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ABSTRACT

What Could Be Happening In The Frog’s Eye

Yuan Yao

Our topic comes out of a juxtaposition of two classic papers: the 1943 paper A
logical calculus of the ideas immanent in nervous activity by McCulloch and Pitts
and the 1959 paper What the frog’s eye tells the frog’s brain by Lettvin, Maturana,
McCulloch, and Pitts.

The nervous system is made up of individual signaling elements, the neurons.
MecCulloch and Pitts proposed a simplified model of this system. There every neuron
receives a number of signals, which are nonnegative real numbers, at time ¢; if a
weighted sum of these signals exceeds a prescribed threshold, then the neuron sends
signal 1 to other neurons at time ¢ + 1; else it sends signal 0.

Lettvin et al. discovered that the frog’s optical nerve transmits to the brain infor-
mation obtained by preprocessing the data in the retina by four separate operations:
sustained contrast detection, net convexity detection, moving edge detection, and net
dimming detection.

We speculate about McCulloch-Pitts networks that could implement the fourth of
these operations, the detection of sudden dimming. To be biologically plausible, such
networks must conform to what is known about frog’s anatomy: its retina consists
one million photoreceptors, three to four million other neurons, every neuron receives
signals from fewer than 100,000 neurons, and it sends signals to fewer than 10,000
neurons.

We construct such networks that, within a narrow margin of error, detect dimming

from time ¢ to ¢ + 1 and respond at time ¢ + 4.
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1 Introduction

Ramén y Cajal (1852 — 1934) was a Spanish histologist, physician, and Nobel laure-
ate. He is considered to be one of the founders of neuroscience
(http://en.wikipedia.org/wiki/Santiago.Ram%C3%B3n_y_Cajal). In particular, he
developed some of the key conceptual insights and much of the early empirical sup-
port for the neuron doctrine — the principle that the nervous system is made up of
individual signaling elements, the neurons, which contact one another only at spe-
cialized points of interaction, called synapse (Kandel 1991).

The signals are represented by complex changes in the electrical and chemical
properties of the neurons. We survey these processes in Section 2.

The only reason we include this material in the thesis is to highlight the contrast
between the complexity of signaling in the central nervous system and the simplicity
of its model presented in Section 3.

The model was proposed in 1943 by Warren S. McCulloch, a neuroscientist, and
Walter Pitts, a logician, in a paper entitled A logical calculus of the ideas immanent
in nervous activity. This paper had a great influence on the development of artificial
neural networks (mathematical or computational models of the networks of neurons
that are present in the central nervous system).

Study of artificial neural networks can be divided into two distinct categories:

1. there are researchers who aim to construct better computer hardware and soft-

ware by imitating the brain;

2. there are researchers who aim to better understand the brain by studying its

mathematical models.

This thesis belongs to the second category.



Our topic comes out of a juxtaposition of the McCulloch-Pitts paper with an-
other classic paper: What the frog’s eye tells the frog’s brain, published in 1959 by
Jerome Lettvin, Humberto Maturana, Warren McCulloch, and Walter Pitts. These
four authors found by experiments that, rather than transmitting raw data from the
photoreceptors to the brain, the frog’s optical nerve transmits to the brain informa-
tion obtained by preprocessing the data in the retina by four separate operations:
1) sustained contrast detection, 2) net convexity detection, 3) moving edge detec-
tion, and 4) net dimming detection. Each operation has its result transmitted by a
particular group of fibers. We quote from this paper in Section 4.

If the McCulloch-Pitts model is accurate, then the frog’s retina must contain
four neural networks built along the lines suggested by McCulloch and Pitts and
computing the four functions reported by Lettvin et al.. Along these lines, we build
a neural network which approximates one of the four functions reported by Lettvin
et al..

Coaching the intuitive concept of dimming in mathematical terms is not com-
pletely straightforward. In Section 5 we propose a definition of dimming intended to
capture the intuitive meaning and to safeguard against the interference of noise.

After making a few preliminary observations on dimming detector in Section 6,
we construct in Section 7 a McCulloch-Pitts network that detects dimming as defined
in Section 5. The size of the network is consistent with available data concerning the

frog’s retina.



2 Electrophysiology of Neurons

This section is adapted from Gerstner and Kistler (2005)
The elementary processing units in the central nervous system are neurons, which
are connected to each other in an intricate pattern. A tiny portion of such a network

of neurons is sketched in Figure 1 by Santiago Ramén y Cajal.

Figure 1: Texture of the nervous system of man and the vertebrates. By Santiago
Ramén y Cajal

Figure 1 gives a glimpse of the network of the neurons in the cortex. In reality,
cortical neurons and their connections are packed into a dense network with more

than 104 cell bodies per cubic millimeter.



2.1 Neurons

This section is adapted from Kandel (1991) and Gerstner and Kistler (2005).
A typical neuron can be divided into three functionally distinct parts, called den-

drites, soma, and azon. They are shown in Figure 2.

dendrites

axon terminals

l R\i" nucleus . f,.d« mmmmm

o . '{ ,.M
node of ranvier ; f,éf\x

!
B
Moo ko

/

— axon

o

cell body
(soma)

Figure 2: Structure of a single neuron (from website http://webschoolsolutions.com/
patts/sytems/nervous)

Typically, the dendrites are the “input devices” which collect signals from other
neurons and transmit them to the soma; the soma is the “central processor” that
produces a signal or not depending on the input; the axon is the “output device”
which delivers the signal generated by the neuron to other neurons. The site between
two contact neurons is called synapse. When a neuron sends signals across a synapse,
it is common to refer to the sending neuron as the pre-synaptic cell and to the receiving
neuron as the post-synaptic cell. The tiny gap between pre- and post-synaptic cell

membranes is called the synaptic cleft. Kandel (1991) says, talking about human

central nervous system,

The branches of the axon of one neuron may form synapses with as many as 1000 other

4



neurons

on page 19, and

A spinal motor cell, whose dendrites are moderate in both number and extent, receives
about 10,000 contacts — 2,000 on the cell body and 8000 on the dendrites. The
larger dendritic tree of Purkinje cell of the cerebellum receives approximately 150,000

contacts!

on page 22.

The neurons of the brain can be classified functionally into three major groups:
afferent, motor, and interneuronal. Afferent or sensory neurons carry information
into the nervous system. Motor neurons carry commands to muscles and glands.
Interneurons constitute by far the largest class and consist of all the remaining cells

in the nervous system that are not specifically sensory or motor.

2.2 Spikes

This section is adapted from Parberry (1994) and Gerstner and Kistler (2005).

The neuron is bounded by a lipid membrane which is permeable to water, but
impermeable to ions and various water-soluble molecules. This structure will maintain
the concentration of internal ions different from the concentration of ions in the
environment between neurons. The concentrations of sodium and potassium ions
are particularly important. Due to the different concentrations of ions across the
membrane, there is a difference of potential between the interior of the cell and its
surroundings. We call this difference the membrane potential. A typical neuron is at
rest with a constant resting membrane potential of about —65mV to —70mV.

At the point of axon joining the soma, when the potential exceeds a threshold

value of —55mV, the membrane will open sodium channels immediately and allow



sodium to enter the membrane by osmotic pressure. The polarity of the membrane in
that area reverses and rises to approximately +60mV. Then the potassium channels
open, allowing potassium to leave the membrane also under osmotic pressure. Then
the membrane potential decreases to about —90muv and then returns gradually back
to the resting state. The net results of the short electrical pulses are called action
potentials. Observed action potentials are called spikes. The spikes have an amplitude
of about 100mV and typically a duration of 1 — 2ms. The curve of a spike is shown
in Figure 3.

