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Abstract 

Electromagnetic Analysis of a Finite Reinforced Concrete Slab 

Armin Parsa 

Concordia University, 2008 

In order to calculate the electromagnetic fields reflected, transmitted, and diffracted 

by a finite reinforced concrete slab in the presence of a source, a Green's func­

tion/method of moments approach has been developed. In doing so, a Green's func­

tion solution for a finite and electrically thick dielectric slab is obtained. The Green's 

function for the arbitrary position of the source and field point is based on the interior 

Green's function, i.e. the Green's function when the source and the field point are 

both inside the slab. The solution is two-dimensional, with an electric line source 

excitation. 

The first development in this thesis presents an interior electric field Green's func­

tion for a thick and finite dielectric slab. The presented solution is based on the 

separation of variables method which gives an exact solution to a separable slab. The 

separable slab is closely related to the finite slab. The separable slab solution is ex­

pressed in terms of the contribution of the surface wave modes plus the remaining 

part which is called the "residual wave" contribution. In order to model a finite slab, 

the surface wave contribution of the separable slab is modified since the separable slab 

solution fails to model the finite slab when a surface wave mode is close to resonance. 

The modification is done by correcting the end cap reflection coefficient for each mode 

and accounting for the mode conversions. The mode conversions and reflections are 

characterized by the end cap scattering matrix which is obtained by the method of 

iii 



moments. As a result, the interior Green's function solution for a finite slab is the 

modified surface wave solution plus the residual wave contribution obtained for the 

separable slab. The Green's functions for the cases when the source and/or field 

points are outside the slab are obtained using the interior Green's function and the 

surface equivalence principle. 

Having the finite slab Green's function, it is possible to model a finite reinforced 

concrete slab. Since the metallic rods are assumed to be electrically thick, each 

metallic rod is replaced by a circular array of thin wires complying with the "same 

surface area" rule of thumb. To obtain the unknown induced currents on the surface 

of the thin wires, the method of moments is used in conjunction with the finite slab 

Green's function. The model is used to investigate the reflection and transmission of 

electromagnetic waves for some cases of practical interest. 
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Chapter 1 

Introduction 

In the study of indoor radio propagation at UHF and above, a problem of interest 

is the propagation modeling of the environment in the vicinity of reinforced concrete 

structures. In this type of modeling, the source and field points are usually in the 

near field of the structure which is electrically large. 

The concrete structures are usually reinforced by embedding metallic bars, and 

they are known as reinforced concrete. The metallic bars inside the concrete provide 

more strength to the structure. The reinforced concrete slabs are conventionally 

designed in the indoor environments to carry the load of the buildings. They are also 

popular because of their fire-resistive behavior. The reinforced concrete is mainly 

used in the ceilings, walls, floors and the columns in tall buildings and high-rises. 

When the incident electromagnetic field propagates through the reinforced con­

crete slab, the metallic bars can block a portion of the transmitted field like a shield. 

Although this shielding is helpful in case of interference, it might cause a problem for 

a radio link to function. The metallic rods can also increase the reflected electric field 

depending on their physical geometry. This is not usually desired when multi-path 

fading is a problem because of highly reflected signal. 

Since the presence of embedded metallic bars can highly affect the reflection and 
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transmission properties of the walls and ceilings, an accurate modeling should account 

for these reinforcement bars. Although this usually increases the complexity of the 

model, it provides the correct propagation characteristics of the reinforced concrete 

for the study of indoor wave propagation. 

1.1 Problem Statement 

Fig. 1.1 shows an array of metallic bars inside a concrete slab representing a sim­

ple reinforced concrete slab. The concrete slab is modeled by a one layer dielectric 

Figure 1.1: A reinforced concrete slab. 

medium enclosing the metallic bars. The metallic bars are parallel to the z axis. Since 

this structure is usually electrically large and thick above UHF, the source and the 

field points are often in the near field of such a model. As a result, the plane wave 

reflection and transmission properties of such a structure cannot predict the scatter­

ing properties of the reinforced concrete correctly. A better approach is to assume a 
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Figure 1.2: (a) A two-dimensional infinite dielectric slab embedding metallic bars, 
(b) A two-dimensional finite dielectric slab embedding metallic bars. 

cylindrical wave originating from a line source in the near field region of the slab. By 

doing so, we assume that the slab and metallic bars are infinitely long in the z direc­

tion. A problem of interest is to model this structure when the slab is also infinitely 

long in the y direction as shown in Fig. 1.2.a. This is referred to as infinite dielectric 

slab. The concrete, which is modeled by a homogenous lossy dielectric material, is 

characterized by the permittivity e2 and permeability /i2. Since the exterior region is 

usually air, we have e\ = e0 where e0 is the free space permittivity. The materials are 

also assumed to be non-magnetic, so /xi = / j 2 = £*o, where the free space permeability 

is denoted by fi0. An electric line source of strength Ia which is located outside the 

dielectric slab at {xs,ys) generates a TMZ field (transverse magnetic field to the z 

direction). 

The model shown in Fig. 1.2.a can be improved by letting the slab have a finite 

length in the y direction. This model is presented in Fig. 1.2.b which shows the slab 

cross section in the x-y plane. 
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1.2 Approach 

The accurate full wave computational techniques such as method of moments or 

finite elements usually fail to model an electrically large structure such as reinforced 

concrete on a standard desktop personal computer. The finite elements and method 

of moments are highly dependent on the electrical size of the structure because these 

approaches usually use volume or surface meshing for solving problems. The mesh size 

which is directly related to the size of the structure defines the number of unknowns 

in a system of equations. As a result, the memory size used for solving the system of 

equations is directly related to the size of the structure. 

In modeling the reinforced concrete, the main challenge is to adopt an accurate 

method with the minimum number of unknowns. This requires applying a hybrid ap­

proach which usually combines a full-wave electromagnetic technique and an asymp­

totic method for analyzing large structures. 

If we model the concrete slab as a one-layer homogeneous dielectric medium, it is 

possible to find the electric field generated by a current element in front of the slab 

by means of an exact expression called a "Green's function." A hybrid method called 

the Green's function/method of moments (GF/MoM) can then be used to solve for 

the induced currents on any scatterer inside/outside of the dielectric slab. The reader 

is referred to [1] for an overview of the GF/MoM technique. The hybrid GF/MoM 

combines method of moments (MoM) and Green's function (GF). The MoM is used 

for computing the induced currents on the scatterer bodies which are the metallic bars 

in our problem. In doing so, the scatterer bodies are first replaced by their unknown 

equivalent surface currents. This can be done by applying the surface equivalence 

principle. As a result, the medium becomes homogeneous and has an exact solution 

by means of a GF. The moment method then uses the Green's function to solve for 

the unknown equivalent currents which had replaced the metallic bars. 
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It is noted that the dielectric slab in the GF/MoM is not part of the scatterer 

body solved by MoM since the Green's function formulation accounts for the presence 

of the slab. As a result, the GF/MoM is more efficient than the full wave MoM in 

which the dielectric body is part of the scatterer that we wish to model. 

A key step in GF/MoM formulation is having the Green's function for the dielectric 

slab. The Green's function for an infinite dielectric slab is already available in the 

literature [2]. It would be necessary to develop a GF model for a thick finite slab 

(FS), as shown in Fig. 1.2.b. 

As a first step towards this goal, this thesis develops a Green's function for the 

finite and thick dielectric slab. The first development assumes that the source and 

field points are inside the slab, i.e. the interior problem. To obtain the interior GF, 

we first find the exact GF for the separable dielectric slab (SS) problem, which is 

closely related to the FS. The solution for the SS problem is expressed in terms of a 

discrete spectrum of surface wave (SW) poles plus the remaining part which we call 

the "residual wave." Since the SS solution fails to model the FS when the slab size 

is close to resonance, we modify the SW part of the solution by correcting the end 

cap reflection coefficient for each guided mode and accounting for the end cap mode 

conversion. The mode conversions and reflections are characterized by the end cap 

scattering matrix which is obtained by the MoM. The interior GF solution for a FS 

is then the MoM-modified SW solution plus the residual wave contribution obtained 

for the SS problem. 

It is noted that this interior Green's function can be used to obtain the Green's 

function solution for three other possible cases, i.e. the cases when the source and/or 

the field points are outside the FS. The solution for the cases when the source and/or 

field points are outside the FS is obtained using the interior GF and the surface 

equivalence principle. 
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Applying the surface equivalence principle, we can obtain the exterior field gen­

erated by an interior source. This can be done by computing the surface equivalent 

currents using the interior Green's function. The equivalent surface currents together 

with the free-space Green's function can be used to obtain the field at any point 

outside the slab. Applying the reciprocity theorem, we can interchange the source 

and the field point. As a result, we are able to calculate the interior field due to an 

exterior line source. This is used later for computing the exterior Green's function 

where we first obtain the electric and magnetic fields on the slab surface generated 

by an exterior line source. Having the electric and magnetic fields on the slab surface 

will provide the surface equivalent currents. These currents will be the sources of the 

scattered field in the exterior region. 

After obtaining the GF for the FS, it is possible to apply the GF/MoM to a finite 

reinforced concrete slab. To validate the results obtained by the GF/MoM, we also 

model the finite reinforced concrete slab using the surface integral equation/method 

of moments (SIE/MoM) technique. In doing so, the SIE/MoM forms the electric 

field integral equation formulation before solving for the unknown currents on the 

slab surface and metallic bar surfaces. 

1.3 Basic Assumptions 

The modeling of the finite reinforced concrete in this thesis involves some necessary 

assumptions which are clarified here. The assumptions explained in this section are 

necessary for simplifying the structure which we wish to model. 

The concrete material is assumed to be homogeneous. As a result, the concrete is 

modeled by a one layer medium filled with homogeneous and isotropic material. 

It is also assumed that the metallic bars are perfect conductors. As a result, the 

conductor loss due to the metallic bars is not accounted for in our model. A minor 
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modification would be needed for considering such a configuration. 

All the models in this thesis are assumed to be two-dimensional (2D). As a result, 

the electric and magnetic fields have no variations along the length of the metal bars. 

The model here also assumes that the metallic bars and concrete surfaces have no 

roughness. 

Although the metallic bars can have any cross section in the model, we just show 

the results for the cases where each rod has a circular cross section. The metallic 

bars are assumed to be electrically thick. It is also noted that the metallic bars can 

be placed anywhere inside the slab. However, the results shown here are provided for 

the cases where the metallic bars are at the center line of the slab, and the adjacent 

bars are equally spaced. 

The 2D model is able to treat parallel bars but not crossed bars that occur in 

actual reinforced concrete. This approximation is somewhat justified by the fact 

that electromagnetic scattering by a 3D wire grid is dominated by the wires that 

are parallel to the incident electric field. For the more general case of 3D oblique 

incidence, a model with parallel bars would not be sufficient. 

The sinusoidally time-varying fields are considered in this thesis where the time 

variations is represented by eiud and suppressed. 

1.4 Document Overview 

The materials in this document is presented as follows. Chapter 2 explains the prob­

lem background and summarizes the works already completed by others. Chapter 3 

presents the interior Green's function solution for a separable dielectric slab. In this 

chapter, the resonance property of the separable dielectric slab is also studied. The 

generated results for the separable slab are shown at the end of this chapter. Chap­

ter 4 first carries out the calculation of the scattering matrix at the end cap of a 
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semi-infinite dielectric slab. Next, this chapter describes the generalized scattering 

matrix (GSM) method which is used to obtain the solution for a thick finite slab. 

Chapter 5 carries out the calculation of the Green's function when the field point 

and/or the source are outside the dielectric slab using the interior Green's function. 

Chapter 6 presents the analysis of the finite reinforced concrete slab using GF/MoM 

and SIE/MoM techniques. Chapter 7 gives a conclusion and discusses the potential 

future research topics. 
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Chapter 2 

Background and Literature Review 

The literature survey which is performed briefly in this chapter will review the topics 

related to the area of research presented in this thesis. First, the review will address 

the approaches applied to a finite dielectric slab. Next, the methods applied for 

modeling a reinforced concrete slab are discussed. 

2.1 Finite Dielectric Slab 

As it was mentioned in Section 1.2, the key step in applying the GF/MoM to a finite 

reinforced concrete is having the Green's function for a finite dielectric slab. However, 

an exact closed-form analytical solution for a finite dielectric slab is not available in the 

literature yet. As for an approximate solution, there have been several publications 

addressing this problem in the literature which will be reviewed here. 

A well-known study by Marcatili [3] used the separation of variables method to 

obtain an approximate solution for the guided modes in rectangular-core dielectric 

waveguides. He used this method to accurately calculate the propagation constants 

away from the cut-off. However, the field distribution inside the dielectric slab was 

not studied. 
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An approximate approach known as effective dielectric constant (EDC) method 

was used by Knox et al. [4] to model the rectangular-core dielectric waveguide. In the 

EDC method which is very similar to the Marcatili approach, the refractive index of 

the dielectric core n2 is replaced by an effective refractive index n e / / defined as 

where 772 is the propagation constant in the y direction (perpendicular to the dielectric 

core extent), and k^ is the dielectric slab wave number. This approximate method 

improved the Marcatili's technique while computing the propagation constant of the 

modes near cut-off. 

Although Marcatili's separation of variables formulation cannot solve the finite 

dielectric slab (FS) problem, it does solve another closely related structure which 

we call the separable dielectric slab (SS). The interior of this equivalent structure is 

the same as the original FS problem; however, applying the separation of variables 

technique to the dielectric region forces boundary conditions in the four exterior 

corner regions that do not match the FS that we wish to model. 

An approximate solution for a FS can be obtained by applying physical optics 

(PO) and using the equivalent volume polarization currents, whereby the currents in 

the finite and infinite slabs are assumed to be identical. Bokhari et al. [5] applied the 

PO approximation to calculate the radiation pattern of a patch antenna on a finite 

size substrate. Maci et al. [6] also used the PO approximation with volume equivalent 

currents, and developed the asymptotic expression to account for the diffraction by 

a semi-infinite grounded dielectric slab. (The expression which relates the diffracted 

field to the incident field at the end cap is known as diffraction coefficient.) The PO 

approach is more efficient for thin slabs and the far-field region. However, it does not 

include the surface wave (SW) reflections at the end caps. 
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A more accurate approach is to use an integral equation technique. This has been 

applied by Maci et al. [7] and Volski and Vandenbosch [8] in order to obtain the 

diffraction by a semi-infinite grounded dielectric slab. These approaches formulate 

the integral equations by enforcing the continuity of the electric field on an infinite 

aperture plane at the end cap. This is referred to as aperture integral equation (A-IE) 

method. Although this technique requires solving a system of equations, the number 

of unknowns is much less than the number of unknowns when using surface or volume 

integral equation for the entire structure. Both these works were applied to the case 

of a thin semi-infinite grounded dielectric slab. 

The integral equation approach has also been applied to a 2D semi-infinite grounded 

dielectric slab by Jorgensen et al. [9]. To obtain the diffracted field by the end cap 

of the semi-infinite slab, they extracted the equivalent surface current on the infinite 

slab from the equivalent currents on the semi-infinite slab when the two slabs were 

illuminated by the same source. After forming the integral equations which they 

called fringe integral equation (F-IE), they applied MoM by using the pulse and en­

tire domain basis functions. This let them solve for the equivalent surface currents 

induced on the surface because of the end cap. The results shown in their work were 

obtained for the thin dielectric slab case which guided one surface wave mode. 

Shishegar and Faraji-Dana [10] developed an approximate Green's function solu­

tion for the FS by applying the complex image technique and using plane wave Fresnel 

reflection coefficients at the end caps. This is a good assumption if the incident field is 

mostly reflected at the air-dielectric boundary. It will be shown in this thesis that this 

is a good assumption if the surface waves in the slab do not experience a resonance. 

It was found that their result was not satisfactory for a high refractive index, so they 

suggested a mode matching technique to correct the reflection coefficients at the end 

caps. Their results were limited to the case of a thin dielectric slab supporting a 
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single guided mode. 

The mode matching technique has been applied by Derudder et al. [11] to a 2D 

semi-infinite dielectric slab. In this numerical approach, the slab is placed inside 

a parallel plate waveguide. Inside the waveguide, the parallel plates are covered 

with perfect matched layers (PML's). As a result, the slab problem which is an open 

structure problem is converted into a waveguide problem. An open structure has both 

a continuous and discrete modal spectrum, but a closed structure only has a discrete 

modal spectrum known as guided modes. In addition to the guided modes inside the 

air-filled parallel plate waveguide, extra types of guided modes known as Berenger 

modes are inside the waveguide because of the PML layer. The mode matching 

technique enforces the boundary condition which is the continuity of the tangential 

field components on the aperture plane containing the end cap. This technique is 

accurate when the knowledge of the possible excited guided modes at the matching 

aperture is provided. 

In order to investigate the propagation characteristics of the wave inside a rectan­

gular dielectric rod, Goell [12] used a numerical approach based on the point matching 

technique on the rod surface. In this technique, the fields inside and outside the di­

electric rod are expressed in terms of a series of circular harmonics. By applying the 

point matching technique on the rod surface, the inside fields are matched to the 

outside fields at finite number of points on the surface. Furthermore, a finite number 

of harmonics is used for the interior and exterior field expansion. Cullen et al. [13] 

later investigated the fields mismatch on the boundary of a rectangular rod, by using 

the Goell technique. For reducing the mismatch on the boundary, they showed that 

it is better to have a matching point at the edge of the dielectric rod when the match 

points are equiangularly spaced. Applying the Goell approach to a large dielectric 

slab is not efficient since a large number of terms in the expansion series are needed 
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for accurate modeling. 

An accurate numerical approach based on a volume integral equation/method of 

moment (VIE/MoM) technique was applied to a 2D arbitrary cross-section shape 

dielectric cylinder by Richmond [14]. He extended this later to a thin dielectric 

slab [15] using the entire domain basis and weighting functions. In the VIE/MOM, 

the dielectric region is divided into small cells. The dielectric region can be replaced 

with the unknown equivalent volume polarization-currents. The unknown currents 

are obtained by applying the boundary condition on the dielectric region and solving 

a system of equations. Since the number of unknown currents is directly related 

to the size of the dielectric slab, this approach is computationally efficient for thin 

dielectric slabs. When the dielectric slab becomes electrically thick and large, a 

standard desktop computer fails to solve the problem using VIE/MoM. 

A better and more efficient MoM approach is the SIE/MoM which was applied to 

a 2D arbitrary cross-sectioned dielectric cylinder by Wu et al. [16]. This technique 

is also known as Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) method [17] 

[18] [19] [20] when the electric and/or magnetic field integral equations are used. This 

approach is more efficient since the number of unknown equivalent surface currents 

only depends on the surface area of the homogeneous dielectric body. This also 

has been extended to a problem of a conducting body inside a dielectric scatterer 

by Kishk [21] et al. who called it E-PMCHWT (electric field integral equation-

PMCHWT). In this formulation, the electric field integral equation is formed on the 

surface of the conductor. 

Although the SIE/MoM is more efficient for modeling a homogeneous dielec­

tric body than VIE/MoM, the SIE/MoM formulation is usually more complex than 

VIE/MoM formulation. Furthermore, the VIE/MoM can be applied easier when the 

dielectric is inhomogeneous. 
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An accurate numerical approach based on finite element technique was applied 

by Rahman et al. [22] to model a dielectric slab problem. The finite element method 

is differential-equation-based, and it solves the problems in the frequency domain. 

Applying the 2D finite element, the region of interest is divided into finite number 

of triangular subregions. Unlike the integral equation technique where the region 

of unknown currents is limited to the surface or interior region of the scatterer, the 

region of interest of unknown fields in finite element is extended to a region outside 

the scatterer. The boundary of this extended region is usually terminated by an 

artificial boundary wall called radiation boundary condition (RBC) as explained in 

[23] and [24]. The RBC walls should usually be far enough from the scatterer so that 

they do not affect the fields inside the scatterer. Since this makes the number of 

finite elements large, this technique is not efficient for modeling a large structure on 

a standard desktop computer. However, an advantage of the finite element approach 

is its matrix sparsity, unlike the integral equation techniques which should solve a 

dense matrix. 

A 2D finite-difference (FD) method was applied to a rectangular dielectric guiding 

structure by Schweig et al. [25]. Using this technique, the region of interest should 

first be confined. In doing so, the dielectric slab is placed inside a box with electrically 

large conducting walls so that the conducting walls do not affect the guided modes 

inside the dielectric slab. For simplicity, the region of interest is usually divided into 

square cells. Comparing the FD with finite element approach, the FD technique is 

easier to implement and its formulation involves less complexity. Although the FD 

approach requires half as much computer storage as finite element, it is not efficient 

for modeling an arbitrarily shaped and large structure. 

A high frequency technique based on geometrical theory of diffraction (GTD) 

was developed by Burnside et al. [26] for modeling a thin lossless dielectric slab. 
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Applying the GTD, the scattered field is written in terms of diffracted, reflected 

and transmitted fields. The diffracted field is obtained in order to compensate for 

the field discontinuity associated with the incident and reflection shadow boundaries. 

This GTD technique is computationally efficient, but it is limited to a case of thin 

slab with a thickness less than a quarter wavelength. 

In this thesis, a hybrid approach based on the Green's function technique and 

MoM was developed [27] [28] for modeling a finite and thick dielectric slab. This 

technique, which will be presented in detail, is computationally efficient since it can 

be applied to an electrically large and thick dielectric slab. 

2.2 Reinforced Concrete 

In modeling reinforced concrete, the concrete is often represented by a homogeneous 

dielectric slab of infinite transverse extent, and the reinforcement is formed by an 

array of metallic bars or wires embedded in the dielectric slab. It is sometimes com­

putationally efficient to assume a periodicity property for modeling the reinforcement. 

This implies an infinite number of metallic bars placed periodically inside the dielec­

tric slab. 

Using the periodicity property and applying the modal transmission-line (MTL) 

technique, Savov et al. [29] modeled the plane wave transmission coefficient of a 2D 

reinforced concrete slab. In this technique, the reinforced concrete is modeled by 

a three layer medium. To fit the wires in the center layer, this approach assumes 

square cross-section wires for simplicity. As a result, the center layer becomes a 

periodic structure surrounded by two homogeneous layers. The tangential fields at 

the boundary of each layer is expanded in term of Floquet space-harmonics as a 

result of the periodicity property. This series of harmonics forms an infinite number 

of modes. The infinite series should be truncated so that the eigenvalue equation 
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can be written in a matrix form accounting for a finite number of modes. Using this 

technique, it is usually hard to estimate the needed number of modes for obtaining 

an accurate result. Furthermore, this approach only solves the problem when a plane 

wave incident field is assumed. 

Applying the finite element technique and expanding the fields in terms of Flo-

quet's modes, Richalot et al. [30] studied the transmission coefficient of reinforced 

concrete. Using this model, they only investigated the slab embedding thin wires by 

assuming the wire diameters of 2-4 mm at 900 MHz and 1.8 GHz. Although they 

used thin wires, they showed that the effect of the wires cannot be neglected at 1.8 

GHz. Their technique could only calculate the transmission coefficient for plane wave 

incidence. 

Assuming the periodic characteristics of the structure, Chia [31] investigated the 

reflection characteristics of the reinforced concrete using the Floquet modal theorem. 

In this study, plane wave incidence was assumed. 

Dalke et al. [32] used a finite-difference time-domain (FDTD) method to deter­

mine the reflection and transmission properties of various reinforced concrete walls 

at commonly used radio frequencies over a range of 100-6000 MHz. The reflection 

and transmission coefficients were studied when the wires inside the concrete had 

a lattice configuration, i.e. a 2D grid of wires. The lattice configuration modeled 

the wires parallel and perpendicular to the incident field. They showed that for a 

thick reinforced wall, the transmission coefficient can become much larger than the 

predicted transmission for the rebar structure in free space. Their study was based 

on assuming a normal incidence plane wave. 

The FDTD technique was also used by Bin et al. [33] for modeling reinforced 

concrete. Their model could compute the shielding effectiveness of reinforced concrete 

in high power electromagnetic environments. They studied single and double-layered 
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reinforced concrete for wideband pulse waves. Using the periodicity property of the 

reinforced concrete, they applied Floquet periodic boundary conditions. In indoor 

propagation, the shielding effectiveness is defined as 

S £ = 2 0 1 o g | ^ 
•t-'cp 

where Eop is the electric field at a certain point when the wall is not present, and Ecp 

is the electric field at the same point with the presence of the shielding. 

