
Specifying and Verifying Communities of Web Services

using Argumentative Agents

Wei Wan

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University
Montreal, Quebec, Canada

August 2008

© Wei Wan, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45352-0
Our file Notre reference
ISBN: 978-0-494-45352-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Specifying and Verifying Communities of Web Services using Argumentative

Agents

Wei Wan

This thesis includes two main contributions: the first one is specifying the use of

argumentative agents in the design and development of communities of Web services; the second

is using a formal technique to verify communication protocols against given properties for these

communities.

Web services that provide a similar functionality are gathered into a single community,

independently of their origins, locations, and ways of doing. Associating Web services with

argumentative agents that are able to persuade and negotiate with others organizes these Web

services in a better way so that they can achieve the goals they set in an efficient way. A

community is led by a master component, which is responsible among others for attracting new

Web services to the community, retaining existing Web services in the community, and

identifying the Web services in the community that will participate in composite scenarios.

Besides FIPA-ACL, argumentative dialogue games are also used for agent interaction.

In this thesis, we use tableau-based model checking algorithm to verify our

argumentative agent-base community of Web services negotiation protocol. This algorithm aims

at verifying systems designed as a set of autonomous interacting agents. We provide the

soundness, completeness, termination and complexity results.

We also simulate our specification with Jadex BDI programming language and

implement our verification with a modified and enhanced version of CWB-NC model checker.

Keywords: Multi-agent systems, BDI agent architecture, model checking, agent oriented

programming, FIPA-ACL, dialogue game, agent-based negotiation protocol, Jadex, CWB-NC.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Dr. Jamal Bentahar for his expert

guidance, constant encouragement and enduring patience during my Master studies. I am grateful

for the opportunity to study at CIISE, which provided an excellent environment in which to cross-

fertilize research ideas.

Additionally, I am very grateful to Jihad Labban and Khaled Ghoneim for their

comments and suggestions. I would like to thank all the people in my lab for discussions on

Multi-agent systems, agent-based Web services and programming. I would also like to thank all

the faculty and staff at the CIISE for their assistance during my master's course-work. As for my

fellow graduate students who offered great help during my study, I would like to thank them all.

My student life would not have been so much fun without my friends (in alphabetical

order): Lei Chen, Xudong Duan, Tania Islam, Tao Long, and Nan Yang. I would like to thank

them as well.

Finally, I would like to thank my family, especially my beloved husband Mark for his

enduring support and endless love.

Wei Wan

July, 2008

IV

Table of Contents

LIST OF FIGURES viii

LIST OF TABLES ix

CHAPTER 1. INTRODUCTION 1

1.1 CONTEXT OF RESEARCH 1

1.2 MOTIVATIONS 3

1.3 RESEARCH QUESTIONS 5

1.4 PROPOSED SOLUTIONS AND CONTRIBUTIONS 5

1.5 OUTLINE 6

CHAPTER 2. MULTI-AGENT SYSTEMS AND AGENT ORIENTED PROGRAMMING 7

2.1 AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS 7

2.1.1 Intelligent Agents 7

2.1.2 Multi-Agent Systems 8

2.2 AGENT ARCHITECTURES 9

2.2.1 Preliminaries 9

2.2.2 BDI Agent Architecture 11

2.3 AGENT COMMUNICATION AND ARGUMENTATION-BASED AGENTS 12

2.3.1 Agent Communication Languages 12

2.3.2 Argumentation-based Agents 16

2.3.3 Negotiation 18

2.3.4 Dialogue Games 18

2.4 AGENT ORIENTED PROGRAMMING 20

2.4.1 JADE (Java Agent Development framework) 20

2.4.2 Jadex BDI Agent System 23

2.5 CONCLUSION 27

CHAPTER 3. OVERVIEW OF WEB SERVICE TECHNOLOGY 28

3.1 BASIC STANDARDS FOR WEB SERVICES 28

v

3.1.1 Generalities 28

3.1.2 Simple Object Access Protocol (SOAP) 29

3.1.3 Web Services Description Language (WSDL) 30

3.1.4 Universal Description, Discovery, and Integration (UDDI) 31

3.1.5 Interoperation of SOAP, WSDL and UDDI 32

3.2 WEB SERVICES INTERACTIONS 33

3.2.1 Generalities 33

3.2.2 BPEL (Business Process Execution Language) 34

3.2.3 Web Components 34

3.2.4 Semantic Web 35

3.2.5 Communities of Web Services 37

3.3 CONCLUSION 39

CHAPTER 4. SPECIFYING AND IMPLEMENTING COMMUNITIES OF WEB SERVICES 40

4.1 MANAGEMENT OPERATIONS FOR COMMUNITIES OF WEB SERVICES 40

4.1.1 Community of Web Services Development 41

4.1.2 Web Services Attraction and Retention 42

4.2 SPECIFICATION FOR ARGUMENTATIVE COMMUNITIES OF WEB SERVICES 43

4.2.1 Formal Foundation 43

4.2.2 General Specification 46

4.3 ARGUMENTATIVE DIALOGUE GAMES FOR COMMUNITIES OF WEB SERVICES 48

4.3.1 SntryGame 48

4.3.2 Offer Game 49

4.3.3 Challenge and (Justification Games 51

4.3.4 attack Game 52

4.4 DIALOGUE GAMES COMBINATION 52

4.5 FORMAL ANALYSIS 53

4.5.1 PNP -CWS's Properties 53

4.5.2 Complexity Analysis 56

4.6 IMPLEMENTATION 58

4.6.1 Architecture 58

4.6.2 Beliefs 59

VI

4.6.3 Goals 60

4.6.4 Plans 61

4.7 EXPERIMENTAL RESULTS 63

4.8 CONCLUSION 6 6

CHAPTER 5. VERIFYING COMMUNITIES OF WEB SERVICES 67

5.1 OVERVIEW 67

5.2 CTL*CA
 LOGIC FOR COMMUNITIES OF WEB SERVICES 69

5.2.1 Syntax 69

5.2.2 Semantics 70

5.3 DIALOGUE GAME PROTOCOL FOR COMMUNICATING AGENTS 72

5.3.1 Dialogue Game Protocols 72

5.3.2 Dialogue Game Protocol Properties 73

5.4 MODEL CHECKING TECHNIQUE 75

5.4.1 Alternating Buchi Tableau Automata for CTL*CA 75

5.4.2 Translation Procedure 82

5.4.3 Model Checking Algorithm 84

5.5 TERMINATION 86

5.6 CASE STUDY 91

5.6.1 Protocol Description and Verification for Communities of WS 91

5.6.2 Implementation 96

5.7 CONCLUSION 98

CHAPTER 6. CONCLUSION 99

6.1 CONTRIBUTIONS 99

6.2 DISCUSSIONS 99

6.3 FUTURE WORK 101

REFERENCES 103

APPENDIX I. TABLEAU RULES FOR CTL*CA 107

APPENDIX II. PROOF OF LEMMAS 109

vii

List of Figures

FIGURE 2.1 THE PRS AGENT ARCHITECTURE 10

FIGURE 2.2 DIAGRAM OF A BEUEF-DESIRE-INTENTION ARCHITECTURE 13

FIGURE 2.3 FlPA STANDARD: COMPONENTS OF THE COMMUNICATION MODEL 14

FIGURE 2.4 FlPA MESSAGE STRUCTURE 15

FIGURE 2.5 ARCHITECTURE OF AGENT PLATFORM 21

FIGURE 2.6 AGENT THREAD PATH OF EXECUTION 22

FIGURE 2.7 JADEX ABSTRACT ARCHITECTURE 23

FIGURE 2.8 GOAL LIFECYCLE 24

FIGURE 2.9 JADEX EXECUTION MODEL 26

FIGURE 3.1 FRAMEWORK FRO WEB SERVICES 29

FIGURE 3.2 LAYERED VIEW OF SOAP, WSDL, AND UDDI STANDARDS 32

FIGURE 3.3 W3C SEMANTIC-WEB-LAYERS 36

FIGURE 3.4 ARCHITECTURE OF AN ENVIRONMENT OF SEVERAL WEB SERVICE COMMUNITIES 38

FIGURE 4.1 TYPES OF DIALOGUE GAMES 48

FIGURE 4.2 PROTOTYPE'S ARCHITECTURE 60

FIGURE 4.3 SEQUENCE DIAGRAM FOR ENTRY GAME 64

FIGURE 4.4 SNAPSHOT FOR THE SNTRYGAME SCENARIO 64

FIGURE 4.5 SEQUENCE DIAGRAM FOR OFFER GAME 66

FIGURE 5.1 A PART OF ATRANSITION SYSTEM FOR A DIALOGUE GAME PROTOCOL 74

FIGURE 5.2 THE ABTA OF FORMULA E(G+F+P) 84

FIGURE 5.3 THE PNP-CWS PROTOCOL 92

FIGURE 5.4 THE ABTA FOR CASE STUDY FORMULA 93

FIGURE 5.5 THE ABTA PRODUCT GRAPH 95

FIGURE 5.6 RESULT OF CHECKING LIVENESS AND DEADLOCK PROPERTIES 98

V l l l

LIST OF TABLES

TABLE 2.1 ACL MESSAGE PARAMETERS 16

TABLE 4.1 BNF GRAMMAR FOR PNP-CWS 53

TABLE 5.1 THE SYNTAX OF CTL*CA LOGIC 70

TABLE5.2 THETABLEAU FOR E(G+F+P) 8 3

TABLE 5.3 MODEL CHECKING ALGORITHM.. 87

TABLE 5.4 THE TABLEAU FOR CASE STUDY 94

TABLE APP 1.1 TABLEAU RULES FOR PROPOSITIONAL AND UNIVERSAL FORMULAS 107

TABLE APP 1.2 TABLEAU RULES FOR ACTION FORMULAS 107

TABLE APP 1.3 TABLEAU RULE FOR PROPOSITIONAL COMMITMENT FORMULA 108

TABLE APP 1.4 TABLEAU RULES FOR STATE FORMULAS 108

IX

Chapter 1. Introduction

In this chapter, we explain what has initiated our interest into the argumentative agent-

based communities of Web services and we identify some related technologies. We also specify

research problems under consideration, describe our contributions, and present the structure of the

thesis.

1.1 Context of Research

This thesis is about designing, developing, and verifying communities of Web services

using argumentative agents. We mainly focus on three multi-agent systems (MAS) areas:

communication in multi-agent systems, verification of communicating agent-based systems, and

Web services interaction using multi-agent systems.

Multi-agent systems are software systems where a set of intelligent agents interact with

each other. Agents are considered to be autonomous entities with social ability, reactivity, and

pro-activity properties. Rationality is another property in reasoning agents. Their behaviors can be

either cooperative or self-interested. In MAS, communication is one of the major topics of

research. Multiple agents communicate to coordinate with each other in order to solve problems

together. Like human's communication, agent communication involves philosophy of language,

social psychology, logics, and mathematics, and integrates other disciplines. When agents want to

negotiate in order to solve conflicts of interest, they need not only to exchange single messages,

but also to think about the reason behind conflicts and try to remove these conflicts. In other

words, agents need to participate in complex conversations with other agents.

Agent Communication Language (ACL) is used to exchange information among the

agents. In the early 1990s, the DARPA knowledge sharing effort (KSE) began to develop the

1

Knowledge Query and Manipulation Language (KQML), which became the first standardized

ACL [24]. Five years later, in 1995, the Foundation for Intelligent Physical Agents (FIPA1)

started developing standards for agent systems, including FIPA-ACL. This language is

considered as the centerpiece of agent technology. KQML and FIPA-ACL are both based on

speech act theory and their messages are considered as communicative acts whose objective is to

perform some action by virtue of being sent. FIPA-ACL proposed a set of communication

protocols that agents can follow. These protocols usually describe the sequence of messages that

agents can exchange for particular applications. However, they are sometimes too rigid to be used

by autonomous agents in their negotiation or persuasion conversations. This is because they are

specified so that an agent must follow them from beginning to end without questioning about

them. Dialogue games are introduced by several researchers to solve this problem [7] [29].

Dialogue games are abstract structures that can be composed to reflect the whole dialogue. They

are interactions among two or more players with serial predefined rules.

Since verification solves problems related to the satisfaction of design requirements, it

plays a crucial role in any development process to avoid unwanted behaviours, especially in

communicating multi-agent systems, which are innately more complex than "traditional" systems.

This is because multi-agent systems are employed to capture high level properties of large,

autonomous systems. In this setting, testing is one of the most common verification techniques.

Testing is performed by running a number of test cases and by checking that the required

properties hold in all tested runs. However, the main problem of testing is that enumerating all

possible cases is generally hard and even impossible sometimes. Hence, our research will

investigate techniques using formal verification, which is a class of logic-based techniques.

Logic-base techniques include theorem proving and model checking. Compared to theorem

proving, which is a semi-automatic approach, model checking is an algorithmic-based and

1 http://www.fipa.org

2

http://www.fipa.org

automatic technique. Consequently, our research focuses on model checking, mainly a new model

checking algorithm for communicating agents.

Our research is applied to Web services that are changing the way industry does business

in the world. We are currently witnessing the rapid development and maturation of emerging

interrelated standards that are defining the Web services infrastructure along with a number of

development tools. The basic standards for Web services, such as WSDL (Web Services

Description Language), UDDI (Universal Description, Discovery, and Integration), SOAP

(Simple Object Access Protocol), and XML (extensible Markup Language) are made for

describing, advertising, discovering and binding Web services in a decentralized, distributed

service-oriented environment. The shortage of these standards is that they do not deal with the

dynamic composition of existing services [42]. Web services compositions, for example BPEL

(Business Process Execution Language), and Web services interactions, such as agent-based

communities of Web services, are introduced to solve this problem. Our research is on agent-

based communities of Web services using dynamic interaction protocols.

1.2 Motivations

In order to facilitate agile business and to support dynamic partnership formation,

information systems are designed to support interoperability. In particular, interoperation between

agent systems and Web services is more interesting because of the benefits that can be achieved

from both technologies to accomplish complex goals. Both technologies have pursued providing

dynamic, open and oriented architectures. But the way of designing and deploying systems using

these two technologies are very different. Web services use service composition and service

interaction to achieve dynamics, whereas agents can know the environment and react according to

the environmental change. Commuinties of Web services are the collection of Web services with

same or simular functionalities. Although Web servcies are intensively invertigated, the research

3

community has not addressed properly the community-related issues yet, for example, how to

initiate and specify a community of Web services, and how to manage Web services residing in a

community. Web services do not have automous property, therefore, the decision of joining a

community is usually not optimized, and the selection of one Web service out of many in a

community to participate in a composite scenario is generally random. Our first motivation is to

integrate the multi-agent systems and Web services when designing and managing communities

of Web services so that these operations will be optimized. With agent's automous and reactivy

properties, a community is able to be managed efficiently.

Another motivation is to allow these agent-based Web services to use their autonomous

and reasoning features through an argumentation system helping them to negotiate situations

within the communication protocols that we provide. Empowering Web services with

argumentation capabilities comes with its own challenges. Associating Web services with

argumentative agents that are able to persuade and negotiate with others organizes these Web

services in a better way so they can achieve the goals they set in an efficient way. Unlike FIPA-

ACL protocols, which only describe the sequence of allowed actions without any reasoning, our

protocols are designed to be more flexible and autonomous. Agents have more selectable actions

and play moves in turn by performing utterances according to a predefined set of logical rules.

After communication, agents should get enough information and perform actions to achieve their

goals.

Providing efficient formal verification for our integrated model is our third motivation.

The verification we need should verify both temporal and action formulae. The aim is to develop

a model checking algorithm to verify interacting agent-based Web services. A specific logic for

our communication protocols is then needed.

4

1.3 Research Questions

The overall research questions are the following:

1. How do agent-based communities of Web services participate in flexible

conversations (persuasions, argumentative negotiations, deliberations, etc.)? How

do we specify and represent communities of Web services in compliance with

existing standards/specifications?

2. What kind of architecture do we use? Which platform do we select for

applications?

3. How do we verify the communities of Web services? What kinds of algorithms

can be used to verify our protocols and what is the computational complexity of

these protocols?

1.4 Proposed Solutions and Contributions

In order to answer the proposed research questions, we introduce dialogue game with

FIPA-ACL language to make agents communication more pliable. We specify the communica­

tion protocols for our community of Web services to make these Web services able to negotiate.

BDI agent architecture is adopted and FIPA-ACL compliant agent platform Jadex is used as an

application platform. Therefore, our agent-based Web services are able to hold a conversation

based on their own knowledge and beliefs to make the decision and run desired plans. For

verification, we apply tableau-based model checking technique and extend CTL* to CTL*CA for

communicative agents.

The main concern of the thesis is the applicability study of the emerging notion of

communities for Web services. Indeed, the contributions of this work are the following:

1. Specification of the communities of Web services using argumentative agent.

2. Design of flexible communication protocols for agent-based Web services.

5

3. Simulation of the specified communities and interaction protocols using Jadex (a

java-based BDI reasoning engine).

4. Specification and implementation of a model checking algorithm to verify the

specified communities.

1.5 Outline

This thesis is divided into 6 chapters and 2 appendices. Chapter 2 and Chapter 3 are about

the state of the art. Chapter 2 introduces multi-agent systems and agent-oriented programming.

Chapter 3 presents an overview of Web services standards and interactions. Chapter 4 and

Charter 5 consist of our main contributions. Chapter 4 includes the specification of communities

of Web services and its implementation. Chapter 5 addresses the verification of our model for

communities of Web services. Finally, Chapter 6 concludes the thesis by summarizing our

contributions and identifying directions for future work.

6

Chapter 2. Multi-Agent Systems and Agent Oriented

Programming

This chapter presents and discusses a literature review about multi-agent systems and

agent oriented programming. First, Sections 2.1, 2.2 and 2.3 briefly introduce the notions of

intelligent agents, multi-agent systems, agent architectures, and communication among agents.

Then, Section 2.4 presents some agent-based software development, especially Java-based agent

programming.

2.1 Autonomous Agents and Multi-Agent Systems

2.1.1 Intelligent Agents

An agent is defined by Wooldridge [50] as a computer system that is capable of

independent action on behalf of its user or owner, situated in certain environment, and capable of

autonomous action in this environment in order to meet its design objectives. Agents embrace

stronger notion of autonomy than objects in object oriented paradigm, and in particular, they

decide for themselves whether or not to perform an action requested from another agent. In

general, an agent can perceive reason about, and initiate activities in its environment. It has

control over its internal state and its own behavior. It experiences environment through sensors

and acts through effectors. An agent also can communicate with other agents, even human beings,

using an agent communication language, which we will discuss in Section 2.3.1.

An intelligent agent is an agent with reactive, proactive, and social properties.

Reactive: A reactive system is one that maintains an ongoing interaction with its

environments, and responds to changes that occur in it.

7

Proactive: Generally, proactive agents behaviour are goal directed. An intelligent agent

can generate and attempt to achieve goals by taking the initiative in order to satisfy its design

objectives.

Social: Agents social ability is the ability to interact with other agents in the system (and

possibly humans) through a given agent communication language, and cooperate and compete

with others.

Intelligent agents act rationally and predictably. They do things to satisfy certain

objectives and pursue their goals rationally. A detailed analysis of "rationality" can be found in

the Bratman's [14] work. This analysis opens the way to the Beliefs-Desires-Intentions (BDI)

model for software agents [39].

2.1.2 Multi-Agent Systems

A multi-agent system (MAS) is a software system including of a number of intelligent

agents, which interact with one-another [50]. A multi-agent system is able to reach goals that are

difficult to achieve by an individual agent. Typically, agents exchange messages through specific

agent communication languages. In the most general case, agents are acting on behalf of users

with different goals and motivations. In order to successful interact, they will require the ability to

cooperate, coordinate, and possibly negotiate with others.

Multi-agent systems are interdisciplinary: the field of MAS is influenced and inspired by

many other fields: economics, mathematics, logics, philosophy, game theory, ecology, social

sciences, etc. This aspect can be both strength and a weakness: this infuses well-founded

methodologies into the field; however, there are many different views as to what the field is about.

To design a MAS, we need to implement micro and macro designs: agent design and

society design [50]. During the agent design (micro design), we think about how to build agents

capable of independent, autonomous action so that they can successful carry out tasks users

delegate to them. More details about this design will be discussed in Section 2.2 through agent

8

architecture. In society design (macro design), the focus is on the interaction capabilities

(cooperation, coordination, and negotiation) in order to successfully carry out the delegated tasks,

especially when some conflicts arise in agent goals.

2.2 Agent Architectures

2.2.1 Preliminaries

Agent Architectures are significant when we delve into agents design. They are the

foundation of the agent paradigm. In general, agent architecture is a framework that is a blueprint

for software agents and intelligent control system, depicting the arrangement of components.

Through the analysis of agent architecture, we can not only predict and explain the behavior of an

agent system based on investigating its current state and environment, but also get a particular

methodology for building real agent systems. According to Maes' [28], agent architecture

specifies how "the agent can be decomposed into the construction of a set of component modules

and how these modules should be made to interact."

There are many ways to classify the agent architectures. Typically, for single agent

architectures, identified three categories are identified by Wooldridge [50]:

1. Deliberative agent architecture (symbolic/logical): an agent contains an explicitly

represented, symbolic model of the environment. Furthermore, it makes decisions via

symbolic reasoning.

2. Reactive agent architecture: an agent acts by means of stimulus-response rules and does

not symbolically represent their environment (explained through agent-oriented

programming)

3. Hybrid agent architecture: an agent can act both deliberatively and reactively.

In the beginning, symbolic reasoning agent architecture was dominant. In this

architecture, agents have been based on logical or symbolic reasoning to decide about their

9

actions. There were three types of reasoning agents: symbolic reasoning agents, deductive

reasoning agents and practical reasoning agents. Belief-Desire-Intention (BDI) architecture is one

of the main deliberative agent architectures.

AOENl

Goals Desires

Knowledge Area
(KA) Library

(Plans)

Figure 2.1 The PRS agent architecture

Figure 2.1 is Procedural Reasoning System (PRS) architecture which builds its agent

systems using BDI architecture. A reasoner, also called an interpreter, is responsible for

maintaining beliefs (Knowledge base) about the world state, choosing which goals to attempt to

achieve next, and choosing which Knowledge Area (KA) to apply in the current situation. A PRS

agent can explore the environment changes through sensors; then, based on the beliefs of the

environment, PRS interleaves planning and doing action in the world.