A0

+80 -
+20

Action potential

Membeane potential {mv)
g &

3
-40 g
i;

~5{
il F i Depolarization
M?O | M
~80 1 Hyperpolarzation
-8
} 1 2 3
Stiouivs )
appling T {Miae)

-Figure 3: Curve of a single spike (from Gerstner and Kistler (2005))

The resulting action potential travels down the axon and arrives at a synapse.
It triggers the release of neurotransmitters from the pre-synaptic terminal into the
synaptic cleft. As soon as neurotransmitter molecules have reached the postsynaptic
side, they will be detected by specialized receptors in the postsynaptic cell membrane

and open special channels, so that ions can exchange between the interior of the
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cell and its surroundings. The ion exchanging alters the postsynaptic membrane
potential. Thus, the chemical signal is translated into an electrical response. Figure

4 shows the chemical functions happening in synapse cleft.

action
potential

Figure 4: Synapse cleft (from http://www.cassiopaea.org)

A chain of spikes generated by a single neuron is called a spike train - a sequence
of stereotyped events which occur at regular or irregular intervals. The form of a
single spike does not carry any information. Rather, it is the number and the timing
of spikes which matter. Spikes in a spike train are usually well separated. Even with
very strong input, it is impossible to excite a second spike during or immediately after
a first one. The minimal distance between two spikes defines the absolute refractory
period of the neuron where it is difficult, but not impossible, to excite a spike.

An input at an excitatory synapse reducing the negative polarization of the mem-
brane is called depolarizing; an input increasing the negative polarization of the mem-
brane even further is called hyperpolarizing. We let u(t) denote the membrane poten-

tial of a neuron at time ¢t and u,es; denote the rest membrane potential



Consider a spike from a presynaptic neuron j which arrives at neuron ¢ at time
t = 0. Then,

U;(t) = Upest, Whenever ¢ < 0,
and we define post-synaptic potential €;;(t) as:
us(t) — Urest = €;;(t) whenever ¢ > 0.
If the post-synaptic potential is positive, the synapse is said to be ezcitatory; if the

post-synaptic potential is negative, the synapse is inhibitory.

Next, consider two pre-synaptic neurons j = 1,2, which both send spikes to the

post-synaptic neuron ¢. Neuron j = 1 fires spikes at tgl), tgz), ...; similarly neuron
j = 2 fires at tél), t(gz), .... Each spike respectively evokes a post-synaptic potential

€1 O €;0. post-synaptic potentials have amplitudes in the range of ImV. Before the
post-synaptic neuron i fires, the total change of the potential is approximately the

sum of the individual post-synaptic potentials,

ut(t) = Z Z E,L'j(t - tgf)) + Urest
j f

This is illustrated in Figure 5.

As soon as u;(t) reaches a critical value 6, this situation changes and neuron 7 now
exhibits a spike with an amplitude of about 100mV. This spike will propagate along
the axon of neuron 7 to the synapses of other neurons. After the pulse the membrane
potential does not directly return to the resting potential, but passes through a phase
of hyper-polarizing below the resting value. The critical value for spike initiation is
about 20 — 30mV above the resting potential. In most neurons, about 20 — 50 pre-

synaptic spikes have arrive within a short time window before post-synaptic spikes



u®) |

Yrest

Figure 5: One neuron receives signals from two neurons (from Gerstner and Kistler
(2005))

are triggered.

2.3 Formal Spiking Neuron Models

This section is adapted from Gerstner and Kistler (2005).

2.3.1 Integrate-and-fire Model

The basic circuit of an integrate-and-fire model is shown in Figure 6. The circuit
consists of a capacitor C' in parallel with a resistor R driven by a current /. The
current [ can be split into two components, Ir and . Ig is the resistive current which
passes through the linear resistor R. According to Ohm’s law, we have Ig = u/R
where u is the voltage across the resistor. Io is a capacitive current which charges

the capacitor C. According to the definition of the capacity, C = @/u (where @ is



from neuron j 4 soma
——r—

dxon

Figure 6: Schematic diagram of the integrate-and-fire model (from Gerstner and
Kistler (2005))

the charge and u the voltage across the capacitor), we have I» = C‘Z—;‘. Thus, at time

12

u(t) du(t)
Ity = —= —_ 1
1) = P+ (1)
Multiply (1) by R and introduce the time constant 7, of the leaky integrator where

™m = RC. Then we have

Tm = —u(t) + RI(t) (2)

We refer to u(t) as the membrane potential and to 7, as the membrane time constant
of the neuron.

In integrate-and-fire models the form of an action potential is not described explic-

10



itly. Spikes are formal events characterized by a firing time, t), which is is defined
by a threshold criterion
. u(t(f)) =9

Immediately after t), the potential is reset to a new value Ues:

lim wu(t) = 3
£t it ®) Urest (3)

where upest < 9. For t > ¢t(Y) the dynamics are again given by (2) until the next
threshold crossing occurs. The combination of leaky integration and reset defines the

leaky integrate-and-fire model.

A L)+ RIG

lim w(t) = u
1t et Q rest

In its general version, the integrate-and-fire neuron may also incorporate an abso-
lute refractory period. When u reaches the threshold at time ¢(), the dynamics (2) is
interrupted during an absolute refractory time A, and the integration is restarted

at time t() + Ay, with the new initial condition Up.es:.

2.3.2 Spike Response Model

The spike response model is a generalization of the leaky integrate-and-fire model.
The state of neuron 7 is described by its membrane potential u;. Before spikes arrive,
u; is at its resting value, Upes: Where u..s = 0. Bach incoming spike will perturb
u; and it takes some time before u; returns to zero. The function ¢;; describes the
perturbation on u; to the incoming spike from neuron j. This perturbation can be

enhanced if new incoming spike arrives before u; reaches zero. After the summation

11



of the effects of several incoming spikes, if u; reaches the threshold 4, then an output
spike is triggered. The form of the action potential and the after-potential is described
by a function 7. Let us suppose neuron i has fired its last spike at time #;. After

firing the evolution of u; is given by

ui(t) = n(t—1t;)+ Z Wij Z eij(t —ti,t — tg'f))
J f
+/ K(t — & 8) 1% (t — s)ds (5)
0

where tg.f ) are spikes of presynaptic neurons j, wy; is the synaptic efficacy, and s =
t—tgf ). The last term accounts for an external driving current 7¢**, The two sums run
over all presynaptic neurons ;7 and all firing times tgf ) < t of neuron j. We emphasize
that all terms depend on t — 7;, the time since the last output spike. Fig 7 shows the

time course u;(t) of the membrane potential of neuron ¢ as a function of time t.

i
Bit-t,)
ni-t) ™
\\__--‘_‘—_——

o =

\
0 e

jti Iu LR t

Figure 7: Schematic interpretation of the spike response model (from Gerstner and
Kistler (2005))

According to (5), we can see that all terms depend on t — ;, which is the time

since the last output spike. In a spike response model, the threshold 8 is not fixed

12



but may also depend on t — &,

9-—>0(t—7§2)

During an absolute refractory period A%, we may set @ to a large and positive value
to avoid firing and let it relax back to its equilibrium value for ¢ > #; + A®S, As

mentioned before 7; is the last firing time,

t; = maw {tgf) < t}

The functions 7, x and ¢;; are response kernels which describe the effect of spike
emission and spike reception on the variable u;. A spike of neuron 7 has been initiated
at #;. The kernel n(t —#;) for t > £; describes the standard form of an action potential
of neuron ¢. Here we need to emphasis that the exact shape of the potential carries
no information because the shape is always the same. What matters is whether there
is the event ‘spike’ or not. This event is fully characterized by the firing time tz(f ),

The kernel x(t — #;,s) is the linear response of the membrane potential to an
input current. It describes the time course of a deviation of the membrane potential
from its resting value that is caused by a short current pulse (“impulse response”).
The response depends on the time that has passed since the last output spike at ;.
Immediately after f;, many ion channels are open. The resistance of the membrane
is reduced. Therefore, the voltage response to an input current pulse decays back
to zero more rapidly than in a neuron that has been inactive. A reduced or shorter
response is one of the signatures of neuronal refractoriness. This form of refractory
effect is taken care of by making the kernel x depend, via its first argument, on the

time difference ¢ — t}. In Figure 7, we can see that response to a first input pulse at

13



t' is shorter and less pronounced than that to a second one at t”.

(

The kernel €;;(t — £;,5) is a function of s which is equal to (¢t — tjf ). €j can

be interpreted as the time course of a postsynaptic potential evoked by the firing

of a presynaptic neuron j at time tg.f ),

It models either an excitatory or inhibitory
postsynaptic potential. Similarly as for the kernel x, the exact shape of the postsy-
naptic potential depends on the time ¢ — #, that has passed since the last spike of the
postsynaptic neuron ¢. In particular, if neuron 7 has been active immediately before
the arrival of a presynaptic action potential, the postsynaptic neuron is in a state of
refractoriness. In this case, the response to an input spike is smaller than that of an

‘unprimed’ neuron. The first argument of ¢;;(t — #;, s) accounts for the dependence

upon the last firing time of the postsynaptic neuron.

