A Hybrid Query Engine for the
Structural Analysis of Java and
Aspect]J Programs

Hamoun Ghanbari

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada
September 2008

(© Hamoun Ghanbari, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45297-4
Our file Notre référence
ISBN: 978-0-494-45297-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Hybrid Query Engine for the Structural Analysis of Java and AspectJ
Programs

Hamoun Ghanbari

Query-based code browsers can be customized to render many different types of
views on-demand. In contrast to single-purpose browsers offered by modern IDEs such
as Eclipse (e.g. Call Hierarchy), they release developers from mentally inducting the
integral information from several views generated for specific purposes. However, cus-
tomizing query-based tools, and communicating with their interfaces demands database
expertise and understanding of the query language syntax. This puts a burden on main-
tainers by forping them to encode their required views using complex queries. In this dis-
sertation we investigate a query engine designed for software structural analysis which
1) provides a visual query interface over the high-level textual query language to elim-
inate the need er understanding the query language syntax, 2) incorporates the knowl-
edge of programming language constructs into the factbase, query language, and the
views, and 3).integratés the query-based and specific-purpose views already provided
through the IDE. We are confident that this approach will be beneficial to maintainers
during comprehension by allowing to abstract source code to high-level views and to

speed up the rummage of the source code.

Acknowledgments

First and foremost I offer my sincerest gratitude to my supervisor, Dr Constantinos
Constantinides, who has supported me throughout my thesis with his patience while
allowing me to work in my own way. I attribute the level of my Masters degree to
his encouragement and effort and without him this thesis, too, would not have been
completed or written.

I warmly thank Venera Arnaoudova, Laleh Mousavi Eshkevari, and all other mem-
bers of Software Méintenance and Evolution Research Group, for providing valuable
comments and their friendly help for my research work.

I also would like to thank two of the most influential people in my life, which gave
me the motivation toward continuing my studies in academia, Amirhasan Amintabar for
teaching me the abc of computer science at secondary school and Professor Mohammad
Taghi Rohani Rankoohi, from Shahid theshti University for teaching me everything I
know about database management systems.

Finally, I owe my loving thanks to my parents for supporting me throughout all my

studies at university, and for providing all my needs to complete my thesis.

it

Contents

List of Figures | vii
List of Tables X
1 Introduction 1
1.1 Objective and goals of this dissertation 2
1.2 Organization of the dissertation 3
2 Background 4
2.1 Programcomprehension 4
2.2 Query methods for supporting program comprehension 5
2.3 Aspect-Oriented Programming (AOP) 8
3 Problem and motivation 10
4 Proposal: Deploying hybrid (visual+textual) queries 16

5 Hybrid Query Composition: An Overview 19

iii

5.1 Textual query composition 20

5.1.1 Predicates: ingredients of analysis 21

5.1.2 Querybyexample, 23

5.2 Visual query compositions 26
5.3 Queryresultrepresentation 0o e 33

6 Deploying query composition to analysis and measurement 38
6.1 Structural analysisquerieso . 38
6.1.1 Identifying virtual methodcalls 39

6.1.2 Types/methods depending on other types/methods 39

6.1.3 Methods accessing localfields 40

6.1.4 Methods accessing thesamefield 43

6.2 Measurement qUErieso e 43
6.2.1 Queriesaboutcohesion. 44

6.2.2 Queries about dependencies andcoupling 49

6.2.3 Instabilityofpackages 53

6.24 Abstractnessof packages oL 53

7 Automation and tool support 56
7.1 Thefactextractor« v v v v v v v vt it e e e e e 57
7.2 Implementation of the visual query editor 59
7.2.1 Modelpackage oo, 60

S iv

722 Actionspackage 61

7.23 Figurespackage 62
7.2.4 Parts (controller) package 62
7.2.5 Policies (controller helpers) package 63

726 Ulpackage i 63 |
7.3 Implementation of the textual query editor 63
7.3.1 Textualqueryparser 63
7.3.2 Textualqueryeditor 66
74 Queryresultevaluation, 69
7.5 Queryresultrepresentation 71
751 Tabularview I 71
7.5.2 Textualtreeviews 72
753 UMLlkeview 73
754 Graphview e e e 78
8 Case Study 1: Graphical Editing Framework (GEF) 79
8.1 Frameworkoverview, . 80
8.2 Structural analysisqueries 0L 80

8.2.1 Finding the correspondence between model, view, and controller

classes e 80
8.2.2 Finding correspondence between models and Editparts 82
8.2.3 Finding the correspondence between figures and editparts . . . 83

8.2.4 Finding possible commands for a givenrequest 86

8.3 Measurement queries: Investigating the quality of the GEFcode 90

9 Case Study 2: Aspect-oriented implementation of the Observer design pat-

tern | 95
9.1 Description of the pattern and its implementation 95
92 Acomprehensiontask. 98
10 Case Study 3: Spacewar 103
10.1 Deployment of the tool over Spacewar 105
11 Related work and evaluation 111
11.1 Logic-based query approaches e e e e e 111
11.2 SQL-based approaches 113
11.3 OQL-basedapproaches 113
11.4 Query-by-exampleapproaches 114
11.5 Visualqueryapproaches 114
11.6 Algebraic query approaches 115
117 Limitations e e e 115
12 Conclusion and recommendations 117
Bibliography 119

vi

List of Figures

4.1

5.1

52

53

54

55

5.6

5.7

5.8

59

5.10

5.11

7.1

Visual query for obtaining the utility classes.. 18
Description of aspect-oriented programs by high-level constructs. . . . 23
Visualizationof a joinoperation. 29
Visualization of a quantification operation. 30
Visualization of a summarization operation. 31
Visualization of a selection operation. 32
Visualization of a drill-down operation. 32
The query result represented in tabular view. 33
The query result represented in bar chartv ViEeW. . .. Lo 34
The query result represented in graph view. 35
The query result represented intree view. 36
The query result represented in UML-like view. 36
A storage of a sample source code in the codebase, representing nodes

and relationships betweenthem. 58

vii

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

The overall structure of visual query composer plug-in and its depen-

dencies to internal eclipse libraries. S 59
The packages of visual query composertool. 60
Data structure of model in terms of classes and their relationships. . . . 62
The maximal structure of parsed query in terms of its nodes. 67
Available mechanisms to represent program structures. 71
Sample mapping of query result to textual tree view. 74
Formation of boxes in the box-and-line visualization 76
Structure of classes involved in the box-and-line visualization. 77
Partial UML class diagramof GEF.. 81
UML sequence diagram for overall workﬂow of GEF. 81

The relationship among instances of GEF classes and their role in the
MVCarchitecture. e .. 82
Investigation of GEF’s flow-example using Eclipse views.. 84
The correspondence of the figure classes to controllers, retrieved as a
QUETY OULCOIME. . . + « v v v v v e v e e e e e et e e e e e s e e e e o 85
An overall view of modules’ of a GEF based applications and their de-
pendencies, divided into user defined and GEF corecode. 38
GEF packagcs divided into six classes based on measurement attributes. 93
A 3D bar chart representing the co-occurance of different categorical

attributes of GEF framework. e 94

viii

9.1

9.2

9.3

94

9.5

9.6

10.1

10.2

The SubjectObserverProtocollmpl aspect the Aspect] cross-reference

The source code of aspect SubjectObserverProtocollmpl in Observer

protocolexample. 100
The Button class in the Aspect] cross-reference view. 100
The source code of class Demo in Observer protocol example. 101

The query for retrieving occurances of observer protocol and it’s result. 102
The visual query for finding occurances of observer protocol. 102
Partial class diagram of the Spacewar system. 106
Messages to which an object of a given type can respond to in Spacewar

example. 109

ix

List of Tables

4.1 The textual query for obtaining the utility classes.
5.1 Listof logic predicates available in the codebase and their corresponding

description. e e e e e e

37

6.1 Query to obtain the polymorphic virtual calls from one method to another. 39

6.2 Query to obtain the dependency between methods.
6.3 Query to obtain the dependency betweentypes.
6.4 Query to obtain the methods accessing a local field from a type.

6.5 Query to obtain the fields accessed by alocal method.
6.6 Query to obtain pairs of methods accessing acommon field.
6.7 Query to obtain Chidamber and Kemerer Lack of Cohesion.
6.8 Query to obtain Henderson-Sellers lack of cohesion metric.

6.9 Query to obtain pairs of methods accessing acommon field.

6.10 Query to obtain the number of incoming dependencies for each package.

6.11 Query to obtain the number of outgoing dependencies for each package.

6.12 Query to obtain the incoming dependency of atype.

41

6.13 Query to obtain the "fan-in” of a method. . . . A 52

6.14 Query to obtain the "fan-out” ofamethod. 52
6.15 Query to obtain the number of incoming dependencies of a field. 53
6.16 Query to obtain the the amount of instability of a package. 54
6.17 Query to obtain the abstractnessof apackage. 55
7.1 BNF convention used to represent the query language grammar. 64
7.2 The algorithm to evaluate calculus-based conjunctive queries. 70
7.3 The code to represent the program hierarchy as compound graph. 78

8.1 The code to create different editPart for different model objects in the
GEFflow-example. e 83

8.2 Query to obtain the figure classes corresponding to each controller class. ~ 85

8.3 The code to setup the edit policies for a given subclass of Editpart. . . . 87
8.4 Retrieving a Command for a given Request using an EditPolicy. 87
8.5 Retrieving a Command for a given Requést. 90
10.1 Partial code of aspects *Coordinator’. 107

10.2 Obtaining all messages to which an object of a given type can respond. . 108

10.3 Obtaining methods defined by an aspect for a supertype of a given type. 110

xi

Chapter 1

Introduction

Program comprehension is a major activity in most software maintenance task, due
to the effort and time required to initially understand the system. The provision of
structural analysis and program measurement through flexible reporting during pro-
gram comprehension is vital to software development and subsequently the maintenance
phase. In overall, there are multiple choices of the tool support for structural analysis
and measurement. Based on the customizablity and ease-of-use tradeoffs, these tools

can be placed in the following categories:

1. Specific purposé tools mostly allow low-cost analysis and measurement with a
flexibility limited to change of metric parameters rather than allowing the intro-

duction of a new metric.

2. Modern IDEs such as Eclipse [7] allow viewing and navigating source code in an

easy way but with low degree of configurability according to the intended software

1

entities and relationships to be analyzed.

3. Generic tools provide a less easy-to-use but highly configurable environment ca-
pable of both structural analysis and measurement by describing the analysis

through a high-level query language.

In this dissertation we focus on the third category of tools as very highly customizable
solutions. These tools have long been used for transforming the source code into com-
prehensible diagrams and views (e.g. JQuery [69, 47] and JTL [23]). Such languages
can extract, filter, summarize, and combine information from source code, by storing
a database representation of the code, allowing maintainers to execute queries using a
general purpose query language. These representations are referred to as codebases.
By standing on top of general purpose query languages, such models can be beneficial

because they provide flexible reporting through user-driven customizations.

1.1 Objective and goals of this dissertation

Our overall objective is to improve the comprehension of programs by providing a
generic automated environment under which one can gain static information regarding
the software elements and their relationships in a highly-configurable and yet easy-to-
use fashion. This is done by allowing maintainers to describe their own analysis and
measurement logic through a high-level language, aware of program structure, which
does not demand as much database expertise and understanding of query language syn-

tax.

To meet these objectives, we set a number of goals: 1) The creation of a hybrid
query engine to parse and execute queries in two different representations, namely visual
and textual. 2) To integrate the generic query tool inside an integrated development
environment (IDE) to gain the existing benefits of tools offered by such environment. 3)
Using more software-design-biased visual constructs to navigate the query result 4) To
construct a library of queries to support common structural analysis and measurement

tasks currently supported by non-query based tools.

1.2 Organization of the dissertation

The remaining part of this dissertation is organized as follows: In Chapter 2 we pro-
vide the necessary theoretical background of program comprehension, query methods,
and aspect-oriented programming (AOP). In Chapter 3 we discuss the problem and mo-
tivation behind this research, followed by the presentation of our proposal in Chapter 4.
We describe our methodology in Chapters 5 and 6. While, the first is discussing the
properties of our query language and the query composition process, the second, intro-
duces a set of common queries usable during structural analysis and measurement. In
Chapter 7 we discuss the components providing the core functionality of automation
and tool support. In Chapters 8, 9, and 10 we present three different case studies to
demonstrate how our approach can be deployed for typical comprehension and mea-
surement tasks. In Chapter 11 we discuss related work, and we evaluate our approach.

We conclude our discussion in Chapter 12.

Chapter 2

Background

In this Chapter, we discuss the necessary background to this research, starting with an
overview of prog;am comprehension. We then discuss query based approach (and its
different methods) to gain program comprehension. Finally we give a brief background
on AOP as a new generation of paradigms which will be referred to, in the rest of this

dissertation.

2.1 Program comprehensioh

Program comprehension is the process of obtaining knowledge about a program [63].
It has shown to consume a significantly large proportion of resources during the over-
all maintenance phase [63], particularly when maintainers are not the initial developers
of the system. Furthermore, design artifacts, if at all present, cannot provide complete

comprehension since they are often incorrect or incomplete. A lot of effort has been

spent on providing approaches to support and facilitate program comprehension and, as
a result, a variety of models of human program comprehension process have been pro-
posed [53, 70]. Comprehension methods rely on the study of the dependencies between

program (or software) elements.

2.2 Query methods for supporting program comprehension

So far, database theories have been largely applied to software engineering tasks.
Aiming at obtaining comprehension, code databases (also ‘generally referred to as code-
bases and in [28] called Software Information System (SIS)) have been proposed for the
analysis of programs by representing the static structure of a program in a model. They
are information systems which are ab]é to help maintainers by storing and querying the
software system source code as data. This data are usually populated automatically from
the source code (functions, files, data types, etc.).

According to [21], the interfaces provided to communicate with databases can be
placed in the following groups: logic based (e.g. FOPL) [37], calculus based and alge-
braic [S7] [50]. Although, all these languages share the same property, declarativeness
~ (as opposed to imperativeness) 1, they have features which makes them different to each

other, as follows:

Predicate and description logic: Logic programming languages are based on first-order

Declarativeness of a language means that written programs in that language do not state how a result
is to be computed; instead they declare how the result should look like.

predicate logic where data are presented by Horn clauses and where a logic infer-
encing process is used to produce results. They allow the programmers to integrate
logical stateménts with programming constructs. They describe relationships be-
tween variables in terms of functions, while the language executor applies some
fixed algorithm to these relations to simulate inferencing and to produce a re-
sult. Logic statements are made of terms which themselves can be constants,
variables or compound terms. A compound term, or functor, is represented as
functor (parameter list). A functor is like a predicate in predicate cal-
culus and its parameters can be atoms, variables or other functors. A logical
program consists of two kinds of statements which are statically declared: facts
and rules. Facts are propositions that are assumed to be true and they constitute
the statements used to construct the hypotheses. Rules are implications between
propositions. A problem domain is therefore defined in terms of queries, and the

goals are addressed by a built-in search mechanism [64].

Relational calculus: Calculus based database sublanguages (e.g. SQL) are adapted
versions of predicate logic to relational database models. From user point of
view, calculus oriented languages provide a more suitable platform for explain-
ing natural-language-like sentences as queries. However, these sublanguages are
designed specifically for query purposes (as opposed to programming tasks) and

are less expressive than logic based ones.

As other logic-based expressions, a formula is defined in terms of atomic formulas

through application of connectives and quantifiers. Atomic formulas are made of
predicates which are applied to terms and terms are defined inductively as being a
constant, variable, or a function applied to a term. From anothér view, a query is
composed of a set of variables which are either free, quantified using existential
or universal quantifier, or used in aggregated functions such as count and average.
Each variable is introduced and its type and domain is determined before being
used in the query. The result of a query (or semantic of formula in logic sense) is
defined in terms of all substitutions of free variables with values which satisfy the

query formula (evaluate it to true).

Relational algebra: In contrast to logic based approaches, the theory of algebraic lan-
guages is relatively newer, and more dependent on the primary construct of the
database model. For example relational algebra is application of relational op-
erators on relations (tables) while multidimensional algebra is the same for mul-
tidimensional tables (cubes). An algebraic query could be composed iteratively
by having a sequence of algebraic operators repeatedly applied to each other’s
outcome. This results in decomposition of query writing process in a natural
step-by-step parts, making it possible to map each algebraic operator to a simple

user-system interaction (e.g. UI drag-and-drop operations).

2.3 Aspect-Oriented Programming (AOP)

Aspect-Oriented Programming [49] is a relatively new programming paradigm ex-
tending existing ones (such as Object-Oriented), aiming at better separation of concermns,
by introducing a new modular unit of decomposition called aspect. Aspects try to local-
ize certain properties of the system that would have been cutting across the inheritance
hierarchy, had they been implemented in conventional methodologies. Currently there
exist many approaches and technologies to support AOP. One such notable technology
is Aspect] [4], a general-purpose aspect-oriented language, which has influenced the
design dimensions of several other general-purpose aspect-oriented languages, and has
provided the community with a common vocabulary based on its own linguistic con-
structs. In the Aspect], an aspect definition is a new unit of modularity providing behav-
ior to be inserted over functional components. This behavior is defined in method-like
blocks called advice blocks. However, unlike a method, an advice is never explicitly
called. Instead, it is only implicitly invoked by an associated construct called a pointcut
expression. A pqintcut expression is a predicate over well-defined points in the execu-
tion of the program which are referred to as join points. When the program execution
reaches a join point captured by a pointcut expression, the associated advice block is
executed. Even though the specification and level of granularity of the join point model
differ from one language to another, common join points in current language Speciﬁca-
tions include calls to - and execution of methods and constructors. Most aspect-oriented

languages provide a level of granularity which specifies exactly when an advice block

should be executed, such as executing before, after, or instead of the code defined at
the associated join point. Furthermore, several advice blocks may apply to the same
join point. This granularity introduced by AspectJ has been influenced by the auxiliary
functions of CLOS [36]. In cases where advice blocks refer to the same join point, the
order of execution is specified by precedence rules defined in the underlying language.
Currently there exist a lot of languages with aspect-oriented programming support.
For example Java, Ada, C++, and Ruby each have its own aspect-oriented frameworks:
Aspect] [4], AspectAda [58], AspectC [3], and AspectR [5] respectively. However the
level that they support aspect orientation is not equal, and, thus, the amount of flexibility

achieved in programming and design decisions by their users are different.

