Design and Implementation of a Worm Detection and

Mitigation System

Hamad Binsalleeh

A Thesis
in
The Concordia Institute
for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Information Systems Security) at
Concordia University

Montréal, Québec, Canada

February 2008

(© Hamad Binsalleeh, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40903-9
Our file Notre référence
ISBN: 978-0-494-40903-9

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

Design and Implementation of a Worm Detection and Mitigation System

Hamad Binsalleeh

Internet worms are self-replicating malware programs that use the Internet to replicate
themselves and propagate to other vulnerable nodes without any user intervention. In
addition to consuming the valuable network bandwidth, worms may also cause other harms
to the infected nodes and networks. Currently, the economic damage of Internet worms’
attacks has reached a level that made early detection and mitigation of Internet worms a
top priority for security professionals within enterprise networks and service providers.
While the majority of legitimate Internet services rely on the Domain Name System
(DNS) to provide the translation between the alphanumeric human memorizable host names
and their corresponding IP addresses, scanning worms typically use numeric IP addresses
to reach their target victims instead of domain names and hence eliminate the need for
DNS queries before new connections are established by the worms. Similarly, modern
mass-mailing worms employ their own SMTP engine to bypass local mail servers security
measures. However, they still rely on the DNS servers for locating the respective mail
servers of their intended victims. Creating host-based Mail eXchange (MX) requests is a
violation of the typical communication pattern because these requests are supposed to only
take place between mail servers and DNS servers. Several researchers have noted that the

correlation of DNS queries with outgoing connections from the network can be utilized for

iii

the detection zero-day scanning worms and mass-mailing worms.

In this work, we implement an integrated system for the detection and mitigation of
zero-day scanning and mass-mailing worms. The detection engine of our system utilizes the
above mentioned DNS anomalies of the worm traffic. Once a worm is detected, the firewall
rules are automatically updated in order to isolate the infected host. An automatic alert
is also sent to the user of the infected host. The system can be configured such that the
user response to this alert is used to undo the firewall updates and hence helps reduce the
interruption of service resulting from false alarms.

The developed system has been tested with real worms in a controlled network envi-
ronment. The obtained experimental results confirm the soundness and effectiveness of the

developed system.

Acknowledgement

I would like to express my deepest sense of gratitude to my supervisor, Dr. Amr Youssef,
for his patient guidance, encouragement and excellent advice throughout this study.

I also would like to express my gratitude to my scholarship sponsor from Saudi Arabia:
Imam Mohammed Bin Saud Islamic University.

I am thankful to Dr Lingyu Wang for his valuable suggestions, to my lab-mates: Esam
Elsheh, Mohamed Raslan, Saad Inshi, Yazan Elhamwi and Najah Aboazom for helping me
in collecting the experimental data during my research.

Special thanks also go to Farkhund Igbal and Mohammed Ouhsain for their assistance
in editing this thesis and giving me valuable feedback.

Finally, I take this opportunity to express my profound gratitude to my beloved parents,
my wife and my little daughter for their moral support and patience during my studies at

Concordia University.

Table of Contents

List of Tables

List of Figures

List of Acronyms

1

Introduction

1.1 History and Examples of Internet Worms

1.2
1.3

Motivation
Thesis Overview

Background of Internet Worms

2.1
2.2

2.3

2.4

Introduction

‘Worm Structure

2.2.1 Target Locator
2.2.2 Infection Propagator
2.2.3 Communications and Control

2.2.4 Life-Cycle Manager
225 Payload
226 Self-Tracking

Worm Classifications
2.3.1 Vulnerability Worms
2.3.2 Mass-mailing Worms
2.3.3 Instant Messaging Worms
2.3.4 Peer to Peer Worms
Worm Characteristics
2.4.1 Scanning Mechanisms
2.4.2 Email Harvesting

2.4.3 Payload Propagator

vi

viii

ix

2.5 Detection Features of Internet Worms v v o v v v o 21

2.5.1 Detection Features of Vulnerability Worms 22

2.5.2 Detection Features of Mass-mailing Worms 24

2.6 Classification of Worm Detection Systems 24
2.7 Examples of Worm Detection and Mitigation Systems 25
2.8 Examplefor Real Worms 27
2.8.1 Blaster.A e e e 27

2.82 SasserB 28

283 NetskyD 29

3 The Proposed System 30
3.1 DNS Anomaliesof Wormso oo 30
32 System Modules e 34
3.3 Graphical User Interface, 43

4 Experimental Results 46
41 ObJectives . . v v v v i e e e e e e e e 46

4.2 Network Setup 47
4.3 Experimental Results 48

5 Conclusions and Future Works 57
5.1 SUIMIMATY o o e e e e e e e e e e e e e e 57
5.2 Future Works e 58
List of References 60

vii

List of Tables

1.1
3.1

4.1
4.2
4.3
4.4

A summary of some famous Internet worms
Detection system development environment

White list entries corresponding to IP addresses of network services
‘White list entries corresponding to Internet assigned network addresses
Total number of eliminated alerts
Number of scans and MX queries generated by the infected machines

viii

51
51
56
56

List of Figures

2.1 Structure of a typical Internet worm oL 12
2.2 Worm classifications 13
3.1 DNS anomalies of scanning worms e 33
3.2 DNS anomalies of mass-mailing worms 34
3.3 Main components of the proposed system 35
3.4 Network traffic management flow chart 37
3.5 An example for regular expression to match IP addresses 38
3.6 Vulnerability worm detection flow chart 40
3.7 Mass-mailing worm detection flow chart, 41
3.8 Main screen of the detection system L. 43
3.9 White list management screen L oL 44
3.10 Warning center sCreen v . o oo i e e 45
4.1 Experimental network setup o o 47
4.2 Experimental networksetup L Lo oL 49
4.3 New observed unique IP addresses e e 50
4.4 Total number of alerts generated by the detection system 52
4.5 Detection system alerts without white list, 53
4.6 Detection system alerts without HTTP embedded IP addresses 54
4.7 Detection system alerts without TCP and UDP embedded IP addresses . . 55

ix

List of Acronyms

API
ARP
ASP
BSD
CBCRL
DBMS
DCU
DDoS
DNS
DoS
DSL
FQDN
FTP

GUI

Application Programming Interface
Address Resolution Protocol

Active Server Pages

Berkeley Software Distribution
Credit-based Connection Rate Limiting
DataBase Management System
DNS Correlation Unit

Distributed Denial of Service attack
Domain Name System

Denial of Service attack

Digital Subscriber Loop

Fully Qualified Domain Name

File Transfer Protocol

Graphical User Interface

HTML HyperText Markup Language
TANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

ICSI International Computer Science Institute
IDS Intrusion Detection System

I1S Internet Information Services

M Instant Message

P Internet Protocol

IRC Internet Relay Chat

LAN Local Area Network

LSASS Local Security Authority Subsystem Service
MSN Microsoft Network

MX Mail eXchange record

NIDS Network Intrusion Detection System
NSM Network Security Monitoring

NTP Network Time Protocol

PHP Hypertext Preprocessor

PPU Packet Processing Unit

RPC Remote Procedure Call

SMB Server Message Block

SMTP - Simple Mail Transfer Protocol

SQL Structured Query Language

xi

SSH

TCP

TFTP

TTL

UDP

VoIP

Secure Shell

Transmission Control Protocol
Trivial File Transfer Protocol
Time To Live

User Datagram Protocol

Voice over IP

xii

|
CHAPTER 1

Introduction

An Internet worm is a self-propagating malware program that automatically replicates itself
to vulnerable systems and spreads across the Internet. Worms, which do not require human
intervention, often called self-spreading worms, can propagate much faster than those, which
are dependent on some user interaction. These worms propagate themselves by exploiting
a security vulnerability in certain versions of service software to take control of the victim
machine and copy themselves over to other vulnerable machines.

Unlike computer viruses that typically spread from one computer to another by attaching
themselves to either data files or executable applications (and hence their spread is limited
by the speed by which these infected files can be transmitted from one system to another),
worms, in contrast, are capable of autonomous migration from one system to another via
the network without the assistance of external software. Typically, a worm-infected host
scans the Internet for vulnerable systems. It chooses an IP address, attempts a connection
to a service port, and if successful, lunches the attack. The above process repeats with
different random addresses. The more machines are compromised, the more copies of the

worm that can work together to reproduce themselves. Since the hosts that are vulnerable

1.1 History and Examples of Internet Worms

to a worm typically account for a small portion of the IP address space, worms rely on
high-volume random scan to find victims. Thus, the scan traffic from tens of thousands
of compromised machines can congest networks and an explosive epidemic can therefore
be developed across the Internet causing a Denial-of-Service (DoS). Although most known
worms did not cause severe damage to the compromised nodes, they could have altered
data, removed files, stolen information if they had chosen to do so.

In the next section, we present a brief history of Internet worms.

1.1 History and Examples of Internet Worms

The term worm was casted by John Brunner in 1975 in a scientific fiction novel entitled:
The Shockwave Rider. Later on, two researchers, J. Shock and J. Hupp, of Xerox PARC
chose the name in-an ACM paper published in 1982 [1].

The first implementation of a worm was by these same two researchers at Xerox PARC in
1978. Shoch and Hupp originally designed the worm to find idle processors on the network
and assign them tasks, sharing the processing load, and so improving the CPU cycle use
efliciency across an entire network. These benign worms were self-limited so that they would
spread no farther than intended.

In 1988, the Morris worm showed the Internet community for the first time that a worm
could bring the Internet down in few hours [2]. Morris originally intended the program to
be a benign proof of concept. However, it had a massive effect due to a bug in the code.
When it reinfected a machine, there was a fixed chance that the new infection wouldn’t quit,

causing the number of running worms on a machine to build up, thereby causing a heavy

1.1 History and Examples of Internet Worms

load on many systems. Even on a modern machine, such bugs would have a similar effect of
overwhelming the system. This caused the worm to be quickly noticed and caused significant
disruption. Most subsequent worms have mechanisms to prevent this from happening [3].

