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Abstract

Implementation and Comprehensive Study of Demand Migration

Systems in GIPSY

Amir Hossein Pourteymour

Intensional programming is a programming language paradigm based on the no-
tion of declarative programming where the declarations are evaluated in an inherent
multidimensional context space. Program identifiers are evaluated in a context, where
each demand is generated, propagated, computed, and stored as an identifier-context
pair.

General Intensional Programming System (GIPSY) is a hybrid multi-language
programming system that overcame the limitation of previous Intensional Program-
ming systems by designing a Demand Migration Framework (DMF) to provide a
generic, dynamic, and technology-independent infrastructure.

A DMF instance, called a Demand Migration System (DMS), is used to propagate
demands from one GIPSY execution node to another. A GIPSY program is executed
using three components, each of which possibly having several instances, all of which
possibly being executed on different nodes: the Demand Generator (DG), that gener-
ates demands according to the compiled Lucid program, the Demand Worker (DW),

that executes procedure calls embedded in the Lucid program, and the DMS, that

acts as a communication/storage middleware between the latter.
This thesis extends the previous investigations on the DMF by applying and ex-

tending DMF rationales and design to implement an instance of our DMS using Java

iii



Message Service (JMS-DMS).

JMS-DMS is an investigation toward having the combination of two paradigms
of Message-Oriented Middleware (MOM) and Event-Driven Architecture (EDA) to
handle our demand-driven computation. We also investigate on the behavior of our
instances in different perspectives such as latency, dispatching, availability, scalability,
maintainability, and configurability, which complements our research toward having

the robust Demand Migration System.
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Chapter 1

Introduction

You were born with wings. Why prefer to crawl through life?

J.M.Rumi - Persian Poet (13th Century)

The General Intensional Programming System (GIPSY) is a hybrid multi-language
programming system in a demand-driven execution environment [78]. GIPSY is aimed
at the long-term investigation into the possibilities of intensional programming, more
specifically the Lucid declarative and functional family of programming languages [56,
79, 38, 41, 22, 58]. GIPSY is an ambitious project directed by Dr. Joey Paquet in the
department of Computer Science and Software Engineering in Concordia University
in Montreal, Quebec.

This thesis focuses specifically on the architecture used for the distributed migra-
tion of the demands generated by the system at run time. From this perspective, the
GIPSY evaluation engine, or General Eduction Engine (GEE) is a demand-driven ex-
ecution system that is based on Demand Generators (DG) that determines the control
process by generating demands and relies on Demand Worker (DW) to execute some

of them [78]. Both DG and DW are the GIPSY execution nodes, and these nodes are

potentially distributed, in case the demands are migrated via the network from the



generators to the workers and the results are flowing in the reverse order [78].

1.1 Problem Statement

Among different implementations of programming systems for Lucid [20] variants,
GranularLucid (GLU) [37] introduced the concept of distributed demand-driven com-
putation in the intensional programming environment. Unfortunately, the system
was not flexible enough to accept further evolutions of Lucid, which has been and
is still under constant change. Technically speaking, its demand-driven system was
developed using a static and technology-dependent distributed environment by using
the synchronous-only nature of Remote Procedure Call (RPC) [89]. Toward more dy-
namic and adapfive requirements, GIPSY uses a generic and technology-independent
Demand Migration Framework (DMF) [38, 41], which offers a better infrastructure
in terms of accepting both evolutions of the language and prospective goals of the
framework. The DMF enables a generic infrastructure where various distributed
technologies can be used in distributed migration of demands. The DMF includes
a dynamic Demand Migration System (DMS) [38, 41] to propagate demands from
one node to another across GIPSY execution nodes. Therefore, our demand-driven
scenario is to have the generic DMF as our horizontal infrastructure where our DMS
instances stands as its vertical components by applying DMF criteria.

This thesis extends the previous investigation of the DMS, which was implemented
using JINI [62]. Previously, the DMS was implemented with the main focus on its
connectivity in a heterogeneous distributed environment and demand propagation

from one node to another. As the primary goal of DMF was a generic framework
extensible enough to adopt arbitrary distributed middleware technologies and flexible
enough to overcome the obstacle of co-existence of different versions, we developed

another instance of the DMS (JMS-DMS) using Java Message Service (JMS) [90],

2



by combining different distributed paradigms which are available to this technology.
Our primary goal was to develop a message-oriented and event-driven middleware to
handle our demand-driven procedure. In addition to that, we studied and analyzed
a multi-dimensional list of Quality of Services (QoS) to compare current instances of
our DMF to benchmark the principles of high availability, scalability, maintainability,

latency, flexibility, and etc.

1.2 Contributions

The main contribution of this thesis address the previously mentioned research prob-

lems through:

e analyzing the workflow of our current demand migration system from the De-

mand Generator point of view (see Section 4.5.1),

e investigating the current GIPSY internal implementation and determining the

needs and requirements of the prospective multi-tier architecture,

e investigating and studying new requirements of our middleware such as having

new types of demands (see Sections 4.4.1 and 4.5.2),

e implementing a message-oriented DMS by applying rationales and features of

our generic DMF using Java Message Services (see Chapters 4 and 5),

e providing an elaborated list of quality of services for our comparative studies

(see Section 3.3),

e implementing a simulator to provide an infrastructure for our comparative stud-

ies (see Section 6.1), and



e studying and comparing our implementation instances according to the list of

quality of services (see Chapter 6).

1.3 Structure of the Thesis

This thesis is organized into seven chapters. Chapter 1 introduces the problem state-
ment and contributions of this thesis. Thereafter, in Chapter 2, we introduce the
background knowledge and related work we need to know in order to comprehend
this research better. In Chapter 3 we present the methodology we are using in our
design, implementation and testing stages. In Chapter 4, we study the general frame-
work design of our system, and subsequently, the current and future detailed design
of our architectures in different aspects. We described the implementations of both of
our instances of the demand migration system in Chapter 5. In Chapter 6, we study
their performance and system behavior in different aspects, and at the end we give

conclusions on our research in Chapter 7.



Chapter 2

Background and Related Work

Let the beauty of what you love be what you do.
J.M.Rumi - Persian Poet (13th Century)

In this chapter, we present the background material that is necessary for the un-
derstanding of the core contributions of the thesis. At first, we briefly describe our
experimental domain, which is GIPSY, and finalize our background section with in-
formation about two paradigms of Message-Oriented Middleware (MOM) and Event-
Driven Architecture (EDA), which are used in our implementations of the Demand

Migration Framework.

2.1 Background

2.1.1 Intensional Programing

Intensional programming, in the sense of the latest evolutions of Lucid [20], is a
programming language paradigm based on the notion of declarative programming
where the declarations are evaluated in an inherent multidimensional context space.

Considering the context space being in most cases infinite, intensional programs are



evaluated using a lazy demand-driven model of execution called Eduction [47], where

the program identifiers are evaluated in a restricted context space, in fact, a point
in space, where each demand is generated, propagated, computed and stored as a
identifier-context pair [21]. Intensional programming can be potentially used to solve
widely diversified problems, which can be expressed using diversified languages of
intensional nature. There also has been a wide array of flavors of Lucid languages
developed over the years. Yet, few of these languages have made it to the implemen-

tation level [95, 57].

2.1.2 General Intensional Programming System

The Lucid language family has evolved since the beginning in terms of language syn-
tax and semantics. However, some of the Lucid compilers and execution systems
such as pLucid [47], GranularLucid (GLU) [37] could not cope with such evolutions.
Therefore, the General Intensional Programming System (GIPSY) has been intro-
duced to provide an infrastructure to accept such evolutions and contribute more on
the required concept of distributed demand-driven execution. This has been done by
the introduction of the generic Demand Migration Framework (DMF) in its execution
environment.

The GIPSY project aims at the creation of a programming environment encom-
passing compiler generation for all flavors of Lucid, as well as a generic run-time
system enabling the execution of programs written in all flavors of Lucid. Our goal
is to implement a flexible platform for the investigation on programming languages
of intensional nature, in order to prove the applicability of intensional programming

to solve important problems.



2.2 Middleware

Puder et al. in [80] described general concept of middleware as: ”Middleware of-
fers general services that support distributed execution of applications. The term
middleware suggests that it is software positioned between the operating system and
the application. Viewed abstractly, middleware can be envisaged as a tablecloth that
spreads itself over a heterogeneous network, concealing the complexity of the under-

lying technology from the application being run on it.”

2.2.1 Message-Oriented Middleware

There are different types of middleware categorized by their method, needs of com-
munication and interaction between distributed nodes, and among those, Message-
Oriented Middleware (MOM) is one of the major forms of message-passing paradigms,
which deal with intra-application communication across the network. MOM is cur-
rently one of the most sophisticated forms of distributed message passing.
According to [50], messaging is a technology that enables high-speed, asynchronous,
program-to-program communication with reliable delivery. Programs communicate
by sending packets of data called messages to each other. Message passing has been
widely used in different applications. Message has been used both locally and dis-
tributedly in many small and enterprise projects. Some forms of message passing
require exact physical address to connect to other distributed nodes, and some not.
MOM systems enable computerized applications that are physically separated

or running on different hardware/software platforms to communicate with each other
through interaction of messages [97]. This interaction can be done in a loosely coupled
and asynchronous communication mode, as MOM supports working in both modes
of synchronous and asynchronous communications.

As shown in Figure 1, the sender sends out its messages to a messaging-enabled



Message-Ofiented Middleware

Figure 1: Simplified message-passing mechanisms in MOM

middleware. This figure shows a simplified MOM in a black-box form, as surrounded
nodes and applications interact with each other regardless of the internal procedure
inside the middleware. After receiving messages, the middleware starts notifying the
receiver for new messages. Thereafter, it dispatches a message into a communication
channel toward an appropriate receiver. The recipient receives that message, and
after processing its request, returns the result to the middleware, and finally through
that middleware, the original sender receives the response of its request.

G. Hohpe in [53] simply explains the asynchronous functionality of the MOM
as similar to postal mail, where somebody writes a letter, sticks an address on the
envelope, and puts the letter into a letterbox. The sender and recipient of the letter are
decoupled, and the Post Office acts as a transporter. Each message is transported as a
self-contained unit, and externally expresses only information related to the delivery.
As an advantage of asynchronous communication in MOM, the recipient does not
have to be present while messages are being transported. Later on in section 3.1.2,
we will explain why in GIPSY we do not expect any discrimination for workers, as
we do not stick any address on the envelope in a sense of identifying recipient of our
demands before or at sending time. We only send out that we have such a request,
and then, the DMS decides which Demand Worker is appropriate for this specific
demand.

All operations of transition, migration, and dispatching in MOM follow certain

requirements to fulfill the needs of a successful MOM system. We discuss them in



more detail in 2.2.1.1.
Java Message Services (JMS) [90] is one of the successful ways of implementing

the MOM paradigm. We implemented the next version of our DMS by using JMS.

2.2.1.1 Benefits of MOM

MOM takes account of various benefits such as loose coupling, location independency,

Quality of Services, and interoperability.

e Loose coupling

Loose coupling (a.k.a. time independency) is an approach to the design of
distributed applications that emphasizes the ability to adapt to changes [26].
Time independency is one of the most important characteristics of MOM. It is a
design goal most sought by enterprise organizations that are implementing mes-
saging systems. By loose coupling, every node communicates with each other
in a much-decoupled way where their message migration takes place regardless
of the location or state of a recipient node. The message sender and recipient
do not have to be online at the same time, since MOM queues up messages
when their recipients are not available. Both synchronous and asynchronous
communication modes are available in MOM, and depending on the system

requirements, either of those can be chosen.

e Location Independency

Neither senders nor recipients know about the location of the other part of
their communication. MOM uses queues or other means of communication
to carry over message from one place to another, so actual locations of nodes
are not important from the point view of the sender. Depending on the type

of middleware, synchronous interaction requires blocking of the sender until it



receives the response from the recipient. However, in MOM these two nodes
are decoupled, so they can continue working or waiting for the response at the

same time.

Quality Of Services

In order to have a successful implementation of MOM, certain qualities of ser-
vices such as availability, scalability, security, fault-tolerance, portability, etc.

should be provided. We will discuss them in more detail in Chapter 7.

Interoperability

By its nature, MOM uses messages to communicate with other applications on
distributed machines. Messages are not only bound to any network, operating
system, or platform infrastructure, but also it is in a plain format that is un-
derstandable for any appropriate consumer or producer. Therefore, as long as
messages are understandable by both sides (i.e., running appropriate execution
node on the network), it is independent of any platform or operating system
to interact with the middleware. This inherently portable character of MOM
helps one to use the functionality of the execution nodes properly in any type

of network.

2.2.1.2 Communication Modes and Domains

MOM uses either synchronous or asynchronous communication. This ability makes

MOM dynamic and flexible in different conditions and scenarios. The fact that one

of them should be used is directly bound to the requirement and specification of the

system. We will explain detailed information about each of these two modes in 5.2.3

and 5.2.3.

According to [53], there are three types of messaging systems; message passing,

10



publish/subscribe, and message queuing. Message-passing like Remote Method Invo-
cation (RMI) [51] is not applicable to our DMF as it supports only synchronous mode
of communication, which according to our DMF rationales mentioned in section 3.1.2
is not desirable. As for this thesis, we provide an infrastructure where we can possibly
have different types of communication domain, so we enabled both message queuing

and publish/subscribe in the DMF (see 5.2.1.2).

2.2.2 Event-Driven Architecture

According to [48], Event-Driven programming has been independently developed in
different applications. In order to demonstrate the inter-communication of modules
and sub-modules, different data flow and structure diagram use event passing. This
approach has been extended in client-server applications where both tiers interact
with each other by passing and raising events. Recently, there are many distributed

and local event-driven applications on both shelves of academia and the industry.

2.2.2.1 Rationale

According to [62], the Event-Driven architectural pattern may be applied by the
design and implementation of applications and systems, which transmits events be-
tween software components and services. Like MOM systems, an event-driven system
typically consists of event consumers and event producers. By occurrence of certain
condition or change of the state of an object or element, a specific pre-defined event
happens. As soon as the EDA-enabled middleware receives an event, it notifies a
consumer for the presence of such an entity (i.e., event) in its system. Event con-
sumers subscribe to an intermediary event manager, and event producers publish to
this manager. When the event manager receives an event from a producer, the man-

ager forwards the event to the consumer. If the consumer is unavailable, the manager

11



can store the event and try to re-forward it later. We can see both of our instances

follow EDA paradigms for their demand-migration procedure.

2.2.2.2 Terminology

Here we introduce the list of terminology used in EDA in order to comprehend this

architecture better.

Event In [97], events are referred to as ”an occurrence in one application or com-

ponent that others may be interested in knowing about.” An event can be:

e Sending a request or demand (manually or automatically)

Change of the state of an object

An occurrence of certain condition

Throwing an exception or error in the system

In our GIPSY DMF, demands can be easily considered as events (see 3.1.4). More

detailed specifications about the types of events are discussed later in Chapter 4.

Producers Producers are those who publish events (i.e., Demand Generator in
our DMS) across the network. Depending on their communication and architecture,

producers may or may not address an event to any specific receiver.

Consumers Consumers are those who receive the events from the system (i.e.,
Demand Worker in our DMS) upon occurrence of an event. After receiving events,
they do some appropriate action to process the demand. They are not necessarily

aware from which producers they receive events.
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Event Channel Subscription Upon their interest, consumers subscribe to inter-
esting subjects (i.e., Event Channels), so whenever a new event appears into one
of those communication channels (synchronous or asynchronous) they receive it. In

chapter 5, we explain each event channel in our DMS instances.

2.3 Related Work

We divided our related work in two sections: (1) those who are related to our technol-

ogy implementations, and (2) those who are related to our benchmarking approaches.

2.3.1 Implementations

Related to our implementation approaches, we investigated the following projects:

TERA [82] is an Event-Driven Architecture [92] system designed to offer an event
dissemination service for very large-scale peer-to-peer systems. Exactly like DMS,
TERA enables topic-based message selection, but only works with the publish/sub-
scribe communication mode. Compared to their system, in addition to the Pub-
lish /Subscribe mode, we provided Point-to-Point communication, which later on we
explain why it is more interesting for us. They both use certain kind of identifiers
in their message selection and subscription management. In [18], very abstract in-
formation about having decoupled middleware by using JMS and JavaSpace [49] was
mentioned, and at the end asserted that JMS is designed for information delivery,
whereas JavaSpace can be called an information-sharing infrastructure. In our re-
search, we tried to investigate the limitations of each of those, and point out their
strengths in different situations.

In [39], similar to our implementation, NASA have used JMS for their asyn-

chronous messaging among their multi-tier portal architecture. Implementation-wise,
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we both have used facade design pattern in order to implement a lightweight interface
for our entity transitions. They use JMS to provide services and interact between
their intra-modules (e.g., transfer a new image downloaded from Mars to another
module of their portal), and we used JMS for the purpose of interaction between our
GIPSY modules. These kinds of research show that MOM and particularly JMS have
been used vastly in different mission-critical as well as enterprise projects.

MOM-G [59] is a MOM based on the Grid environment that transits data in both
synchronous and asynchronous mode using XML [54] with SOAP [94] convention.
Even though the infrastructures of our cases are different, but in a very high-level
observation, these two implementations look similar as the packets are transferring
from one node to another. However, in our case, we use JMS Object messages, which
can handle any kind of Serializable Objects, but in their case it is only XML. This
limits the plugability of a system based on this middleware, as we cannot attach any

code or object to the demands, whereas in our case it is necessary.

2.3.2 Benchmarking Approaches

Considering the related benchmarking experiments in distributed environments, we
studied the following projects:

In [30], an empirical methodology to evaluate the quality of services of distributed
system was provided. We have taken a similar approach in our investigations to
provide information about the maximum sustainable throughput [30], latency, and
elapsed time for batch messaging of our systems. We have extended their approaches
by evaluating more qualities of services and challenging our failure points to study
our scalability.

Bo Lu in [21] analyzed three approaches adapted in GEE implementation by

addressing two important issues of performance and resource management in both
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standalone and clustered machines. However, his focus of analysis is on the perfor-
mance of the GEE implementation, whereas in our case we studied the DMS which is
basically one step further in the process of demands migration as DMS uses generated
demands from GEE.

There are many academic projects working on the evaluation of performance
and throughput of two different distributed systems. Throughput of different JMS
providers have been evaluated in [22] in different aspects. In this research, we are also
evaluating the throughput of our DMS instances in facing different loads and types
of demands. In the benchmarking of closer types of distributed systems, according
to [84], S. Rooney et al. provide a feasible study of load balancing and performance
of scalable asynchronous and tuple-oriented messaging. Both DMS instances use
tuple-oriented demands to carry different elements to identify uniquely every single
demand. In [69], performance of four commercial JMS providers is compared in terms
of their scalability and persistency. In this thesis, we provide stress/batch messaging
in order to test our system scalability as well.

In [68], the author simulated the delivery of messages using the epidemic protocol
in ad-hoc and wireless networks. Similar to our benchmarking approaches, they
have tested the delay time and buffer size for both persistent and non-persistent
JMS messaging, but in our case, in addition to those tests, we have included more
experiments such as persistency, priority, portability, and etc. They mainly worked
on the ad-hoc system, whereas in our cases we did it in a traditional distributed

system.
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Chapter 3

Methodology

Even after all this time the Sun never says to the Earth,
"You owe me.’ Look What happens with a love like that,
It lights the whole Sky.