Chapter 3

Problem and motivation

The provision of user driven analysis through flexible reporting during program com-
prehension is vital to software development and maintenance. Modern IDEs such as
Eclipse [7] provide source code browsers to view and navigate source code in different
ways. For example, in Eclipse the Package Explorer shows program structure in terms
of structural inclusion relationships, the Type Hierarchy shows inheritance relationships
among Types, and the Call Hierarchy shows the structure of the static call graph. How-
ever, there aré cases when a maintainer’s need does not fall into the set of existing views
offered by these browsers. One such example is the extraction of the level of coupling
between classes. This would involve obtaining measurement factors such as fan-in and
fan-out of packages (see Chapter 6 for their definition) in the system. In order to obtain
this information one can use existing browsers (in this example: Call Hierarchy and

Type Hierarchy) while performing a number of mental computations, which can end up

10

being costly in terms of time .

A possible solution to the above limitations is provided by generic code browsers
(e.g. JQuery [69, 47] and JTL [23]). They can be customized to render many different
types of views for eéch need, yet in a more cost-effective way than plug-in extensions.
Generic code browsers mainly perform this by storing programs as data; that is they
store database representation of the code and allow developers to execute queries using
a general purpose query language. They are, therefore, also referred to as query-based
code browsers or simply codebases. By standing on top of a general purpose query
language, such models are beﬁeﬁcial by provisioning of flexible reporting through user-
driven customizations. Based on the high degree of interactivity in these methods, the
analysis task is largely user directed. “"However, customizing such browsers requires
more expertise than just clicking GUI buttons” [69]. Communicating with their inter-
faces demands databases expertise and an understanding of query language syntax (e.g.
SQL for relational systems). This can either put a burden on maintainers and developers
to work with query languages, or can place the demand for a person as a customizer to
encode the views and navigations required by maintainers into queries. In logic-based
code bases, this is intensified by the fact that customizers need to know not only the
defined predicates (relations) but also the inference rules used in logic programming
constructs (e.g. Prolog). The reason is that in some cases the only way to encode a
query is to use multiple inference rules.

A possible solution to this limitation is to allow maintainers to describe their own

11

measurement logic through a high-level language, aware of program structure, which
in-turn will be interpreted to form the intended report. To this end there has been a
number of research proposals in the literature. These proposals can be placed in the

following three categories based on their underlying query languages:

1. Logic-based query approaches such as SOUL [71], JQuery [69] [47], JTrans-
former [11], CodeQuest [42] use Prolog-based query engines such as TyRuBa [13]

or Datalog [14] to perform query evaluation.

2. SQL-based approaches (e.g. [60]) represent the program structure in the form of
relational tables and use the native query engine of a relational database to execute

queries.

3. OQL;based approaches such as Semmle [68, 27] form the most recent wave of
query tools published in recent years. They provide an intuitive interface through

an abstract object-oriented layer above the actual logic predicates.

4. Query-by-example approaches like JTL [23] aim at making queries simpler by

making their syntax like the programming language itself.

The motivation behind having the variety of above query approaches is the need to
lessen the demands for database expertise by the query interfaces provided for these
systems. In this section we present an example illustrating how visual query composition

is more advantageous in terms of ease of use and simplicity than its predecessors in a

12

real world situation. This example is a hypothetical scenario in which a maintainer needs
to select and view specific modules having certain measures.

Consider a case in which a maintainer wants to find the unimportant (utility) classes
in the system (i.e. those containing no business logic). S/he has a general idea that a
utility method could be the one called by a lot by other methods, and, as a result has high
fan-in. While it is possible to navigate through classes one-by-one and check the fan-in
in a view, this would cost more than it would contribute to the process. As a result,
the maintainer customizes a new view using one of the available generic code browsers,
formulating the method’s importance using the following formula:
utility(method) : fan — in(method) > threshold
in which the threshold is some pre-set amount which can be calculated using statistical
methods. S/he also considers that classes having at leést two of such methods could be

defined as utility classes.

Consider the following primary predicates are available for him to use in the code-

base:
1. InvokeSmethodxmethod(Mm1, m2) shows that m1 calls m2.

2. Includes yssxmethod(cl, m1) shows that the class c1 includes the method m1.

3. NumberO fpredicatexnumber 18 @ higher order predicate which accepts another pred-

icate as an argument and counts the number of instances satisfying it.

13

S/he logically finds out that the fan-in of a method could be defined simply as the
number of other methods calling this method:
fan —in(M) : numberO f(Invokes(X, M))
S/he can finally compose a predicate called utilityClass(C), describing the desired
view with the following hypothetical formula:
utilityClass(C) : numberO f (Includes(C, M) A fan —in(M) > thresholdl) >
threshold,

This query can be implemented in a logic codebase in a language such as Prolog,

similar to the approach used in [32] with multiple rules, as follows:

count (Goal, N):-
flag(counter,Outer, 0),
{(call(Goal),
flag(counter, Inner, Inner+l),
fail;
flag(counter, Count,Quter),
N =Count).
getMember (X, [X]|_]) .
getMember (X, [_|T]) : -getMember (X, T) .
methodWithHighFanIn(Method, ListOfMethods):-
findall (Method,
{count (invokes (Amethod, Method) ,N) ,N>=12),
ListOfMethods) .
utilityClass(Class):-
methodWithHighFanIn (Method, ListOfMethods),
count (includes(
getMember (X, ListOfMethods),Class),Num),
(Num>=2) .

Another approach to implement the query is to use a relational codebase in a language

such as SQL, similar to the approach used in [60], as follows?:

SELECT UTILITY_CLASSES._CLASS
FROM

IThe HAVING clause was not used in the SQL query in this case, since it is not generally a substitution
for nested queries, and here our goal was to show the overall complexity of the approaches.

14

(SELECT
Includes.CLASS AS _CLASS,
SUM(Includes.METHOD) UTILITY_METHODS
FROM
Includes
, (SELECT CALLEE, SUM(CALLER) AS
MEASURE FROM Invokes) FAN_IN
WHERE
INCLUDES .METHOD=FAN_IN.CALLER AND
(FAN_IN.MEASURE>:thresholdl)
JUTILITY_ CLASSES
WHERE
UTILITY_METHODS>:threshold2

In both of the above approaches, there is a need for a database expert to encode the
queries explaining the new view. The reason is that the query logic is scattered through
the query, there is no hint to identify main points of the query, and there is no con-
tent assist during query composition because of the distant from software engineering
domain.

According to the above limitations, there is a need for a query method which provides
a high-level query language to eliminate the need for database expertises which is more
developer friendly and closer to software domain. Moreover, it should be an integral

part of developer’s IDE used for maintaining the system.

15

Chapter 4

Proposal: Deploying hybrid

(visual+textual) queries

As a solution to the limitations imposed on the maintainers during the query compo-
sition process, we propose the deployment of hybrid query composition as a low-cost
view customization technique suitable for visualizing and navigating codebases. Hybrid
query composition deploys a visualization mechanism on top of textual queries. In this
approach we use a graphical notation (including text, box and line) similar to the Unified
Modeling Language (UML) class diagrams for representing the intention of maintain-
ers as a structure diagram which is, in fact, equivalent to full first-order logic queries.
This notational language enables the maintainers to model the query, based on object

definitions and object relationships which is more intuitive than text based ones.

16

This can make it possible to offer simple interactive query transitions instead of hand-
coded queries and provide maintainers with an automatic way to compose queries using
simple drag-and-drop operations on the graphical user interface. This can be done by
mapping of visual drag-and-drop operations to operators of the query language. Instead
of invoking queries, end-users will be able to describe query semantics using graphical
representations, which will be in turn translated into database commands such as selec-
tion, projection, and join. These operations can be interactively invoked by end-users
until the intended result (including all elements of interest) is formed.

The propoéed textual and visual representation, equivalent to the query discussed in

Chapter 3 are shown in Table 4.1 and Figure 4.1 respectively.

(Type t
from (int count by (Method m2) as meth-num
from (int count by(Method m2) as fan-in
where m2 invokeg ml
)
where fan-in>threshold
)
where meth-num>2
)

Table 4.1: The textual query for obtaining the utility classes.

The main features of the proposed technique (to be discussed and implemented in

subsequent sections) are as follows:

1. Instead of relying solely on textual representation of queries the hybrid query
composition uses a combination of graphical and text-based interfaces to interact

with the query engine.

17

count by (m) as meth-ri

| greatd;Thari ;
1% threshold

great%Than
145 2

Figure 4.1: Visual query for obtaining the utility classes.

2. Not only query syntax itself, but also could query result be visualized by various
visualization techniques such as chart views [2], textual tree views [1], box-and-
line visualizations [46] (structure diagrams) and compound graphs. These possi-

bilities could be explored to enable viewing software in the level of granularity.

3. Integrates the query-based and specific-purpose views already provided through

the IDE.

18

Chapter 5

Hybrid Query Composition: An

Overview

In this Chapter we provide a description of the two approaches for the user to encode
queries, namely textual (subsection 5.1) and visual (subsection 5.2) and the query lan-
guage operators in each case. In each subsection, we illustrate how a query language
can be deployed to interact with a codebase using examples. The textual definition of a
query can be transfered to a visual equivalent and vice versa. This makes it possible to
compose queries iteratively using the more appropriate approach at the moment. Using
the textual editor a user can benefit from syntax highlighting, auto completion, error
recovery, and predicate suggestion. In visual query composition view, a user is able to
use the same capabilities as textual editor, however in a more intuitive way. The visual

querying serves as a graphical interface mediating the composition and representation

19

of structural software queries. Influenced by graph-based visualization techniques [41],
our graphical mediator is representing the query criteria in patterns of interconnected
nodes and arcs. More formally, it is a directed graph consisting of vertices, which rep-
resent entities, and edges, which represent semantic relations between these entities.
Using declarative graphic representation features Qf visual queries, one can either rep-
resent knowledge by asserting any kind of proposition which can be assumed as true
sentence in propositional logic system. Moreover, like conceptual graphs, the graphical
notation is augmented by abstraction boxes, representing quantifiers. For example one
can assert ezists(z).. : X which is a sentence over objects of the type X (x is a variable
in this sentence). The visual nature of the interface makes it beneficial for conveying

knowledge quickly.

5.1 Textual query composition

The purpose of having a textual query language is to offer the same functions offered
by interactive user interface (UI) operations through simple textual commands, as well
as being able to express more complicated logics. Thus, textual queries are been pro-
vided for users who are more comfortable using conventional textual tools, and for those
information which is more difficult to extract through visual queries.

Like other célculus-based query methods (e.g. relational calculus) our query language

has an alphabet including constants (e.g.”public” and 243453), variables (r1,12,...),

20

functions (e.g. f(int,int)), predicates (monadic like P1() or dyadic like #, <, >), con-
nectives (and, or, not), quantifiers (forall, exists), and delimiters ((,),[,],{.}). As other
logic-based expressions, a formula in this language is defined in terms of atomic formu-
las through application of connectives and quantifiers.

We adopted a more user friendly query syntax than the pure calculus, using a gram-
mar with a set of keywords already being used in the widely used query language SQL.
In our query language FROM, and WHERE are keywords that denote different parts
of the query !. Delimiter([..]) introduces elements to be viewed in the query result set
along with their data types. The FROM clause is the way to nest sub-queries inside one
another. Using FROM clause one can introduce a subquery having new, aggregated,
quantified van'ables and put constraint on those using the predicates. WHERE intro-
duces the set of predicates which is applied to the variables and cénstants. In the rest
of this section we introduce the predicates of our query language in subsection 5.1.1

followed by example of using them in subsection 5.1.2.
5.1.1 Predicates: ingredients of analysis

In this section we are going to introduce the predicates which form the basic building
blocks of queries and deploy them to access the source code information in the codebase.
We adopt predicates, functions, and connectors to form queries in our system. Predicates

are designed to be adaptable to various programming paradigms such as object-oriented,

! Although the syntax of the query language is designed to be similar to that of SQL, the meaning of
keywords are a bit different.

21

and aspect-oriented. For every language, we constructed a model, conceptualizing the
possible static structure formed by programs of such a language. This conceptual model
is described in terms of high level programming constructs (e.g. aspect, method, and
class) and the relations between them. Figure 5.1 represents such a conceptual model
in form of a UML class diagram for aspect-oriented programming?. Table 5.1 shows a
list of logic predicates, available in our codebase for supporting this conceptual model,
along with their meaning. We can divide the predicates of the logical model into the

following three categories:

Static inclusion predicates Binary relations modeling modular containment of various

program elements (e.g. between packages and files).

Object-oriented predicates Constructs which are originally supported by object-oriented

languages (also adapted to an aspect-oriented context).

Aspect-oriented predicates Constructs which are exclusively supported by aspect-oriented

languages.

A program element from the programming language domain is a node that corre-
sponds to a logical or physical elements introduced by the programming language:

Project, Package, File, Class, Interface, Aspect, Enum, Constructor, Method, Field,

2Though not bound to object-orientation, aspect-oriented programming can be thought of as a superset
of object-oriented programming.

22

Pointcut, and Advice. Program elements are related using program relationships: Ex-
tends, Implements, AdvisesFieldAccess, AdvisesMethod, DeclaresOn, MatchedBy, De-
claredParentOn, Declare, DeclarelnterType, UsesPointcut, and Has-a. We then trans-
late Abstract Structure Model (ASM) to construct our codebase. Figure 5.1 represents

such a model in the form of UML class diagram.

. includes
Project Package
lnclt'zdes
Y
Aspect Interface |_/MPlements| Cjaqg File
T
L Includes
\V
instanciates < A
Includes Includes jsExposedTo —; Type
/ \/
\l T extjends
Pointcut 2% | Advice e Includes
Accesses \L/
—] Method | >
[7| Member
Invokes A

E Field [>

Figure 5.1: Description of aspect-oriented programs by high-level constructs.

5.1.2 Query by example

In the following, the query elements of our query language (e.g. quantifiers, aggregate
functions, scalar functions, named-nested queries) are discussed together with examples
to show how they could be applied to code-databases domain. Here we are going to use

23

two predicates, one from the Table 5.1, namely AdvisesInvocation and the other called

Line-Of-code determines how many lines of code each method has.

Quantifiers quantify free variables in formulas. For example, the following query is
using exists quantifier to define the table, representing all of the advised meth-

ods:

Is—Advised=
[Advice advice, Method callee] from
exists [Method caller] where
AdvisesInvocation (advice, caller, callee)

Aggregate functions are the application of a specific set based function which operates
on a multi-valued field, and could belong to sum, avg, count,min, rank (n).
For examp]e; the following query represents the code coverage for each advice
and caller in terms Qf number of times a method invocation from the method(it is
the caller) is advised by the advice. A measure for a certain pair of advice-method
is obtained by adding up the number of times the method invokes another method,

while this invocation is advised by the advice.

Advice—Caller ~Code—Coverage=
[Advice advice, Method caller , count(Method callee)] where
AdvisesInvocation (advice , caller, callee)

A complex example, combining quantifiers, aggregate functions, and connectives,
is retrieving the number of classes in packagel having at least one inter-type de-

clared field by aspectl which is defined by the following query:

24

[count (Class class)] from
exists [Field field , Aspect aspect] from
packagel includes class and
DeclaresMemberOn (” aspectl™, class, field)

Scalar Functions are predefined functions, such as standard mathematical operators
(+, -, *, /), and can be used to map atomic inputs to outputs in the query formula.
For example the following query represents the code coverage, for each aspect in
a class. A measure for a certain pair of advice-method is obtained by multiplying
the number of methods invoked from the class by their associated line-of-code

(LOC), while this invocation is advised by an advice from the aspect.

Advice—Callee —Code—Coverage=
[Aspect aspect, Class class ,sum line —-Of-—code by (aspect, class)l
from

exists [Advice advice, Method caller ,Method callee] where
callee has—number—of—iines line —Of—code
class2 includes callee and
aspect includes advice and _
AdvisesInvocation (advice, caller, callee)

Named-Nested queries are used to encode complicated query logics by breaking it
into modular units; that is, predicates which themselves, could be nested inside
other predicates in a way that both queries (outer and nested) can share some
variables. For example, in order to know the classes which have fan-in of more
than 5, instead of writing a new query one can easily break it into the following

two queries:

Class —Fan—In—Greater —Than—5=
[Class class]
from class—Fan—In(callee ,fan—in)

25

l where fan—in>5

while the query to obtain the fan-in of classes could be written as:

Class—Fan—In=
[int count(Method callee) as fan—in] from
exists[Method caller] where
Invokes(caller, callee) and
class includes callee

In the first query, the variable ’class’ in the nested Class-Fan-In is not anymore
free; that is, it is bound to its value in the outer query. In another example one
could derive a query from the Class-Fan-In, to obtain packages in which only

classes with fan-in of at least 5 exist:

[Package p] from
forall [Class class] from
class~Fan—In(callee ,fan—in) where
fan—in>5 and
package includes class

In this query, the variable class in the nested Class-Fan-In is bound to its value in

the enclosing quantifier (forall x1).

