AN ENHANCED WEB ROBOT FOR
THE CINDI SYSTEM

RUI CHEN

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2008

© RUI CHEN, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40937-4
Our file Notre référence
ISBN: 978-0-494-40937-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

ABSTRACT

An Enhanced Web Robot for the CINDI System

Rui Chen

With the explosion of the Web, traditional general purpose web crawlers are not
sufficient for many web traversing and mining applications. Consequently, focused web
crawlers are gaining attention. Focused web crawlers aim at finding web pages only
related to the pre-defined topic at much less storage and computing cost. It is inherently
suitable for the construction of digital libraries. As an essential part of Concordia
INdexing and DlIscovering system (CINDI) digital library project, CINDI Robot is a
focused web crawler digging and collecting online academic and scientific documents in

computer science and software engineering field.

In this thesis, we discuss the details of building a multi-threaded, large-scale,
intelligence-based focused web crawler, CINDI Robot. To enhance CINDI Robot, some
state-of-the-arts techniques are exploited or modified to accommodate our task. The naive
Bayes classifier and the Support Vector Machine classifier are utilized to contribute to
the classification; a revised context graph algorithm and a special tunneling strategy are
employed to increase recall; URL ordering policies are set up to sort all crawling web
pages. Other heuristics obtained during the experimental stage are also incorporated into
the final version of the CINDI Robot. Finally we form a multi-level inspection
infrastructure to efficiently traverse the Web. Through this multi-level inspection scheme,
text features of web page contents, URL patterns and anchor texts are considered together
to guide crawling processes. Our experiments demonstrate that the final version of our
CINDI Robot outperforms traditional web crawlers in terms of precision, recall and

crawling speed.

iii

Acknowledgements

I would like to express my gratitude to all those who gave me warm care and support,

which gave me the possibility to finish this thesis.

I am greatly indebted to my supervisor, Dr. Bipin C. Desai, for giving me the opportunity
to get into CINDI Robot in which I am deeply interested, for his constant support, care
and patience and for his inspirational ideas, suggestions and comments. His
understanding and supporting are the most important factors that help me complete my

thesis.

I owe my most sincere gratitude to my wife, Yuya, who gave me selfless love,
understanding and patience. She gave me the most courage and encouragement that she
could ever offer. During my master period, she made her bravest decision to come to

Montreal to be with me.

I am deeply grateful to my colleagues who worked on various subsystems of CINDI
system. Tao gave me many ideas of CINDI’s implementation. Krishma gave me solid
support by running the DFS subsystem. Especially, I would like to thank Cong Zhou who
made substantial research on CINDI Robot. Without his efforts, I cannot successfully

complete my thesis.

I am also grateful to my parents for their insights and their unselfishness. Their decision

of allowing their only child to Canada was the very first step of this thesis.

iv

Table of Contents

LIST OF FIQUIES .ccvvrrvnnreeeinieieiieisnenesreisssinssssnsssssersssasssasassssssssssassssssesssssosssssesssansessssansssansssstsssssssses viii
List Of TADBIES.......coviiriniiiiiciinininiinenninineeniessssnesnisssonsisnensisnesnessessssnsensessossessssnssnessonss sreresenenene ix
List of ACronyms.......cccvcvrererveicrenanee cerrresenes rererenreesestesanesesartesertsesatesesrassesentssesrassenannsesansssenssenannse K
Chapter 1.....cciiiinencnenecenneenes cevernnstetssasssernnntsas cernvrreerensesas ceentereeresuans coerenereees ceverssersesenasans vereneene 1
INHTOAUCHON ...ttt esaserssasssesessssassssosessessssessessssssessnssnesssssssasarens 1
1.1 ProbIem STATEMBNT ..ot ssasressrsssassesesesasssssrerersssssassssessnsnsnssenen 1
1.2 PrOPOSEA SOIUTOM....ciiiieririiirnriisiisissersressiereissersseseiersreressiisssesssssssssassssssssesssssssssssssssnsssssssssresssssssssssssessssnes 2

1.3 OrganizationN Of the TRESIS ... e sese s s ese e rs s et ssbeseesasssssessesensesensesessesessons 2
CRAPIEE 2....viriiiiiiiiriiineniinissisiniisniisisiiesissiontiseissstossssstsssstossstossssessasessssestossssssasssstsssaassns 3
BACKGrouNd......ccccicvnicnininnnnnisssnicsnniiinansmneesnnsssssssmssssnssssssssssens cesseressentesesnnesnes cesesesnniens cerene 3
2.1 Web ULIlIZAHON ADPIOGCNES.....cciiiirireeeerisiiiiiiiesesssssssssssssssssessssssssssesessssssssssssssssssessssssssssesess 3
2.1.1 The WOTIA Wi WED ...ttt s essesssssssssssssesossasssssesssscssssssssesens 3

2.1.2 WED AIr@CTONES .ttt ettt ettt st b se s st sb e s bese s et a b et s ssaeaentssessasstonssen 4

2.1.3 WED CIOWIETS.....c.cciiiiiirierientseeieresenssssessesssesmssesesesssrssssessssasnosssesesserastessstess sessessssssessssnsssssssensasseses 5
2.1.3.1 General PUrPOSE WEID CrAWIBTS...vuiiciiieiriisisnieennsinsisestserersssessesssreressssssssessssssesssess 6

2.1.3.2 FOCUSEA WED CIAWIEIScciiiciiiiinienreieesesee e scestrsisassasessesssessesensesesessssasessssesessasesessasssnsone 7

2.2 RODOT EXCIUSION PTOTOCOL....cururuiereniireisinisnisesssssssssssesssesessesssssessssssssssssssssssssssssssonsssssnsnsssssssesesesessenes 9
2.3 REIGTEA WOTKS ettt sessssssssssesessararessssssssssssssasssaesssssssseresssssssssssessssssssssses 1
2.3.1 Related concepts AN 1ECHNIGUES ... esssseerisressesassessessssesssssessssesessasssnssses 11
2.3.1.1 Focused Web crawler performanCe METTICS..vieirieiriiieerssiseiseenseeeesseeses 11

2.3.1.2 Context Graph QIGOMNM ... se e rsssseseebesaesesaeressesasseses 12

2.3.1.3 TUNNEIING 1ECHNIGUE.. ...t enssesnsisssse s ssssssssssssssesssssssenes 13

2.3.1.4 SuppOort Vector MACHINE CIASSIfIEriviiiiieniirinie s sresresssseaesessesessessesesessrsens 15

2.3.1.5 NOIVE BAYES CIASSIFIEN c.vuveveirrreiriirieseneniereninisieisteseesinressssessssssesessessssesssassenessosenessssessnenes 18

2.3.2 REIATEA SYSTEMS ..uvrvirirreriirierestiieientresee st esessess e s sressersstssbassensssassssbessessesessensonsssssssssssares 18

2.4 CINDI SYSTOIM wtiiucucriiiiieisiererniissessesiiseiessestssssssssestsersrsmnsinsissssssas s sssssssesssesssssessssssssenssesesessssssesssssesssss 22
Chapter 3., seesnrrsesssatesesssntesens corenenens cesereesteisenenrestessesanssesssressasas 27
CINDI Robot System ArChIt@CIUI@.........cicvveviercccrrnntinnnerecnireisneesesssesssnsssssstecssssesesssnosssnsssanes 27
3.1 SEEBA FINAEN ..ttt e b b e bbb s e aa s bt e beseba e e rsesraassneneterererororans 28
3.2 WD CrOWIET et isssssessisssssesstssssssessetsbesssssassesasessssssssssesssssosessssssssssosssesssssasssssssnns 30
32,1 URL fIONTEI cucnveiireeceeereeesenesinesen s seseseses s ssss e s s esasasassasesasasassssssnsasasssasesanesssesessasanns 30

3. 2.2 PreliMiINQIY fITEE et ccrerrsreesesesseesnssssssesrssssesessesesssseressssesesssssesessensenessssssssssssseseserassenes 31

3. 2.3 PAGE FEICNET ittt sttt bbbttt e 31

3. 2.4 HTML PAISEI cuviieiiirisiiernreremsessenismssssesessssssssessssstarssessetersssisssessssessssetesesssesassossrsesesessssasensesesesessssores 32

3.2.5 ANCROT 1EXE ANGIYZET ...ttt seresere s essssnssrobsssasssessssesssasbessssossnsaessessssassen 33

BB LINK ANGIYZET ..ottt et sr s r s sresssbeas s s b essebe s ebesbo b essabesbontebestasbensesensontosersensnsnsassntesenes 34
3.4 STAHSHTS ANCGIYZET c..viviritirictiereeeirre e reeseste e ssesseses o bssbe st s bebasbessonsebesbensosssressenssssabarssrentorsnsans 36
B.E FlE FEICNET ettt et se e bbbt st s asasa b ebebetstebeseseananansessasasananaes 39

3.6 DAtADASE Of CINDI RODOT .. ciiiiiriiriiiiinriirerienmeeinnnisrsensessieessessesssesssessssssssesssssssssssssssasssssssssssssasne 40

Chapter 4.........ieneiiriinneinrenonenonnsnisssissnoes rreieretsssasesaresessassaseas tereresseneasesresessantessresesentasans 45
CINDI Robot Implementation and Heuristics......ccccviiinmiinnnencnnimeiisiomeimesie veere 45
4.1 SEEA FINAEN vttt sttt st b bbb s bbb s s et s b e b s E s b e bbb e b e R e s b s b e e s e s R eRbsEshsbo RO RO b OE 45
4.1.1 ODP DOSEA APPIOACKN .ciivivinininriircecsnstessetessssesssseesressnsseasisssossssssssssssastsssessssssssssnsessessessenss 46

4.1.2 General purpose search engine based APPIOACH ... 48

4.2 WEID CIAWIET ..ottt sieesiee s astsiessesesresessesessassestosesssintrsseonenes siasssbesssshenessesesnsssessssssssnessesssssses 50
4.2.1 URL pOHEIN INSPECHON. (v ivieitetercterieectetestesnieresen et ssssssesrasssssesstsssosasssssisssssnessesssessenssssesssenes 50

4.2.2 ANCHOT 1EXT INSPECHON ...ttt seeeesietees e riesresseseseessessesesssssesaesesstssesassesssssasssnestsesnnsn 54

4.2.3 ErrOr NONAING cveecerreeeencte et svess et e aesessesessssesssssassesssresesnesstsrasassestssassessenessenessestsssstins 55

4.2.4 AQAIHONGI NEULISTITS ..vevevvrrireneererrerenmsennicsoimiemsnmmsssssssssssssssesisssstssesessenesessessstsasssssessssssens 56

4.3 LINK ANQIYZEN 1vitiirinrenenirininiiiiisisssssssseesesntsssssessssssssteses satsmssmssssssesosssssssessessssssesstssssssesasssssssssissessesses 57
4.3.] PrePrOCESSING wveertecctisnmimiermentiimisimiomeroresstestissesmssseisestesseisissstesiassssestsisssssssisssossssssesresssiestsssssses 57

4.3.2 VOCADUIAIY CONSHUCTION ...oiiiiiiirieiieieresterestenserenseensissssssesessssssse siossenesnnsssssossssssssssssessssasassonses 61

4.3.3 Content TEX! INSPECHON ..uiviiiireinrineeneseseneeresisresess e ssnsssssstassssessnssessssessnssssssssssssonssrorsss 65
4.3.3.1 Support Vector MAChING ClASSIfIENuiiiviiiiineenieneneenenissinseesessessessssmmesessseessons 65

4.3.3.2 NQIVE BAYES CIASSITIEN 1uveverrererrerirersiiesesrnsesserissesesrersessesesressessetessesserserarsessessesessesssssssssesessenes 67

4.3.4 Revised CONEXE GIAPN c..cvviiceeecenrerrcines e sttt a e sbssssresssnesten 68

4.3.5 TUNNEING cvtrierreeiii it sttt bbbt s e bbb s b s b e b s bbb s bs bt s R et e asbesesR e b s bbb e bt s 70

4.3.6 URL OFAEIING. ceutitririninninrenrinresesssestensiaiesesstsieieiesesesssssssssessasiassassessassssssesssssasssssssssassassassssssssnssssss 71

4.4 STAHSHTS ANQIYZET ..ottt ee s e st s s sae s sesssressessssesbasaesasseressssssssasessessessesessenassssnonsstons 72
4.5 FIIE FEICIEON ettt sessesssresesesssesabssse e ssessssesbanesseeresrensessasssnsssssessernsssanasessosssssses 78
4.6 GeNeral CraOWIING PrOCESSuivvieiieniininiininieeiieeiesnessssssessoisesessesmessssssassessssesnsssarsssesssssssssssasssses 82
Chapter §......cvvniiicniienenieninnn ceerarereesiettreeesanesrossntsisesaterestertttsesisnantetsssrants cresreresessnesies enseessnes 84
EXPeriments ANA REOSUIESccovvunrierinnieeiniiinieicinneressnieneessssnsssosssssnnssssssssanssssossssasssessssnsassssanssase 84
5.1 Experiments on Four Representations Of SVM .. iininennnesenisnsssesessssssssssesssssssssenes 85
5.2 Experiments on Weighted Ndive BAyes ClASSIfIEr 86
5.3 Experiments on General Crawling PrOCESSES ivuivimiirieiinonireiminsesemensmesesssoesmesossssessens 87
5.3.1 COMPAriSON Of PrECISION ...cveeviiririreieerteriereserie e sresssessereeeesesssstssessestessenssstssessesassesessessesessenes 88

5.3.2. Comparison of target rECAIl ...t ssestsrsresesessssesssrssosenes 89

5.3.3 Comparison of CrawWliNg SPEEAcuiviiiiiriiniriirisensesinesssssssesinssessisesssssesesrsssasssseses 90

5.3.4 Comparison of downloaded document relevant At ... veeccnvrererereereeessesereseenees 92

5.4 Experiments on INAIVIAUGT HEUISHCS.ovvierecieiircirecesesensereereseesesessseseesssssssesessensessnssssssesens 94
5.4.1 URL pOHEIN INSPECHON. c.ciiiiiiircsrersesiniieesessesesisessssnsnseisassesessesessssssssessesssssesssassessssssesssnses 94

5.4.2 ANCHOTr 1EXT INSPECHON ..cviiiiiciiiniiiicrserenet st ste s esessesessaessesesesseenasaeseessasssesssnens 95

5.4.3 Tunneling and revised CONTEXT GrOPN . e e sse s ebesaesessessesessesesen 96

G144 SUMIMIQAINY criririreiciiinrreseensessesseterneneestesseesssssesssessensensessessessassasssessessessesssassessestessesssessessessasserssssessas 98

5.5 EXPeriments ON RE-CIOWING ...c.vvveirriisisisersrssrssssssssssssssersssssssanssssssssessssssssssssssssssssssssssssssaseseseses 99
Chapter b.......cccevrenvveecinneerinnnnens cereresstessaneeneseates erereresasessaneterastessnstesansossatesesraseeranesesssssranasens 100
Conclusion and FUTUIE WOTKiciieincrieiniinioimmisninnisisnioioiossimessessesssssssssosses resresesens 100
6.1 CONCIUSION ..eviutiieeiireiitr ettt st st b et et st b e et sbs s st st sttt sresa st b abeatetasnesesesbsneansnssensanssssesenes 100

vi

6.2 CONIDUTION OF TIIS TNESIS . .civiiiririirrisriniinri et ssssrsesbssasesssssssesbaesssesstessaasssrensessssssesssensaes 101
B.3 FUTUIE WOIK .. iuvvitvenrienriirenreereiiisitesnssstesbeessesrbesbesasaasessbesasesasssssensessassessssssessessseesssessanessesssersaessessnsssens
References

--

APPENAIX A orveeeirinerersnnrcsnserssssncssseessssesernsssssssssssesssnssssansssssssessnsssossssssses
APPENAIX B....cooorenrereeeennrerecirrsreresersnnesssssrasesssasessssssesssssssssssssssssssosssesssssssssnasss

vii

List of Figures

Figure 1 Illustration Of tUNNEIINGcccovvvierieriiiirniiirierrnesenesrssresensesesnseseesnssassesssssessessessessesnesasses 14
Figure 2 The hyper plane of SVM......ccociiiinieiniiieeincnesreceeiesnsessessesssessssessssessossssssssssssesseneses 16
Figure 3 CINDI system architeCtUreuvvvivreririiniireseriesressesenienessesienessesssmsessessessossessenssssesessassossesasnes 23
Figure 4 CINDI Robot system architecture diagram.........c.cecvieireerenenerrenienineeesesesesesssieessesesesseneees 27
Figure 5 Revised ConteXt GIaph......cccvieecnernmireeresiiinin et ciessesssienosesnesesessssissesssssssesssens 35
Figure 6 Schema of the VISITED _PAGES tablecccecveineieneninennerereeenecseseessissseeresessenenes 4]
Figure 7 Schema of the DOWNLOAD_STATUS tablecocoveecirerrereniicesmmineniesesssoisnisne 42
Figure 8 Schema of DIR_TO_BE_AVOIDED Table.......ccccrivririirirerensreriesesmrueeseserissessessssssssassosssses 43
Figure 9 Schema of the CRAWLED_SITES table.........ccccccvvmnmmrimmiinccrininenminessnminenesssssessssssnes 44
Figure 10 structure.rdf.u8.gz file eXampleccoevivereiiininiiininienninenismenisnsinesesenesssesssesssssssssses 46
Figure 11 content.rdf.u8.gz file €Xample.........ccocvrurriiieeirininenienniresieereseniecnsenseesiesesessssessesenesseassenes 48
Figure 12 Pseudocode of URL pattern inSPeCtiON......ceervererrerrnrenrerresiesserresvessessassesesasssssessassessesassense 53
Figure 13 Pseudocode of anchor text iNSPECtiON.........ccveevecrirerienrenririessesrerienenieniesesressassessersesseseerersens 55
Figure 14 Classification procedures of CINDI RODOL.......ccccccceruniienieresiniesenmiesnmenecsnsmsesssisessnns 70
Figure 15 An example of POTENTIAL_STOP _DIR table........cccccvverrerrecienienreniesrnsveniesessenenseseesessenes 75
Figure 16 A subset of to-be-avoided directory of @ Web Site....c.cc.cvervrivverininenecene e sreese s 77
Figure 17 The precision Of Web CIAWIETScocvovvirriererieiiniieeriireseiressreesiesseeseessssessssessssssnsnesasssneans 88
Figure 18 The target recall of Web Crawlers....coeeeviiiiiieieriineetetseseee e asnssass 90
Figure 19 Precision improvement due to URL pattern inSpectionccceevervriserrrrnrerevesenssseenererannens 95
Figure 20 Precision improvement due to anchor pattern inSpectionccceervcererrereiccrcreerenencsennens 96
Figure 21 Target recall improvement due to tunneling and revised context graphcoevevevrvvcnirnenens 97

viii

List of Tables

Table 1 Kernel fUnCHONSccviciieeverenriieneniereeseneseesesesesesressssiestsessessessssstssessssseesssssssessassasassessssssnnes 17
Table 2 ODP categories used in Seed FINErcccoveviveeerereinecivnenenesitiecesesresisessseeesessesesens 47
Table 3 CiteSeer cOMPULEr SCIENCE AITECIOTY vuvivvvveerirririireereeierreseeeesrirneressseseesrsassseseesessessessesseneesessesses 49
Table 4 URL keywords of computer science department web pages..........ovviivinniinniiicnnniinninines 51
Table 5 Comparison of distinct NUMDET Of WOIScvvverivirrireneerireereniresteireeseeeerresiseseesesessssessosesses 61
Table 6 A subset Of the VOCADULAIYccceervirierirreeniniireeseenenntseeseessnnnreseessesssessssssesassssssssssessossessasssens 64
Table 7 A subset of Stop-direCtory List......ccvviviiiviiiiiii e 76
Table 8 Not welcome file NAME KEYWOITSccvvrivviveriiniinierenriiinerenenieneersiiessesneiesessssressessssasssssssssnssss 78
Table 9 A survey of identical file NAMESvcveivirveiviiiniinerniere e se st s sresassuosassessssnoses 80
Table 10 SVM classifier accurate classification rate COMparisonc.coccvervvierecernivenmieeeninnnereeees 85
Table 11 Naive Bayes classifier accurate classification rate comparison.........c.cecvvvseerecrisennrcneiiseninnes 87
Table 12 Comparison of Crawling SPEEduevivierireereniinieneireeiesresresieniesesiasessesiesesesassessessessessesessenes 91
Table 13 Comparison of downloaded document releVant Fates.......cocuvverrerrerrerrervesseercerassesreresseneesaesenns 93
Table 14 Contributions of individual hEULISHICSvveveereverierirciireenerneri e ieeseesesreesseseseeses 98

List of Acronyms

ADR Accepted Document Rate

API Application Programming Interface

ASHG Automatic Semantic Header Generator

BFS Breadth-First Search

CINDI Concordia INdexing and DIscovering system
CSE Computer Science and software Engineering
CSv Comma-Separated Values

DFS Document Filtering Subsystem

DRR Document Download Rate

DTD Document Type Definition

FCS File Conversion Subsystem

FIFO First In First Out

HTML Hyper Text Markup Language

OoDP Open Directory Project

PRR Page Relevancy Rate

RDF Revised Document Frequency

RDVT Representative Document Vector Table
RKF Revised Keyword Frequency

SQL Structured Query Language

SVM Support Vector Machine

TF*IDF Term Frequency and Inverse Document Frequency

URL Uniform Directory Project

Chapter 1

Introduction

1.1 Problem Statement

As an essential part of Concordia INdexing and DIscovery System (CINDI) [1] , CINDI
Robot digs and collects online academic and scientific documents (research papers,
technical notes, FAQs and so on) in the computer science and software engineering field.
However, the size of the Internet is growing exponentially. According to the Internet
Systems Consortium Domain Survey [2], the number of Internet hosts was only 313,000
at the nascent phase of the World Wide Web, then rose to 93,047,785 at the turn of the
century and exploded to 433,193,199 in January, 2007. This volume of data poses a huge
challenge on traditional web crawlers which simply follow the hyper linked network
structure and aim at collecting as many web pages as they can, for example, the Google
Crawler. For the construction of a digital library using traditional web crawlers, we have
to traverse the whole Web before we can identify all target documents. It is impossible in
terms of computing and storage resources. Even the Google crawler only crawls and fully
indexes 20% to 30% web pages of the whole Web [3]. Consequently, focused web
crawlers are gaining attention. A focused web crawler only crawls relevant web pages
limited to a specific topic, domain or format in traversing the Web at affordable costs.
CINDI Robot is a typical focused web crawler which only traverses relevant regions of
the whole Web to obtain desirable documents. The previous version of CINDI Robot [4]
works at reasonable computing and storage costs, but fails to satisfy the requirements in

terms of precision, recall and crawling speed.

