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ABSTRACT 

Multi-Resolution Fault Diagnosis in Discrete-Event Systems . 
JiangJing Pan 
Concordia University 

In this thesis, a framework for multi-resolution fault diagnosis in discrete-event 

systems (DES) is introduced. Here a sequence of plant models, with increasing resolu­

tion, are used in fault diagnosis and the range of possible diagnosis is narrowed down 

step by step, until the failure mode is isolated. In this way, the original problem of 

fault diagnosis is replaced by a sequence of smaller problems. The plant models used 

at each step of diagnosis are abstractions of the original plant model. We propose to 

use model reduction through the solutions of the Relational Coarsest Partition prob­

lem to obtain these abstractions. For each diagnosis step, minimal sensor sets are 

chosen to have a coarser output map, and hence, to improve the efficiency of model 

reduction. 

In this thesis, a polynomial algorithm is proposed that verifies failure diagnosabil-

ity by examining the distinguishability of two plant (normal/faulty) conditions at a 

time. A procedure is presented that finds minimal sensor sets, referred to as minimal 

distinguishers, for distinguishability of one condition from another. A polynomial pro­

cedure is introduced that combines minimal distinguishers to obtain a minimal sensor 
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set for fault diagnosis. The proposed method reduces the computational complexity 

of sensor selection. 

A benefit of using minimal distinguishers is that their computation maybe speeded 

up using expert knowledge. The proposed method for sensor selection is particularly 

suitable for multi-resolution diagnosis since it permits some of the results of compu­

tations, performed for sensor selection at the lowest (finest) level of multi-resolution 

diagnosis to be reduced at higher levels. This feature is particularly useful in re­

ducing the computations necessary for online reconfiguration of the multi-resolution 

diagnosis system. 

An important procedure used in sensor selection is testing diagnosability. In this 

thesis, a new procedure for testing diagnosability in timed DES is introduced based 

on the relatively timing of plant output sequence. It is shown through example that 

the proposed test maybe executed with significantly fewer computations compared 

to tests developed for untimed models and adapted for timed systems. Furthermore, 

two new sets of sufficient conditions are provided under which diagnoser design and 

diagnosability tests based on relative timing of output sequence can be performed 

efficiently. 
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Chapter 1 

INTRODUCTION 

Fault diagnosis in engineering systems is of great practical significance in protect­

ing life and property, and in increasing reliability and productivity [1]. The systems 

concerned encompass a broad spectrum of human-made machineries and manage­

ment systems, including industrial production facilities (water treatment plant, power 

plant, etc.), transportation systems (aerospace, automobile, traffic control, etc.) and 

household appliances (washers, air conditioners, etc.). Solving diagnostic problems for 

these engineering systems is a complicated task and requires a systematic approach. 

The "activity" in many rapidly evolving modern systems is governed by oper­

ational rules designed by humans; therefore, their dynamics are characterized by 

asynchronous occurrences of discrete events. These features lend themselves to the 

term Discrete-Event System (DES) for this class of dynamic systems [2,24]. As a 

result, solving diagnostic problems for discrete-event systems has been the subject of 

extensive research (e.g., [3-6,18,19]). 

One of the problems associated with the use of discrete-event models is the com­

putational complexity (i.e., combinational explosion). This has motivated researches 
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to find solutions to mitigate the computational problem. In this thesis, we develop a 

procedure for a multi-resolution fault diagnosis which attempts to replace the original 

diagnosis problem with a sequence of simpler problems. 

1.1 Literature Review 

A failure, or a fault1, refers to a non-permitted deviation in the behavior of a 

system from that required by the system specifications [11]. Faults can be either 

permanent or nonpermanent. Permanent faults are those in which once the com­

ponent fails, the system remains in the faulty condition indefinitely. Nonpermanent 

faults are faults of limited duration, caused by temporary malfunction of the system 

or due to some external interference. Given the possibilities of faults, three direct ap­

proaches are used to improve the reliability of a system: fault prevention (avoidance), 

fault tolerance, and fault diagnosis [7]. 

Fault prevention is to try to prevent faults from occurring or getting introduced 

into the system. In the traditional approach of fault prevention, high reliability is 

achieved by eliminating as many faults as possible before the system is put in regular 

use. Since all possible faults cannot be anticipated and eliminated before deployment 

of the system, fault avoidance assumes that system failures will occasionally take 

place. The goal of fault tolerance is to provide service despite the presence of faults 

in the system. Fault tolerant systems employ redundancy to mask various types of 

failures. That is, the system contains components that are not needed in the regular 

use but used to avert disruption in system behavior in case some components fail. 
1In this thesis, "failure" and "fault" have been used interchangeably [7]. 
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Fault diagnosis is to try to detect and isolate the fault once it occurs and before it 

causes a catastrophe in the system. The goal of fault diagnosis is to protect the life 

and property, and to increase operational time and productivity. 

These three approaches are consistent in nature. The fault prevention methods 

focus on methodologies for design, testing and validation; fault tolerance methods 

focus on how to use components in a manner such that failures can be masked; 

whereas, fault diagnosis methods often focus on how to detect and isolate the failures 

both in design and implementation philosophy. In this work, we concentrate on fault 

diagnosis. 

1.1.1 Fault Diagnosis 

The conventional techniques for fault diagnosis are classified to model-free and 

model-based methods. Expert system and hardware redundancy are two commonly 

used techniques in model-free methods. Expert systems, which employ fault tree (also 

called belief network to represent relationships between the faults and their causes) 

or an inference engine to detect failures, are experience-based or knowledge-based. 

An expert system is generated by gathering the expertise; this is usually difficult and 

time-consuming (see, e.g., [8,9]). Therefore, for new systems a considerable amount 

of time might elapse before enough knowledge has been accumulated to make reliable 

diagnosis possible. Furthermore, the rule bases developed for the expert system are 

very domain dependent and not reusable, and the system performance is strictly 

limited by the quality and quantity of the implemented knowledge. However, in cases 
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where models are not easy to develop expert systems can be very effective in offline 

diagnosis (when the system is not operational). 

Hardware redundancy is often implemented as triple modular redundancy (TMR). 

For the purpose of fault diagnosis, triplicate sensors are used to measure the same 

system variable. This method is not only expensive but also shows a conspicuous 

difficulty in detecting actuators and plant faults. 

In addition to model-free methods, several model-based techniques for fault diag­

nosis have been proposed in the literature. In a model-based method, the observed 

behavior of systems is compared with that expected from the system model. Based 

on this comparison, the condition of the system (normal or faulty) is inferred. 

Many approaches to model-based fault diagnosis are based on parameter estima­

tions and state estimations for continuous variable systems (e.g., [1,10-15]). In these 

methods, the systems are modelled using differential and difference equations (see, 

e.g., [16,17]). On the other hand, the rapid evolution of computing, communication, 

and sensor technologies has brought about the proliferation of the modern dynamic 

systems, mostly technological and often highly complex. In order to reason these 

systems through at some level of abstraction, it is more efficient, and regularly more 

reliable to model some of its aspects as discrete. A Discrete Event System (DES) 

is then introduced to be a dynamic system with discrete inputs and outputs, whose 

behavior can be described in terms of discrete state transitions. Based on these ab­

stractions, researchers seek to find out reasoning mechanisms for performing various 

tasks. The fault diagnosis using DES models, as one of them, has arisen for systematic 

approach to component failure detection and isolation( [3-5,18,19]). 
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The investigation on the topic of diagnosis of Discrete Event Systems was prompted 

by some preliminary works within the automatic control (see, e.g., [3,4,20]) and the 

other areas such as artificial intelligence (AI) (e.g., [21]). In modelling, F. Lin pro­

posed a discrete event system approach for fault diagnosis in [3]. He assumes that 

each system component has some normal states and some faulty states, and uses 

system outputs for diagnosis. The main goal of diagnosis is to find the block of the 

normal / faulty partition that the system state belongs to by issuing a sequence of 

control commands and observing the outputs. The system is online diagnosable if 

there exists a control sequence that diagnoses the system. The method is called a 

state-based approach, and is further treated by S. Bavishi et al. [20]. Because in this 

methodology, sequence of control commands are issued as inputs to the system, the 

method is an active diagnosis approach. It should be noted that in practice, the set 

of testing commands that can be used is constrained by the operational requirements 

of the system. 

In contrast to the abovementioned state-based approach, M. Sampath et al [4] 

proposed an event-based approach to failure diagnosis problems. In this approach, 

inference is made about the occurrence of unobservable failure events based on ob­

served events. Here, the diagnoser, which provides estimates of the state of the system 

after the occurrence of every observable event, can be viewed as an extended sensor 

to detect the unobservable faults in DES. This approach does not apply any control 

command as the input to the system, and therefore, is passive. Later in [22], Sampath 

et al. generalize their notion of diagnosis to active DES fault diagnosis and present 

an integrated approach to fault diagnosis and supervisory control. 
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In [23], a state-based but passive fault diagnosis is introduced where the objective 

is to monitor system outputs and determine the condition (normal/faulty) of the 

system. In this work, an equivalence relation on the system state set based on the 

solution of the Relational Coarsest Partition (RCP) problem is used to reduce the 

system model and therefore, the diagnosis system. 

All of the above modelling approaches use automata as basic building blocks 

to model system components. The complete system model can be generated using 

synchronous or parallel composition of component models (see e.g., [24,25], ). On the 

other hand, A. Darwiche and A. Misra et al. propose a structured system description 

of DES models ( [26,27]), called causal network, for the purpose of fault diagnosis. 

This qualitative model seems to be suitable for process diagnosis in local power station 

plants [27]. Compared to DES modelling techniques in [3,20] and [4], this approach 

exhibits surprising computational efficiency for diagnosing discrete event systems. 

However, it also employs logical sentences describing the status of each component, 

which is partly from human experience and expertise [27]. 

In [65], modelling and diagnosis of discrete event systems has been examined under 

the strong assumption that state transitions of systems are observable. Algorithms 

for partitioning faults into sets of indistinguishable faults and for determining the 

detectability of faults are also derived in [65]. The detectability test (Definition 5.2 

in [65]) relies on not only the states but also the inputs. Thus, the problem addressed 

is an active diagnosis problem. 

In cases where timing constraints can be used to improve diagnosis accuracy, the 

timed models are considered in fault diagnosis ( [23,28-30]). [28] presents models 
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in the form of temporal causal networks, which are capable of capturing both the 

ordering of events as well as the relative time between events, and modelling the 

persistence of faults. However, it did not consider the complete timing information 

such as time bounds and delays. 

In [29], for failure diagnosis, the timed event sequence generated by the DES is 

compared with a set of specifications for normal operations, called templates. This 

technique of sequencing and timing relationships is demonstrated in manufacturing 

lines where the system can be modelled as a set of finite timed DES models based 

on an unspecified number of instances of the process. However, the construction of 

templates is probably not feasible and failure isolation and diagnosability have not 

been discussed in this work. 

[30] discusses the direct application of the event-based approach of [4] to timed 

discrete-event systems by simply considering the clock tick as an observable event. [23] 

notes that following [30], an update of state estimate of the system is required after 

every clock tick which could make the diagnosis computations costly. [23] proposes 

an alternative approach in which state and condition estimates are generated after 

every new output based on the new output and the number of clock ticks since the 

last output. In this way, state and condition updates after every clock tick can be 

avoided. In this approach, the information about the timing of output changes is 

computed (using the system model) and stored in a Timed Reachability Transition 

System (timed RTS). This technique can be useful if the required transition-times can 

be computed easily. [23] mentions timed DES in which transition-times are bounded 

as an example of such cases. 
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As the development of these fundamental works in the area of DES model-based 

diagnosis, the topic has generated tremendous interests in various areas of applications 

such as communication (see, e.g., [34-36]) and distributed systems (see, e.g., [37-39]) 

and hybrid systems (e.g., [40-42]). 

1.1.2 Testing Diagnosability 

An important issue is the issue of failure diagnosability. Sampath et al. [4] consider 

a failure diagnosable if it can be detected and isolated in a bounded number of events. 

[4] also presents a test for diagnosability based on the construction of a diagnoser. 

The number of a diagnoser states and hence the complexity of the above-mentioned 

test for diagnosability is in the worst case exponential in the cardinality of the system 

state set. 

[5] adopts an approach similar to [4] for diagnosability except that [5] also con­

siders the cases in which a faulty condition may be present when diagnosis starts. 

Therefore, in [5], a failure is considered diagnosable if it can be detected and isolated 

after its occurrence or the start of diagnosis in a bounded number of events. The 

diagnosability conditions given in [5] are also in terms of the properties of a diagnoser 

and hence verifying them has a worst-case exponential complexity. 

In contrast to the exponential approaches of testing diagnosability in [4,5], effi­

cient polynomial algorithms for testing diagnosability (in the framework of [4]) are 

proposed in [31,32]. The test in [31] has a complexity of C(|X|4) and that in [32], has 

a complexity of 0( |X| 2 ) (Here \X\ is the size of the system state set). The test in [32] 

is developed for deterministic systems and the test in [31] is applicable to nondeter-
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ministic systems as well. Common to these works is that their tests do not rely on 

diagnosers. Rather, the tests are based on the construction of finite-state automata 

(called "verifier" in [32]) that can be performed in polynomial time. Recently, A. 

Ramirez-Trevinn et al. [43] proposed another polynomial approach based on inter­

preted Petri nets (IPN). An algorithm for verification of diagnosability of IPN models 

is proposed which avoids reachability analysis of other approaches. Other attempts 

to manage the complexity of testing diagnosability in discrete-event systems include 

modular approaches (see, e.g., [47,49]). 

1.1.3 Sensor Selection 

The problem of fault diagnosis in monitored discrete-event system can be charac­

terized by a set of observations to account for. Therefore, sensor selection and the 

observability of discrete-event system takes a basic role in the fault diagnosis of DES 

system. Specially, it is desired to have a minimal set of sensors that provides sufficient 

output information for guaranteeing the diagnosability of all failures. 

Sensor selection problems in the context of discrete-event systems have been pre­

viously studied in [20,52-55,57-59]. In [53,55] and [59], the authors show that the 

problems of finding a sensor set with minimal cardinality for satisfying the properties 

of diagnosability, normality or observability are NP-complete. In [20], Bavishi et al. 

present an algorithm that determines a minimum-cost set of sensors which ensures 

testability. [54] provides a strategy for devising a test sequence to obtain a minimum-

cost set of sensors ensuring a given property (such as diagnosability). In [52], the 

authors present algorithms with exponential complexity to find a set of observable 
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events with minimal cardinality to ensure the properties of observability and normal­

ity in the context of supervisory control. [58] applies approximation algorithms to 

sensor set minimization for the supervisory control of DES. 

Note that while the problem of finding a sensor set with minimal cardinality is NP-

complete, the problem of finding a minimal sensor set for diagnosability (minimal in 

the sense that no subset of the minimal set satisfies diagnosability) is not NP-complete 

and in fact, can be computed in polynomial time (e.g., [53]). 

1.1.4 Decentralized and Hierarchical Approaches to Fault Diagnosis 

As previously mentioned, one of the main challenges of designing fault diagnosis 

systems based on discrete-event models is computational complexity. To reduce the 

computational complexity, researchers have turned their attention to using decentral­

ized (see, e.g., [21,37-39,45,46]) and hierarchical approaches (see, e.g., [48,50,62]). 

Typically, in decentralized approaches a class of discrete-event systems modelled 

as a network of communicating automata is considered, where each automaton de­

scribes the behavior of a system component. Approach like [45] consist of a set of 

local observations and local diagnosers linked with a communication network to a 

coordinator. Therefore, in [45], a decentralized diagnosis is presented in which part 

of diagnosis is done locally, and then the results are reported to a central diagnoser. 

This reduces the required communication between the local sites and central site; 

however, the global model of the system is still required. 

Baroni et al. [21] study the diagnosis in systems consisting of components and links 

in which components and links are grouped into clusters. Clusters may be grouped 
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into larger clusters themselves, resulting in a hierarchy of clusters. To reduce diagno­

sis computations, first local estimates are calculated, and then, these diagnoses are 

merged using a synchronous product to account for component interactions. For the 

purpose of communicating information from a local site to the global system or the 

coordinator, some logic rules or suitable consistency properties are required for online 

diagnosis. In [38], the proposed approach features a problem-decomposition/solution-

composition nature whose core is the on-line progressive reconstruction of the behav­

iors of a class of distributed systems. However, the complexity of reconstruction is 

exponential in the number of messages in the cluster observation. 

Other researches in decentralized approach includes [47]. Debouk et al. [47] study 

modular diagnosis in which local diagnoses are calculated but not merged to account 

for component interactions. The resulting diagnoses are, therefore, more conservative 

in the sense that they include normal or faulty modes that may not be present in a 

centralized diagnosis. 

Hierarchical approach is another way to manage the complexity in large-scale sys­

tems. [50,62, 67] present an approach to fault diagnosis for hierarchical finite-state 

machines. Taking advantage of system structure, at any point in time, only a sub­

model of the plant corresponding to the current phase operation, called D-holon, is 

used in diagnosis. This reduces computer memory requirement. Furthermore, when 

the common events of system components are observable, a semi-modular approach 

is presented for diagnosis that reduces the time complexity from exponential to poly­

nomial. 
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Multi-resolution diagnosis can be regarded as a hierarchial approach, which ex­

amines the system at different layers of abstraction (from coarse to fine) to narrow 

down the diagnosis. In this way, the original diagnosis problem is replaced by a se­

quence of simpler problems. [60] introduces a hierarchical computational procedure 

for fault diagnosis. There a hierarchy consisting of several levels of abstraction for 

the plant is constructed at the design stage. Then, during the online operation of the 

diagnosis system, (decentralized) diagnosis is performed at successive levels, starting 

at the highest level of abstraction. 

1.2 Thesis Objectives 

The objective of this research is the development of a multi-resolution approach 

to fault diagnosis in discrete-event systems. This approach is used in order to re­

place the original fault diagnosis problem with a sequence of simpler problems, and 

hence smaller solutions. Towards this goal, models of the plant at various levels 

of abstraction (from coarse to fine) are developed. In this thesis we use the Rela­

tional Coarsest Partition (RCP) problem to reduce the plant model at various levels 

and thus construct the models needed for multi-resolution diagnosis. The reason 

we have chosen model reduction using RCP is that there exist efficient methods for 

the solution of RCP and model reduction using RCP could be quite effective. To 

improve the efficiency of model reduction, we aim to use minimal sensor sets. We 

develop sensor selection methods that are particularly suitable for sensor selection for 

multi-resolution diagnosis in the sense that the computations performed at the lowest 
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(finest) level of hierarchy of models for sensor selection can be reused (entirely or at 

least, in part) for sensor selection at higher levels as well. 

1.3 Thesis Outline and Contributions 

In Chapter 2, we briefly review the background material on discrete event systems 

and model-based diagnosis, which we will use in the following chapters. The key 

notations and definitions in this chapter are presented along with simple examples. 

In Chapter 3, we present our problem formulation with a simple physical example. 

In this thesis, we develop a multi-resolution diagnosis system in a state-based 

framework [5] and a new method for sensor selection in diagnosis problems, and in 

particular, multi-resolution diagnosis systems. Sensor selection procedures involve 

diagnosability tests. In Chapter 4, we develop a test for failure diagnosability in the 

state-based framework of [5]. This test is polynomial and similar to those in [31,32] 

for the event-based problem of [4]. 

While the development of multi-resolution and sensor selection algorithms are 

done in this thesis for untimed systems, the procedures are applicable to timed systems 

as well. Thus in Chapter 4 we also study testing diagnosability in timed DES. In 

this case, instead of adopting the tests for untimed models, following an approach 

similar to [23] for diagnoser design, we have developed a test based on the Timed 

Reachability Transition System (timed RTS) [23]. We show through examples, that 

if timed RTS is available (for instance, computed for diagnoser design following the 

procedure in [23]), then testing diagnosability based on timed RTS can be considerably 

less complex than tests based on untimed methods. [23] mentioned that timed RTS 
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can be easily computed if the transition-time sets (i.e., the set of time in ticks between 

output changes) are bounded sets. In this thesis, we investigate the cases in which 

the transition-time sets may be unbounded. We obtain two sets of conditions under 

which the transition-time sets are unbounded but can be represented in the form of 

the union of a bounded number of intervals. We will see that in such case timed 

RTS can be conveniently computed. In this way, we expand the set of cases in which 

the method of diagnoser design of [23] and the corresponding diagnosability test in 

Chapter 4 of this thesis, are applicable. 

In this thesis, we propose a multi-resolution fault diagnosis that uses reduced 

models of the system (various levels of abstraction) to perform the diagnosis. To 

make the model reduction more efficient we choose a minimal sensor set. In Chapter 

5, we develop a sensor selection algorithm which is particularly suitable for multi-

resolution diagnosis. Specifically, we propose a polynomial algorithm that verifies 

failure diagnosability by examining the distinguishability of two conditions at a time. 

Next a polynomial-time procedure is presented that first finds minimal sensor sets for 

distinguishing one condition from another. We refer to these minimal sets as minimal 

distinguishers. Then the procedure combines these minimal distinguishers to obtain 

a minimal sensor set for fault detection and isolation. It is shown that taking ad­

vantage of the structure of the system, as done in the algorithms proposed in this 

chapter, reduces the time complexity of testing diagnosability and sensor selection 

by a factor 0(p2?n~1) (compared with test for untimed DES in Chapter 4 and the 

test in [31] for nondeterministic untimed DES); here p is the number of failure modes 

and m (m -C p) is maximum number of failures that can occur simultaneously. A 
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benefit of using minimal distinguishes is that their computation (thus, the computa­

tions of sensor selection) may be speeded up using heuristics and expert knowledge. 

The proposed method for sensor selection is particularly suitable for multi-resolution 

diagnosis problem since some of the results of computations performed for sensor 

selection at the lowest (finest) level of multi-resolution diagnosis can be reused for 

sensor selection at higher levels. 

In Chapter 6, we propose a multi-resolution fault diagnosis system in which fault 

diagnosis is performed at several steps. First, the occurrence of fault is detected. 

At the second step, once the occurrence of fault is detected, the fault group is iso­

lated. Each fault group may, for instance, contain the faults in one of the subsystems. 

Therefore, at the second step the diagnosis is narrowed down. This process of nar­

rowing down the diagnosis is repeated until the failure mode is isolated. In this way, 

the original problem of fault detection and isolation is replaced with a sequence of 

simpler problems. For each simpler problem, a coarser (more abstract) model of the 

system may be enough. In this thesis, we propose to use model reduction using the 

solution of the Relational Coarsest Partition problem to obtain the coarser models 

required for multi-resolution diagnosis. 

Furthermore, to make the model reduction more effective, we use the sensor selec­

tion procedures developed in Chapter 5 to find minimal sensor sets for diagnosis at 

each step of multi-resolution diagnosis. One of advantages of the methods of Chap­

ter 5 for sensor selection is that following these methods, some of the computations 

performed for sensor selection at the lowest (finest) level of diagnosis can be used for 

sensor selections for models at higher levels of abstraction. To our knowledge, the use 
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of model reduction through the Relational Coarsest Partition problem, along with 

proper sensor selection to improve the efficiency of abstraction to develop models for 

multi-resolution fault diagnosis has not been previously studied in the DES literature. 

As mentioned before, the models used at different steps of a multi-resolution 

diagnosis are simpler than the original plant model. There are mainly two reasons 

for this. First in each step of diagnosis, we solve a simpler problem. For instance, the 

first involves detection of fault (and no isolation is done), and the second step involves 

the isolation of fault group. For finding these simpler questions, coarser models of 

plant should be enough. Second, as the diagnosis progresses from step to step, the 

range of possible faults is narrowed, and we can isolate the subsystem in which the 

fault has occurred. At this stage, for isolating the failure mode, either the models of 

the other subsystems can be ignored or a very simplified (coarse) model of the other 

subsystem may be enough. This significantly reduces the plant model needed for 

fault diagnosis in the following stages. As an illustrative example, we have applied 

the proposed method to fault diagnosis in an ozone generator plant. 

We first develop our framework for the single-failure scenario and then discuss 

its extension to the case of simultaneous failures. Furthermore we discuss the issue 

of online reconfiguration of the multi-resolution fault diagnosis (when the plant is 

operational). It turns out the sensor selection is the most computationally expensive 

step of design. We show that the sensor selection algorithms can provide an alternative 

method for sensor selection that does not involve any diagnosability test online and 

hence has significantly lower complexity. This comes at the expense of more offline 

(design stage) computations. 
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In Chapter 7, we present a summary of our results. At the same time, the main 

contributions developed in the preceding chapters are presented along with the dis­

cussion of further research directions. 

Finally, A bibliography lists all of the references made in this thesis. 
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Chapter 2 

PRELIMINARIES 

In this chapter, we briefly review the background material on discrete event system 

and model-based diagnosis, which we will use in the following chapters. The key 

notations and definitions in this chapter are presented along with simple examples. 