5.2 Visual query compositions

Visual queries are constructed by dragging the elements from toolbar in the query
composition view. More detail regarding applying the tool in the Chapter 7. Each
figure in the rest of this subsection represents applying one operation at a time, while

subfigure (a) represents the visual query and (b) represents the result in tree format. In

26

each subfigure (a) and (b) the large solid arrow represents the transition before and after
applying the visual operation (i.e. drag-and-drop).

In the beginning, there is no element dragged into the query composition view. Since
no element is requested to be shown in the query result and the formula is not explicitly

mentioned, this view is equivalent to the query:

from [] where true

meaning that select nothing from a query result set which every combination of tuples
is an answer to the query. Dragging an icon of a programming language element from

the toolbar into the view, the result view will be equivalent to the query:

from [ProgrammingElement pe] where true

In this case the query answer will be all program elements of that type. The follow-
ing is a brief description of actions available besides graphical model based on their

equivalence to algebraic query operator:

A cartesian producf of instances of two programming element types is obtained by
dragging their icons from the toolbar into the view. One can define a cartesian
product of types interactively by dragging icons into the area while not connecting
them with a relationship. All newly created disconnected subgraphs are elements
of the cartesian product and the query result corresponds to all combinations of

program elements of those types. This view is equivalent to the query:

from [ProgrammingElement pel,pe2,....] where true

27

A join (combination) combines information of two types (e.g classes and aspects) based
on a relationship between instances of those types. It is graphically performed by
dragging the icon of two programming language elements from the toolbar into
the view (like cartesian product), and dragging a specific arrow from one end to
another which represents the semantic relationship between those. For example
in Figure 5.2 the developer combines the information from the query representing
the intertype methods (see Section 2.3) declared by an aspect into a class to the
query which represents an aspect which introduces a parent for the class. This is
done by dragging and dropping the corresponding icons on each other and results
in finding the classes which have a parent and a method declared in them by the

same aspect. This view is equivalent to the query:

from [ProgrammingElement pel ,pe2,....] where
pel relationship pe2 and

A quantification operation is performed by dragging a programming element type which
is currently free, into a quantifier box. This is also called constraint since it se-
lects instances of those programing element types staying out of the quantifier box
while limiting them to those satisfying the applied quantifier. Precisely speaking,
it selects those elements having at least one instance (for existential box) or having
all instances (for universal box) of quantified types participating in the original re-
lation with them. A sample of applying quantification operation is demonstrated

in Figure 5.3. In this figure the query selects the methods and aspects for which,

28

£2% aspect

@ dass

intertype method parent declaration

parent declaration

3

(a)

“ implements
& DeclaresMemberOn @ Button

Q subject
£ SubjectObserverProtocol (3 Colortabel

+
Q Subject '6 Q Observer
\&

& Subject.addObservert(..)
& Subject.removeObserver(..)

A Subject.getObservers()
) SubjectObserverProtocolmpt *mz
A e €D subjectObserverProtocol
A - @ Button
Q Subject

& SubjectaddObserver(..)
& SubjectremoveQbserv..
A SubjectgetObservers()
€3 SubjectObserverPratacoimpt
Y —

(®

Figure 5.2: Visualization of a join operation.

29

edists o @y aspect

¥, " intertype method @ dass

o # o

{63 subjectObserverProtocol

3 sutton 6} SubjectObseverProtocol
A SubjectaddObserver(..) & SubjectaddObserver(..)
A SubjectremoveObserver(...) & SubjectremoveObserver(..)
& SubjectgetObservers)) L A SubjectgetObservers)

@ Colortabel Projection| 4 ouserversetubject(.)

A ObserversetSubject(..) ’ A ObservergetSubject()
A ObservergetSubject() €3 SubjectObsarverrotocolimpl
(&3 SubjectObserverProtocolimpt
A ButtongetData()
© suron 4 ColorLabel,
A Button.getData() 0 update()

& ColorLabel.update!)

(®)

Figure 5.3: Visualization of a quantification operation.

there exists a class whose method is declared by the aspect.

A summarization (aggregation) is done in two steps. First, it takes the table from
a specific state, cuts out aggregated columns, which results in a bag (a relation
with multiple equal tuples). Then, it packs the resulted bag and makes a new
non-normalized relation with multi-value aggregated fields. Second, it applies the
aggregation function (set based function) on the instances of each multi-valued

field separately. Set based functions could be one of {sum, avg, count, min, and

30

interface

incliddes
A mMmethod a‘ a
1€R subject]
& 3ddObserver(Observer) Summarization “ Q2
- rf . e & removeObserver(Observer) # q Observe r (3 methods)
interrace & getObservers() .
Q o Q Subject {3 methods)
server -
& setSubject(Subject)
& getSubject{)
A update()

(b)

Figure 5.4: Visualization of a summarization operation.
rank(n)}. A sample of applying summarization operation is demonstrated in Fig-
ure 5.4. In this figure, after summarizing multiple method instances in each cell in
the Method column using the "count’ aggregation function, the number of meth-

ods per interface is obtained in the result.

A selection selects a subset of tuples satisfying a user defined formula composed of
unary or binary predicates, Boolean algebraic operators, and numeric algebraic
ones (e.g. < and =). These algebraic operators are applied to atomic values
of instances to test if they exist in the new selection or not. This operation is
graphically done by assigning the boolean expression as the alias of the dragged
type. A sample of applying selection operation is demonstrated in Figure 5.5. In
this figure, selection is applied based on the name attribute of the *interface’ using

’hasName’ predicate, and resulted in a new table limited to *Observer’ interface.

A drill-down is an special case of join operation which is done on a special type of

31

interface
inclydes
4 method

!

interface

& method

(2)

a2 "Observer”

% o

)ﬁ Subject

1€} Observer

& update(

& 2ddObserver(Observer)
A removeObserver(Observer}
& getObservers()

4 setSubject(Subject)
A getSubject()

A 21
Selection @ovserer |
—

A setSubject{Subject)
A getSubject(}
A update)

(b)

Figure 5.5: Visualization of a selection operation.

{#8 package

“ Qi

£ observer(6 files)

DrillT hrough

% o

{88 observer
SubjectObserverProtocol java
@ SubjectObserverProtocolimpl...
ColorLabel jav a
% Buttonjav a
Subject java
Observerjav 2

(®)

Figure 5.6: Visualization of a drill-down operation.

relationship called ’includes’ which states the containment relation between pro-
gramming elements. 3 This operation joins the higher level of hierarchy with
values of the lower hierarchy level, based on containment (or inclusion) relations.
A samplé of applying drill-down operation is demonstrated in Figure 5.6. In this

ﬁgure; developer drills-down the packages in the system to see the types inside

each package.

3Modular containment relationships (or inclusion relations) can be expressed in terms as a hier-
archy with the level sequence, composed of first participants of ’includes’ binary relationships (e.g.

filel—aspectl —pointcutl). For example a member rolls up to Interface, Aspect and Class.

32

5.3 Query result representation

There is a set of visualization methods which we used in order to show up the result
data. Their variety will optimize the amount of effort needed to find specific information

by the user. These representation forms are table, bar chart, graph, and tree:

Tabular view is the most basic view which represents the query result as set of rows
without applying any special formatting. Each tuple is basically shown as a row
in a table. This view is beneficial while exploring an overall measurement of the

program. Figure 5.7 shows an example of tabular view.

0! cips.gef., ; e
& org.eclipse.gef .ui.stackview 10

| B8 org.eclipse. gef .ui.console 1.0

"‘ W org.eclipse,gef internal.ui.palette. editparts 0.92

| 8 org.eclipse.gef .ui.actions - 0.9166667
| 88 org.eclipse.gef editpolicies . 0.9142857

\ ¥ org.eclipse.gef .ui.palstte. customize 0.9130435

B8 org.eclipse.gef.internal,ui.rulers 0.8214286

Figure 5.7: The query result represented in tabular view.

Bar chart view lets us have an overall view of numerical based query (A query which
has a numerical value in a column of its result). It represents a numerical value
in the query result in terms of a other values including programming language

33

elements. For example it can show the amount of effect each aspect has on each
class in the system by showing a bar whose height is proportional to the lines of

code affected in the class. Figure 5.8 shows an example of bar-chart view.

Figure 5.8: The query result represented in bar chart view.

Graph view provides a more natural way for a user to navigate to the query result, be-
cause not only information about the components themselves is represented, but
also the felationships between those are also captured. For example, the hierar-
chical relationship between packages, classes, methods could be shown in a graph

viewer. Figure 5.9 shows an example of graph view.

Tree view is able to represent the result in a hierarchical fashion. Here the user is able

to expand and collapse each node. Figure 5.10 shows an example of tree view.

UML like view uses a combination of labeled graphs and textual annotations, and could
be used to display elements, details, and relationships in software engineering
documents. This approach is inspired by Uniﬁed Modeling Language (UML) and
itis also adopted in the ActiveAspect [22] tool. This view is good when users want

detailed information about the result. Figure 5.11 shows an example of UML-like

34

Figure 5.9: The query result represented in graph view.

view.

35

org.eclipse.gef . editpolicies
- Y% 0.9142857

org.eclipse.gef internal.ui.palette editparts
P% 0,92
=8¢ org.eclipse.gef internal.ui.rulers
i et 08214286
-8 org.eclpse.gef.ul.actions
LY 0.9166667

2 EE org.eclipse.gef . ui.conscle
. Lt 1.0
| = Q org.eclipse.gef .ui.palette.customize
L | % 0.9130435
. E org.eclipse.gef . ui.rulers

& # org.eclipse.gef. ui.stackview
; e 1.0

#A Unstable packages [B]

B org.eclipse.gefiubinilers .
¥2.10
8 orgeclipsa;gef.ui stackvlew
Y% 1.0
ﬂ q,cdlpse gef. ul c sole
!w: edtpu oof krulers
[} org: edipse g8k, Li stad«few
B org achpss. gef e Consle . .
!uoacww nmupdmae&pamﬂ
;) - 8 orgrecknse. gef i, actions ; T
Eorg aclipse(gef ed:tpoltaes]] 'Wﬁ””w : % 1.0
Vi 0.9142857 ' B orechpss e et oo i
2 i org:ectbse. gef.inbemal, ui.ruiers . “aly1e
% 0.92
Y2 09130435 - i] Y 0.9166667)
2 org. odlpse;. ,lntemal ul, rulers L Y 0.5142857)
V4 08214286 L : 470,913043
: Y 0.8214284
(a) Attached view. (b) Detached view.

Figure 5.11: The query result represented in UML-like view.

36

Predicate Arguments Meaning
(project, package)
_§ (package, file)
E Includes (ﬁle, interface/- A program element (e.g. a method) is
é) class/aspect)
(type, method/field) structurally included inside another
program element (e.g. a class)
(aspect, pointcut/ad-
vice)
Extends (type, type) class/aspect/interface extends another
% class/aspect/interface
O | Implements (class/aspect, inter- | class/aspect implements an interface
face)
Accesses (method, field) A method gets or sets the value of a
field
Invokes (method, method) A method invokes (i.e. send a message
to) another method
AdyvisesInvocation (advice, method, | An advice advises an invocation of a
method) callee method by a caller method
AdvisesFieldAccess (aspect, method, field) | An advice advises a method which is
Iy accessing a fleld
g DeclaresMemberOn (aspect, type, member) | An aspect declares intertype member
‘ (i.e. method or field) into another type
DeclaresParentOn (aspect, type, type) A supertype is defined for another fype
by an aspect through intertype declara-
tion
DeclaresImplementsOn| (aspect, class/aspect, | A rype is defined to implement tan in-
interface) terface by an aspect through intertype
declaration
MatchedBy (pointcut, method, | A call site, identifying a caller method
method) and a callee method is matched by the
definition of a pointcut
UsesPointcut (advice, pointcut) An advice uses a pointcut to define a set
of join points
ControlsInstantiationOf| (class, class/aspect) A pointcut is used to define control the
instantiation of an aspect
ISEXpOSCdTO (type, advice) An instance of a type is passed through
context exposure to an advice block

Table 5.1: List of logic predicates available in the codebase and their corresponding
description.

37

Chapter 6

Deploying query composition to

analysis and measurement

In this Chapter, we discuss the application of our query approach two perform two tasks:

structural analysis and measurement of software.

6.1 Structural analysis queries

Structural analysis queries are built in order to extract knowledge about the static
structure of a program, like inheritance relationships, dependencies between modules,
etc. This category of queries also constitutes the basis for measurement queries dis-
cussed later. Examples of these rules are: types depending on other types, methods
accessing local fields, the depth of an inheritance tree, methods advised by a point-

cut, and virtual method calls (i.e calls made on behalf of the overriding method by an

38

overridden one in the super class). We illustrate some detailed examples of structural

analysis queries below.
6.1.1 Identifying virtual method calls

One of the most important features of OO ‘methodology is polymorphism. In many
cases a behavior is executed from a class which is not lexically defined in the class itself.
This behavior could have been defined in any ancestor of the class!. In this case it is
desirable to know the calls made on behalf of the overriding method by an overridden
one in the super class. Table 6.1 shows a query to retrieve the source and target methods

the virtual calls.

[Method ml,Method m2] where
ml calls m2 or
(ml calls mSuper and
"m2 overrides mSuper)

(a) Textual query. (b) Visual query.

Table 6.1: Query to obtain the polymorphic virtual calls from one method to another.

6.1.2 Types/methods depending on other types/methods

There are situations where we want to identify the dependency between methods
or modules (for example in retreiving metrics such as fan-in and fan-out). In case of
method dependency, we consider a method is depending on the other one if it actu-

ally or virtually (see Table in subsection 6.1.1) calls it. This is encoded as a query in

1Being an ancestor in this context means any type in the inheritance hierarchy which is in the transitive
closure of parent relationship with the type

39

Table 6.2.

[Method ml,Method m2] where a ml
polyCalls (ml,m2) polyfalls
a m2
(a) Textual query. (b) Visual
query.

Table 6.2: Query to obtain the dependency between methods.

In case of type dependency, we considered a type dependent on the other one, if one

of the following conditions holds between them:
1. typel inherits from type2 (type2 is super type of typel).
2. typel has a field of type2.
3. typel has-a method whose return type is type2.
4. typel has a method which has a parameter of type2.
5. typel has a method which throws exception of type2.
6. type2 has a method called by a method in typel.
7. typel reads or writes a field of type2.
The type dependency is encoded as a query in Table 6.3.

6.1.3 Methods accessing local fields

In many cases, it is important to know the methods accessing a field. For example
in computing incoming dependencies of a field, the number of accessing methods is

40

[Type dep, Type t] where t isSupertypeOf dep
or exists[Field f] where
dep hasField f and f hasType t
or exists[Method ml] where dep hasMethod ml and
(ml returnsType t
or exists[Method m2] where
t hasMethod m2 and ml calls m2)

(a) Textual query.
or

(b) Visual query.

Table 6.3: Query to obtain the dependency between types.

41

important. Also sometimes, it is important to know if there is any write access to a field
while another method reads the same field. Although accesses is defined as a primary
predicate in our system, we construct two other important compound predicates based

on it:

1. accessesLocalField: Table 6.4 identifies methods accessing field ’f’ defined in the

same type as the methods.

2. accessedField: Table 6.5 returns all fields accessed by a local method

accessesLocalField (t ,m,f)::=
[Type t, Method m, Field f] O
where
m accesses f and g re
t declares m and aal
t declares f acd
a a3
(a) Textual query. b) Visual
query.

Table 6.4: Query to obtain the methods accessing a local field from a type.

| accesseslocalField

[Type t,Field f] from
exists [Method m] where
accessesLocalField (t,m,f)

(a) Textual query. (b) Visual query.

Table 6.5: Query to obtain the fields accessed by a local method.

42

6.1.4 Methods accessing the same field

In some cases we need to know the distinct methods within a class, which access the
same field. The query sharingFieldMethods in Table 6.6 identifies methods in the same

type and accessing a common field 'f’.

sharingFieldMethods(t ,ml,m2)::=
[Type t,Method ml, Method m2] from
exists [Field f] from
ml accesses f and

t declares ml and A mi a m2
m2 accesses f and ! ac os

t declares m2 and a f

ml != m2

(a) Textual query. (b) Visual query.

Table 6.6: Query to obtain pairs of methods accessing a common field.

6.2 Measurement queries

The provision of measurements is vital to software development and maintenance.
There exists many scenarios in which developers and maintainers need to select and
view specific modules having certain measures. One common example is extracting
information on the quality and the complexity of the program. Often the complexity of
a system depends on a number of measurable attributes such as inheritance, coupling,
cohesion, polymorphism, and application size. In this section we are going to investigate
the applicability of the proposed query language to perform program measurement. This

is done through providing a library of OO measurements encoded in our query language.

43

The following measurement queries are based on some of the metrics presented in [6,

44, 65].
6.2.1 Queries about cohesion

One of the most important metrics in OO context is obtaining the cohesion of the
modules in the system. Informally a cohesive type would be one whose methods are
strongly related to perform a specific task leading to a more focused module. In other
words, the class is said to have high cohesion if its methods are similar in many aspects.
This is usually a good indication that the class’s methods perform a variety of unrelated
activities. Currently, there exist more than one formal definition for cohesion, however
all approaches consider non-cohesive methods, those which often using unrelated sets

of data.