Using a 2D FDTD approach, Elkamchouchi et al. [34] also studied the shielding 

effectiveness of reinforced concrete with a sinusoidal point source. They investigated 

convex, concave, and plane reinforced concrete walls. Their results showed the effect 

of wall thickness, wire spacing and wire radius on the shielding effectiveness. 

Using ray tracing models and the empirical transmission data, Pena et al. [35] 

estimated the equivalent electric parameters e and a of the brick and doubly rein­

forced concrete walls at 900-MHz. This required a knowledge of transmitted field 

measurement data through walls. 

Penetration loss measurements for different reinforced concrete wall thicknesses 

were made by Zhang et al. [36]. They measured penetration loss over the frequency 

range of 900 MHz to 18 GHz. 

Arnold et al. [37] measured copolarized attenuation at 815 MHz within two dif­

ferent buildings and between floors constructed with reinforced concrete. When the 

transmitter and receiver were on the adjacent floors, they measured cross-floor isola­

tion of approximately 26 dB at 150 ft distance for the mean of the signal. However, 

they observed a more than 20 dB variation in the instantaneous signal level. They 

used the "raster-scan" technique for median signal level measurements. 

Bihua et al. [38] investigated the shielding effectiveness of reinforced concrete for 

pulse shape plane wave incidence experimentally. In their work, they concluded that 

17 



the shielding effectiveness improves by increasing the wire radius and decreasing the 

grid cell size although this does not agree with the "same surface area" rule of thumb. 

According to the "same surface area" rule, the best shielding is when the total surface 

area of the wires is equal to the cross-section area of the slab parallel to the wire grid. 

A 2D GF/MoM approach has been developed by Paknys [2] to model the reflection 

and transmission properties of reinforced concrete. The case of thick wires was later 

examined by Parsa and Paknys [39]. In this technique, the Green's function of the 

dielectric slab which is in the form of Sommerfeld integrals is evaluated numerically 

and asymptotically. By using the dielectric slab Green's function, the number of 

unknowns solved in the GF/MoM technique has been greatly reduced compared to 

the full wave MoM approach. Furthermore, the number of unknowns in the GF/MoM 

method is independent of the slab thickness, unlike the full wave techniques like MoM, 

FEM and others. Applying the GF/MoM approach, the number of unknowns only 

depends on the number of metallic bars. As a result, the GF/MoM is computationally 

more efficient than full wave methods which model the whole structure including the 

dielectric slab. Using the full wave techniques, the computational cost for modeling 

the dielectric slab can be high since the slab is usually several wavelengths thick at 

UHF and above. 
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Chapter 3 

An Exact Interior Green's 

Function Solution for a Separable 

and Finite Dielectric Slab 

To model a finite dielectric slab, we need to solve the wave equation subject to the 

boundary conditions for the tangential electric and magnetic field on the surface of 

the dielectric slab. The Green's function is a solution to the boundary value problem 

for a point source excitation of unit strength. Up to now, there is no exact closed-form 

analytical solution available for a finite dielectric slab. The reason is that the finite 

dielectric slab is not a separable structure. If we use the separation of variable method 

and impose the boundary condition on the surface of the dielectric, the solution 

imposes undesirable boundary conditions at the corner regions outside the slab that 

do not match the problem that we want to solve. The boundary conditions at the 

corner regions represent certain materials in the corner regions. This structure is 

referred to as separable dielectric slab which is presented in this chapter. The work 

has been reported in [27]. 
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3.1 Separation of Variables 

In this section, we follow the the separation of variables method [40] [41] to solve 

the inhomogeneous Helmholtz equation. In electromagnetic problems, time harmonic 

electric field (E) must satisfy 

(V2 + k2)E = jufil - V V ' J + V x M (3.1.1) 
jue 

where e is permittivity, /j, is permeability, and J and M are electric and magnetic 

current density, respectively. Time variation is represented by e?ut and suppressed. 

We assume a 2D problem and TMZ polarization. This means that the electric field 

has only a z component (Ex = Ey = 0) with no z-variation (dEz/dz = 0). This 

assumption reduces (3.1.1) to 

d2 d2 

{di + dy+k2)Ez^J^Jz (3-L2) 

which is a scalar inhomogeneous wave equation. Using the vector potential A and 

knowing that E = —jujiA leads to 

( | + * + m = _ A . (3.1.3) 

To solve this inhomogeneous partial differential equation, we develop a Green's func­

tion (G) which is the solution due to a unit line source at {xs,ys). The Green's 

function must satisfy the unit impulse source-excited partial differential equation 

(V2 + k2)G(x,y; xs,ys) = -S(x - xs)S(v ~ V,) (3.1.4) 
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and the same boundary condition as A. Having the solution due to the unit impulse, 

represented by G, we can obtain the electric field generated by any current distribution 

as 

Ez = —juj(iJz *G (3.1.5) 

where the asterisk denotes the convolution. To solve the inhomogeneous partial dif­

ferential equation (3.1.4), the proposed solution, also known as an "ansatz" is 

G(x,y;xs,ys) = JC[Gx(x,xs)Gy(y,ys)} (3.1.6) 

where K, is a linear operator, to be determined. We should define the linear operator 

K,. Substituting (3.1.6) in (3.1.4), we can write 

fC[Gv^L + Gx^ + k2°xGv] = ~5{X " Xs)5{v ~ Vs)- (3-L7) 

We can assume that k2 = k^e{x,y) where e(x,y) represents the dielectric constant in 

cartesian coordinates. k0 is a constant defined by &o — ^y/^ofMi where eo and JJLQ are 

free space permittivity and permeability, respectively. We assume that 

e(x, y) = ex(x) + ey(y) (3.1.8) 

and postulate that (3.1.4) is separable into two ID Helmholtz equations as 

d2G, 
dx2 

d2G 

+ (K + Kex)Gx = -S(x - a:,) (3.1.9) 

dy 
^ + (Xy + kley)Gx = -S(y - ya). (3.1.10) 
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Using (3.1.9) and (3.1.10) in (3.1.7) to replace the derivatives, we can write 

lC[GxGy(-Xx-Xy-k^(ex+ev)+k2)-Gy5(x-xs)-GxS(y-ys)] = -8(x-xs)S(y~ys). 

(3.1.11). 

If we impose 

Xx + \y = 0 (3.1.12) 

k2
0{ex + ey) = k2 (3.1.13) 

then (3.1.11) simplifies to 

K[Gy5{x - xs) + GJ(y - y,)\ = 5(x - xs)S(y - ys). (3.1.14) 

Prom the theorem presented in [40] for one-dimensional Green's functions, we know 

that 

7T~ f Gy(y,ya,\y)d\y = -S(y - ys) (3.1.15) 
27rJ Jcy 

where the closed contour Cy encloses all the singularities of Gy in the complex \y 

plane, in a counterclockwise direction. Because the closed contour Cy doesn't encircle 

the singularities of Gx, we can write that 

~ l GX(X, X8, \y)dXy = 0 (3.1.16) 

and propose that the linear operator K, has a form of 

K = K I \.}dXy (3.1.17) 
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where the constant K should be obtained. Using the linear operator /C in (3.1.14) 

leads to 

K j> Gyd\yS{x - xs) + K j> Gxd\yS(y-ys) = 5(x-xs)8(y-ys). (3.1.18) 

By applying (3.1.16), the second term on the left side of (3.1.18) is zero. Utilizing 

(3.1.15), we can rewrite (3.1.18) as 

K(-2j7r8(y - ys))8(x - xs) = S(x - xs)5{y - ys) 

which determines the constant K in the linear operator as 

1 
K = — 

2irj-

Consequently, the solution for the two-dimensional Green's function problem given 

in (3.1.6) becomes 

G(x,y;xs,ys) = -—- <b Gx(x,xs,-\y)Gy(y,ys,\y)d\y (3.1.19) 
27U Jcy 

where Gx and Gy are one dimensional Green's functions and should satisfy the re­

quired boundary conditions. Note that Ax can be expressed in terms of \y using 

(3.1.12). 

Similarly, we can choose a linear operator in the form of 

which satisfies (3.1.14). Applying this operator to (3.1.6) and replacing Xy by \y = 
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—Xx leads to an alternative solution as 

G(x,y-xs,ys) = --~ (b Gx(x,xs,Xx)Gy(y,ys,-Xx)dXx (3.1.20) 

where Cx only encircles the singularities of Gx in the complex Xx plane and does not 

enclose the singularities of Gy. 

The singularities of the one dimensional Green's function can be in the form of 

poles and/or branch-cuts. The closed contour around the poles is usually presented 

in terms of discrete spectra according to the residue theorem. Moreover, the contour 

which encloses the branch cuts forms the continuous spectra. The path of integration 

can be deformed in any manner as long as it does not cross any poles or branch 

points. It should be noted that the integrand in (3.1.19) or (3.1.20) should have a 

decaying tail on the contour of the integration. This is important for performing the 

integration, whether numerically or asymptotically. In Section 3.3, we will apply the 

separation of variables to find an approximate Green's function for a finite extent 

dielectric slab. In the next section, the solution to the infinite extent dielectric slab 

problem will be presented. 

3.2 Electric Line Source Inside an Infinite Extent 

Dielectric Slab Backed by a PMC or PEC 

Fig. 3.3 shows a dielectric slab of thickness 2d, having an infinite extent in the y 

direction. The dielectric slab has a permittivity of €2, surrounded by Region 1 which 

has a permittivity of ei. The permeability in both regions is assumed to be that of free 

space, JJLQ. A current line source Is is located inside the dielectric slab at (xa, ys), and 

generates the cylindrical wave. The infinite-extent slab was investigated by Paknys [2]. 
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Figure 3.3: An infinite extent dielectric slab. 

The present section contains analytical details that were not included in that paper. 

The dielectric slab solution can be obtained by solving the two problems shown in 

Fig. 3.4 as it is discussed in Appendix A.l. For any of the two problems shown in 
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Figure 3.4: (a) Geometry of an infinite dielectric slab of thickness d grounded by a 
(a) PMC plane at x = d (b) PEC plane at x = d. 

Fig. 3.4, the Helmholtz equation should be satisfied by the Green's function 

(V2 + k\ o)G(x, y; xs, ys) = -S(x - xs)S(y - ys) (3.2.1) 
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where k\ = ko-^/ei and k% = k0y/e2. To apply the separation of variables, (3.1.13) can 

be written as 

kle(x,y) = kl(ex(x) + ey{y)) = < 
k\ 0 < x < d 

k\ elsewhere 
(3.2.2) 

where e(x,y) has been defined in (3.1.8). It can be noted that k\ and k2 do not have 

any variation with respect to y, so ey(y) = ey\ where ty\ is an unknown constant. 

Moreover, we can write 

eX2 0 < x < d 

exi elsewhere 
ex(x) (3.2.3) 

where ex\ and eX2 are both constants to be defined. Using (3.2.2) and (3.2.3), we can 

obtain 

fxi + ê i = ei elsewhere 

£x2 + Zyl = ^2 0 < X < d 

(3.2.4) 

(3.2.5) 

which form a system of linear equations with an infinite number of solutions. We can 

choose ey\ = 0 and obtain exj = t\ and ex2 = e2. Using these dielectric constants in 

(3.1.9) and (3.1.10), we should solve 

d2Gx 

dx2 

d2Gx 

dx2 

+ (Ax + k2)Gx = -6(x - xs) x < 0 

+ (Xx + k\)Gx = -8(x -xs) 0 < x < d 

d2G 

dy' 
r + XyGy = -S(y - ys) - c o < y < co. 

(3.2.6) 

(3.2.7) 

(3.2.8) 

The boundary condition at x = 0 requires continuity of tangential electric and mag­

netic fields which implies that Gx and —dGx/dx should be continuous. For solving 
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the problem of a dielectric backed PEC, imposing the boundary condition at x = d 

requires zero tangential electric field or Gx = 0. Similarly, the tangential magnetic 

field should vanish on the PMC sheet or dGx/dx = 0. The Appendices A.2 and A.3 

present the derivation of Green's functions for the dielectric slab problem backed by 

PEC and PMC, denoted by Ge
22 and G™2- The notation G22 which represents the 

interior Green's function indicates that both source and observation points are inside 

the dielectric slab in Region 2. The ID solution of (3.2.6) and (3.2.7) according to 

the Appendices A.2 and A.3 becomes 

JKi Sin K,2X< + K2 COS K2X< COS K2(d-X>) (onn\ 
( j r 2 2 _ — : — • ( O . / . y ) 

j K\ cos n2d — K2 sin K2d K2 

= JKI sin K2X< + K2 cos n2x< sin^jd-Xy) 
22x

 JKI sin K2d + K2 cos n2d K2 

where x< denotes smaller of xs or x, and x> is the larger. It is noted that 0 < 

(xs,x) < d, and we have 

KI = yJK + kj (3.2.11) 

K2 = \JK + k2
2. (3.2.12) 

The ID solution for (3.2.8) which satisfies the radiation condition is free space Green's 

function [40], known to be 
e-j\/>>v\y-vs 

G v = • = - - : (3.2.13) 

The two dimensional Green's functions can be constructed by using (3.1.19) and 

(3.1.12) which becomes 

G%f = ~ £ G^l{-Xy)Gy{Xy)dXy (3.2.14) 
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where 

K\ A/^l _ Xy 

K2 = \Jk\ - Xy. 

(3.2.15) 

(3.2.16) 

The contour Cy should enclose the singularities of Gy and exclude the Gx singularities. 

The singularities of Gy and Gx are shown in Fig. 3.5. Since Gy only has a "branch 

A Xx A Ay 

XXX 

- * ? 

(a) 

b r . cut 

(b) 

Figure 3.5: (a) Singularities of Gx on the complex \ x plane, top Riemann sheet. 
The singularities include poles (x) and a branch point (•). (b) Branch point (o) 
singularity of Gy on the complex \y plane. 

point" singularity at Xy = 0 , Cy should encircle the branch cut of Gy. The branch 

cut is a curve that joins the branch point and makes yJXy single valued. The presence 

of the branch cut sets up a rule to avoid encircling a branch point. Although we can 

choose the branch cut arbitrarily, it is required to have Im(<\/\y) < 0 (imaginary 

part of Xy less than zero) to ensure that the radiation condition is satisfied. This 

requirement limits the argument of Xy to the range zero to — 2ir in a clockwise sense. 

As a result of this requirement, the branch cut should be selected on the positive real 

axis on the complex Xy plane as it is shown in Fig. 3.5.b. 

Fig. 3.5.a shows the poles and branch cut of Gx on the complex Xx plane. The 

Gx singularities are explained in Appendix A.4. Note that the radiation condition 

requires that \m{\/k\ + Xx) < 0. This limits the argument of \Jk\ + Xx to the range 
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zero to — 2TT in a clockwise sense. This sheet is called the proper sheet or top Riemann 

sheet. The range — 2ir to — ATX for y/kj + Xx is the improper or bottom sheet which 

corresponds to Im(-̂ /A;f + Xx) > 0. 

Using (3.1.12), we can plot the singularities of Gx on the complex Xy plane. The 

contour Cy is shown in Fig. 3.6. It is now convenient to make the change of variable 

U*7 

(a) (b) 

Figure 3.6: (a) Singularities on the top sheet of Gx mapped on the complex Xy plane. 
Gx has poles (x) and branch point (•) singularity. Gy has a branch point (o) at 
Ay = 0. (b) The complex 77 plane obtained by 77 = -^A^ transformation. 

77 — \/Xy. This change of variable maps the top sheet of Xy plane into the lower half of 

the complex 77 plane and makes yfXy — 0 a regular point. Fig. 3.6.b shows complex 77 

plane and the path of integration Cy. Note that this plane is referred to proper sheet 

because \m{\fk\ — if) < 0. Moreover, the singularities of Gx on the bottom sheet 

are not shown in Fig. 3.6.b. In order to map the top and bottom sheets on one plane, 

we use a change of variable 77 = k\ sin w. This mapping transforms the two branch 

points at 77 = ±k\ into regular points on the w plane. Fig. 3.7 shows the complex 

w plane and the mapped regions. The top sheet on the 77 plane is mapped into the 

upper half of the strip 0 < wr < IT and the lower half of the strip —7r < wr < 0 

on the w plane. The strip — n < wr < IT repeats in every adjacent strip of width 

2TT since sin (w + 2ir) = sin w. The path of integration Cy is also shown on the w 

plane. Since there are no branch points in the w plane, the integration in this plane is 
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Figure 3.7: Complex w-plane shows the proper (-P1—4) and improper (h-4) regions 
which correspond to the top and bottom sheet on the rj plane. The LW poles 
and SW poles (x) are shown on this plane. 

more convenient. The path of integration should have a decaying tail at the ends of 

contour Cy. This requires the terminations of the path to be on the proper regions as 

w —> ±00. Meeting this requirement, the path of integration can be deformed in any 

manner. However, any pole crossing during the path deformation must be accounted 

for according to the residue theorem. 

After applying the change of variable -q = ^/Xy and rj = k\ sin w, and considering 

the differentiation dr] = d\y/(2y/~Xy) and dr\ = k\ coswdw, (3.2.14) becomes 

Gm,e 
22 — 

(3.2.17) 

where 

K2 

K\ — k\ COS W 

= V H - k\ si sin w. 

(3.2.18) 

(3.2.19) 
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According to Appendix A.l, the solution to the dielectric slab problem shown in 

Fig. 3.3 is given by 

G22 = — KI 22x ^*e-i
kisi™(y-y*)dw (3.2.20) 

2TT JCV
 2 

for 0 < (xs,x) < 2d (image theory restricts this result to 0 < x < d, but it can be 

shown that G22 is also valid for 0 < x < 2d). The integration on the w plane can be 

performed numerically. To facilitate the numerical integration, we avoid crossing the 

leaky wave poles. We choose the path of integration C2 as shown in Fig. 3.8. The 

path of integration C2 passes through the saddle point of G22 at w = 4> + jO. Polar 

coordinates 

x-xs = Rsin(f) (3.2.21) 

y-ys = Rcoscf) (3.2.22) 

are used, where R — \/{x — xs)
2 + (y — ys)

2 is the distance between the source and 

the field point. When contour C2 crosses the SW poles, the SW contribution should 

be accounted for in the solution. When the SW poles are crossed, the SW contribution 

which is the integration along the path C3 can be obtained by the residue theorem. 

The expressions for the surface wave pole contributions are given in Appendix A.4. 

Using (A.4-11) and (3.2.20), the solution when C2 crosses all the SW poles becomes 

G22 = w- / «i o ^ e - ^ - ' - W + G™ (3.2.23). 
2TT JC2 2 

where G™ includes the SW contributions. For W; > 0, the contour C2 is adjusted 

along the steepest descent path (SDP). Since the integrand has the fastest decaying 

tail along the SDP, it is more convenient to choose SDP for numerical integration 

when Wj > 0. For more details on this path of integration, the reader is referred 
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Figure 3.8: Complex w-plane shows the path of integration C2 and C3. Integration 
along P2 and P3 is equivalent to integration along Cy shown in Fig. 3.7. The LW 
poles ((g)) and SW poles (x) are shown on this plane. 

to [2]. 

3.3 Electric Line Source Inside a Separable Struc­

ture 

Fig. 3.9 shows a truncated dielectric slab of thickness 2d and height 2L, with per­

mittivity 62 surrounded by Regions (T) and (3). The permittivity in Regions (T) and 

(5) are denoted by ei and e3, respectively. All the materials are assumed to be non 

magnetic. A current line source Is is placed at (xa, ys), and the field point is at (x, y). 

The structure shown in Fig. 3.9 is called separable if the structure can be solved 

by the separation of variables method. We need to define the separability condition, 

which is the criterion under which the structure becomes separable. 

The construction of the Green's function is similar to the procedure explained for 

the infinite dielectric slab in Section 3.2. This is similar to the development obtained 
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Figure 3.9: Geometry of a finite dielectric slab of thickness 2d and height 2L sur­
rounded by Regions (T) and @. If e3 = 2ei - e2, the structure becomes a separable 
slab. 

in [10]. The Green's function for the problem shown in Fig. 3.9 should satisfy the 

inhomogeneous Helmholtz equation 

V2G(x, xs; y, ys) + k2
mG{x, xs; y, ys) = -5(x - xs)8(y - ys) (3.3.1) 

where km = w^/j,Qem and m = 1,2,3 depending on the field point position. To apply 

the separation of variables, (3.1.13) can be written as 

k^ei in Regions (la) and @ 

k'o(ex(x) + ey(y)) = <{ fcgC2 m Region © 

^63 in Region (3). 

(3.3.2) 
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We can write ex{x) and ey(y) in terms of unknown constants as 

ex2 0 < x < 2d 
ex(x)={ ~ ~ (3.3.3) 

ex\ elsewhere 

«»(y) = < 
ty% -L < y < -L 

(3.3.4) 
eyi elsewhere 

where the four unknowns exi, eX2, ey\ and ey2 form a system of equations. Using 

(3.3.3) and (3.3.4) in (3.3.2), we can write 

eX2 + ey2 = e2 in Region @ (3.3.5) 

fxi + ey2 = £i in Region (la) (3.3.6) 

e»i + eyi = e3 in Region @ (3.3.7) 

ê 2 + eyi = £i in Region @ (3.3.8) 

which is an over determined system of equations. This system of equations has no 

solution unless we impose 

e3 = 2e i - e2 (3.3.9) 

so that the system of equations becomes underdetermined with an infinite number 

of solutions. The criterion given in (3.3.9) is the separability condition which grants 

a solution to (3.3.1) using the separation of variables method. Since the system of 

equations has an infinite number of solutions after imposing the separability condition, 
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we can choose ey2 — 0 in order to find the other unknowns as 

txx = ei (3.3.10) 

ex2 = e2 (3.3.11) 

eyi = ei - e2. (3.3.12) 

Since the dielectric constants are obtained, we can write the ID Helmhotz equations 

using (3.1.9) and (3.1.10) as 

d2G 
—r^- + (Xx + k2)Gx = -5(x -xa) x<0,x>2d (3.3.13) 
ax1 

d2G 
-j-f + (Xx + k^Gx = ~S(X ~Xs^ ° - x - 2d (3.3.14) 

^ > + (\y + k2- kl)Gy = -S(y -y.) y<-L,y>L (3.3.15) 

^ + XyGy = -6(y - ya) -L<y<L. (3.3.16) 

The solution to (3.3.13) and (3.3.14) has been already obtained in terms of PEC and 

PMC bisected dielectric slab problems as 

•Gx = (Ge
22x + G S J / 2 (3.3.17) 

where GWX and G22x
 a r e given in (3.2.9) and (3.2.10), respectively. The solution to 

(3.3.15) and (3.3.16) can be written similar to (3.3.17) in terms of PEC and PMC 

bisected dielectric slab problems as 

Gy = {G\2y + G™,)/2. (3.3.18) 

where Ge
22y and G™2y can be obtained by considering the geometry-based similarity of 

G22x and G22y. In order to adopt (3.2.9) and (3.2.10) to the ID Green's function in 
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the y direction, we should replace Ki and K2 with 771 and 772, respectively. Moreover, 

we should replace d, x> and x< with L, (L — y<) and (L — y>), respectively. As a 

result, G22y and G ^ become 

(7» = J?7i sin772(L -y>) + m cos 772 (L - y>) cosr]2y< g j g 
22j/ jr]i cos r]2L — i]2 sin rfcL r}2 

Ge = im sinr?2(L - y>) + 772 cos 772 (£ - y>) sin rj2y< ^ 
22y jrji sin rj2L + r]2 cos rj2L rj2 

where 771 and r\2 are the wavenumbers in the y direction. Using (3.2.11) and (3.2.12), 

and replacing K\, K2, (XX + k\) and (Xx + k2) with 771, 772, (Xy + k2 — k2) and Xy, the 

y-directed wavenumbers become 

= \j\, + k2-k2 (3.3.21) m 

m = ^Xy. (3.3.22) 

Using (3.1.19) and (3.1.12), we can write the two dimensional Green's function as 

G'22 = ~ 2 7 T / Gx{-Xy)Gy{Xy)dXy (3.3.23) 

where Gx and Gy are given by (3.3.17) and (3.3.18). The path of integration should 

enclose all the singularities of Gy and exclude the singularities of Gx. The singularities 

of Gx on the top sheet of Â  plane are shown in Fig. 3.10.a. It can be shown that 

K2 = 0 is a regular point in the Xx plane. Furthermore, K\ = 0 is a branch point of 

Gx. Using (3.2.11), the branch point location can be obtained which is at Â  = — k2. 