1.2 Proposed Solution

Designing a scalable Web crawler suitable for large-scale web page collections is a
complex task. Shkapenyuk and Suel [5] noted that: "While it is fairly easy to build a slow
crawler that downloads a few pages per second for a short period of time, building a
high-performance system that can download hundreds of millions of pages over several
weeks presents a number of challenges in system design, I/O and network efficiency, and
robustness and manageability." Thus major modifications are needed to enhance the
previous CINDI Robot. An intelligence core based on Naive Bayes classifier and Support
Vector Machine classifier is added for guiding the CINDI Robot to confine the crawling
process to merely relevant regions. By parsing web page text contents, the CINDI robot
can analyze the relevance of a web page and of even a web site, which helps the CINDI
Robot promote precision of the crawling course. URL patterns and anchor texts are also
utilized to form a multi-level inspection infrastructure. A revised context graph algorithm
and a tunneling strategy are created to increase the recall. And more sophisticated and
real-time statistical feedbacks and heuristics are utilized to improve the CINDI Robot’s

overall performance.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the existing Web utilization
approaches, presents related works of focused web crawling and gives an overview of the
whole CINDI system. Chapter 3 presents the overall system architecture of CINDI Robot
and elaborates the five CINDI Robot components. Chapter 4 describes the
implementation of the CINDI Robot and elaborates various heuristics used in the CINDI
Robot. Chapter 5 discusses the experiments performed on the CINDI Robot. In Chapter 6,

we draw our conclusion and present the suggestions for future work.

Chapter 2

Background

2.1 Web Utilization Approaches

The size of the Web is growing exponentially and it is estimated that the number of
searchable web pages on the Internet has exceeded 8.9 billion [6]. This volume of data
makes it difficult to get targeted information from the Web. Consequently, two families
of approaches have been proposed to better utilize the Web, namely web directories and

web crawlers.

2.1.1 The World Wide Web

The World Wide Web is distinct from the Internet. “The World Wide Web (commonly
shortened to the Web) is a system of interlinked, hypertext documents accessed via the
Internet [7]”. The World Wide Web was created around 1990 by Tim Berners-Lee and
Robert Cailiau in order to facilitate users to share information allocated on computers
across the whole Internet. The Web can be viewed as a graph whose nodes correspond to

web pages on the Web, and whose edges correspond to the hyperlinks between these

pages [8].

After its creation, it became a major stimulation for the accelerated growth of the Internet.
The expansion and popularity of the Web are incredible. Though the exact numbers of
unique sites and web pages may vary from study to study, the general tendency is the

same that the Web is growing exponentially. According to Netcraft’s data, Boutell

estimates there are over 29.7 billion pages on the World Wide Web as of February 2007
[9]. And it is reasonable to deduce the actual number would be even higher. From another
study of World Internet Stats, it indicates there are approximate 1262 million Web users

over the World [10].

The dynamic nature of the World Wide Web and the ever growing volume of
time-sensitive information demand certain techniques to manage and organize the whole
Web. As a result, two families of approaches have been proposed: web directories and

web crawlers.

2.1.2 Web directories

Web directories organize web sites into categories and subcategories by subject from
broad to specific. The categorization is accomplished in the unit of a whole web site,
rather than single web page, which is quite different from search engines. Usually, one
web site will be limited to inclusion in only one or two categories. Web directories are
often generated by web masters or directory staffs, who are usually experts in particular
categories. Editors either discover web sites they feel suitable for a category or inspect
submissions from site owners for fitness. The qualities of web directories are guaranteed

by human editors.

The Open Directory Project (ODP) [11], which is maintained by a team of volunteers all
over the world, is the largest, most comprehensive human-edited directory of the Web. It
is hosted and administered by Netscape Communication Corporation. One big challenge
of a web directory is the astounding expansion rate of the Web. A small staff can provide
high quality web sites, but cannot scale to the growth of the Web and maintain the quality

at the same time. ODP handles this problem in an elegant way. Having realized that as

the web grows, so does the number of the Web users, ODP forms a self-regulating
community of Web users that basically runs itself. Through the system of
self-governance, ODP volunteer editors manage the directory’s growth and development,
and through a system of checks-and-balances, ensure the directory is of superior quality
[12]. Now the ODP categorizes over 5 million web sites into 21 main categories and over

600,000 subcategories and 31 languages [13].

Due to the involvement of human-beings, Web directories may provide high-quality
categorizations. However, also due to too much human involvement, web directories may
face a serious problem of scalability. Human-maintained directories may cover most
popular topics effectively but are expensive to build and maintain, slow to update, and
cannot cover all existing topics. Long delays in approving submissions or for rigid
organizational structures and disputes among volunteer editors are still obstacles for the

development of web directories [14].

2.1.3 Web crawlers

Compared to web directories, web crawlers provide a more automatic method to explore
the whole Web and are more widely used [15, 16, 17, 18]. A web crawler, also known as
a web robot, a web spider, a web worm or a web wanderer, is an automated program that
explores new pages by traversing the hyper linked Web structure and discovers updates
of web pages it already knows about. Web crawlers are essential for many Web
applications, such as search engines, digital libraries, investment portals and so on.
Although the web crawling algorithm is straightforward, the construction of a scalable,
efficient and extensible web crawler is a complex endeavor. Most of the challenges to

build a high-performance web crawler can ultimately be ascribed to the scale of the Web.

Generally, a web crawler starts the crawling process with a list of seed URLs. As the
crawler visits these URLs, it identifies all the hyperlinks in the web pages and adds them
to the crawl frontier which is the repository of URLs to visit. URLs from the frontier are
visited according to a set of policies. This set of policies divides web crawlers into two
main branches: general purpose web crawlers and focused web crawlers. This set of
policies also guides the web crawler to crawl brand new web pages and already known
web pages in different ways. Usually, for re-crawling a web page, the web crawler can
perform a more efficient crawling algorithm. After the crawling process, desirable web
pages are full text indexed for further user queries. This is another feature that

distinguishes web crawlers from web directories.

2.1.3.1 General purpose web crawlers

The general purpose web crawlers try to construct a general index of the Web by
covering any existing topic, try to follow every URL it can find and try to answer every
query made by users. Thus, scalability is the main challenge faced by general purpose
Web crawlers. As the Web grows, it poses increasing difficulties on network bandwidth
to download web pages, memory to maintain private data structures in support of their
algorithms, CPU to evaluate and select URLs, and disk storage to store the text and links
of fetched pages as well as other persistent data [19]. Typical examples of general

purpose web crawlers include Google crawler and Mercator.

The Google Crawler is the best representative of general purpose web crawlers, which is
designed to scale to the entire Web. Since the creation of Google, the Google Crawler is a
central part of the entire Google search engine system. It collects web pages of all types
including documents, technical reports and so on from the Web and thereafter builds a

searchable index for the Google search engine. The web crawling of the Google Crawler

is done by distributed crawlers running on hundreds of individual computers in multiple
locations. There are five functional components of the Google Crawler. A URL server
sends lists of URLSs to multiple crawlers to crawl. The crawlers download web pages and
then send them to a single StoreServer. Each crawler keeps roughly 300 connections
open at once. The StoreServer compresses and stores the web pages into disk. These web
pages are later retrieved from disk by an indexer, which extracts hyperlinks from HTML
pages and puts them into an anchors file. A URL resolver process reads the anchors file,
converts the URLs contained to absolute URLs and stores them in the URLSs repository;
these URLSs are read by the URL server. The Google Crawler has two versions, namely
deepbot and freshbot according to if it is going to crawl new web pages or web pages it
already knows. Deepbot, the deep crawler, tries to follow every hyperlink it can find and
download as many pages as it can and passes them to the indexer. Freshbot, the
re-crawling crawler, crawls only the web pages it already knows about for updates. It
visits web sites that change frequently to keep its index up-to-date. The deep crawl is

performed once a month while the fresh crawl is done nearly every day.

Currently, the Google Crawler follows only HREF links and SRC links, and indexes and
caches 14 file types, including HTML, PDF, Word documents, Excel spreadsheets, Flash
SWEF, plain text files, among others. Up to 2006, the Google crawler has indexed over 25
billion web pages, 1.3 billion images, and over one billion Usenet messages [20]. In

addition, the Robot Exclusion Protocol [21] is respected by the Google Crawler.

2.1.3.2 Focused web crawlers

The concepts of topical and focused crawling were first introduced by Menczer [22] and

by Chakrabarti et al. [23] respectively. Focused web crawlers selectively seek out pages

that are relevant to a pre-defined set of topics. A focused crawler analyzes its crawl

boundary to find the links that are likely to be most relevant for the crawl, and avoids
irrelevant regions of the Web [23]. This effort brings significant savings in computing,
storage and network resources, and makes the crawl more up-to-date. Usually, the topics
of interest are defined not by keyword, but by a set of exemplary documents. The major
challenge of a focused web crawler is the capability of predicting the relevance of a
given page before actually crawling it. Certain intelligence is required for a focused web
crawler to achieve this goal. Focused Web crawlers use this kind of intelligence to avoid
irrelevant regions of the Web in order to make the task manageable. In addition to the
ability to test the relevance of a web page, a focused web crawler should also pay
attention to the ability to discover relevant regions which are separated by groups of
irrelevant web regions in order to achieve desirable web coverage. A well-design focused
web crawler should be able to stay in pre-defined topics as long as possible, while

covering the Web as much as possible.

CiteSeer Crawler, Panorama, is a good example of focused web crawlers. CiteSeer was
one of the early systems that demonstrated the use of the Web to establish a digital library.
Now, CiteSeer has become the most popular web-based scientific literature digital library
and search engine that focuses primarily on the field of computer and information
science. Since its appearance in 1998, CiteSeer has grown into a collection of over
730,000 .documents with over 8 million citations [24]. CiteSeer consists of three basic
components: a focused crawler or harvester called Panorama, the document archive and
specialized index, and the query interface. Currently, Panorama is implemented as
multi-threaded objects in Java in which the Robot Exclusion Protocol is also respected

[25).

Panorama traverses the Web for relevant documents in PDF and Postscript formats in

computer science field. The topic of interest is constructed in an efficient way in

Panorama. Panorama submits relevant papers’ main titles and the titles of references
within the papers as separate exact phrase queries to Google Web APIs [26]. The authors
deem the results returned by Google would be very relevant. Thus these URLs form a
positive example set. Examples from unrelated papers form a negative example set. Both
two sets are used to train a Naive Bayes classifier, which is used to guide the crawling
process. Panorama keeps a single synchronized URLs frontier. New discovered URLs
will be added and sorted according to the classifier, which guarantees most relevant
pages get crawled first. In other words, it ensures Panorama stays in relevant regions as
long as there is still any relevant web site in the URL frontier. Once the crawler has
downloaded a collection of the Web pages, clustering is performed to split the collection
into meaningful sub parts. After clustering, Web pages are then indexed using
autonomous citation indexing, which automatically links references in research papers to
facilitate navigation and evaluation. In conclusion, CiteSeer is a full text search engine
based on a focused web crawler with an interface that permits search by document or by
numbers of citations or searching based on values of attributes, not currently possible on

general purpose web crawlers.

2.2 Robot Exclusion Protocol

Web crawlers traverse many pages in the World Wide Web by recursively retrieving
linked web pages. However, web crawlers are not always welcome by all Web servers, or
at least for all regions of all Web servers. In 1993 and 1994, there had been occasions
where web crawlers were not welcome for various reasons [21]. Web crawlers may
access the same server too frequently and open too many connections so that the whole
server can get congested; web crawlers may also unconsciously crawl some confidential
areas and so on. Thus the Robot Exclusion Protocol [21] was established for web servers

to indicate which parts should not be crawled. It is respected by both general purpose

web crawlers and focused web crawlers. However it is not mandatory.

The protocol suggests a server to guide web crawlers by creating a file named
“robots.txt” in its root directory. This method is easy for web servers to implement and
also easy for web crawlers to figure out the crawling policies. The “robots.txt” consists of
two parts, User-agent lines and Disallow lines. The User-agent lines indicate the names
of web robots for which this file is set. The Disallow lines specify which directories are
not allowed to crawl. Using different combinations of User-agent lines and Disallow
lines, this protocol can be quite flexible. The “robots.txt” file can express at least the

following crawling policies.

To exclude all web crawlers from the entire server;
To allow all web crawlers to access the entire server;
To exclude all web crawlers from parts of the server;
To exclude certain web crawlers;

To allow certain web crawlers;

To allow certain files (which cannot be fulfilled directly because there is no 4/low

line.)

A sample “robots.txt” file to allow only one web crawler, the CINDI Robot, to crawl
parts of the server is given below. It is worth mentioning that the Robot Exclusion

Protocol is respected in the CINDI Robot.

CINDI Robot knows which parts are prohibited
User-agent: CINDI Robot

Disallow: /images/

Disallow: /aboutus/contact/

Disallow: /aboutus/stuff/

for other web crawlers, crawling on this site is not allowed
User-agent: *
Disallow: /

10

2.3 Related Works

In this section, we briefly introduce some related concepts and techniques for focused
web crawlers. In addition, we also present three related focused web crawling systems
and point out the main differences among the CINDI Robot and these exemplary

systems.

2.3.1 Related concepts and techniques

2.3.1.1 Focused web crawler performance metrics

The output of a crawler is a sequence of web pages crawled; thus any evaluation of a
crawler’s performance is based on this output [27]. The precision and recall are two
widely accepted measures of performance for focused web crawlers. In this thesis, these
two metrics will be used to evaluate our crawler and comparison web crawlers. Here we
give the definitions of these two concepts. Precision is defined as the proportion of
retrieved and relevant web pages to all the web pages retrieved, which is formulated as

follow:

|{relevant _documents} N {retrieved _ documem‘s}l

precision = -
[(retrieved _ documents})|

Recall is defined as the proportion of retrieved and relevant web pages to all the relevant

pages in the Web and it can be formulated as given below:

]{relevant _documents} N {retrieved _ documents}|

recall =
[(relevant _ documents}|

A desirable focused web crawler should possess both high precision and high recall but

in most cases precision and recall increase at the cost of each other.

2.3.1.2 Context Graph algorithm

The Context Graph algorithm was first proposed by Diligenti and his colleagues in 2000
[28]. In the past eight years, it has been being an active research area: many variations
have been presented [29, 30, 31] and many researchers have chosen the context graph
algorithm as the basis of their work [32, 33, 34, 35]. By constructing a context graph,
users learn web page representations that occur within a certain link distance of the target
documents [28]. The link distance is defined as the minimum number of link steps
needed to move from one page to another. These representations are used to train a set of
classifiers to assign web pages into different layers. In the context graph, each layer is
constructed using a strict link distance requirement. Layer 1 web pages have exactly one
step from desirable documents and Layer 2 web pages are exactly two steps away from
desirable documents and so on. As a result, the context graph can learn topics that are
indirectly connected a pre-defined topic and thus increase recall. If there are # layers in
the context graph, 7 classifiers are trained to assign all web pages into different layers.
“During the crawling stage the classifiers are used to predict how many steps away from
a target document the current retrieved document is likely to be [28].” The idea of using
the context of a given topic to guide the crawling process could significantly increase
both precision and recall. But we also realize that the context graph approach is based on
the assumption that common hierarchies exist on documents within the same topic [29].
However, the Web does not have a homogeneous and well-organized structure. Thus the
strict layer strategy is largely constrained. In practical applications, this classic context
graph algorithm has several drawbacks. First, the strict link requirement may lower the
classification accuracy. Both Layer 1 and Layer 2 web pages can be closely related to the
topic of interest while Layer 4 or higher layer web pages can be of totally different topics.
In this situation, the classifiers of Layer 1 and Layer 2 can not be delicate enough to

make a correct classification while the classifiers for higher layers may not be easily

12

trained. Secondly, the strict link requirement will bring too many classification processes.
For example, in our task, we need as many as 5 layers to obtain a reasonable recall and
thus in the worst case we need 5 times classifications to assign a web page into a proper

layer. This is unacceptable in a real-time application.

Though there are many improvements that have been made on the classic context graph
algorithm, no one has tried to remove the strict link distance requirement to make this
algorithm more adaptable. Hence we propose a revised context graph as described in

Section 4.3.4 to enhance the performance of the CINDI Robot.

2.3.1.3 Tunneling technique

Tunneling is the phenomenon that a crawler reaches some relevant pages on a path which
does not only consist of relevant pages [36]. Relevant regions spread over the whole Web
and can be visualized as illustrated in Figure 1. Seed URLSs locate within relevant regions.
But not all relevant regions over the Web can be covered by seed URLs. Relevant regions
may not directly connect to each other. The major task of focused web crawlers is to
unveil as many bridges among relevant regions as possible. Recall that both precision
and recall are essential performance metrics of a focused web crawler. The tunneling can
be prevented by a pruning strategy not allowing the crawler to visit any low relevance
web page. This strategy can maintain a high precision, but it will result in a low recall. In
this case, the discoverability of a focused web crawler only relies on how many seed
URLs can be found. An alternative approach is to allow a focused web crawler to
temporarily visit low relevance web pages with an expectation of reaching relevant
regions that are not covered by seed URLs while trying to keep precision as high as

possible.

13

The Whole Web

Relevant Region

Relevant Region

Itrelevant
Web Page

Relevant Region

Itrelevant Web Page

Figure 1 Illustration of tunneling

In [36], Martin Ester et al. implemented their tunneling technique based on taxonomies.
During the crawling process, the crawler keeps an eye on the precision. If the precision
goes down much faster than expected, it is necessary to broaden the focus of the crawl.
For example, if a focused web crawler currently working on topic “basketball” can not
find more relevant pages, it can generalize the topic to “sport” and expect to find more
bridges leading to other relevant regions. And if the precision gets better than a

pre-defined value after the generalization, the topic is specialized again.

Taxonomy based tunneling seems an ideal and intuitive approach to increase recall.
However in real operations, it may face some fatal problems and may not work out for all
topics. The first problem is the construction of a reasonable taxonomy tree. We have to
collect enough training data for each topic and sub-topic. For a huge field like computer

science and software engineering, it is not easy to achieve a consensus of how to

14

reasonably divide topics and sub-topics. Even if we can get a reasonable consensus, the
taxonomy structure is more complicated than a tree. It can be as complicated as a graph
and topics may overlap. These facts make taxonomy based tunneling technique even

harder to be used in real applications, especially in CINDI Robot.

2.3.1.4 Support Vector Machine classifier

The Support Vector Machine (SVM) method was developed by V. N. Vapnik [37] based
on structural risk minimization principle and was introduced to text categorization by
Joachims [38]. “Support Vector Machines are learning systems that use a hypothesis
space of linear functions in a high dimensional feature space, trained with a learning
algorithm from optimization theory that implements a learning bias derived from

statistical learning theory [39]”.

The primary idea of SVM is using a high dimension space to find a hyper plane to do a
binary separation and to keep the classification error rate minimum. The SVM exhibits a
desirable performance in situations where only limited, nonlinear and high dimensional
sample data are available. Even in the worst case where samples are inseparable, the

SVM will classify these samples with the lowest error rate.

Consider a given linearly separable training sample
S=((%:21), ..., (K5 21))

Where vectorx; € R” ;i =1,...,] ; m is the input dimension; y is labeled as category of +1

(positive) or -1 (negative). In its basic form, the SVM tries to find a hyper plane in forms

of wx+b=0 toseparate R™ into two half-spaces such that one half-space contains all
positive samples and the other half-space contains all negative samples. Meanwhile this

hyper plane should be with maximal margin. The idea is illustrated in Figure 2. The

corresponding optimal classification is:
f(x)=sgniw’ ex+b"} =sgn{}, oy, (x, #x)+b’} (1)
where parameters with superscript * mean the optimal solutions and sgrn denotes the sign

function. The parameter o can be obtained by solving the following quadratic

optimization problem:
maximize W(a)= 2;1 a; _%Zijﬂyiyjaiaj <xi ‘xj> ,
subject to Zley,a,. =0, 20, i=1..1,

and b can be found by using the primal constraints:

maxy,-:—l (<w* oX, >) + minyi=1 (<w* L >)
2

b =-

* ! *
where the weight vector W = 2, V& X, .

A

H1 | Positive Samples

H

H2

Negative Samples

A 4

Figure 2 The hyper plane of SVM

16

Using the Karush-Kuhn-Tucker complementary conditions [39], we know that the
optimal solutionser”, (w",b") should satisfy

o [y(w' ox,)+5")=1]=0,i =1,....L.
Since only points on hyper planes H1 and H2 can satisfy y(<w‘ * x,,>+ b')=1 , We can

deduce other points’ &;=0. Using this conclusion and Equation 1, we know actually

only those points on hyper planes H1 and H2 contribute to the classification. Hence they
are called support vectors. In Figure 2, support vectors are highlighted in bold. This
conclusion also explains why SVM is suitable for the situations where only limited

training data are available.

For non-linear classification problems, slack variables have to be imported to get the
optimal hyper plane. Now we can introduce kernel functions to transform non-linear
classifications into linear classifications. A suitable kernel function can solve the
non-linear problem without increasing the complexity of the calculation [40]. Different
kernel functions are suitable for different types of problems. Four common used kernel

functions are listed in Table 1.

