CINDI_QA:
A TEMPLATE-BASED BILINGUAL

QUESTION ANSWERING SYSTEM

Chedid Haddad

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

April 2008

© Chedid Haddad, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40939-8
Our file Notre référence
ISBN: 978-0-494-40939-8

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract
CINDI_QA: A Template-Based Bilingual Question Answering System

by
Chedid Haddad

CINDI_QA is the result of the CINDI group’s efforts at tackling multilingual Question
Answering. The goal of the system is to receive a French question and return the answer
to that question in English,

This thesis outlines the architecture of CINDI_QA and how it is integrated with several
open-source tools. Google Translate is used to produce the English equivalent of the
French question. The Link Parser is a semantic parser of English that identifies keywords
such as nouns, verbs and adjectives. WordNet is a lexical analyzer that generates
synonyms of those keywords. Finally, Lucene handles indexing and searching of the
large data collection made up of Wikipedia static pages.

In addition to these tools, CINDI_QA heavily relies on templates to better understand the
question entered by the user. Six templates help the system answer questions about
different subjects.

The performance of CINDI_QA has been assessed by participating in the 2007 edition of
the QA@CLEF competition, an annual conference focusing on multilingual QA, to
which the CINDI group submitted two runs that ranked second and third out of eight

candidates.

1ii

Acknowledgements

I would like to take this opportunity to thank all the people that have helped me through
the completion of this project.

First, Prof. Bipin C. Desai truly embodies the meaning of a dedicated supervisor. His
door has always been open for suggestions, encouragement and support. He even gave
me one of the greatest pieces of advice I have ever heard: “the only way to learn how to
swim is to get into the water”.

I would like to thank Niculae Stratica for finding time amid his busy work schedule to
share with me his experience at Concordia and introducing me to his thesis project that
was a great inspiration for mine.

The CINDI group is made of talented and hard-working individuals who constantly
encourage each other. Thanks to Varun Sood, Mahmudur Rahman, Krishma Dutta and
Adnan Abueid for creating a great working environment in our lab office.

My deepest recognition goes to my girlfriend Tayma for her daily patience, support and
encouragement. Without her, this project wouldn’t have reached fruition.

Last but certainly not least, I thank my family for providing me with the education,
morals, values and confidence that have helped me get through everyday life. Even

though they are geographically far, I have felt them by my side every single day.

iv

Table of Contents

LISt Of FIgUIES. ..ttt e e e e e e viii
LiSt OF TabIES. ..o iieiniei i, X
)T) NS (0] 01 15 L PSP Xi
1. INETOAUCHION. L ..u ittt 1
1.1 L8 1S 4 4 1< 1

1.2 Problem Statement..........cccoivirinieniiiniiiiceeere s 2

1.3 Proposed SOIULION.cciriiererniiiiiieiireenie et etesre s st sbes e esveessesnesenens 3

1.4 Organization Of ThesiS......c.vvvvriiriiiiiii e 4

2. Previous Work inthe Field............oooooiiiiiiii 5
2.1 State Of the ATt .o 5

2.2 Natural Language Processing Domain..........coovvvvivriieiriiineineineninennns 6

2.2.1 Early NLP AtemPIS. ..ovintiniiieeeniiiiinienieeienienniiieneennenaenens 6

2.2.2 The LNSLIS SyStem. .. .vivtiittiireiireittiiniiinerieenienininneeaennees 7

2.23 The NLPQC System....c.vviriirirriinteteiitennrnneeanerineneenneans 8

2.3 Question Answering DOmaiN.......c.vvuvvieirenernreinininrnneeneereenneneees 10

2.3.1 Early QA AttemPtS. . ovvertiirt et iitiiireireirienieennerrraieaaeanees 10

2.3.2 The Web-based Ask.com System..............coevviviiiiiiniiiniiin 13

2.3.3 The Web-based START System........ccovviviiiiiiiiiiiinin. 14

2.4 Multilingual QA......ooiiiiiiiii 16

2.5 CINDI QA Considerations.e.vreeriverrieererierineirinererineiii 17

CINDI_QA Architecture and LOgIC........coovviiviiiiiiiiniiiin 19

3.1 Rationale behind Templates........co.vvvviiiiiiiiiiiiiiiiiiiii 20
3.2 Online Translation Module..........cocovivviiiinininiiiiiiis 22
3.3 Natural Language Parsing Module...........ccovviviiviiniiiiniin, 23
3.4 Lexical Reference Module..........cccccniniiniiiniiiinicniiicncccccnce 24
3.5 Document Searching and Indexing Module............coccvvvniniininininiiinnins 25

3.5.1 CINDI_QA Data collection.......cccovvirervriviniiniinniniiiiiiiinicniiiens 26

3.5.2 Query Building using Proximity Search...........cccoccvvininniniiiiinnns 27

3.5.3 Highlighting Query Terms...........ccooerverienneninnieninninnceieeicinns 27
Template MatChing.......cccvcveriieriinininin s 29
4.1 The Living Person Definition Template: Who is X7.....cccccevevvvvenvncncnan. 30
4.2 The Deceased Person Definition Template: Who was X?.........ccoceveneeee. 31
4.3 The Person Date of Birth Template: When was X born?.........cccceerveeneennne. 32
4.4 The Person Date of Death Template: When did X die?cccooovvnini. 33
4.5 The Object Definition Template: What is Z?..........covevivirirviniiniiniiniins 34
4.6 The Person Info Template: What is the Y 0f X7..ccovvevvvvvvvinivenvnienneinennnes 35
CINDI_QA Implementation........cccvreveerieieeiieninniinnenneiiesnennesiesie s enssnneens 37
5.1 Java Native Code Link Grammar Interface..........cccocvvivinciiiniininininnnan. 39
52 WordNet and Lucene CoOpPeration.......c.ccverrvrererereemreeenerineeniennneennn 39
Experimental RESULLS.......ccvviviiiireiieenrerieenie e s 42
6.1 EXAMPIES...viiiiieirreieeriieiiiiie ettt 43
6.2 CINDI_QA at QA@CLEF 2007.....cccccvvviiiiiiiiniiiiiiiininnne. 51
Conclusion and Future Work........cococcniiininiinininen, 58

vi

7.1 oM IDULION. t.evvvvtiicre st s eeereeniniieseseserreertaesessserrarnreessrsrrtessersersnrnsseesessrrsane 58

7.2 LIMItAtIONS..cteiirciiriniecesrerientestenrn st eer s n e s sbe e sra e 59
7.3 Suggested Enhancements..........ccovviviininiiiniiinn 60
RETEIEIICES . ovvevrireetiiiit ettt ettt et b e et e bt sr b n e b st sb bbbt 62
Appendix A — Link Parser.......cocccvivinieniniiniciniccii s 66
Appendix B — WOrdNet........ccoivniiiiiniiiiiii s 78

vii

List of Figures

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 5.1:

CINDI_QA Activity Diagram.......cccovevvierriineiinieniniiniesncncnens 2
NLPQQC SYStEML....eiiiiiiiiiiiiiiiiiee et 9
QA General APProach.......cocveeveeriiiniiiniiieenr i 11
Ask.com Web-based QA SYSteML.......ccceverierienieniininiiniinieese i 14
START Web-based QA SyStem.........ccceevviririiniiniiiniiiiiiiiriicienn 15
Architecture Of STARTcccccvviviiniiiniii 15
Best and Average Scores in QA@CLEF Campaigns........ccccovvverveneennenne 17
CINDI QA Package Diagramcccocererrvreinerneninesnininnineisisniien 20
CINDI_QA Process FIOW......cccococviriiniiininiiiiciiie, 22
G00gle Translate.......ccocuvriieririnieeniierrr e 23
LinkParser in CINDIL QA......coceiiieiiniineniecnieeniieienenrnc s 24
WordNet in CINDI QA.....oooiiiiiiiiiiiiesesre e sre s 25
Static Wikipedia page of Roger Federer........cccvvvvviviinniniinniiiiinninnine, 26
Living Person Definition template example.........coceerirrerviiiinininnininnnn. 31
Deceased Person Definition template example........ococevvvirernnircrnineenneenns 32
Person Date of Birth template example.........ccoevveririiiiinininennnennnnn. 33
Person Date of Death template example.......cccoeveeriiiniiniiiniinniennn, 34
Object Definition template eXample..........ovcveveiiriinieneiineniinn 35
Person Info template example with Y = “nationality”..........cocevvvvvivininne, 36
Person Info template example with Y = “JOb”.civ v 36
ECHPSE INLEITACE. ...viivviriiievieniiiiiieseestenccri e s 38

viii

Figure 5.2:
Figure 6.1:
Figure 6.2:

Figure 6.3:

Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 6.10;
Figure 6.11:

Figure 6.12:

Figure A.1:
Figure A.2:

Figure B.1:

CINDI_QA Class Diagram........ccccuevvviririvernerseronnennnnnennoninmemsoeeen, 41
T1 Example with X = “MCREEC”......ccccervieiriinrieninieirr et esereeenesnes 43
T1 Example with X = “Alister MCRAE”......ccccoovivirvieiriiniriree e 43
T1 Examples with X = “Hillary Clinton” and X = “Hillary Rodham

CINTON ..ttt 44
T1 and T2 Examples with X = “Mahatma Gandhi”...........cccevcvrivniriinnnns 45
T3 Examples with X = “Kobe Bryant” and X = “Kurt Cobain”................ 45
T4 Examples with X = “Fidel Castro” and X = “Mahatma Gandhi”........ 46
TS EXAMPLES....iiiiiiiiiirierrenitiienieeneenr e sa s sressnresree s sns s sieesines 47
TO EXAMPLES...vririrrirriririieirerinesreierresreesreeseressnessinssssesensessssessnssesarsnenens 48
NO T eXaMPIE L..riiiciiiiiinieiininirerenrenesr e sesre e s e sssbesresrsesessssnes 49
NO T eXAMPIE 2..vvirriiirieireriiiriniesieeieeresesesrenesesinesessssssesssesesissessses 50
QA@CLEF 2007 Test Set EXCOIpt.....cvvcvivivimirnierineninimineeinneieneenne 54
QA@CLEF 2007 Answer File EXCerpt.....c.ccvvviniinniininninieniiinnn, 55
LinkParser Web Interface.......ccvvvvenininininninonninnnn. 67
LinkParser Compiled INterface.........cocvvvriierienininenieniinnnienneinn. 68
WordNet Window-based browser Interface.......coecviniiiicininiciininin, 79

X

List of Tables

Table 2.1:

Table 2.2:

Table 3.1;

Table 4.1:

Table 5.1:

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

FLIP pattern-matching eXamples......coccvvvverrieiniecnneiniininceeie e, 6
Difference between IR and QA Technologies.........cocvveeveriniviinininencnnn 10
Highlighter EXample.........cocoiviniiinmiiiiinnnn 28
Capitalized Entity eXamples.......coovvvireniinrenniinineiininne 29
CINDI_QA Implementation Parameters...........ccocovivviiiininieniniiniinen, 37
CINDI_QA Templates......c.ccccvcininniniiniiimiiiieiese e 42
QA@CLEEF Participation.........ccccvvviniinininiiiinniieiineiis s 52
QA@CLEF Question TYPes......ccevvrivinirivenininiiiiiineaiesnnienes 53
QA@CLEF 2007 ReSULS...c.cviiiriiiiiiiniiiieiiiniinies s 56

List of Acronyms

API
CE

CINDI
CINDI_QA
CLEF

EN

FLIP

FR

GUI

IR

JAR

JDK
JNCLGI
JRE

JSP

LISP

NL

NLP
NLPQC
00

QA

Application Program Interface

Capitalized Entity

Concordia Index for Navigation and Discovery on the Internet
CINDI Question Answering System

Cross Language Evaluation Forum

English

Formal List Processor

French

Graphical User Interface

Information Retrieval

Java Archive

Java Development Kit

Java Native Code Link Grammar Interface

Java Runtime Environment

Java Server Pages

List Processing Language

Natural Language

Natural Language Processing or Parsing

Natural Language Processor for Querying CINDI
Object Oriented

Question Answering

Xi

QA@CLEF Multilingual Question Answering track at CLEF
RAM Random Access Memory
SQL Structured Query Language

XML Extensible Markup Language

X11

Chapter 1
Introduction

1.1 Overview

The Concordia Index for Navigation and Discovery on the Internet (CINDI) group has
been founded at the Department of Computer Science and Software Engineering of
Concordia in the late 1990s [1]. Its purpose is the continuous enhancement of information
discovery and retrieval. CINDI_QA is a bilingual Question-Answering system within the
spectrum of the CINDI group’s research area [2].

CINDI_QA’s goal is to receive a question in French and to return the answer to that
question in English. The system only interacts with two external entities: the user, from
whom it receives the French question as input and to whom it delivers the English
answer, and a web-based translator that it uses to obtain the English equivalent to the
French question. Figure 1.1 shows the activity diagram of CINDI_QA as a black box.

In addition to the online translator, CINDI QA makes use of several tools to come up
with an acceptable answer. First, a Natural Language Parsing (NLP) module is
responsible for understanding the English question and identifying keywords which are
nouns, verbs, adjectives and Capitalized Entities (CE). Section 3.3 elaborates more on
this NLP tool.

Then, a Lexical Reference tool is used to produce synonyms of certain keywords so they
can be included in the search process, as mentioned in section 3.4.