Lack of cohesion, Chidamber and Kemerer method

One way in which cohesion can be measured is using ’lack of cohesion metric’ (LCOM1)

introduced by Chidamber & Kemerer [6]. LCOM1 is calculated as follows:

Step 1) Consider P and Q as two numeric variables equal to zero.

Step 2) Take each pair of methods in the class. If they access disjoint sets of instance
variables, increase P by one. If they share at least one vériab]e access, increase Q

by one.

44

Step 3) LCOM1 is computed as follows:

P-Q ifP20Q,
LCOM1 =

0 otherwise.

Step 4)

cohesive if LCOM1 =0,
A class is

incohesive if LCOM1 > 0.

Thus, classes with higher LCOM1 values are attempting to achieve many different
objectives, and behave in less predictable ways than classes that have lower value. We
formulated the LCOM1 metric already defined in the literature in our query language as
shown in Table 6.7. The reader should notice that "distinctMembers’ and ’shareField’

queries are reused from section 6.1.

Lack of cohesion, Henderson-Sellers method

Another method to retrieve the cohesion of a type is discussed in [44]. The underlying
intuition of this method is the same as the one discussed earlier, which means a class is
cohesive if many methods accessing the same fields in it. However the formulation is a
bit different, as follows:

Consider, function accessNum(f) which computes the number of methods that access

45

let int n be(

(count by(Method ml, Method m2) where
distinctMembers(t,ml,m2) and
not(shareField (t ,ml,m2}))

)

(count by(Method ml, Method m2) where
distinctMembers(t ,ml,m2) and
shareField (t ,ml,m2)

)

)2

[Type t, int result, if n < O them 0O else n]

(a) Textual query.
{ Typet, int result, if n < 0 then 0 else n

V% add (n1-n2)/2 as measure

1% count by[Method m1, Method m2] as n1 14 count by[Method m1, Method m2] as n1

(b) Visual query.

Table 6.7: Query to obtain Chidamber and Kemerer Lack of Cohesion.

46

each field (f). Then take this function’s mean over field f in set of fields in class (call
it averageAccessNum()). Also compute the total number of methods in the class as
methodNum.

This is formally denoted as:

1. methodNum = number of of methods in class
2. accessNum(f) = number of methods that access field f

3. averageAccessNum = mean of accessNum(f) over f

'We then define LCOM of the class under consideration to be:

(averageAccessNum — method Num)

LCOM_qss =
class (1 — method Num)

We formulated this metric in our query language as shown in Table 6.8. Readers
should keep in mind that ’accessesLocalField’ and ’accessedField’ queries are reused

from section 6.1.

Lack of cohesion in packages

Another important case of applying cohesion metric is in calculating the package cohe-.
sion.

Package cohesion is defined as the average number of outgoing dependency of the
types in that package. The query ’packageRelationalCohesion’ shown in Table 6.9 is
encoding this logic. This query is composed of an inner and an outer query. The inner

47

[Type t,
float ((r-m)/(1-m) as measure)] from
[float avg m by(Field f) as r] from
[int count by(Method me) as m] where
accessesLocalField (t,x,f) and
accessedField (t,f) and
accessingMethod(t ,me) and
t hasMethod m and
t hasField f

(a) Textual query.

; 9 accessingMethod(t,m) Pl accessedField accessestocalField

(b) Visual query.

Table 6.8: Query to obtain Henderson-Sellers lack of cohesion metric.

48

query calculates the outgoing dependency of each type in the package, which is the
number of types that the type is depending on. The outer query computes the average of

those outgoing dependencies over all types in the package.

[Package p,
(avg of result by (Type t))] from
[int count by(Type s)
as result] where
p includes s and
t dependsOn s and
p includes t;

(a) Textual query.

€) packageCountDependencies

p 1% result

(b) Visual query.

Table 6.9: Query to obtain pairs of methods accessing a common field.

6.2.2 Queries about dependencies and coupling

One of the most important metrics involved in software components is the degree
of mutual dependence between them, known as incoming/outgoing dependency or af-

ferent/efferent coupling. In this subsection we focus on queries to retrieve the amount
of coupling between different parts of the system. Since each program/system element

can depend on other ones in many different ways, there could also be different types

49

of coupling metrics defined on various programming elements and different relation-
ships among them. For each type of programming language elements we considered a
separate coupling metric formula. For example we defined a coupling metric formula
for the following types of elements: package, type, method, field. Each type of ele-
ment depends on other types in a different way, however we extracted the definition of
’dependency’ using ’depends’ predicate (see subsection 6.1.2).

As an example the queries for package incoming dependency and package outgoing
dependency are are represented in Tables 6.10 and 6.11 respectively. Other types of

dependency are discussed in the subsequent subsections.

[Package p,
count by(Type t)] where
-p mnot includes t and
exists[Type s] where
p includes s and
t dependsOn s

(a) Textual query. (b) Visual query.

Table 6.10: Query to obtain the number of incoming dependencies for each package.

[Package p,int result] from
[int count by(Type t)
as result]
where
p includes t and
exists[Type s] where
p includes s and
t dependsOn s

(a) Textual query. (b) Visual query.

Table 6.11: Query to obtain the number of outgoing dependencies for each package.

50

Type incoming dependency

The incoming dependency of a type is the number of types that depend on it. Recall
from subsection 6.1.2 that the "dependency’ relationship, in case of types, can originate

from one of the following cases:

1. Content coupling: one type accessing local data of another type.

2. Common coupling: types share the same global data (e.g. a global variable).

3. External coupling: types share an externally imposed data format.

4. Control coupling: a method from one type is calling another one in the other type.

5. Subclass coupling: the class is connected to its parent (not vice versa).

High afferent coupling of type indicates that the type has many responsibilities, and,
thus changing it, relatively affects more parts of the system. We formulated this metric

in our query language as shown in Table 6.12.

[Type t, int count by(Type t2)]
where t2 depends t;

(a) Textual query. (b) Visual query.

Table 6.12: Query to obtain the incoming dependency of a type.

Method incoming dependency

The method incoming dependency metric (also called as the ”fan-in” of a method) is
the number of methods that depend on this method. While the query for calculating this

51

metric is very similar "type incoming dependency’ the definition of "depends’ predicate
in this case is different. Methods depend on each other if there is an actual or virtual call

between the two methods. We formulated this metric in our query language as shown in

Table 6.13.

count(m2) as result
[Method ml, | .
int count by(Method m2) as r¢sult]

where m2 dependsOn ml

A m2

(a) Textual query. (b) Visual query.

Table 6.13: Query to obtain the ’fan-in” of a method.

Method outgoihg dependency

The method outgoing dependency metric (also called the “fan-out” of a method) is the
number of methods that this method depends on. The ’depends’ predicate is the same
as the one in method incoming dependency’. We formulated this metric in our query

language as shown in Table 6.14.

[Method mli,
int count by(Method m2) as result]
where ml dependsOn m2

(a) Textual query. (b) Visual query.

Table 6.14: Query to obtain the “fan-out” of a method.

52

Field incoming dependency

Similar to other types of incoming dependency metric, the incoming dependency of a
field is defined as the number of methods that access it. We formulated this metric in

our query language as shown in Table 6.15.

[Field f,
int count (Method m) as result]
where m accesses f

(a) Textual query. (b) Visual query.

Table 6.15: Query to obtain the number of incoming dependencies of a field.

6.2.3 Instability of packages

Instability of a package is defined as the number of outgoing dependencies relative
to the total number of dependencies. As a result there is an reverse-proportional rela-
tionship between ’incoming dependency’ and ’package instability’. For example when
’incoming dependency’ value is 0, so the instability is 1 (maximum instability). When
the instability of a package is high, it will be easy to change it because there are less
packages in the system using it, and, therefore less packages should be modified accord-

ingly. We formulated this metric in our query language as shown in Table 6.16.
6.2.4 Abstractness of packages

Abstractness of a package is a measure of what portion of the package is composed
of abstract types. It is formally defined as the number of the package’s abstract types

53

[Package p,

float ecoupling/(ecoupling + acoupling)

as instability] from
efferentCoupling(p,ecoupling) and
afferentCoupling(p, acoupling)

| where ecoupling + acoupling > 0

14 ecoupling 14 acoupling

(b) Visual query.

Table 6.16: Query to obtain the the amount of instability of a package.

relative to the_total number of types in it. A good design is likely to produce a highly
abstract and stable .paékage. The reason is that a good abstract package is likely to be
used by many concrete ones, resulting in a high incoming dependency and stability.
In contrast a low abstract package would contain many concrete classes with a high
external dependency and, therefore becomes more unstable. We formulated package

abstractness metric in our query language as shown in Table 6.17.

54

[Package p,
float if i > 0 then j / i else O as result]
from
[p,count by(Type t) as i] where p includes t

s{p,count by(Type t) as j] where p includes t
where

t hasModifier ”abstract”

(a) Textual query

(b) Visual query.

Table 6.17: Query to obtain the abstractness of a package.

55

Chapter 7

Automation and tool support

For a proof of concept, we have implemented a prototypical tool as an Eclipse plug-
in to allow maintainers to examine their own software systems. This tool supports
storing programs from two. programming paradigms, namely object-oriented (Java) and
aspect-oriented (AspectJ [7]). Our tool deploys a small in-memory database engine with
volatile storage to execute the queries. There are a certain number of tasks, which need
to be accomplished via the implementation of the suggested mechanism. This includes
determination of source code to be analyzed, mapping graphical notation to queries and
vice versa, processing the queries and obtaining the result, illustration of the result us-
ing desired visual construct. This implement;tion could be done in different ways for
example as stand alone application, IDE plug-in, or using existing CASE tools. We
chose the second approach for two reasons: 1) Eclipse is highly used by developers and

choosing this approach will allow them to use our tool without having to switch between

56

different IDEs. 2) We were able to use existing Ul components and frameworks, such
as tree views, graph layouts, and graphical editing framework globally available. Thus,
we used Eclipse [7] as our platform which has a rich set of plug-ins and frameworks
available for open source development.

The tool is architecturally composed of three separate components, each deployed as
a separate eclipse plug-in listed below, each will be described in the subsequent sections

of this Chapter:

The fact extractor reads the source code and assembles a model (creates a database)

composed of a collection of nodes and relations (facts).
The textual query interpreter parses the queries according to the query syntax.
The visual query editor is used to assemble queries by drag-and-drop operations.
The result viewer is capable of representing the query result in different formats, such

as graph, tree, and table.

7.1 The fact extractor

The fact extractor reads the source code and assembles a model (creates a database)
composed of a collection of nodes and relations (facts). The transformation process
from source code to facts is transparent to the users and is done in three steps. First,

the AST corresponding to each compilation unit of the program (.java and .aj files) is

57

retrieved and traversed. Second, the abstract structure model (ASM) of the program! is
retrieved and traversed. Third, the extracted information from these steps is translated
to facts. These facts are then added to the model and used during the query execution
process. Traversing the AST is performed by depth-first traversal deploying the Visitor

design pattern.

Figure 7.1 depicts the storage of a sample program, by placing nodes based on in-

clusion relationship (direct lines) and depicting AO and OO relationships among them

afterwards (dashed lines).

F File

A Aspect
C Class
M Method
FId Field
P Pointcut
Ad Advice

Figure 7.1: A storage of a sample source code in the codebase, representing nodes and
relationships between them.

IThe abstract structure model (ASM) of a program, currently part of Aspect] compiler [4], concep-
tualizes programs in terms of high level programming constructs (e.g. aspect, method, and class) and
the relations between them. For example, in aspect-oriented program it contains structural information
obtained after parsing joinpoints.

58

7.2 Implementation of the visual query editor

Figure 7.2 Shows the overall structure of visual query composer plug-in and its de-

pendencies to internal eclipse libraries (mainly GEF).

(<SGER>> | e N
editpolicies f <<GEF>>
: e w— | commands

Figure 7.2: The overall structure of visual query composer plug-in and its dependencies
to internal eclipse libraries.

Figure 7.3 shows the internal structure of visual query composer. Most of the pack-
ages extend classes from corresponding GEF packages with the same name. The overall
interaction of our query composition plug-in is similar to any other GEF based applica-

tion as follows:

1. Asking the current figure which the mouse is operating on and finding its corre-

sponding controller object (also called EditPart in GEF terminology).

2. Asking the Editpart to show feedback and hints based on their role in the interac-

tion.

3. Generation of a request as a result of user interaction and sending it to Editparts.
Requests are generated by either tools in the palette (e.g selection tool) or actions
in the popup or toolbar (e.g delete).

59

4. Asking the Editpart to return a command for the given request. This command is

encapsulating changes to the model.

5. Putting the command on the application command stack.

6. Picking from the command stack and executing it in a way that can be undone and

redone by the user.

Figure 7.3: The packages of visual query composer tool.

7.2.1 Model package

The model is a set of data structures that support diagramming needs and are used as
a backbone of graphical notation. The model is responsible for keeping different views
such as the query tree view, calculus based editor, and graph based query composer
synchronized using a notification mechanism. It also helps in persisting the graphical

queries. The structure of model package is shown in Figure 7.4. QueryElement,

60

Subquery, Reference, and QueryDiagram are main domain model classes.
QueryElement is visual representation of a programming language element that
could be used in query’s yisual representation. QueryElement instances are added
to the model by dragging and dropping their corresponding graphical symbol from
the palette into the query diagram. A Reference is the connector between two
QueryElements which is shown in the diagram using an arrow between two sym-
bols and is conceptually representing a predicate applied to two terms. A Subgquery is
representative of an abstract query and is a tool to reuse the already defined queries as
predicates. Its graphical representation is a box, containing the QueryElements (free
variables of subquery) introduced in its query. Each of its sub-elements is reusable in
the outer query. QueryDiagram class represents the whole model by using a single
instance (singleton pattern) as the parent of every QueryElement instance in the dia-
gram. Object of type QueryDiagramis not visualizeable, however it is used to obtain
the rest of diagram when visualization, execution and transformation of visual query
to textual representation. Figure 7.4 shows the data structure of the model in terms of

classes and their relationships.
7.2.2 Actions package

This package contains the actions usually displayed on the toolbar, menubar, or popup
context menu. This package is responsible for assigning the general actions such as redo,

undo, and delete their corresponding icons in toolbar and context menu.

61

AbstractQueryElement

I

Reference source QueryElement

i

D Subquery
QueryDiagram —{> ParallelRelation

target

type

TypeAssociation

Figure 7.4: Data structure of model in terms of classes and their relationships.

7.2.3 Figures package

Classes of this package are used to make a view of the model by extending and using
"draw2d’ ﬁgures._ Each figure class is corresponding to a model class and encapsu-
lates the way the model objects should be dfawn. These figures are either composite
(e.g a box) or simple (e.g. labled icon). For example each Subquery instance in the
model is associated with a SubqueryFigure and this figure may have children of

type QueryElementFigure.
7.2.4 Parts (controller) package

The controller in GEF terminology is called EditPart. Classes in parts package
are controllers responsible for editing the model based on user interactions and update
the view accordingly. Usually there exists one controller per visualized model object,
meaning that there is a reference between each controller object and a model object

from one side and a figure object from the other side. Moreover EditParts could

62

reuse some logics by instantiating helper classes from policies package.
7.2.5 Policies (controller helpers) package

Editparts contain helpers called EditPolicies, which are common editing
logics reused for the editing task. These policies determine how the requests originated
from user actions are handled. Such request could be dragging and dropping, selecting,
direct editing, deleting, moving, resizing, copying and pasting a component or con-
nection or changing connection endpoints. These policies will generate model-change
logics encapsulated in commands which is then returned to the user and stacked to be

processed by the Ul engine.
7.2.6 UI package

This package is the main point of interaction of user interface with Eclipse. It contains

the code for graphical editor, its palette, and query composition wizards.

7.3 Implementation of the textual query editor
7.3.1 Textual query parser

Java Compiler Compiler (JavaCC [10]) is the parser generator we used for encoding

the query language grammar. Because JavaCC is a top-down parser, left-recursion is not

63

allowed in the grammar specification. It accepts a LL1 grammar 2 and token specifica-
tion using regular expressions as an input and generates the tokenizer and parser in Java
language. The reason we used JavaCC was the language compatibility with the rest of
the frameworks used. While parsing the query the AST of query is made using JJTree,
which is an additional tool for making user defined parse trees. The resulting tree is
mapped to operations on model according to the semantics defined in the interpreter.
The maximal structure of parsed query in terms of the nodes of its AST is demonstrated
in Figure 7.5.

In order to show the Backus-Naur form (BNF) of the grammar in our implementation,

we follow the convention of the BNF definition shown in table 7.1.

Form Meaning

<SYMBOL> | SYMBOL is a definition of token and must be substituted
SYMBOL SYMBOL is reserved word or symbol and must be typed as it is
S1]8S2 either S1 or S2 can be used

(SYMBOL)? | SYMBOL is optional

(SYMBOL)* | SYMBOL may appear zero or more times

(SYMBOLS) | grouping SYMBOLS as one unit for high precedence

Table 7.1: BNF convention used to represent the query language grammar.

There are five token definitions: <EOF> for end-of-file; <IDENTIFIER > for identi-
fier; <INTEGER_LITERAL> for integer constants; <FLOAT_LITERAL> for floating

constants; and <STRING_LITERAL> for string constants.