Table 1 Kernel functions

Kernel Kernel function
Linear K(x;,x)=x,0x
Polynomial K(x,,x) = (s(x, x) +¢)*

Radical Basis
Function, RBF

Sigmoid tanh K(x,,x) = tanh(s(x; e x) +¢)

K(x,,x) = exp(=pjx = x,|")

The corresponding SVM classification function can be rewritten by kernel function as

follows:

17

! » »
f(x)=sgn(}, o/ y,K(x,0x)+b")
Using this function and user designed value representations, one can build his own

Support Vector Machine classifier.
2.3.1.5 Naive Bayes classifier

A Naive Bayes classifier is an intuitionistic and simple probabilistic classifier based on
Bayes’ theorem with strong independence assumptions. It has been used in many
applications, especially in text categorization. Though the assumption of independence
for Bayes’ theorem in text categorization often doesn’t hold, Naive Bayes classifier still
works quite well in many real applications than one might expect. Compared to SVM

classifier, Naive Bayes classifier usually works well under a large training set.

“The probability model for a classifier is a conditional model p(C|F}, F,,...,F,)over a

dependent class variable C with a small number of outcomes or classes, conditional on

several feature variables F; through F,[41]”. Using Bayes’ theorem, we can get
1 n
p(CIE,.-.,Fn)=Ep(C)Hp(E 1O) 2)
i=1

Where Z is a scaling factor dependent only onf#,...,F,. In text categorization, C

denotes a given category and F denotes distinct words in the text.

2.3.2 Related systems

Since its creation, many focused web crawler systems have been proposed using various
techniques [28, 29, 34, 36, 40, 42] and devoting to different goals [18, 24, 43]. In this

section, three focused web crawlers are used to present the related works. The LSCrawler

system proposed by M. Yuvarani [44] and the crawling system presented by Mohsen
Jamali [45] are two relatively new, well-documented focused web crawlers while the

meta-search crawler [43] is most similar to our work in terms of its motivation.

The LSCrawler system considers better recall as its goal and uses link semantics to guide
the crawling process. The LSCrawler system is made up of seven components: Seed
Detector, Crawler Manager, Crawler, HTTP Protocol Module, Link Extractor, Relevant
Ontology Extractor and HyperText Analyzer. The Seed Detector is responsible to retrieve
seed URLs from general purpose search engines; the Crawler keeps the URLs used for
crawling and dynamically generates instances for the crawler based on URL repository
size; the Crawler is capable of downloading web pages and storing documents; the HTTP
Protocol Module opens HTTP connections upon request; the Link Extractor extracts
hyperlinks and anchor texts from downloaded web pages and passes the information to
the HyperText Analyzer; the Relevant Ontology Extractor fetches the relevant Ontology
from the Ontology Repository; the HyperText Analyzer uses the relevant Ontology from
the Relevant Ontology Extractor to determine the relevancy of the terms received from
the Link Extractor. The URLs are hence prioritized by their relevancy. The system is
compared with the full-text indexed search and exhibits a better recall. In the whole
system, the crawling process is actually guided by the semantic of anchor texts. However,
anchor texts are often too short to provide adequate information to arrange a reasonable

crawling sequence. Content texts and URL patterns are good complements.

The hybrid focused web crawler proposed in [45] uses both link structure of documents
and content similarity of pages to the topic to crawl the Web. The authors set the topic of
Sports for their crawler and launched the crawling using a single seed URL. All web
pages are mapped into one of three groups: Seed Pages, Candidate Crawled Pages and

Uncrawled Pages. Seed Pages are repeatedly selected from Candidate Crawled Pages

19

using a rank score. Only hyperlinks derived from Seed Pages are crawled. All crawled
pages are first stored in Candidate Crawled Pages table and their rank scores are
calculated after each session. The one with highest mark will be moved to Seed Pages
table. The rank score is calculated using a combination of link structure and content

similarity as below:

Rank(p) = (links _to _seed(p)+links _from _seed(p))x(0.1+ content _similarity(p))

where p is a page from Candidate Crawled Pages; links to seed and links_from_seeds
are number of links from the page p to Seed Pages and number of links from Seed Pages
to it respectively. content similarity is a number between 0 and 1 denoting the degree of
similarity of a page to a domain. From the above formula, we can observe that this
algorithm emphasizes the link structure over content similarity and it is essentially a
compromise of the PageRank algorithm [46]. Using Seed Pages to mimic important
pages in the PageRank algorithm is a promising way to remove the requirement of a
large on-hand Web link structure database but it is also a potential limitation where the
accuracy of this algorithm largely depends on the precision of Seed Pages. In addition,
the content similarity is calculated using vocabulary vectors and simple keyword
matching. We deem that its classification accuracy can not be as good as SVM classifiers
or Naive Bayes classifiers. In addition, using only one seed URL to start the crawling

process is an obvious flaw.

The Meta-Search focused web crawler in [43] is designed to build domain-specific web
collections for scientific digital libraries. It shares the same goal of the CINDI Robot.
The author addressed the drawbacks of traditional focused web crawlers caused by local
search algorithms in the digital library construction. Since the Web pages are naturally
organized into different regions by special hyperlink structures, most focused web
crawlers using local search algorithms including Breadth-First Search, Best-First Search

and Spreading Activation Algorithm will be confined by these regions. So the collections

20

built by these traditional techniques often result in low recall, which means that it can not
provide diverse enough documents to facilitate the scientific society. As a result, the
authors of [43] borrowed the meta-search idea outside the focused crawling domain.
They deemed that meta-searching multiple search engines and combining returned results
can alleviate the problem of local search. In their implementation, a meta-searching
component keeps generating queries from a domain-specific lexicon, retrieving diverse
and relevant URLs by querying multiple search engines, and combining their top results.
In their experiments, they showed that the meta-search can improve the quality of the
collection. Resorting to multiple search engines and combining the results to enlarge the
opportunity of finding new relevant Web regions are straightforward and the resulting
improvement of recall is also obvious. In CINDI Robot, we also notice the importance of
meta-search and hence employ our own meta-search strategy. Our meta-search strategy is
used in the seed URL collection phase instead of in the real crawling phase, which can
decrease the difficulties of controlling crawling processes. In the CINDI Robot, both
Google and AltaVista are used to enrich our seed URL collections. In addition, Open
Directory Project is also used, which further relieve the problem of local search.
However, we also realize that only meta-search is not enough for an efficient focused
web crawler. The meta-search idea unveils more relevant regions, but to efficiently crawl
discovered regions, Web analysis algorithms and Web search algorithms are still vital to
the success of a focused web crawler, which are especially emphasized in the CINDI
Robot. So we are confident that our CINDI Robot can outperform this meta-search

focused web crawler.

Content texts, URL patterns and anchor texts are useful clues to guide a focused web
crawler. A multi-level inspection infrastructure can avoid many shortcomings of using
either one of them alone. However, most current papers ignore the power of such a

comprehensive system and the usefulness of URL patterns is overlooked. Therefore, in

21

this thesis we design a novel multi-level inspection infrastructure which maximally
makes use of all characteristics of web pages. This is also the main conceptual

contribution of this thesis.

2.4 CINDI System

Concordia INdexing and DIscovering (CINDI) system was first conceived in 1994 by Dr.
B. C. Desai [47]. The purpose of developing such a system is to allow users easy search
for and access to resources available on the Internet. It provides fast, efficient and easy
access to Web documents by using a standard indexing structure and building an expert

system-based bibliographic system using standardized control definitions and terms [48].

The CINDI system is composed of seven subsystems, namely the CINDI Robot, the
Conference subsystem [49], the Gleaning subsystem [50, 51], the Automatic Semantic
Header Generator (ASHG) subsystem [48], CINDI Registration and Upload subsystem
[28], the Search subsystem [51] and the Annotation subsystem [51]. The overall

architecture of CINDI system is given in Figure 3.

CINDI Robot uses “pull” mode to discover and download research papers, technical
notes, FAQs and so on from the Web, which will be elaborated in following chapters. The

remainder of this section will briefly introduce other CINDI subsystems.

22

il

'mu ma}fﬂ

',,‘,;;i’;%{;k ;:a;?éil
e

h i
il

i i

CINDISYSTEM

o i »f!ﬁmagiwi o
oﬁ&tﬂ W
) i

e (fj?xn ‘

m;f‘;i%?

i i
g i

;uw ;»g;;\ ummm

i

s

i

ste

Figure 3 CINDI system architecture

23

In contrast to CINDI Robot, the CINDI Conference subsystem uses “push” mode to
collect academic papers submitted to the CINDI system. The Conference subsystem
defines seven types of users: administrators, authors, reviewers, program committee
members, program chair, general chair and conference participants. These roles are set up
according to a real conference and thus facilitate the management of a real conference.
Authors can submit their papers to the CINDI system and this is the second source of

documents of the CINDI system.

The Gleaning subsystem further consists of two modules: File Conversion Subsystem
(FCS) and Document Filtering Subsystem (DFS). The Gleaning subsystem has direct
interactions with CINDI Robot. The CINDI system accepts several file formats,
including HTML, TXT, LaTex, RTF, PS, DOC, XML, TEX and PDF. However, all types
of files have to be converted into a unified PDF format by the FCS and then be filtered
by the DFS. The FCS is to provide a single document format to facilitate document
processing in the subsequent CINDI subsystems [51]. The PDF format is chosen because
PDF is the most common format of electronic documents. In FCS, a background daemon
is established to automatically and regularly convert non-PDF files into PDF format. The
DFS performs a sophisticated inspection algorithm to filter out irrelevant documents. The
DFS divides all documents into two categories: accepted and rejected by utilizing
Document Type Definition (DTD). The DFS tries to match a document to one of
pre-defined DTDs. In CINDI DFS, there are four kinds of DTDs, including thesis DTD,
technical paper DTD, academic paper DTD and FAQs DTD. If a document matches one
of these DTDs, it is classified as accepted, otherwise it is rejected. The filtering result is
sent back to CINDI Robot to guide the crawling process, which will be elaborated in

following chapters.

The ASHG subsystem constitutes the core of the entire CINDI system. The ASHG

24

subsystem parses and extracts a number of attributes of a research paper, including author,
title, keywords, abstract and subject headings. If any field is absent, the corresponding
section in the semantic header will be left blank. ASHG subsystem collaborates closely

with the Search subsystem.

Due to the huge amount of documents collected in the CINDI digital library, an efficient
Search subsystem is indispensable for users to find specific and appropriate information.
The CINDI Search subsystem is composed of two main components: a document
locating module and an interface supporting search by keywords and browsing by
similarity links. The documents in the CINDI system are parsed by the ASHG subsystem
and this information is inserted into the database, which forms the final database that is
used for searching and locating a desirable document in the CINDI repository. A full-text
indexing is then implemented over ASHG database field to provide a much faster
response as compared to the one with the normal LIKE predicate. The CINDI Search
module provides two kinds of search approaches, a Google-style basic search module
and an advanced search module which supports sophisticated Boolean operators. The
basic search performs a keyword based search, in which the conjunctive keyword queries
are ranked higher than disjunctive keyword queries. The basic search provides a simple
way for novice users to find a desirable document without any prior knowledge about the
structure of the underlying data. The advanced search satisfies veteran users to construct
Boolean expressions to identify a document from full texts, authors, abstracts or

annotations.

The CINDI Registration and Upload subsystem divides all CINDI users into three groups,
namely guests, authorized users and contributors. A guest is a user who can only search
and download documents from the CINDI system. An authorized user is a user who can

make annotations in addition to the privileges possessed by a guest. A contributor is a

25

user who submits academic papers to the CINDI system and also possesses the same

privilege as an authorized user.

The CINDI Annotation subsystem permits registered users to comment on CINDI
documents. The visibility of annotations is open for all users of the CINDI system. All
annotations in CINDI system are made independently, without the need to edit the
associated documents, and are stored separately in an annotation database, which is
linked with the ASHG subsystem database. For each annotation, the annotation text, the
annotation author and the target document are recorded. An annotation search module is

provided in the annotation subsystem.

26

Chapter 3

CINDI Robot System Architecture

The CINDI Robot consists of five indispensable components: Seed Finder, Web Crawler,
Link Analyzer, Statistics Analyzer and File Fetcher. As mentioned before, DFS plays an
essential role in the execution of CINDI Robot. It provides statistical information to
CINDI Robot for an adaptive strategy. Figure 4 illustrates the system architecture of
CINDI Robot.

CINDI Robot

Figure 4 CINDI Robot system architecture diagram

27

The current CINDI Robot is implemented in JAVA as a multi-threaded application, which
uses typically 75 threads in crawling processes. It begins a crawling process by adding
seed URLs found by Seed Finder into the URL frontier. The Web Crawler threads get
URLs from the URL frontier and use preliminary filters to filter out irrelevant URLs. The
page fetcher of Web Crawler downloads web pages using URLs which pass the
preliminary filter. The HTML parser embedded in Web Crawler parses the text content
and extracts anchor texts and outer links. The text contents of web pages are sent to the
Link Analyzer, which classifies a web page into one of three pre-defined categories:
relevant pages, irrelevant pages and potentially relevant pages. This classification result
will be sent back to Web Crawler to guide the current crawling process and be sent to the
Statistics Analyzer. The Statistics Analyzer provides real-time statistical information to
help Web crawler threads get out of “trap” sites and also collaborates with DFS to guide
further crawling process. Once a potentially relevant document is identified, its URL will
be passed to the File Fetcher. The File Fetcher downloads the corresponding document

and informs DFS to examine the document.

3.1 Seed Finder

For a focused web crawler, it is difficult to make the crawler remain in the topic while
trying to obtain a reasonable Web coverage. So it is vital to collect a large set of relevant
seed URLs to initialize crawling processes. According to Brian D. Davison’s research
result [52], the topical locality is the basis of most web applications, especially for
focused web crawlers. The topical locality is defined as the phenomenon that most web
pages are linked to others with related content [52]. Thus he concludes the chance of
getting relevant pages by following a topic relevant web page is significantly higher than
by following a randomly selected page. This forms the basis of the success of a focused

web crawler.

28

For focused web crawlers, a higher precision means a better capability of staying within
relevant regions, thus better downloaded document quality and less workload for DFS; a
higher recall means a better capability of penetrating the Web, thus better downloaded
document quantity. A set of well-selected seed URLs can bring significant crawling

performance improvements in terms of both precision and recall.

In CINDI Robot, the Seed Finder aims to find as many web sites as possible, which
would most likely contain topic related documents or most likely lead to those web sites
containing such documents. These sites are good starting points for the whole crawling
process. In CINDI Robot, we propose two methods to detect these initial seed URLs:
ODP [11] based approach and general purpose search engine based approach. As
mentioned before, ODP is the largest and most comprehensive web directory in the Web.
It provides publicly accessible data files of web site links within each category. We deem
it as the best source of seed URLs considering the fact that human editing should bring

higher quality.

In addition, resorting to general purpose search engine for seed URLs is a popular idea
for the construction of a focused web crawler. But how to get best seed URLs from
general purpose search engine still poses a huge challenge on focused web crawlers. The
previous version of CINDI Robot used this general purpose search engine based
approach to get seed URLs [4]. In [4], the author did a survey on three popular general
purpose search engines: MSN, AltaVista and Google and chose the latter two as the
source of the seed URLs according to a considerably better accessible web page number.
He manually submitted the query phrases “computer science department” and “computer
science publications” to AltaVista and Google Web API [26] and combined the search
results from these two search engines. Duplicate entries obtained from these two search

engines were excluded. The combination of results from both AltaVista and Google

29

provided nearly 50% more seed URLs than from a single search engine. Especially, to
retrieve seed URLs from AltaVista, two parsing processes were needed in order to get rid
of commercial sponsor web sites. However, using only two phrases “computer science
department” and “computer science publications” to retrieve relevant seed URLs will
largely constrain the number of seed URLs. The obtained seed URLs quality is not as
good as we expect. Thus we make some modifications of the previous method. The

detailed implementation will be elaborated in Chapter 4.

3.2 Web Crawler

CINDI Robot Web Crawler infrastructure consists of five parts: URL frontier,

preliminary filter, page fetcher, HTML parser and anchor text analyzer.

3.2.1 URL frontier

All Web Crawler threads share a single synchronized URL frontier. This is important in
order to avoid the abnormality where all threads may converge to the same region. Two
priority queues are set up in the URL frontier to express the extent of relevance of
incoming URLs. All incoming URLs are classified into two categories: high priority
URL and low priority URL according to how relevant they are related to our topic. All
seed URLs found by Seed Finder are marked as high priority. At the beginning of each
crawling process, the URL frontier retrieves 200 seed URLs from NEW_SITES table and
put them into the high priority queue. During crawling processes, new web sites will be
found and put into URL frontier after they are assigned a priority level. Each web crawler
thread first retrieves URLs from the high priority queue as long as there is still any high

priority seed URL left. Otherwise a low priority seed URL is retrieved.

30

This is different from the previous version of CINDI Robot. In [4], all new web sites are
inserted into a FOREIGN_LINK table and may not be crawled for a relatively long
period. For each crawling cycle, only a fixed number of web sites will be traversed. In
the current design, the number of web sites that will be crawled in a cycle is decided by
how many web sites we can find in this cycle. The biggest benefit of this design is to
approach the nature of the focused web crawling: most relevant web pages are crawled
first. We have no reason to separate two strongly related web sites into two crawling

cycles, especially considering that there is no guarantee when the latter cycle will begin.

One feature of CINDI Robot is that it always crawls within a domain site. That means
CINDI Robot won’t retrieve a new web site from the URL frontier until it finishes the

current one. A crawling cycle ends when the URL frontier is empty.

3.2.2 Preliminary filter

The preliminary filter performs a URL pattern inspection in order to remove useless web
pages before actually crawling them. It is an efficient way to increase both precision and
crawling speed. Due to the domain hierarchy of URLs, URL patterns can give additional
information on detection of a web page’s relevance. We also found other heuristics to

prune irrelevant web pages. Detailed implementation is elaborated in Chapter 4.

3.2.3 Page fetcher

The page fetcher in the Web Crawler component is different from the File Fetcher
component. In CINDI Robot, all existing file formats are grouped into three categories.
The first category is formed by file formats that are acceptable to the page fetcher,
including: HTML, HTM, ASP, PHP, JSP, SHTML and CFM. In addition, there is a

31

special case on the Web where a URL is like “http://www.cs.concordia.ca/index/”. In this
case, we deem this URL is of one of the file formats acceptable to the page fetcher. The
second category includes file formats that are downloadable by File Fetcher: PDF, PS,
DOC, TXT, LaTex, TEX, XML, HTML and RTF. All other file formats are of no interest
in CINDI Robot and are excluded during the crawling process. The page fetcher
downloads web pages in acceptable formats and temporarily keeps them in a string buffer.

Then the page fetcher informs the HTML parser to parse these web pages.

3.2.4 HTML parser

The HTML parser performs three main tasks. The first one is to extract useful parts of a
web page’s HTML code, including hyperlinks, anchor texts, title if any, “meta keywords”

information if any and “meta http-equiv =“refresh”” if any.

Generally, there are four kinds of hyperlinks in HTML documents: anchor tags (<A>),
image tags (SIMG>), map and area tags and frame (iframe) tags [53]. Because the main
goal of CINDI Robot is to collect academic and scientific documents, only anchor tags
are used in CINDI Robot to dig out new web pages. A commonly used anchor tag

structure is given below:
Anchor Text

The href attribute is used to address the URL of the web page to link to and the anchor
text is used to predict the relevance of the linked web page. CINDI Robot can use the
anchor text to decide whether to follow a URL or not. The HTML parser extracts the href

value and the anchor text from an anchor tag for further analyses.

There are several “meta” tags defined in the HTML language, including: generator,

32

keywords, description, author, robots and http-equiv. CINDI Robot is interested in two of
them, namely keywords and http-equiv. “meta keywords” information presents web
pages’ keywords to a web crawler. “meta http-equiv ="‘refresh™”’ prompts a web crawler
to reload the current page or redirect to a new web page. The “meta keywords” is used to

perform a fast web page classification.

All URLs used by the page fetcher to retrieve a web page should be in the form of
absolute URL. However the URLs extracted from anchor tags can be either in an
absolute URL form or in a relative URL form. The HTML parser performs the task of
converting a relative URL to an absolute URL. Sometimes due to some human mistakes,
a URL may be written in a way that can not be recognized by a web crawler. Some of
these human mistakes include misuse of back slash “\”, unconventional relative URL and
using single “/” after “http:” [4]. The HTML parser is responsible to rectify these

mistakes.

Sometimes, a research paper can also be in HTML format. The third responsibility of the
HTML parser is to identify this kind of documents. Usually, a research paper falls into a
specific pattern. The words, “abstract”, “keywords”, “introduction”, “chapter”,
“reference”, “bibliography”, “future work”, “conclusion”, “appendix” and
“acknowledgement”, are good indications of a research paper. By identifying these words,

the HTML parser can determine if a web page is a research paper.

3.2.5 Anchor text analyzer

One important assumption of focused web crawlers is that anchor text is descriptive of

the content of the web page being pointed to [54]. “Focused web crawlers need to predict

the benefit of downloading unvisited pages based on the information derived from pages

33

that have been downloaded [55]”. Thus using anchor text to guide the crawling process is
extremely important for a focused web crawler. The anchor text analyzer uses anchor text
obtained from the HTML parser to predict the relevance of a web page. The anchor text
analyzer sets up two inspection patterns. If a web page is classified as relevant by Link
Analyzer, the anchor text analyzer uses keyword matching to prune irrelevant outer links;
if a web page is classified as irrelevant but may lead to relevant web pages, the anchor

text analyzer uses keywords matching to quickly identify a potential relevant outer links.

3.3 Link Analyzer

Link Analyzer is the intelligence core of CINDI Robot. In contrast to the previous
version of Link Analyzer whose responsibilities are taken over by the preliminary filter
in Web Crawler, the current Link Analyzer employs two Naive Bayes text classifier [55]
and one Support Vector Machine text classifier [39] to implement a revised context graph
algorithm. The CINDI Robot categorizes all web pages on the Web into three categories.
The first category is formed by relevant web pages. The second category is constituted of
web pages that are not directly related to computer science and software engineering but
may lead to relevant web pages. An example web page from the second category is
“www.concordia.ca”. This web page is irrelevant per se. However it can lead to a
relevant page, “www.cs.concordia.ca”. So it is also important for the crawling process.