The "reactive agent movement" started in 1985, revealed an era of reaction agent

architecture. The agents' behavior has not relied solely on symbol manipulation, but also

generated reaction without explicit abstract reasoning. The agents in reactive architecture are

capable of maintaining an ongoing interaction with the environment, and responding to changes

that occur in it [52]. Rodney Brooks' subsumption architecture [15], which considers agent

properties and capabilities along with the environment, is an excellent example of reactive agent

architecture.

i '

Beliefs
(Knowledge base

^ ~ ""
Reasoner
interpreter)

v N *
Intention
Structure

"
Command
Generator

\

/

1

' Environment!

10

Since 1990, hybrid architectures that combine the best of reasoning and reactive

architectures have come to the forefront. In this architecture, the agent designer can build an

agent out of two or more subsystems: one is a deliberative agent, which contains a symbolic

world model that develops plans and makes decisions in the way proposed by symbolic agents;

another is a reactive one that is capable of reacting to events without complex reasoning.

For space and comprehensibility, we only discuss BDI agent architecture because it

provides a foundation for many systems and is considered separately as an abstract architecture in

its own right.

2.2.2 BDI Agent Architecture

BDI architecture, which was introduced by Michael Bratman as a philosophical model

for describing rational agents [14], contains specific denotation of Beliefs, Desires, and Intentions

[39] and addresses how Beliefs, Desires and Intentions are represented, updated and processed. In

BDI agent architecture, agents are imbued with particular mental attitudes and choose the

appropriate action according to their capability and the internal structures.

• Beliefs: Beliefs represent how agents know the surroundings, including themselves and

other agents. Beliefs can also include inference rules, allowing forward chaining to lead

to new beliefs. In general, this information is stored in a database that usually called a

belief base. Unlike knowledge, beliefs may be not true.

• Desires: Desires (or goals) are things that agents would like to accomplish [41]. They are

the motivational state of the agent. Examples of desires might be: find the best price, go

to the party or become rich, etc. The difference between goals and desires is that the set

of goals must be consistent, while desires could be inconsistent.

• Intentions: Intentions are the agents' targets. They represent the deliberative state of the

agent: what the agent has chosen to do. Intentions are desires to which the agent has to

some extent committed (in implemented systems, this means the agent has begun

11

executing a plan). Plans are sequences of actions that an agent can perform to achieve one

or more intentions. Plans may include other plans: a plan to go for a drive may include a

plan to find the car keys. In Bratman's model, plans are initially only partially conceived,

with details being filled in as they progress.

Typically, the BDI model combines three distinct components [51]: a philosophical

component (theory of humans rational action); a software architecture component (used in a

number of complex applications); and a logical component (BDI logics), such as LORA (Logic of

Rational Agents).

The diagram below from [41] indicates a BDI model execution Cycle. When new

information arrives, the agents will update their beliefs and desires (goals). These new beliefs or

goals may be able to trigger several actions. However, only an intended action is selected and

activated. After this action is performed, intentions are updated and the new beliefs or goals are

stored. New cycle is started. More details about DBI programming are presented in Section 2.4.

2.3 Agent Communication and Argumentation-based Agents

2.3.1 Agent Communication Languages

Agent Communication Languages (ACL) are proposed standard languages for

communicating agents. Most ACLs are based on the speech-act theory that is expressed by means

of standard keywords, known as 'performatives' [47]. There are two main ACLs over the last

decade: the Knowledge Query and Manipulation Language (KQML), which was proposed by

DARPA Knowledge Sharing Effort (KSE), and the foundation for Intelligent Physical Agents'

Agent Communication Language (FIPA-ACL).

12

Environment

-a: AgentSet
+run()
+applyAction(in a : Action)

. _ i "" _)

BeliefSet

-elements. Vector
+mcludeObservationo

t
i

Belief
-id String
-value: String

<~.

AgentSet

-elements: Vector
+addnn a Agent)
+remove(in a : Agent

t
Agent

-B : BeliefSet
-D: DesireSet
-P: IntentionSet
- I : Intention
-e: Environment
-name: String
-a: Action
+run()
+currentlntentionlsOK(): booleanndli
+stopCurrentlntention()
+chooselntention()
+perceiveEnvironment()
+takeAdionil

w
DesireSet

-el srnents: Vector
+getApplicable(in B : BeliefSet): DesireSet

r
Desire

-id; String
-priority: int
+context(in B : BeliefSet): boolean(idl)

Action

\ i y

IntentionSet

-elements: Vector
+getApplicablenn D DesireSet in B BeliefSet i IntentionSet

T
Intention

id: String
priority: int
d: Desire
a: Agent
4-satisfies(in d : Desire): boolean(idl)
+execute(in a : Agent): boolean(idl)
tcontext(in B : BeliefSet): booleanddh
tstopExecutingQ

Figure 2.2 Diagram of a Belief-Desire-Intention architecture

2.3.1.1 KQML

KQML is the notion of performative keyword, such as ask-if, tell, ask-one, etc. There are

roughly 41 performatives that define the intended meaning of a message. An example of KQML,

which I picked up from [11], will help to understand better:

(ask-one
:content(PRICE IBM ?price)
receiver stock-server
language LPROLOG
:ontology NSE-TICKS)

To interpret this KQML message, first, look at the performative: ask-one. This message

stipulates that sender wants to ask some information. The content explains what kind of

information the sender needs: the price of PRICE IBM. The message is sent to receiver: stock-

13

server and is written in a language called LPROLOG. A particular ontology (NYSE-TICKS)

defines the terminology used in the message.

KQML was proposed lacking any formal semantics at first. Near the end of the 1990s,

Labrou and Finin introduced some semantics into KQML [26] though the semantics were just

presented using a pre- and post-condition notation using a logical language containing modalities

for belief, knowledge, wanting, and intending [51].

2.3.1.2 FIPA-ACL

Foundation for Intelligent Physical Agents Standards (FIPA) is a nonprofit organization

founded in 1996 to provide software standards specifications for interoperability between

heterogeneous agents and agent based systems. FIPA has published 25 standard specifications,

including a further 14 remaining at the experimental stage, and 3 at the preliminary stage [1].

Specially, FIPA-ACL message structures are defined by FIPA Agent Communication Standards.

The components of the communication model are shown in Figure 2.3

ACLEncodingScheme

Envelope

Vfcon

CLEncodingScheme

1
i

isTransmittedOver

tains
V -

• • • \

Message

\
\ (J0

InteractionProtocol

\

isExpressedln

ntains

Content

\ C o

isExpressedln

"italns

. : \
Symbol

Belongs

TransportProtocol

ACL

ContentLanguage

To
Ontology

1
Figure 2.3 FIPA Standard: components of the communication model

Message Transport Protocol (MTP): this level carries out the physical transfer of

messages between Agent Communication Channel (ACC).

14

• Message Transport Service (MTS): this level is provided by the agent platform to which

an agent is attached. The MTS supports the transport of FIPA-ACL messages between

agents on any given agent platform and between agents on different agent platforms.

A FIPA-compliant message that is the fundamental form of communication between

agents composes four parts: Envelope, Payload, Message, and Content. The general structure of a

message is showed below figure 2.4.

Envelope

Payload

Message

Content

Transport
'Information

Encoded
" Message

Message
"Parameters

Message
Content

Figure 2.4 FIPA message structure

FIPA-SL (Semantic Language) or FIPA-KIF (Knowledge Interchange Format) is a

content language that expresses the content of the message. These content expressions can be

some kind of symbols that are grounded by referenced ontology. Message parameters must

include key parameters such as performative, sender's and receiver's Agent identification (AID).

The messages will be encoded into a payload before they are transmitted and a message transport

envelope for the particular protocol in use, like HTTP or HOP is used.

A FIPA-ACL message contains message parameters that are needed for effective agent

communication. The only mandatory parameter in any ACL message is the "performative." Other

frequently used parameters also contain sender, receiver and content. The FIPA-ACL message

parameters are shown in Table 2.1.

15

Table 2.1 ACL Message Parameters

Parameter Description

performative

Sender

Receiver

reply-to

Content

Language

Lucoding

Ontology

Protocol

conversation-id

reply-with

in-reply-to

reply-by

Type of the corruminicalive act of the message

Identify of the sender ol'thc message

Identify of the intended recipients of the message

Which agent to direct subsequent message to within a conversation thread

Content of the message

Language in which the content parameter is expressed

Speeilk eneodiim ul'llie nicaajge content

Reference to an ontology to give meaning to symbols in the message content

Interaction protocol used to structure a conversation

Unique identify of a conversation thread

An expression to be used by a responding agent to identify the message

Reference to an earlier action to which the message is a reply

A time/date indicating by when a reply should be received

There is a simple example of a FIPA-ACL message with a request performative:

(request
:sender (:name dominic-agent(a),whitestein.com:8080)
receiver (:name rex-hotel(a),tcp ://hotelrex .com: 6600")
:ontology personal-travel-assistant
language FIPA-SL
:protocol fipa-request
: content

(action movenpick-hotel@tcp://movenpick.com:6600
(book-hotel (:arrival 25/11/2000)

(departure 05/12/2000)...))

2.3.2 Argumentation-based Agents

In [33], Pavlos Moraitis abstracted argumentation definition as the principle interaction of

different, potentially conflicting arguments to obtain a consistent conclusion [54], Like human

beings, argumentation-based agents rely on the dialogues or messages being exchanged to

attempt to achieve their goals or desires. In this thesis, the argumentation in multi-agent systems

16

is not only a process by which one agent tries to convince another to accept some beliefs, but also

a process by which one agent looks for information from others.

Argumentation-based reasoning is an advanced type of reasoning, more efficient than

classical reasoning based on deduction or abduction [10]. Before argumentative agents make

decisions based on evaluating arguments, they can deliberate about their beliefs and goals [8], At

the architecture level, argumentative agents are more autonomous than normal deliberative agents:

they are BDI agents augmented with additional capabilities [6].

The Argumentative agents can engage in an argumentation based dialogue to negotiate,

to persuade, to seek information, to inquire, or to deliberate. In three of five different dialogues,

information seeking, inquiry, and deliberation, the sender does not try to change the receivers'

beliefs. The sender just seeks answers to some questions or to jointly agree a course of action in

specific situation [30]. It either gets information from a receiver (receivers), or tells a receiver

(receivers) its decision.

However, in negotiation dialogues, the sender who initiates the dialogue and the receiver

who participates in the dialogue actively seek the best deal for both parties involved. The sender

in persuasion dialogues wants to persuade another agent to accept the information the sender

provided.

There are several argumentation theories and frameworks. In this thesis, I adopt the

framework from [6]. An argumentation system essentially comprises three components: a logical

language £, a definition of the argument concept, and a definition of the attack relation

between arguments. The logical language enables argumentative agents to "think" logically:

inferring and justifying conclusion with a logic-based reasoning.

Definition of the argument concept: Let r be a knowledge base with no deductive

closure. An argument is a pair (H,h) where h is a formula of £, and H is a subset ofT such that:

17

(i)H is consistent, (ii) H h, and (Hi) H is minimal, so that no subset ofH satisfying both (i) and

(ii) exists. H is called the support of the argument and h its conclusion.

Definition of the attack relation: Let AT be a binary relation between arguments, and

(H,h) and (H\ h') be two arguments. (H', h') AT (H, h) iff H' ' -• h. In other words, an

arguments is attacked if and only if there exists an argument that negates its conclusion.

2.3.3 Negotiation

The definition of negotiation from Webster's dictionary is "discussion, argument, or

bargaining with others in search of an agreement". From this definition, negotiation is the process

of reaching agreements on matters of common interest. There are two types of negotiation

domains [40]: task-oriented domains and worth-oriented domains.

Generally speaking, any negotiation setting includes four different components [50]:

negotiation set, protocol, collection of strategies, and a rule.

1. A negotiation set: possible proposals that agents can make, such as the value of credit,

the price of book, etc.

2. Protocol: a particular mechanism manipulates negotiation.

3. Collection of strategies, each agent has his own private strategies.

4. A rule, which determines when a deal has been struck and what the agreement deal is.

Negotiation dialogues normally do not finish in the first round. An agent, based on his

strategies, adjusts his proposal when it is refused another agent's proposal. The dialogue

continues until agents either come to an agreement or fail to, stemming from the rule.

2.3.4 Dialogue Games

However, both FBPA-ACL and KQML must follow the protocol sequences. Hence, they

are not flexible to suit autonomous agents' negotiation. Using formal dialogue games has been

18

proposed by McBumey et al.[29] and Bentahar to solve this problem [4]. Dialogue games are

abstract structures including communication protocols, which mainly are a pre-defined set of

rules that typically define which locutions may or must be uttered in different circumstances.

These rules are declarative specifications that manipulated communication between autonomous

agents. Therefore dialogue games enable agents to coordinate, even negotiate the dialogical

activity.

Dialogue games are interactions between agents, in which each agent moves by

performing utterances according the rules, (protocols). The model of a dialogue game we will

present is taken from McBurney [29],We suppose that there are certain logical languages, whose

well-formed formulae are denoted by the lower-case Roman letters, like/?, q, represented between

the agents. A dialogue game specification then includes five elements as following:

• Commencement Rules: define the circumstances under which a dialogue commences.

• Locutions: indicate what utterances are permitted

• Combination Rules: define the dialogue contexts under whether or not particular

locutions are permitted/ obligatory.

• Commitments: define the circumstances under which participants express

commitment to a proposition.

• Termination Rules: define the circumstances under which a dialogue ends.

Several dialogue games types have been proposed: information seeking dialogues;

inquiry; persuasion dialogues; negotiation dialogues; and deliberations [49], Our research will

focus on negotiation dialogues.

In this thesis, we formalize specific dialogue games for communities of Web service as a

set of logical rules about which agents can reason in order to decide which game to play and how

to combine games. We propose to specify protocols, which agents must respect them from the

beginning to the end, by small dialogue games that can be considered as conversation policies

that can be logically put together. The information will be discussed in detail in Chapter 4.

19

2.4 Agent Oriented Programming

Agent oriented programming has revealed a great potential for developing complex

applications using agent technology. There are a number of approaches or methodologies for

agent-based programming, such as Jason [34], 3APL [25], JADE [1], Jadex [38], and JACK [16]

In this section, we only glance at Java-based FIPA Compliant agent programming Languages,

JADE and Jadex that we used to develop our system.

2.4.1 JADE (Java Agent Development framework)

JADE, one of the most widespread agent oriented middleware in use today, provides a

FIPA-compliant agent platform and a package to develop Java agents. It is an open-source

software that has been under development since 1999 by TILab2 (Telecom Italia Labs).

The internal architecture of JADE is fully complies with FIPA standard. FIPA compliant

agents can exist, operate and be managed. It provides a basic set of functionalities that are

regarded as essential for autonomous agents. The architecture of JADE Agent Platform (AP) is

shown in Figure 2.5 [1].

The first terminology in this architecture is Container, which can contain several agents.

A specific container, named Main container, must always be active in a platform, which contains

the set of active containers. Other containers register with Main container as soon as they start.

Other important components are AMS (Agent Management System) and DF (Directory

Facilitator). The AMS provides the naming and control access service, like a white page, and

represents the authority in the platform. The DF provides a yellow pages service by means of

which an agent can find other agents providing the services it requires in order to achieve its

goals.

2 http://jade.tilab.com/

20

http://jade.tilab.com/

Figure 2.5 Architecture of Agent Platform

We can simply define a class extending the jade.core.Agent class and implement the

setup() method to create a JADE agent. Each agent is identified by an "agent identifier" for

example <nickname>@<platform-name>, which complies with FIPA agent identifier

specification. A task that an agent can carry out is implemented by a behaviors class in JADE. An

agent can execute several behaviors concurrently. Figure 2.6 depicts the execution path of the

agent thread [38].

21

Get the next behavior from the
pool of active behaviours

b.action () }

NO

YES

Remove currentBehaviour
from pool of active behaviours

takeDownQ

YES

>

\

/

}

- Initializations
- Addition of initial behaviours

Highlighted in red the
methods that
programmers have to
implement

• Agent "life" (execution
of behaviours)

• Clean-up operations

Figure 2.6 Agent Thread path of execution

In JADE, the structure of a message complies with the FIPA-ACL standard as well. It

includes fields (or parameters) so that it can support complex interactions and multiple parallel

conversations.

The whole JADE source code is distributed under an open source policy. The Web site

http://iade.tilab.com/ provides many online documents.

22

http://iade.tilab.com/

2.4.2 Jadex BDI Agent System

Jadex is based on the JADE agent platform. Like JADE, Jadex is a Java based, FIPA

compliant agent environment. However, it allows developing goal oriented agent following the

BDI model. The abstract Jadex architecture [38] is presented in figure 2.7. An agent can receive

or send messages. The received message or goal events can trigger the agent internal reaction and

deliberation mechanism, which dispatches the events to plans selected from the plan base.

Running plans may access and modify the belief base, exchange message with other agents,

create new goals, and cause internal events again.

Msasaffss

Agent

Reaction
Deliberation

Hama©

Setecl.
Plans

Capability

Plans

•!f-:i:IWW
I .tea.

'"Vuliijl

A,Tlcv.'nE..i rt5

_ ! i - , Events <?

•" "if air*

Beliefs Goals

Figure 2.7 Jadex abstract architecture

The Beliefbase

The beliefbase, a set of an agent's belief, stores believed facts that make up the agent's

knowledge. Unlike other BDI Systems, which beliefs are represented in some kind of first-order

predicate logic (e.g. Jason) or using relational models (e.g. JACK), the belief in Jadex is very

simple, just as storage of knowledge, like database of a agent. Belief currently does not support

any inference mechanism. On top of this simple belief representation, Jadex adds several

advanced features. Jadex uses an OQL (Object Query Language)-like query language that is

23

adopted from the object-relational database world to search the conditions that trigger plans or

goals when some beliefs change [37]. Belief also can be stored as expressions and evaluated

dynamically on demand.

The Goals Structure

In Jadex, goals are a central concept and not just a special kind of event like in pure BDI

models. For any goal it has, an agent will engage into certain actions, until the goal has been

reached, unreachable, or not desired any more. A goal lifecycle (Figure 2.8) consists of the goal

states option, active, and suspended [38]. It will distinguish between just adopted and actively

pursued goals. When a goal is adopted, it becomes an option that is added to the agent's desire

structure. Application specific goal deliberation mechanisms are responsible for managing the

state transitions of all adopted goals.

idltton I
Craa
Condition

/•—

ermte \ _

New -4—#1

Legend
** Negated condition

Condition guards transition

Q " * * Condition triggers transition

r Adopted

i-A Context ,.
Condition j

«r~"—~™—™i—*

n ^-v. H Su&peadedl

mimtf . Active
N,..,..,.. -> finished

Drop
Condi

jp '^n
lition

• * - » #)

Finished

Figure 2.8 Goal lifecycle

Four types of goals, which extend the general lifecycle and exhibit different behavior

with regard to their processing, can be distinguished: Achieve, maintain, perform, and query.

• An achieve goal just defines a desired target state, without specifying how to reach it.

• A maintain goal specifies a state that should be kept (maintained) once it is achieved.

24

• A perform goal states that something should be done but may not necessarily lead to any

specific result.

• A query goal represents a need for information.

Plan Specification

Plans are used to specify the actions an agent may perform to reach its goals. Jadex uses

the plan-library approach to represent the plans of an agent. Therefore, plans, usually be written

in Java and predefined by the developer, compose the library of actions the agent can perform,

Plans provide all the flexibilities of the Java programming language. Plans are instantiated to

handle events and to achieve goals.

In Jadex, plans consist of two parts: A Plan head and a corresponding plan body. The

plan head is declared the ADF whereas the plan body is realized in a concrete Java class. Hence,

the plan head defines the circumstances under which the plan body is instantiated and executed.

Depending on the current circumstance, plans are selected in response to occurring events or

goals. The selection of plans is done automatically by the system and represents on main aspect

of a BDI infrastructure.

Agent Definition

The complete definition of an agent is captured in an XML file, which is called agent

definition file (ADF). The ADF contains the beliefs, goals, events, plans, and other agent

elements and can be seen as a type specification for a class of instantiated agents. Plans are

declared by specifying how to instantiate them from Java class. For example, Buyer agents are

defined by the Buyer.agent.xml file, and file PurchaseBookPlan.java. construct plans

implemented. Moreover, the initial state of an agent is determined in a configuration tag, which

defines the initial beliefs, initial goals, and initial plans. In Jadex, The ADF is loaded first in order

to start an agent, and the agent is initialized with beliefs, goals, and plans defined by

configuration tag.

25

Execution Model

Figure 2.9 depicts Jadex Execution model. Before incoming messages in the message

queue can be forwarded to the system, it has to be assigned to a capability, which is able to

handle the message. If the message belongs to an ongoing conversation, an event for the

incoming message is created in the capability executing the conversation. Otherwise, a suitable

capability has to be found. Then the created event is subsequently added to the agent's global

event list.

The dispatcher is responsible for selecting applicable plans for the events from the event lists.

Jadex provides flexible settings to influence this event processing individually for event types and

instances. As a default, messages are posted to only one single plan, while for goals, many plans

are executed sequentially until the goal is reached or failed, when no more plans are applicable.

After plans have been selected, they are placed in the ready list, waiting for execution. The

execution of plans is performed by a scheduler, which selects the plans from the ready list.

Jadex Agent MessEiiji: q jc i .u

Mnsssgo
receiver

'I Select message

< Credlu event
for messaqe

Capabiliiies/eventbases a

Internal/goal events
Event 1st

Dispatcher Select event

Find applicable
candidates

*
Select

candidates k

Capablit-es/planbases

^ Mct.i-levcl reasoning

-- .

Roiidy list

Schudulur Sek-r.! intention

Execute
plan step

Figure 2.9 Jadex Execution model

26

2.5 Conclusion

In this chapter, we have provided a brief review of multi-agent systems and agent

communication technology. There are three agent architectures; deliberative agent architecture,

reactive agent architecture, and hybrid agent architecture. We mainly focused on the BDI

architecture, one of the deliberative agent architectures. We reviewed KQML and FIPA-ACL for

agent communication language. Furthermore, we introduced dialogue games to solve the problem

that KQML and FIPA-ACL are not flexible to suit autonomous agents' negotiation.

We have also introduced Java-based multi-agent programming platforms: JADE and

Jadex. Both JADE, a software framework to support the development of agent applications, and

Jadex, a software framework for the reaction of goal-oriented agents following the belief-desire-

intention (BDI) model, are FIPA compliant agent environment and open source projects around

which a community of users and contributors has grown up. JADE provides the platform

architecture and the core services and message transport mechanisms as required by the FEPA

specifications. Hence, Jadex is based on the JADE Agent Framework to achieve FIPA-

compliancy. Jadex allows developers to define more abstract goals for the agents, thereby

providing a certain degree of flexibility on how to achieve the goals. This is the reason why we

use Jadex as our implementation language. In the next chapters, we will discuss how we use

Jadex to simulate our communities of Web services.

