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ABSTRACT 

Computer-assisted transformation of design documents from a natural 

language description to structured modeling languages 

Lei Chen 

In the present thesis, a novel approach is proposed to transform design documents 

described by a natural language into a structured modeling languages, particularly UML 

diagrams and FBS models. The transformation consists of two steps: 

i. From natural language to an intermediate graphic language called Recursive 

Object Model (ROM). 

ii. From a ROM diagram to a modeling language. 

The ROM diagram corresponding to a text includes the main semantic information 

implied in the text by modeling the relations between the words in a text. Based on the 

semantics implied in the ROM diagram, a set of criteria is proposed to mine the semantic 

meaning of the original text corresponding to the ROM diagram. Once the semantic 

meaning of the design documents through their corresponding ROM diagram is captured, 

a set of mapping rules from the ROM diagram criteria to the modeling language elements 

is proposed. After that, a set of generation rules to explore the relationship between these 

elements is proposed to generate UML diagrams and FBS models based on a ROM 

diagram. A software prototype R2U is presented as a proof of concept for transforming 
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ROM diagrams to UML diagrams. Another software prototype R2FBS is also presented 

as a proof of concept for transforming ROM diagrams to FBS models. Several case 

studies show that the proposed approach is feasible. The proposed approach can be 

applied to requirements modeling in various engineering fields such as software 

engineering, automotive engineering, and aerospace engineering. Future work is 

indicated at the end of the present thesis. 
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Chapter 1 

Introduction 

1.1 Motivation 

Designing is a creative endeavor, an aesthetic action taken by a designer to consider the 

appearance, functionality, performance, and many other aspects of a product or a process. 

Certain stages of a design process include understanding the requirements, the conceptual 

modeling, the system design, and the detail design whereas a requirement is the 

foundation of the design process. The basis of a design process is the complete and 

correct understanding of the original design requirements. A requirement is a condition 

that must be met or possessed by a system or a system component to satisfy a contract, a 

standard, a specification, or other formally imposed documents. A well-formed 

requirement is a statement of system functionality (a capability) that must be met or 

possessed by a system to satisfy a customer's need or to achieve a customer's objective, 

and that is qualified by measurable conditions and bounded by constraints (IEEE 

Standard 830-1998) [1]. According to this definition, a requirement, to a certain extent, 

represents the customer's voice about what is needed and what is wanted. Normally a 

design requirement can be roughly divided into two parts: functional requirement and 

non-functional requirement. The traditional way in requirements engineering is modeling 

the functional requirement and state out the non-functional requirement. This also means 

the separation of the design activities into functional design and detail design. Functional 

design, also known as conceptual design, is the key to the whole design process. Thus 
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how to clearly present the functions described in a design requirement is the crucial 

problem in the design process. Also, the designer needs to find out the relationship 

between those functions, the structure of the conceptual design, the state from one 

function to another function, and the trigger in each state changing. 

To ensure the success of a design process, it is crucial to identify the accurate 

requirements for the whole design, especially in the requirement specification stage. 

However, difficulties exist in obtaining the accurate requirements specification: 

1) As the requirements are gathered from the customer, the customer's need for a 

product or procedure can be ascertained. For various reasons, customers may not 

be able to describe their needs accurately [2]. 

2) A requirement is normally described in natural language, which is unrestricted 

from computer representation point of view. In contrast, computer-aided design is 

usually supported by a structured process that needs a formal specification of 

requirements. It is not realistic to ask a designer to analyze the requirements and 

to structure the information obtained from a natural language and then to generate 

the formal specifications of a requirements text. 

3) Product requirements are the backbone necessary for the integration of enterprise 

applications and the management of the product lifecycle. In many engineering 

projects, the documents specifying the requirements are often very long and are 

recorded in a text format. It is quite challenging for various partners to follow 



and/or to maintain the document. In addition, as advanced enterprise applications 

become commercially available, the transformation of legacy design documents 

into those systems creates a bottleneck for any enterprise that wants to take 

advantage of such advanced systems. 

4) Nowadays, as systems are becoming larger than ever before, the requirements 

documents are becoming more and more complex. In the mean time, only a 

design team can fulfill the design task. However, even in a well-formed design 

team, because of the nature of human beings, no two designers have the same 

understanding of even one segment of the requirements documents, thereby often 

causing variations in the final design documents. 

To provide accurate specifications for design, formal and structured languages, such as 

FBS Models [3], UML [4], SysML [5], have been developed. However, these formal 

tools are often too rigid to capture the customer's intention, especially in the early stages 

of product development. Moreover, even though all the structured languages just 

mentioned provide well-formed modeling tools for the designer, they provide no 

assistance in the analysis of the requirement documents. Then, unfortunately, the 

different backgrounds of engineers, their different focuses on requirement documents, 

and their different understanding of any fuzzy segment of the requirement documents will 

necessarily and invariably lead to a failed project. 
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Therefore, methodologies should be created and used to automatically generate a formal 

modeling language from the requirements described in natural language. 

1.2 Objective 

In engineering design, just as in all other design problems, a precise and complete 

description of design requirements is crucial for the successful and efficient completion 

of a design task [6]. In describing the product requirements, various representations may 

be involved, such as verbal statements, graphic models, and mathematical expressions. 

This variety of design representations can be illustrated in Figure 1 [7]. Smith and 

Browne have classified design representations into natural language, mathematical 

models, diagrams of physical objects and processes, and three-dimensional models [8]. 

Geometric models define the shape of an object: a physical object or visual object. This 

object can be a 2D geometric model or a 3D geometric model, which is mainly used in 

manufacturing. Like geometric models, sketches can also describe the shape of an object 

though not in as much detail as that given by geometric models. This is because 

geometric models define shapes by using algorithms. Unlike the previous two types of 

representation, graphic language is not a representation of shape but is a symbolic 

expression of a design text such as UML and concept maps. If the graphic language is a 

symbolic expression of design, then mathematical language represents the design in term 

of formulas. Mathematical language is also the most precise expression of any 

engineering problem or solution. Compared with all other representation methods in the 
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designing process, natural language is the most ambiguous and unrestricted expression 

method. However, since any design process begins with the customer needs, customers 

can express their needs only through natural language and the communication tools 

between designer and customer could only be through natural language. Natural language 

expression is the unique method during the early design stage. Moreover, since all the 

detail design is determined from the early stages of the design process, the success of the 

whole project relies on the understanding of the customer's voices, which are of course 

expressed in natural language. Consequently, understanding natural language is critical 

for innovative and creative design. 

Sketches 

Geometric Model 

Desigi 

II 

* J _ Graphic Language | | 

/ • < 

Natural Language Mathematical Language 

Figure 1 Representations describing design information [7]. 

Among all other representations, graphic models are the most effective and the most 

efficient; mathematical language is however the most precise. Whereas the best 

structured representation is mathematical language, engineers prefer graphic models, 

especially the standardized models. 

Because of the advantage of graphic language, many graphic languages have been 

proposed to represent the requirements. However, as mentioned above, the most common 
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representation of requirements is in natural language. To deal with the bias in the 

understanding of natural language requirements, an intermediate graphic language should 

be proposed to unify the semantic meaning of natural language and to extract standard 

information from it. Furthermore, this graphic language should also act as a bridge 

between natural language and structured modeling languages such as FBS models and 

UML. The approach proposed in the present thesis is based on such an intermediate 

representation: Recursive Object Model (ROM). ROM can represent all the linguistic 

elements in natural language whereas it is derived from a mathematical theory [9]. 

Accordingly, the objectives of the present thesis are as follows: 

1) Extract the semantic meaning of natural language requirements based on 

linguistic analysis and generate the output: the ROM diagram. 

2) Find the generation rules that are required to generate graphical representations of 

the requirements such as UML and FBS models from the semantic meaning. 

3) Derive a methodology combining natural language processing and conceptual 

modeling. 

A systematic graphic language that represents a requirement is very helpful in design 

process. The present thesis does not intend to propose a new modeling language for 

requirements. Instead, it uses existent modeling language and tries to find a way to 

automatically transform natural language into graphic language. The essential step of this 

approach is to derive or obtain the semantic meaning of a text from the ROM diagram. In 
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order to generate UML diagrams or FBS models from natural language, generation rules 

will be proposed in the present thesis to meet such an objective. 

As discussed above, the problem of systematic specification language has been well 

researched and many theories or models have been proposed. To achieve our objective in 

the present research and to simplify our task, we have selected two typical graphic 

specification languages - UML diagrams and FBS models - for the final output of our 

research. 

UML has been selected mainly because UML is one of the most popular requirement 

specification models, especially in software engineering fields. UML has been used as an 

important tool in the requirements engineering fields. It can identify the use cases of a 

requirement and can form a class diagram to assist with further detailed design. FBS 

modeling has been selected as the other formal structural language mainly because it is 

widely accepted in the field of mechanical design as an important conceptual design 

methodology to assist product design. Also, FBS is one kind of function modeling 

language that analyzes the product requirements and forms FBS models. Our specific 

objective in this thesis is to propose a methodology that transforms natural language into 

UML and FBS models. 

1.3 Challenge 

The modeling of requirements is a process of formalizing the ambiguous natural language 

description of the customer's needs into a more precise structured representation. With 
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the assistance of such structured representation, a system designer can better model the 

system requirements and the architecture. 

Consider a complex engineering project such as the design of a product or a 

manufacturing procedure. There should be a series of functions to complete the project, 

and each function will be affected by the environment and former actions. The process of 

formulating the conceptual model is a human activity in analysis and determination. 

However, misunderstanding the customer's real needs is a major issue that may lead to 

incorrect structural models. Furthermore, as the product requirements become more and 

more complex, more and more industrial fields may be involved. In addition, the limited 

background of a designer can focus only on one specific industry. All of the above may 

limit the design activities and may eventually cause the whole project to fail. 