Finally, a search engine provides indexing of the data collection to efficiently search

through it. This searching and indexing tool is discussed extensively in section 3.5.

User | CINDI_QA |

Formulate Question
in FRor EN

Question > Process Question

e A)
EN Answ Find EN Answer
NG

®

Figure 1.1: CINDI_QA Activity Diagram

CINDI_QA also makes use of templates in order to formulate the correct answer.
Templates are constructs that define the structure of several similar questions as one
prototype. Chapter 4, which is entirely dedicated to this process, lists all six templates

and explains how they help CINDI_QA produce the best possible answer.

1.2 Problem Statement

Question-Answering (QA) systems are very challenging to create, especially bilingual
ones, where the language used to ask a question differs from the language of the

information corpora and the expected answer.

First, QA systems must be able to understand the question asked by the user. Several
approaches have been used for this purpose, ranging from the creation of templates to
match the input to the use of Natural Language Processing (NLP) on a question.

Second, they must be able to efficiently find an answer without taking too much time to
return it.

Third, finding an answer is not always enough because QA systems are more than search
engines and must return to the user the located piece of text formulated in a way that
answers the question the way a human would.

Finally, bilingual QA systems must possess the added functionality of a consistent

translation module to convert the question into the language of the data collection used.

1.3 Proposed Solution

CINDI_QA addresses these issues. First, CINDI_QA benefits from two separate modules
to understand the question once it has been translated to English. On the one hand, a
template module contains six different templates that match specific questions asked by
the user. This allows the system to know exactly what the user is asking about. On the
other hand, a NLP tool is used by CINDI QA in the case when no template is matched to
identity keywords from the question. This process provides CINDI_QA with some
knowledge about the intent of the question.

Second, CINDI_QA employs an efficient indexing and searching tool that provides an
array of functionalities related to searching and ranking results while still being extremely

fast.

Third, CINDI_QA formulates the answer to a question it receives as if it was answered
by another human being in the case when a template is matched. In the other case,
CINDI_QA returns a snippet of text containing the answer.

Fourth, CINDI QA somewhat reduces the ambiguity of translation by having its
templates stored both in French and English inside its code. This technique allows the
system to understand French questions as if they were posed in English when they match
a template.

CINDI_QA has a unique architecture that integrates all of these components in a

bilingual environment.

1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 covers what has previously been done both
in the fields of Natural Language Processing and Question Answering. The next chapter
details the architecture of CINDI QA and lists the different modules that define it; these
are: the Online Translator, the Natural Language Parser, the Lexical Reference and the
Document Searching and Indexing module. As for the Template module, chapter 4 is
entirely dedicated to it and illustrates each template and what mechanism drives them.
Chapter 5 is about the implementation of the project and how all the modules fit nicely
together. In chapter 6, we share our experimental results as well as our participation in
the 2007 edition of the QA@CLEF task. Finally, chapter 7 concludes this document and

suggests what can be done to improve CINDI_QA.

Chapter 2

Previous Work in the Field

2.1 State of the Art

The concept of Information Retrieval (IR) has always been a fascination of mankind,
long before it became associated with computing. IR has always consisted of obtaining
the most relevant data about a specific subject, but since the dawn of the Digital Age, it
has become more and more popular and complex. It is now defined as the science of
searching for information in documents, searching for documents themselves, searching
for metadata which describe documents, or searching within databases, whether relational
stand-alone databases or hypertextually-networked databases such as the World Wide
Web [3].

Question-answering (QA) is a type of IR, where a system retrieves answers from a data
collection to a question posed in Natural Language (NL). By NL we mean a language that
is spoken or written by humans for everyday communication purposes.

Natural Language Processing (NLP) is the process of understanding NLs. NLP is closely
related to QA because most QA systems make extensive use of NLP to produce answers.
Because CINDI QA is a bilingual QA system that uses NLP as one of its driving
mechanisms, we shall go over NLP and QA a little deeper by discussing previous

successful NLP and QA projects while also mentioning the challenges of multilingual

QA.

2.2 Natural Language Processing Domain

2.2.1 Early NLP Attempts

NLP has been around ever since the start of the Digital Age. Early efforts of NLP
concentrated on matching NL questions to queries on pre-set databases. An example of
this is Formal List Processor, or FLIP [4], an early language for pattern-matching on
LISP (List Processing Language) structures. FLIP is able to build a query for the database

if the input matches one of its available patterns, as show in table 2.1.

Input Matching Pattern
What is the capital of all get attribute ‘capital’ of table
countries? ‘country’

get attribute ‘capital’ of table
What is the capital of Canada? ‘country’ where country =
Canada

Table 2.1: FLIP pattern-matching examples

FLIP, being as old as it is, didn’t benefit from a high-level implementation so its code and
database details were intertwined, making it highly dependent on the range of the
matching patterns as well as its database scope. Therefore, FLIP wasn’t able to really
process the input to understand it; it only tried to match the question directly to the set of

available patterns.

2.2.2 The LUNAR System

Later systems did however introduce syntax-based techniques, where the user input is
first parsed to understand its meaning before generating a query for the database. One of
the best known early NL interfaces is the Lunar Sciences Natural Language Information
System — LNSLIS, better know simply as LUNAR [5]. LUNAR is a computer system
that supports English language access to a large database of lunar sample information. It
allows a lunar geologist to ask questions whose answer lies in a collection of 13,000
chemical analyses of lunar samples and 10,000 document postings. LUNAR relies on a
language processing component that has a lexical reference of about 3500 words, a
transition network grammar of a good portion of English combined with a set of semantic
interpretation rules for translating English input requests into formal database procedures.
All the components of the system were implemented in LISP on the Programmed Data
Processor model 10 (PDP-10) mainframe computer under the TENEX time-sharing
operating system. TENEX used special paging hardware and possessed a virtual core
memory of 256 KB. All the equipment was owned by Bolt, Beranek and Newman (BBN)
Technologies located in Cambridge, Massachusetts, USA.

The sample behavior of LUNAR is as follows:

Request:

(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM)
Processing time:

PARSING: 4.614 SECONDS

INTERPRETING: 3.566 SECONDS

Parsed into query language:

(TEST (FOR SOME X1 / (SEQ SAMPLES) : T ; (CONTAIN X1 (NPR* X2 /
'AL203) (GREATERTHAN 13 PCT))))

Response:

YES

As with FLIP, the main inconvenient of LNSLIS is that it is strictly specific to the lunar
domain. It cannot do anything when prompted for trivia outside its scope. In addition,
while its processing time surely was impressive during the seventies, waiting almost 10

seconds for an answer isn’t up to the standards of today.

2.2.3 The NLPQC System

The Natural Langudge Processor for Querying CINDI (NLPQC) system is a thesis project
implemented by a fellow CINDI group member, Niculae Stratica, in 2002 [6]. At the
time, CINDI was the name given to the Concordia Digital Library System, a database that
stores information related to books, such as authors’ name and titles of bibliographic
references, using Semantic Headers [7]. The purpose of the NLPQC system is to
semantically parse natural language questions in English and build corresponding SQL
queries for use against the CINDI database. It achieves this goal by using rules and
templates for the semantic parsing and two open-source tools, WordNet and the Link
Parser. WordNet is a lexical reference of the English language, i.e., it generates
synonyms of any given word while the Link Parser is a syntactic parser able to identify

nouns, adjectives and verbs as well as the global syntactic structure given an English

sentence. For more information on those tools, refer to appendix A for the Link Parser
and appendix B for WordNet.
Figure 2.1 shows the NLPQC system in action. The question asked is “What is the

address of the author Mark Twain” and the correct SQL equivalent query is generated.

C:\Documents and Settings\c_haddadWy DocumentsiThesis\StraticaiThesis Codelpreojectip HE'

e i the adds of the authox % Twain =
eoonds (B2 Lobal?

(2 had no P.P. wviola
print 4] ¢ Cormat
-WpLL - RIGHT 4N L ; Chy wight bhand wall to the Jedt hand wall

SHIRMBOL BOR
his, dene’s2 to annber e

Ll IR

i L
H : H H H
T -UNLL what ds.v the Cothe author.n Mack Twaia

for the next Link

Figure 2.1: NLPQC System

CINDI_QA is greatly inspired by the NLPQC system on many levels. First, it borrows
the idea of having pre-defined templates that can match the input question for more
efficient answer selection, as is explained in chapter 4. In addition, CINDI_QA also
employs WordNet and the Link Parser to better understand the question; the integration

of both these tools is covered in chapter 3.

2.3 Question Answering Domain

2.3.1 Early QA Attempts

There is a subtle difference between the goals of IR and one of its main branches, QA.
Given a query, an IR system returns a list of potentially relevant documents which the
user must then scan to search for pertinent information. This method could not satisfy the
user’s needs to efficiently extract the adequate information from a huge set of electronic
documents. On the other hand, QA is a technology that aims at retrieving the answer to a
question written in natural language in large collections of documents. QA systems are
presented with natural language questions and the expected output is either the exact
answer identified in a text or small text fragments containing the answer. The difference

is shown in table 2.2.

IR Technology QA Technology

Question in
Input Some Keywords Natural Language
Correct Answer or
Output Document List | Words that Include
the Answer

Table 2.2: Difference between IR and QA Technologies

The general QA approach is to have the system provide some facility for analyzing the
question and to understand what is being asked, the former part is known as NLP as we
have seen in the previous section. The system must also be able to quickly and efficiently

search for documents or passages relevant to the question, in order to locate candidate

10

answers. Finally, it needs to determine the correctness of these answers and choose the
best among them to return to the user, Figure 2.2 displays the main components of such a
general architecture, and the ways in which they interact. The prototypical QA system
has four components: question analysis, document retrieval, document analysis and

answer selection.

dowces ol answer

i l?m _ulﬁi’i*ﬂctﬁ eval.

1

" DosmuanAmbyns ||

~ . . Angwer Selection »

Figure 2.2: QA General Approach

In order to build an efficient QA system, one has to take into account several challenges,
some of which are:

¢ Existence of Answer: Before a question is answered, the knowledge sources must

be examined in the event the answer doesn’t exist in that collection. If this is the

case, then the system must have the ability of determining that there is no correct

answer or else any result would be incorrect no matter how well question

processing and answer retrieval are accomplished.

11

Answer formulation: QA should not only concentrate on finding the correct
answer but also expressing it in the same way a Human Being would. This can be
trivial for such questions as “When did the Berlin Wall fall?” — where only a date
is expected as an answer — but becomes harder when answering questions like
“Why did the Berlin Wall fall?” in which case the answer should start with the
word “because” and be followed by a complete sentence.

QA time performance: Regardless of the complexity of the question asked and
the size of the data collection queried, a good QA system should be able to
consistently produce an answer fairly quickly, not exceeding a few seconds.
Multilingual QA: Although English is by far the language in which the most data
sources are available throughout the world, other languages shouldn’t be
neglected. Inquiring in English about documents written in another language and
querying English documents in another language should both be supported, even
though they add the burden of cross-lingual translation and comprehension to the

already large list of challenges of monolingual QA.

The history of QA is almost as old as the field of Computer Science. Naturally, humans
have always wondered if a machine could become as or even more intelligent than them
ever since the advent of the computer, as depicted in several science fiction movies such
as The Terminator and The Matrix trilogies.

The notion of a QA system was born in 1950 when Alan Turing proposed a task he called
the “Imitation Game Test” that eventually became known as the famous “Turing Test” in

which a human communicates with a machine, most often via a teletype interface for

12

judgment purposes, and asks questions to it [8]. Turing would consider the machine
“intelligent” if the human interrogator wouldn’t be able to differentiate between the

responses of the machine and those of another human.

2.3.2 The Web-based Ask.com System

QA systems have come a long way since then and are now most commonly implemented
as web-based interfaces. Ask.com is a reliable compromise between search engines and
QA systems. Formerly known as “Ask Jeeves” [9], Ask.com retrieves the answer from
the internet and lists all the web-links that mention the answer string. This is done thanks
to their “ExpertRank” algorithm that provides relevant search results by identifying the
most authoritative sites on the web. Ask.com goes beyond mere link popularity (which
ranks pages based on the sheer volume of links pointing to a particular page) to determine
popularity among pages considered to be experts on the topic of the question asked,
known as subject-specific popularity. So by identifying topics, the experts on those topics
and the popularity of millions of pages amongst those experts all at the exact moment the
search query is conducted, Ask.com offers a result that is most of the time accurately

superior to other systems. A sample answer from Ask.com is shown in figure 2.3.