Since then, new worm outbreaks have occurred periodically even though their mecha-
nism of spreading was long well understood. On July 19th, 2001, the code-red worm (version
2) infected more than 250,000 hosts in just 9 hours [4]. In 2002 another worm targeting
the Microsoft server appeared. This worm, dubbed SQL Snake targeted poorly configured
Microsoft SQL servers [5] [6]. While the worm did not spread very far, it did infect several
thousand machines and also demonstrated the advances in worm techniques authors are
making. Soon after, the Nimda worm raged on the Internet [7]. On January 25th, 2003, a
new worm called SQLSlammer [8] reportedly shut down networks across Asia, Europe and
the Americas, which showed how ill-prepared the current Internet infrastructure.

Internet worm attacks are not only limited to taking advantage of system vulnerabilities,
but can also be spréad through electronic mail, instant messages, and file sharing systems.
On March 1999, an electronic-mail virus, called Melissa, exploited a bug in the email system.
Melissa. virus first hit the Asia- Pacific region, which includes Hong Kong, Singapore, and
Australia, and then spread throughout the globe [9]. On August 19th, 2003, Sobig.F was
discovered as an email worm, which spreads as attachment of emails with varying subject,
message body and attachment filename [10]. On January 26th, 2004, the MyDoomemail
worm first appeared. This worm contained its own mail transfer agent application and
replicated itself by sending copies of itself as an email attachment [11].

The wide spread of instant messages (IM) systems attracted worm authors to target

1.2 Motivation

these systems. In 2002, a new worm targeted the Microsoft Messenger (MSN) by attracting
the victims to a malicious website that uses JavaScript language to gain control over the
system.

On March 6th, 2005 another worm called Kelvir was discovered. Kelvir changes the
normal strategy of IM worms for propagation and introduces the usage of peer to peer
architecture [11]. With the increasing migration toward a network-centric computing model,
threats to all computers grow in severity. Table 1.1 shows a summary and classification of
some famous Internet worms and some of their characteristics, which will be explained

throughout the next chapter.

1.2 Motivation

Currently, the economic damage of Internet worms’ attacks has reached a level that made
early detection and mitigation of Internet worms a top priority for security professionals
within enterprise networks and service providers.

Barly attempts of worm detection systems were mainly signature based systems, which
look for particular explicit indications of attacks such as the pattern of malicious traffic
payload (called attack signatures). The attack signatures have to be manually identified by
human experts through careful analysis of the byte sequence from captured attack traffic. A
good signature should be one that consistently shows up in attack traffic but rarely appears
in normal traffic. Automated signature generation for new attacks is extremely difficult due
to several reasons. First, in order to create an attack signature, we must identify and isolate

attack traffic from legitimate traffic. Second, the signature generation must be general

1.2 Motivation

send emails

DNS 53 (UDP) SMTP
25

Name Worm Type Infection Propagator Size Protocol and Port Outbreak Infected
[Byte] Date Hosts

W32.Mancsyn [11] Vulnerability Child request 23552 MS-DS 445 TCP 03.23.2007 > 1000

W32.Sagevo [11] Vulnerability Child request Varies TCP port 2967 and 12.13.2006 > 1000
download backdoor on
TCP port 21211

W32.Wallz [11) Vulnerability Child request 6578 MS-DS 445 TCP 02.7.2005 > 1000

W32.Sasser.B [11] Vulnerability Child request 15872 MS-DS 445 FTP 5554 | 01.05.2004 500000 -
listening on 9996 1000000

‘W32.Welchia.A [11] Vulnerability Child request 10240 RPC DCOM 135 Web- 18.08.2003 > 1000
Dav 80

W32.Blaster.A [11] Vulnerability Child request 6176 RPC DCOM 135 | 11.08.2003 200000 -
TFTP 69 listening on 8000000
4444

SQL Slammer Worm Vulnerability Direct propagation 376 MS-SQL 1434 (UDP) 26.01.2003 > 75000

[11]

Code Red Worm [11] Vulnerability Direct propagation 3569 HTTP 80 19.07.2001 > 350000

W32.Nimda.A {11} Vulnerability SMTP engine /Child 57344 DNS 53 (UDP) SMTP 18.09.2001 > 1000

Mass-mailing request 25, TFTP 69 HTTP

80, MS-DS 445 NET-
BIOS 137-139

W32.Mabezat. A [11] Mass-mailing SMTP engine 29366 DNS 53 (UDP) SMTP 11.12.2007 > 1000
25

W32.Areses. A 11} Mass-mailing SMTP engine - DNS 53 (UDP) SMTP 01.04.20086 > 1000
25

W32.Aprilcone. A Mass-mailing JMail open source 585728 DNS 53 SMTP 25 04,07.2005 > 1000

[11] software

W32.Netsky.D [11] Mass-mailing | SMTP engine 17424 DNS 53 (UDP) SMTP | 01.04.2004 > 1000
25

W32.Mydoom.A Mass-mailing | SMTP engine 22528 DNS 53 (UDP) SMTP | 26.01.2004 > 1000

[11] 25 listening 3127-3198

W32.Beagle. A [11] Mass-mailing SMTP engine 15872 DNS 53 (UDP) SMTP 19.01.2004 > 1000
25 listening on 6777

‘W32.Sobig.F [11] Mass-mailing | SMTP engine 72000 NTP 123 (UDP) UDP 19.08.2003 > 1000
8998

W32.Bugbear [11] Mass-mailing | SMTP engine 50688 DNS 53 (UDP) SMTP | 30.09.2002 > 1000
25 listening on 36794

W32.Gibe [11] Mass-mailing SMTP engine 122880 DNS 53 (UDP) SMTP 04.05.2002 > 1000
25

W32.Sircam [11] Mass-mailing SMTP engine 134000 DNS 53 (UDP) SMTP 17.07.2001 > 1000
25

W32.Klez.E [11]} Mass-mailing | SMTP engine 60000 DNS 53 (UDP) SMTP | 17.01.2001 > 1000
25

W97.Melissa.A {11} Mass-mailing { MAPI commands to | 134000 17.07.2001 > 1000

Table 1.1: A summary of some famous Internet worms [12]

[

1.2 Motivation

enough to capture all attack traffic of a certain type while at the same time specific enough
to avoid overlapping with the content of normal traffic in order to reduce false-positives.
This problem has so far been handled in an ad-hoc way based on human judgment. Third,
the defense system must be flexible enough to deal with the polymorphism [13,14] in the
attack traffic. Otherwise, worms may be programmed to deliberately modify themselves
each time they replicate and thus fool the defense system.

Because of their simplicity, the signature-based systems can operate in real time and
can detect all known worms. On the other hand, such systems are usually helpless against
zero-day worms for which the attack signature have not been identified at the time of the
attack.

Second generation of worm detection systems employ an additional anomaly based com-
ponent [15-17] that profiles the statistical features of the network traffic. Any deviation
from the normal profile will be treated as suspicious. Although these systems can detect
previously unknown attacks, they may have high false positives when the normal activities
are diverse and unpredictable. Moreover, while the majority of most known worms have
very aggressive behaviors because they attempt to infect the Internet in a short period of
time, and hence are easier to be detected because their aggressiveness stands out from the
background traffic, future worms may be modified to circumvent the rate-based defense sys-
tems and purposely slow down the propagation rate in order to compromise a vast number
of systems over the long run without being detected [18]. Thus the detection of zero-day
worms with very low scanning rates requires fundamentally new ideas.

Whyte et al. [19] have noted that while the majority of legitimate Internet services rely

1.2 Motivation

on the Domain Name System (DNS) to provide the translation between the alphanumeric
human memorizable host names and their corresponding IP addresses, worms typically
use numeric IP addresses to reach their target victims instead of domain names and hence
eliminate the need for DNS queries before new connections are established by worms. Hence,
the correlation of DNS queries with outgoing connections from the network can be utilized
for the detection of zero-day worms even if they have a very low scanning rate [19].

Similarly, modern mass-mailing worms employ their own SMTP engine to bypass local
mail servers security measures. However, they still rely on the DNS servers for locating
the respective mail servers of their intended victims. Creating host-based Mail eXchange
(MX) requests is a violation of the typical communication pattern because these requests
are supposed to only take place between mail servers and DNS servers [20)].

In this work, we implement an integrated system for the detection and mitigation of
zero-day scanning and mass-mailing worms. The detection engine of our system utilizes
the above mentioned DNS anomalies of the worm traffic. Once detected, the firewall rules
are automatically updated in order to isolate the infected host. An automatic alert is also
sent to the user of the infected machine. The system can be configured such that the user
response to this alert is used to undo the firewall updates and hence helps reduce the effect of
false alarms. The developed system has been tested with real worms in a controlled network
environment. The obtained experimental results confirm the soundness and effectiveness of

the developed system.

1.3 Thesis Overview

1.3 Thesis Overview

The rest of this thesis is organized as follows:

0 In Chapter 2, we review the generic structure of advanced Internet worms and the
common strategies they use to acquire new victims. We also discuss the main char-
acteristics of Internet worms and present some worm detection strategies. The basic
features of Internet worm, which can be used by detection algorithms are also dis-

cussed.

O In Chapter 3, we present the design of the developed worm detection system and

discuss some implementation details.

0 In Chapter 4, we describe our experimental setup and provide some analysis for our

experimental results

[In Chapter 5, conclusions as well as some future research directions are given.