2.1 Discrete Event Systems 

It is assumed that the system of interest can be modelled as a discrete event sys­

tem (DES). A DES can be thought of as a dynamic system equipped with a discrete 

state set and an event driven state transition structure. An event in a DES occurs 

instantaneously causing transition from one state to another. There are several ap­

proaches to model a discrete event system. Examples include Finite State Automata, 

Petri Nets, Queuing Networks and Pseudo Codes. In this dissertation, we use two 

well-known DES models, Moore and Mealy automata. 
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2.1.1 DES Model 

A nondeterministic finite-state Moore automaton (generator) is defined as a six-

tuple 

G = (X,V,8,x0,Y,\) (2.1) 

where X, E and Y are the finite state, event and output sets, respectively. XQ 

is the initial state, S : X x E —> 2X (2X denotes the power set of X) the transition 

function and A : X —> Y the output map. 

Obviously, in a Moore automaton, the output is associated with state. An example 

is given in Figure 2.1, where X = {0,1,2}, x0 = 0, E = {a,/3,7}, Y = {a, b}, 

A(0) = a, A(l) = b, A(2) = a. 

Fig. 2.1. A Moore automaton example. 

On the other hand, a nondeterministic finite-state Mealy automaton is defined 

similar to (2.1), except that its output is associated with state transitions. That is, 

A : X x S —> Y is the output map. Figure 2.2 is an example in which, the "Lift" event 

represents the lifting of the receiver, and the "Hang-up" event represents putting the 

receiver back on the hook. "A" is the initial state. Oi, O2, O3, O4 €E Y are output 
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signals sent by the telephone to switch station. For instance, O3 is a trigger signal (a 

pulse) from the phone terminal to the switch station, and A(A, Lifting) — O3. 

Lift/ 
03 Hang-up / O2 

Ring-bell / 04 

Fig. 2.2. A Mealy automaton representing a telephone unit. 

In practice, each of the above models may be suitable for a certain set of ap­

plications. However, for every Mealy automaton, there exists an "equivalent" Moore 

generator (one that, for any given event sequence, generates the same output sequence 

as that of the Mealy automaton) and vice versa. In other words, Mealy and Moore 

automaton have the same modelling power. In the following, we assume that the 

system to be discussed is modelled as a finite state Moore automaton G. 

For any Xi € X, at 6 S with i = {1, 2 , . . . , n} and n > 2, a path X\ ^ ... ^ xn, 

is called a cycle if x\ = xn. The cycle is called a simple cycle if for all xi} Xj (i ^ j) 

in the cycle, x^ 7̂  Xj except for x\ = xn. A path xi ^ ... ^ xn, with n > 2, is 

called a traversal trajectory or direct trajectory if for all «A<7 « J./ 4 J.li . the path with 

i ^ j , Xi ^ Xj. For brevity, in this dissertation, we simply refer to direct trajectory 

as trajectory. 
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Definition 2.1.1 Suppose two states x, x' in G satisfy \(x) ^ X(x') and x' can be 

reached from x through a path along which the output is equal to X(x) (except at x'); 

then we say x' is output-adjacent to x and write x => x' [5j. M 

2.1.2 Timed DES 

If the descriptions of system components include timing constraints, then timed 

models can be used to describe the system. In a timed discrete event system (TDES) 

[23], the sequence of events occurring in the system is described with respect to the 

ticks of a global clock. Formally, a nondeterministic Timed DES (TDES) is defined 

collection 

G = (X,X\J{T},6,X0,Y,\) (2.2) 

where X, EU {r}, Y are the finite state, event and output sets; x0 is the initial state; 

<5 : X x E U {T} —> 2X is the transition function and A : X —> Y is the output map. 

Note that here r represents the "tick" of the global clock. Without loss of generality, 

we assume that the event tick in timed DES does not change the system output. If 

the assumption fails, for example, if x\ —> X2 and X(xi) ^ A(£2), then we add an 

event a and a state x'2 with X(x'2) — X(xi) and replace x\ —> £2 with x\ —> x'2 —* x2. 

After applying the above change to all "tick" transitions that violate the assumption, 

we obtain a TDES in which tick transitions do not change output. It is assumed 

that the TDES is activity-loop-free, that is, it does not contain a cycle of non-tick 

events [63]. 
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Fig. 2.3. A TDES automaton representing a telephone unit. 

Furthermore, we assume G does not have deadlock (terminal) states since the tick 

event happens periodically and, at each state x e X, if no nontick event is enabled, 

the tick should be enabled (8(X,T) ^ 0). 

A TDES model for the telephone unit in the previous example is shown in Figure 

2.3. Note that the outputs are not shown to avoid cluttering the figure. 

2.2 Fault Diagnosis 

2.2.1 Fault Diagnosis Using DES Models 

In this section, we review failure modelling and diagnoser design in a state-based 

framework [5]. Consider the finite-state Moore automaton G in (2.1). Suppose there 

are p failure modes Fi, F2,..., Fp in discrete-event system G. The event set can be 

partitioned into S = E^ U E/, where E/ = {/i,..., fp} is the set of failure events and 

Ejv, the set of non-failure events. As a result of the failure event fi, the failure mode 

Fi develops in the plant. 
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The condition set of system will be /C = {JV, JF\, F2l..., Fp, F i )2, F i i 3 , . . . , -Fp-i,p, 

• • •, -F\,...,p}- It is assumed that X can be partitioned according to system condition. 

In other words, X = XN U (Uf=1XFJ U . . . U XF l p. 

Fig. 2.4. Failure event and failure condition. 

Figure 2.4 shows an example to explain the concepts of failure event and failure 

mode. In this example, the system has two failure events (Ey = {/i , /2}, Ey C E), 

three failure modes (F\, F2 and F1<2)- The Fi (resp. F2) subautomaton of the 

model describes the system behavior when /1 (resp. /2) has occurred. Similarly, F1>2 

describes the system after both fx and f2 have occurred. The state set of the system 

is X — (U?=1XF.) U XN U Xpt 2- By definition, the condition set of the system is 

K = {N,F1,F2,Fl,2). 

Define K : x —-> K. such that for every x G X, K(X) is the condition of the system 

in that state x : K(X) = N if x G XN, K(X) — F if x G XF. Also extend the condition 

map to subsets of X according to K : 2X —>• 2/c with K(Z) = {K(X)|X G 2;}, for any 

zCX . 
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We assume, without loss of generality, that all failure events are unobservable. 

That is, the occurrence of failure does not result in an output change that identifies 

the failure. 

As discussed in the previous chapter, Sampath et al. [4] introduced the concept 

of diagnoser to perform diagnosis. In this event-based approach, the diagnoser can 

be viewed as an extended observer for G which gives an estimate of the current state 

of the system and information on potential past occurrences of failure events. In the 

state-based framework [5], however, the diagnoser takes the output sequence of the 

system (yij/2 • • -Vk) as input and generates at its output an estimate of the system 

state Zk and thus the condition of the system Kk = K ( ^ ) at the time that y^ was 

generated (Fig. 2.5). 

System 
DES 

J 

yiyi---yk 
Diagnoser 

DES 

K,K2...Kk 

Estimate of the 
condition 

Fig. 2.5. System and Diagnoser. 

In [5], the diagnoser for the DES G is defined as a DES denoted by D with: 

D = (Z U {ZQ}, Y, n,z.0, /C, K), where Z U { 0̂}) Y, /C are the state, event and output 

sets of D. z0 := (z0,0) is the initial set, with z0 <E 2X - {0}; Z C 2X - {0}, 

and TX : Z U {z_0} x Y —>• Z is the partial transition function; the output map is 
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K : Z LS {z0} —»• /C. Given state estimate zk) and upon observing yk+i, the state 

estimate is updated according to: 

z1 = zon\-1{{y1})(k = 0) 

zk+1 = ir(zk,yk+l) = {x\X(x) = yk+1 and (3a;' 6 z t : i ' 4 x)} (fc > 1) 

Consider the system G in Figure 2.6(a) with a set of failure events E^ = {07}; the 

output map is: A(l) = A(2) = a, A(3) = A(5) = A(6) = /?, A(4) = A(7) = 5, A(8) = 7. 

XN XF 

J £ 

NF 

1 

'' / 

y 

8 

F 

P 
3,5,6 

NF 

f̂' o^^L 
5 

4,7 

NF 

P 
3, 6 

NF 

a 

1,2 

NF 

(a) System G (b) A diagnoser for G 

Fig. 2.6. A simple example of DES fault diagnosis. 

The diagnoser for G is shown in Figure 2.6(b). Initially, the system state is 

assumed unknown; thus z$ — X. The condition of z0 is uncertain. If an output 

"a" is observed, then the system state must be "1" or "2" and the condition of the 

system will still be uncertain "iV, F". Similarly, if "/3" is observed first, then the state 

must be "3", "5" or "6", and the condition of the state is "iV, F". If "7" is observed 



26 

after "/?", then the state must be "8" and the diagnoser indicates that the condition 

estimate of the system is "i7"'. 

This diagnoser has a cycle {3,6} —> {4, 7} —> {3,6} corresponding to the output 

sequence (35[3, which is called a "F-indeterminate" cycle because the condition 

estimate in the diagnoser cycle is "AT, F" and hence uncertain. Note that there are 

two cycles in G with the same output sequence (36(3 : states 3 — 4 — 3, in the failure 

mode (F), and states 6 — 7 — 6, in the Normal mode (N). The diagnoser cannot 

distinguish between these two cycles. Therefore, if the system is trapped in the faulty 

cycle 3 — 4—3, the diagnoser will not be able to detect the failure. Fault diagnosability 

is reviewed in Section 2.3. 

Since failure diagnosis relies on the output sequence and output-adjacent states, it 

is useful to convert the original system G into the Reachability Transition System 

(RTS) [5] which contains information about the system output sequences in a compact 

form corresponding to G. The RTS corresponding to G is defined to be the transition 

system G = (X,R,Y,X), which has X,Y and A as the state set, output set and 

output map; R is a binary relation R C X x X and (xi,x2) G R if and only if x2 

is output-adjacent to x\ [5]. Figure 2.7 shows the RTS from the original system in 

Figure 2.6. 

From a computational viewpoint, RTS can be computed in 0(|J\T|2 + \X\ • \9\) 

time because a breadth-first search reachability analysis for each x € X can be done 

in C( |X| + |0|) time. Here 6 is the set of transition of G, and \9\ is its cardinality. 

G can be viewed as a modified version of G which contains the information about 

transitions among output-adjacent states in a compact form. 
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Fig. 2.7. Reachability transition system for the system in Figure 2.6. 

The number of the states of diagnoser in the worst case is exponential in the 

number of plant states |X|. Therefore, it might be better to store the reachability 

transition system in memory and perform diagnostic computations online: having 

zk and the output yt+i, use RTS G to compute zk+\ and then update condition 

estimate. This method of online implementation is particularly useful when initial 

state estimate Zo is unknown at the design stage. This is the case in multi-resolution 

diagnosis system, to be discussed in Chapter 6. 

In [5], an equivalence relation on the state set of G based on the Relational Coars­

est Partition problem is used to reduce the RTS G and thus the diagnosis system. 

Specifically, the system state set is partitioned into the blocks such that states in each 

block contain the same information about the present and future estimations of the 

system's condition. Then the resulting equivalence relation is used to reduce RTS G. 

Consider the RTS G = (X,R,Y,X). For every xu x2 € X, let x2 £ R(xi) iff 

(xi,x2) € R, i.e., x\ =$• x2. Let n = {Bly... ,B\n\} be a partition of X, with Bt 

denoting the blocks of IT. The partition -K is said to be compatible with R if and only 
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if whenever x and x' are in the same block Bz, then for any block Bj, R(x) n Bd• ̂  0 iff 

R(x')r\Bj ^ 0. Define f[ be the set of partitions compatible with R. Let ker refers to 

the equivalence kernel of the corresponding map and A denotes the meet operation in 

the lattice of equivalence relations [64]. The set {K 6 ]T> ^ < ker A A ker K] is closed 

under V, the join operation in the lattice of equivalence relations, and therefore has a 

unique supremal element which is the coarsest partition compatible with R and finer 

than ker AAker K. IT* can be used to find a reduced version of G. Let P : X —> X/ir* be 

the canonical projection. The reduced RTS G can be defined [5] as G = (X, R, Y, A), 

where X = X/ir*; for all x\,xi E X, (xi,x2) € R (i.e., Vx € x\,3x' € P~xx2 and 

(x, x') 6 R); and for all a; e X, A(x) = A (a;) for any a; € x. 

Similarly define R : X —> K, according to R(x) = n(x) for any x € x. Since 

7r* < ker A A ker K, A and R are well-defined. The canonical projection of a subset 

2 C X to be P(z) '•= LKMk ^ z } - ^ *s * n e reduced version of G and a diagnoser 

designed based on G with initial state estimate ZQ := Pz0 will generate the same 

condition estimates as that designed based on G [5]. 

2.2.2 Fault Diagnosis Using Timed DES Models 

Let j/12/2 • • • Vk be the output sequence generated by TDES G and tj, the number of 

ticks occurred between y^_\ and t/j (2 < j < k). A (standard) diagnoser [23] based on 

the output sequence y\y2 ... yu and the timing sequence t2 • •. i&, generates an estimate 

of the system state Zk(t) 6 2X — {0} and the condition of the system n(zk(t)), where 

t denotes the number of clock ticks occurred after the last output symbol y^ was 
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generated. Every time a clock tick occurs or a new output is generated, the state and 

condition estimates are updated. 

Since failure diagnosis relies on the output sequences and output-adjacent states, 

it is useful to convert the original system G into a Timed Reachability Transition 

System (Timed RTS) [23] which contains information about the system output se­

quences and the corresponding timing information in a compact form. The timed RTS 

corresponding to G is defined to be the transition system G = (X, Y, T, A), where X, 

Y, A are the state set, output set and output map; T : X x X —> 2N (N = {0,1, 2,...}) 

is the transition-time function. For output-adjacent states x and x", T(x, x") is the 

set of times (in ticks) that it takes on the paths from x to x" with constant output 

(until x" is reached). If x and x" are not output-adjacent, then T(x,x") = 0 by def­

inition. G can be viewed as a modified version of G which contains the information 

about transitions among output-adjacent states in a compact form. 

2.3 Fault Diagnosability 

The example in Section 2.2.1 illustrates the important issues in DES fault diagnosis 

and the notion of diagnosability. Diagnosability is defined as follows [5]. 

Definition 2.3.1 [5] A permanent failure F of system G is said to be diagnosable 

if there exist an integer N > 0 such that following both of the occurrence of failure 

and the start of diagnosis, the failure can be detected and isolated after the occurrence 

of at most N events in the system. • 
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Definition 2.3.2 [5] If the occurrence of a failure mode Ft can be directly concluded 

from the generation of an output symbol y G Y, then y is called Fi-indicative. In 

single-failure scenario, y is Fi-indicative i/A_1({j/}) C XFi. • 

A state z of the diagnoser corresponding to a state estimate for the plant is called 

Fi -certain if K(Z), the corresponding estimate of the system's condition, indicates 

that the failure has occurred. A state z of the diagnoser is defined as Fi -uncertain 

if K(Z), the corresponding estimate of the system's condition is consistent with the 

occurrence of Fi but, doesn't conclusively indicate that the failure has occurred. In 

single-failure scenario, z is Fi -certain if K(Z) = {Fi}, and Fj-uncertain if {Ft} C K(Z) 

but K(Z) ^{Fi}. 

Definition 2.3.3 [5] Suppose zl,... ,zm is a cycle of Fi -uncertain states of the diag­

noser. The cycle is called Fi -indeterminate if there exist I > 1 and x{, x\,..., xj G 

z-7, for all 1 < j < m such that xj, G XFi for all 1 < j < m, 1 < k < I and 

x\, x\,..., x™, x\,..., x™,..., xj,..., x™ form a cycle in the RTS. • 

Intuitively, a failure would not be diagnosable if after it occurs, the system stops 

generating new output symbols (unless the last output symbol is failure indica­

tive). Also, a failure would be undiagnosable if after its occurrence, the system can 

generate a periodic output sequence that throws the diagnoser into a cycle of failure 

uncertain states, (i.e., failure indeterminate cycles). For instance, in the example in 

Section 2.2.1, {3,6} —> {4,7} —> {3,6} is an .F-indeterminate cycle and therefore 

F is undiagnosable. Theorem 2.3.1 provides necessary and sufficient conditions for 

diagnosability for permanent failures in single-failure scenarios, assuming z0 = X. 
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Theorem 2.3.1 [5] 

Assume single-failure scenario and z0 = X. A permanent failure F, is diagnosable 

if and only if 

1. From every x G Xpi} there is (at least) one transition to another state in XFi 

unless X(x) is Fi-indicative. 

2. There is no cycle in XFi consisting of states having the same output symbol 

unless the output symbol is Fi-indicative. 

3. There are no Fi-indeterminate cycles in the diagnoser. • 

As for the fault diagnosis in the timed DES, we have the following definition. 

Definition 2.3.4 A permanent failure mode Ft is time-diagno sable if there exists 

an integer % > 0 such that following both the occurrence of the failure and initializa­

tion of the diagnoser, Ft can be detected and isolated after the occurrence of at most 

Ti ticks. • 

Similar necessary and sufficient conditions for time-diagnosability are given in [23] 

which involve F-indeterminate cycles of diagnosers. Since the conditions for diag-

nosability involve diagnosers, their verification requires exponential computational 

complexity in the number of system states. 
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Chapter 3 

PROBLEM FORMULATION 

In this chapter, we provide a brief description of the problem and outline of discussion 

in the rest of the thesis. A running example involving an ozone generator plant is 

also introduced. 

Suppose that the plant can be modelled as a nondeterministic finite state Moore 

automaton (FSMA) G = (X, E, 5, x0, Y, A) as described in Equation 2.1. This model 

describes the behavior of the system in both normal and faulty situations. 

We assume that the failure modes are permanent; in other words, after the 

occurrence of a failure, the failure mode remains in the plant indefinitely. Note that 

simultaneous failures are assumed possible. For example, in a plant with two failure 

modes Fi and F2, the plant can be in one of four conditions: TV (normal), Fi,F2, Fit2, 

where -F1)2 refers to the simultaneous occurrence of both failures. 

Fig. 3.1 shows the state transition graph of a plant with permanent failure modes. 

Each circle corresponds to a block in the partition of the plant state set X based on 

plant condition. We observe that the transition graph of a plant with permanent 

failure modes has a tree structure with N (normal) condition as the root. One of the 

consequences of this structure is that G cannot have a cycle with states in more than 
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a single condition. For instance, there is no cycle whose states are in Xpx and Xp12. 

As a result, the set of cycles of G is the union of cycles of individual conditions (i.e., 

individual blocks in Fig. 3.1). 

Fig. 3.1. System Structure with Permanent and Simultaneous Failures. 

Remark 3.0.1 We assume the failures are permanent for simplicity. In the case 

of non-permanent failures, since the plant may not dwell in the faulty condition 

long enough, the detection of non-permanent failures can be done using the event-

based approach [4] to detect the occurrence of non-permanent failures. Alternatively, 

following Remark 1 of [5], we can convert the problem of detection of occurrence of 

failure event to a problem of detecting the presence of a permanent fault. Therefore, 

in this dissertation, without loss of generality, we assume that all failure modes are 

permanent. • 

Now in order to detect and isolate the failures in such dynamic systems and man­

age the computational complexity, we introduce an algorithm which uses a sequence 

of models of the plant, with increasing resolutions, to narrow down the range of pos­

sible diagnosis step by step and to finally isolate the failure. In this way, the original 



34 

problem of failure diagnosis is broken down into a sequence of simpler problems. This 

approach is similar to Branch and Bound techniques used in Operations Research. 

In this chapter, we describe the proposed Multi-Resolution Diagnosis techniques 

and some design issues briefly. The details will be provided in future chapters. 

Let us assume that the failure conditions are grouped into / failure groups T^, T^, 

. . . , J7®. Failure conditions can be grouped, for instance, based on the subsystems 

that the failures occur. In other words, J7^ contains the faulty conditions that 

may develop in subsystem 1 (and so on). Failure grouping will be discussed in 

more detail in Chapter 6. Let F^ ,... Fpt denote the faulty conditions in group 

jr(i). -pd) = {F^\..., F$} (1 < i < I). Therefore, the set of failure conditions 

and groups can be represented in the form of a hierarchy shown in Fig. 3.2. Here 

T = l 4 = 1 ^ ( i ) = {F?\ . . . , F£\ F^\ . . . , F$} is the set of faulty conditions. In Fig. 

3.2, N = {N}, where N is the normal condition. The multi-resolution diagnosis pro­

posed in this thesis is designed based on grouping of conditions in Fig. 3.2. Note that 

the three-level failure hierarchy in Fig. 3.2 can be replaced with hierarchies having 

more than three levels. In this thesis, for simplicity, we present our results based on 

the three-level hierarchy in Fig. 3.2. 

Fo) ... Fu> 

Fig. 3.2. A multi-resolution diagnosis example. 
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In the multi-resolution diagnosis system proposed in this dissertation, a diagnoser 

is designed to detect faulty operation. In other words, the diagnoser determines 

whether the condition of plant is N or T. Let Kj = {M, T} denote the level-one 

condition set. Once a faulty behavior is detected, another diagnoser is used to iden­

tify the faulty group the plant's condition belongs to. We shall refer to this diagnoser 

and the set K.2 — {F^-, • • • ,-7""^} as the second-level diagnoser and condition set. 

Once the faulty group is identified as, say J7^, then a third-level diagnoser is invoked 

to isolate the faulty condition of the plant. Thus, K3 = T^ (1 < i < I) will be the 

third-level condition set. 

The proposed diagnosis method requires plant models at various resolution. We 

obtain these models using model reduction based on the solution to the Relational 

Coarsest Partition problem. For each diagnosis step, a minimal sensor set is chosen 

to have a coarser output map and hence to improve the efficiency of model reduction. 

For sensor selection, in turn, we need efficient algorithms for testing diagnosability. 

Therefore, in this thesis, we start our work by developing efficient algorithms for 

testing diagnosability and sensor selection. Then we will examine multi-resolution 

fault diagnosis. 

We use the following as a running example in this thesis 1. 

Example 3.0.1 Consider the ozone generation plant in Fig. 3.3 in which oxygen 

is converted to ozone using a high-voltage power supplied by a Power Supply Unit 

(PSU). A cooling system is used to cool the generator since ozone decomposes at 

high temperatures. The system also contains an oxygen inlet valve (Vi), ozone outlet 

1This physical system is adopted from [62] with some modifications to be explained later. 
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valve (V2) and cooling water valve (V3). The set of sensors consists of flow sensors 

Cfi and Cf2, pressure sensors cpl and cp2, and the ozone concentration analyzer cc. 

0 2 

CTRQG 

V, 
Cn Cp 

-H><h®-®«-

PSU 

cc c 
o3 

Generator 

Cooling 
Water SupplyT 

p2 

[>< 

Cooling 
Water Return 

0 3 

Fig. 3.3. An Ozone generator plant. 
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Open V2 

Close V2 

Fig. 3.4. Valve 1 and 2. 

The power supply unit (Fig. 3.5) has two operation events: "Run PSU" and "Stop 

PSU"; one failure "PSU fail" and three corresponding states: "NS"(normal stop), 

"NR" (normal run) and "F" (failed). The ozone generator is modelled with two 

states " OsL" (ozone low) and " 03N" (ozone normal) (Fig. 3.5). 
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Run PSU 
Stop PSU 

Fig. 3.5. Power supply unit and ozone generator models. 

We consider the following six failure modes in this water treatment system: V\ 

stuck-closed (F\), V2 stuck-closed (F2), V2 stuck-open (F3), power supply unit (PSU) 

failed (F4) and V3 stuck-closed (F5), V3 stuck-open(FQ). For brevity, we assume single-

failure scenario. 

The model ofVi and V2 are shown in Fig. 3.4. "NC", "NO", "SC", "SO" stand 

for Normal-Closed, Normal-Open, Stuck-Closed and Stuck-Open. The model ofV3 is 

similar to V2. 

The system has a controller CTROG to manage the operations. The controller 

CTROG sends the start up and shut down commands to rotate the ozone generation 

system in and out of service on a periodic basis. The start up sequence is : open V3 —> 

open V\ —>• open V2 —>• Run PSU. After a certain amount of time, the PSU is stopped 
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and once the ozone concentration becomes low, the valves are closed in the order V-j, 

Vi andV3 (Fig. 3.6). 

Open V, Open V2 

C T R Q G 

Fig. 3.6. Controller model. 

Further details about this system can be obtained in [62]. The condition set of this 

plant is IC = {N, Fi, F2, F3, F4, F5, F6}. Now we can demonstrate our problem through 

this physical example: Our objective is to first detect the occurrence of failures. If a 

failure occurs, then we attempt to narrow down the possible range of possible failures. 

For instance, we may wish to determine if the failure is in cooling water pipeline, in 

oxygen supply pipeline or in power supply unit. Once we find this failure group, we 

finally isolate the failure mode within the group. 
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Chapter 4 

DISCRETE EVENT SYSTEM MODEL 
AND DIAGNOSABILITY 

In this chapter, we present two polynomial-time algorithms for testing failure di-

agnosability in untimed and timed discrete-event systems in a state-based framework. 