To generate representation models automatically from product design documents 

described in natural language, the following problems have to be solved: 

• How to capture the meaning of a text automatically. 

• How to define the representation scheme of a product function described in a 

specific modeling language and by specific modeling mapping with a ROM 

element that captures the semantic meaning of the design text. 

• How to derive the right conceptual models by simulating human analytic logic to 

decompose a design text. 
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Obviously, the first problem must be solved through Natural Language Processing (NLP) 

algorithms. The tools based on NLP are able to improve the quality of communications 

throughout the design process, to facilitate the understanding of the customer's real 

intention, and to elicit precise and complete product requirements [7]. Once the meaning 

of the requirement text is precisely captured, structural models can be generated 

automatically. 

For the second problem, current engineering practice is to generate the modeling 

language of requirement documents from the original customer requirements manually 

through communicating iteratively with the customer. This is often a recursive process: 

gathering and formulating customer requirements, generating preliminary solutions, and 

refining customer requirements [2, 10]. The final requirement specification comes from 

such a brainstorming process. However, as business becomes more and more complex, 

multiple customers, with different backgrounds, are usually involved in the requirement 

modeling process. Misunderstanding the customers' real needs is a major issue that may 

lead to incorrect requirements specifications. There exists a contradiction between 

product requirements description based on ambiguous natural language and the precisely 

structured language used to model the product requirements. 

Furthermore, for complex engineering projects, the design document includes a great 

amount of information, the human processing of which is extremely tedious. Efforts have 

been made to develop automatic or semi-automatic processes that bridge these two 

extremes: an unrestricted natural language text and a structured formal representation [11, 
9 



12]. Still, due to the difficulties in the processing of unrestricted natural language, the 

success of these efforts is limited [13-15]. 

1.4 Approach 

To overcome the two challenges proposed in Section 1.3, a series of steps is proposed. 

First, to bridge the gap between unrestricted natural language and formal modeling 

language, an intermediate representation is useful. The approach proposed in this present 

thesis is based on such an intermediate representation: Recursive Object Model (ROM) 

[16]. ROM can represent all linguistic elements in natural language [16] whereas it is 

derived from a mathematical theory [9]. The semantics of a text can be derived from the 

ROM diagram. The proposed approach first generates the ROM diagram of a text 

describing the product requirements, from which use case diagrams and class diagrams 

are extracted. 

Then, generation rules should be derived to extract the information from natural language 

requirements and to map the information to existing modeling languages such as UML 

and FBS. 

The proposed approach in the present thesis is characterized in the following list: 

1) Generates the ROM diagram for the product requirements in natural language. 

2) Generates the key element of the requirements that fulfills the product objective. 
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3) Extracts the semantic meaning from the ROM diagram and maps the key element 

into certain modeling language elements to automatically generate a graphical 

representation of the requirements such as UML and FBS models. 

1.5 Literature Review 

The objective of the present thesis is to automatically generate a structural graphic 

representation such as UML diagrams and FBS models from natural language. 

Furthermore, the present thesis basically uses Natural Language Processing techniques to 

transform textual requirements into existent requirement models. To achieve this research 

goal, the literature review includes the following fields: 

• Graphic specification language for conceptual design 

• Natural language process in requirement engineering 

1.5.1 Graphic specification language 

Many researchers have attempted to develop algorithms for understanding the semantics 

of a natural language text and for translating the text into some types of graphic language. 

Zeng and Mehdi have developed a software prototype called 3DSV to generate a VRNL 

graphic representation from a simplified story-based description of a scene [17]. Ma and 

McKevitt have attempted to automatically generate a semantic representation of events in 

3D animation by using a semantic representation as a bridge between linguistic inputs 

and visual knowledge [18]. Jesen et al have developed an approach to automatically 

generate the UML diagrams from XML DTDs [19]. However, due to the lack of semantic 
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analysis, none of these approaches can process unrestricted natural language texts. Based 

on the semantic representation of a text through the ROM diagram, our proposed 

approach can generate UML diagrams and FBS models from the design text described in 

natural language. 

1.5.2 NLP in requirements engineering 

Our goal to automatically transform a design text described in natural language into a 

specific modeling language is also an Artificial Intelligence (AI) approach. Natural 

language processing is the foundation for this approach. Since Natural Language 

Processing is a complex research field that may touch on many categories, we focus 

mainly on Natural Language Processing in the area of requirements engineering fields. 

There are several researchers who have attempted to use a linguistic approach to support 

requirements engineering, especially in the modeling of the requirements specification. 

MacDonell et al. have proposed an approach - autonomous requirements specification 

processing, using natural language processing [20]. Mich has proposed CASE (Computer 

Aided Software Engineering) tools, which are called NL-OOPS, using a Natural 

Language Processing System LOLITA to support the transformation of natural language 

to object-oriented models [21]. Rolland and Proix also think that natural language plays 

an important role in the conceptual specification stage in the development of 

computerized systems. They have proposed a CASE tool based on linguistic approach to 

support requirements engineering [22]. Moreover, in database design fields, Omar et al. 
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have proposed a new heuristics that assists the semi-automated generation of Entity-

Relation (ER) diagrams for database modeling [23]. All these approaches just mentioned 

are similar to our automatic generation from a natural language design text to a 

specification modeling approach. 

Rolland's approach focuses mainly on requirements engineering in database and 

information system development and provides a CASE tool called OICSI (a French 

acronym for "intelligent tool for information system design"). OICSI is a system 

prototype that exploits knowledge-based paradigms to provide an active aid to database 

and information system analysts during the Requirements Engineering process. Problem-

statements in OICSI are expressed in French natural language and are automatically 

interpreted in terms of the OICSI conceptual model. Similarly, OICSI uses a text 

generation technique to give feed back to the user on information about the specification 

(i.e. the conceptual schema). Figure 2 illustrates the analysis process and modeling 

process. 

analysing y^ 

\ 
va!(d*!inf X ^ 

PROBLEM 
STATEMENTS 

X 

PARAPHRASEJC 
DESCRIPTION 

/ 

CONCEPTUAL 
SCHEMA 

iwsnhraenui 
r 

Figure 2 Analysis process and modeling process [22]. 
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The OICSI process has two main parts - conceptual modeling and conceptual schema 

validation. Conceptual modeling in OICSI is based on a linguistic approach that tries to 

formalize the linguistic mechanisms through which analysts are able to abstract observed 

phenomena into concepts. 

OWNERSHIP 
to include 
to have 
to compose 
etc.. 

-""*V 
/ 

ACTION 

to make 
to update 
to record 
to erase 
etc... 

CLASS 

\ 
STATE 
to be 
to appear 

etc.. 

EMERGENCE 

to arrive 
to occur 
to happen 
etc... 

Figure 3 Hierarchy and instances of classes of verbs [22] 

The approach begins with Fillmore's case system and considers the cases to be types of 

relationships that groups of words have with the verb in any clause of a sentence. By 

classifying the case as a class and hierarchy of words and patterns such as sentence 

patterns and elementary patterns, a conceptual schema of a certain requirement can be 

generated. Figure 3 shows one case in natural language for a class of verbs. The 

conceptual schema generation process in OICSI is based on rules that map cases into 

concepts. These rules are dependent on the target conceptual model. Conversely, the 

linguistic patterns are independent of a particular modeling technique and can be used 

within any design methodology. Figure 4 shows the mapping rules used in the schema 

generation process. 
14 
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Figure 4 Mapping rules [22] 

The schema validation process in OICSI is basically a reverse approach when compared 

with the schema generation process. The schema validation process converts the 

specification schema back to natural language sentences to verify the accuracy of a 

specification schema. Figure 5 shows the detailed process of generating sentences. 

15 



Knowledge 
Base 

J 
Deep 

structures 

i ' 

Extraction step 

Surface sttuettws 

f 
Sentences 

Transformation Step 

Litiearbutdott step 

Figure 5 Process of generating natural language texts [22] 

Rolland's process is very similar to our approach. It gives us the ideas that Requirements 

Engineering should be supported by a case tool based on a linguistic approach and that 

validation of specifications must be performed by means of a text generation technique. 

These ideas have already been presented. 

Mich [21] also proposed a CASE tool that supports requirements analysis by generating 

object oriented models from natural language requirements documents, in a procedure 

called NL-OOPS. NL-OOPS is an acronym for Natural Language - Object Oriented 

Production System that supports natural language requirements analysis by extracting the 

objects and their associations for use in creating object models. It uses the natural 

language processing system LOLITA (Large-scale Object-based Linguistic Interactor 
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Translator Analyser) as an NLP tool, which has been developed at Durham University 

[24]. Mich thinks requirements analysis includes two main activities - the identification 

of requirements and the modeling of requirements. The LOLITA assists the requirement 

identification process by simulating the requirements eliciting process and by performing 

linguistic analysis such as correcting the requirements, completing the requirements text 

and eliminating the style difference. Figure 6 shows the NLOOPS requirements 

elicitation and modeling process. After pre-processing the requirements, the NL-OOPS 

system models the pre-processed requirements into object-oriented models through an 

0 0 analysis, which contains the following logic: 

• finding the objects 

• organising the objects 

• describing how the objects interact 

• defining the operations of the objects 

• defining the objects internally 

17 



Figure 6 Requirements elicitation and modeling [21] 

The NL-OOPS approach proposes the brilliant idea of pre-processing the requirements 

before the modeling process starts, thereby ensuring the grammar correctness and 

requirement complement. In our approach, we use the ROM diagram as the intermediate 

step to transform natural language into modeling language. The ROM diagram is also a 

Natural Language Processing output of design text that can also ensure the correctness of 

the natural language input. Moreover, our approach uses a question-asking strategy 

proposed by Zeng and Wang to ensure the complement of the design text [25]. 