CHAPTER 2

Background of Internet Worms

In this chapter, we review the generic structure of advanced Internet worms and the common
strategies they use to acquire new victims. We also discuss the main characteristics of
Internet worms and present some worm detection strategies. The basic features of Internet
worm, which can be used by detection algorithms are also discussed. For further details

about Internet worms, the reader is referred to [3,21].

2.1 Introduction

Over the past years, security researchers have done very extensive analysis to better under-
stand the behavior of Internet worms. Fach Internet worm has its own characteristic and
tactic té propagate and infect systems.

In the next section. we give a brief description of the structure of Internet worms. In
Section 2.3, we present a classification of common Internet worms. In Section 2.4, we provide
some characteristics of Internet worms, which explain the process of finding new victims as
well as the worm propagation process. In Section 2.5, we review some of the Internet worm

features that are used by worm detection systems for early detection of worm attacks. In

2.2 Worm Structure

Section 2.6, we give a classification of different worm detection systems. Finally, in Section
2.7, we discuss some of the related detection systems with short description for each one of

them.

2.2 Worm Structure

Internet worms are composed of several components, which collaborate together to achieve
the goal of the worm designer. Every worm contains two main components: the target
locator module and infection propagator module. Some other optional components such
as remote control, update interface, life-cycle manager, and payload routines can be used
according to the worm function during its life cycle. In what follows, we briefly describe

each one of these components.

2.2.1 Target Locator

Any Internet worm has to choose which platform to attack and target its associated vulner-
abilities. It also has to decide how to attack the victim machines and how to develop the
malicious network of the worm. The target locator component is responsible for spreading
the worm to other nodes and networks. Scanning worms find their victims by developing
techniques to scan the networks for nodes that might be vulnerable using fingerprinting
techniques.‘ Mass-mailing worms search inside victim system for next hop by collecting

email addresses and send themselves to these addresses.

10

2.2 Worm Structure

2.2.2 Infection Propagator

Transferring the worm from one point to another is the second main component in every
Internet worm. Using this component, worms gain entry to remote systems. After identi-
fying the target system, the worm has to follow a specific propagation strategy to spread
itself to its next victim. Emails, buffer overflow, string formatting, misconfigured systems,

file shares and network scanning are examples of worm propagation methods.

2.2.3 Communications and Control

Advanced worms can communicate with their malicious network by specific protocol to
strengthen and control both the spreading and infection mechanisms. These communication
channels can benefit the worms by updating the infection strategy during the worm life cycle,
retrieving some information from the victim machine, or receiving specific control messages

such as starting Distributed Denial of Service (DDoS) against several targets.

2.2.4 Life-Cycle Manager

Depending on the goals of the worm author, worms can operate and propagate in specific

periods of time. Many worms exploit the world with different variants in different periods.

2.2.5 Payload

Some worms are designed to achieve specific goals after compromising the system. One
of the famous goals is to utilize the compromised system network to cause DDoS for a
known target. The payload can also be a simple SMTP engine that is used for propagation

purposes in case of mass-mailing worms.

11

2.2 Worm Structure

2.2.6 Self-Tracking

This module is typically used by worm writers to gather more information about the dam-
ages that have been caused during the worm life cycle. Sometimes, it is also used to track

the speed of propagation and number of victims.

Target Locator

Self Tracking

Vo

Communications
and Control

Life Cycle
Manager

Vv

Infection Propagator |~

Figure 2.1: Structure of a typical Internet worm [3]

Fig. 2.1 shows the structure of a typical Internet worm. The attack component sends
information to the infection propagator component about where to start the attack. It also
sends this information to self-tracking and possibly using the communication and control

component. This communication component is also used as an interface to the command

12

2.3 Worm Classifications

component, calling for an attack or the use of the other capabilities against a target.

2.3 Worm Classifications

Internet worms can be classified into various categories depending on different criteria [3,21].

Internet
Worms
Vulnerability Mass- Mailing Instance Peer to Peer
worms worms Messages worms worms

Figure 2.2;: Worm classifications

2.3.1 Vulnerability Worms

Vulnerability worms are considered to be the traditional way of Internet worms to exploit the
networks. Worms can take advantage of security weaknesses through known vulnerabilities
to gain control over vulnerable machines. Vulnerable systems havé to be allocated by worms
using different scanning mechanisms. In this category, the target locator component relies
on the nature of the vulnerability and the scanning technique to choose the victims. After
acquiring the target machine for a specific vulnerability, worms start propagating themselves

and, at the same time, compromising targeted systems to use them for future attacks.

13

2.3 Worm Classifications

2.3.2 Mass-mailing Worms

Because of their popularity and daily usage by people and businesses, emails have become
perfect carriers for the Internet worms. Mass-mailing worms send themselves to email
addresses, which can be collected very easily from different sources in the public Internet.
This strategy adds more accuracy in the target locator component by using existing target
addresses, which can be found by different mechanisms. In the early stages of these kinds
of worms, email client side applications are necessary for the worm propagation through
the internet. Nowadays, mass-mailing worms are becoming stronger and more capable to
spread without the help of any host programs. In particular, these worms can spread very
fast and overcome the security patches of email client side applications by developing a tiny
Simple Mail Transfer Protocol (SMTP) engine inside the payload of the worm. After that,
the infected machines, communicate with other mail servers in order to send messages to
targeted email addresses. Mass-mailing worms may also use social engineering techniques
to mislead the victims to open their attachments in order to get infected. Then, they go to

the next victims according to their propagation strategy.

2.3.3 Instant Messaging Worms

The wide spread use of Instant Message (IM) networks have attracted the attention of
worm authors. IM worms utilized these environments to exploit victims in several ways
and worm authors have developed many strategies to get control of such systems. Text
messaging, voice chatting and file transferring are attractive applications that can facilitate

the propagation of internet worms in a very short period of time. These applications

14

2.3 Worm Classifications

work with different kinds of protocols depending on the service providers such as Yahoo,
Microsoft, and AOL. IM worms use many methods to exploit the systems. They can use
some disclosed Application Program Interfaces (APIs) from the vendors of these applications
to allow worms gain access to any resources inside these applications including the list of
email addresses and send any messages on behalf of the owners of the compromised systems.
Furthermore, IM worms can attract the victims by sending URL addresses that link to an
existing compromised system, which contains the payload of the worm in order to infect the
targeted machine. Moreover, IM worms can attach themselves to any messages that either

target victims over the network or infect any files during file transfer.

2.3.4 Peer to Peer Worms

Peer to Peer (P2P) networks are used to share files between network nodes using specific
communication protocols depending on the network design. Every node in the P2P network
can search and retrieve any file from different sources according to the protocol of that
network. P2P worms abuse the flexible P2P network infrastructure to accelerate speed of
propagation and infection. Such worms obtain information about target machines directly
from a list of nodes inside any sharing network. Within these networks, worms can infect any
files inside the shared folders that are accessible by other nodes. P2P worms have become
more efficient than any other kinds of worms because of the popularity of P2P networks
and their lack of protection. In addition, file exchanging makes this type of network an

ideal environment for worm propagation.

15

2.4 Worm Characteristics

2.4 Worm Characteristics

There are several characteristics that define Internet worms. These characteristics are

related to worm propagation, targeting victims, and spreading over the internet.

2.4.1 Scanning Mechanisms

The speed of propagation of Internet worms depends on the strength of its scanning algo-

rithm. In this section, we briefly discuss some of these techniques.

Random Scanning

The simplest way to find victims is to use random network scanning. When using this
approach, Internet worms start generating all the IP address bytes randomly using pseudo-
random number generator algorithms. Then, they probe each IP address to find out whether
it is vulnerable or not. After that, they start attacking the remote victim machine by
their infection component procedures. Worm authors try to design good random number
generators to gain better coverage in the global internet. Otherwise, some networks will
not be scanned totally and others will be covered more than once, which may affect the
worm propagation speed. Some worm authors resolve this issue by developing a technique
to check each target before the infection process takes place to see whether it has been
compromised previously or not. Usually, random scanning technique is the main mechanism
for worms to allocate new targets with different parameters and different pseudo-random

number generator algorithms [22].

16

2.4 Worm Characteristics

Sequential Scanning

Using this technique, the worm starts by a specific IP address and then scans sequentially
within specific domain for possible victims. Typically, the worm propagation is slower than
other approaches when using the sequential scanning approach and depends on the number
of vulnerable systems that can be hit in the early stages of the worm exploit. However,
some networks contain reasonable vulnerable systems that can speed up the propagation
time. Most worms combine this approach with other scanning strategies to overcome and

improve the propagation speed.

Local Scanning

One of the techniques to avoid firewall rules is localized scanning. Most probably, any
infected machine has a neighborhood system with the same vulnerability. Moreover, scan-
ning within specific subnet or adjacent networks can increase the propagation speed and

the infection process because of communication reliability, and network topology.

Subdividing Scanning

Divide and conquer strategy has been used to design one of the most efficient mechanisms
for worm scanning. This approach divides target network space in a hierarchical tree. Each
node is responsible for a specific division and part of targeted network. This scanning
technique can be combined with other approaches inside any single division, which allows

worms to spread very quickly and more efficiently.

17

2.4 Worm Characteristics
Hit-list

One of the most dangerous worm strategies is the hit-list approach. These worms contain a
list of information about certain number of vulnerable systems, which are generated before
launching the worm. This list is used to initiate the worm network in the first stages to
achieve most of the vulnerable systems in a short period of time. After reaching any target
in the list, the worm splits the targeted list into two different parts, and so on until it
finishes the entire list. At this point, the worm has a very good initial malicious network
that can be used to target the rest of the Internet. Then, the worm starts with another
scanning strategy to acquire more victims and vulnerable systems. When a worm contains
all the vulnerable victims and does not need to look for other victims, we call it a flash
worm. Worms from this category differ from each other in the way they collect their hit

lists and the type of vulnerability they are targeting.

