EFFICIENT HEURISTIC FOR MULTICASTING

IN ARBITRARY NETWORKS

RAHUL KATRAGADDA

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JUNE 2008

© RAHUL KATRAGADDA, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45305-6
Our file Notre référence
ISBN: 978-0-494-45305-6

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Efficient Heuristic for Multicasting in Arbitrary Networks

Rahul Katragadda

Multicast is a communication model in which a message is sent from a source to an
arbitrary number of distinct destinations. Two main parameters that are used to evaluate
multicast routing are the time it takes to deliver the message to all destinations and the
traffic, i.é., the total number of links involved in the multicast process. It has been proved
that finding an optimal multicast solution on both time and traffic is NP-hard. We
propose a heuristic for the multicasting problem in an arbitrary network. We perform
extensive simulations to test our heuristic for pure random network topology and two

types of N-Level Hierarchical topologies.

iii

Acknowledgements

I express my sincere gratitude to my research supervisor, Dr Hovhannes A. Harutyunyan,
for giving me an opportunity to work under his guidance. His patience and charisma
have inspired me throughout the course of my learning and will continue to do so. I
appreciate his patience in outlining and explaining me the multicast topological issues
and also for his instructive advice that led me focus on my research work and complete

the thesis in a reasonable timeframe.

Finally, I would like to extend my thanks to the faculty of the Department of
Computer Science and Software Engineering, some of who instructed me in the Master’s
major courses that I took; for the knowledge and skills I learned from them and for
providing the excellent research facilities and resources. I would also like to appreciate
the assistance that I received from the staff and fellow graduate students during my

studies in Concordia University.

iv

Table of Contents

List of Figures vii
List of Tables viii
1 Introduction 1
11 MOtVAHON.voevoveeeseeeeeoeeesees e ereseeeeeeas e 1
1.2 Problem Statement..........cccoviriuiniiiiiiiiiiiiiie e 2
1.3 Scope of the Study........oooviriiiiii e, 5
1.4 Organization of the Thesis........covvvviiniiiiiiiii e, 6
2 Literature Review 8
2.1 Preliminary......ococuieininiiiiiiiiiii e e 8
2.2 General Network TOPOIOZIES. . ..c.vueuininierieiiiiiiiieeeieieeeieneeeeannanns 12
2.2.1 Types of Network Topology......ccvueiuieriiiiiiiiiiiiiieeineeeeneenn, 13
2.3 Graph MOGEIS.cviuiniiiiiiiii e e, 17
2.3.1 Flat Random Graphs..........c.cooeiiiiiiiiiiiiiiiiiiiiiieieineenienanns 17
2.3.2 Hierarchical Models........ccoooeviiniiiiiiiiiii e, 20
3 Multicast Algorithms 27
3.1 ASSUMPLIONS. c.uvvviiiiiniiiitiiiiit ittt et e e s eeaeeneneenen e anne 27

3.2 Tree-based Multicast Algorithms

3.2.1 Brute-Force Algorithm...........oooiiviiiiiiiiiiii e,

3.2.2 Simple Search Heuristic Algorithm (SSH)

4 Simulations and Discussions

..

.................................

4.1 SIMulation MOAEL. .. .vviiiiii e e

4.1.1 Model of the Simulation Program
4.1.2 Implementation of Simulation System

4.2 Performance Evaluation model.....ooovviniiiiiiniiiiiinintierenneesseeneenenen

...

......................................

4.2.1 Simulation Methodology...........ccvuviviviiniiiiniiiiieiiiene e,

4.2.2 Simulation of Brute-force and SSH in Pure Random Model............

4.2.3 Simulation of Brute-force and SSH in Hierarchical model

4.2.4 Simulation of Brute-force and SSH in Transit-Stub model

..............

..............

4.3 ConfIdence INterValS. . coueeiiiiiiiieei e ietreree s e sareneessseesesannneenneseens

5 Conclusion and Future Work

Bibliography

vi

45

45

46

48

49

51

61

69

72

List of Figures

10.

11.

12.

13.

14.

15.

16.

Different Transmission Methods.............cccoeoviveiiiiiiiiiiiiiiiie, 4

Calculation of Optimum Multicast Time...............cocvviiiiiiiiiiinininn, 12
Common Network Topologies.......ooevvivriiiiiiiiiiiiiiiiiiieceeeee, 13
Mesh-Connected Network Topologies........ooovveviiiiiniiiiiiiiiiiinininn.. 17
N-Level Hierarchical Layout.........c.coovuiiiiiiiiiiiiiiiiiieieieiee e, 22
Transit-Stub Domain Structure.......coevveiiiiiiiriniiiiiiiiieeeeeeenenen, 23
Transit=-Stub Layout........cccoiiiiiiiiiii i 26
Example Graph of Transit-Stub Model with 20 Nodes.......................... 32
Multiple Executions of Brute-Force Al.gorithm 34
Several Concepts of the New HeuristiC.......oveeneinieeeiiininininineninnn, 39
Heuristic Application Procedure...........cccoviviviiiiiiniiniiiiiiiieinneen, 40
Execution of SSH Algorithm.......coovviiiiiiiiiiiiii e, 44
Class Diagram of Simulation Program...........cccecvviiiiiniiniieiennnnenennnn. 47
Multicast Performance in Pure Random Graphs.............cooveveninininnn.e. 54
Multicast Performance in Hierarchical Graphs...........cccovivviiiniiiininn, 57
Multicast Performance in Transit-stub Graphs..........cocovvvivinininininnnn, 60

vii

List of Tables

1. Flat Random Graph Models...........c.ooeiiiiiiiiiiiiiiiiiin e, 19
2. Transit-Stub Graph Parameters...........c.cceveviiiniiininiiiiininnn e, 24
3. Common Confidence Levels and Zy, Values. ...oovvvveeeeveeeeienieinierannn, 62
4. Input for ns-2 to Generate Network Models..............cocvvviiiiiiiiininnnn, 62
5. 99% Confidence Intervals for Time in Graph Models 1........................ 63
6. 99% Confidence Intervals for Traffic in Graph Models 1...................... 64
7. 99% Confidence Intervals for Time in Graph Models 2....................... 65
8. 99% Confidence Intervals for Traffic in Graph Models 2...................... 66
9. 99% Confidence Intervals of Overall Mean Multicast Time................... 67
10. 99% Confidence Intervals of Overall Mean Multicast Traffic................. 68

viii

Chapter 1

Introduction

1.1 Motivation

High performance computers are always in demand for handling tasks such as 3D
animation, Image processing and Pattern recognition, Weather forecasting, etc. These are
complex scientific calculations that cannot be typically done on simpler machines.
Multicomputer [1], also known as MPC (Massively Parallel Computer) [8], is the
preferred high performance machine in such situations. A multicomputer basically has
thousands of processors inter-connected like a network with each of them having their
own dedicated memory to operate on. A complex task on such a system is divided into
simpler tasks and then fed to multiple processors to operate on concurrently thereby
reducing the time and increasing the efficiency of the machine. However, these
processors need to communicate efficiently with one another over their network,
consequently defining the efficiency of the system as a whole [8].

Different communication methodologies exist such as Unicast (one-to-one),

Broadcast (one-to-all) and Multicast (one-to-many). Unicast and Broadcast are just
special cases of Multicast. Inefficient multicast communication could become the
bottleneck in the overall performance of the system. This leads to the requirement for
highly efficient algorithms for improving the overall performance of the system. A lot of
earlier research has concentrated on developing and improving multicasting algorithms
that dealt with efficient transmission mechanisms over networks. However, this research
was not generalized for any underlying arbitrary network topology. These algorithms
function optimally only on their theoretically pre-assumed topology of the network such
as Mesh, Torus, Hyper-Cube, etc. However, practical applications are different from
theoretical analysis and hence, it might not be feasible to use any of such pre-defined
topologies in a multi-computer network. Across all of the current research, no algorithm
has been proposed for efficient multicasting over arbitrary networks except for a couple
of algorithms for broadcasting [1, 5]. In this thesis, we provide an efficient multicast

algorithm that could be applied in any given arbitrary network.

1.2 Problem Statement

New network service requirements and modern high capacity network techniques have
created an undisputed necessity to develop more efficient methods to share information
than before. Multicasting is a method of sending the same information to several
recipients simultaneously. It is an enhancement to traditional unicast and broadcast
transmission methods. In the following paragraphs, we will provide more information on
various network environments: Unicast, Broadcast and Multicast. This information is

needed to better understand the multicast topologies and algorithms that we would

present in later chapters.

In a Unicast environment, the transmitter sends the data to only one recipient.
This can be typically observed in data communication networks where the recipient's
network address is used to reach it. For example, the network address can be an IP
address or an IPX address. If a transmitter needs to send the same information to multiple
recipients, it must use several addresses in order to reach all these recipients. This causes
the transmitter to send the same data several times and waste large amounts of resources.

In a Broadcast environment, the same information is sent to all recipients. The
recipient can then choose if he needs this information and then possibly discard it. From
the transmitter's point of view, the data is sent only once and usually to one address only.
Broadcasting does not consume transmitter's resources more than single unicasting but
the resources of the network infrastructure are consumed in a quite inefficient way. Apart
from Radio and tel¢vision transmissions, modern data communication networks are good
examples of broadcasting environments. Some protocols use broadcasting to discover
resources from the network. For example, it is quite usual that a workstation sends a
broadcast message to a network to discover the server machine. In data communications
networks, broadcasting is usually restricted to one physical or logical network segment in
order to decrease the load from the whole network. If broadcasting were not restricted
then broadcast message floods from all parts of the network could cause the total load to
rise exponentially.

Multicasting is a method of communication that is used to reach several recipients
by one transmission. Recipients must also be defined separately and it must be possible to

restrict those recipients who receive the data that are sent. The result of one multicast

transmission is exactly the same as when unicast transmission is committed several times
consequently—once for each recipient. The major difference is that the transmitter has to
send data only once and hence making it consume as few resources as possible. The data
is also sent to only those recipients who were expecting it making a very efficient use of
the network’s resources. Figure 1 shows the Unicast, Broadcast and multicast

transmission methods.

Transmission methods

il

Unicast Broadcast Multicast

Figure 1: Different Transmission methods.

Multicast time and multicast traffic are the two parameters under consideration
while implementing an optimal multicast algorithm. These parameters however are not
independent of each other and hence the problem of finding an optimal solution is NP-
Hard. Various multicast algorithms had been proposed with time and traffic optimization
for well-defined topologies such as 2D, 3D Meshes [28, 29], Torus [9, 30] and
Hypercubes [12, 31]. These algorithms require that the underlying muiti-computers have

their respective topologies to work ideally with their defined optimizations. When the

underlying network is arbitrarily selected like an intranet or an internet, these algorithms
might have poor performance. This thesis deals with the problem by proposing a

heuristic for multicasting in an arbitrary network.

1.3 Scope of the Study

In general, multicast is a huge domain considering the different network topologies being
operated on and the specific applications being used. Many problems that occur in
several scenarios such as traffic, dead-locks, inactive links, etc., need to be addressed
[19]. Therefore, this thesis will concentrate on an ideal network topology, i.e., it is
assumed no such faults occur just for the case of simplicity. We provide a solution based
on an algorithm that we have developed for use over any network topology. We
concentrate in this thesis on the theoretical outcome of the research.

In this thesis, the network topologies being considered can broadly be classified
into two different categories—Random and Hierarchical. The sections of chapter 2 have
an in-depth explanation of these topologies for better understanding of their structure and
workings. Furthermore, this study only focuses on the single message multicast whereas
the multiple message multicasting is completely out of scope. Also, due to the NP-
Hardness of the problem, we are not concerned about the best optimal solution, but are
only going to provide a medium through which we can reach that point by using some of
the better ways to communicate using the multicasting model.

The simulation of the algorithm is done on a typical computer with each network
end-point (or processor) being a node in a graph and the links between the network being

the edges in the graph. Also, the network links are assumed to be bi-directional and the

distance between inter-connected endpoints to be of unit weight.

Any of our proposed algorithms, when used in any practical situations, might
further be optinﬁzed based on different network parameters such as the underlying
network architecture, or specific properties such as the throughput, degree of the network,

type of network, etc.

1.4 Organization of the Thesis

In the following chapters we will first introduce some concepts related to the work being
performed followed by the critical analysis of the SSH algorithm being proposed for
multicasting.