Sh. Hafez - Persian Mystic and Poet (14th century).

In this chapter, we discuss our methodologies in different aspects of design, im-
plementations, and finally our research investigations in terms of different quality
of services. First, we briefly rationalize the framework criteria and explain the core
design of our system. Later on, we highlight the needs of having different instances
of our migration system in terms of implementation, and finally, we complement
our investigations with comprehensive experimental studies on our available DMF

instances.

3.1 Design

We discuss our rationale and design approaches in the framework and subsequently
in the DMS. In order to explain the scenario in more detail, we explain what we

mean by demands in GIPSY, and how we deal with them as messages and events.
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We also present our design from the highest level of abstraction (i.e., DMF) to the
lowest level of internal procedures of DMF submodules. This can be found in more

detail in Chapter 4.

3.1.1 Demand Migration Framework

3.1.2 DMF rationale

In order to provide a realistic technology-independent Demand Migration System,
in [38, 41}, we initially introduced an elaborated list of important rationales that we
applied to all of our implementations to make them as much generic and similar as
possible. In addition to the achieved simplicity, this similarity eventually increases
the level of integration among GIPSY modules. All of the following rationales are

implicitly addressed in Chapter 5.

e Platform interoperability

GIPSY programs are potentially evaluated on multiple platforms [78]. Hence,
the DMS serving the GIPSY nodes (executing on separate machines) should
be able to deal with the machine boundaries and the diversity of the platforms
executing the GIPSY nodes, i.e., the DMS should be able to connect the GIPSY
nodes executing on various operating system platforms using different middle-

ware technologies available on these different platforms.

e Once and only once delivery semantics

The GIPSY nodes run independently from each other [78]. Hence, the DMS
needs to be able to connect these artifacts at any time and to assure once and
only once delivery semantic, i.e., no demand or result could be delivered to a

wrong node or duplicated.
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e Asynchronous Communication
Since the GIPSY nodes are not necessarily synchronized — they run indepen-
dently and their lifetime is not synchronized, the DMS must also perform asyn-
chronous communication where the nodes do not connect permanently and do

not synchronize their data exchange.

e No Demands Discrimination

Since the demands generated by generators are atomic with no dependency in
the sense of data sharing and time [78], the DMS should not discriminate them
in terms of importance. In DMF level, while dealing with demands entities,
we do not consider any discrimination, but in the implementation level, many
efficiency-related considerations such as prioritizing certain types of critical de-

mands are to be tackled by other parts of the GIPSY.

e No Workers Discrimination

A worker must be able to serve any generator, i.e., pending for execution de-
mands. It should not wait more than the time sufficient for their delivery to
the first available Demand Worker. Hence, the DMS must present the workers,
in the DMF level, as a common set to all the generators with no discrimination

in terms of importance or capacity to respond.

e Secure Communication

Since the GIPSY nodes are located on different machines, we need to use security

mechanisms [41] to authenticate the identity of the DMS objects. The DMS

should integrate a secure mechanism.

e Fault-tolerant Demand Migration
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When objects are distributed across process boundaries, the objects can fail
independently [41]. Similarly, in a distributed system the network can be in-
terrupted or the system can be partitioned into disconnected parts, and com-
ponents (nodes) can run independently, even if others have failed [41]. In our
Demand Migration System (DMS), there must be concerns about the behavior
of the overall system if some of the components are available and others not.
The demand-driven execution model permits such kind of better fault-tolerance.
The DMS should permanently keep track of the demands, so that the failure of
any node does not result in loosing demands, and that node failure would sim-
ply result in re-issuing of the demands. In the case of DMS failure, it should be
able to re-start and use the permanent demands storage mechanism to continue

without losing demands.

Distributed Technology Independency

All the requirements stated above necessitate a system that adheres to the char-
acteristics of distributed computing and asynchronous communication with a
certain security and permanent storage mechanism. There exists a wide array
of distributed execution platforms and middleware technologies. Meeting all
these requirements necessitates a very general and flexible approach that is not
bound to a specific technology, and that can enable the use of different tech-
nologies. One of the main principles of the GIPSY is a platform independency,
i.e., the DMS must be flexible and structurally generic to work with most of

these distributed computation technologies and implementation platforms.

Hotplugging

The GIPSY model of computation is not only a distributed demand-driven one,

but also one in which all the nodes are ”volunteers” that register to a dispatcher
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node, and that are later assigned a role and grafted to the network. Any node,
including the DMS nodes, has to be designed to allow the "hot-plugging” of

new nodes, i.e., to add new nodes as the execution is taking place.

e Upgradeability

The DMS should be designed in a manner that will allow the GIPSY clients
the power of using their own distributed computation technology, i.e., the DMF
should not be bound to any distributed execution technology and be generic

enough to allow the use of other technologies.

3.1.3 Demand In GIPSY

In GIPSY, a demand can be considered as an event. Referring to the definition of
demands in intensional programming, a demand is a request for the evaluation of a
certain identifier in a given multi-dimensional context . It can be either intensional or
procedural (functional), which we discuss more in detail in section 4.4.1. Sometimes
this kind of evaluation is directly bound to the functionality of another method, which
might be written in C++, Java, or potentially any other programming language.

In order to explain the situation in a very simplified way, in the given example
below, the value of the identifier A is requested. As shown here, a three-dimensional
context [X :0,) : 3, Z : 2] is defined over the three dimensions X,), and Z, placing

the computation of A at coordinates [0,3,2] in the multidimensional context.

Dimensions= X, VY, Z

Coordinates=0,3,2

By looking up the values of A in these three dimensions in the given coordinates,

we can find out the actual value of identifier A in that specific context. For example,

20



[Z : 2] associates the context in the dimension Z of this identifier, where its coordinate
is 2. The same rule accords to the rest of dimensions (i.e., X and }).

In this thesis, we deal with demands in a very abstract way. We do not dig into the
semantics of the multi-dimensional context, as there were done extensively in other
research in the GIPSY project [64, 63]. By its abstract nature, the DMF and its
implementations simply migrate demands between nodes and do not need to neither
verify their correctness nor apply any sort of computation on the demands during
their migration procedure. Correctness verification and computing are done at the
level of the run-time system by the Demand Generators (DG), which is outside of the

scope of this thesis.

A=B+C;
B=2;
C = fa...) + D;
D=4,

To elaborate furthermore, the DG looks up into the definition of the identifier
A at the runtime program definition dictionary (called GEER, for General Eduction
Engine Resources) and finds out that it needs to initiate two more demands (see
the next page) for the computation of B and C. For example in the given example
above, A is a Lucid identifier whose results is bound to the result of computing both
B and C. Given the situation where we have all required resources, one can have
the result of B by simply looking up into the value of B in its multi-dimensional
context space. As B is declared as a constant (B = 2), its value does not vary in any
dimension. Therefore, no further computation is required to compute B. However,
for the other identifier (i.e., C), the result is bound to the result of the computation
of its procedure f5(..) (e.g., f2(..) as an example of a procedure call), thus raising the

need for a procedural demand that can be computed by a Demand Worker (DW).
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GIPSY allows such procedures to be defined potentially in any procedural language,
and the DWs are assumed to have access to a compiled version of such procedures,
as embedded in the corresponding GEER [70, 85]. The demands (intensional or
procedural) are generated by the DG , and consumed by either another DG or a DW,

with the DMS acting as middleware for their transparent migration and taking no

part in verifying or computing them.

3.1.4 Demand vs. Event

In order to provide a flexible infrastructure for distributed demand-driven computing
in GIPSY we are investigating on the DMF and providing various instances of it using
different middleware technologies. We currently have two instances (one based on
JINI, another based on JMS), and we are still investigating on different architectures
and paradigms to implement other instances of the DMF. We review the benefits of
using each or combination of them to provide a middleware which can be a good
environment to correctly implement our DMF requirements.

As part of the terminologies of EDA in 2.2.2, we considered different terms such
as event, notification, producer, consumer, subscriber, filters, and channels in the
implementations of our DMS. In GIPSY, DGs are considered as producers of demands
(i.e., f2(..) in the preceding example), which initiate the procedural demands, which
can be executed either remotely or locally by a DW. The DG sends out the demand
to the DMS, and it routes the demand to an appropriate channel which is subjected
respectively according to the subject or/and content of the demand. Each event
(i.e., demand) can be differentiated based on their subject or content. The DMS
transfers demands across the GIPSY nodes from one point to another through means
of communication which are either queues or topics.

As soon as a demand arrives to the DMS, DMS invites DGs and DWs to consume
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it. These demands request an intensional evaluation by another DG (in the case of
intensional demands) or procedural computation by a DW (in the case of procedural
demands). Therefore, by implementing such a concept, the GIPSY-DMS can be
considered as using an Event-Driven Architecture.

It is important to explain that the resulting value of each GIPSY demand is
referentially transparent in the sense that the response of the evaluation of a specific
identifier in a specific context always yields the same value. Therefore, no matter
when it is initiated, it should always return the same result. In order to improve the
performance and decrease unnecessary computation, the DMS permanently stores
the result of each demand in what is called the demand store. In case that the same
demand is generated twice, the value is retrieved from the demand store instead of
computing a new one.

In our future work, we would like to investigate the impact of our storing mech-
anism in Demand Store to see how this I/O mechanism changes the performance of
our system in low and high loads of work.

Depending on the communication mode, distributed notification can be used to
notify DGs and DWs. DGs and DWs (consumers/subscribers) subscribe themselves
to an appropriate channel, which can be either a specific topic or queue. In some
practices flooding [71] has been used to send and forward all the notification to all
the subscribers. Such behavior is not desirable in GIPSY. Flooding causes many
unnecessary transactions to generate and migrate demands to all the consumers,
whereas in GIPSY architecture, a demand should be executed once and only once. In
GIPSY-DMS, filtering is also enabled to permit the consumers to select specific kinds
of demands. For example, DWs shall only receive procedural demands, and thus shall
be able to filter out intensional demands, which they cannot compute. As one of the

requirements of EDA, we enabled demand selection based on their contents, size, or
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subjects, to improve load balancing, availability, and scalability in demand migration.

3.1.5 Demand vs. Message

Message passing has been used widely in different application domains. In [48], there
are many examples of using message passing in diagrams and applications. In such
a system, messages transfer from one application to another, and upon reception of
the message, an action is triggered. It has been used in different design patterns to
facilities push and pull (e.g., Observer Design Pattern) [66] from one class to another.
According to [48], the purpose of a messaging system is to get events (messages) from
event generators (senders) to handlers (receivers) in situations where the senders and
receivers are in different physical locations or running on different platforms.

Formerly in previous intensional programming systems, messaging was only syn-
chronous and highly coupled in a sense that the producer (i.e., DG) and consumer
(i.e., DW) were blocked until the computation ended, and the producers send their
demands to a specific consumer in the network. However, in GIPSY, there is no
discrimination in choosing DW from the scope of view of the DG. In [48], Message-
Oriented Middleware (MOM) is referred to as the most sophisticated enterprise mes-
saging system for decoupled components.

By pointing out some problems of having static and highly coupled inter-messaging
in GLU [73] and other intensional programming systems, GIPSY uses a loosely cou-
pled middleware by using asynchronous message-passing paradigm such as MOM.

After studying different commercial and academic implementation of MOM, Java
Message Services (JMS) [52], from Sun Microsystems, was chosen. JMS is a set of
interfaces and associated semantics that provides a common way for Java programs to
create, send, receive, and read an enterprise messaging system’s messages. Message

portability is thus strong in JMS, which suits well with the fact that the migration
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of messages is abstract from the respective scope of view of both DG and DW. These
GIPSY nodes only use the JMS interface to connect and close a connection and ses-
sions without knowing anything about the internal implementation of the middleware.

After starting the connection, the DG writes its demand on one of the designated
JMS destinations such as queue and topic. The interaction among each of these
modules can be done in both synchronous and asynchronous mode.

As explained above, as we have to use many of MOM features such as asyn-
chronous/synchronous messaging across our communication nodes in a totally loosely-

coupled way, we consider DMS as a Message-Oriented Middleware.

3.2 Implementation

In the course of this research, we applied the DMF generic architecture for migrating
objects to our design of a DMS based on using JMS, and built a JMS version of the
DMS to transport demands in a heterogeneous and distributed environment. As we
will discuss in Chapter 5, both implementations of our DMS (i.e., JMS and JINI)
follow the layered conceptual architecture implied by the DMF. Detailed information

about both implementations is given in Chapter 5.

3.3 Experimental Investigations

One of the major goals of this thesis was to investigate different scenarios and condi-
tions of demand migration in GIPSY environment. These investigations required the
implementation of different versions of DMS and their comparison them in different
circumstances. This requires a comprehensive list of criteria from the point of view
of GIPSY to make the comparison of these instances significant.

Performance is one of the most important key elements in choosing a distributed
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system’s middleware. In both worlds of industry and academia, there are many
research and benchmarking investigations to show off middleware capabilities com-
paring to other competitor solutions.

Comparing two systems requires an excellent in-depth knowledge of their detailed
designs, implementations, and even their specification and requirements. Performance
is not an independent factor to be compared solely regardless of different critical
elements of their system requirements. There are many important criteria building up
dimensions of qualities of service (QoS), which can demonstrate adequate performance
of a system. Thus, QoS in this thesis explains how DMS instances are required to
work, and how well they are performing.

Every single solution may be suitable for a specific scenario, so it is wise to
have domain-related solutions rather than a general solution for all possible pur-
poses. Therefore, in our GIPSY lab, in the domain of intensional programming,
we developed a generic Demand Migration Framework (DMF) to facilitate required
infrastructure for the purpose of distributed demand-driven communication.

Each of these two implemented systems (i.e., JINI-DMS and JMS-DMS) has its
own characteristics. Therefore, comparing them requires deep knowledge of their
design, implementations, specification, and requirements. We set some major criteria
and goals for our generic DMF, and test its two instances in different scenarios against
these criteria. In the following, our major criteria in terms of QoS appear, and later
on in Chapter 6, we will mention how we investigate them.

Here, we list many important elements for the evaluation of the QoS in distributed

systems, but among them, we chose those which we could test regarding their level
of importance in the GIPSY environment and our limitation of time in the course of
this research.

Our two DMS instances respectively use the JINI and JMS technologies as a
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multi-platform transport protocol, i.e., it is able to connect machines with different
operating systems. This transport protocol is implemented in the form of Transport
Agents (TA). Each one of these agents implements the features of only one distributed
technology. The transport protocol is open-ended, i.e., we can easily extend it by
adding new Transport Agents based on other distributed technologies. By having
different implementation, we can benchmark many scenarios of demand migration in
different execution environments. In our experimental investigations, we evaluate our
DMS instances in terms of their performance, overhead, implementation, integrability,

throughput, plugability, as well as limitations.

3.3.1 Simulator

GIPSY is a complex system, where different subsystems are designed and imple-
mented as loosely-coupled components. In the course of this research, we have
encountered the need to test our currently implemented components, while other
where under development. Therefore, we designed and implemented a light version
of GIPSY, a prototype called GIPSY Simulator to help us gather information about
the functionality of the entire GIPSY system. We discuss about its features and

functionalities in more detail in Chapter 6.

3.3.2 Quality Of Service

A network that supports QoS is a network that presents its capabilities to the user
and allows them to make choices for the service they receive [34]. These qualities are
more precisely definable if the infrastructure is static in the sense that it does not
change dramatically over the time, but in real-life, network and distributed systems
are inherently dynamic. For example, if a system provides 99.99% availability for

up to 16 nodes, it may not behave the same QoS if the number of nodes exceeds
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1000. Defining these limitations is very complicated and challenging, as we generally
like to expect a distributed system that supports unlimited number of nodes. As
our infrastructure at the university is limited, we can only experiment our actual
system behavior in a smaller scale whereas in some scenarios we required thousands
of nodes. For the time being, we narrowed down our investigations to more limited
number of nodes to see the general system behavior of the middleware. We made our
investigations on the current limited infrastructure, and found out the guaranteed
and possible quality of services of our system in this limited context.

Despite these limitations, our experimental investigations help us analyze our two
DMS instances in more detail, and provides us additional information about the
system behavior of each version in different scenarios. Therefore, we can expect to
use each of them in the condition they perform better, permitting better flexibility
of use for computation using GIPSY. Coexistence of these two framework instances
in every environment is costly, in the sense that it requires more time to maintain,
modify, comprehend, and extend. Even with considering such a cost, performance
of the entire system is by far better than the situation that only one single system
is available. For example, we can find out that one instance is suitable for demand
migration of demands larger than a certain size, but the other one provides better
performance and throughput for smaller ones. We can use either of them in different
scenarios by enforcing the use of a designated one for certain demands specifications.
By identifying these QoS, we can investigate more on parts where these systems
behave poorly. We should identify those points and investigate on their improvements
as parts of our ongoing and future investigations.

In order to compare the performance of these two versions, we cannot just rely
on a result from a test case or two. We cannot just run these systems in a scenario

where they generate and compute hundreds of demands remotely, and label the one
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Figure 2: Multi-dimensional list of Quality of Services in DMS

which provided faster result as a better solution. We need to find out important
elements, which are mandatory and critical in our framework, and eventually build
up our test cases on top of that. The out-coming results from such comprehensive
tests provide accurate and mature conclusion about the future of each versions of
DMS. Considering only faster response time as better performance does not provide
us a better solution for most cases. As in our environment, response time is important
but that is not the only criterion. Other important factors of QoS are important to
benchmark our system, so we should deal with QoS as a multi-dimensional aspect to
provide as much experimental information as necessary. By having multi-dimensional
QoS, we can find out which DMS version is performing better in specific dimensions.

By reviewing the related literature, generally QoS for middleware consists of qual-
ities such as latency, throughput, availability, concurrency, persistency, maintainabil-
ity, filtering, flexibility, indexing, durability, portability, and priority. However, in

this thesis, we just experiment with some of them which are depicted in Figure 2.
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At the end, in the experimental investigation chapter, by observing the results
from those tests, we can conclude which version in suitable for certain conditions.
Here we introduce each of these dimensions, and later on in Chapter 6, we discuss

them in more details with comprehensive information and test results.

Availability

One of the most important criteria in our DMS is the availability. During our demand-
migration procedure, a node which hosts the DMS may suddenly go down or up due to
some unexpected exceptions, failures, or errors. Regardless of the network availability
factor, we would like to compare these two instances against this factor, and see which

one of them starts and establishes its services faster.

Latency

The time elapsed from the point a node sends out a message to the point another node
receives that request is called latency [30]. Latency is often used to mean any delay
or waiting that increases real or perceived response time beyond the response time
desired.

In our system, this applies to the time a DG sends out a demand to the point a
DW receives it. Latency might vary according to the network configuration and load,
number of DW and DG, filters, and etc.

The most difficult issue in measuring the round-trip is time. As both DW and DG
may be distributed across the network, having synchronized time is a difficulty. One
of the approaches to latency measurement is setting the timestamps in each message,
and acknowledging it back to the DG for the further analysis. In 6.3.3, we explain in

detail how we are going to test this factor in our system.
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Throughput

Average number of messages that can be delivered in a period is considered as through-
put of a system. It is the most common performance metric used to evaluate the
capacity of a messaging systems [30]. Some previously published tests in [83] have
measured throughput by measuring how quickly messages can be sent, without en-

suring that messages are received at the same rate. A side effect of this technique is
that messages may be produced far faster than they can be consumed. In 6.3.5, we

will explain the detail information about our test cases for this specific element.

