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ABSTRACT

A Top-Down Approach to Answering Queries Using Views

Nima Mohajerin

The problem of answering queries using views is concerned with finding answers to a
query using only answers to a set of views. In the context of data integration with LAV ap-
proach, this problem translates to finding maximally contained rewriting for a query using
a set of views. When both query and views are in conjunctive form, rewritings generated
by existing bottom-up algorithms in this context are generally expensive to evaluate. As
a result, they often require costly post-processing to improve efficiency of computing the
answer tuples.

In this dissertation, we propose a top-down approach to the rewriting problem of
conjunctive queries. We first present a graph-based analysis of the problem and identify
conditions that must be satisfied to ensure maximal containment of rewriting. We then
present TreeWise, a novel algorithm that uses our top-down approach to efficiently gen-
erate maximally contained rewritings that are generally less expensive to evaluate. Our
experiments confirm that TreeWise generally produces better quality rewritings, with a

performance comparable to the most efficient of previously proposed algorithms.
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Chapter 1

Introduction

As the popularity of data integration grows, and as more sources decide to share data and
information everyday, the problem of answering queries using views receives more attention
from the scientific community. Informally speaking, a mediator-based data integration
process involves logically combining multiple independent data sources into an integrated
system with a mediated global schema. Once the mediated schema is defined and data
sources are linked to this schema, users can pose queries in the integrated system without
being concerned with the actual structures of individual sources. The integrated system
is now responsible for generating answers to user’s queries through its links to the data
sources.

Among several approaches proposed for designing links between mediated schema
and data sources in a data integration system, one is the Local-As-Views approach, which
is the focus of this thesis. In this context, the problem of answering queries becomes
synonymous with the problem of rewriting queries using a set of views.

There are several algorithms proposed for rewriting queries using views in the LAV

approach to data integration. All the main algorithms introduced in this context employ



a bottom-up approach to the problem, which may result in rewritings that are expensive
to evaluate in the sense that generated rewritings include unnecessarily many subgoals.
That is thus our motivation in this research to improve the situation by taking a top-down
approach and propose a new efficient rewriting algorithm that produces rewritings with

fewer subgoals.

1.1 Answering Queries Using Views in Data Integration

Frameworks

As opposed to data warehousing, which is mainly concerned with physical merging of data,
data integration concentrates on loosely linking data sources by logical means. Simply put,
a data integration framework is made up of three parts: a set of autonomous data sources,
a logical mediated schema representing the overall structure of the integrated framework,
and descriptions of links between data sources and the mediated schema.

The mediated schema in a data integration framework is virtual and sources are
physical sources that can have many different forms including relational databases, XML
pages, etc. Two main tasks in designing a data integration framework are to first generate
the logical mediated schema representing the overall structure of data in the system and
then to create links between mediated schema and the actual data sources.

The mediated schema is designed manually for a data integration framework. One
approach in creating links between the mediated schema and data sources is to define
sources as views over the mediated schema. In the literature, this approach is known as
Local-As-Views (LAV). The advantage of this approach is the separation of the logical

schema from physical sources, and therefore easy addition of new data sources to the



system, if desired. In this context, the main task in generating answers to user’s query is
to rewrite the query using only the views representing the data sources. By doing so, the
integrated framework will then evaluate the query by obtaining the answers to the views
and combining them properly to get the answer to user’s query.

The following example illustrates a data integration framework in the LAV approach,

and also shows what is involved in query rewriting using views in the context.

Example 1: The city of Montreal decides on a plan to provide its citizens with a new
unified library system to access information regarding books available in the city’s public
libraries. However, each library has its own independent database system under operation
and the cost of merging all of them into a single source can be quite expensive and
prohibitive. In addition, libraries may not wish to make all the data in their databases
available to public, they only want to expose selected information to the outside world.
This scenario, even though naive, shows situations where data integration can help
reduce the costs and provide an elegant and affordable solution. By creating a mediated
schema that would represent the global structure of this unified information system and
by logically linking independent data sources to this schema, data sources maintained by
each library can continue their routine operation without any changes, and the integrated
framework can be created without any actual merging of data. For example, the following

can be part of the global schema of a desired integrated system:

Book(id, title, publisher-id, year-published, genre)

Publisher(id, name, address, country)



Library(id, name, location, municipality)

Is_Located(book-id, library-id, status)

However, individual library databases may have schemas that are different from the global
schema above. To create links between this mediated schema and schemas of individual
data sources, we can follow the LAV approach to represent data sources as views over
the global schema. Accordingly, consider the two views expressed below in SQL, which

represent two library sources in the city.

create view MR_Local_Books as
SELECT Book.title, Book.publisher-id, Library.name
FROM Book, Publisher, Is_Located, Library
WHERE Book.publisher-id = Publisher.id
AND Publisher.country = ’Canada’
AND Is_Located.book-id = Book.id
AND Is_Located.library-id = Library.id

AND Library.municipality = ’Mont-Royal’;

create view Fiction_Books as

SELECT Book.title As title, Library.name As library,
Publisher.name As publisher, Publisher.address As address,
Publisher.country As Country

FROM Book, Publisher, Is_Located, Library

WHERE Book.publisher-id = Publisher.id
AND Is_Located.book-id = Book.id
AND Is_Located.library-id = Library.id

AND Book.genre = ’Fiction’;



The first view V7 defines all the books published by Canadian companies, available in
libraries located in Mont-Royal municipality. The second view V5 lists all the books
classified as fiction, along with the information about their publishers. At this point,
users can query the mediated schema without being concerned about the structure of each
individual data sources located in libraries across the city. An example of such queries
may be to list titles of all books available in the libraries published by Canadian firms,
along with the names of the libraries at which we can find such books. This query @ can

be expressed in SQL as follows:

SELECT Book.title, Library.name
FROM Book,Publishers,Is_Located,Library
WHERE Book.publisher-id =publisher.id

AND Book.id = Is_Located.book-id

AND Is_Located.library-id = Library.id

AND Publisher.country = ’Canada’;

Since the data sources V7 and V, and the query @ are defined over the mediated schema,
it is possible to reformulate the query using only views defined over these data sources.
By doing so, we can then use the answer tuples provided by V; and V5 in order to generate
the answer to (). Intuitively, only those reformulations of the query are acceptable that
produce results that form a subset of results that we would get by executing the original
query itself. Also, the goal is to generate the maximally contained rewriting, that is to
get largest possible subset of answers using the defined views. With these requirements
in mind, the above query can be reformulated as the following query using the given two

view definitions.



SELECT title, library

FROM Fiction_Books

WHERE country = ’Canada’
UNION

SELECT title,library

FROM MR_Local_Books;

The above example shows the essence of answering queries using views in the LAV
approach to data integration system. This reformulation of a query using a given set of

view definitions is also known as query rewriting problem.

1.2 Rewriting Problem and Maximal Containment

The problem of rewriting queries using views has been studied extensively in database and
artificial intelligence research. This problem is not only related to data integration, but also
to query optimization in databases, which aims to find a better rewriting and execution
plan for a given query using a set of materialized views. In the query optimization context,
the focus is on finding an equivalent rewriting that yields the cheapest execution plan
[Hal01].

In a data integration context using the LAV approach, finding an equivalent rewriting
in not always possible. In such cases finding a contained rewriting is our next best choice.
This is due to the fact that data sources may not cover the entire domain [Hal01l] and
therefore only partial answers to the query would be available. In this case, however, only

those rewritings are desired which produce the largest collection of answers, also known



as mazimally contained rewritings. If both query and views are in conjunctive form (i.e.,
select-project-join) with no comparison predicates in the query, a maximally contained
rewriting will be in the form of union of conjunctive queries.

One classification of the previous efforts related to rewriting problem in the context
of data integration is based on the types of query and views allowed. Due to complexity
constraints, the previous efforts mainly concentrate on conjunctive queries. Depending on
the presence of comparison predicates, conjunctive queries are divided into two classes:
standard conjunctive queries and conjunctive queries with built-in predicates. There are
several algorithms proposed for rewriting in the standard case. They include the Bucket
algorithm [LROY96a], inverse-rules [Dus97], and the Minicon algorithm [PHO1] which
is the best known algorithm. For conjunctive queries with built-in predicates, there has
been some work with less progress due to increased complexity of the problem. In this
direction, [ALMO02] and [PHO1] proposed extensions to the MiniCon algorithm to support
a subset of built-in predicates known as Left-Semi-Interval (LSI) queries.

In data integration, there are two possible assumptions often made regarding the
contents of the data sources that can affect the rewriting problem in a subtle way. The first
is that data sources are assumed to be complete, meaning that the data sources defined
include all the tuples in their definitions. The second assumption is that some tuples
might be missing from the definitions of data sources. The former assumption is known
as Closed-World Assumption (CWA), while the latter is called Open-World Assumption
(OWA). It has been shown in [AD98] that the problem of answering queries using views
under CWA is computationally harder.

In this work, we consider standard conjunctive queries under OWA and propose



an efficient top-down algorithm, called TreeWise, that has several advantages over the

Minicon algorithm, the best known bottom-up rewriting algorithm.

1.3 Thesis Contribution

This thesis investigates the problem of answering queries using views in data integration
systems that use the LAV approach to defining views over the mediated schema. We
introduce an algorithm for rewriting a Select-Project-Join SQL query also known as con-
junctive query, over the mediated schema into union of conjunctive queries over a given
set of defined conjunctive views.

Our first contribution is the introduction of a new graph-based model for represent-
ing conjunctive queries, called Hyper-node Model for Conjunctive Queries (HMCQ). We
use HMCQ and identify conditions that must be satisfied to guarantee maximally con-
tained rewriting in our top-down approach solution. By properly utilizing this model, our
second contribution is a new top-down algorithm for rewriting , called TreeWise, that guar-
antees maximally contained rewritings for standard conjunctive queries and views. With
a top-down approach, TreeWise efficiently produces better quality rewritings, compared
to bottom-up rewriting techniques mentioned above.

We perform numerous experiments to evaluate the efficiency and quality of the
rewritings generated by the TreeWise algorithm. For this, we consider Minicon as a
representative of previous algorithms to compare with TreeWise. The results show that
in many test cases our top-down, view-based approach produces better quality rewritings

in less time than the bottom-up, subgoal-based approach of Minicon.



1.4 Thesis Outline

The next chapter provides a background for our work and reviews concepts and techniques
used in this study. In addition to a brief review of graph theory, it includes fundamental
concepts and definitions related to query containment, certain answers, and the rewriting
problem.

Chapter 3 provides a taxonomy of previous work related to query rewriting. We
begin by presenting the results regarding the complexity of the problem for different types
of queries and views. The chapter concludes with a description of previous rewriting
algorithms and their strengths and weaknesses.

Chapters 4 and 5 contain the main contribution of this thesis. Chapter 4 introduces
a new graph-based model we proposed for conjunctive queries. Chaper 5 follows by intro-
ducing our top-down approach for rewriting using this model. It concludes by presenting
the details of TreeWise algorithm, which implements the proposed approach.

In chapter 6, we describe details of our experiments using TreeWise and performance
evaluation results. We compare the results with performance and quality of Minicon.

Chapter 7 includes concluding remarks and a list of future work.



Chapter 2

Background

This chapter reviews basic concepts and techniques we need in our work. They include
conjunctive queries, query containment, answering queries using views , as well as concepts
and definitions from graph theory. Since this dissertation revolves around the language of

conjunctive queries, we start this chapter by describing this language.

2.1 Conjunctive Queries and Views

This thesis studies the problem of answering queries using views. It is thus important to
define what type of queries are the subject of our study. The main focus of this thesis
is on a subset of the language of conjunctive queries, called standard conjunctive queries.

This class corresponds to Select-Project-Join queries in SQL.

Definition 2.1. (Conjunctive Query) A conjunctive query @ is a non-recursive datalog

rule of the form:

Q: Q(_X) P pl(X_l),---,pn(Xn)

where q, p1,...,pn are predicate names. The atomic formula q(X) is called the head, and

p1(X1),...,pn(Xyn) are the subgoals in the rule body. Predicates in the body can either

10



be ordinary subgoals or built-in predicates. The tuples X,X1,..., X, are the arguments
of the query, which can contain either attribute variables or constants. The variables in
X are called the distinguished variables of the query, denoted as distVars(Q). All other
variables in Q are existential variables, denoted as existVars(Q). We assume that @ is a
safe query meaning that every variable appearing in X also appears in X1 U...U X,. All
variables will be denoted by uppercase letters. Union of conjunctive queries is expressed as
a set of conjunctive queries having the same head predicate. We use Q(D) to denote the

set of tuples obtained by evaluating Q) over the input database instance D.

Definition 2.2. (Standard Conjunctive Query) A standard conjunctive query @ is a con-

junctive query in the form ¢(X) : — p1(X1),...,pn(Xn), where p1(X1),...,pn(Xn) are

all ordinary subgoals (no built-in predicates).

The main focus of this thesis is on standard conjunctive queries. There are several
classes of conjunctive queries with built-in predicates. Since there are references through-
out this thesis to these classes, they are described as follow.

The first éubset of conjunctive query language with built-ins uses comparison predi-
cates in the form of XY, where X is a variable, and Y can be either variable or constant
and 6 is a comparison operator from the set {<,<,>,>,=}. The subset so defined is
called Conjunctive Queries with Arithmetic Comparison (CQAC).

Another subset, introduced in [Klu88] and later extended in [FP04], is called Left-
Semi-Interval (LSI) queries, which forms a subset of CQAC. This subset of conjunctive
queries allows built-in predicates in form of X6C, where X is a variable, C is a constant,
and € is an operator in {<, <}. If the operator < is removed from this set, the subset is
called Open-LSI queries. Corresponding to these subsets, there are Right-Semi-Interval

(RSI) and Open-RSI queries.

11



Another class of conjunctive queries, introduced in [Ali05], allows linear equality
arithmetic expressions. This subset is called CQFEL for short.
In the context of this thesis, a view is a named conjunctive query. A view instance

is a set of tuples obtained by evaluating the view over the database instance.

2.2 Query Containment and Equivalence

Query containment and equivalence provide means of comparison between answers of two
conjunctive queries for any database instance. In the context of this thesis, we use these
concepts to verify proper reformulation of a query using the views. Simply put, a query
(1 is contained in query Qo, if for every instance of database D, Q;(D) is a subset of
Q2(D). If for every instance of D, Q1(D) and Q2(D) are the same, we say that ); and
Q@2 are equivalent.

Extensive research has been devoted to the problem of query containment and equiv-
alence. Chandra and Merlin [CM77] studied the problem for standard conjunctive queries
and showed that containment mapping is the necessary and sufficient condition for con-
tainment. In [GSUW94], the containment problem was studied for CQACs and later on
Klug examined homomorphism property of LSI-queries and its role in the problem [Klu88].
More recently, Afrati et al. [FP04] studied the containment problem in the context of
LSI and open-LSI queries.

Next we recall definition of containment and its necessary and sufficient condition
in the standard case, namely the containment mapping.

Definition 2.3. (Containment Mapping) Given two standard conjunctive queries Q1 and

@2, a containment mapping p from Qo to @1, denoted by p : Qs — @1, is a symbol

12



mapping which is identity on the constants and predicate names such that 1) head(Q1) =

p(head(Qz)), and 2) p(body(Q2)) C body(Q1). p(head(Q)) and p(body(Q)) respectively
represent the head and body of Q after p is applied to Q.

Definition 2.4. (Partial Mapping) Let Q1 and Q9 be conjunctive queries. A partial

mapping from Q1 to Q2 is a mapping restricted to some subset of the variables in Q1.

Definition 2.5. (Standard Containment) Let Q)1 and Q) be standard conjunctive queries.

We say query Q1 is contained in Qq, denoted by Q1 C Qq, iff there exists a containment

mapping from Q2 to Q1.

Definition 2.6. (Query Equivalence) Two conjunctive queries Q1 and Q2 are equivalent,

denoted by Q1 = Q2, iff Q1 T Q2 and Q2 C Q1.

In the case of conjunctive queries with built-in predicates, the notion of containment
differs from definition 2.5. In case of CQAC, it was shown that for containment to hold,
constraint implication must also hold [GSUWY4], defined as follows.

Definition 2.7. (Constraint Implication) Let Q1 and Q2 be conjunctive queries with arith-
metic comparison. We say Q1 is contained in Qq, 1f the following implication holds:

D = (p(C)V ...V pp(C)), where C and D are the constraints in Qg and @

respectively, and p1,...,px are all the containment mappings from Q2 to Q1.

In general, the implication above can be constructed from multiple containment
mappings. As shown in [Klu88], when the homomorphism property holds, the disjunction

in the implication above reduces to testing for only one containment mapping.

13



2.3 Answering Queries in Data Integration Systems

The problem of answering queries using views is concerned with finding answers to a query
@ over a database schema using only the answers to a set of view definitions V1,...,V;
over the same schema. This problem is related to a number of data management problems
including query optimization, data warehouse, semantic data catching in client-server
systems [KB94, DFJ96]. In this thesis, we focus on the application of this problem in
the context of data integration.

A data integration system provides a uniform interface to a multitude of autonomous
(possibly heterogeneous) data sources [Hal0l]. Querying multiple data sources on the
World-Wide Web or integration of data from distributed systems are examples of data
integration applications. With data integration systems, users are not bothered with
locating sources relevant to their queries and communicating with each source, nor they are
concerned about combining the results of different sources to find answers to their original
queries. Instead, they pose queries over a mediated schema provided by the integrated
framework. Using a set of source descriptions, the task of data integration system is to
translate user query into one that refers directly to the schemas of data sources. There
are two important issues involved in this process: design of the mediated schema and the
approach used to describe data sources.

Typically mediated schema is designed manually for a particular data integration
system. However as for source descriptions, several approaches have been proposed in
the literature. Two main approaches for this are Global-As-Views (GAV) and Local-As-

Views (LAV). In the GAV approach, the mediated schema is defined in terms of the data

14



sources. The LAV approach on the other hand, describes the data sources as views over
the mediated schema. The main issue with GAV approach is modeling of the data and
hence the design and maintenance of the mediated schema. The main challenge in LAV

is query processing; the modeling of data is an easier task.