The test for timed discrete-event systems, in particular, uses the information about 

the timing of events (represented in the timed transition graph of the timed system) 

gathered in the set of transition-time sets of the timed Reachability Transition System 

(timed RTS) to verify diagnosability. Compared with other polynomial diagnosability 

tests developed for untimed systems and adapted for timed systems, this new test 

does not reduce the worst-case computational complexity; however, as shown using 

examples, if time RTS has been computed, say for diagnoser design following [5], the 

test may considerably reduce the computations of testing diagnosability. Time RTS 

can be efficiently computed when the transition-time sets can be represented as the 

union of a bounded number of intervals. Sufficient conditions are provided under 

which the transition-time sets have the aforementioned bounded representation. 
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4.1 Testing Diagnosability In Untimed DES 

In this section, we present a new set of necessary and sufficient conditions for 

diagnosability of permanent faults in fault scenarios for untimed DES. Based on 

these conditions, we also construct a test for diagnosability which has polynomial 

time complexity 

Assume that the system to be diagnosed can be modelled as a nondeterministic 

finite-state Moore automaton G — (X, E, 6, x0, Y, A) where X, E and Y are the finite 

state set, event set and output set, respectively. x0 is the initial state, 5 : X x E —> 2X 

the transition function and A : X —> Y the output map. This model describes the 

behavior of the system in both normal (N mode) and faulty situations (F modes). 

We assume that the plant has n failure modes i<\, F 2 , . . . , Fn. The event set can 

be partitioned into E = T,N U E/, where Ey = {/x, . . . , / „ } is the set of failure 

events and EJV, the set of non-failure events. As a result of failure event fi, failure 

mode Fi develops in the plant. Simultaneous failures are assumed possible. For 

example, in a plant with two failure modes i*i and F2, the plant can be in one 

of four conditions: Abnormal), Fi,F2,Fiv2, where F l j 2 refers to the simultaneous 

occurrence of both failures. Let /C denote the condition set and T the set of faulty 

conditions. Furthermore, let Fi denote the set of faulty conditions in which failure 

mode Fi is present and Ti — J7 — Ti. Therefore, for instance in a plant with two 

failure modes Fx and F2, we have K = {N,F1:F2,Fi^}, T = {F^F2,Fli2}, Fi = 

{Fi,F1)2}, and F\ = {F2}- It is assumed that the finite state set can be partitioned 

according to system condition. For example, for the case of two failure modes (n = 2), 

X = XN U Xp1 U XF2 U ATp12. The set of states corresponding to condition set 
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T (resp. T{) is denoted by X? (resp. X^). The condition map K : X —• /C 

returns the condition of each state. This map can be extended to subsets of X: for 

z C X, n(z) = U{K(X)\X <E Z}. 

To develop a test for diagnosability, we begin with introducing a few definitions. 

Let T = {Ft | i = 1,2,... ,p} be the set of failure modes. For a failure mode Fi, 

Xp. := (Jj=1 XF . Fi represents all failure modes except Fi in the system. 

Definition 4.1.1 The output language L0(G,x) generated by G from the state 

x £ X is defined as 

L0(G, x) := {2/12/2 • • • Vm Q y+ I 2/1 = A(x), 3xi, x 2 , . . . , xm G X : xx = x, 

V 2 < i < m : Xj_i => Xj, and j/j = A(XJ)} 

• 

L„(G,x) represents the set of all possible (finite) output sequences generated by G 

starting from state x. L0(G,x) is defined similarly. Obviously, L0(G,x) = L0{G,x). 

By Definition 2.3.2 in Section 2.3, in a single failure scenario, y is i^-indicative iff 

\-\{y})QXFi. 

Let GFi denote the sub-generator of G consisting of the states in XFi only. Simi­

larly, let GN and GNyFi be the sub-generators of G corresponding to the states in XN 

and XF. U X^ (The initial states of GFi, GN and GNFi are left undefined.). The fol­

lowing theorem provides necessary and sufficient conditions for diagnosability that, as 

we will see later, can be verified in polynomial time. The diagnosability test resulting 

from this theorem is essentially the equivalent of the test in [31] for the state-based 

framework of [5]. 
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Theorem 4.1.1 Assume single failure scenario and ZQ = X. A permanent fault Fj 

is diagnosable if and only if 

1. For any x € XFi, there is at least one transition to another state in XFiunless 

X{x) is Fi-indicative; 

2. There is no cycle in XFi consisting of states having the same output unless the 

output symbol is Fi-indicative; 

3. For any x £ XFi, and x' e X^ U (L)jjaXFj) satisfying X(x) = X(x'), we have 

{s\s e L0(GNtFvx')nL0(GFi,x), \s\ > \X\2} = 0 

• 

Condition (1) states that there should be no deadlock state in XFi with no tran­

sition out of the state unless the output in that state can be generated only when 

Fi has occurred. In [5] such output is called Fj-indicative. Similarly, condition (2) 

states that there should be no cycles with constant output in XFi unless the constant 

output is Fj-indicative. Finally, condition (3) states that there should be no common 

output cycle in XFi and X — XFi = XN U XF. (otherwise Fj cannot be distinguished 

and hence will be undiagnosable). 

Proof 

(Necessity) 

Conditions (1) and (2) guarantee that after F, occurs, if the output sequence 

terminates, it will do so in an F,-indicative symbol. If one of these conditions does 

not hold, the output sequence can end in a non-F^-indicative output. If the fault 
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diagnosis system is initialized after this non-.^-indicative symbol is generated and 

afterwards no new output is generated, then the failure will not be detected and 

isolated. This shows the necessity of conditions (1) and (2). 

Suppose conditions (1) and (2) hold. We show that if condition (3) does not 

hold, the diagnoser will have an Ft- indeterminate cycle, and therefore, by Theorem 

2.3.1, Fi is undiagnosable. If condition (3) does not hold, then for some x e XFi 

and x' € XN U ( U ^ J X F J . ) with X(x) = A(x'), there exist s = j/i?/2 •••Vq (Q — \X\2), 

with s £ L0{GNf0x') Pi L0{GFi,x). Thus, there exist Xi,x\ (i = 1 , . . . ,q) such that 

Xi € XFi, x[ G XN U XFi , with xi = x, x\ = x', A(x») = A(x9 = y» (1 < i < q), and 

Xi => Xj+i, x\ => x'i+l (1 < i < q — 1). The corresponding state transitions in GFi and 

G^f. can be represented as follows: 

GFi X = Xi => X2 => . . . Xq 

(*N,Fi X = Xx=> X2 => . . . Xg 

Output (j/!) (j/2) (j/g) 

Since |XFi | x |Xjv U I ^ J < Zcm(|XFi|, |XJV U I f . | ) < |X|2, there exist m, k, 

with 1 < m < k < |X|2 such that xm — Xk, and x'm = x .̂. Therefore, there exist 

two cycles, one in GFi and the other in GNip. having the same output ym .. .yu-i-

Thus, there are two cycles in G: (1) C\ in XFi (starting and ending in xm), and (2) 

C2 in XN U XFi (starting and ending in x'm), such that if the system G evolves on 

these cycles, it will generate the same output sequence ym ... yu-i- Now if the system 

evolves on C\ and when the system is in xm, the diagnoser is started, then for all 

3, 1 < 3 < k — m + 1, Zj (the state estimate after observing yj) will include both 

Xj+m-i and x'j+m_l (ZJ D {XJ,X'J}). And more generally, for j > 1, Zj will include 
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£j*+m_i and x'jt+m_1 with j* = j mod (k — m). This shows that the uncertainty in 

determining the mode of system (between Fj and the rest of modes N, Fj (j ^ i)) will 

never be resolved. More formally, the diagnoser states reachable through the output 

sequence ym ... yk-\ and its repetitions will be Fj-uncertain. Therefore, the diagnoser 

has an Fj-indeterminate cycle and Fj is not diagnosable. 

(Sufficiency) 

Let z\ denote: a) the state of the diagnoser after the diagnoser is initialized and 

the first output is read if the diagnoser is started after the failure; or b) the state of 

the diagnoser immediately after the failure event if the diagnoser was started some 

time before the occurrence of the failure F,. One of the following cases will happen. 

1. No new output is generated and the diagnoser remains in z\ indefinitely. Then 

by conditions (1) and (2), y\ = X(x) (with x € z\) is Fi -indicative, and thus Z\ 

is Fj-certain. 

2. The system generates a finite number of output symbols and then stops gen­

erating new outputs. Similar to case (a), by conditions (1) and (2), the last 

output must be Fj-indicative resulting in Fj being detected and isolated. Note 

that as shown in [5], if a failure can be diagnosed, it is diagnosed in a bounded 

number of events. 

3. The system generates an infinite output sequence. It follows from condition 

(3) that for k > \X\2, zu includes states from XFi only and therefore is Fj-

certain. Thus, the failure Fj will be diagnosable. Note that this implies that 

the diagnoser can not have Fj-indeterminate cycles. 
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Conditions (1) and (2) ensure that in the faulty mode Fit if the output sequence 

terminates, it will do so in an Frindicative output symbol. Condition (3) states that 

there should be no cycles with identical output sequences in sub-generators G^ and 

Through the proof of Theorem 4.1.1, it easily shows that the conditions in Theo­

rem 4.1.1 are equivalent to the conditions in Theorem 2.3.1. However, Theorem 4.1.1 

presents a direct polynomial procedure and avoids constructing the diagnoser. 

Next we examine the verification of the conditions in Theorem 4.1.1 and show 

that it can be done in polynomial time. This yields a test for diagnosability which, 

similar to those in [31] and [32], has polynomial complexity. 

It can be seen that verifying conditions (1) and (2) involve finding cycles, and 

therefore has a time complexity of C?(|X| + \9\), where 0 is the set of transitions of G. 

Since in the nondeterministic automaton, \9\ < |E| • |X|2, the time complexity will be 

o(\E\.\xn 

Next we examine verifying condition (3). Suppose x in G^ is fixed, and x' could 

be any state in GNp. with X(x) — \(x'). Take x and x' as the initial states of GFi 

and GNp. , respectively. We need to find output cycles that are common to Gpt and 

GNp.. One way to find common output sequences, and thus cycles, is to first convert 

G to an equivalent nondeterministic generator M_G in which outputs changes in G 

are represented as transitions. Formally, for the RTS G = (X,R,Y,X), we construct 

a non-deterministic generator M_G — (X U X', Y, rj, x'0), where X U X', Y, rj, x'0 are 

the state set, event set, transition function, and initial state. The initial state x'0 ^ X 
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and Xf\ ^ XQ IS the only transition out of x'0, representing the generation of output 

A(x0) in G. For any state x € X that is not reachable in G from any state (i.e., 

X(x) 

R~1(x) = 0), we define a new state x' € X' and add the transition x' —> x to 

the transitions of M-G. X' consists of all such x' and x'0. The set of transitions 

between the states of M-G consists of those mentioned above from states in X' to 

the corresponding states in X, and the transition of G. Thus, the transition function 

j] : (XUX1) xY -> 2XUX' satisfies: rj(x, y) = {x'\x => x', A(x') = y} for x e X. 

Let X'F. = {x' € X'\3x 6 XFOJ1(X',X(X)) = {x}} and X'NP( = {x1 € X'\3x e 

XNF.,r)(x', X(x)) = {x}}. In other words, X'F and X'NF are those states in X' from 

which there are transitions to XFi and XN)F.. Now let M_Gpi and M_GNFi be the 

sub-generators of M_G corresponding to states Xpt U X'F and -ATJV.F, U X'N F . 

For now, we leave the initial states of M-Gpi and M_GNF. undefined. M_Gpt 

and M-GNfFi represent output changes in Gpt and GNFi, and we use them to verify 

condition (3) in Theorem 4.1.1. Let x € XFi and a;' € X^ U (U^X^. ) with A (a;) = 

A(x'), as in condition (3). Furthermore, let M-GFi(x) and M-GNtF.(x') denote the 

reachable sub-generators of M-Gpi and M-GNjFi with x and x' as their respective 

initial states. Now, condition (3) is satisfied if and only if there are no cycles with 

identical output sequences in GF{ and GNFi, which, in turn, is equivalent to the 

absence of cycles in the product M-Gp^x) x M~GNFi(x'). 

Alternatively, one can compute M^Gpi x M_GNFi and then obtain M-GF^X) X 

M_GNFi{x') as the sub-generator of M _ G F S X M-GN^F. reachable from the state 

(x,x'). 
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As mentioned in Chapter 2, G and therefore, M_GFi and M^GNFi can be com­

puted in 0 ( |X | 2 + \X\ - \8\) time. G has |.R| transitions, and thus M_GFi x M_GNtp. 

can be computed in 0( |X | 2 + \R\2) time. M~GFi(x) x M^.GNFi{x') can be computed 

in 0(\X\2 + |i?|2) (since M_GFl and M_GN,Fi each has 0( |X | ) states and 0(\R\) 

transitions). M_GFi x M_GN<F. will have C(|X|2) states and 0(|i?|2) transitions. To 

verify condition (3), we have to find the cycles of M_GFi x M^GN^F. which can be 

done in C?(|X|2 + \R\2) time. Therefore, the total complexity of verifying condition 

(3) is e>((|X|2 + \X\ • \0\ + \R\2). Since \R\ < \X\(\X\ - 1) and 0\ < |S | • \X\2, we 

obtain C(|X|4 + |S| • |AT|3) as the complexity of verifying diagnosability of Ft. 

Remark 4.1.1 Compared with the tests proposed in [5], our procedure is more com­

putationally economical because verifying diagnosability using diagnosers in the worst 

case has exponential time complexity in the number of system states (that is, 0(2^x^)). 

[31] and [32] propose polynomial algorithms for testing diagnosability with complex­

ities 0(\X\A) and (9(|X|2) in the event-based framework of [4]- The test in [31] is 

applicable to nondeterministic systems. The test proposed here in Theorem 4-1-1 is 

essentially the equivalent of the test in [31] for the state-based framework of [5]. Both 

tests have complexities of 0{\X\A). The test in Theorem 4-1-1 forms the basis for 

a new test for fault diagnosability in timed DES which will be discussed in the next 

section. • 

Theorem 4.1.1 can be easily extended to the cases involving simultaneous failures. 

Let us consider two simultaneous failures. Suppose we have p failure modes Fi,..., Fp. 

Let Fjk denote simultaneous occurrence of failures Fj and Fk and let T — {Fi\i = 

1,2,.. .p}U{Fjk\j, k = 1,2,... p, j < k}. The order of indices in Fjk is not important. 
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For simplicity we have assumed the indices are in increasing order (j < k). Thus 

the condition map is K = {N} U {Ft\i = 1,2, ...p} U {Fjk\l < j < p, 1 < k < 

Pij < k}. Consider a failure mode Ft, let G^ and Gjvp. be the sub-generators 

corresponding to the states in XFi U ({^i<j<pXFij) U (Ui<j<jXFjJ) and the rest of 

system states, respectively. With the above notation, the conditions of Theorem 

4.1.1 for diagnosability of F» remain the same for this case. The theorem can be 

similarly extended to the cases when we have more than two simultaneous failures. 

Remark 4.1.2 Theorem 4-1-1 holds if instead of the RTS G, the reduced RTS GR is 

used. • 

Example 4.1.1 A system G with two single faults Fi,F2 is shown in Figure 4-1-

The output set is Y = {a, b, c, d}. The failure events are shown by dashed lines. 

Fig. 4.1. A system G with two single failures Fi,F2. 

Suppose that we want to check the diagnosability of the fault mode F\. Obviously, 

condition (1) and (2) of Theorem 4-1-1 are satisfied. 
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a® 

Fig. 4.2. ^(Reachability Transition System (RTS) of G). 

The Reachability Transition System (RTS) G is shown in Figure 4-2. XFl = 

{4,5,6} and XNFl = X — XFl = {0,1,2,3,7,8,9}. Define sub-generators GFl and 

GN,FX °f G corresponding to the states in XFl and XN^Fl. Then the output cycles in 

GFl are: bcbc..., whereas the output cycle in GNFl is bcebce ... and bdcbdc.... There­

fore, there is no common output cycle in these two sub-generators and condition(S) 

of Theorem 4-1-1 holds. 

A more efficient way of verifying condition (3) of Theorem 4-1-1 is as follows. 

We can convert G into an equivalent generator M-G representing output changes 

as events (Figure 4-3)- The sub-generators M_GFl and M-GNFl are also shown in 

Figure 4-3. Note that in the resulting finite state machine, we have added an extra 

state 0' before initial state 0 because we should convert the first output signal to event. 

State 6' has been added for a similar reason. 
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Fig. 4.3. Mg, MGp and M6 F\ 

Let us verify condition (3) for states x = 4, and x' = 1. As discussed before, we 

have to form the parallel product of two M_generators M _ G F 1 ( 4 ) and M^GNtFl(l). 

If there is at least one cycle in the resulting system, condition (3) is not satisfied. For 

this specific example, the result which is shown in Figure 4-4 contains no cycles. We 

can repeat this procedure and verify that condition (3) is satisfied. Since conditions 

(1) and (2) are also satisfied, F\ is diagnosable. 

(C) -©" <S) 

Fig. 4.4. Parallel product of M6p (4) and M& (1). 

4.2 Testing Diagnosability In Timed DES 

In this section, we discuss a polynomial test for time-diagnosability. Let us con­

sider a non-deterministic Timed DES (TDES) [11] G = (X, E U {T},8,X0, Y, A) 
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where X, S U {r}, Y are the finite state, event and output sets, x0 is the initial state; 

5 : X X E U { T } —> 2X is the transition function and A : X —> Y is the output map 1. It 

is assumed that the TDES is activity-loop-free, that is, it does not contain a cycle 

of non-tick events [11]. Assume p failure modes, Fi,..., Fp, and X = XArU(Uf=1Xpi). 

While it is possible to adapt the procedures for verifying diagnosability in untimed 

DES, such as those given in [31,32] or the procedure in Theorem 4.1.1 in the previous 

section, here however, we develop an alternative test for diagnosability specifically 

for timed DES based on timed RTS G. Timed RTS may be considered as a modified 

version of the TDES in which the timing information represented in timed transition 

graph of the TDES has been gathered and compiled in the transition-time function 

T(x,x") (The transition-time function was defined in Section 2.1.2). In [23], it is 

shown that using timed RTS to construct the diagnoser may significantly reduce the 

size of the diagnoser. In this dissertation, we show that using timed RTS may also 

significantly reduce the computations of verifying diagnosability. 

The analysis of computational complexity is included in this chapter. We show 

that the proposed test becomes particularly efficient (compared with existing meth­

ods for untimed DES) when the transition-time sets are either bounded or can be 

represented as the union of a bounded number of intervals. 

4.2.1 Diagnosability Test 

We start by defining time sequences associated with output sequences. 

1 Without loss of generality, we assume the event "tick" in timed DES does not change the system 
output. In general, if the assumption fails, we replace the tick transition with two consecutive 
transitions, a new state and event. For example, if x\ —> x2 and X(xi) ^ A(#2), we introduce an 
event a and a state x'2 such as x\ —> x2, A(xi) = A(ar2), x2 —» x2. 
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Definition 4.2.1 Consider x € X and an output sequence s = y\... yn (n > 2), with 

s G Lo(G,x). The set of time sequences TS(s,x,G) is defined according to 

TS(s, x, G) := {tit2 • . • £„_i | 3XJ € X (1 < i < n) : xi = x, Xi =̂> xi+i, 

U e T(xi,Xi+\) (1 < i < n— 1), andyi = A(x«) (1 < i < n)} • 

Let G^ denote the subgenerator of G consisting of the states in XFi only. Sim­

ilarly, let GN and GN>Fi be the subgenerators of G corresponding to the states in 

XN and XN U XFi (The initial states of GFi, GN and GNF. are left undefined.) The 

subgenerators of G, GFi, GN and GN<Fi, are defined similarly. Output languages and 

time sequences for G v̂, GFi, GN F , GJV, GFi and GN F are defined similar to those of 

G. 

Define Cyc(XN), Cyc(XFi) and Cyc(XF.) as the cycles (including the self-loops) 

of constant output in Gjv, GFi and GF. and 

\{Cyc{X^)) := {y € Y \ 3x : x is a state in a cycle in 

Cyc(XN) and y = A(x)} 

A(Cj/c(Xfj)) and A(Gyc(Xp.)) are also defined similarly. 

Furthermore, let 

T^a; := max.^ I»£ i{maxT(x, a;") | T(x,x") ^ 0 and supT(rE,x") < oo} 

^max is the longest transition-time an output change can take between any two states 

x,x" with a finite transition-time set T(x,x"). 
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Remark 4.2.1 Consider a state x 6 X. Suppose there are no cycles with constant 

output y = X(x) that are reachable from x using a path with constant output y = \{x). 

Then (i) for some x' £ X, x => x' and (ii) for all x" € X with x => x", we have 

swpT(x,x") < oo. Now if at some point, the plant G is in state x, then the next output 

symbol will be generated before Tmax + 1 ticks of clock. The above interpretation of 

Tmax will be used in the proof of Theorem 4-2.1. • 

Theorem 4.2.1 provides necessary and sufficient conditions for diagnosability. These 

conditions form the basis of the diagnosability test (for timed DES) presented in this 

thesis. 

Theorem 4.2.1 Assume single-failure scenario and ZQ = X. A permanent failure Fi 

is diagnosable if and only if we have the following: 

1. X(Cyc(XFt)) n (X(Cyc(XN)) U \{Cyc(XPi))) = 0 

2. If x € Xpn and x' € XJV U (Uj^iXp^ with \(x) = \{x'), then for any s € 

L0(GN}Fi,x') fi L0(Gpi,x) with \s\ > \X\2, we have 

TS(s,x',GNiFi)nTS(s,x,GFi) = ®. 

Proof 

Proof (Necessity) 

If condition (1) does not hold, then there exist two cycles, one in Cyc{XFi) (say 

C) and another in Cyc(Xpf) U Cyc(XFi) (say C) having the same output. If the fault 

diagnosis system is initialized when the system evolves on C, then no new output will 

be generated and the system state estimate will include states in C and C and as a 

result, the fault F, will be undiagnosable. This shows the necessity of condition (1). 
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Suppose condition (1) holds. If condition (2) does not hold, then for some x € XFi 

and x' e XN U (Uj^Xp^ with X(x) = A(x'), there exists s = 2/12/2 • • -Vq (q > | ^ | 2 ) , 

with s G L0(GNyF.,x') C\L0(GFi,x) such that T5(s,x' ,G' J v^) n TS'(s,a;,G'Fi) 7̂  0. 

Thus, there exist x,, x\ (i — l,...,q) such that Xj G XFi) x[ G Xjy U Xp., xi = re, 

xi = x', A(x») = A(x.) = 2/j (1 < i < q), and X; => x m , x̂  => x.+1, T(xi,xi+1) f] 

, ̂ +1) 7^0(1<2<<Z — !)• The corresponding state transitions in GFi and G^,^ 

can be represented as follows: 

GFi : x = x\ => x 2 =4> . . . xq 

LJ jy p. '• X == X^=r" X2 —-r . . . XQ 

Ouipitt : (2/1) (2/2) (2/9) 

Since \XFi\ x |X/v U I ^ J < \X\2, there exist m,/c, with 1 < m < k < \X\2, 

such that xm = X& and x'm = x'k. Therefore, there exist two cycles, one in GFi and 

the other in GNF. having the same output ym... yk-i and the same time sequences 

tm,...tk^i (tj G T(xj,Xj+i)r\T(x'j,x':j+1), m<j<k — l). Thus, there are two cycles 

in G: (1) C\ in XFi (starting and ending in xm), and (2) C2 in X^ UXpt (starting and 

ending in x'm) such that on these cycles, the system can generate the same output 

sequence ym ... 2/fe-i with the same time sequence tm,... 4 - i - Now if when the system 

is in xm, the diagnoser is started and after this, the system remains on Ci, then for all 

1 < j < k — m+1, Zj (the state estimate after observing yj) will include both Xj+TO_i 

and x'j+m_1. And more generally, for j > 1, Zj will include Xj*+m_i and x'^+m_1 with 

j * = j mod(k-m). This shows that the uncertainty between Fi and the rest of modes 

N and F/s (j 7̂  i) will never be resolved. In other words, the states of the diagnoser 

that are reachable through the output sequence ym ... yk-i and its repetitions will be 

Fj-uncertain. Therefore, Ft will not be diagnosable. 
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(Sufficiency) 

Let z\ denote: (i) the state of the diagnoser after the diagnoser is initialized and 

the first output is read if the diagnoser is started after the failure Fj, or (ii) the state 

of the diagnoser immediately after the failure event Fi if the diagnoser is started some 

time before the occurrence of the failure Fj. Let 2/12/22/3 • • -be the output sequence 

generated by the system. As for the output sequence, one of the following cases 

happens. 

a) No new output is generated and the output remains y\ = \{z\). If z\ is Fi 

-certain, then the diagnoser state estimate will remain Fi -certain for the future. 