Persistency

Persistency is an important issue, as the DMS might go down at any time. In order
not to lose any demand, we have to check how persistent our system is. In case of
any sort of failure or breakdown of the DMS, there might be demands waiting to
be served. We do not want to lose those waiting demands in our buffers or queues.
The DMS needs to provide persistent storage of demands. In addition, the DMS
also stores the values resulting from the computation of all migrated demands. By
providing a permanent-storage mechanism for demands, DMS, allows for the results
to be permanently stored, thus enabling computations to be stopped and resumed
later without having to recompute previously computed results. We explain our test

cases for persistency in 6.3.6

Flexibility and Maintainability

As said before, the DMS is a part of an ongoing project, which should be a dynamic
and flexible infrastructure for any kind of future maintenance and extension. Because

GIPSY itself is under investigation, we should expect to face future features to be
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required in the system. Therefore, both instances of DMS should provide a properly-
developed structure to be maintained and expanded easily. Adding, modifying, or
even removing some features should be considered as part of its dynamic and active
architecture. We divide flexibility into two parts: configurability, and ease of use.
We evaluate our two DMS instances from the viewpoint of these qualities. Detailed

information about this aspect of our benchmarking comes in 6.3.7.

Priority

Priority is a very important feature in DMS, as different demands should have different
level of priorities. As we would like to work with different types of demands (see 4.4.1),
we should enable the feature of having different levels of priority in order to expedite

a demand, which has a higher level of importance.

Portability and Plugability

As mentioned in 3.1.2, portability and plugability are important criteria in DMF ra-
tionales. Therefore, we include them in our major elements of our QoS. Plugability
is important in the sense that our middleware as an external application can be used

in a plug-and-play mode in different operating systems or networks.

3.4 Summary

In this chapter, we discussed our methodology and approaches to design, implement,
and test our middleware. We began with the presentation of our criteria and rationale
and then we discussed how we can deal with the procedure of demand migration in

our design and implementation. At the end, we provided a list of QoS that we would
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like to investigate our systems against. In the next chapter, we will present more

details about the design aspect of our Demand Migration Systems.
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Chapter 4

Design

Out beyond ideas of wrongdoing and rightdoing,
There is a field. I will meet you there.
J.M.Rumi - Persian Poet (13th Century)

This research stands inside an existing research and development framework. Con-
sequently, our design and implementation is constrained into the existing design and
code base. This chapter aims at describing the existing GIPSY Demand Migration

Framework and explain how our solutions have been integrated in such a framework.

4.1 Demand Migration Framework

The DMF is a generic scheme for migrating objects (GIPSY demands) in a heteroge-
neous and distributed environment specified by the GIPSY nodes and by the GIPSY
tiers nested in these GIPSY nodes. Thus, the DMF establishes a context for perform-
ing demand-migration activities, where the migrated entities encapsulate embedded

functions and data pertaining to the processing of these demands.
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4,1.1 DMF Architectural Model

The DMF exposes a layered-structured architecture [38], which helps the function-
ality of the system to be implemented in several layers, and abstracting the clients
of the demand migration from its implementation intricacies. Figure 3 represents an
abstract conceptual view of the DMF. As it is shown by the layered structure, the
largest circle depicts the entire GIPSY, and the double-lined inner circle depicts DMF.
GIPSY is represented as a set of operational nodes — workers (DWs) and generators
(DGs), those being the communication end points, and the DMF acting as a com-
munication intermediate between them. The DMF consists of two main functional
layers called Demand Dispatcher (DD) and Migration Layer (ML). The Demand
Dispatcher (depicted by a bold-lined circle in Figure 3) is an object-based storage
mechanism able to dispatch objects to their recipients. The migration layer (de-
picted as a dark grayed layer on top of the Demand Dispatcher) is the layer perform-
ing object migration from the Demand Dispatcher to the recipient Demand Worker or
Demand Generator. The migration layer makes the communication in the hetero-
geneous distributed environment possible. The DMF relies on these two functional
layers to form an asynchronous communication system similar to the persistent asyn-
chronous message-passing systems [67], i.e., the messages are permanently stored and
delivered upon request.

Moreover, the demand dispatcher layer establishes the context of a centralized de-
mand propagator that consists of two layers — Demand Space (DS) and Presentation
Layer (PL) (see Figure 3). The Demand Space layer defines a context of internal
object-based storage mechanism. The Presentation Layer is an abstract layer on
top of Demand Space that makes the Demand Space functionality transparent and
generic. The DMF establishes a complex model for communication. Therefore, divid-

ing the functionalities into several sets, where the inner functions are tightly coupled,

35



Presentation

Figure 3: GIPSY Demand Migration Framework (DMF)

but highly independent from the other layers, is very appropriate. This technique
helps to address the problem sets separately and to reach for higher upgradeability

and flexibility through modularity.

4.2 Demand Migration System

The DMF is a generic framework solution to the problem of migrating demands in a
heterogeneous and distributed environment. Hence, the DMF does not impose any
technologies or platforms, but rather provides guidelines to design a DMS (Demand
Migration Systems). Our first two DMS applications (i.e., DMS instances) are based
on the distributed technologies of JINI and JMS.

4.2.1 DMS Layers

Figure 4 represents the layered structure of our first DMS generic architecture derived
from the DMF. In this Figure, the Demand Dispatcher (DD) and the Transport
Agents (TA) (see Section 4.2.3) are subsystems of the DMS, inherited from the

DMF framework. The Demand Dispatcher consists of two contributors — Demand
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Figure 4: GIPSY Demand Migration System (DMS)

Space (DS) and Dispatcher Proxy (DP). Whereas the Demand Space comes di-
rectly from the DMF, the Demand Proxy is a design solution instance to the generic
Presentation Layer (see Figure 3). The Presentation Layer consists of multiple
demand proxies, each being associated with a Transport Agent, i.e., a Demand Proxy
is a Demand Dispatcher’s entry point. The Demand Dispatcher has multiple Demand
Proxies and one single Demand Space. The Migration Layer (ML) is presented as a
set of Transport Agents, each one based on a different distributed technology (e.g.,
JMS, JINI). The Dummy Transport Agent simply exposes the Demand Proxy to the
local and Demand Generator instances, bypassing unnecessary remote communica-
tion procedures. In Figure 4, DWs and DGs are grouped into pairs. Each DG-DW
pair relies on a Transport Agent, which could be common to both. This is just one

of the many possible run-time arrangements.

4.2.2 Demand Dispatcher Layer

In general, the Demand Dispatcher layer maintains a pool of demands to be pro-

cessed. The following elements describe the Demand Dispatcher’s internal structure.

37



DP (Dispatcher Proxy) TheDispatcher Proxy inherits the Presentation Layer
(PL) from the DMF (see Section 4.1.1), i.e., it works as a proxy for the Demand
Dispatcher. The Demand Dispatcher relies on it to expose functionality to its
clients. The clients are Transport Agents, Demand Generators and Demand Workers.
All the Demand Dispatcher’s clients are assigned with a unique Demand Proxy. The
Demand Generators,Demand Workers and Transport Agents use the Demand Proxy
functions as their own, in their local address space, thus hiding the complexity of a

possible remote collaboration with the Demand Space.

DS (Demand Space) The Demand Dispatcher relies on the Demand Space to
store all the pending demands and their computed results. The Demand Space layer
implies all the characteristics of an Object Database, i.e., the Demand Space provides
a mechanism to store the state of objects persistently, and an Object Query Language
(OQL) to retrieve these objects. The Object Database Management Group (ODMG)
published this standard in 1993 [28].

4.2.3 Migration Layer

The Migration Layer establishes a context for migrating objects among the GIPSY
tiers and nodes. The Migration Layer provides a transparent form of migration. The
Migration Layer refers to communication between computers and its architecture
is based on the Open Systems Interconnection (OSI) Reference Model [38, 36]. In
addition, the Migration Layer provides an architectural structure, forming a multi-
platform transport protocol that is able to connect machines with different operating
systems. The Migration Layer focuses on the use of Transport Agents, which are

special kind of autonomous messengers (see Figure 4).
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TA (Transport Agent) Transport Agents are based on distributed technologies
whose architecture influences their implementation. Transport Agents differ in their
structure and implementation, but they all expose the same interface to the Demand
Generators, Demand Workers and Demand Dispatcher. Thus, despite the distributed
technology diversity, their services are transparent and homogeneous with regard to

their API.

TA Interface When a Transport Agent starts, it plugs into the system by con-
necting with the Demand Dispatcher and exposes its interface to Demand Generator
and Demand Worker instances. Actually, the DWs and DGs listen constantly to DST
for newly plugged Transport Agents and when the latter appear, they connect to
them. Thus, DWs and DGs must adhere to the Transport Agent interface in
order to connect to that Transport Agent. Figure 4 depicts DGs and DWs on top

of compatible Transport Agents.

4.3 GIPSY Multi-Tier Architecture

At the GIPSY’s core is a multi-tiered architecture, where the execution of the GIPSY
programs is divided into four different tasks assigned to separate tiers. The GIPSY
tiers spawn separate processes that communicate with other processes from the same
or different tiers by using demands. A GIPSY tier is an abstract means of a compu-
tational unit that exposes a set of concrete GIPSY components that collaborate with

each other to achieve program execution.

Note that we do not intend to describe the complete functionality of each tier
in this thesis as it is out of its context, and we have not fully implemented these
during the course of this research. As we have studied our current infrastructure, we

have investigated on the multi-tier architecture as it provides more control on all our
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totally decoupled GIPSY modules.

Demand Store Tier (DST) Instances of this tier represent a middleware that
exposes certain functionalitiesto the other tiers of the DMS. The latter is a com-
munication system that connects all GIPSY tiers via demand migration [14, 38]. In
addition, the DMS provides a persistent storage of demands and their resulting values,
thus achieving better processing performance by not having to re-compute the value
of those already computed and stored demands. As initially mentioned in 4.2.1, The
DMS architectural model consists of two major components — Demand Dispatcher
(DD) and Transport Agents (TAs). They both run independently, but form to-
gether the overall behavior of the DMS, where the Demand Dispatcher acts like an
event-driven message storage mechanism that uses the Transport Agents to deliver
the demands from their origin to their destination, and their corresponding results
in the reverse direction. The DMS relies on these two contributors (DD and TA) to

form a message-persistent communication system [15].

Demand Generator Tier (DGT) Instances of this tier encapsulate a Demand
Generator (DG), which generates demands using an Intensional Demand Processor
[14, 41] that implements the eductive model of computation. The generated demands
can be further processed by other DGT instances or by the DWT instances (see

below). The demands are migrated between the tiers via the DST [15].

Demand Worker Tier (DWT) Instances of this tier encapsulate a Demand
Worker (DW). The latter can process procedural demands, i.e., demands for a procedu-
ral function call from the intensional program [14, 41]. A DWT instance encapsulates
a processor and a pool of procedural demands. The latter represents a compiled

version of all the procedural demands that the Demand Worker is able to respond
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to [15].

GIPSY Manager Tier (GMT) Instances of this tier enable the registration of
GIPSY nodes to a GIPSY instance (a set of interconnected GIPSY tier instances), and
the allocation of various GIPSY tiers to these nodes. A GIPSY node is a computer
that has registered in the GIPSY network as a host of one or more GIPSY tier

instances [15].

4.4 GIPSY Demands

In GIPSY, demands represent the means of communication between tier instances.
Moreover, a demand is considered to be a request for the value of a program identifier
(a Lucid identifier or a procedure identifier embedded in a hybrid Lucid program) in
a specific context of evaluation. GIPSY specifies four demand types - intensional,
procedural, resource, and system demands. During their life cycles, demands can
transit over three different states - pending, in process, and computed. Both demand
types and demand states, together with a unique demand ID, are used by the DMS

for their identification, unification, and traceability.

4.4.1 Demand Types

Initially there were two types of demands in the GIPSY: intensional and procedural
demands. However, in order to strengthen the system behavior of the DMS in the
GIPSY multi-tier architecture, in the course of this research, we have introduced two
more types of demands to the system. These new ones are resource and system
demands, which are meaningful in different situation and scenarios where additional

resources are required.
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Intensional Demand A demand for the evaluation of a Lucid program identifier,
given a certain context. Intensional demands are created and further processed by
the Intensional Demand Processor, the main component of the Demand Generator
Tier. Intensional demands have the form:

{GEERid, programId, context}
where GEERid is a unique identifier for the GEER (i.e., the compiled program) that this
demand was generated for; programlId is an identifier declared in this GEER (in this

case a Lucid identifier); and context is for the context of evaluation of this demand.

Procedural Demand A demand for the evaluation of a certain procedure orig-
inally written in a procedural language, as part of a hybrid GIPSY program or a
method in an Object-Oriented Intensional Programming Language. Procedural De-
mands are generated by the Demand Processor, and processed by the Procedural
Demand Processor of the Demand Worker Tier. Procedural demands are generated
by the Demand Processor of the Demand Generator Tier as it encounters procedu-
ral function call nodes while traversing the Abstract Syntax Tree (AST) to process
demands. The procedural demands, after creation, are accumulated in the Local
Demand Store, which will use its Transport Agent to have the procedural demands
(as well as the intensional demands) migrated to a Demand Store Tier. A Demand
Worker Tier will then request procedural demands from the Demand Store Tier,
which will be processed and the result then migrated back to the Demand Store
Tier, and then to the Demand Generator Tier that generated it. A procedural
demand has the form:
{GEERid, programId,Object params[], context, [code]}

where GEERid is a unique identifier for the GEER (i.e., the compiled program) that
this demand was generated for; programId is an identifier declared in this GEER (in

this case a procedure identifier); Object params[] is an array of objects that this
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procedure takes as arguments (note that these objects need to be Serializable and
must implement an Object compareTo(Object) method to compare itself to another
object in order to verify if two demands’ parameters are the same), context is the
context of evaluation of this demand, and [code] is the optional code of the procedure,

in case we don’t want to assume that the worker has the code to be executed.

Resource Demand A demand for a processing resource. DGT will create re-
source Demands for GEERs if they receive demands that require certain resources
that they are not aware of (i.e., they do not have the GEER corresponding to the
GEERid of this demand in their Local GEER Pool). Such a request for this specific
GEERid is a Resource Demand. Upon reception of the result of such a demand,
i.e., the requested demand, the GEER resulting object is added to the Local GEER
Pool. Similarly, when a DWT receives a demand for which it does not have the
corresponding ProcedureClass to execute, it will create a resource Demand for this
ProcedureClass. Upon reception of the result of such a demand, i.e., the ” processed”
demand, the resulting ProcedureClass object is added to the Local Procedure
Class Pool. Note that for simplicity reasons and similarity with the DGT imple-
mentation, the DWT might rely on a GEER Pool (given the fact that GEERs contain
their corresponding ProcedureClasses). A resource demand has the following form:
{resourceTypeld, resourceld}
where resourceTypeld is an identifier for a resource type, which is an enumerated
type now containing GEER and possibly ProcedureClass (see the last paragraph).

This enumerated type is expandable in order to allow new resource types to be added
later. The resourceld is the unique identifier for the specific resource instance being
sought for by the demander. Any new resource type created must be provided with

a unique identifier scheme to identify each specific resource instance of this type.
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System Demand System demand related to the system’s operation. These include
monitoring and control of Tiers by a GMT, e.g., by sending monitoring requests such
as the state of a Tier, or control requests such as shutting down a Tier. A system
demand has the following form:
{destinationTierId, systemDemandTypeld, Object params[]}

where destinationTierId is the Tier Id of the tier to which this demand is ad-
dressed, systemDemandTypeld is an identifier for a system demand type, which is an
enumerated type containing one element for each kind of system demand, and Object
params [] is an array of objects that this system demand may take as arguments (note
that these objects need to be Serializable and must implement an object to com-
pare itself to another object in order to verify if two demands’ parameters are the

same).

4.4.2 Demand States

Each demand can have three different states during its workflow. Depending on its
state, different modules and components respond appropriated actions to migrate
demands from its origin to the destination. As shown in Figure 5, when a demand
migrates from one execution node to another, it changes its current states in order to
be properly identified for the next step. As nodes can identify the kind of task they
are going to do with demands according to their current states, e.g., if a demand has

a specific state, GIPSY triggers certain procedure.

Pending As shown in Figure 5, the first state a demand has is pending. As soon as
a Demand Generator initiates a demand, it wraps it up with additional information
such as demand state, which is pending at the very beginning. This state stays with

the demand as demands carry over to the DMS, and later on from DMS to Demand
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Figure 5: Transition of demand states in GIPSY Demand Migration System

Worker.

In Process An in process demand is one on its way to be delivered to be computed.
The middleware keeps a copy of that demand until the return of its computation
results. In that way, the middleware prevents eventual loss of a demand, i.e., an in
process demand could be dispatched again if its result is not received for a certain

period of time, thus providing fault-tolerance.

Computed After computing a demand, the Demand Worker changes the state of a
demand to computed, so it can be returned to the middleware and be differentiated
from similar pending demands waiting to be processed. Eventually the DMS returns

all computed demands to their originating Demand Generator.

4.5 Storyboard of the Demand Migration Process
in GIPSY

In order to properly comprehend the entire process of demand-migration process in

GIPSY environment, here we briefly explain all steps of demand migration. For this
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purpose, we provide a simple example to demonstrate the level of granularity a de-
mand may divide into. In addition to that, we explain the interaction between sub
modules and components of the DMS. As part of this thesis, we only included those
steps from the viewpoint of a Demand Generator. It eventually helps the reader un-
derstands the general concept of GIPSY demand migration better, and consequently,
information in both chapters of design and implementation are easier to understand.
As mentioned before, we introduced what a demand means in GIPSY (see section
4.4) and its types (see section 4.4.1). In here, we present a storyboard from the initial
point of receiving a demand to the final point of returning its results to the original
source step by step.

First, we demonstrate the workflow of our current Demand Migration System.
We should clarify in here that even though we provided a dynamic infrastructure for
our system for any further modification in the future, this thesis was implemented
in a way to follow current DMS and many new features such as GIPSY Multi-tier
Architecture have not been introduced while we were implementing our current DMS.
However, as part of our investigations and contribution in this research project, we
introduced new level of modularity to our system that changed the entire workflow
of our DMS. Therefore, we explain here both the current and future ways with the

consideration that our implementation is applied only to the current one.

4.5.1 Current System

Currently, we have two types of demands such as procedural and intensional demands.
Assuming there is a set of intensional demand in our system, as soon as the Demand
Generator receives one demand from that list, it puts it in the Local Demand Pool.
In case the result of such a demand is already present in that local pool, the result

would be retrieved from there and returned immediately. Otherwise, the Demand
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Generator initiates certain processes to compute that demand. In Figure 7, we
demonstrate every step of demand migration in the DMS.

Regarding the requirements of a demand, it can be computed either locally or
remotely. Each demand requires certain variables or functions values in order to
be computed. If all of those requirements are available to the DG computing this
demand, it can compute the demand. Otherwise, for the case that any of those
resources is not available, it needs to possess it to finish the computation. Therefore,
it initiates demands for those required values or resources, while the initial demand is
put on hold. After receiving those required resources, it finishes the computation of
the original demand and returns the result to the original source. Here is the entire
workflow that a demand follows from the initial point to the end. In the presentation

of the workflow, we are using the simple Lucid program presented in Figure 6:

1. The DG initially receives a set of intensional demand and places them in its

Local Demand Pool. For example, an initial demand might be:
(GEERL, A, [d : 2], null) (1).