2.3.1 Query Rewriting

In the context of data integration using the LAV approach, the query translation problem
amounts to finding ways to find the answer to the query over the mediated schema using
a set of view definitions over the same schema. Next we formally define this reformulation
of the query also known as rewriting.

Definition 2.8. (Rewriting) Given a query Q and a set of view definitions V = {V1,...,V,},

a rewriting of QQ using the views in V is a query R whose ordinary subgoals are all from

V.

Intuitive, only rewritings are useful that are contained in the original query. It is
noteworthy that the above definition is intended for complete rewritings [LMS95], as
opposed to a rewriting that may also include predicates from the mediated schema in the
query body. Since, in the context of data integration, user posts queries over mediated
schema that is virtual, only a complete rewriting will be desired. Furthermore, since
views in this context may not entirely cover the domain of mediated schema, rewriting
can be either equivalent to or contained in the original query. To determine containment
or equivalence of a rewriting to the original query, we use the unfolding technique, defined

below.
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Definition 2.9. (Query Unfolding) Given a query Q and a set V = {V1,...,V,} of view
definitions, unfolding of a rewriting R of Q is a query R’ equivalent to R that is obtained
by replacing each view V; in the body of R with the body of V;. Etxistential variables in

view V; are replaced by fresh variables in R'.

Since finding all answers to a query in a data integration system is not always
possible, contained rewritings are the best we can hope for. In this case, we need to
determine a rewriting that returns best possible set of answers to the query. This rewriting
is called mazimally contained rewriting, and is a language dependent notion.

Definition 2.10. (Mazimally Contained Rewriting) Given a language L, query Q, and

a set of view definitions V.= {V1,...,Va}, a query R is a Mazimally contained (MC)
rewriting of Q using V with respect to L if:

1. R is expressed in L and R C Q.

2. R'C R, for every contained rewriting R' of Q using V, where R' is expressed in L.

As stated above, a MC rewriting R is defined with respect to a specific language,
and depending on the language we choose, R may or may not exist. This fact contributes
and is related to the expressive power of the language and the type of query and views
being considered. If query and views are standard conjunctive queries, MC rewriting
exists in the language of union of standard conjunctive queries (from now on, we call each
conjunctive query in the union, a rewriting query). Furthermore, it was shown that the
number of subgoals in each rewriting query in this union will be no more than the number
of ordinary subgoals in the query. [LMS95]

After describing what type of rewriting returns the best answer to a query, the

following question arises: what is the set of answers to the query that returns a maximally
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contained rewriting? This brings us to the notion of certain answers [AD98], which we

briefly describe in the following section.

2.3.2 Certain Answers and Maximally Contained Rewriting

Informally speaking, given a query @), a view definition V and an instance I of V, certain
answers are those tuples that are in the answer to @, for each possible database instance
that yields the instance I for the view V. However determining whether or not a tuple is
a certain answer depends on our assumption on view instance I. In this regard there are
two possibilities, as described in [AD98].

With Closed World Assumption (CWA), we assume that view instance I is complete,
that is, I includes all the tuples that satisfy view definition V. Alternatively, in Open
World Assumption (OWA), we assume that I is not complete in that it may be missing
some tuples that satisfy the definition of V. A formal definition of these two assumptions
can be found in [Rac04, GM99], where the notions of sound and complete view definitions
were introduced. A sound view definition is one for which results of the view are tuples
defined by the body of the view. A complete view definition provides all tuples that match
it. Naturally all view definitions are assumed to be sound. Under OWA, view definitions
are assumed to be sound, but not complete. A good example of such views is presented
in [GM99].

In [AD98], it was shown that due to the reasoning involved, computing certain
answers under CWA is harder than OWA. Next we provide a formal definition of certain

answer under both assumptions.
Definition 2.11. (Certain Answer) Given a query Q, view definition V; and its instance
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I, a tuple t is a certain answer under OWA, if t is in Q(D) for each database instance
D with I C Vi(D). Under CWA, t is a certain answer if t is in Q(D) for each database
instance D with I = V;(D).

In the context of data integration using the LAV approach, views are not assumed
to be complete and hence OWA is considered. On the basis of this assumption, the set
of all certain answers is the answer to our earlier question on the maximum number of
answers we can find for a standard conjunctive query using a set of standard conjunctive
views under OWA. In [AD98], it was shown that in this context, maximally contained

rewriting returns exactly this set of tuples.

2.4 Graph Theory: Notations and Concepts

In this section, we briefly review notations and concepts related to graph theory used
throughout this thesis.
Definition 2.12. (Undirected graph) An undirected graph G is defined as a pair (V, E)

where V' is a finite nonempty set of elements, called nodes or vertices, and E CV x V 1s

a set of unordered pairs in V, called edges.

We say that an edge < z,y > in G is incident with vertices z and y. Furthermore,
z and y are said to be adjacent to each other. The edge < z,x > is called a loop and the
vertex n that has no incident edges is called an isolated vertex. If set E is empty, we call
G an edgeless graph.

In graph G, two edges e; and ey that share a vertex n are called adjacent. A walk

is a sequence of adjacent edges.
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Definition 2.13. (Path) Let x, y be vertices in an undirected graph G = (V,E). A path
from x to y in G, denoted as x — vy, is a (loop-free) finite alternating sequence

T = Ty €1,T1,€2,T2,€3,s€n—1,Ln—1,€n,Tn =Y
of distinct vertices and edges from G, starting at vertezx x and ending al vertex y and
involving the n edges e; =< z;_1,2; >, where 1 <14 < n. The length of this path is n. In
other words, a path is a walk where no edge is repeated. A simple path is a path where

no node is repeated. When x =y, this path is called a cycle.

Example 2: Figure 2.1 illustrates an undirected graph G on V = {a, b, ¢, d, e} with edges

E={<ab><a,c><bec><bd><dd>}

—.

G
o ¢

Figure 2.1: Graph of Example 2

Here, e is an isolated vertex. The edge < d,d > is a loop in GG, and there are two paths

from a to d of lengths 2 and 3. The edges < a,b >,< b,c >, < ¢,a > form an a — a cycle.

O

The edges in an undirected graph represent a symmetric relation on the vertices. If

every vertex in the graph has a loop, that is < z,x >€ FE, for all z € V, then the relation

represented by the edges E is reflexive.

Definition 2.14. (Connected graph) A graph G = (V, E) is connected if there is a path
between every two distinct vertices in G. A graph that is not connected is said to be

disconnected.
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For a disconnected graph G = (V, E), the set V can be partitioned into subsets
Vi,...,Vp, where n > 2, such that there is no edge < z,y > in E, where z € V;, and
y € Vj, for ¢ # j. Each of the partitions V1,...,V,, along with its respective edges in E
that form a connected graph, is called a connected component of G. Hence, an undirected
graph is connected if and only if it has only one connected component, that is, there is
only one partition defined by G.

Definition 2.15. (Transitive closure graph) Let G = (V, E) be an undirected graph. The

transitive closure of G is a graph Gt = (V, ET), where the edge < z;,z; >€ E* if and

only if there is a path in G between z; and ;.

Definition 2.16. (Hypergraph) A generalized graph G = (V, E) is called a hypergraph
where E is a set of generalized edges with some edges connecting more than two nodes in

V.
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Chapter 3

Related Work

This chapter reviews previous work related to the rewriting problem. We also discuss the
complexity of the problem for different classes of queries and views. Since this problem is
related to the containment problem, there is also a discussion of complexity of containment
problem in the opening section. In the remainder of the chapter, we review details of main

existing rewriting algorithms and their strengths and limitations.

3.1 Complexities of Containment and Rewriting Problems

In this section we briefly review results on complexity of containment and rewriting prob-
lems for different types of queries and views. Since the rewriting problem is closely related
to the containment problem, it is instructive to study the complexity of the latter problem
to better understand the complexity of the rewriting problem. In [CMT77] the problem
of containment for standard conjunctive query is shown to be NP-complete. In [Klu88],
this problem is shown to be in Hg when queries are in the form CQAC. However, for LSI
queries the complexity is in NP, due to existence of homomorphism property [Klu88].

Finding other classes of conjunctive queries which also enjoy homomorphism property is
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an open problem [Klu88]. In [Ali05] they consider the problem for CQEL, a class of con-
junctive queries with linear equality constraints. There are also studies on containment for
other classes of queries. Interested readers are referred to [CK86, CLM81, CV92, Shm93]
for details.

The complexity of rewriting problem has been the subject of numerous studies. How-
ever for this problem, as well as the complexity, the language we consider for maximally
contained (MC) rewriting has also played a major role. In [LMS95], this problem was
shown to be NP-complete, for standard conjunctive query and views, even when neither
the query nor the views have repeated predicates in the rule bodies. The main complexity
comes from the fact that an exponential number of rewriting candidates must be consid-
ered. In this context, MC rewriting is in the language of union of standard conjunctive
queries.

Interestingly, for standard conjunctive query, even if the views are LSI queries, the
complexity and the language of rewriting will not change [PHO1]. However, [PHO1] shows
that if the query is also in the form of LSI (or RSI), then MC rewriting can be found in
the language of union of LSI (or RSI) queries. [ALMO2] shows that when the query is
in the form of LSI (or RSI) and even if the views are conjunctive queries with arithmetic
comparison constraints, MC rewriting can still be found in the same language.

If we allow inequality (#) built-in predicates, then the problem becomes NP-hard
and a MC rewriting may not exist even if we consider datalog [AD98]. This is due
to possibility of using reasoning to determine certain answers (answers that maximally
contained rewriting would return) [AD98].

Finally [ALMO2] shows that if query is a CQAC and views are all CQACs with all
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variables being distinguished, then the complexity of the rewriting problem is exponential
and a MC rewriting can be found in the language of union of CQACs. As with containment,
the rewriting problem has also been studied in the context of other languages such as

datalog and description logics. However these topics fall out of the scope of this thesis.

3.2 Previous Techniques

3.2.1 Bucket Algorithm

The bucket algorithm was introduced as part of a data integration system called Informa-
tion Manifold [LRO96b]. This system followed the LAV approach for describing informa-
tion sources and considered OWA regarding the contents of information sources. Details
of this algorithm for answering queries over virtual mediated schema was presented in
[LROY96a] using source descriptions in the form of conjunctive queries. Bucket algorithm
only claims to return MC rewriting for standard conjunctive query and views, which is
also the context of this thesis.

The algorithm also considers the case of CQAC queries using source descriptions of
the same form, but only guarantees to return contained rewriting for this more general

case of conjunctive queries.
Description of the Algorithm

The bucket algorithm is essentially comprised of two steps. For each ordinary subgoal in
the body of the query, the algorithm in the first step determines which views are relevant.
Relevancy of a view for standard conjunctive query reduces to determine whether the

variables of the view to which the distinguished variables of the query are mapped are
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distinguished or not. For instance, if ¢(X) is a subgoal in query @, then a view V is
relevant for Q in regards to subgoal ¢(X), if V includes ¢(Y) in its body and that if the it
argument X; in @ is distinguished then so is Y; in V. In the context of CQAC, this also
means consistency of the built-in predicates of the view and query as well. The outcome
of this step of the algorithm is a set of relevant views for each subgoal of the query, hence
the name bucket.

After creating the buckets for the subgoals in @, in the second step the algorithm
creates a set of candidate rewriting queries by examining combinations of views in the
buckets. Each view in a combination comes from one particular bucket, covering one
subgoal in the query. Every element of the set of combinations (i.e., each being a rewriting
query) is tested for soundness, meaning containment in the query. During this process,
the algorithm also tries to establish containment by adding extra constraints to the query,
which in the standard case amounts to equating distinguished variables.

In [LROY6a], there is also of a post-processing step to remove redundant predicates
in the queries after generation of the rewriting queries. The following example illustrates

the bucket algorithm.

Ezample 3: Consider the following query and views:
Q:q(X,W):— pX,Y),r(Y,2),s(Z,W).
Vi:u(4,B): - p(4,B).
Vo :vo(C): — r(A,B),s(B,C).
Vi :v3(4,B,C): — r(A,B),s(B,C).
Vi:vg(A): — s(A,B).
In the first step, the algorithm creates the buckets for the subgoals of the query @,
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and for each bucket it searches to find the relevant views. Result of this step is shown in

Table 3.
pX,Y) | r(v,2) | s(Z,Ww)
v1(X,Y) v2(Ch) va(W)
U3(Y, Z, Cz) U3(A1,Z, W)

Table 3.1: Contents of buckets in our example.

Since variable B is not distinguished, Vy is not relevant for covering predicate p. Note
that the corresponding bucket includes the head of the view V that covers the predicate
and variables of V' are those variables of the query that are in the domain of mapping.
The indexed variables replace the remaining ones in the view definitions.

After creating the buckets, in the second step the algorithm considers combining
buckets to generate candidates for rewriting. Possible combinations in this case are as

follows:

1. ¢(X,W):— vi(X,Y),v3(C1),ve(W).

2. qI(X, W) i ’Ul(X, Y),’Ug(cl),’l);}(Al,Z, W)

3. (X, W) :— v (X,Y),vs(Y, Z,Cs),ve(W).

4, q’(X, W) = Ul(X,Y),’Ug(Y, Z, CQ),’Ug(Al,Z, W)

Candidate 1 is not a contained rewriting nor it can be turned into one. The problem
here is the join between the predicates p and r in the query with respect to variable Y.
Since A is not a distinguished variable in V3, we can not enforce the join by equating the
two. The bucket algorithm does not detect this before the second step.

Candidate 2 is not a contained rewriting, but by equating A; and Y, it can be made
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into one. Note that by doing so, V5 becomes redundant in the rewriting. Similarly, by
equating Cy and W, candidate 3 becomes a contained rewriting. However this rewriting
is equivalent to the second one and therefore redundant. Finally, candidate 4 is also a

contained rewriting and is equivalent to candidates 2 and 3. a

Strengths and Limitations

The algorithm uses buckets to record relevancy of the views in answering a given query.
Advantage of such an approach is three fold; Using the information in the query, the
algorithm focuses on views that may prove useful in producing rewriting for the query. As
a result, the algorithm limits its search to a subset of views. Secondly, by dividing views
into appropriate buckets, the algorithm captures information on subgoal coverage and the
partial mappings for each view. This further improves efficiency during the second step of
the algorithm. Finally, by checking relevancy of the views, the bucket algorithm verifies
usefulness of views and therefore reduces the size of each bucket.

There are mainly two sources of inefficiency in the bucket algorithm. First is the
search space of the second (combining) step, which is quite large. A naive checking of
relevancy in the first step results in large size buckets. Additionally, in the second step the
algorithm performs the cartesian product of the buckets to generate rewriting candidates,
which can become quite large. The second source of inefficiency is in the second step, in
which each rewriting candidate is tested for containment in the query. It is well-known
that testing containment is NP-complete. As shown in the above example, if a candidate
is not contained in the query, the algorithm examines possibilities of adding constraints

to make a candidate into a contained rewriting.
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In addition to inefficiencies of the bucket algorithm in generating the rewritings, it
is also expensive to evaluate the rewriting queries in general since they are large in the
number of subgoals. To improve this, there is a post-processing step to reduce the size of
the queries in terms of the number of subgoals, if possible, which comes at an extra cost
for time. As discussed in [LRO96a], this optimization is exponential in the size of the
query. In addition to large size, the algorithm also generates redundant rewriting queries

in some cases, which results in increased query execution time.
3.2.2 Inverse-Rules Algorithm

The inverse-rules algorithm [Dus97] is another rewriting technique proposed in the con-
text of data integration. This algorithm was intended to produce maximally contained

rewriting for query and views in datalog.
Description of the Algorithm

The main step of this algorithm is concerned with creating a set of inverse-rules. More
specifically, for every predicate in each view, an inverse-rule is created. This rule defines
how to calculate tuples of the predicate using instances of the view. That is, given a view
definition:

Vio(X):— pi(X1),...,0n(X0).
for j =1,...,n, a set of inverse rules are created which are of the form:

pi(X)): — v(X)
where Y]’ is obtained from X in the following manner: if Y is a constant or distinguished

variable in V, then Y appears unchanged in TJ’ Otherwise Y is replaced by functional
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Skolem term f;(X) in X/, where i is the ith variable for which we created a function.
After constructing inverse rules for each view, generation of rewritings for a query @

is straightforward. MC rewriting is simply composition of () and the inverse-rules defined.

Example 4: Consider the query and views of Example 3. The inverse-rules algorithm

generates the following rules:
1. p(A4,B): — vi(A,B).
2. r(f1(C), f2(C)) : = v2(C).
3. 5(f2(C),0) 1 — wa(C).
4. 7(A,B): — wv3(4,B,0).
5. 5(B,C): — uvs(4,B,0).
6. s(A, f3(A)) 1 — vy(A).

The above rules show how to extract tuples for the predicates using extensions of the
views. For example, rule 3 declares that a tuple (c) in the extension of view vy indicates
that predicate s contains tuple (U, c), for some value of U.

The rewriting of () in Example 3 is simply the composition of () and the above
rules. However some rules in this composition are irrelevant to the query and they yield
useless tuples. For example, if the extension of view v4 contained tuple (a), then rule
6 would produce tuple (a, f3(a)) for predicate s. But this tuple would be useless to the

query since the value of f3(a), which is distinguished in @, is not known. O
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Strengths and Limitations

Strength of the inverse-rules algorithm is in its simplicity. First and for most, since inverse-
rules are independent of the query and can be created using only the views, the creation of
inverse rules is polynomial, which can be performed once, and the rules can be reused for
any given query. Secondly, the generation of rewriting from inverse-rules is just a simple
composition.

At first glance it seems that this algorithm can generate MC rewriting in polynomial
time. However, looking more closely at the output of this algorithm, we can note that
evaluation of the generated rewriting is expensive as much work is needed to be done in
that stage.

