extend it with our new headers and new concepts. 

JXTA is an implementation of peer-to-peer middleware. It includes a set of open 

protocols that have been specifically designed for ad hoc, pervasive and multi-hop peer-

to-peer network computing, allowing any connected device (cell phone to PDA, PC to 

server) on the network to communicate, collaborate, and share resources. JXTA is an 

open-source project. It provides public APIs for programmer to implement applications 

on it. The source codes and specifications of it can be found in [105]. 

JXTA has not been specially designed for MANETs. It cannot handle the frequent 

changes inherent to MANETs. Some extensions have been proposed (e.g. [112]) for 

enhance JXTA, but unfortunately, there is no implementation. However the basic 

discovery and pipe services of JXTA can still be used in MANETs. This is the reason 

why we choose it as a SIP UA discovery platform. The discovery service is performed in 

three steps. First, a UA self-configures as a JXTA peer and an XML-based peer 

advertisement will be generated. Second, a UA publishes itself (its advertisement) onto 

the network. This is done by calling the JXTA API remotePublish(). Third, any other 

JXTA peer can find a published peer by calling the function getRemoteAdvertisementQ. 

This function performs a search for specified type of JXTA peers on the network. 
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6.1.5.3 Prototype design 

We have implemented all the SIP extensions that we proposed. Figure 6.8 shows the 

software architecture of the prototype. The application layer implements a simple 

conference application including the graphical interfaces through which user can initiate 

a conference, invite a party and leave a conference. The signaling layer implements the 

extended SIP UA. It is an event-driven state machine (part of the state machine is 

depicted in Figure 6.9). The signaling layer also provides APIs (such as inviteQ, bye(), 

acceptQ and rejectQ) for application layer. The middleware layer is based on JXTA and 

it provides peer discovery and transport service for the signaling layer. 

<- Sac*. 
Mes 

Application layer 

Application logic, user/configuration interfaces 

- * -
Signaling layer 

TTT 
V 

RJAC 

UAC Core 

Transaction 

hJAS 

UAS Core 

Transaction 

- ~\ JXTA Client 
age 

Peer Discovery Service Pipe Service 

JXTA API 

Becejvji 
Message 

Figure 6.8: Signaling prototype for standalone MANETs - software architecture 
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Figure 6.9: Part of the state machine of extended UA/SUA 

6.1.5.4 Experiment scenarios and results 

We have run the prototype and done experiments on it. The basic scenarios, such as 

conference establishment, party joining, member leaving, super-member leaving, splitting 

and conference termination, are tested and they all work well. Table 6.3 shows an 

example of INVITE and 200 messages exchanged when establishing a session between 

two users: concord and chunyan. 

94 



INVITE sip:concord(fl)142.133.72.76:5060;method=INVITE ;transport=tcp SIP/2.0 
Call-ID: 79440813c515a200e862c6e6ca91b683@142.133.72.82 
CSeq: 1 INVITE 
From: <sip:chunyan@142.133.72.82>:tag=9523050 
To: <sip:concordfo.l42.133.72.76> 
Via: S1P/2.0/TCP 142.133.72.82:5060;branch=z9hG4bK5d8c20049eda3el6ba5554007fd22912 
Max-Forwards: 70 
Contact: <sip:chunyan(a:142.133.72.82:5060> 
Conf-ID: this_is_a_conf idO.5395847102284398 
Participant-In-Clusler: cluster-id=This_is_cluster_id0.9028286510059693 

super=sip:chunyan@ 142.133.72.82 members=[sip:concord(a; 142.133.72.76] 
Cluster-Parameters: sv=4 mv=0 
Supported: Clustering 
Allow: INFO 

SIP/2.0 200 OK 
Call-ID: 79440813c515a200e862c6e6ca91b683(a5142.133.72.82 
CSeq: 1 INVITE 
From: <sip:chunyan(ajl42.133.72.82>;tag=9523050 
Via: SIP/2.0/TCP 142.133.72.82:5060;branch=z9hG4bK5d8c20049eda3el6ba5554007fd22912 
Max-Forwards: 70 
To: <sip:concord@ 142.133.72.76>;tag=8140933 
Contact: <sip:concordw; 142.133.72.76:5060> 
Conf-ID: this_is_a_conf_id0.5395847102284398 
Participant-In-Cluster: cltister-id=This_is_cluster_id0.9028286510059693 

super=sip:chunyan@l42.133.72.82 members=[sip:concord(a) 142.133.72.76] 
Cluster-Parameters: sv=4 mv=0 

Table 6.3: Example of signaling messages — INVITE and 200 

We have collected a result on average session establishment delay (shown in Table 6.4). 

The result is based on the following scenario: Node 7 is an initiator of the conference. It 

first invites Node 1 to establish a conference. It then invites Node 2 to Node 6 

respectively to join the conference. The Sv is set to 4 in the tests. The values in the table 

are in seconds and they are averaged from ten tries. From the results, we can find that 

conference initiation always takes longer than a party joining. This is reasonable because 

the first two parties need to exchange their capability before establishing the session. 

Another result that we find is that session delays are affected by the distance between the 

two parties that wishes to set up a session. For example, in the table, the nodes located in 

a different room from the initiator take longer to join the conference. 

mailto:79440813c515a200e862c6e6ca91b683@142.133
mailto:chunyan@l42.133.72.82


Average per 
session delay 
(seconds) 

Nodel 

1.09 

Node 2 

0.33 

Node 3 

0.41 

Node 4 

0.35 

Node 5* 

0.46 

Node 6* 

0.53 

* A node that does not locate in the same room as the conference initiator 

Table 6.4: Average per session setup delay for standalone MANET signaling prototype 

We have also evaluated the effect of cluster parameter Sv. From two to seven-party 

conferences have been evaluated with SV settings from 1 to 8. Figure 6.10 shows the 

result and the signaling overhead (in terms of number of messages) is collected. In the 

figure, we can see that when the Sv is one, signaling system generates most number of 

messages. In this case, the signaling architecture is actually a full-mesh. When the SV is 

set to a value larger than the number of participants in the conference, least numbers of 

messages are generated, but the architecture becomes centralized. It is difficult to find an 

optimal Sv with which the signaling system generates less number of messages but the 

system architecture does not become centralized. However, an interesting result shown in 

Figure 6.10 is that for six and seven-party conferences, if we set the split value as 4, less 

number of messages is generated than applying other split values (not include the 

centralized one). Forasmuch, there may exist optimal split values for a conference. We 

will further investigate this issue in simulation that allows us to test in larger-scaled 

conferences. 
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Figure 6.10: Result from standalone MANET prototype - effect of Sv 

6.2 An Implementation of signaling for conferencing in integrated 

MANETs/3G Networks 

We have defined SIP extensions for conferencing in standalone MANETs. Since SIP is 

also the signaling protocol for 3GPP 3G conferencing, using it to implement the 

integrated architecture is a straightforward solution. 

6.2.1 SIP as implementation technology 

We do not need to modify the SIP clustering extension defined in Section 6.1.2. It still 

acts as the signaling protocol in MANETs. Also, we do not need to modify the SIP used 

in 3G networks. Instead, we enhance the functionality of SUA in MANETs and of 

MRFC/AS in 3G networks. The enhancements are related to the CGW discovery. We 

assume that the MRFC/AS is pre-configured with known CGWs. The MANET 

participants and the CGWs support one of the discovery mechanisms discussed in Section 

5.2.2. A SIP REGISTER message is used by the MSAs to register with CGW. 
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In session management, the CGW plays a key role. It not only maintains conference and 

cluster status but it also acts as a SIP SUA that sends, responds and processes SIP 

messages. Signaling translations are also performed in the CGW. The same applies to the 

mapping of conferencing architecture. Since both 3G and MANET sides use SIP, no 

entity-address translation is needed. The required translations are conference 

identifications, some SIP header fields and conference events. 

On MANET side, participants use Conf-ID to identify a conference, while in 3G 

networks they use a conference-URI generated by the conference focus. Conf-ID is a 

header field in extended SIP while conference-URI is a parameter carried in the Contact 

header field of the baseline SIP. The CGW that receives an SIP message from the 3G side 

needs to look at the Contact field, get the conference-URI, use it to generate a Conf-ID 

header field and then send the message to MANET side. 

The header fields that need to be translated between the two types of networks are 

clustering header fields, i.e. the Participant-In-Cluster, Neighbor and Cluster-Parameters 

should be removed by the CGW when a message is forwarded to the 3G conference focus, 

and they should be added when a message travels in the opposite direction. 

Participants in both MANET and 3G networks may subscribe to conference events using 

the SIP event notification framework. However, the types of events defined on both sides 

are different. 3G uses a standard conference event package defined in IETF RFC 4575 

[109], while clustering-based architecture uses a simplified event update-participant that 

only includes conference membership. Therefore, mappings are necessary. A CGW needs 

to generate simple events when it passes a conference event to MANETs. It needs to 
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generate XML documents (including information such as conference description, media 

and joining-method) when an event is passes to 3G network side. 

In the next section, we will show how SIP works in integrated MANETs/3G networks 

through sequence diagrams. 

6.2.2 Signaling scenarios in integrated MANETs/3G networks 

Four types of scenarios are illustrated: conference initiation, participant joining, event 

subscription/notification and conference termination. 

Conference initiation - Figure 6.11 shows three scenarios of conference initiation: a 3G 

party initiates a conference with a MANET party (Figure 6.11-a), a MANET party 

initiates a conference with a 3G party (Figure 6.11-b) and two MANET parties located in 

different routing areas establish a conference (Figure 6.11-c). It presents the SIP 

implementation of the scenarios shown in Section 5.3.1. 
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6.11-a: A 3G participant initiates a conference with a MANET party 
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6.11-b: A MANET participant initiates a conference with a 3G party 
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6.11-c: A M A N E T participant initiates a conference with a M A N E T party in a different rout ing area 

Figure 6.11: Conference initiation scenarios for integrated MANETs/3G networks 

Participant joining - Figure 6.12 shows three scenarios of participant joining: a 3G 

party invites a MANET party to join (Figure 6.12-a), a MANET party invites a 3G party 

to join (Figure 6.12-b) and a MANET party invites another MANET party that is located 

in different routing areas to join (Figure 6.12-c). It presents the SIP implementation of the 

scenarios shown in Section 5.3.2. From the figure, we can find that when inviting a 3G 

party, it is always the MRFC/AS that is responsible for session setup. When inviting a 

MANET party, it may be the CGW that sets up the session (if it is the first MANET party 

to be invited to the conference) or may be an existing MSA (SUA) that sets up the 

session. In the latter case, the CGW should select an SUA with the most capability to 

establish the session if there are more than one SUA. 
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6.12-a: A 3G participant invites a MANET party 
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6.12-c: A MANET party invites a MANET party in different routing areas 

Figure 6.12: Participant joining scenarios for integrated MANETs/3G networks 

Conference event subscription/notification - Figure 6.13 shows how 3G parties and 

MANET parties subscribe conference-related information. Figure 6.13-a depicts the case 

of a 3G party event subscription. Figure 6.13-b shows the case of a MANET party (UA) 

event subscription. It should be noted that CGWs and MRFC/AS always maintain the last 

update of the conference status. This is done by SIP event notification framework, i.e. 

when a session between CGW and MRFC/AS is established, a CGW should subscribe 

conference event from MRFC/AS and MRFC/AS also subscribe conference event from 

CGWs. When there is a participant or media change, the CGW or the MRFC/AS that is 

aware of the change will send NOTIFY to the other. For example, in Figure 6.13-a, when 

CGW is informed that a new MSA has joined, it notifies MRFC/AS, and the MRFC/AS 

then notifies 3GSA1 because the 3GSA1 has subscribed the conference event. The format 
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of the NOTIFY message is shown in the figure. In Figure 6.13-b, when a new 3G party 

has joined conference, MRFC/AS notifies CGW and the CGW that acts as an SUA 

informs its neighboring SUA MSA1 by an INFO message. The MSA1 then notifies the 

MSA2 that has subscribed the update-participant event. The format of the NOTIFY 

message shown in the figure is different from that in depicted Figure 6.13-a. 
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joins) 
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200 

NOTIFY 

200 
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200 
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200 

NOTIFY 

200 

NOTIFY 

200 

6.13-a: A 3G party subscribes event 

NOTIFY 
From: focus@e.com 
To:3GSAl@e.com 
Subscription-State: active ;expires=7200 
Event: conference 
Contact: conference_URI@ 
Content-Type: application/conference-
info+xml 
Content-Length: (...) 
<?xml version=" 1.0" encoding="UTF-8"?> 
<conference-info version="0" state="full", 
entity= "conference l@e. com" 
xmlns="um:ietf:params:xml:ns:conference-
info"> <user uri="msan@e.com",display-
name="Alice"xstatus>connected</statusx 
media-stream media-type ="audio"> <proto> 
RTP/AVP </proto> </media-stream> 
</user>... </conference-info> 
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erence) 

it) 

3GSAn 
joins 

NOTIFY 
From: msal@e.com 
To: msa2@e.com 
Subscription-State: 
active ;expires=7200 
Event: update_participant 
ConfID: conference_URI@ 
Cluster_in_participant: super-member: 
msal, member: msa2 
Neighbor: super-member: cgw, 
member:[ mrfc/as, 3gsal, 3gsa2, 3gsan] 
Content-Type: 
application/participantinfo 
Content-Length: (...) 
participantinfo = [msal, msa2, 3gsal, 
3gsan] 

6.13-b: A MANET party subscribes event 

Figure 6.13: Event subscription scenarios for integrated MANETs/3G networks 

Conference termination - Figure 6.14 shows an example of conference termination. 

The termination is triggered by the leaving of MSAl. The CGW finds that there is only 
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one party left in the conference, so it terminates its session with MRFC/AS. The 

MRFC/AS finally tears down the last session with 3GSA1 and the conference is then 

terminated. 

MSAl CGW MRFC/AS 3GSA1 

MSA 1 leaves the 
conference BYE 

200 

media 

iThere is only one party left] 
! in the conference • 

BYE 

200 

i There is only one 3G party left in 
! the conference 

BYE 
200 

Figure 6.14: Conference termination scenario for integrated MANETs/3G 

6.2.3 A Prototype for integrated MANETs/3G networks 

Based on the signaling prototype for standalone MANET, we have also built a prototype 

for integrated MANETs/3G networks. In this section, we will first introduce the network 

setup. Then, we will present the prototype design and results. 