In Chapter 2, we introduce the different network topologies being used for our
analysis. In particular, we will introduce two different classifications of network
topologies based on their structural properties.

Chapter 3 presents the algorithms that form the core of the thesis. Since this is a
first work on such a topic, we are going to use a random store-and-forward multicasting
algorithm called the Brute-force algorithm as a basis for comparing the results of our
SSH algorithm. We define both algorithms along with their respective time-
complexities.

In Chapter 4, we present our algorithm’s experimental analysis, which puts out
the statistical results of our simulation on paper along with comparisons for the
algorithms—both graphical and numerical. We then examine how efficient our newly

proposed algorithm is compared to the Brute-force algorithm. We use multicast time and

multicast traffic for calculating and defining the efficiency of our proposed multicasting

algorithm, |
Chapter 5 provides a conclusion of what we have done for improving the

multicasting performance on arbitrary network topologies and our deductions based on

our analysis. Finally, suggestions to graduates for future work based on our research are

descﬁbed.

Chapter 2

Literature Review

2.1 Preliminary

In this chapter we present the user with the necessary concepts to better understand this
thesis.

Theoretically, any network could be always modeled as a graph. Hence any
network related problem (multicast algorithm in our case) is typically converted into a
graph theory problem. 4 network can be modeled as a graph G = (V, E), where V is the
set of vertices (or nodes) and E is the set of edges (or communication lines). Two nodes
u€VandveV are adjacent if there is an edge e € E, such that e = (4, v). We also say
node u or v is a neighbour of another node. The degree of a node is the number of
neighbors of this node. The degree of a graph G is the maximum degree among all nodes
in this graph. A stands for the degree of a graph. A path p in a graph G = (V, E) is a
sequence of nodes of the form p = v;, v, ..., v, (n > 2), in which each node v; is adjacent

to the next node. Obviously, the path p is also a sequence of edges. The length of a path

is the number of edges in the path. The length of the shortest path between two nodes is
the distance between them. The term "shortest" in this case can refer to least number of
edges, least total weight, etc. The diameter of a graph is the maximum of the distances
between all pairs of nodes in the graph. A graph G can be directed or undirected. The
graph is undirected if the adjacency relation defined by the edges is symmetric or E =
{{u.v} | u, ve V} (sets of vertices rather than ordered pairs), otherwise the graph is
directed. A graph G = (V, E) is said to be connected if there is a path between any two
nodes on G. It is obvious to assume that the network is represented by a connected
graph. A graph with no path that starts and ends at the same vertex is called an acyclic
graph.

Multicast can be defined as the problem of disseminating a piece of information,
owned by a certain node called the source node, to all the destination nodes. These
destination nodes form the multicast group nodes. Multicasting is performed by placing a
series of calls along the communication lines of the network. At any given instance of
time, the informed nodes contribute to the information dissemination process by
informing one of their uninformed neighbours. In this thesis we always use a multicast
model that can be described in the following steps:

1. In each call, only one informed node and one of its uninformed neighbours are

involved.

2. Each call requires one unit of time.

3. A node can only participate in one call per unit of time.

4. In any given unit of time, multiple calls in parallel can be performed on

different nodes.

A multicast scheme of an originator or source u is a set of calls that completes the
multicasting in the network, originated at vertex u. An optimal multicast scheme informs
all the destination nodes in the least amount of time.

Suppose there is a graph called G(V, E), where each node in V corresponds to a
node and each edge in £ corresponds to a communication link. Also consider a set K = {
Ug, Uy, Uz, ... 4y } such that in a communication process, any member u; of K may need to
multicast data to the other members (K - { u; }). The set X is a subset of V(G), which is
called a multicast group.

Multicasting on a network can be implemented using two different approaches—
Unicast-based multicast and Tree-based multicast
Unicast-based Multicast

Implementing unicast-based multicast is straight forward. In unicast-based
multicast, a separate copy of the message from the source node to every destination node
is sent. This method is called separate addressing [27]. This is a simple but expensive
solution because it is done sequentially and it does not use any of the previously used
links.

Tree-based Multicast

In the Tree-based multicast approach, the source node sends the message to a
selected set of its neighboring nodes. It will be disseminated from node to node in a
certain order. This will continue until all destinations receive the message. All nodes
and links that are involved in the dissemination, will occur only once at a certain time and
a tree will be formed rooted at the source node. In this way, a multicast scheme can be

described as a tree spanning the multicast group members.

10

The advantage of the tree-based multicast approach compared to unicast-based
multicast is its high efficiency on both time and traffic. This means that the destination
nodes will share paths in order to never use the same link twice, which will reduce the
amount of total traffic. Also high parallelism in message dissemination will reduce the
communication latency significantly. It should be noted that a multicast scheme can b¢
shown by a tree.

Efficiency and scalability are considered to be the main parameters for evaluating
multicast communication. A small multicast delay in disseminating a message results in
a more efficient multicast. To achieve a tree with small multicast delay, the time needed
to deliver a message from a source to all destinations in the tree should be éalculated. In
other words, the maximum time it takes for the last destination to receive the message
should be considered.

It should be noted that given a source node in a tree, automatically there would be
a direction from the source to the leaves for passing information. So the source can be
considered as the root of the tree and the neighbours via outcomming edges can be
defined as the children of a node.

Given a tree T(V, E) and a source node u € V, the optimum multicast time m(u, T)
can be calculated with a bottom-up approach using the following formulas:

1. Ifuis aleaf node, which means it does not have any children, m(u, 7) = 0.

2. Mu, T) = max (i + m(v;, T,)) in which v; denotes the ordered set of the

children of u and T; is the subtree of T rooted at v; such that subtrees 7T;; are
labeled in a way that m(v;, T,) >= m(Vi+}, Tyis1).

Figure 2 illustrates how the message transmition delay or latency is calculated.

11

M, T) =
max(1+3, 242, 340, 440, 540) =

M(Ve, TIFD M(V2, /=0 M(V5, T=0 M(Vy, T)=0 M(Vyp, T)=0

Figure 2: Calculation of optimum multicast time.
(It will take u, 5 time units to disseminate a message to all the child nodes.)

2.2 General Network Topologies

A network is represented as a collection of nodes inter-connected by links [25]. The
network topology is determined only by the configuration of connections between
nodes—hence making it a part of graph theory. Although in real life, a physical network
might be affected by the properties of its components such as the distances between
nodes, physical interconnections, transmission rates, and/or signal types, they are not a
matter of concern in our study of network topologies. The nodes are inter-connected
using a variety of topologies that can be broadly classified into two categories—Direct

and Indirect [16].

12

2.2.1 Types of Network Topology
In direct networks, each node has a point-to-point or direct connection to some of the
other nodes, called neighboring nodes. Examples of direct network topologies include

ring, star, mesh, tree and many more as shown in Figure 3 (Source: [25])

" Star Fulinonnected

Line " Tr\ee

Figure 3: Common Network Topologies

In direct networks, if there are at least two nodes with two or more paths between
them, then it is called a mesh network. In indirect networks, the nodes are connected to
other nodes or a shared memory through one or more switching elements. Examples of
indirect networks include crossbar, bus, and multistage interconnection networks. Among
them, the bus network is most commonly seen. A bus network is a network architecture
in which clients are connected via a shared communications line, called a bus [25]. There
are several common instances of the bus architecture, including one in the motherboard
of most computers, and those in some versions of Ethernet networks. Bus networks are

the simplest way to connect multiple clients, but often have problems when two clients

13

want to communicate at the same time on the same bus. The advantages of a bus network
are that it is easy and cheap to implement, it is easy to set up and change (add or remove
node) and failure of one node does not affect the others. The disadvantages of a bus
network are the length of the bus and the number of stations being very limited. Failure
of the bus will disable the whole network and perfonhance degrades quickly as more
nodes are added because bus contention becdmes the bottleneck of the network.

Mesh networks, on the other hand, are more reliable and fault tolerant. Failure of

one node or several links will not cause the whole hetwork to fail. Another good
characteristic of a mesh network is that it scales well. Mesh networks have hence
emerged as a popular architecture for massively parallel computers (MPC). To make it
even easier to scale and manage in MPC, mesh nodes are usually arranged as an -
dimensional array and nodes are connected to their neighbors in each dimension,
consequently called n-dimensional mesh. Here we present formal definitions for n-
dimensional mesh networks.
Definition 2.1.1 (n-dimensional mesh) An n-dimensional mesh is an interconnection
structure that has ko x ks x . . . x k».» nodes, where & denotes the number of nodes in the i®
dimension. Each node in the mesh is identified by an n-coordinate vector (xo, x1, . . . , Xn1),
where 0 < x: < k-1. Two nodes (xo, X1, . . . , X»2) and (3o, 1, . . ., yn1) are connected if and
only if there exists an i such that xi= (3 + 1), and x; =), for all j # i. Thus the number of
neighbors of a node ranges from » to 2n, depending on its location in the mesh [16].

We notice that, in a mesh, there is no connection between the first node and the
last node of each dimension. So communication between them needs to travel a long

distance along the dimension and it is also unidirectional. That’s why a mesh network is

14

un-symmetric and has a large diameter. But if we add a link between the first node and
last node in each dimension, then the line along each dimension forms a circle that will
significantly reduce the travel distance (almost by half) between nodes. Because now in
any dimension, a message could travel along two opposite direction and reach the same
destination, the mesh therefore becomes symmetﬁcal and we call the mesh with wrap-
around links a Torus. The following is the formal definition of an n-dimensional torus
[8].

Definition 2.1.2 (n-dimensional torus) A n-dimensional torus is defined as an
interconnection structure of » dimensions having ks x k&: x . . . x k«: nodes, where
denotes the number of nodes in the ;™ dimension. Each node in the n-dimensional torus is
identified by an n-coordinate vector (xo, x1, . . ., X1), where 0 < x: < ki -1. Two nodes (xo,
X1, .. ., Xn1) and (o, y1, . . . , yn1) are connected if and only if there exists an i such that x; =
(vi £ 1) mod ki, and x; = y; for all j # i. There are wraparound channels in the n-
dimensional torus (specified by the use of modulus in the definition), which are not
present in n-dimensional meshes. If £ = 2, then every node has n neighbors, one in each
dimension. If £ > 2, then every node has 2n neighbors, two in each dimension.

The torus is a symmetrical topology in which the degree of a node is the same
irrespective of its location in the network. Thus, unlike the mesh, all the nodes in tori are
identical in connectivity, which balances traffic load and simplifies the algorithm to
handle them. The mesh, though, is an asymmetrical topology in which the node degree
depends on its location. Interprocessor communication performance depends on the
location of source and destination. The channels near the center of the mesh experience

higher traffic density than those on the periphery. The network diameter of a mesh is

15

greater than that of the torus with the same number of nodes [16]. Hence average distance
between nodes in a torus is reduced significantly over a mesh. But the pitfall of torus is
that, in practice, the wiring is more difficult because of the wraparound links and wrap-up
links are usually different from regular links (longer), which result in different weight of
edges. Therefore, the scalability of a torus may not be as good as a mesh. Some special
cases of n-dimensional meshes and torus have special names, notably K-ary » cube and
hypercube. Here are their definitions.

Deﬁm’tion 2.1.3 (K-ary n cube) A k-ary n-cube is a special case of n-dimensional torus
when the size of all n dimensions is the same, say, K.

Definition 2.1.4 (Hypercube) A hypercube is a special case of n-dimension mesh when
the size of all #n dimensions is 2. It is also a special case of K-ary n cube when K = 2,
hence called 2-ary n cube [8].

K-ary n cube and hypercube are even more symmetrical and regular structure than
torus. Therefore, there are many special ways to deal with routing in such a network
topology, notably the addressing of the node and calculation of the distance. They are
popular topologies for first generation multicomputer. For example, n-cube or hypercube
was adopted by all first-generation hypercube multicomputers and by iPSC-2 and nCube-
2/3. Whereas, low-dimensional mesh and torus become more popular in new generation
multicomputers include Touchstone Delta [Intel 1990], Paragon [Intel 1991] and Symult
2010 which uses 2D mesh, Cray T3D [Kessler and Schwarzmeier 1993; Scott and
Thorson 1994], MIT J-Machine [Noakes, et al. 1993}[8] which uses 3D mesh. Figure 4
(Source: [8]) shows a 4-dimensional hypercube and a 3-dimensional mesh and a 2-

dimensional Torus.

