
Computer-assisted transformation of design documents from a natural
language description to structured modeling languages

Lei Chen

A Thesis

In

The Department

Of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science

(Quality Systems Engineering) at
Concordia University

Montreal, Quebec, Canada

August 2008

© Lei Chen, 2008

i

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45333-9
Our file Notre reference
ISBN: 978-0-494-45333-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Computer-assisted transformation of design documents from a natural

language description to structured modeling languages

Lei Chen

In the present thesis, a novel approach is proposed to transform design documents

described by a natural language into a structured modeling languages, particularly UML

diagrams and FBS models. The transformation consists of two steps:

i. From natural language to an intermediate graphic language called Recursive

Object Model (ROM).

ii. From a ROM diagram to a modeling language.

The ROM diagram corresponding to a text includes the main semantic information

implied in the text by modeling the relations between the words in a text. Based on the

semantics implied in the ROM diagram, a set of criteria is proposed to mine the semantic

meaning of the original text corresponding to the ROM diagram. Once the semantic

meaning of the design documents through their corresponding ROM diagram is captured,

a set of mapping rules from the ROM diagram criteria to the modeling language elements

is proposed. After that, a set of generation rules to explore the relationship between these

elements is proposed to generate UML diagrams and FBS models based on a ROM

diagram. A software prototype R2U is presented as a proof of concept for transforming

iii

ROM diagrams to UML diagrams. Another software prototype R2FBS is also presented

as a proof of concept for transforming ROM diagrams to FBS models. Several case

studies show that the proposed approach is feasible. The proposed approach can be

applied to requirements modeling in various engineering fields such as software

engineering, automotive engineering, and aerospace engineering. Future work is

indicated at the end of the present thesis.

IV

Acknowledgements

I would like to thank my supervisor Dr. Yong Zeng for his support in the present thesis.

Dr. Zeng was always there to listen and to give me advice. The present thesis would not

have been possible without his encouragement and guidance. The good advice, support

and friendship of Dr. Zeng have been invaluable on both an academic and a personal

level, for which I am extremely grateful.

Besides my advisors, I would like to thank my thesis examining committee: Dr. Chun

Wang and Dr. Olga Ormandjieva, who provided invaluable comments to my thesis. Also, I

am grateful to Bruce Peterson, who gave insightful comments and reviewed my work on

a very short notice.

My gratitude also goes to all the members in our design lab research group for interesting

discussions and being fun to be with me in the past two years.

Above all, I would like to thank my wife Nan for her personal support and great patience

at all times. My parents and sister have given me their unequivocal support throughout, as

always, for which my mere expression of thanks likewise does not suffice.

v

Table of Contents

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Objective 4

1.3 Challenge 7

1.4 Approach 10

1.5 Literature Review 11

1.5.1 Graphic specification language 11

1.5.2 NLP in requirements engineering 12

1.6 Thesis Organization 22

Chapter 2 Theoretical Foundations 24

2.1 Axiomatic Theory of Design Modeling 24

2.2 Semantic Analysis of a Requirements Text 25

2.2.1 Recursive Object Model (ROM): introduction 26

2.2.2 ROMA: ROM analysis 27

2.2.3 Semantics from ROM diagram 32

2.3 Formalization of Design Requirements 34

2.4 Function-Behavior-State (FBS) Modeling 35

Chapter 3 Framework for Automatic Transformation from ROM Diagram to Modeling

Languages 41

3.1 General Framework for the Semantic Analysis of ROM Diagrams 41

3.1.1 Semantic analysis of ROM diagrams 41

3.1.2 Knowledge base for the ROM diagram 43

3.2 Framework for Automatic Generation from ROM Diagram to UML 49

3.3 Framework for the Automatic Formalization from ROM Diagram to FBS Models 51

Chapter 4 Transformation from ROM Diagram to UML Diagram - R2U 54

4.1 Generation Rules 54

4.2 Software Prototype 57

4.3 Case Study 59

vi

Chapter 5 Transformation from ROM Diagram to FBS Models - R2FBS 63

5.1 Identify the FBS Schema from ROM Diagram 63

5.1.1 Function decomposition rules for ROM diagram 63

5.1.2 Mapping function elements to FBS schema 69

5.2 Transformation Algorithm 73

5.3 Case Studies 75

5.3.1 Formalization of requirements text 75

5.3.2 Formalization of design patents 79

Chapter 6 Conclusion and Future Work 83

6.1 Conclusion 83

6.2 Future Work 84

vn

List of Figures
Figure 1 Representations describing design information [7] 5

Figure 2 Analysis process and modeling process [22] 13

Figure 3 Hierarchy and instances of classes of verbs [22] 14

Figure 4 Mapping rules [22] 15

Figure 5 Process of generating natural language texts [22] 16

Figure 6 Requirements elicitation and modeling [21] 18

Figure 7 Architecture of ER-Converter tool [23] 20

Figure 8 Assisted requirements analysis process [20] 21

Figure 9 ROMA process 28

Figure 10 ROMA snapshot 29

Figure 11 Engineering system [34] 34

Figure 12 Formalization processes of design requirements [34] 35

Figure 13 The relationship between function, behavior, and state[3] 37

Figure 14 Architecture oftheanFBS modeler [3] 38

Figure 15 Differences between an FBS andanFBPhPhS model [35] 39

Figure 16 Eight levels of requirements[36] 43

Figure 17 Performance scheme[40] 47

Figure 18 Representations for describing design information 50

Figure 19 Framework for the transformation of a requirements document into conceptual

models 51

Figure 20 Data flow diagram of an R2U application 57

Figure 21 ROM diagram of the test requirement text 60

Figure 22 Use Case diagram output of R2U 1.0 61

Figure 23 Domain Diagram (Class Diagram) output of R2U 1.0 62

Figure 24 A FBS diagram [3] 64

Figure 25 Function decomposition logic 69

Figure 26 Data flow diagram of automatic formalization tools 73

Figure 27 ROM diagram of the test requirement text 77

Figure 28 Function schema gain from a ROM diagram by R2FBS 1.0 for requirements 77

Figure 29 A FBS model output of R2FBS 1.0 for design requirements 78

Figure 30 A ROM diagram for the low temperature clothes dryer 80

viii

Figure 31 Function schema of the low temperature clothes dryer generated by R2FBS 1.0.81

Figure 32 FBS models of low-temperature clothes dryer 82

IX

List of Tables
Table 1 Elements of Recursive Object Model (ROM) [16] 26

Table 2 XRD terminology 29

x

Chapter 1

Introduction

1.1 Motivation

Designing is a creative endeavor, an aesthetic action taken by a designer to consider the

appearance, functionality, performance, and many other aspects of a product or a process.

Certain stages of a design process include understanding the requirements, the conceptual

modeling, the system design, and the detail design whereas a requirement is the

foundation of the design process. The basis of a design process is the complete and

correct understanding of the original design requirements. A requirement is a condition

that must be met or possessed by a system or a system component to satisfy a contract, a

standard, a specification, or other formally imposed documents. A well-formed

requirement is a statement of system functionality (a capability) that must be met or

possessed by a system to satisfy a customer's need or to achieve a customer's objective,

and that is qualified by measurable conditions and bounded by constraints (IEEE

Standard 830-1998) [1]. According to this definition, a requirement, to a certain extent,

represents the customer's voice about what is needed and what is wanted. Normally a

design requirement can be roughly divided into two parts: functional requirement and

non-functional requirement. The traditional way in requirements engineering is modeling

the functional requirement and state out the non-functional requirement. This also means

the separation of the design activities into functional design and detail design. Functional

design, also known as conceptual design, is the key to the whole design process. Thus

1

how to clearly present the functions described in a design requirement is the crucial

problem in the design process. Also, the designer needs to find out the relationship

between those functions, the structure of the conceptual design, the state from one

function to another function, and the trigger in each state changing.

To ensure the success of a design process, it is crucial to identify the accurate

requirements for the whole design, especially in the requirement specification stage.

However, difficulties exist in obtaining the accurate requirements specification:

1) As the requirements are gathered from the customer, the customer's need for a

product or procedure can be ascertained. For various reasons, customers may not

be able to describe their needs accurately [2].

2) A requirement is normally described in natural language, which is unrestricted

from computer representation point of view. In contrast, computer-aided design is

usually supported by a structured process that needs a formal specification of

requirements. It is not realistic to ask a designer to analyze the requirements and

to structure the information obtained from a natural language and then to generate

the formal specifications of a requirements text.

3) Product requirements are the backbone necessary for the integration of enterprise

applications and the management of the product lifecycle. In many engineering

projects, the documents specifying the requirements are often very long and are

recorded in a text format. It is quite challenging for various partners to follow

and/or to maintain the document. In addition, as advanced enterprise applications

become commercially available, the transformation of legacy design documents

into those systems creates a bottleneck for any enterprise that wants to take

advantage of such advanced systems.

4) Nowadays, as systems are becoming larger than ever before, the requirements

documents are becoming more and more complex. In the mean time, only a

design team can fulfill the design task. However, even in a well-formed design

team, because of the nature of human beings, no two designers have the same

understanding of even one segment of the requirements documents, thereby often

causing variations in the final design documents.

To provide accurate specifications for design, formal and structured languages, such as

FBS Models [3], UML [4], SysML [5], have been developed. However, these formal

tools are often too rigid to capture the customer's intention, especially in the early stages

of product development. Moreover, even though all the structured languages just

mentioned provide well-formed modeling tools for the designer, they provide no

assistance in the analysis of the requirement documents. Then, unfortunately, the

different backgrounds of engineers, their different focuses on requirement documents,

and their different understanding of any fuzzy segment of the requirement documents will

necessarily and invariably lead to a failed project.

3

Therefore, methodologies should be created and used to automatically generate a formal

modeling language from the requirements described in natural language.

1.2 Objective

In engineering design, just as in all other design problems, a precise and complete

description of design requirements is crucial for the successful and efficient completion

of a design task [6]. In describing the product requirements, various representations may

be involved, such as verbal statements, graphic models, and mathematical expressions.

This variety of design representations can be illustrated in Figure 1 [7]. Smith and

Browne have classified design representations into natural language, mathematical

models, diagrams of physical objects and processes, and three-dimensional models [8].

Geometric models define the shape of an object: a physical object or visual object. This

object can be a 2D geometric model or a 3D geometric model, which is mainly used in

manufacturing. Like geometric models, sketches can also describe the shape of an object

though not in as much detail as that given by geometric models. This is because

geometric models define shapes by using algorithms. Unlike the previous two types of

representation, graphic language is not a representation of shape but is a symbolic

expression of a design text such as UML and concept maps. If the graphic language is a

symbolic expression of design, then mathematical language represents the design in term

of formulas. Mathematical language is also the most precise expression of any

engineering problem or solution. Compared with all other representation methods in the

4

designing process, natural language is the most ambiguous and unrestricted expression

method. However, since any design process begins with the customer needs, customers

can express their needs only through natural language and the communication tools

between designer and customer could only be through natural language. Natural language

expression is the unique method during the early design stage. Moreover, since all the

detail design is determined from the early stages of the design process, the success of the

whole project relies on the understanding of the customer's voices, which are of course

expressed in natural language. Consequently, understanding natural language is critical

for innovative and creative design.

Sketches

Geometric Model

Desigi

II

* J _ Graphic Language | |

/ • <

Natural Language Mathematical Language

Figure 1 Representations describing design information [7].

Among all other representations, graphic models are the most effective and the most

efficient; mathematical language is however the most precise. Whereas the best

structured representation is mathematical language, engineers prefer graphic models,

especially the standardized models.