The rewriting generated by the inverse-rules algorithm has two main points of inef-
ficiencies. First, to generate instances for inverse-rules, we have to evaluate view instances
multiple times (depending on the number of rules and the size of each rule). During this
evaluation process many functional terms are introduced that must be kept track of and
evaluation of query is dependant on efficiency of this book-keeping. Secondly, since the
algorithm uses all the inverse-rules for every query, many views that are irrelevant to the
query are accessed during evaluation process, which results in producing useless tuples.

As pointed out in [PHO1], for a fair comparison of this algorithm with others, we
need to further process the generated rewriting to make it more evaluation friendly. For
this, [PHO1] suggests a process during which we expand the rewriting using every possible
combination of inverse-rules. Unfortunately, the work involved here is similar to (although

more efficient than) the process involved in second phase of the bucket algorithm. The
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experiment results in [PHO1] show that the extended version of inverse-rules algorithm
performs much better than the bucket algorithm. This algorithm, however, is inferior to

the Minicon algorithm explained next.

3.2.3 MiniCon Algorithm

The Minicon algorithm proposed in [PHO1] is an efficient rewriting algorithm designed
mainly for answering standard conjunctive queries using standard conjunctive views. This
algorithm was later extended in [PHO1] and [ALMO02] to handle query and views with
attribute constraints of the form LSI. The Minicon algorithm was proposed to address the
limitations of bucket and inverse-rules algorithms. As in the bucket algorithm, Minicon
starts by considering for each subgoal in the query, which views contain the correspond-
ing subgoal (hence subgoal-based approach). However, the main contributing factor to
efficiency of Minicon comes from considering the role of shared-ezistential-variables in
the query, which helps eliminate the need for repeated containment testing of candidate

rewriting queries. In what follows, we explain this point in more detail.

Description

The Minicon algorithm consists of two phases. In the first phase, for each view, the
algorithm forms a set of MiniCon Description (MCD) tuples, each representing a partial
mapping (Definition 2.4) from query to the view. In the second phase, MCDs are combined
to generate the rewriting. Given a query ) and a set V of views, the Minicon algorithm

proceeds as follows.

Forming MCDs: The objective of this phase is to produce, for each view, a set of MCD
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tuples. Each MCD C for a view V; is a tuple of the form (h¢, Vi(Y)c, vc, Gc), where:

e hg, called head homomorphism on V;, is basically a mapping applied to the head
atom V;(Y), which may equate some distinguished variables of view in order to
enforce necessary joins and equality constraints in the query. h¢ is identity on the

existential variables in V;.
o V;(Y)c is the view definition after applying h¢ to it.

e ¢ is a partial mapping from the variables in @ to variables in the view after applying

he.
e G, indicates the subgoal coverage of p¢.

Minicon start by creating MCDs in a subgoal-based fashion, as the bucket algorithm.
However, after finding a partial mapping for a view covering the subgoal in question, it
changes perspective and begins examining the variables in the query and view. For this

examination, the algorithm uses the following property of rewriting queries [PHO1].

Property 3.1. Let C be a MCD for ) with respect to views in V. The following

conditions must hold for C to be useful in generating non-redundant rewriting of Q:

1. For each distinguished variable X in Q in the domain of ¢, pc(X) is a dis-
tinguished variable in ho(V).
2. For each ezistential variable Y in @Q in the domain of vc, if ¢c(Y) is an

ezistential variable in ho(V), then for every subgoal g of Q that includes Y,
it should hold that (1) every wvariable in g is in the domain of pc, and (2)

pc(g) € he(V).
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Condition 1 above is the same as checking view relevancy in the bucket algorithm.
Condition 2 states that if a variable X is part of a join that is not enforced in the view, in
order for MCD to be useful, X must be mapped to a distinguished variable in the view so
that the join can be enforced in the rewriting. It is important to note that for each MCD,
Minicon algorithm tries to find the minimal subset of subgoals that satisfy property 3.1.

In this sense, we can say that the algorithm proceeds in a bottom-up fashion.

Combining MCDs: Second phase of the algorithm focuses on finding combination of
MCDs that would generate non-redundant rewriting queries. Taking the bottom-up ap-
proach in the first phase pays off for having an efficient second phase. By creating MCDs
covering minimal subgoals, Minicon uses the following property to reduce candidates for

rewriting queries.

Property 3.2. Let C be a set of MCDs for (Q with respect to views in V. Com-
binations of C that result in non-redundant rewriting queries of Q@ are the MCDs

Ci,...,C), for which the following two conditions hold:

1. Gg, U...UGq, forms exactly the subgoals of Q.
2. Gg; NG, = 0, fori # j.

Condition 1 above captures the requirement that the rewriting generated is contained
in the query. However, the disjoint property of MCDs stated in condition 2 is what
makes Minicon efficient in the second phase. Based on this condition, we only need to
consider combinations of MCDs that have disjoint subgoal coverage. Generating rewriting
queries from this combination is straightforward, since all required information is captured

conveniently in the MCDs.
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V(Yy) | ) | he | G
v(A,B) | X > AY B A—- A B—B D
v3(A,B,C) | Y >A,Z—>B |A—>AB—->B,C—C
v3(A,B,C) | Z—-B,W—->C | A—> A B—B,C—>C

w3

Table 3.2: MCDs generated by the Minicon algorithm.

Example 5: Consider the query and views in Example 3. Table 5 shows the MCDs
created by the Minicon algorithm in the first phase of operation.

Note that view V5 is not shown in the table. This is because while creating the
MCDs, the algorithm detects that vo will not be useful in generating rewriting, since the
variable A is not distinguished and a shared variable Y is mapped to it. Therefore no
MCD is created for this view.

During the second phase, there is only one combination that the algorithm needs to
consider and that is to combine all the three. Since the subgoal coverage of MCDs do not
intersect and they cover exactly the body of the query, the result is as follows.

q’(X,W) Ml Ul(X,Y),’Ug(Y, Z, Cl),’U3(A1,Z,W). O

Strengths and limitations

The strength of the Minicon algorithm is in its efficiency in generating MC rewriting for
standard conjunctive queries. Although having a subgoal-based approach, through prop-
erty 3.1, it also examines, to some extent, the relationship between the variables in the
query and views. This examination ensures that combination of MCDs that satisfy prop-
erty 3.2 will ultimately produce contained rewriting queries without requiring containment

testing. Furthermore, by taking a bottom-up approach in forming MCDs and providing a
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basis for disjoint condition in property 3.2, the algorithm prunes the search space signif-
icantly and avoids useless combinations that result in redundant rewriting queries being
generated or those that will not be contained in the query.

The main limitation of Minicon algorithm also stems from its subgoal-based, bottom-
up approach in forming MCDs, which results in generating MC rewritings that are expen-
sive to evaluate for having large number of subgoals in the body of the rewriting queries,
in general.

Subgoal-based approach to MCD construction in some cases results in generation of
redundant MCDs, which may ultimately result in redundant rewriting queries. To avoid
this, each newly generated MCD must be compared with other MCDs. This becomes quite

expensive as the number of MCDs grows. The following example illustrates this point.

Ezxample 6: Consider the following query @ and view V:
Q:¢(X,2):— p(X,Y),r(Y,2).
V:v(4,C):— p(4,B),r(B,C).

Using the procedure formMCDs(@Q, V) described in [PHO1], the algorithm will gener-
ate the MCD C; = ({A - A,C - C},V(A,C),{X - A)Y - B,Z = C},{p,r}) twice,
once when examining the predicate p and again during examination of r. To avoid this
redundancy, the procedure states that new MCDs are only added. For this, the algorithm
must perform comparisons and discard the second copy of Cj. a

If Minicon avoids this expensive MCDs comparisons, then it will produce redundant
rewriting queries.

Although, the bottom-up approach of Minicon increases the efficiency of the second

phase, it also contributes to generation of rewritings that are expensive to evaluate in
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general. Since each MCD is created to only cover minimal subset of subgoals in the
query, combining them will result in rewriting queries with large number of subgoals. To
improve this, a post-processing for tightening (i.e. reducing the size of) rewriting queries
is introduced in [PHOQ1]. This procedure is very similar to the post-processing suggested

for the bucket-algorithm. Detail of this optimization is as follows.

Postprocessing for Tightening Rewritings: For every query R; in the rewriting,
Minicon tightens the query by removing the redundant subgoals as follows. Suppose R;
includes two atoms A; and A, of the same view V;, whose MCDs are C and C3 and the

following conditions hold.

1. Whenever A; (respectively A;) has a variable from @ in position m, then Ag (re-
spectively A;) either has the same variable or a variable that does not appear in @

in position m.
2. Ranges of pc, and pg, do not overlap on existential variables of Vj.

In this case, the algorithm removes one of the two atoms by applying to R; the homomor-

phism 7 that is (1) the identity on the variables of @ and (2) is the most general unfier of

A1 and Az.

We may conclude that although Minicon performs more efficiently in generating
MC rewriting than previous algorithms, this efficiency comes at the expense of the quality
of rewriting. Furthermore, measures suggested for improving quality of rewritings are

expensive and will result in reduced efficiency of the algorithm.
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Table 3.2.3 summarizes the strengths and limitations of the three rewriting algo-
rithms described in this chapter. From our analysis and experiments, we believe that
rewritings generated by these algorithms, including Minicon, could be further improved in
terms of efficiency and quality. This was our goal in this work to investigate and develop

a top-down algorithm to the rewriting problem, introduced in chapter 5.
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Algorithm

[ Strengths

| Limitations

Bucket

e Uses buckets to 1iden-
tify and combine rele-
vant data

Ignores the role of variables

Must consider cartesian product
of the buckets

Needs to test containment for
each candidate

Low quality of rewriting (redun-
dancy and large size queries)

Inverse-
rules

o Generates inverse-rules
in polynomial time

e Rules can be gener-
ated independent of the

query

e Rewriting is a simple
composition of the
query and inverse-rules

Instances of rules must be calcu-
lated

Low quality of rewritings

Some rules generate irrelevant tu-
ples to the query

Functional terms are introduced
that must be kept track of

Expensive query evaluation

Minicon

e Considers the role of

variables
e Disjoint condition of
property 3.2 prunes

the search space in the
second phase

e No containment testing
is required

Due to its bottom-up approach,
the algorithm generates rewriting
queries with large sizes

Due to subgoal-based approach,
it produces redundant rewriting
queries

Expensive post-processing
needed to reduce size of the
rewriting queries

Table 3.3: Summary of strengths and limitations of bottom-up rewriting algorithms.
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Chapter 4

A Graph-based Model for

Conjunctive Queries

This chapter presents a new graph-based model to represent conjunctive queries [NNO8]
and also as an aid to study and analyze the problem of finding maximally contained
rewriting of a conjunctive query using views. In the next chapter, we use this model to
identify conditions that must be satisfied in order to guarantee maximal containment of

rewritings.

4.1 Hyper-node Model for Conjunctive Queries (HMCQ)

Qian [Qia96] proposed to use hyper-graphs to represent conjunctive queries. Nodes in
this graph represent the predicates in the query and edges indicate joins between the
predicates. Qian used this model to develop a rewriting algorithm called query folding,
but we believe this technique is insufficient to apply to the rewriting problem in our case,
since it lacks the expressiveness needed to capture the relationship between the variables

in the queries. Another graph-based approach proposed in [LP90] is the hyper-node model
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that was intended for representing data models, in general. The nodes in this model can
themselves be hyper-nodes. We adopt this model in our work and extend it to Hyper-node
Model for Conjunctive Queries (HMCQ).

A standard conjunctive query in our HMCQ is a super-graph which consists of four
graphs, each representing a level of abstraction. The lowest level in this representation
captures relationships among the attributes in the query and possibly equality constraints
(i.e., joins) among the attributes. Predicates in the query are represented in the second
level in the HMCQ model. The two next levels in HMCQ are used to represent the head
of the query.

At the lowest level of abstraction, a conventional undirected graph is used, in which
each node represent an attribute in the query and multiple occurrences of the same at-
tribute contributes to multiple distinct nodes. The edges represent equality relationships
among the attributes, which could be either joins between predicates of the query or equal-
ity constraints inside each predicate, shown by repeated attributes in a subgoal. We refer
to this graph as the attributes-graph of the query.

At the second level, the hyper-node concept is used to represent the predicates in
the query. We refer to this graph with hyper-nodes as the predicates-graph of the query.
Each hyper-node in this graph is a set of nodes from the attributes-graph. The third
level is yet another set of hyper-nodes representing the attributes of the head predicate.
Each of these hyper-nodes includes a connected component from a subset of nodes in
the attributes-graph, representing a single attribute in the head predicate of the query.
Finally, as the fourth level of abstraction, we use one hyper-node to represent the head of

the query. Naturally, this hyper-node contains all the elements from the third level as its
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nodes. We now formally define the above concepts and notions.

Let @ be a standard conjunctive query. In HMCQ, @ can be represented using a
super-graph called G, which contains the following four graphs. We use the following
conjunctive query @ to illustrate the concepts as we go through the definitions below.

Q : Q(BaEaB) T p(A,B,A),p(C,B,D),S(E, O)

Definition 4.1. (Attributes-graph). The attributes-graph of Q denoted as G4 = (Va, E4)

is an undirected, node-labeled graph that has the following properties:

1. V4 is the set of constants and variables in the body of Q. There is a separate node for
each occurrence of an attribute in each predicate regardless of attribute distinctness.
This set can be divided into three subsets Vie, Vg, and V.. Included in Vy,. are all
the nodes representing constants in the head of Q. Vg contains nodes for variables
in Q) that are distinguished. V, represents the existential attributes in Q. V, itself is
further divided into two disjoint subsets: Ve, includes existential variables and Ve,

includes the constants.

2. Set E4 contains the edges between nodes in V4 representing equality relationships
among variables in Q. This set is further divided into two subsets of Eq and Ee,
where Eg includes the edges between nodes of Vg, and E, represents the edges between

the nodes in Vgy,. Nodes in Ve and Vi in the graph will not be part of any edges.

3. Node labels are used to represent orders at different levels of super-graph Gg. They
are also used to differentiate between types of nodes. Labeling is performed in such
a manner that the node representing attribute ’A’ in the j** position in predicate p;
would be labeled (¢, j, k,val), where ¢ > 0 is called the predicate-index, which is the
unique tdentifier assigned to predicate p; in predicates-graph of Q, k is a set called
the head-index representing the positions of A’ in the head of Q). The value of k is
0 for elements in V.. Finally, val is the value-index, representing the value of the

constant nodes in V.. Naturally val is empty for the variable nodes.

40



4. Since equality is an equivalence relation, for each node v in V, the edge (v,v) is
in E4. For ease of representation, we omit these edges from our representations.

Additionally, G 4 is transitive.

Figure 4.1: Attributes-graph of @

Figure 4.1 shows the attributes-graph for our query example (). Note that since all

nodes are variables, the value-index (val) is omitted from the labels for ease of represen-

tation.

Definition 4.2. (Predicates-graph). The predicates-graph Gp of Q denoted as Gp =

(Vp, Ep) is an undirected, node-labeled, edgeless graph with the following properties:

1. Vp is a set of hyper-nodes, each of which represents a predicate p; in the body of
Q and each containing a set of nodes from the graph G 4. The nodes in the hyper-
node representing p; are arquments of p; in Q. As mentioned earlier, positions of

attributes in p; are captured through the labels of the nodes.

2. For the hyper-node representing predicate p; in Q, we use (i,name) as the label,
where i > 0 is a unique identifier assigned to predicate p; indicating the it" subgoal

in the body, and name is the predicate name.

3. Ep is empty.

Figure 4.2 shows the predicates-graph of () presented earlier.

Definition 4.3. (Head-variables-graph). This graph of @, denoted as Ggyv = (Vgv,Egv),

s an undirected, node-labeled, edgeless graph with the following properties:

41



Figure 4.2: Predicates-graph of @

1. Vgv is a set of hyper-nodes, each representing an attribute of the head predicate,
which is either a distinguished variable or a constant. Therefore Vv contains either

a connected component from Vy or an element in set Vi, of graph G 4.

2. As mentioned earlier, head-index in the label of the V4 nodes determines the position
of a component or a constant, and hence the Viy nodes in the head. Depending on
the size of this indez, a connected component from (V;) can represent several nodes
in Vgv. Each hyper-node in head-variables-graph is labeled with this index to present

the position of variable (which is represented by the hyper-node) in the head.
3. Egvy is empty.

Figure 4.3: Head-variables-graph of )

Figure 4.3 illustrates the hyper-nodes and their components in the head-variables-

graph of query Q.
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Definition 4.4. (Head-graph). The head-graph of Q, denoted as Gy = (Vy,Ey), is an
undirected, edgeless graph that has the following properties:

1. Vg contains a hyper-node representing the head predicate of the conjunctive query.

This hyper-node itself contains all the hyper-nodes of graph Gy .

2. Eg 1s empty.

/ o \ \
[ ........................... L ~\
\ (1) /

S
— . {9 —

Figure 4.4: Head-graph of @

Figure 4.4 illustrates the head hyper-node of ) and Figure 4.5 is the complete
representation of query @ in the HMCQ model. From the above definitions, we observe

the following:

e In Vy, there is no edge between the elements in V; and V.

e The sets Ve, Vg, and V, are pair-wise disjoint and V. U V3 U V, = V4.

e The sets F; and E, are disjoint and F; U E, = E4.

e Since the essential information of Gy and Ggy are captured in labeling of the
attribute-nodes, for the sake of clarity, we sometimes omit them from our represen-

tations in HMCQ.
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Figure 4.5: HMCQ representation of @

Table 4.1 summarizes the notation used to represent a conjunctive query @ in
the HMCQ. The following example illustrates the above concepts and definitions and
also shows the differences between our HMCQ representation and the hyper-graph model

presented in [Qia96].
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| Level |

Notation

LDescription

One

Ga= (Va,E4)

G 4 : the attributes graph of the query.

V4 : a set of nodes representing the argu-
ments in the body of the query.

E 4 : a set of edges representing the equal-
ity relationship between attributes.

Two

Gp = (Vp, Ep)

Gp : the predicates graph of the query.

Vp : a set of hyper-nodes representing the
subgoals in the body of the query.

Es=10

Three

Guv = (Vav,Env)

Gpgyv : the head-variables graph of the
query.