As in the case of the previous two approaches, Omar et al. propose a heuristics-based ER 

modeling process that tries to automatically formalize the design documents to 

specification models. The heuristics-based ER modeling process provides a semi

automatic transformation process tool called an ER-Converter. This approach mainly 
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focuses on database modeling using an ER diagram theory as the implementation model. 

Also, this approach uses a heuristics method to identify the ER elements. Figure 7 shows 

the architecture of the ER-Converter tool. The heuristic method can provide a good 

solution but not necessarily an optimal solution for the identification of the ER elements. 

These methods can quickly extract the ER elements from the design requirements by 

using certain selection rules. The following is one part of the heuristic methods for the 

selection rules: 

Heuristics to determine entities: 

1. Heuristic HE2: A common noun may indicate an entity type. 

2. Heuristic HE3: A proper noun may indicate an entity. 

3. Heuristic HE7: If consecutive nouns are present, check the last noun. If it is not one of the 

words in set S where S = {number, no, code, date, type, volume, birth, id, address, name}, 

most likely it is an entity type. Otherwise, it may indicate an attribute type. 

Heuristics to exclude non-potential entity type candidates: 

1. Heuristic HEX: A noun such as "record", "database", "company", "system", "information" 

and "organization" may not be a suitable candidate for an entity type. For example, 

"company" may indicate the business environment and should not be included as part of the 

entity types. Examples: 

a) "An insurance company wishes to create a database to keep track of its operations." 

b) "An organization purchases items from a number of suppliers." 
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Figure 7 Architecture of ER-Converter tool [23] 

Unlike the three previous approaches in transforming natural language into specification 

models, the autonomous requirements specification process proposed by MacDonell et al. 

tries to find a way to automatically generate the system design specification by using 

natural language processing, which is also the same goal for our approach. This 

autonomous process contains a natural language parsing system and a term management 

system. The parsing system starts after a set of token is extracted from the requirement 

specification documents, an approach which is similar to our own in that it defines a set 
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of criteria for extraction from a design text. Figure 8 shows the architecture of this 

approach. 

Figure 8 Assisted requirements analysis process [20] 

The difference between our approach and the other processes previously mentioned is 

that all of the four other approaches extract specification elements directly from natural 

language documents after defining a set of criteria. Considering the complexity and 

unrestricted of natural language, the extracting process from natural language is difficult 

to secure the complement generation from natural language. By contrast, our approach 

uses an ROM diagram as an intermediate between natural language and modeling 

language. Moreover, all the approaches referred to above rely heavily on the grammar 

parsing process and they lack semantic meaning analysis which often leads to lack of 

utility in real-time implementations. 
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1.6 Thesis Organization 

Chapter 1 

This chapter introduces the scope and object of the present thesis and compares our 

research with several similar approaches to the generation of the design specification 

models from natural language using Natural Language Processing. 

Chapter 2 

This chapter discusses the theoretical foundations of the present thesis: the axiomatic 

theory, ROM theory, formalization methods, and FBS modeling theory. 

Chapter 3 

This chapter provides the general framework for semantic analysis based on the ROM 

diagram generated from ROMA software. Then, two frameworks that will be introduced 

in this thesis have been proposed for two kinds of specification models - UML diagrams 

and FBS models. 

To validate the theory, a software prototype system is presented in Chapter 4 and Chapter 

5Error! Reference source not found.. An example of a traditional POS management 

system in the software engineering fields is chosen as a case study to illustrate the theory 

for the transformation from natural language requirements to UML diagrams. Another 

two examples of design documents are selected to show our research on the formalization 

of FBS models based on FBS modeling theory and ROM diagram analysis. 
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Finally, Chapter 6, Conclusion and Future Work, summarizes the main research results of 

the present thesis and points out directions for future research. 



Chapter 2 

Theoretical Foundations 

2.1 Axiomatic Theory of Design Modeling 

Zeng has proposed an axiomatic theory as the logic tool to represent and to reason about 

object structures [9]. This is also the basic theoretical foundation for the present thesis. 

This axiomatic theory gives the designer a logical approach to human thought after 

defining axioms dealing with objects. The basic concept rests on two definitions of 

axioms: 

1) Everything in the universe is an object 

2) There are relations between objects 

Based on these axioms, a requirement can itself be seen as an object, which is defined as 

O. This being the case, then the structure of the requirement object should be 

0 0- The following formula shows Axioms 1: 

© 0 = 0 U ( 0 ® 0 ) (0 

where 0 ® 0 shows the relation between objects. 

Since a requirement can be seen as an object, the elements of natural language 

requirements - paragraphs, phrases, and words - can also be seen as objects. Take the 

basic elements of a requirements text - words - as the objects. The requirements can be 
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decomposed into a set of word objects and into another set of relations within these 

objects. This observation has led to the Recursive Object Model theory by Zeng [16]. 

2.2 Semantic Analysis of a Requirements Text 

It is widely accepted that graphics are the best means for carrying the semantic message. 

Several graphic languages are used to support the representation of human thoughts, 

including formalized concept maps, entity-relationship diagrams, conceptual graphs, 

topic maps and system modeling languages (OMG SysML) [26-30]. Though they have 

been instrumental in either modeling systems or in supporting brainstorming, they suffer 

from a major problem when they are used for processing natural language: the final 

diagram depends heavily on the person who draws the diagram. That is to say, the 

semantics underlying the text is an issue of individual experience and knowledge. This 

fact makes it difficult to apply these diagrams to finding out the precise meaning of a 

given text. 

Based on the axiomatic theory of design modeling [9], Zeng has proposed a new graphic 

language called the Recursive Object Model (ROM) [16]. Corresponding to each text, 

there is only one correct ROM diagram, from which other diagrams, such as concept 

maps and topic maps, can be derived. The semantics of a text can be obtained by 

applying mathematical algorithms to the ROM diagram. 
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In the present section, we will first give a brief introduction to the Recursive Object 

Model (ROM) and its computer representation. Then the basic idea for semantics 

extraction will be presented. 

2.2.1 Recursive Object Model (ROM): introduction 

The Recursive Object Model (ROM) [16] is a part of a general design theory: 

Environment-Based Design (EBD) [6, 9, 10, 31, 32], In the context of this research, the 

ROM provides an intermediate medium between natural language and structured 

modeling language. The ROM theory treats each word in a sentence as an object and 

considers that every object may have one or more relations to other objects. Furthermore, 

each sentence also forms an object and has a relation to other sentences in the text. Table 

1 shows the elements of ROM. 

Table 1 Elements of Recursive Object Model (ROM) [16] 

Type 

Object 

Relations 

Object 

Compound 

Object 

Constraint 

Graphic 

Representation 

CH 

0 

Definition 

Everything in the universe is an object. 

It is an object that includes at least two 

other objects in it. 

It is a descriptive, limiting, or 

particularizing relation of one object to 
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Connection 

Predicate 

-Q]~» 

^ 

another. 

It is to connect two objects that do not 

constrain each other. 

It describes the act of an object on 

another or that describes the states of an 

object. 

2.2.2 ROMA: ROM analysis 

ROMA, the abbreviation of Recursive Object Model Analysis, transforms a text 

described in natural language into an ROM diagram, which is represented in the XRD 

format, an extension of XML for ROM diagram. An XML format is mainly focused on 

data integration at the logical level of the data model, creating a need for techniques that 

work at the conceptual level, which is more suitable for use by system designers and end 

users [19]. XRD carries semantic information implied in the text. Figure 9 shows the 

ROMA process. 

For example, we have the following requirement scenario: 

Design a tool for riveting brake linings onto brake shoes for internal drum brakes. The user 

of this tool is a car mechanic. The working height of the user should follow ergonomic 

standards. The use of this tool should conform to the related industry safety standards. The 
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service life of this tool should be around 5 years. The tool should be easy for transportation 

and maintenance. It will be manufactured in a specific workshop, which has specified 

equipments. The cost of this tool cannot be over $190.00. 

This scenario describes a typical mechanical design problem. Figure 10 shows the 

ROMA snapshot when analyzing the scenario above. 

Merge Rule 

Parse w Grammar Analysis 

XML ROM 
Diagram (XRD) 

1.0 

Figure 9 ROMA process 
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Table 2 is the terminology of XRD 

Table 2 XRD terminology 
Term in XRD Explanation Symbol 
The root of XRD It's the root of the whole xml, which can be <rom root> 

recognized with certain traversal method 
ROM One XRD can have several isolated ROM sub-

diagrams 
<rom> 

Name of ROM 

Version of ROM 

The unique name of each ROM sub-diagram, <rom name-='*romr'> 
normally named as "rotn" plus number 
As the ROM sub-diagram may be changed <rom version="0"> 
through certain layout or merging algorithms, the 
version identifies the current status of each ROM 
sub-diagram 

Position of ROM The position of the ROM sub-diagram is the <rom top left width 
result of layout algorithms of ROMA, which height> 
store the position information corresponding to 
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its position when in display 

Object Object is the basic element of the ROM diagram; 
it can be a simple word, a phrase, or even a 
sentence regarding the type of object. The object 
can also be seen as the basic element of text 
because it stores the words of the text. 

<object> 
<object 
name romname> 

T\pcof ohjvi't Defines the type of object. The single object is 
the word of a sentence while a compound object 
can be a phrase or a sentence of a text 

<typc5 

Text carried 
the object 

by The word element of a text <text> 

Position of 
object 

the This position is stored relative to the layout 
informalion within a ROM sub-diagram, which is 
not affected when the sub-diagram position is 

<x> 
<v> 

changed. 
Neighbor A neighbor stores all objects connected to the <neighbors> 
information current object. It not only stores the name of the <neighbor 

connected object, but it also stores the type of neighborname 
connection and the direction of that connection. relationtype> 
This element is very convenient when mining the 
semantic meaning of an object through relations. 