Suppose zi is not Fi -certain. Since no new output is generated, then G has a 

cycle in XFi with output y\. By condition (1), there is no cycle in XN U (Uj^Xp.) 

which generates the same output. Therefore, by Remark 4.2.1, after the maximum of 

Tmax + 1 ticks, the state estimate provided by the diagnoser, say z', will not contain 

states from XN U (Uj^-X^) and will be Fi -certain; in other words, K(Z') = {Fi}. 

b) The system generates an infinite number of output symbols yty2 If z\ is 

Fj-certain, then future diagnoser state estimates will be Fj-certain and the fault is 

diagnosed. Suppose z\ is not Fj-certain. Let z2 be the state estimate after 2/2 is 

generated. If z'2 is Fr certain, then the fault is diagnosed. If z'2 is not Fj-certain, then 

there exists x € Xpt and x' € XN U (U^-X^ ) with x, x' & z'2 (Note that z\ does not 

necessarily include a state from XFa even if z\ is not F r certain.) Let s = 2/2 • • • 2/fe 

and z'k be the state estimate immediately after yk is generated with k = \X\2 + 1. 

Then, we have the following cases: 
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1. s ^ L0(GNpox') n L0{Gpvx). It follows that z'k will not include any state 

x' € XN U (Uj^iXFj), and therefore it is Frcertain; i.e., the failure Ft will be 

diagnosed. 

2. s G L0(GNtFi,x') n L0(Gpvx). Then it follows from the condition (2), that the 

time sequence sets TS(s, x', GN^Fi) and TS(s, x, GFi) have no common element. 

That is, z'k will not include any x' € X^ U (UJ^XFJ) and therefore it is Fr 

certain, and the failure Fj will be diagnosed. 

c) The system generates a finite number of output symbols yxy2... yni (n* > 2) 

and then stops generating new outputs. Let tk,k+i be the number of ticks generated 

between y^ and y^+i (1 < k < rii — 1). 

1. If ife,fc+i < Tmax, (1 < k < rii — 1), then similar to case a), the diagnoser state 

estimate generated Tmax + 1 ticks after yni is generated will be F rcertain, and 

the diagnoser state estimate will remain F rcertain afterwards. Therefore, after 

a maximum of riiTmax + 1 ticks, the state estimate provided by the diagnoser 

will be Fj-certain. This shows Fj can be diagnosed in finite time. As shown 

in [23], if a fault can be diagnosed, it will be diagnosed in a bound number of 

ticks. 

2. Assume for some 1 < k < tii — 1, tktk+i > Tmax. Let feo be the smallest such 

k. Let z'ko be the diagnoser state estimate after yk0is generated. If z'k is F,-

certain, the fault will be diagnosable. Suppose z'ko is not Fj-certain. Then since 

tk, fc+i > Tmax, Xpt contains a cycle with output \{z'ko). Then by condition (1), 

XN U (Uj^iXFj) can not have a cycle with constant output X(z'ko). Thus, after 



57 

Tmax + 1 ticks, the diagnoser state estimate will be Fj-certain. Therefore, the 

failure Fi will be diagnosed in at most k0Tmax + 1 ticks. 

• 

Condition (1) in Theorem 4.2.1 means that there are no two constant-output 

cycles in XFi and XN U ( U ^ X ^ ) with the same output. Condition (2) states that 

there are no cycles in GFi and GNtp. having the same output sequence and a common 

time sequence. Next we discuss how conditions (1) and (2) can be verified. 

Verifying condition (1) involves finding cycles in G with constant output, in XFi 

and XN U (Uj^iXFj). For condition (2), we need to find output sequences (with 

their corresponding time sequences) that are common in GFi and GN F. One way 

to find common output sequences, and thus cycles, is first to convert timed RTS 

G — (X, Y, T, A) to a nondeterministic generator M_G in which output changes in 

G are represented as transitions. Formally, for the timed RTS G, we construct a 

nondeterministic generator M_G = (X UX',Y,rj, x'0,T), where XUX', Y, rj, x'0 and 

T are the state set, event set, transition function, initial state and transition-time 

function. The initial state x'0 $. X and (by definition) x'0 —• x0 is the only transition 

out of x'0, representing the generation of output A(xo) in G. For any state x € X 

that is not reachable in G from any state, we define a new state x' € X' and add 

\(x) 

the transition x' —• x to the transitions of M-G. X' consists of all such x' and the 

initial state x'Q. The set of transitions between the states of M-G consists of those 

mentioned above from the states in X' to the corresponding states in X, and the 

transitions of G. Thus, the transition function rj : (X U X') x 7 ^ 2XUX' satisfies: 

r](x, y) = {x' | x => x', A(x') = y} for x £ X. The definition of T (as a function on 
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X x X) is extended to a function on (X U X') x (X U X') as follows: T(x, x') is the 

same as before if x, x' E X, and if x E X' or x' € X', then T(x,x') — {0}. 

Let X'Fi = {x' E X' | 3x € -X>4, r?(a;', A(x)) - {x}} and A ^ . = {x' € X ' | 3x E 

XNtpi,rj(x',X(x)) = {x}}. In other words, X'F and X'N F are those states in X' from 

which there are transitions to XFi and XNFi. Now let M-GFi and M-GNiF. be the 

subgenerators of M_G corresponding to states XFj U X'F and X ^ U X'Np . 

For now, we leave the initial states of M_Gpi and M^GNF. undefined. M^GF{ 

and M_GNF. represent output changes in GFi and GN Fj in the form of transitions, 

and we use them to verify condition (2) in Theorem 4.2.1. Let x E XFi and x' E 

XN U (Uj^iXFj) with A (a;) = A (a;'), as in condition (2). Furthermore, let M_GFi(x) 

and M_GNFi{x') denote the reachable subgenerators of M-GFi and M_GNFi with x 

and x' as the initial states. Now, condition (2) is satisfied if and only if there are no 

cycles with identical output sequences having a common timing sequence in GFi and 

GNF., which, in turn, is equivalent to the absence of cycles in the product M-GFt(x) x 

M-GNFi(x'). Note that in the computation of the product of the generators, we 

have to take into account the timing sequences of the output sequences as well. In 

the following, we define the timed product of generators that takes the timing of 

transitions into account in the product operation. 

Definition 4.2.2 Consider two timed finite-state generators M_Gx = (Xi,Y, r]i, 

x'01, Ti) and M_G2 = (X2,Y,rj2,x'02,T2). Define the timed product of these two 

finite-state generators M^G\ x M_G2 as the reachable sub-generator of M^G — 
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(X,Y,7],x'0,T), where X = Xx x X2) r/ : X x Y - • 2X , x'0 = {x'0tVx'02) and T 

is the transition-time function. The functions n and T are given by: 

n{{xux2),y) ={(x[,x'2) | x\ G Vi(xi,y), x'2 G r)2{x2,y) and 

T1(x1,x[)nT2(x2,x
,
2)^^} 

T((xi,x2), {x[,x2)) =Ti(x1,x[) nT2(x2 ,x2) 

m 

We observe that the above procedure of constructing timed products can be used 

to look for common output sequences having common timing sequences in two gener­

ators. Suppose x G XFi and x' G Xjy U ( U ^ X ^ ) with X(x) = \(x'). Let M~GFi{x) 

and M_GNFi{x') denote the subgenerators of M-GFi and M_GN<Fi reachable from x 

and x'. If the timed product of M_GFi (x) x M^GNtp. (x1) does not contain any cycles, 

then condition (2) of Theorem 4.2.1 is satisfied, and vice versa. To verify condition 

(2), this procedure has to be repeated for all x G XFi and x' G Xpj U (Uj^iXF.) that 

have the same output. The following example demonstrates the procedure. 

Example 4.2.1 Figure 4-5 shows a timed DES G where £ — {a, (3, / 1 ; f 2 } , Y = 

{a, b}, F = {FUF2} andX = XNUXFl U XF2 with XN = {0,1,2,3,4, 5.1, 5.2, 5.3, 

5.4, 6}, XFl = {7}, XF2 = {8,9,10,11.1,11.2,11.3,11.4}. 

We apply Theorem 4-2.1 to see whether F2 is diagnosable. First, there is a self-

loop in state 7 and X(Cyc(XFl)) = {a}. In contrast, there is no cycle with constant 

output in XN and XF2. Therefore, Cyc(XN) = 0 and Cyc(Xp2) = 0, and condition 

(1) is satisfied. To verify condition (2), we examine the output sequences and their 

time sequences. For example, states 9 G Xp2 and 0 G XN have the same output 'a'. 
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•^r-<Sr-^r'®i- ~©rf> 
f,i P 

<%c-®i 
A 

Fig. 4.5. A timed DES example. 

The output sequence starting from these states is 'ababab...'; therefore, L0(GN F2,0)n 

L0(Gp2,9) = a(ba)*. We can see that the time sequences for s = (ab)n (n > \X\2/2 = 

182/2 are TS(s,0,GN,F2) = [n(n + n ^ ^ n and TS(s,9,GF2) = niun)"'1 fa 

represents a duration of i ticks.) Therefore, TS(s,0,GNtF2) D TS(s,9, GF2) — 0. 

It means that their time sequences have no common element. Similarly, for output 

sequences s = a{ba)n, T(s,0,GNp2) nT(s,9,Gp2) = 0. Therefore, condition (2) is 

satisfied for x = 9 and x' — 0. Condition (2) can be verified for all x € XF2 and 

x' € X/v U XFl • Therefore, F2 is diagnosable. Similarly, we can verify that Fi is 

diagnosable. 

M_GNJ(0) 
M_GFi (9) 

Fig. 4.6. Example 4.2.1: M$ (0) and M6pr , (9 ) ' 
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Table 4.1 
Timed RTS of Example 4.2.1 

State 

0 

1 

2 

3 

4 

5.i 

Output 

a 

a 

b 

b 

b 

b 

Output-adjacent state(time) 

2(1) 

2(0) 

0({ 1, 5})/9(0) 

0(1) 

0(0) 

0(5-1) 

State 

6 

7 

8 

9 

10 

l l . i 

Output 

(b) 

(a) 

(b) 

(a) 

(a) 

(b) 

Output-adjacent state(time) 

0(0) 

— 

9(0) 

11.1(1) 

11.1(0) 

9(5-i) 

Alternatively, to verify condition (2) of Theorem 4-2.1, we can follow the procedure 

described before the example which is more suitable for computer implementation. The 

timed RTS G is shown in Table 4-1- To verify condition (2) for x = 9 and x' = 0, 

we convert G into M^G and then obtain subgenerators M-GNp2(0) and M_Gp2(9) 

(Fig. 4-6), which take 0 and 9 as their respective initial states. Then we form the 

timed product of M^GNp2(0) x M_Gf2(9) as discussed in Definition 4-2.2. 

The result is shown in Fig. 4-7- We observe that there are no cycles in the product 

generator, and thus, condition (2) is satisfied for x — 9 and x' = 0. This procedure 

has to be repeated for all x € Xp2 and x' € X^ U Xpy having the same output. • 

^ (b) 
•<© j -<®> 

Fig. 4.7. Example 4.2.1: Timed product of MQ _ ,0, and MQ ,gy 
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Theorem 4.2.1 can be easily extended to the cases involving simultaneous failures. 

Let us consider two simultaneous failures. Suppose we have p failure modes Fi, 

.. .,Fp. Let Fjk denote simultaneous occurrence of failures Fj and F/~ and let T = 

{Fi | i = 1,2,.. .p} Ll{Fjk | j , k = 1,2,.. .p, j < k}. The order of indices in Fjk 

is not important. For simplicity we have assumed the indices are in increasing order 

(j < k). Thus the condition map is K, = {N} U {Fi \ i = 1,2,.. .p} U {Fjk | 1 < 

j < P, 1 < J' < k < p}. Consider a failure mode Fi. Let Gpi and GNtpt be the 

subgenerators corresponding to the states in XFiU((Uj<j<p.XVy) D^i^j^Xp^)) and 

the rest of system states, respectively. With the above notation, the conditions of 

Theorem 4.2.1 for diagnosability of Fi remain the same for this case. The theorem 

can be similarly extended to the cases when we have more than two simultaneous 

failures. 

Remark 4.2.2 In order to verify diagnosability in timed DES, we can also use the 

tests developed for untimed DES. [31] and [32] provide diagnosability tests in the 

event-based framework of [4]- Theorem 4-1-1 proposes a test in the state-based frame­

work of [5]. 

In order to use the test in Theorem 4-l-l> first the information about the clock 

tick (an observable event) must be transferred and included in the output map. 2 

Let G' be the resulting TDES and Y' the new (extended) output set. Furthermore, 

let G' denote the RTS corresponding to G'. To verify the diagnosability of a failure 
2For this, we can replace the TDES G with another TDES G" = (X\ £ ' U {r} , 5', x0, Y', X'). TDES 
G' is obtained by replacing every T transition X\ —> x2 in G with transitions X\ —̂-> x[ -̂ -> x2 

in G", where x\ and a are new state and event. In G", £ ' = E U {a} and Y' = Y x {0,1}. The 
output map A' : X' —> Y' is defined according to: A'(is) = (A(x),0) if x G X, and A'(x) = (\{x), 1) 
if x € X' — X. Thus in the two back-to-back transitions x\ —> x\ —> x2, the output changes from 
(A(xx),0) to (A(a;i),l) and to (A(x2),0). 
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mode Fit the diagnosability test for untimed DES in Theorem 4-1-1 can be applied to 

G'. This test looks for common output cycles in G'F and G'N F (the subgenerators 

corresponding to states X'F and X'N U (Uj^iXF.)). To this end, for any x € X'F. 

and x' G X'N U (Uj^iX'p.)) with \'{x) = X'(x'), M^generators, say, M^G'F.(x) and 

M-G'N F(x') are constructed in which output changes in G'F. andG'N F (starting from 

x and x') are represented as transitions (For instance Fig. 4-8 shows M_G^2(9) and 

M_G'NF (0) for Example 4-2.1.) Next, M^G'Fi(x) x M^G'NF(x') is constructed and 

examined for the existence of cycles. 

fa. 01 
i M-^ ;(0) 

(b,o; 

(a, 0) w 

1 0 ^ % 

&FH&&*® 
(b,0) 

(3> 

^ ( 9 ) J ^ @ ^ j Q i < ^ ^ ^ ) ^ . . ^ ^ ^ U 

Fig. 4.8. Example 4.2.1: M_generators with tick treated as an extra 
output signal. 

The main difference between the above method (based on tests for untimed DES) 

and the one proposed in this section is that in the method proposed here, the infor­

mation about the timing of events in the TDES is gathered and summarized in the 

transition-time function T(x, x') and is subsequently used in diagnosability test, specif-
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ically, in the timed product in Definition 4-2.2. In the following section, we discuss 

cases in which the transition-time sets can be computed efficiently and the intersec­

tion operation of time product (Definition 4-2.2) can be performed easily by comparing 

integers. In the tests based on untimed models, however, the timing information is 

retained in the transition graphs of the DES model and the timing properties have to 

be investigated using operations on graphs. 

In the method proposed here, the timing information is gathered and summa­

rized in the M_generators and thus M_GFi(x) and M-GNF(x'), and M_GFi(x) X 

M-GNtp.(x') have typically fewer states than M-G'F(x), M-G'Np,{x') and 

M-G'F(x) x M-G'N F{x') in the untimed methods. 

Table 4.2 
State size of DES (Example 4.2.1) required for testing diagnosability 

M-G'NF2(0) 

M_GF2(9) 

Proposed Method for Timed DES 

2 states 

2 states 

Adopting Untimed Methods 

2mi + 8 states 

2m2 + 4 states 

For instance, in Example 4-2.1, if in the TDES G (Figure 4-5), the transition 

from state 2 to state 6 takes mi ticks, and the transition from state 11.1 to state 

8 takes m2 ticks, then M_GN^F2(0) and M^Gp2(9) in Fig.4-6 (constructed based on 

the timed RTS) have 2 and 2 states whereas the corresponding M-generators in the 

untimed approach, M^G'Np (0) and M_G^2(9), will have 2mi+8 and 2m2+4 states 

(Table 4-%)- Therefore, we observe that when the time bounds of events are large, the 
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M_generators required for verifying diagnosability using Theorem 4-2.1 have signifi­

cantly fewer states than those required using an untimed method. • 

In summary, as shown in Example 4.2.1 and Remark 4.2.2, if the timed RTS has 

been already computed, say for diagnostic design following [5], then the test proposed 

in Theorem 4.2.1 can be performed with significantly fewer computations than tests 

developed for untimed DES (such as Theorem 4.1.1). 

In the next section, we discuss three cases in which the timed RTS can be computed 

efficiently. 

4.2.2 Computation of timed RTS and Analysis of Computational Com­

plexity 

In this section, we discuss the issue of computational complexity and show that the 

diagnosability test proposed in the previous section can be performed in polynomial 

time. The test becomes particularly efficient (compared with existing methods for 

untimed DES) when the transition-time sets are either bounded or can be represented 

as the union of a bounded number of intervals. We will provide conditions under which 

the transition-time sets have the above representation. 

Condition (1) in Theorem 4.2.1 which involves finding cycles can be verified in 

0 ( | X | + |#|), where 9 is the set of transitions of G3. For the nondeterministic generator 

G, |0| < |E U {T}\ • \X\2 and thus we shall assume 0(\6\) = 0 ( |E | • |X|2). The 

computation of timed RTS G involves finding transition-times T(x,x"). Suppose for 

3The set of states in G that belong to a cycle can be obtained using a breadth-first search (BFS). A 
BFS takes 0(\X\ + \9\) time. 
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x<E X, the complexity of finding T(x,x") for all x" e X, x" ^ x, is C?(7i(|X|, |S|)). 

Later in this section, we discuss three cases in which 7\ is a polynomial function. For 

each x € X, the set of output-adjacent states can be calculated using a breadth-first 

search in 0 ( | X | + \6\). The corresponding transition-time sets can be obtained in 

0(Ti). Thus, the entire timed RTS, and as a result, M^GFi and M^GNtF., can be 

computed in C( |X|( |X| + |0| + T\)). Let R denote the set of transitions of G, and 

suppose the transition-time intersection operation in Definition 4.2.2 can be done 

in 0(T2(\X\)) time. With this notation, M_GFi x M_GJVJ?. can be computed in 

0(\X\2 + \R\2 + |i?|2 • T2) time since M_GFi and M_GNA have each 0(\X\) states 

and 0(\R\) transitions. 4 M_GFi x M^GN,Fi will have 0(\X\2) states and C(|i?|2) 

transitions. To verify condition (2) in Theorem 4.2.1 we have to find the cycles of 

M_GFi x M-GNF. which can be done in C(|X|2 + \R\2) time. As a result, the total 

complexity of verifying condition (2) is 0(\X\2 + \X\ • \0\ + \X\ • Tj + |i?|2 • T2). Since 

\R\ < | X | ( | X | - l ) a n d O ( | 0 | ) = O( |EHX| 2 ) ,wegetC ' ( |XH^| + |X|-T1 + |X|4-r2) = 

C( |S | • |X|3 + \X\ • Ti + \X\4 • T2) as the complexity of verifying condition (2) and 

diagnosability of F$. 

Later in this section, we will show that the test can be performed in polynomial 

time. For now, we would like to point out that in general, the transition-time T(x, x") 

needed in the computation of timed RTS G may be finite or unbounded sets. 

In the following, we discuss cases in which the transition-time sets are either 

bounded or can be represented as finite unions of intervals: T(x, x") = (U£=1 [tf, £*]) U 

[£™+1, oo), with n bounded by a polynomial function of \X\. In these discussed 

4Suppose two generators G\ and G2 have n\ and rii states, and m,\ and m,2 transitions. G\ x Gi 
can be computed in 0{n\n2 + m\tn2) time. 
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in Remark 4.2.2, the algorithm proposed in this dissertation can be more efficient than 

the existing methods. 

We need a few definitions for further discussion. Let URch(x) denote the set of 

states of the TDES G that have output y = X(x) and are reachable from a state x 

using a path along which the output is y = X(x): 

URch(x) :~ {x} U {x' G X \ 31 > 1, 3x i , . . . x/+i, 3o~\, . . . <7/,: Xi = x, 

xi+i = x, and (X(xk) = X(x), xk+l G 8(xk,ak) (1 < k < I))} 

For the output-adjacent states x and x" with x => x", denote the set of states of 

the TDES G that are reachable from x and co-reachable to x" by URch(x,x"). In 

other words, 

URch(x,x") := {x' \ x' £ URch(x) and x' =» x"}. 

Furthermore, let Cyc(x,x") denote the set of cycles in URch(x,x"). Also, define 

Traj(x,x") as the trajectories in TDES G from x to x" through URch(x,x"): 

Traj(x,x") := {{xi,.. .,xi+i} \l > 1, xx = x,xt+1 = x", xk G 

URch(x7 x") (1 < fc < / + 1), Xi ^ Xj- (1 <i, j < I, j f i) 

and (3(7!, ...ax: xk+1 G 5(xfc, afe) (1 < k < I))} 

Lemmas 4.2.2, 4.2.3 and 4.2.4 provide sufficient conditions under which T(x, x") 

can be represented as the union of a bounded number of intervals. 

Lemma 4.2.2 For output-adjacent states x, x" G X, T(x, x") is a bounded set if 

and only if Cyc(x,x") = 0. 
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Proof Cyc(x, x") = 0 means none of the paths connecting x to x" through URch(x, x") 

contains a cycle; therefore the length of each of these paths is less than or equal to 

\X\ — 1 events and hence max.T(x,x") < \X\. As a result, if Cyc(x,x") — 0, then 

T(x,x") is bounded. Conversely, T(x,x") bounded implies URch(x,x") contains no 

cycles, i.e., Cyc(x,x") = 0. • 

It should be noted that complicated or unpredictable temporal behavior (such as 

cycles of unobservable events) is considered undesirable in real-time control. There­

fore, we can expect the above lemma to be applicable to a very useful range of control 

problems. 

Under the circumstances of Lemma 4.2.2 and assuming Cyc(x, x") = 0 for all 

output-adjacent states x and x", the computation of transition-times from a state 

can be done using a breadth-first search 5 and takes C?(Ti(|X|, |S|)) = C?(|X| + |0|) = 

0 ( |E | • |-^|2)- Furthermore, the intersections of transition-time sets can be computed 

in 0{T2{\X\)) = 0{\X\) since each T(x,x") can be written in the form of UJJ=1 [*?,<£] 

with n < \X\. 6 As a result, the complexity of verifying time-diagnosability using 

Theorem 4.2.1 is 0(\E\ • |X|3 + \X\ • 7\ + \X\4 • T2) = 0(\X\5 + |E| • \X\3). 

Remark 4.2.3 As shown earlier, the complexity of verifying diagnosability of a TDES 

using Theorem 4.2.1 is 0{\X\3 • |S | + |X| • Tx + \X\4 • T2). The complexity of test­

ing diagnosability of a TDES using the test (for untimed DES) in Theorem 4-1-1 is 

5The transition-time set T(x,x") can be found by first constructing the reachability tree for the 
language generated by the subgenerator of G corresponding to the states URch(x,x") U {x"}. Each 
node of the tree corresponds to a unique sequence and thus to a specific state (reached using that 
sequence) and a transition time (of the sequence). The transition-time set T(x, x") is the set of tran­
sition times of the nodes that correspond to state x". Note that since by assumption, Cyc(x,x") = 0, 
the reachability tree will be finite. 
6The expression YllLiH>au] n Efc=i[ 6fXl = 0, w i t h «i> n2, < l , K2 < \*\ can be verified in 
C( |X|) since the verification can be done by sorting the numbers af, a^, bf and &£. 
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C?(|X|4 + \X\3 • |S|). Under the circumstances of Lemma J^.2.2 (and assuming \X\ 

grows faster than |E| j , the complexity for Theorem 4-2.1 and Theorem 4.1.1 become 

0( |X| 5 ) and 0(\X\4) respectively. So it appears the complexity of the scheme pro­

posed in this section is slightly higher. However, it should be noted that in the above 

analysis, we had 0(T2(\X\)) = C(|X|) which is very conservative. In many practical 

cases, the transition-time sets T(x, x") can be either a single interval or the union of 

a few intervals, and the intersection of time-transition sets in Definition 4-2.2 can be 

performed easily and fast. As a result, we do not expect the complexity of testing di-

agnosability using Theorem 4-2.1 to increase faster than 0{\X\4). Furthermore, while 

the size of state set \X\ in the worst-case increases exponentially with the number of 

system components, the magnitude of transition-times, however, depend on the length 

of tick (as the unit of time) and the dynamics of the underlying process, and not on 

the number of system components. This again indicates that 0(T2{\X\)) = 0(\X\) 

is very conservative and points to 0(\X\4) as the likely complexity of using Theorem 

4-2.1. As a matter of fact, as shown in Remark 4-^.2, the procedure proposed in this 

thesis can be more efficient than the untimed version since it gathers and summarizes 

the information about the timing of events and subsequently uses the information in 

diagnosability test. 

Finally, it should be noted that while the complexity of verifying diagnos ability us­

ing Theorem 4-1-1 and (as explained above) Theorem 4-2.1, is 0(\X\4) and 0(\X\5), 

the complexity of verifying dignosability given in [32] is 0{\X\2). The reason for the 

difference is that, unlike [32], in this thesis the plant G is assumed to be nondeter-

ministic. • 
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Lemmas 4.2.3 and 4.2.4 consider the case of Cyc(x,x") ^ 0 and provide sufficient 

conditions under which T(x, x") can be represented as a finite union of intervals. 