27

Chapter 3. Overview of Web Service Technology

This chapter presents an overview of Web service technology from two perspectives:

standards for Web services and Web services interactions. Section 3.1 presents the main

standards, namely UDDI, WSDL, and SOAP, and how these standards intemperate with each

other. Section 3.2 focuses on Web services interactions and composition technology. It covers

BPEL, Web components, semantic Web, and the emerging communities of Web services.

3.1 Basic Standards for Web Services

3.1.1 Generalities

Web services are self-contained and self-describing application components that

communicate through open protocols with other applications for the purpose of using and

exchanging data [44], Web services enable users to access business functionalities, and they

allow the integration of heterogeneous enterprise applications. Web services, normally with an

XML interface, are registered and can be placed via a Web service registry. The general

framework for Web services is shown in Figure 3.1. It contains three types of participants [41]:

services providers, services registry, and services consumers.

• Service provider: A service provider is the party that creates Web services and

advertises them to potential users by registering the Web servicers with service

registry.

• Service registry: This part maintains a registry of advertised (published) services and

might introduce service providers to service consumers.

• Service consumer: A service consumer searches the registries of service registry for

suitable service providers, and then contacts a service provider to use its services.

28

Publish
(WSDL

Find
(UDDI)

Figure 3.1 Framework fro Web services

The framework for Web services is founded on principles and standards for connection,

messaging protocol, description, and discover. The extensible Markup Language (XML)

provides a common language between the service providers and service consumers. The basic

standards for Web services are defined by Web languages such as UDDI (Universal Description,

Discovery, and Integration) [45], WSDL (Web Services Description Language) [17], SOAP

(Simple Object Access Protocol) [40][48]. In this section, we will introduce the key elements of

the three basic standards, SOAP, WSDL, and UDDI, for Web services.

3.1.2 Simple Object Access Protocol (SOAP)

SOAP is a message-based protocol for accessing services on the Web, normally using

HTTP/HTTPS as the transport protocol and XML for data encoding. However, other transport

protocols, such as FTP, SMTP, TCP/IP sockets, may also be used [44]. It was originally provided

for networked computers with Remote-Procedure Call (RPC), in which one network node (the

client) sends a request message to another node (the server) and the server immediately sends a

response message to the client. Therefore, two types of messages, Request and Response, are

defined by SOAP. Two parts, a header and the XML payload, comprise a SOAP message. The

header content is based on different transport layer; nonetheless, the XML payload remains the

same. The XML part of the SOAP request consists of three main portions:

29

• Envelop: this defines the various namespaces that are used by the rest of the SOAP

message.

• Header: this is an optional element for carrying auxiliary information for

authentication, transactions and payment.

• Body: this is the main payload of the message. It normally contains the method name,

arguments and Web Service target address.

SOAP makes the security and communication behind proxies and firewalls easier than

previous remote-procedure call because it is a character-based, rather than a binary protocol [41].

However, like every coin has two sides, SOAP is inefficient for many applications. Unfortunately,

SOAP is not a state protocol from conceptual, nor describes bidirectional or multiparty interaction.

Therefore, SOAP is effective for simple interoperability between single clients and servers, but

for more complex interoperability among heterogeneous systems, a message-queuing component

should be used by each participant to provide transaction and security support.

3.1.3 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML-based language for specifying

Web services by defining messages that provide an abstract definition of the data being

transmitted and operations that a Web service provides to transmit the messages [43]. Developed

by Microsoft and IBM, WSDL describes the protocols and formats used by the service. A WSDL

document contains seven elements in the definition of network services. They are Type, Message,

Operation, Prot Type, Binding, Port, and Service. Four operation types, which characterize the

behaviour of an endpoint, are defined from the perspective of the ultimate implementation of the

Web service.

• One-way: the endpoint receives a message.

• Notification: the endpoint sends a message.

30

• Request-response: the endpoint receives a message and sends a correlated message

• Solicit-response: the endpoint sends a message and receives a correlated message.

A WSDL specification is split into two main components: the interface and the

implementation in order to promote reusability and having multiple implementations [41].

The WSDL interface describes a service by fleshing out the definition of WSDL elements.

It is the abstract module and may import other interfaces. The WSDL service

implementation focuses on the specifics of binding a service.

3.1.4 Universal Description, Discovery, and Integration (UDDI)

UDDI defines an online registry to publish information about businesses and services. It

provides white-page and yellow-page services. Service consumers can use this registry

information to find companies in a given industry with a given type of service and to locate

information they need. The UDDI specifications comprise an XML schema for SOAP messages

and a description of the UDDI APIs specification.

The information fields in UDDI white pages are business name, text description, contact

information, and identifiers that a business may be known by. The yellow pages comprise

business categories organized as three major classes [41]:

• Industry: North American Industry Classification System (NAICS), a six-digit code

maintained by the US government for classifying companies.

• Products and services: Ecma International and United Nations Standard Products and

Services Code

• Geographical location: ISO 3166 for country and region codes.

The UDDI specifies two APIs: Inquiry API and Publish API that contain message for

interacting with UDDI registries. The Inquiry API retrieves information, for example to locate

businesses, services, and bindings, from a registry. The Publish API stores information for

creating and deleting UDDI data in the registry. The UDDI APIs are based on SOAP.

31

In fact, a UDDI business registry is a Web service based on XML and SOAP. IBM and

Microsoft are UDDI Registries providers. A business registry provides operations to create,

modify, delete, and query of data structures. All these operations can be performed either via a

Web site or by using tools that make use of the UDDI API specification.

3.1.5 Interoperation of SOAP, WSDL and UDDI

WSDL descriptions can be housed in a UDDI directory, and the combination of WSDL

and UDDI is expected to promote the use of Web services worldwide. Tsalgatidou [44] has

abstracted SOAP, WSDL, and UDDI integration and interoperability into layers (Figure 3.2).

Based on common internet protocols HTTP, TCP/IP, etc., XML provides a cross-platform

approach to data encoding and formatting. SOAP and WSDL, which are built on XML, define a

simple way to package information for exchanges across system boundaries and specifies

properties of a Web services. The UDDI provides a stage that allows two different services to

share each other's information and to describe their own services. The top layer, Universal

Service Interop Protocols, will be defined in the future more advance discovery features, such as

the ability to locate parties that can provide a specific product or service at a given price or within

a specific geographic boundary in a given timeframe.

Interop
Slack

Universal Service Interop Protocols

Universal Description. Discover1 and Intearation (UDDI)

Simple Object Access
Protocol (SOAP)

Web Services Description
Language (WSDL)

Extensible Markup Language (XML)

Commom Internet Protocols (HTTP. TCP/IP)

Figure 3.2 Layered view of SOAP, WSDL, and UDDI standards

(from [44])

32

3.2 Web Services Interactions

3.2.1 Generalities

The Web Services are internet-enabled applications capable not only of performing

business activities on their own, but also possessing the ability to engage other Web services in

order to complete higher-order business transactions. However the Web service standards that we

introduce in the previous section do not deal with the dynamic composition of existing services

notwithstanding [42]. Emerging Web service standards are clear evidence that the Web service

community is inexorably moving toward representing compositions where flow of the process

and the bindings between services are known a priority.

A conversational model for Web services provides a more loosely coupled, peer-to-peer

interaction model. By interacting, composite Web services are able to manipulate complex

transactions that can be satisfied, not by one single available resource, but by a combination of

efforts through business to business collaboration among these applications. It accelerates rapid

application development, service reuse, and complex service consummations. From user's

perspective, service composition, which compositie the different web services for users, offers

seamless access to a variety of complex services. Nonetheless, service composition is not

standardized and there are no set principles to ensure that quality of service (QoS) requirement

are met.

There are several existing approaches for Web services interaction and composition, such

as Business Process Execution Language (BPEL3), Web components, Petri nets, algebraic process

composition, finite-state machines, semantic Web (OWL-S), and the emerging communities of

Web services. These approaches are discussed below.

www.ibm/com/developerworks/library/ws-bpel

33

http://www.ibm/com/developerworks/library/ws-bpel

3.2.2 BPEL (Business Process Execution Language)

BPEL is an XML-based language for the formal specification of business processes [20]

and business interaction protocols. BPEL extends the Web services interaction model and enables

it to support business transactions. It is developed by BEA, IBM, Microsoft, SAP, and Siebel.

BPEL composition collaborates with different Web services to achieve the task that the

user pursues. A process, which names the composition result in BPEL, has two forms: an

executable process, which specifies the execution order, and an abstract process, which defines

negotiation protocols, specifying the exchanged messages among different participants in the

orchestrated process. A process is defined by a BPEL source file, which describes activities, a

process interface, which describes ports of a composed service, and an optional deployment

descriptor, which contains the partner services' physical locations [31].

Unfortunately, in BPEL multiple service composition is somewhat tedious when XML

files start to grow. This does not follow the aim of abstract process and it also complicates the

protocol description, revealing unnecessarily implementation details and making difficult the task

of analyzing the correctness. Furthermore, BPEL has no standard graphical notation [31] although

there are proposals to use UML-like notation for description, and it provides a static composition

Web service.

3.2.3 Web Components

Web components are a packaging unit for developing Web-based distributed applications

in order to combine existing Web services. After a Web component class is defined, Web

components can exchange services as components for supporting basic software development

principles such as reuse, specialization, and extension [53].

Composite logic, which is the way a composite service constructed by its constituent

services, is comprised of composition type and message dependency. The composition type can

34

be in the form that determines in what order the messages are executed or in the form of

alternative execution, which indicates whether a component can invoke alternative services until

one succeeds. Message dependencies can be in the form of synthesis that combines output

messages of constituent services, decomposition that binds the input messages of composed

services into the input messages, and message mapping that allows custom mapping between

constituent services' input and output. Web components can be specified in two isomorphic forms:

a class definition and an XML specified and described in Service Composition Language that

consists of the composite services interface and the composition logic.

Web components offer both compatibility and conformance checking. This approach

achieves good scalability with class definitions, but requires additional time for mapping and

synchronization between class definitions and XML.

3.2.4 Semantic Web

Semantic Web, sometimes called "Web 3.0", uses XML tags that conform to Resource

Description Framework (RDF4) and Web Ontology Language formats (OWL5). These

technologies are combined in terms of providing descriptions that supplement or replace the

content of Web documents. Thus, with semantic Web, Web content can be expressed not only in

natural language, but also in a format that can be read and used by software agents, thus

permitting service consumers to find, share and integrate information more easily. In other words,

Web service users and software agents are able to discover, compose, and invoke content using

complex services easily.

The semantic Web consists of several standards and tools. The components are shown in

W3C Semantic Web Layer (Figure 3.3). The OWL describes the functions and relationships of

each of these components of the semantic Web.

4 http://www.w3.org/RDF
5 http://www.w3.org/TR/owl-features/)

35

http://www.w3.org/RDF
http://www.w3.org/TR/owl-features/

Figure 3.3 W3C semantic-Web-layers

(Fromhttp://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/Overview.html#(19)

An RDF description, written in multiple notations (e.g. XML, Notation3), is a set of

triples that each triple is akin to the subject, verb, and object of a sentence and its element is

represented by a Universal Resource Identifier (URI) [43]. RDF and RDF Schema express classes,

properties, ranges and documentation for resources and the ontology to represent further

relationship and /or properties like equivalence, lists, and data types.

The OWL defines and instantiates service ontology that enables automatic services

discovery, invocation, composition, and execution monitoring. OWL models a service using a

service profile, which describes the service requirements from the user and vice, versa, a service

model, which specifies the service, and a service grounding, which gives information on how to

use the service.

The process model, including processes and their dependencies and interactions, is a

service model that describes a service in terms of inputs, outputs, pre-conditions, and post­

conditions. The Semantic Web provides a process level description of the service so that the

36

http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/Overview.html%23(19

evolution of the domain can be logically inferred. It relies on ontology to formalize domain

concepts which are shared among services.

3.2.5 Communities of Web Services

It is clear that the Web service composition is moving toward "agent-like" model, largely

independent of the traditional software agent community. Interoperation between agents and Web

services is interesting because Web services need for autonomy, heterogeneity, and dynamism

from agents. Unlike conventional services, agent-based services know about themselves, their

users, and their competitors. Furthermore, they use and reconcile ontology, they are proactive and

communicative, and they can be cooperative.

Based on both Web services and multi-agent technologies, a new approach for interacting

Web services was proposed by J. Bentahar, et al [8], In this approach, Web services are organized

in communities using argumentative agents. The idea is to gather Web services with similar

functionalities into special structures in order to make them cooperate and to promote their

participation in composite scenarios. A community is organized dynamically by agents with a

specific protocol for community [6]. In such a protocol, Web services can accept, challenge,

attack, and refuse proposals related to their joining different communities and their participation

in composite business scenarios. The details of this protocol will be discussed in the next chapter.

The architecture of such structure is shown in Figure 3.4. The components in this

architecture include service providers, service consumers, and service registries. The figure shows

two communities as example: Map Services and Traffic Information communities. Service

providers publish and register their services in Services Registry so that service consumers or

users can search for them. There are two kinds of argumentative agents in a community: Master

Web Service Agent (Master-WS) and Slave Web Service agent (Slave-WS). A Master-WS

always leads a community. It can be implemented as a Web Service for compatibility purposes

with the rest of Web services that populate the community as well. Slave-WSs have in common

37

the functionality of the community to which they belong. Slave-WSs compete to participate in

composition scenarios in the same community because they all achieve the same or similar

functionality but in a different settings.

Service
Consumers FTP

Services
Registry

Service
Consumers

Figure 3.4 Architecture of an environment of several Web Service communities

Several operations should be specified to establish and maintain a community of Web

services. First, the functionality of the community should be defined by binding to a specific

ontology [23]. This will decide the terminologies to be used in order to describe the functionality

of the community. Then, the master Web service that leads the community and takes over the

multiple responsibilities to manipulate and to maintain the community should be deployed. The

responsibilities of the master Web service include selecting and inviting Web services to join the

community and negotiating the rewards with those Web services. To select a Web service, a

master Web service needs to check the credentials of a Web service, which could be related to

QoS, protection mechanisms, interaction protocols, etc. For maintaining a high quality

community, a master Web service will monitor the slave Web services' activities in the

community. If the number of Web services in the community is less than a certain threshold and

38

the number of participation requests in composite Web services that arrive from users over a

certain period of time is less than another threshold, the community could be dismantled.

3.3 Conclusion

The framework for Web services comprises three parts: service providers, service registry,

and service consumers. We first introduced basic standards, like SOAP, WSDL, and UDDI for

Web services. SOAP provides the common communication protocol to connect service

consumers and services providers. WSDL provides description of Web services for publishing

service providers to service registry. Service consumers search the services they need through

UDDI. Then we discussed Web service interactions and composition technology, such as BPEL,

semantic Web, Web components, and communities of Web services.

Although the work reviewed in this chapter about Web service technologies covers basic

standards and Web services interactions, there is still a plenty of room for further research,

especially for communities of Web service. For example, how we can design efficient

communities of Web services, considering both structural and QoS properties of required Web

services? Also, how we can specify, verify, and implement the Web service communities? These

questions will be considered in Chapters 4 and 5 which are about our contributions.

39

Chapter 4. Specifying and Implementing Communities

of Web Services

We have presented the architecture of Web services communities in Chapter 3. In this

chapter, we specify communities of Web services using argumentative agents and implement the

specified model with Jadex. Argumentative agents in a community, usually led by a master Web

service, are able to persuade and negotiate with each other. By communicating, Web services

organize themselves in a better way so they can achieve the goals they set in an efficient way.

This chapter is structured as follows. We first discuss the underlying management

operations, and show through concrete scenarios the advantages of using argumentative Web

services for these management operations in Section 4.1. Then, in Section 4.2, we present the

argumentative agent-based framework for these communities. Sections 4.3 and 4.4 present a

persuasive negotiation protocol that agents use to manage their communities. In Section 4.5, we

discuss the formal properties of the protocol along with its computational complexity. We present

our implementations method and some experimental results in Sections 4.6 and 4.7. Finally, we

conclude this chapter in Section 4.8.

4.1 Management Operations for Communities of Web Services

The architecture of communities of Web services have been discussed in Chapter 3.

Based on the architecture presented in Figure 3.4, we analyze the management operations for

communities of Web services in this section. These operations revolve around

developing/dismantling a new/existing community, attracting new Web services to be enrolled in

an existing community, and retaining existing Web services in a community.

40

4.1.1 Community of Web Services Development

A community is initially deployed to gather Web services with a similar functionality.

This deployment occurs in two steps. First it defines the functionality (e.g., FlightBooking) of the

community by binding to a specific ontology [22]. This binding is important since providers of

Web services use different terminologies to describe the functionality of their respective Web

services. For example, FlightBooking, FlightReservation, and AirTichetBooking are all about the

same functionality. The description of a Web service's functionality needs to be mapped onto the

description of the functionality of the community using a specific ontology (i.e., ontology consists

of concepts, axioms, relations, and instances). We assume that our Web services are mapped to a

special ontology. However, this issue is out of the thesis scope.

The second step in establishing a community is to deploy the master Web service of the

community to take over the multiple responsibilities. Some of these responsibilities include

inviting Web services to sign up in its community and checking the credentials of Web services

before they are admitted in its community. Credentials could be related to QoS (latency,

execution time, privacy and security mechanisms, reliability, integrity, etc.), interaction protocols,

interoperability, etc. Credential checking is critical to the reputation of a community as this boosts

the security level in a community and enhances the trustworthiness level of a master Web service

towards its slave Web services.

Dismantling a community of Web services happens upon request from the master Web

service. If this latter notices that the number of Web services in the community is less than a

certain threshold and the number of participation requests in composite Web services that arrive

from users over a certain period of time is less than another threshold, then the community will be

dismantled. Both thresholds are set by the designer. A slave Web service that is ejected from a

community is invited to join other communities subject to assessing the similarities between

functionalities.

41

4.1.2 Web Services Attraction and Retention

Attracting new Web services to a community and retaining the existing Web services in a

community are responsibilities of the master Web service as well. A community of Web services

could disappear if the number of residing Web services drops below a certain threshold.

Attracting Web services drives the master Web service to regularly consult the different UDDI

registries looking for new Web services. These latter could have recently been posted on an

UDDI registry or have seen their description changed. Changes in a Web service's description

raise challenges since a Web service may no longer be appropriate for a community. As a result,

this Web service is invited to leave the community. When a candidate Web service is identified in

an UDDI registry according to its functionality, the master Web service interacts with this

candidate. The purpose is to persuade the candidate Web service to register with its community.

An argument that is used during this interaction is the high rate of participation of the existing

Web services in composition scenarios, which is a good indicator of the visibility of a community

to the external environment. Other arguments include short response-time in handling users'

requests, and efficiency of the security mechanisms against malicious Web services.

Retaining Web services in a community for a long period of time is a good indicator of

the following elements:

• Although the Web services in a community are in competition, they expose a

cooperative attitude. For instance, Web services are not subject to attacks from peers

in the community. This backs the security argument that the master Web service uses

to attract new Web services.

• A Web service is to a certain extent satisfied with its participation rate in composite

Web services. This satisfaction rate is set by the provider of the Web service. In

addition, this is inline with the participation-rate argument that the master Web

service uses to attract new Web services.

42

• Web services are aware of peers in the community that could replace them in case of

failure with less impact on the ongoing composite Web services in which they

participate.

Web services attraction and retention shed the light on a scenario. It is about Web

services that are asked to leave a community. A master Web service could issue such a request

upon assessment of the following criteria:

• The Web service has a new functionality, which does not perfectly match the

functionality of the community.

• The Web service is unreliable. In different occasions, the Web service failed to

participate in composite Web services due to recurrent operation problems.

• The credentials of the Web service were "beefed up" to enhance its participation

opportunities in compositions. Ouzzani and Bouguettaya [35] report that a Web

service may not always fulfill its advertised QoS parameters due to various

fluctuations related, for example to the network status or resource availability.

Therefore, some differences between advertised and delivered QoS values occur.

However, large differences indicate that the Web service is suffering a performance

degradation and might not be able to sustain its advertised QoS.

4.2 Specification for Argumentative Communities of Web Services

4.2.1 Formal Foundation

The characteristics of argumentation-based agents discussed in Chapter 2 make agents

suitable for modeling dynamic and proactive Web services. The primary value-added is to let

Web services interact and argue with each other before joining and settling down in a community.

They will be able to reason about and compare different joining offers in order to maximize their

benefits. In addition, they can maximize their performance within the community by negotiating

43

with peers the participation conditions in composite scenarios. They can share participation

benefits and collaborate by sharing resources and replacing each other if some problems arise at

run-time [2].

Our argumentative agents act as representatives' to Web services, reason on their behalf,

and identify situations that maximize their profits (e.g., participation-rate increase) and minimize

their expenses (e.g., resource consumption decrease). Metadata describing Web services in terms

of contents and features are represented within the state of the agents. Web services within

communities are connected through a communication network so that they can interact and share

resources to reach some joint goals.

A persuasive negotiation protocol allows argumentative Web services to negotiate the

contract of joining a community and their participation in composite scenarios. To reason about

Web services and communities, argumentative agents are equipped with knowledge, beliefs, and

argumentation capabilities. The agent of a Web service Agws knows all details on its Web

service in terms of functionality, QoS, (mean response time, execution time, transaction time,

throughput, reliability, integrity, etc.), and any other relevant details. The knowledge base of

Agws is denoted by KB(Agws). An argumentative Web service can also have beliefs towards

other Web services whether in the same community or in other communities. Descriptions of

these Web services, their functionalities, QoS, and trust are examples of these beliefs. As

explained in the previous section, the agent's argumentation system is built upon the agent's

beliefs and knowledge.