Because of the advantage of graphic language, many graphic languages have been

proposed to represent the requirements. However, as mentioned above, the most common

5

representation of requirements is in natural language. To deal with the bias in the

understanding of natural language requirements, an intermediate graphic language should

be proposed to unify the semantic meaning of natural language and to extract standard

information from it. Furthermore, this graphic language should also act as a bridge

between natural language and structured modeling languages such as FBS models and

UML. The approach proposed in the present thesis is based on such an intermediate

representation: Recursive Object Model (ROM). ROM can represent all the linguistic

elements in natural language whereas it is derived from a mathematical theory [9].

Accordingly, the objectives of the present thesis are as follows:

1) Extract the semantic meaning of natural language requirements based on

linguistic analysis and generate the output: the ROM diagram.

2) Find the generation rules that are required to generate graphical representations of

the requirements such as UML and FBS models from the semantic meaning.

3) Derive a methodology combining natural language processing and conceptual

modeling.

A systematic graphic language that represents a requirement is very helpful in design

process. The present thesis does not intend to propose a new modeling language for

requirements. Instead, it uses existent modeling language and tries to find a way to

automatically transform natural language into graphic language. The essential step of this

approach is to derive or obtain the semantic meaning of a text from the ROM diagram. In

6

order to generate UML diagrams or FBS models from natural language, generation rules

will be proposed in the present thesis to meet such an objective.

As discussed above, the problem of systematic specification language has been well

researched and many theories or models have been proposed. To achieve our objective in

the present research and to simplify our task, we have selected two typical graphic

specification languages - UML diagrams and FBS models - for the final output of our

research.

UML has been selected mainly because UML is one of the most popular requirement

specification models, especially in software engineering fields. UML has been used as an

important tool in the requirements engineering fields. It can identify the use cases of a

requirement and can form a class diagram to assist with further detailed design. FBS

modeling has been selected as the other formal structural language mainly because it is

widely accepted in the field of mechanical design as an important conceptual design

methodology to assist product design. Also, FBS is one kind of function modeling

language that analyzes the product requirements and forms FBS models. Our specific

objective in this thesis is to propose a methodology that transforms natural language into

UML and FBS models.

1.3 Challenge

The modeling of requirements is a process of formalizing the ambiguous natural language

description of the customer's needs into a more precise structured representation. With

7

the assistance of such structured representation, a system designer can better model the

system requirements and the architecture.

Consider a complex engineering project such as the design of a product or a

manufacturing procedure. There should be a series of functions to complete the project,

and each function will be affected by the environment and former actions. The process of

formulating the conceptual model is a human activity in analysis and determination.

However, misunderstanding the customer's real needs is a major issue that may lead to

incorrect structural models. Furthermore, as the product requirements become more and

more complex, more and more industrial fields may be involved. In addition, the limited

background of a designer can focus only on one specific industry. All of the above may

limit the design activities and may eventually cause the whole project to fail.

To generate representation models automatically from product design documents

described in natural language, the following problems have to be solved:

• How to capture the meaning of a text automatically.

• How to define the representation scheme of a product function described in a

specific modeling language and by specific modeling mapping with a ROM

element that captures the semantic meaning of the design text.

• How to derive the right conceptual models by simulating human analytic logic to

decompose a design text.

8

Obviously, the first problem must be solved through Natural Language Processing (NLP)

algorithms. The tools based on NLP are able to improve the quality of communications

throughout the design process, to facilitate the understanding of the customer's real

intention, and to elicit precise and complete product requirements [7]. Once the meaning

of the requirement text is precisely captured, structural models can be generated

automatically.

For the second problem, current engineering practice is to generate the modeling

language of requirement documents from the original customer requirements manually

through communicating iteratively with the customer. This is often a recursive process:

gathering and formulating customer requirements, generating preliminary solutions, and

refining customer requirements [2, 10]. The final requirement specification comes from

such a brainstorming process. However, as business becomes more and more complex,

multiple customers, with different backgrounds, are usually involved in the requirement

modeling process. Misunderstanding the customers' real needs is a major issue that may

lead to incorrect requirements specifications. There exists a contradiction between

product requirements description based on ambiguous natural language and the precisely

structured language used to model the product requirements.

Furthermore, for complex engineering projects, the design document includes a great

amount of information, the human processing of which is extremely tedious. Efforts have

been made to develop automatic or semi-automatic processes that bridge these two

extremes: an unrestricted natural language text and a structured formal representation [11,
9

12]. Still, due to the difficulties in the processing of unrestricted natural language, the

success of these efforts is limited [13-15].

1.4 Approach

To overcome the two challenges proposed in Section 1.3, a series of steps is proposed.

First, to bridge the gap between unrestricted natural language and formal modeling

language, an intermediate representation is useful. The approach proposed in this present

thesis is based on such an intermediate representation: Recursive Object Model (ROM)

[16]. ROM can represent all linguistic elements in natural language [16] whereas it is

derived from a mathematical theory [9]. The semantics of a text can be derived from the

ROM diagram. The proposed approach first generates the ROM diagram of a text

describing the product requirements, from which use case diagrams and class diagrams

are extracted.

Then, generation rules should be derived to extract the information from natural language

requirements and to map the information to existing modeling languages such as UML

and FBS.

The proposed approach in the present thesis is characterized in the following list:

1) Generates the ROM diagram for the product requirements in natural language.

2) Generates the key element of the requirements that fulfills the product objective.

10

3) Extracts the semantic meaning from the ROM diagram and maps the key element

into certain modeling language elements to automatically generate a graphical

representation of the requirements such as UML and FBS models.

1.5 Literature Review

The objective of the present thesis is to automatically generate a structural graphic

representation such as UML diagrams and FBS models from natural language.

Furthermore, the present thesis basically uses Natural Language Processing techniques to

transform textual requirements into existent requirement models. To achieve this research

goal, the literature review includes the following fields:

• Graphic specification language for conceptual design

• Natural language process in requirement engineering

1.5.1 Graphic specification language

Many researchers have attempted to develop algorithms for understanding the semantics

of a natural language text and for translating the text into some types of graphic language.

Zeng and Mehdi have developed a software prototype called 3DSV to generate a VRNL

graphic representation from a simplified story-based description of a scene [17]. Ma and

McKevitt have attempted to automatically generate a semantic representation of events in

3D animation by using a semantic representation as a bridge between linguistic inputs

and visual knowledge [18]. Jesen et al have developed an approach to automatically

generate the UML diagrams from XML DTDs [19]. However, due to the lack of semantic

11

analysis, none of these approaches can process unrestricted natural language texts. Based

on the semantic representation of a text through the ROM diagram, our proposed

approach can generate UML diagrams and FBS models from the design text described in

natural language.

1.5.2 NLP in requirements engineering

Our goal to automatically transform a design text described in natural language into a

specific modeling language is also an Artificial Intelligence (AI) approach. Natural

language processing is the foundation for this approach. Since Natural Language

Processing is a complex research field that may touch on many categories, we focus

mainly on Natural Language Processing in the area of requirements engineering fields.

There are several researchers who have attempted to use a linguistic approach to support

requirements engineering, especially in the modeling of the requirements specification.

MacDonell et al. have proposed an approach - autonomous requirements specification

processing, using natural language processing [20]. Mich has proposed CASE (Computer

Aided Software Engineering) tools, which are called NL-OOPS, using a Natural

Language Processing System LOLITA to support the transformation of natural language

to object-oriented models [21]. Rolland and Proix also think that natural language plays

an important role in the conceptual specification stage in the development of

computerized systems. They have proposed a CASE tool based on linguistic approach to

support requirements engineering [22]. Moreover, in database design fields, Omar et al.

12

have proposed a new heuristics that assists the semi-automated generation of Entity-

Relation (ER) diagrams for database modeling [23]. All these approaches just mentioned

are similar to our automatic generation from a natural language design text to a

specification modeling approach.

Rolland's approach focuses mainly on requirements engineering in database and

information system development and provides a CASE tool called OICSI (a French

acronym for "intelligent tool for information system design"). OICSI is a system

prototype that exploits knowledge-based paradigms to provide an active aid to database

and information system analysts during the Requirements Engineering process. Problem-

statements in OICSI are expressed in French natural language and are automatically

interpreted in terms of the OICSI conceptual model. Similarly, OICSI uses a text

generation technique to give feed back to the user on information about the specification

(i.e. the conceptual schema). Figure 2 illustrates the analysis process and modeling

process.

analysing y^

\
va!(d*!inf X ^

PROBLEM
STATEMENTS

X

PARAPHRASEJC
DESCRIPTION

/

CONCEPTUAL
SCHEMA

iwsnhraenui
r

Figure 2 Analysis process and modeling process [22].
13

The OICSI process has two main parts - conceptual modeling and conceptual schema

validation. Conceptual modeling in OICSI is based on a linguistic approach that tries to

formalize the linguistic mechanisms through which analysts are able to abstract observed

phenomena into concepts.

OWNERSHIP
to include
to have
to compose
etc..

-""*V
/

ACTION

to make
to update
to record
to erase
etc...

CLASS

\
STATE
to be
to appear

etc..

EMERGENCE

to arrive
to occur
to happen
etc...

Figure 3 Hierarchy and instances of classes of verbs [22]

The approach begins with Fillmore's case system and considers the cases to be types of

relationships that groups of words have with the verb in any clause of a sentence. By

classifying the case as a class and hierarchy of words and patterns such as sentence

patterns and elementary patterns, a conceptual schema of a certain requirement can be

generated. Figure 3 shows one case in natural language for a class of verbs. The

conceptual schema generation process in OICSI is based on rules that map cases into

concepts. These rules are dependent on the target conceptual model. Conversely, the

linguistic patterns are independent of a particular modeling technique and can be used

within any design methodology. Figure 4 shows the mapping rules used in the schema

generation process.
14

OWNER
OWNED
ACTOR
TARGET
OBJECT

CASE to NODE

ENTITY NODE

LOCALIZATlOl

ACTION

CONSTRAINT

EVENT NODE

ACTION NODE

CONSTRAINT
NODE

CASE to ARC

OWNER —«

OWNED — |

ACTION H

TARGET — |

LOCALIZATION _ |

ACTION — i

LOCALIZATION —<

OBJECT — i

CONSTRAINT _ ,

CONSTRAINED — I

»»- origin of rl arc

! • end of rl arc

^- origin of md arc

w- end of md arc

• origin of tr arc

^- end of tr arc

i*- origin of act arc

»~ end of act arc

^- origin of ct arc

**- end of ct arc

Figure 4 Mapping rules [22]

The schema validation process in OICSI is basically a reverse approach when compared

with the schema generation process. The schema validation process converts the

specification schema back to natural language sentences to verify the accuracy of a

specification schema. Figure 5 shows the detailed process of generating sentences.

15

Knowledge
Base

J
Deep

structures

i '

Extraction step

Surface sttuettws

f
Sentences

Transformation Step

Litiearbutdott step

Figure 5 Process of generating natural language texts [22]

Rolland's process is very similar to our approach. It gives us the ideas that Requirements

Engineering should be supported by a case tool based on a linguistic approach and that

validation of specifications must be performed by means of a text generation technique.

These ideas have already been presented.