6.2.3.1 The network setups 

Setting up a real integrated MANET/3G environment is not easy because we do not have 

a 3G network environment. What we only have is the small-scaled MANET introduced in 

section 6.1.5.1. So we try to deploy all the signaling entities for integrated MANET/3G 

networks on this MANET. For example, we decided to put CGW, 3G MRFC/AS and 

3GSAs into one MANET node in order to overcome the lack of a device running both 
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MANET interface and 3G wireless interface. Although we cannot obtain very realistic 

results from this network setting, it is sufficient for proof-of-concept. 

6.2.3.2 Prototype design and software architecture 

We have implemented all the signaling entities defined for integrated MANETs/3G 

networks. The MSA is developed based on the extended SIP UA for standalone 

MANETs. We implemented a simple application-layer CGW/MSA discovery protocol on 

the UA and the discovery is based on broadcast, i.e. the CGW periodically broadcasts its 

address and listening point. An MSA that receives this address will register with the 

CGW. Periodically, the MSAs update their location information by sending a new 

REGISTER message. 

The 3GSAs and conference focus (MRFC/AS) is simplified and only signaling aspects 

are implemented. A 3GSA includes a SIP UA that is configured to know the conference 

focus, and a conference application (with graphic user interface) that can invite parties 

and leave a conference. 

The conference focus includes a conference manager that generates a conference room 

for each conference. Each conference room includes a SIP UA that can handle sessions. 

This design allows the conference focus to handle many conferences simultaneously. The 

conference manager also distributes conference events to a right conference room. The 

conference focus is configured to know the address of CGW. 

The CGW is a key entity that we implement. The software architecture of it is depicted in 

Figure 6.15. Functional blocks such as CGW service discovery and publication, protocol 

translator, architecture translator and SIP user agents are implemented. The MANET user 
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registrar maintains the current locations of MANET participants. The conference focus 

interface implements a simplified message transport interface (based on TCP/IP) to the 

conference focus. The 3G configuration provides a user interface to configure the address 

of the conference focus. The CGW also has a MANET interface that is responsible for 

sending messages to MANET side. 

CGW 
Service 

Publication 
and 

discovery 

MANET 
user 

Registrar 
Protocol 

Translator- -
Architecture 

• Translator 

Clustering 
Extension based 
SIP User Agent 

Ba\ic SIP and SIP 
extensions based 

SIP User Agent 

3G 
Configura 

tion 

MANET Interface 

TCP/IP 

WLAN IEEE 802.11g 

Conference focus Interface 
(TCP/IP) 

Figure 6.15: CGW software architecture 

6.2.3.3 Experiment scenarios and results 

We have tested the basic conference initiation, participant joining/leaving and conference 

termination cases using this prototype. Each case is tested with a conference including 

parties from both MANET and 3G network sides. It shows that the proposed architecture 

works well. 

We have collected a result on average session establishment delay (shown in Table 6.5). 

The result is based on the following scenario: a 3GSA is the initiator of the conference. It 

first invites Node 1 to establish a conference. It then invites Node 2 to Node 6, 

respectively, to join the conference. It should be noted that 3GSAs, conference focus and 

CGW are deployed on Node 7. Comparing the result with that shown in Table 6.4, we 

can find that it always takes longer to setup a session between a 3G party and a MANET 
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party. This is reasonable because any invitation request needs to traverse conference 

focus and CGW before it can reach the destination. In this result, we can still find that 

session delays are affected by the distance between the two parties that wishes to set up a 

session. 

Average per session 
delay (seconds) 

Nodel 

1.646 

Node 2 

1.255 

Node 3 

1.348 

Node 4 

1.645 

Node 5* 

1.797 

Node 6* 

2.239 

* A node that does not locate in the same room as the CGW 

Table 6.5: Average per session setup delay for integrated MANET/3G signaling prototype 

6.3 Building a conference in MANETs 

So far, we have discussed the implementations of our signaling architectures. However, 

signaling is not the only component of a conference. In this section, we discuss how our 

signaling system inter-works with other components in order to set up a real conference 

application in MANETs. We first introduce the composition of a conference and the 

interfaces related to signaling. The general implementation methods of these interfaces 

are discussed. We then describe the work on media handling in MANETs and show how 

it works with our signaling system. 

6.3.1 Conference components and interfaces 

In Chapter 2, we have introduced three technical components of conferencing: signaling, 

media handling and conference control. The boundary between signaling and conference 

control are somehow vague. For example, the conference membership management can 

be implemented in either signaling or conference control and we have considered it as a 

part of signaling tasks in this thesis. A common view is that conference control handles 

conference policy and floor control while signaling handles session establishment, 

108 



modification and termination. Since not every conference requires policy and floor 

control, a conference may only includes signaling and media handling. The division of 

signaling and media handling is much clearer. Media handling deals with the media 

transmission, mixing and possible trans-coding. Besides of the technical components, in 

order to build a conference application, a user application that reacts with user's 

commands and triggers the technical components is always necessary. 

A general view of the relationships between signaling and other conference components 

is shown in Figure 6.16. There are three interfaces related to signaling. The // is the 

interface between Signaling and User Application. It is usually implemented through 

APIs. The APIs may be local signaling APIs (e.g. what we have implemented in our 

prototypes and simulations) or web APIs based on Web Service (e.g. Parlay X [114] ). 

The web APIs are of a higher level of abstraction and with which a user does not need to 

understand the signaling details. 

lj: Interface 
between 
signaling and 
user application 

l>: Interface 
between 
signaling and 
media handling 

User Application 

Signaling m Policy —I Floor control 

r— ~ 

. j 11: Interface 
• between 
! signaling 
i and 
! conference 
i control 

Media Handling 

Figure 6.16: A general view of the relationships between signaling and other conference 

components 

The h is the interface between Signaling and Media Handling. It can be implemented 

using three methods. The first is that signaling directly calls media handling. Byrne et al. 

[115] show an example of the method in which SIP user agent directly calls RTP media 

processing functions and media stream functions. This method requires that the signaling 

109 



knows details of the media handling. The second is that media handling system provides 

APIs so that signaling can call. An example of the method presented in [116]. The third 

method is that signaling and media handling communicate through primitives or 

protocols, such as Megaco/H.248. An example is the 3GPP conference defined in [81]. In 

the specification, the MRFC (signaling entity) in conference focus uses H.248 to add 

media streams to MRFP (mixer) after a SIP session is established. Cho et al. [117] show 

another example of the third approach. It defines a SIP-like protocol between signaling 

and media handling in order to activate and remove mixers. Still another example is 

shown in [118]. It uses the concept of Megaco, but it separates MGC from signaling 

entity and defines primitives between them. 

The Is is the interface between conference control and signaling. This interface can also 

been implemented through APIs and protocols. An example of implementing this 

interface is shown in IETF CPCP [72] for centralized SIP conference, where an XML 

(Extensible Markup Language [119]) based document is described. The document 

contains conference policies and it is understandable by the SIP conference focus. Figure 

6.17 shows a use of CPCP message between a UE and MRFC. In the figure, UE1 informs 

MRFC to add a new user to the conference. In the example, the CPCP XML document is 

created by XML Configuration Access Protocol (XCAP [120]), a protocol that allows a 

client to read, write and modify application configuration data, stored in XML format and 

directly accessed by HTTP. 
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UE1 MRFC/AS 

1. XCAP PUT • 

< 2. XCAP 200 OK 

Figure 6.17: Policy control using CPCP 

The implementation of interfaces between signaling and other components in MANETs 

may not go beyond the methods that we introduced. However, we wish to specify the 

implementation of our signaling system with media handling and conference control 

proposals in MANETs. Unfortunately, so far we cannot find related work for conference 

control in MANETs, so we will not further investigate this. The work on media handling 

in MANETs is slowly emerging. In the next sub-section, it will be introduced and we also 

will detail how it communicates with signaling. 

6.3.2 Media handling in MANETs and inter-working with signaling 

The work in [116] presents a distributed media mixing architecture for MANETs. In the 

architecture, the media handling nodes are divided into two levels. The first level is 

composed of nodes with mixing capabilities (called mixers) and these mixers form a 

fully-meshed network, i.e. every mixer has a media connection with every other mixer in 

the network. The second level is composed of nodes without mixing capabilities (called 

inactive peers) and each inactive peer in this level connects to one and only one of the 

mixers in the first level. The overview of the architecture is shown in Figure 6.18. This 

architecture is self-organized and mixers are designated and removed during 

conferencing. 
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A media core is defined and located in each node. It is responsible for controlling mixers. 

It is also responsible for communicating with signaling system. It hides the complexities 

of media handling and provides standard APIs, such as "open media connection", "close 

media connection", "start mixer" and "stop mixer". In this API-based method, the mixers 

are decided by signaling. If we integrate the cluster-based signaling system (our proposal) 

with the media handling system, the signaling super-member can be designated as mixers. 

This facilitates the formation of the media handling architecture. On the other hand, 

signaling should have the knowledge of whether a node has a mixer capability or not. It 

should also add a condition to the super-member election schemes, i.e. if a node does not 

have a mixer capability, it will not be selected as a super-member. This introduces 

dependency between signaling and media handling architectures, which we do not wish 

to see. 

Mixer Network 
Mixers 

Inactive 
peers 

Figure 6.18: Two-level media handling architecture 

Kheder et al. [118] defines a media mixer control method that improves the work defined 

in [116]. The method applies the concept of Megaco and it adds a controller overlay on 

top of the mixer network. The controller overlay consists of MGCs and the mixers are 

MGs. It assumes that only a set of nodes support MGC functionality and these nodes are 

responsible for adding and removing MGs. The work also defines that signaling entities 
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and MGCs are totally separated and they communicate with each other through 

primitives. After a session is established, a signaling entity will discover a MGC and then 

use primitives such as connection_request, modify request and disconnection request to 

connect, modify and disconnect MGCs. In this work, signaling system does not need to 

decide or to know where is the mixers. If we integrate our signaling system with this 

architecture, we can find that there is no more dependency between the two architectures, 

i.e. a signaling super-member may not be a mixer of the media handling. The signaling 

system only needs to add a function - MGC discovery. Service discovery in MANETs is 

not a new task. In the section of CGW discovery in Chapter 5, we have introduced some 

methods such as broadcast and usage of middleware, for service discovery. Similarly, the 

MGC discovery can also be implemented using these approaches. 

6.4 Conclusions 

In this chapter, we have proposed a SIP extension for implementing the cluster-based 

signaling architecture for standalone MANETs. Based on the extension, we also 

addressed implementation techniques for signaling in integrated MANETs/3G networks. 

Proof-of-concept prototypes are built on a small-scale, IEEE 802.11-based ad hoc 

network. We have tested the basic conference initiation, participant joining/leaving, 

termination and membership subscription cases using the prototypes. It shows that the 

proposed architectures work well in each of these cases. In this chapter, we have also 

discussed how to build a conference application in MANETs, in which the 

implementation of the interfaces between signaling and other conference components are 

investigated. 
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Chapter 7 : Performance Evaluation Using OPNET 

We evaluate the performance of the signaling architectures for both standalone MANETs 

and integrated MANETs/3G networks through simulation studies using OPNET. In this 

chapter, we will present simulation setups, performance metrics, simulation scenarios and 

result analysis. We will first present the evaluation for signaling in standalone MANETs 

and then we will demonstrate a measurement for signaling in integrate MANETs /3G 

networks. 

7.1 Performance evaluation for signaling in standalone MANETs 

7.1.1 OPNET and settings 

We set up the simulations in OPNET V.11.5.A, which provides a comprehensive 

development environment supporting the modeling of communication networks and 

distributed systems. It contains many standard models including MANETs. It supports 

four MANET routing protocols: AODV [39], DSR [42], OLSR [40] and Temporally 

Order Routing Algorithm (TORA) [113]. A user can configure to use one of these 

protocols. The IP address of each node can be manually configured or auto-assigned. The 

link layer transmission parameters such as transmission range can also be set by users. 

The OPNET standard application model provides a set of client/server based applications, 

such as email, FTP and SIP voice call. There is no existing model for peer-to-peer based 

applications. OPNET provides an environment for user development. The environment is 

based on Finite State Machine (FSM). The programming language is Proto-C - a 

combination of C, C++ and OPNET Event Simulation APIs. 

In this simulation, we have set a simulation area of 1 km by 1 km. We use the node model 

IEEE 802.11 WLAN mobile workstation and the link transmission distance is defined as 
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500 meters. We use AODV as the default routing protocol and the IP address is auto-

assigned. Different conference scales are evaluated, e.g. small-scale conferences with 3, 7 

and 15 nodes, medium-scale conferences with 25, 40 and 50 nodes, and large-scale 

conferences with 75 and 100 nodes. These nodes are randomly distributed in the 

simulation area and we define the node mobility model as a random waypoint. 

7.1.2 System design and software architecture 

Figure 7.1 shows an overall view of simulation setup. It also demonstrates the modular 

structure of a MANET node. The system provides standard lower-layer modules such as 

WLAN wireless transmitter and receiver, ARP, IP and TCP. We build our application 

module: Conf Application directly on top of the TCP module. 

wlBWii 

• H I 

— m* 

manetStejwjr ;Conf_Application 

moofejp 

JC 

J*W"U|. 

wtrtsTess lan_m»c 

* 
wlar>_port_rx_0_0 wlan_port_tr_0_0 

Figure 7.1: Simulation setup and MANET node structure 

The software architecture of the Con/Application module is shown in Figure 7.2. There 

are two layers in this architecture. The application logic defines simulation scenarios. It 

uses the SIP services provided by the signaling. It should be noted that it is impossible to 
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build the same dynamic ad hoc conference scenario in OPNET as what we have built in 

prototypes. This is because whenever an OPNET simulation starts, we cannot input any 

events. Thus, if we need to change a scenario, a different logic should be developed. 

The signaling contains an extended SIP UA, a SIP Registrar and a SIP Proxy Server. The 

Extended SIP UA consists of a UAC and a UAS. It generates and processes the SIP 

requests and responses. It also maintains the conference, dialog and cluster states. In 

order to monitor the status of a session, a UA calls a heartbeat process and the state 

diagram of heartbeat is shown in Figure 7.3. This process is responsible for sending 

session heartbeats and reporting session errors. 