14



3 McCulloch-Pitts Neural Networks

In 1943, Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, pub-
lished an important paper entitled A logical calculus of the ideas immanent in nervous
activity. There they tried to describe how the brain produces highly complex patterns
by using many basic neurons that are connected together. They gave a highly simpli-
fied model of a neuron which is widely called “McCulloch-Pitts neuron”. This model

captures key features of the biological neuron with the following physical assumptions:

1. The activity of the neuron is an “all-or-one” process.

2. A certain fixed number of synapses must be excited within the period of latent
addition in order to excite a neuron at any time, and this number is independent

of previous activity and position on the neuron.
3. The only significant delay within the nervous system is synaptic delay.

4. The activity of any inhibitory synapse absolutely prevents excitation of the neu-

ron at that time.

5. The structure of the net does not change with time.

This was a seminal paper in the development of artificial neural networks.
Artificial neural networks are mathematical or computational models of the net-
works of neurons that are present in the central nervous system. Their study can be

divided into two distinct categories:

1. there are researchers who aim to construct better computer hardware and soft-

ware by imitating the brain;

2. there are researchers who aim to better understand the brain by studying its

mathematical models.

This thesis belongs to the second category.

15



Much of the work that belongs to the first category concerns self-adjusting artificial
neural networks that are capable of learning. Their origin is the book The organization
of behavior: a neuropsychological theory published in 1949 by Donald Hebb. He said:

Let us assume that the; persistence or repetition of a reverberatory activity (or *trace”)
tends to induce lasting cellular changes that add to its stability.... When an axon of
cell A is near enough to excite a cell B and repeatedly or persistently takes part in

firing it, some growth process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.

This theory is commonly evoked to explain some types of associative learning in which
simultaneous activation of cells leads to a pronounced increased in synaptic strength.
In this thesis, we are not concerned with such neural networks: our networks are
static and do not learn.

Siu et al. (1995) in their section 1.7 give an account of the major developments

in neural network research since the pioneering work of McCulloch and Pitts.

3.1 The McCulloch-Pitts Neuron

We use R to denote the set of all real numbers and N to denote the set of all
nonnegative integers.

A McCulloch-Pitts neuron is a threshold function
f:R™—{0,1}

defined, for some constants w;, ws, . . ., Wy, (mnemonic for “weights”) and § (mnemonic

16



for “threshold”) by

0 otherwise.

f(xl,x%"wxm) =

We think of the function as a neuron with signals z1,,, ..., z,, received at the
synapses; positive weights correspond to excitatory synapses and negative weights
correspond to inhibitory synapses; f(x1,22,...,2n) = 1 means that the neuron is

firing.

3.2 The McCulloch-Pitts Neural Network

(This section was written by my advisor Vasek Chvétal.)
The McClulloch-Pitts neural network consists of some number n of McCulloch-
Pitts neurons.

fi  R™ — {0,1} (1=1,2,...,n).

Given any sequence Z,Zs, ..., Zn of functions

z;: N—R (t=1,2,...,m),

it computes a sequence yy, ¥z, ..., Yy, of functions

y; : N —{0,1} j=12,...,n)

as follows: for all j, we set y,;(0) = 0 and, for all positive integers ¢,

U (1) = f(@(t = 1), (e = 1,92t = 1),y yalt = 1)),

17



We think of variable ¢ as marking discrete time; each of the n neurons may receive
its signals from any of the m inputs (it is linked to input ¢ if and only if its w; is
nonzero) and from any of the n neurons (it is linked to neuron j if and only if its
W5 is nonzero). The real numbers z;(t) measure the inputs received by the network
from the outside environment at time ¢; the bits y;(¢) tell us which neurons are firing
at time ¢; firing or not firing of a neuron at time ¢t depends on the signals sent to it
at time ¢t — 1 (and received, with the “synaptic delay”, at time ). Some of the n

neurons may be designated as output neurons.

With this neural network, we associate a directed graph on m + n vertices. These

vertices are Ti,Za2,...,Tm and y1,Ys, ..., Yn; if fi is defined by

1 if Eaik:ci + Ebjkyj > O,

0 if otherwise,

fk(xlw-'awm)yla"'yyn) =

then there is a directed edge from z; to yj if and only if ay # 0 and there is a directed
edge from y; to yj if and only if by # 0. If this graph contains no directed cycles,
then the network is called a feed-forward network.

The number of neurons in the network is called the size of the network. The level
of a neuron in a feed-forward network is defined as the maximum number of neurons
on any path from an input to this neuron (which is counted as one of the neurons
on the path); the level of vertices z1,zs,...,z,, are defined as zero. The depth of a
feed-forward network is defined to be the maximum number of neurons on any path

from an input to an output.
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3.3 Threshold Circuits

A McCulloch-Pitts neuron is also called a threshold gate. A threshold gate computes
a linear threshold function f: R™ — {0, 1} such that

i=1

0 otherwise

f(xl,m%-'wxn) =

A feed-forward McCulloch-Pitts neural network is also called a threshold circust. A

threshold circuit consists of some number n of threshold gates,

fi tR™71 - {0,1} (j=12,...,n).

Given any sequence of real numbers x;,Zs,...,Zn, it computes a sequence of bits

Y1, Y2, - -+, Yn a8 follows:

v1 = fi@,...,zn) and

Yi = fj(mh"'7xmay17"'7yj~1)7 forallj=2,3,...n.

The threshold gate which computes y; may receive its signals from any of the m in-
puts (it is linked to input ¢ if and only if its w; is nonzero); the threshold gate j with
J = 2 may receive its signals from any of the m inputs (it is linked to input ¢ if and
only if its w; is nonzero) and from any of the j — 1 threshold gates which compute
Y1,Y2, ..., Yj-1 (it is linked to the threshold gate & with 1 < k < j — 1 if and only
if its w4 is nonzero). Some of the n threshold gates may be designated as output

gates.
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With this threshold circuit, we associate a directed graph on m--n vertices. These

vertices are r1,%2,...,2Zm and Y1, ¥z, ..., Yn; if f1 is defined by

m
1 if Zaimzﬁl,
fl(‘rlw"ax‘m): =1

0 if otherwise,

then there is a directed edge from z; to y; if and only if a;; # 0; if fr with2 <k <n
is defined by

m k-1
Lif ) auzi+ D buys > O,
i=1 j=1

0 if otherwise,

fk(xly ey Tmy Y1y ayk:—l) =

then there is a directed edge from z; to ys if and only if a;x # 0 and there is a directed

edge from y; to y, if and only if b;; # 0.
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4 What The Frog’s Eye Tells The Frog’s Brain

4.1 Retina

The retina is a thin layer of neural cells that lines the back of the eyeball of verte-
brates and some cephalopods (http://en.wikipedia.org/wiki/Retina), such as squids
and octopi. It has three layers of nerve cells. Figure 8 by Ramén y Cajal shows the

structure of a sparrow’s retina.

Figure 8: Drawing of a section through the optic tectum of a sparrow (Santiago
Ramon y Cajal, ¢.1900)

The outermost layer of retina contains photoreceptor cells (mainly rods and cones)
which respond to light. The innermost layer contains ganglion cells. The optic nerve
carries the ganglion cell axons to the brain. Between photoreceptor cells and ganglion

cells, there are bipolar cells, horizontal cells, and amacrine cells. Photoreceptors,
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bipolar, and horizontal cells make synaptic connections with each other in the outer
pleziform layer. The bipolar, amacrine, and ganglion cells make contact in the inner

pleziform layer. Bipolar cells bridge the two layers.

4.2 Frog’s Visual System

Frog’s retina has unique features: the uniformity of its retina, the normal lack of eye
and head movements, and the relative simplicity of the connection of his eye to his
brain. Maturana (1959) found that, in the frog, there are about one million receptors
(rods and cones), 2.5 to 3.5 million connecting neurons (bipolar cells, horizontal cells,
and amacrine cells), and half a million ganglion cells. Figure 9 shows the diagram of

frog’s visual system.