Lemma 4.2.3 Suppose Cyc(x,x") ^ 0. Assume that there exist two simple cycles C\ 

and C2 in Cyc(x, x") and a trajectory T in Traj(x, x") such that (i) C\ and C2 intersect 

with T (i.e., each shares a state with T) and (ii) the greatest common divisor of the 

transition times of the cycles (in ticks) is equal to 1. Then T(x,x") can be represented 

as T(x,x") = (Ug=i[**>*£]) u [*r+1>°°) with n < \X\2 + \X\- • 

Before proving Lemma 4.2.3, let us examine its implications. Suppose there are 

two cycles in Cyc(x, x") with transition-times tc and tc +1. Since any two consecutive 

integers n and n + 1 (n > 1) are relatively prime, gcd(tc,tc + 1) = 1. Assuming 

condition (i) in Lemma 4.2.3 is satisfied, T(x, x") can be represented by a finite union 

of intervals. The above case (two cycles with transition-times that are one tick apart) 

may occur in cases where the TDES is obtained from an activity transition graph 

(ATG) [63] in which one (or more) unobservable event in a cycle in the ATG has 

different lower and upper time bounds. In other words, the transition-time of the 

cycles varies over a range of numbers. An example is discussed in Example 4.2.2. 

(a) Activity Transition Graph (b) Timed DES 

Fig. 4.9. An example to convert DES to Timed DES. 
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Example 4.2.2 Fig. 4-9(a) depicts an ATG and Fig.4.9(h) shows the corresponding 

TDES. We assume in the TDES, states 1 and 5 are output-adjacent (1 => 5). The 

outputs in all states are assumed to be the same except state 5. In the ATG cycle 

2 — 3 — 4, the 7 event has lower and upper time bounds ofO and 2. In the TDES, the 

ATG cycle has produced three cycles. Specifically, URch(l,5) is the set of all states 

except 5, Traj(l ,5) = {{1,1',2,2',5}}, Cyc(l,5) = {{2,2',3,4,4 /},{2 )2',3,3',4 )4'}, 

{2, 2', 3,3', 3", 4,4'}}. The transition times of the cycles are 2,3 and A, and gcd(2,3) = 

gcd(3,4) = 1. All three simple cycles have a common state with the trajectory 1 —> 

1 ' - • 2 - • 2'-> 5. In this example, T( l ,5 )= {2,4,5,6,. . .} ={2} U [4,oo). • 

Proof of Lemma 4.2.3. 

Let Zi, l2, and ta denote the transition times of C\ and C2 and T. By assumption, l\ 

and l2 are relatively prime (gcd(l\, h) = 1)- According to [64] (Chapter 4, Section 12), 

for two positive integers l\ and l2, the set of all k\l\ + k2l2, with positive integers k± 

and fc2, includes all multiples of gcd(l\j2) larger than lj2- In our case, gcdtyx,^) = 1 

and therefore 

[hl2 + 1,00) C {kih + k2l2 I fci, k2 e {1,2,.. .}} 

As the result, T(x,x") D {ta + hk + k2l2 \ h, k2 > 0} D [ta + hl2 + l,oo). This 

shows that T(x, x") can be represented as T(x, x") = (U^=1 [if, *„]) U [ta + lxl2 + 1, 00) 

with n < t„ + Zi/2 < |X| + |X|2. • 

In Example 4.2.2, ta = 2. If we take Cx and C2 to be {2,2', 3,4,4'} and 

{2, 2', 3,3', 4,4'}, then we have h = 2 and l2 = 3. Now, T(l,5) = {2} U [4, 00) 

which includes [ta + l\l2 + 1, 00) = [9, 00). 
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Assuming the conditions in Lemma 4.2.3 hold, T(x, x") can be written in the form 

T(x,x") = Tf(x,x") U [\X\2 + |X|,oo) where Tf(x,x") C [0, \X\2 + \X\ - 1]. Now fix 

state x. To determine the sets Tf(x,x") (and thus T(x,x")), one may examine event 

sequences in the TDES containing up to m := \X\2 + \X\ — 1 clock ticks. For this, 

let X°A be the set of states that are output-adjacent to x (X°A = {x"\ x => x"}), 

and G®A be the subgenerator of G containing the states X°A U (U{URch(x, x"),x" € 

Xj?A}) (i.e., all states a;" that are output-adjacent to x, and the corresponding states 

in URch(x,x")). The transitions out of states X°A are removed in G°A, and the 

initial state of G°A is taken to be x. Next, we can form the product of G°A with the 

generator Gc in Figure 4.10 which counts the ticks up to m. The states of G°A x Gc 

are of the form (x, k) where x is a state of G°A and 0 < k < m. Finally, we have 

Tf(x,x") = {k\ (x", k) is a reachable state of G°A x Gc}. G°A can be constructed in 

Q(\X\ + |0|) = 0 ( | S | • \X\2) time using the breadth-first search. G°A x Gc can be 

computed in 0(\X\3 + |E|2 • \X\4) since G%A and Gc have C(|X|) and 0( |X | 2 ) states, 

and 0(|^|) = C(|E| • \X\2) and C?(|S| • \X\2) transitions. Thus the 7)(x,x")'s (and 

thus r(x,x") 's) can be computed in 0{\Xf + |S |2 • \X\A). Therefore, Ti(|X|, |0|) = 

|X|3 + |S |2 • \X\A. The transition-time set intersection can be performed in 0(n) = 

0(\X\2) time (n is the parameter in Lemma 4.2.3), and hence T2(|X|) = \X\2. This 

gives an overall computational complexity of C(|X|6 + |E|2 • \X\5) for verifying time-

diagnosability. It should be noted that to verify the assumptions of Lemma 4.2.3, one 

needs to find the simple cycles in the Cyc(x, x")'s and for each simple cycle, determine 

the set of reachable simple cycles. This can be done in 0 ( | X | + \9\) = C(|E| • \X\2) 

time. 
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I I _X 

0 0 0 
Fig. 4.10. Generator Gc. 

Lemma 4.2.3 implies that if the TDES includes cycles of unobservable events, 

the transition-time sets will have representations as finite union of intervals as long 

as the duration of cycles vary over a range of numbers. Variation in the duration of 

cycles is not an unreasonable assumption. Other sufficient conditions may be obtained 

so as to have representations in the form of finite union of intervals. Lemma 4.2.4 

provides one set of such conditions. While Lemma 4.2.3 provides conditions involving 

one trajectory and multiple cycles, Lemma 4.2.4 provides another set of sufficient 

conditions involving one cycle and multiple trajectories. 

Lemma 4.2.4 Suppose Cyc(x, x") ^ 0. Assume that there exist a simple cycle C 

in Cyc(x, x") with the transition time of tc and a set of trajectories such that (i) 

all trajectories intersect with C (each shares at least a state with C), (ii) the set of 

transition times of these trajectories form an interval [ti,tu] (i.e., for any t E [ti,tu], 

there is a trajectory in the above-mentioned set with transition time t), and (Hi) 

tc < tu — ti- Then T(x, x") can be represented as T(x, x") = (UjJ=1[if, t^\) U [tn+i, oo) 

with n < \X\. • 

Before proving Lemma 4.2.4, let us examine its implications. The lemma considers 

output-adjacent states connected with a set of trajectories intersecting a cycle, with 

variation in the transition times of the trajectories being equal to or larger than the 
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transition time of the cycle. This case may be encountered in the TDES obtained 

from an activity transition graph (ATG) in which one (or more) unobservable event in 

a trajectory in the ATG has different lower and upper time bounds, and the trajectory 

intersects an unobservable cycle with a transition time less than the difference between 

the upper and lower time bounds of the trajectory. Figure 4.11 shows an example of 

such an ATG and the corresponding Timed DES. 

(a) Activity Transition Graph (b) Timed DES 

Fig. 4.11. Example for Lemma 4.2.4. 

In this example, by assumption, 1 =4> 4 and the outputs of all states except 4 are 

a 0 

the same. The ATG trajectory 1 —> 2 —* 4 has produced four trajectories in the 

TDES with the transition-times of 1, 2, 3, 4 and all trajectories intersect with the 

cycle 2 —> 2' —> 3 —> 3' —*• 3". The transition time of the cycle is 2, which is less than 

the variation in the transition-times of the trajectories (4 — 1 = 3). Therefore, all of 

the conditions of Lemma 4.2.4 are satisfied. We observe that T(l ,4) = [l,oo). 

Proof of Lemma 4.2.4. 

Let V be a path from x to x" in URch(x,x") consisting of a trajectory T from 

the set of trajectories mentioned in the lemma and k repetitions of the cycle C. Then 

the transition-time of V is t + ktc where t is the transition-time of T (ti < t < tu). 
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Therefore, T(x,x") D [<j,tu]U[t, + * c , iu + *c]U[i, + 2tc,tu + 2tc] U . . . = U£°=0[i, + 

ktc, tu + ktc\. Since U + tc <tu, [ti,tu] U [£/ + tc,tu + tc] = [U,tu + tc], and generally 

[U + ktc, tu + /rfc] U[<i + (A; + 1)<C, iu + (A; + l)ic] = [U + /ctc, tu + (k + l)tc] for fc > 0. 

As a result, T(x,s") D [tt,oo), and thus r(x ,x") = (U£=1[if,iJ;]) U[ij,oo), with 

n <tt < \X\. • 

We can show (similar to Lemma 4.2.3) that if the assumptions of Lemma 4.2.4 

are true, Tt(\X\, \6\) = \X\2 + \X\3 • |E|2, T2{\X\) = \X\ and time-diagnosability can 

be verified in 0(\X\5 + |S|2 • |X|4). 

Lemmas 4.2.2, 4.2.3 and 4.2.4 provide conditions under which the timing informa­

tion of events can be gathered and be used for testing diagnosability efficiently. The 

test proposed in this section can still be performed with polynomial complexity to 

verify diagnosability even if the conditions in the above lemmas do not hold. However, 

as we will see, the computations involved in testing are similar to those in tests based 

on untimed models and therefore, the proposed test will not have any advantage over 

the existing methods. The crucial step is the computation of M_GFi x M-GNp, 

where the timing information plays an important role. Note that to perform the 

timed product (Definition 4.2.2) the sets Ti(xi,x[) and T2{x2,x'2) are not necessarily 

required. We only need to know whether or not T\{x\, x[) (1 T2(x2, x'2) ^ 0. This can 

be verified as follows. Form subgenerators G^4 and G^4 {G°A was defined after the 

proof of Lemma 4.2.3). In G^4 (resp. G°A), replace all non-tick events with a new 

event e\ (resp. e2). Form the synchronous product G°A\\G°A. It can be seen that 

T1(x1,x'1)nT2(x2,x2) ^ 0 if and only if (x[,x2) is reachable in G°±
A\\G°2

A. The above 

operations can be done in polynomial time and thus the entire test for diagnosability 
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has polynomial complexity 7. However, it can be seen that the computations in test­

ing the timing (i.e., Ti(xi,x[) nT2(x2,x'2) ^ 0) are similar to the computations used 

in the existing methods for untimed DES. 

4.3 Summary 

In this chapter, we present alternative polynomial algorithms for failure diag-

nosability testing in nondeterministic untimed and timed discrete-event systems in a 

state-based framework. In timed discrete-event failure diagnosis, the key issue regard­

ing computational complexity is whether the transition time sets can be represented 

as the union of a bounded number of intervals. We have discussed three cases in which 

transition times have such representations and as a result, the proposed method for 

testing diagnosability can be performed efficiently. These cases cover a good range 

of problems. In cases where Lemmas 4.2.2, 4.2.3 and 4.2.4 do not apply, the pro­

posed test can still be done in polynomial time but the computations will be more or 

less similar to those of the methods based on untimed DES, and in these cases, our 

method will not have any particular computational advantage over the existing ones 

(developed for untimed DES). 

7It can be shown that the complexity of the test is C( |X| 4 ) (same as the tests based on untimed 
models). 
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Chapter 5 

SENSOR SELECTION IN 
DISCRETE-EVENT SYSTEMS FOR 

FAULT DIAGNOSIS 

In Chapter 4, we presented algorithms with polynomial-time complexity for testing 

diagnosability in untimed and timed discrete-event systems in a state-based frame­

work. These algorithms are used in this chapter to develop procedures for sensor 

selection. 

We consider the problem of sensor selection, that is, the problem of sufficient 

observation for guaranteeing the detection and isolation of failures in discrete event 

dynamic systems. We propose the concept of "minimal distinguisher", which is a 

minimal sensor set for distinguishing one system condition from another, and then 

develop procedures for computing and combining minimal distinguishers to obtain a 

minimal sensor set for failure detection and isolation. 

It is shown in this chapter that taking advantage of the structure of the system, 

as done in the proposed algorithms, reduces the time and space complexity of testing 

diagnosablity and sensor selection. A benefit of using minimal distinguishers is that 
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their computation (thus, the computations for sensor selection) may be speeded up 

using heuristics and expert knowledge. In addition, in Chapter 6, we will show 

that minimal distinguishers can be used to reduce the computations required for 

reconfiguring a fault diagnosis system online (as it operates). 

5.1 Preliminaries 

5.1.1 Plant Model 

Assume that the system to be diagnosed can be modelled as a nondeterministic 

finite-state Moore automaton G — (X, E, 6, x0, Y, A) where X, £ and Y are the finite 

state set, event set and output set, respectively. x0 is the initial state, £ : X x £ —> 2X 

the transition function and A : X —* Y the output map. This model describes the 

behavior of the system in both normal (N mode) and faulty situations (F modes). 

We assume that the plant has p failure modes i<\, F2,..., Fp. The event set can 

be partitioned into S = EJV U £/ , where £ / = {/i,... ,fp} is the set of failure 

events and £JV, the set of non-failure events. As a result of failure event /,, failure 

mode Fi develops in the plant. Simultaneous failures are assumed possible. For 

example, in a plant with two failure modes F\ and F2, the plant can be in one 

of four conditions: TV (normal), Fi,F2,F^2, where Fi>2 refers to the simultaneous 

occurrence of both failures. Let /C denote the condition set and T the set of faulty 

conditions. Furthermore, let Ti denote the set of faulty conditions in which failure 

mode Fi is present and Ti = T — Ti. Therefore, for instance in a plant with two 

failure modes i*\ and F2, we have K, — {N,Fi,F2,F1^}, T = {-Fi, F 2 ,F l j 2}, T\ = 
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{Fi,Fit2}, and T\ = {F2}. It is assumed that the finite state set can be partitioned 

according to system condition. For example, for the case of two failure modes (n — 2), 

X = XN U XFl U XF2 U XFl 2. The set of states corresponding to condition set 

T (resp. Fi) is denoted by Xr (resp. XTi). The condition map K : X —*• K. 

returns the condition of each state. This map can be extended to subsets of X: for 

z C X,K(Z) = L){K(X)\X € z}. 

We assume that the failure modes are permanent ; in other words, after the oc­

currence of a failure, the failure mode remains in the plant indefinitely. Fig. 3.1 shows 

the state transition graph of a plant with permanent failure modes. Each circle cor­

responds to a block in the partition of the plant state set X based on plant condition. 

We observe that the transition graph of a plant with permanent failure modes has a 

tree structure with N (normal) condition as the root. One of the consequences of this 

structure is that G cannot have a cycle with states in more than a single condition. 

For instance, there is no cycle whose states are in XFl and XFl2. As a result, the set 

of cycles of G is the union of cycles of individual conditions (i.e., individual blocks in 

Fig. 3.1). 

For F € T, define GF as the sub-generator of G consisting of the states in XF only. 

Similarly, define G/v, GJF, G^. and GN^ as the sub-generators of G corresponding to 

the states in XN, X?, X^ and XN U Xf. (The initial states of these sub-generators 

are left undefined.) Note that similar to G, the RTS G also has a tree structure as in 

Fig. 3.1). 

The output language L0(G, x) generated by G from the state i G X i s defined as 

L0(G,x) := {yiy2 . . . i / m C F + \yi = A(x), 3xt € X (1 < i < m) : xi = x7 x^i => xz, 
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yt = A(XJ),2 < i < m}. L0(G^vx), L0(GNf-.,x), L0(GN,X) and L0(Gf,x) are defined 

similarly. 

5.1.2 Diagnosabihty 

The objective in fault diagnosis is to detect and isolate failure modes. The faulty 

behavior is considered detectable if whenever it occurs, it can be distinguished from 

normal behavior (and hence detected) with finite delay. 

Definition 5.1.1 The faulty behavior is detectable if there exists an integer N > 0 

such that following both the occurrence of failure and the start of diagnosis, the faulty 

behaviors can be distinguished from normal behavior (i.e., the diagnoser enters a 

(fault-certain) state z with K(Z) C T), after the occurrence of at most N events in 

the system. • 

A failure mode is diagnosable if within a finite time delay, it can be detected 

and isolated. More precisely, diagnosabihty is defined as Definition 2.3.1. 

A DES is said to be diagnosable if all of its failure modes are diagnosable. 

Theorem 4.1.1 provides necessary and sufficient conditions for failure diagnosabihty 

(in the state-based framework of [23]) which results in a test for diagnosabihty with 

polynomial complexity. The aforementioned theorem considers the case of single-

failure scenario. The simple extension to the case of simultaneous failures is as follows. 

Theorem 5.1.1 Assume z0 = X. The faulty behavior Fi is diagnosable if and only 

if 
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1. For any x E X^v if there is no transition out ofx, then X 1(X(x))C\(X — X ^ ) = 

0; 

2. There is no cycle in Xjr. consisting of states having the same output, say y, 

unless X^(y) n (X - XTi) = 0; 

3. For any x G Xjrt) and x' 6 XN U Xfi satisfying X(x) — X(x'), we have 

{s\s € L0{GTi,x) nL0(GN^,x'), \s\ > \X\2} = 0 

• 

Condition (1) states that there should be no deadlock state in Xj=i with no tran­

sition out of the state unless the output in that state can be generated only when 

Fi has occurred. Such an output is called Fj-indicative. Similarly, condition (2) 

states that there should be no cycles with constant output in XTi unless the constant 

output is Frindicative. Finally, condition (3) states that there should be no common 

output cycle in X ^ and X — Xyr. = XN U X?. (otherwise Fi cannot be distinguished 

and hence will be undiagnosable). 

Using the results in Theorem 5.1.1, we can obtain necessary and sufficient condi­

tions for fault detectability by simply replacing condition set Ti with T. 

Theorem 5.1.2 Assume z0 = X. The faulty behavior is detectable if and only if 

1. For any x € Xp, if there is no transition out of x, then X~l(X{x)) n Xpj = 0; 

2. There is no cycle in Xyr consisting of states having the same output, say y, 

unless X~x(y) fl XN = 0; 
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3. For any x G X?, and x' € X^ satisfying X(x) = X(x'), we have 

{s\s e L0(Gr: x) n L0(GN, x% \s\ > \X\2} = 0 

• 

5.2 Problem Formulation 

Failure detection and isolation procedure uses sensor observations, which means 

that failure diagnosability depends in part on the set of sensors used. Given a set 

of sensors, some of the failure modes may not be diagnosable. On the other hand, 

some of the sensors may provide redundant information and thus not be necessary 

for failure diagnosis. Through the above consideration, a problem arises: Is there a 

minimal sensor set for the diagnosability of a given set of failure modes in the plant? 

In this chapter, we consider the minimal sensor selection problem. In this problem, 

we are given a dynamic system with failure modes and a set of sensors. Suppose we 

use the same system model as defined in Section 5.1 and are given a sensor set 

Ctot = {ci, • • •, cns}. For any sensor c,- e Ctot, the output map is Ay) : X —*• Yy). The 

output map of the system is then A : X —> Y, where X(X) = (A(i)(X),..., A(„S)(X)), 

and Y = Y^ x . . . x Y(ns). Suppose we want to restrict output tracking from the 

complete sensor set to a subset of sensors. For a given subset of sensors Cj = 

{ch,.. .,cjm}, where J C { 1 , . . . , n s } , ji < j2 < • • • < j\j\, and Cj C Ctot, we can 

represent the output map as \j : X —» Yj, where Xj(x) — (X^jl)(x),..., X(jU])(x)), 

and Y = YUl) x...xYU]J]). 
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We consider sensor selection for failure detection and failure diagnosis (i.e., de­

tection and isolation). The necessary and sufficient conditions for solvability of fault 

detection are given in Theorem 5.1.2. As mentioned before, whether these conditions 

hold or not depends in part on the sensor set. Let V denote the set of sensor sets for 

which the fault detection problem is solvable: V = {C|C C Ctot a n d fault detection 

using sensors in C is solvable}. 

The conditions for failure diagnosability are also given in Theorem 5.1.1. If these 

conditions hold for all failure modes, then the failure detection and isolation is solv­

able. Define VI = {C\C C Ctot and failure detection and isolation using sensors in 

C is solvable}. 

In this chapter, we study the problems of finding minimal sensor sets of V and 

VI. Note that C is a minimal element of V if C € V and for any C C C (C ^ C), 

we have C £ V. Minimal elements of VI are defined similarly. 

Assume that using the entire set Ctot, the problems of failure detection, and failure 

detection and isolation are both solvable. This implies that V ^ 0 and VI ^ 0 

(otherwise searching for minimal elements would be unnecessary.). 

A straightforward solution (used in literature) for finding minimal elements of V 

and VI is to use a top-down approach starting from Ctot- Procedure 5.1 is a top-down 

solution for minimal sensor selection in failure detection. The procedure starts from 

Ctot and in each step it removes one sensor from the set until the sensor set becomes 

minimal. Note that in step 2a, the test for solvability of failure detection problem is 

performed (which amounts to the verification of the conditions in Theorem 5.1.2). 
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Procedure 5.1: Given a sensor set Cm = {c;, ..., cn } and 
condition set %. 

1. Initialization: C® := Cm 

2. For all c e C®, 
Compute G 

2a. If G»-{c}g © 
Go to 2b 

End (If) 
C<D.'= Cco~{c} 

2b. Continue 
End (For) 

* C<D is a minimal sensor set for failure detection 

Procedure 5.1: A top-down solution for sensor selection for 
failure detection. 

If in Step 2a, T> is replaced with VI, a procedure for finding minimal sensor 

selection for the failure detection and isolation problem will be obtained. Similar 

bottom-up procedures for finding minimal sensor sets can be developed. 

Later in this chapter, we introduce an algorithm for testing failure diagnosability 

that takes advantage of the tree structure of the plant (shown in Figure 3.1) to reduce 

time and space complexity of the test. This also leads to algorithms for finding min­

imal sensor sets that take advantage of the tree structure of the plant. Specifically, 

instead of searching for sensor sets that solve failure detection and failure detection 

and isolation problems, the proposed algorithms look for sensor sets that allow us to 

distinguish one condition i e K from another condition A' € JC. These sensor sets 

are referred to as distinguishers. Following the proposed algorithms, sensor sets for 

failure detection, and failure detection and isolation are obtained by combining dis­

tinguishers. In other words, instead of solving the entire problem of sensor selection, 

we break the problem into a set of smaller problems of finding distinguishers. 
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5.3 Minimal Distinguishers 

In this section, we propose a new concept of minimal distinguisher and provide 

the procedure to calculate it formally. According to Theorem 5.1.1, failure mode F, is 

diagnosable if and only if the outputs of deadlock states (condition 1) and cycles with 

constant outputs in the set of conditions Ti (condition in which Ft has occurred) can 

be distinguished from the outputs generated in other conditions, and that the periodic 

output cycles in conditions Ti are distinguishable from those in other conditions. This 

motivates the following definition of distinguishability of conditions. 

Definition 5.3.1 Let A and A' be two nonempty disjoint subsets of the condition set 

K, (15 y£ A, A' C /C, AC\ A' = §) andXA andXjj the corresponding states. Condition 

set A is distinguishable from A' if: (1) for any x G X A , if there is no transition 

out of x, then A-1(A(a;)) C\X^ = 0; (2) there is no cycle in XA consisting of states 

having the same output, say y, unless the output symbol y satisfies A""1^/) (1X^ = 0; 

(3) for any x € XA and for any x' G XA> satisfying X(x) = X(x'), we have {s\ s G 

L0(GA,x)nL0{GA,,x>), | s | > | X | 2 } = 0. • 

Next we define distinguisher sensor sets. 

Definition 5.3.2 Let C be a non-empty subset of sensors (C C Ctot, C ^ 0j. For 

two disjoint condition sets A and A', if A is distinguishable from A' based on the out­

puts from the sensors in C, then the sensor set C is called an A\ A -distinguisher.• 

The set of A\^.'-distinguishers is denoted by SD(«4|^4'). 
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Definition 5.3.3 Let the sensor set C be an A\A' -distinguisher: C € SD(A\A'). 

C is called a minimal distinguisher if none of the proper subsets of C is an A\A' 

-distinguisher. M 

The set of minimal A\A'~ distinguishers is denoted by SMD(.4|.4'). 

Example 5.3.1 Consider the system in Figure 5.1 which has two failure modes Fi 

and F2. Simultaneous failures are assumed possible and thus J7 = {i<\, F2, -Pi,2}- The 

sensor set Ctot — {ci}c2,c3}. The output sets o/ci ,c2 ,c3 are Y^ = {a,/3,j,5}, 

Y(2) — {l,h} and Y(3) — {e>d}, respectively. In Figure 5.1, the output at each state is 

written next to it. 

Fig. 5.1. Example 5.3.1: An Example for Sensor Selection. 