Mich [21] also proposed a CASE tool that supports requirements analysis by generating

object oriented models from natural language requirements documents, in a procedure

called NL-OOPS. NL-OOPS is an acronym for Natural Language - Object Oriented

Production System that supports natural language requirements analysis by extracting the

objects and their associations for use in creating object models. It uses the natural

language processing system LOLITA (Large-scale Object-based Linguistic Interactor

16

Translator Analyser) as an NLP tool, which has been developed at Durham University

[24]. Mich thinks requirements analysis includes two main activities - the identification

of requirements and the modeling of requirements. The LOLITA assists the requirement

identification process by simulating the requirements eliciting process and by performing

linguistic analysis such as correcting the requirements, completing the requirements text

and eliminating the style difference. Figure 6 shows the NLOOPS requirements

elicitation and modeling process. After pre-processing the requirements, the NL-OOPS

system models the pre-processed requirements into object-oriented models through an

0 0 analysis, which contains the following logic:

• finding the objects

• organising the objects

• describing how the objects interact

• defining the operations of the objects

• defining the objects internally

17

Figure 6 Requirements elicitation and modeling [21]

The NL-OOPS approach proposes the brilliant idea of pre-processing the requirements

before the modeling process starts, thereby ensuring the grammar correctness and

requirement complement. In our approach, we use the ROM diagram as the intermediate

step to transform natural language into modeling language. The ROM diagram is also a

Natural Language Processing output of design text that can also ensure the correctness of

the natural language input. Moreover, our approach uses a question-asking strategy

proposed by Zeng and Wang to ensure the complement of the design text [25].

As in the case of the previous two approaches, Omar et al. propose a heuristics-based ER

modeling process that tries to automatically formalize the design documents to

specification models. The heuristics-based ER modeling process provides a semi

automatic transformation process tool called an ER-Converter. This approach mainly

18

focuses on database modeling using an ER diagram theory as the implementation model.

Also, this approach uses a heuristics method to identify the ER elements. Figure 7 shows

the architecture of the ER-Converter tool. The heuristic method can provide a good

solution but not necessarily an optimal solution for the identification of the ER elements.

These methods can quickly extract the ER elements from the design requirements by

using certain selection rules. The following is one part of the heuristic methods for the

selection rules:

Heuristics to determine entities:

1. Heuristic HE2: A common noun may indicate an entity type.

2. Heuristic HE3: A proper noun may indicate an entity.

3. Heuristic HE7: If consecutive nouns are present, check the last noun. If it is not one of the

words in set S where S = {number, no, code, date, type, volume, birth, id, address, name},

most likely it is an entity type. Otherwise, it may indicate an attribute type.

Heuristics to exclude non-potential entity type candidates:

1. Heuristic HEX: A noun such as "record", "database", "company", "system", "information"

and "organization" may not be a suitable candidate for an entity type. For example,

"company" may indicate the business environment and should not be included as part of the

entity types. Examples:

a) "An insurance company wishes to create a database to keep track of its operations."

b) "An organization purchases items from a number of suppliers."

19

Natural Language
Requirements
Specification

Memory-based
shallow Parser

User
assistance

Heuristics-based ER
analysis

Entity tvpes Attri butc
types

EU-CONVl<RTKK

Relationship
types

Cardinalities

Figure 7 Architecture of ER-Converter tool [23]

Unlike the three previous approaches in transforming natural language into specification

models, the autonomous requirements specification process proposed by MacDonell et al.

tries to find a way to automatically generate the system design specification by using

natural language processing, which is also the same goal for our approach. This

autonomous process contains a natural language parsing system and a term management

system. The parsing system starts after a set of token is extracted from the requirement

specification documents, an approach which is similar to our own in that it defines a set

20

of criteria for extraction from a design text. Figure 8 shows the architecture of this

approach.

Figure 8 Assisted requirements analysis process [20]

The difference between our approach and the other processes previously mentioned is

that all of the four other approaches extract specification elements directly from natural

language documents after defining a set of criteria. Considering the complexity and

unrestricted of natural language, the extracting process from natural language is difficult

to secure the complement generation from natural language. By contrast, our approach

uses an ROM diagram as an intermediate between natural language and modeling

language. Moreover, all the approaches referred to above rely heavily on the grammar

parsing process and they lack semantic meaning analysis which often leads to lack of

utility in real-time implementations.

21

1.6 Thesis Organization

Chapter 1

This chapter introduces the scope and object of the present thesis and compares our

research with several similar approaches to the generation of the design specification

models from natural language using Natural Language Processing.

Chapter 2

This chapter discusses the theoretical foundations of the present thesis: the axiomatic

theory, ROM theory, formalization methods, and FBS modeling theory.

Chapter 3

This chapter provides the general framework for semantic analysis based on the ROM

diagram generated from ROMA software. Then, two frameworks that will be introduced

in this thesis have been proposed for two kinds of specification models - UML diagrams

and FBS models.

To validate the theory, a software prototype system is presented in Chapter 4 and Chapter

5Error! Reference source not found.. An example of a traditional POS management

system in the software engineering fields is chosen as a case study to illustrate the theory

for the transformation from natural language requirements to UML diagrams. Another

two examples of design documents are selected to show our research on the formalization

of FBS models based on FBS modeling theory and ROM diagram analysis.

22

Finally, Chapter 6, Conclusion and Future Work, summarizes the main research results of

the present thesis and points out directions for future research.

Chapter 2

Theoretical Foundations

2.1 Axiomatic Theory of Design Modeling

Zeng has proposed an axiomatic theory as the logic tool to represent and to reason about

object structures [9]. This is also the basic theoretical foundation for the present thesis.

This axiomatic theory gives the designer a logical approach to human thought after

defining axioms dealing with objects. The basic concept rests on two definitions of

axioms:

1) Everything in the universe is an object

2) There are relations between objects

Based on these axioms, a requirement can itself be seen as an object, which is defined as

O. This being the case, then the structure of the requirement object should be

0 0- The following formula shows Axioms 1:

© 0 = 0 U (0 ® 0) (0

where 0 ® 0 shows the relation between objects.

Since a requirement can be seen as an object, the elements of natural language

requirements - paragraphs, phrases, and words - can also be seen as objects. Take the

basic elements of a requirements text - words - as the objects. The requirements can be

24

decomposed into a set of word objects and into another set of relations within these

objects. This observation has led to the Recursive Object Model theory by Zeng [16].

2.2 Semantic Analysis of a Requirements Text

It is widely accepted that graphics are the best means for carrying the semantic message.

Several graphic languages are used to support the representation of human thoughts,

including formalized concept maps, entity-relationship diagrams, conceptual graphs,

topic maps and system modeling languages (OMG SysML) [26-30]. Though they have

been instrumental in either modeling systems or in supporting brainstorming, they suffer

from a major problem when they are used for processing natural language: the final

diagram depends heavily on the person who draws the diagram. That is to say, the

semantics underlying the text is an issue of individual experience and knowledge. This

fact makes it difficult to apply these diagrams to finding out the precise meaning of a

given text.

Based on the axiomatic theory of design modeling [9], Zeng has proposed a new graphic

language called the Recursive Object Model (ROM) [16]. Corresponding to each text,

there is only one correct ROM diagram, from which other diagrams, such as concept

maps and topic maps, can be derived. The semantics of a text can be obtained by

applying mathematical algorithms to the ROM diagram.

25

In the present section, we will first give a brief introduction to the Recursive Object

Model (ROM) and its computer representation. Then the basic idea for semantics

extraction will be presented.

2.2.1 Recursive Object Model (ROM): introduction

The Recursive Object Model (ROM) [16] is a part of a general design theory:

Environment-Based Design (EBD) [6, 9, 10, 31, 32], In the context of this research, the

ROM provides an intermediate medium between natural language and structured

modeling language. The ROM theory treats each word in a sentence as an object and

considers that every object may have one or more relations to other objects. Furthermore,

each sentence also forms an object and has a relation to other sentences in the text. Table

1 shows the elements of ROM.

Table 1 Elements of Recursive Object Model (ROM) [16]

Type

Object

Relations

Object

Compound

Object

Constraint

Graphic

Representation

CH

0

Definition

Everything in the universe is an object.

It is an object that includes at least two

other objects in it.

It is a descriptive, limiting, or

particularizing relation of one object to

26

Connection

Predicate

-Q]~»

^

another.

It is to connect two objects that do not

constrain each other.

It describes the act of an object on

another or that describes the states of an

object.

2.2.2 ROMA: ROM analysis

ROMA, the abbreviation of Recursive Object Model Analysis, transforms a text

described in natural language into an ROM diagram, which is represented in the XRD

format, an extension of XML for ROM diagram. An XML format is mainly focused on

data integration at the logical level of the data model, creating a need for techniques that

work at the conceptual level, which is more suitable for use by system designers and end

users [19]. XRD carries semantic information implied in the text. Figure 9 shows the

ROMA process.

For example, we have the following requirement scenario:

Design a tool for riveting brake linings onto brake shoes for internal drum brakes. The user

of this tool is a car mechanic. The working height of the user should follow ergonomic

standards. The use of this tool should conform to the related industry safety standards. The

27

service life of this tool should be around 5 years. The tool should be easy for transportation

and maintenance. It will be manufactured in a specific workshop, which has specified

equipments. The cost of this tool cannot be over $190.00.

This scenario describes a typical mechanical design problem. Figure 10 shows the

ROMA snapshot when analyzing the scenario above.

Merge Rule

Parse w Grammar Analysis

XML ROM
Diagram (XRD)

1.0

Figure 9 ROMA process

28

• C i lMewfo ldenf iequ i ren ie i i l lwn l ROMJ

'' S3

Requiemenl Input

Design a :ooi 'of 'tvetng bake twigs onto brake
shoe: In internal d w bakes. The ttsef ol the
looi is a car mechanic. The working height of
user shocid follow economic standards. The use ;
of thi: tool should ccriform to Une lelaled industry :|

safety standards. The service Hie of this trxJ
should be aroutxl 5j«ears. The tod should be
easy in transportation and manleiiance. II wi be:;
rnamiactufed bi a specific workshop, which has *;
specified equipments. The cost
cannotbeovei 1190.00.

j

agononi: ^-tfsiandaids H lolow | | specfed | » » | equpenls

rating] * • [height

r

workshop [**<| specific | fa industry

and I ""•|tansportation f*»~[fa

| » » j liveting *-\ lor " j n f " tool | ^ | cf \ + ^ use ~~\+-\ the

L_L^_J
rimiadued * < j nil j | centum 4<| should

lie ^*\ cf | | ol | * » | ~ cost K f ~ ^ ~

i i ~ | » * | be [- » [ova $190

Tp; Romvi.0

Figure 10 ROMA snapshot

Table 2 is the terminology of XRD

Table 2 XRD terminology
Term in XRD Explanation Symbol
The root of XRD It's the root of the whole xml, which can be <rom root>

recognized with certain traversal method
ROM One XRD can have several isolated ROM sub-

diagrams
<rom>

Name of ROM

Version of ROM

The unique name of each ROM sub-diagram, <rom name-='*romr'>
normally named as "rotn" plus number
As the ROM sub-diagram may be changed <rom version="0">
through certain layout or merging algorithms, the
version identifies the current status of each ROM
sub-diagram

Position of ROM The position of the ROM sub-diagram is the <rom top left width
result of layout algorithms of ROMA, which height>
store the position information corresponding to

29

its position when in display

Object Object is the basic element of the ROM diagram;
it can be a simple word, a phrase, or even a
sentence regarding the type of object. The object
can also be seen as the basic element of text
because it stores the words of the text.

<object>
<object
name romname>

T\pcof ohjvi't Defines the type of object. The single object is
the word of a sentence while a compound object
can be a phrase or a sentence of a text

<typc5

Text carried
the object

by The word element of a text <text>

Position of
object

the This position is stored relative to the layout
informalion within a ROM sub-diagram, which is
not affected when the sub-diagram position is

<x>
<v>

changed.
Neighbor A neighbor stores all objects connected to the <neighbors>
information current object. It not only stores the name of the <neighbor

connected object, but it also stores the type of neighborname
connection and the direction of that connection. relationtype>
This element is very convenient when mining the
semantic meaning of an object through relations.

Words class This clement stores the real word class of each <class>
single object. It can be "n" for noun, "V for verb
etc. This element can help identify the role of an
object in a text

Relation Relation is the element that stores the
relationship of an object within a ROM diagram.
The relation can also be seen as a connection of
each element for a text. It is more useful in the
traversal method of the ROM diagram because it
mainlv carries on the semantic meanine of a text.