In order to ensure that the radiation condition is met in the x direction, we should 

have Im(Ki) < 0 which defines the top sheet of Aa; plane. Similarly, 772 = 0 is a regular 

point of the Gy while 771 = 0 is a branch point in the Xy plane. Using (3.3.21), the 
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branch point of Gy is at \y = k\ — k\ as shown in Fig. 3.10.b. The radiation condition 

A Xx 

¥ 

A <*» 

(a) 

( 

h2 h2 

(b) 

Figure 3.10: (a) Singularities of Gx in the complex Xx plane, top Riemann sheet. The 
singularities include poles (x) and a branch point (•). (b) Poles (*) and branch point 
(o) of Gy in the complex Xy plane, top Riemann sheet. 

in the y direction requires Im(?7i) < 0 which denotes the top sheet of Â  plane. The 

singularities of Gx and Gy are similar since they are similar functions. It is noted that 

in order to obtain Gy, the variables K\, K2 and d of Gx were replaced by 771, 772 and 

L. We can assume L — d. If we compare K2 and 772 which are given in (3.2.12) and 

(3.3.22), we notice that the position of singularities of Gx in the Â  plane is similar 

to the position of singularities of Gy in the Xy plane, but shifted k\ to the right. 

By enlarging the slab height L, the number of Gy pole singularities increases on the 

top sheet of the Â  plane. Usually L 3> d indicates that Gy has a larger number 

of pole singularities than Gx on the top Xy sheet. By using (3.1.12), we can map 

the singularities of Gx into the Xy plane which is shown in Fig. 3.11. The path Cy 

encircles all the singularities of Gy in the top Riemann sheet in a counterclockwise 

sense. It is expedient to use the transformation 772 = y/Xy which maps the Â  plane 

into the 772 plane. Fig. 3.12 shows the top sheet of 772 plane where I m ^ ) < 0 and 

Im(«;i) < 0. Note that this transformation does not remove the branch points. The 

branch point at Xy = k2 is mapped to 772 = ±k\ in the complex 772 plane. To remove 
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Figure 3.11: Poles (*) and branch point (o) of Gy accompanied by the poles (x) and 
branch point (•) of Gx on the complex Xy plane. The path Cy shows the contour of 
integration. 

Figure 3.12: Complex 772 plane showing the poles (*) and branch points (o) of Gy 

accompanied by the poles (x) and branch points (•) of Gx. 

the branch points at 772 = ±&i, we use the change of variable 

1)2 = k\ sin w (3.3.24) 

where w = wr + jfwj. This change of variable maps the 772 plane into a two-sheeted 

w plane as shown in Fig. 3.13. The poles of Gx on the top and bottom sheets are 
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Figure 3.13: The path of integration on the complex w-plane. The singularities of Gy 

which are poles (*) and branch points (o) are shown, accompanied by the SW poles 
(x) and the LW poles (<g>) of Gx. 

shown on the top sheet of the w plane. The Gx poles on the top sheet which are 

called surface wave (SW) poles are mapped along the line at wr = ±7r/2 for lossless 

dielectric material. When the dielectric is lossy, the SW poles along wr = TT/2 move 

to the positive wr direction in the strip TT/2 < wr < 7r, WJ > 0. The Gx poles on 

the bottom sheet which are called leaky wave (LW) poles are mapped into the strip 

0 < wr < 7T, w, < 0 and the strip — n < wr < 0, Wj > 0. The contour of integration 

Cy is also shown in the w plane. The SW poles of Gx and Gy should be on the right 

and left side of the path Cy along wr = 7r/2, respectively. The LW poles of Gy are 

accessed by passing through the branch cuts to the bottom sheet of the w plane. The 

numerical integration on contour Cy for low-loss dielectric materials is complicated by 

the fact that the Gy poles are intertwined with the SW poles of Gx along wr = n/2. 

It is convenient to deform the path Cy into the path P in order to avoid the 

numerical integration close to the poles. The contribution due to the SW poles 

should be included according to the residue theorem since the contour P crosses the 
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SW poles. The solution given in (3.3.23) can be written as 

°22 = ~~kj X K l ? 7 2 ( G S * + G22x)(G^ + Ge
22y)dw + Gs

22
w (3.3.25) 

where G22
w represents the SW contribution due to the SW poles which are crossed 

by the path P. The ID Green's functions G™2x and G22x were already obtained in 

(3.2.9) and (3.2.10). Using (3.3.22) and (3.3.24), the wavenumbers in the x direction 

given in (3.2.15) and (3.2.16) become 

K\ = fcicosw (3.3.26) 

K2 = ^k%-kfsm2w. (3.3.27) 

The ID Green's functions G ^ and G22y are given in (3.3.19) and (3.3.20), respec­

tively. Using (3.3.24), the wavenumbers in the y direction presented by (3.3.21) and 

(3.3.22) can be written as 

rn = yjkl-kl + kfsm2w (3.3.28) 

772 = k-i sinw. (3.3.29) 

To obtain the contribution due to the poles, we can directly apply the residue theorem 

and find the residues at the SW poles. However, it is of interest to write the solution 

in terms of infinite slab modes which are reflected an infinite number of times by the 

end caps at y = ±L. We can assume that an infinite slab mode is generated inside 

the separable structure. According to the PEC and PMC dielectric bisection, the 

mode can be classified as PEC or PMC mode. The expression for a mode field inside 

an infinite slab is given in (A.4-6), and it is repeated here for convenience. It can be 
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rewritten as 

GZ'mr = Ge
x^(x,xs,w^T) • D(y - ys) (3.3.30) 

where w^ and wT represent the location of the PEC and PMC poles, respectively. The 

expression for G%" and G™T are given in (A.4-8) and (A.4-9). Inside the separable 

structure, the infinite slab SW mode is reflected by the end caps. Note that a SW 

mode of the infinite slab can be constructed as the superposition of two zig-zagging 

plane waves. As a result, the reflection coefficient at the boundaries y = ±L becomes 

m + m 

where r\\ and 772 are the y-directed wavenumbers outside and inside the dielectric slab, 

respectively. It is noted that (3.3.31) is in the form of the usual transmission-line 

reflection coefficient. It is important to remember that when used in the 2D problem, 

r?i and r/2 contain an angular dependence in terms of w. The Green's function for 

a SW mode generated by the source and reflected by the end cap at y — L can be 

written by 

G£f* = <£""*(*, xs, w„|T) • D(L - ya) • r • D(L - y) 
(3.3.32) 

= Ge-m* {x, x„ w„,T) • r • D(2L -ys-y) 

where the function D(L — ys) accounts for the y direction traveling distance between 

the source and the top end cap. It can be written by using (A.4-7) as 

D(L - ys) = e-ifci«^w„,T|L-».|_ (3.3.33) 

The traveling distance from the end cap to the field point is accounted for by the 

term D(L — y). If we multiply (3.3.32) by r2D(4L), we can obtain the second partial 
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Figure 3.14: The paths having the mode contributions defined by (a) G>++ (b) Gr 

(c) G r+_ (d) G r-+. 

reflection contribution. This can be explained if we let the mode continue traveling 

to the bottom end cap at y — — L, reflect back to the top end cap at y — L and finally 

reflect back to the source. Note that this process can be repeated as it is pictured in 

Fig. 3.14.a, and the total contribution can be expressed as 

oo 

G%? = G%^ (x, x8, w„,T) • r • D(2L -y-ya) J ] ( r 2 P ( 4 L ) r (3.3.34) 
n=0 

where the index notation r++ is adopted, whereby the first sign denotes y = +L 

at which the first reflection happens, and the second sign being y = +L at which 

the last reflection happens before the mode reaches the observer. The signal flow 

graph shown in Fig. 3.15.a depicts the multiple reflection process for the expression 

given in (3.3.34). The infinite series in (3.3.34) can be written in closed form since 

|r2£>(2L)[ < 1. By doing so, the expression in (3.3.34) becomes 

s~tev,mT = Ge
x"^(x,xs,w^T) 

YD{2L-ys-y) 

1 - r2£>(4L) ' 
(3.3.35) 

Fig. 3.15 shows all the possible paths that a mode can travel from the source to the 
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Figure 3.15: The signal flow graph for (a) Gr++ (b) Gr (c) G>+_ (d) (? r_+ . 

observer by having at least once reflected by an end cap. The contributions pictured 

in Fig. 3.14.b to Fig. 3.14.d correspond to the signal flow graphs shown in Fig. 3.15.b 

to Fig. 3.15.d, respectively. Using the signal flow graphs, the other contributions can 

be written as 

G?™ = Gl^^^^r)1^^^ (3.3.36) 

GIT- = GtT'^ix, z„ w , / ^ ^ (3-3.37) 

G-r = <^'^(x,xa,wVtT)^^±^. (3.3.38) 

It is useful to combine all the possible paths in a single signal flow graph as shown 

in Fig. 3.16. Note that the signal flow graph also includes the direct path from the 

source to the observer without any reflection by the end caps which is expressed in 

(3.3.30). Using the signal flow graph shown in Fig. 3.16, the total field due to a single 
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Figure 3.16: The signal flow graph showing the multiple SW reflections inside a 
separable structure. 

mode inside a separable structure can be obtained as 

— U-^ -+- tj- _, , -+- Lr r -f- tJ r r+- + ^r I- • r+- (3.3.39) 

The total SW contribution for a separable structure can be written in terms of PEC 

and PMC mode fields as 

r>sw J^GeV2 + ^GmV2. (3.3.40) 

where Ge" and G™T are the total fields due to a single mode inside a PEC and PMC 

bisected problems, respectively. 

It is possible to obtain the SW contribution by applying the residue theorem to 

(3.3.25). By doing so, the result will be in form of trigonometric functions. By 

transforming the trigonometric functions to exponential functions, the field due to a 

single mode will be the same as (3.3.39). The advantage of writing the SW solution 

in form of (3.3.39) is that the solution is in terms of the end cap reflection coefficient. 

The reflection coefficient obtained for separable structure in (3.3.31) is the plane wave 

reflection coefficient. With this format, it is straightforward to modify the solution to 
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treat the non-separable slab by simply changing the reflection coefficients. Then, the 

reflection coefficient must be found by some other means such as solving an integral 

equation. Removing the corner regions (e3 = ei) changes the end cap reflection 

coefficient for the modes. When several modes are present, each mode can generate 

other modes because of mode conversion at the end cap. The mode conversion can 

be characterized by developing an end cap scattering matrix. In the next chapter, we 

will use the MoM to obtain the end cap scattering matrix. 

3.4 Resonance Inside a Separable Dielectric Slab 

In this section, the resonance behavior of a SW mode inside a separable slab is 

studied. Fig. 3.17 shows an infinite slab SW mode traveling inside a separable slab. 

The expression for an infinite slab SW mode traveling in the y direction is given 

in (A.4-6). The figure shows a simple track of the SW with one reflection at each 

interface. The SW mode originates from the slab section A and travels in the positive 

y direction. After reflection at the top end cap, it travels in the negative y direction 

toward the bottom end cap where it reflects back again to reach section A. In order 

to have resonance, the fields should return in phase at section A. This requires that 

the SW mode that reaches section A after reflection from the top and bottom end 

cap have the same phase and amplitude as the originating SW mode. This condition 

can be written as 

E0(x) = E0(x)T2e-jrt24L (3.4.1) 

where EQ(X) is the electric field of the the originated SW mode at section A, and 772 

is the y directed wavenumber given in (3.3.29). The reflection coefficient T at the top 

and bottom end cap is also given in (3.3.31). After some rearrangements in 3.4.1, the 
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Figure 3.17: A surface wave originating from section A travels back to its origin after 
reflecting from the top and bottom end cap, respectively. 

resonance condition becomes 

1 - r V ^ 2 4 L = 0. (3.4.2) 

This equation also appears in the denominator of Gy. If a SW mode satisfies (3.4.2), 

the resonance occurs. This means that the SW pole of Gx coincides with a SW pole 

of Gv. 

According to (3.4.2), the magnitude of the reflection coefficient should be unity in 

order to have resonance (|r | = 1). This implies that the mode is trapped inside the 

slab since it is fully reflected at the end caps. Furthermore, 772 should be real which 

means that the slab should be lossless. 

It is noted that the resonance periodically occurs as a function of L. This means 

that if we have a resonance height available for a mode, it is possible to find other 

resonance heights for the same mode. If we call the period of repeating resonance 
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height Tres, we can write 

I _ Y2
e-3V22(2L+nTrf:s) = Q n , 

which gives the period of resonance height as 

Tres = 7T/772. (3.4.4) 

It is noted that when the source is along y = 0, the period Tres should satisfy 

—1L 
I _ Te-jm(2L+nTres) = 0 n = = . . . , _ l , 0 , l , . . . ; n > - — - . (3.4.5) 

J-res 

This is similar to placing the source inside the PMC bisected dielectric slab, when 

the PMC plane is at y = 0. The resonance period for this case becomes 

Tres = 27r/772. (3.4.6) 

3.5 Results and Discussion 

In order to validate the Green's function solution for a separable dielectric slab (GF-

SS), we compare our result with the solution obtained by a commercial finite element 

electromagnetic solver, HFSS [42]. The solution presented in this chapter is intended 

for a large and thick structure, i.e. a concrete wall. Since HFSS cannot handle 

large structures, we have validated our result by choosing a moderately thick but not 

very large slab. Referring to Fig. 3.9, the dielectric slab has a height 2L = 50 cm 

and thickness 2d = 20 cm and the frequency is / = 1.8 GHz. The slab's relative 

permittivity is er = 6 and the conductivity is 02 = 0.195 mS/m, corresponding to 

concrete. The exterior medium is free space. The source strength J0 is normalized so 

= . . . , - l , 0 , l , . . . ; n > 
-2L 

T 
J. Ti 

(3.4.3) 
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that it generates 1 V/m at a distance of 1 m in free space, and 0 dB corresponds to 

1 V/m. 

The separability condition requires e3 — — 4eo for the SS. It is noted that we do 

not consider cr2 in calculating 63 since 02 is small. To form a 2D waveguide structure 

using HFSS, we placed our structure between two parallel ground planes 1 cm apart 

at z = ±0.5 cm. The plate spacing was sufficiently small so that only one layer of 

tetrahedra was generated in the z direction. We formed a 0.8 x 1.1 x 0.01 m air box 

embedding the structure. The four faces of the air box parallel to the z axis were 

defined as radiation boundaries. 
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Figure 3.18: A line source at (xs,ys) = (0.1,0) m inside a 2L x 2d = 0.5 x 0.2 m 
separable slab, (a) The electric field at (x, y) = (0.04, y) m. (b) The locations of Gx 

(+) and Gy (o) poles on the w plane. 

Fig. 3.18.a shows the electric field along x = 0.04 m, generated by a line source 

at (xs,ys) — (0.1,0) m. The result obtained by HFSS and GF-SS are compared. 

The final mesh in HFSS had 30337 tetrahedra. The result obtained by HFSS for 
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a separable dielectric slab (HFSS-SS) agrees very well with the result provided by 

GF-SS. This validates the GF-SS. The residual and SW part of GF-SS (SW-SS) are 

also shown here. The GF-SS is the total solution which consists of the residual wave 

plus the SW-SS. It is observed that the residual part is strong when the field point is 

close to the source. When the field point is away from the source, the residual part 

becomes weak compared to the SW part of the solution. 

Fig. 3.18.b shows a part of the w plane along wr = n/2, where the location of the 

Gx and Gy poles are marked. Since the source is at the center of the slab, only the 

PMC poles of Gx and Gy contribute. It is noted that the SW modes of Gx do not 

show resonance for this example since the poles of Gx and Gy are away from each 

other. 

BB 

O 
X 
D 

1.2 -
O 

* A 

0-9 - O -

• . 
0.6 - x -

-0.2 -0.1 0 0.1 0.2 
y(m) 

(a) 

Figure 3.19: A line source at (xs,ys) = (0.02, -0.22) m inside a 2L x 2d = 0.5 x 0.2 m 
separable slab, (a) The electric field at (x, y) — (0.01, y) m. (b) The locations of 
PMC (+) and PEC (x) poles of Gx and PMC (o) and PEC (•) poles of Gy on the 
w plane. 

Fig. 3.19.a shows the electric field along x = 0.01 m, when the source is close 
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to the end cap, at (xs,ys) = (0.02,-0.22) m. The result obtained by HFSS-SS and 

GF-SS agree very well. For this case, it is shown that the residual part of the solution 

does not make a significant contribution to the total field. The locations of the Gx 

and Gy poles are also shown in Fig. 3.19.b. It is noted that the PEC poles of Gx and 

Gy contribute in this case. It can be observed that one of the SW modes is very close 

to resonance since its corresponding Gx pole at w — 1.5710+ jl.4166 is very close to 

a Gy pole at w = 1.5708 + jl.4189. 

0 0.05 0.1 0.15 0.2 

x(m) 

Figure 3.20: The electric field along the width of the slab. The source is at (xs, ys) = 
(0.02, —0.22) m, and the field point is along y = —0.23 m. 

The electric field at (x, y) = (x, —0.23) m along the width of slab is also shown 

in Fig. 3.20. For this case, the residual part of the solution is comparable to the SW 

field, and it makes a significant contribution to the total field. 

The examples of Fig. 3.18-3.20 serve to illustrate that the relative strengths of 

the SW and residual contributions depends on the locations of the source and field 

points in the slab. It is possible to find a slab height 2L that causes a SW pole of 

Gx to become very close to a Gy pole. Fig. 3.21 shows the electric field inside the 
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Figure 3.21: A line source at (xs,ys) = (0.1,0) m inside a 2L x 2d = 0.535 x 0.2 m 
separable slab, (a) The electric field at (x, y) = (0.04, y) m. (b) The locations of Gx 

(+) and Gy (o) poles on the w plane. 

dielectric slab with height 2L = 0.535 m. The source is at (xs,ys) = (0.1,0), and 

field point is at (x, y) = (0.04, y) m. It also shows the location of the poles in the w 

plane where a PMC pole of Gx at w = 1.571207 + j 1.070810 is very close to a PMC 

pole of Gy at w = 1.570811 + jl.071560. As a result of the Gx-Gy pole overlap, the 

corresponding SW mode shows a close to resonance behavior. For this slab height, 

another PMC pole of Gx at w = 1.571019 + j 1.416632 is also close to a PMC pole 

of Gy at w = 1.570839 + jl.424187. This explains why the SW field is so strong 

compared to the residual wave part. 

The exact locations of the Gx poles on the w plane are given in Table 3.1. For 

each mode incident on the end caps, an incidence angle is calculated as 

0i = arccos -^ 0 < 0,- < TC/2. (3.5.1) 
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Table 3.1: Locations of the PMC poles of Gx on the w plane. 

r 
1 
2 
3 

wT 

1.570978+ .71.531669 
1.571019 + J1.416632 
1.571207+ J1.070810 

ft (degree) 

8.7 
27.0 
48.3 

Note that each SW mode can be written as a superposition of plane waves. The 

incident angle ft is measured from the positive y axis to the direction of plane wave 

travel regardless of sign. For calculating the incident angle shown in Table 3.1, the 

material loss is neglected so that ft becomes a real number. Since the critical angle for 

the material chosen here is ft ~ 24.1°, the mode corresponding to r = 1 is transmitted 

at the end caps while the other modes are totally reflected. 
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Figure 3.22: (a) The average of the total SW field for PMC modes calculated along 
the line (x, y) = (0.04, -L < y < L) m inside a SS. (b) The average of the PMC 
mode fields calculated along the line (x, y) = (0.04, — L < y < L) m inside a SS. 

It is useful to study the field variation of each SW mode with respect to the slab 

height. Fig. 3.22.a shows the average of the total SW field calculated along the line 

(x,y) — (0.04, —L < y < L) m when the source was at (xs,ys) = (0.1,0) m. At 
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the heights where the electric field is maximum, one of the SW modes is close to 

resonance. The electric field contribution of the r ' th PMC mode is denoted by ET
Z. 

Fig. 3.22.b shows the average of each SW mode field along (x,y) = (0.04, — L < 

y < L) m. It is observed that the mode corresponding to r = 1 does not show 

any resonance behavior since this SW mode is not totally reflected at the end caps. 

Furthermore, it was observed that the pole corresponding to r = 1 never becomes 

close to any Gy pole. By increasing the slab height, the Gy poles on the top sheet 

of the w plane, which originate from the branch point at w — 1.5710 + j 1.4436, 

move downward. As a result, the Gy poles cannot overlap the Gx pole at w r = 1 . 

Using (3.4.6), the resonance period Tres = 0.0763 m is calculated for the second PMC 

mode (r = 2) which also agrees with the period of the maxima shown in Fig. 3.22.b. 

Similarly, the calculated period of resonance Tres = 0.10216 m for the third PMC 

mode (T = 3) matches the period of resonance shown in Fig. 3.22. 

In summary, it has been shown that when a Gx and Gy pole overlap, it corresponds 

to the resonance of a SW mode inside the slab. It was shown that the SS Green's 

function and HFSS solution are in good agreement, whether or not we are near a 

resonant frequency. 
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Chapter 4 

Interior Green's Function Solution 

for a Thick and Finite Dielectric 

Slab 

In this chapter, we study the mode conversion inside a thick semi-infinite dielectric 

slab. The mode conversion occurs because of the diffraction phenomenon at the edges 

of the semi-infinite slab. The mode conversion can be characterized by the use of a 

scattering matrix. The MoM can be applied in order to obtain the scattering matrix. 

The integral equation is formed by enforcing the continuity of the tangential electric 

field on an infinite plane at the end cap of a semi-infinite dielectric slab. The infinite 

plane contains the truncation interface and is perpendicular to the slab extent. Having 

the scattering matrix, we will modify the separable slab solution in this chapter to 

obtain the interior Green's function solution for a thick and finite dielectric slab. This 

work has been reported in [27]. 
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4.1 End Cap Scattering Matrix 

Fig. 4.1 shows a semi-infinite dielectric slab of thickness 2d. The slab is truncated 

at y = L, and it occupies the region between x = 0 and x = 2d. We assume 

that the dielectric slab is thick enough to let several guided modes propagate inside 

the slab. The guided modes are generated by a line source at (xs,ys). The modes 

traveling toward the positive y direction are diffracted at the truncated interface, and 

mode conversion is expected. In order to express the interactions between the guided 

modes, we can use a scattering matrix. The scattering matrix S n , which is a square 

(2) ' 

«S s»-

Figure 4.1: Semi-infinite dielectric slab of thickness 2d. The infinite plane S at y = L 
separates the structure into Regions (T) and (2). 

matrix, characterizes the interactions between the incident and reflected modes at the 

truncation interface. An element of the scattering matrix Su(i, j) is the amplitude of 

the i'th reflected mode due to the j ' t h incident mode of unit amplitude. The notation 

in [43] is followed, whereby the subscript 11 indicates that this is a reflection term. 

We classify the guided modes into PEC and PMC modes which are the modes 

inside a PEC and PMC bisected dielectric slab, respectively. Since the PEC and 

PMC modes originate from two independent structures, the PEC modes cannot be 

converted to the PMC modes and vice versa. As a result, we can express the scattering 
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matrix by 

(4.1.1) 

where S ^ a n d S^ are the scattering matrices for the PMC and PEC modes, respec­

tively. In order to obtain the elements of the scattering matrices, the MoM is applied. 

The details are presented in the next section. 

4.2 MoM Formulation 

The semi-infinite slab of thickness 2d is shown in Fig. 4.1 with permittivity e2 sur­

rounded by a material having a permittivity of e\. The permeability in both materials 

is assumed to be /i0, the free space permeability. A line source of strength Is at (xs, ys) 

inside the slab generates the guided modes. The modes traveling toward the positive 

y direction are reflected back by the end cap at y = L. To solve this problem, we 

form the integral equation formulations on an infinite plane S at y = L. This is 

similar to the spectral domain approach applied by Maci et al. [7] and Volski and 

Vandenbosch [8] to obtain the diffraction coefficient of a semi-infinite dielectric slab. 

However, the formulations here are formed in the spatial domain unlike [7] and [8] in 

which the spectral domain formulation was used. Since we are interested in the mode 

reflection and conversions at the end cap, the MoM region on the infinite plane S can 

be limited to the range —h < x < 2d + h. This is possible since the MoM currents 

on the plane S outside this range turn out to be weak. This is because the electric 

field outside the slab generated by a guided mode decays exponentially when the field 

point moves away from the slab surface. By reciprocity, if a source outside the slab 

moves away from the surface, the generated SW mode field will be weak. 