Viay : a set of hyper-nodes representing
the arguments in the head of the query.

Epy =10

Four

G : the head graph of the query.

Vi : a set containing one hyper-node rep-
resenting the head of the query.

Egp=10

Table 4.1: Summary of notations in HMCQ for a query Q.
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_________

Figure 4.6: Hyper-graph of query Q1 as defined in [Qia96]
Ezxzample 7: Consider the following conjunctive queries:

QLUX,Y,Z):— p(X,Y,2),r(X,U,V).

Q2(X7Y7Z) P p(X,Y,X),T‘(X,Y,Z).

Figure 4.6 shows the hyper-graph representation of Q1 as described in [Qia96]. A
limitation of this model is that it is not possible to represent the equality constraint in
predicate p in query Q2.

In the HMCQ model, @1 and Q2 can be represented as shown in Figure 4.7. In the
graph of @1, hyper-nodes of the head-variables graph and head-graph are shown, however
in the graph of Q2, these are omitted for sake of clarity. If an attribute node does not
belong to more than one head variable in the head-variables-graph of the query, we can
use an integer index to represent its position in the head in its label instead of a set of
integers. This is followed in the graph of Q2. |

As can be seen from Example 7, there are several differences between the hyper-graph
representation and HMCQ. In the former, the edges can only represent joins in the query,

however in E 4 of G 4, attribute equality constraints within a predicate are also captured.
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Figure 4.7: Graphs of queries J1 and Q)2 for Example 7

In addition, the number of nodes in the former representation equals to the number of
distinct attributes in the query. However in (G4, nodes include non-distinct attributes as
well. Also in HMCQ), the position of attributes in the head are also recorded through the
head-index and G'g. This is important when it comes to considering containment mapping
and the rewriting problem.

We now need to establish a correspondence between the concepts presented in chap-

ter 2 and the HMCQ model.

4.2 Containment and Rewriting in HMCQ

Through HMCQ, we can provide a graph-based formalization useful in our context of query

rewriting. In chapter 2, it was mentioned that the rewriting problem in the standard case
and in the context of data integration consists of steps to generate maximally contained

rewriting in the form of union of conjunctive queries, where each query in the union uses
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in the body the heads of some views as subgoals. Also, using the unfolding technique, we

can generate a query that is equivalent to the rewriting by replacing the view heads in the

bodies of the rewriting with their respective rule bodies. To use our graph-based model

to study the rewriting problem, we first need to establish correspondence between these

concepts and HMCQ.

Definition 4.5. (Containment Mapping) Given conjunctive queries @1 and Q2, a con-

tainment mapping from Gg1 to Gz in HMCQ is a mapping p from nodes in G4(Q1) to
nodes in G 4(Q2) such that the following conditions holds:

1.

Every node n; in (Va)g1 is mapped to a node ny in (Va)ge, where PosIndex(n;) =
PosIndex(n;). Function PosIndex(n) returns the position-indez in the label of node

n.

Every node n; in (Vg)g1 is mapped to a node ny in (Vg)g2, where HIndex(n;) C
HIndex(ny). HIndex(n) returns the head-indez in the label of the node n, which is

a set of integers. We refer to this as head unification condition.

Every hyper-node n; € (Vp)q1 is mapped to a hyper-node ny € Vp(Q2), where
NlIndex(n;) = NIndex(ny). Function NIndex(n) returns the name element in the

label of the node n. We refer to this condition as subgoal name consistency.

. Every mode n; € (Vec)g1 s mapped to some node ny € (Veo)g2, where VIndex(n;) =

VIndex(ny). Function VIndex(n) returns the value element in the label of the node

n. We refer to this condition as constant matching.

The edges in set p((Ea)q1) form a subset of the edges in (Ea)g2. We refer to this
condition as containment mapping consistency. Note the abuse of notation: we use

p(E4) to refer to < p(n;), p(n;) > for every edge < nj,n; >€ E4.

Definition 4.6. (Graph Containment) Conforming to the definition of containment, the

graph Ggq1 is contained in G, denoted as Gg, T Gg,, if f there is a containment

mapping from Gz to Ggi.
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The notion of graph containment in HMCQ is explained using the following example.

Example 8: Consider the following queries:

QUX,Z):— p(X,Y),r(Y,2).
Q2(A,A) : — p(A, B),r(B, A).
Figure 4.8 represents the super-graphs of Q1 and Q2. Consider a mapping p from G to
Goa:
p={(0,1,{1}) = (0,1,{1,2}),(0,2,{0}) — (0,2,{0}), (1,1,{0}) — (1,1, {0}), (1,2,{2}) —
(1,2,{1,2})}.

\ / / \ /
‘opy Ny oy N1y

Figure 4.8: Super-graphs of Q1 and Q2

Here, p is a containment mapping, explained as follows:

e every distinguished attribute in Q1, i.e., each node in (V4)g: is mapped to a node
in (Va)g2 with the same position-index.
e since (0,1, {1}) — (0,1, {1,2}) and {1} C {1,2}, and since (1,2, {2}) — (1,2,{1,2})
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and {2} C {1, 2}, the head unification condition is satisfied.

since every hyper-node in (Vp)g1 = {(0,p),(1,7)} is mapped to a hyper-node in
(Vp)o2 = {(0,p),(1,r)} with the same name-index, the subgoal name consistency

condition is satisfied.

The set of edges p((Ea)g1) = {< (0,2,0),(1,1,0) >} is a subset of (E4)g2 = {<
(0,2,0),(1,1,0) >,< (0,1,1,2),(1,2,1,2) >}, and hence the containment mapping

consistency is satisfied.

Therefore Q2 C Q1. 0O

Definition 4.7. (Rewriting Graph) In HMCQ, a rewriting R of a query Q using view

definitions V = {vi,v2,...,vn} is a super-graph G contained in Gg, and Gg includes

the graphs of V as subgraphs such that:

. The set (Vp)r of hyper-nodes consist of only the head hyper-nodes from the graphs

Gy of view super-graphs in set V.

. Nodes in (V4)r are hyper-nodes from Vyy in view graphs in set V. Edges in (E4)r

are equality relationships between these hyper-nodes.

. Labeling of the nodes correspond to the hyper-node indezes of R.

The above correspondence indicates that a rewriting of query using views is a super-

graph whose level-two graph is made of level-four graphs of the views. Also nodes in level-

one of rewriting super-graph corresponds to level-three graphs of views. As mentioned in

chapter 2, to test containment of rewriting in the standard case, we can use unfolding.

Definition 4.8. (Unfolding) In HMCQ, a rewriting R with super-graph Gg is unfolded

into an equivalent query R’ with super-graph Gg by:
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Figure 4.9: The super-graphs of example 9

e Replacing each v in (V4)g with their corresponding components from graphs G 4 in
view graphs in set V. Additionally, we transfer each edge in (E4)r to every node in

their respective components. Also we add to (G4)r, all the nodes from V, in graphs

Gy of set V.

o Replacing each hyper-node in (Vp)gr representing head graph of v; € V, with all the
hyper-nodes in (Ep).,.

e New labeling of nodes are performed to reflect the hyper-node indezes of R'.

To illustrate the above concepts, we consider the following example.
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Example 9: Consider the following query @ and views V'1 and V2:

Q(X)T) . p(X,Y),T(Y, Z)’S(Z’T)
V1(A,B,C): — p(A,B),r(B,C).

V2(A,B,C): — r(A,B),s(B,C).

Figure 4.9 presents the super-graphs Gg, Gy1, and Gyz. Figure 4.10 shows the
graph Gg of a rewriting set that includes the following conjunctive queriesR1 and R2:
R1(X,T): - VIX,Y,Z),V2(A,Z,T).
R2(X,T): - VIX,Y,C1),V2(Y,Z,T).

Finally, Figure 4.11 shows the unfolded graphs of these two rewritings using HMCQ.

— —

\ / \ / \ / \ /
Yoy Ny Yoy Ny

Figure 4.10: The super-graphs of the rewriting in Example 9

For every standard conjunctive query (), there exists a unique super-graph G in
HMCQ representing Q). We use Graph(Q) to denote a function which returns this unique

graph Gg of Q. Interestingly, this function is one-to-one (trivial variable renaming may
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Figure 4.11: Super-graphs of unfolded queries of R1 and R2 in example 9

be needed) and therefore Graph~!(Ggq) is a function that returns Q. We use these two
functions to alternate between the two forms of the query.

So far we have established correspondence between rewriting concepts and HMCQ.
We use this model in the next chapter as an abstraction in our top-down approach to

generate maximally contained rewriting for standard conjunctive queries.
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Chapter 5

A Top-Down Approach to

Rewriting

5.1 Advantages and Challenges of Top-Down Approach

In our study of related work in chapter 3, we mentioned that previous rewriting algorithms
took a bottom-up approach to the problem. That is, when rewriting a query using a set
of views, those algorithms focus on minimal set of subgoals (optimally a single subgoal)
of the query that can be covered using a view. Therefore, in the bucket and Minicon
algorithms, to represent each minimal coverage of query subgoals, a copy of the head of
a view is added to the body of the rewriting query. In the inverse-rule algorithm, for
each subgoal covered by a view, an inverse-rule is added to the rewriting. Alternatively,
we propose a top-down approach to rewriting and focus on partial mappings that have
maximal coverage of query subgoals using a copy of the head of a view. Our goal in this
approach is to improve the quality of rewriting, compared to the bottom-up approach, and

do this efficiently. We use Minicon as the best representative of the bottom-up approach
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to which we compare our proposed solution. Before we proceed, we define a metric for
measuring the quality of rewriting. Referring to [LMS95], we consider the quality of a
query to be determined by the cost of its evaluation. Since evaluation of a query depends
on the number of predicates in its body, we use the following metric to measure the quality
of a rewriting that is in the form of union of conjunctive queries.

Definition 5.1. (Quality of Rewriting): Let R = {Q1,...,Qk} be a rewriting for a given
query and views, where each Q; is a standard conjunctive query. Let |Q;| denote the

number of subgoals in the body of Q);. We define the area of R as A = 21?21 |Qil, i.e., the

number of predicates in the body of queries in R.

Quality of rewriting is inversely proportional to the area of rewriting. As can be seen
from this definition, for a rewriting R in the form of union of standard conjunctive queries,

the area is directly proportional to two factors, width and length defined as follows:

1. the number |@;| of predicates in the body of individual rewriting queries, to which

we refer as the width of Q;.

2. the number &k of queries in the resulting rewriting R, to which we refer to as the

length of the rewriting.

Using the metric defined above, the subgoal-based, bottom-up techniques such as
Minicon generally generate rewriting queries with large widths, which in turn results
in larger areas and hence not high quality of rewriting. As mentioned earlier, a post-
processing is described in [PHO1] to decrease the width of generated rewriting queries,
which is costly since this post-processing should be performed on every rewriting and

since the number of rewriting queries are usually much larger than the generated MCD
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tuples (usually close to cartesian product of MCDs). In addition, as shown in Example
6, due to subgoal-based approach, the Minicon algorithm does not produce the optimal
length k of rewriting either, at least not efficiently as costly comparisons are needed to
identify redundant MCDs. In our work, we consider a top-down approach to generate
high-quality rewritings efficiently, by simultaneously decreasing the width and length of
the rewriting. For example, for the query () and views V in Example 3, our top-down
technique generates the following rewriting, which is better than the results produced by
Minicon.
dX,W):— v (X,Y),vs(Y,Z,W).

Now the question that arises is how far the quality can be improved? More specifi-
cally, is there an ideal rewriting which has minimal length and width and if yes, what is
the complexity of finding it?

It can be shown that in the standard case of conjunctive queries, under Open-World-
Assumption (OWA) there exists a unique minimal length for the rewriting. We claim
that the view-based approach of top-down always produces the minimal length rewriting.
However, as for the width, while a minimal rewriting exists in general [LMS95], it is not
unique and in some cases it is very hard to find. That is why the post-processing described
in [PHO1] does not claim to always find minimal width. Our top-down approach does not
guarantee to find the minimal width either, however our goal is to decrease the width as
much as efficiently possible. We next describe our top-down approach.

Simply put, for each rewriting in our top-down approach, we try to create partial
mappings from largest possible subset of query subgoals to each view. For each of these

mappings, a copy of head predicate of the view is added to the body of the rewriting query
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generated so that the entire body of the query is covered. This is what we mean by our
top-down approach to the rewriting problem. Since we aim for maximal coverage in the
top-down approach, these mappings are expected to produce rewriting queries with fewer
subgoals and therefore higher quality without post-processing.

Although the top-down approach seems to be more suitable for producing higher-
quality rewritings, this advantage comes at the cost of added complexity. Also, due to
underlying assumptions of the rewriting problem in the context of data integration (namely
OWA), there are additional complexities and issues associated with this approach, and any
algorithm that guarantees maximality of rewriting should take measures to deal with such
issues. We next briefly outline these issues, and later we describe details of measures taken
to deal with these issues.

One of the pitfalls in a top-down approach is at the stage of finding consistent
partial mappings for each view. At that point, we have to ensure that maximal coverage
of subgoals with a single copy of view will not affect maximality of rewriting. More
specifically, there are cases where a consistent partial mapping for maximal coverage can
add constraints to the rewriting, as apposed to using several partial mappings of smaller
sizes. In such cases, the constraints added may result in loss of maximality of rewriting.

The following example illustrates this point.

Example 10: Consider the following query @) and view V:
Q(X7 Y7 U) C p(Xa Y)a T(Ya Za U)

V(AaB,C) P p(A,B),T‘(B,A,O)-

For convenience, throughout this chapter we abuse the notation and use Q(X,Y,U)
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to refer to the head of ). Here, V' can cover both subgoals p and r in @@ and we can
generate a mapping for covering both subgoals with a single occurrence of the head of the
view in the rewriting. The resulting rewriting R; is as follows:

RI(X,Y,U): — V(X,Y,U).

However R; is not maximal. The following rewriting Ry is a maximally contained
rewriting of Q.
R(X,Y,U):— V(X,Y,C),V(Z,Y,U).
To show this, consider the following instances of predicates p and r, and the tuples

defined by R; and Ry. Here Ry C Ry. The tuples defined only by R, are shown in bold.

D r Ry R,

(a'7 b) (b7 a7 C) (a7 b’c) (a7 b’ C)
(d,b) | (b,dye) | (d;bse) | (d,b,e)
(a7 b’ e)

(d7 b’ c)

Example 10 shows that if there are joins in the view that do not exist in the query,
the maximal coverage (R;) may result in loss of maximality of the rewriting. To capture
this, we use HMCQ model described in chapter 4 to identify the necessary conditions that
must be satisfied to avoid this problem. Using this formalization, our algorithm correctly
determines whether a mapping is required to be broken into smaller mappings.

Another problem that we may encounter in a top-down approach is inherited from

the OWA described in chapter 2. In OWA, we assume that data sources are not complete.
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This means that views with similar definitions, covering the same subgoals, must also be
used in the rewriting to ensure maximality of rewriting. In a top-down approach, this
implies that while maximal coverage of each view can produce a rewriting, this rewriting
may not be maximal. Therefore, depending on the coverage of other views, it is necessary
to sometimes break this coverage into smaller pieces and combine them as needed. The

following example illustrates this point.

Exzample 11: Consider the query @ and views V7 and Va:
Q(X,Y) L p(XaY)aT(Ya Z)
‘/I(AaB7C) P p(A,B),T(B,C).

V2(A’B) T T(AaB)'

Two possible rewritings of @) are as follows:
RI(X7Y):_ ‘/1(X7Y7Z)

Ry(X,Y): — Wi(X,Y,C1),Va(Y, Z).

Under OWA, R; by itself is not maximal but Ry U Ry is a maximally contained
rewriting. a

From this example, it is evident that in a top-down approach, we have to consider
the coverage of other views as well, when deciding on subgoal coverage of a view. Later in
this chapter, we will describe how our algorithm deals with this issue by using a two-phase
approach in determining subgoal coverage of views.

We will next use HMCQ model presented in the previous chapter to study and
analyze the rewriting problem. The goal is to determine general conditions that must be

satisfied in our top-down approach in order to ensure maximality of rewritings.
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5.2 A Top-down Approach to Rewriting using HMCQ

Using the HMCQ model, in this section we present a top-down approach to generate
rewriting for standard case. We study the conditions that must be satisfied by HMCQ
to ensure maximality of rewriting. These conditions reflect issues inherent to a top-down
approach that were briefly pointed out at the beginning of this chapter.

Our top-down approach to rewriting problem includes the following three phases:
establishing consistent partial mappings from the query to each view, examining partial
mappings to ensure maximality of rewriting, and finally combining the partial mappings
properly to generate maximally contained rewriting in the form of union of standard
conjunctive queries. For ease of exposition, we assume the query and views do not include

constant arguments. These phases are described in details, as follows.

5.2.1 Generating partial mappings

In our top-down approach to generate rewriting for a query and a set of views, in the
first phase we examine each view Vj, in isolation, and construct a set of consistent partial
mappings from the query to Vj, each of which covering maximal number of subgoals of
the query. Intuitively, each partial mapping is a variable mapping from some variables in
the query to a subset of variables in some view. Each partial mapping indicates which
subgoals in the query are covered by a copy of the view in the rewriting. Later on, we
combine these partial mappings to generate a rewriting for the query. This phase may look
somewhat similar to the phase in Minicon algorithm, which forms MCDs, each of which is
a tuple created to represent each partial mapping. While our goal in this phase is to build

consistent partial mappings, each covering as many query subgoals as possible without
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loss of maximality of the rewriting. In contrast, Minicon uses each partial mapping to
cover as few subgoals as possible. Also, it is not required in Minicon to test for loss of
maximality of rewriting, since partial mappings are minimal. Next, we discuss the details
of this phase using the graph-based model HMCQ.

Let G g be the super-graph representing the query @, and G'y; be the one representing
a view in the set V of views. From Definition 4.5 of containment mapping in HMCQ
presented earlier, we know that this mapping is identity on name-index in the labels of
hyper-nodes in predicates graphs Gg and Gvy;. In general, a desired partial mapping must

satisfy the following four conditions to ensure containment and maximality of a rewriting:

Condition 1: [Head-Unification] Since for a rewriting R to be contained in the
query, the head of R must be unifiable to the head of @, all the distinguished
variables of the query must be mapped to distinguished variables in the view. We

refer to this condition as head-unification.