16

3 (2) (3)

(1) 2-ary 4-cube(Hypercube); (2) 3x3 2D Torus; (3) 3x3x3 3D Mesh;
Figure 4: Mesh-connected Network Topologies

2.3 Graph Models

This section presents the different graph models that we will be using in our study and
analysis. These graph models are basically classified on how they are constructed—
purely randomly or hierarchically. We will be describing three different models in the

following sections.

2.3.1 Flat Random Graphs

A wide variety of flat (i.e., non-hierarchical) random graphs have been used in
networking literature to simulate inter-network models. All of these models are just
simple variations of the standard random graph model, which is basically constructed by
distributing vertices randomly on a plane. Then each pair of vertices is considered for an
edge between them wi‘th a probability of a. Although, building a network in such a way
does not simulate any real life networks, this network model is extensively used because
of its relative simplicity in designing and for studying common network problems.

A simple change in the above method of graph generation provides different
variations of pure random graph. In this case, the vertices are randomly distributed on a

plane just like a pure random graph and then the probability function used to calculate the

17

probability of an edge between a pair of vertices is valtered. These functions are modeled
to better reflect the real world networks such as internet/intranet. One such very common
model in the network literature is the Waxman [3] model, where the probability of an
edge from vertex u to v is given by the following formula:
Pu,v)=ae ia/pL) |

Where 0 < g, § < 1, d is the Euclidean distance from u to v and L = V2 x scale is the
maximum distance between any two nodes. Increasing a will increase the number of
edges in the graph, while an increase in S increases the ratio of long edges relative to
shorter edges. This is called the Waxman 1 Model. Several different variations of
Waxman model have been proposed with the following changes:

e Replace d by a random number between 0 and L [3]. This is the Waxman 2
model.

e Scaling P(u, v) by a factor k € / n, where € is the desired average node degree, n
is the number of nodes and £ is a constant that depends on a and S [2].

e Allowa>1.0[4].

Although, both the Waxman models are very similar, the second model is a lot
more interesting because of the fact that the addition of the factor radius = k € gives more
direct control over the number of edges in the graphs that are generated, provided & is
known. Another variation of this model called the Doar-Leslie model, is created by
choosing the a parameter of the Waxman model to be equivalent to any of the parameters
k, €, nand a.

Exponential model and Locality model are two other random models that are

proposed with the intention of relating the edge probability to the distance between

18

vertices (as in the Waxman model) but with a more direct probability function. In the
Exponential model, the edge probability decreases exponentially with the distance
between the two vertices and hence the name. The Locality model, on the other hand,
partitions the edges into discrete categories based on the length of the edges, and assigns
a different edge probability for each category. Another nice feature of this model is that
we can extend many of the analytical results of (pure) random graphs to this model.
Also, any finite number of categories is allowed within this model, which gives us a
better control over the topologies generated. The Exponential model can be expressed as:
Pu,v)=ae A4
The Locality model with two categories and using a parameter radius to define
the boundary of each of the categories can be expressed as:
P(u,v)= o ifd < L x radius
| Bifd> L x radius
The following is a quick run-down table showing the edge probability between
two vertices at Euclidean distance d for the most common models that have been defined
above. For the purpose of this study, we will only focus on the Pure Random model

because of its simplicity and randomness.

Model Edge Probability
Pure Random a
Waxman 1 a e VP
Waxman 2 a e AU LIFL)
Doar Leslie o (radius) / ne """

19

Exponential ae Y

aifd <L x radius
Locality
Bifd>L x radius

Table 1: Flat Random Graph Models

2.3.2 Hierarchical Models

The random models discussed above and the currently being presented hierarchical
models represent two extreme ends in the sense that random models present very little
control over the structure of the resulting topologies, whereas the hierarchical models are
highly rigid in the way they are structured. Neither of them might capture the exact
hierarchy that is available in real life networks. However, both reflect some notion of
locality that clearly identifies if a set a nodes are more likely to be connected than the
others. Real life networks can be widely classified into two types—Internet and Intranet.
The Internet is simply a global network of networks. It is the connection between two or
more networks that are not necessarily physically connected. The Intranet on the other
hand is a private network of networks such as a corporate network only accessible to the
employees of the corporation.

The following is a discussion of creating these hierarchical topologies by inter-
connecting smaller components or networks together based on a pre-defined structure

very similar to the way intranet or internet functions.

N-Level Hierarchical Model

The topology of an N-Level hierarchical model is constructed recursively. We

first start with a connected graph. Then at each step in the recursion, each node in the

20

current topology is completely replaced by another connected graph. The edges in this
newly created graph are ‘resolved’ in various ways for example using the pure random
models defined above.

To construct an N-Level hierarchical model, we first divide the Euclidean plane
into equal sized square sectors, whose number is determined by a parameter called Scale
(S). Then, a flat random graph is generated with each node being placed in any one of the
S? sectors (it is not necessary for each sector to have a node.). The top level graph in the
whole topology is now constructed with a scale parameter of S;. Recursively, each sector
having a node is then sub-divided again based on a second level scale parameter S, and
another graph is constructed (as earlier) by using this sector as a unit plane. Euclidean
co-ordinates for all nodes are now adjusted to fit this new scale, in the sense that » sectors
of the original top-level plane are now n x S, sectors. Recursively, again the process
continues until we have a final graph that is the result of the product of all the individual
scales at each level. The edge lengths are then roughly determined by the edge level. For
example, consider a three-level graph. Most if not all of the top-level edges (edges part
of the original graph) are longer than the second-level edges which are in turn longer than
the third-level edges. One advantage of the hierarchical model is that we can define the
routing policy based solely on the principle that routes within a domain should stay
entirely within that domain.

Figure 5 shows the graphical layout of the pure hierarchical graph. Although far
from ideal, this figure represents a good network topology of a huge corporate network

(intranet) with a main domain being the corporate network itself which is then divided

21

into sub-domains representing the different branches of the corporation, which are further

subdivided into multiple departments in a branch.

Figure 5: N-Level Hierarchical Layout

Transit-Stub Hierarchical Model

Unlike the N-level hierarchical model, the Transit-Stub model produces hierarchical
graphs in a completely different way. It starts by first creating inter-connected transit and
stub domains (see Figure 6). A connected random graph is first created using any of the
methods described earlier. Each node in this graph represents the entire transit domain.

Each of these nodes is then replaced by another connected random graph, which basically

22

acts as a back-bone network for that transit domain. Once all the transit domains are
created, a number of connected random graphs each representing a stub domain
connected to one of the nodes of the transit domains are then created. Finally, additional

edges are added between pairs of nodes—one from the transit domain to one from a stub.

Transit Domains Multi-homed Stub

TN

G \L// Stub-Stub edge

Stuab Domains

Figure 6: Transit-Stub Domain Structure

The size of the graph (number of nodes) and distribution of nodes between transit
and stub domains is controlled by the parameters shown in Table 2.
The total number of nodes in a Transit-stub graph is given by the formula:
Total # of Nodes=Tx Nt (Kx Ns + 1)
The example in Table 2 shows a case of how easy it is to generate rather large
graphs with this method. Although, the parameters shown here (except T) are all average
values, the number of nodes is very much randomized while keeping the average

constant.

23

Parameter Meaning Example
T # transit domains 6
N¢ (avg) nodes/transit domain 15
K (avg) stub domains/transit node 12
N; (avg) nodes/stub domain 8
Total Nodes 8730

Table 2: Transit-Stub graph parameters

The domains in transit-stub graphs are placed in the plane in such a way that they
may overlap one another. The same scale is used throughout the construction process as
depicted schematically in Figure 7. A top-level graph determines the location and
connectivity of the transit domains, i.e., each node of the top-level graph corresponds to a
transit domain. Each node of the top-level graph is then replaced by a complete transit
domain graph, whose scale (as a fraction of the total length of a side of the unit square) is
determined by the parameter ‘transfrac’ of the network simulator ns-2. Stub domains are
created with a scale that is some fraction of the global scale. This fraction is again a
parameter ‘stubfrac’.

Transit-Stub is a well known model for the Internet. The Internet can be viewed
as-a set of routing domains that are merely inter-connected independent networks. All
nodes in a domain share routing information. Two types of domains namely Transit
domain and Stub domains exist. For any path through a domain, if atleast one of the end
nodes is in the domain, it is a stub domain. Else, it is a transit domain. Just as with the

Internet, interconnected transit and stub domains compose the graphs generated by the

24

Transit-Stub method. Moreover, this model could also produce graphs having very
realistic average node degrees. Stub domains might further be classified as single homed
and multi-homed stub domains. Multi-homed stubs connect to more than one transit
domain, while single-homed stubs connect to only one transit domain. A transit domain
is composed Qf a set of backbone nodes, which are fairly highly connected to each other
(a backbone node has a degree of at least 2). Some stubs also have links to other stubs.
The routing characteristics of the Internet can be summarized by the following general
principles:

e The path connecting two nodes in a domain stays entirely within that domain.

e The shortest path connecting node u in stub domain U to node v in another stub
domain V goes from U through one or more transit domains to V, and does not pass
through any other stub domains.

e When two stub domains are connected directly via a stub-stub edge, the path
between two nodes on the two domains may (but need not) go along the edge and avoid

any transit domains.

25

* “ ¢ . % % X A
transfrac*Scale s:‘ugfmc *Scale

-
Scale

Figure 7: Transit Stub Layout

26

Chapter 3

Multicast Algorithms

Two differeﬁt algorithms defined for multicasting are elaborated in this chapter. The first
algorithm, called the ‘Brute-force Algorithm’, is a simple algorithm that is used to get
some base results to compare with the other algorithm. The second algorithm, called the
‘Simple Search Heuristic Algorithm’ (SSH), aims to achieve optimal multicast time and
traffic in the topologies described in chapter 2. The discussion starts by presenting the
basic assumptions for proper functioning of the algorithms followed by the algorithms

themselves and their time complexities.

3.1 Assumptions

Multicast performance can be evaluated based on a wide variety of criteria that typically
depend on the architecture of the underlying network, such as the topology of the
network, routing techniques being used, switching technology and node architecture. The

combination of these criteria in different ways might result in completely different

27

performance evaluation. Hence, the following constraints are being assumed to make
sure that the performance evaluations of the different algorithms discussed here are done
on the same playing field.

e The node could use either One-port or All-port architecture. In One-port
architecture, zit any instant of time, a node may transmit/receive the message
to/from only one of its neighboring nodes. Conversely, in an All-port architecture,
a node can transmit/receive message(s) to/from several different neighboring
nodes concurrently at each instant of time. The current discussion however only -
focuses on One-port architecture and the simulations presented in next chapter

also reflect the same.

¢ Neighbouring nodes are connected by links that have the same length, bandwidth
and transmission speed. Hence, each link is equally weighted and is considered to
be of unit magnitude.

e Bi-directional links are the norm, i.e., the message could be transmitted in both
directions between the two neighbouring nodes,

e A semi-distributed routing scheme is presumed to be utilized by the underlying
network. In this routing mechanism, the multicast routing algorithm is executed at
the source node with all the required information, which then generates the
multicast tree or path. Then the message, with only information of destination
node and replicate node of multicast tree embedded in header, is sent out from‘
source node and disseminated from node to node. At each intermediate node, a
very simple routing algorithm is executed to decide which nodes the message

should be forwarded to according to the routing information in the header.

28

3.2

The message could be replicated at any intermediate node. So at any instant of
time, it is possible that multiple copies of the message are being transmitted over
many different links simultaneously.

For the purpose of this thesis, the process of multicast communication is started
when the source first sends the message out and ends when all the destination
nodes receive the message.

Only one multicast message is being transmitted through the network at any given
time, i.e., there is no multi-message multicasting (otherwise also called
Gossiping).

The underlying network is considered to be faultless and free of any errors that
might occur in a practical world such as deadlocks, traffic control, blocking and
fault tolerance. Only the theoretical aspect and structure of the network are

considered.