Group No.of Ganglion
Cell Terminals

Retina 2

Photoraceptors

Bipolar Cells

— Ganglion Cells Tectal Cells

Figure 9: Diagram of frog’s visual System

In 1959, Jerome Lettvin, Humberto Maturana, Warren McCulloch, and Walter
Pitts published an important paper entitled What the frog’s eye tells the frog’s brain.

They found by experiments that, rather than transmitting raw data from the pho-
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toreceptors to the brain, the frog’s optical nerve transmits to the brain information
obtained by preprocessing the data in the retina by four separate operations: 1) sus-
tained contrast detection, 2) net convexity detection, 3) moving edge detection, and
4) net dimming detection. Each operation has its result transmitted by a particular

group of fibers. Here is what Lettvin et al. say:

1. Sustained Contrast Detectors
An unmyelinated axon of this group does not respond when the general illumi-
nation is turned on or off. If the sharp edge of an object either lighter or darker
than the background moves into the field and stops, it discharges promptly and
continues discharging no matter what the shape of the edge or whether the object

is smaller or larger than the receptive field. ...

2. Net Convexity Detectors
These fibers form the other subdivision of the unmyelinated population. ... The
fiber will not respond to the straight edge of a dark object moving through its
receptive field. ... Usually a fiber will respond indefinitely only to objects which
have moved into the fleld and then lie wholly or almost wholly interior to the
receptive field. The discharge is greater the greater the convexity, or positive
curvature, of the boundary of the dark object until the object becomes as small
as about one half the width of the receptive field. ...Objects lighter than the
background produce almost no response unless they have enough relief to cast a

slight shadow at the edge. .

3. Moving-Edge Detectors
These fibers are myelinated .... Such a fiber responds to any distinguishable
edge moving through its receptive field, whether black against white or the other
way around. ...The response to moving objects is much greater than to changes

in total illumination . ...

4. Net Dimming Detectors
... They are myelinated and the fastest conducting afferents, clocked at at 10

meters per second. One such fiber responds to sudden reduction of illumination
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by a prolonged and regular discharge. ...

The fibers mentioned here are axons of ganglion cells. In the frog’s retina, there
are half a million ganglion cells and one million photoreceptors. There is a synaptic
path from a photoreceptor to many ganglion cells and a ganglion cell receives paths
from many thousand photoreceptors. These paths are formed by connecting neurons
(bipolars, horizontals, and amacrines), of which there are 2.5 to 3.5 million. Hartline
(1938) first used the term receptive field for the region of retina whose photoreceptors

are connected to a particular ganglion cell by synaptic paths.

4.3 Net Dimming Detectors

Our initial plan was to construct a McCulloch-Pitts network simulating a ganglion
cell whose axon belongs to the fourth group of fibers (and its pre-synaptic ancestors
of this ganglion, which extend though the layer of interconnecting neurons all the way
to the photoreceptors). About these fibers, Lettvin et al. wrote

If the spot of light disappears from the [the receptive field...the discharge begins

immediately, decreases slowly in frequency, and lasts a long time. It can be abolished

promptly by turning the spot of light on again. ...

... the responses occurs ...at both center and periphery of that field and that effect
of removing light from the periphery adds to the effect of a reduction of light at the

center, with a weight decreasing with distance.

in their section I (Introduction) and

... Darkening of a spot produces less response when it is in the periphery of the field
than when it is at the center. The effect of a moving object is directly related to its size
and relative darkness. The response is prolonged if a large dark object stops within
the field. it is almost independent of illumination, actually increasing as the light gets

dimmer. ...If the general lighting is sharply dimmed, but not turned off entirely, the
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consequent prolonged response is diminished or abolished after a dark object passes
through the receptive field. ...one turns of the light and sets up a prolonged response.
Then the amount of light which must be restored to interrupt the response gets less and
less the longer one waits. ...If we darken the general lighting only by a factor of 100,
we also get a prolonged discharge. However, if we turn of the light completely a few
seconds after the 100/1 dimming and then turn it back on to the same dim level, the
discharge is increased by the second dimming and is completely or almost completely
abolished by the relighting. The effect of moving a dark object through the field after
dimming is to impose a second dimming pulse followed by brightening as the object

passes

in their section III (Findings). This seems very complicated. We have settled for a

simple variation on this complex theme. This will be described in our next section.
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5 Our Definition of Dimming

In the frog’s retina, each receptive field is a two-dimensional region filled with a mosaic
of photoreceptors. In our abstraction, a receptive field means simply a set of elements
with we call, interchangeably, photoreceptors or pizels.

We reserve letter m for the number of photoreceptors in our receptive field. By

an ¢mage, we mean a sequence

€1a€2>--'7€m

of real numbers such that each & measures the light on the i-th photoreceptor on a
continuous scale between the black 0 and white 1.

In everyday language, “dimming” may refer to a protracted process. However,
Lettvin et al., talk about “sudden reduction of illumination” and “sudden darkening”.

Accordingly, we will examine changes in the image from time ¢, when the image is

€l(t>’€2(t)a- v >£m(t) (6)

to the next moment ¢t + 1, when the image is

Lt+1),&0E+D),...,En(t+1). (7)

If a pixel ¢ darkens from time ¢ to time ¢ + 1, i.e., &(¢) > & (¢t + 1), then we call this
pixel a dimming pixel. If a pixel lightens from time ¢ to time t+1, i.e., &(t) < &(t+1),
then we call this pixel a lightening pixel.

We declare that an image is dimming from time ¢ to time ¢+1 if all of the following

two conditions are satisfied.

1. The average brightness in the image at time ¢ + 1 is less then the average
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brightness sum at time ¢, in the sense that
1 & 1 &
p Z &Gt+1) < oy Z &i(t).
i=1 =1
2. The total number of dimming pixels is greater than some prescribed proportion,

say 10%, of the total number of the non-black pixels.

The two-dimensional geometry of the retina is completely irrelevant to this definition:
all that matters are the two sequences (6) and (7).

Condition 1 seems obvious. Condition 2 is used to filter out a certain kind of noise.
For example, take m = 25. If two pixels dim by 0.25 and the remaining 23 pixels
lighten by 0.01, then Condition 1 is satisfied and yet we do not want to say the image
is dimming: here, only two pixels darken while the whole rest of the background
actually lightens up. This example is illustrated in Figure 10, where the 25 pixels are

arranged in a 5 x 5 array. To filter out this kind of noise, we could insist that at least

0.50 | 0.50 | 0.50 | 0.50 | 0.50 0.51 | 0.51 | 0.51 | 0.51 | 0.51

0.50 | 0.50 | 0.50 | 0.50 | 0.50 0.51 { 0.51 | 0.51 | 0.51 | 0.51

0.50 | 0.50 | 0.50 | 0.50 | 0.50 | = | 0.51 | 0.51 [ 0.25 | 0.25 | 0.51

0.50 | 0.50 | 0.50 | 0.50 | 0.50 0.51 | 0.51 | 0.51 | 0.51 | 0.51

0.50 | 0.50 | 0.50 | 0.50 | 0.50 0.51 ] 0.51 | 0.51 | 0.51 | 0.51
t t+1

Figure 10: Condition 1 is satisfied but the image does not dim

10% of the total number of pixels be dimming. However, such a simple policy could
get frogs in trouble because it disregards the fact that totally black pixels cannot
darken any more. For instance, if a large predator completely blocks the light against
a background where 22 out of the 25 pixels are already black, then we would miss the
appearance of this shadow. The adjusted policy, where the total number of pixels is

replaced by the total number of non-black pixels, eliminates noise without exposing
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frogs to life-threatening danger.
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6 Observation on Dimming Detectors

6.1 Discrete Encodings of Real-valued Inputs

In all McCulloch-Pitts networks, the inputs (which are the real numbers) have a
different data type from the internal variables (which are bits). The fact that the
input data type differs from the data type of the internal variables reflects biological
reality. The photoreceptors (rods and cones) respond to light not by firing action
potentials, but by graded changes in membrane potential. Many of them synapse
on a single bipolar cell, which reacts to the combination of these graded inputs by
the usual zero-one output (firing or not firing). Accordingly, the initial layer of
our dimming detector must encode the real number input ¢ (measuring light on a
continuous scale from black 0 to white 1) as a sequence of bits. To do this, we coerce
§ into a discrete scale of k gray-scale degrees by setting = |£k], and then we encode
x as a sequence of bits.