Condition 2: [Join-Recoverability] Since a rewriting R = r1,...,r of a query @
is a union of queries defined by the partial mappings of the views, and since each
rewriting query r; in the union must be contained in @, therefore joins between
the variables in the subgoals across domains of individual partial mappings must
be enforceable to ensure consistency among the partial mappings. We refer to this

condition as join-recoverability.

Condition 3: [Partial-Mapping-Consistency] Since each partial mapping by itself
must be consistent, the joins in the query between the nodes in the domain of partial

mapping must either exist in the view or must be enforceable.
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Condition 4: [Partial-Mapping-Mazimality] Since additional edges may exist in a
view, consistent partial mappings that are not minimal (in coverage of the subgoals of
®), may not produce maximally contained rewriting (ref. Example 10). To ensure
maximality, unless inevitable, equality constraints in the view should not enforce

constraints on the rewriting that do not already exist in the original query.

The first three conditions above govern consistency of the mappings and containment
of each rewriting query r; induced by them. That is, by ensuring that these conditions are
satisfied, we are assured the rewritings generated will be contained in the query. The last
condition ensures maximality of a rewriting induced by these partial mappings. We next
describe the correspondence of these conditions for a partial mapping p; in the HMCQ

model. In the following conditions, D,,; is a set representing the domain of u;.

Head-unification condition in HMCQ
Testing this condition is straightforward. To satisfy this condition in HMCQ for a

partial mapping p; from Gg to Gy;, the following must hold:

Vny € (Vd)Q : ng € Dﬂj = uj(nk) € (Vd)Vi

(5.1)

The above indicates that if a distinguished node in G is mapped to an existential
node in Gy;, this condition is violated. This is also consistent with the definition of

containment mapping in HMCQ, where all the elements in Vy of containing query (Gg)
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must be mapped only to the elements in set V; of the containee (e.g. a rewriting query

G,).

Join-recoverability condition in HMCQ
The following must hold for all existential edges e =< ng,ng > in (E¢)g in order

to satisfy this condition:

Ve =< ng,ng >€ (Ee)g : (nk € Dy; Anp & Dy) = pji(ng) € (Va)y,

(5.2)

This condition focuses on the existential edges in the attributes-graph of G, where
one of the nodes, but not both, is in the domain of u;. In order to satisfy this condition,
the node in the domain of yx; must be mapped to a distinguished node in Gy;,. It is
noteworthy that since condition 1 ensures that condition 2 is satisfied for distinguished

edges (Eq)q of G, there is no need to check this set again.

Partial-mapping-consistency condition in HMCQ
Let H be a subset of all possible edges that can be created between distinguished
nodes in attributes-graph of the view Vj, that is H C (Vy)y; x (V4)v;. To satisfy partial-

mapping-consistency condition, the following must hold for y;:

dH :V < ng,ng >€ (Eq)g: Ng,Niy € Dy, =< pj(ng), pyi(ng) >€ (HU (Ea)y;)

(5.3)
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Here, we are concerned with the edges in G connecting the nodes that both are in
the domain of u;. To satisfy this condition, all such edges must either exist in Gy, or can
be created in the graph of the view. In the conjunctive form, set H corresponds to the
head-homomorphism on V; that equates some variables in the head of the view to make
the mapping consistent. In HMCQ, we represent this homomorphism as a set of edges
that can be added between distinguished nodes in the attributes-graph of the view. For
each edge e =< ng,ny > in (E4)qg where both nodes ny and ny are in the domain of pj,

there exist three possibilities:

1. Both pj(ng) and pny) are in (Ve)y;, that is they are both mapped to existential
nodes in Gvy;. Then the edge < pj(ng), uj(ng) > must be in (E,)y; to satisfy this

condition. Otherwise, the condition is violated.

2. Only one of p;(ng) or puj(ng) is in (Ve)y;, say uj(ng), and the other one p;(ny) is
in (V4)y,. That is one node is mapped to an existential node and the other to a
distinguished node. In this case, we know that edge < p;(ng),p;(ng) > will not be

in (E.)v; nor in (Ey)v;, and therefore the condition is violated.

3. Both u;j(ng) and p(nw) are in (Vy)y;. In this case, if the edge < u;j(ng), pj(nw) > is

not in (E4)y;, this condition can be satisfied by adding this edge to set H.

In case 1, presence of edge < uj;(ng), pj(ne) > in (Ee)v; indicates that there is a
dependency between the hyper-nodes p, and p, with respect to u;, where ny € p, and
Nk € py. That is, removal of the attributes of any one (but not both) of these predicates
from domain of p; will cause violation of join-recoverability condition by the attribute

nodes of the other predicate.
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Figure 5.1: Super-graphs of Q, V1, and V2 in Example 12

Ezample 12: Consider the following query and views:

Q(XaY,W) . p(X,Y,Z),’F(Z, U7 U)aS(WaY)
Vl(A)Ba-D,EaF) P p(A,B,C),T(C,D,A),S(E,F).

V2(A,B,D) : — p(A,B,C),s(A, D).

Figure 5.1 shows the super-graphs of @), V1, and V2. The only maximal mapping
from Gg to Gy is the following:
w1 ={(0,1,1) — (0,1,1),(0,2,2) — (0,2,2),(0,3,0) = (0,3,0), (1,1,0) — (1,1,0),(1,2,0)
- (1,2,3),(1,3,0) = (1,3,1),(2,1,3) = (2,1,4),(2,2,2) — (2,2,5)}

This mapping covers the hyper-nodes {(0,p),(1,7),(2,s)} in Gg. We now check p;

for the above three conditions.

e head-unification: The subset of (V)¢ in the domain of y; is {(0, 1, 1), (0,2,2), (2,1, 3),
(2,1,3),(2,2,2)}. Since every node in this set is mapped to an element in (Vy)y1,

none of the mappings violate head-unification condition.
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e join-recoverability: Since all the nodes in set, (E.)g = {< (0, 3,0), (1,1,0) >,

< (1,2,0),(1,3,0) >} are in the domain of u1, this condition is satisfied.

e partial-mapping-consistency: For the set (E4)g = {< (0,3,0),(1,1,0) >,

<(1,2,0),(1,3,0) >,<(0,2,2),(2,2,2) >}, we have the following:

— according to u1, the source and destination nodes of edge < (0,3,0),(1,1,0) >
are mapped to (0,3,0) and (1,1,0), respectively. Since both of these nodes
belong to set (V)y1, the edge < (0,3,0),(1,1,0) > must be in (E¢)y1, which
is indeed true. Additionally, this edge creates a dependency, in the context of

1, between the hyper-nodes (0,p) and (1,r) of Gg for p,.

— according to up, the nodes of edge e =< (1,2,0),(1,3,0) > are mapped to
(1,2,3) and (1, 3,1) respectively, both of which belong to set (V3)y1. The edge
e can thus be added to set H, and therefore condition 3 is not violated.

~ Since edge < (0,2,2),(2,2,2) > belongs to (E4)q, according to condition 1,
both nodes of this edge will be mapped to distinguished nodes in (V3)y1. These
nodes are mapped to (0,2,2) and (2,2, 5), respectively. The edge does not exist

in (E4)v1, but it can be added and therefore condition 3 is not violated.

At this point, the first three conditions are satisfied in the mapping pq. Similarly, for V2
we have the partial mapping | = {0,1,1) — (0,1, 1),(0,2,2) — (0,2,2),
(0,3,0) — (0,3,0),(2,1,3) — (1,1,1),(2,2,2) — (1,2,3)}, which also satisfies all three

conditions mentioned above and covers the set {(0,p), (2,s)} from Gg. O
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Lemma 5.1. Let Q be a query and V be a set of views all in the standard conjunctive
form. Let U be the set of all possible partial mappings from the super-graph Gg to those
for views, and Gp be the rewriting induced by subset T of U. If the query Graph™'(GR)
15 contained in Q, then every element in T satisfies head-unification, join-recoverability,

and partial-mapping-consistency conditions. O

Proof. (Sketch) Since Graph~!(Gpr) is contained in @, it indicates that there exists a
containment mapping p from @ to the unfolding of Graph™(Gg), called R', where p
maps each variable in @ to a variable in R’ such that (1) the subgoals in the body of Q
become a subset of subgoals in R’, and (2) the heads of @ and R’ become identical. If
there exists a partial mapping u; from Gg to Gy, in T such that:

e u; violates head-unification condition, it implies that there exists a distinguished
variable X in @ such that X is mapped to an existential variable in V;. If X is
not a shared-variable in (), then the above implies that X will not be present in
the body of Graph™(GR) and therefore query Graph™!(Gr) will not be safe. Our
requirement is that every conjunctive query should be safe. If X is a shared-variable

in @, the above implies that p is not consistent. Hence, no such y; can exist in 7.

e u; violates join-recoverability condition, it implies that there must exist a variable
X in @ that appears in both subgoals p; and p and X in p; is mapped to an
existential variable in V;. Since in unfolding Graph~!(GRr), existential variables of

V; are replaced with fresh variables, p will not be consistent. Hence, p; cannot exist

in T
e 4, violates partial-mapping-consistency condition, then this implies that p is not
consistent. Therefore, no such y; can exist in 7. O
So far we described representations of first three conditions that, if satisfied, will
ensure containment of a rewriting. Next, we describe details of the forth condition.
Partial-mapping-maximality condition in HMCQ
In order to ensure that a partial mapping p; would produce maximally contained
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rewriting, we need to closely examine the edges between the attributes of the view in the
range of 1. This is to ensure that no extra constraints are added to the rewriting unless it
is necessary. It was mentioned earlier that the partial-mapping-consistency condition may
sometimes create dependencies between predicates of the query that are in the domain
of ;. As a result, the hyper-nodes in the predicates-graph of query in domain of yu; are
partitioned into a set of connected components, where the predicates in each component
can not be removed from the mapping without violating the join-recoverability condition
by the remaining predicates of that component. This dependency information is important
during checking for partial-mapping-maximality condition. Therefore, we refer to this set
of connected components in the domain of u; as C,;. Before describing this condition, we

introduce a few concepts in HMCQ, used in our formalization.

e Pred(Gg,n) is a function from (V4)g to (Vp)g, which returns for each node n €

(Va)q the hyper-node p € (Vp)g, where n € p.

e For partial mapping u;, we use Mj_l to denote the inverse of u;, defined in the usual

way. Note that the inverse of a partial mapping need not be a function.

e Comp(Cy,,p) is a function which returns the component ¢ in C,; to which the

predicate hyper-node p belongs.

Now we are ready to describe the partial-mapping-maximality condition. As men-
tioned above, we focus on the set of edges that a view Gy; enforces on to the attribute
nodes of G induced by a mapping ;. This set has two sources for its elements. One
obvious source is the inverse mapping of a subset of edges in (E4)y;, which includes all the

edges e =< n,n’ > in Gy, where both n and n' are in the range of y;. The other source
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that is less obvious is the set of edges generated by the mapping of repeated predicates,
i.e., hyper-nodes with identical name-index value, in G¢ to the same predicate hyper-node
in Gy;. As the result, edges are enforced between those attributes of these predicates that

are mapped to the same predicate in the view. This set of edges is formalized as follows:

Definition 5.2. Let S be the set of all edges that are enforced by Gy, through the partial

mapping ;. This set includes the following elements:

e The collection of sets uj"l(ek), for every edge ey, =< n,n’' >€ (Ea)y, where both n
and n' are in the range of p;. Note the abuse of notation: we use u;l(ek) to refer

to all possible edges between sets ,uj_l(n) and ,uj_l(n’) for e =<mn,n' >.

e For set P of predicate hyper-nodes in G¢q that are mapped to the same predicate
hyper-node py of Gv;, edges created between every pair of nodes from set P that

have the same position-indez in their labels.

Using S and also considering the set of components C,;, partial-mapping-maximality

is satisfied if the following condition holds:

V< ng,ng >€85:

Comp(Cl;, Pred(Gq,nk)) # Comp(Cy,, Pred(Gq,ni)) = < ng,np >€ (Ea)q

(5.4)

The above indicates that for each edge < ng,ni > in S, where predicates for the

69



nodes of the edges do not belong to the same components in Cy;, if < ng,ng > is not in

(Ea)q, then this condition is violated.

Example 13: Consider the partial mappings pu1 and p} for the query and views in
Example 12. We now can test these two mapping for partial-mapping-maximality.

For 1 = {(0,1,1) — (0,1,1),(0,2,2) — (0,2,2),(0,3,0) = (0,3,0),(1,1,0) —
(1,1,0),(1,2,0) — (1,2,3),(1,3,0) — (1,3,1),(2,1,3) — (2,1,4),(2,2,2) - (2,2,5)}, we
have S, = {<(0,1,1),(1,3,0) >,<(0,3,0),(1,1,0) >} and
Cu = {{(0,p), (1,7)},{(2,s)}}. It can be seen, < (0,1,1),(1,3,0) > is the only edge in
S that is not present in (E4)g. However, since Comp(C,,,, (0,p)) = Comp(C,,(1,1)),
condition 4 is not violated by p;.

Now let us consider the mapping p} = {(0,1,1) — (0,1,1),(0,2,2) — (0,2,2),
(0,3,0) = (0,3,0),(2,1,3) — (1,1,1),(2,2,2) — (1,2,3)} for V2. We have:

S =1{<(0,1,1),(2,1,3) >} and Cy, = {{(0,p)}, {(2,5)}}. Here, the edge
< (0,1,1),(2,1,3) > is not in (E4)q. Since Comp(C,,, (0,p)) # Comp(Cy,,(2,s)), con-

dition 4 is violated. O

Lemma 5.2. Let Q and v be a query and a view in standard conjunctive form. IfGg is a
contained rewriting of Gg generated from set T of partial mappings with disjoint subgoal
coverage from Gg to G,, where each element in T satisfies partial-mapping-mazimality

condition, then Graph™ (GR) is mazimally contained in Q. O

Proof. Since the rewriting G is contained in G'g and there is only one view v, if

Graph™1(GR) is not maximally contained in (), it indicates that partial mappings in
T enforce new equality constraints on unfolding of Graph~(GRr), called R', which do
not already exist in . Since elements in 7' have disjoint subgoal coverage, equality

constraints added to subgoals outside the domain of each partial mapping will not affect the
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maximality of containment of R’ in Q). Only equality constraints within the domain of each
partial mapping can result in loss of maximality. However, partial-mapping-maximality
ensures that these equality constraints either already exist in @ or they are between

subgoals that are dependent to each other due to condition 3. O

It is important to note that violation of this condition is necessary but not sufficient
condition for loss of maximality. However finding condition that is both necessary and
sufficient is harder in general.

This concludes our analysis of the phase of generating partial mappings. Due to
other influential factors such as OWA, in the next phase of our top-down approach, we

examine partial mappings from a different perspective to ensure maximality of rewritings.

5.2.2 Partial Mappings and The Impact of OWA

So far we used HMCQ to study generation of consistent partial mappings for each view
in set V of views and verified the conditions described earlier. Also Lemmas 5.1 and
5.2 indicate that after verification of each partial mapping, combination of these partial
mappings will produce maximally contained rewriting, as far as each individual view is
concerned. Our next goal is to show how to combine these mappings to generate a desired
rewriting. Compared to a bottom-up approach, there are two issues in our top-down
approach which contribute to additional complexity in this combining phase of partial
mappings of different views. To illustrate these issues, we consider Minicon again as a
representative of the bottom-up algorithms.

First noticeable difference in complexity between the Minicon approach and our top-

down approach is related to disjoint condition in property 3.2, described earlier. This

71



property significantly reduces the search space of Minicon during the second phase (for
combining MCDs). According to this property, only disjoint MCDs (based on subgoal
coverage) can be combined together to generate non-redundant rewriting queries. This
implies that many combinations of MCDs will be avoided due to having intersections with
each other. This property stems from the fact that partial mappings in MCDs of Minicon
have minimal subgoal coverage. Since in our top-down approach the partial mappings are
maximal, this property no longer holds, since it is possible to break partial mappings with
maximal subgoals into smaller ones in order to create disjoint mappings.

Secondly, as mentioned at the beginning of this chapter, one of the challenges of top-
down approach results from Open-World-Assumption, which implies that partial mappings
from different views which cover the same subgoals must also be broken down before
combining them together to guarantee maximally contained rewriting.

To address the above two problems, we consider an additional phase in our top-
down approach, in which we analyze and compare the partial mappings. In this phase,
we do not need to compare partial mappings of the same view. This is because during
the mapping generation phase, partial mappings of each individual view are generated in
such a way that combining them together would ensure maximality of rewriting and only
disjoint partial mappings can produce non-redundant rewriting queries. However, if the
mappings are from different views, when their subgoal coverage are not disjoint, we must
separate disjoint portions of the mappings from which we create new mappings. This

condition is formalized next, for which we need to introduce some terms as follows.

o View(u;) is a function that returns the view for which the mapping p; is defined.
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o Subgoals(u;) denotes the maximal set of predicate hyper-nodes of the query in the
domain of p;. Similarly, for a set M of partial mappings, Subgoals(M) returns the
union of maximal predicate hyper-nodes in the domain of each partial mapping ug

in M.

o Comps(u;) is the set of components for subgoals of the query in the domain of y4;. As
mentioned earlier, these components represent dependencies between the subgoals

with respect to u;.

e Subset relationship (11 C pg) between two partial mappings p1 and po (from the
same view) is defined as u; being an extension of uy and with Subgoals(u;) C

Subgoals(puz).

e Equality relationship (u; = p2) between two partial mappings p; and pp means that

p1 € pg and pg C py.