Tree-based Multicast Algorithms

The trademark of any efficient multicast algorithm is that the transmission of a message

from a source to each destination node takes considerably less time and fewer

communication channels (links) compared to other algorithms. Given a set of destination

nodes, the algorithm uses a common path to transmit the message as much as possible

and then branches to transmit the message to the remaining destination nodes resulting in

tree-like routes, hence the name Tree-based multicast. Each graph can have many such

multicast tress built for a given source and set of destination nodes. However, our goal is

to find the tree that is optimal in both time and traffic during the course of multicasting.

29

This is an NP-Hard problem and hence impractical. Heuristic algorithms are used to find
a solution and the heuristics use a pro-time approach to build the multicast tree, i.e., the
heuristics try to reduce the multicast time as the first priority and then if possible try to
reduce the mulﬁcast trafﬁc.

This thesis showcases two multicast algorithms, the Brute-force algorithm and the
Simple Search Heuristic algorithm (SSH). The Brute-force algorithm is a basic store-
and-forward algorithm that functions by randomly forwarding the message from a node
to its neighbours until all the destination nodes have received the multicast message. As
the name suggests, the algorithm does not use any special logic to transmit the message.
Although this might be very a simplistic and inefficient way to multicast, it is presented
in this thesis for comparison with the Simple Search Heuristic algorithm (SSH) presented
later. The SSH algorithm, obviously uses heuristics to achieve near optimal multicast
time while keeping the multicast traffic as little as possible. The following sections will
formally present the algorithms along with examples to clearly show the working of these

algorithms followed by a discussion about their time complexities.

3.2.1 Brute-force algorithm

The main goal of this algorithm is to optimistically and randomly forward the message to
any of its neighbours and hope for the best. The algorithm uses two different sets of
nodes—SourceNodesSet and InformedNodesSet. SourceNodesSet refers to the nodes that
already have the multicast message and can transmit the message to at least one of its
child nodes in the next instant of time. Initially when the algorithm starts, the

SourceNodesSet will only contain the Source node of the algorithm. InformedNodesSet

30

contains the set of nodes that do not yet have the multicast message but will receive the

message from one of the nodes in the SourceNodesSet in the current instant of time.

InformedNodesSet is empty initially and also after each iteration as the contents of this set

are copied over into the SourceNodesSet.

Algorithm Brute-force

Input: Given a graph G = (V, E). n is the total number of nodes, s is the source node
and d;, d,,.... dx is the set of destination nodes.

Output: Multicast Time of the graph m(G), which is given by max (m(d;)), where i =1
to k. Multicast Traffic of the graph is the total number of links used during the execution

of the algorithm.

1:
2:

3:
4:
5.
6:

7:
8:

9:

10:
11:

12:

Time Complexity

Add s to SourceNodesSet

Foreach node in SourceNodesSet

{
Select a child node Cn that has not been informed yet.
Add Cn to InformedNodesSet.
If node has all of its children informed then

{
Remove node from SourceNodesSet.
}
If d;, d,..... dx have been informed then
{
Goto Step 12.
}
Else
{
update SourceNodesSet with InformedNodesSet nodes.
Goto Step 2.
}

Update statistical data MulticastTime, MulticastTraffic.

As discussed, the algorithm selects a random child node and forwards the message to it.

At worst, the algorithm would have to forward the message to each and every node of the

31

graph. Hence, the time complexity of the algorithm is O(n) where n is the number of

nodes in the graph.
Example

Figure 8 shows the graph model that will be used to demonstrate the working of the
algorithms proposed in this chapter. The model is an actual transit-stub graph generated
by using ns-2 for a total of 20 nodes. The source and destination nodes are also randomly
selected for demonstration purposes. The source node / is denoted by a double rounded
border and the three destination nodes e, / and ¢ are denoted by dashed rounded border as

can be seen from the figure.

LN

DO
N) N))
(e &)) O &) k

RN
® (n

Figure 8: Example graph of Transit-Stub model with 20 nodes

The following discussion refers to Figure 8(a). The algorithm starts by
initializi.ng the SourceNodeSet with the source node /. It then randomly selects any one
of its child nodes. The node / only has a single child node b and hence sclects it and
transmits the message to it at time 1. Node b is then added to the InformedNodeSet.
Node / has no other un-informed child nodes and hence is deleted from the

SourceNodeSet. Since none of the destinations have received the message, the

32

SourceNodeSet is updated with the contents of InformedNodeSet (in this case — b).
Repeating the process, a random child node of b (either a or m or p) is selected and then
sent the message in the second instant of time. For the purpose of this example, consider
it to be m, which is then added to the InformedNodeSet. Since the multicasting is not
complete, the SourceNodeSet is again updated by adding m to the list. The node b then
selects its child node p to transmit the message at instance 3. Also the node m selects its
only child node » to transmit the message. InformedNodeSet is updated with n and p.
Since m has no other un-informed child nodes, it is removed from SourceNodeSet and
updated with the contents of InformedNodeSet. The process is repeated until all the
destination nodes have received the message. The multicast time is then given by the
maximum time taken by a destination node within the graph to receive the message.
Figure 9 demonstrates three probable results of the Brute-force algorithm when
executed on the graph model shown in Figure 7. Figure 9(a) has the worst multicasting
time of 9, while the Figure 9(b) has the best multicast time of 6 and Figure 9(c) has an
average multicasting time of 7 comparatively. These are simple approximations of how
the Brute-force algorithm might perform given the circumstances. Because of the
randomness inherent within the algorithm, we execute the algorithm ten times on the
same set of source and destination nodes and then take the average as the multicast time
for comparison purposes in the next chapter. In this case, we could take the average of
the three executions and compute the average multicast time of the Brute-force algorithm |
tobe ((9 + 7+ 6) / 3) =7.33. As can be seen from the figures, the Brute-force algorithm

generates a lot of un-necessary traffic (almost equal to Broadcasting) by transmitting the

33

o)
O—0O
G) a

(-
O—®)
-

\

. " [22]
)
O—0
.
!

)
®
)\
&
)
©

O
o
[4,]
-
l/ \
N, 7O?

(o8 ()E Y N N2 Y
.~ \OJ o \J/ &/
7 6 7

(a)Worst Performance (b) Best Performance (c) Average Performance
Figure 9: Multiple executions of Brute-force algorithm

34

message to nodes that do not help with multicasting. Hence, even with the best

multicasting time, the Brute-force algorithm has very bad multicast traffic performance.

3.2.2 Simple Search Heuristic Algorithm (SSH)

The goal of this algorithm is to build a near optimal Multicast Tree. The algorithm starts
by first building a Ereadth First search graph (Dijkstra’s graph in case of directed links)
until all the destination nodes are found. This graph is then trimmed by removing the un-
necessary nodes and vertices. Some of the destination nodes might still have multiple
paths to reach them. Then heuristics for each node on this graph are calculated to
estimate the near optimal time for multicasting. Using these heuristics, we can eliminate
other nodes and/or edges that are not necessary for multicasting. This process essentially
builds the Multicast tree. Multicasting in this tree is then straight forward using the
calculated heuristics. The heuristics that are applied on the BFS graph are modifications

of those proposed by BinShao in his thesis [1].

Algorithm Simple Search Heuristic

The algorithm basically uses four different modules, with each one of them performing
an important step in Multicasting. Build BFS Graph module takes as input the network
graph and tries to build a BFS graph from it until all the destination nodes have been
found. One important characteristic of the BFS graph is that any pair of parent and child
nodes in the graph will differ in depth by a value of 0 or 1 only. However, this BFS
graph will have unnecessary vertices and edges that were discovered while building the

graph. Trim Edges Recursively is a recursive module that takes care of it by removing all

35

the unnecessary additional nodes and edges that are part of the BFS graph, thus ensuring
that the destination nodes are either leaf nodes or internal nodes of the graph. Apply
Heurstics module takes the BSF graph generated above and applies heuristics to each and
every node in this graph. Once the heuristics are applied, these heuristics guide us
towards an efficient multicast tree by having better heuristics for nodes and edges that
contribute to it. Finally, the multicasting tree is built by using the above heuristics in the
Build Multicast Tree module and the rest of vertices and edges not in the tree are
discarded. Any optimal Broadcasting algorithm can then be used to get optimal values for
multicasting in this tree and the statistical data for comparisons can be retrieved. The
algorithm with a call to each of these modules is presented below followed by the

algorithm for each of these modules.

Input: Given a graph G = (V, E). n is the total number of nodes, s is the source node
and dj, d,..... dx is the set of destination nodes.

Output: Multicast Time of the graph m(G), which is given by max (m(d;)), where i =1
to k. Multicast Traffic of the graph is the total number of links that are part of the
multicast tree after it has been built.

Build BFS Graph.

Trim Edges Recursively to remove unnecessary edges.
Apply Heuristics to the Graph built above.

Build Multicast Tree using Heuristics.

Multicast and obtain MulticastTime, MulticastTraffic.

AN Sy

Algorithm Build BFS Graph module

This module functions by using three different lists. QueueList is a list of nodes that
functions as a First-In-First-Out queue. It contains all the nodes that are yet to be
examined to build the graph. VisitedList contains all the nodes that are already visited in
the BFS graph built. Although this module basically works as a Breadth First search

algorithm, it stops once all the destination nodes are in the VisitedList. This gives us a

36

sub-graph of the original graph with the required destination nodes. The leaf nodes of the
graph being built are stored in a list called LeafList. The module also uses a variable

called HasValidChild that assists in keeping track of the nodes in LeafList.

Input: Given a graph G = (V, E). n is the total number of nodes, s is the source node
and dj, ds..... dx is the set of destination nodes.

Output: A trimmed Breadth First Search graph Ggrs = (v, €), where ve V and e € E
with all the d;, d;,.... dx nodes either being leaf nodes or internal nodes of the graph.

1: Addsto QueueList and LeafLisi.
2: While QueuelList not empty

{
3: Remove node n from QueuelList.
4; Add n to VisitedList.
5: Set HasValidChild = false
6: Foreach (child node cn of node n)
{
7. If (cn not in VisitedList) then
{
8: Add cn to QueuelList.
9: Add cn to LeafList.
10: Set HasValidChild = true
}
}
11: If (HasValidChild == true) then
{
12: Remove n from LeafList.
}
13: If VisitedList contains dj, d; dg then
{
14: return.
}
}

Algorithm Trim Edges Recursively module

The subgraph generated in the previous module contains other unnecessary nodes or
edges, which were discovered during the process. This module removes them by starting
with the leaf nodes and then recursively removing the parent nodes (given by the variable

Parent of the node) and edges between them until it either reaches a destination node or

37

the source node. The input to this module is a list of leaf nodes in the graph built. This

list is populated by the Build BF'S Graph module while buiding the graph.

Input: Given the LeafList.

Output: The graph Ggrs = (v, €) where v € V and e € E trimmed off un-necessary
vertices and edges.

1: Select a node n from the LeafList.
2: If (n!=s) and (» not destination node) then

{
3 Remove »n from Gggs.
4: Set n = n.Parent.
5 Goto Step 2.
}
6: If LeafList not empty then
{
7: Goto Step 1.
}

Algorithm Apply Heuristics module

This module is the most important part of the whole algorithm and hence will be
described in detail with a graphical example. The heuristic algorithm [1] calculates the
broadcasting heuristic for the BFS graph built in the earlier step. Thus, it helps us to
build a multicast tree by eliminating the unnecessary edges while multicasting. It does so
by assigning better heuristics to nodes and vertices that are optimal for multicasting and
hence would lay the foundation for optimal multicast time and multicast traffic. It works
by dividing the graph into different regions based on the fact that at any given instance of
time ¢, there are three different types of nodes—Informed nodes, un-informed nodes and
nodes that have adjacent nodes that are kinformed. At time ¢, the dark region, which is
denoted by DR(#), is a sub-graph of G that is composed of all uninformed nodes. The
nodes in DR(?) that have informed neighbours compose the dark border region, which is

denoted by db(7). The third region, the bright border bb(f), is composed of those

38

informed nodes that have uninformed neighbours. Figure 10 shows a pictorial

representation of these concepts.