Words class This clement stores the real word class of each <class> 
single object. It can be "n" for noun, "V for verb 
etc. This element can help identify the role of an 
object in a text 

Relation Relation is the element that stores the 
relationship of an object within a ROM diagram. 
The relation can also be seen as a connection of 
each element for a text. It is more useful in the 
traversal method of the ROM diagram because it 
mainlv carries on the semantic meanine of a text. 

1 * 

<relation> 
<relation 
name romname> 

Type of relation There are three types of relations corresponding 
to the definition of ROM in Table 1 

<type> 

Position of 
relation 

This element stores the information of the 
relation from which object and to which object 

<fobject> 
<tobject> 

The following part is a segment of XRD from the above application. 
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<?xml version="1.0"?> 

<!DOCTYPE XRD1.0 (View Source for full doctype...)> 

- <rom_root> 

- <rom name="romO" version="0" left="0" top='*0" width="725" height="225"> 

- <object name="object2" romname="romO"> 

<type>0</type> 

- <position> 

<x>-125</x> 

<y>0</y> 

<width>100</width> 

</position> 

<text>machine</text> 

- <neighbors> 

<neighborneighborname="Object200" relationtype="6" /> 

<neighbor neighborname="object3" relationtype="l" /> 

<neighbor neighborname="object4" relationtype="l" /> 

</neighbors> 

<class>n</class> 

</object> 

- <relation name="relationl" romname="romO"> 

<type>6</type> 

- <position> 

<fobject>Object200</fobject> 

<fposition> l</fposition> 

<tobj ect>obj ect2</tobj ect> 

<tposition>3</tposition> 

</position> 

<status>0</status> 

</relation> 

This shows the basic relation between word objects, which can be represented as a 

mathematical structure for the automatic derivation of semantics. The XRD file can be 

used by various applications that need the semantic information of a text. 
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2.2.3 Semantics from ROM diagram 

To get the semantics underlying a text through its ROM diagram, the graph theory has 

been used to process the diagram, where each object in an ROM diagram is viewed as a 

vertex and each relation is viewed as an edge. An ROM diagram is a directed graph. 

Therefore, the ROM diagram has a mathematical structure defined as follows: 

Object in ROM diagram as Vertex v 

Relation in ROM diagram as Edge e 

Then ROM diagram can be defined as Rom = <v, e> 

The size of the ROM diagram can be represented by a matrix M 

/%o •" vo,i\ 

Wo ••• %/ 

where 

matrix M is i x i matrix; 

ii is the max number of objects; 

{
0 if no relation between objects 
1 if constrain relation 

2 if connection relation 
3 if predicate relation 

According to the definition of the matrix representation of ROM diagrams, the matrix of 

a ROM diagram is a symmetric matrix when the direction of relation is not specified. 
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However, the elements of the matrix are different from those of a normal mathematical 

matrix; these elements carry the semantic meaning of the text. Then some general 

algorithms can be derived from the matrix and are listed below: 

Let a Role in a design text be R. The function fcount counts the element numbers of 

rows or columns of a matrix, then 

R = max(fcount(yXiy)) (2) 

Whilev^y = 3, i is any number between 0 to the max number of objects in a ROM 

diagram 

Let the Action in a design text be Act, the function fact is the number of predicate 

relations of R 

Act = max (fact(R)) (3) 

By using the algorithms in graph theory, we can traverse the ROM diagram. This means 

that we can look up all the objects, which are words or phrases in the original natural 

language format, following the sequence of their semantic connections rather than the 

grammatical sequence in the original text. As a result, the final XRD keeps not only the 

vertices and edges but also the adjacency list (list of objects connected to current objects) 

in each object segment. This representation can thus assist with the identification of the 

priority order of each object from the semantic perspective. Furthermore, the number of 

relations to each object can also be treated as a property or weight of this object [33]. 
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2.3 Formalization of Design Requirements 

Since the ROM diagram forms a graphic representation of natural language, it can be 

used to store the semantic information of the design requirements. However, an ROM 

diagram performs only a linguistic analysis of the requirements text; it lacks the method 

for extracting modeling information from the diagram. Zeng has proposed a general 

methodology for the process to formalize design requirement. The input of the process is 

the design requirements text and the output is the formulation of these requirements. 

In the formalization process, Zeng defines £1 as the structure of the engineering system, E 

as its environment, and S as the product. The engineering system is then decomposed into 

the following formula: 

© H = ®(EUS) = ( ® E ) u ( © S ) u ( E ® S ) U ( S ® E ) (4) 

Where 0 g is the structure of the environment and ® $ is the structure of the product. 

Figure 11 illustrates the engineering system. 

Figure 11 Engineering system [34] 
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By using linguistic analysis in the formalization process, the formula of the engineering 

system is derived from the natural language requirement. Figure 12 shows the 

formalization process for the requirements. 

RequirenMat engineering 
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Figure 12 Formalization processes of design requirements [34] 

2.4 Function-Behavior-State (FBS) Modeling 

Although there is no precise and standard definition of function from the product 

requirement point of view, we can simply consider a function as some kind of actions that 
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fulfills the objective or part of the objective of one product. During a design process, the 

designer needs to specify the product structure with a function definition. This is the most 

important part in the early stage of design process. 

Since the functions of the product and their relationships are the fundamental elements in 

product architecture design, it is crucial to model the functions during the design 

activities. Erden et al. [35] define the function modeling as the name given to the activity 

of developing the models of devices, products, objects, and processes based on their 

functionalities and the functionalities of their subcomponents. As one kind of framework 

to represent the Functions, Yasushi [3] has proposed a new scheme for functions: 

Function-Behavior-State (FBS) modeling, that defines a function as an association of 

human intentions and behavior and represents a design object hierarchically. 

FBS Modeling represents Functions that are generated from product documents. The 

documents can be the design problem and the design solution. FBS modeling theory 

proposes a knowledge representation scheme for functions which define a set of 

representation definitions - function, F-B relationship, state, behavior, physical 

phenomena, and aspect. Figure 13 shows the relations in the FBS function scheme. 
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State 
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Figure 13 The relationship between function, behavior, and state [3] 

FBS modeling theory is a systematical method of function modeling and gives a 

computer the necessary tools - the FBS modeler - to support conceptual design. The FBS 

modeler provides a function decomposition method. Umeda and Tomiyama divide this 

decomposition process into two categories - causal decomposition and task 

decomposition [3] and use these two decomposition methods in two different design 

phases. The task decomposition occurs in the first design phase and is used by the end 

user and the designer to decompose the design specification into each of the detail tasks 

with the assistance of a function knowledge base. The causal decomposition occurs in the 

second phase of the design process. The designer uses the causal decomposition method 

to decompose the behavior and the structure of the product with the assistance of a 

Behavior knowledge base. Figure 14 illustrates the architecture of the FBS modeler. 

37 



Qualitative Reasoning 
System 

QPA5 

FR 
Designer 

I 
FBS 

Modeler 

^ ^ i ^ 
^TW 

tliMW 

Function 
Knowledge Base 

g*"""""""'"""**!> B 
*f"" *""!!at B 

Behavior 
Knowledge Bise 

Figure 14 Architecture of the an FBS modeler [3] 

As the product system becomes more and more complex, the interactions of the 

components within the system increase. Some unpredictable interactions may result in 

undesirable behavior. To deal with this problem, a system to detect the possible behavior 

is proposed for large product-system design, which is called a design interferences 

detector (DID). Tomiyama has proposed a general model - function-behavior-physical 

phenomenon-state model (FBPhPhS) - which extends the FBS model by including the 

physical phenomena between the state and behavior to support DID [35]. The FBPhPhS 

model is basically an integration of the FBS model with a qualitative reasoning system 

(QRS). Figure 15 shows the differences between FBS and FBPhPhS. 
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FBS FBPhPhS 

Figure 15 Differences between an FBS and an FBPhPhS model [35]. 

In Figure 15, we can see that the FBS model focuses only on the physical phenomena 

between each entity connected in a product system. While there exists some interaction 

between two entities that do not actually connect with each other - which means no 

relations between them. The FBPhPhS model includes these physical phenomena in the 

models by defining a set of attributes of relations and by using QRS to detect the 

interactions. Obviously, the FBPhPhS model is more suitable for dealing with the 

complexity of a modern product system. However, as our approach is mainly to target the 

automatic generation methodology, due to the limitation of the semantic mining of design 

documents, the interaction between unconnected components may not be easy to derive 

directly. Under such conditions, our approach will mainly focus on automatically 

formalizing the FBS models. 

FBS modeling, especially the FBS modeler, gives a great methodology for function 

modeling. However, FBS modeling process basically is a brainstorm activity because it 

heavily relies on human interference. Due to the uncertainty of human thought (such as 
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different designer background, different design focus, etc.), it is impossible to get the 

standard FBS diagram from different designers. Our purpose is to follow the 

methodology provided by FBS modeling and finds a way to formalize FBS models 

automatically, thereby increasing the correctness and efficiency in the FBS conceptual 

design process. Finally with the assistance of those automatically formalized conceptual 

design diagrams, the system designer can better model product functions and 

architecture. 
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Chapter 3 

Framework for Automatic Transformation from ROM Diagram to 

Modeling Languages 

In requirements engineering, the formalization process for design documents is 

performed by engineer using semantic analysis and function decomposition methods. In 

function modeling process, engineers play the key role in the analysis of the documents. 

They find the role and functions of the product, decompose the functions and define the 

characterization of the representation definition of the function. To automatically 

formalize representation models from design documents, simulating the human activities 

of design process is a reasonable solution, especially for the requirements analysis and 

the decomposition process. However, unlike human activities, the automatic 

formalization of a design text relies on the understanding of natural language based 

product requirements. This thesis aims to perform the semantic analysis using the ROM 

diagram through simulating the manual modeling procedure and finally formalize UML 

and FBS models automatically. 