Complete-mapping-maximality condition in HMCQ

We can now present the condition that must be satisfied in this phase, in order
to guarantee maximality of rewriting. We refer to this condition as complete-mapping-
maximality. Let M be the set of partial mappings generated for a query ) and a set of

views V. Complete-mapping-maximality condition is satisfied, if the following holds.
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VYu, € M (3pj € M : View(u;) # View(u;) N Subgoals(p;) N Subgoals(uj) = S)
= IM' C M : (Yu, € M': p), C p; A|Comps(uy)| = 1) A Subgoals(M') = S

(5.5)

The above condition states that for every partial mapping u; in M generated during

the first phase, if there exists some other partial mapping p; in M from a different view
where the two mappings share subgoal coverage, then there should exist a subset M’ of
the partial mappings in M such that each mapping ) in M’ is a subset of y; and the
subgoal coverage of p), is a component in the intersection of u; and p;. Simply put, for
every two partial mappings from different views, their overlapping subgoal coverage must
be created into minimal components.
Ezample 14: Suppose set M contains the mappings p;, p5 and pf for the query and
views in Example 13. Recall that for p1, {{(0,p), (1,7)},{(2,5)}} is the coverage of the
mapping in form of components. As was shown in the example, ug violates condition 4,
and hence we replace it with pf, and pf having the coverage {{(0,p)}} and {{(2,3s)}},
respectively.

We next compare each mapping with the others to check whether the above condition

holds. Hence:

e 41: This mapping overlaps with w over (0,p). Therefore, an extension of y; must
exist in M having coverage equal to component to which (0, p) belongs. However, no

such mapping exists in M and therefore this condition is violated. To rectify this,

74



we can add a new mapping u1; to M with coverage {{(0,p), (1,7)}}. By comparing
the mappings u5 and p1, we note that the two share the predicate (2,s), and since
no such extension of u; exists in M, again this condition is violated. To rectify this,

we need to add pi2 with coverage {(2,s)} to M.

ps: No comparison is needed between this mapping and uj, since they are both

from the same view. Furthermore, since coverage of u5 has only one component, it
is not possible to generate a new extension of this mapping and therefore the above

condition is not violated.

ps: It is not necessary to compare this mapping with b, since they are both from
the same view. Furthermore uf and u;; are disjoint. Again, since coverage of uj

only has one component, the above condition is not violated.

The result of comparing the mappings is the set M = {u1, p11, p12, 45, w3} where the

SUbgoal coverage Ofy'l is {{(0,p), (la"‘)}a {(2’ 3)}}7 M11 18 {{(0,;0), (17 T)}}a 12 is {{(2a s)}}

, o is {{(0,p)}}, and the subgoal coverage of uj is {{(2,s)}}}. O

5.2.3 Rewriting Generation in HMCQ

The final phase in our top-down approach to rewriting focuses on generation of rewriting

R using the partial mappings in M. The main task in our rewriting generation phase is to

efficiently combine partial mappings in M and generate a set of complete mappings, each

of which resulting in a conjunctive query covering the entire body of ). Union of these

conjunctive queries form a maximally contained rewriting of @) using V. In this phase, the

emphasis is on efficiency in combining the partial mappings and producing non-redundant

75



rewriting queries. Benefiting from efforts of previous phases, we can now use the following

two properties to reduce the search space and speed up this phase:

Property 5.1. When combining partial mapping from M to generate rewriting for
G using a set graphs of views in 'V, for every combination C covering all the subgoals
of Gg that results in a non-redundant rewriting, the following two conditions must

hold:

1. Vu&p; € C : Subgoals(u;) N Subgoals(pj) = 0

2. eM:Bur...ur €C: (1 UpzU...Upg =p'))

Using these two properties, we can eliminate many useless combinations of partial
mappings in the rewriting phase. The first condition in Property 5.1 is the same as
Property 3.2 in Minicon [PHO1]. The second condition in Property 5.1 is unique to our
top-down approach and can be used to further reduce the search space in the rewriting
generation phase. The following example illustrates these points.

Example 15: Let set M be a set of mappings generated for query @ and views Vi and
V2 in Example 12. To generate a rewriting R for (), we examine combinations of those

elements in M which satisfy both conditions of the above property as follows. Since M =

{N17M117M12>#'2a#§}a where S'U'bgoals(p’l) = {{(0,p),(1,r)},{(2,8)}}, S'U'bgoals(ull) =

{{(0,p), (1,7)}}, Subgoals(uiz) = {{(2, )}}, Subgoals(uh) = {{(0,p)}}, and Subgoals(s)

{{(2,s)}}, the only combinations that satisfy both conditions are {41} and {x11, u5}. The
two graphs of the rewriting queries for these combinations are shown in Figure 5.2. Al-
ternatively, these queries are as follows:

RI(X,)Y,W): - VI(X,Y,X,W)Y).
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R2(X,)Y,W): - VI(X,Y,X,E, F),V2(W,B,Y).
It is noteworthy that for this example, the Minicon algorithm produces the following
rewriting R'.
R1(X,Y,W):— VIX,Y,X,E, F),V1(Ay,By,D{,W,Y).
R2X, Y, W):~ VI(X,Y,X,E;, F;),V2(W,By,Y).
As shown above, the area of rewriting R’ generated by the bottom-up approach of
Minicon is greater than that of rewriting R produced by our top-down approach. This
increase is due to Minicon’s focus in generating partial mappings with minimal subgoal

coverage. a
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R1, R2} of G using the Gy and Gy,
Q

Figure 5.2: Graphs of rewriting R
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This concludes our study of the proposed top-down approach using HMCQ in gen-
erating maximally contained rewriting for standard conjunctive query using views. In
the next section, we introduce a top-down rewriting algorithm, called TreeWise, which

implements the proposed ideas and approach.

5.3 TreeWise Algorithm

After using HMCQ to provide an abstraction of our top-down approach to rewriting,
we can now present details of our rewriting algorithm, called TreeWise. Naturally, this
algorithm implements our top-down approach to generate maximally contained rewriting
for a standard conjunctive query using a set of standard conjunctive views. By using
the conditions and properties captured in HMCQ and by carefully choosing proper data
structures and procedures, TreeWise is set to efficiently generate better quality rewritings
without any post-processing.

TreeWise algorithm operates in three phases: mapping tuple construction, binary-
tree construction, and rewriting generation phase. The first phase corresponds to the
generation of partial mappings presented in the abstraction. In binary tree construction
phase, we address the issues involved in partial mapping comparison discussed in our
analysis. Finally, the rewriting generation phase includes steps for combining partial
mappings and generating rewritings. Technical details of the three phases are provided
below.

In order to determine the conditions outlined in the abstraction efficiently, the very
first step in TreeWise algorithm includes construction of super-graphs Gg and Gy of the

query @ and set V of views, which will be used in all phases of the algorithm. We do not
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present the details of generation of these graphs from the HMCQ description.

5.3.1 Mapping Tuple Construction Phase

In section 5.2.1, we described the four necessary conditions to ensure usability of partial
mappings in generating maximally contained rewriting. We now use this knowledge to
generate a set of consistent partial mappings each of which satisfying these conditions.
In this phase of the TreeWise Algorithm, for each view V; in V, a set of mapping
tuples Ty; is created. Each element ¢t =< w4, pr, (GH)v;)t, ((Gp)Q)t, Ct, Subsy > in Ty, is

defined as follows.

e 4y is a partial mapping from a subset of attribute-nodes of Gg to the nodes of Gy;.

e p; is the conjunctive equivalent of the partial mapping ;. That is, p; is a partial

mapping from @ to V;.

o ((Gu)v;)+ is a copy of the head-graph of view in HMCQ representing u:. To this

graph, some edges may be added to make the mapping consistent.

® ((Gp)q)+ is the copy of the predicates-graph of the query that has edges added during
the mapping construction phase to reflect subgoal dependencies in the domain of y;

(refer to partial-mapping-consistency condition).

o C; is the set of connected components in ((Gp)Q):-

e Subs; is the set of subgoal hyper-nodes in predicates-graph of the query covered by

pe. That is, Subs; = Subgoals(pt).
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Adding edges to ((G )y, )+ to make uy consistent is equivalent to head-homomorphism

in MCDs of Minicon (ref. Chapter 3). In presentation of our algorithm, we use the terms
p~l, Pred(Gg,n), and Comp(Cy,p) introduced in the previous section.
Description of phase one: For creating the set of mapping-tuples for view V;, we
must first find all possible mappings from @ to V;, each of which covering as many of
query subgoals as possible. Each partial mapping maps the variables of subgoals in @ to
subgoals in V; with the same names. Hence, the predicate hyper-nodes in Gy; form a set
of equivalence classes, each of which representing targets for a predicate hyper-node in
G@ . Intuitively, the cartesian product of the elements in these classes define all possible
mappings from Gg to Gy;, each of which covering maximal number of predicate hyper-
nodes in Gg. Next, for each partial mapping i, we create a mapping tuple and examine
it for the four conditions described in section 5.2.1.

Head-unification condition: Conforming to condition 5.1, we check the set Vy of nodes in

attributes-graph of the query in the domain of u;. For each node ng in (Vy)g that is
mapped to an existential node in (V;)y;, we remove from the domain of ¢, attributes of
hyper-node pr, € (V;)q, where nj € py,.

Join-recoverability condition: To satisfy condition 5.2, for each existential edge < ng, ng >

in the attributes-graph of the query, where only ny is in the domain of y;, we verify if ny is
mapped to a distinguished node in the view. Otherwise, we have to remove from domain
of u4, attributes of hyper-node py, in (Ep)g, where ny € pp,.

Partial-mapping-consistency condition: For condition 5.3 to hold, we have to examine each

edge < ng,ng > in attributes-graph of the query, where ny and ny are both in the domain

of u;, and find a set H of distinguished edges to add to the view in order to make the
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mapping consistent. For the three possible cases mentioned in the description of condition

5.3, TreeWise proceeds as follows:

1. If ny and ng are both mapped to existential nodes in the view, then edge <
pe(nk), pe(ng) > must exist in (E4)y;. If not, then we remove from the domain
of pt, nodes of hyper-nodes p,, and py, in (Ep)g, where ng and ny are in p,y and
Dm, respectively. However, if the mapping exists in the view, then subgoal depen-
dency exists between p,, and p,y and this dependency is captured by TreeWise in
the form of an edge < pm,pny > in the copy ((Gp)g): of the predicates-graph of
the query for p;. After addition of a new edge to (((Gp)g)t), this graph has to be

replaced by its transitive closure graph, since dependency relation entails transitivity.

2. If ng is mapped to an existential node and ny to a distinguished node, then we have

to remove the nodes of p,, from domain of y;, where nyx € pp,.

3. If ny and ny are mapped to distinguished nodes in V;, even if the mapping of the
edge does not exist in the view, we can add it to the rewriting. Hence, in the
TreeWise algorithm, if p¢(ng) and p¢(ng ) belong to different hyper-nodes in head-

graph ((Gg)v;): of the view and the edge does not already exist, we add it.

After checking every edge and taking the appropriate action, tuple ¢ will now have

the set of connected components C; where the subgoals of each component is dependent

on one another.

Partial-mapping-mazimality condition: As mentioned, violations of the first three condi-

tions result in removal of subgoals from the domain of the mapping, i.e., restricting the
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mapping. This is because violation of these conditions indicates that V; is not suitable for
covering some subgoals of the query. However, violation of partial-mapping-maximality
in condition 5.4, does not imply that the view is not suitable for covering certain subgoals
of the query. Instead, it indicates that the current mapping as a whole may not gener-
ate maximally contained rewriting. Therefore, in case of violations of this condition, we
should replace the mapping by its smaller constituencies, i.e, breaking the mapping into
smaller pieces.

After testing for partial-mapping consistency, ((Gp)g): is divided into set Cy of
connected components that will determine options for breaking the partial mapping us
when there is a violation of condition 5.4. The focus of our attention is now on set S
presented in Definition 5.2. Additionally, to decide the breaking strategy, the algorithm
keeps track of violations of condition 5.4 in the form of conflicts between components in
predicates-graph of the mapping tuples in the following manner. For every edge ¢; in S
with nodes belonging to different components of C;, we test whether e; is present in the
graph of Q. If not, a conflict tuple between predicate hyper-nodes containing nodes of e;
is created. After testing this for all elements in S and creating necessary conflict pairs,
the algorithm then decides on how to break u; into minimal number of conflict-free pieces.
Using dependency in ((Gp)g): and the set containing conflict pairs, TreeWise breaks p;
into smaller mappings in such a way that each new mapping will have maximum number
of components without any conflict between its predicate hyper-nodes.

At the end of this phase, TreeWise has generated a set of partial mapping tuples
that satisfy the first four conditions required. Figure 5.3 shows the steps of the first phase

of the TreeWise algorithm for construction of mapping tuples.
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procedure constructMappingTuples(Q,V,Gq,Gv)
Inputs: /* Q and V are conjunctive queries in standard form */

/*Gg and Gy are the graphs of @ and V in the HMCQ model*/
Qutput: T is a set of consistent mapping tuples.

T =0.
for each view v in V
T, = 0.

Form set E, of Equivalent Classes of v for subgoals in Q).
for each element e in the cartesian product of the elements in E,,
where e covers set g of subgoals in @

Let h be the least restrictive head-homomorphism
on v such that there exists a mapping p; and
its corresponding p; in HMCQ such that p;(Subs;) = h(e'), where
Subs; C g and €' C e, and p; satisfies conditions 5.1-5.3.
if h and p; exist, then:
form tuple t = (pt, pt, v, (GH)w, ((GP)Q)t, Ct, Subst), where:
a) (Gy)y is the head-graph of v with
with minimal set of edges to represent h.
b) ((Gp)g): is the predicates-graph of @ with
minimal set of edges to represent dependency from condition 5.3.
c) C; are the connected components in ((Gp)g):
end if
Conflicts = 0.
Form set S; described in Definition 5.2 for tuple t.
for each edge < nj,ny > in Sy where
Comp(C4, Pred(Gg,n1)) # Comp(Cy, Pred(Gg,n2)):
if <mny,ny > is not in G, then:
add pair (Pred(ny), Pred(n3)) to Conflicts.
end if
end for
Break ¢ into minimal set of mapping tuples T; such that for each element
t' in T}, Subsy does not contain two elements p; and
p2 where (p1,p2) is in Con flicts.
T,:=T,UT;:.
end for
T =T,UT.
end for
Return T

Figure 5.3: First phase of the TreeWise algorithm
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An Optimization for Mapping Tuple Construction Phase: In order to efficiently
avoid generation of redundant mapping tuples in phase two and therefore ensure minimal
length of generated rewriting, we add the following optimization for phase one of the
TreeWise algorithm.

As mentioned above, each partial mapping maps the variables of subgoals in @ to
subgoals in V; with the same names. Hence, the predicate hyper-nodes in Gy; form a set
of equivalence classes, each of which representing targets for a predicate hyper-node in
Gq . In our optimized implementation of phase one, instead of using cartesian product of
these classes to generate the partial mappings, we use the following strategy.

First we check every element in each of the equivalency classes for head-unification
condition and whenever this condition is violated, we remove the target predicate hyper-
node from the class. After pruning the equivalence classes, we next divide the set of
equivalent classes into two subsets S7 and S5. 57 will include all those classes that only
have one target element (i.e., are of size one) and Sy will include the rest.

For all elements in set S1, we create one mapping tuple 4. and test it for join-
recoverability condition exactly as described above. Whenever a node violates this condi-
tion, we remove its hyper-node from the tuple, but we add the equivalence class it belonged
to subset S3. The reason for proceeding in such manner is that join-recoverability con-
dition may be satisfied inside set S using this hyper-node. Next, we check #,4, for
partial-mapping-consistency condition as described above. Whenever two nodes violate
this condition, we remove their hyper-node (or hyper-nodes) from #,,4,. This time however,
we do not add its equivalence class to Ss. This is due to the fact that partial-mapping-

consistency can not be satisfied, even if we add predicate hyper-nodes from Ss. Finally, we
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use the same conflict detecting strategy described above for checking for partial-mapping-
maximality and, if necessary, breaking t,,q; into minimal number of mapping tuples.

Now that we are finished with equivalence classes of set S7, we focus on set S and use
a bottom-up approach to generate all mapping tuples. That is, for elements in classes of
set Sy, we create a set of mapping tuples, each of which having minimal number of targets
such that each tuple satisfies both join-recoverability and partial-mapping-consistency
conditions. It should be noted that since tuples generated from set S; have minimal
coverage, partial-mapping-maximality need not to be checked.

By doing the above, we should all the mapping tuples that satisfy head-unification,
join-recoverability, partial-mapping-consistency and partial-mapping-maximality condi-

tions.

5.3.2 Binary Tree Construction Phase

After generating the set T of partial mapping tuples that satisfy the first four conditions in
the abstraction, the TreeWise algorithm checks for complete-mapping maximality condi-
tion. As stated earlier, the goal of this phase is two-fold. One is to address the problem of
OWA and the other is to create grounds for property 5.1. Satisfaction of complete-
mapping-maximality condition ensures achieving both goals. It is important to note
that, similar to partial-mapping-maximality condition, violation of complete-mapping-
maximality condition implies that smaller pieces of partial mapping must be added to set
T. However, as condition 5.5 implies, unlike condition 5.4, violation of complete-mapping-
maximality condition does not mean that the partial mapping in question is not maximal.

It merely indicates that combination of this mapping with partial mappings of other views
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may not yield maximally contained rewriting. Therefore, in case of violation, the partial
mapping does not have to be removed from set T'. Instead, new smaller mappings that
are all extensions of the original mapping must be created and added to T. We refer to
this process as cloning a partial mapping tuple into children mapping tuples.

To facilitate testing of condition 5.5 and also to keep track of parent-child relation-
ships between the mapping tuples, the TreeWise algorithm uses binary trees (hence the
name TreeWise) in the following manner.

For each partial mapping tuple generated in the previous phase, TreeWise creates a
binary tree with this tuple as its root. Therefore set T' of mapping-tuples becomes a set T”
of binary trees. Next, the root of each binary tree ¢; in T is compared with the leaf-tuples
of all other trees in 7" that are from different view (than the root). For each leaf-tuple m;,
of t;- that has intersection on subgoal coverage with the root of ¢}, one intersection and one
difference tuple are generated and added as children of m;, in t;-. Dependencies presented
in predicates-graph ((Gp)g) of m;, adds, to the intersection child, all the predicates in
the components of the intersection.