Two encoding schemes spring to mind:

 unary encoding, where each integer x in the range [0, k] is encoded by a sequence

of k bits and the first x bits are set at 1;

e binary encoding, where each integer x in the range [0, k] is encoded by a sequence

of |log, k] + 1 bits as usual.

The binary encoding is more efficient (by a factor of three when k is twelve, a factor
of ten when k is 60), but it does not seem plausible that the frog’s eye works with
binary encodings. For instance, if £ is 50, then input 0.31 (coerced into gray-scale
degree 15) will be encoded into 01111, and input 0.32 (coerced into gray-scale degree

16) will be encoded into 10000. The relatively minor change in illumination, 1% of
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the whole range from the black to white, would force all five encoding neurons to flip

their on/off firing status. For this reason, we reject binary encoding as absurd.

6.2 All Dimming Detectors Must be Approximate

Let m be the number of photoreceptors in a receptive field and let each &;(¢) measure
the light on the i-th photoreceptor on time ¢ on a continuous scale between the black
0 and white 1. We would like to construct McCulloch-Pitts neural networks which,

given a sequence &1, &, ..., &y, of functions

&E:N—-R (t=1,2,...,m),
compute a single function

y: N — {01} (1=12,...,n)

such that y(t+A) = 1 for some positive integer constant A if and only if the receptive

field dimmed (in the sense defined in Section 5) from time ¢ to time ¢ + 1.
Unfortunately this cannot be done. Since McCulloch-Pitts networks do not work

with real numbers but only with their discrete approximations, they cannot test

conditions such that
m

Zfﬁ(t +1) < Zfz‘(t)-

i=1
They can only perform approximations of such tests. For example, they could com-

pute a bit ¢;(¢ + A) such that
e ci(t+A)=1whenever } - &(t+1) <>, &(t) —0.02m,
e c;(t+ A) =0 whenever > " &(t+1) > > &(1).
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(If 252, &) = 0.02 < o &t + 1) < o7 &(t), then ¢i(t + A) may be 1 or 0.)
Similarly, the non-black pixels in Condition 2 may be replaced by very dark pixels in
the sense of { < 0.01; a pixel might be declared dimming if &(¢t + 1) < &(t) — 0.02
and lightening if &(¢ + 1) > &(¢).

The dimming detector we are going to construct uses such an approximation of

our definition of dimming.

6.3 Biological Constraints

We will not pretend that our networks are models of the net dimming detectors studied
by Lettvin et al.: they react to a stimulus that is far simpler than the complex stimuli
described by Lettvin et al. and they react by firing a single spike rather than a slowly
vanishing sequence of spikes. Even so, we would like to keep the parameters of these

networks consistent with our knowledge of frog’s neuroanatomy.

o The number of inputs. In their experiments, Lettvin et al. confronted the frog’s
eye with an aluminum hemisphere that was used as a background for various
visual stimuli. They found that the receptive field of the dimming detectors is
about 15° large. This area covers about 0.7% ~ 0.9% of the hemisphere: since
there are one million photoreceptors of retina, we conclude that the number of
photoreceptors in the receptive field of a single dimming detector is between

7,000 and 9, 000.

o The size. Except for the single output (corresponding to a ganglion cell), each
neuron in our network corresponds to one of the connecting neurons (bipolars,
horizontals, and amacrines) in the frog’s retina. In Section 4.2, we noted that
in the frog, there are about one million receptors, 2.5 to 3.5 million connecting

neurons, and half a million ganglion cells.
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o The fan-in. We know that, in humans, a spinal motor cell receives about 10, 000
contacts and a Purkinje cell of the cerebellum receives approximately 150, 000
contacts. It seems reasonable to conclude that 10,000 is an upper bound (pos-
sibly a very generous one) on the number of pre-synaptic contact received by a

neuron in frog’s retina.

e The fan-out. We know that, in humans, the branches of the axon of one neuron
may form synapses with as many as 1000 other neurons. It seems reasonable to
conclude that 1,000 is an upper bound on the number of post-synaptic contact

sent by a neuron in frog’s retina.

6.4 Photoreceptors Must be Accessed in Groups

The real-valued data

El(t)7§2(t)7 ce asM(t)

that come from the M photoreceptors in the retina must be encoded by bits and

these bits must be stored for confrontation with the encoding of

When £ bits are used to encode each real number, we need at least £ neurons to
encode the number. Since the retina contains fewer than four million neurons other
than the photoreceptors and the ganglion cells, it can handle at most 4 x 10°/k real
numbers at a time; since M is about 10° this means that the M photoreceptors
cannot be handled one by one. The only way we see of getting around this problem

is to have each ganglion cell access the photoreceptors not individually but in groups.
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7 Our Dimming Detector

We split the entire set of 10° photoreceptors into 2,500 sections of size 400; each
receptive field consisting of 8,000 photoreceptors will be split into 20 sections.

Each section (which may belong to many overlapping receptive fields) is allotted
its own k + 2 neurons. When k = 100, the total number of neurons allotted to all
the 2,500 sections comes to slightly more than a quarter of a million. (These neurons
correspond to bipolar and horizontal cells in the outer plexiform layer.) Subtracting
this total from the available pool of 2.5 to 3.5 million neurons, we are left with 2.25
to 3.25 million neurons, which comes to between 4 and 7 neurons per ganglion cell.
(These neurons correspond to bipolar and amacrine cells in the inner plexiform layer.)
We are going to construct a dimming detector which uses, in addition to the neurons
allotted to the sections of the retina in its receptive field, three extra neurons (the
ganglion cell itself being the fourth one).

The way of grouping photoreceptors into sections is not unique. In this section,
we first demonstrate a network based on the above arrangement. At the end of this

section, we give a generic parameterized network in Section 7.6.

7.1 The Parameters

Our inputs are 8000 functions
& N—-R (j=1,2,...8000)

measuring the intensity of the light on the photoreceptors. These 8000 receptors form

20 sections in the retina, with 400 receptors in each section. We choose the numbering
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of the photoreceptors so that the i-th group consists of photoreceptors
400(i — 1)+45 with j=1,2,...400.

The average brightness «(t) of the receptive field at time ¢ is defined by
| 800

a(t) = 8000 ;fk(t)

The average brightness o;(t) of the i-th section of receptive field at time ¢ is defined

by
400

1
ai(t) = 200 ; Es00(i-1)+ (1)

Let us note that «a(t) is the average of
Oél(t), Oég(t), Ve Oézo(t).

7.2 The Objective

We want to construct a McCulloch-Pitts network which, given the 8000 input func-

tions &;, computes an output function
y: N—-R

such that, for some positive integer A and for some positive numbers €;, €, and &3,
the output value y(¢t + A) obeys the following rules.

CASE 1: o,(t) > &1 for more than ten of the twenty subscripts i.
In this case, we insist that

o ifa(t+1) < alt) — e
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and o;(t +1) < a;(t) — e3 for at least three subscripts 4, then y(t + A) = 1;
o if a(t +1) > aft), then y(t + A) = 0;
o if o;(t + 1) < o4(t) — €3 for at most two subscripts 7, then y(t + A) = 0.

CASE 2: o4(t) > €1 for at most ten of the twenty subscripts i.

In this case, we insist that

e ifalt+1) < a(t)—e;

and o4(t + 1) < o4(t) — €5 for at least two subscripts i, then y(t + A) = 1;
o if a(t+1) > a(t), then y(t + A) = 0;
o if 0;(t + 1) < o(t) — €5 for at most one subscript 4, then y(t + A) = 0.

Under all other circumstances, not covered by this list of six, y(t + A) may be 1

or 0, and we do not care which it is.

7.3 Stratified Networks and Pipelining

We say that a McCulloch-Pitts network is stratified if, for each of its directed edges
{u,v}, the level of v is one plus the level of u. When a network is layered, its

computations can be pipelined in the sense that processing input

€l(t>a€2(t)’ v >£m(t)

does not interfere with the processing of input

§1(t+ 1),§Z(t + 1)7' o >£m(t+ 1)

The dimming detector that we are going to construct will be stratified.
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7.4 Construction

The network begins with twenty encoding units. For each section i = 1,2,..., 20,

encoding unit E; receives 400 real numbers

Es00(-1)+5(t)

with j = 1,2,...400, after a unit delay, outputs 100 bits, e, (¢t + 1) with ¢ =
1,2,...,100, such that

100 | do0
Z eir(t+1) = [Z Z §4oo(i—1)+j(t)J :
o=1 J=1

This unit consists of 100 neurons, one for each gray-scale degree ¢ = 1,2,...,100,

working in parallel. The o-th of these neurons is defined by the threshold function

400
1oif Z§400(i—l)+j 2 4o,

Cig = Jj=1

0 otherwise.