3.1 General Framework for the Semantic Analysis of ROM Diagrams 

3.1.1 Semantic analysis of ROM diagrams 

Since the FBS or UML models are one kind of specification modeling method, the basic 

idea of our approach is to describe the key role and function correctly and completely. 

We give a general schema to support the analysis of the ROM diagram. The UML tries to 
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define the actor and action of a requirement, while FBS uses a function schema to 

represent function with function, behavior, state, aspect, F-B relationship, and B-S 

relationship. In our approach, it is hard to generate the above representation schema 

directly from the ROM diagram. After studying the theory of FBS modeling, especially 

for the FBS modeler decomposition method, we found that it is a reasonable method for 

decomposing the document with s set of schema to identify the role and action in the 

ROM diagram. FBS also gives some methods such as causal decomposition and task 

decomposition for dividing the function knowledge levels and clarifying their 

relationship. We found it is an intuitive way to represent product function and it is 

especially useful for conceptual design in design engineering. FBS modeling can be one 

fundamental theory in our project. We follow exactly the same logic in our approach. 

With the support of Zeng's Environment Based Design theory [36], the product 

requirements can be categorized into eight levels: natural laws; social laws and 

regulations; technical limitations; cost, time, and human resource; basic functions; 

extended functions; exception control level; and human-machine interface, which is 

shown in Figure 16 [36]. Each level of requirements should have different syntactic 

criteria. For example, level of natural laws and rules may have the syntactic criteria like 

weather, wind and rain. On the contrary, level of basic function may only involve of actor 

and action. Classifying the requirements documents [37] and mining the aspects of 

requirements documents [38] are the necessary step in gaining the syntactic criteria from 

the design text. This step is also the pre-requirement in the automatic formalization of the 
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UML and FBS models. 

From Zeng's Axiomatic Theory of Design Modeling[39], we have the mathematical 

foundation of requirement classification. Furthermore, based on the paper Classification 

of Product Requirements Based on Product Environment as the method, our research 

needs to find the algorithm to analyze the design text and to divide the text using 

syntactic criteria. This pre-processing of the design text will simplify our research and 

narrow our work on text semantic mining and model formalization. 

/Human-\ 
/ machine \ 

J> interface \ 

/ Exception eonttot \ 

/ Extended functions \ 

/ Baste functions \ 

/ Cost, t)m«, human resource \ 

/ Technical Imitations \ 
/ — — — — — — — — - — — •• _ _ _ _ _ _ _ _ \ 

/ Sotaal laws, technical regulations., or other mandatory criteria \ 

/ Natural Ia*s and rules \ 

Figure 16 Eight levels of requirements [36] 

3.1.2 Knowledge base for the ROM diagram 

From Environment Based Design Theory, especially from the ROM diagram, the 

semantic meaning of a design text can be extracted and transformed into a mathematical 

data structure - normally forming a graphic map structure. This pre-research gives us the 
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opportunity to understand the natural language text and to lead to an ROM semantic 

decomposition process. 

To achieve the automatic formalization of conceptual design models such as a FBS 

modeling, we need to first solve the following problem mentioned in Chapter 1 - How 

can the meaning of a text be captured automatically? 

As discussed before, the ROM diagram contains the semantic meaning of the product 

requirements. Based on Zeng's EBD theory, all the design products can be treated as 

objects, meaning they have an environment in which they perform their functions. In this 

case, capturing the meaning of the design documents - or a scenario of procedures - can 

not leave the environment behind. These environments can be system working 

conditions, system working environments or the resources of a system, etc. All the 

environments can be seen as limitations or constraints when we mine the semantic 

meaning of product design documents. Developing a knowledge base for the ROM 

diagram is crucial in the automatic formalization process. 

The knowledge base can also be seen as a criterion that testifies about all the objects from 

the ROM diagrams to find out the semantic meaning of the objects and their roles in 

original natural language requirements. This knowledge base can be a data set and a 

series of principles. The knowledge base reflects the definition of Aspect in FBS 

modeling, meaning predefining the limitations before modeling. 

In this approach, we define the following criteria for semantic analysis in ROM diagram: 

44 



1. Product (center object) 

No matter how complex a design text is, only one product will be described in each 

requirement document. Through ROM theory and linguistic analysis, the output of the 

ROM diagram should follow the same principles. Let freq be the function of counting the 

frequency of the objects in the ROM diagram. Let act be the actions sent out from the 

objects where o is the appearance of each object in the ROM diagram and prod is the 

product of a requirement: 

Before merging the ROM diagram 

Prod = max (freq (o)) 

The most frequent object is the main 

After merging the ROM diagram 

Prod = max (count (act (o)) 

By counting the number of actions, 

from the main object. 

object of a requirement. 

the largest number of actions should come 

By examining these two principles, we first verify the correctness of the ROM diagram 

and then get the central object of the whole requirement, which should be the product (a 

machine in this case). 
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2. Main actions 

How to describe a product requirement correctly in documentation? The bottom line is to 

describe the product - or we can say a machine in the manufacture field - functioning 

completely and correctly. Let Act be the set of actions from any object, v be the function 

derived from each object. Verbs connect the actor and the object of the actions. From the 

ROM diagram and common sense, we get the following criteria for functions: 

Act = v (o) 

Where v(o) = < 

f true 
(if word class = verb and 

relation type is predicate) 

false 
< (otherwise) 

(5) 

We can then define the main function with the following formula: 

Main Act = v (prod) | 
| 

(6) 

Main Act is also a set of functions containing all the actions sent out from the product. By 

verifying the action criteria, we can examine the ROM diagram. 

3. State changing actions 
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The product design requirements focus mainly on describing the procedure of a product 

such as a machine procedure. Using FBS modeling, the F-B relationship and the F-S 

relationship show the relationship between Function, Behavior and State. Zeng defines 

the behavior as performance and gives a scheme of performance in figure 17. [40] 

su'tioarv(k) 

state ehaiiRcO) 

Figure 17 Performance scheme [40] 

Since the action can be seen as a function in the design process, the performance 

(behavior) can be seen as the combination of the action result and the product state 

change. 

To capture the semantic meaning of the ROM diagram especially for the product design 

problem, our approach needs to define the criteria for changing the state. Based on the 

performance scheme, the component can also derive from the performance after catching 

the key words that indicate the state changing. Let the fstate be the function that indicates 

the state changing of the product. Let prep be the function to test the preposition object in 

ROM diagram, r tbe the relation from ROM diagram and t^be the relation type from 

ROM diagram. 
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fstate(act(o),prep,rt) = • 

COmp(fstate, 

prep 

l 

act{0)) = \ 

= rt(tx) 

r 

" " " 

/ true 
| (if prep is true) 
J flase 
\(if prep is false) 

Vrt(t2) 

true 
is true and act (o) is 

false 
(otherwise) 

true) 

(7) 

From the formula, the changing of state is determined by the preposition criteria in a 

ROM diagram. This approach follows the natural law of human speech. For example, a 

machine performs some function can be seen as an action and reaction to the destination. 

As defined in Figure 17, the behavior is the combination of action and change of state, 

and then the change of state usually occurs after an action. After the change of state point 

is retrieved from ROM diagram, the component of the product can be selected if it 

connects to an action. Using this logic, the change of state point and the product 

component can be retrieved from ROM diagram. 

4. Environment 

From Zeng's EBD theory, Environment is a general term. As inside the engineering 

system, the component and the workflow are the environments for system functions. At 

the component level, the attribute and actions are the inside environment. Moreover, 
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outside the whole system, human interaction, nature law, etc., are the environment for the 

system. For the sake of the simplicity of our research, we focus on the environment that 

acting directly on the product. So we define the environment Env criteria as follows, 

where Comp, Attr and OutEn denote sets of components inside the system, Attribute of 

the Component and Environment outside the system: 

j . 

i Env = {Comp, Attr, OutEn} 

(8) 

The detailed mechanism for the generation of the proper environment definition will be 

discussed in the parts of this paper dealing with the formalization rules. 

3.2 Framework for Automatic Generation from ROM Diagram to UML 

Figure 18 shows the general procedure of how engineers understand a requirements text. 

First, an effective reader tends to find keywords when s/he tries to understand a sentence 

and to find key sentences when s/he tries to understand a paragraph. Secondly, the main 

verb seems to carry the most important message in a sentence. Thirdly, a key sentence (or 

a topic sentence) in a paragraph is always carries the most amount of relations inside a 

paragraph. Finally, every actor in any requirement text must be a noun and every action 

in any requirement text must be a verb. 
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Figure 18 Representations for describing design information 

In the ROM diagram, each object contains a word or a phrase that has a part of speech or 

its equivalent, based on which type of object can be analyzed. An ROM diagram also has 

three types of relations that can hold the semantic meaning between two objects. By 

analyzing the type of relation, we can easily get the semantic meaning of each relation 

between two objects and finally get the keywords in a sentence. 

Through the priority of each object (the number of adjacency list for each object), the 

object's importance can be ranked in a sentence or a paragraph. As the priority indicate 

the action send out from a object and based on human analytic logic, those having a 

higher priority carry more meaning in a given text; thus, they should be taken as the 

candidate for actor and can be further used for generating class diagrams. As the 

predicate relation indicate the action send out from one object and our approach is intent 
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to find out the actor and action of a design documents, then only a predicate relation is 

selected to determine the priority in each object. 