Conf_Application 

Application Logic 

SIP 
Registrar 

Extended SIP User Agent 

[ session x ! ^ 
• 

SIP Proxy Sever 

Figure 7.2: Software architecture of module ConfApplication 
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Figure 7.3: State diagram: heartbeat 

The Proxy Server is responsible for sending SIP messages to the right destination. It 

contacts the Registrar in order to obtain the locations of destinations. It then 

communicates with the TCP module in order to send messages. This is done by a 
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tcpagent process. The state diagram of the process is shown in Figure 7.4-a. The SIP 

Registrar stores the updated location information of participants. In this simulation, we 

define that the initiator of a conference plays the role of a real registrar. Every other 

participant maintains a copy of this registrar. The location information of each participant 

should be updated periodically. The task is performed by the process update registrar 

and the state diagram is shown in Figure 7.4-b. The SIP Registrar invokes this process 

whenever the first run of registration has been finished. 

-© 
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CTIME_TO_SEND) 

7.4-a: tcpagent ^ B ^ 7.4-b: update_registrar 

Figure 7.4: State diagrams: tcpagent and update_registrar 

Different from the prototype, we cannot use existing tools such as JAIN SIP stack in 

OPNET simulation. We have to re-define SIP messages. Messages are transmitted by 

packet in OPNET and OPNET provides a tool to build packet. Figure 7.5 shows the SIP 

packet that we built. The packet is simple and it contains three fields: Msgname, 

Msgtype and Msginfo. When generating a SIP message, all these fields should be set. 

An example shown in Figure 7.5 is the setting of a SIP INVITE message. We can see that 

the real header fields of the INVITE message are pointed by the Invite info. 
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SIP Packet 

Msgname Msg_type Msginfo 

II E.g. SIP INVITE mess 
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Figure 7.5: Design of SIP Packet in OPNET 

7.1.3 Simulation scenarios 

In order to evaluate the performances of different aspects of the signaling system, we 

have implemented three conference scenarios. The first is the conference setup and 

termination with 'member-leaving-first'. The second is the conference setup and 

termination with 'super-member-leaving-first'. The last scenario is the conference setup 

with node/link failures. 

The conference setup procedure is defined as follows: A conference is always started by 

an initiator. The first elected super-member is responsible for inviting participants to join 

the conference. When a cluster reaches its split value or the super-member of the cluster 

reaches its processing limit, a new super-member is elected and it will continue to invite 

participants. The procedure continues until every participant has added into the 

conference. The conference then persists for a period of time before the termination 

procedure starts. The member-leaving-first termination means that the cluster members 
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have a higher priority to leave a conference. A super-member leaves only when its cluster 

members have left. The state diagram of this scenario is shown in Figure 7.6-a. 

In the second scenario, the same conference setup procedure is performed. The super-

member-leaving-first termination means that the super-members have a higher priority to 

leave a conference. In order to avoid coincident super-member leaving, we define that the 

super-member with a higher address leaves first. The state diagram of this scenario is 

shown in Figure 7.6-b. 

In the last scenario, node failure/recovery is simulated using the interrupt mechanism 

defined by OPNET. Since OPNET does not provide a link failure/recovery configuration 

for MANETs, we manually inject such failure/recovery by defining appropriate mobile 

trajectories for nodes. The state diagram of this scenario is shown in Figure 7.6-c. 
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7.6-a: Scenario of conference setup and termination with member-leaving-first 
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7.6-b: Scenario of conference setup and termination with super-member-leaving-first 
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7.6-c: Scenario of conference setup with node/link failures 

Figure 7.6: State diagrams for different conference scenarios 

7.1.4 Measurements and analysis 

In this section, we will present the performance results collected from the simulations. 

The performance metrics are presented first, followed by four set of results. 
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7.1.4.1 Metrics 

We use the following metrics to measure and evaluate our signaling system: 

• Overhead: the amount of signaling messages transmitted. The amounts are in bytes. 

The types of signaling overheads measured include participant registration and 

capability exchange, session establishment, information propagation and session 

termination. 

• Delay: the delays are calculated in seconds. We measured the following five types of 

delays: The conference setup delay is the delay from the establishment of the first 

session to the joining of the last participant. The average session setup delay is an 

average value for the delay of every session during the conference establishment 

procedure. The conference termination delay is the delay from the first party 

departure to the termination of the last session in the conference. The session failure 

Detection deLay (DL) is the delay from the last successful heartbeat message 

received to a failure detected. The Recovery deLay (RL) is the delay from a failed 

session detected to a recovered session established. 

• Load: the ratio of the number of bits transmitted per second. There are two types of 

loads measured. The signaling load presents the signaling traffic introduced to the 

network, which includes the session setup load, information propagation load and the 

registration/capability exchange load. The network load represents the total network 

traffic per second. 
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7.1.4.2 Session setup and termination 

The first set of experiments is to evaluate the performance of basic conference setup and 

termination. The cluster split value is set to 10. Figure 7.7 depicts three types of signaling 

loads with different conference scales. For each conference scale, the simulation time is 

20 minutes and the result is an average of three runs with different seeds. In the figure, 

the signaling load increases with the growth of the conference scale. The one with the 

most significant increment is the information propagation load, which is less than the 

session setup load when the conference scale is small but it increases to more than twice 

the setup load when the conference scale becomes 100 nodes. This is due to the mesh 

structure of the super-members. With a split value of 10, there are more than ten clusters 

in a 100-node conference. Whenever a new member joins a cluster, the super-member of 

that cluster needs to propagate the information to all the neighboring super-members. 

This significantly increases the network load. There is no way to avoid this traffic in our 

cluster architecture, but a possible way to reduce the traffic is to redesign the propagation 

message and make it lighter. 

I session setup 

Conference scales 

i info propagation • registration/capbility-exchange 

Figure 7.7: Signaling load introduced by conference initiation 
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Table 7.1 shows the results of setup delays from the same experiments. The values are 

more experimental but less realistic compared to the values that we obtained from the 

prototype, where the average session setup delay for the 7-node conference was about 0.5 

second. However, the trend that a larger-scaled conference introduces a larger setup delay 

helps us to predict the delay in real larger-scaled conferences. For example, the average 

per session setup delay increases about 20 times from a 7-node conference to a 100-node 

conference. If this were absolutely the case in reality, then a session setup in a large-scale 

conference with 100 nodes would be 10 seconds. This is an acceptable delay for SIP in a 

wireless system. Fathi et al. [121] claim that a SIP session up delay can be up to 7 

seconds with TCP in 3G wireless network. 

Conf-scale/ 
Delay (sec) 

Conference setup delay 
Average per session delay 

3 nodes 

0.014 
0.002 

7 
nodes 
0.021 
0.003 

15 
nodes 
0.079 
0.005 

25 
nodes 
0.426 
0.017 

50 
nodes 
1.268 
0.016 

75 
nodes 
4.887 
0.038 

100 
nodes 
9.027 
0.062 

Table 7.1: Conference setup delay and Average per session setup delay 

Figure 7.8 illustrates comparative results for the two conference termination scenarios: 

member-leaving-first and super-member-leaving-first, in terms of termination delay and 

overhead. Actually, the two scenarios represent the best and the worst cases of conference 

termination. A super-member departure introduces a much higher overhead than a 

member departure, because when a super-member leaves a cluster must be re-formed. 

The 'cost' of the reformation is very expensive, and includes the election of a new super-

member, session establishments between the new super-member and members and the 

session terminations between the leaving super-member and members. In the figure, we 

find that with conference participant growth, the gap between the two extreme cases 

becomes even bigger. For a 50-node conference, the super-member-leaving-first scenario 
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costs 15 times the overhead of the member-leaving-first, and it introduces 18 times the 

delay of the case of member-leaving-first. 
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Figure 7.8: Performance results for conference termination 

7.1.4.3 Signaling performance and split values 

The split value is a very important parameter that directly affects the signaling 

performance. The second set of experiments is to find out if there is an optimal split value 

for the whole system, i.e. a minimum signaling overhead with a minimum session delay 

and the system architecture does not become centralized. We have tested four different 

scales of conferences: 7, 15, 25 and 50 nodes. In each conference scale we selected a set 
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of split values. For example, we select Sv = {2, 3, 5, 7, 9, 11, 13, 15} for the 15-node 

conference. 

Figure 7.9 depicts the overhead of the session setup and information propagation. In 

general, the larger the Sv is, the smaller the signaling overhead will be. In each 

conference scale, there is an Sv where the session setup overhead and the information 

propagation overhead are the closest. The Svs are 3, 5, 8 and 11 for the 7, 15, 25 and 50-

node conferences, respectively. If we set the split value equal to or larger than these 

values, the signaling system will not introduce too much overhead. This value increases 

with the growth of the conference scale. 
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Figure 7.9: Conference setup overhead with different split values 

Figure 7.10 shows the conference setup delays. The general trend is still the larger the 

split value, the smaller the delay. However, the delays do not strictly follow the trend. For 

example, with an Sv = 7, it takes longer to set up a 15-node conference than that does 

with Sv = 5. As another example, for a 50-node conference, the setup delays fluctuate 

with the split values set from 11 to 40. 

From the experiment, we can find that there is no split value that makes the system 

performance optimal. Trade offs must be made between system overhead, delay and the 

number of clusters, and different scales of conferences should be analyzed case by case. 
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Figure 7.10: Conference setup delay with different split values 

7.1.4.4 Running on top of different routing protocols 

The third set of experiments is to test the performance of the signaling system running on 

different routing protocols. This helps us to analyze how the routing layer settings affect 

the performance of the application layer. Four routing protocols are evaluated: AODV, 

DSR, OLSR and TORA. The former two are reactive routing protocols, i.e. forming a 

route on-demand. OLSR is a proactive protocol and it needs to continuously calculate 

routes. TORA is a mix of reactive and proactive. We have measured the network load 

with conference setups and the setup delays. The experiments are still done with different 

conference scales: 7, 15, 25, 40 and 50 nodes. 

Figure 7.11 shows the results. We found that the signaling procedures cannot complete if 

we deploy TORA as the routing protocol. It always generates too many TCP transmission 

errors. This is probably because TORA does not maintain routes between every 

source/destination pair at all times and it is more suitable for relatively sparse traffic 

patterns. In our case the signaling traffic is very dense during the conference setup and 

termination phases. 



The signaling works well with the other three protocols. In terms of network load, the 

signaling system performs best with DSR and it performs worst with OLSR. The AODV 

is in the middle. With respect to the setup delay, the signaling performs best with OLSR 

and it performs worst with the DSR when the conference scales are set to 7, 15 and 25 

nodes. It performs worst with AODV when the scales become larger. It can be found that 

the differences among the setup delays are not very significant compared to the 

performance differences among network load. Thus, we can conclude that the reactive 

routing protocols (DSR and AODV) perform better under our simulation environment. 
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7.1.4.5 Session failure detection and recovery 

The last set of experiments is to evaluate the performance of the session failure detection 

and recovery mechanism. We set the heartbeat timer Th = 60 sec (Th should be larger 

than n*Tt), the transmission timer Tt = 10 sec (Tt should be larger than Round Trip Time 

(RTT) of SIP message), the recovery timer Tr = 180 sec (Tr should be larger than Th and 

the value we set is identical to the SIP proxy transaction timeout value), and the 

retransmission time n is 3. Session failures caused by different cases were tested. We also 

considered different conference scales. The results are shown in Figure 7.12, Table 7.2 

and Table 7.3. 

In Figure 7.12, we evaluate the network load under a 25-node conference environment. 

The first two columns demonstrate the network load introduced by the signaling system 

with and without using the heartbeat mechanism. It is clear that the heartbeat mechanism 

introduces a 4.25% increment of network load. The other six columns show the cases of 

cluster member failure, member permanent moving out-of-range (or departure), member 

temporal moving out-of-range, super-member failure, super-member permanent moving 

out-of-range and super-member temporal moving out-of-range. For the cases of node 

failure and permanent moving out-of-range, the failed session cannot be recovered but it 

can be detected and removed from the conference. The figure shows that a super-member 

failure or departure always introduces more network load than a member failure or 

departure. For example, the network load increases 2.06% in the case of a temporal 

member departure while it increases 8.21% in the case of a temporal super-member 

departure. This is because a super-member departure always causes a set of participants 

to lose session connections. It is costly to recover all these sessions. It should be noted 
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that the cases of node failure always introduce less network load than for node 

departures. The reason is that a failed node does not send or receive any messages, i.e. no 

network load is introduced by it. On the contrary, a departed node generates traffic to the 

network. The failure detection overheads of the two cases are the same. 
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Figure 7.12: Network load with different types of party failures 

Table 7.2 shows the result for session failure detection delay - DL. The cases of session 

failures (i.e. node failure and node moving out-of-range) are tested. The 'M' in the table 

denotes the member and 'SM' the super-member. With the timeout parameters that we 

set, the ideal DL value for a super-member is 30 seconds (n*Tt) and the ideal value for a 

member is 90 seconds (Th+n*Tt). In the table, it can be found that the DL values for all 

of the cases are close to the ideal values. Thus, the detection delays are not much affected 

by the different failure cases or by different conference scales. 

Table 7.3 shows the result for session recovery delay - RL. In addition to the session re-

establishment procedures, the recovery delay is also affected by the time that a node stays 

physically unconnected. In this experiment, we set the time to 5 seconds. In the table, the 
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first line of results shows member's average RL values when a super-member fails. For a 

3-node conference, since there is only one cluster, a super-member failure leads to the 

complete conference failure. There is no RL value. For the other conference scales, the 

members can reconnect to other super-members and the RL is about 30 seconds. The 

second and third lines of results show the cases of temporal member departure and 

temporal super-member departure. It can be found that with a similar session failure, the 

larger the conference scale, the lower the average RL. If we define that an error ratio is 

the number of error nodes divided by the total number of nodes, we can conclude that the 

session's RL value increases with the growth of the error ratio. 