Next come twenty dimming section detectors and twenty dark section detectors.
Each of these detectors is a single neuron.

For each section i = 1,2,...,20, the dimming section detector receives 400 real
numbers Es00(i-1)+;(t + 1) with j =1,2,...,400 from the i-th section photoreceptors
and 100 bits e, (t + 1) with o = 1,2,...,100 from the i-th encoding unit E;; after a
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unit delay, it outputs a bit §;(¢t +2). This neuron is defined by the threshold function

100 400
1 if4 Z €ic — Z €avo(i-1)+5 = 1,
0 = o=1 =1
0 otherwise.
For each section i = 1,2,.. ., 20, the dark section detector receives one bit e;; (t+1)

and, after a unit delay, outputs a bit v;(¢+2). This neuron is defined by the threshold
function

1 if —ey >0,
Vi =

0 otherwise.

The rest of the network consists of four neurons: Condition 1 neuron, Condition
2 neuron, memory neuron, and conjunction neuron.

Condition 1 neuron receives 2000 bits e;, (¢t + 1) with ¢ = 1,2,...,20 and ¢ =
1,2,...,100 from all encoding units and 8000 real numbers &;(¢+1) with¢ = 1,2,...,8000
from all photoreceptors. After a unit delay, it outputs a bit ¢1(¢ + 2).

This neuron is defined by the threshold function

20 100 8000
1 4 > en—» &>20,
c = i=1 g=1 j=1

0 otherwise.

Condition 2 neuron receives 20 bits §;(¢t+2) with ¢ = 1,2,...,20 from all dimming

section detectors and 20 bits v;(t + 2) with ¢ = 1,2,...,20 from all dark section
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detectors. After a unit delay, it outputs a bit ca(t + 3). This neuron is defined by the

threshold function

20 20
1 if Zdﬁ—O.lZm > 3,
=1 =1

0 otherwise.

The single memory neuron receives one bit ¢;(¢ + 2) from Condition 1 neuron and,

after a unit delay, outputs one bit ¢j(¢ + 3). This neuron is defined by the threshold

function

1 ifclzl,

0 otherwise.

Conjunction neuron receives one bit ¢} (¢ + 3) from the memory neuron and one
bit ¢cy(t + 3) and, after a unit delay, outputs a bit y(¢t + 4) as the ultimate output of

the network. This neuron is defined by the threshold function

1 ifc)+c 22,

0 otherwise.

Figure 11 shows the structure of the network. In the figure, there are two kinds of
bold arrows, dashed and solid. Both kinds of arrows represent a group of lines which

propagate a group of data; the dashed arrows propagate real numbers while the solid

arrows propagate bits.
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conjuriction

{€4Eo.. Eac) (vaﬁvém---ﬁmw)

Figure 11: Overall structure of the approximate network
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7.5 Analysis

Let us define
100

= Z eia’(t -+ 1)

In this notation, we have

100

[ Zeia(t—i—l) =.’L‘Z(t),
o=1
e §;(t+2)=1if and only if z;(t) — 1000;(t + 1) > 0.25,

o u;(t+3)=1Iif and only if z;(t) = 0,

20

o Ci(t+3)=ci(t+2)=1ifand only if Y xs(t) — 2000;(t + 1) >

i=1
Since
we have
100az(t) -1 < xz(t) < 1000&1(13),
and so

20
2000a(t) =20 < > mi(t) < 2000a(?).

=1
If ¢;(t + 3) = 1, then
Zm, > 20000(t + 1) + 5,

and so

2000c(t) > sz ) > 2000a(t + 1) + 5 > 2000c(t + 1).

If c;(t+3) = 0, then

sz ) < 2000a(t + 1) + 5,
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and so

20
20000(t) < > zi(t) + 20 < 2000a(t + 1) + 25.
=1

To summarize,

alt+1) < a(t) —0.0125 = ¢(t+3)=1 = alt+1) < at),

at+1) 2 alt) = alt+3)=0 = alt+1) > aft) - 0.0125

Figure 12 shows the relative positions between «(t) and a(t + 1) that trigger

Condition 1 unit to fire or block Condition 1 to fire.

{1 Y—— SOn’t' -« do not fire
KNow » ,
m » G(t+1)
a .
-00125 9

Figure 12: Condition 1 unit fires or not based on the relative positions between a(t)
and a(t + 1)

In addition, we have

e co(t+3)=1if and only if

20
D ait+2)>3
i=1
or
20 20
doait+2)=2and Y wm(t+2)>10
=1 i=1
or

20 20

D 6i(t+2)=1and Y un(t+2)=20.

i=1 i=1
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If 5z(t + 2) = 1, then
xz(t) 2 100a¢(t + 1) + 025,

and so

10004@(16) > xi(t) > 1000[¢(t + 1) +0.25 > 100a¢(t -+ 1)

If §i(t + 2) = 0, then
z;(t) < 100e4(t+ 1) + 0.25,

and so

1000;(t) < 2;(t) + 1 < 1000;(t + 1) + 1.25.

To summarize,

a@(t-l—l) < ai(t) - 0.0125 = 51(t+2) =1 = Cti(t'{‘ 1) < Oéi(t),

Figure 13 shows the relative positions between o;(t) and o;(¢ + 1) that trigger the

dimming section detector to fire or block the dimming section detector to fire.

don't

know
ait)

-0.0125

T | (- Ge———— o o not fire

> at+1)
at)

Figure 13: Dimming section detector fires or not based on the relative positions
between o;(t) and a;(t + 1)

Note also that,

u(t+3)=1 & z,(t) =0 < [10004(t)] =0 & a;(t) < 0.01,
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W(E+3)=0 & z(t) > 1 & [1000:(t)] 21 & au(t) > 0.01.

We conclude that the construction described in Section 7.4 accomplishes the ob-

jective set in Section 7.2 with A =4, £; = 0.01 and &9 = €3 = 0.0125.

7.6 Generalizations

Let us use k to represent the gray-scale degrees, s to represent the number of pho-

toreceptors in a section, and n to represent the number of sections in a receptive

field.

7.6.1 The Objective

In Section 7.1, we defined the average brightness a(t) of receptive field at time ¢ and
the average brightness a;(t) of the i-th section of receptive field at time ¢ with s = 400

and n = 20. The generalized definitions of «(t) and o4(t) are

aft) = = &)
=1

1 38
ay(t) = " Zﬁs(z-l)ﬂ‘(t)-
i=1

The generalized McCulloch-Pitts network, given the sn input functions ;, com-
putes an output function

y:N—->R

such that, for some positive integer A and for some positive numbers &1, €5, and €3,

the output value y(t + A) obeys the following rules:

o if a(t +1) > af(t), then y(t + A) = 0;
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o if a(t+1) < aft) — ey,
and if o (t4+1) < oy (t)—e3 for more than 10% of subscripts i such that o;(t) > e,

then y(t + A) =1;

o if ;(t + 1) < a;(t) — €3 for at most 10% of subscripts 7 such that o;(t) > e,
then y(t + A) = 0;

Under all other circumstances, not covered by this list of three, y(t + A) may be

1 or 0, and we do not care which it is.

7.6.2 Construction

The network begins with n encoding units. For each section i = 1,2,...,n, the
encoding unit E; receives s real numbers &,;—1)4,(t) with j = 1,2,...,s and, after a

unit delay, outputs k bits, e;,(¢t + 1) with o = 1,2,..., k, such that

Zezat+1 [ ngz 1)+_7 J

This unit consists of k¥ neurons and the o-th neuron is defined by the threshold

function

?

P?‘l'—‘

if - Z fs(z l)+j =

0 otherw1se.