2. The DG picks up one demand in its pool, and analyzes its Demand Signature
to find out which GEER it requires. The first element of the demand signature

represents the requested GEER (e.g., GEER 1).

3. The DG checks if it has the requested GEER (i.e., GEER1) in its local GEER

pool
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4. As part of our basic assumption, DG has the GEER (i.e., GEER]) in its Local
GEER Pool by default, so it starts examining the related AST for the identifier
(ie., .A). An identifier may depend on the values of other identifiers or functions
or computations. Therefore, the DG should have all their results available in
order to have the final value for that identifier (i.e., .A), in the context pertaining

to the demand being processed.

5. After initial examination of the demanded value’s AST in the corresponding
GEER, i.e., as shown in Figure 8, each identifier may relate to some other identi-
fiers, which means that each variable has some children nodes in its AST. Upon
having those children nodes, new demands would be initiated according to the
dependencies of the original identifier (i.e., A). For example, as shown in Fig-
ure 8, identifier A relates to both values of B and C. Thereafter, it generates two
demands for the result of each of them, and put them into the Local Demand
Pool as the following demands, and puts the initial demand (1) on hold until

these demands are computed:

(GEERL, B, [d : 2], null) (2)
(GEERL, C, [d : 2], null) (3)

6. In computing demand (2), it is analyzed that B itself depends on both f5() and
D. Thus, the DG generates new demands at this point, presented below as (4)
and (5). Among those demands, D being a constant, it has its immediate value

hard-coded in the AST without any additional computation.

(GEERL, f2,(...), [d : 2], null) (4)
(GEER1, D, [d : 2], null) (5)
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Figure 8: An example of an Abstract Syntax Tree (AST) for identifier A

As all these demands are being generated, the Local Demand Pool sends a
remote request to the DMS through its associated Transport Agent to see if
these demands have already been computed by other GIPSY nodes and stored in
the DMS. In the affirmative, the computed values are retrieved and may be used
directly to follow up on the computation. If the negative, these demands are sent
to the DMS and might be caught by another DG and processed. Concurrently,
the local DG may as well pick up one of these demands and continue generating

other demands from it.

Procedural demands, (e.g., formula 4), are similarly conveyed to the DMS, with

the difference that procedural demands are picked up by Demand Workers.

In our current system, we assume that we have all required GEER installed
in DGs and DWs local GEER pool, so it can process demand without any

problem.

After finishing the computation of a demand, a DG or DW sends the result
back to the DMS through its TA. The DMS attached to this TA then stores the

result in its demand pool and notifies all DGs having requested this demand
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that the value is available.

4.5.2 Projected Design of DMS

Exactly like for the design of the current system, we assume there is a set of inten-
sional demands. The Demand Generator retrieves one of them and puts it in its
Local Demand Pool, which reacts by using its associated TA to communicate this
demand to the DMS. If the DMS has the result of such a specific demand, it returns
it immediately and the DG can proceed, otherwise, the DG starts processing this
demand. Here, the process is the same, but the difference is when some processing
resources are missing. In the current design, as presented in the last section, if the
DG does not have the required resources (i.e., GEER), it is assumed that the demand
will be executed in another DG which has this resource available. In our projected
design presented here, in addition to the possibility of doing that, the DG can send a
demand for those specific unavailable resources, and after receiving that resource and
installing it locally, will be able to continue processing the pending demand. In our
current system, we do not have resource demand, so we cannot do such a mechanism.

One of the main differences between this model and the current one is in the
evaluation of their demand requirements. In the current design, we assume to have
required GEER wherever is necessary. It means that both generators and workers
have those GEERs they need to execute demands. However, here, we provide a more
dynamic infrastructure by introducing resource demands to our demand types. As
nodes can initiate a resource demand for a required resource (e.g., GEER), and they
can handle demands no matter if they need additional resources or not. Here, we
explain the same example as we did before in our current system with more emphasis
on the differences between these two systems. The workflow of this process is depicted

in Figure 9. In the following, all steps are assumed to be the same as presented in
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the preceding section, and we present the workflow steps involved with processing

resource demands.

1. Upon processing a demand, the DG checks if it has the corresponding GEER
(e.g., GEER]) in its Local GEER Pool. In the affirmative, the workflow pro-
ceeds as presented earlier. In the negative, the following additional steps are

taken.

2. The DG generates a resource demand for that specific GEER (e.g., GEERI])
and puts it in its Local GEER Pool. The Local Demand Pool then sends the
resource demand out through its Transport Agent to the associated DMS. A
remote worker or generator can catch that demand and provide the DMS with
the result (i.e., GEER), and eventually the generator with the requested resource

(i.e., GEER])

3. After receiving the requested resource (e.g., GEER1), the generator installs it
locally in its Local GEER Pool. After having installed the associated GEER,
the generator has the appropriate resource to proceed further in the evaluation

of the original demand.

4.6 Summary

In this chapter, we described the design of our Demand Migration Framework and its

technology-dependent implementations Demand Migration Systems. We explained
the layers and components of the DMS in our multi-tier architecture. Consequently,
for the demand side, we explained different types and states of demands. At the
end, we studied the demand-migration process from the point view of the Demand

Generator for our current and future design. In the next chapter, we provide detailed
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information about the implementations of our DMS instances (JINI-DMS and JMS-
DMS).
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Chapter 5

Implementation

Human beings are members of a whole,
In creation of one essence and soul.
If one member is afflicted with pain, Other members uneasy will remain.

If you have no sympathy for human pain,
The name of human you cannot retain.

Sheikh Saadi - Persian Poet (13th Century)

The GIPSY was designed to include a generic and technology-independent De-
mand Migration Framework (DMF). Therefore, as our lab also represented our goal
and generic design in different publications [14, 15, 40, 41] and a thesis [38], we
wanted to implement our DMS with using different distributed technologies such as
JINI, JMS, DCOM, .Net Remoting, and CORBA to have different working versions.

The reason to have different versions of our DMS were:

e to design a generic DMF, so it can provide an infrastructure to accept different

technologies as its separated submodules as long as they follow DMF rationales

as presented in 3.1.2.

e to overcome the limitation of binding to only one distributed technology, whereas
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in this way, we are open to accept any current or future modification, changes,
or introduction of a distributed computing paradigm or middleware. In sec-
tion 7.2.2, we are going to present how having generic approach can provide

an infrastructure for new technologies and paradigms such as Service-Oriented

Architecture (SOA) [42].

e to find out the best optimum scenario after experimenting the behavior of our
DMS instances, and either choose the best solution or design a new GIPSY-

tailored technology to satisfy most of our needs and requirements.

In order to have a technology-independent DMF and to overcome the limitations
of using only one technology, we investigated on the implementations of different
instances of our GIPSY (i.e., different DMS instances). A DMS has general func-
tionalities which are shown in Figure 10. It consists of dispatching, migration, and
getting demands in one side, and on the other side, dispatching, migrating, and finally
getting results. Eventually we have considered other functionalities such as demand
canceling and pooling.

A DMS uses these distributed technologies as a multi-platform transport protocol,
i.e., it is able to connect machines with different operating systems. This transport
protocol is based on Transport Agents and is open-ended, i.e., we can easily extend
it by adding new Transport Agents based on other distributed technologies. Note
that by having different instances of our DMS, we can benchmark them by performing
many scenarios of demand migration in different execution environments, which is one
of the goals of this thesis.

The following sections discuss the common architectural design issues in JINI-
DMS and JMS-DMS, and later on in Chapter 6, we are going to perform some ex-

perimental and comparative studies in our implementations.
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Figure 10: DMS general Use-case diagram

5.1 JINI-DMS

JINI-DMS incorporates a solution based on JINI and JavaSpace [49], where JINI has
been used for the design and implementation of the Transport Agents and JavaSpace
for the design and implementation of the Demand Store. The JINI-DMS was the first

DMS instance, developed by Emil Vassev in his master thesis [38].

5.1.1 JINI

JINI, developed by Sun Microsystems [1] (later on joined by the Apache group as their
River project [19]), is an infrastructure for federating services in a distributed sys-
tem [60]. As also introduced in [38], JINI provides an open architecture for handling

resource components (see 5.1.1.1) — either hardware or software, within a network.
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5.1.1.1 JINI Features and Resource Components

The resource components are handled as services and the JINI systems provide mecha-
nisms for their construction, lookup, communication, and use in a distributed system.

JINI is a pure Java technology and integrates easily with the GIPSY, which is entirely

implemented in Java. Here we discuss each of these resource components.

JINI Service According to [60], it is the most important concept within the JINI
architecture. A service is an entity that can be used by a user, a program, or another
service. A service may be a computation, storage, a communication channel to an-
other user, a software filter, a hardware device, or another user. It basically provides

an infrastructure for the Service-Oriented Architecture.

Lookup Mechanism According to [60], JINI services locate each other through
specific lookup mechanisms, which can be either Unicast or Multicast. Unicast is for
known host, which is the fastest and easiest way as it connects directly. However,
in Multicast, the host is unknown and they need to look up in the network to find
an appropriate one. After finding the initial service, it connects with as a proxy
for further interaction. Multicast mechanism allows establishing an interaction with
services without any prior knowledge about their existence or physical address.
According to [44], for services with simple functionality, the proxy, once retrieved
from the lookup service, might be able to operate independently — making it a
"strictly local” proxy. Therefore, the JINI specification leaves the proxy, protocol, and
server to communicate with the service implementation. The service implementation
is hidden from the client, which only has to agree on the Java programming language
interface, not a specific protocol, to interact with the service. Java Remote Method
Invocation (RMI) can conveniently arrange such communication. All JINT services

in Sun’s implementation of the JINI Specification use RMI as it allows an object to
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JINI Lookip Service

Figure 11: JINI internal lookup mechanism

make its method calls available to objects that reside in other virtual machines, and
even on other hosts. As shown in Figure 11, once a RMI stub is available to a JINI
client, that client can call methods on the stub. The stub then forwards method
invocations to the remote object, and marshals and unmarshals method parameters
as needed. In this scenario, a JINI service implemented as an RMI remote object will
register its stub as the service object with lookup services [44].

According to [77], JINI overcame the limitations of RMI in terms of multi-casing
inside a limited range of network. RMI has a restricted range often within a network
subnet, whereas JINI has the concept of federated lookup service to join different
subnets and makes the discovery process transparent to clients across a Wide Area

Network (WAN).

Communication Event communication in JINT is built on top of synchronous com-
munication. According to [55], method calls in JINI are all synchronous. In order to
implement the asynchronous version of it, an event listener is required to get asyn-
chronous messages, but still is based on RMI, which brings some problems, which we
discuss in the comparative studies that we have done between different technologies

in Chapter 6.
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5.1.1.2 Leasing Mechanism

According to [38], access to many of the services in the JINI system environment is
lease based. A lease represents the time of validity of a particular entry. If a lease
is not refreshed (i.e.,, its life is not extended), it can expire and, consequently, the
entry is deleted from the registry. In other words, the host assumes that the queue
will be unreachable from that point in time. This may be caused, for example, if a
host storing the queue becomes unreachable. A host that initiates a discovery process
will find the topics and the queues present in its connected portion of the network
in a straightforward manner. Non-exclusive leases allow multiple users to share a

resource.

5.1.1.3 JavaSpace

According to [49], JavaSpaces, as a part of the JINI framework, is a network accessible
associated shared memory to share, exchange, and store Java objects. It hides the
internal details of persistence, distribution, etc., from developers while leaving them
free to build distributed data driven applications. According to [17], it integrates
the concept of tuple space, where tuples can be inserted, read, and removed from a
space which stores each tuple from the time it is inserted to the time it is removed.
Tuple is essentially a collection of fields, where each field contains a type value. The
corresponding operations are write, read, notify, and take. Among these, because
of its synchronous nature, both read and take take a template and block it until a
tuple that matches the given template is present in the space.

As Figure 12, borrowed from [38], demonstrates we pass not only data but also
object’s behavior. The use of RMI and object serialization makes passing of live
objects possible. In addition, JavaSpaces implements features like distributed events,

leasing and lightweight transactions.
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Figure 12: JavaSpace model

5.1.2 JINI-DMS Design

Referring to section 5.1, as represented before in Figure 4, we used JINI and JavaSpace
in our first instance of DMS [38]. Due to the fact that we will ultimately compare
JINI-DMS and JMS-DMS, we would like to briefly explain the design aspect of the
JINI-DMS. We would like to demonstrate the general Sequence Diagram [66] of JINI-
DMS from the point of generating a demand in Demand Generator to its migration
path across the JINI-DMS and eventually receiving a demand and executing it on the
Demand Worker side. Despite the comprehensive and detailed information about all
modules and sequence of JINI-DMS in [38], as shown in Figure 13, we would like to
demonstrate and describe these steps briefly in order to have a comprehensive study

over these subjects. These steps are :

e A DG (Demand Generator) generates a demand (e.g.,, (A)) and passes it to the
DP (Demand Proxy).

e The DP grants the demand (A) with a unique ID (UUID) for any further ref-

erences.

e The DP stores the demand in the DS (Demand Store) and returns the ID to
the DG.

e The DG starts listening to the DS for this demand to become computed.
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Figure 13: Abstract JINI-DMS general Sequence diagram

e A DP associated with a TA (Transport Agent) that is listening to the DS for

pending demands, gets a copy of that demand.

e The DP changes the state of the demand (A) from pending to in process and
sends the copy of (A) to the TA.

e The TA transports the copy of (A) to a ready worker (Demand Worker).

o The Worker executes the demand, stores the result in the demand, and changes

its state to computed.

e The TA transports the computed demand back to the DD (Demand Dispatcher)

and stores the result in the Demand Space through the Dispatcher Proxy.

e The DD through a Dispatcher Proxy passes the computed demand to the DG

and removes the original (in process) demand from the Demand Space.

After demonstrating the general sequence of a demand migration, we describe and

explain each of these classes and their functionalities:
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Figure 14: Demand Dispatcher Class diagram

Demand Dispatcher The Demand Dispatcher has been designed in a separate
package. The following UML Class Diagram [66] (Figure 15) depicts the Demand
Dispatcher package’s classes and their relationships. In here, we would like to

demonstrate (see Figure 15) and briefly describe major classes and interfaces inside

JINI-DMS class diagram.

e Interface IDemandDispatcher is the Demand Dispatcher package’s entry in-
terface. It exposes the Demand Dispatcher package’s functionality. All the
methods exposed by the interface may throw the DemandDispatcherException

exception.
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e Class DispatcherProxy is the design solution to the Presentation Layer. It
implements the IDemandDispatcher interface, i.e., all the necessary functions
for reading, writing and canceling a demand. Moreover, this class implements
the Runnable Java Interface [29] (allowing execution in a separate thread of

control) to establish a connection, open, and close a session.

e Class DemandSpace is the design solution to the Demand Space. This class is a
Singleton [66], i.e., it can instantiate only one instance. The class implements
two major functionalities of a demand storage and a demand query mechanism.
Since we did not intend to design and implement an Object Database for DMS,
the class has been designed to integrate some already existing Object Databases.
Hence, in our design solution the DemandSpace class holds two public data fields

referencing a demand storage mechanism and a demand query mechanism.

e Class DispatcherEntry is the design solution for the problem of having dif-
ferent types of demands as one entry. The class is derived from the Adapter
design pattern (see Figure 14). It provides a mechanism to unify different types
of demands by wrapping a GIPSY demand into an appropriate format for stor-
ing them in the Demand Space. The DispatcherEntry class implements the
Serializable interface, which makes the objects instantiated from the persis-
tent class and appropriate for storing in the Demand Space. DispatcherEntry
holds a demand as a Serializable object, i.e., an object that could be saved

permanently. Therefore, we address two major concerns here:

— First, we assure that the demands and results will be permanently stored
in the Demand Space until they are required. Therefore, they will not be

lost in case of any failure or shutdown in any GIPSY Node.

— Second, we unify different types of GIPSY demands and their associated
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results as one generic and wrapped entity.

e Class Demand includes all functionalities of a task which is been thought of as
a demand. Implementation detail of this class is not important neither for the
Demand Generator nor for the Demand Worker. The implementation of this
class is temporary and would be replaced later on as other modules of GIPSY

deliver.

JINITA isaTransport Agent that has all the characteristics of a JINI service [49)].
Hence, it is a stand-alone component that exposes a common interface to the Demand
Dispatcher and GIPSY tier instances (i.e., Demand Generators and Demand Work-
ers) to migrate demands from one node to another. The UML class diagram presented
in (Figure 15) depicts the classes and their relationships.

There are two remotely-executing requests or commands as relationship depicted
in Figure 15. One is the relationship between the classes JINITransportAgentProxy
and JINITransportAgent. It is an association (see the dashed line in Figure 15) that
depicts an indirect remote collaboration between the proxy and its mentor. The sec-
ond relationship is between the classes JINITransportAgentProxy and JTABackend.
This relationship depicts a remote collaboration based on RMI [96], which enforced
the design of the JTABackend class as an RMI back-end class. The last implements the
Java Remote Interface, since the methods of this class will be remotely callable. The
class JTABackend is an inner class for the class JINITransportAgent. It is used by
the proxy for calling its main JINI TA class remotely. The following elements describe

the JINI Transport Agent package’s classes and their attributes and methods.

e The IJINITransportAgent interface is the package’s entry interface. This in-
terface is in the highest JINI Transport Agent abstraction level. Most methods

exposed by this interface are functioning on demand migration, i.e., getting or
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setting demands in an interaction with Demand Space. This interface is used by
the Demand Workers and Demand Generators first to find the JINI Transport
Agent within the JINI federation of services, and to call the methods of JINI

Transport Agent.

Class JINITransportAgent is the main class in this package. It instantiates a
standalone object that is the real JINI Transport Agent. This class implements
both Transport Agent and JINI service [49] functionalities. As a JINI service,
it will find the lookup service and publish its proxy. It wraps the proxy (see
the JINITransportAgentProxy class), which is used to implement the interface
IJINITransportAgent describing the public JINI Transport Agent function-
ality. In addition, class JINITransportAgent establishes the connection with
the Demand Dispatcher. The class implements the Runnable Java Interface

(see Figure 15).

Interface IJTABackendProtocol defines the remote communication protocol be-
tween the client-side stub and the service-side object, i.e., it defines the protocol
that the proxy object will use to communicate with the back-end remote object.
This interface extends Java RMI Remote interface. All the methods exposed
by this interface can be called remotely. Therefore, a proxy with a reference
to IJTABackendProtocol interface can invoke all the methods exposed by the
interface regardless of where IJTABackendProtocol implementation physically

resides. All the interface’s methods throw a JTARemoteException exception.

Class JTABackend implements the IJTABackendProtocol interface. This class,
by generating stubs, which are transported to the GIPSY clients on either side
of demand migration, performs the server-side execution or remote objects on

the JINI Transport Agent functions, i.e., the methods implemented by class
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JTABackend run on the JINI Transport Agent side. This is possible due to the
fact that JTABackend class inherits the RMI’s class Activatable, which makes
JTABackend’s methods callable from remote Java Virtual Machines (JVM) [46].
The class JTABackend is an inner class, i.e., it has full access to all the attributes

and methods of its outer JINITransportAgent class.