13

@"Q}'ﬁ; M lw http: fwww, ask.comfweb?qsrc=24178&0=08l=diréq=wWhen-+was-+Roger+Federer+born%3F ‘ris X% {wffs“‘-“"‘ },0
) - i ———— e o, . . . ; i
e fr L,wq’wng;i;,w;,;sRogophﬁgqg}'ar.hﬂr,lgfﬁﬂﬂikncﬂmW‘b Search: i E Ll i i QR - @ 8l Qe
i R SR S

SOHSIHE
Web:+ images . City: News - Video . Morex : . AskEraser

MyStuffr Options~

Showing 1-10 of 48 300

@ When was Roger Federer born?
Lcom ;0

Roger Federer was born August 8, 1981
Roger Federer is the Swiss tennis player whose five
consecutive titles at Wimbledon (2003-2007) helped
make him the dominant men's player in the world.
Federer turned pro in 1998 after a stellar career in
junior compstition. He made a name for himself in
2001 by beating... lMore »

Go To: Qfficia) Site | Films | Encyciopedia |

1When was Roger Federer bem?fm::
Advanced :

Narrow Your Search

What Language Does Roger
Federar Speak

How Tall Is Roger Federer ATP Stat
Does Roger Federer Have 2
Girlfriend?) 2" Born Sponsare Results
Where Does Roger Federer Live?.. | garnto Born, Top brands. Low Prices.
Who Is Roger Federer's Girlfriend: Shopzilla com
Who Are Roger Federer Parents? .

g \ Rogers Wi

More s 3Mths Unitd Lacal calling §20/Mth Free Phone / Shipping /
Accessories

Expand Your Search wany RogersPhones.ca

Andy Roddick Biography Rodger Federer
Roger Federer
More » | Get Breaking News, Headlines & Top Stories With The Free News

Taotbar
Related Names Mews. alottoolbarg com
Andy Roddick
Andre Agassi

& Roger Federer - Wikipedia, the free encyclopedia

Roger Federer {IPA pronunciation: ; born August 8, 1981}is a
Swiss tennis professional, currently ranked World Mo. 1 since
February 2...

ercwikipaedia. orghwkifRoger Federer

More »

Figure 2.3: Ask.com Web-based QA System

2.3.3 The Web-based START System

START, the world's first Web-based question answering system, has been on-line and

continuously operating since December 1993. It has been developed by Boris Katz and

his associates of the InfoLab Group at the MIT Computer Science and Artificial

Intelligence Laboratory [10]. Unlike typical information retrieval systems such as search

engines, START aims to supply users with just the right information, instead of merely

providing a list of hits. Figure 2.4 shows the answer returned by START for the questions

“When was Kobe Bryant born?”.

14

4 ey, T
1 mﬁf v {& http:f/start.csail. mit, edufstartfarm.cgi

el
START's reply

===> When was Kobe Bryant bom?

Kobe Bryant's date of birth:

Date of Birth:

23 August 1978, Philadelphia, Pennsylvania, USA more

Source: The Internet Movie Database

+ Go back to the START dialog window.

Figure 2.4: START Web-based QA System

The START system uses T-expressions for the semantic parsing, where T stands for
Template. The system uses the pattern <subject relation object> [10]. This approach has
the advantage of being intuitive but has a limitation. Sentences with different syntax and
close meaning are not considered similar by the system. For example, the phrase “the
student surprised the teacher with his answer” is parsed into <student surprises teacher>
whereas the phrase “the student’s answer surprised the teacher” is parsed into <answer
surprises teacher>, which is a different interpretation of the input sentence.

CINDI_QA was inspired by two concepts of the START system. The first is the use of
semantic parsing to understand the input question. START parses the question to have a
better idea of where to look for the answer, depending on which natural language
annotation it matches. CINDI QA employs a NLP module in order to identify special

keywords for later use; section 3.3 has more details on this. The second idea is template-

15

matching. Indeed, CINDI_QA heavily relies on templates to drive its answer extraction
and formulation mechanisms. All six templates used by CINDI QA are elaborated on in

chapter 4.

2.4 Multilingual QA

In the previous sections, the systems mentioned were monolingual QA systems, where
the source and target languages — the latter being the language of the input question, the
former is the language of the document collection containing the answer — are the same.
In recent years however, interest has grown over multilingual QA. A multilingual QA
system should be able to answer questions regardless of the language used when asking
these questions.

The vast majority of multilingual QA efforts are addressed by the Multilingual Question
Answering track at the Cross Language Evaluation Forum (QA@CLEF) [11]. Each year
since 2003, QA@CLEEF invites participants to submit their answers to the same set of
questions and compares the results. QA@CLEF now represents the annual benchmark to
which multilingual systems from all over the world measure themselves.

QA@CLEF is a prime example of the gap between monolingual and multilingual QA:
since its inception, the best correct answering percentage of monolingual QA systems is
almost 69% whereas the same for bilingual never surpassed 50%. Moreover, in the 2007
edition of QA@CLEF, the average for monolingual was 22.8% while the average for
bilingual was 10.9% [11]. Also, there is a significant drop in both the best and average

scores at CLEFO07; this is attributed to the fact that 2007 is the first year that Wikipedia

16

pages were used as data collection in addition to the traditional news articles. These

numbers are depicted in figure 2.6.

80

{2 e BB
g [S i

7 I ————

7,04

DBt _

BhAverage (1 CLEFo6 CLEFIT

Figure 2.6: Best and Average Scores in QA@CLEF Campaigns

CINDI_QA participated in the 2007 edition of QA@CLEF and the results obtained as

well as more information on QA@CLEF can be found in section 6.2.

2.5 CINDI_QA Considerations

CINDI_QA exploits several tools and concepts seen in this chapter. First, in addition to
answering questions in English, it can also deal with questions asked in French, making
CINDI_QA a bilingual QA system. Second, it relies heavily on templates in order to
better understand the input question and come up with a correct answer. All six templates

defined by CINDI_QA are explained in chapter 4. Third, it integrates two external tools

17

that were used by the NLPQC system: WordNet and the Link Parser. The Link Parser
helps identify keywords and WordNet can generate synonyms of those keywords when
needed. The cooperation of these two tools within CINDI_QA is the focus of the next

chapter where we talk about the architecture and logic of CINDI_QA.

18

Chapter 3

CINDI_QA Architecture and Logic

The CINDI_QA system consists of one central unit called the Processor and five separate
modules. The Processor has the responsibility of keeping track of the status of the
analysis of the input and delegating the work to the specialized modules, which are:

e The Web-based Translator provides the English equivalent to the French input
question. More details are given in section 3.2.

e The Natural Language Parsing tool called the Link Parser [12] dissects the
English sentence into keywords such as nouns, verbs, and adjectives to better
understand the subject of the question. More details are given in section 3.3.

o The Lexical Reference called WordNet [13] identifies the synonyms of the
keywords obtained. This is done to broaden the range of the search query
performed by the next tool. More details are given in section 3.4.

e The Indexing and Searching module Lucene goes through all the data sources
using a query composed of the keywords. It also locates documents that contain
candidate answers. More details are given in section 3.5.

e The Template module checks the input question to see if it matches one of the six
templates already defined. More details are given in section 3.1.

The advantage of the architecture of CINDI QA is its adaptability or the ability of the
different modules to be replaced by other similar tools without altering the initial design
of the system.

Figure 3.1 shows a package diagram detailing the architecture of CINDI_QA. The User

Interface (UI) constitutes the top level with the Web portal of the project. The Processor

19

lies in the Application layer with access to both Domain and Services layers containing
the four modules mentioned above. Finally, the data collection comprised of Wikipedia

content makes up the Foundation layer.

—

Ul::Web

1

Application::Processor

[]

Domain::WordNet Domain::Templates

Domain::Link Parser

[]

Services::Lucene

]

Foundation::Wikipedia

| B |

A4

Figure 3.1: CINDI_QA Package Diagram

3.1 Rationale behind Templates

CINDI_QA is strongly dependent on templates. Because questions can vary to query any
subject possible, we chose to build templates in order to answer specific types of

questions. Although this approach might reduce the scope of the project, it enhances the

20

correctness of the provided answer. In addition, template-matching had already been
successfully used in another CINDI project [6].

The Processor decides on which process flow to follow, depending on whether the input
question matches a template or not.

If a template is matched, CINDI QA acts as a black-box requiring no additional input
from the user. Instead, the system uses the information from the Template Module to
directly search the data collection and find the correct answer. CINDI_QA then returns
that answer to the user.

When no template is matched, the Processor delegates the work to the specialized
modules that analyze the question in their own way with some help from the user. This
collaboration results in CINDI QA displaying a snippet of text that contains the answer.

Figure 3.2 illustrates the general process flow of CINDI_QA.

21

~EN
Question

Does the Question

Match'a Template?
No
~~:Ddes the User
N ¢ Approve the

. Keywords?

e @G

S

EN
Answer

Find:& Return
Answer. with:Lucene

Does the User
Approve the
Synonyms?

h 4

Generate Synonyms

with WordNet

Figure 3.2: CINDI_QA Process Flow

3.2 Online Translation Module

Since we are working in a bilingual environment, the system is queried in a language
different from the data collection it is using as reference. A translation tool is needed for

this reason. After researching the available tools, we noticed that Google [14], Babel Fish

[15] and Systran [16] translators are all powered by the same engine: Systran.

We chose to use Google Translate in our system due to its better interface and speed of
processing. A JSP script is responsible of delivering the French question typed in by the

user to the Google Translate webpage and bringing back the translated English equivalent

to the CINDI_QA Processor.

Figure 3.3 shows the web interface of Google Translate after asking it to translate a

French sentence to English.

22

Transiate

Transiate Te i , ; ‘

Driginal text: Automatically transiated text:

Quelle est 1la npationalité de Roger Federer? What is the nationality of Roger Federex?

| French to English ¥|[[Transiate ® Suggest s better translation
Translate.a Web Page .

[http-si - ~ |[French to English | Translate]

Google Home - About Google Translate
©2008 Google

Figure 3.3: Google Translate

3.3 Natural Language Parsing Module

We need a way to understand the question asked by the user in order to single out the
keywords. This was achieved thanks to the Link Grammar Parser [12], a syntactic parser
of English based on link grammar, an original theory of English syntax. Given a
sentence, the Link Parser assigns to it a syntactic structure which consists of a set of
labeled links connecting pairs of words. Each structure is called a linkage and several
linkages are generated for the same input. The Link Parser is plugged into our system to
generate linkages of a translated English question. Using one linkage, we are able to
determine which words form nouns, verbs, adjectives and Capitalized Entities. If those
keywords appear wrong or incomplete, we go on to the next linkage. The user has the
option of choosing the most appropriate linkage in the case where no template was

matched.

23

Figure 3.4 demonstrates the use of the Link Parser within CINDI_QA.

B Consdle. X

(Feb 8, 2005 707

nliavan.exe

Enter question: Uhat is the naticunslity of Roger Federsp?
LinkParser found 4 linkages.

The following nouns were identified:

nationality

The following verbs were identified:

is

The following uppercase entities were identified:
Roger Federer

If you are satisfied with the current linkage, enter "ok", or press enter for the next linkage: ok

Figure 3.4: LinkParser in CINDI_QA

3.4 Lexical Reference Module

To increase the chances of finding candidate answers among the data collection, we
include synonyms of the keywords in addition to the keywords themselves. WordNet [13]
is a lexical database for the English language developed at Princeton University and has
been successfully used in other CINDI related projects [6] so its selection was pretty
obvious.

WordNet was used in concordance with Lucene. Lucene enables us to create an index
composed strictly of synonyms defined by WordNet that can be queried like a regular
index so we can actually get a list of synonyms of a specific word. This strategy is
highlighted in pages 292-296 of Lucene in Action [17].

When no template is matched and after defining the keywords using the Link Parser, we

query theb WordNet index to obtain the synonyms of each keyword, except for Capitalized

24

Entities. Since some of those synonyms are irrelevant or out of context, the user has the
choice of discarding them and selecting only the appropriate ones.

Figure 3.5 illustrates the use of WordNet within CINDI_QA.

Console X

ST
xR

GBpll

(Feb 6, 2008 746109 M)

inljavaw.exe

The follovwing list has 9 synonyms for "joh".
For each value, enter "ok" if you want to keep it or press enter for the next value.
business: ok

caper:

chore:

line:

occupation: ok

problem:

speculate:

subcontract:

task: ok

Figure 3.5: WordNet in CINDI_QA

3.5 Document Searching and Indexing Module

We need a tool that can not only index all the documents in our data collection but also
search the created index with some level of intelligence such as ranking results and
highlighting query terms. A perfect match for this requirement is the Apache Software
Foundation’s Lucene [18], a high-performance, full-featured text search engine library
written entirely in Java.

CINDI_QA makes extensive use of Lucene. As mentioned in the previous section, it is
used in concordance with WordNet to get synonyms of keywords. Lucene also creates the
index and ranks the results found. Let us first have a look at our data collection before
mentioning two features of Lucene that are of great importance to our system in sections

3.5.2 and 3.5.3.

25

3.5.1 CINDI_QA Data collection

Since CINDI QA participated in the 2007 edition of the Multiple Language Question
Answering Cross Language Evaluation Forum (QA@CLEF) [11], we decided to keep a
part of their data for the purpose of our project. QA@CLEF mainly relied upon a static
version of Articles from Wikipedia [19] as a reference. This constitutes a large
downloaded collection of XML files, making up Wikipedia’s entire English database
dating from November 2006. Originally, this was done so that all participants would have
access to the same source of information hence simplifying the judgment of answers.
Figure 3.6 shows a snippet of a random file selected from the data collection, in this case

the page about Roger Federer.