3.3 Framework for the Automatic Formalization from ROM Diagram to FBS 

Models 

Domain 
Knowledge 

Conceptual 
Model 

Document Pre-

Linguistic Analysis of the 
Requirement Document 

Transformation of ROM 
Diagrams into Conceptual 

Models 

INPUT: 
Requirements 

Document 

Reorganized 
Requirements 

Document 

ROM 
Representation of 

Requirements 
Document 

OUTPUT: 
Conceptual Model 
of Requirements 

Document 

Figure 19 Framework for the transformation of a requirements document into conceptual models 

Figure 19 shows the framework of the automatic formalization process. First, the input 

requirement document described in natural language will be processed with some 

document refining process such as asking the right question as proposed by Zeng and 

Min [2]. If the question-asking strategy is used, the document can be pre-processed and 
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the original document can be made more standard and complete. After the pre

processing, the document will go through a linguistic analysis process by using the 

computer tools from the ROM project, tools called ROMA tools. The output of the 

ROMA is the ROM diagram, which is discussed above. It is also the input of our 

automatic formalization process to the FBS models. The domain knowledge in the 

framework can be the function knowledge of the FBS model and the criteria for finding 

the FBS scheme, which is discussed above. Using the FBS modeler as the reference for 

function decomposition will lead to the FBS models. 

In the ROM diagram, each object contains a word or a phrase that is a part of speech or 

its equivalent. An ROM diagram also has three types of relations that have the semantic 

meaning between two objects. By analyzing the type of relation, we can easily get the 

semantic meaning of each relation between two objects and finally get the keywords in a 

sentence. 

Based on the priority of each object, the object's importance can be ranked in a sentence 

or a paragraph. The object having a higher priority has more meaning in a given text; 

thus, they should be taken as a product and can be further used for generating actions, 

environment, component and attribute. The computer tools can determine the function 

scheme that is suitable for an ROM diagram by automatically using the criteria from the 

function knowledge base. Then, using an FBS decomposition strategy with certain 

traversal algorithms, the main action can be decomposed into sub functions. By keeping 

the same decomposition procedure, the level of functions and the relation of function and 
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behavior will be clarified until the decomposition level reaches the physical level such as 

the component and outer environment. It should be emphasized that the relation type in 

an ROM diagram plays the key role in identifying the function scheme and in 

decomposing the function structure. Moreover, as mentioned above, the preposition and 

the predicate relation are the most important in our approach. 
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Chapter 4 

Transformation from ROM Diagram to UML Diagram - R2U 

The automatic generation of a UML model relies on the full understanding of the natural 

language based requirements description. For example, if an engineer wants to draw a use 

case diagram, he or she needs to understand the requirement at first and then get the actor 

and actions related to the UML standard. Our research aims to simulate the human 

activities in the requirement analysis process and to automatically generate UML 

diagrams by using a software system. 

4.1 Generation Rules 

Based on the previous discussions, it is possible to get the semantic structure of a 

requirement text and then automatically generate UML models based on that semantic 

structure. This subsection describes the procedures and rules for the automatic generation 

of UML models from the ROM diagram representing a text. 

Our current research is mainly focused on Use Case Diagrams and Class Diagrams. Use 

Case diagrams have two types of objects - actor and action whereas Class diagrams have 

class name, method and property. For the Use Case diagram, an actor corresponds to an 

object that is a noun with the highest priority. The action should be a verb object related 

to the keywords of the identified actor. The class diagram also comes from the object's 

ranking of priority. The only difference between actor and class is the meaning of the 

keywords that will be discussed further below. 
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Generation rules: 

Pre-condition: 

Role = Object in ROM diagram with noun class property 

Class e Role 

Actor e Role 

Action = verb phrase 

Method = verb from noun phrase 

Gene: ation Rules: 

Actor and Class = Highest priority Object in ROM Diagram 

Priority of Object = Number of predicate relations to the object 

Actor = outside of the system 

Class = inside the system 

Action = System External User's action 

System External User's action = Actor Object in ROM diagram with verb class + Object in ROM 
diagram with preposition related 

Method = System Internal action 

System Internal action = Class Object in ROM diagram with verb class + Object in ROM diagram 
with preposition related 

Below are the UML generation procedures: 

Generation Procedure: 

1 Get a set of the object with the highest number of neighbors on its adjacency list in each sub-
ROM diagram 

2 Check word class to select the noun Object as Class object 

3 Iterate the list of Class objects. For each class object search the dictionary to determine if the 
object is external or internal to the system (for example, customer is always outside the system 
while a database may be inside a system) 

4 Traverse ROM diagram using a graph search algorithm 

4.1 Get the first Object in the ROM Diagram correlated to the class object (also considered as 
keywords in paragraph) with the first half predicate relation (From ROM, the first half 
predicate relation connects its subject and verb in a sentence) 

4.2 This object forms a method object in the class diagram 
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4.3 Traverse from this object to reach an object correlated to the current object 

4.4 If a relation is the second half of a predicate relation (acts as a verb to an object in English 
grammar), then it forms an action (skeleton of the sentence) to the actor (keywords) 

4.5 If a relation is a connection relation (acts as a verb to a noun phrase in grammar), and the 
related object is one of the keywords, then it forms as inter actor action (skeleton of the 
sentence) from one actor to another actor (keywords) 

4.6 Repeat steps 4.1 to 4.5 while iterating the adjacency list in current class object. 

5 From each keyword, find any connection relation to an object in the ROM diagram which 
contains noun word class 

6 Verify the object found in step 5 in the class object list. If they are equal, then go to step 7. 

7 This relation forms the connection between the class object in the UML class diagram. 

Using the generation rules, the human semantic capturing process can be simulated by-

catching the keywords, finding the preposition connect to the keywords, finding relation 

of each keyword and getting the semantic meaning of ROM diagram. 

This procedure takes the input ROM diagram (in XRD form) as a directed graph and uses 

graph traversal algorithms during the analysis process. For the semantic part, this 

procedure uses the meaning of relation defined in the ROM to rank the priority of an 

object in a ROM diagram and identifies the semantic meaning of each sentence by 

catching its skeleton. 

It should be pointed out that the rules above are still preliminary. Further experiments are 

needed in order to deal with a broader range of problems. A software prototype has been 

developed for this purpose. 
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4.2 Software Prototype 

The software prototype R2U has been developed based on the generation rules given in 

the previous section. The prototype is implemented in the windows environment by using 

C#. The input of this software is an XRD file and the output is UML diagrams. Figure 20 

shows the data flow of the R2U application. 

XRD documents 

XML parsing 

Figure 20 Data flow diagram of an R2U application 
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R2U has two critical functional parts. One is the XML parsing, which is combined with 

graph traversal algorithms to ensure certain objects in a ROM diagram will be visited. 

The relations in the ROM diagram have the most important information to actually 

determine the traversal sequence. The traversal algorithm simulates the logic of the 

human analysis process. 

The following pseudo code shows the basic function of the ROM diagram traversal 

process: 

Start 

Declare XMLReader Variable 

Declare Graph data structure 

Reading XRD 

Fill out Graph structure 

For each Node 

Current_Priority = Amount (relation 

If CurentJPriority > MaxJPriority 

in adjacency list = 

Max_Priority = Current_Priority 

End If 

End Foreach 

Fill out Class list 

Foreach Class list 

Lookup dictionary 

If Class = External User 

Actor_List.Add(Class) 

End If 

End Foreach 

Stop 

= predicate) 
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The following pseudo code shows the basic function of the semantic analysis system: 

Start 
Declare Action list 
Declare Method list 
Foreach Class in Class list 

If relation type = predicate 
Method = predicate-> Object 
Fill out Method List 

End If 
End Foreach 
Foreach Actor in Actor list 

Traversal (Actor) 
If relation type = predicate 

Actor = predicate-> Object 
Traversal (Actor) 

Else 
Fill out Action List 

End If 
End Traversal 

End Foreach 
Stop 

4.3 Case Study 

To test the approach proposed in this thesis, some experimental results from a case study 

are presented in this section. The test case is a small requirement text describing the 

scenario of a POS management system in a common supermarket environment. As 

discussed above, the original input of our project is in a natural language based 

requirement description given below. 

/. The customer arrives at a POS checkout with goods. 

2. The cashier starts a new sale. 

3. The cashier enters the item identifier. 

4. The system records the sale-line's item and presents an item description. 

5. The cashier repeats steps 2-3 until it indicates it's done. 

6. The system presents the total price with taxes. 
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7. The cashier tells the total price to the customer and asks for payment. 

8. The customer pays and the system handles the payment. 

9. The system logs the completed sale. 

10. The system sends the sale and payment information to the external Inventory Systems. 

11. The system presents the receipt. 

12. The customer leaves with the receipt and the goods. 

This requirement text shows an entire check-out process that occurs in most stores. From 

the system design point of view, the product of this requirement is a system and there is 

also an external actor and an internal actor in the system. By analyzing this requirement, 

the designer can identify the customers and some basic functions of this system. 

i He y fwifc, »wp£ 

[ I n u i t n n i i Inpul 
I n n i w * »••;.£ • . . .-*a.-J* 
gooo*. Trie cajnrer starts a new taw ihe 
cashier enters item identifier. The system records 
sale-ine's Hem and presents item description. The 
cashier repeats steps 2-3 until it indicates it's 
done. The lystem presents total price with laws. 
The cashier leUs the total price lo the customer 
and asks lor payment. The customer pays and 
Ihe system handles payment. The system logs the 
completed sale. The system sends sale and 
payment information to the external Inventory 
Systems. The system presents the recept. The 
customer leaves with the leceipt and the goods. 
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Figure 21 ROM diagram of the test requirement text 
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Figure 21 shows the ROM diagram of the test requirement text, which was generated by 

the ROMA system. Internally, the ROM diagram is represented in XRD format, which is 

used to generate the UML diagrams by the R2U system. 
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Total object number: 74 
Total relation number: 71 
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cashier 
--starts 
-enters 
-repeats 
--tells 
•-ask* 
system 
--records 
-presents 
"Jogs 
-sends 
-presents 

Actor 

customer 
cashier 

I3GE 

Figure 22 Use Case diagram output of R2U 1.0 

From the XRD file generated by the ROMA system, the R2U software automatically 

generates and displays the UML diagrams, based on the generation rules introduced in 

the previous section. Figure 22 and Figure 23 show the use case and class diagrams of the 

test case, respectively. 
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Figure 23 Domain Diagram (Class Diagram) output of R2U 1.0 
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Chapter 5 

Transformation from ROM Diagram to FBS Models - R2FBS 

Based on the previous discussions, it is possible to get the semantic structure of a 

requirement text and then automatically formalize FBS models based on the semantic 

structure. This subsection describes the procedures and rules for the automatic 

formalization of FBS models from the ROM diagram representing a text. 