(QueryExpression) — (Projection) ;

2AnLL parser is a top-down parser which parses the input from Left to right, and constructs a Leftmost
derivation of the sentence (as opposed to LR parser). LL1 parsers use one token of look-ahead when
parsing a sentence and, thus, only need to look at the next token to make their parsing decisions (although
JavaCC is not limited to this pure definition).

64

(Projection) — (Projector) (from (Projection) | (Selection)) | (Selection)
(Selection) — where (Term) [group by (ExpressionList) (Packing)]

(Projector) — ({(QuantifierOperator))? [((VarDeclarationList))?]
(Quantiﬁerdperator) — forall | exists

(VarDeclarationList) — (VarDeclaration) (, (VarDeclaration))*
(VarDeclaration) — (UIDENTIFIER) (IDENTIFIER)

(Term) — (ConditionalAndTerm) (or (ConditionalAndTerm))*
(ConditionalAndTerm) — (EqualityExpression)(and (EqualityExpression))*
(EqualityExpression) — (RelationalExpression) ((== | !=)(RelationalExpression))*
(RelationalExpression) — (Expression) ((< | > | <= | >=) (Expression))*
(Expression) — (MultiplicativeExpression) ((+ | -)(MultiplicativeExpression))*
(MultiplicativeExpression) — (UnaryExpression)((* | / | %){UnaryExpression))*
(UnaryExpression) — ! (UnaryExpression) | (PrimaryExpression)
(PrimaryExpression) — (Literal) | (PredicateCall) | (Identifier) | ((Expression))

| (Function) | (IfThenElseExpression) | (AggregateExpression)
(AggregateExpfession) — (count| sum| avg| max| min) ((Expression))

(Function) — (sqrt | sin | asin | cos | acos | tan | atan | sinh | cosh | abs)

({(Expression))

3In the non-terminal VarDeclaration the first identifier is the type of the variable and the second is its

name

65

(PredicateCall) —= (Identifier) (Predicate) (Identifier)
(Predicate) — (IDENTIFIER)

(Literal) — (INTEGER_LITERAL) | (FLOATING_POINT_LITERAL) |

(STRING_LITERAL) | null | true | false

(IfThenElseExpression) — if (Expression) then (Expression) else (Expression)

7.3.2 Textual query editor

Building a textual editor for a new programming language is a difficult task. Such
an editor should usually support capabilities such as syntax highlighting, content assis-
tance, error markers, and an integration with outline view. To this end there is already
a few available tool support to automate the text editor construction [18]. From this set
we used the IDE Meta-tooling Platform (IMP [9]) which is specifically implemented as
an Eclipse tool and is able to support developers in implementing the editor services ac-
cording to the defined language grammar and AST representation. It also handles static
program analysis (pointer analysis, type analysis, etc.) in support of the editor services.

We customized the IMP provided editor to match it to the requirement of our envi-
ronment. This first impbrtant capability provided by the editor is syntax highlighting
according to which each piece of text in the editor is rewritten with special color ac-
cording to type of its underlying token. In our case, tokens are divided into keywords,
identifiers and literals; Moreover, literals are divided into numbers and string. Each of
these token types is written with a different color. The collaboration with IMP in this

66

’ASTQueryExpresﬁionNode_l

o/ N \
AR
/ 0'\" 0.1 ASTOMode
y i__ 2
/0.1 xhe
/ 0. ASTNotNode
| ASTVarDeclaration—l 0..

ASTLENode
/ Lo . , ASTGTNode
IASTQuantiﬁerOperator} / L= EqualityExpression |
/ QA ASTLTNode
/ 0..1
ASTEQNode

ASTNENode
>
. ASTGENode

0.1 2

- ASTAddNode
<

'/
/ \ ASTAndNode
/ o.
/ /
9/.1 / &11
/

ASTTrueNode

ASTFaiseNode

0 "i—?fl ArithmeticExpression
- ASTSubtractNode
ASTPredicateCall .
ASTIntConstNode 0.. ASTModNode
LASTFIoatConstNode ASTLiteral ASTDivNode
] 0..1
lASTStﬁngConstNode ASTidentfier ASTMulNode
ASTPri maryExpression]

ASTFunction
ASTAggregateFunction

Figure 7.5: The maximal structure of parsed query in terms of its nodes.

67

case is done by providing the implementation for the ’getColoring” method as follows:

public TextAttribute getColoring (IParseController
controller , Object o)

switch (token.getKind ()) {
case TK_IDENTIFIER:
return identifierAttribute;
case TKNUMBER:
return numberAttribute;
case TK_DoubleLiteral:
return doubleAttribute;
default:
}
}

another important feature of the textual query editor is the integration with Outline
View of the IDE to show the hierarchical structure of the query. This is useful when a
developer wants to see the overall structure of the query specifically in the case of nested
queries. This feature is provided through the IMP Outlining Service.

The editor also gives developers the ability to collapse regions of query which are
marked by little + or - annotations to the left of the text. This feature is implemented |
using IMP Text-Folding Service by defining the nested queries as foldable regions, by
associating the appropriate query AST element which the editor should consider as fold-
able.

A developer is also able to navigate from an identifier within the query to the declara-
tion of that identifier in the query variable declaration section. With CTRL-mouseover
the definition of the variable is revealed and the ‘developer can navigate it later. This
is provided through IMP Hyperlinking Service which supports hyperlinking between
regions of text in editors for the language.

The editor is also able to suggest text completion when provided with a prefix string,

depending on the context in which the keyword is given (’content-assist’ feature). For

68

example, a developer can obtain a list of visible query variables by typing the first few
characters of that variable and then type CTRL-Space followed by selecting one of those
choices and hit return to apply that choice. The same could be done with keywords or
other syntactic constructs. The implementation of this feature is done with help of IMP
Content-Proposer service.

When the cursor is positioned over an appropriate piece of source code in the editor
a pop-up will show up providing the developer with additional help text. For exam-
ple it provides information for variables, showing their declaration. This facility was
implemented through the IMP Hover-Helper service.

Text formatting and automatic indentation is also provided so that a developer can
choose a region and have it formated based on the formatting specification defined.
The formatter has used the IMP formatting specification language called "Box” which
translates the AST to a new textual representation by replacing and modifying non-

important tokens.

7.4 Query result evaluation

We implemented our own libraries for evaluation of calculus-based queries and alge-
braic operators (i.e. selection, join, etc). The query is evaluated by one of the variable
substitution strategies; that is, strategies which assign values to the variables and eval-
uate the final result of the expression based on predicates, quantifiers and connectives.

These strategies have different performances in time and memory and each demand

69

certain query format. For example we used the evaluation approach which stresses in

memory efficiency by pipelining of query result. Listing 7.2 represents the simplified

version of this algorithm adapted for simple conjunctive queries.

public Boolean evaluate (List<Map<Variable ,Object>> varValues)
{
Boolean value;
Variable var=pickNextUnboundVariable ();
if (quantifier of var is free){
// for (each value in the domain of the variable) {
for (value=var.type.getDomain ()){
substitute all occurances of the variable with the value in the formula
boolean result= evaluate (varValues);
if (result is true) {
put the variables values in the answer set
}
}
else if (quantifier of var is existential){
value = false;
Iterator i=TypeDomainMapper.getDomain (var.type);
for (each value in the domain of the variable
&% value != true) {
substitute all occurances of the variable with the value in the formula
Boolean result=evaluate (varValues);
if (result.equals(true)) { value = true; };
}
return value;
else if (quantifier of var is universal){
value = true;
Iterator i=TypeDomainMapper.getDomain(var.type);
for (each value in the domain of the variable
&& value != false) {
substitute all occurances of the variable with the value in the formula
Boolean result=evaluate(varValues);
if (result.equals(false)) { value = false; };
}
return value;
} else {
//formula is now conventional logic composed of only true, false, and connectives
return queryStructure.interpret(variableValues);
}
}
}

Table 7.2: The valgorithm to evaluate calculus-based conjunctive queries.

70

7.5 Query result representation

In this section we discuss the visualization component of the proposal. We discuss
different visualizations and show how they could be adapted to represent the query re-
sult. In eacﬁ approach we mention a reference to an algorithm to faithfully map a table
resulted from a query to the specified view. These approaches could be explored to
enable viewing softwarg: in different levels of granularity and from different perspec-
tives. However, according to the similarities found between them, they can be placed

into either of following categories: Tree view, Graph view, Table View, UML like view.

DeclaresmemberOn
€3 Aspectt
3 Classy
& Method!
Aspectl Classt Method2) Sa::;‘wz
Aspectt Class2 Method2 & Method2
- Method3
Aspecti Class2 Method3 €3 Aspectz
Aspect2 Class3 Method3 @ ciss3
Aspect2 Class4 Method3 A Method3
Aspectz | Classd | Method4 @ casse
A Method3
Aspect2 Class4 Method5 A Method4
& Methods

(@

DeclaresMemberQ
M1EM2EM3 | ME M5

Aspectt classt XX

Aspectl Class2 XiX
Aspect2 Class3 X
Aspect2 Class4 X|XIX

(e) ()

Figure 7.6: Available mechanisms to represent program structures.

7.5.1 Tabular view

The simplest form of 1-dimensional visualization adaptable to represent a query result

is tabular format (Figure 7.6(a)). In this method, the query result is shown by a set of

71

tuples placed horizontally along a vertical axis. Semantically in logic sense, each tuple
in the table is a satisfactory substitution of variables involved in the query formula. More
advanced, the 2-dimensional adaptation of tabular format is pivot table (Figure 7.6(¢)).
Pivot tables are showing the data set by splitting it into two axes instead of one (as
opposed to tabular format). The same information as simple table could be conveyed in
the following manner: at each intersection of each two values from the two axes, there
is a sign representing the existence of a tuple(value) formed by concatenation of the two
values in the total relationship. As a result, the space provided by Cartesian product of
two axes (represented in the rectangular area between the two) is divided into two sets:

existent (extant) and non-existent tuples.

7.5.2 Textual tree views

Textuai tree views (Figure 7.6(d)), used by [1, 69], are another alternative to rep-
resent query results. Transformation to textual tree views is done by mapping between
a query result in tabular format to a hierarchical form. In this approach each column
in the tabular form is associated with a level in the hierarchy. The computation of
parent-child relations is performed according to the distribution of values in columns
using an algbrithm offered in [21]. It offers a way to convert a normalized relation to
a non-normalized form using a recursive application of A-factoring operation. In there,
applying A-factoring operation (denoted by a A(R, A)) with successively smaller lists

A can convert R to a multi-level hierarchical relation. Tree visualizations are able to

72

express the query result in hierarchical format, using a set of nested nodes. For ex-
ample treemap layout (Figure 7.6(b)), used by [59], uses nested rectangles as nodes.
The mapping from a hierarchical format to this representation is as follow: each ele-
ment in the hierarchy is mapped to a rectangle in the view. Children of such element
are represented as rectangles, bounded inside it. An algorithmic solution to calculate
the positioning and border of the rectangles is provided in [17]. An important feature
resulted from the algorithm is that elements having greater number of children occupy
more space in the view, and, thus are more eye catching for an observer. In [59] treemap
layout has been used to represent modular containment between program elements as
well as ”Advises-Invocation” relationship between aspects and classes. Another pos-
sible tree visualizations layout is radial (Figure 7.6(f)) which offers a space efficient

representation of a hierarchy.
7.5.3 UML like view

Box-and-line (UML like) visualizations [46] (Figure 7.6(c)) used by ActiveA-
spect [22] display elements and relationships grouped in the boxes. Each box is rep-
resenting an aggregation of original program elements using icons and labels. For ex-
ample, a single box in this view can contain a package and its classes. The benefit of
this approach is the possibility of reducing the visual clutter by 1) showing the contain-
ment relationships implicitly by representing the parent of containment relation (e.g. a
package) as a box and the child (e.g. a class) as a node inside the box. 2) summarizing
actual relations between inner elements of the boxes to abstract relations between boxes

73

SOP Subject.addObserver(Observer) Button
SOP Subject.removeObserver (Observer) Button
SOP Subject.getObservers() Button
SOP Observer.setSubject(Subject) ColorLabel
SOP Observer.getSubject() ColorLabel
SOPImpl Button.getData() Button
SOPImpl ColorLabel.update() ColorLabel
(a)

DeclaresMemberOn

SubjectObserverProtocol
& Subject
& Subject.addObserver(Observer)
A& Subject.removeObserver(...)
A Subject.getObservers()

- q Observer

& Observer.setSubject{Subject)

A Observer.getSubject{)

(b)

Figure 7.7: Sample mapping of query result to textual tree view.

74

themselves.

Algorithm: To map a query result into Box-and-line visualization, one could traverse
the hierarchy obtained by applying factoring operation in a bottom-up fashion, and use
stack-based store-and-flush mechanism to obtain the elements belonging to each box.
For the rest of this section we refer to the programming elements in the view represented
as a box containing other nodes as AggregatorNodeKind, those contained within
a box as AggregatedNodeKind, and those hidden elements not represented in the
view as InvisibleNodeKind. This algorithm consists of the following steps: Each
AggregatorNodeKindis represented in the visual model as an identical box, by the
condition that, any two descendants of a AggregatedNodeKind node could not co-
exist in the same box while their root is represented using a different box; meaning that
AggregatedNodeKind nodes which belong to the same AggregatedNodeKind,
can not share a exclusive box from root’s. The AggregatorNodeKind of a hier-
archy is represented as a main caption for the box. The algorithm used here, does
the reverse breadth first traversal of the hierarchyfrom its bottom to the top, while
aggregating information about the nodes and relationships. As a result, whenever a
AggregatedNodeKind node is visited the information about that node, including its
type and its relationships, is stored. Whenever a AggregatorNodeKind node is vis-
ited, it will exhibit all the information gathered from AggregatedNodeKind nodes
beneath it, which was previously stored. Figure 7.8b represents a UML-like view (b)

constructed from a sample model (a).

75

Projectl

Packagel

(b) Actual representation.

Figure 7.8: Formation of boxes in the box-and-line visualization

76

Implementation: As represented in Figure 7.9 the interface NodeKindVisitor
provides the facade for every processor which tends to traverse the model based on the
node types. The class PrintingVisitor implements NodeKindVisitor in or-
der to encapsulate core box-and-line visualization code and its model traversal logic.
The interface PretyPrinter is a common base for classes tend to provide export
mechanisms to exchangeable formats readable by other graph drawing tools. Classes
overriding PretyPrinter in order to export the view to another exchangeable for-
mat readable by other graph drawing tools. For example GraphPretyPrinter and
MetaUMLPretyPrinter, both extend Pret tyPrinter to provide transformation
to Eclipse graph and MetaUML tool formats.

Table 7.3 represents a client code which uses the GraphPrettytPrinter class

in order to translate the model into a graph representation.

NodeKindVisitor

o~
NodeKind

+ visit (NodeKind nk, IProgramElement node) ——— IProgramElement

+ visit (InvisibleNodeKind nk, IProgramElement node) + accept (NodeKindVisitor visitor)

+

+

<(0..—

visit (AggregatorNodeKind nk, IProgramElement node)
visit {AggregatedNodeKind nk, IProgramElement node) N

JAN

PrintingVisitor o PretytPrinter InvisibleNodeKind AggregatorNodeKind

wsit printBox (IProgramElement header, Stack st)
JEO 1|+ printRels (IProgramElement header, Stack st)

PN

. ~
- S~
~

s

GraphPretytPrinter | { MetaUMLPrettyPrinter | | DotPrettyPrinter AggregatedNodeKind

Figure 7.9: Structure of classes involved in the box-and-line visualization.

71

[S I

private void printModellntoGraph (Graph graph){
PrintingVisitor visitor=new PrintingVisitor(new GraphPretytPrinter(graph));
IProgramElement root=ModelBase. getlnstance (). getRootElem ();
HierarchicalModel. getNodeKindForNode (root). accept(visitor , root);

}

Table 7.3: The code to represent the program hierarchy as compound graph.

7.5.4 Graph view

Compound graphs (Figure 7.6(g)) show the view by separating it into hierarchically
related set of elements using parent-child relations, as well as non-hierarchically related
ones related by adjacency relations. The mapping between compound graphs and a
tabular result could be done by intermediate transformation of data to a pivot table.
The resulting compound graph could be constructed by representing each axis of the
pivot table in a separate tree. In this approach the data in each axis is transferred to
the hierarchical form. Then the hierarchy is used to construct a visual tree. The two
resulting trees take the role of axes. Afterward, it is possible to represent the existence
of relation between each two element (value) from the trees by an adjacency edge. This
approach tends to be very space efficient and a possible visual clutter resulting from
adjacency relation, could also be lessened using smart positioning of nodes or bundling

of adjacency edges [45].

78

Chapter 8

Case Study 1: Graphical Editing

Framework (GEF)

As a proof of concept, we deploy our approach over a widely known object-oriented
framework, called Graphical Editing Framework (GEF) [8] which is used for build-
ing rich, interactive user interfaces within Eclipse IDE specifically aimed at modeling
purposes. It uses the Eclipse Rich Client Platform (RCP), and is separated into two

plug-ins:

1. Draw2d (org.eclipse.draw2d) - the lightweight toolkit for painting and layout on

an SWT Canvas.
2. GEEF (org.eclipse.gef) - an interactive MVC framework built on top of Draw2d.

In this case study we focus on the second plug-in while still referring to it as “GEF”.