Applying the surface equivalence principle on the plane S, the problem is separated 

into two independent regions, Region (T) and Region (2). Regions (T) and (2) occupy 
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y < L and y > L, respectively. By placing a PMC plate at y = L+ and using image 

theory, Region (T) becomes an infinite dielectric slab. The equivalent electric current 

Jeq on the plane S in Region (T) is doubled while the equivalent magnetic current 

is shorted by removing the PMC plate and applying the image theorem. The total 

electric field in Region (T) generated by a line source can be written as 

Ex = £f c + E\mg + E[ (4.2.1) 

where E\nc and E\m9 are the electric fields initiated by the line source and its image 

in front of an infinite dielectric slab, respectively; E{ is the scattered electric field 

generated by the duplicated equivalent electric current 2 Jeq in the presence of the 

infinite dielectric slab. Similarly, placing a PMC sheet at y = L~~ and using image 

(2) 

theory doubles the equivalent electric current Jeq and shorts the equivalent magnetic 

current in Region (2). After applying image theory to the PMC sheet, Region (5) 

becomes free space in which the doubled equivalent electric current is radiating. Since 

we assumed that the line source is in Region (T), the total electric field in Region (5) 

becomes 

E2 = Es
2 (4.2.2) 

where E2 is the scattered electric field in Region (5) generated by the doubled equiva-

(2) 

lent electric current 2 Jeq radiating in the free space. To write the integral equations, 

we impose the continuity of the electric and magnetic fields on the plane S. Imposing 

the continuity of the magnetic field on the plane S requires 

J£H*) = -J£H*) = Mx) (4.2.3) 

where the unknown current density Jeq(x) can be obtained by solving the integral 
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equation 

E{nc(x) + E^9(x) + E{{x) = Es
2(x) on plane S (4.2.4) 

which provides the continuity of the electric field on the plane S. Since Efic(x) and 

El™9{x) are equal due to the symmetry of the source and its image about the plane 

S, we can express (4.2.4) by using (4.2.3) as 

2E™c(x) - 2jw/i0 [ Jeq(a/)G00(p,pf)daf 
Js 

= wfi0/2 f Je^H^ihlx-x'Ddx' 
Js 

(4.2.5) 

where G^ is the Green's function of the infinite extent dielectric slab shown in Fig. 4.2 

and p = xx + yL. The expression for G^ when the source and field point are inside 

the slab is given in (3.2.23). The variable of integration on the plane S is defined by 

p' = xx' + yL. To apply the MoM, we represent the unknown equivalent current 

along y — L by 

f N 

E^n^n(^) ~h<X<2d+h 
Jeq(x) = I «=i (4.2.6) 

I 0 elsewhere 

where the /„ denotes the unknown coefficient associated with the n'th cell. The 

parameter h defines the extent of the MoM region which is —h < x < 2d + h. It is 

noted that the MoM region is divided into iV cells. The pulse basis function Pn is 

expressed as 

{ -t Xn o *^ ^ „ X'n ~T~ o 

, (4.2.7) 

0 otherwise. 

where 8 is the cell size and xn represents the center of the n'th cell located at pn = 

xxn+yL. The cell size should comply with 8 < 0.1Aii2 where A2 and Ai represent the 

wavelength inside and outside the dielectric slab, respectively. This criterion gives 
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two different cell sizes inside and outside the slab, so the small value 8 = 0.1 A2 is 

used. In forming the system of equations, the delta testing function is used. The 

N x N system of equations can be written as 

N 

EZ] (pj = YlZmJn ™ = 1,2,... N (4.2.8) 
n=l 

where pm represents the center of the ra'th cell on the MoM region located at pm = 

xxm + yL. The incident field denoted by E™£. is the field due to the j'th. incident 

SW mode. The elements of the impedance matrix Zmn can be written by using 

(4.2.5)-(4.2.8) as 

7 _ 
' ' r an 

fXn+5/2 rxn+d/z 

jUfi0 / Goo(p m , p')dx' 
Jxn-S/2 

rx„+S/2 
+uJli0/4 / H^\h\xm - x'\)dx'. 

Jxn-&/2 

(4.2.9) 

It is noted that the geometrical symmetry of the slab with respect to the x = d can be 

e i , A « o ' f-2-fH) 

y=L 

X 

>d 

• / 

Figure 4.2: An infinite extent dielectric slab. 

used to speed up calculating the elements of the impedance matrix. For calculating 

the self impedance term, we should extract the free space Green's function Gf from 
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GOQ. For the case when the source and the field point are inside the slab, we can write 

G0O = G / + Gg> (4.2.10) 

where G/ and GL are given in (A.8-3) and (A.8-7), respectively. The self term 

evaluation of the free space Green's function which contains the singular term is 

given in (A.8-4). When the source and the field point are outside the slab, the 

Green's function can be evaluated similarly. 

The line source at ps = xxs + yys will excite PMC and PEC SW modes. For the 

moment, let us consider the j'th. incident PEC mode at the aperture as 

EZcMn) = Cf c e f c(xn) = -ju^IsG%{Pw p.) (4.2.11) 

where Qnc is the amplitude of the j ' t h incident PEC mode aty = L, and G% is given 

in (A.4-6). The SW mode function which is denoted by ej*c is normalized so that it 

has a unit amplitude at its maximum. The solution to the N xN system of equations 

in (4.2.8) can then be obtained. After obtaining the In coefficients, the i'th scattered 

PEC mode due to the jf'th incident PEC mode at y = L can be expressed as 

N rxn+S/2 

ELJx) = C*e*(x) - -ju>iM>Y,In / G^(p,p')dx' (4.2.12) 
n=l Jxn-6/2 

where Qj denotes the amplitude of the i'th scattered PEC mode at y = L due to 

the j ' t h incident PEC mode. Since the image of the j ' t h incident PEC mode in the 

PMC plane contributes only to the j ' t h reflected PEC mode, the amplitude of the 
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i'th reflected PEC mode at y = L can be expressed by 

im9 

(4.2.13) 

which is due to the j'ih incident PEC mode. It is noted that (J™9, which is the 

amplitude of the image of the j'ih incident PEC mode, is equal to Qnc on the plane 

S. The elements of the scattering matrix S^ can be obtained by 

/•ref 

Sn(i,j) = % (4-2.14) 

where Sf^ijj) is already defined as the amplitude of the z'th reflected PEC mode due 

to the j ' t h incident mode of unit amplitude. 

Similarly, the elements of the scattering matrix S7^ can be obtained if we replace 

Glo by G™ in (4.2.11) and (4.2.12) where G™ is given in (A.4-6). The elements of 

S™! then become 
- re / 

SZ(iJ) = :?L- (4-2-15) 

Having S^ and S7^, we can form the end cap scattering matrix by using (4.1.1). It 

is noted that the scattering matrix characterizes the SW mode reflection and mode 

conversion at the end cap. However, it does not include the near field contribution 

due to the pulse basis currents at the end cap. 

4.3 SW Solution for a Semi-Infinite Dielectric Slab 

The SW solution inside a semi-infinite dielectric slab is obtained by modifying the 

SW solution of the separable semi-infinite dielectric slab (S-SIS). Fig. 4.3 shows the 
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S-SIS where the end cap interface is at y = L. The SW solution can be written as 

Gs
s
Wsis = Y.Gevl2 + Y.GmTl2- (4.3.1) 

where Ge" and Gm" denote the total field due to a single PEC and PMC mode, 

€z ei.^o f3 

£i,/^o 

y=L 

f-j- /'EI e i , / i 0 

x 

-2d 

Figure 4.3: Separable semi-infinite dielectric slab of thickness 2d. The separability 
condition requires e3 = 2e\ — €2-

respectively. Furthermore, each mode which is composed of the infinite slab mode 

plus the reflected mode at the end cap can be written as 

/~iev,mT / ^ re „ ,m T . s-iev,mT (4.3.2) 

where Ge£™T and Ge^r are given in (3.3.30) and (3.3.32), respectively. It is useful 

to write (4.3.2) in matrix form as 

G^sis = De'm(y - ys)G
e
x>

m + De>m(L - y)Te'mDe>m(L - ys)G
e
x'

m (4.3.3) 
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where the diagonal reflection coefficient matrices Te,m have elements given by 

n^m. i = j 

0 i^j-

The elements of the column vector Ge
x'

m are denoted as Ge
x
i,mi which are given in (A.4-

8) and (A.4-9). Furthermore, the elements of the column matrix G^m are Ge£mT given 

in (3.3.30). The diagonal matrix De'm has elements given by 

( g- iA;isinwj |2/ | £ = j 

(4.3.5) 

where D^-m(L — ys) accounts for the y direction traveling of a mode from the source 

to the end cap. Similarly, D^m(L — y) accounts for the y direction traveling of a mode 

from the end cap to the field point. 

We now wish to solve the semi-infinite dielectric slab (SIS) problem shown in 

Fig. 4.1. To modify the S-SIS solution for a semi-infinite slab, the mode conversion 

is a possibility that we must consider. We can correct the SW solution provided that 

the scattering matrix at the end cap Sn is available. This can be done by replacing 

re'm by Se{™ in (4.3.3). As a result, we can have 

CsTs = De'm(y - Vs)Cr + De>m(L - y)Sl?De>m(L - ys)C'm- (4-3.6) 

The elements of the column vector £^'m are the amplitudes of the PEC or PMC modes 

C T̂ defined as 

G^ ' m T = e i T «V(s) (4-3-7) 

where eu and eT are the normalized PEC and PMC mode functions, respectively. 
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The obtained column vector (,egPs represents the amplitudes of the mode functions, 

tsis> S i v e n a8 

Ge„,mT = QJseuAx). (4.3.8) 

The SW solution for the SIS becomes 

GSsYs = J ] Ge"/2 + ] T GmT/2. (4.3.9) 

It is possible to replace the scattering matrices Se{™ in (4.3.6) with the equivalent 

diagonal scattering matrices Ae'm which have only the diagonal elements A^'m given 

as 

A-r - E ^ n ^ ) ^ [ L : ^ - (4.3.io) 

It is noted that Ae,m and Te'm are diagonal matrices representing mode reflections at 

the end cap of a SIS and S-SIS, respectively. By forming the equivalent scattering 

matrices Ae'm, it is possible to compare Ae'm with the reflection coefficient matrices 

r e ' " \ The results and discussion will be given in Section 4.5. 

4.4 Finite Dielectric Slab Solution Using the GSM 

Method 

Fig. 4.4 shows a finite dielectric slab of height 2L and thickness 2d with the permit­

tivity t2 and permeability fj,o, surrounded by a material characterized with t\ and 

Ho. The dielectric slab occupies the region between x — 0 and x — 2d along the x 

direction, and y = —L and y = L in the y direction. The problem is similar to the 

separable structure shown in Fig. 3.9 but having es = e\. For this problem the mode 

conversion is a possibility that we must consider. We can modify the SW part of 
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Figure 4.4: A finite dielectric slab of length 2L and thickness 2d. 

the solution provided that the end cap scattering matrix Sn is available. We can 

generalize the results of Section 3.3 by replacing T with Sn which is a matrix. This 

is referred to as the generalized scattering matrix (GSM) method. The GSM method 

accounts for all the mode reflections and conversions inside the finite slab. It is con­

venient to employ the signal flow graph shown in Fig. 3.16 by converting the branch 

parameters into matrices. (In doing so, the reflection coefficient T is replaced by the 

end cap scattering matrix Sn-) The new signal flow graph is shown in Fig. 4.5. It 

represents all the mode interactions inside the dielectric slab whereby the problem is 

treated separately for the PEC and PMC modes. As a result, the input column vector 

CI'm has the elements QT which are the amplitudes of the PEC or PMC modes given 

in (4.3.7). It is noted that Ge
x
v'mr given by (A.4-8) and (A.4-9) can be written in form 

of (4.3.7). The diagonal matrix De'm(y — ys) accounts for the y direction traveling of 

a mode from the source to the field point where the elements of the diagonal matrix 

De,m(y) are already defined in (4.3.5). Using the signal flow graph, we can write the 
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Figure 4.5: The signal flow graph picturing the multiple mode conversions and reflec­
tions inside a finite dielectric slab. 

solution similar to (3.3.39) as 

C e,m j-e,m , +e,m , j-e,m . j-e,ro , +e,m (4.4.1) 

where the column vector £^m represents the direct path contribution of the modes, 

and it can be written similar to (3.3.30) as 

>oo De'm(y - ys)C (4.4.2) 

Using the signal flow graph, we can write the other contributions similar to (3.3.35)-

(3.3.38) as 

C++ = De'm(L - y)Se
1'™Ce>mDe>m(L - ys)CT (4.4.3) 

C™- = De>m(L + y)Se
irCe'mDe>m(L + ys)C e,m 

x 

C+- = De'm(L + y)SiimCe ' r aJOe 'm(2L)^f De'm(L - ys)C tx 

C™+ = De'm(L - y)Se
1'rCe'mDe'm(2L)Se

1fD
e'm(L + ys)C 

,mi2"l _ 1 

Ce,m = {/ _ {De'm{2L)S£{™]2} 

(4.4.4) 

(4.4.5) 

(4.4.6) 

(4.4.7) 
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where S^ and S™x represent the PEC and PMC scattering matrices and i" is the 

identity matrix. The obtained column vector £e'm represents the amplitudes of the 

mode functions, £VtT, given by 

Ge"^ = C,,re„lT(aO (4.4.8) 

and the SW solution is expressed by 

GS
fZite = E Ge"/2 + £ GmV2- (4-4.9) 

V T 

By replacing the G%^ with Gf^ite in (3.3.25), the Green's function solution for the 

finite dielectric slab can be written as 

G22 = - ^ - ^ M G ^ + Ge
22x)(G?2y + Ge

22y)dw + Gs
fZte (4-4.10) 

where the integral represents the residual wave part obtained for the separable struc­

ture. 

4.5 Results and Discussion 

For validation, the results obtained by a MoM code for a SIS are compared with 

the results generated by HFSS. Referring to Fig. 4.1, we choose the slab thickness 

2d •= 20 cm and the frequency / = 1.8 GHz. The end cap of the semi-infinite dielectric 

slab is placed at y = L — 0.4 m. The relative permittivity and conductivity of the 

slab are er = 6 and a2 = 0.195 mS/m, respectively. The exterior medium is free 

space. The source strength Is is normalized so that it generates 1 V/m at a distance 

of 1 m in free space, and 0 dB corresponds to 1 V/m. 

Fig. 4.6 shows the electric field along the top end of a semi-infinite dielectric slab 
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Figure 4.6: The electric field along the top end of a semi-infinite dielectric slab at 
(x, y) = (x, 0.4) m. The slab thickness is 2d = 0.2 m. The end cap is at y = L = 0.4 
m, and the source is at (xs,ys) — (0.1, —0.2) m. 

at y = L = 0.4 m. The source is at (x, y) = (0.1, —0.2) m. To form a 2D waveguide 

structure using HFSS, we placed our structure between two PEC parallel plates 1 

cm apart at z = ±0.5 cm. We formed a 0.6 x 0.8 x 0.01 m air box embedding the 

structure. The four faces of the air box parallel to the z axis were defined as radiation 

boundaries. The final mesh in HFSS had 47846 tetrahedra. According to (4.2.6), we 

approximate the equivalent current on a MoM region along y = L, where the MoM 

region spans the range —h<x<2d + h. To observe the effect of varying h, we 

compared the calculated electric field for three different values of h. It was found 

that the electric field is most affected by the value of h when the field point is away 

from the slab surfaces at x — 0, x = 0.2 m. Convergence was observed when h = Ai 

(where Ai is the wavelength outside the dielectric slab). When we chose h = Ai, it 

was found that the total electric field can be accurately calculated inside the dielectric 

slab. This is shown in Fig. 4.7 for the field point at (x,y) = (0.1, y) m. 

HFSS 
MoM, h=^ 

MoM,h=V2 
MoM, h=ty4 

J i i i L 
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Figure 4.7: The electric field inside a semi-infinite dielectric slab. This validates the 
MoM solution which is used to find the scattering matrix of the end cap. The slab 
has a thickness of 2d = 0.2 m. The source is at (xa,ys) = (0.1, —0.2) m, and the field 
point is at (x, y) = (0.1, y) m. The end cap is at y — L = 0.4 m. 

Fig. 4.8 shows the electric field at (x, y) = (0.05, y) m when the source was at 

(xs,ys) = (0.05,-0.2) m. The result obtained for separable semi-infinite slab (S-

SIS) is compared with the SIS results. The result is shown for the slab thickness 

2d = 0.1 m and 2d = 0.2 m. It is observed that the S-SIS and SIS results agree better 

when 2d = 0.2 m. We also verified other cases in the range 0.01 < 2d < 0.6 m. The 

results showed that the results obtained by S-SIS was very different from SIS results 

when 2d < 0.07 m. By increasing the slab thickness when 0.07 < 2d < 0.2 m, the 

agreement between the results obtained for S-SIS and SIS was improved. This shows 

that using the Fresnel reflection coefficient for thicker SIS slabs gives more accurate 

results. 

It was also observed that by moving the source to the center line of the slab at 

(xs,ys) = (0.1, —0.2) m, the agreement shown in Fig. 4.8.b becomes better. For the 

case when the source is at the centerline of the slab, only the PMC modes contribute. 
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Figure 4.8: The comparison of the electric field inside a SIS and S-SIS. The source is 
at (xs,ys) = (0.05,-0.2) m, and the field point is at (x, y) = (0.05,y) m. The slab 
thickness is (a) 2d = 0.1 m and (b) 2d = 0.2 m. 

This shows that using the Fresnel reflection coefficient for the PMC modes in a thick 

slab gives better results than using the Fresnel reflection coefficient for the PEC 

modes. Furthermore, the corner regions of a S-SIS affect the PEC modes more than 

the PMC modes. It is noted that a PMC mode electric field is strong along the center 

line of the slab, and it is weaker near the slab surface. On the other hand, a PEC 

mode electric field is zero at the center line of the slab, and it is strong at the slab 

surface. As a result, the corner regions at the end cap affect the PEC modes more 

than the PMC modes. 

Fig. 4.9 shows the amplitude and phase variation of the first three diagonal ele­

ments of Tm and Am versus the slab thickness. The diagonal elements of the equiv­

alent scattering matrix Am are obtained using (4.3.10). Furthermore, the elements 

of the reflection coefficient Tm are given in (4.3.4). The reflection coefficient matrix 

gives the reflected modes inside a S-SIS, while the equivalent scattering matrix is used 

for calculating the reflected modes inside a SIS. It was observed that by increasing 
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Figure 4.9: (a) The comparison of the (a) amplitude and (b) the phase of the first 
three elements of the reflection coefficient matrix Tm and the equivalent scattering 
matrix Am. 

the slab thickness 2c?, the angle of incidence of each mode at the end cap (the positive 

angle that the plane wave terms of a SW mode make with the y axis) becomes smaller. 

As it is shown in Fig. 4.9.a, the angle of incidence for the first mode becomes smaller 

than the critical angle when 2d > 0.058 m. When the slab thickness is 2d < 0.058 m, 

the first mode is completely reflected at the end cap since |T^ | = 1. By increasing the 

slab thickness, it is observed that the reflection coefficient T^ shows closer behavior 

to A^. Furthermore, it is shown that T™ behaves more similarly to A™ for the third 

PMC mode (ii = 3) than the first or second PMC mode. 

Fig. 4.10 shows the electric field inside a 2L x 2d = 0.5 x 0.2 m finite dielectric 

slab. The results obtained using the surface integral equation/method of moments 

for a finite slab (SIE/MoM-FS) are compared with the results computed by GF for 

the finite slab (GF-FS) and GF-SS. The reader is referred to Subsection 6.1.2 for 

more details on the SIE/MoM technique. For this slab size, the SIE/MoM-FS solved 

a 460 x 460 impedance matrix since the surface of the slab was divided into 230 cells. 
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Figure 4.10: (a) The electric field inside a 2L x 2d = 0.5 x 0.2 m finite dielectric 
slab, (a) The line source is at (xs,ys) = (0.1,0) m, and the field point is at (x, y) = 
(0.04, y) m. (b) The line source is at (xs,ys) = (0.02, —0.22) m, and the field point is 
at (x,y) = (0.01, y)m. 

This is more efficient than HFSS which uses volume tetrahedral mesh to solve this 

problem. In using HFSS, the final volume mesh had 30337 tetrahedra. Furthermore, 

to obtain the scattering matrix at the end cap of a SIS with the thickness 2d — 0.2 m, 

a 64 x 64 impedance matrix was solved. The scattering matrix was then used in 

GF-FS to solve the FS problem. The advantage of using GF-FS is that increasing the 

slab height of the FS does not have any additional computational costs. As a result, 

it is suitable for modeling large slabs. 

Fig. 4.10.a shows the case when the source is at (xs, ys) = (0.1,0) m and the field 

point is at (x, y) = (0.04, y) m. The pole locations of the SS were already shown in 

Fig. 3.18.b. It was observed that the poles of Gx are not close to the poles of Gy for 

this case. The result obtained by GF-FS agrees well with the results computed by 

GF-SS. This shows that the SW modes are not sensitive to the material in the corner 

regions. 
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Fig. 4.10.b shows the case when the source is at (xs,ys) = (0.02, —0.22) m and 

the field point is at (x, y) = (0.01, y) m. The pole locations of the SS were already 

shown in Fig. 3.19.b where one of the SW modes inside the SS was showing "close to 

resonance" behavior. The results show that the GF-SS cannot model the finite slab 

when one of the Gx poles is very close to a Gy pole. 

Fig. 4.11 compares the electric field inside a FS and SS when the slab size is 

2Lx2d = 0.535 x 0.2 m. The source is at {xs, ys) = (0.1,0) m, and the field point is 

at (x, y) = (0.04,y) m. The pole locations of the SS are shown in Fig. 3.21.b where 

two poles of Gx are very close to two poles of Gy. As a result, a very strong electric 

field is observed inside the SS which is very different from the electric field inside a 

FS. In this case, it is a poor approximation to use the SS Green's function to compute 

the electric field in an actual FS which we wish to model. It is also shown that the 

GF-FS results agree well with the results obtained by SIE/MoM-FS. This validates 

the presented GF-FS. 

Fig. 4.12 shows the electric field inside a FS when the source is close to the end 

cap at (xs,ys) = (0.01,0.26) m, and the field point is at (x,y) = (0.02, y) m. The 

slab size is unchanged. Although the source is very close to the slab end cap, the 

GF-FS still agrees very well with SIE/MoM-FS. In calculating the GF-FS result, the 

end cap scattering matrix was used. The scattering matrix was calculated by finding 

the pulse bases currents at the end cap. However, the pulse bases has a near field 

contribution that is not included in the total field near the end cap. 

Fig. 4.13 shows the electric field inside a FS along the width of the slab when 

the source is at (xS}ys) = (0.1,-0.23) m and the field point is at (x,y) = (x, —0.24) 

m. The GF-FS is the total solution, which consists of the residual wave plus the SW 

of the FS (SW-FS). The plot also shows the SW-FS alone, i.e. the total with the 

residual wave omitted. It can be seen that the residual wave is strong, and it makes 
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Figure 4.11: The electric field inside a FS. The slab has a thickness of 2d = 0.2 m 
and a height of 2L = 0.535 m. The source is at (xs,ys) = (0.1,0) m, and the field 
point is at (x, y) = (0.04, y) m. 
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Figure 4.12: The electric field inside a FS. The slab has a thickness of 2d = 0.2 m 
and a height of 2L = 0.535 m. The source is at (xs, ya) = (0.01,0.26) m, and the field 
point is at (x, y) = (0.02, y) m. 

a significant contribution to the total field. Furthermore, the residual wave provides 

the necessary correction to the SW field so that the total matches the SIE/MoM-FS 
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Figure 4.13: (a) The electric field inside a FS. The source is at (xs,ys) = (0.1, —0.23) 
m, and the field point is at (x, y) = (x, —0.24) m. (a) If the residual wave is omitted, 
only the SW-FS remains which doesn't match the SIE/MoM-FS. (b) The residual 
wave is comparable to the SW-FS. 

solution. It is also seen that the MoM correction is necessary for the SW's but not 

for the residual wave. This happens because the SW part of the SS solution is very 

sensitive to the material in the corner region. Furthermore, the material in the corner 

regions affects the resonance behavior of the SW-FS. However, the residual part of the 

solution cannot experience a resonant behavior since it decays fast in the y direction. 
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Chapter 5 

Exterior Analysis of a Finite Thick 

Dielectric Slab 

In the previous chapter, the interior Green's function for a finite dielectric slab was 

obtained. The interior Green's function can be used to calculate the electric field when 

the source and the field point are both inside the dielectric slab. In this chapter, we 

present a simple procedure that can be used in order to obtain the electric field using 

the interior Green's function when the source and/or the field point is exterior to 

the dielectric slab. Applying the surface equivalence principle, we can obtain the 

exterior field generated by an interior source. This can be done by computing the 

surface equivalent currents using the interior Green's function. The equivalent surface 

currents together with the free-space Green's function can be used to obtain the field 

at any point outside the slab. Applying the reciprocity theorem, we can interchange 

the source and the field point. As a result, we are able to calculate the interior field 

due to an exterior line source. This is used later for computing the exterior Green's 

function where we first obtain the electric and magnetic fields on the slab surface 

generated by an exterior line source. Having the electric and magnetic fields on the 

slab surface will provide the surface equivalent currents. These currents will be the 
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sources of the scattered field in the exterior region. This method has been reported 

in [28]. 