In [36], Parsons et al. prove that argumentation reasoning procedures based on languages

expressed in the first order logic or even propositional logic are computationally intractable. For

communities of Web services, a restricted language such as Horn logic is enough to represent

agents' beliefs and to develop their reasoning capacities. Horn logic is expressed in terms of

propositional Horn clauses. Such a clause is a disjunction of literals with at most one positive

44

literal —px v -p 2 v...v—pn vc (also written as implication/?, Ap2 /\...Apn —>c). A propositional

Horn formula is a conjunction of propositional Horn clauses. These clauses could be restricted to

be definite where each clause has exactly one positive literal. A propositional definite Horn

formula is a conjunction of propositional definite Horn clauses. This restriction is of a particular

interest in modeling argumentative reasoning, since formulas of type plAp2A...Apn-^>c are

adequate to describe interrelationships between premises and conclusions. This could be used to

support positive literals. For example, the master Web service can have an argument supporting

the conclusion that the community it is leading has a good reputation, which can be represented

as follows:

NWS = High A NUR = High A NSR = High ANLW = LOW -» reputation = Good

where NWS stands for Number of current Web Services in the community, NUR for Number of

Users' Requests the community receives by time unit, NSC for Number of Successful

Compositions by time unit to which the community's Web services participate, and NLW for

Number of Leaving Web services. Also, a slave Web service can have an argument supporting

the fact that it deserves a better offer, which can be represented as follows:

R = V,AR_CX=V2AV2>VXAQOS = Good -> DR>V\

where R stands for the Reward offered by the community the Web service is negotiating with,

R_CXfor the Reward another Community (called Cx) already offered to this Web service, and

DR for Deserved Reward. In other words, when negotiating with a given community, if an

argumentative Web service has a good QoS and already received a competitive offer from

another community, then it has an argument to ask for a better offer. In addition, for Web services,

there is no need to suppose that the knowledge bases are inconsistent. The reason is that the size

of these knowledge bases is generally small enough, so that checking the consistency when a new

belief is added becomes doable in a linear time.

45

4.2.2 General Specification

To be able to persuade an argumentative Web service to join a community or to remain in

a community, and to negotiate the participation in a given composite scenario along with the

outcome of the contract-net protocol, the master and slave argumentative Web services use

persuasive negotiation techniques based upon their argumentation abilities. Hereafter, we specify

a Horn logic-based protocol to use for these persuasion and negotiation activities. This protocol is

specified as a combination of a set of initiative/reactive dialogue games. Dialogue games can be

thought of as interaction games in which each Web service plays a move in turn by performing

utterances according to a pre-defined set of rules. Dialogue games have the advantage of being

more flexible than classical protocols such as FIPA-ACL protocols. Indeed, a dialogue game can

be specified as a combination of small conversation policies that Web services can combine by

reasoning over them using a set of logical rules [5]. From a logical point of view, game moves are

considered as communicative acts that argumentative Web services perform. Formally, we define

a protocol for argumentative Web services as follows:

Definition 4.1 (Protocol). A protocol Prfor argumentative Web services is a tuple <C,D> where

C is a finite set of allowed communicative acts and D is a set of dialogue games.

The allowed communicative acts in our persuasive negotiation protocol are: Open, Accept,

Refuse, Make-Offer, Challenge, Justify, and Attack. Open is a special communicative act used to

open the protocol. The type of a communicative act refers to its name, for example Accept is a

communicative act of type Accept. We define a dialogue game in our protocol as follows:

Definition 4.2 (Dialogue Game). Let CAi{Agws\, Agwsi, p) be a communicative act of type i

performed by an argumentative Web service Agws\ and sent to another argumentative Web

service Agws2 about a content p, and CAy (Agws2, Agws\, p') be the communicative act of type j

that depends on the communicative act of type i. A dialogue game Dg is a conjunction of rules,

where each rule identifies one possible communicative act that a Web service can use as a reply

46

when receiving a communicative act from another Web service if a given condition Qj is satisfied.

This conjunction is specified as follows:

A (CAi (Agws^, Agws2,P)ACI.=>CAI (Agws2, Agwsx, p'))
0<j<n J >

where n is the number of allowed communicative acts that Agwsi can perform after

receiving a communicative act from Agws\.

In this definition, content p could be a Horn formula or an argument expressed in Horn

clauses. C(. is expressed in terms of the possibility of generating an argument from the

argumentation system.

The formula p <1 Arg_ Sys{Agws) expressed in Horn language A denotes the fact that a

Horn propositional formula p can be generated from the Agws's argumentation system denoted by

Arg_Sys(Agws). The formula —1 (p O Arg_Sys{Agwsj) indicates the fact that p cannot be

generated from Agws's argumentation system. For example, if the master Web service AgMWS_ Cx

of a community Cx has an argument for the fact that the reputation of its community is good, this

will be represented by: Reputation_Cx = Good <Arg_Sys(AgMWS_ Cx). A Horn propositional

formula p can be generated from an argumentative Web service's argumentation system, if this

Web service can build an argument supporting p using its argumentation system. The following is

an example of a dialogue game, in which a master Web service AgMWS_ Cx of a community Cx

invites a Web service Agwsi to join the community.

Example 1.

Open(AgMWS_Cx, Agwsi, P)A(—> (Reputation_ Cx = Poor <l Arg_ Sys(Agwsi))

A (Joining_ Commitment =false< Arg_ Sys(Agwsi)))

=>Accept(Agwsi, AgMWS_ Cx, p)

where p = Invitation_for_Joining_ Cx

In this example, Agwsi accepts the invitation because it does not have any argument

supporting the fact that the reputation of the community is "poor" and it has an argument that it is

47

not committed to join any other community (Joining Commitment = false). Accepting the

invitation does not mean that Agwsi commits to join the community, but only a negotiation of the

joining contract can start.

4.3 Argumentative Dialogue Games for Communities of Web Services

In our persuasive negotiation protocol for argumentative Web services, we distinguish

three types of dialogue games (Figure 4.1): Entry game, Chaining games, and Termination game.

The Entry game enables conversation opening and setting up. The Chaining games make it

possible to continue the conversation by combining several dialogue games. The persuasive

negotiation protocol includes four chaining dialogue games: Offer game, Challenge game, Attack

game, and Justification game. The conversation terminates when the exit conditions are satisfied

(Termination game).

(Open(Agwsi, Agws2, p) A C, => Accept(Agws7, Agws2, p)

Entry game Changing
games

Termination game

Figure 4.1 Types of dialogue games

4.3.1 £ntry Game

The Sntry game allows Web services to initiate conversations. For example, if a master

Web service decides to invite a new Web service registered in a given UDDI to be a member of

its community, this master will trigger an Sntry game with invitation to join the community as

subject. If the new Web service accepts, then the master can suggest rewards to the Web service

if its final decision is to join the community. If the Web service refuses the invitation, the

protocol terminates. A Web service can turn down invitations if it is not interested in a

community (e.g., low participation-rate of existing Web services, or decided to join another

48

community). Within a same community, a Web service can invite other Web services to negotiate

their participation in a composite Web service. When several agents provide the same "winning"

bid following the master Web service's call for bids. The master asks one of the winnings to

invite others for negotiation. The negotiation starts upon receiving and accepting this invitation.

We specify the Sntry game as follows:

(Open(Agwsh Agws2, p) A C, => Accept(Agws2, Agws,, p))

A (Open(Agws,, Agws2, p) A C2 => Refuse{Agws2, Agws,, p))

where:

G = (p<Arg_Sys(Agws2)) v -i (—\p<* Arg_Sys(Agwsi))

C2 = —,p< Arg_ Sys(Agws2)

Proposition p is expressed in the logical language J. using a shared ontology. This

proposition indicates an invitation to start a conversation. If the invited Web service has an

argument in favor of p or does not have any argument against p, it accepts the invitation.

Otherwise, it refuses. For example, if a new Web service is not interested in joining a community

due to previous unsuccessful experiences in this community, a refusal is sent to the master Web

service. If a Web service believes that the community's configuration is efficient (i.e., good

reputation and high mean participation rate), and no commitment is made to join any other

community, then it will accept the invitation.

4.3.2 0ffer Game

Once the Entry game is accepted, the initiator argumentative Web service starts by

making an offer. In the case of inviting a new Web service to join a community, the offer contains

the initial rewards that the master offers to the new Web service and the advantages of being a

member of this community. In the case of persuading an existing Web service to remain in the

community, the offer could include increases in the rewards. In the case of negotiating a

participation in a composite Web service, the offer contains the rewards that the initiator will give

49

to the other Web service after the composition, for example, a part of the rewards this initiator

will obtain after its participation. Let p and q be two Horn formulas representing offers (contents

of an Offer communicative act). The notation p ' q indicates the fact that these two offers are for

the same object. We specify the Offer game as follows:

{Make-Offer{Agwsi, Agws2, p) A C, => Accept{Agws2, Agws,, p))

A {Make-Offer(Agwsh Agws2, p) A C2 => Challenge{Agws2, Agws,, p"))

A(Make-Offer(Agwsh Agwshp) A C3 => Attack{Agws2, Agws,,(H, -1 p')))

A (Make-Offer(Agwsi, Agws2, p) A C4 => Make-Offer{Agws2, Agws,, q))

A {Make-offetiAgwsi, Agws2, p) A C5 => iJe/wse^gw.^, ^gw,, /?))

where

C2= 3 p ' c p ; -i (p 'O^rg^j^gfT^)) A —I (—\p'< Arg_Sys(Agwsi))

Q= Bp'^p: (H<Arg_Sys(Agws2)) A(H,-ip')/T7(p,p)

C4 = p =qAq <Arg_Sys{Agwsi)

C5= —.(C, v C2v Q v G)

By definition, Attack(Agws2, Agws,,(H, —i jc'^ means that ^g-wto asserts argument

(H, —ip') to attack a part or the whole offer proposed by Agws\ . The generation of a set of

formulae 77from ^ g ^ is defined as follows:

A

H<l Arg_Sys(Agwsi) =\/hi eH hi ^Arg_Sys{Agwsi)

When an argumentative Web service receives an offer, it accepts it if it has a supporting

argument for it, challenges a part of it if it has no argument for or against this part, attacks if it has

an argument against the offer, and/or makes a counter offer if it can generate such a counter-offer

from its knowledge base using its argumentation system. The content of an attack could also be a

counter-offer. If none of these conditions is satisfied, the addressee refuses the offer. For example,

an argumentative Web service can refuse an offer if it has already accepted a different offer made

by another master Web service about the same subject. Generally, within a dialogue game, an

50

argumentative Web service can only play one move. However, Attack and Make-Offer moves can

be played together; attacking offers and then making counter-offers.

4.3.3 Challenge and justification Games

The Challenge game is specified as follows:

Challenge (Agwsj, Agws2, p) A C, => Justify(Agws2, Agws,,(H, p))

where: C, = HOArg_Sys(AgwS2)

Condition G should always be satisfied since a Web service must always be able to

justify its propositions and assertions.

We specify the Justification game as follows:

(Justify(Agwsi, Agws2l (H,p)) A Q => Accept(Agws2, Agws,, H))

A {Justify(Agwsu Agws2,(H, p)) A C2 => Challenge{Agws2, Agws,, H'))

A{Justify{Agwsh Agws2,(H,p)) A C3 => AttacUAgws2, Agws,,(H',p')))

A (Justify(Agwsj, Agws2l(H, p)) A C4 => Make-Offer{Agws2, Agws,, q))

A (Justify(Agwsi, Agws2,(H, p)) A C5 => Refuse{Agws2, Agws,, p))

where:

C, = H<*Arg_Sys(Agws2)

C2= BH'^H: Vto <=H - , f to <U/2_^(4gw&) A - I (^ to <Mrg_ .S^gf ra))

c3=tf'^TsjjM^girci)) A (^, ̂ ^ *; ̂ 7 r^ ;
C4 = £> =q/\q <Arg_Sys(Agws2)

C5= - . (C , v C2 v C3 v Q

Challenging a set of formulae H means that challenging all the formulas in it:

A
Challenge (Agws2, Agws,, H) = V to eH Challenge (Agws2, Agws,, hi)

These five conditions are similar to those associated with the Offer game. The only

difference in the Justification game resides in Accept and Attack moves that are relative to the

support of the offer and not to the offer itself.

51

4.3.4 /Attack Game

The Attack game is specified as follows:

(AttacliAgwsn Agws2, (H, p)) A d => Accept(Agws2, Agws,, p))

A (Attack(Agwsi, Agws2,(H,p)) A C2 => Challenge{Agws2, Agws,, H'))

/\{AttacMAgwsu Agws2l(H, p)) A C3 => Attack(Agws2, Agws,,(H', p')))

A(Attack{Agwsi, Agws2,(H,p)) A C„ => Make-Offer(Agws2, Agws,, q))

A (AttackiAgwsi, Agws2,(H, p)) A C5 => Refuse(Agws2, Agws,, p))

These conditions are identical to the ones associated with the justification game.

An argumentative Web service AgwS2 accepts an attacker's argument if it can generate a

support for it from its argumentation system. If it cannot generate nor negate this support, the

agent challenges it. If it can generate a counter-attacker argument, then it will play the Attack

move. If an offer can be made from the Web service's knowledge base using its argumentation

system, it makes this offer. Otherwise, it refuses the attacker's argument. This refuse move can

be played if the negation of the attacker's argument conclusion is in AgwS2's knowledge base. We

note in this case that AgwS2 cannot play the Attack move since it does not have a counter­

argument but only knowledge about the negation of the argument conclusion.

4.4 Dialogue Games Combination

Having specified the different dialogue games that argumentative Web services use in

their interactions to manage their communities, we need to specify how these games could be

now combined to form the persuasive negotiation protocol. We notice that during the same

protocol session, an argumentative Web service cannot play the same move with the same content

more than once. For example, if a master Web service proposed a participation rate by time unit

V2 during a protocol session, the same value cannot be proposed again during this session. Also, if

an argumentative Web service uses a counter-argument to attack an argument, it cannot use the

same counter-argument afterwards during this session (reiterations are prohibited). The protocol

52

terminates (Termination game) either by accepting or refusing the last offer. There is an

acceptance when a Web service accepts the offer (for example accepts the last offered rewards to

join the community), i.e., when an agreement is reached. The protocol terminates by a refusal

when no agreement is reached. The Persuasive Negotiation Protocol for Communities of Web

Services (PNP -CWS) that combines the aforementioned games can be described using the BNF

grammar as follows table 4.1:

Table 4.1 BNF grammar for PNP-CWS

PNP - CWS = Sntry game ; (Refuse\ (Accept; ChG))

ChG = Make-Offer; X

X = Accept

\Refuse

| Make-Offer ;X

| Attack; X

| Challenge; Justify; X

| Attack; Make-Offer; X

Symbols:

"|": the choice symbol

";" : the sequence symbol

After the Entry game, the addressee refuses the invitation, or accepts to engage in

negotiation, in which case chaining games (ChG) will take place. The last line in this grammar

refers to the case where Attack and Make-Offer moves are played together.

4.5 Formal Analysis

4.5.1 PNP -CWS's Properties

Three computational and formal properties of the PNP-CWS protocol will be discussed

in our research. They are: termination (no deadlock), soundness (correct specification), and

completeness (wholeness with respect to Web services' knowledge bases).

53

file:///Refuse

Proposition 4.1. The PNP- CWS protocol terminates iff the invited argumentative Web service

refuses the Entry game, or one of the Web services plays either Accept or Refuse moves when the

Entry game is accepted.

Proof. The first part is straightforward, because by definition, if the Entry game is

refused, the protocol terminates. Let us now suppose that the Entry game is accepted. The

direction => is straightforward from the protocol's BNF description. In addition let us suppose

that the protocol terminates. According to the protocol's BNF description, part X is recursive and

all the moves, except Accept and Refuse, are followed by X. The only way to stop the process is

then to play either Accept or Refuse. Consequently, the direction <= holds.

Theorem 4.1 (Termination). For any set of dialogue games, The PNP-CWS protocol always

terminates.

Proof. Because the knowledge bases of argumentative Web services are finite, the

arguments that these Web services can build out of these bases are finite as well. Consequently,

the numbers of offers and attacks that can be made and built respectively are finite. Therefore, the

branches Make-Offer; X, Attack; X, and Attack; Make-Offer; X in the BNF description are finite,

since playing the same move with the same content is prohibited during a conversation. The

branch Challenge; Justify; X is also finite because the number of arguments is finite and when an

argument is justified by itself, the addressee cannot challenge it again because repeating moves is

prohibited. Thus in all possible executions, one of the argumentative Web services will select one

of the branches Accept or Refuse. From Proposition 4.1 the result follows.

Definition 4.3 (Agreement). Let Agwsi and Agwsi be two argumentative Web services engaged in

a conversation using the PNP-CWS protocol, and ArgJSys(Agwsi) and Arg _Sys(Agws2) their

respective argumentation systems. An agreement about an offer p is reached between Agwsi and

Agws2 iff p<iArg_Sys(Agws\) andp<Arg_Sys{Agws2).

In other words, an agreement about an offer is reached iff the offer can be supported by

the two agents' argumentation systems of the participating Web services.

54

Theorem 4.2 (Soundness). If the PNP-CWS protocol terminates by an acceptance (resp.

refusal), then an agreement is (rep. is not) reached.

Proof. According to the protocol's BNF description, an argumentative Web service plays

Accept move as a reply to either an offer, an attack, or a justification. According to the Offer

game, accepting an offer means that the addressee has an argument in its knowledge base that

supports accepting this offer. According to Definition 5, having this argument in the knowledge

base means that an agreement is reached. Now, if the argumentative Web service accepts to either

attack or justify, then according to the Attack and Justification games, the protocol's BNF

description, and the fact that the content of an attack could be a counter-offer, this Web service

accepts the last offer made by the addressee. Accepting this offer means that the Web service has

an argument supporting it, in the other words, an agreement is reached.

In the opposite case, if an argumentative Web service plays a refusal, then according to

the dialogue games specification and the protocol's BNF description, all the exchanged offers can

not be supported by one of the two Web services. This means that there is no argument from the

two Web services' knowledge bases supporting one of the offers. Consequently, an agreement is

not reached.

The soundness property shows that the protocol is correct. However, what is important

here to show is that if more than one agreement is made available for argumentative Web services,

then the protocol execution will reach one of them.

Theorem 4.3 (Completeness). If an agreement about an offer p can be reached from the

knowledge bases of the argumentative Web services, then the protocol execution will result in

achieving an agreement.

Proof. According to Definition 4.3, the existence of an agreement about p means that

p<\Arg_Sys{Agws\) Up<\Arg_Sys{AgwS2). Then, from the union of the two knowledge bases, it is

possible to build an argument supporting the offer p, which is not attacked by another argument

from the union.

55

Ifp is the initial offer made by Agws\, then Agw&wiM accept it since p<Arg_Sys(Agwsi).

So an agreement is reached. If the initial offer is q, we have q =p since/? and q are different but

about the same topic. According to Proposition 4.1, the protocol terminates by either a refusal or

an acceptance. Because the protocol always terminates by Theorem 4.1, during the protocol

execution one of the argumentative Web services should play either Refuse or Accept move.

Suppose that Refuse move is played by one of the two Web services, for example Agws\.

According to the dialogue games specification, there is no possibility for this Web service to

make a counter-offer r such that r = q A r <^Arg_Sys(Agws\). This is contradictory because by

hypothesis there is an offer p such that p =q A p <l Arg_Sys(Agws\). Consequently, the only

possibility to terminate the protocol is to play an acceptance move, which means that an

agreement is reached.

We notice here that the soundness theorem states that an agreement is reached, but does

not tell what the agreement is. The reason is that many agreements can exist, and which one could

be reached depends on the strategies that these argumentative Web services adopt.

4.5.2 Complexity Analysis

The PNP-CWS protocol is expressed in terms of argumentation-based dialogue games,

and, the decision parameters (the conditions associated with the rules) that argumentative Web

services use to combine these games are expressed in terms of the possibility of building

arguments, the complexity of the protocol is determined by the complexity of generating

arguments to support offers or to attack existing arguments. In the following we present the

different complexity results.

Proposition 4.2. Given a Horn knowledge base T, a subset H cz T, and a formula h. Checking

whether (H, h) is an argument is polynomial.

56

Proof. From the linear time algorithms for Horn satisfy-ability in, it follows that the Horn

implication problem H \~ h is decidable in 0(\H\ x \h\) time. From the same result, it also

follows that deciding whether H is consistent is polynomial.

Proposition 4.3. Given a Horn knowledge base T, and an argument (H, h) over T. Checking

whether (H, h) is minimal is polynomial.

Proof. Let / be a literal. The following algorithm resolves the problem:

V / G H check if H -{1} r- h. Because the implication problem is polynomial, we are

done.

As indicated in Section 4.1, argumentative Web services are equipped with knowledge

bases that are supposed to be consistent. Let us consider this case.

Proposition 4.4. Let T be a definite Horn knowledge base, h a formula, and A the set of

arguments over T.

3Hcr:(H,h)eA=>VH':HcH'cr,(H\h)eA.

Proof. If (H, h) is an argument where H is a set of definite Horn formulas under the form

c or /?, A p2 A...Apn —> c where pi, pi, , pn, c are positive literals, then adding any definite

Horn formula to H will result in a consistent set of formulas H': T => H' 3 H . Since H h h, it

follows that H r- h, whence the proposition.

Theorem 4.4. Given a definite Horn knowledge base T and a formula h. Deciding whether there

is an argument (H, h) is polynomial.

Proof. From Proposition 4, it follows that there is an argument supporting h iff (T, h) e

A. Because every definite Horn knowledge base is a Horn knowledge base, then by Proposition 2,

the theorem follows.

The following theorem is a direct consequence of Theorem 4.4.

Theorem 4.5. Given a consistent Horn knowledge base T and a formula h. deciding whether

there is an argument (H, h) is polynomial.

57

Proof. Proposition 4 holds if the knowledge base Y is consistent. Then, by Proposition 2,

the result follows.

Proposition 4.5. Let T be a Horn knowledge base and (H, h) and (H\ h1) be two arguments over

r . Deciding whether (H; h') /H (H, h) is polynomial.

Proof. According to Definition 2, (H; h) /H (H; h) iff H H -,h. The proof is then

straightforward since the Horn implication problem H H —, h is decidable in O (\H\ x \ —, h]) time.

Theorem 4.6. Let T be a consistent Horn knowledge base and (H h) an argument over T.

Deciding whether there is an attacker of(H, h) over Y is polynomial.

Proof. From Definitions 3.1 and 3.2, building an argument attacking a given argument is

less complex than building an argument supporting a conclusion. From Theorem 4.4 we are done.

These results prove that our PNP-CWS protocol is computationally efficient, and its

complexity depends only on the size of the knowledge bases.

4.6 Implementation

4.6.1 Architecture

A prototype has been implemented to demonstrate first, the combination between

argumentative agents and Web services and second, the performance of the persuasive

negotiation protocol PNP-CWS that manages communities of Web services. The prototype is

built on top of Jadex platform. We have introduced in Chapter 2 that based on Java and XML

technologies, Jadex allows building up rational and goal-oriented agents. Figure 4.2 depicts the

prototype's architecture.