Conference scales/ 
DL (second) 
M failure (SM DL) 
SM failure (SM DL) 
SM failure (M DL) 
M out range (SM DL) 
M out range (M DL) 
SM out range(SM DL) 
SM out range (M DL) 

3 nodes 

29.98 
— 
90 
30 

89.99 
29.996 
89.998 

7 nodes 

29.96 
29.98 

90 
29.98 

90 
29.997 
89.99 

15 nodes 

29.96 
29.998 

90 
30 
90 

30.8 
88.42 

25 nodes 

29.87 
29.95 

90 
29.89 

90 
30.24 
89.39 

50 nodes 

29.41 
29.75 

90 
30.03 

90 
33.24 
89.39 

Table 7.2: Average detection delay with different types of session failures 
Conference scales/ 
RL (second) 
SM failure 
M out range 
SM out range 

3 nodes 
— 

98.46 
109.63 

7 nodes 
30 

73.47 
79.29 

15 nodes 
30.02 
73.3 
55.33 

25 nodes 
30 

60.33 
36.48 

50 nodes 
30.06 
46.99 
29.41 

Table 7.3: Average recovery delay with different types of session failures 
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7.2 Performance evaluation for signaling in integrated MANETs/3G 

Networks 

7.2.1 Simulation settings 

OPNET provides a standard UMTS 3G feature. We build a one-cell UMTS System using 

the existing node models in the feature. The system includes a Node-b (the WCDMA 

base transceiver station), a RNC (Radio Network Controller), an SGSN (Serving GPRS 

Support Point) and a GGSN (Gateway GPRS Support Point). An IEEE 802.11 based 

MANET is deployed at the edge of the cell and we configured it to run the AODV 

routing protocol. We simulated a gateway node that can forward a packet from MANET 

side to 3G destinations and vice versa. The gateway node keeps the routing topology of 

the MANET nodes and it has a wireless connection with the Node-b as well. A 

conference server is connected to the UMTS core network through a hub. A simplified 

version of conference focus has been implemented in the server. A set of 3G UEs have 

been deployed randomly in the cell and every UE runs a 3GSA that can establish or join a 

conference. Every MANET node runs an MSA loaded with CGW discovery functionality. 

The CGW can be optionally deployed on the gateway node, in 3G core network or in 

MANET. The conference server and the CGW are configured to 'know' each other. 

Figure 7.13 shows a general view of the simulation, in which the modular structure of a 

3GSA is illustrated. The module that we develop in the structure is the 

simple conf application. 
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Figure 7.13: Simulation setup and 3GSA node structure 

As above mentioned, we developed four signaling entities: 3GSA, MSA, CGW and 

conference focus. The functionalities of the 3GSA, the conference focus and the CGW 

are similar to those described in prototype, but the difference is that the SIP message 

exchanged among these entities are SIP packets defined in Figure 7.5. It should be noted 

that the SIP messages exchanged in 3G side do not include the cluster-related header 

fields. Message translations are performed in CGW. Figure 7.14 demonstrates the state 

diagrams of the four entities 3GSA, conference focus, MSA and CGW respectively. For 

simplicity, the current version that we developed only supports conference establishment 

and participant joining. These scenarios have allowed us to evaluate the most important 

aspects of the signaling system for integrated MAENT/3G networks. 
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Figure 7.14: State diagrams for integrated MANETs/3G signaling entities 

7.2.2 Measurements and analysis 

We have done two set of experiments. In the first experiments, we compare the 

conference setup overheads and delays among three types of conferences: conferences 

with only 3G parties, with only MANET parties and with both 3G and MANET parties. 

The overheads are measured in bytes and they are signaling overheads including session 

setup and possible CGW discovery overheads. Figure 7.15 shows the result. From the 

figure, we can find that a conference with both 3G parties and MANET parties always 

takes longer to establish and it introduce most signaling overhead. The overhead 

difference between a conference set up with only 3G parties and that set up with only 

MANET parties is not significant, but the conference setup delays for both cases are very 

different. A conference with only MANET parties takes much less time to establish. This 
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is reasonable because MANET parties can establish sessions locally, while 3G 

participants always need to connect to the conference focus. The delay of a signaling 

message may accumulate while it traverses the 3G wireless network and each node of the 

3G core network. Furthermore, the conference focus itself may be a bottle neck for 

processing signaling messages. 
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Figure 7.15 Performance results for different conference setup scenarios in integrated 

MANETs/3G networks 

In the second set of experiments, we deploy the CGW on different network nodes (i.e. on 

a MANET node, on a 3G core network node and on a 3G wireless node) and compare the 

conference setup delays. Two scenarios are investigated: an MSA invites a 3GSA and a 

3GSA invites an MSA. Table 7.4 shows the results. We can find that the signaling system 

always takes longer to set up a conference when the CGW is located in 3G wireless 

network. It should be noted that there is no difference between signaling procedures when 

deploying a CGW in different location, but we observed that the delay is caused by the 

lower-layer TCP re-transmissions between CGW and conference focus. This may be 

caused by the instability of the 3G wireless links. Thus, we can conclude that in our 

simulation environment, deploying a CGW in 3G wireless network is inappropriate. 

Average conference 

setup delay 

(second) 

MSA invites 3GSA 

CGW in 

MANET 

1.224 

CGW in 3G 

core 

1.280 

CGW in 3G 

wireless 

4.455 

3GSA invites MSA 

CGW in 

MANET 

1.175 

CGW in 

3G core 

1.175 

CGW in 3G 

wireless 

6.955 

Table 7.4: Conference set up delay with CGW located on different network nodes 
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7.3 Conclusions 

In this chapter, we have simulated the signaling architectures for standalone MANETs 

and for integrated MANETs/3G networks using OPNET. Through the experiments on 

scenarios in a standalone MANET, we have found that the clustering architecture is very 

promising and it can manage sessions for from small to large-scale conferences. Through 

the experiments on signaling in integrated MANETs/3G network, we have found that all 

the required scenarios (i.e. all participants in MANETs, all participants in 3G network or 

some participants in MANETs and some others in 3G network) work well. Moreover, in 

these scenarios the MANET participants benefit a lot from local session establishments, 

while the 3G participants take much longer to establish sessions with the centralized 

conference server. 

An issue that we found from the simulation studies is that the capability exchange 

mechanism and the heartbeat detection/recovery mechanism introduced a much heavy 

load to the signaling system. This is because both mechanisms require periodical message 

exchanges in application layer. In order to solve this issue, we will introduce a new 

method — cross-layer design, in Chapter 8. A cross-layer design architecture will be 

demonstrated and cross-layer optimization schemes proposed, followed by the 

experimental results that will show how much benefit we can obtain from the new 

method. 
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Chapter 8 : Optimization of Signaling Systems: Using Cross-
layer Design 

Performance is one of the key issues for MANETs. In this chapter, we propose 

performance optimization schemes for the signaling systems, for both standalone and 

integrated MANETs/3G networks. The optimization is based on cross-layer design. We 

first pinpoint the performance issues in the proposed the signaling architectures. We then 

present the related work on cross-layer design for MANETs. After that, we present our 

cross-layer design architecture, followed by a set of optimization schemes. We evaluate 

and analyze some of these schemes through prototyping or simulation. 

8.1 Performance issues of proposed signaling architectures 

Application-layer heartbeat - The heartbeat mechanism we propose deals with the 

unintentional departures of nodes. Although we have considered to reduce the overhead 

introduced by the heartbeat messages, e.g. we have used a one-way request/replay 

scheme and the heartbeat messages are simple and lightweight, we found that the 

heartbeat does introduce significant overhead. Especially, when the heartbeat rate is high, 

the overhead can exceed the session establishment overhead. On the other hand, we 

cannot remove this overhead because the detection and handling of unintentional 

departures is important for conferencing in MANETs. 

Application-layer capability exchange - The application-layer capability exchange 

scheme is used for meeting the requirement of optimal use of resources. It has been 

proposed to exchange node capabilities among parties. The capability information is 

maintained by each super-member and it is used for super-member elections. We have 
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used SIP to implement this scheme and the SIP implementation is lightweight. Similar to 

the heartbeat message, the overhead introduced by application-layer capability exchange 

is non-trivial because of periodical messages. 

The aforementioned mechanisms help to meet the signaling requirements that are not 

related to session management, but are necessary for handling the particularities of 

MANETs. For example, the unintentional departure is often caused by link break, node 

moving out-of-range or node crash. These issues are common to every layer of MANETs 

and they have been discussed frequently in relation to lower layers. A proof is that the 

AODV [39] routing protocol has used three non-responded "Hello" messages to detect a 

link break. The same thing happens to the optimal use of resources. The optimal use of 

resources is a common target for all MANET layers because resources in MANETs are 

scarce. Actually, some of the lower layer protocols have considered this requirement in 

their design. For example, WCA [48] uses the capability of nodes as one of the criteria to 

decide cluster heads. Thus, we argue that the use of heartbeat and capability exchange 

mechanisms in the application layer is not very efficient, but cross-layer design helps to 

share information among layers and to improve the overall performance. 

CGW deployment and CGW publication/discovery - CGW is a key entity in the 

integrated signaling architecture. The proper deployment of a CGW can improve 

performance. There are two questions to be answered. The first is where to deploy a 

conference gateway. The second is how many conference gateways should be deployed. 

In Chapter 7, we have partially addressed this issue and we found that if we deployed the 

CGW in 3G wireless network, a longer session-setup delay would be introduced. 

However, this does not answer the question of the proper deployment of CGWs, i.e. the 

141 



proper location of CGW deployment and the number of CGWs in the network. 

Furthermore, the CGW publication/discovery is yet a task that requires periodical 

exchange of messages at the application layer. Are there opportunities to reduce this 

overhead? 

Sub-optimal routing - This is an issue caused by application-layer clusters. A new 

cluster member joins a cluster when the super-member or a member of the cluster invites 

it. The scheme has not considered whether the joiner is physically close to the cluster. 

This may introduce serious performance problems. In Figure 8.1, for instance, the 

shortest path between party A and party B for the routing layer is 3 hops. If signaling 

clusters in the application layer have been formed, the real path distance between party A 

and party B will be 11 hops: 4 hops between A and its super-member H, 5 hops between 

B and its super-member K and 2 more hops between the two super-members H and K. 

This issue can be somehow avoided if the application layer 'knows' physical location of 

nodes, e.g. if super-member K knows that party B is close to super-member C, it may not 

invite B but asks super-member C to do so. We believe that cross-layer design can help in 

this situation. 

Wireless Link © Super-member 
Signaling link 9 Member 

Figure 8.1: Issue of sub-optimal routing 
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From the above analysis, a need for cross-layer design is identified. Two of the 

performance issues are directly related to lower layer problems such as routing and link-

break detection. The issue of optimal resource usage is common to every layer and the 

CGW deployment is related to lower layer network architectures. We consider that a 

research on the lower layer architectures of integrated MANETs/3G networks and a 

cross-layer design may help us to answer these questions. 

8.2 Cross-layer design in MANETs: related work 

8.2.1 Cross-layer design requirements for signaling optimization 

The cross-layer design for signaling optimization should meet the following requirements. 

First, it should be easy to implement and does not introduce too much network overhead. 

Second, it should respect the cautionary aspects of cross-layer design, e.g. no design loop 

and an ease of upgrade. Third, the cross-layer information should be time-sensitive. This 

is important for the signaling system because conferencing is a real-time application. 

Fourth, the interoperability should be considered for the integrated signaling system. For 

example, an SA with a cross-layer design should be capable of interacting with an SA 

designed in traditional manner. 

8.2.2 Related work in standalone MANETs 

In Chapter 2, we have briefly introduced cross-layer design proposals or MANET and we 

have divided the proposals into two categories: global versus local solutions. The former 

usually presents new cross-layer design methods that are applicable for different 

architectures and benefit different layers. The latter consists of local solutions for specific 

143 



architectures and requirements. For example, the work defined in [61] uses cross-layer 

design for the optimization of real-time video transmission. Local solutions are difficult 

to adapt for other applications or situations. Therefore, we will discuss them further. 

Four global cross-layer design solutions are examined. CLASS [52] follows the method 

of direct communication between layers. It proposes a general mobility management 

architecture that allows for direct signaling flows between non-neighboring layers. This 

signaling interaction enables efficient mobility management for the whole system. 

However, it does not meet our requirements. For example, it requires logical changes in 

each layer, which is complicated to implement and upgrade. In addition, it can lead to 

conflicts and loops if the signaling has not been designed very carefully. 

MobileMAN [53] considers the cautionary aspects of cross-layer design and it makes use 

of a shared database. It defines a repository called Network Status from which each layer 

can write and read information. It provides optimization for all the network functions and 

improves local and global adaptations. However, it is not easy to implement because it 

requires the redesign of protocols in each layer. Furthermore, the expiration of the data in 

the repository has not been discussed so the optimization scheme may not be efficient for 

time-sensitive applications. References [55] and [56] present some other drawbacks of 

MobileMAN, e.g. it may be cumbersome for protocols that neither write nor read the 

Network Status. 

CrossTalk [55] extends the vision of MobileMAN. It introduces a global view of the 

network status while specifying the Network Status defined in MobileMAN as a local 

view. It is capable of providing real-time information for the optimization processes. 
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However, the global view is collected through a data dissemination procedure that incurs 

a significant overhead. 

With the design goals of rapid prototyping, minimum intrusion, portability and efficiency 

in mind, ECLAIR [56] is proposed for the optimization of mobile device protocol stacks. 

It uses an approach similar to that of MobileMAN and CrossTalk. The difference is that it 

not only collects data from layers and stores them in a repository, but it also develops the 

optimization processes outside of the protocol stack. This abstraction makes the design 

more flexible and ensures a fast deployment. Similar to MobileMAN, it does not consider 

expiration of data, so the real-timeliness requirement is not fulfilled. 

8.2.3 Related work in integrated MANETs 

In the context of integrated MANETs (or MCNs), cross-layer design has been considered 

recently (e.g. [122] and [123]). The work in references [122] provides a cross-layer 

design for BTS routing discovery. It adjusts the functionality of physical, MAC and 

network layers. It also collects information from the three layers so that an efficient route 

can be discovered. The performance evaluation shows that the proposed schemes can 

achieve faster route discovery and more reliable route setup. However, the proposal is a 

specific method that cannot be used by our signaling system. Furthermore, it has not 

considered interoperability issue. Similar to what presented [122], Kannan et al. [123] 

present another MCN routing protocol using cross-layer design. It considers a set of 

constraints (e.g. interference level) when discovering a route. These constraints are 

collected from physical or MAC layer. Like [122], this work cannot meet our 
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requirements. To the best of our knowledge, there is no global cross-layer design solution 

proposed for integrated MANETs. 