A node of bright border: bb(t)

! uehonode of dark border: dbit)

Figure 10: Several concepts in the new heuristic

In Figure 10, the shadowed area is the dark region DR(t). The nodes in DR(t)
with black backgrounds belong to db(t) and the nodes not in DR(t) with shadowed
backgrounds belong to bb(t). For any uninformed node v, D(v,) denotes the shortest
distance from v to a node in bb(¢) at round t. Given an uninformed node # and its
uninformed neighbor v, if D(w, £) = D(v, £) + 1, we say u is a child of v. Node v and all its
descendants make up the descendant graph of v, which is denoted by DG(V, E, v) or
simply DG(v). The multicast or broadcast time of DG(v) in round t is denoted by EB(v, 7)
or simply EB. It is calculated as follows.

e Atroundt, if a node » has no children, then EB(y, ¢) = 1.

39

o Otherwise, given u has p children, and c,, ¢y, .. ¢, are the children of u ordered so

that EB(c;, #) > EB(cj+, £), for 1 <j <p - I, then EB(, {) = max { (EB(c;, f) / n) +

i} for 1 <i<p and n is the number of parents of ¢;.

The maximum-number-weight matching between set db(r) and bb(f) at round ¢,
denoted by mnw(#) can be defined as follows. Only nodes in db(f) have weight. The
weight of a node in db(¢) is assigned as EB of the node. The number of node pairs where
one is in db(?) and the other is in bb(¢) is maximized. In this case, the sum of weights in

db(?) is maximal.

(a) BFS Graph (b) Trimmed and Heuristics Applied to BFS Graph

Figure 11: Heuristic application procedure

The mnw(f) is assigned to nodes rather than edges. In round ¢, the mnw(f) can be
calculated by the following process:

1. Inbb(¥), select the node v with minimum number of uninformed neighbours.

40

2. Among the uninformed neighbours of v, get the node # with maximum weight.
Then, u is the mate of v.
3. Mark u as informed and repeat from step 1.
Figure 11(a) shows the BFS graph built for the network shown in Figure 9 with
node a being the source and nodes p, k and g being the destinations. Figure 11(b) shows
the graph after the execution of the algorithm till the end of this module with the

respective heuristics of each node.

Input: Given the BFS graph Ggrs = (v,) where vE€ V and e € E.
Output: The graph Ggrs with the Heuristics applied to each and every node in the graph.

1: Initialize bb(¢) so that bb(0) has one node: the source s.

2: Calcualte EB(y,) as the weight to any node u in DR(?).

3: Find the mnw(?) between bb(r) and db(f) and during the process
mark all matched nodes as informed.

4: Compute bb(z + 1).

5. If bb(z + 1) is empty, the process is complete, and ¢ would be the
broadcast time. Otherwise, go to (2).

Algorithm Build Multicast Tree Module

This module uses two different lists to build the multicast tree. QueueList serves the
same function as it did in the Build BF'S Graph module above. MarkedList is used to
store all the nodes that are marked as part of Multicast tree. Each node keeps track of the
multicast path to it by updating its Path variable. The module works by using the
heuristic value .of the child node to select the best optimal path for each source node at a
given instant of time. However, it can only select one child node or path for each source
node. Hence, this algorithm works like an actual multicast algorithm while building the
tree. All the destination nodes dj, d,.... d¢ will have the optimal multicast tree path

stored in their Path variable by the end of this module.

41

Input: Given the Ggrs with heuristics applied to each node in the graph.
Output: The optimal multicast tree T.

1: Add s to QueueList and MarkedList.
2: While QueuelList not empty

{
3: Remove node n from QueuelList.
4: If Exists (child node cn of n
where HeuuristicValue(cn) is maximum
and cn Not in MarkedList)

{

5: Set cn.Path = n.Path + cn .

6: Add cn to QueueList and MarkedList.
}

7: Else
{

8: Remove n from QueuelList.
}

9: If MarkedList contains d;, dj,.... dx then
{

10: return.
}

Time Complexity

The time complexity of the algorithm is equal to the sum of Time complexity of building
the multicast graph, trimming it of unnecessary edges, applying the heuristics and
building the multicast tree. The time complexity of building the BFS graph can be given
by O(n) where n is the total number of nodes in the graph. The time complexity of
trimming the leaf nodes module. is always negligible compared to any other module and
hence can be ignored. The complexity of the heuristic algorithm is given by O(R.m)
where m is the number of edges in the BFS graph and R is the number of rounds of
broadcasting [1]. Hence, the Time complexity of the algorithm is O(n + R.m) or for large

number of nodes O(n).

42

Example

The graph model of Figure 8 is used here again to demonstrate the algorithm. The
Simple Search Heuristic algorithm starts with the Build BSF Graph module. It takes the
graph provided and builds a Breadth First Search graph until all the destination nodes are
found. The BFS graph built would look as in Figure 12(a). LeafList will now contain all
the leaf nodes of the graph, i.e., ¢, f, A, 0, s, q and r. This BFS graph is then trimmed of all
the un-necessary edges that do not lead to the destination nodes. This is accomplished by
the Trim Edges Recursively module by using the list of leaf nodes provided. The
resultant graph would be as shown in Figure 12(b). This graph is then considered by
Calcualte Heuristics module for evaluating the heuristics. Heuristic calculation starts
from the leaf nodes. It then moves upwards towards the source node as shown in Figure
12(c). Each node is marked with their respective heuristics. The final module Build
Multicast Tree uses the heuristics to create an optimal multicast tree as shown in Figure
12(d). This example (being a hierarchical model) does not reflect much difference
between the Figures 12(c) and 12(d). However, in a largg network or a purely random
graph model, each node might have multiple paths to receive messages from the source
node (Figure 11 with node e having multiple paths from source node a). The additional
paths that are not optimal or are redundant with an existing path are removed in the final
step when the module Build Multicast Tree is executed. The optimal multicast time of
this graph is always equal to the heuristic value of the source node minus 1. The
multicast time of this example using SSH algorithm is 6. Also, as can seen from the
figures, the SSH algorithm uses only those nodes and edges that are absolutely necessary

for multicasting thus reducing the multicast traffic generated during multicasting.

43

S 7
\ \

{h)
N/ .’

(a) BFS Graph (b) Trimmed BFS Graph (c) Heuristics Applied (d) Multicast Tree
Figure 12: Execution of SSH Algorithm

44

Chapter 4

Simulations and Discussions

4.1 Simulation Model

To evaluate the performance of these new algorithms and verify whether the design goal
has been achieved, software to exactly simulate the multicast communications in different
multicomputer networks has been developed. This simulation model and software are
discussed first. Then an analysis of the performance of these new multicast algorithms is
done with the help of performance curves, statistics and comparisons.

The goal of this research can be expressed as a hypothesis [32] that should be tested. A
Hypothesis is a tentative theory or supposition that explains the behavior we want to test.
The Hypothesis in our case can be formally defined as follows:

Hypothesis 1: Multicasting using the SSH algorithm produces efficient Multicast time

and Multicast traffic compared to the Brute-force algorithm.

45

4.1.1 Model of Simulation Program

The goal of designing the algorithm was to make it work in a very generic manner such
that the code could be re-used later for other multicasting simulation algorithms on any
network topology or for any kind of multicomputer node architecture. Hence, the object-
oriented design methodology which has been long known for reusability of code and
flexibility in design has been chosen for the purpose. This critical decision helped a lot in
managing the code when fine tuning the algorithm was needed for optimal performance.
All the classes that make up the core of the simulation program are shown in Figure 13.

In the class diagram, the solid line represents a “HAS-A” relationship between the
two classes whereas the dotted line represents a “USES-A” relationship between them.
Main is the entry point of the program, which initiates all the memory. It also presents
the user with a nice graphical interface to help perform different functionality (such as
Execution, Result Display, etc.). The classes Node, Edge are the basis upon which any
network topology graph to be used by this program is built. The TreeNode class, which
has a Node object, is basically just an encapsulation of the Node class and contains
additional information regarding the node’s neighbours such as its parents, children, etc.
The Graph is used to represent the whole network topology using the TreeNode objects.
It is very similar to building a linked list of objects in a computer language such as C++.
Edge is a simple representation of a link between the two nodes. EdgeCollection, as the
name suggests is a collection of the Edge objects that are connected to a Node or the
Graph based on where it is being referred at. NetworkAlg is the class where the core
functionality of the multicasting algorithm resides. It performs all the functions such as

building the network graph, building the multicast tree (if required), then assigning the

46

Class Diagram

Summary

+AverageMulticastTime
+AverageTraffic
+LongestTimeToNode
+DestinationNodeCount

+StartCollectingSummary()
+AddGraphEdges()
+AddUsedEdges()
+UpdatelnitialAverage()
+UpdateFinalAverage()

MulticastCollection<T>

+MulticastNodes

+AddParent()
+GetAllParents()
+AddMulticastNode()
+ContainsMulticastNode()

Main

===

+Execute()

NetworkAlg

(..

+BuildGraph()

| |+SetNodeDetails() L

I [*MulticastTreeComplete()

L _>+UpdateSummary()
+PerformBruteForceMulticasting()

+PerformDijkstrasMulticasting()

]

N
Graph

+Tree
+AddChildNode()

+ContainsChildNode()
+ChildNodes()

K~ e]

TreeNode

]

[}

+ThisNode :
+HeuristicValue |
+Parents :
+ChildNodes |
+IsMulticastNode :
+Depth !
+AddChild() !
+RemoveChild() |
+AddParent() |
3

t

t

|

i

i

1

H

i

}

I

]

+ListAlINodes()

Node

+Label =00 oo _-C
+1sDestination
+isVisited

+Path
+MulticastValue
+AddEdgeToPath()
+ClearPath()

HeuristicComparer

+Compare()

Edge

+FirstNode
+SecondNode

+GetEdge()

EdgeCollection

+Count

—

+AddEdge()
+ContainsEdge()

+GetAllEdges()

Figure 13: Class Diagram of Simulation Program

47

heuristic values and then multicasting based on the heuristic values. It also contains the
methods for each of the different algorithms that we simulate in our thesis.
HeuristicComparer is a special class that is used to compare the heuristic values between
siblings of a node, so that a better decision over the multicasting route to be taken can be
made. MulticastCollection<T> is a generic class that stores a collection of data of any
type. The symbol ‘<T>’ in the name of the class denotes that. Hence, it can be used to
store any ‘collection of data depending on the requirement. In this case, we use it to store
a collection of TreeNode objects while multicasting based on the multicast time of the
algorithm. Summary class is a static class that is used to collect statistical data while
algorithms are being executed and then used to analyze this data. This data can then

either be presented to the screen or saved to a file based on the user’s requirement.

4.1.2 Implementation of Simulation System

The simulation program introduced earlier could be implemented in any object oriented
programming language such as C++, Java or .Net. Since the simulation of multicast
algorithm in a multicomputer network is very computationally intensive, we choose .Net,
which is exceptionally good at handling collections of data very efficiently as a
programming language. Also, the additional advantage of it being a managed execution
environment, which basically means that we do not need to worry about any persistent
application specific data in memory after the application has exited, gives us a more
relaxed approach while implementing the model. More specifically, the simulation
software was developed using Visual Studio 2005 under Windows XP system. So,

typically the program could run in any Windows operating system with .Net 2.0 libraries

48

installed. The computer could be any PC, workstation or server that a Windows operating
system supports. To ensure the speed and efficiency of the simulation, we recommend a

computer system with at least 2Ghz CPU clock and /GB memory.

4.2 Performance Evaluation Model

As we learned from chapter 2, there are basically two widely used parameters in
evaluating the performance of multicast operation—multicast time and multicast traffic.
Multicast time reflects the duration of a multicast operation from the time the message is
sent out from the source node till it reaches the last destination node. Multicast traffic
reflects the total number of links involved in the multicast operation. These multicast
routing algorithms are all heuristic algorithms and none of them are optimal, i.e., no
algorithm is best all the time, one algorithm might perform better than the other in some
cases, but worse in other cases. So the average value of a number of randomly generated
multicasts over multiple graphs (of similar topology) is used to reflect the performance of
each algorithm.

Different types of charts based on different performance evaluation parameters
are used to compare and analyze the performance of the multicast algorithms simulated in
this thesis. The three charts are the multicast time curve, multicast traffic curve and Min-
Max multicast time curve resulting from the simulations of the multicast algorithms in the
three different graph models described in chapter 2. The multicast time curve reflects the
changing trend of the vmulticast time with respect to the number of destination nodes. The
multicast traffic curve reflects the changing trend of the average multicast traffic with

respect to the number of destination nodes. The Min-Max multicast time curve reflects the

49

minimum and maximum multicast time of an algorithm over all of its executions on a
particular network topology with respect to the number of destination nodes.