There are two kinds of argumentative Web services agents in the system: Master and

Slave. Argumentative Web services have capabilities that represent their beliefs, goals, plans, and

events. These capabilities are specified in an XML-based Definition File. The description of the

58

Web service and its non-functional parameters (i.e., QoS) are examples of beliefs. We will split

beliefs, goals, and plans to introduce the cases that we simulated for argumentative Web services.

4.6.2 Beliefs

An agent's beliefs are stored in its belief-base. A belief-base is a container that includes

believed facts, similar to a simple data-storage, and represents an agent's knowledge about the

environment. Unlike most PRS-style BDI systems, Jadex allows to store arbitrary Java objects as

beliefs in its belief-base. We store the system time, negotiation recode, agents in the community,

etc., values in a agent belief-base. In our case, we use beliefs and belief sets as primary storage

capacities for our plans. In this way, a belief or a belief-set in Jadex can retrieve by a declarative

OQL-like query language. Furthermore, it allows triggering some action when a fact of a belief

set is added or a belief is modified.

Below the program section is picked from our Master Web services agent's ADF.

"Invite" is a Java class for the structure of invitation. "agent_list" is a list of agents in the

community. "negotiation_reports " records the negotiation procedure.

<bel iefs>

<beliefset name="invites" class="Invite">
<facts evaluationmode="dynamic">

select $g.getParameter("invite").getValue()from IRGoal $g
in $goalbase.getGoals("send_invitation")

</facts>
</beliefset>

<belief name="agent_list" class="AgentIdentifier[]">
</belief>

<beliefset name="negotiation_reports" class="NegotiationReport"/>

</belie£s>

59

Master Web Service Agent

GoalBase PlanBase
(Send Invitation)-[-'-»<flnvitation^>-

if i ! —
(Negotiation)-j"4-^<^lnitiation^>-

\ v 1 V !

i 1 i

i Belief Base i \

•^Agreement)**

DF Capability Protocol
Capability

AMS
Capability

Slave Web Service Agent

GoalBase
»<^Reply lnvite^>

pV(Evaluate)
J i l l !

- < ^ Proposal ^ > f - - i

^Agreemem>«

PlanBase
l Belief Base |

DF Capability Protocol
Capability

AMS
Capability

ACL
+ CL

-ACL-

AMS
(Agent Management System)

DF
(Directory Facilitator)

ACL
+ CL

API

Message Transport Service!

JADEX Agent Platform (System Agents)

MNimm

w

Legend (Goal) <^ Plan ^> communication- -Internal C~*

Figure 4.2 Prototype's architecture

4.6.3 Goals

The master Web service has three goals that populate its goal-base: (1) Send Invitation

used to send joining invitations; (2) Negotiation used to trigger the negotiation of the joining

contracts; and (3) Evaluate used to trigger the evaluation of the different offers it receives back.

Each goal has a target condition and is activated when this condition evaluates to true.

For example, Negotiation goal in the master Web service is activated when an acceptance reply is

received by a slave Web service. Two different kinds of goals are involved in our system: achieve

goal and query goal. Achieve goals are used to reach a desired world state. Therefore, most goals

in our system are this kind of goal. For example, in agent-based Web-service, the goal negotiation

is one achieve goal, the code is shown below:

60

<goals>
<achievegoal name="negotiation" recur="true" recurdelay="10000">

<parameter name="invite" class="Invite">
<bindingoptions>$beliefbase.initial_invites
</bindingoptions>

</parameter>
<unique/>
<targetcondition>

Invite.DONE.equals($goal.invite.getState())
</targetcondition>
<failurecondition>

$beliefbase.time>$goal.invite.getDeadline().getTime()
</failurecondition>

</achievegoal>
</goals>

4.6.4 Plans

Four plans in the master Web service are associated to these goals: (1) Invitation used to

process the joining invitation; (2) Initiation triggered by the Negotiation goal; (3) Proposal to

make and evaluate offers; and (4) Agreement to stop the negotiation either by an agreement or not.

The slave Web service has three plans: (1) Reply Invitation used to reply to the joining invitation;

(2) Proposal to make offers; and (3) Agreement to finish the negotiation. Evaluate goal in the

slave Web service is used to trigger the Proposal and Agreement plans.

When a plan is triggered, the Web service runs it to perform the specified actions. For

example, when Evaluate goal is activated, the plan Proposal is executed to evaluate the received

offer and/or make a new offer. The different parameters of a plan are specified in an ADF file.

The following code gives an example of the different parameters used in the Proposal plan. For

example the file "evaluate proposals.cfp" refers to the mapping goal file of this plan.

<goals>

<guerygoalref name="cnp_evaluate_proposals">
<concrete ref="procap.cnp_evaluate^proposals"/>

</querygoalref>

</goals>

<plans>

<plan name="evaluate_proposals_plan">

61

<parameter name="cfp" class="Object">
<goalmapping ref="cnp_evaluate_proposals.cfp"/>

</parameter>
<parameter name="cfp_info" class="Object" optional="true">

<goalmapping ref="cnp_evaluate_proposals.cfp_info"/>
</parameter>
<parameterset name="proposals" class="Object">

<goalmapping ref="cnp_evaluate_proposals.proposals"/>
</parameterset>
<parameterset name="history" class="NegotiationRecord"

opt iona l=" t rue">
<goalmapping ref="cnp_evaluate_proposals.history"/>

</parameterset>
<parameterset name="acceptables" class="Object"

direction="out">
<goalmapping>

ref="cnp_evaluate_proposals.acceptables"
<goalmapping/>

</parameterset>
<body class="EvaluatePlan" />
<trigger>

<goal ref="cnp_evaluate_j?roposals"/>
< / t r i g g e r >

</plan>

</plans>

The argumentation reasoning is implemented in Java as the procedural parts of the plans.

The PNP-CWS protocol is declaratively specified as a set of dialogue games using XML syntax

in a public plan that argumentative Web services refer to when communicating. Which dialogue

game a Web service should play within this protocol depends on its strategy based on its

argumentation system and the message it receives from the addressee. The exchanged messages

are events that trigger some plans. Web services share the same ontology to define the meaning of

the Horn formulas they exchange. The whole prototype relies on the Jadex platform, which

provides a directory facilitator, an agent management system, and a message transport service.

The message transport service is provided to transport messages between Web services by

specifying the recipient of a message, the general structure of the message, and the used ontology.

The agent management system facilitates the creation, registration, location and operation of Web

services. All the simulated Web services and communities are registered in the directory

facilitator. The directory facilitator used to report Web services in a community is controlled by

62

the master Web service. When a Web service accepts a joining invitation, the master adds it to its

directory. When the master decides to put a Web service out of the community, it deletes its

registration information from the directory.

4.7 Experimental Results

To illustrates some experimental results, we consider two scenarios: (1) invitation to join

a community; and (2) negotiation of the joining contract. In the first scenario, a Master Web

service MWS searches for slave Web services providing Weather-Forecast functionality in the

directory facilitator. Five Slave Web Services are identified SWSi;i=\;:::;5, and the master plays the

Entry game (Open communicative act) to invite them to negotiate about joining its community.

Three of these Slave Web services (SWSi, SWSi, and SWSs) accept the game because they have

arguments supporting the acceptance decision. These arguments are availability (these Web

services did not commit to join any other community yet) and interest in joining the community

of this master Web service because they believe that its reputation is high. The rest of the slave

Web services namely SWSi and SWS4 refuse the invitation for two different reasons. SWS3 is

already committed to join another community, and SWSA is not interested because it has an

argument against the reputation of this community. Figure 4.4 illustrates the sequence diagram of

this scenario. According to the Entry game, slave Web services do not reveal their arguments

about their acceptance or refusal, but they use them internally to make their decisions. This is the

reason why they are not illustrated in the sequence diagram. Fig. 6 illustrates a snapshot of this

scenario.

63

sd Entry Game J p: Weather-Forecast functionality

M W S SWS1 SWS2 SWg3 SW§4

alternative Ji

SWS5

0pen(MWS,SWS1,p)

-Open(MWS,SWS2,p)-

|Open(MWS,SWS3,p)-}-

-Open (MWS, SWS4, p) -

-Open (MWS, SWS5, p) -

alternative J|
Accept (SWS1, MWS, p)

<-
i
I

Accept(SWS2,MWS,p) 1 I

Refuse(SWS3,MWS,p)- 1

1 Refuse (SWS4, MWS, p> f ->

1 Accept (SWS5, MWS, p) -

Figure 4.3. Sequence diagram for Entry game

Ett Command Prompt - Java jadax.ad.lpter.standalone.Platform

.van/java

Figure 4.4 Snapshot for the Sntry game scenario

In the second scenario, the master Web service negotiates the joining contract with one of

the slave Web services that accept the joining invitation, for instance SWSl. Two terms are

negotiated in this scenario: SWSYs availability increase and participation rate in composite

business scenarios the master Web service can provide. First, the master Web service uses its

argumentation system to make an offer: promised participation rate by time unit = 20% and

availability increase by time unit = 30% (these values are calculated on the basis of the current

64

efficiency of the community and what the master provides to the existing members). By playing

the Offer game, SWSi attacks the first part of the offer because it has an argument against this

offer; the proposed participation rate is less than the community average (we call this argument

the average argument). The master Web service replies, using the Attack game. It makes a new

offer in which the participation rate is increased (from 20% to 30%) and the availability is

decreased (from 30% to 25%). Playing the Offer game, SWSl replies to this new offer by

attacking the second part using the argument that adding its current availability to the offered rate

is less than the community average. The master makes then a new offer by increasing the

availability rate (from 25% to 35%) but by reducing the participation rate (from 30% to 25%).

This new offer considers the fact that it is greater than the community average, so it cannot be

attacked using the average argument. SWSl replies to this new offer by making another counter­

offer using its argumentation system. In this offer, SWSl requests a 28% for the participation rate

instead of 25% and accepts the proposed availability increase. The master Web service proposes

then a balance between the two values: 27% for the participation rate, and 32% for the

availability increase. Finally, SWS\ accepts the new offer, which results in stopping the

negotiation. This scenario is illustrated with Figure 4.5.

65

sd Offer Game J p . i n c r e a s i n a availabilitv

MWS

u

Q: increasing throughput
SWS1

ake-offer (MWS , SWS1,(P(20),Q(30))) J

Make-offer (SWS1, MWS, (P(30),Q(40)))

Make-offer (MWS , SWS1, (P(30),Q(25)))

Make-offer (SWS1, MWS, (P(30),Q(35)))

Make-offer (MWS , SWS1 ,(P(25),Q(35)))

Make-offer (SWS1, MWS, (P(28),Q(35)))

Make-offer (MWS , SWS1, (P(27),Q(32)))

Accept (SWS1, MWS,(P(27),Q(32)))

Figure 4.5. Sequence diagram for Offer game

4.8 Conclusion

In this chapter, we discussed the rationale behind using argumentation to manage Web

services communities, and we showed that this technique provides suitable solutions for

autonomous Web services. We framed the management operations that take place in a community

with a persuasive negotiation protocol that argumentative agents implement. This protocol relies

on a set of games like Entry, Offer, and Attack. The formal properties of this protocol along with

its complexity were discussed and assessed, respectively. In addition, a prototype simulating the

protocol was discussed. The experimental results revealed that inviting Web services to join

communities and negotiating joining contracts with multi-issue terms can be efficiently managed

using argumentation. In addition, the implementation allowed us to experimentally check the

theoretical soundness and completeness of the proposed protocol.

66

Chapter 5. Verifying Communities of Web Services

This chapter gives an overview of our research work on an approach to verify

Communities of Web Services with formal methods, which offer a potential to obtain an early

integration of verification in the design process. First, we abstract the communities of Web

services as a model. Furthermore, we translate this model to Process Algebra Calculus of

Communicating Systems (CCS). Then, we verify this model using a modified and enhanced

version of Concurrency Workbench of New Century (CWB-NC). The content of this chapter is

based on our paper [3].

The structure of the chapter is organized as follow. In Section 5.1, we overview some

model checking techniques. In Section 5.2, we introduce the CTL*CA logic for communicating

agents that we use to specify the properties to be checked. In Section 5.3, we define a protocol for

communicating agents. We discuss the model checking technique of this protocol using tableau

rules in Section 5.4. In Section 5.5, we prove the termination property of the technique and we

discuss its computational complexity. We also provide a case study for this approach along with

its implementation in Section 5.6. Finally, we conclude the chapter in Section 5.7.

5.1 Overview

Model checking is a problem solving technique establishing whether or not a given

formula <p is true in a given model M. Therefore, model checking has two input parameters: the

formula (p and the model M. Generally speaking, model checking enables the formal verification

of a variety of specification patterns, which usually using temporal logic formulae, in distributed

systems. Using model checking, the problem of verifying that a generic system S complies with a

67

given specification P is reduced to the problem of verifying that a logical formula <pp

(representing the specification P) is satisfied in a model Ms (representing the generic system S).

There are two main formal verification approaches: proof-based approaches and model-

based approaches. In the proof-based approaches, the system description is a set of logical

formulae /"and the specification is another formula <p. The verification method consists of trying

to find a proof that r D <j>. This typically requires guidance and expertise from the user in order to

identify suitable lemmas and auxiliary assertions. In the model-based approaches, also called

model checking, the system (the protocol) is represented by a finite model M modeled as a Kripke

structure using an appropriate logic. The specification is again represented by a formula <f>

expressed in the same logic, and the verification method consists of computing whether the model

M satisfies <p or not (M ' tfi). This is an algorithmic-based technique and usually done

automatically.

The model checking approach we use is based on an alternative view of model checking

proposed by Bhat and Cleaveland [11] and Bhat et al [12]. This view relies on translating

formulae into intermediate structures, Alternating Biichi Tableau Automata (ABTA). Unlike the

other model checking techniques, this technique allows us to verify not only temporal formulae,

but also action formulae. Because our logic for communicating agents is based on an action

theory, this technique is more suitable. This approach is called tableau-based model checking [4].

Tableau-based model checking, which is a top-down or goal-oriented approach, is based

on the use of assertions and tableau rules which are proof rules. Assertions are typically of the

form sa M <f> and mean that state s in Model M satisfies the formula^. Using a set of tableau rules

we aim to prove the truth or falsity of assertions. According to this approach, we start from a goal,

and we apply a proof rule and determine the sub-goals to be proven. The proof rules are designed

so that the goal is true if all the sub-goals are true.

68

We propose a model checking-based verification of dialogue game protocols using a

temporal and dynamic logic in our research. The dynamic aspect of our logic is represented by

action formulae and not by strengthening until operator by indexing it with the regular programs

of dynamic logic. Our protocols are specified as actions that agents apply to propositional

commitments (PC). In addition, the model checking procedure that we propose allows us to verify

not only that the dialogue game protocol (the theoretical model) satisfies a given property, but

also that the tableau semantics of the communicative acts is respected. The idea is to integrate this

semantics in the specification of the protocol, and then to propose a parsing method to verify that

the protocol specification respects the semantic definition. Consequently, if agents respect these

protocols, then they also respect the semantics of the communicative acts. We have here a

mechanism for checking the agents' compliance with the semantics without taking into account

the agents' specifications created by the developers. Indeed, we have only one procedure to verify:

1) the correctness of the protocols relative to the properties that the protocols should satisfy; and 2)

the conformance of agents to the semantics of the communicative acts. The purpose of this

technique is to verify the temporal properties of the protocol and to ensure that the structures of

the communicative acts are the same in both the protocol and the specification.

5.2 CTL*CA Logic for Communities of Web Services

5.2.1 Syntax

CTL*CA is an extended logic from CTL* by adding propositional commitments and action

formulae for Communicative Agent. The syntax of this logic is shown below table 5.1

In this thesis we use p, pi, p2... to range over the set of atomic propositions <Dp. There are

two kinds of formulae in the logic: they are state formulae, which are generated by S , and path

formula, which are generated by P . We use y/,y/x,y/2,... to range over state formulae and

69

<p,<j)x,<j)2,... to range over path formulae. The meaning of most of the constructs is

straightforward (from CTL* with next (X+), previous (x~), until (U+), and since ([/") operators).

The formula <j)x .'. ^2 means that </>i is an argument for ^2 . We can read this formula: <j>x so

<f>2. This operator introduces argumentation as a logical relation between path formulae.

Table 5.1 The Syntax of CTL*CA Logic

P ::=S |P AP |P vP \X*V | X T |P W P |Ps£TP |P&\P

\PC(Agx,Ag2,t,?)

\C(Agx,PC{Agx,Ag2,t,?))

\Act(AgnPC(Agx,Ag2,t,?))

The formula PC(Agx,Ag2,t,?) is the propositional commitment made by agent Agx at

the moment t towards agent Ag2 that the path formula P is true. The formula

C(Agx,PC(Agx,Ag2,t,¥)) means that agent Agx creates the commitment PC(Agx,Ag2,t,?).

Act(Agi,PC(Agx,Ag2,t,?)) means that agent Ag,(is {1,2}) performs an action on the

propositional commitment made by Agx towards Agr The set of actions performed on

propositional commitments are Challenge, Accept, Refuse, Justify, Attack, Defend. More details

information about these actions will be introduced later.

5.2.2 Semantics

The formal model M associated to this logic corresponds to the agent communication

protocol. Formally, this model is defined as: M = {Sm,Labm, Actm, —Acl" >, Agt, RPC, S^ > where:

Sm is a set of states; Labm : Sm -> 2*' is the labeling state function; Actn is the set of actions

performed on propositional commitments; Aa- > c S , x Actm x Sm is the transition relation; Agt

is a set of agents; Rpc : Sm x Agt x Agt -» 2" with a is the set of all paths in M, is an accessibility

70

modal relation that associates to a state sm the set of paths representing the propositional

commitment along which an agent can commit towards another agent; s^ is the start state. The

paths that path formulae are interpreted over have the form x' = sm> *** > smM ""•' > smM... where

x' ea, 5 m , 5 m | J . . . are states and aM,aj+2,... are actions.

The semantics of CTL* C A state formulae is as usual (semantics of CTL*) . A path satisfies

a state formula if the initial state in the path does. Along a path x', fa .'. <p2 holds if $ is true and

at next t ime if <j\ is true then 02 is true. Formally:

*' 'M A ••• A *ff x' 'M <K &*M ' * 4 =>&

A path x' satisfies PC(AgvAg2,t,0) if every accessible path to Agx towards Ag2 from the first

state of the path using Rpc satisfies <f>. formally:

x' <M PC(Agl,Ag2,t,</>)) iff

\fxJ ea, x' e RPC (smi, Agx, Ag2) => xj ' M (j>

A path x' satisfies C(Agt, PC(Agx, Ag2, t, <j>)) if C is in the label of the first transition on this path

and PC(Agx,Ag2,t,<t>) holds along the path x'+i. formally:

x< <M C{AgvPC(Agl,Ag2,t,<?>)) iff

aM=C&xM \ PC(AguAg2,t,0)

A path x' satisfies ActiAg^PCiAg^Ag^t,^)) if Act is in the label of the first transition on this

path and if in the past [P) Agy has already created the social commitment. Formally:

x' \ Act(Agi,PC(AguAg2,t,0)) iff aM = Act&P(C(Ag,,PC(AguAg2,t,m

We notice that the past (P) and future (F) operators are abbreviations from until operator (U) in

the usual way of CTL* logic.

The tableau rules for CTL*CA are given in Appendix I: Tables Appl.l, Appl.2, Appl.3,

and Appl.4.

71

5.3 Dialogue Game Protocol for Communicating Agents

5.3.1 Dialogue Game Protocols

The dialogue game protocols are specified as a set of rules describing the entry condition,

the dynamics and the exit condition of the protocol [7]. These rules can be specified in the logic

for communicating agents as action formulae (actions on propositional commitments). We define

these protocols as transition systems that are labeled with communicative acts. Such acts are

modeled as actions performed by agents on Propositional Commitments (PC), for example,

creating, accepting, or challenging a propositional commitment [9]. The purpose of these

transition systems is to describe not only the sequence of the allowed actions (classical transition

systems), but also the structure of these actions. The states of these transition systems are sub-

transition systems (called structure transition systems) describing the structure of the actions

labeling the entry transitions. Defining transition systems in such a way allows for the verification

of: 1) the correctness of the protocol (if the model of the protocol satisfies the properties that the

protocol should specify); 2) the compliance to the structure of the communicative actions (if the

specification of the protocol respects the structure).

The definition of the transition system of dialogue game protocols is given by the

definition 5.1 and definition 5.2:

Definition 5.1 A structure transition system T' describing the structure of an action

formula is a 7-tuple <S', Lab', F, Ls', R, —>, s'o> where:

• S' is a set of states,
• Lab': S' —> 2®p is the labeling state function, where <tp is the set of atomic propositions,

• F is a sub-set of CTL*CA formulae (F does not include the action formulae i.e. Satisfy, Accept,
etc.),
• Ls': S' —» Fis a function associating to each state a formula,
• R e { A, v, -!,?,<s>, X+ ,X~ ,PCAg) is the set of tableau rule labels (without the rules for action

formulae),
• -^tczS'xRxS'is the transition relation,
• s'o is the start state.

72

Intuitively, states s' contain the sub-formulae of the action formulae, and the transitions

are labeled by operators associated with the formula of the starting state. Semantic transition

systems enable us to describe the semantics of formulae by sub-formulae connected by logical

operators. Thus, there is a transition between states s ',• and s) iff L '(s)) is a sub-formula or an

semantically equivalent formula of L '(s ',•). Following traditional usage we write s —/ s' instead of

<s, r, s '> e —> where s, s' e S' and r e R.

Definition 5.2 A transition system Tfor a dialogue game protocol is a 7-tuple <S, Lab, p, L, Act,

—>, sd> where:

• S is a set of states,
• Lab : S —> 2®p is the labeling state function,
• p is a set of structure transition systems with se p is the empty semantic transition system,
• L : £ —> p is the function associating to a state s e S a semantic transition system T' s p
describing the semantics of the action labeling the entry transition,
• Act e {C, Withdraw, Satisfy, Accept, Refuse, Challenge, Justify, Defend, Attack) is the set of
actions,
• -» c S x Act x S is the transition relation,
• so is the start state with L(s0) = s (i.e. there is no structure transition system in so).

The transitions are labeled by the actions applied to prepositional commitments. We

write s -> s' instead of <s, •, s'> e -» where s,s' e S and • e Act. Figure 5.1 illustrates a part of

a transition system for a dialogue game protocol.