After a review of existing cross-layer solutions for both standalone and integrated 

MANETs, we cannot find a solution that meets all our requirements. In next section, we 

propose a novel cross-layer architecture that is especially suitable for application-layer 

optimizations. 

8.3 A cross-layer optimization architecture 

The cross-layer optimization architecture is shown in Figure 8.2. In this architecture, we 

apply the shared database method and consider the cautionary aspects of cross-layer 

design. The general principles are summarized as follows: An application protocol 

defines optimization schemes and specifies the types of information that it wants to 

acquire from lower layers. The lower layers provide the information, which is stored in 

and retrieved from a shared database. 
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Figure 8.2: Cross-layer optimization architecture 
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8.3.1 Entities 

We define three entities: Share sPace (SP), Adaptive Application Protocol Agent (AAPA) 

and Networking Information Agent (NIA). SP is a repository from which application 

protocols can retrieve lower-layer information. A share space contains a set of entries. 

Each entry represents one type of information. It contains an entry type, an entry value 

and a keep-fresh timestamp, which is used to ensure the freshness of the information. If 

the information has not been updated for a given period of time, it will expire. 

An entry is initially defined by an AAPA, which is responsible for translating the 

information types that are requested by application protocols into common entry types. 

These common entry types are exchanged and understood by AAPAs and NIAs. An 

AAPA is also responsible for creating entries in the SP. An NIA is responsible for 

collecting information from the lower layers and updates the relative entries in the SP. 

When there is a new update, the SP will inform the AAPA and the AAPA will then cache 

the updated information, reformat it and send it to the application protocol. 

The purpose of using AAPA and NIA is to mask the complexity of the cross-layer design 

so that existing protocols in single layers do not need to have major upgrades to support 

cross-layer optimization. The protocols in the lower layers only need to open their data 

structures to the NIA, and the application protocol simply sends requests to and gets 

responses from its AAPA. Any functional upgrade or version change in a layer is still 

independent of other layers. However, the AAPA and NIA should be upgraded 

accordingly. 
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8.3.2 Benefits of the optimization architecture 

This architecture benefits from the advantages of both layered design and cross-layer 

design. Compared to the existing proposals, the architecture is more application-layer 

oriented. Although shared database-based proposals such as MobileMAN and ECLAIR 

have defined some standard parameters for each layer, the shared data cannot really adapt 

to the different requirements of diverse applications. For example, routing cluster 

information is useful for optimizing a clustering-based application but it may not be 

considered as a standard parameter. Our architecture makes it possible to exchange the 

data entries, and the new entries can be negotiated before performing an optimization. 

This allows space for customization of cross-layer parameters. 

In our solution, the lower-layer information is retrieved locally. Timestamps are used to 

ensure the freshness of the information. There is no extra spreading overhead introduced 

in the network. On the other hand, the SP may not include as much of the information as 

that included in the global view defined in CrossTalk, but it includes necessary 

information required by application. Similar to ECLAIR, our architecture is flexible and 

quickly deployable. The application optimization schemes are designed independent of 

basic application logics. Thus, it can simply return to the basic logic if an optimization is 

not performed. 

8.4 Optimization schemes 

We propose six optimization schemes: link-break handling, capability usage, sub-optimal 

routing, super-member election based on clustering, super member election based on 

signal power and CGW deployment. The last two schemes are specific to the signaling 
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for an integrated MANET/3G network. As a cross-layer design approach, each scheme 

uses a particular type of information from lower layers. There is no specific lower layer 

protocol required for the architecture. The general principle is that an optimization 

scheme is only performed when the lower-layer protocol(s) can provide the related 

information. This principle ensures that the optimized signaling scheme can run on 

different lower-layer routing protocols. It should be noted that the six optimization 

schemes are independent of each other. These schemes are examples of using the 

proposed architecture, but they are not exhaustive list of possible schemes. 

8.4.1 Common entries 

Six common entries are defined using the format <type, value, timestamp>. These 

entries are the routing table <routing_table, routelist, timestamp>, the node capability 

list <node_capability, capabilityinfolist, timestamp>, the neighbor list 

<neighbor_hop_list, addresslist, timestamp>, the routing-layer clustering 

<routing_cluster, clusterinfo, timestamp>, the routing topology <routing_topo, 

routelist, timestamp>, and the signal power <signal_power, powervalue, timestamp>. 

In the routing table entry, each route in the routelist consists of a source address, a 

destination address, a path, a hop count, an active status and a timestamp. In the node 

capability list entry, each capabilityinfo consists of a node address, capability types and 

corresponding capability values. In the neighbor list entry, a list of neighboring nodes' 

addresses is stored. In the routing layer clustering entry, clusterinfo contains a cluster-

head. If the node is a cluster-head, it also contains a list of cluster members. This entry 

may not contain all of the nodes' capabilities. The routing topology entry stores the 
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routes to reach every MANET node in an integrated architecture. In the signal power 

entry, a signal power value is stored. The signal power of a node is its wireless signal 

strength to the BTS. 

8.4.2 General optimization schemes for signaling in MANETs 

Link break handling optimization scheme: performed when the routing table entry is 

updated. Every routing protocol provides this information. A super-member checks the 

route status for each of its connected members and super-members. If it discovers a route 

failure, it will terminate the session. This scheme helps the signaling system to handle a 

forced departure gracefully without using a heartbeat mechanism. 

Capability usage optimization scheme: when the first super-member is elected, 

participants check their local node capability list. If there is a fresh capability list, the 

participant will copy and use this list for super-member election, i.e. the participant with 

the highest level of capability becomes the super-member. After the establishment of the 

first session, the super-member checks its local capability list only when it needs to elect 

a new super-member. This scheme can only be invoked when the lower layer protocol 

takes node capabilities into consideration. Using this scheme, we can avoid invoking the 

application-layer capability exchange mechanism. 

Sub-optimal routing optimization scheme: uses the entry of the neighbor list. Some of 

the routing protocols (e.g. proactive routing protocols) can provide this information. The 

scheme can be described as follows. 

• When a new member joins the conference, all the super-members are informed. 
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• Each super-member checks its neighbor list. If the information is fresh and if it 

contains the address of the new joiner, it will ask the super-member that has invited 

the joiner (which we call the original super-member) to switch the new joiner to its 

cluster. As there may be more than one switching request, the original super-member 

will choose the one with the most available capabilities to switch the session. 

• Periodically, a super-member checks its neighbor list. If there is a conference 

member that is its neighbor but is not its member, it will ask the super-member that 

has connected to the member to switch the session. The super-member may initiate a 

switch or refuse the switch request if it is also adjacent to the member. 

This scheme ensures that a member joins a cluster when the cluster head has a direct link 

with the member. However, it does not ensure the shortest path. We do not recommend 

an obligatory shortest path optimization because it may lead to very frequent session 

switches. In addition, it may seriously increase the network overhead. For example, 

super-members would be required to exchange their routing information frequently. 

Super-member election based on clustering scheme: it is performed when the routing 

cluster entry is updated. Node capability is still the major criterion for super-member 

election. However, if all the candidates have a similar capability level, the cluster heads 

in the routing layer will have priority to be chosen as super-members in the application 

layer. This helps to further optimize the signaling route. This scheme can only be invoked 

when the routing protocol uses a clustering scheme. 
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8.4.3 Specific optimization schemes for integrated MANETs/3G networks 

CGW deployment optimization scheme: uses the entry of route topology. In most of 

the routing protocols of MCNs, there is a route topology stored in an entity of the 

infrastructure side of the network. The entity may be a BTS (e.g. in [122]) or a Mobile 

Switching Center (MSC) (e.g. in [25]), depending on what type of lower layer routing 

protocol is deployed. The idea is that we collocate a CGW with the entity where there is a 

routing topology. In this case, the CGW can periodically acquire the MANET nodes' 

information from the routing topology and update its participant location repository. The 

overhead related to the frequent application-layer location update can then be avoided. 

For the question of how many CGWs should be deployed, in the conditions of our 

considered environment, we propose that one CGW be deployed per multihop routing 

area. This will facilitate the signaling routing procedure. 

Super-member selection based on signal power scheme: the signal power entry is used. 

A node with the highest signal power has a higher priority to be a super-member. The 

signal power value is provided by the physical layer. In most cases, signal power is 

influenced by the distance between a BTS and an MS, and thus a higher signal power 

may reflect a short path between a super-member and the CGW. Also, we consider that 

when a node is physically closer to a BTS, it is less prone to move out of range. This 

helps to optimize the signaling route and improve cluster stability. 

8.4.4 Interoperability analysis 

The interaction between parties with and without cross-layer optimizations is a complex 

issue. Some of our optimizations may cause interoperability problems while others may 
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not, depending on local versus global effect of an optimization scheme. A local effect 

does not cause an interoperability issue, while the global effect causes an issue if both 

parties make a decision at the same time and their decisions are in conflict. Within the 

optimization schemes introduced thus far, those that may cause serious interoperability 

problems are the super-member election optimization schemes. In a cluster, more than 

one party may be selected as a super-member based on different rules. This is not allowed 

in our cluster scheme. One solution is that whenever a super-member detects another 

super-member in the same cluster, it checks if its cross-layer information is active. The 

super-member without active cross-layer information changes itself to a cluster member. 

8.5 Evaluation of the optimization schemes 

In this section, we evaluate the impact of three schemes: capability usage, link break 

handling and CGW deployment through prototype or simulation experiments. The first 

three sub-sections are devoted to these evaluations. In the last subsection, we discuss the 

other three schemes: sub-optimal routing, super-member election based on clustering and 

super-member election based on signal power. It can be found that these schemes are 

proposed to solve the issue of sub-optimal routing, so we call them sub-optimal routing 

related schemes. 

8.5.1 Capability usage optimization 

The scheme for optimizing capability usage has been evaluated through prototyping. We 

implement the scheme directly in the signaling prototype for standalone MANET (see 

Section 6.1.5). We have implemented the AAPA, the NIA and the SP in each SA. For 
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simplicity, the SP is implemented as a local file. The AAPA and NIA read and write the 

file. The node capability list entry has been implemented. We also simulate a simplified 

node capability-aware routing protocol. In order to evaluate the efficiency of the 

capability usage optimization scheme, we compare the two schemes (the application-

layer capability discovery and the cross-layer capability usage optimization) with respect 

to three metrics: session set up time, network overhead, and program footprint. 

Figs. 8.3-a and 8.3-b show the results of the conference set up time and the participant-

join time. It shows that a conference set up always takes less time (0.5 second in the 

average) with the cross-layer scheme. A similar result is observed in most of the 

participant joining cases. For the second and the third party joining, it does not show 

significant difference between the two schemes. This is due to the procedure of a 

participant joining, i.e. the participant first creates a session with a super-member. The 

capability discovery is performed as a second step. This differs from the procedure of a 

conference set up, where the capability discovery is performed before a session is set up. 

The delay of the first capability exchange procedure has thus not been calculated for 

participant joining situations. This result can only be found in small-scale cases. The 

benefits of the cross-layer design will be more significant with a larger number of 

participants because the capability exchange delays caused by the cluster splitting will be 

calculated with a larger number of participants. For example, in Fig 8.3-b the split value 

is set to four and the benefit of cross-layer design starts showing up when the fourth party 

joins. 

In terms of overhead, although the application layer discovery protocol that we use is 

very simple and lightweight, Figs. 8.3-c and 8.3-d shows that the cross-layer scheme 
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introduces much less network overhead for both participant joining and the setting up of a 

conference. In order to implement the two schemes, we added about 800 lines of code for 

the cross-layer scheme, and we added about 600 lines of code for the application layer 

discovery protocol. The footprint difference between the two schemes is not significant. 

In the figures, some curves show significant variations while others are rather stable. This 

is due to the instability of the wireless connections. We observed that wireless links were 

weak in some trials, leading to longer destination discovery delays. This also introduced 

more network overheads, such as routing traffics. It should be noted that the wireless link 

instability affects the performances of both architectures, i.e. the architecture with as well 

as the architecture without the capability usage optimization. However, in the average, 

the signaling system performs better with the optimization. 
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8.3-a: Conference set up time 

155 



Average Participant Join Time 

- Cross-layer 
optimization 
Application layer 
discovery 

2 3 4 5 
Number of participants 

8.3-b: Participant join time 

Average Participant Join Network Overhead 

12000 
o 
2 10000 

8000 

6000 

4000 

2000 

. Cross-layer 
optimization 

Application layer 
discovery 

1 2 3 4 5 

Number of participants 
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Figure 8.3: Capability usage optimization results 
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8.5.2 Link break handling optimization 

We evaluate the link break handling optimization scheme through simulation experiments. 