The third category contains totally “useless” web pages.

The revised context graph maps all web pages into different layers according to the
categories defined in the previous paragraph. Figure 5 illustrates the idea of the revised
context graph, where the distance requirement is elaborated in Chapter 4. Layer 1 web
pages correspond to the web pages in the first category; Layer 2 web pages correspond to

the web pages in the second category. All “useless” web pages are excluded from the

34

revised context graph. And in the center are desirable documents. By constructing such a
context graph, the crawler learns about which topics are directly or indirectly related to

the target topic.

Figure 5 Revised Context Graph

An incoming web page passed to Link Analyzer is first tested by a text classifier to see if
it should be put into Layer 1. The text classifier can be a Support Vector Machine text
classifier or a Naive Bayes text classifier. The Support Vector Machine text classifier
works in the initial crawling phase while the Naive Bayes text classifier is activated after
the CINDI Robot has established a solid knowledge base. In order to increase recall,
another Naive Bayes text classifier is needed to check if an irrelevant web page is still

worthy to be further examined. That is if it is a Layer 2 web page.

On the Web, on-topic regions are usually separated by off-topic regions. Thus it is
sometimes necessary for a focused web crawler to go through some off-topic regions to
get to the next relevant one [36]. In order to increase recall, a technique is required to

allow the CINDI Robot to follow a series of irrelevant pages for a relevant region. This

35

technique is called as tunneling technique [54]. A good tunneling technique makes the
CINDI Robot achieve a high recall while still maintaining a high precision. This is

elaborated in Chapter 4.

3.4 Statistics Analyzer

In the previous version of the CINDI Robot, the Statistics Analyzer started after the
completion of crawling, file fetching and document filtering [4]. Statistics Analyzer
utilized information gained from previous crawling process as well as the feedback
provided by DFS to make the robot more selective in subsequent crawling processes.
This is considered as a “static” way to guide the crawling process. It is essential for a
focused web crawler. However, sometimes on the Web an entrance web page of a web
site may be a “trap” page. It is related to the pre-defined topic however the rest of a web
site is totally irrelevant. In this case, we need some mechanisms to help CINDI Robot get
out of this web site as soon as possible instead of after only collecting statistical data
from DFS. The current Statistics Analyzer performs a real-time inspection and uses

real-time feedbacks to indicate a crawling termination.

Compared to Link Analyzer which makes its decision based on web page textual contents,
Statistics Analyzer works on a higher level. It analyzes at the URL level rather than at the
textual content or anchor text level. In order to accommodate the preliminary filter,
Statistics Analyzer provides information for the URL pattern inspection. Statistics
Analyzer not only collects the Page Relevancy Rate (PRR) and the Document Download
Rate (DRR) during the crawling process, but also receives the downloaded files’ filter
results from DFS to calculate the Accepted Document Rate (ADR). All of these three

parameters are defined in the unit of a URL directory.

36

The Page Relevancy Rate is defined as the ratio of the number of relevant pages over

total page number under a URL directory. It can be formulated as follows:

PRR = relevant _page number _in _the _directory

total _page number _in _the _directory

It reflects how closely a web site (a URL directory) is related to computer science or
software engineering. The Document Download Rate is defined as the ratio of the
number of documents downloaded over the number of web pages visited under a
directory and it reflects the density of the links to files under a directory. It can be

calculated by the following equation.

DDR = downloaded _document number _in _the _directory

total _visited _web _page number _in__the _directory

The Accepted Document Rate is defined as the ratio of the number of documents

accepted over the number of documents downloaded, which is formulated as below.

ADR = accepted _downloaded _document _number _in _the _directory

total _downloaded _document _number _in _the _directory

PRR and DDR can be learned by Statistics Analyzer itself during the crawling process;
while for ADR CINDI Robot has to resort to DFS.

Using these three parameters, Statistics Analyzer can set up a set of policies for the
crawling process. First is the construction of two types of directory lists. In the previous
version of the CINDI Robot, two concepts are employed, namely stop-directory list and
to-be-avoided directory list [4]. Former experiments proved they can significantly
improve CINDI Robot’s performance. Thus they are retained and improved in the current

CINDI Robot.

37

The stop-directory list applies to all web pages. If a web page URL is under one of the
directories in the stop-directory list, it won’t be crawled. Due to its generality, we set a
strict requirement for stop directory selection. Otherwise, we would miss numerous
relevant web pages. In [4], the stop-directory list records directory names under which no
downloaded documents are found to be accepted. In the current version of CINDI Robot,
the stop-directory list is augmented to include directory names under which no relevant
web pages are found. This modification makes the stop-directory list work in a partially
dynamic way. To perform the stop directory selection proposed in [4], the stop-directory
list can only be constructed after completion of a crawling process. While the new

stop-directory list selection policy makes it work during a crawling process.

The to-be-avoided directory list is established for each crawled web site in order to
perform an efficient re-crawling. For a specific web site, its to-be-avoided directory list
records all directory names under which there is an expectation of not finding any
relevant documents. Similar to the stop-directory list, the to-be-avoided directory list
selection requirements are also augmented, which is elaborated in Chapter 4. We also
notice that the structure of a web site is subject to change, thus new to-be-avoid
directories are allowed to be added into the list. To perform a re-crawling, the CINDI
Robot will check this web site’s to-be-avoided directory list and skip all directories in the

list.

In addition to these two directory lists, for real-time monitoring Statistics Analyzer also
keeps an eye on the PRR and discards a web site if its PRR is less than 5% after crawling
200 web pages. Statistics Analyzer is also responsible to exclude less valuable web sites

from re-crawling.

38

3.5 File Fetcher

File Fetcher downloads various documents using document URLs provided by Web
Crawler. In [4], the File Fetcher worked in a sequential order. It was launched after the
Web Crawler finished a crawling cycle. In the new CINDI Robot, File Fetcher works
parallel with other components. This modification can shorten the whole working cycle

of the CINDI Robot.

For a large scale system as CINDI Robot, File Fetcher has to perform many tasks. It can
be further divided into two components, namely the file parser and the file writer. The
file parser checks if a document has been downloaded by examining the URL of this
document in CINDI Robot database. Duplicate documents will be directly removed. The
file parser also checks a document’s name and a document’s size to remove undesirable
files. For example, files with names such as “cv”, “resume”, “homework” are not
welcome. An “8K” assumption proposed in [4] is respected in the current CINDI Robot.
According to an experiment over 52,552 downloaded PDF documents, the author of [4]
found all documents with sizes less than 8K are invalid. Therefore, we set the 8K as the
cut-off point. We also notice that file sizes changes under different file formats, so this
assumption is only applied to PDF documents. However up to 49.42% of documents
discovered by CINDI Robot are in PDF format [4], this assumption can bring substantial
time saving for both File Fetcher and DFS. Sometimes, an identical document may come
from different URLs; hence a simple comparison on URLSs is not enough to remove all
duplicate files. The file parser employs a MDS5 digital signature checker to verify if two
documents with the same name are identical [4]. The file writer performs the actual work
of downloading a file from a remote server and inserting file information into database.
The file writer also performs the renaming mechanism. Different files may share the

same file name. Considering CINDI Robot downloads up to 800,000 files, this

39

phenomenon is very common. According to our survey given in Chapter 4, we can
confirm this speculation. The file name “content.pdf” is shared by 306 files. Thus a good
renaming mechanism is very important to CINDI Robot. In [4], the file writer attaches a
number to the file name to rename a file. For example, if a file is named as “abc.pdf”, a
second file with the same name will be named as “abcl.pdf”, a third file with the same
name will be named as “abc2.pdf”’. Since there are so many documents in CINDI
database, this information cannot be kept in memory, but stored in hard disk. In this case,
if a file name is very popular, a rename operation may involve as many as hundreds of
database operations. In the above extreme example, it takes up to 90 seconds to complete
a renaming operation. This is unacceptable for CINDI Robot. A simple but efficient
renaming mechanism is used in the current CINDI Robot, which is described in Chapter

4,

3.6 Database of CINDI Robot

CINDI Robot chooses MySQL as its database server due to its scalability, flexibility and
high performance [56]. In the previous version of CINDI Robot, it created and operated
on 16 database tables, including NEW_SITES, SEED URL, VISITED PAGES,
FOREIGN_LINK, PRE_DOWNLOAD_INFO, DOWNLOAD_STATUS,
DOMAIN_KEYWORD, DOCUMENT _REF BY, SITE REF _BY, LINK REF BY,
LEVEL_STATS, SITE_STATS, RDVT, STOP_DIR_LIST, DIR_TO_BE_AVOIDED and
CRAWLED_SITES. To accommodate modifications made in the current CINDI Robot,
we consequently re-design the CINDI Robot database. To accelerate the crawling speed,

we choose CSV files to store data instead of a database wherever possible.

NEW_SITES table remains from the previous design. It stores new sites discovered by

Seed Finder. It contains only two fields, namely SID and wrl. In [4], the SEED_URL

40

table stores URLs used in current crawling. We deem it is not very useful. Instead seed
URLs are loaded into Java Vectors at the beginning of each crawling cycle.
VISITED_PAGES table also remains in the current design, but the parent ID attribute is
abandoned. In [4], the parent ID is designed in order to unveil the web structure of each
web site. However, this design does not really contribute to the current CINDI System,

but only brings extra cost. Figure 6 gives the schema of the VISITED PAGES table.

+ + + + + +
i Field i Type ! Null | Key i Default | Extra i
+ + + + + + +
{ PID i bigint{28) unsigned | NO { PRI | NULL { auto_increment |
{ url { blob { YES | ! NULL ! H
| title | varchard{100> ! YE§8 | ! NULL H |
i page_name | varchar{108> i YES | i MULL H H
{ is_valid | smallint<1> 1 YE§ i { NULL : i
i sitelD i int<{288> ! NO { MUL | NULL | H
{ PDATE | date i YES | ! NULL | H
+ + } + 4 +

Figure 6 Schema of the VISITED PAGES table

Since new discovered foreign links are directly sent back to the URL frontier and get
crawled in current crawling cycle, the FOREIGN_LINK table is also removed.
PRE_DOWNLOAD_INFO table is also removed from the CINDI Robot database, and
corresponding information is kept in a Java Map object. Once a file is retrieved, file
related information is inserted in to the DOWNLOAD_STATUS table, which keeps all
information of downloaded files. The schema of the DOWNLOAD STATUS table is

showed in Figure 7.

41

+ + + + + + +
{ Field | Type ! Null { Key | Default ! Extra |
+ + + + + + +
{ DID ! bigint{20)> unsigned ! NO ! PRI | NULL ! auto_increment |
i url ! blob ! YE8 | { NULL H H
| directory i blob ' YES | ! NULL H H
| sitelD | int<{268> ! NO ! MUL { NULL H H
| org_file_name | varchar(208> ' YEB | ! NULL H H
{ cur_file_name | varchar<26@> ! YES | ! NULL H H
{ temp_location | varchar{iBa> | YES | ! NULL H |
i final_location | varchar(188> ! YE§ | ! NULL H {
i ddate 1 date 1 YE§ | ! NULL H H
| file_size | int{i@> ! YES | ! NULL H H
i file_type i varchar(2e> ! YES | ! NULL H i
| filter_flag { smallintd{1> ! YES | ! NULL ' H
{ ashg_flag ! smallint<{1> { YES§ | ! NULL H H
| is_diff_format | smallintd{i> ! YES§ | ! NULL | |
i is_renamed i smallint<1> i YE§ | ! NULL i H
! num_ref_by i intd1@> ! YES | ! NULL i H

Figure 7 Schema of the DOWNLOAD_STATUS table

The directory field records the directory name of a document link. Suppose a file URL is
http://br.endernet.org/~akrowne/elaine/dlib/papers/giles/context_focused.pdf, its
directory name is /~akrowne/elaine/dlib/papers/giles/. The siteID indicate the web site ID
in which it is discovered. The org file name stores a document’s original name and the
cur_file_name field records its current name. The filter flag field indicates whether a
document is accepted or not and it is set by DFS. As aforementioned, CINDI Robot
interacts directly with DFS and obtains document relevance feedbacks. The
DOWNLOAD_STATUS table is the interface between these two systems. If a document
is acceptable, DFS sets its filter flag value to 1, otherwise it sets the filter flag value to 2.
The final location field is also set by DFS. The entries of rejected documents are
periodically removed. The ashg flag is set by ASHG when a semantic header has been
generated for this document. If there are other formats of a file existing in CINDI
document repository, the is_diff’ format field is set to 1. The num_ref by field indicates
the number of times a document is referred by other web pages. This information
provides an attractive feature for other CINDI subsystems. For example, in future a user

may search a paper according to its popularity which is reflected by referred times.

42

The DOMAIN_KEYWORD table is also removed from the CINDI Robot database. Its
content is stored in a CSV file instead and used as prior knowledge of “meta keywords”.
The previous LEVEL_STATS table maintained the statistic information of document
distribution over directory levels. According to the experiment over 106,416 documents
[4], the author came to the conclusion that it is unlikely to find a relevant document in a
URL with more than 7 directory levels. This conclusion is utilized in the current CINDI
Robot for the URL pattern inspection. Since we are following this conclusion, the

LEVEL_STATS table is omitted in the current database.

The Representative Document Vector Table (RDVT) was designed to contain anchor
texts that appeared most frequently in the home pages of positive sample seeds. In our
current design, all anchor text keywords are kept in two CSV files and are used for URL
pattern inspection. The STOP_DIR_LIST table and the DIR_TO_BE_AVOIDED table
are kept in CINDI Robot database and record stop-directory list and to-be-avoided
directory list respectively. The STOP_DIR_LIST table contains two fields: did, dir_name
which is the name of a stop directory. As we mentioned before, the
DIR_TO BE_AVOIDED table records to-be-avoided directories for every crawled web

site. Its schema is given in Figure 8.

+ + t+ + + + +
! Field { Type ! Null | Key ! Default | Extra |
+ + + + + + +
! sitelD ! int (208> ! NO ! MUL | HULL ! i
| dir_name | varchar{208> | YES | ! NULL i i
+ 4 + + + +

Figure 8 Schema of DIR_TO_BE_AVOIDED Table

The previous LINK_REF BY table maintained the records of link cross references for
downloaded documents [4]. This functionality is condensed to a num_ref by field in the

DOWNLOAD_STATUS table. The previous SITE_REF_BY table indicated how often a

43

web site was referred by other sites. This frequency indicated the popularity of a web site

and was an indicator for the re-crawling policy. However this information can also be

simplified as a num_ref by field in the CRAWLED_SITES table. In addition, we

incorporate information of the SITE STATS table into the CRAWLED SITES table.

Figure 9 presents the schema of the current CRAWLED _SITES table.

YES

+ + + + + +
{ Pield | Type { Null {! Key | Default | Extra H
i1 ID i int<208> i NO { PRI | NULL i auto_increment 1|
| host_name ! varchar(288> | YES | ! NULL H H
! entrance_url i blob i YES | ! NULL H H
| is_accepted ! smallint{1> | YES | { NULL H {
i start_date ! datetime i YE§ | i NULL i H
{ end_date ! datetime ! YES§ | ! NULL H H
! num_ref_by ! int<108> { YES | { NULL | H
! total_pages ! int<108) ! YES ! ! NULL H H
{ total_downloaded i int(5@> ! YE§ | { NULL H |
{ total_accepted | int{58> ! YE§ | { NULL ! H
! page_relevance_rate i float i YE8 | i NULL | H
! document_download_rate ! float ! YES | ! NULL ! H
i accepted_document_rate | i H i NULL H H
+ + + + +

float

Figure 9 Schema of the CRAWLED_SITES table

In the CRAWLED_SITES table, the is_accepted field records if this web site is a “trap”

web site and if it is worth being recrawled. The num_ref by indicates how many times a

web site is referred. The fotal_pages, total_downloaded and total accepted fields present

the total number of web pages crawled, total number of documents downloaded and total

number of accepted documents respectively.

As a summary, we recall all tables used in the current CINDI Robot database:
NEW_SITES table, VISITED PAGES table,
STOP_DIR_LIST table, DIR_TO_BE_AVOID table, and CRAWLED_SITES table.

44

DOWNLOAD_STATUS

table,

Chapter 4

CINDI Robot Implementation and Heuristics

In this chapter, we describe the implementation details of CINDI Robot. Recall that
CINDI Robot is a multi-threaded, large-scale focused web crawling program that is
implemented in pure JAVA and runs on the Linux platform. To enhance the CINDI
Robot’s performance, we implement a novel multi-level inspection infrastructure which
includes URL pattern inspection, anchor text inspection and content text inspection. We
start the elaboration with implementations of CINDI Robot’s five main components
followed by an illustration of an overall crawling process at the end of this chapter and

the multi-level inspection infrastructure is emphasized.

4.1 Seed Finder

The Seed Finder aims at finding as many high quality seed URLSs as possible. Seed URLs
are the starting point of each crawling process, so their quality and quantity partially
decide the following crawling performance. In [4], the author submitted queries using
keyword “computer science department” and “computer science publications” to both
Google Web API and AltaVista. Since Google places a constraint of a maximum of 10
results received for each query up to 1000 results [25] and there is also a similar limit on
AltaVista, the actual quantity of seed URLs returned is not satisfactory. In fact, even the
quality of seed URLSs is unsatisfactory. Hence, in the current CINDI Robot, we propose
using Open Directory Project (ODP) to increase seed URL quantity and quality. In
addition, we also revise the method proposed in [4] with an expectation of getting more

and better seed URLs from Google and AltaVista.

45

4.1.1 ODP based approach

Open Directory Project provides a set of publicly accessible data, including category
hierarchy information, links within each category, category move history and so on.
Among their free data, we are interested in two UTF-8 files, named structure.rdf u8.gz
and content.rdfu8.gz [11]. The former file gives the category hierarchy information
which will be used to identify categories that are relevant to computer science and

software engineering. Figure 10 gives a short example of structure.rdf u8.gz file which

defines the first level categories.

<Topic r:id="Top">
<catid>1</catid>
<d:Title>Top</d:Title>

<lastUpdate>2004-04-13 23:40:59</lastUpdate>

<narrow r:resource="Top/Arts" />

<narrow
<narrow
<narrow
<narrow
<narrow
<harrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
<narrow
</Topic>

r.

resource="Top/Shopping" />

r:resource="Top/Science" />
r:resource="Top/Games" />
r:resource="Top/Business" />
r:resource="Top/Computers" />
r:resource="Top/Health" />
riresource="Top/Sports" />
r:resource="Top/World" />
r:resource="Top/Test" />
r:resource="Top/Society" />

r:
r
r
r
)
r
r
r
r
r

resource="Top/News" />

:resource="Top/Home" />
‘resource="Top/Bookmarks" />
‘resource="Top/Regional" />
:resource="Top/Recreation" />
:resource="Top/Kids_and_Teens" />
:resource="Top/Adult" />
:resource="Top/Reference" />
‘resource="Top/UTF8" />
:resource="Top/Netscape" />

Figure 10 structure.rdf.u8.gz file example

46

By analyzing the structure.rdfu8.gz file, we choose categories in Table 2 from which

Seed Finder retrieves seed URLs.

Table 2 ODP categories used in Seed Finder

Top/Computers/Computer_Science Top/Computers/Hardware
Top/Computers/Internet Top/Computers/Security
Top/Computers/Software Top/Computers/Systems
Top/Computers/Algorithms Top/Computers/Artificial_Intelligence
Top/Computers/Artificial_Life Top/Computers/Bulletin_Board_Systems
Top/Computers/CAD_and_CAM Top/Computers/Data_Communications
Top/Computers/Data_Formats Top/Computers/Desktop_Publishing
Top/Computers/E-Books Top/Computers/Emulators
Top/Computers/Graphics Top/Computers/Hacking
Top/Computers/Home_Automation Top/Computers/Human-Computer_Interaction
Top/Computers/Intranet Top/Computers/MIS
Top/Computers/Mobile_Computing Top/Computers/Multimedia
Top/Computers/Operating_Systems Top/Computers/Parallel_Computing
Top/Computers/Performance_and_Capacity Top/Computers/Programming
Top/Computers/Robotics Top/Computers/Speech_Technology
Top/Computers/Supercomputing Top/Computers/Usenet
Top/Computers/Virtual_Reality

After that, a parser is developed to extract desirable seed URLs from content.rdfu8.gz
file. Figure 11 gives a short example of content.rdfu8.gz file. It gives all links under
category “Top/Arts/Movies/Titles/1/187”.

<Topic r:id="Top/Arts/Movies/Titles/1/187">
<catid>97826</catid>
<link r:resource="http://www.wbmovies.com/187/" />
<link r:resource="http://www.movieweb.com/movie/index.html" />

47

<link r:resource="http://www.filmscouts.com/scripts/film.cfm" />

<link r:resource="http://www.mrqge.com/lookup?187" />
<link r:resource="http://us.imdb.com/title/tt0118531/" />
</Topic>

Figure 11 content.rdf.u8.gz file example

By parsing the content.rdf.u8.gz file, we get 30,655 high quality seed URLs. Since ODP
is edited by human editors, we deem it can provide seed URLs with higher quality.
However, due to its human constructed nature, it can not scale to the whole Web. Thus

the entries retrieved from general purpose search engines are good complements to

enrich seed URLs.

4.1.2 General purpose search engine based approach

General purpose search engines contain large volume of link information. Upon
well-selected queries, they can also provide numerous good seed URLSs. Inspired by the
CiteSeer Web crawler [24], we implement a new method to construct query phrases
submitted to AltaVista and Google. These queries have to meet two requirements: 1) they
can obtain a good coverage of computer science and software engineering related web

sites; 2) the obtained seed URLs should be strongly related to our topic.