5.1 Case 1: Source Inside, Field Point Outside 

5.1.1 Electric Line Source 

Fig. 5.1.a shows a finite dielectric slab of height 2L and thickness 2d, having a per­

mittivity of e2. A current line source which has a strength of Is is placed inside the 

dielectric slab at ps = xsx + ysy. The field point is outside the dielectric slab. 

t 
+L 

e\-,HQ 

E, H 

® 

E,H 

X 

ei,A*o 

2d (a) (b) 

Figure 5.1: (a) An electric line source inside a finite dielectric slab, (b) Applying the 
surface equivalent theorem to obtain the exterior field, the dielectric slab is replaced 
by the equivalent surface currents Jeq and Meq. 

In order to obtain the electric field outside the dielectric slab, we use the surface 

equivalence principle and the interior Green's function as follows. Since the source 

is inside the dielectric slab, we can calculate the surface fields on the dielectric slab 

boundary by using the interior Green's function. Having the total field on the di­

electric slab boundary, the equivalent currents on the dielectric slab surface can be 
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obtained. By using the surface equivalence principle, we can replace the actual cur­

rent source by the equivalent sources on the boundary of the dielectric slab. The 

equivalent sources generate the same electric field as the actual sources in the exte­

rior region, and zero field in the interior region. The interior region material can be 

replaced with any material since the interior region has zero field. It is always con­

venient to replace the interior region material with the same material as the exterior 

region. As a result, the exterior field can be obtained by using the free space Green's 

function since the equivalent sources radiate in a homogeneous material having ei, ^i 

everywhere in space as shown in Fig. 5.1.b. 

The procedure which was mentioned above is applied to the dielectric slab shown 

in Fig. 5.1.a. First, the fields on the dielectric slab surface should be calculated. A 

point on the surface of the dielectric slab is defined by p'n as 

P\ = y'y -L<y' <L 

p2 = 2dx + y'y - L<y' <L 
(5.1.1) 

p'3 = x'x- Ly 0<x'< 2d 

p'4 = x'x + Ly 0 < x' < 2d. 

The electric field on the dielectric slab surface which is generated by the electric line 

source has only a z-directed component. It can be expressed as 

E(ps,p'n) = Ez(ps,p
r
n)z (5.1.2) 

where Ez(ps, p'n) can be obtained according to (3.1.5) by using the interior Green's 

function as 

Ez(ps,Pn) = -JunoIsG22(ps,p'n). (5.1.3) 

The interior Green's function G22 is given in (4.4.10). Furthermore, the magnetic 
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field on the surface of the dielectric slab is expressed as 

H(ps,p'n) = 
Hx{ps,p'n)x n = 3,4 

Hy(ps,p'n)y n = l,2 

(5.1.4) 

where Hx{ps, p'n) and Hy(ps,p'n) can be obtained using Maxwell's equation (V x E 

—jufxH) as 

Hx(ps,Pn) = 

Hy{ps,p'n) 

1 dEz(Ps,p) 

jufio dy 

1 dEt(p„p) 

= L 
dG22(p',p) 

P'n 

jui/Ao dx 
= -L 

dy 

dG22(p',p) 

P'n dx 

(Ps'P'n) 

(Ps'P'J 

(5.1.5) 

(5.1.6) 

It is noted that the vectors p = xx + yy and p' = x'x + y'y, which are the Green's 

function variables, define the source and field point, respectively. The equivalent 

currents on the surface of the dielectric slab can be obtained by applying the boundary 

condition as 

Meq = -hxE(ps,p'n) (5.1.7) 

Jeq = hxH(ps,p'n) (5.1.8) 

where the unit vector n is pointing toward the exterior region and is normal to 

the boundary. The equivalent electric and magnetic currents on the dielectric slab 

boundary are denoted by Jeq and Meg, respectively. Using (5.1.2), we can write 

(5.1.7) in scalar form as 

[Mx(PsiPn),My(ps,p'n)} = { (5.1.9) 

[(-lYn-VEz(ps,p'n)t0] n = 3,4 
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where Mx and My are the x and y components of the equivalent magnetic current, or 

Meq = Mx(Ps, p'n)x + My{ps, p'n)y. (5.1.10) 

Similarly, we can write (5.1.8) in scalar form by using (5.1.4) as 

Jz{ps,p'„) = { 
(-irHy(ps,p'n) n = l ,2 

(-iyn-»Hx(p„f/n) n = 3,4 

(5.1.11) 

where 

Jeq = Jz(ps,p'n)z. (5.1.12) 

By using the free space Green's function, the exterior electric field at p0 = x0x + y0y 

generated by the surface equivalent electric current can be obtained. As a result, 

using (5.1.12) and (A.5-7) in (3.1.5) gives the electric field Ej generated by the 

surface electric current as 

EJ
z(ps,p0) = -

W/J.0 i: 

r(2) J,(p.,riW'(*l|Po-Pll) 

(2), +Jz(ps,p'2)H^(k1\Po-p'2\) dy' 

(5.1.13) 
r(2) j,{p.,^W\kl\Po-pii\) 

(2), 
+Jz(ps,p'4)H

(
0>(h\po~p'4\) dx'. 

Using (5.1.10), (5.1.1) and (A.5-8)-(A.5-9), we can write the exterior electric field 
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generated by the equivalent magnetic surface current as 

£f(A 
, h fL 

Xn 

Po ~ Pi I 

+My(Ps,p'2) "X° 2drM2\h\p0-p'2\) 
\PO-P'2\ 

dy' 

2d r II A- T 
Mx{p„p'3)-p^M\k1\Po-fti\) 

\Po - Pal 

+Mx(ps,p'4)T^^rM
2)(kl\p0 - p'A\) 

\Po ~ PA\ 
dx' 

(5.1.14) 

Using (5.1.5)-(5.1.6) and (5.1.11), we can write (5.1.13) as 

Ei{p„p.) = -^fl.f dQa{pl,p) 

dx 

dG22(p',p) 

r(2) 

(P.-Pi) 
W(h\p0-P'i\) 

UJfXQ I 
dx 

2drdG22(p',p) 

r(2) H^ihlPc.-p'zl) 
(Ps'P'2) 

dy' 

dy 

dG22{p'lP) 

dy 

r(2) 

(PM 
^'(hlp^p'S 

r(2) 

(PM 
H^{h\p0^p'4\) dx'. 

(5.1.15) 

Similarly, the electric field due the equivalent magnetic surface current given in 

(5.1.14) can be written by using (5.1.3) and (5.1.9) as 

E?(ps,Po) 
ufiok 

'< 
G22(ps,p[) 

I P o - p l I 

UJfJLQki 

-G22(pa,^)^-^-M2\k1\po ~ P'2\) 
\Po ~ P2l 

r ^ ( P ^ ^ T ^ - ^ ^ ^ I I P , , - P3D 

Jo L \Po - p3l 
-G22(ps, pA)-^ j-H^falp,, - p'4\) 

\P0-P4l 

dy' 

(5.1.16) 

dx'. 

In summary, the field in the exterior region that is generated by the equivalent electric 
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and magnetic surface currents can be written as 

E,(p.,p0) = EJ
g(p3,p0) + E?(p.,p0) (5.1.17) 

where EJ
Z and Ef are given in (5.1.15) and (5.1.16), respectively. By performing 

numerical integrations, (5.1.15) and (5.1.16) can be evaluated. 

5.2 Case 2: Source Outside, Field Point Inside 

In order to find the electric field inside a finite dielectric slab generated by a current 

line source in the exterior region, we can apply the reciprocity theorem so that the 

source and the field point can be interchanged. As a result, we can use the result 

that was obtained in Section 5.1. 

ei,/x0 ei,Mo 

Figure 5.2: A finite dielectric slab. 

Fig. 5.2 shows a primary current line source Is(ps) exterior to a finite dielectric 

slab which generates the electric field Ez(ps, p0) at the observation point p0 in the 

interior region. To apply reciprocity, we assume another secondary current line source 
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Iz2(p0) at the location of Ez which generates the Ez2(p0, ps) at the location of primary 

current line source Is(ps)- According to the reciprocity theorem, we have 

Is{ps)Ez2{p0, ps) = Iz2{p0)Ez(ps, Po) (5.2.1) 

which can be written as 

Ez{ps,Po) = Is{ps)Ez2({po,Ps)- (5.2.2) 

where IZ2(p0) = 1 is assumed. The electric field outside the dielectric slab, which is 

generated by IZ2{p0) = 1, is denoted by Ez2 and can be written as 

EZ2(p0, ps) = EJ
z2(Po, ps) + E% (Po, p.) (5.2.3) 

where Ej2 is the electric field generated by the electric surface current. Using (5.1.15), 

Ez2 which is originally generated by Iz2(p0) = 1 can be written as 

EJ
Z2(PO,PS) = 

LOflQ L dG22(p',p) 

dx 

dG22(p',p) 

r(2) H^{h\ps-p',\) 
(Po'P'l) 

OJflO I 
dx 

2drdG22(p',p) 

r(2) 
^ ( f c l l P . - P i l ) 

(Po^ 

dy' 

dy 

dG22(p',p) 

r(2) 

(Port 
K'(h\Ps-p'3\) 

dy 
r(2) 

^(fcllP.-pil) 
(POM 

dx'. 

(5.2.4) 

Similarly, the exterior electric field E^ generated by the surface magnetic current 
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can be written by using (5.1.16) as 

&z2 \Poi Pa) ~ 4 / G22(po,Pl)] 
Jbo r(2) 

-G22(p0 ,p2) 

7T^r(*iip.-pii) 
\Hs - Pi I 

, xs — 2d „ (2 ) / , I /1-. 

rHl'(k1\ps-p2\) P2i 
<v 

- / 

u>/J>oh f \„ , ,s Vs + L „(2) / ; 1 /,x 
G22(p0,P3)] Tl^l (kl\Ps - Psl) 

IPs - Psl 
- G 2 2 ( p 0 , p i ) | ^ — ^ ^ ( A n l p . - pi|) 

\PS-PA\ 
dx' 

(5.2.5) 

where IZ2(p0) — 1 is assumed. 

In summary, the interior electric field at p0 — xx + yy generated by an exterior 

line source Is at ps = xsx + ysy can be obtained by (5.2.2) with Ez2, Ez2 and E. 

given in (5.2.3), (5.2.4) and (5.2.5), respectively. 

M 
zl 

5.3 Case 3: Source Outside, Field Point Outside 

In this section, we will investigate a solution for the case when the source and the 

observation points are both outside the finite dielectric slab. In doing do, we use 

the interior Green's function solution. In order to obtain the exterior field due to 

an exterior source, we use the surface equivalence principle. Fig. 5.3.a shows a line 

source with the strength Is outside a dielectric slab at ps = xsx + ysy. If the total 

electric and magnetic fields can be obtained on the surface of the dielectric slab, the 

surface equivalence principle can be used to obtain the scattered field in the exterior 

region. The total electric field on the surface of the dielectric slab can be obtained by 

the same procedure as described in Section 5.2. The scattered field can be written as 

Ez(ps, Po) = E™(ps, Po) + EJ
z(ps,Po) (5.3.1) 
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Figure 5.3: (a) An electric line source outside a finite dielectric slab, (b) Surface 
equivalence principle applied to the interior region. 

where EJ
Z and E^ are the electric fields due to the surface equivalent electric and 

magnetic current. Using (5.1.12) and (5.1.10), we can write EJ
Z and E™ similar to 

(5.1.13) and (5.1.14) as 

EJ
z(ps,Po) 

WHQ a ,"\ H"(2) Ups,Pi)H^{k\Po-P'{\) 

," \ w(2) + UPs,P2)K>(k\po-pt\) 

Wfl0 
p2d 

JO 

dy" 

Up„f®W'>{k\Po-p£\) 

J'\ H-(2) +Up.,pfiH?)(k\Po-rf\) dx" 

(5.3.2) 
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E?(ps,Po) = ^.\L k(Ps ,P;')r^^T^ (2 )(fc|p0 - P'[\) 
*3 J-L L \Po — Pi I 

+My(ps,p^T^ 
\Po ~ Pl\ 
X" 2d7rM2)(k\Po-P2\) dy" 

£ [ k(ps, p'Dr^rM2)(k\Po - P'i\) 
V Jo L IPo-PsI 

(5.3.3) 

dx" 
\Po-p1\ 

where p"n denotes a point on the surface defined in (5.1.1). Using (5.1.9), Mx and My 

can be obtained as 

My(ps,P:) = (-irEs
z(ps,p':) n = i , 2 (5.3.4) 

Ms(p.,/C = {-l){n-l)El{ps,&) n = 3,4 (5.3.5) 

where Ez(ps, p'„) is the electric field on the surface of the dielectric slab generated by 

the exterior source. Using (5.2.2)-(5.2.5), Es
z(ps,p'£) becomes 

Es
z(ps, pTn) = EJ

z2(ps, p"n) + E%(p„ p"n) (5.3.6) 

and 

UJfJLQ 

EJ
Z2(PS,P'D = - ^ 1 L dG22(p',p) 

dx 

dG22(p>,p) 
(P'^P'i) 

U1/J.0 

dx 
2drdG22(p',p) 

# f ( f c i | p s - p ' i l ) 

H^ihlp, - p'2\) 
(Pn'P'J 

dy' 

•f dy 

9G22{p',p) 
dy 

(P'^P's) 
#Ja)(*llp.-p*l) 

H$\h\ps-p\\) 
(P'^P'd 

dx'. 

(5.3.7) 
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where n = 1,2,3,4. Furthermore, using (5.2.5) E^{ps,p'^) becomes 

tjz2\PsiPn) - 4 *s / 

L r 
G22(p",p'l) 

X o 

IPs ~ Pit 
xs — 2d 

-G22{p\P'2)^^rMf\k1\ps - P'2\) 
IPs ~ P2\ 

•^P-I. f" \GM',A)^r,H?(Hp. - oil) 
^ ./o L IPs P31 

- < w , / 0 r ^ f f l ( 2 ) ( * l l f t - p>4\) 
IPs - P4l 

dy' 
(5.3.8) 

da/ 

The surface electric current Jz(ps, p'n) in (5.3.2) can be obtained by using (5.1.11) as 

Jz{ps,Pn) 
{-lTH°y{ps,pl) n = l,2 

{-lf»-*>Hl{pByn) n = 3,4 
(5.3.9) 

where H*(ps,p'^4) and Hy(ps,p"2) are the magnetic fields on the surface of the 

dielectric slab generated by the exterior source Is. The magnetic field H^.(ps, p'l4) 

can be obtained by using (5.1.5) and (5.2.2)-(5.2.5) as 

Hs
x(Ps, PL) = HJ

x(ps, PZA) + H™(Ps, p'id (5.3.10) 

where 

Hx(Ps,Pn) = -' 

-u r 

\dG22(p
f,p) 

dy'dx 

dG22(p',p) 
dy'dx 

ldG22(p',p) 
dy'dy 

dG22(p',p) 

r(2) < ;(^IIPS-P;I) 
(p:>p'i) 

r(2) 

(p'^p'2) 
fln*iip.-p&i) dy' 

r(2) H^{h\ps-p'S 
(P^P's) 

dy'dy 
r(2) H?}(ki\p.-d\) 

(P'^P'd 
dx'. 

(5.3.11) 
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Using (5.1.5) and (5.2.5), H^(ps,p'^) becomes 

H*?{ps,p'n) = "W dG22(p',p) 

dy' 

dG22(p',p) 

r(2) ^r(*ilP.-^D-
Xa 

iPtP'i) 

4j'H 

2drdG22(p',p) 

dy' 

dG22(p',p) 

Ps~ P\\ 

Hl\h\p8-p2\)j- — 
(p»,p>2) IPs - P2I 

,,\ Vs + L 

dy' 

r(2) ^r(*i|p.-psi) 
(P^p3> | p . - PSI 

% ' 
^ ( f e i l p . - p i D r 1 ^ , 

{p»,p<4) \PS-PA\\ 

dx' 

(5.3.12) 

where n = 3,4 in (5.3.11) and (5.3.12). The magnetic field on the surface of the 

dielectric Hy(ps,p'[2) can be obtained by using (5.1.6) and (5.2.2)-(5.2.5) as 

Hy{ps, p'{,2) = HJ
y{Ps, p'l2) + H™(Ps, p'l2) (5.3.13) 

where 

Hy(pS,Pn) = ~£s j 
dG22(p',p) 

dx'dx 

dG22(p',p) 

r(2) #n*iip.-p;i) 
(Pn-P'l) 

+ 4* I 

dx'dx 
2drdG22(p',P) 

r(2) Hll\h\ps-p'2\) 
(KM) 

dy' 

dx'dy 

dG22(p
r,p) 

dx'dy 

r(2) H^{h\ps~p'z\) 
(P'M 

r(2) H^{h\ps-p'4\) 
(Pn'PV 

dx'. 

(5.3.14) 
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Using (5.1.6) and (5.2.5), Hfi1 can be written as 

#>.X) = | / 
L 

-L 

dG22(p',p) 

dx' 

dG22{p\p) 

r(2) ffn*i|p,-ril) 
(PZ.Pi) 

+ 4 j 

p2d 

Jo 

dx' 

dG22{p',p) 

k-Pil 
x, — 2d 

dx! 

dG22(p',p) 

n\ VB + L 

dy' 

(5.3.15) 
K2)/ WMp.-f&y 

(P'M I P - " P a l 

<9x' 
r(2) 

^r(*iip.-pii) 
/u y s - ^ 

(p^-pi) |P S -P4U 
dx' 

where n = 1,2 in (5.3.14) and (5.3.15). 

In summary, the exterior electric field at the observation point p0 = x0x + y0y, 

which is generated by the exterior source at ps = xsx + ysy, can be obtained by 

(5.3.1) with Ej and Ef given in (5.3.2)-(5.3.3) and using (5.3.4)-(5.3.15). 

The solution presented in this section requires the numerical integration of the 

double integral on the surface of the dielectric slab, which will be discussed in the 

next section. 

5.4 Numerical Integrat ion 

In the previous sections of this chapter, the electric field was presented in terms of 

the interior Green's function where the numerical integration was required. In this 

section, the numerical integration will be presented. In doing so, the height and the 

width of the dielectric slab is divided into 2p and 2£ cells, respectively. Fig. 5.4 shows 

the surface segmentation of a finite dielectric slab. The slab has a thickness of 2c? and 

height of 2L. The total number of cells on the slab surface is At where 

t = p + e. (5.4.1) 
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The cell sizes in the x and y direction are denoted by Sx and 8y where typically 

11 + + 
+ + & a 
+ + ? I Z Z 

P(t+i) p - + - f+ - +-+-1 p ( 3 t + 1 ) 

P(t+2) 

P(*+P) 

PP 

P2T 
Pi f.,.| 

i P(3t+2) 

P(3t+p) * 

P(2i+P) 

I P(2t+2) 
-+-+4 P(2t+1) 

+ 4- C M -f + 

a a 

Figure 5.4: The dielectric slab surface divided into 4p + 4£ cells. 

$x,y < 0.1A2, and A2 is the wavelength inside the dielectric slab. The center of the 

n'th cell is denoted by 

pn = xnx + yny (5.4.2) 

where 

X*-

Vn = 

0 1 < n < p 

(n-p- 1/2)4 P + 1 < n < t 

-L + (n- l/2)6y l<n<p 

-L p+l<n<t. 

(5.4.3) 

(5.4.4) 

90 



By applying the symmetrical properties of the slab with respect to x = d and/or 

y = 0, the center of the n'th cells for t < n can be expressed as 

Pn= { 

x{n_t)x - y(n-t)V t + l<n<2t 

[2d - a;(n_2t)]x + y{n-2t)V 2t+l<n<3t 

[2d - ar(n_3t)]& - y(n-st)y 3t + 1 < n < 4t 

(5.4.5) 

Since the cell size is chosen small enough compared to the wavelength, the equivalent 

surface currents can be assumed to be constant on each cell, and the equivalent 

currents density can be approximated as 

At 

Jz(pt) = ^/
InPn(pt) 

n=l 

At 

Mt(Pt) = J^KnPn(pt) 

(5.4.6) 

(5.4.7) 
n = l 

where pt denotes the position on the slab contour, and 

Pn(Pt) = 
1 on n'th cell 

0 otherwise. 

(5.4.8) 

defines the pulse function. In order to express (5.1.13) and (5.1.14) in a simple form, 

the asymptotic expression for the Hankel function of the second kind can be used. 

The asymptotic expression is 

q V TTX 
(5.4.9) 
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where q denotes the order of the Hankel function. Using (5.4.6) and (5.4.9), we can 

write (5.1.13) as 

* e-j(fe|p„-p„|-ir/4) 
Ez = -wfio Z^In—•j======-8n8inc[kcas(</>n)5n/2)] 

£=i V8nk\Po - Pn\ 

where 

5n=< 
Sy it + l<n<it + p 

Sx it+p+l<n<(i + l)t 

for i = 0,1,2,3, and 

(5.4.10) 

(5.4.11) 

cos(0n) = 
(Vo ~ Vn)/\p0 ~ Pn\ it + l<n<it + p 

(x0 - xn)/\p0 - pn\ it + p+l<n<(i + l)t. 

(5.4.12) 

The sine function is defined as sinc(x) = sin(x)/:r. Similarly, we can use (5.4.7) and 

(5.4.9) to write (5.1.14) as 

it e-JWPo-PJ-3*/4) 
Ez = -jk2_^Kn(\nn • x\ - \hn • y\)—^ i ( ==-6wsin^nsrnc[fccos(^w)<Sn/2)] 

n = l y/&0k\ Po~ Pn\ 
(5.4.13) 

where 

sin(<£„) 
(x0 - xn)/\p0 - pn\ it + l<n< it + p 

(Vo ~ yn)/\p0 ~ Pn\ U+p+l<n<(i + l)t. 

(5.4.14) 

The unit vector hn is normal to the n'th cell and it points out toward the exterior 

region. As a result, we can write the Green's function G12 which gives the exterior 

field generated by a line source inside the dielectric slab. Using (3.1.5), (5.1.17), 
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(5.4.10) and (5.4.13), the Green's function G12 can be expressed as 

4t r 

Gl2(ps,Po) = -J^2 

where 

n = l 

In - Kn(\nn • x\ - \hn • y\) 
sin(f>n 

V 

e-i(fe|Po-P„l-*/4) 

V8nk\Po ~ Pn\ 
£nsinc[A; cos((j)n)5n/2)} 

(5.4.15) 

/» = < 

V, 

V, 

dG22(p',p) 
dx 

(PS'PJ 

dG22(P',P) 
1 dy 

it + l<n<it + p 

it+p+l<n< (i + l)t 
Hps,pn) 

Kn ^jVf
nUlioG22(pn,Ps) 

(5.4.16) 

(5.4.17) 

and 

vn .= -nn • (x + y). 

v'n = - » n • ( * - V)-

The result in (5.4.15) is also expressible in matrix form as 

At 

Gn(ps,P0)=Y^ [In(Ps)Pn{Po) + Kn(ps)Qn(Po)} 
n = l 

-IeP0 + KeQ0 

(5.4.18) 

(5.4.19) 

(5.4.20) 

where /„ and Kn are elements of the row vectors Ie and Ke, respectively. Further­

more, Pn{p0)
 a n d Qn(Po) which are the elements of the column vectors P0 and Q0 
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can be wri t ten as 

Pn(Po) 
e-mpo-pj-*/*) 

j — l n t —£wsmc[fc cos(</>n)<!>n/2)] 
y/8nk\p0-pn\ 

Qn{p0) = - (l»*n • » | - \fin • V\) ~Pn-

V 

(5.4.21) 

(5.4.22) 

It is noted t h a t in (5.4.16) and (5.4.17), we compute G22 and its derivative a t p n which 

is the center of the n ' t h cell. This is a good approximation if the source position is not 

close to the n ' t h cell and the cells are small. To improve accuracy when \ps — p n \ < \2, 

we calculate the mean value of In and Kn on the n ' t h cell. In doing so, (5.4.16) and 

(5.4.17) become 

/« = < 

VnjSy 1 p«+%y dG22(p
f,p) 

pn--zy 

Vnl^ I 
pn+

6-fx 

dx 

dG22(p',p) 

dy it+l<n<it + p 
(PS>P) 

(5.4.23) 

( rPn+5Jy 1 
dy 

G22(ps,p) 

dx it+p+l<n<(i + l)t 
(Ps'P) 

dy it + l<n<it + p 

Kn =jrfnWlMi { 

I. 

pn-°jy 

pn+
s-fx 

(5.4.24) 

G22(ps,p) 
dx it+p+l<n<(i + l)t 

iyp„-^x 

When the source is a t t he center of the n ' t h cell, / „ and Kn become singular. Evalu­

ating the mean value of /„ and Kn is sometimes referred t o as "self te rm evaluation." 