There are several advantages of this strategy of phase two. First of all, since only
leaf-tuples participate in the comparison, no redundant mapping tuples are created. The
second benefit is that we can easily keep track of parent-child relationship and therefore we
can efficiently take advantage of condition 2 in Property 5.1. Thirdly, since we use binary
tree and intersection-difference strategy in creating the leaf-nodes, based on condition 1 of
Property 5.1 we can efficiently traverse the trees during the rewriting generation phase.
This considerably reduces the search space of this phase.

The main drawback of this implementation is that the outcome of this phase depends
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on the order in which the trees are compared with each other. This is due to the facts
that tree structures are binary and we only clone the leaf-nodes. Therefore, different
orders of comparison can split the trees in different ways and ultimately effect the quality
of generated rewriting. Hence, employing a good tuple analysis and determining a good
order for comparison may further improve the quality of the rewriting at additional cost.

After comparing roots of every tree with leaves of all other trees that are from
different views, condition complete-mapping-maximality may not still be satisfied. We
now need to clone the leaf-nodes that have intersection with at least one other tuple
into children nodes having only one component based on set Cy of each tuple. With the
TreeWise algorithm, this task is straightforward due to using binary trees. Again, the
predicates-graphs of the query in the mapping tuples are used to clone nodes into minimal
components.

This concludes the binary tree construction phase of our algorithm. At this point,
set T includes all the information needed for generating maximally contained rewriting

for the query, which will be the focus of the last phase below.
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procedure binaryTreeConstruction(7T)
Inputs: /* T is the set of partial mapping tuples
created in the first phase of the algorithm */
Output: T' is a set of binary trees with mapping-tuples as nodes.
T = 0.
for each tuple ¢t in T
Form a binary-tree ¢’ with ¢ as the root and Add it to 7".
end for
for each root r of tree ¢ in T":
for each tree ¢ in T" such that there exists a leaf-node m
in ¢ such that Subs,, belongs to more than one component in ((Gp)g)m:
for each leaf-node m in #":
if Subs,, N Subs, # { then:

a) form new tuple m; such that Subs,,, contains all the
predicates hyper-nodes in the components from C,, that
have a predicate included in Subs,, N Subs,.

b) form new tuple mg such that Subs,,, = Subsy, — Subsp, .

Set m; as the left child and ms as the right child of m.

end if
end for
end for
end for
for each tree t' in 7" such that there exists a
leaf-node m in ¢’ such that Subs,,
belongs to more than one component in Cy,:
for each leaf-node m in t' such that Subs,,
belongs to more than one component in C,, and Subs,,
has intersection with at least one root of a tree in T :
a) form new child tuple m; of m such that |Cp,, | = 1.
a) form new child tuple mgy of m such that Subsy,, = Subsy, — Subsy, -
set m; as the left child and my as the right child of m.
end for
end for
Return T/

Figure 5.4: Second phase of the TreeWise algorithm
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5.3.3 Rewriting Generation Phase

In the last phase of TreeWise algorithm, rewriting queries are generated from partial
mapping tuples nodes of the trees in set 7’. Using Property 5.1, TreeWise algorithm
considerably reduces the search space of this phase.

In this phase, an array of bins is created, each representing a predicate in the query.
Copies of all trees from set 7" that their root-tuples have coverage for query-predicate
of the bin are placed inside the bin. Next, trees in the bins are traversed to find the
combinations of tuples covering the entire body of the query. Since each tree has only
disjoint subtrees and also because of condition 2 in Property 5.1, traversals are always
limited to a small part of each tree. Furthermore, any combination that has tuples that
are not disjoint will be ignored. For each valid combination ¢ of tuples satisfying Property
5.1, a rewriting query is generated.

For each tuple ¢ of view v in a combination ¢, generating rewriting involves creating
a subgoal v(Y") representing ¢ in the body of the rewriting. For generating subgoal v(Y”)
from view definition v(Y’), we use the partial mapping p;;! to unmap distinguished vari-
ables (Y) of the view to variables of the query. There are two issues involved in this task;
First of all, for any variable y in Y that is not in the range of the partial mapping pn, we
must create fresh copy of y and add it to v(Y”). Secondly, since in p, a set of variables of
the query may be mapped to a single variable in Y of the view, we define a representative
of this set arbitrarily, except we use distinguished variables of query whenever possible.

Since this choosing of the representative must be performed uniformly across the tuples

of combination ¢, similar to Minicon algorithm [PHO1], we use EC(Y) to refer to this
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uniformity across the body of the rewriting. Figure 5.5 describes details of the rewriting

generation phase of the TreeWise algorithm.

procedure rewritingGeneration(7”)
Inputs: /* T" is the set of binary trees generated

during the second phase of the algorithm */
Output: R is a set of rewriting queries in conjunctive form.

R =0.
for each combination ¢ = {t,...,t;} of tuples of tree-nodes in set 7" where:
a) Subs(t1) U... U Subs(ty) cover exactly the subgoals of Q.
b) for any i # j, Subs(t;) N Subs(t;) = 0.
c) for any i # j, parent(t;) # parent(t;).
for each tuple ¢; in the combination c:
Define mapping ¢; on the Y; = Graph~!(Head;,) as follows:
if variable y € Y is in the range of p;,
b = pi* (y).
else
¢i(y) is a fresh copy of y.
end if
end for
Form conjunctive rewriting r:
r(EC(head(Q))) : = Vn, (BC($1(Y1))),- .., Vo, (EC(#6(Yk))).
add r to R.
end for
Return R

Figure 5.5: Third phase of the TreeWise algorithm

Unlike Minicon [PHO1], TreeWise does not have a post-processing phase. The
increase in quality of rewriting is achieved by considering tuples covering as larger number
of subgoals as possible. The efficiency of this approach is due to keeping track of parent-

child relationships and pruning the search space accordingly.
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5.3.4 Proof of Correctness of the TreeWise Algorithm

Preliminaries

We show that, given a set V of views, for every query Q: ¢(X): — p1(X1)s...,pn(Xn),
the rewriting of @) generated by TreeWise is equivalent to that generated by the Minicon
Algorithm.

For this rewriting, suppose Minicon generates the set M = {m1,...,m;} of MCDs
and TreeWise generates the set 7' = {¢1,...,t;} of partial mapping tuples (PMT). Let
MR denote the rewriting generated by Minicon and TR denote the rewriting generated
by TreeWise. We know that both MR and TR are in the form of a union of standard
conjunctive queries. Next, we will show that for every query r,, in MR, there exists a
query r; in TR such that r,, = ry.

Property 5.2. Suppose ry, is generated using a combination C = {m;,...,m;} of MCDs
from M. Then, the query ry is generated using C' = {ty,...,ty} of PMTs from T, where
the following statements D1 and D2 hold.

D1: Vm; € C3ty € C' : (1) View(m;) = View(ty) and (2) Subgoals(m;)
Subgoals(t;)

N

D2: Vt; € C'3H C C : (1) Vm € H : View(t;) = View(m) and (2) Subgoals(c;)
Subgoals(H)

Note that we use Subgoals() and View() for MCDs with the same definitions as
presented earlier for PMTs. From the combination C’, we know that the query r; exists

in the rewriting TR for the following two reasons:

1. Since Conditions 5.1, 5.2 and 5.3 in TreeWise and Property 3.1 of Minicon are

satisfied, we know that the union of subgoal coverage of MCDs in M for a view v
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is equal to the union of subgoal coverage of PMTs in T for the same view v. Since
MCDs have minimal subgoal coverage, this indicates that if there exists a PMT ¢
in T for v, then there exists a corresponding set M’ of MCDs in M for v such that

Subgoals(M') = Subgoals(t).

. Satisfaction of Condition 5.5 and also Property 5.1 in TreeWise ensures that for
combination C (representing r,,), there exists a corresponding combination C’ (rep-
resenting r;) from T, where (i) all the PMTs in C’ have disjoint subgoal coverage
and they cover the entire body of the given @, and (ii) tuples in C' come from the
same set of views as the MCDs in C. The difference is that the subgoal coverage
of each tuple in C’ for a view v may correspond to the subgoal coverage of a set of

tuples in C' for the same view v.

For the purpose of our proof, we assume the following normalization step was taken

during generation of rewritings in both Minicon and TreeWise algorithms. Note that in

rewriting generation phase, both these algorithms use the function EC(A) that returns

an arbitrary variable X; representing the equivalence class E. Here E is the set of all

vaiables in query () that are mapped to the same variable A in the view. We assume that

the rewriting generated will include constraint X; = X; for each variable X; in E.

Proof of Soundness

From Property 5.2 and also the correspondence between Properties 3.2 and 5.1 of Minicon

and TreeWise related to the rewriting generation phase, we can conclude that the number

of queries in MR always equals to that of TR. Note that we assume the Minicon algorithm

includes the length optimization, so it does not generate redundant MCDs. This indicates
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that TR does not include any queries other than those contained in some query in MR.
Therefore, to prove soundness, we prove r; is contained in rp,. It suflices to show that
there exists a containment mapping from r,, to ry.

Clause D1 in Property 5.2 together with satisfaction of condition 5.3 ensure that
for every subgoal v;(¢n(Yn)) in 7 there exists subgoal v;(¢, (_YZ,-)) in r; such that the
following holds. For every variable Y appearing at position k in ¢,(Y;) where Y also
appears in the query Q, either Y appears at position k in ¢/, (Y_7;,) or another variable Y’
appears at position k in ¢/, (ﬁ), where Y also appears in Q and the constraint Y =Y’
holds in r;. The above indicates that there is a function p that maps every subgoal in the
body of r, to a subgoal in the body of r;. Since every variable X in the head of r,, also

appears in the body of @, X is also mapped to the same variable in 7, and hence the

heads of r,, and r; unify. This implies p is a containment mapping from r,, to rs. o

Proof of Completeness

We have to prove that r,, is contained in r;. For this, it suffices to show that there exists
a containment mapping from expansion of ry, called r}, to the expansion of ry,, called /,,.

It follows from clause D2 in Property 5.2 that for every subgoal v;(¢,(Yy)) in 7y,
there exists a set H = {'uz(gbil,1 (—q)), oy v . (?’,}C))} of subgoals in r,, where the union
of subgoal coverage of MCDs represented by elements in H is equal to subgoal coverage
of PMTs represented by v;(¢,(¥y)).

The above together with satisfaction of condition 5.4 indicates that for every subgoal

Pm(Zm;) in ry there exists a subgoal p,(Z! /) in ry, where the following holds. For every
J

variable Z appearing at position k in Z,,; where Z also appears in the query Q, either Z
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appears at position k£ in ZTm; or another variable Z’ appears at position k in —Z-’m_;, where
Z' also appears in the query and the constraint Z = Z' exists in r,. This means there
exists a mapping p’ that maps every subgoal in the body of r} to a subgoal in the body
of r].. Since every head variable X in r} appears in the query @, X is also mapped to

the same variable in 7], and hence the heads of ; and ), unify. This indicates p' is a

containment mapping from r} to 7,. O
5.3.5 Complexity of the TreeWise Algorithm

It should be noted that the worst-case asymptotic running time of TreeWise is same as
Minicon, Inverse-rules, and the Bucket Algorithm. As stated in [PHO1], the running time
of the basic Minicon algorithm is O(nmM)", where n is the number of subgoals in the
query, m represents maximal number of subgoal in the views, and M equals to the number
of views. It should be noted that optimizations mentioned earlier to check for redundant
MCDs and also to tighten the resulting rewritings have performance overheads.

Our observation of the TreeWise algorithm indicate that due to the following reasons

the running time of this algorithm is almost identical to Minicon.

1. Since views in data integration systems are static, construction of super-graphs for
the views can be performed once and used many times. Moreover, we know that the

complexity of constructing each graph is polynomial (n?) in the number of attributes

in the view. Therefore, this overhead is not significant for the TreeWise algorithm.

2. In worst case, the mapping tuple construction phase of TreeWise will search a space
identical to Minicon. However since TreeWise takes a top-down approach, in most

cases will look at significantly fewer number of mapping tuple candidates. Only

95



task that TreeWise performs and Minicon does not in the first phase of operation is
to check for partial-mapping-maximality condition. The complexity of this task is
dependent on the number of components in view graph of the mapping tuple and also
the number of joins in the view in the range of the mapping. By taking advantage
of the efficiency of graph structures, we observe that the overhead of this check is
not significant. We also observe that TreeWise generally produces fewer Mapping

Tuples compared MCDs generated by Minicon.

. During the second phase, for each mapping tuple, a binary-tree is created, which
is a task with linear complexity. However, the task of comparing trees is more
expensive. Since only leaf-nodes of one tree are compared to the root of the other,
each comparison is performed in linear time. Also, number of tree comparisons is

polynomial (n?) to the number of mapping tuples that are not minimal.

. During rewriting generation phase, by using the tree structures and limiting the
search only to one portion of each tree and finally by benefiting from property
5.1, TreeWise in most cases performs more efficiently than Minicon in this phase.
Additionally, since MCDs cover minimal number of subgoals, the Minicon algorithm

must inspect more buckets while combining them to generate rewriting.

This concludes our description of TreeWise algorithm. The next chapter presents the

results of our experiments to evaluate performance and quality of rewritings generated by

TreeWise, basic Minicon and optimized Minicon as suggested in [PHO1]. Before moving

on, we conclude this chapter with a brief discussion on the possibility of extending HMCQ

beyond standard conjunctive queries.

96



5.4 Beyond Standard Conjunctive Queries

The HMCQ model presented can properly capture details of the rewriting problem for
standard conjunctive queries. However, introduction of general built-in predicates will
add new subtleties and complexities which the current HMCQ as introduced cannot han-
dle. More specifically, the current HMCQ is insufficient to capture relationships between
the attributes in the built-in predicates. Extending HMCQ to general case of built-in
predicates requires further investigation. Here, we will consider special cases of built-in
predicates that HMCQ with minor modifications can handle. We focus on two classes
of conjunctive queries with built-in predicates that were introduced earlier in chapter 2:

open-LSI queries [FP04] and conjunctive queries with arithmetic equality expressions

[ALi05).
5.4.1 Open-LSI Queries

From [PHO1], we know that presence of LSI comparison in the views will not effect the
rewriting problem. However if the query also contains LSI comparison predicates, then
the implication test (Definition 2.7) is required for each candidate rewriting [GSUW94].
Since homomorphism-property holds for LSI queries [Klu88], finding a single containment
mapping that makes the implication true suflices. Parallel to this result, it has also been
shown in [FP04] that when the LSI comparisons are all open, no coupling is possible in
the implication and again only a single mapping is enough to make the implication true.

The above results indicate that steps described earlier for the rewriting problem will
not be affected by presence of built-in predicates in the query of type open-LSI. In this

case, we can use the HMCQ abstraction with addition of the implication test during the
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generation of each partial mapping tuple, and in case the implication does not hold, that

tuple should be discarded.

5.4.2 Conjunctive Queries with Arithmetic Equality Expressions

In chapter 2, we presented a formal definition of these conjunctive queries and containment
for such queries, which again included an implication test [GSUW94]. When built-in
predicates in conjunctive query and views are in the form of linear arithmetic equality
expressions, the problem of rewriting query using views is affected in subtle ways, making
HMCQ unsuitable for use in such cases.

An issue we face when trying to use HMCQ for the arithmetic equality expression
case is how to represent equality expressions in the graph model. We can consider built-
in predicates as edges between nodes in the attributes-graph of query. This complicates
the model as new nodes representing new constants and attributes which do not exist in
the predicates in the query must be added to the graph and new types of edges must be
introduced for capturing arithmetic operators.

Since the HMCQ model is not suitable for representing built-in predicates, an al-
ternative is to represent the standard portion of the query using HMCQ and, similar to
LSI case, test constraint implication separately. A question that comes to mind is: what
impact do arithmetic constraints have on the standard graph of the query in HMCQ?

The first impact is related to distinguished attributes of the graph. We know that
distinguishability of attributes is an important issue in the rewriting problem and there-
fore captured in HMCQ. However, in the context of linear arithmetic equality expression,

distinguishability is replaced by computability of attributes [Ali05]. Currently it is not
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possible to capture in HMCQ computability of attributes stemming from arithmetic ex-
pressions.

A second issued faced is that built-in predicates can create new edges between the
nodes of attributes-graph of standard portion of the query (i.e., they can enforce joins).
These edges can be identified by solving the system of equations defined by arithmetic

equality expressions and adding them to the model.
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Chapter 6

Experiments and Results

In this chapter we present details of our experiments to evaluate the performance of
TreeWise and three versions of the Minicon algorithm which we have implemented. The
results are used to analyze and compare strengths and limitations of these algorithms.
For this purpose, we performed about 100 execution batches taking around 123.5 hours.
The goal of these experiments are twofold. In the first class of experiments, the TreeWise
algorithm is compared with existing rewriting algorithms under different circumstances. In
[PHO1], authors report results of similar experiments for three existing algorithms (bucket,
inverse-rules, and Minicon), and since Minicon generally outperformed the other two, we
use Minicon as a representative of this group with which we compare our algorithm. The
second class of experiments conducted studies the scalability of the TreeWise algorithm
for different types of queries when the number of views grows.

Our experiments includes three classes of queries: chain, star, and complete queries,
as used in [PHO1]. In chain queries, except for the first and last subgoals, each subgoal
is joined on one variable with its adjacent subgoals, creating a chain of joins. In star

queries, there is a unique subgoal that is joined with all other subgoals in the body of the
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Figure 6.1: Examples of HMCQ representation for: (a) chain query (b) star query (c)
complete query.

query, and there is no join between the other subgoals. In complete queries, each subgoal
is joined with every other subgoal in the body of the query. Using HMCQ representation,
Figure 6.1 illustrates examples of these classes of queries. In addition to these queries,
we also tested the algorithms using conjunctive queries, chosen randomly from a pool of
such queries.