We can see that condition i<\ is distinguishable from N (normal) based on the 

output sequence from sensor c\ alone or from sensors c2 and C3 together. Thus, 

{c\}, {02,03} € SD({Fi}\{N}). In the case of c\, for instance, the output sequence 

generated by c\ in N and F\ conditions are periodic and different. Note that both {c\}, 

{C2;C3} are minimal {Fi}\{N}-distinguishers. For instance, in the case of {02,03}, 
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suppose Ci is removed from the sensor set. c3 can generate the output sequence (ed)* 

in both N and i<\ conditions. Thus C3 is not an {Fi}\{N}-distinguisher. The same 

is true if c3 is removed. Thus {c2)c%) is a minimal {F{\\{N}-distinguisher. • 

From now on, in SD(yl|>l/) if A (or A') is singleton, we drop the curly braces in 

A (A'). For example, instead of SD({Fi}|{iV}), we write SD(Fi|iV). 

It follows from Definition 5.3.1 that for a given sensor set, failure detection is 

possible if and only if T is distinguishable from N. Thus, V = SD(JF|./V). The 

following theorem shows that given a sensor set, failure detection is possible if and 

only if the sensors can be used to distinguish every faulty condition from normal. 

Theorem 5.3.1 V = nFeyr SD(F\N). 

Proof We prove this theorem for the case of two failure modes, with T = {Fi, .F2, Fi^} 

The extension to the general case will be similar. Suppose 

C e SD(Fi|W) fl SD(F2|iV) n SD(F1>2|A0 (5.1) 

For any deadlock state x G XFl, C <E SD(Fi|iV) implies A-1 (\(x))DXN = 0 and thus 

A-1(A(:r)) C XFl U XF2 U Xp12. Similarly, for any deadlock state x in Xf?2 or XFl 2, 

X~1(X(x)) C XFl UXF2UXFl2. Thus condition (1) in Theorem 5.3.1 is true. Since by 

assumption, the failure modes are permanent and thus, G has a tree structure (Figure 

3.1), the cycles in XFl U Xp2 U XFl 2 are the union of cycles in XFl, Xp2 and XFl 2. For 

any cycle in XFl (or XF2 or XFl2) with constant output y, by (5.1), A"1^) C\XN = 0 

and thus A_1(y) C XFl U Xp2 U XFl2. Thus condition (2) of Theorem 5.3.1 holds. 

Condition (3) of Theorem 5.3.1 holds similarly. As a result, C g D . 
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Conversely, suppose C e D . If a; is a deadlock state in XFl, then by condition (1) 

of Theorem 5.3.1, A ^ A ^ ) ) n XN = 0. Therefore, condition (1) in Definition 5.3.1 

for distinguishability of F\ from N is satisfied. Similarly for any cycle in XFl with 

constant output y,C € D and condition (2) of Theorem 5.3.1 implies A_1(y)nXjv = 0 

(thus condition (2) for distinguishability of F\ from N holds). Furthermore, condition 

(3) of Theorem 5.3.1 implies condition (3) for distinguishability of Fi from N. Thus, 

by Definition 5.3.2, C e SD(Fi|N). Similarly, we can show C € SD(F2|iV) and C € 

SD(Fli2|iV). • 

Example 5.3.1 (Continued): We can verify that SD (F1|Ar)={{ci}, {ci,c2}, {ci,c3}, 

{c2,c3}, {ci,c2,c3}}, SD(F2|iV)={{ci}, {ci,c2}, {cuc3}, {c2,cs}, {cuc2,c3}}, SD 

(F l i2 |iV)={{Cl,c2}, {ci,c3}, {ci,c2,c3}}. Thus by Theorem 5.3.1, V = SD(Fj|iV) 

nSD(F2 |A0nSD(F l i2 |iV) = {{ci,c2}, {ci,c3}, {Cl,c2,c3}}. • 

Since 2? = SD(F\N), Theorem 5.3.1 can be expressed as S D ^ i V ) = nF e^SD(F|iV). 

A generalization of this result is as follows. 

Theorem 5.3.2 Let 0 ^ A, A! C K and An A' = 0. Then, 

SD(A\A')=nFeAnF,eA, SD(F\F') 

Proof Similar to Theorem 5.3.1 and omitted for brevity. • 

The following theorem characterizes the sensor sets for which the system will be 

diagnosable in terms of distinguishers. 

Theorem 5.3.3 VI = nFerSD(F\N) n (D{SD(F\F') | F,F' € T and F ± F'}). 
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Proof For brevity, we prove the theorem when the system has two failure modes: 

/C = {iV, Fi,F2, F1>2}. Extension to the general case will be similar. 

The system is diagnosable if and only if Fi and F2 are diagnosable. It follows 

from Theorem 5.1.1, that F\ (resp. F2) is diagnosable if and only if {F\, Fi)2} (resp. 

{F2,Fii2}) is distinguishable from {N, F2} (resp. {N, Fi}). Therefore, 

VI = SD({F l5 Flt2}\{N, F2}) n SD({F2, Fli2}\{N, Ft}) (5.2) 

By Theorem 5.3.2, SD({Fi,F1>2}|{JV,F2}) = SD(Fi|AT) n SD(Fi|F2)n SD(Fi,2|iV)n 

SD(F1>2|F2) and SD({F2,F1>2}| {iV,F1})=SD(F2 |iV)nSD(F2 |F1)nSD(F l i2 |iV)nSD 

(Flt2\Fi). Substituting from these two equations in (5.2), we get the desired result. • 

In the following two sections, we will use the results of Theorems 5.3.1 and 5.3.3 

to find minimal elements of T> (for the failure detection problem) and T>X (for the 

failure detection and isolation problem). The proposed algorithms use minimal distin-

guishers. Minimal distinguishers can be obtained using a top-down or a bottom-up 

approach. Procedure 5.2 provides a top-down approach for finding an element of 

S M D ^ I ^ ) , denoted in Procedure 5.2 by CA1\A2I where Ai, A2 are two distinct 

conditions (Ai, A2 G /C, A\ ^ A2). Procedure 5.2 starts with CAX\A2 = Ctot and 

removes sensors from it until CAX\A2 becomes a minimal distinguisher of A\ from A2. 

Next we find the computational complexity of verifying distinguishability (i.e., 

conditions in Definition 5.3.1) and from that, we obtain the computational complexity 

of Procedure 5.2. Suppose C C Ctot and we want to verify whether C G S D ^ J J ^ ) 

for Ai,A2eIC with Ax / A2. We assume that each condition A £ 1C (each block in 
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Figure 3.1) has C?(|X^|) = M states and C?(|^|) = neM
2 transitions where ne = |E|, 

the size of the event set of G. 

The deadlock states of XAX in condition (1) of Definition 5.3.1 can be computed 

and their outputs compared with states in XA2 in 0(1X^1 + l-X^J) = O(M). The 

cycles with constant output in condition (2) can be computed in C ( | X A | + \0A\) = 

0(M + neM
2) = 0(neM

2). Thus condition (2) can be verified in 0(neM
2). 

Procedure 5.2 Given a sensor set Cm
 = {ci, •••, cn } and condition set %j, 

Ai, A2e % and A&A2. 
1. Initialization: CA]A : = Ctot 

2. For all ce C.,, 

Compute GA and GA 

lfCAM2~{c}iSD(A1\A2) 

go to 2a 
End (If) 

^414 • — A,\A,_ _ {C> 

2a Continue 
End (For) 

Procedure 5.2: CA]A is a minimal Ai\ ^-distinguisher. 

As shown in Section 4.1, condition (3) can be verified by finding the cycles of 

M_GA1 x M_GA2, where M-GA^ and M^GA2 are automata obtained from G ^ and 

GA2 through a process similar to the conversion of Moore machines to Mealy machines. 

Thus, the sizes of state and transition sets of M_GA1 X M_GA2 and GAX X GA2 are 

of the same order. The number of states and transitions of automata GA1 (and GA2) 

is O(M) and 0(M2). Therefore, the complexity of computing M^GAl x M-GA2 is 

0(M4). M_GAl x M_GA2 will have 0(M2) states and G(M4) transitions. As a 

result, verifying conditions (3) which involves finding the cycles of M_GA1 X M_GA2 



91 

will have 0(M2 + M4) = 0(M4) complexity. Thus the test C G SD(A1\A2) (verifying 

distinguishability) can be done in 0{M4 + neM
2) time. 

Now we find the complexity of Procedure 5.2. The main loop has to be repeated 

ns times. Each time we compute GA1 and GA2 which takes CdX^KIX^I + \9A\)) = 

0(M(M + neM
2)) = 0{neM

3) and test CAI\A2 - {c} G S D ^ A a ) (verify the dis­

tinguishability of Ai from A2 with sensors CAX\A2 — {c}) which takes 0{M4 + neM
2) 

time. Therefore, the complexity of Procedure 5.2 is 0(nsM
4 + nsneM

3). 

5.4 Sensor Selection For Fault Detection and Isolation 

In this section, we present two algorithms for finding a minimal set of sensors 

to allow failure detection (i. e., a minimal element of V), and failure detection and 

isolation, respectively. 

5.4.1 Sensor Selection for Failure Detection 

A proposed algorithm is given in Procedure 5.3 and can be regarded as a bottom-

up algorithm for solving the problem. It is assumed that for every faulty condition 

F G J7, a minimal .F|iV-distinguisher has been previously obtained using Procedure 

5.2. 

The desired minimal solution for failure detection is denoted by Cj^[. Step 1 

initializes Cjr^/ to the empty set. Then step 2 forms the union of all available Cyr^. 

Therefore, at the end of step 2, Cj:\j4 G SD(F|N) for all F G T and thus by Theorem 

5.3.2, C?\}4 G SD(.F|./V). In step 3, we reduce the sensors in CVIJV to make Cj^s 

a minimal element of SD(.F|N)=V. This is done by removing one sensor, c, and 

file://j:/j4
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Procedure 5.3: Given a sensor set Cu>t = {ci, ..., cn } and minimal 

F|./V-distinguishers CF)A,, for every F e <F. 

1. Initialization: C^^:= 0 
2. For all F e <F 

Cif\'jf.= C<f\<fftJ C f |W 

End (For) 

3. For all CG C<f\w 

Compute GN 

For all F G (F 

Compute GF 

If Cm-{c}£ SD(F\N) 
go to 3a 

End (If) 
End (For) 
C<f\w: = C<t\!H- {c} 

3 a Continue 

End (For) 

Procedure 5.3: C^jy is a minimal ff^distinguisher 
(a minimal sensor set for failure detection). 

then testing whether Cjr\M — {c} is an .F|./V-distmguisher or not. To test whether 

CF\N — {c} is an .F|7V-distinguisher, we have used Theorem 5.3.2, and test whether 

Cr\H ~ {c} is i^iV-distinguisher for all F G T. In summary, after the termination of 

the algorithm, C?\M will be a minimal element of SY){J:\N)=V. Thus we have the 

following. 

Theorem 5.4.1 Procedure 5.3 generates a minimal sensor set for failure detection, 

i.e., Cf\N is a minimal element ofV. • 

The proof is straightforward and is given in the preceding paragraph. 

Example 5.4.1 (Example 5.3.1 continued): Starting Procedure 5.2 with CFI|JV = 

{ci}, CF2\N = {c2,c3} and CFl2\N = {ci,c3} ; after step 2, C^M = {ci,c2,c3}. Next 



93 

in step 3, first we remove c\. C^\j^ - {ci} = {c2,c3}, however, is not an F1)2|iV-

distinguisher. So C\ stays in C?^. Next we consider Cj:\x — {c<^ = {ci,c3} which 

will be Fi\N, F2\N, and Fi^N-distinguishes Therefore, CV|Af is reduced to {ci,c3}. 

Next we verify that Cf\jv — {c3} = {ci} is not an F^N-distinguishes Thus the 

algorithm terminates with Cjr\x = {c\, c3} as the final result. • 

Next let us find the computational complexity of Procedure 5.3. In previous sec­

tion, we showed that the complexity of testing C e S D ^ I ^ ) is 0(M4 + neM
2). 

First let us assume that simultaneous occurrence of up to only two failures is pos­

sible. Therefore, the condition set K — {N, i*\,.. . , Fp, Fii2, • • •, Fp_ l j P}. Suppose 

the minimal distinguishers to start Procedure 5.3 are calculated using Procedure 5.2. 

Since there are 0(p2) conditions, the computational complexity of finding the re­

quired minimal distinguishers is 0(ns;?
2M4 + nensp

2M3). Step 2 of Procedure 5.3 

can be performed in 0{p2ns), and step 3 in 0(ns(neM
3 + p2{neM

3 + M4 + neM
2))). 

Therefore, the computational complexity of Procedure 5.3 is 0{nsp
2MA + nensp

2M3). 

Next, let us extend the results to the simultaneous occurrence of up to m failures 

(with m « p). In this case, we have 0(1^1) = 0(pm) failure conditions and Pro­

cedure 5.3 for finding C^\N requires 0{nap
mMA + nensp

mM3) time. (Simultaneous 

occurrence of a large number of failure modes is unlikely and therefore not considered 

here.) 

The number of events, ne, typically increases linearly with the number of system 

components whereas M, the number of states in each condition, increase exponentially 

with the number of system components. Therefore, M increases much faster than ne. 
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With the above assumption, the complexity of sensor selection for fault detection will 

be 0(nsp
mM4). 

The proposed procedure for finding minimal sensor set for failure detection takes 

advantage of the tree structure of the plant G (Figure 3.1) and its consequence as 

expressed in Theorem 5.3.1 to reduce the random-access memory requirement (i.e., 

less space complexity) in two ways. First it constructs an element of T> using mini­

mal F|./V-distinguishers (step 2 of Procedure 5.3). For constructing minimal Ai|A2-

distinguishers, only the sub-generators of two conditions A^ and A2 {GA1 and GA2) 

are used (not the entire plant G). Second, the trimming of C^\j^ (calculated in step 2) 

to a minimal element of V in step 3 is done by performing a set of distinguishability 

tests for only two conditions at a time. This again is a consequence of Theorem 5.3.1 

and thus, the tree structure of G. 

Now we will further discuss the benefits of using minimal distinguishers when we 

discuss sensor selection for failure detection and isolation. 

5.4.2 Sensor Selection for Failure Detection and Isolation 

The proposed algorithm is given in Procedure 5.4 and can be regarded as a bottom-

up algorithm for solving the problem. It is assumed that minimal distinguishers CF\N 

for every F G T and minimal distinguishers CF\Fi for every F, F' G T with F =£ F' 

have been obtained (using, say, Procedure 5.2). The desired minimal solution for 

failure detection and isolation is denoted by Cjao. Step 1 initializes Ciso to the empty 

set. Then step 2 forms the union of all minimal distinguishers. Therefore, at the end 

of step 2, Ciso G SD(F\N) for all F G J7, and Ciso G SD(F|F') for all F,F' & J7 (with 
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F ^ F'), and thus by Theorem 5.3.3, Ciso 6 P I . In step 3, we reduce the sensors 

in Ciso to make Ciso a minimal element of VI. This is done by removing one sensor, 

c, and then testing whether Ciso — {c} € VI. To test whether Ciso — {c} € VI, we 

have used Theorem 5.3.3, and test whether CiSO — {c} is F|iV-distmguisher for all 

F e f and F|F'-distinguisher for all F, F' € T, with F ^ F'. In summary, after the 

termination of the algorithm, Ciso will be a minimal element of P I . Thus we have 

the following. 

Theorem 5.4.2 Procedure 5.4 generates a minimal sensor set for failure detection 

and isolation, i.e., Cis0 is a minimal element of VI. 

Procedure 5.4: Given a sensor set C,ot = {ci, ..., c„ } and minimal 

distinguishes CF\N for every F e T and minimal distinguishes CF\F-
for every F, F'e <F with F& F'. 
1. Initialization: Cjso := 0 

2- Ciso = u ^ „ C„|iV u (u{CF[F. | F, F ' e <F and F * F'}) 

3. For all c e C;so 

Compute G^ and all GF (Fe F) 

Fora l lFeF 
IfC,0-{c}«SD(F|7V) 

go to 3a 
End (If) 
For all F ' e <F, F'*F. 

IfC,,0-{c}gSD(F|F') 

go to 3a 
End (If) 

End (For) 
End (For) 

Ciso~ Ciso-{c} 

3a. Continue 
End (For) 

Procedure 5.4: Q 0 is a minimal sensor set for 
failure detection and isolation 
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E x a m p l e 5.4.2 (Example 5.3.1 continued): Suppose we start Procedure 5.4 with 

the following minimal distinguishers: CFI\N — Cp2\N — {ci}> Cp12\N = {cj, C2}, 

CFl\F2 = Cp2\Fl — {ci}, CFl\Fl2 = C F l 2 | F l = {ci ,c 3}, CF2\Fl2 — CFl2\F2 — {ci}. 

After step 2, Ciso= {c i ,c 2 , c 3 } . Next in step 3, first we remove c\. In this case 

CiSo — {ci} = {c2,c3} (/i SD(FI^\N). So we keep ct. Next we remove c2 from Ciso 

and observe that Ciso — {c2} = {ci, c3} can be used to distinguish every faulty condition 

from normal, and every faulty condition from every other faulty condition. Hence, 

{ c i ,c3} 6 DI. Finally, removing c3 from Ciso = {ci,c3} results in {ci} which is not 

an Flt2\N-distinguisher and as a result, Ciso — {ci,c3} is a minimal element of DIM 

Similar to Procedure 5.3, in Procedure 5.4, in the computation of minimal distin­

guishers required to start the procedure and in the distinguishability tests in step 3, 

the sub-generators of two conditions, (Gjv and GF with F € T, or GF and GFi with 

F,F' € T,F 7̂  F') are used at a time. This is because of the tree structure of G 

(Figure 3.1) and Theorem 5.3.3. If G has up to m simultaneous failures (m < < p), 

then G will have 0(pmM) states, while each single condition sub-generator (GN and 

GF, F E J7) has O(M) states. Thus Procedure 5.4 shows that taking advantage of 

the tree structure of G, we can reduce the random-access memory requirement (i.e., 

space complexity) by a factor of 0 ( p m _ 1 ) . 

Now we find the computational complexity of Procedure 5.4. Let us assume up 

to m simultaneous failures are possible (with m « p). Suppose the minimal dis­

tinguishers to start Procedure 5.4 are calculated using Procedure 5.2. Since there 

are 0(pm) conditions, there will be 0(p2m) minimal distinguishers to compute and 

therefore, the computational complexity of finding the required minimal distinguish-
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ers is 0(nsp
2mM4 + nsp

2mneM
3). Step 2 in Procedure 5.4 can be performed in 

0{p2mns). Step 3 executes 0(ns) times. Each time, it computes the RTSs GN 

and Gp (F € T) which takes 0(pmneM
3), and performs 0(p2m) distinguishability 

tests which can be performed in 0(p2m(M4 + neM
2)) time. Thus Step 3 is done 

in 0(nsp
2mM4 + nens(p

2mM2 + pmM3)) time. Therefore, the computational com­

plexity of Procedure 5.4 is 0(nsp
2mM4 + nensp

2mM3). Assuming ne and M increase 

linearly and exponentially respectively with the number of system components, the 

complexity of Procedure 5.4 becomes 0(nsp
2mM4). 

Remark 5.4.1 The procedures proposed in this chapter that are based on minimal 

distinguishers, take the tree structure of the plant G into account. Suppose we do not 

take advantage of the tree structure and use Theorem 5.1.1 (Diagnosability test) and 

Procedure 5.1 (with V in step 2a replaced by VT) to find a minimal sensor set for 

failure detection and isolation. Assume simultaneous occurrence of up to m failure 

modes. Let us find the computational complexity of Theorem 5.1.1. The deadlock 

states in condition (1) can be examined and compared with states in X — X^ in 

0(\Xj?t\ + \X — Xjr.\) = 0(pmM). The cycles with constant outputs in XTi (condi-

tion(2)) can be computed and their outputs can be compared with the outputs of states 

inX-XTi in 0{\XTi\ + \6Ti\ + \X-Xrt\) = 0(pmM + nep
2m~2M2), where 6Fi is the 

set of transitions of GTi (Note that GTi has 0{pm~lM) states and 0(nep
2m~2M2) 

transitions.) GNj. and GTi have 0{pmM) and 0{pm~lM) states, and 0(p2mM2) 

and 0(p2m~2M2) transitions. Thus, condition (3) can be verified in 0(p4rn~2M4) 

time. This gives a complexity of 0(p4m~~2MA + nep
2m~2M2) for testing diagnosability 

of Fi using Theorem 5.1.1. 
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In Procedure 5.1, the main loop is executed 0(ns) times. In each loop G is com­

puted in 0(pmM(pmM + nep
2mM2)) = 0{nep

3mM3). Also diagnosability of failure 

modes F\,...,Fn is tested (in the worst case). Thus, the computational complexity 

of Procedure 5.1 is 0(nsnep
3mM3 + nsp(p4m-2M4 + nep

2m-2M2)) = 0(nap
4m-lM4 + 

nensp
3mM3). Assuming ne and M increase linearly and exponentially (respectively) 

with the number of system components, the complexity of using Procedure 5.1 for 

finding minimal sensor set for failure detection and isolation will be 0(nsp
4m~lM4). 

Comparing this figure with the complexity of Procedure 5.4, shows that taking the tree 

structure of the plant into account reduces the computational complexity by a factor 

ofO(p2m-1). 

Another reason for this reduction in computations is that the proposed method 

based on minimal distinguishers avoids some repetitive operations in diagnosability 

tests following Theorem 5.1.1. For instance, suppose /C = {N, F\, F2, ^1,2}- To exam­

ine diagnosability of failure mode F\ (following Theorem 5.1.1), we have to compose 

the output cycles in F\ and F l j2 with those in N and F2. Then for verifying diag­

nosability of failure mode F2 ; we compare the output cycles of F2 and Fi)2 with those 

in N and F\. Note here for example, the cycles of N and Fi;2 are compared twice. 

In verifying diagnosability using distinguishers, the output cycle of Fii2 and N are 

compared once in examining the distinguishabilit o/Fi i2 from N. • 

Remark 5.4.2 The computational complexity of verifying diagnosability using the 

method in [31] is O(\X\4\T,0\ • p) where E0 is the set of observable events. Thus 

|S 0 | < ne. This gives a complexity of 0(n e |E o | • p • \X\4) = O(ne\E0\p
4m+1M4) for 

minimal sensor selection following [53]. In this case, we see that using minimal distin-
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guishers has reduced the computations by 0(p2m+1) (ns and ne |£o| are not considered 

in comparison). • 

Remark 5.4.3 Unlike the existing methods for sensor selection for fault detection 

and isolation (e.g., Procedure 5.1) where the entire sensor set is computed together 

by applying diagnosability tests on the whole plant, the algorithms proposed in this 

chapter break down the problem into smaller problems of finding minimal sets for 

distinguishing one condition from another. Next, the solution for sensor selection 

problem is obtained by combining these smaller solutions. Our studies show that the 

minimal distinguishers (F\N- distinguishers and F\F' -distinguishes) typically have 

only one or two sensors. The computation of these small sets can be speeded up using 

heuristics and expert knowledge. For example, a minimal set for distinguishing a 

"stuck-closed" failure of a valve from normal operation will likely include a flow-meter 

or pressure sensor near the valve. This shows how heuristics and expert knowledge 

may be incorporated into the algorithm for sensor selection. • 

Example 5.4.3 Consider the ozone generation plant described in Example 3.0.1 in 

Chapter 3. For brevity, we consider only the following three failure modes: V\ stuck-

closed (F\), power supply unit (PSU) failed (Fi) and V3 stuck-closed (F3). Further­

more, we will assume single-failure scenario (no simultaneous failures). 

We would like to obtain a minimal set of sensors for failure detection and isolation 

(a minimal element ofDT). To use Procedure 5.4, we need a set of minimal distin­

guishers. To distinguish Fi (valve V\ stuck-closed) from N, we pick the flow meter 

Cfi and verify that {Cfi} is a minimal Fi\N-distinguisher (Note that here we have 

used intuition along with a bottom-up approach to find a minimal distinguisher.) To 
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distinguish the failure of PSU (F2) from normal behavior, we choose concentration 

analyzer and see that {Cc} is a minimal F2\N -distinguisher. {Cc} is also a minimal 

F3\N -distinguisher since if the flow of cooling water stops, the temperature in ozone 

generator rises, resulting in the decomposition of ozone. Furthermore, we can verify 

that the flow meter Cfi can be used to distinguish F\ from F2 or F3 (and vise versa) 

and thus {C/i} is a minimal Fi\F2, Fi\F3, F2\Fi and F3\Fi -distinguisher. Now Cc 

can not be used to distinguish F2 from F3, or vice versa, since F2 and F3 both result in 

drop in ozone concentration. To distinguish the failure V3 stuck-closed (F3) from F2 

(PSU failure) we consider flow meter Cf2 and verify that {Cf2} is a minimal F3\F2 

and F2\F3 -distinguisher. Now following Procedure 5-4, we obtain {Cfi,Cf2,Cc} as a 

minimal set of sensors for failure detection and isolation. • 

5.5 Summary 

In this chapter, we show that testing failure diagnosability and sensor selection for 

diagnosis of permanent failures in discrete-event systems can be broken down into a 

set of smaller problems involving testing diagnosability of one system condition from 

another and computing minimal sensor sets that guarantee distinguishability (min­

imal distinguishers). This approach takes the structure of the system into account 

and reduces the complexity of testing diagnosability and sensor selection. 