Class JINITransportAgentProxy is the design solution for the JTA proxy. It
implements two interfaces — IJINITransportAgent and Serializable. This
Serializable interface assures that an instance of the class could be sent to
each Demand Generator or Demand Worker attempting to connect to the JTA.
The class has a public no-argument constructor, due to its Serializable nature
[49]. IJINITransportAgent is the JTA interface known by both instances of
DGT and DWT. In our design, the JINITransportAgentProxy class is designed
as a static, non-public and inner class for the JINITransportAgent class. The
argument used here is fine — instances of DGT and DWT gain access to an
instance of this proxy at run-time via serialization and code downloading [49],
and the inner class has full access to all the attributes and methods of its outer

class — JINITransportAgent.

5.2 JMS-DMS

In previous intensional programming systems, messaging was mostly synchronous,

static, and highly coupled in the sense that the thread between producer (i.e., Demand

Generator) and consumer (i.e., Demand Worker) was blocked until the end of each

computation. Except the fact that highly coupling is not desirable in GIPSY DMF,

thread blocking is resource consuming in distributed systems especially when there
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are many simultaneous connections between nodes. In GIPSY, there is no discrim-
ination in choosing a specific Demand Worker when a Demand Generator initiates
a new demand, so it requires a decoupled communication layer in the core of its
DMS. According to [48], Message-Oriented Middleware (MOM) is referred to as the
most sophisticated enterprise messaging system for decoupled components. By study-
ing different case studies and best practices, we have selected Java Message Service
(JMS) [52] to provide us the required infrastructure to implement the demand migra-
tion functionalities in the Transport Agents.

In the course of this research, we applied the DMF' generic design for migrating
objects to our design of a DMS based on using JMS paradigm, and built a JMS
version of it to transport demands in a heterogeneous and distributed environment,
specified by the GIPSY nodes. As shown before in Figure 4, the architectural model
of the JMS-DMS follows the layered conceptual architecture implied by the DMF.
Transport Agents as part of Migration Layer and Demand Dispatcher, those be-
ing subsystems of the JMS-DMS, are all inherited from the DMF. In addition, the
Demand Dispatcher still consists of two contributors — a Demand Space represented
with a built-in JMS persistent storage mechanism embedded inside a JMS applica-
tion server, and multiple Demand Proxies representing an interface for accessing this
storage. The Demand Proxy in this architecture is the standard JMS interface for

accessing the messages in the message queue storage.

5.2.1 Java Message Service

Java Message Service (IMS) [90] is a part of Sun Microsystems’ [1] Java 2 Enterprise
Edition [87]; it is a set of interfaces and associated semantics that govern the access to
messaging systems. It is a Java API allowing the applications to create, send, receive,

and read the messages. A JMS provider is a messaging system that implements the
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Figure 16: Basic JMS messaging architecture

JMS interfaces and provides administrative and controlling features.

As illustrated in Figure 16, client usually consists of two layers: the application
layer and the JMS communication layer. The application layer is implemented to do
their own procedure, but when it comes to tasks that require any remote computation,
it uses JMS communication layer to communicate with the JMS server and receive
the messaging service. The client-side layer is provided by the JMS implementation
and manages the client’s interaction with the JMS server. As also [65] represented,
the JMS specification does not define how the server should be implemented, but
rather defines the interfaces and services that the JMS infrastructure must provide.

In JMS only the clients are message producers and consumers, i.e., a JMS server

does not produce or consume messages.

5.2.1.1 JMS Architecture

Administrative Objects One (i.e., an administrator) should create administrative
objects inside a JMS provider, which are basically ConnectionFactory and Desti-
nations (e.g., Queue and Topic). As also explained in [50], it is the same way a
database system manages its persistence. Just as an administrator who populates
the data schema in the database, one should configure the JMS provider with the
JMS destinations and administrative objects by using Java Naming and Directory
Interface (JNDI) [91] to define the path of communication between GIPSY modules.

These are pre-configured JMS objects created and configured by an administrator
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prior any use of a JMS Provider.

Connection Factory According to [61], a Connection Factory is an object a client
uses to create a connection with a JMS provider. It encapsulates a set of connection

configuration parameters that has been defined by an administrator.

Destinations According to [61], a destination is the object a client uses to specify
the target of messages it produces and the source of messages it consumes. In the
Point-to-Point messaging domain, destinations are called Queues, whereas in Pub-

lish/Subscribe mode, it is Topics.

5.2.1.2 Message Domains

JMS provides two different types of message domains of Point-to-Point and Publish/-
Subscribe.

Messaging clients in JMS are called JMS clients, and the messaging system, the
MO, is called the JMS provider. A JMS application is a business system composed
of many JMS clients and, generally, one JMS provider. In addition, a JMS client that
produces a message is called a producer, while a JMS client that receives a message
is called a consumer. A JMS client can be both a producer and a consumer.

JMS uses destinations which can be either queue for the Point-to-Point or topic
for Publish/Subscribe. According to [43], destinations can use specific filters such
as logical constraints and complex subscription patterns. Since JMS looks up in the
application servers and uses the Java Native and Directory Interface (JNDI) API [91]
to find the related queues, topics, and connection factories, one should create and
configure these objects first. These objects can be either permanent or temporary.
Temporary in the sense that they last as long as the lifetime of the connection.

Queue is suitable for single consumer and Topics for multiple consumers. We can
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Figure 17: Point-to-Point messaging using JMS queue

also group queues into a cluster of them to improve the scalability.

Point-to-Point As shown Figure 17, in point-to-point messaging, a message (i.e.,
demands) is sent by a JMS client to a specified message queue, from which it is
extracted (received) by another JMS client. Hence, the message sent to a message
queue is received by only one client. The receiver acknowledges the successful receipt
back to the sender. DWs and/or DGs can share the same queue, still preserving once
delivery semantics and providing a broadcast messaging capacity between DGs and
DWs.

There are two ways to notify the GIPSY nodes about the destinations that they
are going to receive demands from; 1)broadcasting all those names or/and 2)use
default names. Either of those, GIPSY nodes looks up those names inside the JMS
provider by using JNDI interface.

The second way is the simplest, which we used in our system as names of our
queues or topics do not change. However, in more critical situations, we could easily
include this feature into our system that DMS notifies all nodes upon creation of a
new destination (e.g., a new queue) with additional information such as expiry date
and etc. The name with addition information can be set up as an entity in the JNDI
registry, which functions similar to the leasing mechanism described in section 5.1.1.2
in JINI.

We use Point-to-Point in most of our cases as each demand needs to be computed
once and only once, so our demand migration procedure is all done by using this

domain.
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Figure 18: Publish/Subscribe messaging using JMS topic

Publish/Subscribe The other domain (Publisher/Subscriber) is based on the use
of Topics. Publisher (i.e., Demand Generator) and subscribers (i.e., Demand Worker)
are generally anonymous and may dynamically publish or subscribe to a specific
content of a Topic, but as shown in Figure 18, opposite to the other domain, it has
multiple consumers. Demand Workers are interested in some sort of demands or
events, so by subscribing to those specific topics, they will be notified as soon as such
a type of demand arrives on that topic. It means that when a Demand Generator
sends a message, any subscriber who is subscribed to that interesting content, will
receive it. Therefore, we would face high network traffic and multiple computation,
which necessitates DMS to control every single computation. Therefore, a Demand
Worker computes the request, notifies the DMS, and subsequently, it requests all
other nodes not to compute that specific demand. This makes the implementation
quite complicated, in addition to the fact that multi-computation is not desirable in
GIPSY. Hence, we only work with the Point-to-Point messaging for most of our cases.

The only time we would like to use Publish/Subscribe is when we want to broad-
cast a new configuration (e.g., a new name of a queue) to other remote execution

nodes.

5.2.1.3 JMS Provider

As mentioned in [90], JMS provider, acting as the central part, leverages all admin-

istrative, functional, an control capabilities of the JMS messaging. Figure 19 simply
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shows how JNDI functions in order to establishes a connection. JNDI is a naming
service to provides a way to look up objects or references in a JMS provider by their
names. Administrative tools allow one to bind destinations and connection factories
into a JNDI namespace. A JMS client can then look up the administered objects in
the namespace and then establish a logical connection to the same objects through
the JMS provider.

According to [50], computers and networks that connect execution nodes together
are inherently unreliable in the sense that either side of these interactions may be
down at any time while other one is dispatching new demands. These failures are
either internal or external in their network connections. Therefore, there it comes
the necessitation of a thrid-party entity to overcome this limitation by repeatedly
trying to correctly transit data packets toward their appropriate destinations until it
succeeds. As also shown in figure Figure 20 (borrowed from [50]), we have different

steps of message transition from one computer to another by using a JMS provider.

5.2.1.4 Choosing among available implementations of JMS

There are many commercial and open-source JMS providers, which we list below.

Open-Source Projects

e Jboss Application Server from Jboss Inc. [7] (Formerly part of discontinued
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JbossMQ)

ActiveMQ by Apache [31]

Joram by ObjectWeb Community [8]

OpenJMS by the OpenJMS Group [75]

HermesJMS by Hermes Community [33]

e MantaRay by Coridan Inc. [9]

Pronto [98] by University of Cambridge (specifically for mobile environment)

Commercial Projects

e GlassFish Application Server [12] by Sun Microsystems [1] (formerly part of

Sun application server personal edition)

WebLogic Server [5] by Oracle Corporation [2] (formerly by BEA [3])

Websphere MQ [13] from IBM [6]

e TIBCO Rendezvous [11]

Oralce AQ [10] by Oracle Corporation [2]

Microsoft Message Queuing [25] by Microsoft Corporation [4]

Among JMS Application Servers, MSMQ [25] supports only Point-to-Point, whereas
Jboss [7] among open sources ones, and Sun GlassFish [12], TIBCO Rendezvous [88]
support both Point-to-Point and Publish/Subscribe domains.

Given the list of some possible commercial and open-source JMS Provider among
which, we have chosen Sun application server Personal Edition 8.2 to commence our

research investigations. We chose this provider, as it was free and easy to configure.
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Figure 20: Message transition by using a JMS provider

However, in the middle of our implementations, we found out that the personal edition
supports only two or less concurrent message consumption at the time, and unlimited
consumption is only provided in their Enterprise Edition (EE) which was a very
expensive scenario for us. Therefore, we chose another successful open-source provider
(i.e., JbossMQ) to pursue our research. After facing a few bugs in the JbossMQ, and
communicating with the Jboss community about those issues, they notified us that
JbossMQ is discontinued and the best solution would be the latest version of Jboss
Application Server as they embedded all functionalities of previous versions in it.
Therefore, we simply configured all of our JMS administrative objects in it.

As the central part of the architecture is the JMS server, it generally acts as a hub
for all communications, and has access to stable storage. The clients communicate
by exchanging messages which are relayed by the server. Replications of our JMS

provider would eventually improve the fault tolerance of the entire system.

5.2.2 JMS-DMS Design

In order to properly comprehend the DMS architecture, different figures of component
(see Figure 21) and class diagram (see Figure 22) are provided. In the component
diagram, two main generic layers of Transport Agent and Demand Dispatcher are

separately shown. The Migration Layer is shown as the first and proper interface
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Figure 21: JMS-DMS Component diagrams

IJMSTransportAgent that any GIPSY Node can implement to interact with other
nodes or tiers. JMSProxy in the Demand Dispatcher follows a Facade design pattern
to implement this interface comprising all the functionalities to start and stop a con-
nection, writing a demand into a destination, receiving a demand from a destination,
and other required functionalities for the demand migration. In addition to JMSProxy,
this layer has DemandController, DispatcherEntry, and finally DemandState classes
which are all going to be explained in below.

As previously stated, an administrator should configure JMS administrative ob-
ject inside JMS provider prior to any use of JMS provider. However, this can also
be done through Resource Manager, which registers and configures all those objects
automatically. We would like to use this class mostly as our startup configuration to
improve the portability of DMS. Moreover, it gives the option of creating and config-
uring any temporary /permanent destination to either sides of the demand migration

procedure.
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Figure 22: JMS-DMS Class diagram

The component diagram presented in Figure 21 clarifies the DMS’s generic con-
ceptual view, but in order to point out detail information about functionalities of the
middleware in an extensive approach, we explain below the JMS-DMS class diagram

as shown in Figure 22. In the following, the JMS-DMS package’s classes and their

attributes and methods explained.

e Class JMSProxy plays a major role in the DMS. DMS is the combination of two
layers of Migration Layer and Demand Dispatcher layer. As discussed, the
Migration Layer (i.e., Transport Agents) exposes those functionalities that are

implemented in the JMSProxy.

This facade is the most important class which implements methods such as
JMSConnect, JMSClose, setDemand, setResult, getDemand, and getResult.

The Demand Generator connects to DMS by calling JMSConnect. In order to
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migrate demand from one GIPSY Node to another, firstly, we need to write a
demand into a queue by calling (setDemand). On the other side, after connect-
ing a Demand Worker to the DMS, it calls getDemand to receive a demand from a
queue. Finally, JMSClose closes the connection. These Transport Agents main
functionalities are all exposed as the public interface for instances of Demand
Generator and Demand Worker across the network. Figure 22 shows the case
that a Demand Worker is connected to the DMS waiting for any available de-

mands to compute.

Class DemandController wraps itself around a demand to carry over additional
information such as execution arguments in order to execute the task and deliver

its result to the original Demand Generator accurately.

Class DemandState is the design solution for enumerating the demand states.
This class defines the three states — pending, in process, and computed, as
public instances of the same class. In addition, the class provides functionality
for determining the current state. The constructor of the class is designed as
private, thus preventing from creation of other states, i.e., we enforce the use of

states being already created and restrict the creation of new ones [14].

Class DispatcherEntry converts the interface of a class into another interface
which clients on the other side expect, i.e., by applying Adapter design pattern,
it wraps the demands and results in an entry format. The demands unification
surely brings simplification to make demand storing, retrieving, and querying

consistent.

Class JMSAsynchListener implements MessageListener. This listener has
been used as an asynchronous event handler. Those messages sent persistently

will be stored until delivered by the messaging system. This guarantees that
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the message will not be lost due to a crash or shutdown of DMS [14].

o Classes QueueManager and DestinationDeployManager provide the facility of
adding or removing a user-defined destination at run-time. Therefore, all the
necessary functionalities to add, remove, or modify a JNDI element in the ap-
plication server are implemented in them. Upon request of registering a new
destination, these classes register them temporary or permanently inside the

Jboss Application Server.

e Class Demand includes all functionalities of a task which is been thought of as
a demand. Detail implementation of this class is not important neither for the
Demand Generator nor for the Demand Worker. As also mentioned before in
JINI-DMS, the implementation of this class is temporary and would be replaced

later on as other modules of GIPSY deliver.

After describing all main classes, we would like to represent the sequence diagram
related to our demand migration in JMS-DMS. As we also highlighted, through a
frame in the center of the system-sequence diagram in Figure 23, the most important
functionality of the DMS is on the shoulder of JMS-DMS. It resides in the center
of the system sequence diagram, and receives the demands from Demand Generator
and connects to JMS provider to migrate demands from one node to another. JMS-
DMS states for our JMS TA including main functionalities such as connect, close,
write, and read, and exposing them as the public interface to Demand Generator and
Demand Worker across the network.

However, in Figure 24, we demonstrate the synchronous demand migration mecha-
nism across the system with more comprehensive detail. Figure 24 shows the message-
passing mechanism from the first step in demand generation to the demand execu-

tion on the other side. JMS-DMS itself includes JMSProxy to connect interface with
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Figure 23: JMS-DMS simplified system Sequence diagram

JMS provider, and DisptacherEntry and Demand Controller to wrap the demands.
JMSProxy includes information how to connect to the JMS application server, and
it connects to the appropriate JMS connection factory to write the request on the
related destinations, which can be a queue or a topic. In order to have a simplified

diagram, we only demonstrate the synchronous mode of transaction in this paper.

e Demand Generator connects to the connection factory of the JMSProxy by call-

ing the jmsConnect method (1),

e In order to send the demand to a destination it should call the writeDemand (demand)
method (2), and pass the generated GIPSY demand. Consequently, DispatcherEntry

wraps the demand,

e The DispatcherEntry encapsulates the demand in the Demand Controller

with some additional information like the DG location, unique identification,
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demand state, which is pending when it is not processed yet, and dispatches

and wraps (3, 4) the encapsulated Demand Controller to the destination,

The universally unique identifier (UUID) used for demand tracing will be gener-

ated (5) for each demand,
The generated UUID sent backward first to the JMSProxy (6),

And in order to track the demand and its result later on, the UUID will be sent

to the DG (7),
When the DW becomes available it connects (8) via the JMSProxy to JMS,

And reads (9) the first available demand. Depending on the consumption model,

the DW will act differently:
If the mode is synchronous, the DW gets the demand directly.

If the mode is asynchronous, the DW would use an event-based listener to capture

the demand first and sends it to the DW.

After receiving the request, the state of the demand will be changed to in

process until the DW finishes its computation,

When the DW receives the wrapped demand (10),

First, it closes the connection temporarily (11),

Then proceeds with the computations (12) of the demand,

And the result of the computation will be sent to the DW side (13),

At this point, the demand state will be changed to computed.
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In order to migrate again to the other side, it should be wrapped the same way

that it was at the beginning (14, 15, 16),
e The DW connects (17) again to the JMSProxy,

e And writes the result back to the destination (18),

and closes the connection (19) at the last step.

JMSProxy finally receives the result from the destination (20),

And sends it back to the DG side (21).

Next, it closes the connection (22).

5.2.3 Message Communication Mode

One of the major significances of JMS messaging lies in the capability to decouple
applications while they share information between themselves [35], contrast to some
other messaging models such as RPC or RMI, which are static and synchronous
only. This means that JMS provides both communication modes of synchronous and

asynchronous to our environment.

Synchronous It tightly couples the process or message sending and receiving, so it
blocks their means of communication (e.g., communication thread) until the sender
receives its requested result. Even though it is quite fast in normal cases, it comes
quite expensive in terms of resource demanding. As both of their communication
nodes should be present in an available network infrastructure, the thread becomes
very expensive when every single demand requests and blocks a thread. The more
nodes send demands, the more resources would be requested and blocked. Depending

on a scenario, we can have this feature enabled in our demand migration. By applying
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the synchronous diagram described in [50] in our infrastructure, we represent the syn-
chronous communication mode in Figure 25. It simply shows the blocking mechanism

on the Demand-Generator side until it receives the appropriated response.

Asynchronous It is the first step toward having a loosely-coupled system. It uses
the ”"store and forward” mechanism while a node sends out a message toward a re-
ceiver. In this mode, none of these sides block a resource or thread for their demand-
migration process. JMS uses Message Listener, which is an event-based listener to
inform each of those sides for a new demand in its JMS destinations (e.g., Queues or

Topics). It implements the MessageListener interface, which contains one method,

onMessage. In the onMessage method, we define the actions to be taken when a mes-

sage arrives. Once message delivery begins, the message consumer automatically calls
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Figure 26: JMS-DMS simplified asynchronous diagram

the message listener’s onMessage method whenever a message is delivered. There-
fore, those nodes remain loosely-coupled to the messaging structure and any failure
in those nodes does not affect the whole infrastructure. Depending on a scenario, we
can use this enabled feature in our demand migration, but because of having power-
ful and loosely-coupled system, we favor asynchronous communication mode to the
synchronous one. Again by applying the asynchronous diagram described in [50] in
our infrastructure, we represent the asynchronous communication mode in Figure 26.
It shows that as soon as the message has been sent out, Demand Generator continues
on working other tasks such as generating more demands. As soon as the response

arrives, the TA receives it, and returns it to the original Demand Generator.
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5.2.4 Subscription Mode

Durable According to [90], indeed, the client is ensured to receive all messages that
have been published to the topic it has subscribed to, even if its connection is not
permanently active. During the periods when a client with durable subscription is

not connected, JMS provider keeps the messages for it and dispatches them as soon

as the client subscribes again.