£2 E:\Wiki_data\p02nannm262376.xml - Windows Internet Explorer

ﬁ 2 Ei\wiki_dataipOznnnnn}262376.xml

TS
</table>
<wx:templateend start="wx_t1" /> A=
- <p id="wx111">
<b id="wx112">Roger Federer
(born
<a href="/wiki/August_8" title="August 8" wx:linktype="known"
wx:pagename ="August_8" wx:page_id="1333" id="wx113">August 8

r

<a href="/wiki/1981" title="1981" wx:linktype="known" wx:pagename="1981"
wx:page_id="34276" id="wx114">1981

isa

<a href="/wiki/Switzerland" title="Switzerland" vx:linktype="known"
wx:pagename="Switzerland" wx:page_id="26748" id="wx115">Swiss

<a href="/ wiki/Professional" title="Professional” wx:linktype="known"
wx:pagename="Professional” wx:page_id="290809" id="wx116">professional

<a href="/wiki/Tennis" titie="Tennis" wx:linktype="known" wx:pagename="Tennis"
wx:page_id="29773" id="wx117">tennis

player whose achievements rank him among the most successful tennis players of

all time. Federer is currently the

<a href="/wiki/List_of _ATP_number_1_ranked_players" titiza="List of ATP number 1
ranked players" wx:linktype="known"
wx:pagename="List_of_ATP_number_1_ranked_players" wx:page_id="2575118"
id="wx118">Wortld No. 1</ax>

ranked player and is regarded by many, including his peers, as having the

potential to be the greatest player of all time.

Figure 3.6: Static Wikipedia page of Roger Federer

26

3.5.2 Query Building using Proximity Search

Once we have identified the keywords and their synonyms, the building of the query
takes place. The query is constructed by putting together each keyword or its synonym
with the other keywords or their synonyms. The crucial point here is to add the proximity
search flag to the built query so that Lucene will not look for a sentence that has our
keywords adjacent to each other, but rather one where the keywords are close to each
other but also spread out in a paragraph. This is done by adding the tilde character ‘~’ and
a number to the end of the query.

For example, say that the user asked how many planets the Solar System has. CINDI QA
will identify “Solar System” as a Capitalized Entity and “planets” as a noun. Simply
searching for the string “Solar System planets” will not be helpful because it is unlikely
that those three words will appear next to each other. So building the query “Solar
System planets”~20, where Lucene searches for the three words with a maximum gap of
twenty words between each one, is more realistic and yields better results.

3.5.3 Highlighting Query Terms

Once the Lucene query is built, it is searched against the index of the document
collection. Lucene then returns a list of filenames ranked according to the frequency of
occurrence of the words in the query. At this point, we have a few candidate files where
the answer exists but we do not yet hold the actual string containing the answer.
Consequently, we take advantage of the Lucene Highlighter, a wonderful tool that
actually displays snippets of text from the candidate file with the query terms highlighted.
This allows us not only to know which document has the answer, but also to obtain a

sentence in that document that displays the actual answer. This mechanism is mentioned

27

on page 300 of Lucene in Action [17]. The actual highlighting that occurs is done by

surrounding each query term with tags, as demonstrated by table 3.1.

Query Term fox

The quick brown fox jumped over
Located String
the lazy dog.

The quick brown fox
Highlighted Result
jumped over the lazy dog.

Table 3.1: Highlighter Example

28

Chapter 4

Template Matching

A template is defined as a model or pattern used for making multiple copies of a single
object [20]. In the field of Computer Science, a template is a high-level construct that
represents several similar entities by identifying a general structure that matches those
entities. In the scope of CINDI_QA, a template identifies the format of a question so that
the system can produce the best answer. All the templates used by CINDI_QA have a
wildcard word, represented by the uppercase letter X, Y or Z. This wildcard takes the
place of a word or a bunch of words within the definition of a template.

In most cases, the wildcard is a Capitalized Entity (CE) that consists of a continuous
sequence of words whose first letter is capitalized. So a CE could be one word or a
composition of words as long as adjacent words are capitalized. Table 4.1 highlights the

status of a few expressions as Capitalized Entities.

Expression CE Status
Chedid True
Chedid Haddad True
Chedid amine Haddad False
Ludwig Van Beethoven True
hsbe False
NASA True

Table 4.1: Capitalized Entity examples

29

4.1 The Living Person Definition Template: Who is X?

In order for this template to be matched, the English question must meet the following
criteria: it must start with the word “Who” (capitalization of the first letter is optional but
expected since this is the first word of the sentence), then have the verb “is” and end with
a CE X.

After the English question has been obtained from the Online Translation module, we
check it against our set of templates. In this case, it would have matched the first
template, the Living Person Definition template. So now we know that the user is asking
for general information about someone who is still alive. Since we matched a template,
we skip the process of parsing the question and identifying keyword synonyms. We go
straight to searching our index for the page whose title is X. We might get more than one
result, so we go through them until we find a sentence that actually explains who X is,
using the Lucene highlighter on the string “X is”. If we do find such a string, we simply
return it to the user.

Figure 4.1 shows the answer returned by CINDI QA to an English question that matches

the Living Person Definition template.

30

8 il X , ie ' L2 i S e : :?@Lﬁi:ﬁ A
s e OPeqen s e s AL), T : '

Buter question: ¥ho iz denold

The ansver to the shove guestion is:
henold Schuarzeneguer is an ustrian-horn bodybuilder, actor and Republican politivian, currently serving as che 38th Covernor of California,

fnter question:

Figure 4.1: Living Person Definition template example

4.2 The Deceased Person Definition Template: Who was X?

This template is very similar to the previous one except that it deals with someone that
has already passed away. The English question must start with the word “who”, then have
the verb “was” and end with a CE X.

The reason we separate this template from the first one is that Wikipedia describes alive
and deceased people in different ways. Indeed, the top of the page about X doesn’t start
as “X is ...” but rather as “X was ...”. Hence, after we get a page whose title is X from
our Indexing module, we look for the string “X was”, Again, since Wikipedia
differentiates between the living status of a person when describing him/her, we define
two separate templates whose process flow, although related, is different.

Figure 4.2 shows the answer returned by CINDI_QA to an English question that matches

the Deceased Person Definition template.

31

ain [Java Application] C:\Program FlestJavatjrel 6.0.01 \bintiavaw exe (Feb 9, 2008 7i0102M) =
Enter question: Who wae Rurt Cobain?
The ansver to the sbove question is:

Xurt Cobain vas the lesd singer, songuwriter and guitarist of the Sesttle-based rock band Nirvana.

Enter question:

Figure 4.2: Deceased Person Definition template example

4.3 The Person Date of Birth Template: When was X born?

This template deals with people’s date of birth without differentiating between alive or
dead people: it works for both cases. The English question must start with the word
“when”, then have the verb “was” followed by a CE X, and end with the word “born”.
Since we matched a template, we skip the process of parsing the question and identifying
keyword synonyms. We go straight to searching our index for the page whose title is X.
We might get more than one result, so we go through them until we find a sentence that
mentions when X was born. This is facilitated by the structure of Wikipedia’s xml files.
In fact, Wikipedia states the date of birth between parentheses of everyone right next to
their full name at the top of the page about that person (this is observed by looking at
figure 3.5 but specially when going online at the HTTP Wikipedia page for anyone).

Figure 4.3 shows the answer returned by CINDI_QA to an English question that matches

the Person Date of Birth template.

32

T W K R bl O

B Conscle X GEEAEE G
Mair [Java dpplication] Ci\Progran FilesiJavaljrel 6.0.011bin}

-

7008 12,48/58 PI)

avaw exe (Feb

)

Enter gquestion: When was Roger Federsr born?

The answer to the above guestion is:
Roger Federer was born August 8, 1981

Enter gquestion:

Figure 4.3: Person Date of Birth template example

4.4 The Person Date of Death Template: When did X die?

This template is very similar to the previous one except that it deals with someone that
has already passed away. So the English question must start with the word “when”, then
have the verb “did” followed by a CE X, and end with the word “die”.

The reason we separate this template from the first one is that Wikipedia describes alive
and deceased people in different ways. Indeed, the top of the page about X doesn’t start
as “X is ...” but rather as “X was ...”. But here as well, we take advantage of the fact that
Wikipedia states the dates of birth and death between parentheses of every deceased
person right next to their full name at the top of their page. Hence, after we get a page
whose title is X from our Indexing module, we look for the sentence that mentions when
X passed away.

Figure 4.4 shows the answer returned by CINDI_QA to an English question that matches

the Person Date of Death template.

33

e e = o

Main [Javs Application] Ci\Program Flles\.J:ﬁa'gjrex;.q;oi'gbin\jgvaw:s‘gxg (FebiL1,,2008 3 5%3:5??[‘4} T

Enter question: When did Furt Cobain die?
The answer to the sbove guestion is:

Kurt Cobain died April 3, 1994

Enter question:

Figure 4.4: Person Date of Death template example

4.5 The Object Definition Template: What is Z?

This is a special template because it is the only template that doesn’t inquire about
people. Indeed, the CE Z can represent organizations, musical bands, international
brands, company names and the like. It will try to answer any question as long as Z starts
with an uppercase letter, so it cannot answer questions about objects like “What is a
table?”. The English question must start with the word “what”, then have the verb “is”
followed by a CE Z.

Since we matched a template, we skip the process of parsing the question and identifying
keyword synonyms. We go straight to searching our index for the page whose title is Z.
We might get more than one result, so we go through them until we find a sentence that
actually explains what Z is, using the Lucene highlighter on the string “Z is”. If we do

find such a string, we simply return it to the user.
Figure 4.5 shows the answer returned by CINDI_QA to an English question that matches

the Object Definition template.

34

® Congile X N

il s ey AR GG R0
: . o aellin
Maln {Java Application] C:\Program Flestiavalre16;0. 01 ibin\javaw.exs (Feb 11,2008 4:19:01 PM) '

Enter question: ¥hst iz NAZL?

The answer to the ahove question is:
NASA is an agency of the United States Government, responsible for that nation's public space program.

Enter question:

Figure 4.5: Object Definition template example

4,6 The Person Info Template: What is the Y of X?

This is the most versatile template in CINDI_QA because it can match several types of
questions. Indeed, in addition to X representing a CE, the wildcard Y stands for a noun.
The advantage of this method is that the implementation of this template can be expanded
to handle a large number of nouns for Y. To this day however, the template works if Y
belongs to the lexical reference of two words: “nationality” and “job”.

We mentioned the lexical reference because this template can not only have a large
range, but it is also flexible throughout said range. In fact, for this template to be
matched, Y isn’t restricted to only being one of “nationality” or “job”; as long as Y is a
synonym of one of those words - Y could be “business”, “trade” or “occupation” - this
template will be chosen. The difference in the process flow of this template compared to
previous ones resides in the fact that we actually use WordNet to get the synonyms of Y.
So this is the only template where we use both Lucene and WordNet, the rest of the

matching is basically the same as before.

35

Until now, two sub-templates are defined, one where Y concerns the “nationality” and

one where Y concerns the “job”. Figures 4.6 and 4.7 illustrate both cases.

; f N EEJ ;ﬁkiﬂ firj

R A AL

Enter question: Whet iz the nationality of Llister NeRae?

The answer to the shove guestion is:
Alister McRae is Jcottish.

Enter cuestion:

Figure 4.6: Person Info template example with Y = “nationality”

wrsmapomsresmmer - e

L B Consale. X

Feb 11, 20085.40i08PM) o o

e

Enter question: What is the jcb of Roger Federsr?

The answer to the above cuestion is:
Roger Federer is a professional tennis player.

Enter question:

s

Figure 4.7: Person Info template example with Y = “job”

36

Chapter $

CINDI_QA Implementation

CINDI_ QA has been completely developed in the JAVA Object-Oriented (OO)
programming language. In order to do so, the Java Development Kit (JDK) and Java
Runtime Environment (JRE) were both downloaded from the Sun Microsystems website
[21]. The Operating System (OS) used was Windows XP Professional Service Pack 2.

Table 5.1 provides a more detailed list of the implementation parameters for the project.

Lab Room EV 9.105
Machine Name cindi6
Processor Type AMD Athlon
Processor Speed 950 MHz

Operating System Windows XP Pro SP2
Random Access Memory 1 GB
Development Language Java
JDK Version Number 5.0
JRE Version Number 6.0

Development Platform

Eclipse Europa 3.3.2

Number of Classes

12

Table 5.1: CINDI_QA Implementation Parameters

Eclipse is an open-source development platform deployed by the Eclipse Foundation

[22]. It is specially tailored for the Java programming language. Eclipse was chosen

because of a neat interface, a simple debugging mode and an on-the-go compiling system

that displays warnings and errors as soon as a file is saved, without troubling the

developer of explicitly performing a build. Figure 5.1 shows the Eclipse interface with

the CINDI_QA project open.

m CindiUtils java
Keywords. java

@ Main,java
= {8 InkGrammar

#-{8) UnkParser.java
i lucene
ks [f‘ FisDocumant.java
& @ IndexFlles.java
i m Lucene. java
1) SearchFles.java
tomplate
13} Template.fava
i {27 TemplateMatcher.fova
wordnet
i SynLookup.jeva
#1381 Wordnet Java
B RE System Library [fre1 6,001}
Ci\Documents and Settingsic_hac/}
#-a C:\Documents and Settingslc_hac/}
F-d C:\Documents and Settingslc_hac
F w C:\Documents and Sextingsic_hac

4

£y 3 ek |

PROJECT CINDY Gk

- package cindi:
#import template.TemplataHatcher;{]

public class Hain

public static void mein(String[) args)
{

FZPrinn the Applisanish ingd

printlogol);

A/Ininialize the Link Favser
LinkParser lp = new LinkParser();

SAall vhe penin fuancvion ol che projret
runProject{ lp };

/7 lage the Link Parssr
lp.close();
)

public static void runProject| LinkParser lp |

{
Slrring chat atores the guestion enceved by che wper
String input = new String();

JlGer the gussnion from the user
System, out.print{ “\n\tExter question: " j;
input = CindiUtils,getUserInput();
while(!input.equals("exit™)} && !input.eguals("quit"))
{
AITueak dnpnt to o Insure linkagas are found
TemplateXatcher tm « new TemplaveNatcher(}:
input = tm.tweak(input)/

S7farse the iaput gsxrancs using the LinkParsar
lp.parse(input }:

u &5 Outine '45\\‘_ “ F

and
- “3 import declarations
» Main

@ main(string()
e runProject(LinkParser)
' printLoge()

Project CINDI_Qi

Author: Chedid Haddad, Concordia University, Student ID; 4440358
Thesis Supervisor: Prof. Bipin C, Dasai

Harch 2008

Gopliet @ ore

Figure 5.1: Eclipse interface

38

The following two sections explain how the tools used by CINCI_QA were integrated in

the project.