To cover all computer science subfields, we utilize the computer science directory
provided by CiteSeer [57] to construct the query repository. Table 3 presents the top level
of the CiteSeer computer science directory. We manually collect 200 research papers
from all subdirectories and extract their main titles and keywords. Removal of stop
words is manually performed and meaningful phrases are retained [58]. The words and
phrases retained are grouped into query entries and are submitted to AltaVista and
Google to retrieve seed URLs. These query entries are given in Appendix A. Since these

queries are specific terms used in computer science and software engineering field, we

48

consider all returning results are on-topic. Among returned seed URLS, those document
URLs, like www.ed.ac.uk/papers/Sta003.pdf, are excluded because usually it is not
possible to find any hyperlink in this kind of documents. To further ensure a better
relevance of seed URLs, we only keep the first 200 query results from both AltaVista and
Google results for each query and combine the results. In this way, we obtained 27,056
high quality seed URLs in contrast to 3,130 seed URLs found in [4]. One potential
advantage of general purpose search engine based approach is that we can increase the

seed URLs by creating more well-selected queries whenever we feel it is necessary.

Table 3 CiteSeer computer science directory

Topic Name Subtopics Number
Agents 6

Applications

Architecture

Artificial Intelligence

Compression

Databases

Hardware

Human Computer Interaction

Information Retrieval

Machine Learning

Networking

NO| O o0 0 00 00 o0 W O\ W] W

Operating Systems

[
[

Programming

Security

Software Engineering

Theory
World Wide Web

S O W W

All seed URLs found by these two approaches are inserted to NEW_SITES table and all

duplicate URLs are removed.

49

4.2 Web Crawler

The previous Web Crawler was basically designed as a Breadth-First Search (BFS)
crawler [4]. However, more and more research [28, 59, 60] indicates that BFS is not
suitable for focused web crawling. Another problem of the previous CINDI Robot is lack
of intelligent guidance of crawling processes. As a result, the current Web Crawler crawls

the Web in a sequence guided by machine learning and heuristics.

4.2.1 URL pattern inspection

Unlike text categorization in Information Retrieval systems in which only content texts
are used for classifying a document, for web crawlers the URL pattern can provide
additional clues for web page classifications. This observation brings better efficiency for
a focused web crawler. URL pattern inspection of CINDI Robot is implemented to
include 5 main aspects: computer science department web site speculation, stop-directory
and to-be-avoided directory filtering, protocol and file format filtering, seven directory

level exclusion and the Robot Exclusion Protocol.

A URL may explicitly tell us if it is from a useful web site. This is most common for web
pages of a computer science department at a well recognized university. For example, a
URL such as “http://www.cs.concordia.ca” indicates it is worth crawling. By collecting
over 500 computer science departments’ URLs, we deem URL keywords in Table 3 are
good indications of computer science department web pages. Usually a web page with
appearance of “edu” or “ac” in its URL is even more likely to be a computer science
department web page. However, we also notice that some institutions’ domain names are
not constructed using “edu” or “ac”. Due to the existence of Link Analyzer and Statistics

Analyzer, we can perform a less strict classification policy. Any URL containing a

50

section matching URL keywords in Table 4 is classified as relevant and if it appears as a

foreign link, it will be sent to the high priority queue of the URL frontier.

Table 4 URL keywords of computer science department web pages

ID URL keywords ID URL keywords ID URL keywords
1 cs 20 umes 39 csis
2 cpes 21 ccs 40 soi
3 scs 22 secs 41 macs
4 site 23 mathces 42 comp
5 cis 24 mtcs 43 cctm
6 csm 25 ecsu 44 SoC
7 csce 26 macsc 45 computing
8 csC 27 compsci 46 inf
9 ecs 28 csdept 47 scm
10 csci 29 itec 48 eeecs
11 ecst 30 computerscience 49 csd
12 cse 31 insttech 50 cmis
13 soe 32 encs 51 CSWWW
14 scis 33 cap 52 cms
15 eecs 34 seas 53 scom
16 csee 35 Icsee 54 des
17 informatics 36 scit 55 it
18 CSCs 37 cems 56 ece
19 cti 38 csse 57 mcs

The text in a URL string can contain even more important information than just deciding
if it is a computer science department web page. Since we are looking for research
documents in computer science and software engineering field, a URL string containing
“medicine” is less likely to be relevant than a URL containing the word “computing”.
The stop-directory list is inspired by this idea. When Web Crawler retrieves a URL, it
first extracts all directory names of this URL. If one of these names appears in the

stop-directory list, this URL won’t be crawled. For example, given a URL

51

“http://www.cs.concordia.ca/programs/ugrad/coop/calendar/index.html”, Web Crawler
extracts the following directory names: “programs”, “ugrad”, “coop” and “calendar”.
Since “calendar” falls into the stop-directory list, this URL won’t be crawled. The
to-be-avoided directory list is constructed for each web site and the directories in this list

are more specific. In the former example, its to-be-avoided directory is

“/programs/ugrad/coop/calendar/” in contrast with “calendar”.

One big difference between stop-directory list and to-be-avoided directory is that
stop-directory list can be used for crawling new websites while to-be-avoided directory
list is only used for re-crawling. When CINDI Robot re-crawls a web site, its
to-be-avoided directory list is loaded at the beginning of crawling. During the crawling
process, Web Crawler compares each URL with the directories in the to-be-avoided
directory list and all URLs falling into the to-be-avoided directory list are removed. Both
stop-directory list and to-be-avoided directory list are built by Statistics Analyzer, which
is elaborated in Section 4.4. The speed-up obtained by using the to-be-avoided directory

list is studied in Chapter 5.

In CINDI Robot, all other hyperlinks extracted from web pages need to be further
selected because CINDI Robot is designed only accessing HTTP protocol and only
traversing certain types of web pages. Web pages ending with “html”, “htm”, “asp”,
“php”, “cfm”, “jsp” and “shtml” are considered as acceptable web pages and will be
traversed by Web Crawler; web pages ending with “pdf”, “ps”, “doc”, “txt”, “latex”,
“tex”, “xml” and “rtf” are considered as downloadable web pages. For acceptable web
pages, a special URL format, like “http://www.cs.concordia.ca/index/” in which no file
format is specified, is also considered as acceptable. When URL pattern inspection filters

outer links, acceptable web pages are sent to either foSearch vector which keeps all

unvisited web pages of the current web site or the URL frontier which keeps all foreign

52

links while downloadable web pages are passed to File Fetcher. In addition, “html” web
pages can also be downloaded if the HTML parser identifies them as useful documents

(see Section 3.2.4).

In [4], the author found that there is no possibility to get a document in a URL with more
than 7 levels. This finding is utilized in the current version of CINDI Robot. If Web
Crawler finds a URL has more than 7 levels, it won’t be crawled. The Robot Exclusion
Protocol mentioned in Section 2.2 is also incorporated into URL pattern inspection
because the Robot Exclusion Protocol also operates on the URL level. Thus the full URL

pattern inspection algorithm is exemplified as follows:

Begin
get next URL u
if u has more than 7 levels
discard u
else
if u has a directory in stop directory list
discard u
else
if for recrawling & u contains a directory in to-be-avoided directory list
discard u
else
if u is not allowed by robots. txt
discard u
else

download page u
extract outer link v in u

if v can not pass protocol and file format filter
discard v

if' v is speculated as a computer science department web page
send v to the high priority queue of URL frontier
End

Figure 12 Pseudocode of URL pattern inspection

33

4.2.2 Anchor text inspection

Anchor texts are of special importance to a focused web crawler. In addition to URL
pattern inspection, it is the only way to provide clues to classify a web page before

actually crawling it.

Both layers of web pages in the revised context graph are worth anchor text inspection.
Since Layer 1 web pages are strongly related to the pre-defined topic, it is reasonable to
hypothesize that most of the outer links of Layer 1 web pages are relevant. In this case
the main responsibility of the anchor text inspection is going to prune very few irrelevant
outer links if any. To discover the most common irrelevant anchor texts in relevant web
pages, we manually collect anchor texts leading to totally irrelevant regions (neither
Layer 1 nor Layer 2 web pages) from 1000 Layer 1 web pages to construct a pruning
anchor text list. The collected anchor texts are also preprocessed (including stop word
removal and stemming, elaborated in Section 4.3.1) to be satisfactorily representative.
When the anchor text analyzer gets a Layer 1 web page, it first extracts and preprocesses
all anchor texts from this page. Then it compares each anchor text with the pruning
anchor text list. If an anchor text falls into the pruning anchor text list, its corresponding
hyperlink is eliminated. For example, for web page
http://en.wikipedia.org/wiki/Focused_web_crawler, “About Wikipedia”, “Help”, “Donate
to Wikipedia”, “Upload file”, “Contact Wikipedia”, “Printable version”, “Privacy policy”,
“Disclaimers”, “GNU Free Documentation License”, “Copyright” and “Login” are

excluded. This can significantly save crawling time.
For Layer 2 web pages, we assume that there are only a limited number of hyper links

that are related to our topic. Thus we constructed an extracting anchor text list to identify

those few relevant hyperlinks. We manually collect anchor texts leading to Layer 1 or

54

Layer 2 web pages from 5000 Layer 2 web pages, which we think is large enough.
Preprocessing is also needed. When the anchor text analyzer gets a Layer 2 web page, it
extracts all anchor texts and preprocesses these anchor texts. After that, it also performs a
simple anchor text match to extract relevant outer links. Figure 13 gives a simplified

algorithm of anchor text inspection.

Begin
if web page w is not from either Layer 1 or Layer 2
discard w
else
get anchor text and hyperlink pair <u, v> from w
ifwis alayer 1 web page
if anchor text u is in pruning anchor text list
discard v
else
retain hyperlink v
else if w is a layer 2 web page
if anchor text u is in extracting anchor text list
retain v
else
discard v

if v is a domain web link
send v to toSearch vector
else if v is a foreign link
send v to URL frontier
End

Figure 13 Pseudocode of anchor text inspection

4.2.3 Error handling
Since the World Wide Web is a dynamic, heterogeneous information repository and the

HTML language is semi-structured, it is common for a web crawler to run into some

unexpected problems, for example, 400 Bad Request, 403 Forbidden, 404 Not Found and

55

so on. It is vital for a web crawler to get out of an unexpected problem as soon as
possible. According to our experience, error handling can be categorized into active error

handling and passive error handling.

Active error handling means to fix a URL problem before actually retrieving its content
while passive error handling means to get out of a connection error elegantly during the
retrieving process. In [4], the author proposed a series of active error handling methods,
including absolute URL conversion, avert spider trap detection, back slash mistake and
so on. These methods can rectify a large number of mistaken URLs. However in [4],
passive error handling is ignored. According to our experiments, passive error handling is
essential to CINDI Robot’s performance. For previous version of CINDI Robot, in one
crawling cycle (involves only 20 web sites) it can get stuck up to 20 times and each time
can take up to 1 hour for various unknown connection problems. Since the previous
CINDI Robot was a single-thread program, this drawback can be fatal. In the current
CINDI Robot, multi-threading can relieve this problem but it is still necessary to

implement passive error handling.

In current CINDI Robot, we impose a time limit on each web page retrieval task. It is not
allowed to spend too much time on retrieving an abnormal web page. We implement the
web page retrieval task in a separate thread and use Zimer and TimerTask classes to
enforce the time constraint. If a web page retrieval task takes more than 10 seconds, it is

abandoned and its corresponding thread is stopped and released.

4.2.4 Additional heuristics

One feature of a successful focused web crawler is that it can make use of every clue to

supplement its crawling strategy. As mentioned in Section 3.2.4, “meta keywords” and

56

web pages’ titles can provide additional information to unveil the nature of web pages.
The current CINDI Robot inherits, revises and augments the domain keyword list
provided in [4]. And this new domain keyword list is used to perform simple text
matching over an incoming web page’s “meta keywords™ and title. If there is a keyword
in the domain keyword list, this web page is directly classified as relevant and thus no

further content text classification is needed.

4.3 Link Analyzer

Link Analyzer is the intelligence core of the current CINDI Robot. In [4], the main
responsibility of Link Analyzer is to construct the stop-directory list and the
to-be-avoided directory list. In the current design, this responsibility is taken over by
Statistics Analyzer. The current Link Analyzer is responsible to identify the relevance of
web pages. The content text classification is the most important intelligent mechanism of
CINDI Robot. In the current design, CINDI Robot possesses two kinds of content text
classifiers in order to perform the content text inspection, namely SVM classifier and
Naive Bayes classifier. They are used in different crawling phases and different scenarios
based on their characteristics. A revised context graph is proposed to classify all web
pages into three categories, which augments the opportunities of finding more relevant
web sites. A novel tunneling technique is designed to increase the recall. URL ordering
policies are set up to realize the essence of a focused web crawler, “Most relevant web

pages get crawled first [23]”.

4.3.1 Preprocessing

Before extracting the web page features used for SVM classifiers and Naive Bayes

classifier, four steps of preprocessing are done. These four steps are removal of HTML

57

tags, alphabetic character extraction, removal of stop words and stemming [61]. These
techniques are typical steps used in Information Retrieval Systems and Indexing Systems.
However, our experiments demonstrate they can be applied to web crawlers and are

essential for the performance of focused web crawlers.

Removal of HTML tags

The web content directly retrieved from URLs can be quite annoying since it usually
contains lots of HTML tags. For content text classifiers, HTML markup tags are
meaningless because they are not representative enough to be considered as features. So
when CINDI Robot gets the source code of a web page, it first removes all HTML tags
and passes a clean string for alphabetic character extraction in order to reduce the cost of
storage and computing. In particular, to speed up further processing, anchor texts and
outer links of a web page are extracted and stored in a temporary repository in this step.

Given a section of a web page source code as follow:

Abstract: We consider the problem of using a large unlabeled sample to boost performance
of a learning algorithm when only a small set of labeled examples is available.. (Update)

<font size=-1 color=
"#907050">Cited by:
More
A

Benchmark Dataset for Audio Classification and.. - Homburg, Mierswa.. (2005)

Link Analyzer strips all HTML markup tags and generates the following string. This

string is also used to illustrate latter steps.

Abstract: We consider the problem of using a large unlabeled sample to boost performance of a

58

learning algorithm when only a small set of labeled examples is available... (Update) Cited by:

More A Benchmark Dataset for Audio Classification and.. - Homburg, Mierswa.. (2005)

Especially “ ” is not surrounded by “<” and “>”, so it is temporarily kept here and is

removed in following steps.

Alphabetic character extraction

The extraction result from HTML tag removal may still contain punctuations, numbers
and other non-alphabetic characters. In addition to not being able to contribute to the
classification, they lower the processing speed. Thus we have to remove them from the
string obtained after HTML tags are removed and convert all characters into lower case.
The static method isLetter in Character Class is used to exclude non-alphabetic

characters. After the processing, the output string from step 1 becomes:

abstract we consider the problem of using a large unlabeled sample to boost performance of a
learning algorithm when only a small set of labeled examples is available update cited by nbsp more
a benchmark dataset for audio classification and homburg mierswa

Removal of stop words

A stop word is a commonly used word (such as “the”) that are filtered out prior to, or
after processing of natural language data [62]. Articles, prepositions and conjunctions are
common candidates of stop words. The stop word list is also language and task

dependent [58].

In CINDI Robot, stop words are filtered out before the classification of web pages for

59

three main reasons. The first one is to reduce the vocabulary size and accelerate the
computing speed of subsequent steps. The second reason is to lower the classification
error rate caused by stop words, which is demonstrated in [58]. The third reason is that
stop word removal can bring significant improvements on recall and this is also proved

in [58].

In addition to common stop words with certain semantic meaning, other special strings of
the HTML language are also included in our stop word list, for example, “nbsp”, “reg”.
By incorporating several popular stop word lists and considering our topic, we construct
an augmented stop word list in order to exclude as many stop words as possible.

Appendix B gives the stop word list used in CINDI Robot which is two times larger than

the one used in [51].

The string used for illustration changes to the following after stop word removal.

abstract consider problem large unlabeled sample boost performance learning algorithm small set

labeled examples available update cited benchmark dataset audio classification homburg mierswa

Stemming

Stemming is the process for conflating inflected or derived words to their stem, base or
root form. “The stem need not be identical to the morphological root of the word; it is
usually sufficient that related words map to the same stem, even if this stem is not in
itself a wvalid root [61]”. For example, “compute”, “computer”, “computers”,
“computing” and “computes” are all mapped to the same stem “comput”. Stemming is an
efficient way to avoid feature explosion in text categorization. According to [58],

stemming does not make significant contribution to recall value, but it plays an important

60

role in precision. The classic Porter Stemming Algorithm [63] is used in CINDI Robot.
The Porter Stemming Algorithm was proposed in 1979 and was targeted for English
words. It is the most widely accepted algorithm; however it leads to loss of precision and
introduces some anomalies. Considering the requirement of CINDI Robot, the Porter
Stemming Algorithm is a good trade-off between efficiency and accuracy since it is

simple and fast. The string used for illustration looks as follows after stemming.

abstract consid problem larg unlabel sampl boost perform learn algorithm small set label example

avail updat cite benchmark dataset audio classif homburg mierswa

Comparing the number of words after Step 4 and the word number after Step 1, we can
observe there is a significant decrease in the distinct number of words. Table 5 further
demonstrates the importance of preprocessing by showing the distinct number of words

before preprocessing and after preprocessing.

Table 5 Comparison of distinct number of words

Distinct Number of Words

Without stop word removal and stemming 26,876

With stop word removal and stemming 17,533

4.3.2 Vocabulary construction

Vocabulary construction is essential to facilitate both the Naive Bayes classifier and the

SVM classifier. Distinct words obtained after Step 4 are used as elements in the

vocabulary. In addition to distinct words themselves, the vocabulary also records other

61

parameters to measure the degree of representation of keywords in order to support
further classifications. There are two categories defined in CINDI Robot: computer
science and software engineering (CSE) category and non computer science and software
engineering (Non-CSE) category. The CINDI Robot vocabulary records information for
both categories. Usually, two well-known functions are utilized to measure the degree of
representation of a term for a specific category, namely Keyword Frequency (KF) and

Document Frequency (DF) [64].

Keyword Frequency function is defined as the average occurrence frequency of a
keyword per document over all documents in each category and it is formulated as

follows:

o T
n

i

k

Where Ik’ is the KF score of keyword i in category k; Kf; is the occurrence

frequency of keyword 7 in document J; n, is the total number of documents in

category k. The idea behind KF function is that if a keyword appears frequently in a

category’s documents, then it can be used to represent this category.

Document Frequency function is defined as the frequency of documents containing a

specific keyword in a given category. It can be written as below.

where /d} is the DF score of a keyword i in category ¥. Document Frequency

function provides another view of a keyword’s degree of representation.

Though Keyword Frequency function and Document Frequency function are widely used,

62

they are not suitable in our design. They will bring substantial extra computing cost to
further text classifications. Thus we import two new concepts as Revised Keyword
Frequency (RKF) function and Revised Document Frequency (RDF) function. RKF is
defined as the total occurrence frequency of a keyword in all documents in a given

category and it is formulated as follows:
k M]
lkf =2 K
where Af;’ is the occurrence frequency of keyword i in document J/; 74 is the total

number of documents in category k. RDF is to find the document occurrence of a

keyword in a given category. It can be written as follows:

Using these two concepts, we can construct our vocabulary by recording distinct
keywords along with their RKFs and RDFs for both categories. Table 6 shows a subset of

the vocabulary.

63

Table 6 A subset of the vocabulary

Keywords CSE Non-CSE
RKF RDF RKF RDF

comput 638 90 26 18
gnu 6 4 0 0
decod 7 3 0 0
queue 26 4 0 0
hash 32 3 0 0
acm 71 25 0 0
queri 22 8 6 4
oracl 20 6 0 0
latex 3 2 0 0
perl 4 2 0 0
linux 41 11 0 0
grid 24 12 0 0
protocol 4 4 8 5
model 85 31 31 17
advertis 0 0 42 20
agricultur 0 0 26 14
film 0 0 105 17
concurr 11 6 4 3
program 32 27 14 13
multicast 5 3 0 0
databas 257 52 77 32
morphism 7 5 1 1
cryptographi 3 2 0 0
system 43 20 96 38

* based on 100 positive samples and 200 negative samples.

64

4.3.3 Content Text Inspection

In addition to URL pattern inspection and anchor text inspection, content text inspection
provides the most straightforward information on web pages’ relevancy. It is also a
reasonable way to speculate the relevancy of their outer links. In the CINDI Robot, the
content text inspection is realized by both the Support Vector Machine classifier and the

Naive Bayes classifiers.

4.3.3.1 Support Vector Machine classifier

As introduced in Section 2.3.2.3, the Support Vector Machine classifier is suitable for our
task especially when only limited training samples are available at the initial phase. The
RBF kernel function is used in the CINDI Robot. The RBF kernel nonlinearly maps
samples into a higher dimensional space, so it can handle the case when the relation
between class labels and attributes is nonlinear [65]. According to [38], it shows that
using RBF one can improve text categorization performance up to 1-2% on

Reuters-21578 dataset.

In CINDI Robot SVM classifier, distinct words appearing in training documents
constitute the feature space. As shown in Table 5, even after preprocessing steps there are
still 17,533 keywords left. Without further keyword selections, the feature space can be
quite large. So we have to perform feature space reduction. According to our experiments,
we only select words with total RDF (the sum of the RDF in CSE category and in
Non-CSE category) bigger than 3 under which we can get a best tradeoff between
processing speed and accurate classification rate to form the feature space. After feature
space reduction, we get only 9,773 distinct words. Using this reduced feature space, we

can map incoming web pages to feature vectors. The next step is to choose an appropriate

65

feature value representation. A well-selected feature value representation can bring
substantial improvements of classification accuracy. In order to gain the best
performance, we design four kinds of value representations for CINDI Robot SVM
classifier and in Chapter 5 we will compare the performance of these four

representations.

a) Using keyword occurrence times in a document as feature values;
b) Using keyword’s document occurrence (if the keyword appears in the document, it is 1,
otherwise it is 0) as a feature value,
¢) Using Term Frequency and Inverse Document Frequency (TF x IDF) score [66] as
feature values. The TF xIDF value is widely used for term weights. It says that the
importance of a word increases proportionally to the number of times a word appears

in the document but is in inverse proportion to the frequency of the word in the corpus.