5.3.2 Dialogue Game Protocol Properties

The properties to be verified in the dialogue game protocols specified in CTL*CA are

action and temporal properties. For example, we can verify if a model of dialogue game protocol

satisfies the following property:

AG?(Challenge(Ag2, PC(Agl, Ag2, t, ft) => F"Justify(Agl, PC(Agl, Ag2, t, f :. M

This property says that in all paths (A), globally ((J1"), if an agent Ag2 challenges the content <f> of

an Agi's prepositional commitment (PC), then in the future (F*) Agt will justify this content by an

argument ^' .". <j).

73

a l _ J :.81) ** > s2 a j J s3 V • a2: Challenge(Ag2, PC(Agu Ag2, h, (

s1 s2

a3: JusliMAgi, PC(Agu Ag2,12,

a4

S1.0) -W S1.1 I (S2.0) W S2.1 I H S2.2

sl.O: PC(ASh Ag2, tB, 0) S2.0: PC(Ag2, Agh»,, ?$)
sl.l: ^ s2.l:?^

s2.2: <#

S3
so*,, / ~ " \ A /^~N <-> / " \ x* ,

S3.0) ^ S3,1 I——W S3.2) H S3.3) — — W S3.4

s3.l: f . ' . f*>

S3.2:fZ>'AX+(-^' V0)

S3.3: ('̂

s3.4: - i ^ ' v <j>

Figure 5.1 A part of a transition system for a dialogue game protocol

Another interesting property to be checked in dialogue games is related to the

communicative acts an agent is allowed to perform at a given moment. For example, it is

prohibited to attack commitment content if the addressee did not commit about this content. This

property is specified using the past operator F as follows:

AG\Attack{Ag2, PC(Agh Ag2, t, $) => FC(Agh PC{Agh Ag2, t, $)))

A third property capturing the deontic notion of prepositional commitments is given by

the following formula:

AG*(AttacHAg2, PC(Agh Ag2, t, f :. -, 0) =>

(F+Defend(AghPC(Ag1,Ag2,t, ?' .'. 0)

vF+Attack(Ag,,PC(Ag2,Agi, f, <p" :. -, <p'))

v F*Accept(Agu PC(Ag2, Agh t\ </>•))))

74

Using this property, we can verify if a model of a dialogue game protocol satisfies the fact that if

an agent Ag2 attacks the content of an agent Agj's propositional commitment PC, then Agi will

defend its propositional commitment content, attack theAg2's argument or accept it.

5.4 Model Checking Technique

We use three sections to describe our combination of an automata-theoretic approach and

a tableau-based approach to model-checking Communities of Web service system.

5.4.1 Alternating Biichi Tableau Automata for CTL*CA

Alternating Biichi Tableau Automates (ABTAs) [12] are used to prove properties of

infinite behavior. These automata can be used as an intermediate representation for system

properties. Let Op be the set of atomic propositions and let 5R be a set of tableau rule labels

defined as follows:

5R = {A, v, -i, ?} u SRAct u yi-jict ^~> 9?sc u 'Rset where 3iAct, Vise and 9?5(,, are defined as follows:

MA* = {<0, <W>,<S%>, < VPI >, <Rea>, <Ch>, <Acc>, <Ref>, <Jus>, <Att>, <Offi>}.

*sc={[PCAg]}.

WSet={<=>,X\X~}.

The associated tableau rules are given in Appendix. I

Formally, we define ABTAs for CTL*CA logic as follows:

Definition 5.3 An ABTAfor CTLifiA is a 5-tuple <Q, I, ->, q0,F>, where:
• Q is a finite set of states,
• /: Q —» <I>p u 91is the state labeling,
• —> c Q x Q is the transition relation,
• qo is the start state,
• F c 2° is the acceptance condition.

75

ABTAs encode temporal formulae in a "top-down" fashion. Indeed, an ABTA uses a

proof schema to prove in a goal-directed manner in which a transition system satisfies a temporal

formula.

Here is an example in order to understand. We would like to prove that a state s in a

transition system satisfies a temporal formula of the form Fl A F2, where Fl and F2 are two

formulae. Regardless of the structure of the system, there would be two sub-goals if we want to

prove this in a top-down, goal-directed manner. The first would be to prove that s satisfies Fl,

and the second would be to prove that s satisfies F2. Intuitively, an ABTA for Fl A F2 would

encode this "proof structure" using states for the formulae Fl A F2, Fl, and F2. A transition from

Fl A F2 to each of Fl and F2 should be added to the ABTA and the labeling of the state for Fl A

F2 being "A" which is the label of a certain rule. Indeed, in an ABTA, we can consider that:

1) states correspond to "formulae",

2) the labeling of a state is the "logical operator" used to construct the formula, and

3) the transition relation represents a "sub-goal" relationship.

In order to decide about the satisfaction of formulae, we use the notion of the accepting

runs of an ABTA on a transition system. These runs are not considered to be finite, but rather

infinite, while cycling infinitely many times through acceptance states. To define this notion of

the ABTA's run, we need to introduce three types of nodes: positive, negative and neutral

(neither positive nor negative). Intuitively, nodes classified positive are nodes that correspond to a

formula without negation (for example C(AgvPC(Agx,Ag2,t,<(>))), and negative nodes are nodes

that correspond to a formula with negation (for example -Justify(AgvPC(Agl,Ag2,t,<f>':.</>))).

Neutral nodes are used in order to verify the semantics of an action formula (act e Act) written in

the formula to be verified under the form —iact. From the syntax point of view, -tact means that

the action act is not performed. For example, if in the formula to be verified appears the sub-

formula: -Justify(AgvPC(Ag,, Ag2,t,<j>r:. </>)), we use in the ABTA neutral nodes in order to verify

76

the semantics of: Justify(AgvPC(AgpAg2,t,f:. fij). The reason is that in transition systems, and

consequently in the sub-transition systems, we have only action formulae without negation,

whereas in the formula to be verified, we can have action formulae with negation. We note that

we cannot use here negative nodes because we do not interested in the formula in itself (i.e. in the

example -Justify(Agx,PC{Agx, Ag2,t,<l>':. </>))) but in the semantics of the underlying action (i.e.

Justify(AgvPC(Agi,Ag2,t,</>' ;.<j>))). In other words, we are not interested in the semantics of the

negation action, but in the semantics of the action itself. We note here that in order to verify that

an action formula —iact is satisfied, we have to verify that from a given state there is no transition

in the transition system labeled by act. Definition 5.4 gives the definition of this notion of run. In

this definition, elements of the set S of states are denoted st or t,. The explanation of the different

clauses is given after the definition.

Definition 5.4 A run of an ABTA B = <Q, I, -», q0, F> on a transition system T = <S, Lab, fit, L,

Act, —>, So> is a graph in which the nodes are classified as positive, negative, or neutral and are

labeled by elements of Qx S as follows:

1. The root of the graph is a positive node and is labeled by <qo, so>.

2. If <p is a positive node with label <q, sj> such that l(q) = —i and q —> q', then cp has one

negative successor labeled <q', sj> and vice versa.

• Otherwise, for a positive node (p labeled by <q, s,>:

3. Ifl(q) e <D then (pis a leaf.

4. Ifl{q) e {A, <=>} and {q'\q —> q'} = {qj, ..., qm), then cp has positive successors <pi, ..., (pm

with <Pj labeled by <qj, st> (1 <j <m).

5. Ifl(q) = v then cp has one positive successor cp' labeled by <q', sj>for some q' € {q' \

q->q'}.

6. Ifl(q) = 3? and q —> q' and {s '\ st ->* s'} = {t,, ..., tm} where • e Act, then (p has positive

successors <pj, ..., (pm with <Pj labeled by <q', tj> (1 <j <m).

7. Ifl(q) = X~ and q -> q' and {s'\ s' ->* st} = {th ..., tm} where • e Act, then cp has positive

successors <pi, ..., (pm with <Pj labeled by <q', tj> (1 <j < m).

11

8. Ifl(q) = <•> where • e Act and q -> <?', a«c/ 5,- —>* j,-+/ J/?e« £̂> to one positive successor cp'

labeled by <q', 5,+;p0> where si+1>o is the initial state of the semantic transition system ofsi+i,

9. Ifl(q) = <•> where • e -Act and # —» q\ andst —»~1* si+i then (phas one neutral successor <p'

labeled by <q', */+y,o> where si+j,o is the initial state of the semantic transition system ofsi+i.

10. Ifl(q) = <•> where • e —Act and q —> q', and st —»"' 5,+/ where • * • ' and • ' e Act, then cp

has one positive successor <p' labeled by <q', si+i>.

• Otherwise, for a negative node cp labeled by <q, sj>:

11. Ifl(q) e <&p then (pis a leaf.

12. Ifl{q) e {v, <=>} and {q' \ q —» q'} = {qj, ..., qm}, then (phas negative successors <pi, ..., cpm

with (pj labeled by <qj, sf> (1 <j < m).

13. If l(q) = A then q> has one negative successor <p' labeled by <q', si>for some q' 6 {q' \

q^>q'}.

14. Ifliq) =)t and q —> q' and {s'\ Sj —>* s'} = {ti, ..., tm} where • e Act, then cp has negative

successors (pi, ..., (pm with (pj labeled by <q', tj> (1 <j < m).

15. Ifl(q) -X~ andq -> q' and {s'\ s' —>* Sj} = {th ..., tm) where • e Act, then (phas negative

successors (pi, ..., (pm with (pj labeled by <q', tj> (1 <j < m).

16. Ifl(q) - <•> where • e Act and q -> q', and s, —>' si+i then (phas one negative successor (p'

labeled by <q', 5,+/,o> where Si+w is the initial state of the semantic transition system ofsi+i.

17. Ifl{q) = <•> where • e -Act and # —> q', andst —>~* sl+! then (phas one neutral successor (p'

labeled by <q', 5,+y,o> where Si+jj is the initial state of the semantic transition system ofsi+i.

18. Ifl(q) = <•> where • e -Act and q -» q', and st —>" si+i where • •*• • ' and • ' e Act, then (p

has one negative successor (p' labeled by <q', si+i>.

• Otherwise, for a neutral node (p labeled by <q, Sjj>:

19. Ifliq) ~ <=> and {q' \ q -> q'} = {qi, q2\ such that qi is a leaf, and stj has a successor siJ+1,

then (p has one positive leaf successor q>' labeled by <qj, stj> and one neutral successor <p"

labeled by <q2, SIJ+}>.

20. Ifl(q) = <=> and {q' | q —> q'} = {qi, q2) such that qi is a leaf, and Sy has no successor, then

(p has one positive leaf successor labeled by <qt, SiJ>.

• Otherwise, for a positive {negative) node (p labeled by <q, s,j>:

21. Ifl(q) = <=> and {q' | q —> q'} = {qi, 92} such that q; is a leaf, and s^ has a successor Sy+i,

then (p has one positive leaf successor-<p' labeled by <qh stj> and one positive (negative)

successor (p" labeled by <q2, Stj+i>.

78

22. Ifl{q) = <^> and {q' \ q -> q'} - {qi, #2} such that qt is a leaf, and su has no successor, then

<p has one positive leaf successor <p' labeled by <qi, Sjj> and one positive (negative) successor

cp" labeled by <q2, sj>.

• Otherwise, for a positive (negative, neutral) node cp labeled by <q, Sjj>:

23. Ifl(q) e {A, v, ?,X1",X~, [PCAg]} and {q' \q -> q'} = {qi}, andSQ^> siJ+1 such that r = l(q),

then cphas one positive (negative, neutral) successor <p' labeled by <qi, Sij+i>.

The notion of run of an ABTA on a transition system is a non-synchronized product

graph of the ABTA and the transition system. This run uses the label of nodes in the ABTA (l(q)),

the transitions in the ABTA (q —> q'), and the transitions in the transition system (st -> sj). The

product is not synchronized in the sense that it is possible to use transitions in the ABTA while

staying in the same state in the transition system (this is the case for example of the clauses 2, 4,

and 5).

The second clause in the definition says that if we have a positive node <p in the product

graph such that the corresponding state in the ABTA is labelled with -1 and we have a transition q

—> q' in this ABTA, then <p has one negative successor labelled with <q', sj>. In this case we use a

transition from the ABTA and we stay in the same state of the transition system. In the case of a

positive node and if the current state of the ABTA is labelled with A, all the transitions of this

current state of the ABTA are used (clause 4). However, if the current state of the ABTA is

labelled with v, only one arbitrary transition from the ABTA is used (clause 5). The intuitive idea

is that in the case of A, all the sub-formulae must be true in order to decide about the formula of

the current node of the ABTA, and in the case of v only one sub-formula must be true.

The cases in which a transition of the transition system is used are:

1. The current node of the ABTA is labelled with]? (which means a next state in the

transition system) or X7 (which means a previous state in the transition system). This is

79

the case of the clauses 6, 7, 14, and 15. In this case we use all the transitions from the

current state st to next or previous states of the transition system.

2. The current state of the ABTA and a transition from the current state of the transition

system are labelled with the same action. This is the case of the clauses 8 and 16. In this

case, the current transition of the ABTA and the transition from the current state st of the

transition system to a state si+it <? of the associated semantic transition system are used.

The idea is to start the parsing of the formula coded in the semantic transition system.

3. The current state of the ABTA and a transition from the current state of the transition

system are labelled with the same action which is preceded by —i in the ABTA. This is the

case of the clauses 9 and 17. In this case, the current transition of the ABTA and the

transition from the current state •?,• of the transition system to a state si+i, o of the associated

semantic transition system are used. The successor node is classified neutral. This allows

us to verify the structure of the formula coded in the transition system.

4. The current state of the ABTA and a transition from the current state of the transition

system are labelled with different actions where the state of the ABTA is labelled with a

negative formula. This is the case of the clauses 10 and 18. In this case, the formula is

satisfied, but its structure cannot be verified. Consequently, the current transition of the

ABTA and the transition from the current state st of the transition system to a next state

si+i are used. This means that, we do not visit the associated semantic transition system.

Finally, the clauses 19, 20, 21, 22, and 23 deal with the case of verifying the structure of

the commitment formulae in the sub-transition systems. In these clauses, transitions sitJ -> s,i; + /

are used. We note here that when stJ has no successor, the formula contained in this state is an

atomic formula or a Boolean formula whose all the sub-formulae are atomic (for example p A q

wherep and q are atomic).

80

We also need to define the notion of success of a run for the correctness of the model

checking. To define this notion, we first introduce positive and negative paths. In an ABTA,

every infinite path has a suffix that contains either positive or negative nodes, but not both. Such

a path is referred to as positive in the former case and negative in the latter.

Let p e Op and let s, be a state in a transition system T. Then Si ' T p iff p e Lab(si) and

si ' T -TP iff P & Lab{Sl).

Let Sij be a state in a semantic transition system of a transition system T. Then SIJ ' r P

iff p e LabXsij) and 5,>7- ' r - p iff /? * Lab\SlJ).

Definition 5.5 Ze/ r be a run of ABTA B = <Q, I, —>, q0, F> on a transition system T- <S, Lab, p,

L, Act, -», so>. The run r is successful iff every leaf and every infinite path in r is successful. A

successful leaf is defined as follows:

1- A positive leaf labeled by <q, si> is successful iffs, ' T l(q) or l(q) = <•> where • e Act

and there is no Sj such that sf —>' Sj.

2- A positive leaf labeled by <q, stij> is successful iffsUj ' T l(q)

3- A negative leaf labeled by <q, Si> is successful iffsj ' T —*l(q) or l(q) = <•> where • e

Act and there is no sj such that st -V sj.

4- A negative leaf labeled by <q, sltj> is successful iffSjj ' T —*l(q)

5- All neutral leaves are not successful.

A successful infinite path is defined as follows:

1- A positive path is successful iffVfs F, 3q efsuch that q occurs infinitely often in the

path. This condition is called the Buchi condition.

2- A negative path is successful iff3fe F, Vq efiq does not occur infinitely often in the

path. This condition is called the co-Biichi condition.

We note here that a positive or negative leaf labeled by <q, s> such that l(q) = <•> where

• e Act and there is no s' such that s ->* 5' is considered a successful leaf because we can not

consider it unsuccessful. The reason is that it is possible to find a transition labeled by • and

starting from another state s " in the transition system. If we consider such a leaf unsuccessful,

then even if we find a successful infinite path, the run will be considered unsuccessful. However

81

this is false. We also note that an ABTA B accepts a transition system T iff there is a successful

run of B on T.

5.4.2 Translation Procedure

Translating a CTL*CA formulap = E^to an ABTA B uses goal-directed rules in to build a

tableau for this formula. These rules are conducted in a top-down fashion to determine whether or

not states satisfy properties. The tableau is constructed by exhaustively applying the rules

contained in Appendix I Figures App 1.1, App 1.2, App 1.3 and App 1.4 to p. Then, B can be

extracted from this tableau as follows.

First, we generate the states and the transitions. States will correspond to state formulae,

with the start state being p. To generate new states from an existing state for a formula;?', we

determine which rule is applicable to p', starting with Rl, by comparing the form of p' to the

formula appearing in the "goal position" of each rule. Let rule{q) denote the rule applied at node

q. The labeling function / of states is defined that if q does not have any successor, l(q) e <I>p,

otherwise, the successors of q are given by rule(q). The label of the rule becomes the label of the

state q, and the sub-goals of the rule are then added as states related to q by transitions. A tableau

for a CTL*CA formula p is a maximal proof tree having p as its root and constructed using rules

RI-R21. If p' results from the application of a rule to p, we say that p' is a child of p in the

tableau. The height of a tableau is defined as the length of the longest sequence <po, Pi, •••>,

where/>,+/ is the child ofpt [19].

We give the definition 5.6 for computing the acceptance states F in order to compute the

successful run of the generating ABTA.

Definition 5.6 Let q be a state in an ABTA B and Q the set of all states. Suppose </> = fa if fa e

q6. We define the set F^ as follows:

F<t,= {q'e Q\{<p£ q' andX^t/xZ. q') or fa e q'}.

6 Here we consider "until" formula because is the formula that allows paths to be infinite.

82

The acceptance set F is defined as follows:

F= {Fj> | </> = & if 02 and 3q e B, 0 e q).

According to this definition, a state that contains the formula </> or the formula)t<f> is not

an acceptance state. The reason is that according to Definition 5.4, there is a transition from a

state containing 0to a state containingX^<f> and vice versa. Therefore, according to Definition 5.5,

there is a successful run in the ABTA B. However, we can not decide about the satisfaction of a

formula using this run. In an infinite cycle including a state containing <fi and a state containing

X* <j>, we can not be sure that a state containing <f>2 is reachable. However, according to the

semantics of if, the satisfaction of (j> needs that a state containing <f>2 is reachable while passing

by states containing <ph

We show a practical case with propositional formula: E(G+F+P) on how a CTL*CA

formula is translated to an ABTA. In the context of dialogue game-based agents, this formula

says that along some transitions, globally in the future commitment content holds. The first step is

to build the tableau for this formula using tableau rules. The first rule we can apply is R27 labeled

by "v" for the "untir formula (G+ is an abbreviation defined from U*). The second rule is also

R27 for F+p (F+ is also an abbreviation defined from if). Thereafter rules R19 and R24 can be

applied. We obtain the tableau illustrated in Table 5.2 where the rule labels are indicated.

Table5.2 The tableau for E(G+F+P)

v.E(G
+F+p) (1)

v:E(F+p,X+G+F+p) (2)

<&:E(p,x+G+F+p)(l)

P (5) X+:E(X+G+F+P)(6)

E(G+F+P)

X+-E(X+F+P,X+G+F+P) (4)

v.E(F+P,G+F+p) (7)

E(F+P,X+G+F+p)

83

The ABTA obtained from this tableau is illustrated in Figure 5.2. In this ABTA, states (1),

(3), (5) and (6) are the acceptance states according to Definition 5.6. The formula § we consider

is the following: (j) = True U1" p =• F+p. Notice that <j) and X+(|> do not appear in these states. State (5)

is the acceptance state in the finite case. On the other hand, <|> appears in states (2) and (7), and

X+(|) appears in state (4). Therefore, these states are not in F+. The path n = (1, (2, 4, 7)*) is not a

valid proof of E(G+F+P)- However, a path that visits infinitely often the states (1), (3) and (6) is a

valid (infinite) proof. The reason is that in such a path there is always a chance to meet the

proposition p (state (3)). Therefore, this path satisfies the Biichi condition. The Biichi condition is

not satisfied in the path TI since there is no chance to visit infinitely often a state containing^).

Figure 5.2 The ABTA of formula E(G+F+P)

5.4.3 Model Checking Algorithm

The idea behind our model checking algorithm is to explore the product graph of an

ABTA for CLT*CA and a transition system for a dialogue game. This algorithm is on-the-fly (or

local) algorithm consisting of checking if a transition system is accepted by an ABTA. This

model checking is reduced to the emptiness of the Biichi automata [46].

84

Let T= < S, Lab, p, L, Act, ->, s0> be a transition system for a dialogue game and let

B = <Q, I, ->, q0, F> be an ABTA for CTL*CA. The procedure consists of building the ABTA

product B® of T and B while checking if there is a successful run in B®. The existence of such a

run means that the language of B® is non-empty. The automaton B® is defined as follows:

B® = <Q x S, -+B®, qoB®, FB®>. There is a transition between two nodes <q, s> and <q', s '> iff

there is a transition between these two nodes in some run of B on T. Intuitively; B® simulates all

the runs of the ABTA. The set of accepting states Fm is defined as qoB® e i ^ i f f <7 e F.

Unlike the algorithms proposed in [12], our algorithm uses only one depth-first search

(DFS) instead of two. This is due to the fact that our algorithm explores directly the product graph

using the sign of the nodes (positive, negative or neutral). Another difference is that our algorithm

does not distinguish between recursive and non-recursive nodes. Therefore, we do not take into

account the strongly-connected components in the ABTA, but we use a marking algorithm that

works on the product graph.

The pseudo-code of this algorithm is given in table 5.3. The idea is to construct the

product graph while exploring it. However, in order to make it easy to understand, we omit the

instructions relative to the addition of nodes in the product graph. The construction procedure is

directly obtained from Definition 5.4. The algorithm uses the label of nodes in the ABTA, and the

transitions in the product graph obtained from the transition system and the ABTA as explained

in Definition 5.4.

In order to decide if the ABTA contains an infinite successful run, all the explored nodes

are marked "visited". Thus, when the algorithm explores a visited node, it returns false if the

infinite path is not successful. If the node is not already visited, the algorithm tests if it is a leaf.