5.1 Java Native Code Link Grammar Interface

The Link Parser is a syntactic parser of English [12] and is used by CINDI QA to
identify the keywords from the input question, such as nouns, verbs and adjectives. At
first, we were facing an inconsistency problem because the Link Parser is entirely written
in generic C code whereas CINDI QA was intended to be implemented in Java.
Fortunately enough, we came across the Java Native Code Link Grammar Interface
(INCLGI) developed by Chris Jordan [23], which is a Java interface to the Link Parser.
The great advantage of the INCLGI is that it is released as a Java Archive (JAR) file
which essentially is a collection of several Java classes packaged into a single file. By
adding the ‘linkGrammar.jar’ file to the include definition of our project, we are able to

benefit from the Link Parser while working in a Java environment.

5.2 WordNet and Lucene Cooperation

Lucene is an open-source IR library implemented in Java and distributed by the Apache
Software Foundation [18]. It is used by CINDI QA to index and search the data

collection. Lucene is incorporated into CINDI_QA by importing JAR files the same way

it is done with the Link Parser.

39

First, the file ‘lucene-core-2.1.0.jar’ is added to the project. This archive contains the
main interface to the Lucene engine, mainly the classes to index and search the data
collection.

Second, another file, ‘lucene-highlighter-2.1.0.jar’, is responsible for providing the
necessary mechanism to perform highlighting of chunks of words, as discussed in section
3.5.3.

Third, the file ‘lucene-wordnet-2.1.0.jar’ includes the appropriate classes to query
WordNet for lexical references of some keywords. As mentioned in section 3.4, Lucene
and WordNet cooperate so that Lucene creates an index composed of synonyms defined
by WordNet. The fact that WordNet is distributed as another Lucene JAR file eliminates
the burden of trying to incorporate each tool by itself.

JAR files are an easy way of adding external packages of Java classes into a separate
project, thus underlining the basic OO principle of code reuse.

The niajor Java classes of CINDI_QA are organized in a class diagram shown in figure
5.2. Because the majority of the methods are static, the relationships between classes

consist of dependency relations instead of the traditional associations.

40

Main | __ _ o ___ 3 TemplateMatcher
runProject() """"""_"'"': matchT(String)
|
|
i
LinkParser : Lucene K-
e
_Iparse(String) search(String,String)
populate() : Keywords highlight(String,String)
Keywords SynLookup

N

nouns : String(]

b e e e — -

verbs : String[] getSyns(String) : String]]

adjectives : String(]
CEs : String[]

Figure 5.2: CINDI_QA Class Diagram

41

Chapter 6

Experimental Results

This chapter aims at providing an in-depth look at the behavior of CINDI QA under
different circumstances. Sample answers generated by the system are provided as well as
explanations on why CINDI QA fails to correctly answer some questions. The case when
no template is matched is also explored. After that, the participation of the CINDI_QA
group at the 2007 edition of QA@CLEEF is examined.

First, let us revisit the six templates that were explained in detail in chapter 4. Because of

their long title, an abbreviation is assigned to each template as listed in table 6.1.

Abbreviation Title Matching Pattern

Living Person Definition

Tl Template

Who is X?

Deceased Person
f)
12 Definition Template Who was X

Person Date of Birth

T3 When was X born?
Template

T4 Person Date of Death When did X die?
Template

Ts Object Definition What is 77
Template

T6 Person Info Template What is the Y of X?

Table 6.1: CINDI_QA Templates

42

Note that X stands for a Capitalized Entity referencing a person, Z from TS5 is a CE

referencing an object or organization and Y from T6 matches a noun.

6.1 Examples

Figure 4.1 showed a working example of T1 where X = “Arnold Schwarzenegger”.

Figure 6.1 displays what happens when only the family name of a person is given for X.

Enter question: whc i3 MioRae?

Sorry, but CINDI QR didn't find an ansver to your question.

Enter question:

Figure 6.1: T1 Example with X = “McRae”

CINDI_QA doesn’t find an answer because there is no file in the data collection whose

title simply is “McRae”. However, giving the full name “Alister McRae” for X generates

the correct answer, as evidenced by figure 6.2.

| ®
g 8

L

-
Voo

Enter question: who iz ilister MeRas?

The ansver to the above question 1is:
Alister McRae is a Scottish WRC driver and the younger brother of ex-Uorld Champion Rally driver Colin NcRae.

82

Enter question!

Figure 6.2: T1 Example with X = “Alister McRae”

43

Another crucial factor in the ability of CINDI_QA to find answers is the spelling of the
CEs. Every CE must be correctly spelled and the full name of a person should be
provided in the question. For instance, asking a T1 question with X = “Hillary Clinton”
wouldn’t be sufficient. X should be “Hillary Rodham Clinton” for CINDI_QA to find an

answer as demonstrated by figure 6.3.

AR GEEENE O

£

Enter question: who i3 Hillary {linton?

Sorry, but CINDI QA didn't find an ansver to your gquestion.

Enter question: who iz Hiilary Rodbew Clinton?

The ansver to the sbove question is:
Hillary Rodham Clinton is the junior United States Senator from New York, serving her freshman term since January 3, 2001,

Enter question:

Figure 6.3: T1 Examples with X = “Hillary Clinton” and X = “Hillary Rodham Clinton”

Figure 6.3 also emphasizes the fact that one CE doesn’t necessarily need to be composed
of only one or two distinct capitalized words. As mentioned in the beginning of chapter 4,
a CE can contain three capitalized words, as long as they are adjacent to each other like in
this case where X = “Hillary Rodham Clinton”.

T1 and T2 were separated so that CINDI QA can expect different questions when
querying about living and deceased people. Indeed, asking about Gandhi in the present
tense doesn’t make sense, but using the past tense to inquire about him should trigger an

answer as shown in figure 6.4.

44

Mah{

Enter question: whn iz Nahatma tandhi?

Sorry, but CINDI_QA didn't find an answer to your question,

Enter question: whn waz Hahatia Gandhi?

The ansver to the sbove question is:
Hahatma Gandhi vas a major political and spiritual leader of the Indian independence movement,

Enter question:

Figure 6.4: T1 and T2 Examples with X = “Mahatma Gandhi”

Template T3, which asks for the date of birth of a person, works both for living and

deceased people. Figure 6.5 illustrates this by asking CINDI QA for the birthdays of

Kobe Bryant (alive) and Kurt Cobain (deceased).

&T&WW*WNW%W-;@ =

R 53R : BB LAEE e
Heplcaon] CProra Fes vkl 6.0, 04 b §, 20 BN T ' Gl

Enter question: when vsz Hobe Drvant horn?

The ansver to the above question is:
Kobe Bryant wes born August 23, 1978

Crhan korn?

Enter question: when ua

The ansver to the above question is:
Kurt Cobain was born February 20, 1967

Enter question:

Figure 6.5: T3 Examples with X = “Kobe Bryant” and X = “Kurt Cobain”

Template T4, which asks for the day on which a person passed away, is supposed to

generate answers only for deceased people. Therefore, when queried about the date of

45

death of someone who is still alive, CINDI_QA doesn’t find any answer, as shown in

figure 6.6.

Enter question: when did

Sorry, but CINDI QA didn't find an answer to your question.

Enter question: when did Mehatws Gandni die?

The answer to the above guestion is:
Hahatma Gandhi died January 30, 1948

Enter question:

e

Figure 6.6: T4 Examples with X = “Fidel Castro” and X = “Mahatma Gandhi”

Template TS handles definitions of objects Z. Z can be anything from well-known brands
to governmental agencies to music groups. Figure 6.7 lists a few examples. Notice that
the last question in figure 6.7 asks about God. Although the answer generated by
CINDI_QA seems appropriate to some extent (the existence of God is indeed disputed),
the answer should be considered false because the proper Wikipedia definition of the
term “God” isn’t the one displayed by CINDI_QA. Instead, CINDI_QA returned the first
sentence it wrongly assumed to be correct from the file whose title is “God”, as the
process is mentioned in section 4.5. This example is still worth mentioning because of the

humorous answer.

46

};EMEJ],QI] p e

X

Enter gquestion: what is Heoallics?

The answver to the above question is:

Hetallica is an American heavy metal band, formed Octoker 28, 1981,
Enter gquestion: what is Herrill Lynoch?

The answer to the above guestion is:

Merrill Lynch is one of the most recognizable names in financial services.

Enter guestion: Whar iz Zanussi?

The answer to the above guestion is:

Zanussi is a leading brand for domestic kitchen appliances in Europe.
Enter question: what iz Godd

The answer to the above gquestion is:

God is disputed.

Enter guestion:

Figure 6.7: TS Examples

Template T6 is the most versatile template of CINDI_QA. It defines two distinct tokens

that can match different values. On the one hand, X is the same X as in T1, T2, T3 and

T4 so it stands for a CE of a person. On the other hand, Y takes the place of a noun that

provides more precision in the question. As mentioned in section 4.6, until now T6 only

works when Y is one of two nouns, “nationality” or “job”. Both cases are illustrated in

figure 6.8.

47

va Applcation] CiFrogram Fles\iavayidki 8.0, 0ABjava ox

Enter question: What is the nationslisy of Roger Federer?

The answer to the above guestion is:
Roger Federer is Swiss,

Enter gquestion: Whar iz the job of Kobe Bryant?

The answer to the above guestion is:
Kobe Bryant is an Aill-Star shooting guard.

Enter question:

Figure 6.8: T6 Examples

When no template is matched (NO_T), CINDI_QA uses the Link Parser and WordNet in
addition to Lucene to answer the question. Since there is no concrete way of specifically
knowing what the user is asking about, CINDI QA acts more like an Information
Retrieval system than a Question Answering one in this case. Figure 6.9 illustrates
CINDI QA'’s response to the question “How high is Kangchenjunga?”’. The question
entered by the user is not apparent in the figure. The reason for this is that loading the
Link Parser generates console statements from the Application Program Interface (API)
of the Link Parser itself. These statements all start with the word “Opening” and 52 of
them are outputted every time the Link Parser is loaded; the last three are visible in figure

6.9.

48

[oava Aglcation] C1Prearam s\ avallokL 6 0 04 DI avaw oxe (Mar T, 2006 LLSSITO MY o o « ,
Opening ./data/vords/vwords.adv.2 ng
Opening ./data/4.0.knowledge

Opening ./date/4.0.constituent-knowledge

Maln

Link Parser Loaded,
LinkParser found 4 linkages,

The following verbs were identified:

is

The folloving adjectives were identified:

high

The following uppercase entities were identified:
Kangchenjungs

If you are satisfied with the current linkage, enter "ok", or press enter for the next linkage: ok

The following list has 8 synonyws for "high”.

For each value, enter "ok" if you want to keep it or press enter for the next value,
eminent: ok

gamey:

gamy:

heights: ok

highschool:

luxuriously:

mellow:

richly:

The ansver to the above question is found in the following sentence:
Kangchenjunga is the third highest mountain in the world vith an altitude of 8,5864 metres (28,1694 feat) after
Hount Everest and X2,

Enter gquestion:

Figure 6.9: NO_T example 1

Figure 6.9 shows how the Link Parser and WordNet come into play during execution of
CINDI_QA. First, CINDI QA informs the user of the number of linkages found to make
sure the right one is selected. The user enters “ok” to confirm which linkage to use
depending on the keywords identified. Here, the sentence “How high is Kangchenjunga?”
was parsed into the verb “is”, the adjective “high” and the CE “Kangchenjunga” which
sounds about right.

Then, CINDI_QA lists the synonyms of the keywords. Synonyms of common verbs like
“is” and CEs are excluded of course. In this example, the user selected the words

“eminent” and “heights” as synonyms of the keyword “high”.

49

Finally, using all the information provided by the user, CINDI_QA performs a search and
retrieval of the best piece of text that contains the answer to display it on screen.

CINDI QA can have difficulty understanding the question entered by the user. For
example, no answer is found for the question “What party does Tony Blair belong to?”
because the Link Parser didn’t find any linkages. This is attributed to the limitations of
the INCLGI which CINDI_QA employs as its semantic parser. So CINDI_QA doesn’t go
any further if the Link Parser cannot generate linkages for a given input.

However, asking the same question by formulating it differently triggers CINDI_QA to

produce an answer, as shown in figure 6.10, with the question being “What party is Tony

Blair?”.