Next come n dimming section detectors and n dark section detectors. Each of
these detectors is a single neuron.
For each section ¢ = 1,2,...,n, the dimming section detector receives s real

numbers &y;—1)4;(t + 1) with j = 1,2,...,s from the photoreceptors in i-th section
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and k bits e;o(t + 1) with o = 1,2,...,k from the i-th encoding unit E;; after a unit

delay, it outputs a bit §;(¢ + 2). This neuron is is defined by the threshold function

1 1< 1
1 if P E €ig — 3 E Es(i-1)4j 2 3
o=1 j=1

0 otherwise.

For each section i = 1,2,...,n, the dark section detector receives one bit e, (t+1)
and, after a unit delay, outputs a bit v;(t+2). This neuron is defined by the threshold

function

1 if —81120,

0 otherwise.

The rest of the network consists of four neurons: Condition 1 unit, Condition 2
unit, memory neuron, and conjunction unit.

Condition 1 unit receives kn bits e;;(t+ 1) with i =1,2,...,nand 0 = 1,2,...,k
from all encoding units and sn real numbers &;(t + 1) with 4 = 1,2,..., sn from all
photoreceptors. After a unit delay, it outputs a bit ¢;(t + 2). This neuron is defined
by the threshold function

an

I . 1 1
1 1fEZZew—£;€jZ;y

¢ = i=1 o=1

0 otherwise.

Condition 2 neuron receives n bits d;(t + 2) with ¢ = 1,2,...,n from all dimming
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section detectors and n bits v;(t4+2) with ¢ = 1,2,...,n from all dark section detectors.
After a unit delay, it outputs a bit co(t + 3). Condition 2 unit is defined by the

threshold function

1 if Zn:5¢+0.1iui > 1+ 0.1n,
i=1 i=1

0 otherwise.

Co =

The single memory neuron receives one bit ¢; (t +2) from Condition 1 neuron and,
after a unit delay, outputs one bit ¢} (¢ + 3). This neuron is defined by the threshold

function

1 ife > 1,

0 otherwise.

Conjunction neuron receives one bit ¢j(t + 3) from the memory neuron and one
bit co(t + 3) and, after a unit delay, outputs a bit y(t + 4) as the ultimate output of

the network. This neuron is defined by the threshold function

1 ifc+e>2

0 otherwise.
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7.6.3 Analysis

In Section 7.5, with k = 100, z;(t) is defined as an integer in range [0, 100] which is

encoded by e;1(t), ei2(t),. .., €i100(t). The generalized definition of z;(t) is

k
.’L‘Z(t) = Z ew(t -+ 1)
o=1
In this notation, we have

k
o D eilt+1)=uazi(t),
o=1

o 4;(t+2)=1if and only if

1
Ef)%(t) - Oéi(t + 1)

v
®w | =

)

which implies

2i(t) — kag(t + 1) >

» |

o y(t+2)=1Iif and only if z;(t) = 0,

o (i (t+3)=ci(t+2)=1if and only if

=3 ) -t 1) 2

which implies

Since

zi(t) = Lkoy(t)].

47



we have

kai(t)—l < CL‘i(t) < ka¢<t),

and so

kna(t)—n < En:acz(t) < knaft).

If ¢y (t +2) =1, then

and so

and so

kn
kna(t) < in(t) +n < kna(t+1)+ —~ + n.

To summarize,

o | =

alt+1) < a(t)—<%+ > = cat+2)=1 = alt+1) < at),
>

a(t+1) oft) = alt+2)=0 = alt+1) > a(t)—(%+-i—)

Figure 14 shows the relative positions between a(t) and a(t+1) that trigger Condition
1 unit to fire or block Condition 1 to fire.

In addition, we have
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don't

know do not fire

fire —

» aft+1)
aft) alt)
- {1/k+1/s)

Figure 14: Condition 1 unit fires or not based on the relative positions between a(t)
and a(t +1)

e ¢(t+3)=1if and only if

znjai(tw) > 0.1 (n—zn:lfl(t"r‘2>> +1.

i=1

If 6;(t + 2) = 1, then

and so

kai(t) > SL'l(t) > kai(t + 1) + é > kai(t + 1)

If 6;(t + 2) = 0, then

k
l‘i(t) < kai(t + 1) + ;,

and so

k
ka(t) < zi(t) + 1 < kay(t + 1) + =+ 1.
To summarize,

1

at+1) < ai(t)—< +g> = 6t+2) =1 = alt+1) < alt),

1

1

k
1

> Oli(t) = 5i(t+2)=0 #Qi(t—}“l) > Ozi(t)— (E+—)

Oéi(t+ 1) p
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Figure 15 shows the relative positions between ;(t) and o;(t 4+ 1) that trigger the

dimming section detector to fire or block the dimming section detector to fire.

— fire :ﬁ”; lt———— o 1ot fire
110 > a(t+1)
ai(t) a(t)
- (1/k+1/s)

Figure 15: Dimming section detector fires or not based on the relative positions
between o;(t) and o;(t + 1)

Note also that,

el B

vit+3) =1 & z:;(t) =0 & |[kai(t)] =0 & w(t) <

x| =

We conclude that the construction describe in Section 7.6.2 accomplishes the ob-

jective set in Section 7.6.1 with A =4, ey =1/k and ey =3 = 1/k + 1/s.

7.6.4 Parameters

Parameters k, s, and n are all positive integers such that
k
7000 < sn < 9000, and 3 < 3.5.

In addition, one of the purposes of Condition 2 unit is to filter out the noise sections,
which means that n cannot be too small (s cannot be too big). We require that

n > 10. Moreover, in section 7.6.3, we analyzed that

o if at) — (1/k+1/s) < a(t +1) < a(t), then cl(t + 2) can be either 0 or 1;
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o if ;(t) — (1/k +1/s) < o4(t + 1) < a4(t), then §;(t + 2) can be either 0 or 1
withi=1,2,...,n.

We need to make the error term (1/k 4 1/s) as small as possible. We can accept an

error term smaller than 0.02.
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8 Conclusions and Future Research

It was relief to find, after several failed attempts (some details of these attempts are
given in Appendix A and Appendix B), a McCulloch-Pitts network which approxi-
mates the net dimming detectors of Lettvin et al. (1959) and fits (even though just
barely) the constraints reported by Maturana (1959). Here are some of the conclu-

sions that we have come to in the course of this work:

e Biological McCulloch-Pitts networks must approximate the inputs that their
afferent neurons provide on continuous scale by numbers on discrete scale and
they must encode the discrete approximations by sequences of bits. In this

context, binary encodings seem absurd.

e Biological McCulloch-Pitts networks do not carry out exact computations, but

(like the network we construct in Section 7) work within a small margin of error.

e Simple arithmetic suggests that, rather than being accessed individually, pho-
toreceptors in the frog’s retina are accessed in groups. It seems that the average
number of photoreceptors in such a groups is on the order of hundreds and the
number of these groups is on the order of thousands. Each receptive field is a
set of such groups and each group may belong to many overlapping receptive

fields.

There are two obvious directions for future research. One is to refine the work
presented in this thesis to construct McCulloch-Pitts networks that simulate the net
dimming detectors reported by Lettvin et al. The other direction is to construct
McCulloch-Pitts networks that simulate the behavior of other ganglion cells.

Much more is known today about receptive fields than was known in 1959. Tessier-

Lavigne (1991) is a survey of some of this progress.
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Appendix A Approximate Bit Counting

By a (c,e)-approzimate bit counter (where ¢ and e are positive constants) with n
inputs and ¢ outputs, we mean a McCulloch-Pitts network which, given input bits

Z1, Xy, - - -, Tpn, cOmputes output bits y1,y,, ...,y such that

n

t 1 t
%Z%’S%in<;2w+& (8)
=1 =1

i=1

We are interested in (¢, €)-approximate bit counters with huge n and small ¢, because
they allow us to approximately compare sums of n bits: when the counter transforms
inputs z1, 3, ..., s, into outputs yi, yo, ...,y and transforms z}, ), ...,z into out-

puts ¥i, s, ..., ¥s, we can be sure that
1< 1< 1 &
TV I ute = =Y ai>=
j=1 j=1 i=1
i 1< 1 & 1
T U<Ivime =~y E<—Y
7=1 I=1 i=1

Theorem 1 For every choice of positive integers d, s,t,n such that n = s%, there is

a (1,d/t)-approzimate bit counter with n inputs, t outputs, depth d, size
(sP+ 47 4 1),

and each neuron having fan-in st and fan-out t.