79

8.1 Framework overview

The GEF framework provides the link between an application’s model and view using
a set of controller classes or Editparts. It provides input handlers, such as tools and ac-
tions, that wrap actual SWT widgets and turn SWT events originated from these widgets
into requests. Requests, encapsulating user interactions and abstracting away the source
of interaction, are in turn sent to the controller (or Editpart) responsible for maintaining
the view, interpreting requests and turning them into operations on the model (com-
mands). Editparts are asked for a command for a given request. Commands are used to
encapsulate model change logic, and returned to the user, stored in the command stack,
in a way that can be undone and redone by the user. The model is a plain data structure,
possible to be persisted, and able to notify the controller if changed. Figure 8.1 shows a
high-level view of GEF by representing its top-level packages in a class diagram.

In the following subsections, we illustrate examples of structural analysis queries and

measurement queries applied on the GEF framework.

8.2 Structural analysis queries

8.2.1 Finding the correspondence between model, view, and controller classes

In GEF, Editparts (controllers) associate their view and model, meaning that there is
usually a one-to-one association between each controller object and a view and model

object. Usually a figure may be compound and composed of several figures. In this case

80

editparts

handles internal

Figure 8.1: Partial UML class diagram of GEF.

Jool mman k :Model
User
choose
t
create | n
SendEYent
] 1
‘_(Lﬂ.- :Request
sendRequij
i :Controller
i
creete :Command
storeCommand
¢ futeCommand updateFigures
i 5 1
o | execute o updateModel
(1]
ndoCommnd .
'L | undo {“;updateModel
e I
— - i
i

Figure 8.2: UML sequence diagram for overall workflow of GEF.

81

there is a corresponding Editpart class which contains multiple Editpart children, each
corresponding to a figure. Moreover, this corresponds to a similar containment found in

the model (See Figure 8.3).

Model Editparts .
Figures

Model 11 e — | ——t ———— ——>>| Figure:1

— [Controlier: 1|

0.1 - 0.0
v () io,,t
o 0.1 0.1

Controtler: 2

K
2.1
Model : 2 0..*]
0.1 . Controlter: 3}~ ~——__
0., —
e

Model : 4

Figure : 4

Model : 3

Controtler: 4 [~

Figure 8.3: The relationship among instances of GEF classes and their role in the MVC
architecture.

8.2.2 Finding correspondence between models and Editparts

In order to find the correspondence between models and Editparts, one should find
where each instance of a controller is made and its corresponding model object is passed
to it. In GEF framework this is done in a class implementing EditPartFactory
interface. A user can define the classes implementing EditPartFactory by simply

executing the following query :

[Type t] from [Interface i] where
t implements i and
i hasName "EditPartFactory”

82

In the flow-example this query has only one result: ActivityPartFactory. A
closer look at this class shows how a particular EditPart instance (the argument “con-

text”) is created for a model (see Table 8.1)

publiic class ActivityPartFactory implements EditPartFactory {
public EditPart createEditPart(EditPart context, Object model) {
EditPart part = null;
if (model instanceof ActivityDiagram)
part = new ActivityDiagramPart ();
else if (model instanceof ParallelActivity)
part = new ParallelActivityPart();
else if (model instanceof SequentialActivity)
part = new SequentialActivityPart();
else if (model instanceof Activity)
part = new SimpleActivityPart();
else if (model instanceof Transition)
part = new TransitionPart ();
part.setModel (model);
return part;

Table 8.1: The code to create different editPart for different model objects in the GEF
flow-example .

8.2.3 Finding the correspondence between figures and editparts

In order to find the figure and part correspondence a maintainer needs multiple inter-
actions with different views of the IDE. 1) First s/he needs to find all editparts. This
could be done through Hierarchy view of Eclipse IDE by finding all classes extending
the AbstractEditPart (see Figure 8.4-1). Second, s/he lists the methods of each
of this classes (see Figure 8.4-2). Third, s/he obtains the calls made from the method
createFigure () to check which figure class has been created during the execution
of this method (createFigure()). This is done by opening the ’Call Hierarchy’

view for this method in ’callee hierarchy’ mode. As demonstrated in Figure 8.4-3 the

83

createFigure() in ParallelActivityPart class is making an instance of
ParallelActivityFigure. This fact is also possible track in the source code (see

Figure 8.4-4).

@. ParalelActivityPart 52

L ganthor hugsonr
%7 AHOEER

(4)

Figure 8.4: Investigation of GEF’s flow-example using Eclipse views.

It is obvious from this example that relying only on standard views, the developer
has to perform multiple interactions to constitute a single view. In this example the user
has to check each Editpart subclass one-by-one, leading to an excessive overhead,

proportional to the size of the system. In contrast, the developer can obtain the same

84

) SimpleActivitylLabel ‘ _ SimpleActivityLabel
9 Figure o Figure

@Eg{allelggtivitgfigure() C) ParallelactivityFigure()
SequentialActivityFigure()) SequentialActivityFigure()

Figure 8.5: The correspondence of the figure classes to controllers, retrieved as a query
outcome.

information using only one query represented in the Table 8.2. This query obtains the
type of every instantiated object within the body of method createFigure () ineach
subclass of AbstractEditPart, if the type of the instantiated object is subtype of

Figure.

[Type controller ,Type figure] from
exists [Method m,Type t] where
controler isSubclassOf " AbstractEditPart” and
figure isSubclassOf "Figure” and
controller includes m and
m hasName “createFigure” and
m instantiates t

Table 8.2: Query to obtain the figure classes corresponding to each controller class.

In the GEF-flow example running this query returns the Figure 8.5

&5

8.2.4 Finding possible commands for a given request

As shown in the sequence diagram of the Figure 8.2 Editparts are asked for
a command for a given request. As a result the Editparts will decide which com-
mand instance to return to what kind of requests. However in GEF, Editparts do not
handle editing directly. Instead, developers should define a set of common behav-
iors which encapsulate the request-command-mapping logic and could be arbitrarily
installed on different Editparts. This is to allow editing behavior to be selectively
reused across different Editpart implementations. By installing each Editpolicy, the
Editpart delegatés a given request to its policies and allows them to contribute in han-
dling it. The GEF based code is required to install the appropriate policies in the
method createEditPolicies () which will be called during the Editpart’s cre-
ation. In the Table 8.3 the ActivityPart associates each editpolicy with an iden-
tifier to determine for which request the policy will contribute. For example, it asso-
ciates the REQ_DELETE request to ActivityEditPolicy by installing it on the
role COMPONENT ROLE 1.

In the Table 8.4 it is shown how the installed policy (Activi tyNodeEditPolicy)
is responding to the request CreateConnectionRequest by creating a new in-
stance of the command ConnectionCreateCommand 2. The overall view of the’

described scenario is represented in Figure 8.6.

1The COMPONENT-ROLE key is used when installing an editpolicy on a componenit Editpart to fill in
the commands for deletion.

2GEF manual asserts that the type of CreateConnectionRequest could be
REQ_RECONNECT_TARGET.

86

B 00 N O B W B e

BES

public abstract class ActivityPart
extends AbstractGraphicalEditPart
implements PropertyChangelListener , NodeEditPart

protected void createEditPolicies () {

installEditPolicy(EditPolicy .GRAPHICALNODEROLE, new ActivityNodeEditPolicy ());
installEditPolicy (EditPolicy .CONTAINERROLE, new ActivitySourceEditPolicy ());
installEditPolicy (EditPolicy .COMPONENTROLE, new ActivityEditPolicy ());
installEditPolicy (EditPolicy .DIRECT.EDIT_ROLE, new ActivityDirectEditPolicy ());

}
}

Table 8.3: The code to setup the edit policies for a given subclass of Editpart.

0~ o W b W N

o

public class ActivityNodeEditPolicy extends GraphicalNodeEditPolicy {
protected Command getConnectionCreateCommand (CreateConnectionRequest request) {
ConnectionCreateCommand c¢cmd = new ConnectionCreateCommand ();
cmd. setSource (getActivity ());
request.setStartCommand(cmd);
return cmd;

Table 8.4: Retrieving a Command for a given Request using an EditPolicy.

It is clear from the simple example that it takes a lot of effort to finally find the cor-
respondence between a given request (¢.g REQ_RECONNECT_TARGET) and the result
command (e.g. ReconnectSourceCommand) for a given user action. Here is the
steps to find the answer to this problem for a given GEF based application by a devel-

oper:

1. Navigate through all Editparts one by one and look into the policy classes in-
stantiated in the createEditPolicies () method, and manually match each

policy class with its corresponding role

87

switch (raquastTypel |

i l case REQ_CONNECTION_START:

ert) getConnectionCreateconmand{..)

GraphicalNodeEditPallcy o88 RED_CONNECTION.ENDt
AbstractQraphicaiEditPart
<>IL P !C I

getConhectionCompleteCommand (. .}

'mm‘ case REQ_RECONNECT_TARGET:
= — getReconnect TargetComman dt..)
return commends; A cese REQ_RECONNECT_SOURCE:
! getPaconnectSourceCommand(.,)
)
TR T TI T
1 5 1
<<<EditPOlicy>>> <<<EditFolicy>»a
ActivityEdItPolicy ActivitySourceEditPolicy
<<cyrbies> < 19
< <ﬁujon:y>>>
<<<EditFarts>> ActivityNodeEditPolicy
ActlvityPart
w C t reateComm nd()xﬁ
FeTeatetdicFalicies T
+Reconnec tSourca Com equest}
+getRecconectTargetConmand (request)

Figure 8.6: An overall view of modules’ of a GEF based applications and their depen-
dencies, divided into user defined and GEF core code.

2. Manually check the method Command getCommand (Request) in the ab-
stract base class of the Editpolicy (part of GEF framework) to see for which re-
quest type which method of the concrete EditPolicy (the one implemented in the

application) the request is delegated to.
3. In the found method, check for the instantiation of the Command classes.

Instead of performing these steps using manual navigation through the code the de-

veloper can configure the following queries to be reused for any GEF based application.

1. Look into the policy classes instantiated in the createEditPolicies () method
of each Editpart:

[Type editpart ,Type policy] from
exists [Method m] where
editpart isSubclassOf AbstractGraphicalEditPart and
editpart includes m and
m hasName createEditPolicies and
m instansiates policy and
policy isSubclassOf AbstractEditPolicy

2. For each request type and a given policy determine which method of the policy
will handle the request. Since this fact is known from GEF framework itself, it

88

can be hard-coded in the query language and reused instead of being dynamically
asked from GEF application.

[int reqType,
Type policy,
Method
if (policy isSubtypeOf GraphicalNodeEditPolicy) then
begin
if (reqType==REQ.CONNECTION_START)
then getConnectionCreateCommand
if (reqType==REQ.CONNECTION_END)
then getConnectionCompleteCommand
if (reqType==REQ.RECONNECT-TARGET)
then getReconnectTargetCommand
if (reqType==REQ.RECONNECT_SOURCE)
then getReconnectSourceCommand
end else if (policy isSubtypeOf DirectEditPolicy) then

3. instantiation of the Command classes within a given Editpolicy’s handler method

[Method m, Type command] where
command isSubtypeOf Command and
m instansiates command

Finally, the developer can combine the tree queries as:
[editpart,policy] x [policy,reqType,method] x [method,command]
and obtain [editpart,reqType,command] relation, representing the command issued for

each request type when applied to a particular Edi tpart (representing the diagram

element type).

89

D B W N

-~

public Command getCommand(Request request) {
if (REQ.CONNECTION._END. equals (request.getType()))
return getConnectionCompleteCommand ((CreateConnectionRequest)request);
if (REQ.RECONNECT.TARGET. equals(request.getType()))
return getReconnectTargetCommand ((ReconnectRequest)request);

Table 8.5: Retrieving a Command for a given Request.

8.3 Measurement queries: Investigating the quality of the GEF code

In this section we use our query tool to investigate the code quality of the specified
framework (GEF) by analyziﬁg how code attributes such as abstractness, stability, and
inconﬁng dependency are distributed among different parts of the system.

As mentioned in subsection 6.2.4 a good design is likely to produce a highly abstract
and stable package. The reason is that a good abstract package is likely to be used by
many concrete ones resulting in a high incoming dependency and stability. In contrast
a low abstract package would contain many concrete classes with a high external de-
pendency and, therefore becomes more unstable. In this subsection we investigate this
fact to measure how much the GEF implementation follows a good design. To perform
this, we try to find the amount of correlation among abstract, stable, and with-high-fan-
in packages on one side and concrete, unstable, and with-low-fan-in onvthe other side.
To realize this we use the queries discussed in section 6.2 with specific arguments. For
example we use the query for obtaining package abstractness and augment it with an
additional 'where clause’ to obtain abstract and concrete packages separately. The same

technique is used to differentiate between stable and unstable, and high fan-in and high

90

fan-out packages as follows:
First, based on package abstractness formula we can find abstract and concrete pack-

ages as follows:

[Package p] from
[float (if i > O then j / i else 0) as k] from
[p,count by(Type t) as i] where
p includes t and t hasModifier "abstract”
,[p,count by(Type t) as j] where
p includes t and t hasModifier ”abstract”
where :clause
order by k desc

k > 0.20 Abstract packages
clause is

k=0 Concrete packages

Second, based on package stability formula we can find abstract and concrete pack-

ages as follows:

[Package p] from
[float ecoupling/(ecoupling + acoupling)
as instability] from
efferentCoupling(p,ecoupling) and
afferentCoupling(p, acoupling)
where ecoupling + acoupling > O
where :clause

instability < 0.2 Stable packages
:clause is

instability > 0.8 Unstable packages

And, third, based on package’s dependency formula we can find abstract and concrete

packages as follows:

91

[Package p] from
[int count by(Type t) as n]
where
p not includes t and
exists [Type s] where
p includes s and
:clausel
where :clause2

’t dependsOn s’,n > 20 high Incoming dependency packages
clause 1,2 are

’s dependsOn t’,n > 22 high Outgoing dependency packages

The categorization of GEF packages based on the mentioned three attributes (stabil-
ity, abstractness, and dependency) will result in six non-distinct sets of packages each
sharing some members with others (represented in Figure 8.7).

By obtaining the correlation between the identified sets, one can conclude about the
correlation among possible different categories. We considered the correlation to be
the number of shared members between the two sets representing instances of those
two categories. The final result represented in Figure 8.8 demonstrates that in GEF
framework 1) usually abstract packages are stable and with high incoming dependency.
2) usually concrete packages are unstabie and with more outgoing depe.ndency. Thus we
can conclﬁde that GEF has a rather overall good design in terms of following the design

guideline mentioned in the beginning of the section.

92

Package: v
: ERiorg.eclipse. gef .ui.console
8 org.eclipse.gef .requests
8 org.eclipse.gef . util
e org.eclipse.gef.internal.ui.palette
8 org.eclipse. gef .i.rulers
e org.eclipse.gef . print
8 org.eclipse.gef .ui.views.palatte

Package N
S L mDRE .) X)
83 org.eclipse.gef edtpolicies % 0.5151515 a."'g'ec'fpse'gef'“f'p'°peft'e5
88 org.eclipse.gef .rulers Y2 0.33333334 _- @org.ecﬁpse.gef.gn.stackwew
Bogedpsegefdnd Y 027272728 B org.ecipse.gef nternal

88 org.eclipse gef.internal.ui.rulers

org.ectpse.gef uirders
Num S org.eclipse.gef, Ui stackview
org.echipse, gef .ui.conscle
/z‘ -0466666??‘ org.eclipse.gef internal,ui.palette editparts
% 0.11290322

Y 0.10204082

i 0r9.eclipse.gef \ui palette.customize
B8 org.eclipse.gef.internal.ul.rulers

(c) Stable packages.

4 rgiclipse.g. .

¥ org.eclipse.q...

8 org.eclipse.gef

e & org.eclipse.g...

¥ 88 org.eclipse.gef.commands : Eorg.eclipse.g...
| Blogecipsegefiuipalette v 45 4 i org.eclipse.g...

_;iorg.eclipse.gef.hternd e morg'e.dipse'g“'
Worg.cclpse.gof palette B 8 org.eclipse.g...

| 8 org.eclipse.gef.requests | "
3 iy R org.eclipse.g. ..
88 org.eclipse. gef tools m 9.6clpse.g. .. .

. 8 org.eclipse. gef ul palette. editparts o 5 prg'ec!ips.e.,'g"' 2

(e) High fan-in packages. (f) High fan-out packages.

Figure 8.7: GEF packages divided into six classes based on measurement attributes.

93

12
‘n
10 =
8 4
€3
43 ;. sum of Abstract ® sum of Unstable
2w / Sum of High-fan-out mSum of Stable
‘;,' Sum-of-Concrete Wi oF Figh-fan
po e / sum of High-fan-in Sum of Concrete
fé S 7 Sumof Stable % Sum of High-fan-out
‘9“6 e ¢ ® Sum of Abstract
'?*‘& ‘@o'o > T / sum of Unstable
& ,@e N f{
Ay S >
»
\)(‘é?

Figure 8.8: A 3D bar chart representing the co-occurance of different categorical at-
tributes of GEF framework.

94

Chapter 9

Case Study 2: Aspect-oriented
implementation of the Observer design

pattern

In this section, we deploy our approach over an aspect-oriented implementation of Ob-
server design pattern introduced in [52] and deployed as a part of AJDT package’s
examples. The main implementation is accompanied by some extra classes, for the

showcase of the pattern.

9.1 Description of the pattern and its implementation

”The Observer protocol defines a one-to-many dependency between objects so that

when one object changes state, all its dependents are notified and updated automatically.