2.4.2 Email Harvesting

Emails have been used to propagate Internet worms in a very efficient way. Mass-mailing
worms are not generating any random email addresses as scanning worms, but they collect
valid email addresses from different locations by various methods. We will discuss some

popular techniques of collecting email addresses, which are used by internet worms so far.

Address-Book

Most of the systems contain some address books to store peoples’ contact information along

with their emails. When the worm compromises any system, it parses any kind of address

18

2.4 Worm Characteristics

book to collect all the email addresses that are stored on it. Then, it becomes ready to start
its propagation and infection process to the new victims by sending itself to those email

addresses.

File Parsing

Inside any system, there are usually some files that contain email addresses inside it. Using
regular expression techniques, worms can dig inside specific files and look for email addresses
to add it to its targeted list. There are some files that have been targeted by many worms.

These files come with several extensions (e.g., HTML, PHP, ASP, WAB and TXT).

‘Web Searches

Another simple way to collect emails is to use public search engines to retrieve emails from
the Internet. This technique has proved to be very efficient in collecting a large number of

emails from different locations.

SMTP Access and Newsgroup

Some worms wait for the user to send any message, and then they forward themselves to
that address. When using this technique, the worm has to be able to deal with SMTP
commands in order to extract such emails from any SMTP communication or any other

email system protocols.

19

2.4 Worm Characteristics

Combined

Most of the worms use more than one technique at the same time to achieve an efficient

number of victim emails.

2.4.3 Payload Propagator

Each worm has different mechanisms to propagate the brain of the worm after compromising
the current system. In what follows, we review some of the common worm propagation

strategies.

Direct Propagation

The easiest way to send the payload to the compromised machine is to use the infection
communication channel, which is previously used for infection propagation. A worm prop-
agator has to setup a signal to initiate the propagation of the payload in the same channel
that has already been established at the infection process. Using this strategy, the worm
can guarantee that the payload is delivered to a new node in a safe way instead of estab-
lishing a new channel, which can be blocked by firewalls or detected by intrusion detection
systems. Moreover, this approach does not require any additional overhead on the two sides

of communication to initiate another channel for payload propagation.

Child Request Propagation

This technique for payload propagation depends on the new victim. When a new host gets
infected with the infection exploit, it tries to communicate back to the node that sends the

infection to retrieve the payload of the worm. Using this scenario, the propagator has to

20

2.5 Detection Features of Internet Worms

listen on a specific port to receive any signal from the new node, and then it starts the
propagation of the payload directly to that machine. From the worm writer’s perspective,
the only disadvantage of this technique is the possibility of blocking the connection request

by the firewall of the child node side.

Central Propagation

The third method of delivering worm payloads is using a third object, which contains the
worm payload. Every infected host has to download the payload from a central node that
is already configured by the worm author. One of the advantages of this technique is the
ability to update and track all the victims in every single moment throughout the worm life
cycle. However, this method can be easily detected by intrusion detection systems because

of the large number of connections that go to the central node.

2.5 Detection Features of Internet Worms

In this section, we discuss some basic features of Internet worms, which can be used by
worm detection algorithms. We only focus on the systems that depend on analyzing the
worm network traffic and not on the contents of any worms.

As mentioned earlier in this chapter, Internet worms can be classified based on the service
environment and software that are used during worm propagation. For each category, there
are some characteristics that can be used for detection purposes. These worm features are
used as parameters for designing new algorithms to fight against worm propagation. In this

section, we list some of the features of vulnerability and mass-mailing worms.

21

2.5 Detection Features of Internet Worms

2.5.1 Detection Features of Vulnerability Worms

The most common features of the vulnerability worms are the traffic that is generated from
the infected system. From this feature, we can derive several parameters for detection,
depending on the environment and the network design of the detection system. Some
features of the known network worms that are used by most of the detection systems as

parameters are discussed below.

Connection Degree

The connection degree of a given host is a measure of the number of connection requests
generated by this host in a given time frame to different IPs. A normal host does not acquire
many new connections in a specific time period to different destinations. On the other hand,
an infected host usually sends many connection requests, which indicates the presence of
worm activities from that node. Internet worms start communicating with many remote
hosts at the same time by several protocols in order to allocate vulnerable machines. In this
scenario, we have to keep track of all the connections for each single host and manage the
ending sessions for each one of them, in order to determine the number of active connections
at any time. When the number of active connections exceed specific limit, then it might be

an indication of malicious activities from that host [23].

Failed Connections

One of the main characteristics of worms is that they behave in a different manner than
legitimate hosts. Random scanning worms. probe many IP addresses, which either belong

to the black area of the IP space or even -do not support the requested services. Internet

22

2.5 Detection Features of Internet Worms

worms try to connect to any remote hosts that are chosen by a target locator component
and wait for connection response, connection reset, destination unreachable, or no response
at all. Observing a reasonable amount of packets that indicate failed connections (e.g.,

destination unreachable) can be considered as a sign of worm propagation {24].

Vertical Scanning

Internet worms look for vulnerable systems before attacking. As a result, a worm tries
to scan the Internet space for these machines by generating random IP addresses or any
different strategy for allocating the victims. These kinds of activities are common in most of
the Internet worms. This process takes a long time to allocate victims and happens many
times from the infected machine. Finding victims in the Internet space may be referred
to as horizontal scanning and checking the services in a specific machine is called vertical

scanning. Large number of vertical scans can be considered as a sign of worm propagation.

Sending the Same UDP Packets

When Internet worms use UDP protocol for propagation, packets sent by worms usually
have the same size. Worms try to keep the packets so simple and small to speed up the
propagation process. Thus observing a large number of similar packets targeting a specific

service on many remote hosts is another good sign of worm propagation.

23

2.6 Classification of Worm Detection Systems

2.5.2 Detection Features of Mass-mailing Worms

Under normal situations, any host sends limited number of emails in a specific time. How-
ever, mass-mailing worms try to send as many emails as they can to speed up the propaga-
tion and increase the infection damage. Based on this observation, we can detect malicious
emails, and consequently mass-mailing worms, by tracking all the emails that have been

sent by a specific host in a short interval of time.

2.6 Classification of Worm Detection Systems

Worm detection. Systems can be classified in many different ways. The most common
classification is based on whether the worm identification decision is based on individual
packets or the whole connection [12].

When using packet-oriented systems, the detection algorithm checks every packet and
does the attack analysis on the basis of each packet, i.e., packets are not considered as
a complete connection session, but individual packets are treated independently instead.
The packet matching process can either be a deterministic, in which case arriving packets
are compared to packets stored in a database, or statistical, in which case packet flow is
statistically analyzed.

For connection-oriented systems, the detection methods interpret packets as part of a
connection and base their analysis on the connections as a whole. The number of failed
connection attempts as well as the connection rate can be counted and compared to a

threshold. Exceeding this threshold indicates an attack.

24

2.7 Examples of Worm Detection and Mitigation Systems

2.7 Examples of Worm Detection and Mitigation Systems

The Network Security Monitor (NSM) was one of the first detection tools documented in
the literature. NMS is based on the connection counter algorithm [25]. The open source
network intrusion detection system Snort [26] offers the possibility to use this algorithm
too.

The initial proposal that was based on the number of failed connections for the algorithm
was published [24]. Several tools have been developed based on this algorithm. Bro is
a Unix-based Network Intrusion Detection System [27] developed at Lawrence Berkeley
National Laboratory [28] and it is one of the tools, which offer the possibility to use this
algorithm. Credit-based Connection Rate Limiting (CBCRL) was developed in cooperation
with experts from the MIT and Harvard University in Cambridge [29] and is based on the
same algorithm. This method which is based on the observation that infected hosts try to
connect with many unreachable hosts. The number of failed connection attempts during
a certain time period is counted and compared to a threshold. The CBCRL describes
a solution in which each host has its own contingent of available connections credits. A
successful connection attempt will extend the host’s credits. Whereas, a failed attempt
will decrease the nqmber of allowed connections for the concerning host. In addition, it is
necessary to prevent a host from acquiring too large number of credits.

The Virus throttling algorithm [30] is based on the connection degree. This algorithm
is basicauy a rate limiting mechanism. It uses specific parameters to restrict the host level
contact rates to remote hosts. This algorithm works by keeping a working set of addresses for

each host, which models the normal contact behavior of the host. The throttling mechanism

2.7 Examples of Worm Detection and Mitigation Systems

permits outgoing connections for addresses in the working set, but delays other packets by
placing them in a delay queue. If the delay queue is full, further packets are simply dropped
and an alarm indicating a worm propagation attempt is generated [24]. The same strategy
was applied to mass-mailing worms [30] and IM worms when we check the type of messages
that are used by IM programs such as text messages, URL links, and file transfer. Another
technique was proposed in [31]. It only monitors the URL links and file transfers.

Another approach to mitigate the effect of worms and hackers is the use of honeypots.
A honeypot can be defined as a vulnerable network used for several purposes such as dis-
tracting attackers, gathering early warnings about new attack techniques, and facilitating
in-depth analysis of an adversary’s strategies [32]. The idea of using honeypots are to
capture and analyze a worm's behavior has been tackled by many researchers [33]. The
honeynet project uses a network of high-interaction honeypots over a DSL connection and
managed to capture various worms in action. Analyzing network traffic and the honeypot’s
state have produced detailed descriptions of worms’ behavior. Honey pots are also used
to slow down worms that employ IP address space scanning by keeping TCP connections
open for an indefinite period of time. This approach proved to be useful on delaying the
propagation of a worm, but it would be useless in the case of a UDP worm such as Slammer
worm. The honeypots are highly-interactive and run real versions of popular applications
to protect from malicious attacks. To avoid the compromise of the honeypots, the applica-
tions should run on either a sandboxed environment or a high performance virtual machine.
They are also monitored for illegal behavior, and when such behavior is detected, the se-

curity hole that caused the malicious activity is located and then a patch is automatically

26

2.8 Example for Real Worms

generated and distributed through a software update service. Such active measures cannot
be always trusted; an automatically generated patch could harm the system rather than

protect it and leaves the opportunity for hackers to exploit the system.