The TF xIDF value can be calculated as below.

w, =t,; *log, —
Where W is the score of Term I, in DocumentD;; ¥; is the frequency of Term
T, in DocumentD;; N is the number of documents in collection; 7 is the number of

Documents where Term T j occurs at least once.
d) Using a combination of RDF and RKF as feature values, which is formulated as:

RDF +y*RKF

Where 7 is a scaling factor to balance the degree of representations of RKF and

RDF, which is calculated by the following formula:

= i 2L
YL

Where ™ is the number of categories and in CINDI Robot 7 equals to 2; 7 isthe

66

total number of documents in categoryk. 7 is used as a constant once getting

calculated after the training process.

According to our experiments, the fourth representation is finally used in CINDI Robot

because it gains nearly the same classification accuracy as the TF x IDF value but with
less computing cost. Practically, we use svmlieht [67] for CINDI Robot. Though svmiight
has reasonable speed for real-time classification, the training time would still be

relatively long and thus it is not suitable for real-time application. So we only retrain our

SVM classifier after we crawl every 50,000 web pages.
4.3.3.2 Naive Bayes classifier

In the CINDI Robot, the Naive Bayes classifier only works after the CINDI Robot
collects enough training data because the Naive Bayes classifier generally works better
under a large training set and it can avoid the very large quadratic programming

optimization problem in the SVM classifier.

In CINDI Robot, two classes are defined and distinct keywords are used as features for a

web page. In addition, smoothing is usually needed, so the conditional probability of any
word W; for a given category can be written as:

Pow |) nt +0.5
w; | category) = ———————
BT = 0.5x 14
Where ’?ﬁi is the number of times word W, appears in the categoryk; n*is the total

number of words in the categoryk; V is the number of entries in the vocabulary. To
avoid arithmetic underflow, we use the log of the probability instead of the probability

itself. Applying Equation (2) in Section 2.3.1.5, we can calculate the probability of a web

67

page falling into a given category as below.

log P(category | newWebPage) = log P(category) +log P(w, | category) +...+log P(w, | category)

However for CINDI Robot, we find a weighted probability formula is more powerful to
make an accurate classification. We assign a weight to every distinct word in a web page.
Here we use TF x IDF scores as the weighting scheme. Thus we can get:

log P(relevant | newWebPage) = log P(relevant) +W, log P(w, | relevant)+...
+W, log P(w, |relevant)

and

log P(irrelevant | newWebPage) = log P(irrelevant) + W, log P(w, | irrelevant) +...
+Wy, log P(w, |irrelevant)

Where W, is the TF x IDF score of keywordw;. If logP(relevant | newWebPage)is

greater than log P(irrelevant | newWebPage) | then the new page is relevant, otherwise it

is irrelevant. The idea behind the weighting scheme is to emphasize the most “useful”
words for the classification. There is another Naive Bayes classifier used in CINDI Robot

to classify Layer 2 web pages and it is elaborated in the next section.

4.3.4 Revised context graph

As analyzed in Section 2.3.1.2, there is a necessity of constructing a revised context
graph which can remove the strict link distance requirement. To construct the revised
context graph for our CINDI Robot, there are two essential steps. The first step is to learn
the context within which relevant documents are typically found and encode this
information in our revised context graph. Here the context in the revised context graph is
different from the one used in the classic context graph. First we manually collect a set of

relevant document URLs to form the core of our revised context graph. Here we set the

68

document URL number to be 100. Subsequently, a separate revised context graph is built
for each relevant document URL. To get web page contents used for constructing the
revised context graph, we have to first find their corresponding links. Using the back link
tracking function provided by Google, we can get all links which can lead to a document
URLs within up to 5 link steps. To use the back link tracking function, we can simply
submit a query beginning with “link:” and appending a URL we want to track. For
example, to track the document URL,
http://www2003.org/cdrom/papers/poster/p181/p181-tsoi/p181-tsoi.html,

we simply provide following query to Google:

“link: http://www2003.org/cdrom/papers/poster/p181/p181-tsoi/p181-tsoi.html”.

We notice that a too specific URL may not be able to get enough back links even using
the back link tracking function of Google. Inspired by the path-ascending algorithm [68],
a similar path-ascending strategy may be needed. In this case, we will try to ascend to
every path in each URL to track its back links. For example, for the previous URL, we
will try to track back

http://'www2003.0rg/cdrom/papers/poster/p181/p181-tsoi,
http://'www2003.0rg/cdrom/papers/poster/p181/,
http.//'www2003.org/cdrom/papers/poster/

and so on. In this way, we can guarantee getting enough web pages. Thereafter, web
pages retrieved by all resulting links are classified by the content text classifiers. Web
pages that can pass the classifications are labeled as Layer 1 web pages. All other web
pages are kept as Layer 2 web pages. Once we construct independent revised context
graphs for all document URLs, the corresponding layers from all these revised context

graphs are merged to provide the training set for Layer 2 web page classifier.

The second step is using the merged Layer 2 web pages mentioned above to train a Naive

Bayes classifier. This Naive Bayes classifier is used in the actual crawling process to

69

indicate if a web page can lead to relevant web regions. So in CINDI Robot, an incoming
web page is first classified by Layer 1 content text classifiers to see if it is relevant. If yes,
it is put into Layer 1. Otherwise it is classified by Layer 2 classifier. If it passes the Lay 2
web page classification, it is put in Layer 2. Otherwise it is discarded. According to our
statistics, Layer 1 web pages usually have link steps from 1 to 3 while the link distances
of Layer 2 web pages usually span from 2 to 5. Figure 14 illustrates classification
procedures of CINDI Robot.

Begin
get next web page w

if CINDI Robot has established enough training data
classify w using Layer 1 Naive Bayes classifier
else
classify w using Layer 1 SVM classifier

if classification result is positive
w is a Layer 1 web page
else
classify w using Layer 2 Naive Bayes classifier
if classification result is positive
w is a Layer 2 web page
else
w is discarded

End
Figure 14 Classification procedures of CINDI Robot

4.3.5 Tunneling

To relieve the difficulties of the taxonomy tree construction in the classic tunneling
technique, CINDI Robot employs a simple tunneling strategy while it still achieves
desirable performance. In each CINDI Robot crawling cycle, low priority web pages in
URL frontier won’t be crawled until CINDI Robot exhausts all high priority web pages.

This policy guarantees that most relevant web pages are crawled first. When CINDI

70

Robot has traversed all web pages in a relevant region, it is a good time to launch the
tunneling strategy in order to dig out new relevant regions. In CINDI tunneling strategy,

Layer 2 Naive Bayes classifier is used for tunneling. In tunneling, its classification policy

changes to that as long as logP(inLayer2|newPage) s greater
than 7 X log P(outLayer2 | newPage) it is classified as relevant; otherwise it is

irrelevant, where0 <7 <1 We call 7 a bias factor. A smaller bias factor enlarges the

opportunity to discover new relevant regions at the cost of precision; a larger bias factor
corresponds to a more strict selection policy but a lower recall. When 7 equals 0,
CINDI Robot degenerates to a general purpose web crawler. In CINDI Robot, we set 7
to 0.75. CINDI Robot switches the bias factor back to 1 when CINDI Robot discovers 30
new Layer 1 web sites. If this can not be achieved, the crawling cycle ends in a normal
way. And the bias factor switches back to 1 for the next crawling cycle. In this way, we

can discover all relevant web regions from a seed URL within acceptable link distances.

4.3.6 URL ordering

In an ideal case, one would like to retrieve pages according to the order of their relevance
to the specific topic [35]. A URL ordering strategy is usually established based on other
techniques used in focused web crawlers. Thus we developed our URL ordering strategy
by considering revised context graph, tunneling and real-time relevance feedback. Since
there are two priority queues in the URL frontier, URL ordering in CINDI Robot is to
assign each incoming web page into an accurate queue or discard it. An efficient URL
ordering policy plays a vital role in the success of a focused web crawler. According to
techniques implemented in CINDI Robot, we set following rules in order to crawl most

relevant web pages as early as possible.

71

1. All URLs found by Seed Finder are assigned to the high priority queue. Since we
perform a strict seed URL selection procedure and trust all seed URLs as good start

points of crawling processes, we put them in the high priority queue.

2. All outer links extracted from web pages which are classified as Layer 1 web page are
assigned to the high priority queue. Since all Layer 1 web pages are directly related to
computer science and software engineering, it is reasonable to deduce all foreign links
derived from Layer 1 web pages are also on-topic. Especially, considering the anchor text
inspection implemented in CINDI Robot can largely remove the few existing off-topic

outer links from Layer 1 web pages, this guarantees this rule works more efficient.

3. All outer links extracted from web pages which are classified as Layer 2 web page are
assigned to the low priority queue. Usually a Layer 2 web page is not directly on-topic,
but they are promising bridges to on-topic web pages. We realize that even we perform
an anchor text inspection, it is still too optimistic to directly put foreign links mined from
Layer 2 web pages into the high priority queue. So these outer links are put into the low
priority queue. There is one exception. If a foreign link is identified as a computer
science department web page by the URL pattern inspection, it is directly put into the

high priority queue regardless of where it is found.

4. All outer links extracted from web pages which are classified out of Layer 1 and Layer
2 are discarded, This rule efficiently prevents CINDI Robot from crawling irrelevant

web regions and thus increases the precision and crawling speed of CINDI Robot.

4.4 Statistics Analyzer

The previous CINDI Robot collected various statistical data from SEED_URL,

72

VISITED PAGES, FOREIGN_LINKS, DOMAIN_KEYWORD and
DOWNLOAD_STATUS tables to produce a serious of statistical results and stored
resulting data into tables SITE_STATS, SITE_REF_BY, LINK_REF_BY, RDVT, and
LEVEL_STATS [4]. The modifications of CINDI Robot database and the change of

working mode require redesign of Statistics Analyzer.

Statistics Analyzer is responsible to update the CRAWLED_SITES table. After crawling
a web site, Statistics Analyzer inserts corresponding fields into the database. The
total_pages field shows how many web pages of this web site are crawled. This value
may not reflect the real number of web pages in a web site. Due to multi-level
inspections implemented in CINDI Robot, some parts of a web site may be skipped. The
total_downloaded field records how many document URLs are founded in this web site.
The total _accepted field refers to the total number of Layer 1 web pages and Layer 2
web pages in this web site. The page relevant_rate field records the proportion of Layer
1 web pages to total crawled web pages. And the document_download_rate field records
the proportion of document URL number to total crawled web page number, which
reflects the document URL density of a web site. The accepted _document _rate field can
not be filled until the DFS completes the filtering. It records the proportion of accepted
document number to document URL number, which reflects the quality of a web site’s
documents. The number ref by field of CRAWLED_SITES table indicates the
popularity of a web site. At the first time when a web site is inserted, the value of
number_ref by field is 0. During crawling processes, when CINDI Robot finds a foreign
link, Statistics Analyzer first extracts the host name from this foreign link. Then Statistics
Analyzer checks the CRAWLED_SITES table to see if this host name has already been
discovered. If yes, the number_ref by field of this web site increases 1. The is_accepted
field indicates if a web site is worth re-crawling. It can be set by the real-time monitoring

module of Statistics Analyzer during a crawling process or by inspecting the feedback

73

from DFS. If a web site meets one of following conditions, its is_accepted field is set to

0 and will not be re-crawled, which leads to significant time saving.

e Average Document Download Rate < 1%
e Average Accepted Document Rate < 5%

e Average Page Relevant Rate < 5%

Statistics Analyzer is also responsible to build the STOP_DIR_LIST table and the
DIR_TO BE_AVOIDED table. The stop-directory list is usually constructed in a long
period of time. As mentioned before, the stop-directory list records the directories under

which either no accepted download document is found or no relevant web page is found.

For stop-directory list under which no accepted download document is found, we
perform the construction after each crawling cycle. After we get the filtering results from
DFS for each crawling cycle, we begin to identify all distinct directory names appearing
in this cycle. We divide all directory names into two sets, directory names under which
accepted documents are found (in following this set is referred as A) and directory names
under which no accepted document is found (in following this set is referred as B). For a
directory from directory field of the DOWNLOAD_STATUS table like
/edrom/papers/poster/p181/p181-tsoi/, “cdrom”, “papers”, “poster”, “pl81” and
“p181-tsoi” are identified as distinct directory names. Two temporary tables,

ACCEPTED DIR and NO_ACCEPTED_DIR, are used to record this information.

For set A, all distinct directory names since the first crawling cycle are recorded in
ACCEPTED DIR table while for set B only distinct directory names from the last
crawling cycle are recorded in NO_ACCEPTED_DIR table. Now we can get a potential
stop directory set by performing a set-difference operation over these two sets. All

elements in this potential stop directory set satisfy the requirements that there is no

74

accepted document under them. The next step is to check if they meet the “5 distinct
web sites” requirement. For each element in the potential stop directory set, we simply
check how many times this directory name has occurred in different web sites. If the
times exceed 5, it is added to the STOP_DIR _LIST table. Otherwise, the directory names
and their occurrence numbers are recorded in another temporary table,
POTENTIAL_STOP_DIR. An example of the POTENTIAL_STOP_DIR table is given

as follow.

directory_name | occur_times

administration |
alumni i
help H
Johs !
location i
login i
notices :
phpdig H
visitors H

WMNWWN L WN -

T . 4
$ om omm mm we = mm am == em == G

Figure 15 An example of POTENTIAL_STOP_DIR table

The POTENTIAL STOP DIR table is used for future crawling cycles. After the
completion of next crawling cycle, Statistics Analyzer still finds potential stop directory
names for this crawling cycle. The result will be merged with the records in
POTENTIAL_STOP DIR table. Directory names exceeding 5 occurrence times are
moved to the STOP DIR_LIST table. Meanwhile, all old entries in
POTENTIAL_STOP_DIR have to be checked to see if new documents are found under

them afterward. A simple SQL query is used to perform the checking:

SELECT COUNT(*)

FROM DOWNLOAD_STATUS

WHERE directory LIKE ‘%element_in_ POTENTIAL_STOP_DIR%’
AND is_accepted = 1

75

If new documents are found, the corresponding directory name is removed from

POTENTIAL_STOP DIR table.

Since the construction of the stop directory list caused by relevancy is dynamic during
the crawling process, we design a simpler strategy. During crawling processes, Statistics
Analyzer keeps a list of directory names under which no relevant web pages are found
and corresponding occurrence times. When this number exceeds 5, it is added to
STOP_DIR_LIST table. After each crawling cycle, potential stop directory names and
their occurrence times are kept in a data file and are further used in following crawling

processes. Table 7 gives a subset of the stop-directory list.

Table 7 A subset of stop-directory list

Stop-directory Name

audio(s)

image(s)

section(s)

puzzle

calendar

lecturenotesweb

transparencies

contact(s)

login

admission(s)

Compared to the construction of stop-directory list, the construction of the to-be-avoided
directory list is more straightforward. Unlike stop directories, the directory hierarchy is

important to to-be-avoided directories. So a to-be-avoided directory is recorded with its

76

hierarchy. For a specific web site, its to-be-avoided directory list can be built in two
phases. During the crawling process, directories with a Document Download Rate less
than 1% or Page Relevant Rate less than 5% are directly inserted into the
DIR_TO_BE_AVOIDED table because this kind of directories is not cost efficient. After
the crawling process, Statistics Analyzer also checks the filtering feedback from DFS and
adds all directories under which Accepted Document Rate is less than 5% to the
DIR_TO BE_AVOIDED table. Figure 16 gives a subset of the DIR_TO_BE_AVOIDED

table, where “siteID = 16” corresponds to www.cs.concordia.ca.

+ + +
| sitelD | dir_name |
+ + +
i 16 | sdepartment/admissions/ :
H 16 | /departments/announcement/ |
H i6 | /department/floors/ H
H 16 | /department/policies/ }
H 16 | /department/facilities/ H
H 16 | /search/ H
H 16 | /department/ugrad/coop/ !
4 + +

Figure 16 A subset of to-be-avoided directory of a web site

As we mentioned in Section 3.4, Statistics Analyzer also performs a real-time monitoring
to get rid of trap web sites. When CINDI Robot begins crawling a web site, Statistics
Analyzer updates its Page Relevant Rate after every 100 web pages. If Statistics Analyzer
finds the PRR of a web page is less than 5% after crawling 200 web pages, this web site
will be skipped and in CRAWLED _SITES table its is_accepted field will be set to 0. The
200 web page threshold is selected according to our experiments that 200 web page can
on the average span over at least 5 directories to make the topic of a web site

representative.

77

4.5 File Fetcher

File Fetcher is responsible to download all documents discovered by Web Crawler and to
remove as many duplicate files as possible. For each web crawler thread, there is a

corresponding File Fetcher thread.

The first step of fetching a document is to check if its URL has already been downloaded
by CINDI Robot. It is realized by executing a SQL query

SELECT COUNI(¥
FROM DOWNLOAD _STATUS
WHERE url = to_test URL

over the DOWNLOAD STATUS table. If the returning result is 1, it means this
document URL has been downloaded and hence this document URL is discarded. If a
document URL has not been downloaded, File Fetcher further checks its file name to see
if it is worth downloading before opening a HTTP connection. From our experiments,

several file name keywords are not welcome and they are given in Table 8.

Table 8 Not welcome file name keywords

e
)

Keywords

homework

hw

assignment

syllabus

cv

resume

week

lecture

O ([0 | |\ | [W [N |

exercise

78

Alphabetic character extraction is performed over file names and thereafter a simple

keyword matching is used to filter out undesirable file URLs.

As for the Web Crawler, the File Fetcher may also encounter several unexpected failures
in the connection phase, including invalid URLs, password protections and remote host
failures. When errors occur, the current document URL gets simply discarded by a
similar passive error handling method as mentioned in Section 4.2.3. Once the
connection is successfully open, before downloading the actual file content, File Fetcher
can first get some parameters of the corresponding file, for example, the file size. The file
size of a file is of special importance. First of all, it can be used to perform the “8K”
assumption. If the file type is PDF and the file size is less than 8k, this file won’t be
downloaded. Secondly, the file size can also partially indicate if two files with the same
name are identical. A document URL can be found in different web pages and different
web sites. So we check each document URL to see if it is discovered and downloaded
before. In addition, the same file can be cached in different URLs. So if two files are with
the same file name and same file size, it is possible that they are the same file and MD35
tool is needed to make sure if they are the same file and if yes, the duplicate one is
removed from CINDI document repository. Otherwise they are not identical and only

renaming is needed.

If two files share the same file name or a file is with an extraordinarily long file name,

renaming is needed. After downloading a file, File Fetcher executes a SQL query:

SELECT COUNT(*)
FROM DOWNLOAD_STATUS

WHERE org_file name = current_downloaded_file name.

If the returning result is greater than 1, renaming mechanism is launched. In [4], the

79

author proposed a renaming policy by recursively appending digital numbers to the tail
of a file name. However, this simple mechanism turns out to be a bottleneck of File
Fetcher. Considering the large volume of documents discovered by CINDI Robot, the
phenomenon that several files share the same name is quite common. We did a survey on

this phenomenon and the top 10 most common file names are given in Table 9.

Table 9 A survey of identical file names

File Names Occurrence Times
content.pdf 306
thesis.pdf 278
syllabus.pdf 155
paper.pdf 142
intro.pdf 140
project.pdf 95
final.pdf 92
notes.pdf 72
report.pdf 66
assignment.pdf 46

Based on 300,000 downloaded files, the file name, “content.pdf”, is shared by 306 files.
If we meet the 307" “content.pdf” file, according to the design in [4], File Fetcher has to
first check if “content0.pdf” is already used and if yes, File Fetcher will check if
“contentl.pdf” is already used and so forth. So in this case, File Fetcher has to try 306
times before it can successfully rename the incoming file. As we see in Table 9, the
identical name phenomenon is quite common. So an efficient renaming policy is

indispensable. It is reasonable to assign files unique file names that don’t need to be

80

further checked. Time stamp is one of many possible solutions and it is easy to
implement. When File Fetcher finds renaming is needed, it first removes a file’s
extension name. Then it attaches current time stamp to the stripped file name. A time
stamp looks like “2008-02-22-12-23-22”, So if there is a new incoming document named
“content.pdf”, File Fetcher will rename it according to current time stamp and its new
name becomes “content-2008-02-22-12-23-22.pdf” (suppose that current time stamp is
“2008-02-22-12-23-22"). Current time stamp can be obtained by following codes using

Java.util.Calendar class and java.text.Simple DateFormat class.

Calendar cal = Calendar.getlnstance(),
SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd-HH-mm-ss"),

String TimeStamp=formatter.format(cal.getTime());

Sometimes, renaming is also needed if file names from Web are extraordinarily long. In
this case, we only retain the first 10 characters of the original file name and attach current

time stamp.

File Fetcher is also responsible to update the num_ref by field and is_diff format field in
the DOWNLOAD_ STATUS table. This former field reflects the popularity of a
document and it is an important feature for a digital library. There are two ways to update
the num_ref by field. When File Fetcher finds a document URL has been downloaded,
this document URL is discarded but its corresponding num_ref by field increases 1.
When File Fetcher finds two files are identical after the MDS5 verification, duplicate file
is dropped and the corresponding num_ref by field increases 1. Sometimes, web page
author may post the same document in different formats to facilitate potential readers. If
two documents come from the same URL prefix and with the same striped file name but

with different file extensions, the is_diff format field of both two files are set to 1.