The multicast time and multicast traffic parameters are identical to the parameter

mean, which indicates the performance of an algorithm in a certain mesh in general. This
method is derived from the ideas introduced in paper [18] for evaluating the efficiency
and resource consumption of multicast in an arbitrary network.
Definition 4.1.1 (Mean of Parameter) Given a graph G and a multicast algorithm A4, the
average value of a parameter P from all the multicast samples generated by algorithm 4,
i'egardless the number of its destinations, in a statistic experiment is called the mean of
parameter P for multicast algorithm 4 in a graph G.

We use mean to indicate the overall performance of algorithm 4 on parameter P
in the graph G. It roughly or vaguely says the performance of a multicast algorithm in a
graph in general but not resulting from any specific case. So in our thesis research, we
will have multicast time mean and multicast traffic mean, which reflect the multicast time
and traffic of a certain multicast algorithm in a given graph in general. Technically the
mean of a parameter is actually the average line of the whole curve of the parameter.

To compare the performance of multiple algorithms in a chart, a curve for each
algorithm is drawn resulting from exactly the same set of samples. Every point on the
curve is the mean of over 7500 runs of the multicasting algorithm with the same number

and set of destination nodes. The next section explains this process in detail.

50

4.2.1 Simulation Methodology

The following steps enumerate the methodology followed to get the mean values for
comparison and analysis of all the algorithms described in chapter 3. The same process is
used to calculate the mean for both the multicast time and multicast traffic.

e 15 different graphs (5 randomizations of 3 different input values into ns-2) for a
given number of total nodes are randomly generated.

e For each of these graphs, 10 different nodes are randomly selected as the source
nodes for multicasting.

e Each source node is then assigned 50 different sets of multicast group nodes
(destinations). These destination nodes are randomly selected for each source node.
Hence the total number of source and destination sets is equal to 50 * 10 = 500.

e The multicasting algorithm is then executed on each of the above created source
and destination set nodes.

e Each statistical data-point on the graph hence represents 15 * 500 = 7500
random simulations of the algorithm.

e An initial average is obtained by simulating the algorithm on the same graph
with the same source node but using the 50 different sets of multicast group nodes. This
process is repeated for all the 10 different source nodes and the average taken—say
Intermediate Average. The above two averages are then calculated for all the 15 different
graphs and the a§erage of averages obtained—say Final average. This Final average
represents the mean multicasting value shown in the graphs.

e An exception for the Brute-Force algorithm however is that because of the

randomness of the algorithm, the multicasting on the same set of source and destination

51

nodes is performed multiple times and then the mean is used as the result of multicasting.
The current simulation performs this step 10 times and then using the mean. Hence, for
the Brute-Force algorithm each data-point will represent 15 * (500 * 10) = 75000 random
simulations of the algorithm.

Formally, let us define a multicast that delivers message from source uo to k
destinations di, d,...,drs, di in graph G, the resulting multicast tree is denoted as
MT(V,E), where V is the set of nodes in the tree and E is the set of edges in the tree, the
length of the path from the source node uo to destination nodes di, d.,...,d1, diis I, I, ...,
le1, Ik respectively. The total time units waited at branching nodes on pathto di is wi (I <
i <k). The multicast time is defined as the maximum time units needed to deliver the
message to all destinations. Basically, it is the length of the path plus the number of time
units waited at replication (branching) nodes along the path. Hence we have:

Multicast Time = max { litwi, LAws,..., btwis, bibws }

Multicast Traffic = | E(MT) |

We also use the semi-distributed routing scheme for our simulation of the SSH
algorithm. In this scheme, the simulation session is divided into two phases. Phase one
is to execute the multicast algorithm at the source node with the given set of destination
nodes. The output of phase one is the multicast tree. Phase two is to simulate the
transmission of an arbitrary message. As we know that we use the number of hops to
measure multicast time, so the size of the message doesn’t affect the result. In our case,
the multicast tree is embedded at the head of the message. To save the space, only
information of all destination nodes and replication nodes organized as a tree will be

stored in the head, the passerby nodes will not be included since they could be

52

determined through the routing between destination nodes and/or replicate nodes. Upon
the time of receiving the message, a passerby node simply stores and then forwards the
message to next node on the route to next destination node in the tree. But a destination
node or replication node needs to first accept the message and strip its node information
from the embedded multicast tree, and then break the tree into several subtrees rooted at
each of its child nodes, and then send a copy of the message to each child node with its
correspondent multicast sub-tree embedded.

The confidence level of all of the simulation values presented in the next section
is very high. In other words, the margin of error that the algorithm would generate a
different value for each data point in the statistics presented is very low. In case of
multicast time and multicast traffic the margin of error is £ 0.1 and in the case of Min-

Max multicast time, it is + 2.

4.2.2 Simulation of Brute-force and SSH in Pure Random Model

Figure 14 below shows the performance of Brute-force algorithm and SSH algorithm in
purely generated random graphs through simulations done on a graph containing a total
of 400 nodes. The Figure 14(a) represents the multicast time curve, 14(b) represents the
multicast traffic curve and 14(c) and (d) representing the min-max multicast time curves.
In each of the figures, the dotted line represents the performance of Brute-force algorithm

whereas the normal line represents the performance of SSH algorithm.

53

20 30
o2 m BB ,
20
2 o
210 —ssH | &
- = BF 10 -
0 ; : g - ‘ ; :
40 80 140 200 280 360 40 80 140 200 280 360
Number of Destinations kN Number of Destinations
2. * %, x’*m«n‘-‘“‘““w“mm“““““
310 § emTee” 220
3 3
;1 =
3 A
0 ‘ ‘ ‘ 0 : : : ‘
40 80 140 200 280 360 40 80 140 200 280 360
Number of Destinations _ Numberof Destinations |

(a) Multicast Time curve (b) Multicast Traffic curve
(c) Min multicast time curve (d) Max multicast time curve
Figure 14: Multicast performance in pure random graphs.

In Figure 14(a), the multicast time curves for both the Brute-force algorithm and
the SSH algorithm almost overlap. By virtue of the pure random model, all the nodes are
highly connected with each node having multiple shortest paths to transmit messages,
which cause the Brute-force algorithm to have near optimal multicast time. The multicast
time mean of SSH in a pure random graph is 15.14 which is 4% less than the mean of the
Brute-force algorithm, which is 15.79.

Figure 14(b) shows the amount of traffic generated through the algorithms. It is

pretty clear that the SSH algorithm generates much less traffic compared to the Brute-

54

force algorithm. It is also noticeable that the traffic generated by the Brute-force
algorithm is almost constant while that of the SSH algorithm steeply rises as the number
of destination nodes increase. This is in accordance with the fact that as the number of
destination nodes increase, the algorithms perform more like a broadcasting algorithm
rather than a multicasting algorithm. The multicast traffic mean in this case for the SSH
algorithm is 14.59 which is 44% better than Brute-force algorithms 26.20. However, at
its best the SSH algorithm has an efficiency of 80% when the number of destination
nodes is 40 (10% of the total number of nodes). This clearly shows that the SSH
algorithm performs better with respect to the multicast traffic generated in a pure random
model compared to that of the multicast time.

Figure 14(c) and 14(d) represent the minimum and maximum values of multicast
time respectively during the execution of the algorithm over all the randomly generated
graphs with different sets of source and destination nodes. As is the case with the
multicast time shown in Figure 14(a), the performance of the algorithms in this case is
also very similar and overlapping in some instances as can be seen from the figures.
Specifically, when the number of destination nodes are 140 or 200, the minimum
multicast time for both the SSH algorithm and Brute-force algorithm overlap with the
Brute-force algorithm, which performs slightly better in other instances. For the SSH
algorithm, the minimum multicast mean time is 11.67 and the maximum multicast mean
time is 21.5. The Brute-force algorithm has values of 11 and 23.67 for the minimum and
maximum multicast time values respectively. The Brute-force algorithm has slightly

better minimum multicast time performance of 6% over the SSH algorithm. The SSH

55

algorithm on the other hand has better maximum multicast time performance of 9% over
the Brute-force algorithm.

In summary, although both the algorithms perform optimally with respect to
multicast time, the SSH algorithm has a huge advantage of generating much less traffic
compared to the Brute-force algorithm and hence being more efficient in using the
network resources optimally. These results are even more pronounced when the number
of destination nodes is comparatively much less than that of the total number of nodes in
the graph.

4.2.3 Simulation of Brute-force and SSH in Hierarchical Model

Figure 15 shows the performance of SSH and Brute-force algorithms in the Hierarchical
graph model, which represents the Intranet model. Again, the dotted line represents the
performance of the Brute-force algorithm, while the normal line represents that of the
SSH algorithm. Also the figures 15(a), 15(b) represent the multicast time and multicast
traffic performance while the figures 15(c) and 15(d) represent the min-max multicast
time values for the algorithms.

The multicast time of the SSH algorithm is less compared to that of the Brute-
force algorithm in the Hierarchical graph model as seen in Figure 15(a). The mean of the
multicast time for SSH algorithm is 45.04 while that of the Brute-force algorithm is
61.04. Hence, the SSH algorithm performs 26% better with respect to the multicast time
of Brute-force algorithm. Also, as shown in the graph, the curves are almost flat
indicating that there is not much difference in the multicast timing even as the number of

destinations increase.

56

80 100
60 1 o IO A oy o i 80 -
= =460 -
po
Z40 - —SSH R JR— 1Y
© 40 -
o o w w BF - == BF
20 - 20 -
0 " : z 0 ‘
40 80 140 200 280 360 40 80 140 200 280 360
Number of Destinations Number of Destinations
40 - s SSH e e o BF 140 - — T
120 -+
30 - - ...,m““ﬂ,.mm..,.,....‘,w“
E:..;, - g BO o e ———
20 -
% g 60 -
= = .
210 - 5 40
o
0 ; : : 0 ; ;
40 80 140 200 280 360 40 80 140 200 280 360
Number of Destinations Number of Destinations

(a) Multicast Time curve (b) Multicast Traffic curve
(c) Min multicast time curve (d) Max multicast time curve
Figure 15: Multicast performance in hierarchical graphs.

Figure 15(b) is very much similar to Figure 14(b). The Brute-force algorithm
generates constant traffic without much variation as the number of destination nodes
increase. However, the SSH algorithm routes the messages with higher efficiency when
the number of destination nodes is very minute (10% in this case) compared to that of the
total number of nodes. The multicast traffic mean of SSH algorithm in hierarchical graph
is 57.68, which is 31% better than the Brute-force algorithm’s mean value of 83.52.

Also, when the number of destination nodes is 10% of the total number of nodes, the

57

efficiency of SSH over Brute-force algorithm is 62%, which clearly indicates that SSH
algorithm has a huge advantage in multicast traffic.

Figures 15(c) and 15(d) represent the minimum and maximum multicast time
curves. The SSH algorithm clearly performs better than the Brute-force algorithm in both
cases. However, as seen in Figure 15(c), when the number of destination nodes is 80
(20% of the total.number of nodes) the SSH algorithm appears a have a very low value of
minimum multicast time compared to its values when the number of destination nodes is
less or more than 80. The maximum multicast time curves for both the algorithms seem
to follow the same pattern, rising and falling at the same number of destination nodes in
both cases, as can be seen in 15(d). The mean values of minimum multicast time are
20.33 and 27.17 for SSH and Brute-force algorithms respectively indicating a 25% better
performance for SSH algorithm. However, when the destination nodes are 80, this
performance increases to 63%. The maximum multicast time mean values for SSH and
Brute-force algorithms are 81.33 and 110.5 with SSH showing a performance increase of
26%.

In conclusion, the SSH algorithm has near optimal multicast time and multicast
traffic performance in Hierarchical graph model with a mean of approximately 25%

improvement in case of multicast time and 30% improvement in case of multicast traffic.

4.2.4 Simulation of Brute-force and SSH in Transit-Stub Model

Figure 16 shows the performance of SSH and Brute-force algorithm in a Transit-stub
graph model, which showcases the Internet model of the real world as discussed in

chapter 2. Similar to the graphs in the previous sections, 16(a) represents the multicast

58

time curve, 16(b) the multicast traffic curve, 16(c) the minimum multicast time curve and
16(d) the maximum multicast time curve.