In the following chapter, we will see how the proposed algorithms based on minimal 

distinguishers can be used in sensor selection in a multi-resolution fault diagnosis 

system. Also, we will discuss how the use of minimal distinguishers can help with 

reducing the online computations required for reconfiguration of the diagnosis system. 
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Chapter 6 

MULTI-RESOLUTION FAULT 
DIAGNOSIS 

In this chapter, we present our framework for multi-resolution diagnosis and then 

discuss various design issues, in particular, sensor selection. For sensor selection, we 

adopt the procedures developed in Chapter 5 based on minimal distinguishers. An 

illustrative example is also provided. Finally, we discuss the reconfiguration of the 

diagnosis system online (when the plant is operational). 

6.1 Structure of Multi-Resolution Fault Diagnosis 

As discussed in Chapter 1, hierarchical approaches are among the methods to 

reduce the computational complexity in failure detection and isolation of discrete-

event systems. In this thesis, we introduce an algorithm for failure diagnosis which 

uses a sequence of models of the plant, with increasing resolutions, to narrow down 

the range of possible diagnosis step by step and to finally isolate the failure. In 

this way, the original problem of failure diagnosis is broken down into a sequence of 

simple problems. This approach is similar to Branch and Bound techniques used in 
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Operations Research. In this section, we describe the proposed Multi-Resolution 

Diagnosis techniques. Some design issues (such as failure grouping, sensor selection) 

and performance issues (such as diagnosability and diagnosis delay) will be discussed 

in future sections. 

Suppose the plant can be modelled a nondeterministic finite-state Moore automa­

ton G = (X,T,,S,x0,Y,A) as described in Chapter 3. For now we assume all failure 

modes are permanent and we consider single-failure scenario (i.e., no simultaneous 

occurrence of two or more failures). As mentioned in Remark 3.0.1 in the case of 

nonpermanent failures, we can convert them into equivalent problem associated with 

all permanent failures. Simultaneous occurrence of failures will be discussed in Sec­

tion 6.4. Let us assume that the failure conditions are grouped into / failure groups 

J™, T(2\ ..., JF('). Failure conditions can be grouped, for instance, based on the sub­

systems that the failures occur. In other words, J7^ contains the faulty conditions 

that may develop in subsystem 1 (and so on). Failure grouping will be discussed 

further in Section 6.6. Let F[ , ...Fpl denote the faulty conditions in group F^: 

!F^ = {Fi ,...,Fpl'} (1 < i < I). Therefore, the set of failure conditions and 

groups can be represented in the form of a hierarchy as shown in Fig. 3.2. Here 

JT = UU.FW = {Fx
(1), . . . , F$\ F^\ . . . , F$} is the set of faulty conditions. In Fig. 

3.2, M = {N}, where N is the normal condition. The multi-resolution diagnosis 

proposed in this thesis is designed based on grouping of conditions in Fig. 3.2. Note 

that the three-level failure hierarchy in Fig. 3.2 can be replaced with hierarchies hav­

ing more than three levels. In this dissertation, for simplicity, we present our results 

based on the three-level hierarchy in Fig. 3.2. 
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In the multi-resolution diagnosis system proposed here, a diagnoser is designed 

to detect faulty operation. In other words, the diagnoser determines whether the 

condition of plant is J\f or T. Let Ki = \N, J7} denote the level-one condition 

set. Once a faulty behavior is detected, another diagnoser is used to identify the 

faulty group the plant's condition belongs to. We shall refer to this diagnoser and 

the set K2 = {J7^, • • • ,J-^} as the second-level diagnoser and condition set. Once, 

the faulty group is identified as, say T^\ then a third-level diagnoser is invoked to 

isolate the faulty condition of the plant. Thus, K3 = T^ (1 < % < I) will be the 

third-level condition set. In the following, we will examine the design and operation 

of the above-mentioned diagnosers in more detail. For simplicity, we will assume 

/ = 3 faulty groups, pi = 3, p2 = 2, and ps = 1. Thus the plant condition set will be 

K = {N,F?\lf\l£\Fl>\lF>,Fi»}. 

In the first step of multi-resolution diagnosis, we detect faulty behavior. The level-

one diagnoser has a structure similar to that described in Section 2.2 of Chapter 2. In 

other words, the diagnoser is an observer which finds an estimate for system state and 

the corresponding condition estimate (which will be a subset of level-one condition 

set Ki = {Af, J7}). To reduce the size of diagnoser, we design it based on reduce RTS 

(Section 2.1 of Chapter 2). Since at this level, the objective is only to detect faulty 

behavior (and not to isolate the fault), we can use a minimal subset of the sensor 

set Ctot, say C\. Efficient algorithms for sensor selection for multi-resolution fault 

diagnosis will be discussed in Section 6.2. Let Ai denote the output map, assuming 

sensors in d are used. To construct the reduced RTS, we find the coarsest partition 

of X compatible with transition in the RTS that is finer than ker \ A ker KX where 
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Hi : X —> Ki is the level-one condition map, "ker" refers to the equivalence kernel 

of the corresponding map [23] and A denotes the meet operation in the lattice of 

equivalence relations [64]. Let us call the corresponding reduced RTS G\ and denote 

the state set of G\ as X\. Note that since ker A < ker Xi (where A is the output map 

assuming all sensors in Ctot are used) and ker/c < ker/t! (where K : X —> /C is the 

condition map used in a diagnoser that solves failure detection and isolation in single 

step as in [23]), the reduced RTS G\ in first level diagnosis is likely to have fewer states 

than the reduced RTS G (in [23]) based on ker A A ker K (In the worst case, G\ and 

G have the same number of states.). Intuitively, detecting faulty behavior is easier 

than detecting and isolating failures. Therefore, for the detection problem a more 

simplified model of the plant (with less solution) and fewer sensors may be enough. 

Let z\tk C Xi and Ki(-Zi,fc) C Kx = {Af,F} be the state and condition estimates 

provided by the first level diagnoser after ktb. output readings. The initial state of 

level-one diagnoser z\fi C X\ depends on the information about the plant state at the 

time the diagnosis system is started. If a failure occurs and as soon as Ki(zljfc) = {J7} 

(for some k), the faulty behavior is detected, the second-level diagnoser is used to 

find the group the faulty condition belongs to. Let us denote the last state estimate 

provided by level-one diagnoser as z\j. 

Once the faulty behavior is detected, the second level diagnoser is started to isolate 

the fault group. The second-level diagnoser is an observer which provides an estimate 

for the system state and thus condition. The condition estimate will be a subset 

of the second-level condition set K2 = {F^, ^2\ J7^}. Similar to the first-level 

failure diagnosis, instead of Ctot, we only use a minimal subset of sensors, denoted 
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here by C2, that provides sufficient information for isolating fault group. To reduce 

the size of the diagnosis system, instead of RTS of Gyr (the faulty subgenerator of 

G), the reduced RTS of Gjr2 is used. Let Xyr2 denote the state set of Gjr2. The 

second-level diagnoser is initialized with state estimate z2$ — PiP\XZ\j-, where z\j 

is the final state estimate provided by the first-level diagnoser; Pi : X —> Xi and 

P2 : Xyr —> Xyr^ are the natural projections used in reducing RTSs in levels one and 

two, respectively. In this way, the information obtained by the first-level diagnoser is 

passed to the second-level diagnoser. Let A2 and K2 : X? —> K2 denote the output 

and condition maps of the second-level. Thus ker \\x^ < ker A2 (where \\xT is the 

restriction of A to X?) since at the second level diagnosis, a subset of sensors is used 

for isolating fault group. Furthermore, ker K\XT < ker n2 ( where K\X:F is the restriction 

of K to Xyr). Therefore, the reduced RTS G^2 used in the second-level diagnosis will 

have fewer states than the reduced RTS G (or its subgenerator G?) used in standard 

solution to failure detection and isolation. Intuitively, isolating a fault group is easier 

than isolating the specific fault condition and therefore a simplified model with less 

resolution should be enough. 

Finally, at the third level, I = 3 diagnosers are needed, one for isolating the fault 

condition in each fault group. Let us suppose the second-level diagnoser isolates 

the fault group !F^ and z2j is the last state estimate provided by the second-level 

diagnoser. Now, the third-level diagnoser for isolating faults in J7^ is started. For 

the purpose of fault isolation in J7^ , a subset of sensors C\ is used along with 

the corresponding reduced RTS G^i) 3. The diagnoser is initialized with Zg0 = 

P3 P2
lz2j where P3 : Xj=1 —> X% is the natural projection used in obtaining G^u 3 



106 

and Xfx denotes state set of G^i). Similar to the case of first and second level 

diagnosers, this diagnoser will have fewer states than a standard diagnoser for fault 

detection and isolation. The model reduction algorithm can particularly work very 

efficiently if fault partitioning is done properly. For instance, suppose G has three 

subsystems G = G^WG^WG^. If each fault group corresponds to faults in each 

subsystem (i.e., J7^ are faults in G^), then for instance, for isolating faults in J7^ 

(subsystem G^1'), very simplified models of G^ and G^ may be enough. In fact, if 

G^ and G^2)||G^3^ do not have any common unobservable events 1, state estimate in 

G^ does not require the models of G^ and G^ at all (Proposition 3 in [50]). In 

this case, the multi-resolution approach works extremely efficiently. 

In the following sections, we will discuss design issues such as sensor selection, 

and fault grouping. Extension of the proposed multi-resolution diagnosis scheme to 

the case of simultaneous faults will also be discussed. 

6.2 Sensor Selection for Multi-Resolution Diagnosis 

In this section, we discuss the issue of sensor selection for Multi-Resolution failure 

Diagnosis (MRD). The objective of sensor selection, for each level in multi-resolution 

approach, is to select a minimal set of sensors from the given sensor set which ensures 

that the desired goal (fault detection or diagnosis) can be met. To realize this, we 

present two sets of algorithms based on minimal distinguishers. The first set will 

b e p resen ted in th i s sect ion. T h e second set of a lgor i thms (which will b e discussed 

1Here it is assumed that the initial state estimate ZQ is in the form of zo = zj x zj x zj with 

ZQ is the initial state of subsystem G^. 
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at the end of this chapter) is particularly suitable when we would like to be able to 

reconfigure the diagnosis system. 

We take the same hierarchy as in Fig. 3.2 and assume ns sensors in the system: 

Ctot = {ci, • • •, cn ,}. Suppose J7^,..., J7^ are the groups of failure conditions (i.e., 

blocks or failure partition) in the system. We say the failure group isolation 

problem is solvable if for failure group assuming the diagnoser (observer of the 

system) initialized with z0 = Xyr, there exists an integer JVj > 0 such that after the 

occurrence of a failure leading to a condition in J7^ and initialization of the diagnoser, 

the diagnoser reaches a Zk € Xra) after the occurrence of at most iVj events in the 

system. Similarly, we say failure isolation for the group J7^ is solvable if for any 

failure F- if the diagnoser of the system is started with z0 — XT{i), there exists an 

integer Â  > 0 such that after initialization of the diagnoser, the diagnoser reaches 

zk € X (i) after the occurrence of at most Nt events in the system. 
i 

Let T>, QX and FT^J7^) denote the set of sensor sets for which the problems of 

fault detection, failure group isolation and failure isolation for group are solvable, 

respectively. Therefore, T> = {C\C C Ctot and fault detection using sensors C is 

solvable}, QX — {C\C C Ctot and fault group isolation using sensors C is solvable} 

and TXIyJ7^} = {C\C C Ctot and fault isolation for group using sensors C is 

solvable}. Thus, V, QX and TX{T^\\ < i < I) are the set of sensor selections for 

first-level, second-level and third-level (lowest level) in multi-resolution diagnosis. 

According to Theorem 5.3.1, V = fVe;FSD(F|./V). Similarly we have the following 

results. 
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Theorem 6.2.1 QX = n{SD(F\F')\3i,j,i ^ j , 1 < i < 1,1 < j < I; F e , F W , F ' e 

Proof The proof follows from Theorem 5.3.2. We omit the details for brevity. • 

Theorem 6.2.2 FKJF®) = n{SD(F\F') \F, F' e F(i) and F + F'} 

Proof Similarly, the proof follows from Theorem 5.3.2 and it's straightforward. We 

omit the proof for brevity. • 

Our objective in this section is to find minimal elements of T>, QX and TI(T^). 

The minimal elements of these sets are in general not unique. We shall propose 

procedures for finding one element for each set. In the rest of the chapter, Cjr\N, CgiSO 

and C\lJ0 will denote the minimal elements obtained using the proposed procedures. 

6.2.1 First Algorithm for Sensor Selection 

Given the set of sensors Ctot, for each pair of system conditions A and A', a 

minimal A|yl'-distinguisher can be obtained according to Procedure 5.2. 

For computing a minimal sensor set for the fault detection problem, we can use 

Procedure 5.3 in Chapter 5. This gives C^IAT (first-level sensor selection). 

Next in order to perform sensor selection for second-level fault diagnosis (finding a 

minimal element for QX), in the procedure for failure detection and isolation (Proce­

dure 5.4), we substitute failure conditions F,F' € J- with failure groups J7^,^) g j : 

and remove \JperC^\j^ from Step 2. Then the result will be a procedure for sensor 

selection for failure group isolation (Procedure 6.1). Briefly, in Procedure 6.1, Step 2 
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calculates an element of Ql (using Theorem 6.2.1), and Step 3 reduces this element 

to a minimal element of QT. 

Procedure 6.1: Given a sensor set Cm - {ci, ..., cn } and minimal F\F'-

distinguishers CF]F. for every Fs <F0),F's <F0) and <F0) * T0. 

1. Initialization: Qu»:= 0 

2. Cgv,0:= u {CF!F, | 3 i, j , i$, 1< i<l, l<j< I; Fe T(i> and F'e <F6)} 

3. For all ce Cgu0 

Compute all GT„, (1< / < / ) 
For all Fe <F0>, F'e T<j> with i$ 

If C^0-{c}g SD(F|F') 
go to 3a 

End (If) 
End (For) 

3 a Continue 

End (For) 

Procedure 6.1: C^is a minimal sensor set for second-level fault diagnosis. 

Similarly, in order to obtain the sensor selection for fault isolation within a group 

. F ^ , we substitute T in Procedure 5.4 with . 7 ^ , and remove UperCF\N m Step 2. 

Then the result will be a procedure for sensor selection for isolation within fault group 

T^ (third-level fault diagnosis). 

Note that the minimal F\F' distinguishers that are calculated for sensor selection 

at the third-level are also used for sensor selection at the second-level. In other 

words, minimal distinguishers for fault groups need not be calculated. This is one of 

the advantages of our sensor selection method. 
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6.3 Example: Multi-Resolution Failure Diagnosis in Ozone Generator 

System 

In Section 6.1, we have presented our procedure for multi-resolution fault diagnosis 

(MRD). In this section, we study the design of a multi-resolution fault diagnosis 

system for the ozone generation plant introduced in Example 3.0.1 (Chapter 3). Here 

is the outline of the design procedure. 

Multi-Resolution Diagnosis Procedure: 

1. Group failure modes, say based on the subsystem each occurs in (Also, see 

Remark 6.6.1. 

2. Compute minimal sensor sets CF\N, Cgiso and CfJ0 (1 < i < I) for the three 

levels of diagnosis (using procedures in Section 6.2.). 

3. Compute reduced RTS Gi assuming only sensors in C^JV are used. 

4. Compute reduced RTS (5y,2 (assuming only sensors in Cgiso are used for group 

isolation). 

5. Compute reduced RTSs G^a) 3 (1 < i < I) (based on sensors Cfso). 

Now we consider the ozone generation plant introduced in Example 3.0.1 (Chapter 

3) as an illustrative example. For brevity, we only consider failures in the components 

of the oxygen/ozone pipe and the cooling water pipe, in other words: V\ stuck-closed 

(Fi), V<i stuck-closed (F2), Vi stuck-open (F3), V3 stuck-closed (F5) and Vz stuck-

open(F6). We assume that the information about the state of controller (Fig. 3.6) is 

available for diagnosis. It can be shown that the flow meters c/i, c/2 and concentration 
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sensor cc form a minimal set of sensors to ensure the diagnosability of all failure 

modes (i.e., {cy1;c/2,cc} is a minimal element of T>I). Therefore the output map 

can be considered to be of the form A = Ac x Xs where Ac : Xc —>• Xc provides the 

state of controller. Xc = {Co,..., CV} is the state set of controller and Ac(Cj) = Ct 

(0 < i < 7). Furthermore, As : X —> {ngf,gf} x {nf, / } x {al, a} provides the output 

of sensors in the order cji, Cf2 and cc, where "ngf'and "gf" correspond to "no gas 

flow" and "normal gas flow", "nf" and "f" mean "no cooling water flow" and 'normal 

cooling water flow" and "al" and "a" imply "low ozone concentration" and "normal 

ozone concentration", respectively. 

The plant model 2 is shown in Fig. 6.1. In each state, the state name and output 

are shown. The events are not shown on the figure to avoid clutter. 

Let us start with the design of the first-level diagnoser. It can be shown (for in­

stance, following Procedure 5.3) that Cjr\x — {c/i, cj2} is a minimal .^./V-distinguisher 

Specifically, c/i detects faulty behaviors due to F\, F<i and F3 and c/2 detects faulty 

behaviors due to F5 and Fg. Furthermore, to detect failure in valves using the flow 

meters, the knowledge of PSU running or not is not important. Therefore the output 

Ac for controller states can be replaced by a coarser map ACl : Xc —> Xc such that 

2This model is similar to the model in [62], except for two changes. In our system, we assume that 
the controller command which stops the power supply unit after the power supply unit has been 
run for a certain minimum time (allowing ozone to be generated). Also we assume that when the 
oxygen gas inlet valve is stuck closed, there is remaining oxygen gas in the gas pipe for a short 
period. Under these circumstances, in state 14, when V\ is stuck-closed, V2 and V3 are open and the 
PSU is running, the concentration of ozone may rise (state transition 14—> 18) but due to reduction 
of pressure in ozone generator, the concentration of ozone falls rapidly (state transition 18—> 14). 
The shut down process starts with PSU turning off (state transition 14—> 15). 
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Fig. 6.1. The ozone plant model with five failures. 
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\ i (C3) — ACl(C4) — \X{C§) = C3, and for other controller states ACl(Cj) = C, 3. 

Hence the overall output map will be Ai : ACl x AS1 with AS1 : X —> {ngf, gf} x {nf, / } . 

Of course, at the first-level, the condition map is K^ = {Af, T}. Based on the afore­

mentioned output and condition sets, the reduced RTS G1 for the first-level diagnosis 

is obtained and shown in Fig. 6.2. In the plant model, states 10 and 20 are equivalent 

and grouped in a block, designated in G1 as state '1-10'. The other equivalent states 

are grouped similarly. Overall the original number of 57 states is now reduced to 30. 
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Fig. 6.2. The reduced RTS for first-level diagnosis. 

In order to design the second-level diagnoser, we need to group the failure modes. 

Let us group the failure according to the subsystem they occur in: J7^ = {Fi,F2, Fa}, 

3The controller output Ac can be considered as the resulting output of eight "virtual sensors": 
Ac = Â  x A£ x . . . \7

C where A*(Ci) = 1 and A*(C?) = 0 {j ¥= *) for 0 < i < 7. "Virtual sensor" A* 
generates output 1 only when controller is in state Cj and outputs 0 otherwise. These new sensors 
can be included in the Procedures for minimal sensor selection, if desired. 
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^•(2) = |i^5) i^6}. pi1) includes the failure modes in the oxygen/ozone pipes and J7^ 

includes the failure modes in the cooling water subsystem. 

We can use Procedure 6.1 t find a minimal sensor set for group isolation problem. 

We can verify that Cgiso = {c/i} is such a minimal sensor set. Intuitively, C/i can 

be used to monitor flow in the oxygen and ozone pipes and detect faults in V\ and 

V-i. Absence of fault (in the oxygen and ozone pipe system) would indicate that the 

fault is in the cooling water system. In this case, sensors c/2 and cc are not used 

and the information about the commands Run PSU, Stop PSU, Open V3 and Close 

V3 are not required for diagnosis. Thus the information about controller states is 

reported by the map A2jC : Xc -> Xc with A2iC(C0) = A2,c(Ci) = A2,C(C7) = C0, 

A2,C(C3) = A2,C(C4) = A2,C(C5) = C3, A2,C(C2) = C2 and A2,C(C6) = C6. Using the 

above sensor and controller state information, the reduced RTS G^-;2 for the second-

level diagnosis is obtained and shown in Fig. 6.3. G -̂)2 has only 12 states. Gjr2 of 

course does not contain any normal states. 

Note that the dynamics of the cooling water system (i.e., the operation of V3) has 

been essentially removed in G^^ by the model reduction algorithm. If the cooling 

water has more components (say, another valve and a pump), the information about 

the corresponding opening and closing sequences would have been removed by the 

model reduction algorithm and Gj=^ would have the same number of states. 

For the third-level diagnosis, we have to consider two cases: (i) the failure is in the 

oxygen /ozone pipe (-F^), and (ii) the failure is in the cooling water system {T^). 

For case (i), a minimal sensor set is {c/i, cc}. Furthermore, information about control 
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Fig. 6.3. The reduced RTS for second-level diagnosis. 

commands Open V3, Close V3, Open V2 and Close V2 is not necessary. The resulting 

RTS which contains 23 states is shown in Fig. 6.4. 

T 
3-1-10 

C0,ngf,al — • -
3-1-12 

C2,ngf,al 
3-1-13 

C3,ngf,al — • 
3-1-14 

C4,ngf,al 
3-1-18 

C4,ngf,a 

3-1-15 
C5,ngf,al *-

| 
3-1-16 

C6,ngf,al 

f 
3-1-20 

CO, ngf,al — • 
3-1-22 
C2,ngf,al 

3-1-23 
C3,ngf,al 

3-1-24 
C4,ngf,al 

' v . 

3-1-25 
C5,ngf,al 

k 3-1-28 
C4,ngf, i 

\ 

3-1-29 
C5,ngf,a 

1 
3-1-26 

C6,ngf,al 

F3 
f 

3-1-30 
C0,ngf,al 

3-1-32 
C2,gf,al 

3-1-33 
C3,gf,al 

3-1-34 
C4,gf,al 

3-1-38 
C4,gf,a 

3-1-35 
C5,gf,al 

3-1-39 
C5,gf,a 

3-1-36 
C6,gf,al 

Fig. 6.4. The reduced RTS for third-level diagnosis. 

In case (ii), {c/2} would be a minimal sensor set for failure isolation within group 

!F^2\ and the information about control commands Open V3 and Close V3 would be 
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necessary. The reduced RTS containing 4 states is shown in Fig. 6.5. In this case, 

the dynamics of the oxygen/ozone pipe has been removed by the model reduction 

algorithm. 

3-2- 50 
CO, nf 

3-2-51 
Cl,nf 

• 
3-2-60 

CO, f 
3-2- 62 
Cl , f 

Fig. 6.5. The reduced RTS for third-level diagnosis if JF^ is isolated. 

This example shows how a multi-resolution approach breaks down the diagnosis 

problem into a sequence of smaller problems and how in the solution of the smaller 

problems, coarser (simpler) models of the plant can be used. The reduction in the 

size of models in a given step of diagnosis becomes efficient when the dynamics of a 

subsystem is either removed or significantly simplified by the model reduction algo­

rithm. We saw instances of this in the second-level and third-level diagnoses in our 

example. 

Now let us examine how the proposed multi-resolution diagnosis system detects 

and isolates a failure, say V\ stuck — closed. Let us assume that V\ becomes stuck-

closed at the beginning of the start-up sequence. Therefore, the plant (Fig. 6.1) 

follows the sequence 0—+10—>11—•...—»17—>10—>.... We assume the diagnosis 

has no initial knowledge of the plant state, and the initial state estimate of the first-
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level diagnoser is the entire state set in Fig. 6.2 (z10 = Xi) and Ki(zifi) = {J\f,T}. 

As the plant goes from 0 to 13 (valves V\, V2 and V3 are opened; V\ is of course 

stuck-closed) (Fig. 6.1), the output monitored by the first-level diagnoser will be 

(C0,ngf,nf), (Cl,ngf,f), (C2,ngf,f), (C3,ngf,f). The corresponding state and 

condition estimates will be 

Z l l = {1 - 1,1 - 11,1 - 31,1 - 61} K I ( Z U ) = W,F} 

1̂,2 - {1 - 2,1 - 12,1 - 32,1 - 62} KI(«I,2) = {AT, F} 

^ i 3 = { 1 - 1 3 } K1(zh3) = {T} 

At this point, the faulty behavior is detected and the second-level diagnoser is 

initialized with z2fl — i32-Pf1-2;i,3 = {% ~ 13}. Since K2(Z2$) = {F^}, the failure 

group is immediately found and the third-level diagnosis is initialized with z3>0 = 

PzP2
lz2)0 = {3 - 13, 3 - 23}, and n3(z3fi) = {Fu F2}. Now in the plant the PSU is 

started (13 -* 14 in Fig. 6.1). After a while the PSU is stopped (14 -* 15 in Fig. 6.1). 