1 *

<relation>
<relation
name romname>

Type of relation There are three types of relations corresponding
to the definition of ROM in Table 1

<type>

Position of
relation

This element stores the information of the
relation from which object and to which object

<fobject>
<tobject>

The following part is a segment of XRD from the above application.

30

<?xml version="1.0"?>

<!DOCTYPE XRD1.0 (View Source for full doctype...)>

- <rom_root>

- <rom name="romO" version="0" left="0" top='*0" width="725" height="225">

- <object name="object2" romname="romO">

<type>0</type>

- <position>

<x>-125</x>

<y>0</y>

<width>100</width>

</position>

<text>machine</text>

- <neighbors>

<neighborneighborname="Object200" relationtype="6" />

<neighbor neighborname="object3" relationtype="l" />

<neighbor neighborname="object4" relationtype="l" />

</neighbors>

<class>n</class>

</object>

- <relation name="relationl" romname="romO">

<type>6</type>

- <position>

<fobject>Object200</fobject>

<fposition> l</fposition>

<tobj ect>obj ect2</tobj ect>

<tposition>3</tposition>

</position>

<status>0</status>

</relation>

This shows the basic relation between word objects, which can be represented as a

mathematical structure for the automatic derivation of semantics. The XRD file can be

used by various applications that need the semantic information of a text.

31

2.2.3 Semantics from ROM diagram

To get the semantics underlying a text through its ROM diagram, the graph theory has

been used to process the diagram, where each object in an ROM diagram is viewed as a

vertex and each relation is viewed as an edge. An ROM diagram is a directed graph.

Therefore, the ROM diagram has a mathematical structure defined as follows:

Object in ROM diagram as Vertex v

Relation in ROM diagram as Edge e

Then ROM diagram can be defined as Rom = <v, e>

The size of the ROM diagram can be represented by a matrix M

/%o •" vo,i\

Wo ••• %/

where

matrix M is i x i matrix;

ii is the max number of objects;

{
0 if no relation between objects
1 if constrain relation

2 if connection relation
3 if predicate relation

According to the definition of the matrix representation of ROM diagrams, the matrix of

a ROM diagram is a symmetric matrix when the direction of relation is not specified.

32

However, the elements of the matrix are different from those of a normal mathematical

matrix; these elements carry the semantic meaning of the text. Then some general

algorithms can be derived from the matrix and are listed below:

Let a Role in a design text be R. The function fcount counts the element numbers of

rows or columns of a matrix, then

R = max(fcount(yXiy)) (2)

Whilev^y = 3, i is any number between 0 to the max number of objects in a ROM

diagram

Let the Action in a design text be Act, the function fact is the number of predicate

relations of R

Act = max (fact(R)) (3)

By using the algorithms in graph theory, we can traverse the ROM diagram. This means

that we can look up all the objects, which are words or phrases in the original natural

language format, following the sequence of their semantic connections rather than the

grammatical sequence in the original text. As a result, the final XRD keeps not only the

vertices and edges but also the adjacency list (list of objects connected to current objects)

in each object segment. This representation can thus assist with the identification of the

priority order of each object from the semantic perspective. Furthermore, the number of

relations to each object can also be treated as a property or weight of this object [33].

33

2.3 Formalization of Design Requirements

Since the ROM diagram forms a graphic representation of natural language, it can be

used to store the semantic information of the design requirements. However, an ROM

diagram performs only a linguistic analysis of the requirements text; it lacks the method

for extracting modeling information from the diagram. Zeng has proposed a general

methodology for the process to formalize design requirement. The input of the process is

the design requirements text and the output is the formulation of these requirements.

In the formalization process, Zeng defines £1 as the structure of the engineering system, E

as its environment, and S as the product. The engineering system is then decomposed into

the following formula:

© H = ®(EUS) = (® E) u (© S) u (E ® S) U (S ® E) (4)

Where 0 g is the structure of the environment and ® $ is the structure of the product.

Figure 11 illustrates the engineering system.

Figure 11 Engineering system [34]

34

By using linguistic analysis in the formalization process, the formula of the engineering

system is derived from the natural language requirement. Figure 12 shows the

formalization process for the requirements.

RequirenMat engineering

;. i
jî —-*•*""* Deiign requirements in natural language __-—"""""

0 s

IB*

Pi
l l
o

••H-
Identify nouns in the design .requirement

Main each now. u object

i
Identify the vei b ia the desiga recpumiest

Mate the verb a fetation Engineering j
Systems !

i
Identify implicit objects and relations 1

i
Assign Hie objects and relations to engineering systems

J
More .reqwreniettts to fee formalized? ""IIlIÎ 35—

No

Formukicsfi of Design Requirements

T
Design Process

Figure 12 Formalization processes of design requirements [34]

2.4 Function-Behavior-State (FBS) Modeling

Although there is no precise and standard definition of function from the product

requirement point of view, we can simply consider a function as some kind of actions that
35

fulfills the objective or part of the objective of one product. During a design process, the

designer needs to specify the product structure with a function definition. This is the most

important part in the early stage of design process.

Since the functions of the product and their relationships are the fundamental elements in

product architecture design, it is crucial to model the functions during the design

activities. Erden et al. [35] define the function modeling as the name given to the activity

of developing the models of devices, products, objects, and processes based on their

functionalities and the functionalities of their subcomponents. As one kind of framework

to represent the Functions, Yasushi [3] has proposed a new scheme for functions:

Function-Behavior-State (FBS) modeling, that defines a function as an association of

human intentions and behavior and represents a design object hierarchically.

FBS Modeling represents Functions that are generated from product documents. The

documents can be the design problem and the design solution. FBS modeling theory

proposes a knowledge representation scheme for functions which define a set of

representation definitions - function, F-B relationship, state, behavior, physical

phenomena, and aspect. Figure 13 shows the relations in the FBS function scheme.

36

F-B Relations Recognition
Abstraction

Set of Function Symbols

B-S Relations

Be honor Set

Physical Phenomena

State Set

State
Aspect-

Figure 13 The relationship between function, behavior, and state [3]

FBS modeling theory is a systematical method of function modeling and gives a

computer the necessary tools - the FBS modeler - to support conceptual design. The FBS

modeler provides a function decomposition method. Umeda and Tomiyama divide this

decomposition process into two categories - causal decomposition and task

decomposition [3] and use these two decomposition methods in two different design

phases. The task decomposition occurs in the first design phase and is used by the end

user and the designer to decompose the design specification into each of the detail tasks

with the assistance of a function knowledge base. The causal decomposition occurs in the

second phase of the design process. The designer uses the causal decomposition method

to decompose the behavior and the structure of the product with the assistance of a

Behavior knowledge base. Figure 14 illustrates the architecture of the FBS modeler.

37

Qualitative Reasoning
System

QPA5

FR
Designer

I
FBS

Modeler

^ ^ i ^
^TW

tliMW

Function
Knowledge Base

g*"""""""'"""**!> B
*f"" *""!!at B

Behavior
Knowledge Bise

Figure 14 Architecture of the an FBS modeler [3]

As the product system becomes more and more complex, the interactions of the

components within the system increase. Some unpredictable interactions may result in

undesirable behavior. To deal with this problem, a system to detect the possible behavior

is proposed for large product-system design, which is called a design interferences

detector (DID). Tomiyama has proposed a general model - function-behavior-physical

phenomenon-state model (FBPhPhS) - which extends the FBS model by including the

physical phenomena between the state and behavior to support DID [35]. The FBPhPhS

model is basically an integration of the FBS model with a qualitative reasoning system

(QRS). Figure 15 shows the differences between FBS and FBPhPhS.

38

FBS FBPhPhS

Figure 15 Differences between an FBS and an FBPhPhS model [35].

In Figure 15, we can see that the FBS model focuses only on the physical phenomena

between each entity connected in a product system. While there exists some interaction

between two entities that do not actually connect with each other - which means no

relations between them. The FBPhPhS model includes these physical phenomena in the

models by defining a set of attributes of relations and by using QRS to detect the

interactions. Obviously, the FBPhPhS model is more suitable for dealing with the

complexity of a modern product system. However, as our approach is mainly to target the

automatic generation methodology, due to the limitation of the semantic mining of design

documents, the interaction between unconnected components may not be easy to derive

directly. Under such conditions, our approach will mainly focus on automatically

formalizing the FBS models.

FBS modeling, especially the FBS modeler, gives a great methodology for function

modeling. However, FBS modeling process basically is a brainstorm activity because it

heavily relies on human interference. Due to the uncertainty of human thought (such as

39

different designer background, different design focus, etc.), it is impossible to get the

standard FBS diagram from different designers. Our purpose is to follow the

methodology provided by FBS modeling and finds a way to formalize FBS models

automatically, thereby increasing the correctness and efficiency in the FBS conceptual

design process. Finally with the assistance of those automatically formalized conceptual

design diagrams, the system designer can better model product functions and

architecture.

40

Chapter 3

Framework for Automatic Transformation from ROM Diagram to

Modeling Languages

In requirements engineering, the formalization process for design documents is

performed by engineer using semantic analysis and function decomposition methods. In

function modeling process, engineers play the key role in the analysis of the documents.

They find the role and functions of the product, decompose the functions and define the

characterization of the representation definition of the function. To automatically

formalize representation models from design documents, simulating the human activities

of design process is a reasonable solution, especially for the requirements analysis and

the decomposition process. However, unlike human activities, the automatic

formalization of a design text relies on the understanding of natural language based

product requirements. This thesis aims to perform the semantic analysis using the ROM

diagram through simulating the manual modeling procedure and finally formalize UML

and FBS models automatically.

3.1 General Framework for the Semantic Analysis of ROM Diagrams

3.1.1 Semantic analysis of ROM diagrams

Since the FBS or UML models are one kind of specification modeling method, the basic

idea of our approach is to describe the key role and function correctly and completely.

We give a general schema to support the analysis of the ROM diagram. The UML tries to

41

define the actor and action of a requirement, while FBS uses a function schema to

represent function with function, behavior, state, aspect, F-B relationship, and B-S

relationship. In our approach, it is hard to generate the above representation schema

directly from the ROM diagram. After studying the theory of FBS modeling, especially

for the FBS modeler decomposition method, we found that it is a reasonable method for

decomposing the document with s set of schema to identify the role and action in the

ROM diagram. FBS also gives some methods such as causal decomposition and task

decomposition for dividing the function knowledge levels and clarifying their

relationship. We found it is an intuitive way to represent product function and it is

especially useful for conceptual design in design engineering. FBS modeling can be one

fundamental theory in our project. We follow exactly the same logic in our approach.

With the support of Zeng's Environment Based Design theory [36], the product

requirements can be categorized into eight levels: natural laws; social laws and

regulations; technical limitations; cost, time, and human resource; basic functions;

extended functions; exception control level; and human-machine interface, which is

shown in Figure 16 [36]. Each level of requirements should have different syntactic

criteria. For example, level of natural laws and rules may have the syntactic criteria like

weather, wind and rain. On the contrary, level of basic function may only involve of actor

and action. Classifying the requirements documents [37] and mining the aspects of

requirements documents [38] are the necessary step in gaining the syntactic criteria from

the design text. This step is also the pre-requirement in the automatic formalization of the

42

UML and FBS models.

From Zeng's Axiomatic Theory of Design Modeling[39], we have the mathematical

foundation of requirement classification. Furthermore, based on the paper Classification

of Product Requirements Based on Product Environment as the method, our research

needs to find the algorithm to analyze the design text and to divide the text using

syntactic criteria. This pre-processing of the design text will simplify our research and

narrow our work on text semantic mining and model formalization.