In this case, it returns false if the node is a non-successful leaf. If the explored node is not a leaf,

the algorithm calls recursively the function DFS in order to explore the successors of this node. If

this node is labeled by "A", and signed neutrally or positively, then DFS returns false if one of the

85

successors is false. However, if the node is signed negatively, DFS returns false if all the

successors are false. A dual treatment is applied when the node is labeled by "v". We note that if

the DFS does not explore a false node (i.e. it does not return false), then it returns true.

Theorem 5.1 (algorithm's correctness) Let B an ABTA and T a transition system. DFS(q0, so)

returns true if and only ifTis accepted by B.

Theorem 5.2 (technique's soundness and completeness) Let y/be a CTL*CA formula and B^

the ABTA obtained by the translation procedure, and let Tbe a transition system that represents

a dialogue game protocol. Then so-' W iff T is accepted by Br

The proofs of these theorems are developed in [4].

5.5 Termination

Since the translation procedure is based on tableau rules, we need to prove the finiteness

of the tableau. The methodology we follow is inspired by [18].

If (j2 is a CTL*CA formula resulting from the application of a rule to a CTL*CA formula ah

then we say that 05 is a child of <TJ in the tableau and o> is the parent of o}. The height of a

tableau [18] is defined as the length of the longest sequence <o&, 07, ...>, where a; is the parent

of 0;+/. To prove the finiteness of a tableau, we will establish that each formula has a maximum

height tableau.

Intuitively, to show the finiteness of the tableau, we will define a strict ordering relation

-< between CTL*CA formulae and then show that: 1) if cry is the parent of <j2, then 07 -< o>; 2) the

strict ordering relation -< has no infinite ascending chains.

86

Table 5.3 Model checking algorithm

DFS(v = (q, s)): boolean {
if v marked visited {

if (sign(v) = "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))
return false

} // end of if v marked visited
else {

mark v visited
switch(l(q)) {

case (p e Op):
switch(sign(v)) {

case("+"): if s is a sub-state and l(q) gL'(s) return false
case("-"): if s is a sub-state and -il(q)) ^L'(s) return false
case("neutral"): return false

} // end of switch(sign(v))
case(A):

if s is a leaf return false
else

switch(sign(v)) {
case(neutral): for all v" e {v' / v —»B® V'}

if not DFS(v") return false
case("+"): for all v" e {v' / v ->B® V}

if not DFS(v") return false
case("-"): for all v" e {v' / v ->B® V}

if DFS(v") return true else return false
} // end of switch(sign (v))

case(v):
if s is a leaf return false
else

switch(sign(v)) {
case(neutral): for all v" e {v' / v —»B® V'}

if DFS(v") return true else return false
case("+"): for all v" e {v' / v -»B® V}

if DFS(v") return true else return false
case("-"): for all v" e {v' / v ->B® V}

if not DFS(v") return false
} // end of switch(sign (v))

case(<»>):
if s is a leaf return true
else for the v" e {v' / v —»B® v'} if not DFS(v") return false

case(X+, PCAg, ACAg, <=>, ?):
if s is a leaf return false
else for the v" e {v' / v —»B® v'} if not DFS(v") return false

} // end of switch(l(q))
} // end of else
return true}

87

The ordering relation -< should reflect the fact that applying tableau rules results in

shorter formulae or recursive formulae. The idea is to prove that the number of nodes of the

ABTA is finite. Therefore, the definition of this ordering is based either on the fact that formulae

are recursive or on the length of formulae. We notice that in the case of recursive formulae, we

obtain cycles which are infinite paths on a finite number of nodes. The length of a formula is

defined inductively as follows:

Definition 5.7 The length of a formula y/denoted by \y^ is the number of variables and operators

in y/i.e.:

| yy\ = 1 if y/ is an atomic formula

\y/,A y/2\=\+\y/1\ + \y/2\

\y/,v y/2\ = \+\y/i\ + \\ff2\

|?H = 1 + M

\y/i :. y/2\ = 1+ \y/i\ + \X"(-,y/, v y/2)\

\Xyy\ = l + \yv\whereXe {Jf,Xr}

It/y U y/2\ = \+\y/,\ + \y/2\ where (U,X) e {(U*,Jt), {IT, XT)}

\PC{Ag,,Ag2,t,y/)\ = \ + \y^

\C(Agh SC(Agh Ag2, t, ifi)\ = 1 + \PC{Agh Ag2, t, yft

\Challenge(Ag2, PC(Agh Ag2, t, y/))\ = 1 + \PC(Ag2, Agh f, ?y/)|

\Accept(Ag2, SC(Ag,, Ag2, t, y/))\ = 1 + \PC(Ag2, Agh f, ys)\

\Refuse(Ag2, SC(Agh Ag2, t, y/))\ = 1 + \PC(Ag2, Agh t\ -,y/)\

\Justify(Ag,,PC(Agl,Ag2, t, yf :. yd)\ = 1 + \PC(Ag,,Ag2, f, yf :. ys)\

\Attack(Ag2, PC(Agh Ag2, t, y/' :. y/))\ = 1 + \PC(Ag2, Ag,, f, y/' :. -, y/)\

The ordering relation •< is defined as follows:

Definition 5.8 Let ai = E(y/i) and cr2 = E(y/2) be two CTL*CA formulae. Then, <j\ -< <r2 holds if

1- <7j , a2

2- a; " <J2 and \ y/]\ > \ y/2\.

where <Ji , <r2 iffX y/j appears in y/2

The first clause is used when we have a recursive formula (this means that an "until"

formula). "-<" is irreflexive, asymmetric and transitive. The proof is straightforward from the

definition since > and , are strict ordering relations.

In what follows, the notation oy ->R 05 means that 07 is the parent of cr2 using a tableau

rule R. We have the several lemmas. The proof of these lemmas can be found in the appendix II.

Lemma 5.1 Let <T/ = E(y/j) and <J2 = B(y/2) be two DCTL*CAN formulae. Then:

o> —>R 05 => 07 -< 05.

To show that the ordering relation has no infinite ascending chains, we use the notion of

Fischer-Ladner closure of a formula y/(CL(y/)) [21]. The idea underlying the definition of this

notion is to prove that if a tableau has a root y/, then all formulae y/' of this tableau have a

formula in CL(y/) (i.e. y/' e CL(y/)). Furthermore, if we prove that CL(y/) is a finite set, then we

conclude that each formula appearing in a given tableau belongs to a finite set. This result will be

very helpful to prove that the ordering relation ~< has no infinite ascending chains.

Definition 5.9 Let y/ be a CTL*CA formula. The Fischer-Ladner closure of y/, CL(y/) is the

smallest set such that the following hold:

If y/is an atomic formula then {y/} c CL(y/)

Ify/=-iy/i then CL(y/j) c CL(y/) and {-1 y/i) c CL(y/)

Ify/= y/i A y/2 then CL{ y/i) c CL{ y/) and CL{ y/2) c CL(y/) and {y/i A y/2} c CL(yr)

Ify/= y/;v y/2 then CL{ y/}) c CL(y/) and CL{ y/2) c CL{ y/) and { (/ j v ^ j c CL{ y/)

Ify/=7y, then CL(y/j) c CL(ys) and {ly/j) c CL(y/)

If y/= y/i :. y/2 then

CL(y/j) c CL(y/) and CLQC^y/, v y/2)) c CL(y/) and {y/j :. y/2) c CL{y/)

Ify/=Xy/, then CL{ y/,) c CL(y/) and {Xy/,} c CL(y/) where X e {T, X~}

If' y/- y/i Uy/2 then

CL(y/i) c CL(y/) and CL{ y/2) c CL(yf) and CL(X(y/} U y/2)) c CL{ y/)

and {y/t U>2} e CL(y/) where (U, X) e {(if, X*), (IT, XT)}

If y/= PC(Agi, Ag2, t, y/i) then

CL(y/i) c CL(y/) and {PC{Agh Ag2, t, y/,)} c CL(y/)

89

If y/= C(Agh PQAgi, Ag2, t, Yd) then

CL(PC(Agl, Ag2, t, y/,)) £ CL{ys) and {C(Agh PC(Ag,, Ag2, t, Yd)} c CL(Y)

If y/= Challenge(Agi, PC{Agh Ag2, t, Yd) then

CL{PC{Agh Ag2, f, ly/,)) c CL{¥)

and {Challenge(Agi, PC{Ag,, Ag2, t, y/i))} c CL(y/)

If y/= AcceptfAg,, PC(Agh Ag2, t, y/,)) then

CL(PC(Agl, Ag2, f, Yd) c CL{y/) s

and {Accept(Ag,,PC(Ag,,Ag2, t, y/i))} c CL(y/)

If y/= Refuse(Agi, PC(Agh Ag2, t, y/i)) then

CL(PC(Agl, Ag2, t ', -, Yd) £ CL{ Y)

and {Refuse(Agi, PC(AghAg2, t, Yi))} £ CL(y/)

If Y= Justify{Ag,, PC(Ag!, Ag2, t, Y2 •'• Yi)) then

CL(PC(Ag!,Ag2, f, Y2 :• Yd) £ CL(Y)

and {Justify(Ag,,PC(Ag,,Ag2, t, Y2 •'• ¥1))} £ CL{Y)

IfY=Attack(Ag2,PC(Ag,,Ag2,t, Y2 •• -1Y1)) then

CL(PC(Ag2, Ag], t\ Y2 :• ^wd) £ CL(Y)

and {Attack(Ag2,PC(Ag,,Ag2, t, Y2 •'• ->vd)} £ CL(Y)

Lemma 5.2 Let ^be a formula, then CL{ Y) is finite and bounded in size by 2| Y\-

The next lemma establishes the link between tableau rules and Fischer-Ladner closure of

formulae.

Lemma 5.3 Let ai = E{0, Yi) and a2 = E(0, Y2) be two CTL*CA formulae. Then:

cri -+R cr2 => CL(Y2) £ CL(YI).

Intuitively, o; -< oj holds if o; is an ancestor of OJ in some tableau, i.e. if there are rules

Ri,..., Rj such that: 0} ->Ri 0/+/... —>Rj OJ. We have the following lemma

Lemma 5.4 The ordering relation -< has no infinite ascending chains.

Theorem 5.3 For any CTL* A formula 07, there is a maximum height tableau has 07 as a root.

We now discuss the worst-case time complexity of our model checking.

Lemma 5.5 Let Ybea CTL*CA formula, and let Bv = <Q, I, —>, q0, F > be the ABTA obtained by

the translation procedure. Then | 5^ < 2W.

90

5.6 Case Study

5.6.1 Protocol Description and Verification for Communities of WS

We use our model checking technique to verify our communities' protocol: PNP-CWS.

PNP-CWS is a dialogue game-based protocol allowing Web services implemented as

argumentative agents to interact with each other in a negotiation setting. Agents can negotiate

their participation in composite Web services and persuade each other to perform some actions.

PNP-CWS is specified using two special moves: refusal and acceptance as well as five dialogue

games: entry game (to open the interaction), offer game, challenge game, justification game, and

attack game. In order to clarify the PNP-CWS for our model checking, we redefine PNP-CWS

with a BNF-like grammar where "|" is the choice symbol and ";" the sequence symbol as follows:

PNP-CWS =entry game; WSDG

WSDG = refusal move|acceptance move | Ch | Att

Ch = challenge game-Justification game; (WSDG | refusal move)

Att = attack game; (WSDG | refusal move)

Each game is specified by a set of moves using a set of logical rules. The rules were

described in Chapter 4. We use a graphical representation, which helps to understand the protocol

dynamics. Figure 5.3 illustrates this representation as a finite state machine.

Many properties can be checked in this protocol, such as deadlock freedom (a safety

property), and aliveness (something good will eventually happen). Deadlock freedom can be

expressed in our CTL*CA logic as follows:

AG+(Act(Agt,PC(A8l,Ag2,?))

which states that there is always a possibility for an action. An example of aliveness can

be expressed by the following formula:

EF+ (Accept(Ag2,PC(Agl,Ag2,?))v Refuse(Ag2,PC(Agl,Ag2,F)))

91

which states that there is a possibility to achieve some good states (accept or refuse).

Another example of aliveness property is given by the following formula stating that if there is a

challenge, a justification will eventually follow:

AG+(Challenge(Ag2, PC(Ag,, Ag2, t, <|>)) => F*Justify(Agh PC(Ag,, Ag2, t, f :. 0))

Create* 1 Refuse M 2 Defend W 3

•Accept

Accept -Attack-

—Accept/Refuse-

-Challenge-*f 4 J

&

Justify

Challenge

Attack

-Accept/Refuse-

6) (7

Attack

Accept/Refuse

Figure 5.3 The PNP-CWS Protocol

The two first properties are relatively easy to check. We focus in this section on the third

property. In order to simplify the formula, we use Ch for Challenge and Jus for Justify. The first

step in our technique is the transformation of the formula to a tableau. The tableau of this formula

is illustrated by Table 5.4. The second step is building the associated ABTA. The ABTA of this

formula is given by Figure 5.4. This formula is equivalent to:

AG+(^Ch(Ag2, PC(Ag,, Ag2, t, <|>)) v F+Jus(Agl, PC(Ag,, Ag2, t, f .-. <|>)))

To build the tableau, the first rule we can apply is R6 labeled by "-1". We obtain then the

formula (2) of Table 5.4. From this formula we obtain the formula O that we consider in order to

compute the acceptance states:

<£ = F*(Ch(Ag2, PC(Ag!, Ag2, t, 0) A CT(r^Jus(Agh PC(Agh Ag2, t, </>' :. 0)))

92

In the ABTA of Figure 5.4 state (1) and states from (3) to (18) are the acceptance states

according to Definition 5.6. States (2) and (4) are not acceptance states. Because only the first

state is labeled by -i, all finite and infinite paths are negative paths. Consequently, the only

infinite path that is a valid proof of the formula O is (1, (2, 4)*). In this path there is no

acceptance state that occurs infinitely often. Therefore, this path satisfies the Buchi condition.

The path visiting the state (3) and infinitely often the state (9) does not satisfy the formula

because there is a challenge action (state (3)), and globally no justification action of the content of

the challenged propositional commitment (state (9)).

Figure 5.4 The ABTA for case study formula
AG\Ch(Ag2, PQAgi, Ag2, t, 0) => FJutfAg,, PC(Agl, Ag2, t, f:. </>)))

93

Table 5.4 The tableau for

AG\Ch(Ag2, PC(ASl, Ag2, t, ft) => ¥*Jus(Ag,, PCJAsi, Ag2, t, # :. ft))

-,:AG+(^Ch(AgvPC(Agi,Ag2,t,<t>))vF+Jus(AgvPC(AgpAg2,t,P•••#))) 0)

v : EF*(Ch(AgvPC(AgvAg2J,<l>)) A G\-Jus(AgpPC(AgpAgvt,f:. *•)))) (2)

< Ch >; E(Ch(Ag2,PC(AgpAg2,t,^))A < X* >• Ex*(F\Ch{Ag2,PC{AgpAgvt,fj)A

G+(-Jus(AgpPC(AgpAg2,t,f:. ft))) G+^us(AgpPC(AgpAg2,t,f:. 0))))

{PCAsl\:E{PC{Ag2,Agvtp.<l>)A EF+(Ch(Ag2,PC(AgvAg2J,0))A

G+(-Jus(AgpPC(AgpAg2,t,</><:. f)))) G\-^us{AgpPC(AgpAg2,t,^.: <£))))

?: £((?<*) A G\-^us{AgpPC{AgpAg2j^ :. «>)))) (6)

<s>: E{<p A G\-Jus(AgvPC(AgpAg2,t,P :. «*)))) (7)

(p(8) v:E(G+(-Jus(AgpPC(AgpAg2,t,f.:</>)))) (9)

< -Jus >. E{-Jus{AgpPC(AgpAgvt,f.-. <p)),X+G\-Jus{AgpPC{AgpAg2,t,<f>':. <j>)))) (10)

[PC,,,]: E(PC(AgpAgvt,f.: ^),X+G+(-^us(AgpPC(AgpAgvt,f.: <*)))) (11)

A: E(f.: <t,,x+G\-JuS(AgvPC(AgpAg2,t,f.: 0)))) (12)

<^>: E(0',x^'vt),X*G+(r^us(Agi,PC(Agl,Agvtj':. <?)))) (13)

</>< (14) X+ : E(xWv <l>),X*GX-Jus{AgpPC{AgpAgvt,<j><.: 0)))) (15)

<=>:E((-,<t>'v<j>),X+GX-^us(AgpPC(AgpAg2,t,p.:m)(M)

->9»V?»(17) z + : E a + G + (^ / ^ (^ 1 , / > C (^ 1 , / l g 2 , ; ^ ' . - . ^)))) (18)

^ C T ^ M ^ p P C ^ , , ^ , ^ ' ••• (*)))) (9)

Figure 5.5 illustrates the automaton 5® resulting from the product of the transition system

of Figure 9 to which we add the internal states to describe the syntax exactly as illustrated in

Figure 5.1 and the ABTA of Figure 5.4. We will use TS [12] to denote the protocol and ABTA

[13] to denote the ABTA of Figure 5.4. In order to check if the language of this automaton is

empty, we check if there is a successful run. The idea is to verify if 5® contains an infinite path

visiting the state (3) and infinitely often the state (9) of ABTA [13], If such a path exists, then we

conclude that the formula is not satisfied by TS [12]. Indeed, the only infinite path of B® is

94

successful because it does not touch any accepted state and all leaves are also successful. For

instance, the leaf labeled by (<Ch>,So) is successful since there is no state s, such that SQ —»c/i s(.

The leaf labeled by (-i^'v^, s3>4) is successful because it is a positive leaf and s^ ' - ,^ 'v^.

Therefore, TS [12] is accepted by ABTA [13]. Consequently, TS [12] satisfies the formula and

respects the structure of challenge and justification actions.

Figure 5.5 The ABTA product graph

95

5.6.2 Implementation

We implemented this case study using a modified and enhanced version of the

Concurrency Workbench of New Century (CWB-NC). This model checker supports GCTL*,

which is close to our logic (without propositional commitments) and allows modeling concurrent

systems using process algebra Calculus of Communicating Systems (CCS) developed by Milner

[32], CCS language is a paradigmatic process algebras language, which is a prototype

specification language for reactive systems. For this reason, CCS language can be used not only

to describe implementations of processes, but also specifications of their expected behaviors.

To use CCS as the design language to descript PNCWS protocol, we need first to describe

CCS formally for this protocol. Let A be the set of actions performed on propositional

commitments we consider in our logic. With every a e A we associate a complementary action

'a. Intuitively, an action a will represent the receipt of an input action, while 'a will represent

the deposit of an output action. The syntax of CCS for PNCWS protocol is given by the following

BNF grammar:

P ::= nil \ a{<j>).P \(P +P)\(P\P)\ proc C = P

"." Represents the prefixing operator, "+" is the choice operator, "|" is the parallel operator and

" proc = " is used for defining processes. The semantics can be defined using operational

semantics in the usual way. a($).P is the processes of performing the action a on the

propositional commitment content </> and then evolves into process P. For simplification reasons,

we consider only the commitment content and we omit the other arguments. In addition, we

abstract away from the internal states used to check the content syntax, and we focus only on

verifying the properties from a semantic perspective. P + Q is the process which non-

deterministically makes the choice of evolving into either P or Q. P \ Q is the process which

evolves in parallel into P and Q.

96

To verify PNCWS we need to model the protocol and the agents using this protocol. For

this reason, we need to define two processes: the states process describing the protocol dynamics

and the agent process describing the agent legal decisions. These two processes are as follows:

The definition of the states process:

proc Spec = create(cp).SI

proc Accept = accept(((>).SpEC

proc Accept' = 'accept(<j)).SpEc

proc Refuse = refuse(<j)).Spec

proc Refuse' = 'refuse(<p).SpBc

proc SI = 'refusB(cp).S2 + Accept'

prnc S2 = defend((|>').S3

proc S3 = 'challenge(<t>')-S4 + 'attack{<p).SB + 'accept(<|>').SpBc

proc S4 = justify(<t>).S5

proc S5 = 'challenge((|)).S4 + 'Accept +'Refuse

proc SB = attack(<t/).S7 + Accept +Refuse

proc S7 = 'attack(<j)).SG + 'accept(<t>').Spec + 'refuse((|)').Spec

set Internals = {create, challenge, justify, accept, refuse, attack, defend}

The definition of the agent process:

proc Ag = 'create(<|>).Ag +

create(<|>).('refuse(<|)).Ag + 'accept(<|)).Ag) +

refuse(<|)).(Ag + 'defend(cp').Ag) +

defend(<|)').('challenge(<|>').Ag + 'attack(tp).Ag + 'accept((|)'),Ag) +

challenge(<j)).justify(<|)').Ag +

justify((()').('challengE((|)').Ag + 'accept(<|)').Ag +'refuse(<|)').Ag) +

at tack(f).('attack(cb).Ag + 'accept(f).Ag +'refuse(<|)').Ag) +

accept((|)).Ag

Figure 5.6 illustrates the result of checking the liveness property discussed in the previous

section stating that if there is a challenge, a justification will eventually follow. The figure

97

illustrates also the result of checking deadlock property. The other properties (reachability of

accept and refuse) are also successfully checked.

& Command Piompt cwfa nc ccs

i

!

' t i l ' >

. . " • ' i ' i .

c w b - i i c > f d Aq

Figure 5.6 Result of Checking Liveness and Deadlock Properties

5.7 Conclusion

In this chapter, we have addressed the verification problem of argumentative agent-based

community of Web services, in which knowledge-driven agents communicate by reasoning about

dialogue game protocols. We proposed a new model checking technique allowing for the

verification of both the correctness of the protocols and the agents' compliance to the structure of

the communicative acts. This technique uses a combination of an automata-based and a tableau-

driven algorithm to verify temporal and action specification. The formal properties to be verified

are expressed in CTL*CA logic and translated into ABTA using tableau rules. We provided

correctness and completeness results and we proved that this model checking algorithm working

on a product graph is an efficient on-the-fly procedure that always terminates. We applied the

proposed technique to a case study describing the verification of some properties in an agent-

based community of Web services.

98

Chapter 6. Conclusion

6.1 Contributions

The objective of this thesis is the specification of argumentative agent-based

communities of Web services and the development of techniques for formal verification of

communication protocols of agent-based Web services using model checking. The main

contributions of this work are summarized below:

• Theoretical contributions:

1. Formal specification of communities of Web services along with dialogue game-

based protocols for communicating services.

2. Definition of a logic extending CTL* for communication protocols along with its

model checking algorithm for the verification of interaction protocols for the

communities of Web services.