81

4.6 General Crawling Process

Since we employ a lot of new techniques in the current CINDI Robot, we re-design the
general crawling process. In the previous CINDI Robot, components work in a sequential
mode. For example, File Fetcher is launched after completion of Web Crawler; Statistics
Analyzer is started after completion of File Fetcher. In current CINDI Robot, all
components work in a parallel mode in order to increase the efficiency. In the current
crawling algorithm, some drawbacks observed from the previous version are rectified. In
the previous version of CINDI Robot, robofs.txt is retrieved and analyzed every time
crawling a web page. This brings 50% waste of network and computing resources. In the
new design, this drawback is fixed. Robot Exclusion Protocol is retrieved at the first time
of crawling a web site and kept in memory. As aforementioned, the current CINDI Robot
is a multi-threaded program and the overall crawling process of each thread crawling a

web site is given as below.

Begin
load a seed URL u from URL frontier into vector toSearch
// if there is a high priority seed URL, load it first
remove u from URL frontier

while (toSearch.size()>0)
get the first URL f from toSearch vector
remove f from toSearch vector

perform URL pattern inspection on u

// for seed URL u, Robot Exclusion Protocol is not checked
//because robots.txt will be downloaded later on
//computer department speculation is not performed here

if u fails to pass the URL pattern inspection
continue

iff==u

82

retrieve the robots.txt
add robots.txt to URL pattern inspection
initialize Statistics Analyzer

download f
preprocess web page f
classify web page f

iffis Layer 1 or Layer 2 web page
extract all hyperlinks and corresponding anchor texts <h, a>

if fis a Layer 1 web page
add documents URLs to toBeDownloaded vector
inform File Fetcher
perform anchor text inspection on <h, a>
get useful hyperlinks set <m>

if a hyperlink n is within domain
add n to toSearch vector
else
send n to URL frontier s high priority queue
else
perform anchor text inspection on <h, a>
get useful hyperlinks set <m>

if a hyperlink n is a domain link
add n to toSearch vector
else
send n to URL frontier s low priority queue

add f to searched vector

update Statistics Analyzer
continue

else
add f to searched vector
update Statistics Analyzer
continue

End

83

Chapter 5

Experiments and Results

In this chapter, we present various experimental results and analyses of these results. As
mentioned before, recall, precision and crawling speed are main concerns of the current
CINDI Robot, thus they are emphasized in our experiments. In real applications, true
recall is usually hard to be parameterized since it is impossible to identify the true
relevant set for any topic over the Web [27]. As a result, target recall is used as a
reasonable estimate of the true recall [27]. Target recall is defined as the proportion of
relevant web sites that are retrieved and in the target set to the whole target set. It is

formulated as below.

‘retrieved _relevant _websites (\websites _in_the _target _set

Target _recall = - -
\websites _in_the _target _set|

In following, we compare the precision, target recall among different web crawlers and
also inspect the performance improvements of the current CINDI Robot due to individual
heuristics. The previous CINDI Robot as a Breadth-First Search (BFS) crawler and a
context graph crawler [28] are employed as comparisons. Here one modification of the
previous CINDI Robot is needed. The previous CINDI Robot was designed to crawl
exactly 30 web sites in each crawling cycle. The 30 web sites limitation in each crawling
cycle is removed and it is allowed to start from a given number of seed URLs and to
exhaust all foreign web sites found during a crawling cycle. The crawling speed is
compared between previous CINDI Robot and current one. We also notice that the
network speed may vary from time to time during each day. So we arranged the

experiments to start at the same time of a day.

84

5.1 Experiments on Four Representations of SVM

In Section 4.3.3, we proposed four representations for SVM feature values and conclude
that using a combination of RDF and RKF as feature values is the most efficient choice.
Here we design an experiment to unveil the SVM accurate classification rates under
different representations. We manually collect 200 positive web page examples and 400
negative web page examples to train the SVM classifier. Web page examples are
converted into feature vectors using different representations and are normalized to unit
length. We set the number of negatives to be twice the number of positives on purpose
because this ratio appears to be the optimum value [69]. To test the accurate classification
rate, we randomly collect 600 web pages and divide them into three sets. Then a SVM
classifier is used to classify these three sets using different representations. We manually
check all testing web pages and use manual classification results as the benchmark to
calculate the accurate classification rates for different sets under different representations.

The classification results are given in Table 10.

Table 10 SVM classifier accurate classification rate comparison

Accurate Classification Rate
Representation
Set 1 Set 2 Set3
Keyword occurrence 76% 81.5% 79.5%
Document occurrence 81% 80.5% 79.5%
TDx IDF 89.5% 93% 90%
Combination of RDF and RKF 88.5% 93.5% 91.5%

According to the classification results from Table 10, we can observe that TDx IDF

representation and combination of RDF and RKF representation obtain significantly

85

better accurate classification rates than keyword occurrence representation and document
occurrence representation. Between keyword occurrence representation and document
occurrence representation, the latter one brings a slightly better result. Both combination
of RDF and RKF representation and 7DxIDF representation get about 10%
improvement of the accurate classification rates. Between these two representations,
combination of RDF and RKF representation performs even slightly better than
TDx IDF representation. This unveils one reason of choosing combination of RDF and
RKF for CINDI Robot. The other reason is that using TDx IDF representation involves

logarithm operations very often, which is not cost-efficient.

5.2 Experiments on Weighted Naive Bayes Classifier

To enhance the performance of the classic Naive Bayes classifier, we propose a weighted
classification scheme. In the weighted classification scheme, most representative words
for a topic are highlighted and therefore it may bring a better accurate classification rate.
This speculation is validated in the following experiments. The vocabulary used for both
classic and weighted Naive Bayes classifiers is first constructed by 500 manually
collected positive web pages and 1000 manually collected negative web pages and then
is augmented after CINDI Robot crawls 5,000 relevant web pages and 10,000 irrelevant
web pages. To test the accurate classification rate, we also randomly collect 600 web

pages and form three testing sets. The classification results are given in Table 11.

86

Table 11 Naive Bayes classifier accurate classification rate comparison

Accurate Classification Rate

Scheme
Set 1 Set 2 Set3
Classic Scheme 87% 90% 89%
Weighted Scheme 89.5% 91.5% 91%

From the experiments, we can find that weighted Naive Bayes classifier gains about 2%
improvement of the classification results than classic Naive Bayes classifiers and its
accurate classification rate is quite close to the rate of the Support Vector Machine
classifier. However, the classification process of a Support Vector Machine classifier
involves a very large quadratic programming optimization problem. Considering the
limited computing resources and strict timing requirements of a large-scale, real-time
application, like CINDI Robot, Naive Bayes classifier is a good choice once we have a

relatively large training data.

5.3 Experiments on General Crawling Processes

To compare the performance of the current CINDI Robot, previous CINDI Robot and the
classic context graph crawler, we randomly select 5 seed URLs as the start point of the
experiment and set the crawling termination limit to 400,000 web pages. We choose these
parameters for two reasons; the first is that a larger seed URL number may bring too
many foreign links and make the crawling process extraordinarily lengthy, especially for
the previous CINDI Robot; the second is if we start with too many high quality seed
URLSs, we have to wait for a long time before web crawlers complete the seed URLs to
precisely judge the performances of these web crawlers. However, in real application,

200 seed URLs are used for each crawling cycle. In the experiments, 75 threads are used

87

in the current CINDI Robot. In this experiment, we compare the performance of these
three focused web crawlers in terms of precision, target recall, crawling speed and

downloaded document acceptance rate.

5.3.1 Comparison of precision

We use Naive Bayes classifiers for both previous CINDI Robot and context graph
crawler to classify incoming web pages in order to calculate the precision of 400,000
web pages, but not to guide the crawling process. This strategy does not change the
precision and target recall of the previous CINDI Robot and the context graph crawler.
But it may influence the crawling speed of the previous CINDI Robot. Its effect is
analyzed in Section 5.3.3. Figure 17 gives the real-time precision during the crawling
processes for different web crawlers, where “CINDI Robot” denotes the current CINDI
Robot, “BFS” denotes the Breadth-First Search crawler (the previous CINDI Robot) and

“Context Graph” represents the classic context graph crawler.

—&- CINDI Robot
—— BFS
-3 Context Graph

0.9

08

06}

05r

Precision

03

02F

0.1

\ ! 1

0 0.5 1 1.5 2 25 K| 35 4
Number of crawled web pages « 10°

Figure 17 The precision of web crawlers

88

Generally, the precision of any focused web crawler declines during a crawling process.
Thus it is important for a focused web crawler to slow down the precision decreasing
process. From Figure 17, we can observe that the current CINDI Robot outperforms
other web crawlers in terms of precision. Even after crawling 400,000 web pages, the
precision still stays about 50%, which means the current CINDI Robot has the capability
of remaining in relevant regions in long-term crawling. Its desirable precision attributes
to URL pattern inspection, anchor text inspection, content text classification, revised

context graph, real-time relevance feedback and URL ordering.

The context graph crawler exhibits a better precision than the previous version of CINDI
Robot because it benefits from its layer classification mechanism and URL ordering
policies. The previous CINDI Robot, as a Breadth-First Search crawler, gets worst
precision. The previous CINDI Robot can only get a good precision when crawling
well-selected seed web sites. This explains its good precision of the first 50,000 web
pages. After that, its precision declines dramatically, which reflects the fact that the

previous CINDI Robot lacks enough mechanisms to guide a focused web crawling.

5.3.2. Comparison of target recall

As indicated in [27], true recall is hard to measure since we can not know the actual
relevant web site set of the Web. Thus target recall is used to substitute the true recall.
Here we randomly select 10,000 web sites from the results obtained by Seed Finder as
the target set. If a page in a certain web site is crawled, we consider this web site as

retriecved. The target recall comparison is given in Figure 18.

89

x10°
—&- CINDI Robat
—— BFS

21| =3 Context Graph

Target recall

1 1 1 1

L 1
0 05 1 1.6 2 25 3 35 4

Number of crawled web pages % 10

Figure 18 The target recall of web crawlers

The experimental results demonstrate that CINDI Robot exhibits a more desirable target
recall than BFS and context graph crawlers. The better performance of the current CINDI
Robot mainly ascribes to tunneling and the revised context graph strategies. The context
graph crawler also has the ability to discover indirectly related topics. However its ability
is largely confined by its strict link distance requirements. The previous CINDI Robot
has the poorest target recall due to its poor precision which makes it hard to find on-topic

web sites.

5.3.3 Comparison of crawling speed

This section we compare the crawling speed improvement of the current CINDI Robot
with the previous CINDI Robot. Table 12 gives the hours needed to complete 400,000
web pages for both versions of CINDI Robot.

90

Table 12 Comparison of crawling speed

Time
Previous CINDI Robot 376.4 hours
Current CINDI Robot 4.1 hours

The processing time of a web page is made up of two components: downloading time
and classifying time. The classifying time of a web page is relatively invariable. However,
the downloading time of web pages may vary drastically from site to site. Since CINDI
Robot traverses the Web in the unit of web sites, its crawling speed may be largely
affected by slow web sites. However, normally it should not take more than 10 seconds
to retrieve a web page. According to our experience, the chance of failure of a web page
which takes more than 10 seconds to download is as high as 99%. This is the reason why
we force CINDI Robot to drop a web page downloading task after 10 seconds. Under our
fixed network bandwidth and classification speed, in the optimum case it takes on
average only 0.8 second to process a web page in a single-thread application. Thus we
can calculate that in an ideal case a 75-threads application takes only about 1.2 hours to

crawl 400,000 web pages. However in real crawling, it is not the case.

From Table 12, we can observe that the current CINDI Robot has 376.4/4.1=91.8
times speed-up. Beyond this number, we should realize three points. First of all, we
introduced a Naive Bayes classifier into the previous CINDI Robot, which should cause
some crawling speed degradation of about 5%. Thus the current CINDI Robot would still
have at least a speed-up 0f376.4x95%/4.1=87.2. Secondly, using 75 threads cannot
result in 75 times speed-up even though it provides significant improvement of crawling
speed. The last thing is that the actual time of crawling not only depends on the crawling

speed, but also relies on if the crawler can efficiently prune irrelevant web regions.

91

The speed-up shown in Table 12 is reached by two factors: multi-threading and
rectifications of previous CINDI Robot drawbacks. Considering that in an ideal case it
only takes on average 0.5 second to process a web page in previous CINDI Robot [4], the
previous CINDI Robot should take only about 89 hours to complete 400,000 web pages
in an ideal case. The difference between 376.4 hours and 89 hours not only indicates the
challenges a focused web crawler has to face, but also indicates the drawbacks embedded
in the previous CINDI Robot. Passive error handling and Robot Exclusion Protocol

re-implementation are two main modifications from the previous CINDI Robot.

5.3.4 Comparison of downloaded document relevant rate

In this section, we examine the downloaded document relevant rates among these three
web crawlers. Table 13 gives three web crawlers’ numbers of discovered documents,
numbers of downloaded documents, numbers of accepted documents and document
acceptance rates. The number of discovered documents shows how many document
URLs are found during the crawling process. Not all discovered documents are
downloaded. Some of them may encounter connection failures and some of them are
directly filtered out by File Fetcher. The number of downloaded documents reflects the
number of actually downloaded documents. All downloaded documents are filtered by

DFS and thus document acceptance rates can be calculated.

92

Table 13 Comparison of downloaded document relevant rates

Num of Num of Num of Document
Discovered Downloaded Accepted Acceptance Rate
Documents Documents Documents
Previous CINDI
129,298 128,973 11,946 9.26%
Robot
Context graph crawler 118,823 118,485 34,761 29.34%
Current CINDI Robot 127,275 124,963 45,121 36.11%

As mentioned before, the margins between numbers of discovered documents and
numbers of downloaded documents are caused by two reasons: 1) the pre-filtering
functions introduced in File Fetchers of both versions of CINDI Robots; 2) unexpected
connection failures. From Table 13, we can observe that the enhanced File Fetcher in
current CINDI Robot can more effectively remove undesirable document URLSs. As to
document acceptance rates, context graph crawler and the current CINDI Robot obtain
much better results. Starting from a small set of relevant seed URLSs, the previous CINDI
Robot is easy to lose its focus. Thus its document acceptance rate is extremely low. URL
ordering and content text classifiers are implemented in both context graph crawler and
the current CINDI Robot, which help them obtain a much better document acceptance
rate. In addition, the URL pattern inspection, anchor text inspection and real-time
relevance feedback bring additional improvements to current CINDI Robot’s document

acceptance rate.

93

5.4 Experiments on Individual Heuristics

In this section, we inspect the performance improvements due to individual heuristics
implemented in current CINDI Robot. URL pattern inspection, anchor text inspection,
tunneling and revised context graph are examined. However, content text classifiers,
URL ordering and real-time relevancy feedback are considered as essential parts of the
current CINDI Robot, so we do not examine the improvements attributed to them. These
experiments are performed using 10 randomly selected seed URLs and 75 threads. Here
we examine the experimental results using the first 500000 web pages of the crawling

process.

5.4.1 URL pattern inspection

URL pattern inspection mainly contributes to the precision. One main responsibility of
URL pattern inspection is to exclude those to-be-avoided directories during re-crawling
processes, which will be studied in Section 5.5. URL pattern inspection brings much

more salient precision improvement for re-crawling than for initial crawling.
Figure 19 shows the precision curves of CINDI Robot with and without URL pattern

inspection, where “full-version” denotes the CINDI Robot using complete mechanisms,

“without-upi” denotes CINDI Robot without URL pattern inspection.

94

—- full-version
—4— without-upi

DB

08r

0.7 F

0B}

Precision
o
8,1
L}

04r

03F

0.2

0.1

UU 0.5 1 15 2 25 3 35 4 45 5

Number of crawled web pages 10°

Figure 19 Precision improvement due to URL pattern inspection

From Figure 19, we can find that URL pattern can bring about 3% improvement.
Stop-directory filtering, seven directory level exclusion and the Robot Exclusion
Protocol are main reasons of precision improvement. Other aspects of URL pattern
inspection, such as computer science department web site speculation and protocol and
file format filtering, can accelerate the crawling process. Computer science department
web site speculation can save time on content text classifications while protocol and file

format filtering can save time used to crawl useless web resources.

5.4.2 Anchor text inspection

Compared to URL pattern inspection, anchor text inspection enhances more precision
increase. On the one hand, anchor text inspection prunes irrelevant hyperlinks from
relevant web pages; on the other hand, it extracts only potentially useful hyperlinks from

Layer 2 web pages. This strategy keeps CINDI Robot from useless web pages, which is

95

demonstrated in Figure 20, where “without-ati” denotes the CINDI Robot without anchor

text inspection.

Figure 20 shows that using anchor text inspection the precision of CINDI Robot can
improve about 6%. This improvement gets more obvious as the crawling process goes on.
This feature makes anchor text inspection even more desirable for long time crawling.
Recall that in Figure 17 the precision of the previous CINDI Robot drops dramatically
during the crawling process. Here anchor text inspection can to a great extent offset the

precision degradation.

—&~ full-version
—4— without-ati

0.8

0.8

061

Precision
o
n
1

04}

0.3

02¢F

0.1

=

U i i 1 | i] | 1 |
a 0.5 1 1.6 2 25 3 356 4 4.5 5

Number of crawled web pages « 10°

Figure 20 Precision improvement due to anchor pattern inspection

5.4.3 Tunneling and revised context graph

Tunneling and revised context graph are two main strategies used in current CINDI

96

Robot to increase recall. The revised context graph allows CINDI Robot to include Layer
2 web pages into URL frontier and the tunneling strategy looses the Layer 2 web page
selection requirement to increase the chance of finding more relevant web sites. Figure
21 gives the target recall comparison between the complete CINDI Robot and the one
without the revised context graph and tunneling. The target set is also formed by 10,000

randomly selected web sites from Seed Finder.

x10°

| & full-version
—4— without-rcg-t

Target recall

1 | 1 1 1 | 1
0 05 1 15 2 25 3 35 4 45 5
Number of crawled web pages «10°

Figure 21 Target recall improvement due to tunneling and revised context graph

Figure 21 shows that using the revised context graph and our tunneling strategy, CINDI
Robot can discover more relevant regions by traversing some less relevant intermediates.
At the initial crawling phase, two web crawlers crawl the same set of seed URLs, thus
they have the same target recall. After the completion of seed URLs, the revised context
graph and tunneling strategy begin to show their contributions. As the crawling process
goes on, the precision goes down. At this time, the revised context graph and tunneling

strategy can identify more web pages leading to relevant regions and thus increase the

97

recall.

5.4.4 Summary

Based on the above experiments, we can summarize the contributions of all heuristics in
terms of precision, recall and crawling speed, which are shown in Table 14. Content text
inspection, URL ordering and real-time relevance feedback are implemented as essential
parts of CINDI Robot. It is easy to see how content text inspection and real-time
relevance feedback contribute to precision. However it is not easy to observe that URL
ordering contributes to all performance metrics by ordering incoming web sites,

excluding useless web sites and including Layer 2 web sites.

Table 14 Contributions of individual heuristics

Recall Precision Crawling Speed

Multi-threading N

URL pattern inspection N, N

Anchor text inspection v N N

Content text inspection N

Revised context graph v v

Tunneling v

2:1};::: relevance N J

URL ordering v N N

98

5.5 Experiments on Re-crawling

In [4], the author used www.cs.concordia.ca as a sample seed to demonstrate the power
of keeping CINDI Robot crawling within domain. He mentioned that after optimization it
still took 3 hours and 10 minutes for the total of 9,578 visited web pages. Here we use
these data as the benchmark to show the performance improvement of the current CINDI

Robot, especially for the re-crawling process.

Since there is only one seed URL in the whole crawling cycle, we manually tune the
current CINDI Robot to allow all threads to collaborate on crawling web links from the
same web site. Here only 30 threads are used in order to lower the possibility of
congesting the web server and thus lowering the CINDI Robot performance. For initial
crawling, it takes only 5.8 minutes to crawl the whole web sites and 9,164 web pages are
visited. Some web pages are skipped by the URL pattern inspection and the anchor text
inspection. This time saving is brought by multi-threading and also code optimization as
mentioned in Section 4.6. After the first crawling, to-be-avoided directory list for
www.cs.concordia.ca is built and we perform the re-crawling. In the re-crawling, only
8,027 web pages are visited and it only takes about 4.9 minutes. That means by importing
to-be-avoided directory list, we can bring approximately (5.8 — 4.9)/5.8 = 15.5%

speed-up.

99

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Online documents are good sources for CINDI digital library. CINDI Robot is
consequently developed to traverse the whole Web to collect on-topic documents. Due to
the huge volume and dynamic nature of the World Wide Web, general purpose web
crawlers are infeasible to keep all on-topic documents up-to-date. Thus CINDI Robot is
designed as a focused web crawler, which crawls the Web based on web pages’ relevancy
in order to crawl most relevant web pages as early as possible and to skip irrelevant
regions. CINDI Robot is implemented in JAVA as a multi-threaded program in order to
increase crawling speed. CINDI Robot consists of five components, namely Seed Finder,
Web Crawler, Link Analyzer, Statistics Analyzer and File Fetcher. Seed Finder identifies
seed URLs which are used as starting points for focused crawling processes. Both ODP
based approach and general purpose search engine based approach are utilized to
augment the number of seed URLs. Web Crawler performs both URL pattern inspection
and anchor text inspection, retrieves web pages, extracts hyperlinks and identifies
document URLs. Link Analyzer utilizes content text classifiers, revised context graph
and tunneling to rank web pages based on their relevancy to the topic. Statistics Analyzer
constructs a stop-directory list and to-be-avoided lists to exclude useless URL directories.
It also performs a real-time relevancy monitoring. File Fetcher downloads documents and
performs file related operations. In Chapter 5, various experiments demonstrate the
current CINDI Robot has exhibited desirable improvements on the precision, recall and

crawling speed and thus is able to scale up to the whole Web.

100

6.2 Contribution of This Thesis

The main goal of this thesis is to enhance CINDI Robot’s performance in terms of
precision, recall and crawling speed. To achieve this goal, we propose a novel multi-level
inspection infrastructure which includes content text inspection, anchor text inspection
and URL pattern inspection for the current CINDI Robot. This infrastructure maximally
takes advantage of the characteristics of web pages rather than only focuses on content
texts. Content texts, anchor texts are usually considered independently in other papers
and URL information is ignored in most papers. In this thesis, we demonstrate that
combining content texts, anchor texts and URL patterns can result in an obvious

improvement of performance.