/Human-\
/ machine \

J> interface \

/ Exception eonttot \

/ Extended functions \

/ Baste functions \

/ Cost, t)m«, human resource \

/ Technical Imitations \
/ — — — — — — — — - — — •• _ _ _ _ _ _ _ _ \

/ Sotaal laws, technical regulations., or other mandatory criteria \

/ Natural Ia*s and rules \

Figure 16 Eight levels of requirements [36]

3.1.2 Knowledge base for the ROM diagram

From Environment Based Design Theory, especially from the ROM diagram, the

semantic meaning of a design text can be extracted and transformed into a mathematical

data structure - normally forming a graphic map structure. This pre-research gives us the

43

opportunity to understand the natural language text and to lead to an ROM semantic

decomposition process.

To achieve the automatic formalization of conceptual design models such as a FBS

modeling, we need to first solve the following problem mentioned in Chapter 1 - How

can the meaning of a text be captured automatically?

As discussed before, the ROM diagram contains the semantic meaning of the product

requirements. Based on Zeng's EBD theory, all the design products can be treated as

objects, meaning they have an environment in which they perform their functions. In this

case, capturing the meaning of the design documents - or a scenario of procedures - can

not leave the environment behind. These environments can be system working

conditions, system working environments or the resources of a system, etc. All the

environments can be seen as limitations or constraints when we mine the semantic

meaning of product design documents. Developing a knowledge base for the ROM

diagram is crucial in the automatic formalization process.

The knowledge base can also be seen as a criterion that testifies about all the objects from

the ROM diagrams to find out the semantic meaning of the objects and their roles in

original natural language requirements. This knowledge base can be a data set and a

series of principles. The knowledge base reflects the definition of Aspect in FBS

modeling, meaning predefining the limitations before modeling.

In this approach, we define the following criteria for semantic analysis in ROM diagram:

44

1. Product (center object)

No matter how complex a design text is, only one product will be described in each

requirement document. Through ROM theory and linguistic analysis, the output of the

ROM diagram should follow the same principles. Let freq be the function of counting the

frequency of the objects in the ROM diagram. Let act be the actions sent out from the

objects where o is the appearance of each object in the ROM diagram and prod is the

product of a requirement:

Before merging the ROM diagram

Prod = max (freq (o))

The most frequent object is the main

After merging the ROM diagram

Prod = max (count (act (o))

By counting the number of actions,

from the main object.

object of a requirement.

the largest number of actions should come

By examining these two principles, we first verify the correctness of the ROM diagram

and then get the central object of the whole requirement, which should be the product (a

machine in this case).

45

2. Main actions

How to describe a product requirement correctly in documentation? The bottom line is to

describe the product - or we can say a machine in the manufacture field - functioning

completely and correctly. Let Act be the set of actions from any object, v be the function

derived from each object. Verbs connect the actor and the object of the actions. From the

ROM diagram and common sense, we get the following criteria for functions:

Act = v (o)

Where v(o) = <

f true
(if word class = verb and

relation type is predicate)

false
< (otherwise)

(5)

We can then define the main function with the following formula:

Main Act = v (prod) |
|

(6)

Main Act is also a set of functions containing all the actions sent out from the product. By

verifying the action criteria, we can examine the ROM diagram.

3. State changing actions

46

The product design requirements focus mainly on describing the procedure of a product

such as a machine procedure. Using FBS modeling, the F-B relationship and the F-S

relationship show the relationship between Function, Behavior and State. Zeng defines

the behavior as performance and gives a scheme of performance in figure 17. [40]

su'tioarv(k)

state ehaiiRcO)

Figure 17 Performance scheme [40]

Since the action can be seen as a function in the design process, the performance

(behavior) can be seen as the combination of the action result and the product state

change.

To capture the semantic meaning of the ROM diagram especially for the product design

problem, our approach needs to define the criteria for changing the state. Based on the

performance scheme, the component can also derive from the performance after catching

the key words that indicate the state changing. Let the fstate be the function that indicates

the state changing of the product. Let prep be the function to test the preposition object in

ROM diagram, r tbe the relation from ROM diagram and t^be the relation type from

ROM diagram.

47

fstate(act(o),prep,rt) = •

COmp(fstate,

prep

l

act{0)) = \

= rt(tx)

r

" " "

/ true
| (if prep is true)
J flase
\(if prep is false)

Vrt(t2)

true
is true and act (o) is

false
(otherwise)

true)

(7)

From the formula, the changing of state is determined by the preposition criteria in a

ROM diagram. This approach follows the natural law of human speech. For example, a

machine performs some function can be seen as an action and reaction to the destination.

As defined in Figure 17, the behavior is the combination of action and change of state,

and then the change of state usually occurs after an action. After the change of state point

is retrieved from ROM diagram, the component of the product can be selected if it

connects to an action. Using this logic, the change of state point and the product

component can be retrieved from ROM diagram.

4. Environment

From Zeng's EBD theory, Environment is a general term. As inside the engineering

system, the component and the workflow are the environments for system functions. At

the component level, the attribute and actions are the inside environment. Moreover,

48

outside the whole system, human interaction, nature law, etc., are the environment for the

system. For the sake of the simplicity of our research, we focus on the environment that

acting directly on the product. So we define the environment Env criteria as follows,

where Comp, Attr and OutEn denote sets of components inside the system, Attribute of

the Component and Environment outside the system:

j .

i Env = {Comp, Attr, OutEn}

(8)

The detailed mechanism for the generation of the proper environment definition will be

discussed in the parts of this paper dealing with the formalization rules.

3.2 Framework for Automatic Generation from ROM Diagram to UML

Figure 18 shows the general procedure of how engineers understand a requirements text.

First, an effective reader tends to find keywords when s/he tries to understand a sentence

and to find key sentences when s/he tries to understand a paragraph. Secondly, the main

verb seems to carry the most important message in a sentence. Thirdly, a key sentence (or

a topic sentence) in a paragraph is always carries the most amount of relations inside a

paragraph. Finally, every actor in any requirement text must be a noun and every action

in any requirement text must be a verb.

49

Getting key
sentence

i i

Reading material

Getting keywords /
Topics

Form skeleton
from keywords +

verbs

f

Connect keywords
with verbs

Figure 18 Representations for describing design information

In the ROM diagram, each object contains a word or a phrase that has a part of speech or

its equivalent, based on which type of object can be analyzed. An ROM diagram also has

three types of relations that can hold the semantic meaning between two objects. By

analyzing the type of relation, we can easily get the semantic meaning of each relation

between two objects and finally get the keywords in a sentence.

Through the priority of each object (the number of adjacency list for each object), the

object's importance can be ranked in a sentence or a paragraph. As the priority indicate

the action send out from a object and based on human analytic logic, those having a

higher priority carry more meaning in a given text; thus, they should be taken as the

candidate for actor and can be further used for generating class diagrams. As the

predicate relation indicate the action send out from one object and our approach is intent

50

to find out the actor and action of a design documents, then only a predicate relation is

selected to determine the priority in each object.

3.3 Framework for the Automatic Formalization from ROM Diagram to FBS

Models

Domain
Knowledge

Conceptual
Model

Document Pre-

Linguistic Analysis of the
Requirement Document

Transformation of ROM
Diagrams into Conceptual

Models

INPUT:
Requirements

Document

Reorganized
Requirements

Document

ROM
Representation of

Requirements
Document

OUTPUT:
Conceptual Model
of Requirements

Document

Figure 19 Framework for the transformation of a requirements document into conceptual models

Figure 19 shows the framework of the automatic formalization process. First, the input

requirement document described in natural language will be processed with some

document refining process such as asking the right question as proposed by Zeng and

Min [2]. If the question-asking strategy is used, the document can be pre-processed and

51

the original document can be made more standard and complete. After the pre

processing, the document will go through a linguistic analysis process by using the

computer tools from the ROM project, tools called ROMA tools. The output of the

ROMA is the ROM diagram, which is discussed above. It is also the input of our

automatic formalization process to the FBS models. The domain knowledge in the

framework can be the function knowledge of the FBS model and the criteria for finding

the FBS scheme, which is discussed above. Using the FBS modeler as the reference for

function decomposition will lead to the FBS models.

In the ROM diagram, each object contains a word or a phrase that is a part of speech or

its equivalent. An ROM diagram also has three types of relations that have the semantic

meaning between two objects. By analyzing the type of relation, we can easily get the

semantic meaning of each relation between two objects and finally get the keywords in a

sentence.

Based on the priority of each object, the object's importance can be ranked in a sentence

or a paragraph. The object having a higher priority has more meaning in a given text;

thus, they should be taken as a product and can be further used for generating actions,

environment, component and attribute. The computer tools can determine the function

scheme that is suitable for an ROM diagram by automatically using the criteria from the

function knowledge base. Then, using an FBS decomposition strategy with certain

traversal algorithms, the main action can be decomposed into sub functions. By keeping

the same decomposition procedure, the level of functions and the relation of function and
52

behavior will be clarified until the decomposition level reaches the physical level such as

the component and outer environment. It should be emphasized that the relation type in

an ROM diagram plays the key role in identifying the function scheme and in

decomposing the function structure. Moreover, as mentioned above, the preposition and

the predicate relation are the most important in our approach.

53

Chapter 4

Transformation from ROM Diagram to UML Diagram - R2U

The automatic generation of a UML model relies on the full understanding of the natural

language based requirements description. For example, if an engineer wants to draw a use

case diagram, he or she needs to understand the requirement at first and then get the actor

and actions related to the UML standard. Our research aims to simulate the human

activities in the requirement analysis process and to automatically generate UML

diagrams by using a software system.

4.1 Generation Rules

Based on the previous discussions, it is possible to get the semantic structure of a

requirement text and then automatically generate UML models based on that semantic

structure. This subsection describes the procedures and rules for the automatic generation

of UML models from the ROM diagram representing a text.

Our current research is mainly focused on Use Case Diagrams and Class Diagrams. Use

Case diagrams have two types of objects - actor and action whereas Class diagrams have

class name, method and property. For the Use Case diagram, an actor corresponds to an

object that is a noun with the highest priority. The action should be a verb object related

to the keywords of the identified actor. The class diagram also comes from the object's

ranking of priority. The only difference between actor and class is the meaning of the

keywords that will be discussed further below.

54

Generation rules:

Pre-condition:

Role = Object in ROM diagram with noun class property

Class e Role

Actor e Role

Action = verb phrase

Method = verb from noun phrase

Gene: ation Rules:

Actor and Class = Highest priority Object in ROM Diagram

Priority of Object = Number of predicate relations to the object

Actor = outside of the system

Class = inside the system

Action = System External User's action

System External User's action = Actor Object in ROM diagram with verb class + Object in ROM
diagram with preposition related

Method = System Internal action

System Internal action = Class Object in ROM diagram with verb class + Object in ROM diagram
with preposition related

Below are the UML generation procedures:

Generation Procedure:

1 Get a set of the object with the highest number of neighbors on its adjacency list in each sub-
ROM diagram

2 Check word class to select the noun Object as Class object

3 Iterate the list of Class objects. For each class object search the dictionary to determine if the
object is external or internal to the system (for example, customer is always outside the system
while a database may be inside a system)

4 Traverse ROM diagram using a graph search algorithm

4.1 Get the first Object in the ROM Diagram correlated to the class object (also considered as
keywords in paragraph) with the first half predicate relation (From ROM, the first half
predicate relation connects its subject and verb in a sentence)

4.2 This object forms a method object in the class diagram

55

4.3 Traverse from this object to reach an object correlated to the current object

4.4 If a relation is the second half of a predicate relation (acts as a verb to an object in English
grammar), then it forms an action (skeleton of the sentence) to the actor (keywords)

4.5 If a relation is a connection relation (acts as a verb to a noun phrase in grammar), and the
related object is one of the keywords, then it forms as inter actor action (skeleton of the
sentence) from one actor to another actor (keywords)

4.6 Repeat steps 4.1 to 4.5 while iterating the adjacency list in current class object.

5 From each keyword, find any connection relation to an object in the ROM diagram which
contains noun word class

6 Verify the object found in step 5 in the class object list. If they are equal, then go to step 7.

7 This relation forms the connection between the class object in the UML class diagram.

Using the generation rules, the human semantic capturing process can be simulated by-

catching the keywords, finding the preposition connect to the keywords, finding relation

of each keyword and getting the semantic meaning of ROM diagram.