• Practical contributions:

1. Implementation of the specified communities and communication protocols using

Jadex BDI reasoning engine.

2. Simulation of the verification model using a modified and enhanced version of

CWB-NC model checker.

6.2 Discussions

In our architecture, we have incorporated a new dialogue game approach and protocols

for agent communication and interactive Web services. Agents that represent Web services within

communities have autonomous, decision-making, and social abilities. They react to the

99

environmental changes, but they have also pro-activity characteristics allowing them to take

initiatives. In this setting, communication is an important issue to be considered. FIPA-ACL is

one of the widely used approaches for agent communication engineering. It proposed a set of

agent communication protocols to exchange or request information. Although FIPA-ACL has

been given well-defined semantics, it is not flexible enough for agents who discuss complicated

negotiations with other agents for conflicts of interest. Like Contract Net Protocol (CNP), one of

the FIPA-ACL communication protocols, FIPA-ACL protocols define a sequence of steps that

agents can follow to exchange information. Contract Net Protocol (SC00029H7) is used for

bidding between one initiator and several participant agents. There are four steps in a sequence of

CNP: 1. Initiator sends out a call for proposals (CFP). 2. Each participant reviews CFP's and bids

on feasible ones. 3. Initiator chooses the best bid and awards a contract to that participant. 4.

Initiator rejects other bids. This sequence is a simple negotiation procedure.

However, for more complicated conversations, such as one agent questions another

agent's proposal, CNP could not support it. Dialogue games were introduced to increase agents'

communication abilities and to make the agents negotiate complex contents. Compared to FIPA-

ACL protocols, dialogue game protocols have more choices and more flexibility. For example, in

our framework for communities of Web services, after entry game, agents who are invited to join

a community can reply with acceptance or refusal. If acceptance is received by the initial agent,

the negotiation procedure is started. Otherwise, the conversation is ended. For negotiation

procedure, after an agent has received an offer, it accepts the offer or refuses it. An agent also can

challenge it or attack it based on its knowledge. This gives agents more chances to make a good

deal. This negotiation procedure takes place autonomously based on agent's beliefs and goals.

Integrating Web services and agent technologies seems to be promising. The framework

presented in this thesis, which uses argumentative agents to argue, negotiate, and reason about

Web services, helps Web services in being better organized within communities and in achieving

7 http://www.fipa.org/specs/fipa00029/SC00029H.html

100

http://www.fipa.org/specs/fipa00029/SC00029H.html

the goal for which they are conceived. Agents in communities are autonomous, proactive,

reactive, and intelligent and perform their duties without human intervention. They use

argumentative techniques to reach a decision and to inform, convince, and negotiate with peers.

They act as Web services representatives', reason on their behalf and seek scenarios which

maximize their profit. Metadata on contents and features of the Web services are presented within

the state of the argumentative agent to which the Web services are associated. These agents are

equipped with beliefs, including functionality, security, and QoS information, as well as the

argumentation capabilities to persuade a Web service to join a community, and to negotiate its

participation in a given composition.

For the verification issues, most agent-based model checking systems are based only on

temporal logics. This thesis proposes an approach called tableau-based model checking to verify

dialogue game protocols using both temporal and dynamic logic. Our model checking procedure

can verify whether or not the dialogue game satisfies a given property. Also, it can verify if the

tableau semantics of communicative acts is respected. The idea is to integrate the semantics in the

specification of the protocols, and then to propose a parsing method to verify that protocol

specification respects the semantic definition. The approach checks the agents' compliance with

the semantics without taking into account the agents' specifications. In one word, our procedure

verifies not only the correctness of the protocol relative to the properties, but also the

conformance of agents to the semantics of the communicative acts.

6.3 Future Work

This thesis is about specifying and verifying communities of Web services using

argumentative agents. It opens the door for several research opportunities. Future research may

include extending our method for services' interaction to exploit business models, which specify

additional relationships between services. Another opportunity is to build a Web-agent bridge

101

framework, extending communities' management scope by creating more sophisticated

negotiation strategies, and developing intelligent model checking tools. In addition, the following

points could be considered in the future:

• Our implementation is under Jadex BDI agent platform. We use agents' Directory

Facilitator (DF) instead of real UDDIs to search for Web services register functions.

Using UDDI will provide more accurate information. Also, we specified Web

services as agents, but developing a complete framework for Web-based agent

applications is still needed.

• Human beings' activities are more and more involved into Web services. However,

our system does not have functions to communicate with humans and to manage

users interests and preferences. In the future, we plan to extend our concept of

communities and build a new platform for Web services: not only to attract Web

services but also to try humans' contributions.

• Our system only provides one negotiation method. Several negotiation strategies for

different interests could be added in the future for more sophisticated interactions.

Furthermore, semantics of the dialogue games for negotiation strategies should be

developed.

• In many circumstances, counter-examples, showing a non-satisfied formula in a

model, are very useful for understanding why a formula is false. Unfortunately, we

cannot generate counter-examples automatically. Thus, the effective generation of

human-readable counter-examples needs to be developed.

• Although our research is not about designing the model checking tools, during the

study, we found that model checkers for MAS are not very flexible. These model

checkers only can check the formulae using one specific logic. Developing model

checking tools for MAS with intelligent learning abilities are still needed.

102

References

1. Bellifemine, F., G. Caire, and D. Greenwood. 2007. Developing multi-agent systems with
JADE. West Sussex, England: John Wiley & Sons, Ltd.

2. Benatallah, B., F. Casati, and F. Toumani. 2006. Representing, analysing and managing Web
service protocols. Data and Knowledge Engineering 58 (3) p: 327-57.

3. Bentahar, J., J.-J. Meyer, and W. Wan. 2008. Model Checking Communicative Agent-based
Systems. (Accepted in Knowledge-based Systems, Elsevier)

4. Bentahar, J. 2005. A pragmatic and semantic unified framework for agent communication.
PhD thesis, Laval University, Canada.

5. Bentahar, J., J. Labban, and B. Moulin. 2007. An argumentation-driven model for efficient
and secure negotiation. Proceedings of The International Conference on Group Decision and
Negotiation.

6. Bentahar, J., Z. Maamar, W. Wan, D. Benslimane, P. Thiran, and S. Subramanian. 2008.
Argumentative agents for communities of Web services.

7. Bentahar, J. Moulin,B., and J. -J C. Meyer. 2006. A New Model Checking Approach for
Verifying Agent Communication Protocols. Electrical and Computer Engineering, 2006.
CCECE '06. Canadian Conference on May 2006 p. 1586 -1590

8. Bentahar, J., Z. Maamar, D. Benslimane, and P. Thiran. 2007. An argumentation framework
for communities of Web services. IEEE Intelligent Systems 22, (6) p. 75-83.

9. Bentahar, J., B. Moulin, J. -J C. Meyer, and B. Chaib-draa. 2005. A computational model for
conversation policies for agent communication. Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 2 (AAMAS'04) p. 792-799

10. Besnard, P., and A. Hunter. 2001. A logic-based theory of deductive arguments. Artificial
Intelligence 128, (1-2) p. 203-35.

11. Bhat, G., and R. Cleaveland. 1996. Efficient model checking via the equational & ju-calculus.
Paper presented at Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,
p. 304-312

12. Bhat, S., R. Cleaveland, and A. Groce. 2001. Efficient model checking via buchi tableau
automata. Springer-Verlag, Paris, France, p. 38-52,

13. Bordini, R. H., W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. 2003. Model
checking multi-agent programs with CASP. (Computer-Aided Verification): Springer, Berlin,
p. 110-113.

103

14. Bratman, M. 1987. Intention, plans, and practical reason. Cambridge, MA, USA: Harvard
University Press.

15. Brooks, R. A. 1986. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation RA-2, (1) (03) p. 14-23.

16. Busetta, P., R. Ronnquist, A. Hodgson, and A. Lucas. 1998. JACK intelligent agents -
components for intelligent agents in Java. Agent Oriented Software Pty. Ltd. Melbouren,
Australia,

17. Chirstensen, E., Curbera, F., Meredith, G. and Weerawarana, W. Web services description
language (WSDL) 1.1. 2001 Available from http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

18. Cleaveland, R. 1990. Tableau-based model checking in the propositional mu-calculus. Acta
Informatica 27, (8) p 725-47.

19. Cleaveland, R., and S. T. Sims. 2002. Generic tools for verifying concurrent systems. Science
of Computer Programming 42, (1) p 39-47.

20. Curbera, F., Rania Khalaf, Nirmal Mukhi, S. Tai, and Sanjiva Weerawarana. 2003. The next
step in Web services. Communications of the ACM 46, (10) (10) p 29-34.

21. Emerson, E. A., C. S. Jutla, and A. P. Sistla. 1993. On model-checking for fragments of
μ-calculus. Paper presented at 5th International Conference, CAV '93 Proceedings,

22. Fensel, D. 2001. Ontology: Ontologies and electronic commerce. IEEE Intelligent Systems, v
16, n 1, Jan.-Feb. 2001, p 8-14

23. Fensel, D., F. Van Harmelen, Y. Ding, M. Klein, H. Akkermans, J. Broekstra, A. Kampman,
et al. 2002. Ontology-based knowledge management. Computer 35, (11) p 56-9.

24. Finin, T., R. Fritzson, D. McKay, and R. McEntire. 1994. KQML as an agent communication
language. International Conference on Information and Knowledge Management,
Proceedings, 1994, p 456

25. Hindriks, K. V., F. S. De Boer, Wiebe van der Hoek, and J. -J C. Meyer. 1999. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems 2, (4): 357-401.

26. Labrou, Y. 1., and T. 1. Finin. 1997. Semantics and conversations for an agent
communication language. Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 1997 (IJCAI-97), vol.1 p 584-91

27. Luck, M., R. Ashri, and M. D'Inverno. 2004. Agent-base software development. Boston,
London: ArtechHouse.

28. Maes, P. 1990. Situated agents can have goals. Robotics and Autonomous Systems 6, (1-2)
(06):p 49-70.

104

http://www.w3.org/TR/2001/NOTE-wsdl-

29. McBurney, P., and S. Parsons. 2002. Games that agents play: A formal framework for
dialogues between autonomous agents. Journal of Logic, Language and Information 11, (3):
p 315-34.

30. McBurney, P., S. Parsons, and M. Wooldridge. 2002. Desiderata for agent argumentation
protocols. Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems,(AAMAS-02) 2002, p 402-409

31. Milanovic, N., and M. Malek. 2004. Current solutions for Web service composition. IEEE
Internet Computing 8, (6): 51-9.

32. Milner, R., Operational and algebraic semantics of concurrent processes. J. van Leeuwen,
ed., Handbook of Theoretical Computer Science, (Elsevier, Amsterdam, 1990) 1201-1242.

33. Moraitis, P., and N. Spanoudakis. 2007. Argumentation-based agent interaction in an
ambient- intelligence context. IEEE Intelligent Systems 22, (6) (11) p 84-93.

34. Moreira, A. F., R. Vieira, and R. H. Bordini. 2004. Extending the operational semantics of a
BDI agent-oriented programming language for introducing speech-act based communication.
Paper presented at Revised Selected and Invited Papers,

35. Ouzzani, Mourad, and Amman Bouguettaya. 2004. Efficient access to Web services. IEEE
Internet Computing 8, (2) p 34-44.

36. Parsons, S., M. Wooldridge, and L. Amgoud. 2003. Properties and complexity of some
formal inter-agent dialogues. Journal of Logic and Computation 13, (3) (06) p 347-76.

37. Pokahr, A., and L. Braubach. 2007. Jadex user guide.
Available from http://vsis-www.informatik.uni-hamburg.de/projects/jadex/download.php.

38. Pokahr, A., L. Braubach, and W. Lamersdor. 2005. Jadex: A BDI reasoning engine. In Multi-
agent programming, languages, plateforms and applications., eds. R. Bordini, M. Dastard, J.
Dix and A. Seghrouchni Springer.

39. Rao, A. S., and M. P. Georgeff. 1992. An abstract architecture for rational agents. Principles
of Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR '92;, 1992, p 439-49

40. Rosenschein, J. S., and G. Zlotkin. 1994. Rules of encounter: Designing conventions for
automated negotiation among computer. Cambridg, Mass: MIT Press.

41. Singh, M. P., and M. N. Huhns. 2005. Service-oriented computing: Semantics, processes,
agents. John Wiley and Sons.

42. Sirin, E., J. Hendler, and B. Parsia. 2003. Semi-automatic composition of Web services using
semantic descriptions. Web Services: Modeling, Architecture and Infrastructure workshop in
conjunction with ICEIS.

43. Srivastava, B., and J. Koehler. 2003. Web service composition — current solutions and open
problems. In proceeding of International Conference on Automated Planning and Scheduling,
Trento, Italy.

105

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/download.php

44. Tsalgatidou, Aphrodite, and Thomi Pilioura. 2002. An overview of standards and related
technology in Web services. Distributed and Parallel Databases 12, (2-3): 135-162.

45. UDDI. The UDDI technical white paper. 2000 Available from http://www.uddi.org/.

46. Vardi, M. Y., and P. Wolper. 1986. An automata-theoretic approach to automatic program
verification. Proceedings of the Symposium on Logic in Computer Science (Cat.
No.86CH2321-8), p 332-344.

47. Vermeulen, C , and B. Bauwens. 1998. Software agents using XML for telecom service
modelling: A practical experience. Proceedings of SGML/XML Europe '98. From Theory to
New Practices, p 253-262.

48. W3C. SOAP 1.2 working draft. 2001 Available from http://www.w3c.org/TR/2001/WD-
soapl2-part0-20011217.

49. Walton, D.N. and Krabble, E.C.W., 1995. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning, Albany, NY: SUNY press

50. Wooldridge, M. 2002. An introduction to MultiAgent systems. John Wiley & Sons.

51. Wooldridge, M. 2000. Reasoning about rational agents. Cambridge, MA: The MIT Press.

52. Wooldridge, M., and N. R. Jennings. 1995. Agent theories, architectures, and languages: A
survey. Intelligent Agents. ECAI-94 Workshop on Agent Theories, Architectures, and
Languages Proceedings, 1995, p 1-39

53. Yang, Jian, and M. P. Papazoglou. 2002. Web component: A substrate for Web service reuse
and composition. Advanced Information Systems Engineering. 14th International Conference,
CAiSE. Lecture Notes in Computer Science Vol.2348, p 21-36

54. Argumentation in multi-agent systems. Rahwan, I.; Moraitis, P.; Reed, C. eds. First
international workshop on Argumentation in Multi-agent systems, ArgMAS. Springer-Verlag,

106

http://www.uddi.org/
http://www.w3c.org/TR/2001/WD-

Appendix I. Tableau Rules for CTL*CA

Table App 1.1 Tableau rules for propositional and universal formulas

Rl A . £ £ £ a R2 v:jWi R3 v :^0
y/, y/1 y/x y/1 y/

M ^..^L R5 ? : 2 H L R e • A^
y/ y/ is(-i<I>)

Note : "?": express the tableau rule of the challenge action
"?\|/": a given agent does not know whether Y is ture or not.

Table App 1.2 Tableau rules for action formulas

R1 ,Ci.E(<l>,C(Ag1,PC(Agl,Agvt,m
E(®,PC(AgpAg2J,<?>))

£(P, Withdraw(Agv PC{Agv Ag2, t, </>)))

E(Q>,-,PC{AgvAg2,t,<t>))

Agi E(®> SatisfyjAgy PC{Agx, Ag2, t, fl))
C ' £(<M)

m , yAgi E(<S>,nolate{AgvPC{AgvAgvt,4m
PC ' £(a>,-,0

DI i ^ D . E(^,Reactivate(AgpPC(Agl,Ag2,t,m
AI i < Kea >: —

RS < W >:

E(<t>,PC(AgpAg2,t,fij)

R12 -.Chr- E(^ChallenSe(AS2'PC(A8yAg2,t,m
E{0,PC{Ag2,Agvt\l<j>))

R13 < Ace >• Ei°' Accep((Ag 2' PC<<A81' A8v(. fl))

£(0 ,^ (^2 ,^ , , ? ' , - ,^))
^ 5 < Jm y E{<b,Justify{AgvPC{Agx,Ag2,t,p .-• fl))

^ P C ^ g , , ^ ' , , * ' . • . < >))

/?16 ;,<«?• £ ^ ^ B f l ^ g 2 - f C (^ i - 4 2 . < ^ ' ^ f f i)

E(0,PC(Ag2,Agvt',f.:^))

mj < ^ E^DtfendiAgyPClAg^Agyt.t'.-.t)))
E(0,PC{AgvAg2,t\</>'..<p))

Note: label "<C>" is the label associated with the creation action of a
propositional commitment PC.

107

Table App 1.3 Tableau rule for propositional commitment formula

Ag,S E{<S>,<f>)

Table App 1.4 Tableau rules for state formulas

m<^:I^!l R 2 Q , : E ^ ^ *21v: *<»•'• v'»>
/, £ (0) E(0,^,<f>2) £ (0 ^ ,) £(<D,^2)

R22 ? : I ^ M
E{®,¥)

R23x-.B^i2Lh^iHA R24 . . ^ (^ . x V p - . x ^ J

i?25 A :

R26 v: WJtrU R2J E(d>,^2)

108

Appendix II. Proof of Lemmas

Proof of Lemma 5.1

The proof is based on the analysis of the different cases of our tableau rules. Most cases

are straightforward. Here we only consider rules Rl, R25, and R27.

R = R1:

=> 07 = E(<Z>, C{Ag,, PC(Agh Ag2, t, y/), a2 = E(0, SC(Agj, Ag2, t, y/))

=> <J]< a2 (from the definition of -< and the fact that

\C(PC(Agh Ag2> t, Y)\=1 + \PC(Agh Ag2, t, y/)\

>\PC(Ag,,Ag2,t,y/)\)

R = R25:

07 ->R cr2

=> 07 = E(0, if/, :. y/2), 05= E(0, y/hX"(-^y/, v y/2))

=> Oi x 05 (from the definition ofx and the fact that

\y/, :. y/2\ = 1+ \w\ + Vt{-^Wi v wi)\

R = R27:

=>ai = E(0, y/, lfy/2), a2=E{0, y/2) orE(0, y/hX*(yrt if yr2))

=> 07 -< a2 (from the definition of -< and the fact that 07 , a2

D

Proof of Lemma 5.2

Based on the induction of the structure of y/, most cases are straightforward. Here we

only consider the four following cases:

1- y/=Xy/,, where X e {X",XT}.

We have: CL(Xy/,) = {Xy/j} u CL(y/j)

Therefore: \CL{Xy/,)\ = 1 + \CL(y/,)\

Then, by using the induction hypothesis, we conclude that: \CL(Xyr})\ <, 1 + 2| y/t\ <, 2(1 + | y/j\)

Then, by using Definition 7 we obtain: \CL(Xy/])\ £ 2\Xy/i\

109

2- y/= if/t U y/2, where U e {if, V}.

We have: CL(y/i Uy/2) = {y/1U y/2} u CL(y/,) u CL(y/2) u CL(X(y/i *7 ̂ 2))

= {^ U yr2} u CL(^) u CL{y/2) u {X(^7 J7 ^2)}

Therefore: |tX(pi C/ y*)| = 2+ |CL(^)| + |CZ(y*)|

Then, by using the induction hypothesis and the previous case, we conclude that:

\CL(y,, U y/2)\ <, 2 + 2|y,\ + 2|y/2\ + \X{y/,U y/2)\

Then, by using Definition 7 we obtain: \CL(y/j U y/2)\ <,2\y/jU y/2\

3- y/= PC(Agh Agh t, iff,)

We have: CL(PC(Ag„ Ag2, t, yr,)) = {PC(Ag], Ag2, t, yr,)} u CL(y/,)

Therefore: \CL(PC(Agl, Ag2, t, y/,))\ = 1+ \CL{y/,)\

Then, by using the induction hypothesis, we conclude that:

\CL(PC(Ag„Ag2, t, y,,))\ ^ 1 + 2\<f,\

Then, by using Definition 7 we obtain: \CL(PC(Ag,, Ag2, t, y/,))\ <> 2\PC(Ag,, Ag2, t, y/,)\

4- y/= C{Agh PC(Ag,,Ag2, t, y/,))

We have: CL(Create(Ag,, PC(Agh Ag2, t, y/,)))

= {C(PC(Agl,Ag2, t, y/,))} u CL(PC(Ag3,Ag2, t, yr,))

Therefore: \CL(C(Agl,PC(Ag],Ag2, t, y/,)))\ = 1+ 2\CL(PC(Ag„Ag2, t, y/,))\

Then, by using die previous case, we conclude that:

\CL(C(Ag„ PC(Agh Ag2, t, y,,))\ <, 1 + 2\PC(Ag„Ag2, t, yr,)\

Then, by using Definition 7 we obtain:

\CL(C(Ag„ PC(Agl, Ag2, t, ys,)))\ <, 2\C(Ag„ PC(Agl, Ag2, t, y/,))\

u
Proof of Lemma 5.3

The proof is based on the case analysis of the rule R. Most cases are straightforward.

Here we consider the rules Rl, R25, and R27.

R = R1:

a, -»* a2

=> E(<Z> y/,) = E(<Z>, C{Agh PC(Agl, Ag2, t, ys),

E(<Z>, y/2) = E(<Z>, PC(Ag,, Ag2, t, ys))

=> (Definition of CL(C(Agl, PC(Ag,, Ag2, t, y/)))

CL(y/2)czCL<iysj)

R = R25:

=> E(0, y/,) = E(0, yr :. y/\ E(<Z>, yr2)= E(<Z> yt, X + (^ v y/1))

110

=> CL{y/,) ={yr:. y/'} u CL{y/) u CL(X+(-,^v y/1))

=>CL{y/2)^CL{wi)

R = R21:

^E(<Z>, w) = E(<P, ^C/y),E(<P, <p2) = E(<Z>, ̂ ')orE(<2>, yXW^f w"))

=> CI(w) = {^ C/ yr*} u CI(y/) u CL(yO u C L ^ y If y/))

=>CL{ys2)<zCL{m)

D

Proof of Lemma 5.4:

Suppose that there exists an infinite chain: o> -< pj -<...

From Lemma 3, it follows that CL(y/j) c CL(y/j_i) c ... CL(y/i)

Since CZ(̂ ;) is finite (from Lemma 2), it follows that:

3/, V/c>/, CL(y/k) = CL(^) with q H OJ+,-< ... <Jk< ...

However, this is contradictory (from Lemma 3).

I l l