2.8 Example for Real Worms

In what follows, we give a brief description of the three Internet worms that are used in our

experiments

2.8.1 Blaster.A

The Blaster worm [11] has first been discovered on August 11th, 2003. It has infected
between 200,000 and 8,000,000 hosts, running Windows 2000 or Windows XP operating
systems.

Target Locator strategy: The target IP addresses are generated in the following manner;
with a probability of 60%, the first three bytes of the address is chosen completely randomly
and the fourth byte is set to zero. With 40% probability, it chooses the first two bytes of
the local address, the third byte is also taken from the local address, but if it is greater than
20, a random number from 0 to 19 is subtracted from it and the last byte is set to zero. The
worm will then increment the last byte of the IP address by one until it reaches 254 and
will try to infect all the hosts located at these addresses. Propagation Mechanism: During
the initialization phase, the worm writes registry entries and creates the IP addresses as
described above. Afterward, it tries to set up a TCP connection on port 135 (Windows

RPC port). Blaster worm scans blocks of 20 sequential IP addresses by sending a connection

27

2.8 Example for Real Worms

attempt to each one simultaneously [34]. After two seconds, Blaster tries to send the code
exploiting the RPC vulnerability to the hosts where a TCP connection successfully could
be established. If the code is successfully transmitted and the victim is vulnerable, it causes
a command shell to be bounded to port 4444 on the infected target. This shell is used to
send commands to the victim machine (e.g. starts a TFTP client). The transmission of the

worm code is finally done using TFTP running on UDP port 69.

2.8.2 Sasser.B

Similar to Blaster, the Sasser worm is classified as a vulnerability worm, which targets
systems for specific common security vulnerabilities. The Sasser worm has been discovered
on May 1st, 2004. It exploits the Local Security Authority Subsystem Service (LSASS)
vulnerability, which offers the possibility to execute arbitrary code on the target host over
the Internet. Target Locator strategy: To choose the next IP addresses, which are targeted
for worm infection, the worm retrieves the local IP address of the compromised host and
ignores a prespecified list of addresses [11]. The local IP address is then used as the base of
selecting all the new victim IP addresses. With a probability of 25%, the last two octets of
the IP address are changed to random numbers. With a probability of 23%, the last three
octets of the IP address are changed to random numbers and with a probability of 52%,
the IP address is completely random. Propagation Mechanism: The worm first connects
to the chosen IP addresses on TCP port 445 to check if the remote computer is online.
If a connection can be established, it sends a sequence of Server Message Block (SMB)
packets in order to retrieve the host’s SMB banner, which gives a hint of the Windows

system version [35]. If the worm could establish this TCP connection, it sends shell codes

28

2.8 Example for Real Worms

to the target machine, which may cause it to open a remote shell on TCP port 9996. As
a result, the victim opens an FTP connection to the attacking machine on TCP port 5554
to download the worm. The worm tries to infect 128 hosts in parallel, which results in a

heavy decrease of the performance of the infected hosts.

2.8.3 Netsky.D

Netsky is a mass-mailing worm, which has been observed in over 30 variants. The variant D
was first discovered on April 1st, 2004 and is the first variant of Netsky, which has infected
more than 1000 hosts. This worm uses its own SMTP engine to propagate and uses different
subjects, bodies, and attachment names. The attachment always has a .pif file extension.
Target Locator strategy: The worm sends itself to email recipients and therefore does
not need any IP addresses. The worm scans files with certain file extensions on drives C
to Z to collect email addresses. Propagation Mechanism: Netsky.D sends itself (using its
own SMTP engine) to each email address found. The worm uses the DNS server configured
locally, if available, to perform an MX lookup for the recipient address. If the local DNS
fails, it will perform the lookup from a list of hard-coded servers [11]. Therefore, a DNS
lookup can be observed and then the SMTP connection based on TCP port 25 will be

initiated.

29

CHAPTER 3

The Proposed System

In this chapter, we describe the details of the implemented worm detection and mitigation
system. This chapter is organized as follows. In the next section, we explain how the corre-
lation of Domain Name System (DNS) queries with outgoing connections from the network
can be utilized for the detection zero-day scanning worms and mass-mailing worms; an ob-
servation that has been previously noted by other security researchers [19,20,36]. In section
3.2, we present the main components of our system and explain the details of the worm
detection and mitigation process, including the firewall updates and user notification pro-
cesses. Finally, some snapshots of the system graphical user interface (GUI) are presented

in section 3.3.

3.1 DNS Anomalies of Worms

A typical user usually uses human readable domain names for accessing various services on
the Internet. These domain names have to be translated to its associated IP addresses before
initiating any communication. A DNS server is the designated network authority responsible

for this address mapping. RFC 1035 [37], describes the process of message exchange between

30

3.1 DNS Anomalies of Worms

the DNS server and a network node. This process is initiated once a network node requests
DNS service for domain name lookup. In response to that request, the DNS responds by
sending a DNS response message, which contains a complete description of the domain
name stored in the DNS server database from which the lookup has been requested. Once
the DNS response message is received, the requesting host retrieves the desired IP address
and then starts its communication with its target host using the retrieved IP address.

On the other hand, scanning worms do not contact DNS servers for domain name
mapping. Instead, to locate their victims, these worms generate IP addresses directly by
themselves without consulting any DNS server. Thus, and as noted in [19], the presence of
new connection requests that are not preceded by DNS queries can be considered as a sign
of worm infection.

It should be noted, however, that there are other legitimate connections that can be
initiated by any host without any prior DNS queries. Among the available application
protocols, there are some that can carry embedded IP addresses inside their contents. HTTP
is one such protocol that may contain hard coded IP addresses, and URLs that may point
to other web servers to retrieve some pictures for performance purposes. VolP and instance
messages protocols may also use many embedded IP addresses for allocating voice relay
servers. These embedded IP addresses has to be extracted and their associated connections
have to be identified as legitimate. This implies that every network packet has to be parsed
to retrieve theses embedded IP addresses. Once extracted, they are added to the safe list.
Also, the IP addresses of servers that are running inside the local network are added to

this safe list. Moreover, connection initiated by any type of applications that use hard

31

3.1 DNS Anomalies of Worms

coded or preconfigured IP addresses inside their configuration files are declared as legal and
such addresses are also added to the white list. In addition, IP addresses, which can be
categorized as public allocated address space and reserved IP addresses are used publicly
over the Internet as well as within local networks for broadcasting and multicasting are also
stored white list of our system.

Fig. 3.1 illustrates the difference in the communication steps followed by a normal user
and a scanning worm when initiating a new connection.

Similarly, the procedure used by mass-mailing worms to deliver their malicious emails is
different from the normal procedure followed by the normal email communication protocol.
Normally, each host that wants to send an email has to communicate with the mail server
responsible for delivering emails to its intended recipients. Mail servers in turn communicate
with DNS servers for determining the target recipient email servers. A special type of
communications has to take place between the mail server and the DNS server. Mail server
has to initiate Mail eXchange DNS query (MX query), which contains the Fully Qualified
Domain Name (FQDN). Afterwards the mail server sends this query to the DNS server in
order to retrieve the IP address of the mail server that is responsible for the target host mail
box. Then, the mail server starts communicating with the remote mail server to deliver the
email.

In contrast to the above procedure of normal email delivery, mass-mailing worms usu-
ally use its own SMTP-engines to bypass local email servers security measures. However,

they still rely on the DNS servers for locating the respective mail servers of their intended

32

3.1 DNS Anomalies of Worms

uninfected host behavior

infected host behavior

O

DNS Server

TN
~.

ninfected host behavior e
\\“\ \,‘—-_")
A

- iv————uninfected host behavior ———

T I
3 o
2o >
S ©
& c
£ o
o o
D -
—— w
5 o
e £

o
T 0

8
L 3
S &
€ £
£ €

3

Computer host

Figure 3.1: DNS anomalies of scanning worms

victims. Creating host-based MX requests is a violation of the typical communication pat-
tern because these requests are supposed to only take place between mail servers and DNS
servers [37,38]. Fig. 3.2 illustrates the difference in the communication steps followed by

both the normal host and infected hosts.

33

3.2 System Modules

Q uninfected host behavior

uninfected host behavior

DNS Server

T

g

Infected host behavior

-
2
>
[
=
[
a
B
o
[3]8
°
9
5]
@
s
c

Sl —

infected host behavior

uninfected host behavior

Computer host

Figure 3.2: DNS anomalies of mass-mailing worms

3.2 System Modules

:‘ infected host behavior

= |d—uninfected host behavior -—-—1

|===yninfected host behavior ~® o

©

Mail Server

et

Fig. 3.3 shows the five main components of our worm detection and mitigation system.

In this section, we explain the main functionality of each one of these components and

illustrate its interaction with the other components.

34

3.2 System Modules

A A
I R e
k4
I’ \‘\

’ \
/4 \
[} 1
] 1
] 1
] []
] I
1 i
] 1
1 ‘Warning Firewall _ !

i] i

! Center Updater | | i
i i
i]
i 1
i]
i]
1]
1]
]]
i1 i
] i
]]
I 1
] i
]
1 i
] 1]
i -]
‘\‘ DNS Anomalies Analyzer ,,'
\\ | /l

\
‘\~~~ _o”,'

Figure 3.3: Main components of the proposed system
Traffic Sniffing Module

The main objective of this module is to capture all the local area network (LAN) traffic
and log it, in real time, to the detection system database. In our implementation, we used
Snort [26] Network Intrusion Detection System (NIDS) for implementing this module. By
configuring Snort in the sniffing mode, we are able to collect all the network packets and

log them, using libpcap, into TCP dump [39] file format.