95

To achieve this one object (subject) should know about its dependents. Subject maintains
list of its dependents. Each dependent who wants to get notification on subject state
change, should register with subject.” [38]

The impleméntation of Observer protocol is as follows: after triggering the ’stat-
eChanges()’ event in a Subject the ’update()’ method in each associated Observer is
called. Each class is implementing Subject or Observer interfaces. These classes
are oblivious to the fact that they are being subjected to the Observer protocol since
the strategy is applied through aspect SubjectObserverProtocolImpl through
inter-type parent declaration. For example class Button implements Subject and

ColorLabel implements the Observer.
This includes the SubjectObserverProtocol aspect which modularizes the core ob-

server. Following is its code:

abstract aspect SubjectObserverProtocol {
abstract pointcut stateChanges(Subject s);

after (Subject s): stateChanges(s) {
for (int i = 0; i < s.getObservers().size(); i++) {
((Observer)s. getObservers (). elementAt(i)).update ();
}

}

private Vector Subject.observers = new Vector ();
public void Subject.addObserver (Observer obs) {
observers .addElement (obs);
obs.setSubject (this);

public void Subject.removeObserver (Observer obs) {
observers .removeElement(obs);
obs.setSubject(null);

public Vector Subject.getObservers() { return observers; }
private Subject Observer.subject = null;

public void Observer . setSubject(Subject s) { subject = s; }
public Subject Observer.getSubject() { return subject; }

Afterward a concrete aspect SubjectObserverProtocolImpl associates the

roles (Subject and Observer) with the appropriate classes and defines the observed

96

pattern by a pointcut(stateChanges). In this example the subject is a Button with
click () event and the observers are instances of ColorLable class. Clicking the
button should have an effect on the color of the labels. The following source code

demonstrates the implementation of SubjectObserverProtocolImpl aspect:

1} aspect SubjectObserverProtocollmpl extends SubjectObserverProtocol {
2

3 declare parents: Button implements Subject;

4 public Object Button.getData() { return this; }
5

6, declare parents: ColorLabel implements Observer;
7 public void ColorLabel . update () {

8 colorCycle ();

9 }

10

11 pointcut stateChanges (Subject s):

12| target(s) &&

13| call (veid Button.click ());

14 ’

15) }

The following code represents the actual client application which instantiates the
Button and ColorLable instances and is now oblivious of what happens if the but-

tons are clicked.

public class Demo {
public static void main(String [] args) {

1
2

3

4 Display display = new Display ();
5 Button bl = new Button(display);
6| Button b2 = new Button (display);
7 ColorLabel cl
8 ColorLabel c2
9 ColorLabel ¢3

new ColorLabel(display);
new ColorLabel(display);
new ColorLabel(display);

i

1 bl.addObserver(cl);

12 bl.addObserver(c2);
13 b2.addObserver (c3);
14 }

1sf }

97

9.2 A comprehension task

Assume that a maintainer needs to find out the intention of applying this pattern to
a sample program. This needs finding all possible occurrences of the Observer pro-
tocol in the program; that is, to determine the hidden dependency between methods
in Observers and Subjects classes introduced by Observer Protocol (i.e. which
method in subject leads to execution of which methods in observers). More determin-
istic, this means finding methods in classes implementing Subject which trigger the
update (), and associating them with methods called by overridden update () in
classes implementing Observer. This information could be obtained by a multiple

interactions with an IDE such as Eclipse as follows:

Step 1) User starts by checking the ObserverProtocolImpl aspect (see Figure 9.1),
trying to find components affected by the aspect; That is components having eater
an intertype declared member, declared parent, or advised method by the aspect.
Then the user find out that the classes But ton and ColorLabel implement the
interfaces Observer and Subject respectively through aspectual declare
parent construct by ObserverProtocolImpl. He also finds the inherited

method from Observer which is ColorLabel .update.

Step 2) Consequently, using the source code view (see Figure 9.2) he can obtain meth-

ods invoked by ColorLabel .update, whichis ColorLabel.coloxCycle().

Step 3) Now the user should search through But ton’s methods which trigger the ’state

98

3 SubjectObserverProtocollmpl
- Yo declare parents

! @ & declaredon

T la
& % Button.getData()

. @ % declaredon

H + éﬁ Button
B-¥4 declare parents

. @ % declaredon
8 Colorlabel
&% ColorLabel.update()

L B & declaredon

L& ColorLabel

Figure 9.1: The SubjectObserverProtocollmpl aspect the AspectJ cross-reference view.

change’ event. The user already knows that ’state change’ event is implemented
by the pointcut stateChanges in ObserverProtocol and matchedBy the
advice after() :étateChanges in ObserverProtocolImpl. Viewing
the cross-reference view (see Figure 9.3) he finds out that the method Button

.click () triggers the execution of the advice after () : stateChanges.

Step 4) Finally by comparing what found in step 2 and 3 the user is able to match two
methods ColorLabel .colorCycle() and Button.click () and find out
that observer protocol is used to notify ColorLabel to update it’s color each

time the Buttoh is clicked.

Step 5) Observing the actual Demo class the user is able to view the actual instances

and thus the final behavior of the program (see Figure 9.4).

99

declare parents: Button implements Subject:
public Object Button.getData{) { return this; }

declare parents: ColorLebel implements Observer:

public void ColorLabel.update{} {
colorCyele():

}

pointout stateChanges {Subject s):
target (s) &«
call (veid Button.click()):

Figure 9.2: The source code of aspect SubjectObserverProtocollmpl in Observer proto-

col example.

» aspect declarations
¥a dedare parents: implements Subject
¥ Button.getData()
¥ Subject.observers
& Subject.addObserver{Observer)
Y Subject.removeObserver(Observer)
£
Q

Subject.getObservers()
tton{Display)
A new ActionListener(} {...}
=@ a actionPerformed(ActionEvent)
& ¥ method-call{void observer,Buttonclick(})
= % advised by
-\ SubjectObserverProtocol. after{Subject): stateChangss..

<
i

Figure 9.3: The Button class in the Aspect] cross-reference view.

100

{48, subjectObserverProto
public class Demo {

Display display
Button bl = new
Button b2 = new
Colorlsbel cl =
ColorLabel c2
Colorlabel ¢3 =

PR PRI NINNANINANG,

public static void main(String[] args) {

bl.gddObserver {cl):
bl.addObserver (c2);

b2.addObserver (c3) :

ut_iqﬁ-ja?'g o \i;m ColorLabeljava

= new Display():
Button(display)
Button(display) :
new Colorlaebel (display):
new ColorlLabel (display):
new Colorlabel (display):

Figure 9.4: The source code of class Demo in Observer protocol example.

Instead of performing these steps using manual navigation through the code the devel-

oper can intuitively obtain the same result using the textual query displayed in Figure 9.5

or it’s equivalent visual representation in Figure 9.6.

101

[Type subject,
Method mi,
Type observer,
Method m3
}
exists [Method update]
where
aspect -extends ’SubjectObserverProtocol’ and
aspect defines stateChanges and
ml advisedby ’after ():stateChanges’ and
update overrides ’'Observer.update’ and
update calls m3 and
observer implements ’Observer’ and
subject implements ’Subject’ and
subject defines ml
observer defines m3

(a) Textual query.

Button.click 8 Colorlabel ‘& Colorlabel.colorcycle

(b) Query result.

Figure 9.5: The query for retrieving occurances of observer protocol and it’s result.

} ‘Observer' €D} 'SubjectObserverProtocof

'SubjectObserverProtocolImp!*
&R 'subject’ {L 'stateChanges'
matc
< ‘after():stateChanges’

Figure 9.6: The visual query for finding occurances of observer protocol.

102

Chapter 10

Case Study 3: Spacewar

We have deployed our approach over a medium-scale (3053 SLOC) Aspect] source
code, Spacewar (can be found in Aspect] compiler example package). This system
has been deployed in the literature as a benchmark [62, 15, 72]. Spacewar simulates
an arcade asteroids game where a user ﬂies‘ a spaceship, represented by a movable
triangle form, and attemptes to eliminate other spaceships (same triangle form with
different color). The aspects defined in this system provide the synchronization re-
quired to enforce the mutual exclusion of several methods. Figuré 10.1 shows a partial
class diagram of the system. In order to represent aspects in a UML class diagram
we have deployed an << Aspect >> st;areotype. Spacewar consists of two packages,
coordination and spacewar. The first package contains five classes, three inter-
faces and one aspect, namely Coordinator. This is an abstract aspect that provides

basic functionality for synchronizing and coordinating different threads upon entering

103

and exiting methods. Methods which must be executéd by only one thread at a time are
marked as self-exclusive. Execution of a method which is marked as mutually exclusive
will block temporarily the execution of the methods which are also marked as mutu-
ally exclusive with this method in other threads. Methods guardedEntry (.. .)
and guardedExit(...) are invoked before and after any call to methods which
need coordination and synchronization. Package spacewar contains 10 classes and
five aspects. Moreover this package contains three units which are defined as Java
classes but they are considered as Aspect] compilation units as the extension of the
files is ”.aj” and not ”.java”. For example Ship.aj is defined to be a class and it
contains a pointcut definition. Another example is Display.aj which is also de-
fined to be a Java class and it contains an inner aspect DisplayAspect. Class Game
is the root of the spacewar game. Class SpaceObject which is an abstract class
simulates the objects that float around in space. Subtypes of class SpaceObject
(Ship,Bullet, and EnergyPacket) are created when class Game is created. Upon
creation of any SpaceObject, it adds itself to the registry and when it dies, it re-
moves itself from the registry. Ciass Registry is responsible for tracking all the
space objects that are floating around. The synchronization is done by the inner aspect
RegistrySynchronizationin this class. Aspect DisplayAspect whichis an
inner aspect of class Display draws the Spaceobject on the screen and indicates

the space it occupies.

104

Aspects GameSynchronization,and RegistrySynchronizationare sub-
types of aspect Coordinator. Aspect GameSynchronization ensures synchro-
nized access to methods of class Game when several threads exist.

Aspect RegistrySynchronizationensures synchronized access to methods of
class Registry when several threads exist. Aspect EnsureShipIsAlive ensures
that the Ship is alive before performing any console commands. Table 10.1 shows a

code segment of aspect Coordinator.

10.1 Deployment of the tool over Spacewar

In this subsection, we illustrate examples of our query tool applied on the Spacewar

system.

Messages to which an object of a given type responds: There are situations where
one wants to identify the messages to which an instance can respond. In an object-
oriented system an object can respond to a message if it has or inherits a method (with
access modifier public or protected) with type signature corresponding to this message.
However, in an aspect-oriented system inter-type declaration allows to introduce meth-
ods or attributes for a class or an interface. This implies that an object o of type 7, can'
also respond to messages introduced by aspects for T, or for supertypes of 7. Table 10.2-
(a) shows the query corresponding to this definition. If one decides to find all messages
to which an object of type Bullet can respond to, s/he needs to modify the query as
in Table 10.2-(b). The result of this query is shown in Figure 10.2.

105

cooramatlonl

<<intsrface>>

<<interface>>

Coordinator

TimeoutException

[y

#time:

long

Condition CoordinationAction
1
+checkit(}: booclean +doit(}): veid]
Exceptlon b -——- - |——— ----- - <<iht'¥fl¢!>>
L - - - - - - -
TV TITITE - > Exclution

A

<<static Aspect>>
RegistrationProtection

Reglistary

#addRobot(): void
#resetShips():
#quit(}: void

#error(): voia

void

<<ABpect>> <<ASpect>>
l;amesyncmonlzauon RegistrySynchronization MethodState
spacewar l
Thread
P
|]
EnergyPacketProducer
ITlmer} Game L I
+runi{}: veid

SpaceObject

#newPlayer (number:int): Player

#newRobot (number:int): Robot
#newShip(pilot:Pilot): Ship

#clockTick{): void
#iacCollision{a:SpaceObject,b:SpaceObject): boolean

#handleCollisions()s: void

N

H

1
Ship [EnergyPackﬁl IBullot]

\ <<static Aspect>> /\

<<interface>>

Canvas

DisplayAspect

ActionlListener

Frame

A L

EnsureShipisAtive

<<Aspect>>

A

KeyMapping

KeyListener

Display
Runnable |} - .‘Robotl [Playerl- -
& ~,
<<static Aspect>> < lDlSDllY1I lD|SP|aV2| | <<statlc ASpects>
SpaceObjectPainting SpaceObjectPainting

Figure 10.1: Partial class diagram of the Spacewar system.

106

package coordination;

public abstract aspect Coordinator {
private Hashtable methods = null;
private Vector exclusions = null;
abstract protected pointcut synchronizationPoint();
public Coordinator () {
methods = new Hashtable ();
exclusions = new Vector(5);

}

before (): synchronizationPoint() {
this.guardedEntry (thisJoinPointStaticPart
.getSignature (). getName ());
}

after (): syanchronizationPoint() {
this. guardedExit (thisJoinPointStaticPart
.getSignature (). getName ());

}

public synchronized void addSelfex (String methName) {
Selfex sex = new Selfex (methName);
exclusions.addElement (sex);
Method aMeth = getOrSetMethod (methName);
aMeth.addExclusion (sex);

}

public synchronized void removeSelfex (String methName) {
for (int i = 0; i < exclusions.size(); i++) {
Exclusion sex = (Exclusion)exclusions.elementAt(i);
if ((sex instanceof Selfex) &&
(((Selfex)sex). methodName. equals (methName)))

exclusions.removeElementAt(i);
Method aMeth = getOrSetMethod (methName);
aMeth.removeExclusion (sex);

}
}
// some code

}

Table 10.1: Partial code of aspects ’Coordinator’.

107

[Type t,Method m] where
not (m hasModifier "private”)
and
(
t includes m
or
(exists [Type t2] where
t2 isSupertypeOf+ t and
t2 includes m)
or
exists[Aspect a] where
declaresMethod(a,t ,m)
)

(a) Considering all classes

[Method] from
[Type t,Method m] where
not (m hasModifier "private™)
and
(
t includes m
or
(exists [Type t2] where
t2 isSupertypeOf+ t and
t2 includes m)
or
exists[Aspect a] where
declaresMethod(a,t ,m)
)

where t hasName ”Bullet”

(b) Considering only the class 'Bullet’

Table 10.2: Obtaining all messages to which an object of a given type can respond.

108

S o

Bulet & getsze
¥ Bullet & handlecollision
 Bullst & clockkick

Figure 10.2: Messages to which an object of a given type can respond to in Spacewar
example.

Declared method in inheritance hierarchy: In Table 10.3-(a), query
findDeclaredMethod identifies all methods defined by an aspect AspectName
(through the inter type declaration) for the supertypes of a given type. By applying this
query, one can find methods defined for supertype of class Ship.

The result of query findDeclaredMethod TypeName, MethodName) in Fig-
ure 10.3-(b) shows that two aspects with the same name (SpaceObjectPainting)
define two methods with the same name (paint) for class SpaceObject which is
the supertype of class Ship.

Class Display has an inner aspect SpaceObjectPainting, which defines method
paint for class SpaceObject.

Class Di spaly?2 also has an inner aspect SpaceObjectPainting which defines
method paint for class SpaceObject. By exploring the code we can see that the

implementations of method paint in the two aspects are different.

109

[Aspect a,Type t2,Method m]
where
t2 isSuperType+ t and
declaresMethod (a,t2 ,m) and
t hasName ”ship”

(a) Textual query. (b) Query result.

Table 10.3: Obtaining methods defined by an aspect for a supertype of a given type.

110

Chapter 11

Related work and evaluation

The current existing approaches for source code querying could be placed in the follow-

ing three categories:

11.1 Logic-based query approaches

Logic-based query approaches such as SOUL [71], JQuery [69] [47], JT;ansformer [11],
CodeQuest [42] use Prolog-based query engines such as TyRuBa [13] or Datalog [14]
to perform query evaluation.

SOUL is a logic meta-language based on Prolog which is implemented in Visual
Work Smalltalk [71]. It provides a declarative framework that allows reasoning about
the structure of Smalltalk programs based on the parse tree representation.

In [69] the author implements a Java browser called JQuery as an Eclipse plug-in.

111

The query language used for this tool is a logic programming language called TyRuBa
based on Prolog. JTransformer [11] is a Prolog-based query and transformation engine
for storing, analyzing and transforming fact-bases of Java source code.

JTransformer creates an AST representation of a Java project, including the complete
AST of method bédies as a Prolog database.

CodeQuest [42] is a source code querying tool which uses safe Datalog as its query
language, mapping Datalog queries to a relational database system.

In [33] the authors present a prototype tool for analysis and performance optimization
of Java programs called DeepWeaver-1. This tool is an extension of the abc Aspect]
compiler [16] which has a declarative style query language, (Prolog/Datalog-like query
language) to analyze and transform code within and across methods.

The main problem of this group is the difficulty of encoding queries using the pro-
posed language. Users would have to know Prolog should they want to have more com-
plex queries, as their need might not already be implemented in the system. In contrast,
our approach represents a way to compose queries with a small amount of effort from
the maintainers. Our approach could completely erase the need for additional database
expert in the browsing process. This is done through provisioning of visual support
for each query operator available in the language. We also support storage and brows-
ing of aspect-oriented programs as a super-set of object-oriented ones. Although some
techniques have been adapted for querying AO programs, they are limited in terms of

modeling the dynamicity of these systems. The dynamic features we addressed in our

112

model include context exposure and aspect instantiation control.