\Frogram Fiss| Javal k1, 6,0_0A\bi avaw e¥6 (Mr 7, 2008 1141109 M)
Opening ,/data/vords/words,adv.3
Opening ./data/vords/words.adv.l
Opening ./data/words/words,adv,2
Opening ./data/4.0.knovliedge

Opening ./data/4.0.constituent~knovledge

pplication] C:iProg

Link Parser Loaded.
LinkParser found 4 linkages.

The following nouns vere identified:

party

The following verbs were identified:

is

The following uppercase entities were identified;
Tony Blair

If you are satisfied with the current linkage, enter "ok", or press enter for the next linkage: ok

The following list has 1 synonymes for "party".
For each value, enter "ok" if you want to keap it or press enter for the next value,
company!

The answer to the sbove question is found in the following sentence:

Anthony Charles Lynton Blair (born 6 May 1953) is the Prime Minister of the United Kingdom, First Lord of the
Treasury, Minister for the Civil Service, Leader of the UK Lebour Party, and Nenber of the UK Parliament for
the constituency of Sedgefield in North East England.

Enter questicn:

Figure 6.10: NO_T example 2

50

Here again, the Link Parser and WordNet participate in the answer generation of
CINDI_QA. Four linkages are found with the first one being selected. The sentence
“What party is Tony Blair?” is parsed into the verb “is”, the noun “party” and the CE
“Tony Blair”.

Then, CINDI_QA lists the synonyms of the noun “party”. The user chose to discard the
only synonym for the word “party” identified by WordNet, “company”.

Using all the previous information, CINDI_QA locates the snippet of text that contains

the answer and displays it.

6.2 CINDI QA at QA@CLEF 2007

The CINDI group participated in the 2007 edition of the Multilingual Question
Answering track at the Cross Language Evaluation Forum (QA@CLEF) that was held
September 19 to 21 in Budapest, Hungary. CLEF defines target language as the language
in which the data collection is written and source language as the language in which the
question is asked. CINDI competed in the FR to EN track, where French was selected as
the source language and English as the target language.

CINDI was one of only three groups based on the American continent whereas the

majority of participants came from Europe [11], as shown in table 6.2.

51

America Europe Asia Australia Total
CLEF 2003 3 5 - - 8
CLEF 2004 1 17 - - 18
CLEF2005 | 1 22 1 - 24
CLEF 2006 4 24 2 - 30
CLEF 2007 3 17 1 1 22

Table 6.2: QA@CLEF Participation

The data collection considered for EN as target consisted of news articles and Wikipedia
pages. The news articles were taken from the 1994 Los Angeles Times — 113,005
documents of size 425 MB — and the 1995 Herald Tribune — 56,472 documents of size
154 MB. The Wikipedia pages were borrowed from a static version of Wikipedia dating
back to the end of November 2006, which represent the same data collection generally
used by CINDI _QA. This temporal restriction was made so that all participants have
access to the same data.

QA@CLEF identifies three different categories of questions that are mutually exclusive
and exhaustive, i.e., every question is either one of those categories and cannot fall into
more than one category. Factoid (F) questions are fact-based, asking for the name of a
person, a location, the extent of something, the day on which something happened, etc.
Definition (D) questions, as their name suggests, ask about definitions of people,
organizations and objects. Closed List (L) questions require one answer containing a
determined number of items. Moreover, any of those questions can be temporally
restricted (T) so that a temporal specification provides important information for the
retrieval of the correct answer. These categories as well as their subtypes when available

are listed in table 6.3 with examples.

52

Category Subtype Question Answer
Person Who wéﬁ aC: (lzleelldo:’b'? Iron- Otto von Bismarck.
, What year was Martin Luther
Time King murdered? 1968.
. Which town was Wolfgang
Location Amadeus Mozart born in? Salzburg.
N What party does Tony Blair
Organization Labour Party.
Factoid g belong to? y
(F) o .
Measure How high is Kanchenjunga? 8598m.
How many people died during the -
Count Terror of Pol Pot? 1 million.
Object What does magma consist of? Molten rock.
Other Which treaty was signed in 19797 IsraeI-E?yptian peace
reaty.
Person Who is Robert Altmann? Film maker.
Definit Organization What is the Knesset? Parliament of Israel.
efinition
(D) , . ,
Object What is Atlantis? Space Shuttle.
Other What is Eurovision? Song contest.
, . . Gatwick, Stansted,
Clos(tic; List Name all th(;slr‘p;%gs in London, Heathrow, Luton and
g'and. City.
Temporally Who was the Chancellor of .
Restricted (T) Germany from 1974 to 19827 AL UL

Table 6.3: QA@CLEF Question Types

53

The questions were released by CLEF as XML files. Each question was enclosed in one
XML tag that contained information about the target language, the source language, the
question number and the question topic. One to four questions could be grouped in one

topic so that they asked about the same entity but different information. This means that

the topic was inferred from the first question and then no longer explicitly mentioned.
Figure 6.11 displays twelve questions belonging to three topics taken from the original

test set for QA@CLEF 2007.

*Wocuments and Settings\c_haddad\idy Documents\Thesis\CLEMCLEF 2007\ Answers

%) C:\Documents and Settings\c_haddad\My Dacuments|Thesis\CLEFICLEF 2007\Answars\QA-CLEFQ7-FR-EN-tast xml

<?xmi version="1,0" encoding="UTF-8" 2>
- <input>
<q target="EN" source="FR" id="0001" group_id="5600">A combien de personnes a-t-on demandé de quitter feur domidile durant les
inondations aux Pays Bas, en hiver 1995 ?</q>
<q target="EN" source="FR" id="0002" group_id="5600">Quelle proportion des Pays-Bas est sous le niveau de la mer 2</q>
<q target="EN" source="FR" id="0003" group_id="5600">A quelle hauteur I'eau est-elle montée & Lobith durant les inondations ?</q>
<q target="EN" source="FR" id="0004" group_id="5600">Qui était le premier ministre des Pays-Bas & ce moment-1a ?</q>
<q target="EN" source="FR" id="0005" group_id="5601">Quels étaient les noms complets de Flanders et Swann ?</q>
<q target="EN" source="FR" id="0006" group_id="5601">En quelle année sont-ils devenus célébres ?</q>
<q target="EN" source="FR" id="0007" group_id="5601">Citer les langues dans iesquelles Flanders et Swann ont chanté.</q>
<q target="EN" source="FR" id="0008" group_id="5601">En quelle année Flanders est-il mort ?</q>
<q target="EN" source="FR" id="0009" group_id="5602">De quel instrument Swann jouait-il dans le duo "Flanders et Swann" ?</q>
<q target="EN" source="FR" id="0010" group_id="5602">Dans quel pays Swann est-il né 2</q>
«<q target="EN" source="FR" id="0011" group_id="5602">Dans quelle ville Swann est-il mort ?</q>
<q target="EN" source="FR" id="0012" group_id="5602">Comment s"appelait la femme de Swann ?</q>

A Conputer.

Figure 6.11: QA@CLEF 2007 Test Set Excerpt

CLEF requested a specific format in which the answers should be returned, also in XML.
Every answer had to be accompanied by the question number, the question topic number,
the name of the run and an optional confidence score. The confidence score is a floating
point value that can range from 0.0 to 1.0 where 0.0 means that the system has no
evidence of the correctness of the answer, and 1.0 means that the system is absolutely
confident about the correctness of the answer. CINDI_QA didn’t support this feature so
all values returned were 0.0. In addition to that, the answer XML tag had to reference the

document filename from where the answer was extracted and attach a snippet of text

54

from that document supporting the answer string. An example of an answer tag is given

in figure 6.12 taken from the original answer file submitted at QA@CLEF 2007.

- <a q_id="0112" group_id="5631" run_id="cind071fren’ score="0.0"> I
<answer>South Korean automobile manufacturer</answer>
<docid>203912.xmi</docid>
- <support>
<5_id>203912.xml</s_id>
<s_string>Kia Motors is a South Korean automobile manufacturer with headquarters in Yangjae-dong, Seocho-qu, Seoul, South
Korea.</s_string>
</support>
Jax

i

e

Ao Bow

Figure 6.12: QA@CLEF 2007 Answer File Excerpt

CLEF provided four different judgments for an answer string:

o W (incorrect): the answer string does not contain a correct answer or the answer is
not responsive.

e U (unsupported): the answer string contains a correct answer but the provided text
snippets do not support it, or the snippets do not originate from the provided
document.

e X (inexact): the answer string contains a correct answer and the provided text
snippets support it, but the answer string is incomplete or truncated or is longer
than the minimum amount of information required.

e C (correct): the answer string consists of an exact and correct answer, supported

by the text snippets.

55

The way CLEF assessed different bilingual QA systems was by comparing their
performance on the same target language. For instance, CINDI participated in the FR to
EN track but we were the only group to use FR as source language. Other groups used
Indonesian (IN), Romanian (RO), German (DE), Spanish (ES) and Dutch (NL) but we
were all part of the same evaluation track because our target language was EN, meaning
that we were using the same data collection and were supposed to obtain the same correct
answers.

CLEF also advised us on the name of the files we had to submit. The first four characters
stood for the name of the participating team and were followed by the current year (07),
the number of the run (could be either 1 or 2 because a maximum of two runs per team
was allowed) and a task identifier that included both source and target language. CINDI
submitted two runs, cind071fren and cind072fren. The difference between both runs lies
mainly in the length of the answers we provided. It turns out that it didn’t have much of
an impact on the judgment of the answers since both runs ended up with an overall

accuracy of 13%. The detailed results are listed in table 6.4.

o o o o Overall
Rank Run : \;V)#: g [1/06'1:] ?’3; [/;5]) ?9;' Acc;J racy

1 wolv071roen | 28 | 166 2 4 9.32 | 0.00 | 43.33 | 0.00 14.00
2 cind072fren | 26 | 170 2 2 11.18 | 0.00 | 23.33 | 11.11 13.00
3 cind071fren | 26 | 171 1 2 11.18 | 0.00 | 23.33 | 11.11 13.00
4 csui071inen 20 175 4 1 10.56 | 0.00 10.00 0.00 10.00
5 dfki071deen | 14 | 178 6 2 435 | 0.00 | 23.33 | 0.00 7.00
6 dfki071esen 5 189 4 2 1.86 | 0.00 | 6.67 0.00 2.50
7 mqgaf071nlen | O 200 0 0 0.00 | 0.00 | 0.00 0.00 0.00
8 mqaf072nlen | O 200 0 0 0.00 | 0.00 | 0.00 0.00 0.00

Table 6.4: QA@CLEF 2007 Results

56

The test set released by QA@CLEF 2007 consisted of 200 questions, 161 of which were
Factoid questions, 30 were Definition and 9 were Closed List. Among those questions
there were also 3 Temporally Restricted questions.

CINDI_QA was ranked second and third out of eight submitted runs, trailing the first
ranked group only by one percent in overall accuracy. CINDI_QA was much better at
answering Definition questions, as evidenced by its 23.33% rate, compared to other types
of questions. This is no surprise because D questions are easier to understand and answer.
Moreover, CINDI_QA employs three distinct templates to handle D questions as
described in chapter 4: the Living Person Definition template, the Deceased Person
Definition and the Object Definition template. So because half of the templates used by
CINDI_QA are aimed at D questions, CINDI_QA’s efficiency to answer those questions
is expected to be higher than the rest.

CINDI_QA obtained the highest answering percentage in Factoid questions at 11.18%.
This is also attributed to the success of CINDI_QA’s other templates — the Person Data
of Birth template and the Person Date of Death template — and especially the Person Info
template which represents the perfect prototype of a Person Factoid question with its
“What is the Y of X” construct, This template had a lot of success because several
questions asked about the job of people where “Y” would match “job” as explained in
chapter 4.

Finally, CINDI_QA was the only system able to answer a Closed List question and this
was done without matching any template. Indeed, benefiting from the collaboration of the
Link Parser, WordNet and Lucene, CINDI_QA was able to locate and extract the correct

answer to one L question.

57

Chapter 7
Conclusion and Future Work

7.1 Contribution

CINDI QA represents the first attempt of the CINDI group at tackling multilingual
Question Answering. We have detailed the architecture of the system which consists of
several open-source tools collaborating with each other in order to find and return the
best possible answer to the user.

The Link Parser is the module responsible for semantically parsing the input question and
identifying keywords such as nouns, verbs and adjectives, with the user confirming the
result. The Link Parser was originally written in C so we had to use JNCLGI, a Java
interface to that tool.

WordNet is responsible for providing synonyms of some keywords and CINDI QA
retains the ones selected by the user. This helps widen the range of the search query by
including those synonyms when looking for the answer.

Lucene has the job of indexing the data collection as well as searching through it and
assembling a list of the documents that contain candidate answers. Lucene is a library
that is written in Java so it fitted very nicely into the project and generated quick response
times.

Last but certainly not least, CINDI_QA makes extensive use of templates. There are six
templates employed by the system, each targeting specific types of questions. When a
template is matched, CINDI_QA acts as a complete black-box and directly returns the

correct answer.

58

The performance of CINDI_QA has been assessed by participating in the 2007 edition of
the QA@CLEF competition, an annual conference focusing on multilingual QA. The
details of our involvement in QA@CLEF are described in a paper that we wrote and that
got published in the CLEF 2007 Working Notes [2].