35

3.2 System Modules

Database Module

In order to have a scalable and flexible packet analysis module, the sniffed LAN traffic is
stored inside a database. We used the database design schema of Snort system to interact
with the collected network traffic. This provides an efficient representation of network
traffic and helps us to analyze the stored data efficiently. The stored database tables are

then managed using MySQL [40] open source Database Management System (DBMS).

DNS Anomalies Analysis Module

This component presents the core of the detection system. By analyzing the sniffed network
packets stored in the database, the presence of worms can be detected by checking for any
DNS anomély as described above. Following the same architecture proposed in [19], this
module has been decomposed into two components that collaborate together to perform
the process of detection and analysis of network traffic: Packet Processing Unit (PPU) and
DNS Correlation Unit (DCU).

The PPU is responsible for translating the logged network traffic into useful information
and formulating it into specific data structure that would be used by DCU. This unit is
connected to the database to retrieve and store the processed information. In particular,
the PPU has two main functions: building a local DNS cache, and extracting embedded
IP addresses. Local DNS caches can be built by parsing all the DNS protocol packets that
come through TCP [41] and UDP [42] connections using port 53. Each DNS cache candidate
consists of 4 tuples including source IP address of the DNS record, the domain name that

is mentioned in the request, the reply of the query, and the Time To Live (TTL) attribute

36

3.2 System Modules

‘ Start >

Log network traffic
[Sniffer]

Extract DNS activities
[PPE]

Extract Embedded IP addresses
[PPE]

Figure 3.4: Network traffic management flow chart

that indicates when we have to discard the current DNS record. The process of extracting
embedded IP addresses is achieved by applying regular expressions functions [43] to each
packet payload in order to match and retrieve any numeric IP address representation within
a string. The general usage of regular expression scripting language is fo match and grip
any specific string from text. Fig.3.5 shows an example for a regular expression that can
be used to extract both the IP and reverse IP addresses, respectively. Finally, we log all
the captured embedded IP addresses in the database along with the whole packet header
information for further processing. The above process is illustrated in Fig.3.4.

The DCU is responsible for validating each new connection to check whether it is le-
gitimate 61‘ not. It takes the PPU processed information, which is the DNS cache list,

the embedded IP addresses list, and the white list. Then, it retrieves every new network

37

3.2 System Modules

(25[0-5]12[0-4][0-97|[01]2[0-9][0-9]?).(25[0-5]12[0-4][0-9]][01]?[0-9][0-9])
(25[0-5]|2[0-4][0-9]][01]?[0-9][0-9]2).(25[0-5][2[0-4][0-9]|[01]2[0-9][0-9]?)

([0-5]252|[0-9]2[0-4125][0-9]2[0-9]2[2]|[0-912[0-9][01]1?)

([0-5]252/[0-912[0-4]?5][0-9]2[0-9]2[2])[0-912[0-9][01]?)
([0-5]252/[0-9]2[0-4]?5/[0-9]2[0-9]7[2]|[0-9]2[0-9][01]?)
([0-5]752|[0-9]2[0-4]25][0-9]2[0-9]2[2]I[0-9]2[0-9][01]?)

Figure 3.5: An example for regular expression to match IP addresses

>connection from the database. For instance, SYN packets are considered as the new con-
nection for the TCP protocol while each UDP packet or echo message is treated as a new
connection. After that, it compares the source and the destination IP addresses with every
single entry inside all the legitimate lists: DNS cache, embedded IP addresses, and white
list. Using the source and the destination IPs, the DCU tries to find any DNS query that is
originated from the source IP address and extract the destination IP address from the DNS
answer to that query. Then, it checks whether the source or the destination IP addresses
are contained inside the embedded IP address list. After this, it checks for any exception
in the white list by finding the source or the destination IP addresses inside the white list.
During these steps, if any matching entry is found, the DCU skips the current connection
and starts analyzing subsequent new connection requests. Otherwise, the DCU identifies
this connection as illegitimate connection request and adds it to the malicious activities list.
Furthermore, the DCU module sends a request to the firewall management center to block
this connection. It also sends another request to the warning center to notify the user of
the infected host. New alarms resﬁlting from the same suspicious connection are not sent

again to the end-user, i.e., every suspicious connection results only in one alarm sent to the

38

3.2 System Modules

end-user.

The time expiration information that is stored inside the DNS cache is also maintained
by DCU. Usually, the DNS resolver has to manage and flush out the expired DNS records
that are locally maintained inside the host machine. However, we have designed our system
to flush the expired DNS entries at the end of each day. This is done because there is a
high possibility that the system may initiate new connections even after the expiration of
the DNS record that was supposed to validate that particular connection.

Similarly, the DCU identifies hosts infected by mass-mailing worms by looking for any
MX queries that initiated from hosts, which are not authorized to issue these kinds of
queries. The firewall update and the end-user notification procedures are identical to the

process above.

Warning Center

This module is responsible for alerting end-users about any suspicious activities that orig-
inate from their systems. When using our worm detection system, an additional software
component is installed on each end-user host. The warning system interacts with these
software components using UDP protocol (using port 1055 on the end-user side and port
1055 on the worm detection machine).

Whenever a connection is flagged as suspicious by the worm detection system, the
warning system extraét the source IP address and port number, the destination IP address
and the port number, protocol, and the timestamp of this connection. Then the warning
center checks the history of notification messages for the same connection. Only connections

that do not have records within the notification history generate new alarms.

39

3.2 System Modules

‘ Start ’

Extract new connection request
[PPE)

YES Is this
connection
legitimate?

{ocu]

Update malicious activity list
[DCU]

Is this connection
allowed by the
user?
[Warning Center]

Is this connection
blocked before?
[Firewall Updater]

Update the firewall
[Firewall Updater]

Undo the firewall changes Notify the source of connection
[Firewall Updater } [Warning Center}

Figure 3.6: Vulnerability worm detection flow chart

40

3.2 System Modules

Start
N

Extract new MX request

Is this request
from
authorized
server?

{pcu]

Update malicious activity list
[DCU]

NO

is this connection
allowed by the
user?
[Warning Center]

Is this connection
blocked before?
[Firewall Updater }

YES

Update the firewall
[Firewall Updater]

Undo the firewall changes Notify the source of connection
[Firewall Updater] [Warning Center]

Figure 3.7: Mass-mailing worm detection flow chart

41

3.2 System Modules

Development and Production Environment Description License
Development Platform Windows XP Licensed
Development Tool (java) NetBeans 5.5 Free
Database Server MySQL Free
Programming Language Java Free
DNS Server Microsoft Windows Server 2003 Licensed
Router and Firewall System Fedora core 4 Free

Table 3.1: Detection system development environment
Firewall Updater

The objective of this component is to automatically mitigate the effect of worms by isolating
the infected machines (or subnets). Whenever a connection is flagged as malicious, the fire-
wall is automatically updated to block all future connections originating from the suspected
host. The firewall updater module is connected by Secure Shell (SSH) protocol [44] directly
to the firewall system and is responsible for updating the IP table rules. The system can be
configured such that the user response to the alert sent by the warning center can be used
to undo the firewall updates and hence helps reduce the effect of false alarms.

Table 3.1 lists the development environment for each component in our detection system
design and implementation. The main factor behind our choice is to use open source
solutions to facilitate any further extensions.

Fig.3.6 shows the interaction between the various system components during the scan-
ning worm detection process. Similarly, Fig.3.7 shows the corresponding process for mass-

mailing worms.

42

3.3 Graphical User Interface

3.3 Graphical User Interface

In this section, we briefly describe the Graphical User Interface (GUI) of our proposed
system. One interface is used on the detection machine that is managed by the system ad-
ministrator and the other one is installed on individual LAN hosts that is use for interaction
with the end-user.

Fig. 3.8 shows a snapshot of the main screen of the detection system. Fig. 3.9 shows a
snapshot of the white list management screen. Similarly, Fig. 3.10 shows a snapshot of the

warning center screen.

8% woRM Detectiom System (WDS) e Loy
File. e System White List- Help

DNS D FQDN Mail Server Deslingdion 1P Time
11DF wanwick ac uk wanwitk. ac.uk null 2008-01-23 15:40:04.01 »
11DF watwick.at uk warwick.ag uk nutl 2008-01-23 15:40.04.0
11DF warwick.ac.uk wanwick. ac.uk null 2008-01-23 15:40:04.0
11DF hotadeck f3.co.uk Mo Syth Name it 2008-01-2812:54:06.0
110F holodeckf8.co.uk N Sych Name nuil 2008-01-2812:54:06.0
11DF halodeckf9.c0 uk Mo Such MName- nuit 2008-01-28 12:54:05.0
11DF wWanyick.ac.uk wanmick ac.yk null 2008-01-2812:64:05.0
11DF warwick ac uk warick.ac uk niu 2008-01-2315:40:06.04..
11DF warwick ac.uk warwick ac.uk nutl 2008-01-23 15:40:05.0
11DF warwickac. bk wanick ag.uk null 2008-01-23 16:40:06.01_
[1 2 — hplogeckiB.eo.uk Mo Sush Name ol 2008:01:28.1.2. 5405047
List of all packets withotr DNS Queries;
:;m%ﬁgz?? P i, BourePort | Destination|P | DestinafionPort [Protocol . TN e
192168.1.4 4359 192.199.83.6 445 TCP 2008-01-23 15;
182116815 4360 12.37:242.108 445 TCP 2008-01-23 153,
182168.1.5 4361 192,168,358 445 TCP 2008-01-23 153
182.168,1.5 4363 182.168.178.177 1445 TCP 2008-01-23 15:3..

i 1921881 % 4364 192.188.4 184 445 TCP 2008-01-23 15:3,.,
i 1192.168.1.5 4369 86.203.1.69 445 TCP 2008-01-22 15

192.168.1.5 4367 192.168.190.94 1445 TCP 2008-01-23 153,
Li192.168.1.8 4363 182.46.210.35 445 TCFP 2008-01-2315:3..
- 19218815 4369 182 66.246.15 445 TCP 2008-01-23158:3...