5.1 Identify the FBS Schema from ROM Diagram 

Our research simulates the FBS modeling procedure. The FBS modeling procedure deals 

with function modeling by first defining the function scheme and then by decomposing 

the function. Our automatic formalization process follows the same logic and divides our 

approach into three parts - locating the function key words in the ROM diagram, which is 

described in the framework chapter, decomposing the function level and mapping to FBS 

scheme to finally form the FBS models. This decomposition process answers the 

following question proposed in Chapter 1: How to define the function representation 

scheme of product function described by FBS modeling and mapping with ROM element 

to capture the semantic meaning of functions? 

5.1.1 Function decomposition rules for ROM diagram 

The FBS modeling proposes a representation schema by giving the following definitions: 

Functions, F-B relationship, state, behavior, physical phenomena and aspect. Since our 

research focuses on the computer-assisted formalization of FBS models, getting the 
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scheme automatically is crucial to our approach. 
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Figure 24 A FBS diagram [3] 

FBS modeling uses the FBS modeler to assist a function decomposition process to 

simulate the human activities by decomposing the function into lower-level sub-functions 

and finally by reaching the substantial components as shown in Figure 24. 

By solving the first question about the capture of the semantic meaning of ROM diagram, 

we have established the knowledge base of our approach. By using these criteria, we 

found a set of product elements that can be extracted from a ROM diagram and describe a 

product function completely. These elements can also be seen as another scheme suitable 

for ROM diagrams. As discussed above, an ROM diagram is not a systematic modeling 

language. We can treat an ROM diagram only as a data structure to restore the semantic 

meaning of a text or to treat it as an output after performing a linguistic analysis. We 

can't derive the FBS scheme directly from an ROM diagram. We need to examine or 

traversal the ROM diagram and find the key element following the criteria discussed 
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above. Let FBS be the set of schemes defined in FBS modeling and RC be the set of 

schemes extracted from the ROM diagram. The following formula shows the definition: 

FBS = {E,F,F-B,S,BIB-S,PP,A} I 

(9) 

Where E is the entity, F is the function, F-B is the F-B relationship, S is the state, B is the 

Behavior, B-S is the B-S relationship, PP is the physical phenomena and A is the Aspect: 

RC = {P,A,En,Comp,Attr} 

ttl — tTlinside " ^^-outside 

Eninside = Comp U Attr 

(10) 

Where P is the product, A is the action, En is the environments including those outside 

system environment and those inside the system environment, Comp is the component, 

and Attr is the attribute. 

After getting the RC from the ROM diagram, mapping it into the FBS modeling scheme 

is the next approach. Part of the mapping mechanism is shown below: 

E 

F = 

= PV 

--A(o) 

A = 

Comp 

nv(P) 

bn 

(11) 

We can use the formula given before as the bridge from the ROM diagram to the FBS 

scheme, making it possible to finally formalize the FBS models automatically. The only 
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problem is the F-B relationship. Also the B-S relationship can not be derived by using the 

mapping rules above. Therefore, we need to find another methodology to clarify the 

hierarchy of the functions level and relationship. This approach also intends to figure out 

the following question proposed in Chapter 1 - How can the right FBS models be derived 

by simulating the function decomposition procedure provided through the FBS modeler? 

The Function-Behavior relationship and the Behavior-State relationship illuminate the 

connection inside the FBS models. In another words, these two relationships divide the 

whole function model into different levels hierarchically. As shown in Figure 24, after 

solving the first two problems, we get the different parts of the function. However, we 

still have no idea about the hierarchy of the function models, and the entire element or 

schemes are separated. This section of the present paper presents a possible solution to 

the problem and finally gives a method to finish FBS modeling procedure. 

After matching the criteria and extracting the key function element from a ROM diagram 

using the approach discussed before, we know the whole frame of the function from the 

requirement document described in natural language. To formalize a function model such 

as an FBS model, knowing the scheme is not sufficient. We still need to explore the 

structure and relationship of the function and then to formalize the function models. 

Tomiyama has proposed a function hierarchical decomposition method for FBS 

modeling. This decomposition method simulates human activities in function modeling. 

For example, when an engineer designs the product, the traditional way is to find the 
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main function by understanding the requirement documents. Then the designer goes 

through the documents and finds more information to try to decompose the main function 

into sub-functions. This decomposition process should be a recursive process by which 

the designer keeps exploring the lower level of sub-functions and going back to the upper 

level to verify the sub function's correctness. This decomposition process is normally 

affected by the designer's understanding and experience, which usually differs from 

designer to designer. Moreover, only the designer can determine when the decomposition 

process should stop and at what level of sub-function. In FBS, it provides the FBS 

modeler to simulate this manual decomposition process discussed above. Consider the 

FBS modeler is a computer tool that supports conceptual modeling. It uses the knowledge 

base to store the function knowledge that can support the function deposition. Also, the 

FBS modeler divides the decomposition process into two categories: causal 

decomposition and task decomposition. Task decomposition results in the sub-functions 

related to the knowledge while casual decomposition results in the sub-function related to 

the physical features in the system. 

In our approach, we have tried to follow the same logic as that of the FBS modeler. 

However, considering that our approach is trying to formalize the FBS models 

automatically which means minimizing human interaction, the decomposition method 

may be slightly different from that of the FBS modeler. With the help of the linguistic 

analysis tools mentioned above, ROMA and its output ROM diagram, it is possible to 

find a methodology to perform the function decomposition automatically. The basic idea 
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of our approach comes from the traversal method in computer science. Like the FBS 

function decomposition method, the starting point of our approach in function 

decomposition is the main function in the requirement. Unlike FBS modeling, the input 

of our approach is not the requirement document but a graphic representation of the 

requirements, that is, the ROM diagram. As discussed above, this starting point should be 

a unique one: the product of a requirement. To simplify our algorithm in traversal of the 

ROM diagram, we do not select the FBS modeling element such as function, behavior, 

etc. but select the function element we created for the ROM diagram - actions, 

environment, component, etc. - to work as the node during the traversal process and to 

connect all the elements using FBS decomposition principles. Then after we reach some 

node indicating a component or outside system environment, the traversal stopped and 

recursively goes back to the start node to verify this sub-function's correctness. By using 

this traversal logic, we simulate a recursive function decomposition process that is similar 

to human actions and that follows the FBS modeler principle. The following formula has 

been derived to support our function decomposition process: 

r ; 
I 

functionmain = prod + (3a(prod): a(prod) n rt is predicate) | 

functiondecp = functionsub + en | 
i 

(12) 

Using the logic to go through the ROM diagram and to combine with mapping algorithms 

from the ROM function element to the FBS function scheme, we can define the sub-

function. Then through the recursive traversal algorithms we can verify the sub function. 
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In the mean time, after verifying the sub function, we can get the behavior from the 

action and we can indicate the state change point of the requirement description. Figure 

25 shows the logic of function decomposition: 

Product + main 
action 

Main function 

Figure 25 Function decomposition logic 

5.1.2 Mapping function elements to FBS schema 

The mapping process can actually start simultaneously with the decomposition process. 
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As the decomposition process begins with the main function identified from the first step, 

traversal algorithms may follow the FBS decomposition method. Until the process 

reaches the component, a behavior can be found, and in the mean time mapping the sub 

function to the FBS modeling scheme may save time. Then the formalization process can 

be divided into two main procedures: locate the function element and the function 

decomposition. The following parts of this section explain the rules we researched to 

assist the two processes. 

Below are the function elements locating rules: 

Location rule: 

Pre-condition: 

• Function Element definition 
a) Product is a unique noun object with highest priority. 
b) Environment is object connected with preposition object 
c) Environment can be an inner environment and an outer environment for a product 
d) Inner environment can be a component or an attribute of the component depending 

on the induct object's word class 
e) Performance is the action and reaction on a component combined with the 

component itself. 
• Function Element searching Criteria (see research methodology part of this paper) 
Procedures: 

• Product = Highest priority Object in ROM Diagram 
• Priority of Object = Number of predicate relations to the object 
• Action = verb object connected with predicate relation as input relation 
• Main action = Action sent out from the product 
• Preposition object = object connected to a predicate relation as an output relation and 

constrain relation as output relation 
• Environment = connected to preposition object with predicate relation connect to 

preposition object 
• Physical phenomenon = environment object which connected preposition object and verb 

object 
• Component = physical phenomenon - outside system physical 
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• Outer Environment = physical phenomenon - component 
• Inner Environment = environment - physical phenomenon 
• Attribute = inner environment - unrelated to component object 

Below are the function decomposition rules: 

Decomposition rules: 

Pre-condition: 

• Function Element gain from first step 
• Mapping to FBS scheme algorithms 
• FBS modeler decomposition method 

Procedure: 

• Start point = product 
• Main function = main actions 
• Action object = component ( if predicate relation indicates the next adjacent object is a 

verb) 
f physical phenomenon 

(if predicate relation 
indicate the next 

adjacent object is verb) 
others 

Manufacture = most frequent physical phenomenon + inside the system 
Behavior - actions + component 

• Action object = • 

Below are the function formalization procedures: 

Formalization Procedure: 

8 Get the highest adjacency list with predicate relation type amount Object in ROM 
diagram 

9 Save the position of the selected object in ROM diagram and set it as the product of 
system 

10 Fill the main action list with traversal function where relation type from product is 
predicate 
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11 Fill the preposition list with traversal function where all objects with relation type 
suitable to preposition criteria proposed above 

12 Fill Environment list by go through the preposition list follow certain criteria 
13 Iterate the object of environment list, for each environment object lookup a dictionary 

and function knowledge base to determine if it's outside the system. 
14 Traverse ROM diagram using FBS function decomposition method and graph search 

algorithm 
14.1 Set the traversal start point with product 
14.2 Traverse from the start point and fill the action list 
14.3 Iterate the action list to the action object 
14.4 Identify the object of an action is a physical phenomenon or not 
14.5 If not physical phenomenon, go to step 7.6. Otherwise, go to step 7.7 
14.6 Restore the action object as new start point and then repeat step 7.2 to 7.5 
14.7 Traverse back to gather behavior information using formalization rules and 

mapping rules 
15 Using mapping strategy to map all the stored FBS scheme and output the structure of 

function models. 