This procedure takes the input ROM diagram (in XRD form) as a directed graph and uses

graph traversal algorithms during the analysis process. For the semantic part, this

procedure uses the meaning of relation defined in the ROM to rank the priority of an

object in a ROM diagram and identifies the semantic meaning of each sentence by

catching its skeleton.

It should be pointed out that the rules above are still preliminary. Further experiments are

needed in order to deal with a broader range of problems. A software prototype has been

developed for this purpose.

56

4.2 Software Prototype

The software prototype R2U has been developed based on the generation rules given in

the previous section. The prototype is implemented in the windows environment by using

C#. The input of this software is an XRD file and the output is UML diagrams. Figure 20

shows the data flow of the R2U application.

XRD documents

XML parsing

Figure 20 Data flow diagram of an R2U application

57

R2U has two critical functional parts. One is the XML parsing, which is combined with

graph traversal algorithms to ensure certain objects in a ROM diagram will be visited.

The relations in the ROM diagram have the most important information to actually

determine the traversal sequence. The traversal algorithm simulates the logic of the

human analysis process.

The following pseudo code shows the basic function of the ROM diagram traversal

process:

Start

Declare XMLReader Variable

Declare Graph data structure

Reading XRD

Fill out Graph structure

For each Node

Current_Priority = Amount (relation

If CurentJPriority > MaxJPriority

in adjacency list =

Max_Priority = Current_Priority

End If

End Foreach

Fill out Class list

Foreach Class list

Lookup dictionary

If Class = External User

Actor_List.Add(Class)

End If

End Foreach

Stop

= predicate)

58

The following pseudo code shows the basic function of the semantic analysis system:

Start
Declare Action list
Declare Method list
Foreach Class in Class list

If relation type = predicate
Method = predicate-> Object
Fill out Method List

End If
End Foreach
Foreach Actor in Actor list

Traversal (Actor)
If relation type = predicate

Actor = predicate-> Object
Traversal (Actor)

Else
Fill out Action List

End If
End Traversal

End Foreach
Stop

4.3 Case Study

To test the approach proposed in this thesis, some experimental results from a case study

are presented in this section. The test case is a small requirement text describing the

scenario of a POS management system in a common supermarket environment. As

discussed above, the original input of our project is in a natural language based

requirement description given below.

/. The customer arrives at a POS checkout with goods.

2. The cashier starts a new sale.

3. The cashier enters the item identifier.

4. The system records the sale-line's item and presents an item description.

5. The cashier repeats steps 2-3 until it indicates it's done.

6. The system presents the total price with taxes.

59

7. The cashier tells the total price to the customer and asks for payment.

8. The customer pays and the system handles the payment.

9. The system logs the completed sale.

10. The system sends the sale and payment information to the external Inventory Systems.

11. The system presents the receipt.

12. The customer leaves with the receipt and the goods.

This requirement text shows an entire check-out process that occurs in most stores. From

the system design point of view, the product of this requirement is a system and there is

also an external actor and an internal actor in the system. By analyzing this requirement,

the designer can identify the customers and some basic functions of this system.

i He y fwifc, »wp£

[I n u i t n n i i Inpul
I n n i w * »••;.£ • . . .-*a.-J*
gooo*. Trie cajnrer starts a new taw ihe
cashier enters item identifier. The system records
sale-ine's Hem and presents item description. The
cashier repeats steps 2-3 until it indicates it's
done. The lystem presents total price with laws.
The cashier leUs the total price lo the customer
and asks lor payment. The customer pays and
Ihe system handles payment. The system logs the
completed sale. The system sends sale and
payment information to the external Inventory
Systems. The system presents the recept. The
customer leaves with the leceipt and the goods.

|—W sale *"4 'ffffiffi j

Figure 21 ROM diagram of the test requirement text

B-

a
a
\
H
V

\

60

Figure 21 shows the ROM diagram of the test requirement text, which was generated by

the ROMA system. Internally, the ROM diagram is represented in XRD format, which is

used to generate the UML diagrams by the R2U system.

,*? i :U t i f inf inCa!>ebti i<1v * m l R / U

X R D Input _

Total ROM object 3
Total object number: 74
Total relation number: 71

Fife . Edit View

Open 1 j ; |UscC ,»sg»ia' jr

CJSlCfner

ii.MVtfV
cashier
--starts
-enters
-repeats
--tells
•-ask*
system
--records
-presents
"Jogs
-sends
-presents

Actor

customer
cashier

I3GE

Figure 22 Use Case diagram output of R2U 1.0

From the XRD file generated by the ROMA system, the R2U software automatically

generates and displays the UML diagrams, based on the generation rules introduced in

the previous section. Figure 22 and Figure 23 show the use case and class diagrams of the

test case, respectively.

61

-,.;«•„ W ; View".'-;> ',',.;

X R D Input { Open]

JTotal ROM object: 3
[Total object number: 74
I Total relation number: 71

Class

customer
-airives
-pays
-leaves

1 cashier
••starts

ij -enters
-repeats
-tells
-asks
1 system

ij -records
--presents
-Jogs
-sends
-presents

Actor

; customer
j cashier

i
1

•E*2o3flE9H^HHel M^^^^r^WS * ! # & - # , J ! - 3

• Use Ca*e Diagram Lome n C ititjt a n

customer

Name

Address

public void amves[)

public void pays()

public void leaves[]

system

TiansactionJD

public void recordsf]

public void presents

public void logsf)

public void sends()

public void presents

cashier

Name

ID

public void starts!}

public void enters()

public void repeats[]

public void tells()

public void asks(J

Figure 23 Domain Diagram (Class Diagram) output of R2U 1.0

62

Chapter 5

Transformation from ROM Diagram to FBS Models - R2FBS

Based on the previous discussions, it is possible to get the semantic structure of a

requirement text and then automatically formalize FBS models based on the semantic

structure. This subsection describes the procedures and rules for the automatic

formalization of FBS models from the ROM diagram representing a text.

5.1 Identify the FBS Schema from ROM Diagram

Our research simulates the FBS modeling procedure. The FBS modeling procedure deals

with function modeling by first defining the function scheme and then by decomposing

the function. Our automatic formalization process follows the same logic and divides our

approach into three parts - locating the function key words in the ROM diagram, which is

described in the framework chapter, decomposing the function level and mapping to FBS

scheme to finally form the FBS models. This decomposition process answers the

following question proposed in Chapter 1: How to define the function representation

scheme of product function described by FBS modeling and mapping with ROM element

to capture the semantic meaning of functions?

5.1.1 Function decomposition rules for ROM diagram

The FBS modeling proposes a representation schema by giving the following definitions:

Functions, F-B relationship, state, behavior, physical phenomena and aspect. Since our

research focuses on the computer-assisted formalization of FBS models, getting the

63

scheme automatically is crucial to our approach.

%gJjg*L...., „„„..; .Tr,.!^*^?8

atiorshspfc

Reto!:!OT\ships

jm/«l

^ttmm**^

Figure 24 A FBS diagram [3]

FBS modeling uses the FBS modeler to assist a function decomposition process to

simulate the human activities by decomposing the function into lower-level sub-functions

and finally by reaching the substantial components as shown in Figure 24.

By solving the first question about the capture of the semantic meaning of ROM diagram,

we have established the knowledge base of our approach. By using these criteria, we

found a set of product elements that can be extracted from a ROM diagram and describe a

product function completely. These elements can also be seen as another scheme suitable

for ROM diagrams. As discussed above, an ROM diagram is not a systematic modeling

language. We can treat an ROM diagram only as a data structure to restore the semantic

meaning of a text or to treat it as an output after performing a linguistic analysis. We

can't derive the FBS scheme directly from an ROM diagram. We need to examine or

traversal the ROM diagram and find the key element following the criteria discussed

64

above. Let FBS be the set of schemes defined in FBS modeling and RC be the set of

schemes extracted from the ROM diagram. The following formula shows the definition:

FBS = {E,F,F-B,S,BIB-S,PP,A} I

(9)

Where E is the entity, F is the function, F-B is the F-B relationship, S is the state, B is the

Behavior, B-S is the B-S relationship, PP is the physical phenomena and A is the Aspect:

RC = {P,A,En,Comp,Attr}

ttl — tTlinside " ^^-outside

Eninside = Comp U Attr

(10)

Where P is the product, A is the action, En is the environments including those outside

system environment and those inside the system environment, Comp is the component,

and Attr is the attribute.

After getting the RC from the ROM diagram, mapping it into the FBS modeling scheme

is the next approach. Part of the mapping mechanism is shown below:

E

F =

= PV

--A(o)

A =

Comp

nv(P)

bn

(11)

We can use the formula given before as the bridge from the ROM diagram to the FBS

scheme, making it possible to finally formalize the FBS models automatically. The only
65

problem is the F-B relationship. Also the B-S relationship can not be derived by using the

mapping rules above. Therefore, we need to find another methodology to clarify the

hierarchy of the functions level and relationship. This approach also intends to figure out

the following question proposed in Chapter 1 - How can the right FBS models be derived

by simulating the function decomposition procedure provided through the FBS modeler?

The Function-Behavior relationship and the Behavior-State relationship illuminate the

connection inside the FBS models. In another words, these two relationships divide the

whole function model into different levels hierarchically. As shown in Figure 24, after

solving the first two problems, we get the different parts of the function. However, we

still have no idea about the hierarchy of the function models, and the entire element or

schemes are separated. This section of the present paper presents a possible solution to

the problem and finally gives a method to finish FBS modeling procedure.

After matching the criteria and extracting the key function element from a ROM diagram

using the approach discussed before, we know the whole frame of the function from the

requirement document described in natural language. To formalize a function model such

as an FBS model, knowing the scheme is not sufficient. We still need to explore the

structure and relationship of the function and then to formalize the function models.

Tomiyama has proposed a function hierarchical decomposition method for FBS

modeling. This decomposition method simulates human activities in function modeling.

For example, when an engineer designs the product, the traditional way is to find the

66

main function by understanding the requirement documents. Then the designer goes

through the documents and finds more information to try to decompose the main function

into sub-functions. This decomposition process should be a recursive process by which

the designer keeps exploring the lower level of sub-functions and going back to the upper

level to verify the sub function's correctness. This decomposition process is normally

affected by the designer's understanding and experience, which usually differs from

designer to designer. Moreover, only the designer can determine when the decomposition

process should stop and at what level of sub-function. In FBS, it provides the FBS

modeler to simulate this manual decomposition process discussed above. Consider the

FBS modeler is a computer tool that supports conceptual modeling. It uses the knowledge

base to store the function knowledge that can support the function deposition. Also, the

FBS modeler divides the decomposition process into two categories: causal

decomposition and task decomposition. Task decomposition results in the sub-functions

related to the knowledge while casual decomposition results in the sub-function related to

the physical features in the system.

In our approach, we have tried to follow the same logic as that of the FBS modeler.