Figure 16(a) clearly indicates that the SSH algorithm outperforms the Brute-force
algorithm in case of multicast time. The mean values for SSH and Brute-force
algorithms are 18.67 and 32.04 with SSH algorithm having a clear performance gain of
42% over the Brute-force algorithm.

Similar to the traffic curves shown in the previous sections for pure random graph
model and the hierarchical mode, the traffic curve for transit stub model shown in Figure
16(b) has a steep curve for the SSH algorithm with increasing traffic as the number of
destination nodes increases and the Brute-force algorithm having an almost flat line curve
irrespective of the number of destination nodes. Again, the multicast traffic mean in this
case is 53.47 and 83.62 for SSH and Brute-force algorithms respectively with SSH
having a 40% multicast traffic efficiency.

The minimum and maximum multicast times generated over all the iterations of
algorithm executions over the graph model are shown in figures 16(c) and 16(d). The
Brute-force algorithm performance in case of minimum multicast time is near optimal
compared to that of SSH algorithm. SSH has a performance efficiency of 17% with the
mean values being 13 and 15.67 for SSH and Brute-force algorithms respectively.
However, the performance difference is greater in the case of maximum multicast time.
The mean values in this case are 27 and 48.83 with SSH algorithm having a better

performance of 45% over the Brute-force algorithm.

59

40 - 100 -
30 | memmmmmmm—— - 80 -
= =60 -
,%ZO G G 1 %
Pt © 40
o BF
0 : ; 0 . ¢ :
40 80 140 200 280 360 40 80 140 200 280 360
Numberof Destinations) Number of Destinations
20 - artrerss SSH o = = BF 60 - S— ¥ .1
,«mwmmwm«w”ww. “‘“‘““%«“““““wmmmmumm
3. z
§10 g g
= 3 ™
= ‘5@0
2 K4
o Y y : 0 - : j : ;
40 80 140 200 280 360 40 80 140 200 280 360
Number of Destinations Number of Destinations

(a) Multicast Time curve (b) Multicast Traffic curve
(c) Min multicast time curve (d) Max multicast time curve
Figure 16: Multicast performance in transit-stub graphs.
SSH algorithm, as is the case in the pure random graph model and hierarchical
model, outperforms the Brute-force algorithm in all cases on a Transit-stub graph model.
Although it has good performance benefit in the multicast time area, it un-arguably has a

huge performance benefit in the multicast traffic section. Hypothesis 1 as stated in the

beginning of this chapter has hence been proven.

60

4.3 Confidence Intervals

The purpose of taking a random sample from a population and computing a statistic, such
as a mean from the data, is to approximate the mean of the population. How well this
sample statistic estimates the underlying population value is always an issue. A
Confidence Interval [25, 33] addresses this issue because it provides a range of values
which are likely to contain the population parameter of interest. In other words, a
confidence interval is a range of values used to estimate the true value of a population
parameter. They are constructed at a confidence level, such as 95%, selected by the user.
This means that if the same population is sampled on numerous occasions and interval
estimates are made on each occasion, the resulting intervals would bracket the true

population parameter in approximately 95% of the cases.

Confidence intervals are normally represented as (1 — a) 100% where (1 — a) is
called the Confidence Coefficient for the interval. The confidence interval for the mean

of a normal population is given by the formula below:
Y +Zys (6/VN)

where Y is the sample mean, Zy, is the upper critical value of the standard normal
distribution which is found in the table of standard normal distribution, ¢ is the known
population standard deviation and N is the sample size. Some of the common confidence

levels used for statistical analysis and the respective Z,, values are shown in Table 3.

Using the formula above, we establish a 99% confidence interval for the mean

multicasting time and traffic parameters in our algorithms. Table 4 and Table 5 show the

61

99% confidence intervals of all the data points presented in comparison graphs earlier in

this chapter for multicasting time and traffic respectively.

Corzzgee;rce Zvalue
80% 1.28
90% 1.645
95% 1.98
98% 2.33
99% 2.58
99.8% 3.08
99.9% 3.27

Table 3: Common Confidence Levels and Zy, Values

Network Model | Graph Model 1 | Graph Model 2

! geo 5 ! geo 5
Pure Random Model i 4007503.0019 | 400240 3 0,02
! hier 5 1 ! hier 5
150 150
1510303 151030.3
Hierarchical Model ~ {2430.5 145302
155302 124305
1 4830.25 1510303
12530.3 125304
11853 1185
17173 1325
Transit-stub Model 125303 145303
145302 14730.15
171530.15 182302

Table 4: Input for ns-2 to Generate Network Models

Tables 5, 6, 7 and 8 show the 99% confidence intervals of two instances of each
of the three networks models presented in this thesis. Tables 5 and 7 represent the
confidence intervals for multicast time and Tables 6 and 8 represent the confidence
intervals for multicast traffic. These graphs are generated using the network simulator

ns-2 using different inputs as shown in Table 4. Each graph is executed over a fixed

62

source node and 50 different sets of destination nodes (or samples). However, because of

the randomness inherent to the Brute-force algorithm, each graph has been executed 10

times over the same source and destination nodes. Hence, the total number of samples in

this case is 500.

Pure Random Graph

Mean Multicast

Standard Deviation Time 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 1.29 1.44 12.82 13.04 12.35 13.29 12.87 13.21
80 1.38 1.55 14.92 13.54 14.42 15.42 13.36 13.72
140 1.79 1.92 17.26 15.02 16.61 17.91 14.8 15.24
200 0.93 1.28 16.36 16.54 16.02 16.7 16.39 16.69
280 0.35 1.21 14.14 14.4 14.01 14.27 14.26 14.54
360 0.4 1.52 16.86 14.84 16.71 17.01 14.66 15.02

Hierarchical Graph
Mean Multicast
Standard Deviation Time 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 1.63 2.77 447 53.28 44 11 45.29 52.96 53.6
80 2.31 4.44 46.5 58.92 45.66 47.34 58.41 59.43
140 1.4 4.55 50.82 62.42 50.31 51.33 61.9 62.94
200 1.17 1.96 41.52 47.84 41.09 41.95 47.61 48.07
280 0.65 215 45.94 51.9 45.7 46.18 51.65 52.15
360 0.57 1.78 471 55.58 46.89 47.31 55.37 55.79

Transit-stub Graph
, Mean Multicast
Standard Deviation Time 99% Confidence Interval
Destination) Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 1.22 3.55 14.68 271 " 14.24 15.12 26.69 27.51
80 0.94 4.25 15 28.34 14.66 15.34 27.85 28.83
140 0.85 3.45 16.7 28.32 16.39 17.01 27.92 28.72
200 0.86 6.27 18.24 32.32 17.93 18.55 31.6 33.04
280 0.86 5.16 16.88 28.98 16.57 17.19 28.39 29.57
360 0.28 3.23 18.96 29.96 18.86 19.06 29.59 30.33

Table 5: 99% Confidence Intervals for Time in Graph Models 1

63

Pure Random Graph

Mean Multicast

Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 0.5 064 55 26.59 5.32 5.68 26.52 26.66
80 0.7 0.72 8.77 26.72 8.51 9.03 26.64 26.8
140 0.67 0.77 13.25 26.77 13.01 13.49 26.68 26.86
200 0.66 0.82 16.57 26.82 116.33 16.81 26.73 26.91
280 0.69 0.83 20.95 26.83 20.7 21.2 26.73 26.93
360 0.67 0.85 25.04 26.85 24.8 25.28 26.75 26.95

Hierarchical Graph
Mean Multicast
Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 217 2.21 35.52 89 34.73 36.31 88.75 89.25
80 243 0.99 47.72 89.85 46.83 48.61 89.74 89.96
140 2.05 0.67 60.49 90.3 59.74 61.24 90.22 90.38
200 2.02 0.6 70.31 90.54 69.57 71.05 9047 90.61
280 1.14 0.65 79.88 90.65 79.46 80.3 90.58 90.72
360 0.73 0.67 87.42 90.67 87.15 87.69 90.59 90.75

Transit-stub Graph

Mean Muiticast

Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 1.72 1.94 21.5 84.47 20.87 22.13 84.25 84.69
80 2.14 1 36.14 85.48 35.36 36.92 85.36 85.6
140 1.93 0.76 51.35 85.9 50.65 52.05 85.81 85.99
200 1.66 0.67 61.72 86.02 61.12 62.32 85.94 86.1
280 1.2 0.52 73.45 86.13 73.01 73.89 86.07 86.19
360 1 0.34 82.4 86.16 82.04 82.76 86.12 86.2

Table 6: 99% Confidence Intervals for Traffic in Graph Models 1

Tables 9 and 10 represent the 99% confidence intervals over all the different

simulations performed for multicast time and traffic over various graphs using multiple

sets of source and destination nodes. The sample size in this case is 7500 for SSH

algorithm and 75000 (7500 x 10) for Brute-force algorithm.

64

Pure Random Graph

Mean Multicast
Standard Deviation Time 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 1.32 1.77 14.98 13.9 145 15.46 13.7 14.1
80 1.53 2.14 16.06 14.48 15.5 16.62 14.23 14.73
140 1.2 1.87 16.26 14.78 15.82 16.7 14.56 15
200 0.65 1.18 17.06 14.7 16.82 17.3 14.56 14.84
280 0.5 1.84 18.7 15.64 18.52 18.88 15.43 15.85
360 0.28 1.28 14.96 14.66 14.86 15.06 14.51 14.81

Hierarchical Graph
Mean Multicast
Standard Deviation Time 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 5.53 6.6 47 .44 59.8 4543 49.45 59.04 60.56
80 1.18 4.26 53.62 70.56 53.19 54.05 70.07 71.05
140 1.17 4.3 53.94 65.32 53.51 54,37 64.82 65.82
200 1.2 2.48 48.36 56.58 47.92 48.8 56.29 56.87
280 1.1 217 49.48 54.48 49.08 49.88 54.23 54,73
360 042 3.27 60.94 66.54 60.79 61.09 66.16 66.92

Transit-stub Graph
Mean Multicast
Standard Deviation Time 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 0.9 2.03 13.48 19.76 13.15 13.81 19.53 19.99
80 0.97 2.49 17.18 25.78 16.83 17.53 25.49 26.07
140 0.69 2.85 17.72 26.34 17.47 17.97 26.01 26.67
200 0.78 4.51 18.48 29.36 18.2 18.76 28.84 29.88
280 0.59 3.22 17.26 25.82 17.05 17.47 25.45 26.19
360 0.9 1.66 21.44 23.24 21.11 21.77 23.05 23.43

Table 7: 99% Confidence Intervals for Time in Graph Models 2

65

Pure Random Graph (Sample Size N = 500 and 50)

Mean Multicast

Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 0.72 0.61 4.08 2517 4.72 5.24 25.1 25.24
80 0.73 0.47 8.05 25.25 7.78 8.32 25.2 25.3
140 0.58 0.36 12.25 25.33 12.04 12.46 25.29 25.37
200 0.69 0.38 15.74 25.37 15.49 15.99 25.33 25.41
280 0.74 0.39 19.84 25.39 19.57 20.11 25.35 25.43
360 0.62 0.39 23.63 25.39 23.4 23.86 25.35 25.43

Hierarchical Graph (Sample Size N = 500 and 50)

Mean Multicast

Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 2.18 2.69 29.76 80.44 28.97 30.55 80.13 80.75
80 2.18 1.01 41.58 81.81 40.79 42.37 81.69 81.93
140 1.61 0.61 53 82.17 52.41 53.59 82.1 82.24
200 1.56 0.48 62.48 82.32 61.91 63.05 82.26 82.38
280 1.1 04 71.5 82.4 711 71.9 82.35 82.45
360 0.91 0.43 79.3 82.43 78.97 79.63 82.38 82.48

Transit-stub Graph (Sample Size N = 500 and 50)

Mean Multicast

Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 1.62 14 21.21 79.05 20.62 21.8 78.89 79.21
80 1.97 0.91 34.69 79.6 33.97 35.41 79.5 79.7
140 17 0.72 48.02 79.9 474 48.64 79.82 79.98
200 1.77 0.61 57.79 80 57.15 58.43 79.93 80.07
280 1.19 0.46 68.16 80.08 67.73 68.59 80.03 80.13
360 0.89 0.25 76.45 80.11 76.13 76.77 80.08 80.14