Non-Durable According to [90], with a non-durable subscription the client receives
messages published to the topic as long as its connection to the server is active. The
connection can break (i.e.,, become inactive), for example because of a link failure, or
because of the crash of the client. Messages published after the connection is broken

are not guaranteed to be received by the client

5.2.5 Jboss Application Server

As also stated in our research path in section 5.2.1.3, we use Jboss Application Server
as our JMS provider. According to their official documentation [32], it is a free,
portable, and open-source certified Java platform for developing and deploying enter-
prise applications, JBoss Application Server supports both traditional APIs and Java
EE APIs and includes improved performance and scalability through fine grained
replication and load balancing. Even though using such a centralized node would
eventually act as a bottleneck for the performance of the system, by installing clus-
ters of this application server across our nodes, we can balance the workload across
all our nodes.

Figure 27, borrowed from Jboss official documentation [72], clearly shows major
internal components and features of Jboss Application Server, and also in here we

would like to mention main reasons why we consider this application server as our
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JMS provider.

e Open Source and Free,

e Full J2EE 1.4 supports (e.g., JMS, Enterprise Java Beans, Message-Driven

Bean, etc.),

¢ An infrastructure for Service-Oriented Architecture (We will explain why we

need such an infrastructure for our long-term research path (see section 7.2.2)),
e Technology-independent interoperability and cross platform,

e Provides transparent persistency with its embedded database and integrations
with Object-Relational Mapping such as Hibernate (We will mention why we

need such a standard mapping in chapter 7 (see section 7.2.1 )),

e Provides a user-friendly graphical-user interface (GUI) for the administrative

tasks such as configuring JMS Destinations (e.g., Queues or Topics),
e JBoss Eclipse IDE for easier development access,

e Supports Transaction by using JGroup [24] as a reliable multi-cast communica-

tion toolkit.

5.2.6 Messaging in JMS-DMS

JMS strengthens messaging mechanism inside JMS-DMS by considering messages
as lightweight entities that consist of different parts of header, property, and body.
According to [35], each message is a self-describing and contains all necessary contexts
to allow the recipients carrying out their work independently. Here, we describe
how these three parts of a JMS message carry sufficient information in JMS-DMS.

Carrying over required information through GIPSY messages leverages the seamless
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Figure 28: An example of a JMS message inside JMS-DMS

integration of information and services between GIPSY execution nodes. In Figure 28,
we will demonstrate each of these parts, and provide an example to facilitate the

comprehension of this aspect.

Header comprises of standard system-defined parameters, which are mostly com-
mon in all JMS provider. They contain information related to the message routing
and identification [90]. The header contains variables for delivery mode, message
expiration, priority, signature, timestamp, correlation ID, etc. As we would like to
have a transparent system, we would like to use these variables as much as possible
as it does not require any implementation in our application-end. As also represented
in [14], we set variables to prioritize our messages (i.e., 0 as the lowest and 9 as the
highest), timestamp to contain information about the time of dispatching a demand
for our benchmarking measurements, signature ID for our unique identification across

the system, correlation ID for verifying identification of the returning result and the
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original demand, etc.

A demand has a set of user-defined variables in the demand header, which can
be set at the point of initiation by the DG. As DMS receives the demand, it checks
the message header and decides in which channel or queue it should be routed. Ad-
vertisement is a prospective feature that enables the capability to declare the type of

event or notification Demand Generator is willing to generate.

Property In contrast to header, these are vendor-specific variables (i.e., GIPSY)
in JMS messages. It defines detailed information about the demands. These kinds
of properties help the system inquiry running messages in the system. Using an
SQL-like query language in subject-based filtering can enforce message selection and

redirection to improve the load balancing and availability of the entire system.

Body This part contains the functionality of the demand which can be in any JMS
message format (e.g., object, stream, text, etc.). GIPSY generally uses object format
which accepts any Serializable Java object. This makes the distributed demand-
driven computing easier, as any kind of objects can store in the body of a GIPSY

message.

5.2.7 Persistency in JMS

A JMS message can be either persistent or non-persistent. By enabling the persistency
feature, JMS provides a higher level of reliability into the messaging than the non-
persistent mode. However, it adds more overhead to the system as DMS should store
every single message in order not to lose in any case of failure. According to [86],
persistent messages are guaranteed to be delivered exactly-once, whereas delivery
for non-persistent messages is at-most-once. In chapter 6, we have evaluated this

overhead by measuring the size of each demand in both of these approaches, and we
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noticed that persistent message is bigger in terms of size than non-persistent ones.

Hypersonic Database As we require a database in order to implement the per-
sistency in JMS-DMS, we used the Hypersonic Database (HSQLDB) [93], which is
an embedded solution inside Jboss Application Server kit to provide persistency and
caching. According to [93], it is the leading SQL relational database engine written
in Java. Jboss embedded this solution inside its package in order to facilities working
with its application server ”out of the box”. However, we faced many problems while
working with this database, which are mainly discussed in chapter 6. Figure 29, bor-
row from [93], shows how HSQLDB deals with incoming and outgoing messages in

terms of storing them in its master database.
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5.2.8 Demand Delivery Order

Generally speaking, JMS uses First-In/First-Out (FIFO) delivery order. It means
that a message, which comes first, delivers first, but technically speaking, this as-
sumption might not be always true in cases of an asynchronous communication mode,
prioritized messaging, or even occurrence of any unexpected exception or failure, be-
cause each of these cases changes the order a message delivers. For example, if it is
asynchronous and some failure happens on the way of a message to the target node,
DMS stores demands until problem solved, but at the same time, there may be other
message before this one at the point of initiation, where they are following different
available routes, so they may get to their destination before and return sooner than
the frontier. For the priority, we can set each demand type a different priority ac-
cording to their level of importance. For example, Resource or System demand can
have a higher priority than other demands, and even they come later than a normal
demand, the DMS would switch their position in the destination and deliver them

sooner.

5.3 Summary

In this chapter, we described the rationale behind having different instances of DMS
in GIPSY in addition to detailed information about implementations of each of them
using the JINI and JMS technologies. We explained the internal architecture and
components of these two instances (i.e., JINI-DMS and JMS-DMS), and we presented
different sequence diagrams of these two to show the functionalities and interactions
of their components and modules. In the next chapter, we will describe how we

evaluate and benchmark these implementations.
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Chapter 6

Experimental Investigations

Oh, come with old Khayyam, and leave the Wise,
To talk; one thing is certain, that Life flies,

One thing is certain, and the Rest is Lies;

The Flower that once has blown for ever dies.

Omar Khayyam - Persian Poet (12th century)

In the course of this research, we have perfected our design of the generic Demand
Migration Framework which accepts different distributed technologies to apply its
rationals and framework criteria to implement Demand Migration Systems. In Chap-
ters 4 and 5, we have explained the design and implementations of our current DMS
instances in detail. However, in this chapter, we would like to extend our studies to
investigate on the behavior of each of these instances against the elaborated list of
quality of services mentioned in Chapter 3.

According to [81], based on the architecture of a system, a middleware contains
different components and modules; consequently, it requires detailed observation and
studies in measuring the QoS policies. Unfortunately in the GIPSY project, there

are many modules that were not ready at the time of our research. Hence, we had
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to implement the GIPSY simulator to simulate those unavailable modules and let us
observe the behavior of the entire GIPSY system. However, our experimental investi-

gation was designed so that it can be held regard or regardless of the GIPSY simulator.

In this chapter, first we explain the main functionalities of our GIPSY simulator,

and the execution environment we did our investigations in. At the end, we explain

each of our qualities one by one, and present our experimental results.

6.1 GIPSY Simulator

The GIPSY Simulator is a Java multi-thread distributed computing application that
simulates GIPSY in its main functionalities — demand generation, demand migra-
tion, and demand computation. The GIPSY Simulator fully integrates our two DMS
instances (i.e., JMS-DMS and JINI-DMS) and stubs for instances of Demand Gener-
ator and Demand Worker. The latter represent procedural Demand Generator and
Demand Worker able to generate and process procedural demands respectively. The
Demand Generator stub does not implement any GEER, but a dynamic engine that
loads on the fly a predefined order of functional demands. Like real GIPSY, GIPSY
Simulator implements hot-plugging, thus allowing the stubs and DMS components to
plug in and plug out voluntarily, with no harm to the system’s consistency. Moreover,
the GIPSY Simulator can work with both of JINI-DMS and JMS-DMS.

Note that both DMS also implement hot-plugging and can be hooked to or un-
hooked from the system on the fly. In addition, the GIPSY Simulator exposes an open
architecture, which allows the stubs to be replaced with other more advanced stubs,
or with a complete implementation of the GIPSY Demand Generator or Demand
Worker respectively, when ready.

The GIPSY Simulator exposes a Graphical User Interface (GUI) to the users,
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who can interact with the system to control the demand generation, migration, and
computation process. Over this GUI, users can create execution scenarios by creating
profiles that save a sequence of demands to be generated and computed. Using pre-
defined profiles allows the same order of demands to be processed multiple times
with different configurations of stubs and DMS in different environments (i.e., testing
in different kinds of machines or operating systems). The GIPSY Simulator’s GUI
is attached to the Demand Generator stub, which makes the Demand Generator
fully controllable. For example, users can stop or start the generation of demands,
dispatching generated demands, or even decide at run-time what demands to be
generated. Given the reasoning above, we conclude that the GIPSY Simulator is a
testing tool that allows us to test different design and implementation approaches of
the DMF in the GIPSY.

As we have started some initial investigations by using the new simulator as our
test drive for benchmarking our systems, we found out that using this simulator
accomplishes our studies as it gives information about the system behavior in the
runtime from the perspective of DG. However, it reduces the performance of our
system as it gives additional overhead to the system. These overheads are such as
using multi-threading, user interface, etc. Thereupon, we used this simulator only
in order to test features such as portability, plugability, and using of co-existing
DMS instances for different situations and scenarios. Other features, which test the
performance and capacity of our system, we performed them without using the GIPSY
simulator.

Although we decided to disregard the simulator in those performance-requiring
test cases, we would like to consider this testing tool as an infrastructure that enabled
us to study and observe the behavior of our DMS instances as functional components

of the system entirely from the very beginning to the end. This tool provided us an
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opportunity to analyze our current and projected design approaches.

6.2 Execution Environment

In order to test our system in real life situation, we chose different computers in the
Engineering and Computer Science (ENCS) network at Concordia University. They
have different configurations, settings, and operating systems, which would give us
a very good feedback about the behavior of our systems in certain situations, where
computers are all connected to the Internet, and they may face random interaction
from/with other computers in their network. Sometimes a technical-support admin-
istrator may access one of these computer to do certain procedure or remotely update
or install an application or service without any prior notice. We expect this situation
in our test case, but unfortunately due to the restricted network policies, we do not
have any power to monitor or control these issues.

From the beginning, we considered these situations and unexpected issues, but
eventually GIPSY should work in such an environment, so we should foresee these
issues and hopefully handle them in a way that none of our GIPSY modules lose their
main functionality or performance as soon as they face such a complex environment.

In our experimental investigations, we used the computers listed in Figure 1.

6.3 Quality of Service Experiments with JINI and

JMS DMS

Hereby, we would like to describe our test cases and results for QoS such as availability,
dispatching, latency, throughput, scalability, persistency, flexibility, maintainability,

configurability, priority, and portability. At the end of this chapter, we will compare
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Table 1: Testing Environment

| Machine ] CPU | Speed RAM
Hafez (LAN) PC Pentium IV | 3.01 GHz | 512 MB
Rumi (LAN) Pentium T2400 | 1.83 GHz | 2.00 GB
Namibia.encs.concordia 2 Core CPU 6300 | 1.86 GHz | 2.00 GB
Mozambique.encs.concordia | 2 Core CPU 6300 | 1.86 GHz | 2.00 GB
Zambia.encs.concordia 2 Core CPU 6300 | 1.86 GHz | 2.00 GB
Lesotho.encs.concordia 2 Core CPU 6300 { 1.86 GHz | 2.00 GB
Zimbabwe.encs.concordia 2 Core CPU 6300 | 1.86 GHz | 2.00 GB
Malawi.encs.concordia 2 Core CPU 6300 | 1.86 GHz | 2.00 GB
Tanzania.encs.concordia 2 Core CPU 6300 | 1.86 GHz | 2.00 GB

the technologies we used in our implementations.

6.3.1 Availability

We check the system’s availability in the sense which one could start up the system
faster to function properly. For example if a system takes seconds to be ready for
accepting incoming request from other nodes, it would be more desirable than the
one which takes minutes.

This aspect is related to their distributed middleware system (i.e., JINI and JMS)
rather than our own implementation in DMF. As mentioned before, each of theses
two systems should run certain services in order to be active. The longer it takes to
run those services, the lesser available is that instance of DMS.

We benchmarked our system in an environment where DG constantly generates
demands in a fixed interval, but on the other side, the DMS node shuts down and
automatically re-initialize its required services to distribute demands. The purpose of
this test was to see which of these instances reaches the fully functioning state faster,
or generally speaking to see which one requires lesser time to start its services.

Table 2 shows our result for the starting up of the DMS instances in seconds. For
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Table 2: Startup time in JINI-DMS and JMS-DMS

[ Attempts | JMS-DMS (sec.) | JINI-DMS (sec.) |
1 14.66 180
2 14.23 180
3 14.09 60
4 14.21 75
5 14.70 300
6 14.12 180
7 14.50 240
8 14.59 240
9 14.48 60
10 14.66 240
11 14.06 70
12 14 .36 300
13 14.01 180
14 14.08 240
15 14.47 300
16 14.14 65
17 14.01 450
18 14.01 70
19 14.03 300
20 14.88 97

JINI-DMS, JavaSpace, JINI lookup service, and RMIRegistrary should be started,
whereas in JMS-DMS, only the application server(i.e., Jboss) should be running. As
can be seen in Table 2, we calculated the runtime of our DMS instances many times.
The clock was set to calculate from the request of initializing services to the final
point where DMS is ready to respond to any incoming demands.

In JMS-DMS, all requests has been responded, whereas in JINI-DMS 29 of our
requested have been refused as JINI-DMS was not fully initialized to perform com-
pletely. As can be seen in Table 4, we continued our test in JINI-DMS to have at
least 20 results like the other instance.

Figure 30 illustrates that JMS-DMS starts its services way faster, on average 14.28

seconds, whereas in JINI-DMS takes a couple of minutes (average of 191 seconds) in
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Table 3: Minimum, Maximum, and Average Startup time of both DMS instances
| DMS Instance | Minimum Time (sec.)i Maximum Time (sec.) l Average Time (sec.) I
JMS~-DMS 14.01 14.70 14.28
JINI-DMS 60.00 450.00 196.32

Table 4: Availability Rate in JMS-DMS and JINI-DMS

DMS Instance | Total Attempts | Failure | Successful | Availability Rate | Average Up Time(s) J

JMS-DMS 49 29 20 40.82 191.00
JINI-DMS 20 0 20 100.00 14.28

most of the cases. We also summarized the minimum, maximum, and average startup
time (in seconds) of each of them in Table 3.

By verifying the data in Table 2, we noticed that these two instances have different
rates of availability, which we demonstrated in Table 4.

This poor performance of JINI-DMS is because of the initializing of registry ser-
vices to start a working JINI/JavaSpace system and also the good feature of lookup
service of JINI, which plays against this QoS in here. Definitely JINT lookup service
would improve the scalability of the JINI-DMS as it can discover any new node or TA
across its network. However, this can be eventually a time-consuming task, which in

some cases may not be necessary.

6.3.2 Dispatching

In order to transfer demands from one node to another, DG should establish certain
services to convey demands toward the DMS. This time consists of receiving the
request for a certain demand, wrapping them with additional information (e.g., its
current state, timestamps, and identifications), establishing a successful connection
with the DMS, and finally dispatching them into a carrying channel. As represented

in Figure 31, we consider the combination of these steps as the dispatching time. Here,
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Figure 30: Startup time for JMS-DMS and JINI-DMS

Figure 31: Time sequences in GIPSY DMS

we would like to study the behavior of our system in terms of dispatching demands

from small numbers of demands to an order of thousands of them in each request.
We represent the dispatching time as the difference between T and T4, where

T4 represent the exact time of initiating a new demand, and Tg is after the time the

connection is properly established and the demand is at the point of leaving the DG.
TDispatching = TB - TA (1)

Implementation-wise, our wrapping mechanism follows the same approach in both
DMS instances, but the main difference is the time each requires to establish a suc-
cessful connection as the means of their communication. The faster they establish
this means, the quicker they can effectively send out demands, which eventually leads

to a better dispatching time.
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Consequently, we took this into consideration, and tested the dispatching time in
our DMS instances. As shown in Table 5, we generated batches of demands containing
small numbers of demands up to the heavy load of 45000 of them in a single batch.

In Table 5, the total dispatching time, in milliseconds, is the total time the whole
batch requires to dispatch its requests within an open connection. Dispatching/De-
mand represents the average of that total dispatching time per a demand in each
batch.

As illustrated in Figure 32, comparing to JMS-DMS, JINI-DMS takes longer to
dispatch a demand at the very beginning. For the first demand, it took 94 mil-
liseconds as JMS-DMS took nearly half of it (i.e., 47 milliseconds). This is due to
different services JINI should run in order to establish a connection, so it eventually
becomes more expensive in terms of consuming more resources in very small numbers
of demands.

Due to the open connection in each procedure of sending out demands, in larger
numbers of demands in each request, the average dispatching time would be higher,
but eventually the average dispatching time per demands would be lower as this time
should be divided by total numbers of demands in each batch.

As can be observed, at the beginning of this experiment, with small numbers of
demands, the average dispatching time per demand is at the highest point, whereas
from 30 demands to more, we see considerable reduce over that average time. In-
terestingly enough, as we reach 10000 demands, JINI-DMS increases the dispatching
time once again very rapidly, whereas in JMS-DMS the average time would be de-
creased. This shows that those time-consuming tasks for establishing a connection in
JINI-DMS become quite expensive. Thus, JMS-DMS places in a better position in

terms of dispatching time in both small and larger number of demands.
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Table 5: Dispatching time in JINI-DMS and JMS-DMS

JMS-DMS (ms)

JINI-DMS (ms)

Numbers | Total Dispatching Time | Dispatching/Demand | Total Dispatching Time | Dispatching/Demand
1 47.00 47.00 94.00 94.00
5 62.33 12.47 172.00 34.4.00
10 83.33 8.33 260.33 26.03
15 99.00 6.60 286.33 19.09
20 104.33 5.22 333.33 16.67
25 130.33 5.21 369.67 14.79
30 140.33 4.68 427.00 14.23
35 166.33 4.75 484.00 13.83
40 166.67 4,17 520.67 13.02
45 182.33 4.05 562.33 12.5
50 187.33 3.75 661.00 13.22
60 217.67 3.63 677.67 11.29
70 234.00 3.34 760.33 10.86
80 250.00 3.13 885.00 11.06
90 291.33 3.24 989.33 10.99
100 297.00 2.97 1114.33 11.14
150 390.00 2.60 1572.33 10.48
200 515.33 2.58 2126.00 10.63
250 614.67 2.46 2671.33 10.69
300 671.67 2.24 2724 .33 9.08
350 942.67 2.69 3113.67 8.9
400 1036.67 2.59 3446.33 8.62
450 1031.00 2.29 3640.33 8.09
500 1172.00 2.34 5358.67 10.72
550 1729.67 3.14 5790.67 10.53
600 1542.00 2.57 7534.33 12.56
650 1655.67 2.55 9060.33 13.94
700 1906.00 2,72 7691.00 10.99
750 15686.67 2.12 9226.67 12.30
800 1677.00 2.10 7498.00 9.37
850 2458.33 2.89 10114.67 11.90
900 1880.33 2.09 8484 .33 9.43
950 1942.33 2.04 7875.00 8.29
1000 2031.00 2.03 11072.67 11.07
2000 4260.33 2.13 18901.67 9.45
5000 11880.67 2.38 48943.00 9.79
10000 23019.67 2.30 136648.00 13.66
16000 33168.67 2.21 206587.33 13.77
20000 42922.67 2.15 290994.00 14.55
25000 54884 .33 2.20 386486.00 15.46
30000 64038.33 2.13 469539.67 15.65
35000 74088.67 2.12 551577.33 15.76
40000 82496.33 2.06 598736.00 14.97
45000 92336.67 2.05 693775.67 15.42
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Dispatching and Sending Time Per Demand in both DMS
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Figure 32: Comparison of dispatching time between JMS-DMS and JINI-DMS

6.3.3 Latency

Previously in section 3.3.2, we defined the term latency in quality of services in
distributed systems. However, in this section, we would like to explain our approaches
for the measurement of this aspect in GIPSY.