192.168.1.5 4370 192188111153 1448 TCP 2008-01-23 15:3..
182168.1.8° 4371 21:39.75.198 445 TCP 2008-01-23 15:3...
182.168.1.5 4381 182.1568.3.56 445 TCP 2008-01-23 153,
1921881 5 4363 192.188.178.177 445 TCP 2008-01-22315:2.
192.168.1.8 4364 182.168.4184 445 TCP 2008-01:2315:3..

19216815 4385 569041768 445 TR 2008-01-23 153 v

Figure 3.8: Main screen of the detection system

43

3.3 Graphical User Interface

White List Managment :

~White List Managment

Enter any IP Adddress that you want to add to the white list;

o 192.168.2.2 o

155 0 M s NN s H ey ;W'_Wjimj 192.168.1.255

 Description: 192.168.1.3 =

- : 239.255.255.250

255.256.255.256 |

: 192.168.1.1
169.254.218.76
169.254.255.255
207.46.26.254 .

Changes. } | Remove | |207.46.26.253 -

Figure 3.9: White list management screen

44

3.3 Graphical User Interface

¥ message | rom Worm Detection System

Do yéf; want t black or allow further packets related ko this corinection?

| Destination IP - . . Destination Port : Source Port ! Protocol - - | Time Mumber of Pac...
©1143,169,49,35 135 2429 TCP 2008-01-24 04:0... {3
143.169.49.246 1135 2430 TCP 2008-01-24 04;0,.. 13
I 143.169.49.247 135 2431 TCP 2008-01-24 04:0.., 3
1143.169.49,248 135 2432 TCP 2008-01-24 04:0.., 3
IBE . ‘ ' $o0400, 5
143,169.49.250 {135 -2404:0.., 3
143.169.49.251 135 2435 TCP 2008-01-24 04:0.., 3
143.169.49.32 135 2426 TCP 2008-01-24 04:0.., 2
143.169.49.33 135 2427 TCP 2008-01-24 04:0.., 2
143.169.49.34 135 2428 TCP 2008-01-24 04:0.., 2
“packet Information :
- ‘Destination IP : 143,169.49.249 Destination 1P : 135
rotocol 1 TCP Source 1P~ 12433

Time: E +:2008-01-24 04:02:32.0

[Lton]|

Figure 3.10: Warning center screen

45

ICHAPTER 4

Experimental Results

In this chapter we describe the network setup used to carry out our experiments. We also
provide a summary of our experimental results together with some analysis for the obtained

results.

4.1 Objectives

In order to test the effectiveness of our proposed system, we carried out two sets of exper-
iments. The objective of the first set of experiments, which was carried out without any
real worms, is to identify the causes of false positive ! alarms. i.e., the cases in which a
legitimate user connection is identified by the worm detection system as being generated
by a worm.

The objective of the second set of experiments, which was conducted using some real
worms in a controlled network setup, is to test the robustness of the overall system. In other
words, we want to verify that the developed detection system, including both the automatic

firewall updater and warning center, cannot be over run by the scanning speed of modern

'In general, a false positive denotes the case when a non-match is declared to be a match.

46

4.2 Network Setup

Internet worms. It should be noted that our system decision is based on deterministic

observations. Hence, by design, false negatives do not exist?

4.2 Network Setup

University Network

b
t’é Firewal!

DNS Server

Detection Machine Router

Desktop Machines

Figure 4.1: Experimental network setup

Fig.4.1 shows the network setup used throughout the first set of our experiments. It
consists of two different network segments that are separated by a network router. In the
first segment, as shown in the lower part of the figure, we have a set of seven desktop

computers® that are linked together by an Ethernet hub. Our detection system is part of

2A false negative denotes the case when system should have generated an alarm but did not exist.

3These computers are the normal workstations used by graduate students, in the Cryptography and
Data Security laboratory at Concordia Institute for Information Systems Engineering, to carry out their
daily research activities.

47

4.3 Experimental Results

this segment. On the other side, we have the DNS server, which is configured to function
as a local DNS for the first segment. The LAN and the DNS server are connected to
the university network via a firewall. The firewall is configured using Linux system for
controlling the outgoing and incoming data flow. Our test network is then connected to the
Internet through the university network.

The detection machine, which runs the DNS analysis engine, continuously monitors all
the traffic that is generated or received by any local system within the test network. The
DNS server is responsible for providing the DNS services for all systems inside the LAN.
The firewall system is a configurable software program that is implemented inside a Linux
system, which can be controlled remotely by our detection system in such a way that allows
new rules to be added and the existing ones to be modified dynamically.

Fig.4.2 shows the network setup used throughout the second set of our experiments.
Similar to the first network setup, it consists of two different network segments that are
separated by a network router. In the first segment, as shown in the lower part of the
figure, we have a set of three desktop computers infected by three Internet worm; two of
them are scanning worms (Sasser [11] and Blaster [11]), and the third one is a mass-mailing
worm (Netsky [11]). The firewall is configured to block all the traffic originating from these

infected machines. .

4.3 Experimental Results

In the first phase of our experiment, we run our system for 17 days without interruption.

Before starting the experiment, all the laboratory machines were restarted and the DNS

48

4.3 Experimental Results

University Network

Firewall

DNS Server

Detection Machine Router

Sasser Blaster NetSky
worm propagator worm propagator worm propagator

Figure 4.2: Experimental network setup

cache list within every system was flushed to make sure that no DNS queries have been
resolved before starting the experiment.

Fig.4.3 shows the total number of new connections that originate from the work stations
during the 17 day interval where all connections with the same target IP address were
counted once. If a connection with a given target IP address was observed in a given day,

it is not counted again if it was observed in any of the subsequent days.

49

4.3 Experimental Results

450
400
350
300
250
200
150
100

Number of New IP Addresses

Figure 4.3: New observed unique IP addresses

50

4.3 Experimental Results

IP Address Purpose |
1 192.168.2.2 local DNS server
2 192.168.1.3 Detection Machine
3 192.168.1.1 Default Gateway
4 207.46.26.254 Echo server of Microsoft Windows
5 207.46.26.253 Echo server of Microsoft Windows
6 207.46.130.100 Time Server
7 132.205.100.1 Concordia Network Server
8 132.205.100.255 Concordia Network Server
9 132.205.109.158 Concordia Network Server
10 132.205.15.77 Concordia Network Server
11 132.205.15.82 Concordia Network Server
12 132.205.2.245 Concordia Network Server
13 132.205.222.120 Concordia Network Server
14 132.205.7.51 Concordia Network Server
15 132.205.7.60 Concordia Network Server
16 132.205.96.48 Concordia Network Server
17 132.205.96.93 Concordia Network Server
18 132.205.96.94 Concordia Network Server

Table 4.1: White list entries

corresponding to IP addresses of network services

i [TP Address | Purpose i
1 169.254.0.0/16 link local
2 255.255.255.255 Broadcasting
3 239.255.255.250 Multi Casting
4 192.168.1.255 Broadcasting

Table 4.2: White list entries corresponding to Internet assigned network addresses

Table. 4.1 illustrates all the services that have been recorded in our white list.

Table. 4.2 lists all the observed assigned IP addresses that were obtained during our

training period and added to our white list.

Fig.4.4 shows the total number of alerts generated by our system during this interval.

51

4.3 Experimental Results

Alerts

Figure 4.4: Total number of alerts generated by the detection system

52

4.3 Experimental Results

Fig.4.5 shows the number of alerts that would have been generated if the white list is

excluded from the detection process.

25

20

Alerts

with all factors

—&— without white list

Figure 4.5: Detection system alerts without white list

Fig.4.6 shows the number of alerts that would have been generated if the HI'TP em-

bedded IP address list is excluded from the detection process.

53

4.3 Experimental Results

30
25
20

15

Alerts

10

(2]

—&— without HTTP embedded IP — with all factors

Figure 4.6: Detection system alerts without HTTP embedded IP addresses

Similarly, Fig.4.7 shows the corresponding alarms if the TCP and UDP embedded IP

addresses are excluded from the decision process.

4.3 Experimental Results

[
t
2
<
6
4
2
0
S T T S S S, S
O O O Q) O O) Q) O O
Q N Q N W N W) N) O
“9\"& ‘b\\"l' \,\Q \&‘» \b\q, @0 \Q\ '@‘1» \&W
Y@ AR A AT AN
Days

—&— without TCP & UDP embedded IP - with all factors

Figure 4.7: Detection system alerts without TCP and UDP embedded IP addresses

55

4.3 Experimental Results

White list | Embedded UDP/TCP IP addresses | Embedded HTTP IP addresses
52 28 42
Table 4.3: Total number of eliminated alerts
" Day Sasser Blaster NetSky
1 41160 36213 58451
2 41140 38531 60774
3 41150 37411 59390
4 41150 35759 59152

Table 4.4: Number of scans and MX queries generated by the infected machines

Table 4.3 shows a summary for the total number of alerts that were eliminated due to

the white list, embedded IP UDP/TCP IP addresses, and embedded HTTP IP addresses,

respectively.

From the results above, it is clear that number of false positives can be greatly reduced
by by carefully updating the safe lists, e.g., by adding connections manually allowed by the
end-user to this list.