Using the formalization rules, the human semantic capturing process can be simulated by 

catching the product, finding the function element scheme, finding the preposition of 

keywords, decomposition of finding actions, mapping to existed FBS models and getting 

the function design structure and relationship of a product from ROM diagram. 

This procedure takes the input ROM diagram (in XRD form) as a directed graph and 

identifies the element of function design and then uses graph traversal algorithms during 

the function decomposition process. For the semantic part, this procedure uses the 

different meaning of relation defined in the ROM as the semantic tool to rank the priority 

of an object in a ROM diagram and identifies the semantic meaning of each sentence by 

catching its skeleton. 

It should be pointed out that the rules above are still preliminary. Further experiments are 
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needed in order to deal with a broader range of problems. A computer tools implementing 

the derived rules has been developed for this purpose. 

5.2 Transformation Algorithm 

The automatic FBS models formalization computer tool has been developed based on the 

formalization rules given in the previous section. The software prototype is implemented 

in the windows environment by using C#. The input of this software is an XRD file and 

the output is FBS models and function design analysis documents. Figure 26 shows the 

data flow of this approach. 

XRD documents 

FBS models 
formalization 

Tools 

XML parsing 

XML node 

Identify 
function 
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Function scheme 

Function 
decompose 

process 

Sub function / behavior 

FBS models 

criteria 

Function 
—I knowledge base 
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Figure 26 Data flow diagram of automatic formalization tools 



The computer tool called R2FBS has two critical functional parts. One is the XML 

parsing, which is combined with graph traversal algorithms combined with function 

criteria. Relation in the ROM diagram is the most important information for the traversal 

algorithm, which actually determines the traversal sequence. The other is an algorithm 

simulating the logic of the FBS function decomposition process. 

The following pseudo codes show the basic function of identifying the function element 

with some ROM diagram traversal algorithms: 

Start 

Declare XMLReader Variable 

Declare Graph data structure 

Reading XRD 

Fill out Graph structure 

Foreach Node 

Current_Priority = Amount (relation in adjacency list 

= predicate) 

If CurentJPriority > MaxJPriority 

Max_Priority = Current^Priority 

End If 

End Foreach 

Product = Max_Priority 

Action list = action (Product) 

Foreach Node 
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If (relationtype (Node) =predicate) 

&& relationtype(Node)=zconstrain 

Fill preposition list = Node 

End If 

End Foreach 

Foreach preposition 

If neighbor (preposition) = true 

&& 

relationtype(neighbor(preposition))=predicate 

Fill Environment list 

End If 

End Foreach 

Foreach neighbor 

Ifwordsclass (neighbor (preposition)) =v 

Fill component list 

End If 

End Foreach 

Stop 

5.3 Case Studies 

5.3.1 Formalization of requirements text 

To test the approach proposed in this paper, some experimental results from a case study 

are presented in this section. The test case is a small requirement text describing a 
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product requirement for coating small food such as donuts with powder. As was 

discussed above, the original input of our project is a natural language-based requirement 

description given below. 

The coating machine will coat a small, flat, cylindrical product with a powder. The semi-finished 

product is made by extrusion, at the rate of about one piece per second. The product can fall directly 

from the extruder on to the coating machine. After coating the product, the coating machine will 

deliver the product to a conveyor belt and transport the product for wrapping and packaging. 

—select from case 3 design coating machine, Practical Studies in Systematic Design [41] 

This requirement text shows a simple auto-coating system. From the system design point 

of view, the product of this requirement is a machine. There are also external and internal 

environments to the system. By analyzing this requirement, the designer can identify the 

main function and some basic components of this system. 

Figure 27 shows the ROM diagram of the test requirement text, which was generated by 

the ROMA system. Internally, the ROM diagram is represented in XRD format, which is 

used to formalize the FBS models by the use of R2FBS computer tools. 
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Figure 28 Function schema gain from a ROM diagram by R2FBS 1.0 for requirements 
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From the XRD file generated by the ROMA system, R2FBS software will automatically 

identify the function elements through certain criteria proposed on this paper as shown in 

Figure 28, based on the function elements generated from the ROM diagram and the FBS 

decomposition method, our automatic formalization rules will form the final output, 

namely the FBS models. Figure 29 shows the FBS models output of the test case, 

respectively. 

• • ' • • - ' • • - . i : C ,I:ati'cnvs'i' i;,i-ir.: -i• S5S"?;::-
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Figure 29 A FBS model output of R2FBS 1.0 for design requirements 
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5.3.2 Formalization of design patents 

FBS models deal with design documents that may include many types of text such as the 

product requirements illustrated above or design patents, which will be discussed below. 

We chose the design patents as a study case because patents contain more accurate and 

restricted text styles, making them different from requirement documents. Also, most 

design patents focus on describing the component and functionality of a product system. 

This focus is very suitable to our approach. The following design patent describes a low 

temperature clothes dryer based on a real United States Patent: 

A low temperature clothes dryer having a drying chamber provides removable horizontal screens 

supporting clothing items and a hanging bar for hanging clothes to be dried. A timing control allows 

setting the time of operation of the drying cabinet. An electric heater with thermostat is provided to 

initially raise and maintain the air temperature within the drying chamber to at least about 90 

degrees F. The dehumidifier is then operated, providing for circulation through the ducts and drying 

cabinet by an internal fan. The dehumidifier has an evaporator, through which warm, humid air is 

passed, thereby cooling the air and condensing water therefrom, the water being collected in a 

removable container or drained through a drain hose. The fan forces the cooled, dried air through a 

condenser which heats the dried air for recirculation through the drying chamber by means of ducts, 

thereby drying the clothing therein. 

-From United States Patent, Patent n No.: US 7,377,052 B2; Date of Patent: May 27, 2008 

The text in the design patent of this low temperature clothes dryer clearly describes the 

components of the dryer and functionality of each component. For the designer, this 

document is more accurate than a regular product design requirements text. So far as our 
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approach is concerned, the patent text is easier to extract information from after 

performing the linguistic analysis of our approach: ROMA. Figure 31 shows the results 

of the ROMA process: a ROM diagram. This ROM diagram is also the input of our 

approach to automatically generate a function representation schema and finally the 

formalized FBS models. 
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Figure 30 A ROM diagram for the low temperature clothes dryer 

Unlike the previous test case, the design patent of this low temperature clothes dryer 

holds more information about functions and components because of the property of the 

patent text. Therefore, the function schema for the design patent has become more 
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complex compared with the previous example of design requirements. The schema 

generated by R2FBS is shown in Figure 32. Figure 33 shows the formalized FBS models 

based on the schema and traversal algorithms discussed above in this chapter. 
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Figure 31 Function schema of the low temperature clothes dryer generated by R2FBS 1.0 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

Design document modeling is important at the early stage of product design and in the 

engineering fields. A correct and complete design model is extremely useful for the 

engineer. 

The present thesis proposes a novel approach in the automatic transformation of design 

documents from a natural language description to structural modeling languages. With 

the help of linguistic analysis and modeling specification languages, UML and FBS 

modeling, this approach generates UML diagrams and FBS models as two outputs. 

The ROM diagram corresponding to a text includes the main semantic information 

implied in the text. Based on the semantics in the ROM diagram, a knowledge based 

proposal includes the criteria of function element and function decomposition rules. A 

software prototype is presented as a proof of concept for this approach. A case study 

shows that the proposed approach is feasible. 

Though the automatic transformation of design documents shows a great potential in the 

product design of manufacturing engineering, our proposed approach does not intend to 

exclude the human users from the loop. On the contrary, this approach will help 

engineers better understand requirements, especially in a large project, by reducing the 

ambiguities of human understanding in analyzing the requirements and by increasing the 

consistency of the final function models when multiple engineers may be involved. 
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6.2 Future Work 

As can be seen in the present thesis, our current approach largely depends on the 

capability and capacity of the ROMA system, which captures the semantics of a natural 

language text. Therefore, the accuracy of ROMA is of critical importance. Currently, 

ROMA is still under further development though it is already very robust. Another 

problem that needs to be dealt with is the study of the structure of design documents so 

that they can be preprocessed in terms of the ROMA system. The rules for the generation 

of UML diagrams and FBS models from a ROM diagram should also be refined. Lastly, 

it is important to perform a more comprehensive system test based on statistical analysis 

rather than on a limited number of case studies. These tasks are being implemented in a 

collaborative project on a PLM system for the automotive and aerospace industries. 
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