The simulation is based on the simulation that we built for evaluating the signaling for 

standalone MANET (see Section 7.1). We add the AAPA, NIA and SP entities in each 

MANET nodes. The node model with cross-layer design is demonstrated in Figure 8.4. 
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Figure 8.4: MANET node model with cross-layer design 

In the simulation, we implemented the entry of routing table. We added a simple function 

"notify_NIA()" in the AODV process, which opens the routing table to NIA. The 

function is responsible for sending an internal message to NIA. The NIA that receives 

this message will create a routing table entry in SP. When routing layer detects a link 

failure, the AODV process will call a function "inform_NIA_conn_loss()" and this 

function also sends a message to NIA. The NIA that receives the message will update the 

route status of the routing table entry in SP. Figure 8.5 shows where the AODV calls the 

function. 
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static void aodv_rte_neighbor_conn_loss_handle (void* neighbor_conn_info_ptrl, int PRG_ARG_UNUSED 
(code)) 

{ 
AodvTConnlnfo* neighbor_conn_info_ptr; 
char neighboraddrstr [1NETC_ADDR_STR_LEN]; 

/** Connection to the neighbor node has been **/ 
/** lost. Handle the loss appropriately **/ 
FIN (aodvrteneighborconnlosshandle (<args>)); 

neighbor_conn_info_ptr = (AodvTConnlnfo*) neighbor_conn_info_ptrl; 
aodv_packet_queue_all_pkts_to_dest_delete (pkt_queue_ptr, neighbor_conn_info_ptr-

>neighbor_address); 
/* Send out route error messages */ 
aodv_rte_route_error_process (neighbor_conn_info_ptr->neighbor_address, OPC_NIL, 

AodvC_Link_Break_Detect, OPC_FALSE); 
/* Create the neighbor address string */ 
inet_address_print(neighbor_addr_str, neighbor_conn_info_ptr->neighbor_address); 

/* to inform NIA about the connection loss*/ 
inform_NIA_conn_loss(neighbor_conn_info_ptr->neighbor_address, op_sim_timeO); 

/* Remove the entry for this node from the neighbor connectivity hash table */ 
prg_string_hash_table_item_remove(neighbor_connectivity_table, neighbor_addr_str); 
inetaddressdestroy (neighbor_conn_info_ptr->neighbor_address); 
op_prg_mem_free (neighbor_conn_info_ptr); 

FOUT; 

Figure 8.5: AODV informs NIA a connection loss 

Through experiments on the scenario of a seven party conference with one link failure 

introduced, we find that the session failure detection delay is about 6 seconds when using 

the optimization scheme. In order to further evaluate the scheme, we compare the scheme 

with the application-layer, heartbeat-based session failure detection mechanism. In Figure 

8.6, we compare two schemes and two sets of heartbeat parameters are evaluated. For the 

first set of parameters (77z=60s, 77= 10s and «=3), the network load introduced is not 

much higher than the load of using the cross-layer optimization scheme, but the detection 

delay introduced is much longer (60s vs. 6s). For the second set of parameters (Th=6s, 

77= Is and «=3), the detection delay is about 6 seconds. That is close to the detection 

delay when using the cross-layer optimization scheme. However, a much higher network 

load is introduced in the case. Therefore, we can conclude that the optimization scheme 

promises a rapid failure-detection without introducing a high network overhead. Like in 
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the prototype, we did not introduce significant footprint in order to implement cross-layer 

optimizations in the simulation. 
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Figure 8.6: Simulation results for link break handling optimization 

8.5.3 CGW deployment optimization 

We also evaluate the CGW deployment optimization scheme through simulation 

experiments. This simulation is based on the simulation that we built for evaluating the 

signaling for integrated MANETs/3G networks (see Section 7.2). We implement the 

routing topology entry and we assume that the routing topology of MANET nodes is 

maintained by the gateway node (the node that connects the two wireless networks: 

MANET and 3G wireless). The AAPA, NIA and SP are also implemented inside in the 

gateway node. It should be noted that the routing topology of MANET nodes can also be 

implemented in Node-B or RNC or SGSN. The reason we implement it in the gateway 

node is simplicity. 

In order to evaluate CGW optimization scheme, we compare the signaling overhead of 

using the simple CGW/MSA discovery protocol (see Section 6.2.3) with that of using the 
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CGW optimization scheme where the CGW finds MSAs location by retrieving the local 

routing topology information. It should be noted that in the optimization scheme the 

CGW directly publishes its address and listening port to MSAs but not uses a broadcast. 

Figure 8.7 shows that the CGW optimization scheme introduces much less overhead than 

the usage of MSA discovery protocol in application layer. In the figure, the signaling 

overhead represents the total conference establishment overhead including the overheads 

of CGW/MSA discovery and the session establishments. From two to ten-party 

conferences have been evaluated. Each conference includes parties from both 3G and 

MANET sides. We have also performed experiments in order to evaluate the session 

setup delays and we observe that the CGW deployment optimization scheme does not 

reduce or increase the session setup delay, but the location of the CGW deployment 

affects the session setup delay. 
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Figure 8.7: Simulation results for CGW deployment optimization 

8.5.4 The sub-optimal routing related optimization schemes 

We have implemented the most important three optimization schemes and we have 

shown that these schemes can help to solve the performance issues described in Section 
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8.1. In this section, we discuss the remaining optimization schemes used for solving the 

issue of sub-optimal routing. 

Unlike the three optimization schemes that we have measured, the sub-optimal routing 

related optimization schemes only show its benefit when there is a sub-optimal route. 

Figure 8.8 shows an example that the "super-member election based on clustering" 

scheme is used for optimizing the signaling routes. Figure 8.8-a shows the case in which 

no optimization is applied. Party A initiates a conference with party B and party A and 

B's capabilities are the same. Party A is elected as super-member because A is an 

initiator. Party A then invites party C and party D to join the conference. Three sessions 

are therefore established and we denote them as AB, AC and AD. We can find that the 

route distances of the three sessions are AB with 2 hops, AC with 3 hops and AH 3 with 

hops. If we compare the total signaling route distance with those shown in Figure 8.8-b 

where the party B is elected as the super-member because it is a lower-layer cluster head, 

we can find that the signaling route in the latter case is optimized, i.e. BA with 2 hops, 

BC with 1 hop and BD with 1 hop. 

By application of the sub-optimal routing related optimization schemes, we expect to 

reduce the session setup delay and to reduce the overall network load. However, there is a 

price to pay. For example, with a usage of the "sub-optimal routing optimization" scheme, 

the super-members have to frequently check if their physical neighbors are in the 

conference and are their cluster members. Furthermore, a session switch may happen, 

which will introduce extra signaling overhead. In order to evaluate the actual impact of 

these schemes, a comprehensive comparison between cost and effect should be made. A 

possible method to do this comparison is through simulation but the design of simulation 
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scenarios should be careful. Scenarios with sub-optimal signaling routes should be 

implemented. 

Routing-layer clustering cluster-member 

8.8-a: Before optimization: party A elected as super-member 

8.8-b: After optimization: party B elected as super-member 

Figure 8.8: A case of using super-member election based on clustering optimization scheme 

8.6 Conclusions 

In this chapter, we have addressed several performance issues of our signaling systems 

and we proposed a cross-layer optimization architecture. The architecture is more 

application-layer oriented compared to the existing cross-layer proposals. Six 

optimization schemes have been proposed and three of them prototyped or simulated. 

The results from the experiments have been analyzed and discussed. They show that 

cross-layer optimizations are very promising for enhancing the performance of our 

signaling architecture. In addition, these optimizations do not necessitate a large footprint 

162 



overhead. The remaining three optimization schemes are all proposed for solving the sub-

optimal routing issue. We have briefly discussed them and will carry out these schemes 

in future work. 
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Chapter 9 : Conclusions and Future Work 

In this chapter, we summarize the contribution of this thesis. We also discuss the 

remaining issues and directions for future work. 

9.1 Summary of contributions 

MANETs have been an active research area for years. A key motivation is the possibility 

of novel application scenarios. Conferencing enables a set of attractive applications. It is 

very challenging to deploy a conference in MANETs. In this thesis, we have addressed an 

important conferencing aspect: signaling. We have investigated signaling issues in two 

types of MANETs: standalone and integrated MANETs/3G networks. 

The major contributions of this thesis are as follows. 

• Identified the issue of signaling for conferencing in MANETs - We have seen that 

the signaling for conferencing in MANETs is very challenging due to the 

particularity of MANET. The absence of a pre-configured infrastructure makes it 

difficult to build a fixed signaling architecture. The frequently changing network 

nodes and topology introduce complexity for session management. In addition, it has 

to take into account the scarce network resources and the unstable wireless links. The 

challenges make the signaling issue a very interesting research topic. 

• Derived signaling requirements for conferencing in MANETs - We have derived 

signaling requirements for conferencing in both standalone MANETs and integrated 

MANETs/3G networks. We have also reviewed the state-of-the-art signaling 

protocols such as SIP, H.323 and ICEBERG with respect to these requirements. We 

found that none of the existing signaling protocols meets all the requirements. Most 
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of the solutions are only suitable for infrastructure-based networks. A few others are 

too to handle the complexity of signaling in MANETs. 

• Proposed a cluster-based signaling architecture for standalone MANETs - The 

cluster-based signaling architecture is a core contribution of this thesis. It has been 

proposed to meet all the derived signaling requirements for standalone MANETs. 

The architecture is very different from the existing signaling solutions. First, it is 

based on dynamic clusters that are created and deleted only by conference 

participants. Second, a cluster-head election is based on participant capabilities (e.g. 

energy power and processing capability). Third, signaling sessions are monitored by 

a heartbeat mechanism so that a session failure can be detected and the signaling 

architecture can be recovered. 

• Proposed a signaling architecture for integrated MANETs/3G networks - In the 

literature, there is no solution for signaling for conferencing in integrated 

MANETs/3G networks. Our signaling architecture has filled this blank. It uses a 

conference gateway as a mediator to integrate both signaling architectures: the 

cluster-based architecture and the 3GPP 3G architecture. It enables all the required 

signaling scenarios but does not necessitate a significant upgrade on signaling 

systems from both sides. 

• Implemented the signaling architectures, proposed an extension to SIP and built 

proof-of-concept prototypes — SIP is a lightweight and extendible signaling 

protocol. We have selected it as our implementation technology and proposed a SIP 

extension that supports the concept of 'clustering'. In order to implement the 

extension in a real MANET environment, we also discussed the SIP deployment 
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approaches and built prototypes for both standalone MANETs and integrated 

MANETs/3G networks. The prototypes ran under a small-scaled IEEE 802.11 ad hoc 

network environment and they have allowed us to test different signaling scenarios 

and collect results. From the experiments, we found that clustering is promising for 

the establishment of small-scaled conferences and SIP as an implementation 

technology works well in every scenario. 

• Evaluated performance of the signaling architectures using OPNET - We have 

simulated the cluster-based signaling system using MANET features of OPNET. We 

have built different scenarios and measured different aspects of the signaling system. 

It has shown that the signaling system can establish and terminate sessions for from 

small to large scales of conferences. It can handle the unintentional departure of 

nodes and recovery sessions. In addition, it meets other requirements such as 

independence of lower layer protocols. We have also simulated the signaling 

architecture for integrated MANETs/3G networks. A one-cell integrated MANET/3G 

network was built and different conference scenarios were tested. It shows that our 

signaling system does support the required scenarios and it meets all the specific 

signaling requirements for integrated MANETs/3G networks. 

• Optimized the signaling schemes using a cross-layer design method - Observing 

several performance issues of our signaling systems, we have proposed a cross-layer 

design based optimization solution. The solution includes a new cross-layer design 

architecture that is especially suitable for application-layer optimizations, and a set of 

optimization schemes. We have also evaluated some of these schemes through 



prototyping and simulation. It shows that the schemes can significantly improve 

signaling performance. 

9.2 Future work 

This thesis provides solutions for signaling in MANETs and it validates them using 

prototypes and simulation. However, much work remains to be done. We organize it into 

three categories: architectures, implementation and validation, and other remaining open 

issues. 

9.2.1 Signaling architecture 

We have shown that the signaling architecture for standalone MANETs is based on 

clustering. Different from lower layer clusters, the signaling clusters are formed during 

session establishments. Thus, the scheme does not require a period of network stable time 

as that required by the lower-layer clustering schemes (seen Section 2.2.2). However, it 

still has a cluster stability issue. For example, frequent super-member leavings lead to re­

formation of clusters, which consumes a large amount of the network bandwidth. It is 

impossible to avoid this issue because any participant in a conference is free to leave and 

furthermore any super-members may unintentionally leave (e.g. they move out of range). 

A possible solution for improving cluster stability is to select deputy cluster heads (as 

defined in [91]). It will be interesting to investigate whether we can use or how we can 

use deputy super-members in our signaling architecture. 

The signaling architecture is based on flat clustering with all the super-members 

interconnected with each other. The purpose of the architecture is to reduce to the 
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distance of signaling paths, but when a conference grows to a very large scale, i.e. 

thousands of participants, the cost of building the super-member mesh would be very 

expensive. A possible solution is to introduce a hierarchy. An example of hierarchical 

clustering is presented in [47], in which a cluster has a 'level' parameter. A higher level 

cluster head controls a cluster of cluster heads at lower level. In future work, we would 

like to examine how to build a hierarchical clustering-based signaling architecture. 

9.2.2 Implementation and validation 

Conti et al. [124] show that a key issue that slows down the adoption of MANET is the 

lack of real world implementation and industrial deployment. In this thesis, we have 

discussed the implementation and deployment of our signaling system. However, the 

work suffers from the lack of a sophisticated MANET environment. The testbed for 

prototypes only includes several nodes and we have used open-source AODV software 

that does not work well when setting up a multihop route. Consequently, we only test our 

prototype in a small-scaled, meshed ad hoc network. Experiments on a larger scaled, 

multihop MANET is foreseen as future work. 

Middleware plays an important role in our prototype. We have used JXTA for participant 

discovery, but JXTA is not designed for MANETs. It is not only hard to configure but 

also performs badly in MANETs. Thus, development of a middleware that is especially 

suitable for MANETs (e.g. Expedience [112] ) is an interesting task to tackle in the 

future. 

In the simulation, we have evaluated conference scales up to 100 nodes. It would be 

interesting to know the behaviors of the signaling scheme with hundreds and even 
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thousands of nodes. However the current MANET features in OPNET only support up to 

200 nodes when running an AODV routing protocol. Since we also used TCP on top of 

AODV, we found that TCP transmission errors and re-transmission becomes more 

frequent when we set up a conference with more than 50 nodes. It is possible for the 

OPNET MANET feature to support more nodes when running on a dual-core machine. 

Thus, it would be interesting to investigate this possibility and test our signaling system 

in larger scaled conferences. 

The evaluation of the signaling system in integrated MANET/3G networks is. As next 

step, it would be interesting to build a simulation including multiple cells and multiple 

routing areas. 

9.2.3 Open issues and future directions 

There are some issues that we have not tackled in this thesis. These issues are either not 

too close to the signaling issue or less critical to basic signaling functionality. However, 

they are important for real deployment of conferencing applications in MANETs and 

consequently they require further development and study. 

The first issue is billing and charging. This issue is less relevant to standalone MANETs 

because it is not clear whether there is a network operator that provides the standalone 

MANET services, but it is import for integrated MANETs (e.g. [125], [126]). In this case, 

the billing point is typically put in the access point or in the infrastructure network side. 