However, considering that our approach is trying to formalize the FBS models

automatically which means minimizing human interaction, the decomposition method

may be slightly different from that of the FBS modeler. With the help of the linguistic

analysis tools mentioned above, ROMA and its output ROM diagram, it is possible to

find a methodology to perform the function decomposition automatically. The basic idea

67

of our approach comes from the traversal method in computer science. Like the FBS

function decomposition method, the starting point of our approach in function

decomposition is the main function in the requirement. Unlike FBS modeling, the input

of our approach is not the requirement document but a graphic representation of the

requirements, that is, the ROM diagram. As discussed above, this starting point should be

a unique one: the product of a requirement. To simplify our algorithm in traversal of the

ROM diagram, we do not select the FBS modeling element such as function, behavior,

etc. but select the function element we created for the ROM diagram - actions,

environment, component, etc. - to work as the node during the traversal process and to

connect all the elements using FBS decomposition principles. Then after we reach some

node indicating a component or outside system environment, the traversal stopped and

recursively goes back to the start node to verify this sub-function's correctness. By using

this traversal logic, we simulate a recursive function decomposition process that is similar

to human actions and that follows the FBS modeler principle. The following formula has

been derived to support our function decomposition process:

r ;
I

functionmain = prod + (3a(prod): a(prod) n rt is predicate) |

functiondecp = functionsub + en |
i

(12)

Using the logic to go through the ROM diagram and to combine with mapping algorithms

from the ROM function element to the FBS function scheme, we can define the sub-

function. Then through the recursive traversal algorithms we can verify the sub function.

68

In the mean time, after verifying the sub function, we can get the behavior from the

action and we can indicate the state change point of the requirement description. Figure

25 shows the logic of function decomposition:

Product + main
action

Main function

Figure 25 Function decomposition logic

5.1.2 Mapping function elements to FBS schema

The mapping process can actually start simultaneously with the decomposition process.

69

As the decomposition process begins with the main function identified from the first step,

traversal algorithms may follow the FBS decomposition method. Until the process

reaches the component, a behavior can be found, and in the mean time mapping the sub

function to the FBS modeling scheme may save time. Then the formalization process can

be divided into two main procedures: locate the function element and the function

decomposition. The following parts of this section explain the rules we researched to

assist the two processes.

Below are the function elements locating rules:

Location rule:

Pre-condition:

• Function Element definition
a) Product is a unique noun object with highest priority.
b) Environment is object connected with preposition object
c) Environment can be an inner environment and an outer environment for a product
d) Inner environment can be a component or an attribute of the component depending

on the induct object's word class
e) Performance is the action and reaction on a component combined with the

component itself.
• Function Element searching Criteria (see research methodology part of this paper)
Procedures:

• Product = Highest priority Object in ROM Diagram
• Priority of Object = Number of predicate relations to the object
• Action = verb object connected with predicate relation as input relation
• Main action = Action sent out from the product
• Preposition object = object connected to a predicate relation as an output relation and

constrain relation as output relation
• Environment = connected to preposition object with predicate relation connect to

preposition object
• Physical phenomenon = environment object which connected preposition object and verb

object
• Component = physical phenomenon - outside system physical

70

• Outer Environment = physical phenomenon - component
• Inner Environment = environment - physical phenomenon
• Attribute = inner environment - unrelated to component object

Below are the function decomposition rules:

Decomposition rules:

Pre-condition:

• Function Element gain from first step
• Mapping to FBS scheme algorithms
• FBS modeler decomposition method

Procedure:

• Start point = product
• Main function = main actions
• Action object = component (if predicate relation indicates the next adjacent object is a

verb)
f physical phenomenon

(if predicate relation
indicate the next

adjacent object is verb)
others

Manufacture = most frequent physical phenomenon + inside the system
Behavior - actions + component

• Action object = •

Below are the function formalization procedures:

Formalization Procedure:

8 Get the highest adjacency list with predicate relation type amount Object in ROM
diagram

9 Save the position of the selected object in ROM diagram and set it as the product of
system

10 Fill the main action list with traversal function where relation type from product is
predicate

71

11 Fill the preposition list with traversal function where all objects with relation type
suitable to preposition criteria proposed above

12 Fill Environment list by go through the preposition list follow certain criteria
13 Iterate the object of environment list, for each environment object lookup a dictionary

and function knowledge base to determine if it's outside the system.
14 Traverse ROM diagram using FBS function decomposition method and graph search

algorithm
14.1 Set the traversal start point with product
14.2 Traverse from the start point and fill the action list
14.3 Iterate the action list to the action object
14.4 Identify the object of an action is a physical phenomenon or not
14.5 If not physical phenomenon, go to step 7.6. Otherwise, go to step 7.7
14.6 Restore the action object as new start point and then repeat step 7.2 to 7.5
14.7 Traverse back to gather behavior information using formalization rules and

mapping rules
15 Using mapping strategy to map all the stored FBS scheme and output the structure of

function models.

Using the formalization rules, the human semantic capturing process can be simulated by

catching the product, finding the function element scheme, finding the preposition of

keywords, decomposition of finding actions, mapping to existed FBS models and getting

the function design structure and relationship of a product from ROM diagram.

This procedure takes the input ROM diagram (in XRD form) as a directed graph and

identifies the element of function design and then uses graph traversal algorithms during

the function decomposition process. For the semantic part, this procedure uses the

different meaning of relation defined in the ROM as the semantic tool to rank the priority

of an object in a ROM diagram and identifies the semantic meaning of each sentence by

catching its skeleton.

It should be pointed out that the rules above are still preliminary. Further experiments are

72

needed in order to deal with a broader range of problems. A computer tools implementing

the derived rules has been developed for this purpose.

5.2 Transformation Algorithm

The automatic FBS models formalization computer tool has been developed based on the

formalization rules given in the previous section. The software prototype is implemented

in the windows environment by using C#. The input of this software is an XRD file and

the output is FBS models and function design analysis documents. Figure 26 shows the

data flow of this approach.

XRD documents

FBS models
formalization

Tools

XML parsing

XML node

Identify
function
element

Function scheme

Function
decompose

process

Sub function / behavior

FBS models

criteria

Function
—I knowledge base

rules

Figure 26 Data flow diagram of automatic formalization tools

The computer tool called R2FBS has two critical functional parts. One is the XML

parsing, which is combined with graph traversal algorithms combined with function

criteria. Relation in the ROM diagram is the most important information for the traversal

algorithm, which actually determines the traversal sequence. The other is an algorithm

simulating the logic of the FBS function decomposition process.

The following pseudo codes show the basic function of identifying the function element

with some ROM diagram traversal algorithms:

Start

Declare XMLReader Variable

Declare Graph data structure

Reading XRD

Fill out Graph structure

Foreach Node

Current_Priority = Amount (relation in adjacency list

= predicate)

If CurentJPriority > MaxJPriority

Max_Priority = Current^Priority

End If

End Foreach

Product = Max_Priority

Action list = action (Product)

Foreach Node

74

If (relationtype (Node) =predicate)

&& relationtype(Node)=zconstrain

Fill preposition list = Node

End If

End Foreach

Foreach preposition

If neighbor (preposition) = true

&&

relationtype(neighbor(preposition))=predicate

Fill Environment list

End If

End Foreach

Foreach neighbor

Ifwordsclass (neighbor (preposition)) =v

Fill component list

End If

End Foreach

Stop

5.3 Case Studies

5.3.1 Formalization of requirements text

To test the approach proposed in this paper, some experimental results from a case study

are presented in this section. The test case is a small requirement text describing a

75

product requirement for coating small food such as donuts with powder. As was

discussed above, the original input of our project is a natural language-based requirement

description given below.

The coating machine will coat a small, flat, cylindrical product with a powder. The semi-finished

product is made by extrusion, at the rate of about one piece per second. The product can fall directly

from the extruder on to the coating machine. After coating the product, the coating machine will

deliver the product to a conveyor belt and transport the product for wrapping and packaging.

—select from case 3 design coating machine, Practical Studies in Systematic Design [41]

This requirement text shows a simple auto-coating system. From the system design point

of view, the product of this requirement is a machine. There are also external and internal

environments to the system. By analyzing this requirement, the designer can identify the

main function and some basic components of this system.

Figure 27 shows the ROM diagram of the test requirement text, which was generated by

the ROMA system. Internally, the ROM diagram is represented in XRD format, which is

used to formalize the FBS models by the use of R2FBS computer tools.

76

%>f \(ant ing n w h i n p ri>c|iiirt>»i<.>nt< xml rifttVA

jflat. cylindrical product with a powdei.
The iBmi-finished pioducl n made by
extrusion, at tho [eta of aboul one piece
pei second. The pcoduct can fat directly
figm the extruder on to the coating

jroachine. After coat the product, the
coating machne wil defver the product
!to a conveyor bet and transport the
•product for wrapping and packaging.

Figure 27 ROM diagram of the test requirement text

" . C:\Cnfltiry3 machine requirements, xm! - FBS Generation

File Edit View

XRD Input I Open

Ifolal ROM object 1
jTotal Object number: 44
ITotal Relation number; 45

jProduct

icoating machine

jAction

Icoat product
[deliver product

•Environment 11
•Component

•conveyor belt
(wrapping
(packaging

(Attribute

•powder
Irate
I per second one piece

!. An4>*is ^ a i i | f i | | ^ |

; - - - - ^ - ^ - ^ ^ X '•':'

•- :j- . ~ * * H

FBS Description FBS Moitel

/K-

/ ^ _

Figure 28 Function schema gain from a ROM diagram by R2FBS 1.0 for requirements
77

file://C:/Cnfltiry3

From the XRD file generated by the ROMA system, R2FBS software will automatically

identify the function elements through certain criteria proposed on this paper as shown in

Figure 28, based on the function elements generated from the ROM diagram and the FBS

decomposition method, our automatic formalization rules will form the final output,

namely the FBS models. Figure 29 shows the FBS models output of the test case,

respectively.

• • ' • • - ' • • - . i : C ,I:ati'cnvs'i' i;,i-ir.: -i• S5S"?;::-

FBe Edit Vfew

X R D Input Open S Description FBSWxsl

Total ROM object 1
Total Object number: 44
Total Relation number: 45

Product

coating machine

Action

coat product
deiver product

Environment

product
extrusion
extruder

Component

conveyor belt
Mapping
packaging

Attribute

powder
rate
per second one p'ece

t

extruder macNne

X
conveyor belt packaging wrapping

per second one piece rate powder

Figure 29 A FBS model output of R2FBS 1.0 for design requirements

78

5.3.2 Formalization of design patents

FBS models deal with design documents that may include many types of text such as the

product requirements illustrated above or design patents, which will be discussed below.

We chose the design patents as a study case because patents contain more accurate and

restricted text styles, making them different from requirement documents. Also, most

design patents focus on describing the component and functionality of a product system.

This focus is very suitable to our approach. The following design patent describes a low

temperature clothes dryer based on a real United States Patent:

A low temperature clothes dryer having a drying chamber provides removable horizontal screens

supporting clothing items and a hanging bar for hanging clothes to be dried. A timing control allows

setting the time of operation of the drying cabinet. An electric heater with thermostat is provided to

initially raise and maintain the air temperature within the drying chamber to at least about 90

degrees F. The dehumidifier is then operated, providing for circulation through the ducts and drying

cabinet by an internal fan. The dehumidifier has an evaporator, through which warm, humid air is

passed, thereby cooling the air and condensing water therefrom, the water being collected in a

removable container or drained through a drain hose. The fan forces the cooled, dried air through a

condenser which heats the dried air for recirculation through the drying chamber by means of ducts,

thereby drying the clothing therein.

-From United States Patent, Patent n No.: US 7,377,052 B2; Date of Patent: May 27, 2008

The text in the design patent of this low temperature clothes dryer clearly describes the

components of the dryer and functionality of each component. For the designer, this

document is more accurate than a regular product design requirements text. So far as our

79

approach is concerned, the patent text is easier to extract information from after

performing the linguistic analysis of our approach: ROMA. Figure 31 shows the results

of the ROMA process: a ROM diagram. This ROM diagram is also the input of our

approach to automatically generate a function representation schema and finally the

formalized FBS models.