The self terms are evaluated by extracting the singular term from G22 as given in 

(A.8-12)-(A.8-14). The singular term is the free space Green's function Gf and i ts 

derivative. For more on self te rm evaluation, t he reader is referred to Appendix A.8. 
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The interior field generated by an exterior line source is denoted by G2i and can 

be obtained by applying the reciprocity theorem as 

G21(ps,Po) = G12(Po,Ps)- (5-4.25) 

where G2i is given in (5.4.15). This means that the source and the field point positions 

should be interchanged in order to use Gi2 for computing G21. 

To obtain the exterior field generated by an exterior line source which is denoted 

by G11, we apply the equivalence principle to the exterior region. As a result, the 

total exterior field can be expressed in terms of incident and scattered field as 

Gu =Gf + Gs (5.4.26) 

where the incident field is denoted by Gf which is the free space Green's function and 

is given in (A.5-7). To calculate the scattered field Gs, we should find the surface 

equivalent currents. Using G21, we can obtain the total electric and magnetic fields on 

the surface of the slab. Having the total electric and magnetic fields, we can calculate 

the surface equivalent currents. According to the surface equivalence principle, the 

surface currents give the scattered field similar to (5.4.20) as 

Gs(Ps, P0) = £ [lS
n{ps)Pn(po) + K(ps)Qn{Po)} 

n=i (5.4.27) 

=ISP0 + KSQ0 

where i£ and K„ are the elements of the row vector Is and Ks, respectively. Since 
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/* and Ks
n are the equivalent currents on the n'th cell, they can be expressed as 

aci2 (p',p) 
n dx' 

In(Ps) = 
(Pn'Ps) 

8G12(p',p) 
dy> 

it + l<n<it + p 

it + p+1 <n<(i + l)t 
l(Pn>Ps) 

Kn(Ps) =J>nwA*oG'i2(pn ,P s) . 

(5.4.28) 

(5.4.29) 

To use the symmetrical properties of the slab, we define the source and field point 

images with respect to the slab's symmetrical planes x = d and y = 0 as 

pfl =xs,0x + ys,0y 

(!) — ~ _ 
Ps,o xs,o'E Vs,oV 

pfl =(2rf - xs,o)x + ys,0y 

pfl H2d-xs,o)x-ys,0y 

(5.4.30) 

(5.4.31) 

(5.4.32) 

(5.4.33) 

where ps and p0 define the source and field points, respectively. By using the 

symmetrical property of the slab with respect to the plane y = 0, the equivalent 

electric current on the (t + l)'th cell generated by a line source Is(ps) is equivalent 

to the electric current on the first cell generated by the image source I8{ps ). Using 

other symmetrical properties of the slab, we can write 

K(Ps) ^in-U){pf) 

Ks
n(Ps) =VnKs

(n_it){pf) 

it+l<n<(i + l)t 

it+l<n<(i + l)t 

(5.4.34) 

(5.4.35) 

where i — 0,1,2,3. Furthermore, we can use the symmetrical properties of the slab 
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for calculating the field point as 

Pn(Po) =P (B_«,(p«) 

Qn(Po) =VnQ{n-it){p{o]) 

it + l<n<(i + l)t 

it + l<n<(i + l)t. 

(5.4.36) 

(5.4.37) 

Using the symmetrical properties of the slab given in (5.4.34)-(5.4.37), we can write 

(5.4.27) as 

3 t 

Gs(Ps,Po) = E E WpfWpf) + K(pf)Qn(pf)}. (5.4.38) 
i=0 n=l 

,(*> ,(<)> It is noted that I^(pV') and K^{pv) can be written using (5.4.28)-(5.4.29) and (5.4.20) 

as 

At 

Inipf) = E [Pm(pf)lL + Qmipf^L] (5-4.39) 
At 

Kipf) = E [P^{pf)lL + Qm{pf)K«n} (5.4.40) 
m = l 

where 

J l/mUJfJ' dx> 

Jl/mLUjJ, Qy, 

^rn^rrt 

1 < n < p 

p+1<n<t 
(Pn.P™> 

/£, = 
• i 9 G 2 2 ( p ' , p ) 

(Pn'Pm) 

^Hn'r-m' 

it + l<m<it+p 

it+p+l<m<{i + l)t 

* ,. , , 2 .2 
^mn = - ^ " m ^ /i G22{pn,pm)-

(5.4.41) 

(5.4.42) 

(5.4.43) 
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Furthermore, l!^n can be expressed for 1 < n < p as 

and 

I1 = 
mn i 

, d2G22(P',P) 
771 dx'dx 

d2G22(P',p) 
171 dx'dy 

^r^n'rm' 

(PnPn 

82G22(P',P) 
771 dy'dx 

^rn'>r^m' 

Vr 

d2G22(P',P) 
'• dy'dy 

it + 1 < m < it + p 

it + p+l<m<(i + l)p 

it+1 < m < it + p 

it+p+l<m<(i + l)p 

(5.4.44) 

(5.4.45) 

Wn'Pj 

when 1 +p < n < t. Similar to (5.4.20), it is useful to represent the result in (5.4.38) 

in matrix form as 

Gs(ps,Po) = ] T [(P«I1 + QfK!)Pf + (PflK + <ffKK)Q®] (5.4.46) 
i=0 

where I1, K1, IK and KK are At x t matrices with elements i ^ , K^n, l£n and 

K^n, respectively. Using (5.4.21) and (5.4.22), the elements of the column vectors 

P® and QW are Pn(p
{j}) and Qn{p^) given in (5.4.36) and (5.4.37), respectively. 

The elements of the row vectors P^ and Q%\ which are Pm{pi) and Qm{ps ), can 

also be obtained from (5.4.21) and (5.4.22). 

It is noted that the geometrical symmetry of the dielectric slab is used in the 

formulation to reduce the elements of I1, K1, IK and KK which are the most time 

consuming part of the computation in the numerical approach. Once I 7 , K1, IK and 

K are computed, the electric field for any arbitrary source and observation point 

can be obtained. 

To improve accuracy in calculating (5.4.41)-(5.4.45) when (pn — pm) < A2, we 

calculate the mean value for the near-neighbor terms similar to (5.4.23) and (5.4.24) 

(A2 is the wave length inside the dielectric slab). We should also evaluate the mean 
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value for the diagonal elements of J7 , K1, IK and KK, referred to as self-term 

evaluation when pn = pm. The self-term evaluation is discussed in Appendix A.8. 

5.5 Results and Discussion 

The computer code implementing the numerical procedure explained in the previous 

section has been tested here. The results are compared with the results generated by 

a SIE/MoM code. The reader is referred to Subsection 6.1.2 for more details on the 

SIE/MoM formulations. 

Referring to Fig. 5.1, the dielectric slab has a height 2L = 0.5 m and thickness 

2d = 0.2 m. We choose a frequency / = 1.8 GHz. The relative permittivity and 

conductivity of the slab are er = 6 and a = 0.195 mS/m, respectively. The exterior 

medium is free space, t\ — eo- The source strength is normalized so that it generates 

1 V/m at a distance of 1 m in free space, and 0 dB corresponds to 1 V/m. 

First, we study the case where the exterior field is generated by an interior line 

source. 

Fig. 5.5 shows the electric surface current distribution on the dielectric slab with 

respect to the parametric variable t which represent the surface position in a clockwise 

direction, and t = 0 corresponds to [x,y) = (—L/2,0). The source is at (xs,ys) = 

(0.1,0) m. Similarly, the magnetic surface current distribution is shown in Fig. 5.6 

where the magnetic surface current is assumed to be in a clockwise direction. The 

magnitude and phase of the electric and magnetic surface currents are obtained using 

the GF and SIE/MoM approaches. All the GF results are in a very good agreement 

with the results obtained using SIE/MoM. 

The exterior electric field can be obtained using the Gu formulation given in 

(5.4.15)-(5.4.17). Fig. 5.7 shows the exterior electric field at (x0ly0) = ( — l,y) m. 

The result computed by the GF and SIE/MoM agree very well. To observe the effect 
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Figure 5.5: The magnitude and phase of the equivalent electric current on the surface 
of the slab when the line source is in the interior region. Source is at (xs,ys) = 
(0.1,0) m. The slab has a thickness of 2d = 0.2 m and height of 2L = 0.5 m. 

of the finiteness of the slab on the exterior field, the result is also compared with the 

infinite slab solution. It is noted that in this case, the source is not very close to the 

end cap. 

We can now consider a case when the source is closer to the end cap. Fig. 5.8 

shows the exterior electric field generated by a line source at (xs, ys) = (0.01,0.24) m. 

The field point is at (x0,y0) = (—3, y) m. The finite and infinite slab solution are 

compared. Since the source is close to the end cap, the exterior field is highly affected 

100 



180 

<n 
<D 
0> 
O) 
CD 

T3, 
CD 
OT 
CO 

-180 
0.4 0.6 0.8 

t(m) 
1 1.2 1.4 

Figure 5.6: The magnitude and phase of the equivalent magnetic current on the 
surface of the slab when the line source is in the interior region. Source is at (xs, yB) = 
(0.1,0) m. The slab has a thickness of 2d = 0.2 m and height of 2L = 0.5 m. 

by the end cap. 

It is expected that by increasing the slab length, the GF result should converge 

to the infinite slab. This is first verified in Fig. 5.9a. The infinite slab solution is 

compared with GF-FS when 2L = 5 m and 2L = 15 m. We keep the source and 

field point positions unchanged. It is observed that the end cap diffraction becomes 

smaller when 2L = 15 m. This happens since the end cap is much further away 

from the field point when we increase the slab length. In addition, the surface wave 
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Figure 5.7: The comparison of the exterior electric field generated by a line source 
inside the finite and infinite slab. Source is at (xs,ys) — (0.1,0.) m, and the field 
point is at (x0,y0) = (-\,y) m. 
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Figure 5.8: The exterior electric field generated by a line source inside the finite 
and infinite slab. Source is at (xs,ys) = (0.01,0.24) m, and the field point is at 
(x0, Vo) = ( -3 , y) m. 

generated by the source decays before reaching the end cap since the slab is lossy. 

The effect of the slab loss on the exterior field can be observed by increasing the slab 

j • i i i i L 
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Figure 5.9: The effect of increasing the slab height in the exterior field. Finite slab 
solution is compared with the infinite case. Source is at (xs,ys) — (0.01,0.24) m, and 
the field point is at (x0,y0) = (—3, y) m. (a) a — 0.195 mS/m (b) a = 1.95 mS/m 

conductivity. Fig. 5.9.b shows the exterior field when we increase the slab conductivity 

to a — 1.95 mS/m. The result shows that the GF-FS result for 2L = 15 m converges 

better to the infinite slab solution when we add a small amount of loss to the dielectric 
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Figure 5.10: Surface equivalent currents generated by a line source on the surface of 
a finite dielectric slab with thickness of 2d = 0.2 m and height of 2L — 0.5 m. The 
line source is at (xs, ys) = (0, —0.2226) m. 

slab material. 

We now consider a case when the current line source is on the surface of the finite 

slab with height 2L = 0.5 m, and thickness 2d = 0.2 m. The slab conductivity is 

a = 0.195 mS/m. Fig. 5.10 shows the electric and magnetic surface current densities 

when the source is at (xs,ys) = (0, —0.2226) m which corresponds to t = 0.0274 m, 

and p5, the center of the fifth cell. The slab height is divided into 82 cells, or p = 41. 

It is noted that the magnetic surface current should be singular at the source position. 
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However, the surface currents close to the source are computed here by using (5.4.23)-

(5.4.24) which gives the mean value of the current over the cell extent. The mean 

value of the equivalent current is computed over the fifth cell and its six neighboring 

cells. It is also observed that the equivalent currents obtained by the GF do not 

match the currents computed by SIE/MoM at about t = 0.48 m. This happens near 

the end cap. In calculating the GF result, the end cap scattering matrix is used. 

The scattering matrix is calculated by finding the pulse basis currents at the end cap. 

However, a pulse basis current have a near field contribution that is not included in 

the total field near the end cap. It is observed that this near field contribution is 

strong near the end cap, and it becomes weak away from the end cap. 
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Figure 5.11: The exterior electric field generated by a line source on a surface of a 
finite dielectric slab. Source is at (xs,ys) = (0,-0.2226) m, and the field point is at 
(x0,Vo) = (-3,y) m. 

It is useful to compare the exterior field obtained by the surface currents. Fig. 5.11 

shows the electric field outside the dielectric slab at (x0,y0) = (—3,y) m. The result 

show that the error generated in the equivalent surface currents near the end cap does 
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Figure 5.12: Surface equivalent currents generated by a line source at (xs,ys) 
(-1,0) m. 

not highly affect the exterior field. 

To study the case when the source and the field point are both outside the finite 

slab, we place a line source at (xs,ys) = (—1,0) m. The slab size and slab charac­

teristics are kept unchanged. Fig. 5.12 shows the electric and magnetic equivalent 

currents on the slab surface. The equivalent currents are obtained using SIE/MoM 

and GF techniques, and the results are compared. Having the equivalent surface cur­

rents, we can obtain the scattered electric field at an arbitrary point. Fig. 5.13 shows 
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Figure 5.13: The total and scattered electric field generated by a line source outside 
a finite dielectric slab. Source is at (xs,ys) = (—1,0) m, and the field point is at 
(x0, y0) = ( - 3 , y) m. 
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Figure 5.14: The total and scattered electric field generated by a line source outside 
a finite dielectric slab. Source is at (xs,ys) = (—2,0) m, and the field point is at 
(xo,Vo) = ( c o s 9, sin 9) m. 

the scattered electric field at (x0, y0) = (—3, y) m. It also shows the total electric field 

which is the summation of the incident and scattered fields, given in (5.4.26). It is 
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noted that the scattered field includes both the reflected and diffracted fields by the 

FS. The result shows that the scattered field obtained by the GF method provides a 

satisfactory accuracy for computing the total field. 

Fig. 5.14 shows another test case when the electric field is computed on a circular 

path around the FS. The field point is at {x0, y0) = (cos 9, sin 9) m generated by a line 

source at (xs, ys) — (—2,0) m where the angle 9 is measured counter-clockwise from 

the positive x axis. It is observed that the scattered field becomes strong in the range 

—30 < 9 < 30 where the slab is placed between the source and the field point. In this 

range, the total electric field represents the transmitted field plus the diffracted field. 
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Chapter 6 

Analysis of a Finite Reinforced 

Concrete Slab 

In this chapter, a 2D finite reinforced concrete slab is modeled by two different tech­

niques. First, the MoM/GF is presented for solving this problem. The second ap­

proach uses the SIE/MoM. In doing so, the reinforced concrete is modeled by an 

array of metallic circular cylinders embedded inside a lossy dielectric material. (In 

civil engineering, the metallic circular cylinders representing the reinforcement rods 

are usually called rebars.) 

In the MoM/GF approach, the MoM is applied for calculating the unknown in­

duced currents on the surface of the rods by means of the finite slab GF. The interior 

GF is used in forming the impedance matrix in the MoM. By solving the system of 

equations in the MoM, the induced currents on the rods are calculated. Then, the 

scattered field due to the metallic rods is calculated from the induced currents. This 

requires using the finite slab GF. 

The SIE/MoM is also applied to a finite reinforced concrete model where the MoM 

is used to calculate the unknown currents on the surface of the dielectric slab and the 

surface of the rods. 
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Figure 6.1: A model for a finite reinforced concrete slab. There are Nc PEC rods (•) 
embedded in a finite dielectric slab with height 2L and thickness 2d. An electric line 
source of strength Is is placed at ps to the left of the slab. 

6.1 Finite Reinforced Concrete Slab 

Fig. 6.1 shows an array of Nc circular cylinders representing the metallic rods inside 

a finite, thick dielectric slab of height 2L and thickness 2d. The dielectric slab and 

exterior region permittivities are denoted by e2 and e\, respectively. All materials are 

assumed to be non-magnetic, so /xi = /x2 = A*o- The center of each rod is denoted by 

Pk — xk& + VkV, a n d k — 1, 2, ...Nc. All the rods are placed symmetrically about the 

x-axis at the center of the slab, so Xk = d. The rod spacing and rod diameter are 

denoted by g and 2a, respectively. An electric line source of strength Is is placed at 

ps — xsx + ysy in the exterior region, and the field point is at p0 = x0x 4- y0V-

Since the practical rods are usually electrically thick above UHF, it is possible to 

replace each rod by a circular array of thin wires subject to the "same surface area" 

rule of thumb [39]. That is, the total surface area of the thin wires should be equal 

to the surface area of the original rod. As a result, the radius of each wire should be 
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b - a/Nw, where Nw is the number of wires used to model each rod. The center of the 

thin wires are located at 9 = 0°, ± 3 6 0 ° / ^ , ±720°/Nw,... on the surface of each rod 

where 9 is measured counter-clockwise from the positive x axis. Fig. 6.2 shows the 

A y 

T J 5 

® 
i 

0 
(b) 

Figure 6.2: (a) Geometry of Nc rods inside a finite dielectric slab. Each rod has a 
diameter of 2a and placed at x = d. (b) Wire grid modeling of a rod with Nw wires. 

wire grid modeling of Nc thick rods where each rod is modeled with Nw thin wires. 

The first approach for solving this model will be the MoM/GF. 

6.1.1 MoM/GF 

The electric field integral equation (EFIE) formulation is formed here in order to 

obtain the electric currents induced on the thin wires. The MoM is applied to solve 

the integral equations. The unknown induced current on the n'th wire placed at 

pn = xnx + yny is denoted by In(pn) where n = 1, 2, ...,NCNW. These currents 

generate the scattered field in the presence of the finite dielectric slab. The scattered 
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field can be written as 

NCNW 

Es(Po) = -J'w/io X ] ^(pJGijipn, p0) (6.1.1) 
1 

where Gij is the finite slab Green's function, and i and j correspond to the field and 

source point position, respectively. In (6.1.1), we have j = 2 since the wires are inside 

Region (f). The total electric field, which is the scattered field plus the incident field, 

can be written as 

E(p0) = Ei(p0) + E'{p0). (6.1.2) 

The incident field El(p0) can be written as 

Ei(p0) = -jco^IsGij(ps,Po). (6.1.3) 

where % = j = 1 since the source and field points are outside the slab. 

In order to form the system of equations, we should apply the boundary condition 

on the surface of the thin wires. This requires zero tangential electric field on the 

surface of the wires. However, it is easier to apply the point matching method at the 

center of each PEC wire. As a result, (6.1.2) becomes 

Es{pn) = -£*(p„); n = 1,2, ...NCNW (6.1.4) 

where the center of the n'th wire is denoted by pn. This forms the NCNW x NCNW 

system of equations 

[Z]\I] = [&] (6.1.5) 

where the elements of the impedance matrix [Z] are given by 

Zmn = -jiOHoG22(pn,Pm)- (6.1.6) 
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For the line source in the exterior region, the elements of the excitation column [El] 

can be obtained from 

Ei = -juj»0IsG21(ps,pn). (6.1.7) 

The solution to the system of equations (6.1.5) gives the unknown wire currents 7n's. 

Having the induced currents on the wires, the scattered field by the wires can be 

obtained by using (6.1.1). The total scattered field is the field scattered by the wires 

plus the finite dielectric slab. 

6.1.2 SIE/MoM 

The SIE/MoM can also be applied to the reinforced concrete slab shown in Fig. 6.2. 

The EFIE formulation is formed to calculate the unknown electric and magnetic 

surface currents on the dielectric slab surface, and the unknown electric currents of 

the wires. In doing so, the surface equivalence principle is first applied to Region (l). 

The equivalent electric and magnetic surface currents are placed on the slab surface. 

Since the source is assumed to be in Region (T), the total exterior electric field can 

be written as 

E = E'ils) + ES{J\\ Mf) (6.1.8) 

where E% is the incident field generated by the source Is in the absence of the slab, 

and Es is the scattered field by Region (5). The incident field El can be obtained 

by using (3.1.5) and the free space Green's function given in (A.5-7). The equivalent 

surface currents generate the scattered field in the exterior region. Furthermore, it is 

convenient to have a zero total field in Region (2). This defines the surface equivalent 

electric and magnetic currents as 

Jf = hxxH (6.1.9) 
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M\q = Ex hx (6.1.10) 

where H is the total magnetic field vector, and ft\ is the normal unit vector pointing 

toward the exterior region. Since the total field in Region (5) for the equivalent 

problem is zero, it is useful to replace everything in Region (5) with the same material 

that is used in Region (T). As a result, the problem becomes homogeneous and the 

free space Green's function can be used. The equivalent exterior problem is shown in 

Fig. 6.3.a. The unit vector t which is tangent to the boundary S is defined so that 

t 
+u i . . ^ _ 

s 
E,H 

OO 

p, 

0,0 
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(a) 
^2 , MO ; ^2 , fJ-0 

jeq x 
® J2 

iM29 

1 ^2,^0 

(b) 

Figure 6.3: (a) The equivalent exterior problem, (b) The equivalent interior problem. 

hi x t = z. The surface equivalent magnetic current can be represented by a scalar 

tangential component Mt where Ml9 = Mtt. Similarly, we have J^9 = Jzz. After 

using (6.1.8) in (6.1.10), we can form the EFIE for the exterior region as 

Ei(£) = Mt(£) - Es
z(£) (6.1.11) 
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where 

_*. im. (<)'(o-»w _ a ^ - » w W ( o ^ ( M t f
 (""12) 

4j i s P P 

and 

P = VW) - x(i'))2 + W) - y(i'))2. (6.1.13) 

It is noted that J5| is generated by the equivalent electric and magnetic currents, and 

the electric field generated by My and Mx is given in (A.5-8)-(A.5-9). The parametric 

variable £' denotes the surface position. The line integral in (6.1.12) is taken in the 

direction of increasing £. 

Now we apply the surface equivalence principle to Region (2). After generating 

zero fields in the exterior region, the exterior region material can be replaced with the 

material of Region (2). To produce null fields in the exterior region, The equivalent 

electric surface current J^q and the magnetic surface current M^1 are placed on the 

slab surface as shown in Fig. 6.3.b. These currents satisfy the boundary condition 

due to the field discontinuities as 

J 7 = h2 x H (6.1.14) 

Me
2
Q = Exh2 (6.1.15) 

where fi2 is a normal unit vector to the slab surface which is pointing inward. Fur­

thermore, the equivalent electric currents, which are denoted by 7x's, replace the 

thin wires. It is noted that the equivalent magnetic currents on the wires are zero 

since the tangential electric field should vanish on the wire surface. Since the tan­

gential fields should be continuous at the slab boundary (using (6.1.9)-(6.1.10) and 
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(6.1.14)-(6.1.15)), we should have 

j e q = - r q (6.1.16) 

Meq = -Me
2

q. (6.1.17) 

The total electric field in Region (2) can be written as 

E = £ s 2 (J e / , M ? } / x ) x = 1,2,.. J V y V (6.1.18) 

By using (6.1.17)-(6.1.18) in (6.1.15), the EFIE formulation for Region (2) becomes 

0 = -Mt{£) - Es2{Je
2
q, Me

2
q, E) £ e boundary S 

(6.1.19) 
0 = -Es2(Je

2
q, Me

2
q, Ix) I e thin wire surface 

where the scattered field in Region (2) is given by 

E-HJ'2", M ? , ix) = - ^ j jz(e>)H<j»(k2p)de> 

4j is P P 

(6.1.20) 

and 

Pw = y/(x{e)-zx)* + (y(t)-yx)*. (6.1.21) 

The MoM is now used to solve the EFIE and to calculate the unknown currents on 

the slab surface and thin wires. Fig. 6.4 shows the slab surface segmentation. The 

dielectric slab height and width are divided into M and N cells, respectively. This 

116 



+ + 
I + + 
! § § 

+ 

PM 
P(M-l) 

* P2M 
t P(2M-1) 

Pi 
P\ J P(M+2) 

P(M+1) 

+ + + 

<a.oT oT 

Figure 6.4: The finite slab is divided into 2(M + N) cells. 

leads to 2M + 2N cells on the slab surface. The cell sizes in the x and y direction 

are denoted by 5X and 5y, respectively. The pulse basis functions can be used to 

approximate the electric and magnetic current distribution as 

2M+2N 

Upt)= Y, JMPt) 
7 1 = 1 

2M+2N 

Mt(pt)= Y KnPn{Pt) 

(6.1.22) 

(6.1.23) 
n=\ 

where Pn(pt) is given in (5.4.8). The unknown coefficients In and K„ represent the 

unknown electric and magnetic currents on the n'th cell where n = 1, 2,..., 2M + 2N. 