Charging a MANET user is a complex issue. It is hard to evaluate how many resources a 

user has actually used because the user may also contribute to relaying traffic of other 

users. This is also related to another issue in MANETs: selfishness. 
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Selfishness means that a user may conserve its processing capability and refuse to 

provide a service to other users (e.g. store and forward a packet). The selfishness is a 

common issue for all MANET users and it has been discussed in routing protocols (e.g. 

[127]). In our signaling system, it may happen when a participant refuses to act as a 

super-member. Lamparter et al. [125] proposed a charging policy that encourages users to 

contribute. When a user forwards packets, it gains credits. Preventing the selfishness is 

still an open issue and more research needs to be done. 

Still another issue is security. The issue was not addressed in this thesis but it is partially 

considered in SIP, which provides basic security mechanism. It suggests the potential use 

of email security mechanisms like PGP (Pretty Good Privacy) [128] and a SIP URI can 

try to build up a secure transport layer tunnel using Transport Layer Security (TLS) [129]. 

IP security (IPsec) [130] can also be used as a general purpose mechanism to encrypt all 

the SIP communications. However, these security mechanisms do not work well in 

MANETs and they face new challenges. Yang et al.[131] demonstrates these challenges 

and proposes new security mechanisms. How SIP works with these MANET security 

mechanisms is an interesting problem to look at in the future. 

170 



References 
[1] George Aggelou, "Mobile Ad Hoc Networks - From Wireless LANs to 4G 

Networks", a book published by McGraw-Hill Companies, Inc., 2005 

[2] Marco Conti and Silvia Giordano, "Multihop Ad Hoc Networking: The Theory", 

IEEE Communications Magazine, April 2007, Volume 45, Issue 4, Page(s):78-86 

[3] Jennifer J. -N. Liu and Imrich Chlamtac, "Mobile Ad hoc Networking with a view of 

4G Wireless: Imperatives and Challenges", Mobile Ad Hoc Networking, Wiley-IEEE 

Press, July 2004 

[4] Ram Ramanathan, "Antenna Beamforming and Power Control for Ad Hoc Networks", 

Mobile Ad Hoc Networking, Wiley-IEEE Press, July 2004 

[5] Sunil Kumar, Vineet S. Raghavan and Jing Deng, "Medium Access Control protocols 

for ad hoc wireless networks: A survey", Elsevier, Ad Hoc Networks, Volume 4, 

Issue 3, May 2006, Pages 326-358 

[6] Elizabeth M. Belding-Royer, "Routing Approaches in Mobile Ad Hoc Networks", 

Mobile Ad Hoc Networking, Wiley-IEEE Press, July 2004 

[7] C. Fu, R. H. Glitho and R. Dssouli, "A Novel Signaling System for Multiparty 

Sessions in Peer-to-Peer Ad Hoc Networks", Proceedings of IEEE Wireless 

Communications and Networking Conference, Volume 4, March 2005, Page(s):2287 

-2292 

[8] C. Fu, R. Glitho, F. Khendek, "Signaling for Conferencing in Integrated 3G/Mobile 

Ad Hoc Networks", IEEE symposium on Computers and Communications' 06. 

Proceedings, June 2006, Page(s):838 - 843 

[9] C. Fu, R. Glitho and F. Khendek,, "Signaling for Multimedia Conferencing in 

Standalone Mobile Ad Hoc Network", submitted to IEEE Transactions on Mobile 

Computing on September 2007 

[10] C. Fu, R. Glitho and F. Khendek, "A Novel Session Recovery Mechanism for 

Cluster-based Signaling Architecture for Conferencing in MANETs", Distributed 

Computing Systems Workshops, IEEE International Conference on Distributed 

Computing System '07, Workshop, June 2007, Page(s): 19-19 

171 



[11] C. Fu, R. Glitho and R. Dssouli, "Methods for cluster-based multi-party 

conferencing in ad-hoc networks", United State Patent Application, Serial No.: 

999920, Series Code: 10, June 1, 2006 

[12] C. Fu, R. Glitho and R. Dssouli, "Cluster of terminals and ad-hoc network for 

cluster-based multi-party conferencing", United State Patent Application, Serial No.: 

999944, Series Code: 10, June 1, 2006 

[13] C. Fu, F. Khendek, R. Glitho, "Signaling for multi-media conferencing in 4G: the 

Case of Integrated 3G/MANETs", IEEE Communications Magazine, Volume 

44, Issue 8, Aug. 2006 Page(s):90 - 99 

[14] C. Fu, R. Glitho and R. Dssouli, "User agent and super user agent for cluster-based 

multi-party conferencing in ad-hoc networks", United State Patent Application, Serial 

No.: 999955, Series Code: 10, June 1, 2006 

[15] C. Fu, R. Glitho and R. Dssouli, "Method and conference controller for cluster-

based conferencing", United State Patent Application, Serial No.: 280206, Series 

Code: 11, May 17, 2007 

[16] C. Fu, R. Glitho and F. Khendek, "Cross-Layer Design for Optimizing the 

Performance of Clusters-Based Application Layer Schemes in Mobile Ad Hoc 

Networks", IEEE CCNC, Jan. 2007, Page(s):239 - 243 

[17] C. Fu, R. Glitho and F. Khendek, "A Cross-layer Architecture for Signaling in 

Multihop Cellular Networks", accepted for publication, to appear in IEEE 

Communications Magazine 

[18] Magnus Frodigh, Per Johansson and Peter Larsson, "Wireless ad hoc networking -

the art of networking without a network", Ericsson Review No.4, 2000 

[19] Marco Conti, "Body, Personal, and Local Ad Hoc Wireless Networks", in: M. Ilyas 

(Ed.), Handbook of Ad Hoc Networks, CRC Press, New York, 2003 (Chapter I) 

[20] Bangnan Xu, Sven Hischks and Bernhard Walke, "The Role of Ad Hoc Networking 

in Future Wireless Communications", Proceedings of International Conference on 

Communication Technology 2003, Volume 2, Page(s): 1353-1358 

[21] Y. Lin and Y. Hsu, "Multihop Cellular: A New Architecture for Wireless 

Communication", IEEE INFOCOM 2002, Vol. 3, Page(s): 1273 - 1282 

172 



[22] H. Wu, C. Qiao, S. De, and O. Tonguz, "Integrated Cellular and Ad Hoc Relaying 

Systems: iCAR", IEEE JSAC, vol.19, 2001, pp. 2105-15 

[23] H.Luo et al., "UCAN: A Unified Cellular and Ad-Hoc network Architecture", proc. 

ACM International Conference on Mobile Computing and Networking, Sept. 2003. 

[24] Z. Dawy, S. Davidovic and I. Oikonomidis, "Coverage and Capacity Enhancement 

of CDMA Cellular System via Multihop transmission", IEEE Globecom, Page (s) 

1147-1151,2003 

[25] H. Lee and C. Lee, "An Integrated Multi-hop Cellular Data Network", IEEE 

Vehicle Technology Conference, 2003, Vol. 4, Page(s) 2232-2236 

[26] Y. Liu et al., "Integrated Radio Resource Allocation for Multihop Cellular 

Networks with Fixed Relay Stations", IEEE JSAC, Vol. 24, Page(s) 2137-2146, Nov. 

2006 

[27] G. Kannan, S. N. Merchant and U. B Desai, "Access Mechanism for Multihop 

Cellular Networks", IEEE VTC-2007, Page(s) 279-283, 2007 

[28] A. Kusuma, L. Andrew and S. V. Hanly, "On Routing in CDMA Multihop Cellular 

Networks", IEEE Globecom, Page(s) 3063-3067, 2004 

[29] Y. Wu, K. Yang and J. Zhang, "An Adaptive Routing Protocol for an Integrated 

Cellular and Ad-hoc Network with Flexible Access", ACM International Wireless 

Communication and Mobile Computing Conference'06, Page(s) 263-268, Vancouver, 

2006 

[30] A. R. Wolff and C. Lee, "Large Scale Routing in a Multi-Hop Cellular Network 

Using a Radial Geometric Approach" IEEE Wireless Communications and 

Networking Conference, Page(s) 4446 - 4451, 2007 

[31] P. P. Lam and S. C. Liew, "Nested Network Mobility on the Multihop Cellular 

Network" IEEE Communications Magazine, Volume 45, Issue 9, Page(s) 100 - 104, 

September 2007 

[32] D. Cavalcanti, D. Agrawal, C. Cordeiro, B. Xie and A. Kumar, "Issues in 

Integrating Cellular Networks, WLANs and MANETs: A Futuristic heterogeneous 

Wireless Network", IEEE Wireless Communications, June 2005, Volume 12, Issue 3, 

Page (s): 30-41 

173 



[33] IEEE 802.15.3 TM, "Part 15.3: Wireless Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks 

(WPANs)", IEEE Computer Society, Sep. 2003 

[34] C.Bisdikian, "An Overview of Bluetooth Wireless Technology", IEEE 

Communications Magazine, Dec. 2001, page 86-94 

[35] IEEE std 802.11, "Wireless LAN Medium Access Control (MAC) and Physical 

Layer (PHY) Specifications", IEEE Communication Society, 1999 

[36] G. V. Zaruba and S. K. Das, "Off-the-Shelf Enablers of Ad Hoc Networks", Mobile 

Ad Hoc Networking, Wiley-IEEE Press, July 2004 

[37] J.L. Burbank and W.T. Kash, "IEEE 802.16 broadband wireless technology and its 

application to the military problem space", IEEE MILCOM 2005, 17-20 Oct. 2005 

Page(s):1905- 1911 Vol. 3 

[38] M. Sherman, et al., "A PMP-Friendly MANET Networking Approach for 

WiMAX/IEEE 802.16", IEEE Military Communications Conference 2006, 23-25 Oct. 

2006Page(s):l-7 

[39] C.Perkins, E.Belding-Royer, and S. Das, "Ad hoc On-Demand Distance Vector 

(AODV) Routing", RFC 3561, July. 2003 

[40] T.Clausen, Ed. and P.Jacquet, Ed., "Optimized Link State Protocol (OLSR)", RFC 

3626, Oct. 2003 

[41] R.Ofier, F.Templin, M. Lewis, "Topology Dissemination Based on Reserve-Path 

Forwarding (TBRPF)", RFC 3684, Feb. 2004. 

[42] D. Johnson,Y. Hu and D. Maltz,"The Dynamic Source Routing Protocol (DSR) for 

Mobile Ad Hoc Networks for IPv4", RFC 4728, Feb. 2007 

[43] J. Y. Yu and P. H. J. Chong, "A Survey of Clustering Schemes for Mobile Ad Hoc 

Networks", IEEE Communications Surveys and Turorials, First Quarter 2005V. 

[44] Hwa-Chun Lin, Yung-Hua Chu, "A clustering technique for large multihop mobile 

wireless networks", Vehicular Technology Conference Proceedings, 2000 IEEE 51st, 

Volume: 2, Page (s): 15-18, May 2000 

[45] Chien-Chung Shen et al., "CLTC: a cluster-based topology control for ad hoc 

networks", Mobile Computing, IEEE Transactions on, Volume: 3, Issue: 1, Jan.-

March 2004, Page (s): 18-32 

174 



[46] W. Chen, N. Jain and S. Singh, "ANMP: Ad Hoc Nework Management Protocol", 

IEEE Joural on Selected Areas in Communications, Vol. 17, No. 8, August 1999 

[47] Ram Ramanathan, Martha Steenstrup, "Hierarchically -organized, multi-hop mobile 

wireless networks for quality-of-service support" Mobile Networks and Applications 

3, 1998, Volume 3, Issue 1, Page (s): 101-119 

[48] M. Chatterjee, S. K. Das and D. Turgut, "WCA: A Weighted Clustering Algorithm 

for Mobile Ad hoc Networks", Cluster Computing, Springer Netherlands, Volume 5, 

Number 2, April 2002, Page(s): 193-204 

[49] C.-C. Ciang et al., "Routing in Clustered Multihop, Mobile Wireless Networks with 

Fading Channel", Proc. IEEE Singapore International Conference on Networks' 97, 

1997 

[50] Srivastava and M. Motani, "Cross-Layer Design: A Survey and the Road Ahead", 

IEEE Communications Magazine, Volume 43, Issue 12, Page (s): 112-119, December 

2005. 

[51] R. Braden, T. Faber and M. Handley, "From Protocol Stack to Protocol Heap -

Role-Based Architecture", Pro. Hot Topics in Net. Princeton, MJ, Mar. 2002 

[52] Q. Wang and M.A. Abu-Rgheff, "Cross-Layer Signaling for Next-Generation 

Wireless Systems", Proc. IEEE WCNC, Volume 2, Page (s): 1084-1089, March, 2003 

[53] M. Conti, G. Maselli, G. Turi and S. Giordano, "Cross-Layering in Mobile Ad Hoc 

Network Design", IEEE Computer, Volume 37, Issue 2, Feb 2004, Page:48 - 51 

[54] E. Borgia, M. Conti, F. Delmastro and E. Gregori, "Experimental Comparison of 

Routing and Middleware solutions for Mobile Ad Hoc Networks: Legacy vs Cross-

Layer Approach", ACM SIGCOMM' 05 Workshop, August 2005 

[55] R. Winter, J.H. Schiller, N. Nikaein and C. Bonnet, "CrossTalk: Cross-Layer 

Decision Support Based on Global Knowledge", IEEE Communications Magazine, 

January 2006, Page(s): 93-99 

[56] R.T. Raisinghani and S. Lyer, "Cross-Layer Feedback Architecture for Mobile 

Device Protocol Stacks", IEEE Communications Magazine, January 2006, Page(s): 

85-92 

[57] L. XU and B. Zhang, "Study on Cross-layer Design and Power Conservation in Ad 

Hoc Networks", IEEE PDCAT'2003, August 2003, Pages: 324-328 

175 



[58] M. Madueno and J. Vidal, "Joint PHY-MAC Layer Design of the Broadcast 

Protocol in ad-hoc networks", IEEE ICASSP, 2004, Pages: 557-560 

[59] M. Tarique, K. E. Tepe and M. Naserian, "A Cross-Layer Design for Passive 

Forwarding Node Selection in Wireless Ad Hoc Networks", IEEE International 

Conference on Wireless Networks, Communications and Mobile Computing, Vol.1, 

Pages: 82-87, 2005 

[60] Li Li and Louise Lamont, "A Lightweight Service Discovery Mechanism for 

Mobile Ad Hoc Pervasive Environment Using Cross-layer Design", IEEE PerCom. 