To support this infrastructure, we investigate some state-of-the-art techniques of focused
web crawlers and propose our own strategies to enhance the CINDI Robot. For content

text inspection, we propose a weighted Naive Bayes classifier which increases the

accurate classification rate by using a TF X IDF' scheme; we design a simple tunneling

strategy which gets rid of the error-prone taxonomy tree construction in the classic
tunneling technique; we introduce a revised context graph algorithm which removes the
strict link distance requirement of the classic context graph algorithm. For URL pattern
inspection, we utilize the URL information to speed-up the crawling process and to
increase the precision. The usefulness of URL patterns for a focused web crawler is
elaborated and emphasized in this thesis. For anchor text inspection, we developed a
unique double-mode identification strategy which increases both precision and recall.
The experimental results demonstrate that this multi-level inspection infrastructure helps

the current CINDI Robot outperform other traditional focused web crawlers.

101

6.3 Future Work

Since focused web crawlers are still at their incipient stage, there is still much room to
improve a focused web crawler. For CINDI Robot, we consider following six directions

as future work.

In content classification, phrases may provide more precise semantic meaning than single
words. For example, “mobile” and “agent” as single words may appear in other topics
while “mobile agent” is a good indicator of a computer science and software engineering
related web page. Thus we can add phrase extraction in the preprocessing step and in
content text classification. The second direction is developing a distributed crawling
system. Distributed web crawlers are the general developing tendency and have been
used for many mature, large-scale search engines, for example, Google and AltaVista.
Although a focused web crawler can be more efficient to scale up the whole Web in
contrast with a general purpose web crawler, a distributed system may also be necessary
due to the explosion of the Web. A distributed focused web crawler can bring more
speed-ups, which can make crawled web pages up-to-date. The third direction is to
further enlarge high quality seed URLs number. In the current CINDI Robot, we use
manually collected query to cover all computer science and software engineering fields.
This process can be automated. Many query construction techniques have been proposed
from which we can get a list of well-selected queries by simply inputting a topic name.
Since CINDI system is going to expand to a comprehensive digital library to cover all
academic topics, this automated query construction technique is essential. The fourth
direction is employment of a more sophisticated URL ordering mechanism. In the current
CINDI Robot, we classify all web pages into three categories and order web pages based
on their categories. In future work, we can use a more sophisticated scoring scheme to

assign each web page a real number score and sort web pages based on their scores. The

102

fifth direction is to take advantage of other web page quality metrics in addition to
relevancy-based page quality metric in order to improve crawling performance, for
example connectivity-based page quality metric. The deep Web [57] is also a valuable
working direction. In spite of huge volume of web pages on the surface Web, even
more web pages exist as the form of deep web pages. In 2000, it was estimated that the
deep Web contained approximately 7,500 terabytes of data and 550 billion individual

documents [58] while even in 2007, there are only 29.7 billion surface web pages [8].

103

References

[1] CINDI digital library project, available at: http://cindi.encs.concordia.ca

[2] ISC Domain Survey: Number of Internet Hosts, available at:

http://www.isc.org/index.pl?/ops/ds/host-count-history.php

[3] Nihar Bihani, “Search Engine Optimization Blog”, available at:

http://www.ecnext.com/ecnext/blogs/organic/

[4] Cong Zhou, “CNDROBOT — A Robot for the CINDI Digital Library”, Master Thesis,

Department of Computer Science, Concordia University, December 2005.
[5] Shkapenyuk V, Suel T, “Design and implementation of a high-performance
distributed Web crawler”, the Proceeding of the 18th International Conference on Data

Engineering, 2002.

[6] Lyman, P. and Varian, H. R. “How much information”, available at:

http://www.sims.berkeley.edu/how-much-info-2003/

[7] World Wide Web, available at: http://en.wikipedia.org/wiki/World_Wide Web

[8] Andrei Broder, Ravi Kumar, et al, “Graph structure in the Web”, available at:

http://net.pku.edu.cn/~wbia/2005/public_html/papers/webGraph/Graph%20structure%20
in%20the%20web.pdf

104

[9] How many websites are there, available at:

http://www.boutell.com/newfag/misc/sizeofweb.html

[10] Internet Usage Statistics, available at: http://www.internetworldstats.com/stats.htm

[11] Open Directory Project, available at: http://www.dmoz.org/

[12] Open Directory Project instruction, available at:

http://www.dmoz.org/help/geninfo.html

[13] Ted Goldsmith, “Case Study — Search Engine Censoring of Open Directory Data”,

available at: http://www.searchenginehonesty.com/searchvsodp.pdf

[14] Web directory, available at: http://en.wikipedia.org/wiki/Web_directory

[15] Google search engine, available at: http://www.google.com

[16] AltaVista search engine, available at: http://www.altavista.com

[17] CiteSeer digital library, available at: http://citeseer.ist.psu.edu

[18] Soumen Chakrabarti, Focused Crawling: The Quest for Topic-specific Portals,

available at: http://www.cse.iitb.ac.in/~soumen/focus/

[19] Monica Peshave, “How Search Engines Work and A Web Crawler Application”,
available at: http://www.micsymposium.org/mics_2005/papers/paper89.pdf

105

[20] Google Search, available at: http://en.wikipedia.org/wiki/Google search

[21] A standard for robot exclusion, available at: http://www.robotstxt.org/orig.html

[22] Menczer, F., “ARACHNID: Adaptive Retrieval Agents Choosing Heuristic
Neighborhoods for Information Discovery”, Proceedings of the 14" International

Conference (ICML97).

[23] Chakrabarti, S., et al, “Focused crawling: a new approach to topic-specific web

resource discovery”, Computer Networks, 31(11-16), pp. 1623-1640.

[24] Huajing Li, Isaac Councill, et al. “CiteSeer*: an Architecture and Web Service
Design for an Academic Document Search Engine”, 15th International World Wide Web
Conference, 2006.

[25] Gautum Pant, Kostas Tsioutsiouliklis, et al. “Panorama: Extending Digital Libraries
with Topical Crawlers”, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital
Libraries.

[26] Google Web APIs, available at: http://www.google.com/apis/

[27] Gautam Pant and Padmini Srinivasan, “Link Contexts in Classifier-Guided Topical

Crawlers”, IEEE Transactions on Knowledge and Data Mining, Vol.18, No.1, 2006.

[28] M. Diligenti et al., “Focused Crawling using Context Graphs”, 26" International
Conference on Very Large Databases, VLDB 2000, pp.527-534.

106

[29] Ching-Chi Hsu, Fan Wu, “Topic-specific crawling on the Web with the
measurements of the relevancy context graph”, Information Systems 31, 2006, pp.

232-246.

[30] R. Babaria, J. Saketha Nath, Krishnan S, SivaramakrishnanK R, C. Bhattacharyya,M.
N.Murty, “Focused Crawling with Scalable Ordinal Regression Solvers”, Proceedings of

the ICML-2007 conference.

[31] Marc Ehrig and Alexander Maedche, “Ontology-Focused Crawling of Web
Documents”, Proceedings of ACM Symposium on Applied Computing 2003, Melbourne,
Florida, USA.

[32] Knut Eivind Brennhaug, “EventSeer: Testing Different Approaches to Topical
Crawling for Call for Paper Announcements”, June 2005, available at:

www.diva-portal.org/diva/getDocument?urn_nbn_no_ntnu_diva-601-1__fulltext.pdf

[33] Jingru Dong et al., “Focused crawling guided by link context”, Proceedings of the
24" JASTED International Conference on Artificial Intelligence and Applications, 2006.

[34] Nicola Baldini and Federico Neri, “A Multilingual Text Mining based Content
Gathering System for Open Source Intelligence”, Proceedings of IAEA International

Atomic Energy Agency, October 2006.
[35] Jyh-Jong Tsay et al., “AutoCrawler: An Integrated System for Automatic Topical

Crawler”, Proceedings of the Fourth Annual ACIS International Conference on Computer

and Information Science, 2005.

107

[36] Martin Ester, Matthias Grob, Hans-Peter Kriegel, “Focused Web Crawling: A
Generic Framework for Specifying the User Interest and for Adaptive Crawling

Strategies™, 27" International Conference on Very Large Database, Rom, Italien, 2001.

[37] Vladimir N. Vapnik, “The Nature of Statistical Learning Theory”, Springer, 1995.

[38] Joachims T. “Text Categorization with Support Vector Machines: Learning with
Many Relevant Features”, Proceedings of ECML-98, 10th European Conference on

Machine Learning, 1998.

[39] Nello Cristianini, John Shawe-Taylor, An introduction to Support Vector Machines

and other kernel-based learning methods, Cambridge University Press, England, 2000.

[40] Rung-Ching Chen and Chung-Hsun Hsieh, “Web page classification based on a

support vector machine using a weighted vote schema”, Expert Systems with

Applications 31, 2006, pp.427-435.

[41] Ioan Pop, “An approach of the Naive Bayes classifier for the document

classification”, General Mathematics Vol. 14, No. 4, 2006, pp. 135-138.

[42] Jia-he, Zhao, et al., “Design and implementation of focused web crawler based on

semantic analysis”, Journal of Computer Applications, v 27, n 2, Feb.2007, pp.406-408.

[43] Jialun Qin, Yilu Zhou and Michael Chau, “Building Domain-Specific Web
Collections for Scientific Digital Libraries: A Meta-Search Enhanced Focused Crawling
Method”, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries,

Tucson, Arizona, USA.

108

[44] M. Yuvarani, et al., “LSCrawler: A Framework for an Enhanced Focused Web
Crawler based on Link Semantics”, Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence.

[45] Mohsen Jamali, et al., “A Method for Focused Crawling Using Combination of Link
Structure and Content Similarity”, Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence.

[46] Sergey Brin and Lawrence Page, "The anatomy of a large-scale hypertextual Web
search engine". Proceedings of the Seventh International Conference on World Wide Web

pp.107-117, 1998.

[47] B. C. Desai, May 1994, “A system for Seamless Search of Distributed Information

Sources”, available at: http://users.encs.concordia.ca/~bcdesai/web-publ/w3-paper.html.

[48] Sami Samir Haddad, “Automatic Semantic Header Generator”, Master Thesis,

Department of Computer Science, Concordia University, 1998.

[49] Yuwei Feng, “CONFSYS: Enhancement and Integration”, Master Thesis,

Department of Computer Science, Concordia University, August 2003.

[50] Tong, Z, “A Gleaning Subsystem for CINDI”, Master Thesis, Department of

Computer Science, Concordia University, 2004,

[51] Krishma Dutta, “Enhancement and Integration for CINDI System”, Master Thesis,

Department of Computer Science, Concordia University, August 2007.

109

[52] Brian D. Davison, “Topical Locality in the Web”, Proceedings of the 23" Annual
International Conference on Research and Development in Information Retrieval (SIGIR

2000), Athens, Greece, 2000.

[53] Neel, S., Jeonghee, L., Anital, H. “Using MetaData to Enhance a Web Information
Gathering System”, available at:

http://www.research.att.com/conf/webdb2000/PAPERS/1b.ps
[54] Donna Bergmark, Carl Lagoze, and Alex Sbityakov, “Focused Crawls, Tunneling,
and Digital Libraries”, Proceedings of the 6" European Conference on Research and

Advanced Technology for Digital Libraries, pp. 91-106, 2002.

[55] Domingos, Pedro and Michael Pazzani, “On the optimality of the simple Bayesian

classifier under zero-one loss”, Machine Learning, pp.103-137, 1997.

[56] MySQL Home page, available at http://www.mysgl.com

[57] CiteSeer Computer Science Directory, available at:

http://citeseer.ist.psu.eduw/directory.html
[58] Silva, Catarina and Ribeiro, Bernardete, “The importance of stop word removal on
recall values in text categorization”, Proceedings of the International Joint Conference on

Neural Networks, Vol. 3, pp. 1661-1666, 2003.

[59] G. Almpanidis, et al., “Combining text and link analysis for focused crawling- An

application for vertical search engines”, Information Systems, 2006.

110

[60] Baeza-Yates, R., Castillo, C., Marin, M. and Rodriguez, A., “Crawling a Country:
Better Strategies than Breadth-First for Web Page Ordering”, Proceedings of the
Industrial and Practical Experience track of the 14th conference on World Wide Web, pp.
864—872.

[61] Stemming, available at: http://en.wikipedia.org/wiki/Stemming

[62] Stop words definition, available at: http://en.wikipedia.org/wiki/Stop_words

[63] C. J. Van Rijsbergen, S. E. Robertson and M. F. Porter, “New models in probabilistic

information retrieval”, British Library Research and Development Report, no. 5587,

London: British Library.

[64] Chih-Ming Chen, et al., “An intelligent web-page classifier with fair feature-subset

selection”, Engineering Application of Artificial Intelligence 19, 2006, pp.967-978.

[65] Chih-Wei Hsu, et al., “A Practical Guide to Support Vector Classification”, available

at: www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

[66] Salton, G. and McGill, M. J. Introduction to modern information retrieval,

McGraw-Hill, 1983.

[67] T. Joachims, “Making Large-scale SVM Learning Practical”, Advances in Kernel
Methods — Support Vector Learning, MIT Press, 1999.

[68] Cothey, V., "Web-crawling reliability". Journal of the American Society for
Information Science and Technology 55 (14), 2004.

111

[69] Ayache, S. and Quenot,G., “Evaluation of Active Learning Strategies for Video
Indexing”, Content-Based Multimedia Indexing, 2007. CBMI '07. International
Workshop, 2007, pp.259 - 266”.

[70] Deep Web, available at : http://en.wikipedia.org/wiki/Deep_web

[71] Bergman, Michael K., "The Deep Web: Surfacing Hidden Value". The Journal of
Electronic Publishing 7 (1), Aug 2001.

112

Appendix A

Query List

This list presents queries that we use to obtain seed URLs in the general search engine based
approach as described in Section 4.1.2. It is organized by computer science subfields provided by

CiteSeer computer science directory.

Agent

mobile ambient

Oz programming model
real-time dynamic programming
BDI agent

mobile agent

concept language

markov game

multi agent

reinforcement learning

complex group action

Applications

modular eigenspace
face recognition
FERET

recurrent net

speech recognition
hidden markov model
motion regularization
HMM-based

linear transformation
global optimization
neural network
context decode
interactive translation

Architecture

integrated communication computation
intelligence reason

113

software architecture
distribute shared memory
virtual memory

network interface

weak ordering

vectorization multiprocessor
sequential consistency
compiler transformation
optimization parallelism

Artificial Intelligence

bagging predicate

graph analysis algorithm
general purpose planning
STRIPS planning
propositional logic

stochastic search

subset selection

model render architecture
constraint satisfaction schedule
least commitment planning

Compression

packet video

CMOS design

framework simulate prototype
heterogeneity mix mode
variable bit rate VBR
schedule operating system
time scale traffic

multiple time scale

protocol network communication
multicast transcode

predictability data value

delta encode

data compression algorithm

Database

data query language
semistructure unstructured data
semantic logic program
unfounded set logic
object-oriented database OODBS
data model DBMS

persistent scalable database
query formulation optimization
knowledge representation
relational schema integrity expression
incremental recomputation

data integration approach

cache index data

XML query language

Hardware

parallel distributed compute

resource management operating system
symbolic Boolean binary manipulation
hardware architecture program

value locality prediction

cluster scalable network

Human Computer Interaction

seamless interface user

coupling query filter

starfield display information seeking
affective compute

image motion model

adaptive hypermedia navigation
uncertain dynamic agent

DOF structure visual track

114

autonomous interface agent
ubiquitous computing

Information Retrieval

agent communication language
integration heterogeneous information
text categorization feature selection
Support Vector Machines learning
asymmetric communication environment
linear algebra information retrieval
vector space database

TF IDF

text classifier

incremental index full text
transductive inference classification

Machine Learning

machine learning algorithm
fuzzy systems

neural networks

mining set rules database
pattern recognition
combinatorial geometric computing
approximation algorithm
nearest neighbor search

cluster high dimensional data
additive logistic regression
hash based algorithm

rocchio probabilistic algorithm
support vector machine
genetic algorithm GA

Networking

random detection congestion avoidance
multicast framework framing

Ethernet traffic LAN

poisson modeling network

real-time packet network

self-similarity web traffic

network route protocol

IP mobile internetworking
synchronization periodic networking
network throughput layer

Operating Systems

cache file system memory
kernel binary run-time
operating system design

fault tolerant distributed system
time sharing system interface
remote client memory file

page uniprocessor software
schedule CPU computer
microkernel OS thread

network file system
multiprocessing architecture context switch

Programming

software fault isolation
uniprocessor garbage collection
logic programming language
imperative functional programming
object concurrent programming
aspect oriented programming
compiler design optimization
data locality transformation
loop fusion distribution

linear algebra software

system verification validation

Security

digital signature public key
cryptography protocol

access control groupware
encryption algorithm
intellectual property protection
intrusion detection

information warfare

Software Engineering

software architecture

formal methods

program slicing technique
software process modeling
object oriented programming
software visualization

legacy code

agent oriented analysis design
software design pattern

software reliability debugging
software specification morphism
random sampling computational geometry

Theory

computational complexity

quantum computation

logic disjunctive database

deadlock free routing

knowledge compilation horn approximation
higher order logic programming

wavelet closed subset

adversarial queueing theory

intersection type bounded polymorphism
calculus symmetric concatenation

World Wide Web

hypertextual web search engine
metacrawler resource aggregation
focused web crawler discovery
semi-automatic wrapper generation

link topology hypertext

context graph crawl

automated negotiation system electronic
formal ontology information

Appendix B

Stop Word List

This list enumerates the stop words used in the preprocessing as described in Section 4.3.1.

a
able
about
above
according
accordingly
across
actually
after
afterwards
again
against
all

allow
allows
almost
alone
along
already
also
although
always
am
among
amongst
an

and
another
any
anybody
anyhow
anyone
anything
anyway

anyways
anywhere
apart
apparently
appear
appreciate
appropriate
are

aren't
around

as

aside

ask

asks
asking
associated
at
available
away
awfully

b

be
became
because
become
becomes
becoming
been
before
beforehand
begin
beginning
behind
being

116

believe
below
beside
besides
best

better
between
beyond
both

brief

but

by

c

came

can
cannot
can't

cant

cause
causes
certain
certainly
change
clearly

co

com

come
comes
concerning
consequently
consider
considering
contain
containing

contains

corresponding

could
couldn't
course
currently
d
definitely
described
despite
did

didn't
different
do

does
doesn't
doing
don't
done
down
downwards
during

e

each

edu

eg

eight
either
else
elsewhere
end
ending
enough
entirely

especially
et

etc

even

ever
every
everybody
everyone
everything
everywhere
ex
exactly
example
except

f

far

few

fifth

first

five
followed
following
follows
for
former
formerly
forth

four

from
further
furthermore
fully

g

gave

get

gets
getting
given
gives

go

goes

going
gone
got
gotten
greetings
gt

h

had
happens
hardly
has
hasn't
have
haven't
having
he

he'd

he'll

he's
hello
help
hence
her

here
here's
hereafter
hereby
herein
hereupon
hers
herself
hi

him
himself
his
hither
hopefully
how
howbeit
however

i

if
ignored

immediate

in
inasmuch
inc
indeed
indicate
indicated
indicates
inner
insofar
instead
into
inward
is

isn't

it

it's

its
itself

j

just

k

keep
keeps
kept
know
knows
known
1
largely
last
lately
later
latter

117

latterly
least
less
lest

let

let's
like
liked
likely
little
look
looking
looks

1t

Itd

m
made
make
mainly
man
many
may
maybe
me
mean
meantime
meanwhile
merely
might
more
moreover
most
mostly
much
must
my
myself
n
namely
nd
near

nearly
necessary
need
needs
neither
never
nevertheless
new

next

nine

no
nobody
non

none
nonetheless
noone
nor
normally
not
nothing
now
nowhere
0
obviously
of

off

often

oh

ok

okay

old

on

once

one

ones

only

onto

or

other
others
otherwise

ought

our

ours
ourselves
out
outside
over
overall
own

p
particular
particularly
per
perhaps
placed
please
plus
possible
possibly
potentially
predominantly
present
presumably
previously
primarily
probably
promptly
provides

q

que
quickly
quite

quot

qv

r

rather

rd

re

readily
really
reasonably

recent
recently
refs

reg
regarding
regardless
regards
relatively
respectively
resulting
right

s

said
same
saw

say
saying
says
second
secondly
see
seeing
seem
seemed
seeming
seems
seen
self
selves
sensible
sent
serious
seriously
seven
several
shall

she

she'd
she'll
she's
should

118

shouldn't
shown
shows
significantly
similar
similarly
since
slightly

six

S0

some
somebody
somehow
someone
something
sometime
sometimes
somewhat
somewhere
soon

sorry
specifically
specified
specify
specifying
still
strongly
sub
substantially
successfully
such
sufficiently
sup

sure

t

take

taken
taking

tell

tends

th

than
thank
thanks
thanx
that
that'll
that's
that've
thats

the

their
theirs
them
themselves
then
thence
there
there'd
there'll
there're
there've
thereafter
thereby
therefore
therein
theres
thereupon
these
they
they'd
they'll
they're
they've
think
third

this
thorough
thoroughly
those
though

three
through
throughout
thru
thus

to
together
too
took
toward
towards
tried
tries
truly

try
trying
twice
two

u

un
under
unfortunately
unless
unlike
unlikely
until
unto

up

upon
us

use
used
useful
usefully
uses
using
usually
uucp

v

value

various
very

via

viz

Vs

A

want
wants
was
wasn't
way

we

we'd
we'll
we're
we've
welcome
well
went
were
what
what'll
what's
what've
whatever
when
whence
whenever
where
where's
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither

119

who
who'd
who'll
who's
whoever
whole
whom
whomever
whose
why
widely
will
willing
wish
with
within
without
wonder
won't
would
wouldn't
X

y

yes

yet

you
you'd
you'll
you're
you've
your
yours
yourself
yourselves
z

Zero