To discretize (6.1.11) and (6.1.19) and form the system of equations, (6.1.11) and 

(6.1.19) are enforced at the center of each cell and on the surface of each wire. The 
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(2M+2N+NCNW) x (2M+2N+NCNW) system of equations form the matrix equation 

jpinc 

0 

0 

Z ( l l ) Z ( 1 2 ) 0 

^ ( 2 1 ) ^ ( 2 2 ) z ( 2 3 ) 

^ ( 3 1 ) z ( 3 2 ) ^ ( 3 3 ) 

I 

(6.1.24) 

where the elements of each submatrix are given as 

zu = ^fo rPnA 
/ Hi2\klPm)de' (6.1.25) 

K fPn+2 ar(l') - xm ~y(/)-ym,rT(2) 
— X )H\£\klPm)de (6.1.26) 

7 2 1 = 
n T 2 

Kii 2 

r(2) H^(k2Pm)df 

4 j 

Pn+4 

^» Pm Pm 

(6.1.27) 

(6.1.28) 

^mX ~~ ~4~^° ^2^mx) 

731 = T̂fO / ^ " + 2 

4 L <L 
• ' P T . - 2 

r(2) H^(k2Pl/)d£' 

4j Jp^fy Pv Pu 

? 3 3 _ UlfXQ ( 2 ) , z?x = = f an*2A*) 

(6.1.29) 

(6.1.30) 

)H\2\k2Pu)d£' (6.1.31) 

(6.1.32) 

It is noted that the indices m and n are used for the surface cells, so m, n = 

1,2,..., (2M + 2N). Furthermore, the variables v and x refer to the wires, and 
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v,x = h2,...,NCNW. The Euler's constant is 7 = 1.781072. We also have 

Pm,u = y/{x{£') - xm<vf + (y(£>) - ym,„)2 (6.1.33) 

PmX,vx = \(XX ~ Xm,u)2 + (yx ~ Vm,u)2• (6.1.34) 

{ Svy l<n<2M 
(6.1.35) 

Sxx 2M + l<n<2M + 2N 

The self term impedance terms Z^m and Z^m can be obtained for (6.1.25) and (6.1.27) 

by using (A.8-4). Applying the reciprocity theorem and using (A.7-4) and (A.7-15), 

the self term elements of Z12 and Z22 becomes 

%L = \ .(6-1.36) 

%L = ~ \ (6-1.37) 

The self impedance terms of Zss can be obtained by means of the thin wire approxi­

mation. Letting pvx = b in (6.1.32) and using the small argument formulation for the 

Hankel function, the self term elements of Z33 become 

Z3l = ^(l-j-Hlk2b/2)). (6.1.38) 

The elements of the column vector Emc in (6.1.24) are given as 

E%° = -t^H<?)(klPm) (6.1.39) 

where 

psm = V(xs - xm)2 + (ya - ym)2- (6.1.40) 
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The unknown currents are obtained by solving the system of equations (6.1.24). Hav­

ing the unknown currents, the exterior field can be obtained using (6.1.8) and (6.1.12). 

Similarly, the electric field in Region (2) is obtained by using (6.1.18) and (6.1.20). 

6.2 Results and Discussion 

The results obtained by the implemented Fortran codes based on the MoM/GF and 

SIE/MoM techniques are compared here. It is important to note that the size of the 

impedance matrix in SIE/MoM approach directly depends on the surface area of the 

dielectric slab. As a result, the SIE/MoM technique is not computationally efficient 

when the slab is electrically large. 

To validate the MoM/GF technique, we chose the frequency / = 1.8 GHz, slab 

height 2L = 50 cm and slab thickness 2d = 20 cm. The properties of the dielectric 

slab material were characterized by er = 6 and cr2 = 0.195 mS/m. The exterior region 

permittivity was e\ = eo- We placed Nc = 5 rods inside the the slab. The rods were 

g = 5 cm away from each other, so Xk = 10 cm and y^ = 0, ±5, ±10 cm. The diameter 

of each rod was 2a = 2 cm. Modeling every rod by a wire grid, Nw — 5 wires were 

required for modeling each rod. This was in accordance with [44], which suggested 

the grid size of 0.2A or less. Using the equal surface area rule, the diameter of the thin 

wires became 26 = 0.4 cm. Referring to Fig. 6.2.b, the center of the thin wires are 

located at 9 = 0°, ±72°, ±144° on the surface of each rod. Fig. 6.5 shows the exterior 

scattered electric field on a circular path defined by (x0, y0) = (0.4 cos 9,0.4 sin 9) m 

where the angle 9 is measured counter-clockwise from the positive x axis. The electric 

field is generated by a line source Is at (xs,ys) = (—0.2,0) m. Results have been 

generated by MoM/GF, SIE/MoM and HFSS. To form a 2D waveguide structure 

using HFSS, we placed our structure between two PEC parallel plates 1 cm apart at 

z = ±0.5 cm. We formed a 1.2 x 1.2 x 0.01 m air box embedding the structure. The 
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Figure 6.5: The field scattered by a finite reinforced concrete slab. The source is 
at (xs,ys) — (—0.2,0) m, and the field point is at (x0,y0) = (0.4cos9, 0.4sin9) m. 
Nc — 5 rods are inside a 2L x 2d = 0.5 x 0.2 m finite dielectric slab. 
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Figure 6.6: The field scattered by a finite reinforced concrete slab, calculated by the 
MoM/GF technique. The source is at (xs, ys) = (—0.2,0) m, and the field point is at 
(xo-, Vo) = (0.4 cos 0,0.4 sin 0) m. 

four faces of the air box parallel to the z axis were defined as radiation boundaries. 

The rods were modeled by circular PEC cylinders in HFSS unlike MoM/GF and 

' t :V| : HFSS,scattered 
SIE/MoM, scattered - - • -

•! MoM/GF, scattered ••••«•• 
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SIE/MoM for which wire grid modeling was used. The final mesh in HFSS had 46928 

tetrahedra. The SIE/MoM solved a 485 x 485 impedance matrix, while the impedance 

matrix in MoM/GF had a dimension of 25 x 25. 
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Figure 6.7: Comparing the scattered field by a finite and infinite reinforced concrete 
slab. The MoM/GF technique has been used. The source is at (xs, ys) = (—0.2,0) m, 
and the field point is at (x0,y0) = (0.4 cos 9,0.4 sin 9) m. The finite slab size is 
2L x 2d = 0.5 x 0.2 m. Nc — 5 rods were placed inside the finite and infinite slab. 

It is noted that the scattered field generated by MoM/GF is the field scattered by 

the dielectric slab plus the field scattered by the wires. Fig. 6.6 shows the components 

of the scattered field separately. It is seen that the forward scattering is larger than 

the backward scattering for both wires and slab. 

To observe the effect caused by the finiteness of the dielectric slab, we can compare 

the finite slab with the infinite slab. In order to do that, we let 2L —• oo. The 

MoM/GF is used for modeling wires inside the infinite slab [39]. This is done by 

using infinite slab GF in (6.1.1), (6.1.3) and (6.1.6)-(6.1.7). The thin wires inside 

the infinite slab have the same size and same geometry as they had in the finite 

slab. The dielectric characteristics are also the same in both finite and infinite slabs. 
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Figure 6.8: (a) The comparison of the scattered field by the wires inside a finite and 
infinite dielectric slab, (b) The comparison of the scattered field by the finite and 
infinite dielectric slab. 

Fig. 6.7 shows the scattered field for the reinforced concrete slab when the slab is 

finite and infinite. Nc = 5 rods were placed inside the finite and infinite slab. The 

diameter and the geometry of the rods were kept unchanged. When 60° < 6 < 90° 

and 240° < 6 < 270°, the field points are not shown for the infinite slab since the 

field points in these ranges are inside the dielectric slab. The result shows that the 

finiteness of the slab can highly affect the scattered field, specially close to the slab 

surface when 90° < 9 < 120°. Since the scattered field can be decomposed into the 

wire and slab contributions, it is possible to investigate each separately. 

Fig. 6.8.a shows the scattered field contributed by the wires only, when the wires 

are inside the finite and infinite slab. The result shows the effect of the slab finite­

ness on the wires. It can be observed that the slab finiteness has a small effect on 

the forward and backward scattering contributed by wires. A similar comparison in 

Fig. 6.8.b shows the scattered field contributed by the slab for the finite and infinite 

case, when the wires are removed. The effect of the end caps in this example on the 
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forward and backward scattering is less than 2 dB. 

20 

10 

o 

£ • 
S -10 

N 
LU 

-20 

-30 

-40 

0 60 120 180 240 300 360 
e(Degrees) 

Figure 6.9: The scattered field for a finite reinforced concrete slab. The source is at 
(xsiVs) = (—2,0) m, and the field point is at {xo,y0) = (cos9,sin9) m. Nc = 19 rods 
are placed inside a 2L x 2d = 1 x 0.2 m finite dielectric slab. The rod spacing is g = 5 
cm. 

To generate results for larger slab dimensions, we increased the slab height to 

2L = 1 m. We also increased the number of rods inside the slab to iVc = 19. Other 

parameters were kept unchanged. The source was at (xs, ys) — (—2,0) m, and the field 

point was computed at (x0,y0) = (cos 9, sin 9) m. Fig. 6.9 shows the scattered field 

calculated by MoM/SIE and MoM/GF. Since the finite element method which uses 

volume discretization could result in a large number of unknowns for this problem, 

we did not use HFSS. The size of the impedance matrix in the SIE/MoM approach 

was 883 x 883, while the MoM/GF solved a smaller impedance matrix having the 

dimension of 95 x 95. 

Fig. 6.10.a shows the components of the scattered field which are the contributions 

due to the wires and the slab without the wires. When the wires are removed, it is 

shown that the forward scattering for the slab is about 11 dB stronger than the 
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Figure 6.10: (a) The scattered field for the reinforced concrete slab. The scattered 
field consists of the contribution due to the wires and the slab without wires. The 
scattered field at (x0ly0) = (cos 9, sin 9) m generated by a line source at (xs,ys) = 
(—2,0) m behind (b) a finite and infinite reinforced concrete slab, (c) the wires inside 
the finite and infinite dielectric slab, and (d) the finite and infinite dielectric slab 
when the wires are removed. The finite reinforced concrete model has a dimension of 
2L x 2d = 1 x 0.2 m in (a), (b), (c), and (d). The number of rods Nc = 19 is used. 
The rod spacing is g = 5 cm. 

backward scattering. 

Fig. 6.10.b compares the scattered field for a finite and infinite reinforced slab. 
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For this example, the finiteness effect is not very strong in the specular directions 

(137° < 9 < 223°). However, the end caps highly affect the scattered field when 

the field points are in off-specular directions (90° < 9 < 137°, 223° < 9 < 270°). 

Fig. 6.10.C shows the scattering contribution due to the wires inside the finite and 

infinite slab. The result shows that the end caps affect the scattered field by the 

wires when the field point is close to the infinite slab surface (90° < 8 < 120°, 

240° < 9 < 270°). In these regions, the surface waves generated by the wires are 

strong. Fig. 6.10.d also compares the scattered field contribution for the finite and 

infinite slab. It can be observed that the end cap effect on the backward and forward 

scattering is 3.5 dB and 1.7 dB, respectively. This effect becomes strong when the 

field point is in off-specular directions. 

Following the trend of increasing the length, we changed the slab length to 2L — 

5 m. Fig. 6.11 shows the scattered field generated for a line source at {xs,ys) = 

(—2,0) m behind the finite reinforced slab. Fig. 6.11.a shows the electric field when 

the field point is at (x0, y0) = (—3, y) m. Furthermore, Fig. 6.11.b shows the scattered 

field at (x0, y0) = (3, y) m. Nc = 33 rods are placed inside the slab, and the rod spacing 

is g = 15.24 cm (6 in). We also chose the wire diameter to be 2a = 1.91 cm (3/4 

in). The scattered field results generated by MoM/GF and SIE/MoM techniques are 

compared. A very good agreement is observed. The size of the impedance matrix 

solved by SIE/MoM technique was 3569 x 3569, unlike the MoM/GF approach which 

used the impedance matrix having the size of 165 x 165. 

Fig. 6.12 compares the finite and infinite case when the field point is at (x0, y0) = 

(—3,y) m (shown in Fig. 6.12.a, Fig. 6.12.C and Fig. 6.12.e) and at {xo,y0) = (3,t/) m 

(shown in Fig. 6.12.b, Fig. 6.12.d and Fig. 6.12.f). The source is at (xs,ys) = 

(—2,0) m. The finite slab results were obtained using MoM/GF. The contribu­

tions due to the wires and slab are also compared separately. The results shown 
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Figure 6.11: The scattered field for a finite reinforced concrete slab. The source is 
at (xs,ys) — (—2,0) m. Nc = 33 rods are placed inside a 2L x 2d = 5 x 0.2 m 
finite dielectric slab. The rod spacing is g = 15.24 cm. The field point is at (a) 
(XcVo) = (-3,s/) m, (b) (x0,y0) = (3ty) m. 

in Fig. 6.12.c and Fig. 6.12.d suggest that the end cap effect on the scattered field 

due to the wires is small. Fig. 6.12.e and Fig. 6.12.f also show the effect of the end 

cap contribution by comparing the finite and infinite dielectric slab. The end cap 

contribution appears to have a negligible effect on the forward scattering. 

It might be speculated that when 2L = 5 m, the infinite slab Green's function can 

be used for calculating the scattering by a finite reinforced slab if the field point is not 

close to the end caps. Furthermore, it appears that the end cap contribution to the 

scattered field can be neglected since the contribution is very small. In order to verify 

this speculation, it is useful to find a case when the end cap contributions are strong 

compared to the transmitted field. In doing so, we first change the rod spacing inside 

the infinite slab and we obtain a rod spacing that highly blocks the transmitted field. 

Next, we compare the finite and infinite cases with the obtained rod spacing. It is 

anticipated that the end caps might alter the transmitted field when the transmitted 
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Figure 6.12: (a,b) The scattered field for the reinforced concrete slab. The scattered 
field consists of the contribution due to the wires shown in (c-d), and the contribution 
due to the slab without wires shown in (e-f). The scattered field (a,c,e) at (x0,y0) = 
(—3, y) m and (b,d,f) at (x0,y0) = (3, y) m. The finite slab dimension is 2L x 2d = 
5 x 0.2 m. iVc = 33 rods are placed inside the dielectric slab. The rod spacing is 
g = 15.24 cm. The source is at (xs,ys) = (—2,0) m. 
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field is small. 

Fig. 6.13 shows the effect of the rod spacing on the average of the transmitted 

field which has been calculated along the line (x0, y0) = (3, —2.5 < y < 2.5) m. The 

source is at (xs,ys) = (—2,0) m behind an infinite dielectric slab embedding Nc = 33 

rods. All the other parameters are kept unchanged. The average transmitted electric 

field becomes minimum when g = 0.1057 m. 
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Figure 6.13: Effect of the rod spacing on the average of the transmitted electric field 
along the line (x0, y0) = (3, —2.5 < y < 2.5) m. iVc = 33 rods are placed inside an 
infinite dielectric slab. 

Fig. 6.14 shows the transmitted electric field at (x0,y0) — (3, y) m when the rod 

spacing is g — 0.1057 m. The finite and infinite slab results are compared. Nc = 33 

rods are placed inside the infinite and the finite slab of size 2L x 2d = 5 x 0.2 m. 

It is shown that the results obtained for the finite slab do not match the infinite 

slab results. This shows that the effect of the end cap contribution is strong if the 

transmitted field is weaker. 

By increasing the slab length to 2L = 10 m, it was possible to place Nc = 65 rods 

inside the slab where the rods are g = 0.1524 m away from each other. Fig. 6.15.a 

shows the transmitted electric field through the finite and infinite models at (x0, y0) = 
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Figure 6.14: Comparing the transmitted electric field through identical finite and 
infinite reinforced slab. The source is at (xs,ys) = (—2,0) m, and the field point is 
at (x0, y0) = (3, y) m. Nc = 33 rods are placed with a spacing of g = 0.1057 m inside 
the finite and infinite slab. The finite slab length is 2L = 5 m. 

(3, y) m. The agreement is very good, showing that the effect of the end caps is 

weakened when they are far away. 
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Figure 6.15: The transmitted electric field at (x0,y0) = (3, y) m. The source is at 
(xs, Vs) = (—2,0) m. Nc = 65 rods are placed inside a 2L x 2d — 10 x 0.2 m finite 
dielectric slab. The rod spacing is (a) g — 0.1524 m, (b) g = 0.1057 m. 
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Fig. 6.15.b shows the transmitted field when the rod spacing is reduced to g = 

0.1057 m. The center of the rods are placed at xk = 0.1 m, yk = -3.3824, -3.2767,..., 3.3824 m. 

It is observed that the reinforced slab shows a good shielding behavior when g = 

0.1057 m. 
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Figure 6.16: The transmitted field for normal incidence. The source is at (xs,ys) = 
(—2,0) m, and the field point is at (x0, y0) = (x, 0) m. Nc = 65 rods are placed inside 
the finite and infinite slab. The finite slab dimension is 2L x 2d = 10 x 0.2 m. 

Fig. 6.16 shows the transmitted field through the finite and infinite reinforced slab 

for normal incidence. The finite and infinite slab results are compared when the rod 

spacing is g = 0.1057 m and g — 0.1524 m. The source is at (xs, ys) = (—2,0) m, and 

the field point is at (x0,y0) — (x, 0) m. The result shows the range dependence of 

the transmitted field. It is seen that when g — 0.1057 m, the slab shows a very good 

shielding property. For this rod spacing, the end cap effect becomes strong when 

the field point is away from the slab surface (4.5 m < x). When the rod spacing is 

g — 0.1524 m, the end cap contribution to the transmitted field is small. 

J i I i I i L 
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The analysis of the reinforced concrete was used to study the reflection and trans­

mission of electromagnetic waves for some cases of practical interest. The result 

showed that the end cap contribution in the transmitted field is negligible when the 

transmitted field is strong. It was possible to increase the shielding effectiveness of the 

reinforced concrete by changing the rod spacing. As a result, the transmitted field 

became weaker by increasing the shielding effectiveness of the reinforced concrete, 

and the end caps showed a stronger effect on the transmitted field. Another way to 

weaken the transmitted field, which is not included in the results, is to choose the 

slab thickness 2d — 71X2/2 + A2/4 where n = 1,2,3... and A2 is the wavelength inside 

the slab. 
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Chapter 7 

Conclusions 

A Green's function/method of moment approach has been developed for modeling 

a finite reinforced concrete slab. The key step was to obtain an accurate interior 

Green's function for a thick and finite dielectric slab. 

In doing so, an interior Green's function solution was presented for a thick and 

finite dielectric slab. The solution was based on the separation of variables method 

which gave an exact solution for a separable dielectric slab. The solution was ex­

pressed as a contribution of the surface wave modes plus a residual part which ac­

counted for all other contributions. It was found that the separable slab solution 

becomes an inaccurate representation of the finite slab when the Gx and Gy surface 

wave poles are close to each other. This situation can be physically interpreted as a 

resonance of a surface wave mode. 

The separable slab solution was modified by using the method of moments to 

solve for the surface wave reflection coefficients at the finite slab end caps. The 

resulting solution represents the physical finite slab that we wish to model, rather 

than the separable slab. Since the slab was thick, mode conversions occurred when a 

surface wave mode reached the end caps. The contribution by the surface wave modes 

was calculated by using the scattering matrix of the end cap and accounting for the 

133 



multiple reflections of the modes inside the slab. It was found that the residual 

part of the separable slab solution could be used for the finite slab, without any 

modifications. The residual part of the separable slab solution was evaluated by the 

numerical integration of Sommerfeld integral. The result was compared with an HFSS 

solution and also a surface integral equation/method of moments; the accuracy was 

found to be satisfactory. 

The Green's function for arbitrary source and field point positions, i.e. the cases 

when the source and/or the field points are inside/outside the finite slab, were ob­

tained by using the interior Green's function. The case when an interior source 

generates the exterior field was treated by computing the surface equivalent currents 

from the interior Green's function and then using the surface equivalence principle 

with the free-space Green's function to compute the exterior field. Applying the reci­

procity theorem, we could interchange the source and the field point. As a result, we 

were able to calculate the Green's function for the case when the interior field was 

generated by an exterior line source. This was used later for computing the exterior 

Green's function where we first obtained the electric and magnetic fields on the slab 

surface generated by an exterior line source. Having the electric and magnetic fields 

on the slab surface provided the surface equivalent currents. These currents were the 

sources of the scattered field in the exterior region. 

Having the Green's function for the finite dielectric slab, it was possible to model 

the finite reinforced concrete using Green's function/method of moments. Since the 

metallic bars inside the slab are electrically thick, each metallic bar could be replaced 

by a circular array of thin wires subject to the "same surface area" rule of thumb. 

The unknown induced currents on the surface of the thin wires were computed using 

the method of moments. The induced currents on the wires gave the scattered field by 

the wires after using the finite slab Green's function. The Green's function/method 
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of moments results were also compared with the results obtained from a surface inte­

gral equation/method of moments code. The Green's function/method of moments 

approach was computationally more efficient since the number of unknowns were re­

duced compared to the surface integral equation/method of moments. As a result, 

this provided a considerable memory saving in the computational modeling when 

the computational speed was not considered. Although the procedure for computing 

the exterior Green's function reduced the memory needs, it is not efficient when the 

computational time is an issue. 

The analysis of the reinforced concrete was used to study the reflection and trans­

mission of electromagnetic waves for some cases of practical interest. The result 

showed that the end cap contribution in the transmitted field is negligible when the 

transmitted field is strong. It was possible to increase the shielding effectiveness of the 

reinforced concrete by changing the rod spacing. As a result, the transmitted field 

became weaker by increasing the shielding effectiveness of the reinforced concrete, 

and the end caps showed a stronger effect on the transmitted field. 

7.1 Future Work 

A problem of interest is to extend the two-dimensional model to a three-dimensional 

geometry with a point source. The challenge is to reduce the memory usage when 

modeling a three-dimensional structure which is electrically large. Some remarks are 

given here with respect to how the 2D solution could be extended to the 3D case. A 

3D cylindrical structure in front of a point source can be modeled by using a spectrum 

of 2D problems and applying the inverse Fourier transform technique. The technique 

of using 2D solutions to construct a 3D solution is well known and is described in 

Harrington [45] and elsewhere. The technique is readily adaptable to the 2D finite 

slab if we assume that the boundaries of the the 3D problem are in the x-y plane 
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and the structure cross section does not change along the z axis. Then the Fourier 

transform with respect to the z-axis can be applied. As a result the structure becomes 

a 2D problem which is a function of z-directed wave number kz. For computing the 

fields for the 3D case, the 2D problem should be solved for an infinite number of fc2's 

before applying the Fourier transform. 

In this approach, it is possible to use a finite number of k^s. For more details on 

using the spectrum of 2D solutions for solving 3D cylindrical problems, the reader is 

referred to a summary of this approach by Kildal et al. [46]. 

The present work models parallel rods inside the dielectric slab. Another area of 

future research is to consider a cross-grid of wires that truly models an actual rebar 

structure. 