2005, Pages: 55-59 

[61] E. Setton et al., "Cross-layer Design of Ad hoc Networks for Real-time Video 

Streaming", IEEE Wireless Communications, Volume 12, Issue 4, Pages: 59-65, 

August 2005 

[62] V. Kawadia and P.R. Kumar, "A Cautionary Perspective on Cross-Layer Design", 

IEEE Wireless Communications, Volume 12, Issue 1, Pages: 3-11, February 2005 

[63] Dommel, H. and Aceves, J., "Floor Control for Multimedia Conferencing and 

Collaboration", ACM Multimedia Systems Magazine, 1997, Vol. 5, No. 1, pp. 23-38. 

[64] Schulzrinne, H. and Rosenberg, J., "Signaling for Internet Telephony", Proc. 6th 

International Conference on Network Protocols, IEEE press style, IEEE computer 

society, 1998, pp. 298-307. 

[65] J. Rosenberg, "A Framework for Conferencing with the Session Initiation Protocol 

(SIP)", IETF RFC 4353, February 2006 

[66] ITU-T Recommendation T.120, "Data Protocols for Multimedia Conferencing", 

ITU-T, July, 1997 

[67] E. M. Schooler and S. L. Casner, "An Architecture for Multimedia Connection 

Management", Proceedings IEEE 4th Comsoc International Workshop on Multimedia 

Communications, MM'92, Page(s) 271-274, Monterey 

[68] S. Shenker, A Weinrib, and E. Schooler, "Managing Shared Ephemeral 

Teleconferencing State: Policy and Mechanism", IETF Internet Draft, July 1995 

[69] M. Handley, I. Wakeman, and J. Crowcroft, The Conference Control Channel 

Protocol (CCCP): A scalable base for building conference control applications, In 

Proceedings of ACM SIGCOMM'95, Boston, USA, August 1995 

176 



[70] C. Bormann, J. Ott, C. Reichert, "Simple Conference Control Protocol", IETF 

Internet draft, December 1996 

[71] O. Novo, G. Gamarillo, D. Morgan and R. Even, "A Common Conference 

Information Data Model for Centralized Conferencing (XCON)", IETF Internet Draft, 

April, 2006, Expires: October, 2006 

[72] H. Khartabil, P.Koskelainen, and A. Niemi, "The conference policy control 

protocol," IETF, Internet draft < draft-ietf-xcon-cpcp-01 >, 2004 

[73] H.323 series , ITU-T recommendations, Geneva 2003 

[74] Rosenberg et al., "SIP: Session Initiation Protocol", RFC 3261, June 2002 

[75] H. Liu and P. Mouchtaris, "Voice Over IP Signaling: H.323 and Beyond", IEEE 

Communications Magazine, October 2000, Vol. 38 No 10, pp. 142-148 

[76] H. Schulzrinne and J. Rosenberg, "The Session Initiation Protocol: Internet Centric 

Signaling", IEEE Communications Magazine, October 2000, Vol. 38 NolO, pp. 134-

141 

[77] H. Schulzrinne et. al., "RTP: A Transport Protocol for Real-Time Applications", 

IETF RFC3550, July, 2003 

[78] H. Schulzrinne and S. Casner, "RTP Profile for Audio and Video Conferences with 

Minimal Control", IETF RFC 3551, July, 2003 

[79] C. Groves el al., "Gateway Control Protocol Version 1", IETF RFC 3525, June, 

2003 

[80] H.248.1, "Gateway Control Protocol: Version 3", ITU-T, Sep., 2005 

[81] 3GPP TS 24.147, "Conferencing using the IP Multimedia (IM) Core Network (CN) 

subsystem", June 2005 

[82] Mark Kelley, "Distributed Multipoint Conferences using SIP", IETF Internet Draft, 

March 8, 2000, <draft-mark-sip-dmcs-00> 

[83] Khlifi, H., Agarwal, A., and Gregoire, J.-C, "A framework to use SIP in ad-hoc 

networks", Electrical and Computer Engineering, IEEE CCECE 2003, Canadian 

Conference on 4-7 May 2003, Page(s):985 - 988 vol.2 

[84] P. Koskelainen, H. Schulzrinne, and X. Wu, "A SIP-based Conference Control 

Framework", ACM Proceedings of the 12th international workshop on Network and 

operating systems support for digital audio and video, May 2002, Pages: 53-61 

177 



[85] Uyar, A., Wu, W., Bulut, H. and Fox, G., "Service-oriented architecture for a 

scalable videoconferencing system", IEEE International Conference on Pervasive 

Services '05 on 11-14 July 2005, Page(s): 445 - 448 

[86] Helen J. Wang, et al., "Iceberg: An Internet Core Network Architecture for 

Integrated Communications", IEEE Personal Communications, Volume 7, Issue 

4, Aug. 2000, Page(s): 10-19 

[87] M. Jiang, J. Li and Y.C. Tay, "Cluster Based Routing Protocol (CBRP)", IETF 

Internet Draft, 14 August 1999 

[88] Li Li and Louise Lamont, "A Lightweight Service Discovery Mechanism for 

Mobile Ad Hoc Pervasive Environment Using Cross-layer Design", IEEE PerCom 

2005 Workshops, Third IEEE International Conference on 8-12 March 2005, Page(s): 

55-59 

[89] S. Helal, N.Desai, V. Verma, and C. Lee, "Konark—A Service Discovery and 

Delivery Protocol for Ad-Hoc Networks", IEEE WCNC 2003 on 16-20 March 2003, 

Page(s): 2107-2113 vol.3 

[90] Ying Yu, Agarwal, A., "A SIP-based multicast framework in MANET", IEEE 

WiMob, Volume 3, 22-24, Aug. 2005, Page(s): 229-236 

[91] Tai, A.T., Tso, K.S. and Sanders, W.H., "Cluster-based failure detection service for 

large-scale ad hoc wireless network applications", IEEE Dependable Systems and 

Networks International Conference 2004, Page(s):805 - 814 

[92] Gouda, M.G. and McGuire, T.M., "Accelerated heartbeat protocols", IEEE 

Distributed Computing Systems International Conference 1998, Page(s):202 - 209 

[93] Paul Stelling et al., "A fault detection service for wide area distributed 

computations", SpringerLink, Cluster Computing, Volume 2, Number 2 / September, 

1999. Pages: 117-128 

[94] Hayashibara, N.; Cherif and A.; Katayama, T., "Failure detectors for large-scale 

distributed systems", IEEE Symposium on Reliable Distributed Systems, 2002. 

Page(s):404 - 409 

[95] Bertier, M. Marin, O. and Sens, P., "Implementation and performance evaluation of 

an adaptable failure detector", IEEE Dependable Systems and Networks International 

Conference 2002, Page(s):354 - 363 

178 



[96] Szu-Chi Wang and Sy-Yen Kuo, "Communication strategies for heartbeat-style 

failure detectors in wireless ad hoc networks", IEEE Dependable Systems and 

Networks International Conference 2003, Page(s):361 - 370 

[97] O. Ratsimor et al., "Allia: alliance-based service discovery for ad-hoc 

environments", ACM International Workshop on Mobile Commerce, 2002, Page(s): 

1-9 

[98] J. Rosenberg, "A Hitchhiker's Guide to the Session Initiation Protocol (SIP)", IETF 

Internet Draft <draft-ietf-sip-hitchhikers-guide-04>, November 2007 

[99] J. Rosenberg and H. Schulzrinne, "Guidelines for Authors of Extensions to the 

Session Initiation Protocol (SIP)", IETF Internet draft <draft-ietf-sip-guidelines-09>, 

Feb., 2005 

[100]R. Sparks, "The Session Initiation Protocol (SIP) Refer Method", IETF RFC 3515, 

April 2003 

[101]S. Donovan, "The Session Initiation Protocol (SIP) INFO Method", IETF RFC 

2976, October 2000 

[102] A. B. Roach "Session Initiation Protocol (SIP) -Specific Event Notification", IETF 

RFC 3265, June 2002 

[103]N. Banerjee, A. Acharya, S. K. Das, "Peer-to-peer SIP-Based Services over 

Wireless Ad Hoc Networks", BROADNETs 2004, Workshop on Broadband Wireless 

Multimedia 

[104]Simone Leggio, Jukka Manner, Antti Hulkkonen and Kimmo Raatikainen: "Session 

Initiation Protocol Deployment in Ad-Hoc Networks: a Decentralized Approach", In 

proceedings of the International Workshop on Wireless Ad-Hoc Networks 

(IWWAN2005), May 23 - 26, 2005, London, UK. 

[105] JXTA, on line at https://jxta.dev.java.net/ 

[106] David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings, "A P2P Approach to 

SIP Registration and Resource Location", IETF Draft, Oct. 2006. The online link can 

be found at: http://www.p2psip.org/ietf.php 

[107]Stoica et al., "Chord: A Scalable Peer-to-peer Lookup Protocol for Internet 

Applications", IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pp. 17-32, 

February 2003 

179 

https://jxta.dev.java.net/
http://www.p2psip.org/ietf.php


[108]A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location and 

routing for large-scale peer-to-peer systems", IFIP/ACM International Conference on 

Distributed Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, 

November, 2001 

[109] J. Rosenberg, H. Schulzrinne and O. Levin, "A Session Initiation Protocol (SIP) 

Event Package for Conference State", IETF RFC 4575, August 2006 

[110] JAIN SIP Sources online at: https://iain-sip.dev.iava.iiet/ 

[lll]JSR-000032 JAIN SIP Specification (final release), online at: 

http://icp.org/aboutJava/communitvpiocess/tinal/isr032/ 

[112]Bisignano, M., Calvagna, A.; Modica, G.D. and Tomarchio, O., "Expedience: A 

Jxta middleware for mobile ad-hoc networks", Proceedings of the Third International 

Conference on Peer-to-Peer Computing, IEEE 2003, Page(s):214-215 

[113] V. Park and M. S. Corson, "A Highly Adaptive Distributed Routing Algorithm for 

Mobile Wireless Networks", Proc. IEEE INFOCOM '97, Kobe, Japan (1997), 

Volume 3, Pages: 1405-1413 

[114]H. Lofthouse, M. Yates and R. Stretch, "Parlay X Web Services", BT Technology 

Journal, Volume 22, Number 1, January 2004 , pp. 81-86(6), published by Springer 

[115]G. Byrne and D. Barber, "Developing multiparty conferencing services for the 

NGN: towards a service creation framework", Proceedings of the ISICT, Las Vegas, 

Nevada, USA, June 16-18, 2004. ACM International Conference Proceeding Series 

90, Page(s): 50-55 

[116]D. Ben Kheder, R. Glitho, and R. Dssouli, "Media Handling Aspects of 

Conferencing in Broadband Wireless Ad Hoc Networks", IEEE Network, Volume 

20, Issue 2, March-April 2006, Page(s):42 - 49 

[117] Y. Cho et al., "Policy-Based Distributed Management Architecture for Large-Scale 

Enterprise Conferencing Service Using SIP", IEEE JSAC, VOL. 23, NO. 10, 

OCTOBER 2005, Page(s): 1934-1949 

[118]Dhafer Ben Kheder, Roch Glitho and Rachida Dssouli, "A Megaco Based-

Architecture for Controlling Media Mixers When Conferencing in Mobile Ad Hoc 

Networks", In the proceedings of the IEEE CCNC'07, January, 2007, Page(s):696 -

700 

180 

https://iain-sip.dev.iava.iiet/
http://icp.org/aboutJava/communitvpiocess/tinal/isr032/


[119] Extensible Markup Language (XML) 1.0 (Forth Edition), W3C Recommendation, 

September, 2006, on line at: http://www.w3.org/TR/REC-xml/ 

[120] J. Rosenberg, "The Extensible Markup Language (XML) Configuration Access 

Protocol(XCAP)", IETF Internet draft < draft-ietf-simple-xcap-02>, August 2004 

[121] H. Fathi, S.S. Chakraborty, and R. Prasad, "Optimization of SIP Session Setup 

Delay for VoIP in 3G Wireless Networks", IEEE Transactions on Mobile Computing, 

Volume 5, Issue 9, Sept. 2006, Page(s): 1121-1132 

[122]H. Choi and D. Cho, "Fast and Reliable Route Discovery Protocol Considering 

Mobility in Multihop Cellular Networks", IEEE Vehicle Technology Conference, 

2006, Vol. 2 Page(s): 886-890 

[123]G. Kannan, S.N. Merchant and U.B.Desai, "Cross Layer Routing for Multihop 

Cellular Networks", Advanced Information Networking and Applications Workshops, 

Volume 2, May 2007, Page(s):165 - 170 

[124] Marco Conti and Silvia Giordano, "Multihop Ad Hoc Networking: The Reality", 

IEEE Communications Magazine, April 2007, Page(s):88-102 

[125]B. Lamparter, K. Paul and D. Westhoff , "Charging support for ad hoc stub 

networks", Computer Communications, Volume 26, Issue 13, 15 August 2003, Pages 

1504-1514 

[126]C. Makaya and S. Pierre, "An Architecture for Seamless Mobility Support in IP-

Based Next-Generation Wireless Networks", IEEE Transactions on Vehicular 

Technology, Accepted for future publication, Volume PP, Issue 99, 2007 

[127]H. Miranda, and L. Rodrigues, "Friends and foes: preventing selfishness in open 

mobile ad hoc networks", IEEE ICDCSW, May 2003 Page(s):440 - 445 

[128]M. Elkins, "MIME Security with Pretty Good Privacy (PGP)", IETF RFC 2015, 

1996 

[129]T. Dierks and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 

1.1", IETF RFC 4346, 2006 

[130]S. Kent and R. Atkinson, "Security Architecture for the Internet Protocol", IETF 

RFC 2401,1998 

181 

http://www.w3.org/TR/REC-xml/


[131]H. Yang, H. Luo, F. Ye, S. Lu and L. Zhang, "Security in mobile ad hoc networks: 

challenges and solutions", IEEE Wireless Communications, Volume 11, Issue 1, 

February 2004, Page(s): 38-47 

182 