In our GIPSY environment, we started the process of demand migration from one
node to another node in our network. In order to measure the time elapsed from the
point a DG sends out a demand to the point a DW receives that request, we measured
different timestamps in our implementations.

As shown in Figure 31, and represented in formula (2), latency is defined as
the time it requires to traverse a demand from DG to the DMS (Tt — T) plus the
processing time in the DMS (T'pyocessing), in addition to the time it requires to migrate
a demand from DMS to a DW (Tx — Tg). Processing time ((Tprocessing)) consists of
the time DMS requires for prioritizing a demand, indexing the order of incoming
demands from different DGs in its communication channels, and storing them in its

persistent storage.
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TLatency = (TC - TB) + TProcessing + (TF - TE) (2)

As Jboss application server and JavaSpace are both bottlenecks of our DMS, by
adding more demands and DW, definitely we can observe different behaviors from
them. It should follow a linear curve at the beginning, but might not follow in
such an expected way as we receive high loads of demands as our resources such as
hardware, virtual machine, or operating system are limited. Consequently, in order
to study the behavior of our systems in different situations, we started our demand
migration with a small number of demands, and increased that number up to 45000
in each of our batches.

Faison [45] outlined in some of the main difficulties everyone can encounter in the
measurement of the latency as it is bound to two key parameters of network traffic
and bandwidth. Therefore, in GIPSY, we would like to see the behavior of our DMS
instances in a very complex but close to real-life situation network. As explained in
section 6.2, functionality and behavior of our DMS in such an environment is very
important in our experimental research.

Moreover, measuring latency helps us understand the availability of our DMS in-
stances in facing high loads of demands, and how well they perform when numbers of
demands in their communication channels are high. Having said that, high number
of demands is not an independent factor, as a very high number in one system can
be a small one in another one, but this would not stop us from doing our experi-
mental investigations, as we are comparing these two systems within their default
configurations without adding any additional database, clustering infrastructure, or
network speed booster. Thus, considering these situations, our investigation is still
valid and helpful for our further steps toward improving our systems to accept much
more complex scenarios and situations.

As said before, we have to measure the time a demand may require to migrate from
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a DG to a DW considering numbers of working load in its communication channel. As
shown in Figure 31, we should measure different timestamps in each route of demand
migration. However, the ways we measure these are different in our DMS instances.

In JMS-DMS, JMS provides us the timestamps variable in message headers, so
we can simply set it in each point during this procedure and read in the next step,
whereas in JINI-DMS, we should set the timestamps as we are wrapping a demand
with additional information on top it. One of those additional information can be
the timestamps the can be set in DG and be read along the way.

Another complexity of measuring the latency, is the time synchronizations, which
would make this test more complicated in web-based systems. However, in our situ-
ation, we are doing this test in our internal Local Area Network (LAN) where all the
clocks are automatically synchronized by the main server.

Chen [30] followed an empirical approach to test the network latency in his in-
frastructure, but he limited himself to the size of messages from (50 B. to 4 K.B),
whereas in our case, we extend his approach in both terms of small-sized and large-
sized demands, which we would mention in more detail in 6.3.5.

As shown in (3) we did each of our test three times, and finally by dividing the
average of these three measurements by the number of demands (i.e., N) in each batch
of requests, we measure the latency time per demand (i.e., Avg.Latency/demand) in
our DMS. At the end of our measurements, we evaluated the minimum, maximum,
and average latency time of our DMS instances (see Figure 7).

T gvg.Latency/Demand = Average(TLatency, + Tratencys + TLatencys)/N (3)

Hence, for each DMS instance, in Table 6 the first column is the average latency
of our three measurements, and the second column in the average latency time per a
demand Tayg. Latency/Demand- All our time calculations are in milliseconds in this test

case.
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Table 6: Latency time in JINI-DMS and JMS-DMS

JMS-DMS JINI-DMS

Numbers | Avg.Latency (ms) [ Avg.Latency/Demand (ms) | Avg.Latency (ms) J Avg.Latency/Demand (ms)
1 67.67 67.67 85.23 85.23
5 320.67 64.13 394.40 78.88
10 594.33 59.43 786.99 78.70
15 885.33 59.02 1113.50 74.23
20 1148.33 57.42 1412.38 70.62
25 1422.33 56.89 1749.38 69.98
30 1624.00 54.13 2054 .42 68.48
35 2039.00 58.26 2475.85 70.74
40 2026.33 50.66 2792.26 69.81
45 2464.67 54.77 3031.39 67.36
50 2511.33 50.23 3588.78 71.78
60 3189.00 563.15 3922.28 65.37
70 3587.00 51.24 4631.79 66.17
80 4214.67 52.68 5183.79 64.80
90 4763.00 52.92 6008.20 66.76
100 5189.67 51.90 6499.98 65.00
150 8235.00 54.90 9908.55 66.06
200 11519.67 57.60 14168.50 70.84
250 14858.33 59.43 18994 .85 75.98
300 17950.33 59.83 22077.82 73.59
350 20335.00 58.10 25998.82 74.28
400 23292.00 58.23 30247.75 75.62
450 27873.67 61.94 33282.93 71.96
500 32217.00 64.43 37124.96 74.25
550 34034.67 61.88 42102.82 76.55
600 35751.33 59.59 43971.97 73.29
650 38592.00 59.37 49860.58 76.71
700 42548.33 60.78 52331.87 74.76
750 46090.67 61.45 56688.73 75.568
800 49047.67 61.31 60325.66 75.41
850 54733.67 64.39 64319.10 75.67
900 55113.67 61.24 68196.47 75.77
950 57530.67 60.56 70759.24 74.48
1000 61121.67 61.12 75175.95 75.18
2000 131351.33 65.68 145784 .66 72.89
5000 401830.00 80.37 357061.34 71.41
10000 766147.00 76.61 729911.66 72.99
15000 1139673.67 75.98 1082010.71 72.13
20000 1549004.00 77 .45 1473097 .43 73.65
25000 1976074.00 79.04 1828979.50 73.16
30000 2382987.67 79.43 2200960.75 73.37
35000 2666399.67 76.18 2737534 .28 78.22
40000 3187948.33 79.70 31034563.09 77.59
45000 3726571.00 82.81 3785708.65 84,13
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According to [76] the worst-case execution times should not be taken at face
value, as the actual value is largely dependent on the operating system scheduling
and network latencies. They showed that worst-case behavior should be attributed
to the operating system and network, thus cannot be used for comparing different
middleware services. Therefore, we removed the worst-case situations out of our
measurements for both of our DMS instances.

We show the result of this study in Figure 33, where the vertical axis is the latency
time in milliseconds and the horizontal one is the number of demands per batch. We
started with very small numbers to observe the behavior of the system at frequent
situations, and step by step, increased the number of demands up to 45000 to observe
the performance of the system in facing of transferring larger numbers of demands.

As shown in Figure 33, regardless of the fact of having better dispatching time in
JMS-DMS, comparing to JINI-DMS, JMS-DMS performs better at the beginning of
our experiment. Basically at the beginning, JMS-DMS delivers each demand about
20 milliseconds faster than the JINI-DMS. They both keep the same linear behavior
within the somehow fixed difference between their latency time up to the batch of 2000
demands. JMS-DMS, contrary to JINI-DMS, suddenly takes longer time to deliver
that batch, whereas in JINI-DMS it continues as expected linear behavior. Later on
they both increase their average latency time per demand relatively. Figure 33 has

some interesting points that we would like to emphasis more:

e The difference of 20 milliseconds per demands up to the batch of 2000 puts
JMS-DMS in a better position in terms of performance, as it can eventually
perform faster about 40000 milliseconds for each batch of 2000 demands. As a

result, JMS-DMS would be a better solution for batch of 2000 demands or less.

e Since JMS-DMS uses the default embedded HSQLDB as its persistent storage,

it is not suitable for under-pressure situations, whereas in JINI-DMS, it has the
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Table 7: Minimum, Maximum, and Average Latency time of both DMS instances
l DMS Instance l Minimum Time (ms) I Maximum Time (ms) 1 Average Time (ms) l
JMS-DMS 50.23 82.81 62.59
JINI-DMS 64.80 85.23 74.23

benefit of using a stronger embedded database of JavaSpace. In our situation,
we can see that JMS-DMS is under pressure of workload as it reaches 2000
demands in a single batch. Even though it may be rare to have situations

of 2000 demands in every single batch in our daily basis, but we would like
to challenge our systems in different situations where the understudy scenario

escalates up to some extends.

o After 2000 demands, both of them increase their latency time, but the interest-
ing part would be where HSQLDB performs considerably unexpected than the
other system. Thus, we would like to regard this exactly as the paging mecha-
nism in operating systems, where at the point of exceeding their page size, their

performance would be declined to accept and buffer incoming demands.

e In this test, we found out that this test is basically challenging their databases,
and both declines and inclines in this diagram would mostly reflect the perfor-
mance of their embedded databases. Hence, we stop our test case at this point,
as this is not related to performance of the entire system, and the database can

be replaced at anytime.

Just to summarize both diagrams and result tables for this test case, we provide
a simpler table (see Table 7) that shows that generally these two systems somehow

perform similarly.
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Comaprison of Latency Time between JMS-DMS and JINI-DMS
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Figure 33: Comparison of the latency time between JINI-DMS and JMS-DMS

6.3.4 Latency + Dispatching

As part of our research, we took another step to investigate more on latency and
dispatching in our DMS but this time with a different approach. This time, we chose
JMS-DMS as the newer system to be our playground for this study, and we provided
an infrastructure to explore both of these services. In previous cases, we have located
the DMS process in the same computer as the DW, but in this section, as represented
in Figure 34, we would like to change the place of DMS process from one node to
another to observe the impact it may have on the behavior of the JMS-DMS. We
located DMS in scenario A in the node of DW, and in scenario B, in DG side, and
finally in the last scenario, we located each in a separate node.

For all of these three scenarios, we studied the latency and dispatching time by
sending different demands in every single request starting from 10 to 500. Table 8
shows the average latency time per demand for each of our scenarios, which is the
result of repeating our tests cases three times and using their average per numbers of

demands in this table, and subsequently, in Figure 35.
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Figure 34: Testing scenarios of DMS distribution for latency measurements

Table 8: Average Latency Time per Demand in Different Scenarios

| Numbers | A (ms) | B (ms) | C (ms)
10 339 155 394
50 338 76 477
100 282 75 450
150 270 63 448
200 253 65 460
250 257 62 444
300 260 64 452
350 268 64 448
400 269 62 447
450 282 62 462
500 307 63 461
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Figure 35: Latency comparison in different scenarios of DMS distributions
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Figure 36: Dispatching-time comparison in different scenarios of DMS distributions

As also represented in Figure 35, for latency, the B scenario takes the least amount
of time to transfer demands as DMS resides in the same node as DG. Locating the
DMS on DG side, helped the Demand Generator to send all its requests toward the
DMS faster comparing to other scenarios. Between other scenarios, A takes less

amount of time to transfer demands, as there is no network latency between DMS
and Demand Worker.

We applied the same approach for the average dispatching time in all these sce-
narios. We did the test case up to 500 demands in a batch for three times, and used

the average of these three for Table 9 and eventually Figure 36.
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Table 9: Average Dispatching Time per Demand in Different Scenarios
’ Numbers { A (ms) | B (ms) J C (ms) |

10 45.02 1 7.05 | 36.10
50 12.98 | 4.37 | 10.28
100 8.18 [ 4.15 | 7.58
150 5.22 | 3.22 | 5.42
200 4.89 | 2.81| 4.69
250 4.42 | 2.72 | 4.75
300 4.06 | 2.63 | 4.56
350 5.09 | 2.64 | 4.40
400 4.49 | 2.62 | 4.39
450 4.12 | 2.81 | 4.02
500 3.85 | 2.50 | 3.58

As also represented in Figure 36, the best case for dispatching time is again the
B scenario, as it connects way faster to the DMS as expected. However, both A
and C perform somehow similarly as both interact with DMS remotely for their
initializations.

In real-life scenarios, we can have any of these distributions in DMS, so the dis-
tribution of DMS is directly bound to the requirement of the system or the execution
environment. The main purpose of this test was to study the behavior of the DMS

in such environments.

6.3.5 Throughput

Having defined throughput in section 3.3.2, we would like to explain in detail how we
studied this aspect of QoS in the course of this research.

By studying both instances of DMS, we found out that they both suffer from
certain limitation and obstacles. Their behavior and performance change as we over-
take some experimental investigations especially upon reaching some specific points

where either of those performs unexpectedly. According to [30], by keeping track of
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those limitation points and trying to control the system not letting to exceed that,
we can run the test ideally forever, but realistically without having any of our queues
or buffers oversize. Chen et al. [30] calls this point as the Maximum Sustainable
Throughput (MST) metric of the system.

MST is to quantify the maximum throughput of a messaging server/provider, so
technically speaking, by controlling the system not to reach those points, or further-
more, by injecting some flow-control layer which distributes the load of the system
without letting a specific parts exceeding its MST, we can have our system performing
without having any uncontrollable load or pressure. However, implementing such a
layer was not outlined in our current research agenda, and we would like to implement
the injection of flow-control layer in our future work.

So far, we tested our systems against variable size and numbers of demands in
each batch, but for this part, we would change the size of demand in each migration
to see how our DMS would behave in facing different sizes of demands. We continue
our test to see how it escalates in situations where each demands carries data, code,
and sometimes objects. In order to simulate such a situation, we instantiate demands
which in their computation process take a screenshot of the remote machine’s (i.e.,
DW) desktop. A remarkable feature of these demands is their size, i.e., we can test
the capacity of the DMS throughput against the size of demands. We can increase the
size of the demand incrementally by increasing numbers of screenshot in one demand.

These demands, at the time of their execution, clone the screenshot multiple times
in order to increase the size of the result that must be returned to the DG, which has
issued this demand. The DG request numbers of screenshot, and upon reception of
that demand, the DW start capturing snapshots, and returns those graphical results
to the DG in one batch.

We represent the result of this study in both Table 10 and Table 11. We have
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Table 10: Throughput Results for JINI-DMS
| Demand Size (Kb) f Average Time (ms) per 1 Kb |

79.40 43.6398
183.20 33.13969
230.10 35.03259
307.60 37.31144
498.60 37.15804
581.70 35.39453
704.80 34.39983
792.00 32.14141
881.00 33.69202
1321.50 33.69202
1768.00 36.91968
2217.50 44.32514
2718.00 40.40029
3696.00 38.45617
4630.00 44.81814
55662.0 61.97681

done each of these test cases three times, and put the average of these three as the
time in both given tables.

Corresponding to Figure 37, the numbers on the X-axis represent the average time
in milliseconds needed to migrate 1 Kb of a screenshot demand, where the demands
are constantly growing in size, and the Y-axis represents the demand size in Kb.

In this test, we used both DMS instances to migrate large-sized demands (in
both directions) with a size increasing up to 6000 Kb (approximately 6Mb). For
JINI-DMS the migration was successful for all the demands sized up to 5562 Kb (ap-
proximately 5Mb), and somewhere around 6Mb the system raised a memory excep-
tion java.lang.OutOfMemoryError, which is thrown when the Java Virtual Machine
(JVM) cannot allocate an object due to lack of its heap size memory. For JMS-DMS
the migration was successful for the demands sized up to 2310 Kb (approximately

2Mb), and somewhere around 2.5Mb the system raised the same memory exception.

115



iseconds

ime in mi

T

Table 11: Throughput Results for JMS-DMS

| Demand Size (Kb) | Time (ms) per 1 Kb |

79.00 36.10127
154.00 36.52381
231.00 31.68831
324.00 28.15741
385.00 32.41039
462.00 34.11905
539.00 39.66790
616.00 39.16234
693.00 34.81097
770.00 40.25974
1155.00 37.66234
1540.00 38.28896
1925.00 56.93818
2310.00 59.03290
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Figure 37: Comparison of throughput between JMS-DMS and JINI-DMS
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We initially overcame this problem by simply increasing the size of JVM heap mem-
ory. Therefore the limit seems to be the limitation of the physical memory on the
machine under consideration. Therefore, both instances show high capacity for mi-
grating big-sized demands, but both require additional maintenance intervention to
increase their capacities.

The curves shown in Figure 37 depict the time-size correlation in the migration of
big-sized demands. For JINI-DMS, the curve shows an average time around 40 ms up
to 4500 Kb and after that there is a steady increase. This makes JINI-DMS reliable
up to 4500 Kb. However, for JMS-DMS the curve shows an average time of 35 ms up
to 1800 Kb, and then it goes straight up to 60 ms.

In addition to the extension of the heap-size memory, we can improve the through-
put of both DMS instances by modifying their persistent storage as they play an im-
port role in storing and retrieving demands especially when it comes to larger ones.
As can be observed in Figure 37, JINI-DMS takes advantage of using more stable
persistent database for storing its demand comparing to JMS-DMS. Therefore, JINI-
DMS stays at the more productive, and also much reliable position with messages
sized over 2200 Kb, whereas JMS-DMS is better performing with messages below

that size.

6.3.6 Persistency

Previously, we defined the term persistency in 3.3.2, and here, we explain how we are
going to measure this factor in our QoS. As mentioned previously, we need to store
our demands in some sort of a persistent storage in order not to lose our demands in
case of any failure. This would make this aspect of QoS very important especially to
see if our instances perform well in this term.

In order to find out the performance of this aspect, we had to simulate the effect
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of various failures. These failures can be shutting down the main server computer,
logging off from the operating system of the server computer, or even closing off the
DMS application in the middle of demand-migration procedure. Even though all of
them raise some unexpected error, each of these has different effect on the execution
of the middleware.

Non-persistent messages will eventually fill up the memory made available for
queues, and persistent messages will run out of allocated storage space — and both
situations pose risks to the stability of the message server and the entire distributed
system. As opposed to this problem, in the future, we need to have a flow controller
to increase the load balancing of the DMS, which was not part of this thesis.