11.2 SQL-based approaches

SQL-based approaches (e.g. [60]) represent the program structure in the form of re-
lational tables and usé a relational database’s native query engine to perform queries.
Although relational storage mechanisms are highly investigated and established, and
are very optimized for answering queries, they do not inherently provide a proper rep-
resentation mechanism suitable for viewing program structures and, thus, creating a
mismatch between complex program’s structure and primary elements of the relational
logical model, namely tables. This is partially due to the fact that hierarchical relation-
ships such as modular containments between programming elements are modeled as flat
relations. Another problem with this approach is the difficulty of encoding queries in
logical level rather than conceptual ones. In this method, logical variables are substituted
by column names, which demands users to memorize table structures. Moreover, since
the relation columns does not support complex data types and meta-data is completely
separated from the data itself, users have to frequently access the schema meta-data in

an un-intuitive way.

11.3 OQL-based approaches

OQL-based approaches such as Semmle [68, 27] form the most recent wave of query

tools published in recent years. They provide a intuitive interface through an abstract

113

object-oriented layer above the actual logic predicates.

Another problem with this approach is the difficulty of encoding queries in logical
level rather than conceptual ones. In this method, logical variables are substituted by
column names, which demands users to memorize table structures. Moreover, since
the relation columns does not support complex data types and meta-data is completely
separated from the data itself, users have to frequently access the schema meta-data in

an unintuitive way.

114 Query-by-example approaches

Query-by-example approaches like JTL [23] aim at making queries simpler by mak-

ing their syntax like the programming language itself.

11.5 Visual query approaches

Most conventional proposals discussed during 90s (e.g. proposals by Consens and
Mendelzon [51, 25], GUPRO [30], MOOSE [29, 54],Rigi [67], CIA [20], the Software
Bookshelf [35], SNiFF+ [19], and the work in [31]) have taken a pure database oriented
approach and usually use a generic visual interface, neutral to software engineering
domain (e.g. GraphLog [26], Hy+ [24], GraphQL [43], G-Log [55], and GREQL [481),
and thus, are confined to the capabilities of the visual interface itself. SWAGKit [12]
with its SHriMP [66] views, GSEE [34], and the work adopted by [61] are exceptions

which use their own unique visual query interfaces.

114

Following the shift of view during recent years toward specific purpose query engines,
we focused on demands of software developers, rather than proving applicability of
database theories on software domain.

To this end we could be viewed as an adaptation of conventional proposals in visual
query domain (rather than their competitor) aiming at providing the same strength as cur-
rent real world text based query tools by integration into IDEs (i.e. Eclipse), adaptation
to new programming paradigms (i.e. OO/AO), and using more software-design-biased
visual constructs.

Moreover, in our case, the evaluation against old tools in the same case study demands
re-implementation of major parts of these tools (e.g. their fact extractor and probably

the schema) for adapting them to Java/Aspect].

11.6 Algebraic query approaches

[56, 57, 39] present and demonstrate the use of an algebraic source code query tech-
nique that blends expressive power with query compactness. For example, query frame-
work of Source Code Algebra, or SCA, permits users to express complex source code

queries and views as algebraic expressions.

11.7 Limitations

One of the limitations of our work is the possibility that there is a structural infor-

mation not provided through the fact extractor. Since the fact extractor for Aspect]

115

language is an ongoing project, and thus, there are some information available in the
source code which might not be captured by the fact extractor. This currently includes
some constructs inside an expression and statements. We believe that there is a need
to expand the scépe of the fact extractor to include more detail information about the
program.

Also since in current version of the tool we evaluate the queries by a user defined
engine, there is not any optimization done to the queries. Thus the tool might not be as
fast as similar database oriented approaches. In future we would like to substitute the
query interpreter with a compiler to translate the query to an intermediate form and pass
it for execution to an optimized query execution engine. This could also be accompanied
with using existing DBMS systems with volatile storage.

In terms of representation mechanism we tried to adopt different views to help main-
tainers observing the query result from different point of view. However, our approach
does not currently apply a specific strategy for visualization of large sets of query re-
sults (e.g. content summarization techniques adapted in SWAGK:it [12]). This, currently
leads to a bit of visual clutter in graph views. This clutter, however, is solvable using
zooms available in the tool, but content summarizations would make this process easier

for developers.

116

Chapter 12

Conclusion and recommendations

We have introduced visual+textual query composition as a generic technique for imple-
menting highly customizable source code browsers [40]. We have demonstrated how
visual query composition can be used in conjunction with existing software visualiza-
tion techniques, and how the navigation model is capable of releasing the user from
hand-coding the queries. We currently have automation as a proof of concept provided
through a prototypical Eclipse plug-in tool supporting different programming paradigms
such as procedural, object-oriented and aspect-oriented. Our work complements related
work discussed in other proposals. However, we believe that it will help maintainers
overcome the barriers of current tools for program comprehension and measurement.

A possible direction for future work could be providing support for non-volatile stor-

age of the proposed codebase model. This could help the navigation and analysis of

117

legacy systems by providing efficient algorithms for managing large amount of non-
volatile memory. An option could be using existing globally available database sys-
tems. The benefit of this approach is that the uniform query language (e.g. SQL) and
its interpreters are publicly available. However, adaptation is needed to match the re-
quirement of our model to these database systems, since the query composition method
discussed here, requires more interactiveness than just "query writing/execution/result
representation’ cycle. Moreover, this direction should focus on database support for
complex data-types, meta-model access during the query composition, and ability to
reuse queries and combine them either as higher-order functions or using set operations.

Another interesting subject for future work is to focus on the performance tradeoffs.
That is to investigate the time and memory complexity of query systems discussed (e.g
SQL, .QL, and datalog) and to find the proportionality between expressiveness and al-
gorithmic complexity and efficiency. This could also be extended with a study on time

complexity of source code to fact transformation.

118

Bibliography

1] AJDT: Aspect] Development Tools - The Cross References view (XRef).

http://www.eclipse.org/ajdt/xref/

[2] AJDT: Aspect] Development Tools - The Visualiser.

http://www.eclipse.org/ajdt/visualiser/

3] AspectC website.

http://research.msrg.utoronto.ca/ACC

[4] Aspect] website.

http://www.eclipse.org/aspecti/

[5] AspectR website.

http://aspectr.sourceforge.net/

[6] Chidamber and Kemerer Java Metrics.

http://www.spinellis.gr/sw/ckjm/

119

[7] Eclipse website.

http://www.eclipse.org/

[8] Graphical editing framework (_GEF) website.

http://www.eclipse.org/gef/

[9] IMP website.

http://www.eclipse.org/imp

[10] Java Compiler Compilcr [tm] (JavaCC [tm]) - the Java parser generator.

https://javacc.dev.java.net/

[11] JTransformer Framework website.

http://roots.iai.uni-bonn.de/research/.

[12] SWAG Kit website.

http://www.swag.uwaterloo.ca/swagkit/

[13] TyRuBa website.

http://tyruba.sourceforge.net/

[14] Serge Abiteboul and Victor Vianu. Datalog extensions for database queries and

updates. Journal of Computer and System Sciences, 43(1):62-124, 1991.

[15] Jonathan Aldrich. Open modules: Reconciling extensibility and information hid-
ing. In AOSD work&hop on Software Engineering Properties of Languages for
Aspect Technologies (SPLAT), 2004.

120

[16] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhotdk, Ondfej Lhotdk, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: An extensible Aspect] compiler. In Proceedings of the
4th International Conference on Aspect-Oriented Software Development (AOSD),

2005.

[17] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered and

quantum treemaps: Making effective use of 2d space to display hierarchies. ACM

Transactions on Graphics, 21(4):833-854, 2002.

[18] Jens Marco Bendisposto. A framework for semantic-aware editors in eclipse. Mas-

ter’s thesis, Heinrich-Heine-Universitt, INSTITUT FR INFORMATIK, 2007.

[19] Walter R. Bischofberger. Sniff: A pragmatic approach to a c++ programming

environment. In Proceedings of the C++ Conference, pages 67-82, 1992.

[20] Y.-F. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy. The C Information Abstrac-

tion System. IEEE Transactions on Software Engineering, 16(3):325-334, 1990.

[21] E. F. Codd. Relational completeness of data base sublanguages. In R. Rustin (ed.):
Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987, San

Jose, California, pages 65-98, 1972.

[22] Wesley Coelho and Gail C. Murphy. ActiveAspect: presenting crosscutting struc-
ture. In Proceedings of the ICSE Workshop on Modeling and Analysis of Concerns

in Software. ACM Press New York, NY, USA, 2005.

121

[23]

[24]

[25]

[26]

[27]

Tal Cohen, Joseph Gil, and Itay Maman. JTL: the Java Tools Language. In Pro-
ceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Languages, Systems, and Applications (OOPSLA ’06). ACM Press New

York, NY, USA, 2006.

Mariano Consens and Alberto Mendelzon. Hy+: a hygraph-based query and visu-
alization system. In Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’93), pages 511-516, New York, NY,

USA, 1993. ACM.

Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and query-
ing software structures. In Proceedings of the 14th International Conference on

Software Engineering (ICSE °92), pages 138-156. ACM, 1992.

Mariano P. Consens and Alberto O. Mendelzon. The g+/graphlog visual query
system. In Proceedings of the 1990 ACM SIGMOD international conference on

Management of data (SIGMOD ’90), page 388. ACM, 1990.

Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn Ek-
man, Neil Ongkingco, Damien Sereni, and Julian Tibble. Keynote address: .QL

for source code analysis. In Proceedings of the 7th Working Conference on Source
Code Analysis and Manipulation (SCAM ’07), pages 3-16. IEEE Computer Soci-

ety, 2007.

122

[28]

[29]

[30]

[31]

[32]

Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge, and Bruce W. Bal-
lard. LaSSIE - a knowledge-based software information system. In Proceedings
of the 12th International Conference on Software Engineering (ICSE). IEEE Com-

puter Society Press, 1991.

Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an extensible
language-independent environment for reengineering object-oriented systems. In
Proceedings of the Second International Symposium on Constructing Software En-

gineering Tools (CoSET ’00), 2000.

J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPRO-Generic Understanding
of Programs An Overview. Electronic Notes in Theoretical Computer Science,

72(2):47-56, 2002.

Juergen Ebert, Bernt Kullbach, and Andreas Winter. Querying as an enabling tech-
nology in software reengineering. Proceedings of the Third European Conference

on Software Maintenance and Reengineering (CSMR ’99)., 00:42, 1999.

Laleh Mousavi Eshkevari, Venera Arnaoudova, and Constantinos Constantinides.
Comprehension and dependency analysis of aspect-oriented programs through
declarative reasoning. In Proceedings of the 10th International Symposium on
Practical Aspects of Declarative Languages (PADL 08), pages 35-52. Springer,

2008.

123

[33] Henry Falconer, Paul H. J. Kelly, David M. Ingram, Michael R. Mellor, Tony Field,
and Olav Beckmann. A declarative framework for analysis and optimization.

In Proceedings of the 16th International Conference on Compiler Construction

(ETAPS-CC ’07), 2007.

[34] Jean-Marie Favre. GSEE: A generic software exploration environment. Proceed-
ings of the 9th International Workshop on Program Comprehension (IWPC ’01),

00:0233, 2001.

[35] PJ. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, and H. Muller. The

Software Bookshelf. IBM Systems Journal, 36(4):564-593, 1997.

[36] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. CLOS: integrat-
ing objéct-oriented and functional programming. Communications of the ACM,

34(9):29-38, 1991.

[37] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A

deductive approach. ACM Computing Surveys, 16(2):153-185, 1984.

[38] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Profes-

sional, 1995.

[39] Hamoun Ghanbari and Constantinos Constantinides. An algebraic query method
for static program analysis and measurement. In Proceedings of the 17th Inter-
national Conference on Software Engineering and Data Engineering (SEDE ’08),

124

(40]

[41]

{42]

[43]

[44]

[45]

2008.

Hamoun Ghanbari, Constantinos Constantinides, and Venera Arnaoudova. A hy-
brid query engine for the structural analysis of java and aspectj programs. In Pro-
ceedings of the 15th International Working Conference on Reverse Engineering

(WCRE °08), 2008.

Martin Graham, Jessie B. Kennedy, and Chris Hand. A comparison of set-based
and graph-based visualisations of overlapping classification hierarchies. In Pro-
ceedings of the Working Conference on Advanced Visual Interfaces (AVI ’00),

pages 41-50. ACM Press New York, NY, USA, 2000.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable source
code queries with Datalog. In Proceedings of the 20th European Conference on

Object-Oriented Programming (ECOOP ’06), pages 2-27. Springer, 2006.

H. He and A K. Singh. GraphQL: Query Language and Access Methods for Graph
Databases. Technical report, Technical report, Department of Computer Science

at University of California, Santa Barbara, 2007.

Brian Henderson-Sellers. Object-oriented metrics: Measures of complexity.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1995.

Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12(5):741-748, 2006.

125

[46]

[47]

[48]

[49]

(50]

[51]

[52]

Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use
Cases (Addison-Wesley Object Technology Series). Addison-Wesley Professional,

2004.

Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In Proceedings of the 2nd International Conference on Aspect-Oriented Soft-

ware Development (AOSD ’03), pages 178-187. ACM Press, 2003.

M. Kamp. GReQL. Eine Anfragesprache fur das GUPRO-Repository,

Sprachbeschreibung (Version 1.2). in [8], pages 173-202, 1998.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

Proceedings of the 11th European Conference on Object-Oriented Programming

(ECOOP °97), 1997.

Giinter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based
infrastructures for concern detection and extraction. In Proceedings of the 3rd
AOSD Workshop on Linking Aspect Technology and Evolution (LATE ’07), New

York, NY, USA, 2007. ACM.

Alberto O. Mendelzon and Johannes Sametinger. Reverse engineering by visual-

izing and querying. Software - Concepts and Tools, 16(4):170-182, 1995.

Russell Miles. AspectJ Cookbook. O’Reilly Media, Inc., 2004.

126

(53]

[54]

[55]

[56]

(571

[58]

[59]

Michael L. Nelson. A survey of reverse engineering and program comprehension.

In In ODU CS 551 Software Engineering Survey, page 2, 1996.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story of moose: an
agile reengineering environment. In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering (ESEC/FSE ’05), pages 1-10. ACM,

2005.

Jan Paredaens, Peter Peelman, and Letizia Tanca. G-log: A graph-based query
language. IEEE Transactions on Knowledge and Data Engineering, 07(3):436—

453, 1995.

Santanu Paul and Ataul Prakash. A query algebra for program databases. IEEE

Transactions on Software Engineering, 22(3):202-217, 1996.

Santanu Paul and Atul Prakash. Querying source code using an algebraic query
language. In Proceedings of the International Conference on Software Mainte-

nance (ICSM °94), pages 127-136. IEEE Computer Society, 1994.

Knut H. Pedersen and Constantinos Constantinides. AspectAda: aspect oriented
programming for ada95. In Proceedings of the 2005 Annual ACM SIGAda Inter-

national Conference on Ada, pages 79-92. ACM, 2005.

J.-Hendrik Pfeiffer and John R. Gurd. Visualisation-based tool support for the
development of aspect-oriented programs. In Proceedings of the 5th International

127

(601

[61]

[62]

[63]

[64]

[65]

Conference on Aspect-Oriented Software Development (AOSD), pages 146-157.

ACM Press New York, NY, USA, 2006.

Awais Rashid and Neil Loughran. Relational database support for aspect-oriented
programming. In Revised Papers from the International Conference NetObject-

Days on Objects, Components, Architectures, Services, and Applications for a

Networked World, pages 233-247. Springer-Verlag, 2003.

Steven P. Reiss. A visual query language for software visualization. Proceed-
ings of the IEEE 2002 Symposia on Human Centric Computing Languages and

Environments (HCC’02), 00:80, 2002.

Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification system
and analysis for aspect-oriented programs. In Proceedings of the 12th ACM SIG-
SOFT twelfth International Symposium on Foundations of Software Engineering

(FSE '04), pages 147-158. ACM Press, 2004.

Spencer Rugaber. Program comprehension for reverse engineering. In Proceedings

of the AAAI Workshop on Al and Automated Program Understanding, 1992.

Robert W. Sebesta. Concepts of programming languages (7th Edition). Addison-

Wesley Longman Publishing Co., Inc., 2005.

Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison-Wesley,

2006.

128

[66] Margaret-Anne Storey, Casey Best, and Jeff Michaud. SHriMP views: an inter-

active environment for exploring Java programs. In Proceedings of the 9th In-
ternational Workshop on Program Comprehension (IWPC °01), page 111. IEEE

Computer Society, 2001.

[67] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Miiller. Rigi: a visualization

environment for reverse engineering. In Proceedings of the 19th International
Conference on Software Engineering (ICSE ’97), pages 606607, New York, NY,

USA, 1997. ACM.

[68] Mathieu Verbaere, Elnar Hajiyev, and Oege De Moor. Improve software quality

[69]

[70]

with SemmleCode: an eclipse plugin for semantic code search. In Companion to
the 22nd ACM SIGPLAN Conference on Object Oriented Programming, Systems
Languages and Applications (OOPSLA’07), pages 880-881, New York, NY, USA,

2007. ACM.

Kris De Volder. JQuery: A generic code browser with a declarative configuration
language. In Proceedings of the 8th International Symposium on Practical Aspects

of Declarative Languages (PADL *06), 2006.

Anneliese von Mayrhauser and A. Marie Vans. Program understanding — a survey,

1994.

129

[71] Roel Wayts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of the 26th International Conference on Technologies of Object-
Oriented Languages and Systems (TOOLS-USA ’98), pages 88—102. IEEE Com-

puter Society, 1998.

[72] Sai Zhang and Jianjun Zhao. Change impact analysis for aspect-oriented programs.

Technical report, Center for Software Engineering, Shanghai Jiao Tong University,

2007.

130