The two runs generated by CINDI_QA that we submitted to QA@CLEF 2007 allowed us
to be ranked second and third out of eight participants with an overall accuracy of 13%.
This value is encouraging because the 2007 edition of QA@CLEF represented the first
participation of the CINDI group and also because the CINDI group only invested 1

man/year on the project.

7.2 Limitations

CINDI_QA has a few limitations and they are two-fold.

On the one hand, the approach used to create the system is bound by several restrictions.
First, the templates used are exclusive of each other, i.e. we cannot combine them in one
question. For example, CINDI_QA cannot answer a question like “Who is Kobe Bryant
and when was he born?”” which is a concatenation of the first and third templates.

Second, Capitalized Entities must be complete and written correctly. So for CINDI_QA
to find information about a CE X, X must be comprised of the first and last names of the
person and shouldn’t have any typing mistake.

Third, the user must already know whether or not the person he is inquiring about is alive
or deceased. Indeed, CINDI_QA distinguishes between the two cases and has different
templates for both situations (T1 and T2).

On the other hand, the technologies used by CINDI_QA also have some limitations.

59

The Link Parser is a wonderful tool but it has difficulty correctly parsing long sentences
entered as input. When no template is matched and no linkages are found, CINDI QA
cannot process the long question and doesn’t find any answer. This happens because the
API of the Link Parser was meant to be handled in the C language whereas we tried to
benefit from it using its Java interface, INCLGI.

In parallel, the quality of the translation of the French question depends solely on the
performance of the tool CINDI_QA used for that purpose. Therefore, if from the start we
obtain a translation that isn’t accurate or complete, CINDI_QA has no ability to rectify

that and fails to produce a correct answer.

7.3 Suggested Enhancements

We had the opportunity of assessing the performance of CINDI QA by participating in
the 2007 edition of the QA@CLEF track. While the two runs we submitted ranked
second and third out of eight, there is still room for much more improvement. The
following is a list of encountered problems and their suggested enhancements.

e Tools improvement: In the previous section, we mentioned the limitations
CINDI_QA had with respect to the tools it used. While the issue of translation
quality will only be solved when the available translation engines start generating
better results, the semantic parsing can be made more solid if another tool is used,
especially one intended for Java.

¢ Online Portability: Nowadays, most QA systems have a web-based interface that
makes them available online, as mentioned in section 2.3. Therefore, an important

enhancement of CINDI QA should be to provide an online interface to the

60

system. In addition to making CINDI QA easily accessible, this option would
also facilitate the communication between the system and the Online Translator
because of the simplicity of the implementation if done using JSP and Servlets.
Number of Templates: There are six templates used by CINDI_QA. Although this
number might seem more than enough for the scope of this project, many more
templates should be used to build a solid QA system. The number of templates
needed is relative to the range of the data collection. Indeed, having a small and
restrictive dataset enables the creation of templates that expect questions related
to that same small dataset and makes the system more robust as a whole. Since the
data collection used by CINDI QA is a static version of Wikipedia which has
information about pretty much anything, CINDI QA should be strengthened by
increasing the number of templates it uses.

NIL answers: There should be a difference in handling questions that do not have
an answer in the data collection and those who do have one but whose answer
wasn’t found. CINDI_QA doesn’t differentiate between the two scenarios and
displays a “did not find an answer” message in both cases. This calls for a great
level of intelligence on behalf of a QA system and certainly represents the most

challenging improvement that can be made to CINDI_QA.

61

References

[1] Desai, B.C., “Concordia INdexing and DIscovery System”, paper presented at the

First Canadian Database Research Workshop, UQAM Montreal, August 1999.

[2] Haddad, C. and Desai, B. C., “Cross Lingual Question Answering using CINDI_QA
for QA@CLEF 2007”, in Working Notes for the CLEF 2007 Workshop, 19-21
September, Budapest, Hungary.

<http://www.clef-campaign.org/2007/working notes/HaddadCLEF2007.pdf>, visited

March 10, 2008.

[3] Wikipedia definition of “Information Retrieval”

<http://en.wikipedia.org/wiki/Information_retrieval>, visited March 3, 2008.

[4] Teitelman, W., "FLIP - A Format List Processor", MAC Memo M-263, MIT,
Cambridge, Massachusetts, September 1965.

<http://portal.acm.org/citation.cfm?id=807968 >, visited March 1, 2008.

[5] Woods, W.A., Kaplan, RM. and Webber, B.N., “The Lunar Sciences Natural
Language Information System: Final Report”, BBN Report 2378, Bolt Beranek and
Newman Inc., Cambridge, Massachusetts, 1972.

<http://portal.acm.org/citation.cfm?id=511804&dl= >, visited February 22, 2008.

62

[6] Stratica, N., “NLPQC: A Natural Language Processor for Querying CINDI”, Master
Thesis, Department of Software Engineering and Computer Science, Concordia

University, 2002.

[7] Desai, B.C., Haddad, S.S. and Ali, A., “Automatic Semantic Header Generator”,

Proceedings of ISMIS 2000, Springer-Verlag, Charlotte, North Carolina, pages 444-452.

[8] Turing, A. M., “Computing Machinery and Intelligence”, in Mind A Quarterly
Review of Psychology and Philosophy, Volume 59, Number 236, 1950, pages 433-460.

<http://www .loebner.net/Prizef/ TuringArticle.html>, visited March 3, 2008.

[9] The Ask.com Search Engine

<http://www.ask.com/>, visited March 3, 2008.

[10] Katz, B., “Annotating the World Wide Web using Natural Language”, in
Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching
on the Internet (RIAO '97), 1997.

<http://groups.csail.mit.edu/infolab/publications/Katz-RIAO97.pdf>, visited March 3,

2008.

[11] Giampiccolo, D., Forner, P., Peflas, A., Ayache, C., Cristea, D., Jijkoun, V.,

Osenova, P., Rocha, P., Sacaleanu, B. and Sutcliffe, R., “Overview of the CLEF 2007

63

Multilingual Question Answering Track”, in Working Notes for the CLEF 2007
Workshop, 19-21 September, Budapest, Hungary.
<http://www.clef-campaign.org/2007/working_notes/CLEF2007WN-Contents.html>,

visited March 3, 2008.

[12] Sleator, D. and Temperley, D., “Parsing English with a Link Grammar”, Carnegie
Mellon University, Computer Science technical report CMU-CS-91-196, 1991.

<http://www.link.cs.cmu.edu/link/>, visited March 1, 2008.

[13] Miller, A.G. et al., “WordNet — A lexical database for the English language”, in
Communications of the ACM, 38 (1), November 1995, pp. 39-41, ACM Press, New
York, ISSN:0001-0782.

<http://wordnet.princeton.edu/links#semantic>, visited March 1, 2008.

[14] Google Translate

<http://translate.google.com/translate t>, visited March 1, 2008.

[15] Babel Fish Translation

<http://babelfish.altavista.com/>, visited March 1, 2008.

[16] Systran Box

<http://www.systransoft.com/>, visited March 1, 2008.

64

[17] Gospodnetic, O. and Hatcher, E., “Lucene in Action”, Manning, 2005.

[18] The Apache Software Foundation’s Lucene

<http://lucene.apache.org/>, visited March 3, 2008.

[19] Wikipedia, the Free Encyclopedia

<http://en.wikipedia.org/wiki/Main_Page>, visited March 8, 2008.

[20] Wiktionary definition of “Template”

<http://en.wiktionary.org/wiki/template>, visited March 1, 2008.

[21] Sun Microsystems

<http://www.sun.com/>, visited March 3, 2008.

[22] The Eclipse Foundation

<http://www.eclipse.org/>, visited March 8§, 2008.

[23] Java Native Code Link Grammar Interface

<http://chrisjordan.ca/projects>, visited March 1, 2008.

65

Appendix A: Link Parser

The Link Grammar Parser can be downloaded from http://www.link.cs.cmu.edu/link.
NSF, ARPA, and the School of Computer Science, at Carnegie Mellon University,
supported this research project.

The Link Grammar Parser is a syntactic parser of English, based on link grammar, an
original theory of English syntax. Given a sentence, the system assigns to it a syntactic
structure, which consists of a set of labeled links connecting pairs of words. As of March
2008, the authors released version 4.0 of the parser. Among the new features of version
4.0 is a system that derives a constituent or phrase-structure representation of a sentence
(showing noun phrases, verb phrases, etc.) The thesis implementation integrates the Link
Parser at the source code level.

The entire system is available for download on the web. The system is written in generic
ANSI C, and runs on all platforms with a C compiler. There is an application program
interface (API) to make it easy to incorporate the parser into other applications.
The parser has a dictionary of about 60000 word forms. It has coverage of a wide variety
of syntactic constructions, including many rare and idiomatic ones. The parser is robust;
it is able to skip over portions of the sentence that it cannot understand, and assign some
structure to the rest of the sentence. It is able to handle unknown vocabulary, and make
intelligent guesses from context and spelling about the syntactic categories of unknown
words. It has knowledge of capitalization, numerical expressions, and a variety of

punctuation symbols [12].

66

Figure A.l1 shows an actual output from the online Link Grammar Parser. The input

phrase is “How many planets does the Solar System have?”

- Windows Internet Explorer

[gj ttp: f fwwe.link, cs.cmu. edufegi-binflink{construct-page-4, cgi# submit

lHow many planets does the Solar System have?

Show constituent tree [[] Allow null links [[] Show all linkages
[Submitone sentence |

++++Time 0.00 seconds (66.81 total)
Found 4 linkages (2 with no P.P. violations)
Linkage 1, cost vector = (UNUSED=0 DIS=(0 AND=0 LEN=18)

Fom e e BpMm=——emmm e +
| o ——————— Ifd-m—mmmeene +
i o ———— §Ig-—mm—m + !
I N DG---=+ !
+--Hg-~+--H-+--Dmc-+ H { F-m—G-—-+

| | i I i i H H I
LEFT-WALL how many planets.n does.v the Solar System have.v

Constituent tree:

{S How many planets dces
(HP the 3Sclar System}
{VE have})

Figure A.1: LinkParser Web Interface

Below it is the same output generated by the compiled version (ANSI C).

67

C:\Documents and Settings\c_haddad\Wy Documents fca'\l.inkﬂinkﬂ;exe HE m

*{}awn?u, P ‘ s j.d n
Ve i el ; ;

knnows Lecdage

g the Solare
12 tetald

Linkaye 1

1 A Do

LAFT-UALL how many planets.n does.w the Solavy System have.w 7

s HETUEM for the next link

Figure A.2: LinkParser Compiled Interface

Here is the summary of the links [12] found on the Internet at
http://www link.cs.cmu.edu/link:

A connects pre-noun ("attributive") adjectives to following nouns: "The BIG DOG
chased me", "The BIG BLACK UGLY DOG chased me".

AA is used in the construction "How [adj] a [noun] was it?". It connects the adjective to
the following "a".

AF connects adjectives to verbs in cases where the adjective is fronted, such as questions
and indirect questions: "How BIG IS it?"

AL connects a few modifiers like "all" or "both" to following modifiers: "ALL THE
people are here".

AM connects "as" to "much" or "many": "I don't go out AS MUCH now".

AN connects noun-modifiers to following nouns: "The TAX PROPOSAL was rejected".

68

AZ connects the word "as" back to certain verbs that can take "[obj] as [adj]" as a
complement: "He VIEWED him AS tall".

B serves various functions involving relative clauses and questions. It connects transitive
verbs back to their objects in relative clauses, questions, and indirect questions ("The
DOG we CHASED", "WHO did you SEE?"); it also connects the main noun to the finite
verb in subject-type relative clauses ("The DOG who CHASED me was black").

BI connects forms of the verb "be" to certain idiomatic expressions: for example, cases
like "He IS PRESIDENT of the company".

BT is used with time expressions acting as fronted objects: "How many YEARS did it
LAST?"

BW connects "what" to various verbs like "think", which are not really transitive but can
connect back to "what" in questions: "WHAT do you THINK?"

C links conjunctions to subjects of subordinate clauses ("He left WHEN HE saw me"). It
also links certain verbs to subjects of embedded clauses ("He SAID HE was sorry").

CC connects clauses to following coordinating conjunctions ("SHE left BUT we
stayed").

CO connects "openers" to subjects of clauses: "APPARENTLY / ON Tuesday, THEY
went to a movie",

CP connects paraphrasing or quoting verbs to the wall (and, indirectly, to the paraphrased
expression): "///// That is untrue, the spokesman SAID."

CQ connects to auxiliaries in comparative constructions involving s-v inversion: "SHE

has more money THAN DOES Joe".

69

CX is used in comparative constructions where the right half of the comparative contains
only an auxiliary: "She has more money THAN he DOES".

D connects modifiers to nouns: "THE DOG chased A CAT and SOME BIRDS".

DD connects definite modifiers ("the", "his") to certain things like number expressions
and adjectives acting as nouns: "THE POOR", "THE TWO he mentioned".

DG connects the word "The" with proper nouns: "the Riviera", "the Mississippi".

DP connects possessive modifiers to gerunds: "YOUR TELLING John to leave was
wrong".

DT connects modifiers to nouns in idiomatic time expressions: "NEXT WEEK", "NEXT
THURSDAY".

E is used for verb-modifying adverbs which precede the verb: "He is APPARENTLY
LEAVING".

EA connects adverbs to adjectives: "She is a VERY GOOD player".