Table 8: 99% Confidence Intervals for Traffic in Graph Models 2

66

Pure Random Graph

Standard Deviation

Mean Multicast Time

99% Confidence Interval

Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 1.69 1.77 13.73 14.38 13.68 13.78 1436 14.4
80 1.49 1.63 14.58 15.2 1454 1462 1518 15.22
140 16 1.65 15.32 15.86 15.27 15.37 1584 15.88
200 1.58 1.62 15.46 16.23 15.41 1551 16.21 16.25
280 1.72 1.68 15.88 16.5 15.83 1593 16.48 16.52
360 1.67 1.48 15.96 16.59 15.91 16.01 16.58 16.6
Hierarchical Graph
Standard Deviation || Mean Multicast Time 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 10.99 15.38 43.15 60.47 4282 4348 60.33 60.61
80 10.37 14.76 43.6 60.02 4329 4391 59.88 60.16
140 9.21 13.24 44 .4 60.4 4413 4467 60.28 60.52
200 11.27 15.75 46.29 62.79 4595 46.63 6264 6294
280 10.46 14.45 46.27 61.27 4596 4658 61.13 61.41
360 10.41 14.4 46.51 61.26 46.2 4682 61.12 614
Transit-stub Graph
Standard Deviation || Mean Multicast Time 99% Confidence Interval
Destination Brute- Brute-
Nodes SSH force SSH force SSH Brute-force
40 2.12 5.02 15.32 30.22 156.24 154 30.16 30.28
80 2.32 477 17.61 31.59 1753 1769 3154 31.64
140 2.21 4,88 18.57 32.13 18.49 18.65 32.07 32.19
200 2.14 4,96 19.37 32.6 19.29 1945 3254 32.66
280 2.18 452 20.27 32.97 20.19 20.35 3292 33.02
360 2.55 4.76 20.86 32.71 20.77 20.95 3266 32.76

Table 9: 99% Confidence Intervals of Overall Mean Multicast Time.

67

Pure Random Graph

Mean Multicast
Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 0.74 1.43 5.19 26.01 517 5.21 26 26.02
80 0.85 1.42 8.52 26.15 849 855 26.14 26.16
140 0.99 1.43 12.64 26.22 12.61 1267 26.21 26.23
200 1.12 1.45 16.21 26.25 16.18 16.24 26.24 26.26
280 1.28 1.46 20.52 26.27 2048 2056 26.26 26.28
360 1.45 1.46 24.45 26.28 2441 2449 26.27 26.29

Hierarchical Graph
Mean Multicast
Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 2.89 3.54 31.23 82.39 31.14 31.32 8236 8242
80 3.12 3.18 42.88 83.33 4279 4297 833 83.36
140 3.13 3.13 54.79 83.68 547 5488 8365 83.71
200 3.27 3.1 63.62 83.82 63.52 63.72 83.79 83.85
280 3.33 3.1 72.93 83.91 72.83 73.03 83.88 83.94
360 3.2 3.1 80.63 83.95 80.53 80.73 83.92 83.98

Transit-stub Graph
Mean Multicast
Standard Deviation Traffic 99% Confidence Interval
Destination Brute- Brute-

Nodes SSH force SSH force SSH Brute-force
40 1.84 3.89 22.23 82.58 2216 223 8254 82.62
80 2.35 3.66 35.99 83.44 359 36.08 834 8348
140 2.88 3.62 50.28 83.78 50.18 50.38 83.74 83.82
200 3.21 3.62 60.65 83.91 60.53 60.77 83.87 83.95
280 3.53 3.61 71.44 83.99 71.31 7157 83.95 84.03
360 3.59 3.58 80.23 84.03 80.1 80.36 83.99 84.07

Table 10: 99% Confidence Intervals of Overall Mean Multicast Traffic.

68

Chapter 5

Conclusion and Future Work

This thesis presents a multicasting algorithm namely SSH for any given network. The
algorithm works by first constructing a multicast tree by using heuristics and then
multicasting based on these heuristic values. For comparison purposes, the thesis also
defines a simple store-and-forward algorithm named Brute-force, which basically
multicasts randomly to any of its child nodes.

These algorithms have been compared in three different network topologies that
simulate the real world—Pure random model, Hierarchical model and the Transit-stub
model. The SSH algorithm on an average performs better in both the multicast time and
multicast traffic parameters. However, in case of hierarchical graph model, some
instances of the graph have better performance in Brute-force algorithm compared to the
SSH algorithm. The biggest advantage of the SSH algorithm is in using the network

resources efficiently and reducing the traffic generated for multicasting. The algorithm

69

also has better mean multicasting time in case of hierarchical graphs and transit-stub

graphs.

Since the multicast problem is NP-hard and a single multicast algorithm cannot

function optimally in every case, it is desirable to use heuristics that are based on good

strategies, which obtain near optimal results in one or the other practical aspects of the

network topology under certain circumstances. More attention and research need to be

directed to this field to develop good multicasting algorithms under specific

circumstances such as different architecture, applications and network technologies. The

following is some of the work need to be done based on our research in future.

Extend and/or implement these algorithms for higher dimensional network
models and then analyze the multicast performance based on the changing trend
of the size and dimensions of the network.

Adapt the multicast algorithm with specific multicomputer hardware architecture,
deadlock preventing, fault tolerant and traffic load balancing algorithms that can
then be used in real world applications.

Optimize the existing algorithm or develop new algorithms for Multimessage
multicast environment by using a better technique to generate the multicast tree.
The structured network models can have better performance when used with a
naming convention that can easily identify them from a group of nodes. This can
be used in conjunction with other similar techniques to create a better algorithm.
Develop pro-traffic multicast algorithms, i.e., algorithms that target to minimize

traffic, since the algorithms developed in this thesis are all pro-time.

70

e Develop multicast algorithms that specially are optimized for hierarchical

network models that simulate the Internet and the Intranet.

71

Bibliography

[1] Hovhannes A. Harutyunyan and Bin Shao. A Heuristic for K-Broadcasting in
Arbitrary Networks. In Proceedings of the Seventh International Conference on
Information Visualization, 2003 IEEE.

[2] Mathew Doar and Ian Leslie. How Bad is Naive Multicast Routing? In Proceedings
of IEEE INFOCOM 93, Twelfth Annual Joint Conference of the IEEE Computer and
Communications Societies. pages 82—89, 1993.

[3] Bernard M. Waxman. Routing of Multipoint Connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617-1622, 1988.

[4] Liming Wei and Deborah Estrin. The Trade-offs of Multicast trees and Algorithms.
In International Conference on Computer Communications and Networks, August 1994,
[5] F.F. Rivera, O. Plata, E.L. Zapata. Broadcasting algorithm in Computer Networks:
Accumulative depth. IEEE Proceedings—Volume 137, Issue 6, Nov 1990.

[6] Hovhannes A. Harutyunyan and Bin Shao. Efficient Heuristics for Message
Dissemination in Networks. In Proceedings of the 25" IASTED International Multi-

Conference, Feb 2007.

72

[7] Xiaola Lin and Lionel M. Ni. Multicast Communication in Multicomputer Networks,
IEEE Transactions of Parallel and Distributed Systems, vol. 4, pp. 1105-1117, October
1993.

[8] Lionel M. Ni and Philip K. McKinley. A Survey of Wormhole Routing Techniques
in Direct networks. IEEE Computer 26(2), pp. 62-76, 1993,

[9] David F. Robinson, Philip K. McKinley, Betty H. C. Cheng, Optimal Multicast
Communication in Wormhole-Routed Torus Networks, IEEE Transactions on
Parallel and Distributed Systems, Volume 6, Issue 10, pp. 1029-1042, October
1995.

[10] Cory J. Hoelting, Dale A. Schoenefeld and Roger L. Wainwright. A Genetic
Algorithm for the Minimum Broadcast time problem using a Global Precedence Vector.
Proceedings of the 1996 ACM symposium on Applied Computing.

[11] P. Scheuermann, G. Wu. Heuristic Algorithm for Broadcasting in Point-to-Point
Computer Networks, IEEE Transactions on Computers, Vol. 33, no. 9, pp. 804-811, Sept
1984.

[12] Youran Lan, Abdol-Hossein Esfahanian and Lionel M. Ni. Multicast in Hypercube
Multiprocessors. In Proceedings of 1988 IEEE Seventh Annual International Phoenix
conference on Computers and Communications.

[13] Y. Choi, A. Esfahanian and L. Ni. One-to-K Communication in Distributed memory
multiprocessors; In ProceedingS of the 25" Annual Allerton Conference on
Communication, Control and Computing, September 1987.

[14] P. Fraigniaud and E. Lazard. Methods and Problems of Communication in Usual

Networks. Discrete Applied Mathematics 53 (1994), 79-133.

73

[15] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.

[16] Prasant Mohapatra. Wormhole Routing Techniques for Directly Connected
Multicomputer Systems, ACM Computing Surveys (CSUR), Volume 30, Issue 3, pp.
374-410, 1998.

[17] EW. Zegura, K. Calvert and S. Bhattacharjee. How to Model an Internetwork.
IEEE INFOCOM, San Francisco, CA, 1996.

[18] K. Bharath Kumar and J. M Jaffe. Routing to Multiple destinations in Computer
networks. IEEE Transactions, 1983, COM-31, (3), pp. 343-351.

[19] K. Jakobs and U. Quernheim. Multicast Communication in Networks with Arbitrary
Topology. Technical University of Aachen, Federal Republic of Germany. |
[20] P.K. McKinley, et al. Unicast-Based Multicast Communication in Wormhole Routed
Networks. Proceedings of 1992 International Conference of Parallel Processing, Vol II,
IEEE CS Press, Los Alamitos, California, Order No. 3155, 1992, pp. 10-19.

[21] W.C. Athas and C.L. Seitz. Multi-computers: Message Passing Concurrent
Computers, Innovative Technology for Computing Professionals, Computer. Vol. 21, No.
8, Aug. 1988, pp. 9-25.

[22] G.T. Byrd, N.P. Saraiya and B.A. Delagi. Multicast Communication in
Multiprocessor Systems. In Proceedings of 1989 International Conference of Parallel
Processing,. pp- [-196-1-200.

[23] C.L. Seiti, J. Seizovic and W.K. Su. The C Programmer’s Abbreviated Guide to
Multicomputer Programming. Department of Computer Science, California Institute of

Technology, Tech. Rep. Caltech-CS-TR-88-1, Jan 1988.

74

[24] National Institute of Standards and Technology, “Dictionary of Algorithms and Data
Structures”, http://www nist.gov/dads.

[25] Free Software Foundation Inc, “Wikipedia, the free encyclopedia”,
http://en.wikipedia.org/wiki/Main_Page.

[26] The Network Simulator — ns-2 website at http://www.isi.edu/nsnam/ns/

[27] J. Y. Lee Park, H. A. Choi, N. Nupairoj and L. M. Ni. Construction of optimal
multicast trees based on the parameterized communication model. In International
Conference on Parallel Processing, Vol.1, pages180-187, 1996.f

[28] A. Yassin Al-Dubai, M. Ould-Khaoua, L. M. Mackenzie. An Efficient Path-Based
Multicast Algorithm for Mesh Networks. In International Parallel and Distributed
Processing Symposium (IPDPS), p. 283, 2003.

[29] Hovhannes A. Harutyunyan and X. Liu. New Multicast Algorithms in Mesh-
connected Networks, International Symposium on performance Evaluation of computer
and Telecommunication Systems (SPECTS), Montreal, Canada, pp. 284-291, 2003

[30] Honge Wang and Douglas M. Blough. Multicast in Wormhole-Switched Torus
Networks Using Edge-Disjoint Spanning Trees. Journal of Parallel and Distributed
Computing, Volume 61, Issue 9, September 2001, Pages 1278-1306

[31] Shih-Hsien Sheu, Chang-Biau Yang. Multicast Algorithms for Hypercube
Multiprocessors. Journal of Parallel and Distributed Computing, Volume 61, Issue 1, pp.
137-149, 2001

[32] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics — A Rigorous &
Practical Approach. Second Edition. International Thomson Publishing, pp. 118-122,

1997.

75

[33] William Mendenhall and Terry Sincich. Statistics for Engineering and the Sciences.

Fourth Edition. Prentice Hall Inc. Pages 352-367.

76