In the approach presented in this thesis, a solution for the separable slab problem 

was presented. A future study on ray optical interpretations of reflection at the dielec­

tric corners might give a better picture of the field distribution inside the separable 

slab. 

A problem of interest which could be an area for further research is the computa­

tional speed improvement for calculating the exterior Green's function presented in 

this thesis. 
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Appendix A 

A.l Dielectric Slab Bisected by P M C and PEC 

Ground Planes 

In this appendix, we show that the GF solution for a dielectric slab can be obtained 

by solving the problem of the bisected dielectric slab backed by a PEC and PMC 

ground plane [47], respectively. We show that the GF can be written as 

r,, N Gm(x,xs;y,ys) + Ge(x,xs;y,ijs) 
G(x, xs; y, ys) = (A.l - 1) 

where Gm and Ge are the GF solution for the bisected dielectric slab backed by PMC 

and PEC, respectively. We assume a line source of strength Is located at (xs,ys) 

inside a dielectric slab of thickness d, where the slab is grounded by a PMC or PEC 

sheets as shown in Fig. A.l.a and Fig. A.2.a, respectively. Applying image theory, 

the source can be imaged as shown in Fig. A.l.b and Fig. A.2.b. The superposition of 

the four sources inside the slab of thickness 2d shown in Fig. A.l.b and Fig. A.2.b can 

be expressed by a source at (xs, ys) of strength 2IS. As a result, the Green's function 

can be expressed by 

nl N Gm(x,xs;y,ys) + Ge(x,xs;y,ys) . , , , , _. 
G(x, xs; y, ys) - oo < x, xs < d (A.l - 2) 
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in Regions 1 and 2a. Similarly, we can reverse the line source direction in Fig. A.2 

for the PEC-backed slab and use the superposition to get the transmitted field 

r,, n , x Gm(x,xs;y,ys)-G
e(x,xs;y,ys) 

G(x,2d-xs,y,ys) = -oo<x,xs<d 

( A l - 3) 

which is the GF for a line source in Region 2b or 3 at (2d — xs, ys) and field point in 

Region 1 or 2a. 
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Figure A.l: (a) An electric line source inside a dielectric slab backed by a PMC 
ground plane, (b) A line source and its image with respect to x = d inside a dielectric 
slab. 

A..2 ID Green's Function for Dielectric Slab Backed 

by P M C Plane 

Fig. A.3 shows the ID problem for a dielectric slab of thickness d backed by a PMC 

ground plane. We assume that the source at xs and the field point at x are both 

inside the dielectric region. The dielectric region occupies the region between x = 0 
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Figure A.2: (a) An electric line source inside a dielectric slab backed by a PEC ground 
plane, (b) A line source and its image with respect to x = d inside a dielectric slab. 

and x = d. According to (3.2.6) and (3.2.7), the Green's function should satisfy 

d2Gx 

dx2 

d?Gx 

dx2 

+ K\GX = -S(x - xa) x<0 

+ K\GX = -S(x ~xs) 0 < x < d. 

(A.2-1) 

(A.2-2) 

where Kl and K2 were defined in (3.2.11) and (3.2.12). The solution should satisfy the 

.'\ X \ 
l \ X 

. ! \ 

N 
e l > MO l ' 2 , 

x=0 x = d 

Figure A.3: Dielectric slab backed by PMC. 

radiation condition and the boundary conditions at x = 0 and x = d . The boundary 
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conditions require that G(x,xs) and -dG(x, xs)/dx should be continuous at x — 0, 

and dG(x, xs)/dx — 0 at x = d. To construct the Green's function, we follow the UT 

method [40] which expresses the Green's function as 

G(x,Xs)=U^u) X~X$ ( A - 2 _ 3 ) 

G(I,SS) = I I T O XS-X (A-2_4) 

where T{x) and U(x) are independent solutions of the homogeneous wave equation. 

W(T, U) is the Wronskian of T and U defined as 

W(T, U) - T(xs)U'(xs) - T'(xs)U(xs) (A.2 - 5) 

which is independent of xs. T(x) satisfies the homogeneous differential equation 

cPTix) 
dx2 + K{T(X) = 0 xs < x < d (A.2-6) 

and the boundary condition at x — d. It is noted that U(x) satisfies the radia­

tion condition, the boundary condition at x = 0 and the homogeneous differential 

equations 

d2U(x)
 +KJU(X)=0 x<0 (A.2-7) 

dx2 

d2U(x) 
dx2 + np(x) = 0 x < xs. (A.2-8) 
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The solutions for the (A.2-6)-(A.2-8) can be written as 

T(x) — e~JK2(d~x) + ei
K^(d-x) 

U(x) = e?K2X + Ae~JK2X 

U(x) = BeJKlX 

xs < x < d 

0 < x < xs 

x < 0 

(A.2-9) 

(A.2-10) 

(A.2-11) 

where the boundary condition at x = d and the radiation condition are already 

imposed. Forcing the boundary condition at the air-dielectric interface, we should 

have 

U(x = 0+) = U(x = 0") (A2 - 12) 

1 dU(x = 0+) 1 dU(x = 0") 

/io dx 

which gives the unknowns A and B as 

j«0 dx 
(A.2 - 13) 

A = 
A-E2 — vA 

Aa;2 + V A xl 

(A.2 - 14) 

B 
2x/A x2 

/Aa2 + v Axi 

The Wronskian of T and U can obtained as 

(A2-15) 

W = 2JK2(e
jK2d - Ae~iK2d). (A.2 - 16) 

Using (A.2-3) and (A.2-4), we have 

(eJK2X I j^e-JK2X\ (e~JK2(d-Xs) I eJK2(d-Xs)\ 

G(x,xs) = ± j - ^ i - '- x<xs (A.2-17) 

(eJK2Xs I Ae~3K2xA (e-JK2(d-x) i eJK2(d-x)\ 

G(x, xs) = -i — ^ — - — >- xs<x (A.2-18) 
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where 0 < x, xs < d. The concise expression for the GF becomes 

(pJK2X< , Ap-JK2X<\ (p~JK2{d-X>) , pJK2(d-X>)\ 

G&ix^x^KuK*) = £ + I , K* A . + L (A.2-19) 

It is possible to write (A.2-19) in a trigonometric format as 

nm _ JKl s i n K2X< + K2 COS K2X< COS K2(d - X>) . . 
( j _ — . . . . [A.I — / U ) 

JK\COS K20 — K2 SHIK2d K2 

where xK is the smaller of x and xs, and a;> is the larger of x and xs. 

A.3 ID Green's Function for Dielectric Slab Backed 

by PEC Plane 

The ID problem for a dielectric slab of thickness d backed by PEC ground plane is 

shown in Fig. A.4. We assume that the source at xs and the field point at x are both 

inside the slab. According to (3.2.6) and (3.2.7), the Green's function should satisfy 

d2G 
—-£ + K\GX = -Six -xa) x<0 (A.3-1) 
dxl 

d2G 
—-£ + K\GX = -5(x -xa) 0<x<d. (A.3-2) 
dxl 

where K\ and K2 were defined in (3.2.11) and (3.2.12). The solution should satisfy 

the boundary conditions at the dielectric boundaries, i.e. G(x, xs) and -dG(x, xs)/dx 

should be continuous at a; = 0, and G(x,xs) = 0 at x = d. Since the structure is 

unbounded in the negative x-direction, the Green's function should also satisfy the 

radiation condition. To construct the Green's function, we follow the UT method [40]. 

Similar to Appendix A.2, U and T should satisfy (A.2-6)-(A.2-8). The boundary 

condition for U(x) is similar to the PMC-backed slab. Furthermore, T(x) should 
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Figure A.4: Dielectric slab backed by PEC. 

satisfy the boundary condition at x — d, i.e. T(d) — 0. The solutions can be written 

as 

T(x) = e-J
K2(d-x) _ eJK2(d-x) 

U(x) = eJK2X + Ae-JK2X 

U{x) = BeJKlx 

x* < x < d (A.3-3) 

0 < x < xs (A.3-4) 

x<0. (A.3-5) 

where the boundary condition at x = d and the radiation condition are already 

imposed. Forcing the boundary condition at the air-dielectric interface gives the 

unknowns A and B as 

A = 

B = 

f\ x2 '^xl 

'^x2 + V^xl 

2yAX2 

^x2 + VA 

(A3 - 6) 

(A3 - 7) 
xl 

The Wronskian of T and U becomes 

W = -2JK2(e
JK2d+Ae-iK2d). ( A 3 - 8 ) 
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Using (A.2-3) and (A.2-4), the Green's function can be written as 

G{x,xs) = + - ^ - — — '- x<xa (A.3-9) 

(ejK2xs i Ae~iK2Xs} (e^K2^d~x^ — e-JK^(d~x)) 
G(x,xs) = ± 7—^\ —^ x9<x (A.3-10) 

where 0 < x, xs < d. The compact expression for the GF becomes 

(eJK2X< I J\e-JK2X<\^eJK2(d-x>) _ e-jn2(d-x>)\ 

which can be expressed in a trigonometric form as 

_ JK\ sin K2X< + K-2 cos n2x< sin K2(d-x>) 
{J22X — — : : j ;— • [A..6 — LA) 

jKi sm n2d + K2 cos n2d AC2 

A.4 Surface Wave Modes of the 2D Infinite Extent 

Dielectric Slab 

The Green's function solution for an infinite extent dielectric slab given by (3.2.20) 

requires integration in the w plane. The locations of the poles of the integrand 

should be determined before the integration. The poles of the integrand in (3.2.20) 

originate from G™2x and G\2x which are called PMC and PEC poles, respectively. The 

transcendental equations for the roots are 

JK\ cos K2d — K2 sin n2d = 0 (PMC case) (AA — 1) 

jm sin K2d + K2 cos K2d = 0 (PEC case). (AA — 2) 
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It is convenient to introduce p = n2d and q — K\d, and rewrite (A.4-1) and (A.4-2) as 

ptimp = jq (PMC case) (A4 - 3) 

pcotp = -j 'g (PEC case). (A4 - 4) 

Since K2 — \Jk\ — rf and K\ = y/kf — rj2, it can be shown that 

p ? - 9
2 = ^ = ( e 2 / C l - l ) ( M 2 - ( A 4 - 5 ) 

The poles can be obtained by solving (A.4-3), (A.4-4) and (A.4-5). For a lossless case, 

p and q0 = jq are real. The numerical computations of the poles can be performed 

by the secant method. For the lossy case, we can use the secant method with a 

complex initial guess. For low loss dielectric slabs, the initial guess is chosen very 

close to the poles that are found for lossless case. Once the poles are found, the 

residue contribution of the poles can be calculated by using the residue theorem. For 

a dielectric slab of infinite extent, the residue contribution of (3.2.20) becomes 

G%mT = G2"mr(x,x.,wv,T).D(v-Vs) ( A 4 - 6 ) 

where Ge^ and (?™T are PMC and PEC pole contributions due to w^ and w r which 

are PEC and PMC poles on the w plane, respectively. Furthermore, D(y — ys) is 

D{y - ys) = e-ifci^^.rly-s.1. (A4 - 7) 

The expressions for G^y and G™T can be written as 

™ , \ Q(JP cosp0 —q sinp0) ,* A ^ 
Ge» ar, xs, w„) = , , , • sin (p - Pl) A 4 - 8 

pk\ dAv sin w„ sin p 

152 



where 

A, = 0'(i - (Q/P)2) - g(i - (Q/P)2)) (AA -10) 

and po = K2^< and pi = K2£>. The propagation constants in the x-direction 

outside and inside the infinite extent dielectric slab are K\ = k\ cos w„tT and «2 — 

y/k2 — k\ sin2 w„jT, respectively. The total contribution of the SW poles for the di­

electric slab problem can be obtained as 

G™ = ^ G c " / 2 + J^GmT/2. (A4-11) 
1/ T 

A.5 ^ Due to Mx and My 

When the Green's function G which is the solution of (3.1.4) is available, the electric 

field Ez generated by a z-directed line source of strength Jz can be obtained by using 

(3.1.5). Using Maxwell's equation (V x E = —ju/fiH), we can obtain Hx and Hy as 

jup dy dy 

which are the components of the magnetic field H. In order to obtain the electric 

field Ez generated by a magnetic line source, we can use the reciprocity theorem as 

follows. Fig. A.5.a shows a y-directed magnetic line source My2 at (#2,2/2) which 

generates the electric field Ez2 at (x\,yi). Using the reciprocity theorem we can write 

Jzi(xi, yi)Ez2(x1,y1) = -My2{x2,y2)Hyl(x2,y2) (A5 - 3) 
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where the y-component of the magnetic field Hy\ at (£2,2/2) *s generated by Jz\ at 

HylfaMy2 T Hxl 

% 
Ez2 

Mx2 

(b) Ez2 (a) 

Figure A.5: Reciprocity theorem is applied to obtain the electric field Ez2 generated 
by (a) a y-directed magnetic line source My2, and (b) a x-directed magnetic line source 
Mx2. 

{xi,yi}. Using (A.5-2) and (A.5-3), the electric field Ez2 due to a y-directed magnetic 

line source becomes 

Ez2\xi,yi) = My2(x2,y2) — . ( A 5 - 4 ) 

To obtain the electric field Ez2 generated by the x-directed magnetic line source Mx2 

at (x2jy2) as shown in Fig. A.5.b, we use the reciprocity theorem as 

Jzi(xi,yi)Ez2(xi,yi) = -Mx2(x2,y2)Hxl(x2,y2) (A.5 - 5) 

where the magnetic field component Hx\ at {x2,y2) is generated by an electric line 

source Jz\. Using (A.5-1) in (A.5-5), we can write the electric field Ez2 due to the 

x-directed magnetic line source Mx2 at (x2,y2) as 

& , x w / ^G(a;i,£2;2/1,2/2) , , , a , 

Ez2(x1,y1) = -Mx2{x2,y2) . (A5 - 6) 
C2/2 

If we assume that the magnetic line source is radiating in free space, we can use the 

free-space Green's function which is 

G} = ~H(*\kp). (A5-7) 
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Using (A.5-4), (A.5-6), and the free-space Green's function, the electric field at (x0, y0) 

generated by a magnetic line source at (xs,ys) can be written as 

Eg(x0,y0) = ^{Xo~Xs)My(xs,ys)Hi2\kp) (A5 - 8) 

Ez{x0,y0) = -^{y°~ys)Mx(xs,ys)Hi2\kp) (A5 - 9) 
4J P 

where 

P = V(x* - Xo)2 + (Vs - Vof. (A5 - 10) 

A.6 Hx and Hy Due to Mx and My 

Having the Green's function G, the electric field generated by a line source IQ can be 

calculated by using (3.1.5). Moreover, the expressions for the electric field generated 

by magnetic line sources are given in (A.5-4) and (A.5-6). We can write the magnetic 

field generated by a magnetic line dipole by using (A.5-l)-(A.5-2), (A.5-4) and (A.5-6) 

as 
1 dG 

Hx(xuyi) = My2{x2,y2)--1— (A.6 - 1) 

1 dG 
Hx{xi, yi) = -—M x 2{x2 , jfe)^—^- (A.6 - 2) 

jwfj, dy1dy2 
1 dG 

Hy{xi,yi) = -—My2(x2,y2) (A.6 - 3) 
JWfJL OXxOX-2. 

1 „ / ^ dG 

.—M x 2(x2 ,y2)—-— 
jwp, ox1dy2 

Hy(x1,y1) = -—-Mx2(x2,y2)^ . (A6 - 4) 
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Figure A.6: (a)Geometry of a rectangular box enclosing a line source at pn with 
strength Is. (b) A magnetic line dipole of strength Ms in front of a cell. 

A.7 Self Term Evaluation for the First and Second 

Derivative of Free Space Green's Function 

Fig. A.6.a shows a line source in the free space at the center of the n'th cell pn = 

xnx + yny where xn and yn are given in (5.4.3) and (5.4.4), respectively. The cell 

extent is assumed to be in the y direction, so 1 < n < p. We can use Maxwell's 

equation on a rectangular box shown in Fig. A.6.a as 

f H -dl = Is + juje I 
Jc J Js 

E-ds ( A 7 - 1 ) 

where C and 5" denote the contour and the area of the rectangle shown in Fig. A.6. 

The rectangular box has the length of 8y and width of A. The area S becomes small 

as A —• 0. As a result, the last term in (A.7-1) can be neglected. By using (A.5-2), 

(A.7-1) can be written in the limit (A —> 0) as 

j l8<*>Mn,P ) d j 

Pn+-iV 

dGf(pn,p ) 
dx~ 

dy (A.7 - 2) 
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where x± — xn ± A/2, p * = x±x + yy, and p± = a;*;*; + yny. since Hy(p
+) — 

—Hy(p~), we can write 

dGf(pn,p
+) = dGf(Pn,p-) (A7-3) 

dx+ dx~ 

Using (A.7-3) in (A.7-2) and assuming 7S = 1, the self term for the first derivative of 

the Green's function becomes 

m rPn+^-y dGAo o~) 1 

It is noted that the current line source is placed on the right side of the n'th cell since 

a cell occupies the region p~ — ^fy < p < Pn + ^V-

Fig. A.6.b shows a magnetic current line dipole with strength Ms at pn. The n'th 

cell is assumed to be at p~~ where 1 < n < p. The magnetic field on the n'th cell can 

be written as 

where Fy is the y component of the electric vector potential, and k0 = w^/Ju^e®. By 

using the free space Green's function, Fy can be written as 

Fy = MsGf ( A 7 - 6 ) 

where Gj is given in (A.8-3). By using (A.7-6) and (A.8-3), (A.7-5) can be written 

as [48] 

Hy(p-) = -Ms^[Hg\k2\p - p') + Hf\k2\p - p\) cos20] (A7 - 7) 

where cos</> is given in (5.4.12). By using (A.7-7), we can integrate the magnetic field 
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over the n'th cell and write 

/ ^ Hy(p-) dy = - Ms-± / ^ H^\k2\p-p')dy 
Jpz-^v 8V Jp--^y 

- M s - M Hf\k2\p-p\)cos24>dy 
8rl Jpz-^V 

'Pn-lV orIJp;-%y 

'Pn~-iV 

The last integral in (A.7-8) can be derived by using the small argument expansion 

of the second-order Hankel function. The reader is referred to [48] for more details. 

The last integral in (A.7-8) becomes 

j P n + 2 V Hf\k2\p-p\) cos 20dy = ^ ( l - - ^ ) . ( A 7 - 9 ) 
JPn-fy * ^6v 

By using (A.7-9) and (A.8-4), (A.7-8) can be expressed as 

/ . 

$V nt 

^ Hy(p-)dy = -Ms^[l-^H^) + J-(l--^)} (A7-10) 

where 7 = 1.781072, and e « 2.71828 is Neper's number. Since the magnetic line 

source is not on the n'th cell, we can write the source-free wave equation {V2Fy + 

k\Fy = 0) over the cell extent as 

l £ — ( J + 3W- (AT-11) 

Using (A.7-5)-(A.7-6) and (A.7-10)-(A.7-11), we can write 

JPn-s^y dx ipn,p-) 8 L 7T 4 e 7T k*6* 
( A 7 - 12) 

Taking the derivative of the free space Green's function with respect to x and x' gives 

158 



us 
dGf{pf,p) _ dGf(p',p) 

dx' dx 

By applying (A.7-13) in (A.7-12), the self term evaluation can be expressed as 

( A 7 - 1 3 ) 

/ • ( / ) _ 

(A7 - 14) 

Similar to (A.7-4), it can be shown that for p + 1 < m < t, the self-term evaluation 

of the first derivative of the free-space Green's function becomes 

An = / f7! <*r = i (^7 - 15) 

where y~ — ym — A/2, p~ = xx + y~y, and p ^ = xmcc + y~ j / . Furthermore, (A.7-12) 

can be written f o r p + l < m < £ a s 

( A 7 - 1 6 ) 

A.8 Self Impedance Term Evaluation for the Inte­

rior Green's Function 

The self impedance term evaluation for the interior Green's function is required when 

computing the exterior Green's function. Furthermore, the first and second deriva­

tive of the interior Green's function should be evaluated. The self impedance term 

evaluation of the interior Green's function is required to calculate K%n in (5.4.43). 
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First, we need to evaluate an integral in form of 

h= G22(Pn,p)dt (A8-1) 
JPn-^t 

where G22{pn, p), the interior Green's function, is singular at pn = p. The parametric 

variable t depends on the cell orientation, and i = {x,y}. As a result, we have 

dt = {dx, dy}, and 5t = {Sx, 5y}. To evaluate i i , a singularity subtraction is expedient. 

This can be realized by writing the interior Green's function as 

G22 = Gf + Gm (A8 - 2) 

where Gf, which is the free space Green's function, contains the singularity of the 

interior Green's function. The free space Green's function expressed by the Hankel 

function is 

Gf = j-.42)(k2\pn-p\)) (A8-3) 

where k2 is the wave number in the dielectric region. Using the small argument 

formulation for the Hankel function [49], the self term for Gf can be written as 

V - rjl. G,(P„ P) H - £ [1 - A < ^ ) ] (AS - 4) 
Jp -s4t 4J ^ 4 e 

where 7 = 1.781072 is Euler's constant. By subtracting Gf from the interior Green's 

function, Gm can be written as 

Gm = G$ + G£> + GfZie - G™ (A8 - 5) 
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where Gf^ite and G™ are given in (4.4.9) and (A.4-11), respectively. Using (4.4.10), 

(A.8-2) and (A.8-5), Gm
] and G$ can be written as 

G$ = l f KimGxGM dw ( A 8 - 6 ) 
V Jp 

GS = ~ I W^Gf dvt (A.8-7) 
n Js 

where Gx is given in (3.3.17). Furthermore, Gf\ Gm and Gm are 

, , P-~im{y>-y<) G>=^r~ (A8"8) 

P g-.?K2(4d-x>-a:<) _j_ p g-JK2(a:>+x<) _|_ p2e-j/C2(4d+x ;>-a;<) , p2 e - jK 2 (4d-x>+a;<) 

C^) = 

(A8 - 9) 
Pg-J^2(2L-3/>-2/<) _j_ pe-j»?2(2Z/+i/>+i/<) _|_ p2g-jr;2(4L+j/>-j/<) _j_ p2e-j?72(4Z,-2/>+j/<) 

~~ 2j772(l - r2e-^'4^L) 
(A8 - 10) 

where T is given in (3.3.31), and Tx can be expressed as 

r, = ^ 4 ^ . (As-ii) 

The path of integration P is shown in Fig. 3.13. It is noted that Gm has a branch 

point at K2 = 0. As a result, we choose the path S to evaluate (A.8-7). Fig. A.7 

shows the path of integration and the branch cuts on the w-plane. The path is chosen 

so that it does not cross any branch cut. It is noted that Gf + Gm gives the infinite 

slab Green's function, and it already includes the surface wave contribution of the 

infinite slab denoted by G™. Since the surface wave contribution of the infinite slab 

is also included in Gj^ite, the term — G™ appears in (A.8-5). 
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Figure A.7: Complex w-plane shows the path of integration S. The LW poles 
and SW poles (x) are shown on this plane 

In summary, I\ given in (A.8-1) can be written as 

h = lif) + [Pn 

Jo -

-s4t 

P -%t 
rn 2 

Gm(pn,P)dt ( A 8 - 1 2 ) 

where I{ and Gm are given in (A.8-4) and (A.8-5), respectively. 

To compute the exterior Green's function, we should also evaluate the first deriva­

tive of Ii. If we assume a y-directed cell (1 < n < p) in (A.8-1), the derivative of Ii 

with respect to x can be written by using (A.8-2) as 

h = lif) + L P^2dGm(Pn,P) 

Pn-Sv/2 dx 
dy. (A.8 - 13) 

where I2 is the self-term calculated for the derivative of the free space Green's 

function which is given in (A.7-4). Furthermore, for the cells in the range p + 1 < 
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n <t, I2 becomes 
in fP"+6s/2 dG (o o) 

{A.8 - 14) 
'Pn-Ss/2 

where I2 is given in (A.7-15). Similarly, the self-term for the second derivative of 

the interior Green's function for 1 < n < p is in form of 

lif) + L P«+^d*Gm(p',P) 

Pn-Sy/2 dx'dx 
dy 

(Pn'P) 
( A 8 - 1 5 ) 

where 1% is given in (A.7-14). When p + 1 < n < t, I3 becomes 

_ jU) tiJ' + L Pr>+^d2Gm(p',p) 

pn-6x/2 dy'dy 
dx 

(Pn>P) 
(A.8 - 16) 

r(/) where 1% ' is given in (A.7-16). 
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