Proof. We are going to construct networks which satisfy

t n t
si7t Zyj < z::cz < sd_l(z y; + d).
=1 i=1 =1
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Let us describe the construction in a recursive way. When d = 1, the network consists

of ¢ neurons in parallel; its i-th neuron outputs

n
1 Y @ > s,
i=1

0 otherwise.

When d > 1, we split the n input bits into s groups, each group having precisely
s%=1¢ input bits. For each r = 1,2,...,s, let G, denote a set of subscripts i such that
input bit z; belongs to the r-th group. Recursively, we construct s networks such
that the r-th network, given input bits z; (i € G,), computes output bits Z(r—1)t+j
(=1,2,...,t) such that

¢
5?7 Zz(r—l)t+j < Z Z; < Sd_l(z Zr-1)e+j + (d = 1)); 9)

j=1 i€Gr j=1

Then we add a copy of the network built when d = 1. This copy, given input bits z

(1=1,2,...,st), computes output bits y; (j = 1,2,...,t) such that

t st t
sZijZz¢<s(Zyj+l). (10)
j=1 i=1 j=1

From (9) and (10), we get

o~

8 t 8

anmi = i Z T 2 Sd_l(z Zz(r—l)t+j> > gi-1 2= g%
i=1

r=1 ieG, r=1 j=1 i=1 j

(]~
&

i

1

il
1
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and

sz Z Z Ty < Z Z(r— 1)t+] - 1)))

i=1 r=1i€Gy 'r=1 Jj=1
t

8

= ¢! Z Z Zr—1)t+5 + 8(d — 1)5d—1)

r=1 j=1

st

- sd—lzzr_i_ (d—

r=1

t
< s sy + 1)+ (d - 1)s?
J=1

t

= Sd(z Y + d)v
j=1

which proves (8) O

Theorem 2 For every choice of positive integers n and t such that n > 100¢t, there

is a (c,2/t)-approzimate bit counter with n inputs, t outputs, and 0.8 < ¢ < 1;

o this network has depth two,
o cvery neuron has fan-in at most /1.25nt,
o cvery neuron has fan-out t.

Proof. For every real number z such that z > 100, the interval [z, 1.25z] includes at
least one square of an integer. In particular, the interval [n/t,1.25n/t} includes the

square of some integer s. Let us write N = s%t and note that
n<N <L 1.25n.

By Theorem 1, there is a (1,2/t)-approximate bit counter with N inputs and ¢ out-

puts, where the depth is two, every neuron has fan-in s, and every neuron has fan-
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out ¢. This counter provides an (n/N,2/t)-approximate bit counter with input bits
Z1,%a,. .., Tyt given input bits 1, 23,...,2,, we set ; = 0 whenever n < ¢ < N and

observe that

N n

i=1

O

Theorem 3 For every choice of positive integers n and t such that n > 2400t, there

is a (c,3/t)-approximate bit counter with n inputs, t outputs, and 0.8 < ¢ < 1;
o this network has depth three,
e cvery neuron has fan-in at most v/'1.25nt2,

o cvery neuron has fan-out t.

Proof. For every real number z such that z > 2400, the interval [z, 1.25z] includes
at least one cube of an integer. In particular, the interval [n/t,1.25n/t] includes the

cube of some integer s. Let us write N = s3t and note that
n< N <1.25n.

By Theorem 1, there is a (1,3/t)-approximate bit counter with N inputs and ¢ out-
puts, where the depth is three, every neuron has fan-in st, and every neuron has
fan-out ¢. This counter provides an (n/N, 3/t)-approximate bit counter with input
bits x1,%3,..., T, given input bits z1,xz,...,2,, we set 7; = 0 whenever n <i < N

and observe that

N n
= 1=
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Before we came up with the idea of that photoreceptors must be accessed in
groups, there were two critical issues we need to work out: one was that the size of
the network exceeded the the total number of neurons in the retina; the other one
was that the fan-in of a McCulloch-Pitts neuron exceeded the upper bound of the
total number of pre-synaptic cells a single neuron can have.

The approximate bit counter was devised by my supervisor, Dr. Vasek Chvétal,
to count a huge number (more than 100, 000) of bits (this task cannot be done by a
single neuron).

After we divided the photoreceptors in groups, the number of inputs are lowered
below the constraint number (10,000). Therefore, we can use a single neuron to

accomplish the counting.
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Appendix B Assumability

Definition 1 For a positive integer m, a Boolean function f is called m-summable
if there are (not necessarily distinct) zero-one vectors Xy, g, . .., xx and Y1,¥2, -+, Yk

such that 1 < k <m and

k k
inzzyh and f(x;)=1, f(yi)=0 foralli=1,2,...,k,
i=1 i=1

If f is not m-summable, then f is called m-assumable.

Theorem 4 (Elgot, 1961)(Chow, 1961) A Boolean function f is a linear threshold

function if and only if it is m-assumable for every m.

Proof. The “only if” part. Let x;,Xa,...,Xi and yi1,¥2,...,yx be zero-one
vectors such that f(x;) = 1 for all ¢ and f(y;) = 0 for all j. If f is a threshold
function, represented by weight vector w and and threshold 8, then we have wlx; >

for all i and wTy; < 6 for all j. Therefore, we have

k k
wTin > kb > wTZyj,
i=1

i=j
which implies that
k k
D_xi# Yy
i=1 j=1
The “only if” part. We will use the following two theorems:

(i) A system:

Zaz’jxj <b foralli=1,2,..,m (11)
=1
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is unsolvable if and only if there are non-negative numbers uy,uy, ..., Uy such

that

u; 20 foral i=1,2,...,m,

m
Za,-juizz() forall j=1,2,...,n,

i=1

m
Z bu; < 0.
g=1

(ii) If a system Ax = 0,x > 0,x # 0 is solvable and if A has rational entries, then

there exists a solution x with integer entries.

We want to prove that if f is m-assumable, then f is a threshold function. This
is equivalent to proving that if f is not a threshold function, then f is summable.
Let x1,%2,...,Xs and y1,y3, ...,y be vectors in {0,1}" such that f(x;) =1 for

all 7 and f(y;) = 0 for all j. If f is not a threshold function, then the system

wix; >0, foralli=1,2,...,s
(12)
wlyj<@,foral j=1,2 ...t
(in variables wi, wo, . .., w, and @) is unsolvable. By scaling, system (12) is unsolvable
if and only if system
—wlix;+6 <-1, foralli=1,2,...,s
(13)

wly;j—6 <0, foralj=12...,t¢

is unsolvable.
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By theorem (i), if system (13) is unsolvable, then there exist nonnegative numbers

A1y A2y ..oy As and g, po, . . ., pe such that

s t
Z)\imir—Zujyﬂ =0 forall r=1,2,...,n,

i=1 Jj=1

K] t
DN+ (—m) =0,
i=1 j=1

/\13)‘2a"'7)‘87#’17/'1/27"',/-% 2 0.

(14)

By theorem (ii), there exist integers \j, A, ..., Ay and py, g, ..., ¢ with the same

properties.

Writing xi7 = (%i1, Tia, . .., @) for all ¢ and ;7 = (yj1,¥j2, - .., Yjn) for all j, we

record system (14) as
8 t
S =Y u
i=1 j=1
] t
S =
i=1 j=1

With k = Z Ai, system (15) can be spread out as:

i=1

k
Tyt F Tt Ta o d Dok T+ T,
A ~ vy N ~ v _~

A1 A2 As
B4
= Lt o Autpt o Amrootut Ty
Hy b2 1223

(15)

From Equation (16), we can see that f is m-summable for all m such that m > k. O

Anthony (2001) and Chvéatal and Hammer (1977) gave proofs for this theorem

from two different angles. According to their ideas, Dr. Chvétal helped me to rewrite

62



the proof trying to make it easier to be understood.

Before we stabilized our net work model, we had attempted to use Boolean circuits
to implement the dimming detector. The critical issue of the Boolean circuit is that
the depth of the network is very large which means there is a huge delay in the circuit.

Threshold gates can be applied in Boolean circuits to efficiently reduce the depth
of the circuits. The theorem in this appendix provides mathematical criteria to de-

termine which Boolean circuit can be replaced by a threshold gate.
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