Here, we are going to explain different scenarios that we would like to test our
system against them to find out if our systems are persistent or not. At the end, we
discuss the overhead the persistency may bring into our system.

We performed these test cases by generating numbers of demands (i.e., 100 de-
mands) in one batch, and triggering one of these failures, and observing the behavior
of the DMS in facing these problems. We used some remote machines (four DWs
and four DGs), and we located DMS in one of them. After doing this test cases in
each of these three types of failures, we found out that both of our DMS support per-
sistency, as we measured both numbers of generated and received demands in both

DMS instances.

Shutting down the server

By shutting down the server node, we are simulating a non-protected network without
any kind of additional power supply for the time of power shortage. It does not let
the system save any work, so it has the highest risk of data lost comparing to other

types of failures.
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In order to test our system against this, we start our demand migration and in
the middle of its work, we suddenly turn off the computer by unplugging it from the
power. There are many pending and computed demands waiting to be routed to their
destination. After a while, we re-start the failed node and re-establish the connection

to the DMS again, and we see that the demand migration continues very soon.

Logging off the server

Logging off the operating system of the DMS machine is a moderate disaster compar-
ing to shutting down the server, as it gives more time to the server and application
to save some pending messages. It is not as harsh as the previous one, but still pro-
vides us with helpful information about the persistency of these two versions. For
this test, we log off the server operating system (e.g., Windows ) in the middle of the

demand-migration process.

Closing off the middleware application

If a message is on its way to the DMS and suddenly the DMS is down because of
any kind of failure or manual shut down, it does not have any place to store. It is
very interesting to see the behavior of pending messages, and find out where and how
DMS stores them, and how we can retrieve them afterward. Even though, it takes a
while to continue their routine, it eventually transfers all pending demands.

We noticed that at the time of the occurrence of any type of failures, DMS stores
all demands permanently, and as soon it restarts to perform again, it continues the
procedure by sending all demands stored in its physical storage. On the other side,
either of DW and DG have valid connection to the DMS and as soon as the connection
is not valid anymore or demands face failed DMS on their ways, they acknowledge

those execution nodes to stop sending any more demands toward the failed DMS.
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Upon re-establishment of connections between GIPSY execution nodes and DMS,

they continue their routine by sending pending demands.

Message Size versus Persistency

Demands which transfer from one node to another in a persistent mode, carry over
information (e.g., persistent-storage hosting location etc.) in addition to their func-
tional content.

We did some investigation to dissect if such a communication mode affects the
size of demands or not. By verifying the documentations of HSQLDB, we could not
find any standard approach to measure the size of demands. As both of them stored
messages in their local drive, we measured the size of that specific directory before
and after the demand migration.

We considered the demand size as the difference of this size divided by the number
of generated demands. As we showed the results in Table 12, we generated 300, 500,
600, 700, 900, and finally 2000 demands to measure the size of each demand in each
of these migrations. We could see that persistent demands are mostly larger than
non-persistent demands because of these additional information.

Interestingly enough, as shown in Figure 38 and Table 12, we noticed that the size
of each persistent demand increases as the number of demands in a batch increases.
However, it should be taken into the consideration that this is not the actual size of
each demand, but just the average size of each demand stored in the system. Thus a
demand can be only 7 Kb, but when we have a batch of 500 persistent ones, including
those additional information for each demand and more importantly for the system
to store all of them, it can be 24 Kb.

In section Figure 38, the vertical axis is the average of total size per demand and

the horizontal axis is the number of demands in each batch.

120



Table 12: Persistency versus Demand Size
l Number of Demands ' Non-Persistent(K.B) ! Persistent(K.B) |

300 7.10 18.33
300 7.09 17.67
300 7.09 19.00
| Average | 7.09 | 18.33 |
500 7.14 24.00
500 7.07 26.00
500 7.06 22.00
| Average |  7.09 | 24.00 |
600 7.06 26.67
600 7.23 25.00
600 7.11 24.17
| Average | 7.13 | 25.71
900 7.33 26.11
900 7.12 25.00
900 7.11 26.67
Average | 7.19 | 25.93
2000 7.12 26.00
2000 7.13 27.00
2000 7.14 32.50
| Average | 7.13 | 28.50

Effect of persistencyon the storage size
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Figure 38: Effect of persistency on the size of demands
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6.3.7 Flexibility and Maintainability

In 3.3.2, we explained why we need flexibility and maintainability in our infrastruc-
ture, and here we provide more detail about benchmarking them in our two DMS in-
stances. Flexibility involves the level of configurability and ease of use in application
level, and maintainability how we can maintain and comprehend our implementations.

In the following sections, we discuss these various aspects.

Configurability

DMS needs to be dynamic and configurable. In order to fit in different cases, modi-
fication in the configuration of the DMS is somehow necessary. Configurability itself

can be studies in two levels of lower and higher.

Lower-Level Configuration This refers to the ability of modification and config-
uration in their implementations in terms of modification and refactoring. The level
we can modify or refactor classes and libraries of these two instances. As both DMS
instances have been developed in our lab, we have access to all related classes of our
DMS. However they both used JMS and JINI which are not done in our lab. These
are open-source APIs that we use in our implementation, and the only way to modify
them is to build a modified versions of those libraries. So implementations-wise, both

of our DMS instances are open to any sort of modification or low-level configuration.

Higher-Level Configuration Both instances use external application to handle
their Demand Store mechanism. Therefore, we need to examine JavaSpace in JINI-
DMS and JBoss Application Server and its embedded database HSQLDB in JMS-
DMS. During our development, we have noticed that we have access to the lowest
level of configuration in Jboss Application Server, and we can easily add, modify, or

delete any destination or internal configuration inside it. We could also switch from
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one version to another as the configuration is similar in all versions of Jboss. We could
change everything through their simple GUI or , as we did, by writing codes to apply
our changes automatically. For JINI-DMS, we can have this level of configurability

by modifying certain classes inside JavaSpace implementation.

Ease of Use

By the batched setup file that we have prepared for each of these instance, their
installations and executions are very simple and easy in any environment. However
in order to modify them, a user needs to have some basic knowledge of JINI or JMS.
As we have designed both of these instances by applying standard design patterns
such as facade and adapter, it would be easier to understand and modify if a user has

such knowledge.

Maintenance at the code Level

As mentioned in the ease of use, we have included different design patterns in our
design. Especially in the implementation of some important classes such as TA, we
dealt with them as abstract as possible, so other classes and sub-modules of the sys-
tem can interact with them just by calling their method names and passing some
required arguments without knowing any internal functionalities of them. Therefore,
we can modify and refactor our code without changing anything inside the TA imple-
mentations of our DMS instances. Consequently this level of abstraction makes our

implementation maintainable without interfering or changing any other classes.

6.3.8 Priority

As already mentioned, priority plays an important role in improving our performance.

In JMS-DMS, priority mechanism is embedded inside the JMS technology as part of
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a header message, so we can set the priority number between 1 and 9 (1 as the lowest
and 9 as the highest). Therefore, it would be very easy to provide this aspect in our
DMS. In JINI-DMS it is not included in the JINI technology, so we need to implement
this feature. In order to prioritize a demand in JINI-DMS, we should tag each message
with its level of priority while DispatcherEntry is wrapping them on the DG side.
Consequently, in situations of having various DG, we need to open, verify the buffers
or communication channels on the way of demands from DG to their shared database
(ie., JavaSpace). This browsing mechanism is not only complicated but also very
time consuming. Therefore, we would consider the priority mechanism in JMS-DMS
easier and faster to configure, use, and expand.

As mentioned before, different kinds of demands have different level or priority.
For example a resource demand should be delivered to the destination faster as the
provided resource through this demand would increase the performance of the entire

system, whereas in a procedural demand, it is mostly not related to the entire system.

6.3.9 Portability and Plugability

As mentioned before, these two elements are very important in our infrastructure.
As our application may be used in different operating systems, we should examine
if we can deal with these systems properly. As they both require certain libraries,
services, and JDK (Java Development Kit) in order to compile and function. We
have to examine if we can use these two instances in a plug-and-play manner, so we
do not need to worry about any additional installation in our network, and we can
start using our DMS modules immediately.

As can seen in our execution environment as presented in Section 6.2, we tested
both of our DMS instances in a network which is very close to the real-life scenario.

It consists of different operating systems (e.g., Windows and LINUX), storage space,
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speed, etc. By including all required files and batch files, we can work with these two
instances as a plug-and-play installation in any sort of environment. The only thing
that needs to be set is the basic Java configuration.

In order to test the plugability of our systems, we shut down our DMS instances,
or any of our execution nodes such as DG or DW to see if the entire system continues
performing or not. We also shut down a TA and again restart from another remote
node to see if it functions or not. Both of our systems functions properly in all of

these situations and find the newly added node.

6.4 Comparison of JINI and JMS Technologies

In previous sections, we compared our two instances of DMS (i.e., JMS-DMS vs. JINI-
DMS), but here, we would like to compare these two in terms of their technologies
regardless of the DMS. Previously, we outlined their positive points and features
in Section 5.1.1.1 in for JINI-DMS and in Section 5.2.1.1 for JMS-DMS. However,
here, we would like to compile some aspects that these technologies (i.e., JINI vs.

JMS) did not address properly.

6.4.1 Potential bottleneck

JINI and JMS are both having the same centralized-model approach in terms of
providing services. In JMS, the entire model is centralized with respect to the JMS
provider. As a result, JMS providers are heavyweight middleware components and
can become bottlenecks because the JMS specification does not address the routing
of JMS messages across multiple servers or the distribution of servers to achieve load
balancing. The same approach with JINI, in its lookup service and JavaSpace as its

persistent database.
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Although we can not remove the workload from the JMS provider or JavaSpace,
we can cluster some of them to balance the load. Therefore, in critical situations,
scenarios such as using clustering or grid environment becomes very useful. Each
of these scenarios may bring their own problems as well, some of them having been

discussed in Sections 6.4.2, 6.4.6, 6.4.7, and 6.4.8.

6.4.2 Load Balancing

In order to balance the messaging workload, as mentioned above, we can use clustering
or a grid. However, load balancing has not been addressed or included directly into

the JMS API, and always been taken care of by the JMS provider. JINI is suffering

from the same problem as it should be implemented in a separate modules.

6.4.3 User-defined messaging

JMS has a number of different message types (e.g., Object, stream, text, map, etc.),
so in each scenario we should choose the one is the most relevant one. Even though
it consists of different types, it is not open to accept any new user-defined message
types. For example in our scenario we use Object message which accepts any kind of
Serializable Objects, and we enable different signature for each of our internal message
type. This would not be the case in JINI as it works with tuple-based messaging,
which is a wrapper written in Java on top of each message, so we can store them in

any type, but at most it should be a Serializable Java Object like JMS.

6.4.4 Security

JMS does not specify an API for controlling the privacy and integrity of messages.
JMS providers (i.e., Jboss Application Server) are responsible to monitor all incoming

and outgoing messages through their authentication services. This would be the same
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problem for JINI. Therefore, in order to address authentication, one should consider it

in the implementation rather than having such a thing enabled in JINI specifications.

6.4.5 Communication mode

Event communication in JINI is built on top of synchronous communication (Java
RMI), so the same restrictions that limit scalability and efficiency in RMI apply
to JINI. However, by default, JMS supports both synchronous and asynchronous

communication.

6.4.6 Internet

According to [16], JINI is usually used only within the Local Area Network (LAN),
as opposed to as an internet-wide/grid-based structure like JMS, WSDL [74], or
SOAP [94]. The reason for using JINI mostly in LAN is its time-consuming lookup
service, which makes no sense in such environments. However, they also referred to
some investigations on using the hierarchical chain of lookup services over a grid in-
frastructure where a lookup service is registered with another one. Thus the overhead
of traversing down this chain of services would definitely cause considerable overhead
to the system as each step in the traversal will require a series of full JINT lookup ser-
vice and acquisition. By having the real-life escalated environment with many remote
and local nodes and services, JINI would not be a very good solution for interactions

except inside LAN.

6.4.7 Restricted Networks

According to [16], some routers on the internet do not support routing of multicast
packets for a variety of reasons. Also, some organizations are not willing to open their

firewalls for multi-casting to avoid any security problem. Similarly, a LAN divided
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into subnets, may disable multicast traffic across the subnets to avoid unnecessary
traffic that may result in performance degradation. This blocking of multicast traffic
across subnets prohibits the use of JINI in such an environment. As both of these
two technologies need the Internet Protocol (IP) address of their central dispatcher
(i.e., JBoss Application Server or JavaSpace), they are restricted to work only in a
network infrastructure where the IP address of that central node should not change
in any startup of their hosting machine and be accessible by other nodes by their IP

address.

6.4.8 TFlexibility

In order to find services, JMS only requires a valid IP address, whereas JINI lookup
service requires the exact full name of a service (e.g., GIPSY). However, JINI is not
flexible in accepting some regular expressions such as (*) or (%) (e.g., *GIP*). This
would reduce the flexibility of the JINI lookup service in grid or clustered environ-
ments. This applies to JMS as well where it requires exact IP address of the DMS

node not only part or range of it.

6.4.9 Message Filtering

Both JMS and JINI address inquiries with a SQL-like query language. However
both of them are having the subject-based filtering in a different approach. JINI
applies the filtering on the message tuples, whereas in JMS, it searches through the

message header. None of them enable content-based filtering yet, which reduces the
usefulness of message filtering. If we require such a filtering in our environment, we

have to implement our own filtering classes.

128



6.4.10 Language Dependability

Both of JINI and JMS are tightly integrated with the Java language. Therefore, they
have the ability to work with any Java-based programming language and technology.
Hence, in a larger-scale heterogeneous environment, all applications are not necessary
Java-based. However, it has not been a problem in GIPSY, as most of all modules are
implemented in Java, but still we are open in implementing Java Native Interfaces

(JNI) [23] for the integration of our Java-based component with other components

which implemented by using a different programming language.

6.4.11 Summary

In this chapter, we benchmarked and evaluated our DMS instances in different terms
of QoS. Despite our limited network infrastructures, we simulated some real-life sce-
narios and situations. We experimented our system in facing different types and
size of demands in situations where complexity increases. Some of them preformed
expectedly and some not, but as GIPSY is a part of an ongoing project, we will

continue to develop and expand this testing environment for more challenging and
complicated situations. In the next chapter, we will wrap up this comparative study

in Section 7.1.3 in addition to the conclusion of our research contributions.
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Chapter 7

Conclusion and Future Work

This sky where we live is no place to lose your wings,
So love, love, and love.

Sh. Hafez - Persian Mystic and Poet (14th century).

7.1 Conclusion

In this chapter, we would like to conclude our research contributions in addition to
mentioning our main research purposes which were to have a generic DMF and a

comprehensive study over our DMS instances.

7.1.1 Research Contribution

e In the design chapter, we analyzed the workflow diagram of our demand-migration
process in both current and future designs. We analyzed every step and found
out what needed to be added, which we basically addressed in the projected

design.

e After studying such designs, we analyzed different tiers and types of demands
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that our system should have to perform better. We applied some of them in
our current implementations, but major parts of these tiers as we explained in

section 4.3 would be implemented in our future work.

7.1.2 Generic DMF

As mentioned before in this thesis, one of the main goals of this research was to study
the behavior of the GIPSY demand-driven execution environment, and examine if
our framework is generic enough in terms of accepting new distributed technologies
as its DMS instances. After our design and implementation, we tested our framework
with two instances of DMS. JMS-DMS and JINI-DMS functions quite similarly, but
in different workload performs differently. One functions better with one type of
demands, and the other one with another type. As expected, we proved that by having
different instances of DMS, one can overcome the limitation of only one distributed

technology.

7.1.3 Comprehensive Studies

During this research, we have done comprehensive studies over functionality, perfor-
mance, and behavior of our DMS instances (see Chapter 6). There were cases that
each of our instances performs similarly (i.e., latency, persistency, flexibility, and con-
figurability), whereas in some cases only one of them was outstanding (i.e., availability
for JMS-DMS or throughput for JINI-DMS).

There were cases (e.g., throughput) one instance (JMS-DMS) starts off the exper-
iment very well, but as we increased the workload or complexity of the scenario, the
other one’s performance (JINI-DMS) was noticeably impressive.

After doing all these studies, we noticed that the combination of our studies in

latency, dispatching, and throughput can give us a better picture or how our systems
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can escalate in different challenging situations, which we would like to consider this
combination as the scalability of our DMS.

By studying these factors, we found out that both systems perform well when
it comes to latency time, but in terms of throughput, JINI-DMS stays in a much
better position. However, JMS-DMS has better availability rate and dispatching
time. Thus, we can see that one is stronger in some situations, and the other is
having better performance for other possible situations. Considering this fact, we
would like to consider both DMS instance very scalable.

However, for our final solutions for the current state of our GIPSY project, we
would like to consider JMS-DMS as the one which is much more available, and per-
forms faster in terms of establishing a connection. It has many embedded features
that in contrary should be implemented in JINI-DMS, which increase the complexity
and overhead of our system configurability and maintenance. The priority mechanism
in JMS was easier to use and expand rather than JINI, which requires synchronized
management layers to perform the same level of functionality. Implementation-wise
JMS has been used widely in many enterprise and academic projects that install
in very wide networks such as Internet or Grid, whereas JINI does not function at
the same level in those environments. Both of them suffer from many issues mainly
mentioned in section 6.4, but JMS is still an ongoing project in SUN, whereas JINI
is discontinued by SUN, and is embedded inside a different project (i.e., River) in
Apache. On the other side, JINI-DMS performs considerably better in terms of
throughput of larger-sized demands as its MST was by far better than JMS-DMS.
Having said that before that it is because of the well-performing Object storage (i.e.,
JavaSpace), we can easily replace this with our HSQLDB to take advantage of the
same level of functionality. We can also extend this by replacing JavaSpace with a

better option (see section 7.2.1).
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7.2 Future Work

We have listed the following short and long-term future work.

7.2.1 Short-term Future Work

e Implement an efficient management tier to control the entire process of demand

migration.

e Improve the demand store in DMS by including different features such as

garbage collector, queue browser and etc.

e Implement other instances of DMS by using different technologies to experiment

other features of distributed systems inside GIPSY DMF.

e Find an optimum persistent database to store our demands which can escalate
in different situations and fit in all of our DMS instances as the generic standard
solution. We can start this study by replacing the HSQLDB with JavaSpace
or other successful solutions. Currently each of these two DMS are using their
own persistent storages, which require two different technical mechanism and
approaches. In order to improve the integration among GIPSY modules, we can
implement persistency by using some standard and well-know techniques such
as Hibernate [27]. It providers both high and low level control over the stored
data (i.e., GIPSY Demands).

e Implement a flow-control layer as one of submodules of the monitor component
in DMS to distribute the workload of communication channels and distribute

them before exceeding their MST.

e Study the impact and overhead of storing demands and their results in the

Demand Store of the DMS for any further access of that specific demand instead
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of re-migration and re-computation.

7.2.2 Long-term Future Work

e Implement the entire DMS and execution nodes by applying the multi-tier ar-

chitecture

e Include different modules of management, security, and authentication on top

of each tiers to monitor the security issues of the system

e Include different features and characteristic of Autonomic Computing into the

DMF and subsequently DMS instances.

e Direct our DMS and DMF toward implementing the Service-Oriented Archi-
tecture (SOA) [42] to provide a service-based computing environment for our
GIPSY services. So far, we have implemented many of the required characters

of SOA in our DMS, but we should step forward to that extent.
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