EB connects adverbs to forms of "be" before an object or prepositional phrase: "He IS
APPARENTLY a good programmer".

EC connects adverbs to comparative adjectives: "It is MUCH BIGGER".

EE connects adverbs to other adverbs: "He ran VERY QUICKLY".

EF connects the word "enough" to preceding adjectives and adverbs: "He didn't run
QUICKLY ENOUGH".

EI connects a few adverbs to "after" and "before": "I left SOON AFTER I saw you".
EL connects certain words to the word "else": something / everything / anything /

nothing, somewhere (etc.), and someone (etc.).

70

EN connects certain adverbs to expressions of quantity: "The class has NEARLY FIFTY
students".

ER is used the expression "The x-er..., the y-er...". It connects the two halves of the
expression together, via the comparative words (e.g. "The FASTER it is, the MORE they
will like it").

EZ connects certain adverbs to the word "as", like "just" and "almost": "You're JUST AS
good as he is".

FL connects "for" to "long": "I didn't wait FOR LONG"

FM connects the preposition "from" to various other prepositions: "We heard a scream
FROM INSIDE the house".

G connects proper noun words together in series: "GEORGE HERBERT WALKER
BUSH is here”.

GN (stage 2 only) connects a proper noun to a preceding common noun which introduces
it: "The ACTOR Eddie MURPHY attended the event".

H connects "how" to "much" or "many": "HOW MUCH money do you have".

I connects infinitive verb forms to certain words such as modal verbs and "to": "You
MUST DO it", "I want TO DO it".

ID is a special class of link-types generated by the parser, with arbitrary four-letter names
(such as "IDBT"), to connect together words of idiomatic expressions such as "at_hand"
and "head of state".

IN connects the preposition "in" to certain time expressions: "We did it IN
DECEMBER".

J connects prepositions to their objects: "The man WITH the HAT is here".

71

JG connects certain prepositions to proper-noun objects: "The Emir OF KUWAIT is
here".

JQ connects prepositions to question-word modifiers in "prepositional questions": "IN
WHICH room were you sleeping?"

JT connects certain conjunctions to time-expressions like "last week": "UNTIL last
WEEK, I thought she liked me".

K connects certain verbs with particles like "in", "out", "up" and the like: "He STOOD
UP and WALKED OUT",

L connects certain modifiers to superlative adjectives: "He has THE BIGGEST room".
LE is used in comparative constructions to connect an adjective to the second half of the
comparative expression beyond a complement phrase: "It is more LIKELY that Joe will
go THAN that Fred will go".

LI connects certain verbs to the preposition "like": "I FEEL LIKE a fool."

M connects nouns to various kinds of post-noun modifiers: prepositional phrases ("The
MAN WITH the hat"), participle modifiers ("The WOMAN CARRYING the box"),
prepositional relatives ("The MAN TO whom I was speaking"), and other kinds.

MF is used in the expression "Many people were injured, SOME OF THEM children".
MG allows certain prepositions to modify proper nouns: "The EMIR OF Kuwait is here".
MYV connects verbs and adjectives to modifying phrases that follow, like adverbs ("The
dog RAN QUICKLY"), prepositional phrases ("The dog RAN IN the yard"),
subordinating conjunctions ("He LEFT WHEN he saw me"), comparatives, participle

phrases with commas, and other things.

72

MX connects modifying phrases with commas to preceding nouns: "The DOG, a
POODLE, was black". "JOHN, IN a black suit, looked great".

N connects the word "not" to preceding auxiliaries: "He DID NOT go".

ND connects numbers with expressions that require numerical modifiers: "I saw him
THREE WEEKS ago".

NF is used with NJ in idiomatic number expressions involving "of": "He lives two
THIRDS OF a mile from here".

NI is used in a few special idiomatic number phrases: "I have BETWEEN 5 AND 20
dogs".

NJ is used with NF in idiomatic number expressions involving "of": "He lives two thirds
OF a MILE from here".

NN connects number words together in series: "FOUR HUNDRED THOUSAND people
live here".

NO is used on words which have no normal linkage requirement, but need to be included
in the dictionary, such as "um" and "ah".

NR connects fraction words with superlatives: "It is the THIRD BIGGEST city in
China".

NS connects singular numbers (one, 1, a) to idiomatic expressions requiring number
modifiers: "I saw him ONE WEEK ago".

NT connects "not" to "to": "I told you NOT TO come".

NW is used in idiomatic fraction expressions: "TWO THIRDS of the students were

women".

73

O connects transitive verbs to their objects, direct or indirect: "She SAW ME", "I GAVE
HIM the BOOK".

OD is used for verbs like "rise" and "fall" which can take expressions of distance as
complements: "It FELL five FEET".

OF connects certain verbs and adjectives to the word "of";: "She ACCUSED him OF the
crime”, "I'm PROUD OF you".

ON connects the word "on" to dates or days of the week in time expressions: "We saw
her again ON TUESDAY".

OT is used for verbs like "last" which can take time expressions as objects: "It LASTED
five HOURS".

OX is an object connector, analogous to SF, used for special "filler" words like "it" and
"there" when used as objects: "That MAKES IT unlikely that she will come".

P connects forms of the verb "be" to various words that can be its complements:
prepositions, adjectives, and passive and progressive participles: "He WAS [ANGRY /
IN the yard / CHOSEN / RUNNING]".

PF is used in certain questions with "be", when the complement need of "be" is satisfied
by a preceding question word: "WHERE are you?", "WHEN will it BE?"

PP connects forms of "have" with past participles: "He HAS GONE".

Q is used in questions. It connects the wall to the auxiliary in simple yes-no questions
("///// DID you go?"); it connects the question word to the auxiliary in where-when-how
questions ("WHERE DID you go").

QI connects certain verbs and adjectives to question-words, forming indirect questions:

"He WONDERED WHAT she would say".

74

R connects nouns to relative clauses. In subject-type relatives, it connects to the relative
pronoun ("The DOG WHO chased me was black"); in object-type relatives, it connects
either to the relative pronoun or to the subject of the relative clause ("The DOG THAT
we chased was black", "The DOG WE chased was black").

RS is used in subject-type relative clauses to connect the relative pronoun to the verb:
"The dog WHO CHASED me was black".

RW connects the right-wall to the left-wall in cases where the right-wall is not needed for
punctuation purposes.

S connects subject nouns to finite verbs: "The DOG CHASED the cat": "The DOG [IS
chasing / HAS chased / WILL chase] the cat".

SF is a special connector used to connect "filler" subjects like "it" and "there" to finite
verbs: "THERE IS a problem", "IT IS likely that he will go".

SFI connects "filler" subjects like "it" and "there" to verbs in cases with subject-verb
inversion: "IS THERE a problem?", "IS IT likely that he will go?"

ST connects subject nouns to finite verbs in cases of subject-verb inversion: "IS JOHN
coming?", "Who DID HE see?"

SX connects "I" to special first-person verbs like "was" and "am".

SXIT connects "I" to first-person verbs in cases of s-v inversion.

TA is used to connect adjectives like "late" to month names: "We did it in LATE
DECEMBER".

TD connects day-of-the-week words to time expressions like "morning": "We'll do it

MONDAY MORNING".

75

TH connects words that take "that [clause]" complements with the word "that". These
include verbs ("She TOLD him THAT..."), nouns ("The IDEA THAT..."), and adjectives
("We are CERTAIN THAT").

TI is used for titles like "president”, which can be used in certain circumstances without a
modifier: "AS PRESIDENT of the company, it is my decision".

TM is used to connect month names to day numbers: "It happened on JANUARY 21".
TO connects verbs and adjectives which take infinitival complements to the word "to":
"We TRIED TO start the car", "We are EAGER TO do it".

TQ is the modifier connector for time expressions acting as fronted objects: "How
MANY YEARS did it last".

TS connects certain verbs that can take subjunctive clauses as complements - "suggest",
"require" - to the word that: "We SUGGESTED THAT he go".

TW connects days of the week to dates in time expressions: "The meeting will be on
MONDAY, JANUARY 21".

TY is used for certain idiomatic usages of year numbers: "I saw him on January 21, 1990
", (In this case it connects the day number to the year number.)

U is a special connector on nouns, which is disjoined with both the modifier and subject-
object connectors. It is used in idiomatic expressions like "What KIND OF DOG did you
buy?"

UN connects the words "until" and "since" to certain time phrases like "after [clause]":
"You should wait UNTIL AFTER you talk to me".

V connects various verbs to idiomatic expressions that may be non-adjacent: "We TOOK

him FOR_GRANTED", "We HELD her RESPONSIBLE".

76

W connects the subjects of main clauses to the wall, in ordinary declaratives, imperatives,
and most questions (except yes-no questions). It also connects coordinating conjunctions
to following clauses: "We left BUT SHE stayed".

WN connects the word "when" to time nouns like "year": "The YEAR WHEN we lived
in England was wonderful".

WR connects the word "where" to a few verbs like "put” in questions like "WHERE did
you PUT it?"

X is used with punctuation, to connect punctuation symbols either to words or to each
other. For example, in this case, POODLE connects to commas on either side: "The dog,
a POODLE, was black."

Y is used in certain idiomatic time and place expressions, to connect quantity expressions
to the head word of the expression: "He left three HOURS AGOQ", "She lives three
MILES FROM the station".

YP connects plural noun forms ending in s to "" in possessive constructions: "The
STUDENTS ' rooms are large".

YS connects nouns to the possessive suffix "'s": "JOHN 'S dog is black".

Z connects the preposition "as" to certain verbs: "AS we EXPECTED, he was late".

77

Appendix B: WordNet

WordNet® is an online lexical reference system whose design is inspired by
psycholinguistic theories of human lexical memory
(http://www.cogsci.princeton.edu/~wn). English nouns, verbs, adjectives and adverbs are
organized into synonym sets, each representing one underlying lexical concept. Different
relations link the synonym sets. WordNet was developed by the Cognitive Science
Laboratory at Princeton University under the direction of Professor George A. Miller.

The WordNet system consists of lexicographer files, code to convert these files into a
database, and search routines and interfaces that display information from the database.
The lexicographer files organize nouns, verbs, adjectives and adverbs into groups of
synonyms, and describe relations between synonym groups.

Information in WordNet is organized around logical groupings called synsets. Each
synset consists of a list of synonymous words or collocations (e.g. "fountain pen" , "take
in"), and pointers that describe the relations between this synset and other synsets. A
word or collocation may appear in more than one synset, and in more than one part of
speech. The words in a synset are logically grouped such that they are interchangeable in
some context,

Two kinds of relations are represented by pointers: lexical and semantic. Lexical relations
hold between word forms; semantic relations hold between word meanings. These
relations include hypermnymy / hyponymy, antonymy, entailment, and meronymy /

holonymy.

78

Nouns and verbs are organized into hierarchies based on the hypernymy / hyponymy
relation between synsets. Additional pointers are be used to indicate other relations.

Adjectives are arranged in clusters containing head synsets and satellite synsets. Each
cluster is organized around antonymous pairs (and occasionally antonymous triplets). The
antonymous pairs (or triplets) are indicated in the head synsets of a cluster. Most head
synsets have one or more satellite synsets, each of which represents a concept that is
similar in meaning to the concept represented by the head synset. One way to think of the
adjective cluster organization is to visualize a wheel, with a head synset as the hub and
satellite synsets as the spokes. Two or more wheels are logically connected via

antonymy, which can be thought of as an axle between the wheels [13].

WordNet 1.6 Browser

k Ssn;;!i: [.a.............

The noun car has 5 senses (first 2 from tagged texts)

1. car, auto, automobile, machine, motorcar -- (4-wheeled motor vehicle, usually propelled by an internal combustion engine, "he needs a car 1o get to work")
2. car, railcar, railway car, railroad car -- (a wheeled vehicle adapted to the rails of railroad; "three cars had jumped the rails")

3. car, gondola -- (car suspended from an airship and carrying personnel and cargo and power plant)

4. car, elevator car -- (where passengers ride up and down, "the car was on the top floor")

5. cable car, car -- (a conveyance for passengers or freight on a cable railway, "they took a cable car to the top of the mountain”)

Figure B.1: WordNet Window-based browser Interface

79

Glossary of lexical & semantic relations in WordNet

Entailment: A verb X entails Y if X cannot be done unless Y is, or has been, done.
Holonym: The name of the whole of which the meronym names a part. Y is a holonym
of X if X is a part of Y.

Hypernym: The generic term used to designate a whole class of specific instances. Y is a
hypernym of X if X is a (kind of) Y.

Hyponym: The specific term used to designate a member of a class. X is a hyponym of
Y if X is a (kind of) Y.

Indirect antonym: An adjective in a satellite synset that does not have a direct antonym
has an indirect antonym via the direct antonym of the head synset.

Meronym: The name of a constituent part of, the substance of, or a member of
something. X is a meronym of Y if X is a part of Y.,

Pertainym: A relational adjective. Adjectives that are pertainyms are usually defined by
such phrases as "of or pertaining to" and do not have antonyms. A pertainym can point to
a noun or another pertainym.

Subordinate: Same as hyponym.

Superordinate: Same as hypernym.

Synset: A synonym set; a set of words that are interchangeable in some context.

Troponym: A verb expressing a specific manner elaboration of another verb. X is a

troponym of Y if to X is to Y in some manner.

80