This results in state estimates 23,1 — {3 — 1 — 14,3 — 1 — 24} and z3j2 = {3 — 1 — 15}. 

^3(^3,2) = {^1} and therefore, Fi is isolated. In this case, the fact that by the time 

the PSU is turned off, the ozone concentration has not become high, has led the 

diagnoser to identify Fi as the source of malfunction. 

6.4 Simultaneous Failures 

In the previous discussion, single-failure scenario was assumed. Now we examine 

the case of simultaneous failures. First we assume a maximum of two failure modes 

can occur simultaneously. The design of multi-resolution diagnosis system follows the 
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same steps described in Section 6.1, except that this time T includes simultaneous 

failure conditions as well. Let us study how the multi-resolution diagnosis system 

reacts to simultaneous failures. 

Let Fx and F2 be two failure modes and F l j2 the condition when both Fx and F2 

have occurred. Suppose failure event f\ occurs and then /2 occurs and therefore the 

system condition changes from N to Fx and finally to Fij2. There are two cases that 

need to be discussed. 

First suppose Fx and Fi]2 are in the same failure group, say J7^. In this case, 

the third-level diagnoser will ultimately (within a bounded number of events) isolate 

condition Fij2. 

Now let us suppose Fx and F1;2 belong to two different failure groups. In this 

case, if /2 occurs before the second-level diagnoser isolates the failure group, then 

the second-level diagnoser will correctly identify the group Fij2 belongs to. If, on the 

other hand, /2 occurs after the second-level diagnoser has identified the group Fx (say, 

J7^) belongs to, since Fii2 does not belong to this group (J7^), either a misdiagnosis 

occurs (the third-level diagnoser announces a failure condition different from Fi>2) or 

an output sequence will be observed that is not consistent with any of the output 

sequences possible in the failure conditions of the isolated group (J7^). In this case, 

if the second-level diagnosis system is reset (with z2j0 = Xpp) arid restarted, then the 

correct fault group and fault condition (Fli2) will be identified. 

In summary, whenever in multi-resolution diagnosis, the third-level diagnoser iso­

lates a failure condition, the diagnosis should be reset from the second-level in case 

other failure events have occurred during the diagnosis process. The above discussion 
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also applies to cases when simultaneous occurrence of more than two failure modes 

are possible. In practice, however, simultaneous occurrence of more than three inde­

pendent failure modes is very unlikely. 

6.5 Properties of Multi-Resolution Diagnosis 

In this section, some of the properties of the proposed multi-resolution diagnosis 

are examined. 

6.5.1 Failure Diagnosability 

In this chapter, our assumption is that using sensors in Ctot, all failure modes 

are diagnosable and in other words, Ctot G T>I. This, in turn, guarantees that all 

sensors selection problems for the three levels of multi-resolution diagnosis system 

have solutions (In fact, Ctot is a solution for failure detection T>, failure group isolation 

GI, and failure isolation TT^'). This thus guarantees that all failure modes remain 

diagnosable using the multi-resolution diagnosis system. 

Note that the diagnosis delay (the time from occurrence of failure event to the time 

the failure is diagnosed) is the sum of diagnosis delays of the first-level, second-level 

and third-level diagnosers. 

6.5.2 Computational Complexity of Design 

The design of multi-resolution diagnosis systems consists of two problems: sensor 

selection and model reduction. The computational (time) complexity of sensor selec-
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tion problem was discussed in Chapter 5, where we showed that the complexity is of 

0( |X| 4 ) (X is the state set of G). The computational complexity of model reduction 

using Relational Coarsest Partition (RCP) problem is 0( |X|2 log |X|) [5]. Therefore, 

sensor selection is the most computationally intensive part of design (at least based 

on worst-case computational scenarios). 

It should be noted that the implementation of the multi-resolution diagnosis is in 

the form of online implementation: the reduced RTS of the three levels are stored in 

computer memory and used in obtaining state and condition estimates for the plant. 

The worst-case size of the state space of reduced RTSs is of the same order as the 

original plant. However, in practice, for instance as shown in the example in Section 

6.3, the model reduction techniques based on Relational Coarsest Partition (RCP) 

problem (bisimulation) can be effective in reducing model size. 

6.6 Online Reconfiguration of a Multi-Resolution Diagnosis System 

The design of a diagnosis system is based on a given set of sensors. In practice, 

information from a sensor (or a set of sensors) may become unavailable permanently 

(due to failures) or temporarily (due to failures or perhaps loss of communication). 

In such cases, we may wish to reconfigure the diagnosis system so that it relies on the 

available sensors. 

In the case of the multi-resolution diagnosis system proposed in this thesis, the 

most computationally intensive part of the design is the sensor selection for various 

levels which involves distinguishability (or diagnosability) tests. In this section, we 

propose algorithms for sensor selection that do not involve distinguishability tests. 
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The drawback of these algorithms is that they require the entire sets of minimal 

distinguishers SMD(F|iV) (for all F e f ) and SMD(F|F ' ) (for all F,F' <E T with 

F^F'). 

With ns sensors, the total number of sensor combinations are 2"s — 1. Therefore, 

there are two issues in using SMDs. First, the computation of each SMD is exponen­

tial in the number of sensors. However, it should be noted that SMDs are calculated 

offline (at the design stage) and not online (when the plant becomes operational). In 

Section 6.6.1, we will present results that can reduce the computation of SMDs (The 

computational complexity will still remain exponential.). The second issue with the 

use of SMDs is that their cardinality (size) in the worst case is exponential. From 

a practical point of view, this may not cause serious problem since our observations 

have shown that minimal distinguishers for failure and normal conditions typically 

contain one or two sensors. (This will be explained in Section 6.6.1). Therefore, the 

cardinality of SMD(F|iV) and SMD(F|F') are of order n2
3. 

6.6.1 Calculation of SMDs 

In this subsection, we discuss the computation of SMD(.F|JV) (F G !F) and 

SMD(F|F ' ) (F ^ F', F, F' €. J7). As mentioned previously, with ns sensors, there are 

2n" — 1 sensor combinations and as a result, the cardinalities of the above SMDs are 

exponential in ns. However, in practice, we notice that in order to distinguish normal 

behavior from faulty behavior in a faulty condition, one or two sensors are enough. For 

example, in the ozone generator plant in Example 3.0.1, SMD(.Fi|./V)={{c/i}, {cc}, {cpi}, 
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{cP2}}, and therefore all minimal Fi|iV-distinguishers contain a single sensor. Hence 

in this section, we will assume the following. 

Assumption 6.6.1 (i). Each minimal F\N-distinguisher (F 6 T) consists of one 

or two sensors; (ii). Each minimal F\F'-distinguisher (F ^ F', F and F' € T) 

consists of one or two sensors. • 

In light of the above assumption, in order to find the set of SMD(.F|iV)'s and 

SMD(F|.F')'s, we have to examine single-sensor and double-sensor combinations. 

The total number of such combinations is ns + " 3 " \ and thus of order n2
s, which is 

polynomial. However, in a given problem, we have to verify Assumption 6.6.1 as well. 

And for this, we need to examine sensor combinations of size 3 to ns. The number of 

such sensor combinations is exponential in ns. In the following, we will present two 

results that while they do not change the (worst-case) exponential complexity of the 

verification of Assumption 6.6.1, they reduce the required computations. 

Consider two distinct conditions A, A' <E /C, A 7̂  A'. 

Definition 6.6.1 A set of minimal A\ A' -distinguishers C\, C2 , . . .Ck are called dis­

joint if for any d and Cj with i ^ j and 1 < i,j < k, we have d fl Cj = 0. • 

Proposition 6.6.2 Suppose a set of minimal A\A'-distinguishes has 'a' disjoint 

minimal A\A'-distinguishers. If there exists a minimal A\A1 -distinguisher C not be­

longing to the above set, then C cannot contain more than 'na — a' sensors. 

Proof Let C\,C2,---Ca be the disjoint minimal distinguishers. If there exists a 

new minimal distinguisher C, then d — C 7̂  0 (1 < i < a) (otherwise d C C which 



123 

violates the assumption). Since Q's are disjoint, (Q — C) D (Cj — C) — 0 (1 < i, j < a 

and i ^ j). Therefore, | U"=1(Cj — C) \> a, and as a result, 

I C |< n„- | U?=1(Ci - C) |< ns - a. 

• 

Proposition 6.6.2 can be used to verify Assumption 6.6.1 in the following way. 

After we find all single and double sensor minimal A|A'-distinguishers, we find the 

number of disjoint distinguishers, 'a'. Next we only need to check sensor combinations 

of size '3 ' to ln8 — a' for existence of any other minimal distinguishers (i.e., sensor 

sets of size 'ns — a + V to 'ns ' can be ignored). 

Example 6.6.1 Suppose Ctot = {ci, c 2 , . . . , cw} (ns = 10,), and the single and double 

A\A!-distinguishers are {c{\, {02,03} {03,04}. Thus there are a = 2 disjoint minimal 

distinguishers. It follows from Proposition 6.6.2, that there are no minimal distin­

guishers of size '9' and '10'. M 

Proposition 6.6.3 Suppose in k minimal A\A'-distinguishers Ci,C2, • • -Ck, there 

are I distinct sensors: | U^=1Ci |= I. If there exists a minimal distinguisher C not in 

the above set and consisting of at most ns — I sensors (\C\ < ns — l), then there exists 

an A\ A'-distinguisher C consisting of ns — I sensors (\C'\ = ns — l) with C Q C such 

that C is not a superset of any d (i = 1 , . . . , k). • 

Before presenting the proof let us examine the proposition. The proposition im­

plies that if each of A\^'-distinguishers of size 'ns — V is a superset of one of Cj's, then 

there are no minimal distinguishers of size lns — V or less (other than C\,..., Ck). 
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Proof of Proposition 6.6.3: 

Let Ci — Uf=1Cj. Then Ctot—Ci contains lns—V sensors. Suppose \C\ = m < ns—l. 

Then let C consist of the sensors in C and ns — l — m (< ns — l) sensors from Ctot — Ct. 

Obviously C" is a superset of C and thus is an ^l^l'-distinguisher. C is a minimal 

distinguisher and does not belong to the set C\,..., C^. Thus C cannot be a superset 

of any d, and neither can C" (since the sensors in C" — C come from Ctot — Q). • 

Proposition 6.6.3 can be used to verify Assumption 6.6.1 in the following way. 

After we find all single-sensor and double-sensor minimal distinguishers, we find the 

number of sensors in them and call it T. If Assumption 6.6.1 is true, then every 

distinguisher of size 'ns — V must be a superset of at least one of single-sensor or 

double-sensor minimal distinguishers. Once this is verified, we can ignore sensor 

combinations of size '3 ' to 'ns — I — V in the process of the verification of Assumption 

6.6.1. 

Example 6.6.2 (Continued from Example 6.6.1) 

In the single-sensor or double-sensor minimal distinguishers {c{\, {c2, c3} {c3, C4}, 

there are I = 4 sensors. Therefore we examine all sensors combinations of size 

ns — I = 6 and make sure that they are supersets of single-sensor and double-sensor 

sets. Once this is verified, then sensor combinations of size 3,4 and 5 can be ignored. 

As a result, based on Proposition 6.6.2 and Proposition 6.6.3, to verify Assumption 

6.6.1, we only need to examine sensor combinations of size 6,7 and 8. • 

In the following subsection, we will discuss algorithms for sensor selection for 

a multi-resolution diagnosis that use SMD(F|A?')'s and SMD(F|F ' ) ' s and do not 

require the computationally expensive distinguishability tests. SMD(F|A?')'s and 
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SMD(F|F') 's have potential application in the computation of minimal sensor sets 

with minimal cardinality for detection and diagnosis problems. This problem is known 

to have worst-case exponential complexity [52] and its solution involves diagnosabil-

ity tests. Once the SMD(F|A^)'s and SMD(F|F') 's are found, then the tests for 

verifying whether a given sensor set is suitable for the detection or diagnosis problem 

can be performed without a diagnosability or distinguishability tests. 

Remark 6.6.1 Another use of SMD's is in choosing the fault groups in multi-

resolution diagnosis. A rule of thumb is to group the faults according to the subsystem 

they occur. It is desirable to group the faults so that the required sensor sets for group 

isolation (CgiS0) and fault isolation (C>10) have the smallest number of sensors. To 

achieve this, we may look for failure modes that similar behaviors or affect the system 

similarly. For such failures we can expect the SMD(F\N) to be similar; in other 

words, the required sensors to distinguish them from normal mode would be the same. 

If placed in a group, these similar failures can be distinguished from other failures us­

ing a small set of sensors. To find similar SMD(F\N), first we can look for identical 

SMDs and next, for SMD(F\N)'s that have elements (minimal distinguishers) in 

common that are not presented in other SMD(F\N)'s. • 

6.6.2 Alternative Algorithm for Sensor Selection Using SMD's 

The algorithms proposed in this subsection, use SMD(J51|A/')'s and SMD(F|i ; i ' ) 's 

to find minimal sensor sets for multi-resolution diagnosis. As such they do not require 

distinguishability tests. As a result, the computational complexity of these algorithms 

are polynomial in the number of sensors and fault conditions but do not depend on 
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the size of the system states. This makes them suitable for online implementation to 

be used, say, in the reconfiguration of the diagnosis system (Note that the algorithms 

for sensor selection given in Section 6.2 have a complexity of C(|X|4)). Of course, the 

price to pay is the computation of SMD(F|./V)'s and SMD(F|F') 's which is done 

offline, at the design stage. 

We begin the discussion with sensor selection for the first level (failure detection 

problem). Procedure 5.3 discussed for finding a minimal element of V, first constructs 

an element of T> and then removes sensors from that element until it becomes minimal. 

The algorithm proposed in this section follows the same procedure, except that in 

order to verify whether a sensor set belongs to V (i.e., is suitable for failure detection), 

instead of performing distinguishability tests, it relies on the SMD(F|iV)'s to find 

the answer. The following theorem explains the detail. 

Theorem 6.6.4 Let C C Ctot. Then C € V if and only if for every F € T, there 

exists C'F E SMD(F\N) such that C'FCC. 

Proof C eV = nFeTSB(F\N) implies that for every F eT,C eSD(F|JV), which 

means there exists C" <ESMD(F| iV) such that C" C C. Conversely, UFeyrC'F <ESD(F|iV) 

for all F € T and therefore UFefC'F G nFeJrSD(F|iV) = V. Hence C € V. • 

Procedure 6.2 finds a minimal element of T> using SMD(F|iV)'s. After initializa­

tion of CF\M, Step 2 and 3 calculate an element of V. Specifically in Step 2, the fault 

conditions that have single minimal F | ./V-distinguishers are identified and the sensors 

in those minimal F|7V-distinguishers are added to Cjr^. These sensors of course are 

present in any element of V. Next in Step 3, sensors are added to Cjr^ so that it 
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Procedure 6.2: Let T ={Fi,.., Fp). Assume the set of minimal 
distinguishers SMD(F|JV) are given for every Fe T. 
1. Initialization: C?w=0, / ={/, 2, ...p). 
2. For ;'=/, ..., p 

If | SMD(F,|A0|=1 with SMD(F,|7V)=C 
Then 

End(If) 
End {For} 

3. For all iel 

If {C e SMD (F,| JV)| C c Cfjjv } = 0 then 

Choose Ce SMD (F,| JV) and Ĉ JV = CT\N U C 
End (If) 

End (For) 
4. For all c e CflW 

For all F e IF 

4a. If {Ce SMD (F\N) \ C c C^^ - {c}}= 0 then 
Go to 4b 

End{If} 
End {For} 

C<F|W= C<f\N~ {C} 
4b. Continue 

End (For) 

Procedure 6.2: C^/is a minimal sensor set for fault detection. 

becomes a superset of a minimal F|iV-distinguisrier (for every F). Thus by Theorem 

6.6.4, after Step 3, C will be an element (not necessarily minimal) of T>. In Step 4, 

sensors are removed from Cy?\tf one by one until C^Af becomes minimal. At step 4a, 

when a sensor is removed, in order to verify whether the resulting sensor set is an 

element of V, Theorem 6.6.4 is used. 

Now we find the complexity of Procedure 6.2. As in Section 6.5.1, we assume the 

elements of SMD(F|AT)'s are single-sensor and double-sensor sets and therefore each 

SMD(F|Af) has 0(n2
s) elements. Step 2 of Procedure 6.2 can be performed in 0(p) 

(where p is the number of failure modes). Step 3 can be performed in 0(p x n2
s). Step 

4 is executed 0(ns x p) times and each time, it takes 0{n2
a) time. Therefore Step 4 
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is done in 0{nz
sp). Thus assuming SMD(F|iV)'s are available, the time complexity 

of Procedure 6.2 becomes 0{nz
sp). 

Next we discuss an algorithm for finding a minimal sensor set for the fault group 

isolation problem. The proposed algorithm relies on the following theorem. 

Theorem 6.6.5 Let C C Ctot- Then C € QI if and only if for every F 6 J™ and 

F' e T{i) (l<ij <l,i^ j), there exists C 6 SMD(F\F') such that C C C. 

Proof C £QI implies (by Theorem 6.2.1) that C € ST)(F\F') for every F € F^, 

F' € T^ with 1 < i,j < I and i ^ j . Therefore there exists C € SMD(F|F') such 

that C C C. The reverse can be shown similarly. • 

Procedure 6.3 finds a minimal element of QI using SMD(.F|.F')'s. Similar to 

Procedure 6.2, Step 2 and 3 find an element of QI and then Step 4 trims the element 

to a minimal element of QI. Procedure 6.3 does not involve distinguishability tests. 

Assuming the elements of SMD(F|F ') ' s are single-sensor and double-sensor sets 

and therefore each SMD(F|F ' ) has 0{n2
s) elements (sensor sets), the complexity of 

Step 2 and 3 of Procedure 6.3 are 0(p2) and 0(p2 x n2
s) respectively. Step 4 executes 

0(ns x p2) times and each time, it takes 0{n2). Thus Step 4 is done in 0(n\ x p2). 

Therefore, the complexity of Procedure 6.3, assuming SMD(F|F ') ' s are available, is 

0{nl x p2). 

A procedure for fault isolation at the third-level of multi-resolution diagnosis can 

be similarly developed. Here we only provide the required test in the following theo­

rem. The procedure itself will be similar to Procedure 6.2 and 6.3 and is omitted for 

brevity. 
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Procedure 6.3: 
1. Initialization: C^, o =0. 
2. For i'=7, ..., / 

Fory=7, .... / 
Fort=7, ...,pi 

Forr=7, ...,/>, 
If | SMD(<Ft

<fl| tFr
u))\=l with SMD(2i( / ) | r r

w)={C} then 

End(If) 
End(For) 

End(For) 
End(For) 

End(For) 
3. For i'=7, ..., / 

Votj-i, .... / 
For&=7, ...,pi 

Forr=7, ...,/j,-and(*,r)e/j/ 
If {C eSMD CFk

0)\ <Fr
m)\Cc CBiso} = 0 then 

Choose Ce SMD (F t
( 0 | <Fr

0))andCBiso = Cgiso\jC 
End (If) 

End(For) 
End(For) 

End(For) 
End (For) 

4. For all c e C^j0 

For i=7, ..., / 
For j=i, ..., / 

Forfc=7, ...,pi 
For r—1, —,Pj 

If {Ce SMD (<Fk
m\ <Fr

w) | C c C^„ -{c}}=0 then 
Go to 4a 

End{If} 
End(For) 

End(For) 
End(For) 

End (For) 
End {For} 

4a. Continue 
End (For) 

Procedure 6.3: Qio is a minimal sensor set for second-level fault diagnosis. 

T h e o r e m 6.6.6 Let C C C t o t . Then C <E ^ T ( ^ W ) /or some 1 < i < I if and only 

if for every F e J*** and F' e T^ with F^F', there exists C £ SMD(F\F') such 

that C'CC. 

Proof The proof is similar to the proof of Theorem 6.6.5 and is based on Theorem 

6.2.2. • 
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Finally note that minimal F\F' distinguishers computed for sensor selection at 

the third-level are reused for sensor selection at the second-level and there is no need 

to find minimal distinguishers for fault groups. This is an advantage of the proposed 

method based on minimal distinguishers that becomes particularly useful if the length 

of the fault hierarchy (number of steps in multi-resolution diagnosis) becomes greater 

than three discussed here. 
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Chapter 7 

CONCLUSION 

7.1 Summary 

In this thesis, a framework for multi-resolution fault diagnosis in discrete-event 

systems (DES) is proposed. Here a sequence of plant models, with increasing res­

olution, are used in fault diagnosis and the range of possible diagnosis is narrowed 

down step by step, until finally the failure mode is isolated. In this way, the original 

problem of fault diagnosis is replaced by a sequence of smaller problems. The plant 

models used at each step of diagnosis are abstractions of the original plant model. In 

this thesis, we propose to use model reduction through the solutions of the Relational 

Coarsest Partition problem to obtain these abstractions. For each diagnosis step, 

a minimal sensor set is chosen to have coarser output maps and hence, to improve 

the efficiency of model reduction. We discuss how the state and condition estimates 

obtained in each stage of diagnosis can be passed to next level so that the information 

in the previously monitored output sequence is preserved in going from one step of 
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diagnosis to the next step. As an illustrative example, the proposed method is used 

to design a multi-resolution diagnosis system for an ozone generator plant. 

The discrete-event plant can be in normal condition or in one of several faulty 

conditions. In this thesis, a polynomial algorithm is proposed that verifies failure 

diagnosability by examining the distinguishability of two plant conditions at a time. 

A procedure is presented that finds minimal sensor sets for distinguishability of one 

condition from another. These minimal sets are referred to as minimal distinguishers. 

A polynomial procedure is introduced that combines minimal distinguishers to obtain 

a minimal sensor set for fault diagnosis. The proposed method based on minimal dis­

tinguishers reduces the computational complexity of sensor selection, especially in the 

cases involving simultaneous failures. Another benefit of using minimal distinguishers 

is that their computation maybe speeded up using heuristics and expert knowledge. 

The proposed method for sensor selection is particularly suitable for multi-resolution 

diagnosis since it permits some of the results of computations performed for sensor 

selection at the lowest (finest) level of multi-resolution diagnosis (specifically, the 

minimal distinguishers), to be reduced at higher levels. This feature is particularly 

useful in reducing the computations necessary for online reconfiguration of the multi-

resolution diagnosis system. Specifically, for sensor selection which is the most com­

putationally intensive part of design, an algorithm is proposed that does not require 

any distinguishability tests online. This reduction in online computations comes at 

the extra cost of offline (design stage) computations. 

An important procedure used in sensor selection is testing diagnosability. In 

this thesis, a new procedure for testing diagnosability in timed DES is introduced 
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based on timed Reachability Transition System (timed RTS). It is shown, through 

example, that if timed RTS has been already computed, say for diagnoser design, 

then the proposed test for diagnosability maybe executed with significantly fewer 

computations compared to tests developed for untimed models and adapted for timed 

systems. Furthermore, two new sets of sufficient conditions are provided under which 

diagnoser design (discussed in the literature) and diagnosability tests (introduced in 

this thesis), based on timed RTS can be performed efficiently even in cases when the 

transition-time sets associated with output changes are unbounded sets. 

7.2 Future Research 

The research presented in this thesis can be extended in several directions. Over 

the past few years, there has been a great interest in the study of the topic of decen­

tralized diagnosis (with and without communication). A Possible future work includes 

incorporating a multi-resolution approach in solutions to decentralized problems. In 

this regard, issues such as fault grouping and sensor selection and their effect on the 

required inter-subsystem communication would be challenging and interesting. 

In this thesis, we used natural projections on state sets to perform model reduction 

and obtain coarser models. Other approaches to abstraction such as the more general 

causal maps can also be investigated. Causal maps in particular have been used in 

the study of hierarchical supervisory control systems. 

One of the benefits of using minimal distinguishers is that their computations may 

be speeded up using heuristics and expert knowledge. Intuitively, in sensor selection 

problems, developing heuristics for finding sensor sets for distinguishing of one faulty 
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condition from another is easier than obtaining heuristics for finding sensor set for a 

more complex fault diagnosis problem We have not explored this idea in this thesis 

and leave it for future research. 

One of the methods to manage computational complexity is to take advantage of 

any algebraic regularity in the model of the system. Vector discrete-event systems or 

Petri nets are examples of such cases. The extension of our results to vector DES or 

Petri nets is another direction for future research. 

An important design decision in multi-resolution diagnosis is fault grouping. As 

mentioned in Chapter 6, putting "similar" faults in one group may help to reduce 

the size of sensor set required for diagnosis. The set of minimal distinguishers may 

provide clues in finding similarity between faults. For instance, if for two faults F 

and F', SMD{F\N) and SMD(F'|A0 are "similar", then it may be inferred that F 

and F' affect that system similarly. We leave this topic for future research. 

Finally, in this dissertation, we applied our results to a simplified generator system 

with a size manageable by manual computations. In order to assess the capability of 

our methodology, it is important to apply our technique to other real-world problems. 
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