Table 4.4 shows the total number of scans generat.ed by Sasser and Blaster, and the

number of MX queries generated by Netsky during a 4 day test interval. All these anomalies

were successfully captured by our system.

56

CHAPTER D

Conclusions and Future Works

In this chapter, we provide a summary of the main features of our developed system. We

also point out some future enhancements that can be applied to our system.

5.1 Summary

Throughout this work, we have developed an integrated worm detection and mitigation
system. The detection algorithm is based on the observation that DNS activities associ-
ated with both scanning worms and mass-mailing worms violate the typical communication
pattern followed by normal users. Our system is characterized with the following features:
e Ability to detect all zero-day scanning and mass-mailing worms that cause the
prescribed DNS anomalies.
e Scanning rate independence: it can detect slow as well as fast scanning worms.
e Speed: It has the capability to detect infected systems after only a single mali-
cious worm connection attempt.
e Automatic firewall update: this feature mitigates the damage that can result

from waiting for a manual action to be performed by system administrators and

57

5.2 Future Works

isolate infected hosts and subsets.
o User friendly interface: the GUI is carefully designed to facilitate both the

system configuration and the monitoring processes.

In addition to its primarily objective, i.e., worm detection and mitigation, the developed

system can also be used as an academic tool to study the behavior of real Internet worms.

5.2 Future Works

o Testing the developed system on a larger LAN will provide a better evaluation
for the robustness of the systems as well as a better measure for the level of
co-opérat_ion of typical (non cooperative) end-users.

e Careful investigation of different Internet protocols can lead to discovering other
(deterministic or statistical) anomalies associated with worm activities. The
system developed in this thesis is based only on DNS anomalies. Considering
other protocol anomalies will enable the system to discover larger families of
worms.

o Integrating the developed system with other statistical based systems will result
in lowering the number of false alarms and improving the detection capabilities
of the system.

e The importance of usability issues of security systems have not been addressed
adequately in the literature [45]. We believe that the success and wide spread
of any security product, among other factors, depends heavily on the ease of

its use. Further experiments have to be done to investigate the behavior of the

58

5.2 Future Works

end-user. For example, mitigating the effect of irresponsible users that always
confirm that the suspected connection attempt originating from their machine
are legitimate (either because of their negligence, ignorance or because they do
not want to interrupt their work) is an interesting multidisciplinary research
problem.

e In order to reduce effect of false alarms on the continuity of service to the
suspected LAN users, techniques such as virus throttling can be applied before

totally isolating suspicious hosts and subnets.

59

List of References

1} J. Shoch and J. Hupp, “The worm programsearly experience with a distributed com-
p prog

putation,” Commun. ACM, vol. 25, no. 3, pp. 172-180, 1982.

[2] J. Rochlis and M. Eichin, “With microscope and tweezers: The worm from MIT’s

perspective,” Commun. ACM, vol. 32, no. 6, pp. 228 — 245, 1990.

[3] J. Nazario, Defense and Detection Strategies against Internet Worms. Norwood, MA,

USA: Artech House, Inc., 2003.

[4] “Code Red worm exploiting buffer overflow in IIS indexing service DLL,” 2001,
last accessed: February 2008. [Online]. Available: http://www.cert.org/advisories/

CA-2001-23.html

[5] “Exploitation of vulnerabilities in microsoft sql server,” 2002, last accessed: February

2008. [Online]. Available: http://www.cert.org/incident_notes/IN-2002-04.html

[6] J. Ullrich, “MSSQL worm (sqlsnake) on the rise,” 2001, last accessed: February 2008.

[Online]. Available: http://www.sans.org/resources/idfaq/spider.php

60

References

[7] “CERT advisory ca-2001-26 Nimda worm,” 2001, last accessed: February 2008.

[Online]. Available: http://www.cert.org/advisories/CA-2001-26.htm!

[8] “CERT advisory ca-2001-26: MS-SQL server worm,” 2003, last accessed: February

2008. [Online]. Available: http://www.cert.org/advisories/CA-2003-04.html

[9] “CERT advisory ca-1999-04 melissa macro virus,” 1999, last accessed: February

2008. [Online]. Available: http://www.cert.org/advisories/CA-1999-04.html

[10] “CERT advisory w32/novarg.a virus,” 2004, last accessed: February 2008. [Online].

Available: http://www.cert.org/incidentnotes/IN-2004-01.html

[11] “Symantec security response,” 2008, last accessed: Febrauary 2008. [Online].

Available: http://www.symantec.com/security response/

[12] G. Christoph and R. Hiestand, “Scan detection based identification of worm-infected

hosts,” Master’s thesis, ETH Zurich, April 2005, master Thesis.

[13] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically generating signatures

for polymorphic worms,” Security and Privacy, pp. 226 — 241, 2005.

[14] S. Staniford, V. Paxson, and N. Weaver, “How to Own the internet in your spare time,”

in Proceedings of the 11th USENIX Security Symposium, 2002.

[15] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in Proc. 10th

ACM Conf. Computer and Comm. Security (CCS ’03), pp. 251-261.

[16] H. Javitz and A. Valdes, “The NIDES statistical component description and justifica-

tion,” Computer Science Laboratory, Technical Report, 1994.

61

References

(17)

[18]

[19]

[21]

[22]

(23]

K. Wang and S. Stolfo, “Anomalous payload-based network intrusion detection,” in
in Proceedings of the Tth International Symposium on Recent Advances in Intrusion

Detection (RAID ’2004), pp. 227-246.

D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine: Require-
ments for containing self-propagating code,” in in Proceedings of the 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM

'2003), April 2003.

D. Whyte, E. Kranakis, and P. van Oorschot, “DNS-based detection of scanning worms
in an enterprise network,” in Network and Distributed System Security Symposium

(NDSS’05), February 2005.

D. Whyte, P. van Oorschot, and E. Kranakis, “Addressing SMTP-based mass-mailing
activity within enterprise networks,” Computer Security Applications Conference,

vol. 22, no. 06, pp. 393 ~ 402, December 2006.

P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley Profes-

sional, 2005.

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of computer
worms,” in WORM ’03: Proceedings of the 2008 ACM workshop on Rapid malcode.

New York, NY, USA: ACM, 2003, pp. 11-18.

C. Bo, B. Xingfang, and X. Yun, “A new approach for early detection of internet worms
based on connection degree,” in Proceedings of the Fourth International Conference on

Machine Learning and Cybernetics, August 2005.

62

References

[24] J. Twycross and M. Williamson, “Implementing and testing a virus throttle,” in Pro-

ceedings 12th USENIX Security Symposium, August 2003.

[25] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, “A network
security monitor,” in In Proc. IEEE Symposium on Research in Security and Privacy,

1990, pp. 296-304.

[26] “The open source network intrusion detection system,” 2008, last accessed: February

2008. [Online]. Available: http://www.snort.org

[27] V. Paxson, J. Rothfuss, and B. Tierney, “Bro user manual,” Bro IDS, Internet-Draft,

December 2004, available at :http://www.bro-ids.org/Bro-user-manual.pdf.

[28] “Bro intrusion detection system,” last accessed: February 2008. [Online]. Available:

http://bro-ids.org

[29] S. Schechter, J. Jung, and A. Berger, “Fast detection of scanning worm infections,”

in In Proceedings of Symposium on Recent Advances in Intrusion Detection (RAID),

2004.

[30] W. Matthew, “Design, implementation and test of an email virus throttle,” in Proceed-
ings of the 19th Annual Computer Security Applications Conference (ACSAC 2003).,

December 2003, pp. 76 — 85.

[31] M. Mannan and P. Qorschot, “On instant messaging worms, analysis and counter-
measures,” in WORM ’05: Proceedings of the 2005 ACM workshop on Rapid malcode.

ACM, 2005, pp. 2-11.

63

References

[32] D. Dagon, X. Quin, W. Lee, J. Grizzard, J. Levine, and H. Owen, “Honeystat: Lo-
cal worm detection using honeypots,” in Seventh International Symposium on Recent

Advances in Intrusion Detection, September 2004.

[33] “Know your enemy: Worms at war,” November 2000, last accessed: February 2008.

[Online]. Available: http://project.honeynet.org/papers/worm/

[34] “Analysis: Blaster worm,” 2003, last accessed: February 2008. [Online]. Available:

http://research.eeye.com/html/advisories/published /AL20030811.html

[35] “Analysis: Sasser worm,” 2004, last accessed: February 2008. [Online]. Available:

http://research.eeye.com/html/advisories/published /AD20040501.html

[36] Y. Musashi, R. Matsuba, and K. Sugitani, “Indirect detection of mass-mailing worm-

infected PC terminals for learners,” in ICETA2004, 2004.

[37] P. Mockapetris, “Domain names - implementation and specification,” RFC 1035, Tech.

Rep., November 1987.
[38] J. Postel, “Simple mail transport protocol,” RFC 821, Tech. Rep., August 1982.

[39] “TCP dump,” 2008, last accessed: February 2008. [Online]. Available: http:

//www.tepdump.org

[40] “MYSQL AB :the world’s most popular open source database,” 2008, last accessed:

February 2008. [Online]. Available: http://www.mysql.com

[41] J. Postel, “Transmission control protocol,” RFC 793, Tech. Rep., September 1981.

64

References
[42] J. Postel, “User datagram protocol,” RFC 768, Tech. Rep., August 1980.

[43] “Regular expression,” last accessed: February 2008. [Online]. Available: http:

//en.wikipedia.org/wiki/Regular_expression

[44] “Secure shell,” last accessed: February 2008. [Online]. Available: http:

//en.wikipedia.org/wiki/Secure_Shell

[45] L. F. Cranor and S. Garfinkel, Security and Usability : Designing Secure Systems that

People Can Use. O’Reilly, 2005.