To make the results of our experiments comparable to Minicon, we used the same
random query generator used in [PHO1], which was kindly provided to us by Dr. Pottinger.
Using this generator, we can control the following parameters: (1) the widths of the queries
and views (i.e., number of subgoals in the body), (2) the size of the pool from which
query subgoals are chosen, (3) the number of variables in each subgoal, (4) the number of
distinguished variables, i.e., the number of arguments in the head, and (5) the number of
repeated predicates in the queries and views.

The results are compared using the following parameters: (1)performance, i.e., the

elapsed time to generate the rewriting, (2) the length of the rewriting, i.e., number of rules,
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(3) the width of the rewriting queries, i.e., number of subgoals in each query, and (4) the
area of the rewriting (the product of query width and length introduced in Definition 5.1).
For the same set of parameters, results are averaged over multiple runs (between 30 to
100 runs). As for the performance, it is noteworthy that since in the TreeWise algorithm,
the graphs of the views (at pre-processing stage) can be generated once and used many
times, given that the views are static in data integration systems, we omitted the time to
generate these graphs. Also, since these graphs in TreeWise are implemented as regular
undirected graphs, this generation time is not long compared to the entire processing time.
Finally, we used a Pentium 4, 2793 MHz, 1GB RAM, running Windows XP Professional.
Both TreeWise and Minicon algorithms were implemented in Java and run on the Eclipse

platform.

6.1 Comparing TreeWise with Minicon

For these experiments, we implemented three versions of the Minicon algorithm. The first
version, referred to simply as Minicon, is the implementation of the algorithm without
any optimization for reducing lengths (i.e., without checking MCD redundancy) or widths
of the rewriting queries (i.e., tightening rewriting queries). For each of the other two
versions, we added one of the two optimizations,width or length, just mentioned. We refer
to these versions of Minicon with width and length optimizations as Minicon WM and
MiniconLM, respectively. This allows us to estimate the effect and also overhead of each
optimization in different circumstances, while comparing TreeWise with Minicon in its

optimal performance mode.
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Figure 6.2: Result of experiments for chain queries of size 5 subgoals and 2 distinguished
variables.

6.1.1 Chain Queries

To conform to the experiments in [PHO1], we consider two cases of chain queries. First,
we used queries and views of the same sizes (i.e., widths), where only the first and last
variables in the chain are distinguished. In this case, in order to have a rewriting, query and
the view must be identical (modulo variable renaming). Hence there are usually very few
rewritings. For this case, we found that all three versions of the Minicon algorithm have
similar performance. This is due to the fact that since very few MCDs and rewriting queries
are generated by the algorithm, the optimization routines of the algorithms in most cases
are not reached. But in cases where some views are identical to the query, the overhead
of length reduction is noticeable. Also, the other two versions of the algorithm produce
redundant queries in the result rewriting. This is due to the subgoal-based approach of
Minicon. In contrast, the view-based approach of TreeWise avoids this redundancy.

As shown in Figure 6.2(a), all four algorithms scale linearly in the number of views,

but TreeWise generally outperforms all the others by a factor of at least 2. The difference
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in the performance is contributed to the subgoal-based nature of Minicon algorithms which
generate identical MCD candidates multiple times. By taking the view-based approach,
the TreeWise algorithm examines such candidates only once. From Figure 6.3, we notice
that as the number of subgoals in the body of the query increases, the performance gap
between TreeWise and Minicon algorithm grows. For queries with 5 subgoals, TreeWise
outperforms Minicon by a factor of 2, and for queries with 10 subgoals, TreeWise is three
time faster. Figure 6.2(b) shows that quality of rewritings generated by TreeWise in this

case is identical to MiniconLM but superior to Minicon and Minicon WM.
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Figure 6.3: Result of experiments for chain queries with 10 subgoals and 2 distinguished
variables.

For the second class of chain queries, we consider queries and views of the same
widths whose variables are all distinguished. In this case, because almost each view,
depending on the size of the subgoals pool, can contribute to generation of a rewriting,
the number of queries in each rewriting (i.e., the length of rewriting) is generally quite

large. As shown in Figure 6.4(a), while all four algorithms show non-linear behavior in
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the number of views, TreeWise and Minicon have similar performance. We also observed
that TreeWise performs slightly better than Minicon as the number of views increases. In
this case, optimization done by Minicon considerably reduces the widths of the queries,
with an overhead that can be seen from the results. Since the number of queries in the
rewritings are exponential in the number of subgoals in the views, the performance of
MiniconWM grows almost exponentially, as shown in the figure.

On the other hand, Figure 6.4(b) shows that TreeWise produces rewritings of sig-
nificantly better quality than the basic Minicon. The quality of rewritings of TreeWise
is less than MiniconWM, and this depends solely on the order in which the tuples are
compared in the second phase of TreeWise and the manner in which the trees are created.
Although not shown here, our experiments indicated that as the sizes of query and views
increase, the overhead of optimizing the widths of rewritings increases even more rapidly.
Also because Minicon uses a subgoal-based approach, as the number of subgoals in the
query and views increases, TreeWise with its view-based approach begins to outperform
Minicon. It is interesting to note that since all the variables are distinguished, redundancy
in MCD generation is generally not much. Also, while the overhead of optimizing length

of rewriting is not as high as the previous case, it is still noticeable.

6.1.2 Star Queries

We also consider two cases of star queries in our experiments. In the first case, query
and views are of the same size and distinguished variables in the query and views do not
participate in the joins. As in the second case of chain queries with two distinguished

variables, there are very few rewritings in this case. Since none of the variables in the
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Figure 6.4: Result of experiments for chain queries of size 5 subgoals with all variables
distinguished.
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Figure 6.5: Experimental results for star queries of size 5 subgoals and all variables that
do not participate in joins as distinguished.

central subgoal (that is joined with all other subgoals) are distinguished, only identical
views may contribute to rewriting generation. Figure 6.5(a) shows that in this case, all the
four algorithms show linear behavior in the number of views, however TreeWise generally
outperforms other versions of Minicon. This is again due to redundancy in generation of
MCD candidates by Minicon, which in turn results in more queries in rewritings generated
by Minicon and MiniconWM (Figure 6.5(b)). Although not shown here, as we increase
the size of queries, different versions of Minicon algorithms require more time to complete

than TreeWise.
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Figure 6.6: Experimental results for star queries of size 5 subgoals with all joined variables
distinguished.

Second case of star queries include query and views that have all their join attributes
distinguished. In this case, since all variables of the central subgoal are distinguished, every
central subgoal of each view (depending on the size of the subgoals pool) can produce a
mapping tuple for that subgoal, and hence the number of rewriting queries are usually
large, although not as large as case 2 of chain queries. For such queries, as Figure 6.6(a)
shows, performance of Minicon and TreeWise algorithms are very similar. Due to presence
of large number of rewritings, the overhead of width optimization is quite considerable and
grows rapidly as the number of views increases. Since MCD tuples generated are usually
of minimal size, the overhead of length optimization is fixed in this case and its impact on
the quality of rewritings is minimal, and hence figures are omitted.

As Figure 6.6(b) shows, similar to case 2 of chain queries, rewritings generated by
TreeWise algorithm are of better quality than those generated by Minicon. Using width

optimization of Minicon proves effective but comes at as increase in costs.
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6.1.3 Complete Queries

For this class of queries where there is a unique join between every two subgoals, we
examine two cases. In the first case, we fix the number of distinguished variables in the
query and views to 3. Considering 5 subgoals in the body of query and each view, we
need at least 4 attributes in each subgoal in order to make the joins possible. Since we
assume at most 50 percent of the variables to be distinguished, which is a low percentage,
we expect very few non-empty rewritings for this case of complete queries. As a result, the
two optimization of Minicon should not incur a considerable processing overhead. Figure
6.7(a) confirms this expectation and also shows, similar to earlier cases, that view-based
approach of TreeWise algorithm performs more efficiently than any of the three versions of
Minicon. In this case, TreeWise outperforms Minicon algorithms by a factor of 3. For most
of these cases, there is no rewriting and therefore the quality aspect of these algorithms
can not be fairly compared. In cases where there is a rewriting, the quality of TreeWise
is the same as MiniconLM but better than Minicon and MinconWM (Figure 6.7(b)).

In the second set of experiments for this class of queries, we used similar settings as
the previous case with only one difference; Now all the variables of the query and views are
distinguished. In this case, similar to case 2 of chain queries, the number of rewritings is
exponential and therefore all four algorithms exhibit non-linear behavior in the number of
views. Although not shown here, it is evident that TreeWise algorithm with its top-down
approach, produces better quality rewritings compared to Minicon, and in less time. We
also note that the quality of rewritings generated by MiniconWM and TreeWise differ

much less compared to the case of chain queries. It is due to the fact that larger number
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Figure 6.7: Results of experiments with complete queries of size 5 subgoals and 3 distin-
guished variables.

of joins generally decrease the chance of width optimization, and most opportunities for

optimization is taken advantage of by the TreeWise algorithm.

6.1.4 Random Queries

In addition to the above three classes of queries, we also used in our experiments queries
chosen randomly. They include random queries and views of the same sizes (5 subgoals)
taken from a pool of standard conjunctive queries, produced by also using the sample
generator. Our results indicate that when the queries are larger than certain sizes ( 3
subgoals), TreeWise outperforms Minicon in most cases. The results also show that the
overhead of the length and width optimizations of Minicon are generally significant. Over-
head of the length minimization grows almost exponentially in the number of generated
MCDs, and for the width optimization, it grows rapidly as the number of queries in the

result rewriting increases.
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Figure 6.8: Results of experiments with random queries of size 5 subgoals and 5 distin-

guished variables.

| Query type | Distinguished variables | Size of rewriting Scalabitliy |
Chain Two Very small (identical views) Linear
Chain All Very large (exponential) Non-linear
Star Non joined Very small Linear
Star Joined large(at least central subgoal Non-linear
of each view covers a sugoal in Q)
Complete 25 percent Very small Linear
Complete 100 percent Very large (exponential) Non-Linear

Table 6.1: Scalability of TreeWise in number of views for different classes of queries.

6.2 Scalability of TreeWise

We conducted some experiments to study scalability of the TreeWise algorithm under

different circumstances when the number of views becomes large. This issue is important

in the context of data integration systems, which often deals with large number of data

sources (views). Using the results of our previous experiments, we investigate scalability

of the four algorithms for different classes of standard conjunctive queries. Summarizing

these results in Table 6.2, we note that TreeWise is scalable in the number of views for

different classes of queries. In another set of experiments, we used TreeWise in isolation

trying to push the algorithm to its limits.
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Table 6.2 shows the number of views that the TreeWise algorithm could process
under 10 seconds (as done in [PHO1]). As the results indicate, in some cases the TreeWise
algorithm can process thousands of views within that time. An interesting case to note is
the star queries with distinguished joined variables. For this case, it seems that as the size
of query and views increases, the number of views that can be processed by our algorithm
under 10 seconds also increases. This is due to the fact that when the number of subgoals
in the query increases, the possibility of a subgoal (mostly the central subgoal) being left
uncovered also increases. However, if every subgoal is covered by some view, then the

number of queries in the rewriting result is almost exponential.

| Query type | Disntinguished variables | # of subgoals | # of Views |

Chain Two 5 157650
Chain Two 99 2852
Chain All 3 87
Chain All 99 4
Star Non joined 5 166500
Star Non joined 99 3250
Star Joined 10 18
Star Joined 99 24

Table 6.2: The number of views that the TreeWise algorithm can answer under 10 seconds.

Figure 6.9 displays the user-interface of our rewriting tool, showing the output
generated by TreeWise algorithm for query and views in Example 12. The output shows
the performance (in milliseconds) and structure of the output for each phase of TreeWise
algorithm. This output shows, for the case of Example 12, constructing graphs for the

query and views takes less than 1 millisecond.
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6.3 Summary

Our experimental results indicated that in all cases but one (case 2 of star queries), our top-
down, view-based approach of TreeWise algorithm outperforms the bottom-up, subgoal-

based approach of Minicon. There are several factors contributing to this advantage:

e Naturally, a top-down approach produces fewer mapping-tuples during the tuple
construction phase, compared to the MCDs generated by Minicon during its first
phase. In the second phase, TreeWise generates new tuples only if necessary. Fur-
thermore, the tree structure which keeps track of child-parent relationships improves

efficiency of the algorithm in the third phase.

e As the number of subgoals in the body of query and (specially) views increases, the
overhead of subgoal-based approach of Minicon results in increasing performance

gap between the two algorithms.

e When there is a large number of joins between existential variables (case 1 of chain,
star, and complete queries), TreeWise with its graph-based approach in recording de-
pendencies between subgoals runs increasingly faster than Minicon algorithm, which

discovers these dependencies multiple times.

The overhead of length and width optimization routines for Minicon algorithm, when
performed, is quite high. In general, the overhead of length optimization grows rapidly in
the number of MCDs. In cases where the number of queries in the rewriting is high (case 2

of chain and complete queries), the overhead of width optimization is almost exponential.
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As for the quality of generated rewritings, we may conclude the following from the
results of our experiments. In cases where there are numerous joins between existential
variables (case 1 of chain, star and complete queries), the Minicon algorithm being subgoal-
based produces redundant rewriting queries. In such cases, length optimization in Minicon
reduces the length of the rewriting to that of TreeWise. In general, the top-down approach
of TreeWise algorithm produces rewritings of lower widths than Minicon. The width
optimization of Minicon generally produces rewritings of lower widths than TreeWise
algorithm, but at an increased cost. The difference between the width is due to the
manner in which we compare tuples in TreeWise in the second phase to create trees. This
is the main limitation of our algorithm. In the future, we plan to investigate this issue
of the algorithm more closely to find ways to improve the operations of comparison and
tree construction processes in phase two. As the number of generated tuples that are not
minimal increases, the overhead of this phase increases. This overhead, however, is always
polynomial in the size of query and views. Furthermore, in some cases with query and
views of small sizes (less than 3 subgoals), the overhead of top-down approach is slightly
more than Minicon.

Finally as shown above, similar to Minicon in cases where the number of queries in
a rewriting is not large (case 2 of chain and complete queries), the TreeWise algorithm
scales linearly in the number of views. In these cases, TreeWise can process thousands of
views under 10 seconds. For cases with very large number of queries in the rewriting, both
Minicon and TreeWise perform poorly due to exponential number of resulting queries in

the rewriting.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Continuous growth in the volume of data distributed across the globe indicates the growing
importance of data integration systems. The problem of answering queries in the context
of such systems has been the subject of numerous studies. In this thesis, we investigated
the problem of rewriting a query in the LAV approach, where data sources in data inte-
gration systems are defined as views in the form of conjunctive queries. Our analysis of
existing algorithms shows that rewritings generated by those algorithms are, in general,
expensive to evaluate. This is due to the fact that they all take a bottom-up and subgoal-
based approach to rewriting. In this thesis, we took an alternative top-down approach
to generating rewriting and developed an algorithm that implements that approach. The

contributions of this thesis are as follows:

e We presented a graph-based model, called HMCQ, for representing conjunctive

queries. This model extends the hyper-node model proposed for data models in
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[LP90]. The goal of this model is to provide an abstraction for our top-down ap-
proach to rewriting. For this, we first established the related containment and rewrit-
ing concepts to HMCQ. Then we used this model to investigate the conditions that
must be satisfied during each phase of process to guarantee maximally contained

rewriting.

e Utilizing the conditions identified, we introduced a top-down algorithm, called Tree-
Wise, for generating maximally contained rewriting for standard conjunctive query
and views. The algorithm is designed to efficiently produce better quality rewrit-
ings than Minicon. This was achieved through maximizing the benefit of top-down
approach by efficiently utilizing the conditions outlined in the abstraction process.
To verify this claim, we presented details of our numerous experiments, in which we
studied TreeWise and compared it with the Minicon algorithm for several classes
of queries. The results of these experiments indicated that top-down and view-
based approach of TreeWise results in increased efficiency and improved quality of
rewriting. The experiments also indicated that in majority of cases, TreeWise out-
performs Minicon. We also studied the scalability issue in our experiments. Our

results showed scalability of TreeWise in similar to that of Minicon.

7.2 Future Work

There are several issues that we are interested to investigate as future work, related to the

HMCQ model and the TreeWise algorithm. These are as follows.

o Eztending HMC(Q: We would like to extend the HMCQ model for handling two other
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classes of queries : arithmetic equality expressions and also general comparison. As
mentioned in chapter 4, our current version of HMCQ is insufficient for capturing
the subtleties of the former class. As for the general comparison cases, we think
concepts of inequality graphs presented in [ALMO02] should be merged with HMCQ
to capture the order of the variables in the query. Also as shown in [ALMO02],
using inequality graphs, it is possible to capture possibility of exporting variables,
where an existential variable can be treated as distinguished using some appropriate

mappings.

Optimizing TreeWise: Another possible direction to extend our work is to improve
TreeWise algorithm to further reduce the widths of rewriting queries to those pro-
vided by Minicon with post-processing. For this, we need to first examine the second
phase of the algorithm more closely. More specifically, we should investigate the
manner in which we compare the partial mapping tuples and build the binary trees
to identify an "optimal” order for this process. Naturally our aim here is to create
trees of shorter heights. Also, adding some way of bookkeeping in the third phase of
the algorithm can help identify the cases where the widths of the rewriting can be
further reduced by merging view subgoals in the rewriting queries. These cases are
related to view subgoals representing tuples from different levels of the same binary
tree. Unlike post-processing of the Minicon algorithm, this optimization does not
need to compare the view definitions and their mappings with each other to verify
possibility of merging. In TreeWise, this verification is already captured in the bi-

nary tree structures. We just need to identify the view definitions in the body of the
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rewriting coming from the same tree.

Ezxtending TreeWise: In the future extensions of the TreeWise algorithm, we plan
to handle cases of built-in predicates in the forms of LSI and arithmetic equality
expressions. For LSI queries, this extension is straightforward and is similar to the
extension proposed for Minicon. This only affects the first phase of the TreeWise al-
gorithm. In case of equality expressions, the algorithm can adopt a matrix approach
to solve the system of equations to determine computability of the attributes and

also constraints satisfaction.
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