~ gfrtow temperature domes dryer, art • fiflMft ;

Ftaffi) Edft© HBtKH)

?brt£tri

input ___

A low temperature clothes dryer having a
d^ing chamber provides removable
horizontal screens tupporting clothing
term. A low temperature cloihes dryer
having a hanging bar fa hanging
cloihes, A timing control alows letting
the lime ol operation of the drying
cabins). An electric heater with
thermostat is provided to maintain the at
temperature with'n the drying charobei to
at least about 30 degrees, The
dehumidifiei is then operated, provrdng
for circulalion through the ducts and ,
drying cabinet by an internal Ian. The
dehundifia ha: an evaporator through :

which warm, humid airi* passed. The
evaporator cooing the air and
condensing mater, the water being
collected in a removable container or
drained through a drainhose. The fan -\
forces the cooled, dried at through a *
condenser which heats the dried air lor ;

recirculation through the drying chamber.

pa,
TBs: X; 1011 Y: 866

Figure 30 A ROM diagram for the low temperature clothes dryer

Unlike the previous test case, the design patent of this low temperature clothes dryer

holds more information about functions and components because of the property of the

patent text. Therefore, the function schema for the design patent has become more

80

complex compared with the previous example of design requirements. The schema

generated by R2FBS is shown in Figure 32. Figure 33 shows the formalized FBS models

based on the schema and traversal algorithms discussed above in this chapter.

* & C:\Low temperature cfathes eky®"' w l • FBS Generation

Rte Edit View

XHD Input Qpsn

Total ROM object 1
Total Object numbw 91
TotaJ Relation number 39

Product

low temperature clothes dryer

Action

otyno. clothing.
set na time
raise and malntiain temperature
pass warm humid <*
collect water
drain water
force coled chied a*
heat (fired ai

Envronmem

otothat
temperature
ail

Component

drjw^j chamber
removable horizontal sereenns
hangngbar
tma control
eJetrte hoetai with thermostat
dehurmcMief
ducts
Internal fan
evapwatot
removable container
drain note
condenser

Attribute
at (ease 90 degrees F

aii temperature
circulation
warm humid air
water
cooled dried e«
rectcutation

->,r̂ k.->; ij; J3«MH*S>>:;J

FBS Description r ~ " M d

Figure 31 Function schema of the low temperature clothes dryer generated by R2FBS 1.0

81

file://C:/Low

*® fr^ow tgrpetature lathes &^r,mij FS$ Qena'ation^

Pile Edit View

Total ROM obiect 1
T otej Object number 91
T6W Rotation number 99

Product

Ion territwatwe etolhes dryet

4cbon

dryrig dothing
sottigtimo
raise and maintain temperature
paw nam) humid *
effect water
dramwaJer
foice coted dned *
heat dired M

Environment

Component

dryrrg chamber
removable hotizontal tcreenns
hangngbai
time control
elatjie heeler with thermostat
dehumkBter

internal tan
evaporator
removable1 cents™
drain hose

time control I electric healer h o s e n (emovable container drying chamber internal Ian condenser x:
Attribute

— —at lease 90 degree* F
temperature

circulation'
humid ait

Figure 32 FBS models of low-temperature clothes dryer

82

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Design document modeling is important at the early stage of product design and in the

engineering fields. A correct and complete design model is extremely useful for the

engineer.

The present thesis proposes a novel approach in the automatic transformation of design

documents from a natural language description to structural modeling languages. With

the help of linguistic analysis and modeling specification languages, UML and FBS

modeling, this approach generates UML diagrams and FBS models as two outputs.

The ROM diagram corresponding to a text includes the main semantic information

implied in the text. Based on the semantics in the ROM diagram, a knowledge based

proposal includes the criteria of function element and function decomposition rules. A

software prototype is presented as a proof of concept for this approach. A case study

shows that the proposed approach is feasible.

Though the automatic transformation of design documents shows a great potential in the

product design of manufacturing engineering, our proposed approach does not intend to

exclude the human users from the loop. On the contrary, this approach will help

engineers better understand requirements, especially in a large project, by reducing the

ambiguities of human understanding in analyzing the requirements and by increasing the

consistency of the final function models when multiple engineers may be involved.

83

6.2 Future Work

As can be seen in the present thesis, our current approach largely depends on the

capability and capacity of the ROMA system, which captures the semantics of a natural

language text. Therefore, the accuracy of ROMA is of critical importance. Currently,

ROMA is still under further development though it is already very robust. Another

problem that needs to be dealt with is the study of the structure of design documents so

that they can be preprocessed in terms of the ROMA system. The rules for the generation

of UML diagrams and FBS models from a ROM diagram should also be refined. Lastly,

it is important to perform a more comprehensive system test based on statistical analysis

rather than on a limited number of case studies. These tasks are being implemented in a

collaborative project on a PLM system for the automotive and aerospace industries.

84

Reference

1. IEEE, IEEE Standard Glossary of Software Engineering Terminology. 1990.

2. Wang, M. and Y. Zeng, Asking the right questions to elicit product requirements,
in Electrical and computer engineering. 2007, Concordia University: Montreal, p.
90.

3. Tomiyama, Y.U.a.T., FBS Modeling: Modeling Scheme of Function for
Conceptual Design. 1995.

4. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual. 1998: Addison-Wesley.

5. OMG. OMG Systems Modeling Language, vl.O. [cited; Available from:
http://www.omg.org/docs/formal/07-09-01.pdf.

6. Zeng, Y., Environment-based formulation of design problem. Transaction of
SDPS: Journal of Integrated Design and Process Science, 2004. 8(4): p. 45-63.

7. Zeng, Y., Recursive Object Model (ROM) - Modeling of Linguistic Information in
Engineering Design. Computers in Industry, 2008. 59(6): p. 612-625.

8. Browne, G.F.S.a.G.J., Conceptual foundations of design problem solving. IEEE
Transactions on Systems, Man, and Cybernetics, 1993. 23: p. 1209-1219.

9. Zeng, Y., Axiomatic theory of design modeling. Transaction of SDPS: Journal of
Integrated Design and Process Science, 2002. 6(3): p. 1-28.

10. Zeng, Y. and G.D. Cheng, On the logic of design. Design Studies, 1991. 12(3): p.
137-141.

11. Mala, G.S.A. and G.V. Uma, Automatic construction of object oriented design
models [UML diagrams] from natural language requirements specification, in
Pricai 2006: Trends in Artificial Intelligence, Proceedings. 2006. p. 1155-1159.

12. Nuseibeh, B. and S. Easterbrook. Requirements engineering: a roadmap. in
Proceedings of the Conference on The Future of Software Engineering 2000.
Limerick, Ireland ACM Press

13. Fantechi, A., et al., Assisting requirement formalization by means of natural
language translation. Formal Methods in System Design, 1994. 4: p. 243-263.

14. Gnesi, S., et al., An Automatic Tool for the Analysis of Natural Language
Requirements. International Journal of Computer Systems Science and
Engineering, 2005. 20(1).

85

http://www.omg.org/docs/formal/07-09-01.pdf

15. Miles Osborne, C.K.M., Processing Natural Language Software Requirement
Specifications, icre, Second International Conference on Requirements
Engineering (ICRE'96), 1996: p. 229.

16. Zeng, Y., Recursive Object Model (ROM) - Modeling of Linguistic Information in
Engineering Design. Computers in Industry {submitted), 2007.

17. Xin, Z., Q. H. Mehdi and N. E. Gough, From Visual Semantic Parameterization
to Graphic Visualization. Proceedings of the Ninth International Conference on
Information Visualisation (IV'05), 2005.

18. Ma, M. and P. McKevitt. Semantic representaion of events in 3D animation, in
Proceedings of The Fifth International Workshop on Computational Semantics
(IWCS-5). 2003. Tilburg, The Netherlands.

19. Mikael R. Jensen, T.H.M., Torben Bach Pedersen, Converting XML DTDs to
UML diagrams for conceptual data integration. Data & Knowledge Engineering,
2003. 44: p. 323 - 346.

20. MacDonell, P.S.G., D.K. Min, and D.A.M. Connor, AUTONOMOUS
REQUIREMENTS SPECIFICATION PROCESSING USING NATURAL
LANGUAGE PROCESSING. Proceedings of the 14th International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems, 2005.

21. MICH, L., NL-OOPS: from natural language to object oriented requirements
using the natural language processing system LOLITA. Natural Language
Engineering, 1996. 2(2): p. 161-187.

22. ROLLAND, C. and C. PROIX, A NATURAL LANGUAGE APPROACH FOR
REQUIREMENTS ENGINEERING. Advanced information systems engineering,
ed. P. Loucopoulos. 1992: Springer.

23. Omar, N., P. Hanna, and P. Mc Kevitt, Heuristics-based entity-relationship
modelling through natural language processing. Fifteenth Irish Conference on
Articial Intelligence and Cognitive Science (AICS-04), 2004: p. 302-313.

24. Long, D. and R. Garigliano, Reasoning by Analogy and Causality: Model and
Applications. 1994, Chichester, UK: Ellis Horwood.

25. Wang, M. and Y. Zeng, Asking the right questions to elicit product requirements.
International Journal of Computer Integrated Manufacturing, 2007. in press.

26. Anderson, J.R., Byrne, M. D., Douglass, S., Lebiere, C, An Integrated Theory of
the Mind. Psychological Review, 2004. 111(4): p. 1036-1050.

27. Buzan, T., The Mind Map Book, Chapter "MindMapping Guidelines" 1991, New
York: Penguin.

86

28. Chen, P.P., The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems 1976.1(1): p. 9-36.

29. Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Third Edition ed. Object technology series. 2003: Addision-Wesley.

30. Lutz Maicher and Jack Park: , I.-.-.-. Charting the Topic Maps Research and
Applications Landscape. 2006, Berlin: Springer.

31. Zeng, Y. Formalization of design requirements, in Integrated Design and Process
Technologies, IDPT-2003, Austin, Texas, December 3-6, 2003. 2003.

32. Zeng, Y. and P. Gu. An environment decomposition-based approach to design
concept generation, in Proceedings of International Conference on Engineering
Design'01. 2001.

33. Zhu, S., S.J. Yao, and Y. Zeng. A novel approach to quantifying designer's mental
stress in the conceptual design process in ASME DETC/CIE 2007. 2007. Las
Vegas, Nevada, USA.

34. Zeng, Y. Formalization of design requirements, in Integrated Design and Process
Technologies, IDPT-2003, Austin, Texas, December 3-6. 2003.

35. M.S. ERDEN, H.K., T.J. VAN BEEK, V. D'AMELIO, E. ECHAVARRIA, AND
T. TOMIYAMA, A review of function modeling: Approaches and applications.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2007.

36. Zeng, Y., Environment-based design: process model. 2004, Concordia Institute
for Information Systems Engineering, Concordia University: Montreal, p. 40.

37. Hochmiiller, E., Requirements Classification as a First Step to Grasp Quality
Requirements.

38. Americo Sampaio, N.L., Awais Rashid and Paul Rayso, Mining Aspects in
Requirements.

39. Zeng, Y., Axiomatic Approach to the Modeling of Product Conceptual Design
Processes Using Set Theory, in Department of Mechanical and Manufacturing
Engineering. 2001, University of calgary: Calgary, Alberta, Canada, p. 229.

40. Zeng, Y. and P. Gu, A science-based approach to product design theory Part II:
Formulation of design requirements and products. Robotics and Computer
Integrated Manufacturing, 1999. 14(4): p. 341-352.

41. Vladimir Hubka, M.M.A., W Ernst Eder, Paractical Studies in Systematic Design.
1988.

87

