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Abstract 

Complexity-Based Classification of Software Modules 
Jian Han Wang 

Software plays a major role in many organizations. Organizational success depends partially on the 

quality of software used. In recent years, many researchers have recognized that statistical classification 

techniques are well-suited to develop software quality prediction models. Different statistical software 

quality models, using complexity metrics as early indicators of software quality, have been proposed 

in the past. At a high-level the problem of software categorization is to classify software modules 

into fault prone and non-fault prone. The focus of this thesis is two-fold. One is to study some se­

lected classification techniques including unsupervised and supervised learning algorithms widely used 

for software categorization. The second emphasis is to explore a new unsupervised learning model, 

employing Bayesian and deterministic approaches. Besides, we evaluate and compare experimentally 

these approaches using a real data set. Our experimental results show that different algorithms lead to 

different statistically significant results. 
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CHAPTER 1 I 

Introduction 

With the increasing need of complex computer systems, the advance in hardware performance, the size 

and complexity of softwares used is inevitably growing rapidly. Thus, more and more energy and inves­

tigation are devoted to the software quality field to seek techniques that can accurately reflect software 

performance and reliability [1 ]. Software is composed of a large number of relatively independent units 

called modules which perform certain functions [2]. One way to test software quality is to determine 

the number of faults in each module. These faults may be related, for instance, to changes ] happening 

while the software is executing [4] and are in general in a small portion 2 of the modules [6,7}. Most 

of the time, people are not concerned about the exact number of changes, rather than setting a thresh­

old. If the number of faults (i.e defects in a program that can cause incorrect execution [2]) found in 

certain module exceeds this previously set criterion, it is regarded as fault-prone, otherwise non fault-

prone [8,9]. For example, if a threshold of two faults is set, each module having two or more changes 

will be assigned to the fault-prone group and considered unstable and with high-risk. 

A software prediction model is viewed as an empirical tool using a certain algorithm to forecast modules 

types (i.e fault-prone or non fault-prone) [10]. A key common characteristic of these prediction models 

is that they establish a relationship between the measures of modules attributes and the types [11]. The 

fundamental construction of the predictive models is based upon the faults and corresponding measures 

collected from past similar programme development and maintenance scenarios. When the model is 

built, we can determine the quality and reliability of new modules, if the measures of their attributes 

are in hand. The understanding of the modules through prediction models helps target high-risk mod­

ules which need priority attention, extensive testing, redesign and improvement in early life cycle [12], 

'See [3] for a discussion about the types and classes of changes that may occur. 
2According to the 80/20 rule, about 20 percent of a software system is responsible for 80 percent of its errors, costs and 

rework [5], 
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Chapter 1. Introduction 

which is very valuable, cost-effective, and improve the efficiency of inspection efforts [13]. It is not 

acceptable to postpone the assurance of software quality until the product's release. For instance, in 

telecommunication or military systems [8-10,14,15], if faults are not early identified, but found later in 

operational phase, any slightly changed signal or message used to communicate will likely cause expen­

sive consequences. In addition, delaying correction in testing and operational phase may result in higher 

cost. Conversely, knowing the troublesome modules in time will guide the designers to optimize the de­

velopment process and allocate the efforts to the right modules in dire need of being enhanced [16]. For 

example, predicting the high-risk modules during the design phase allows designers to refine or restruc­

ture the system to reduce its complexity. And if those are identified in the implementation phase, the 

majority of the test resources will be assigned to which are most likely to cause quality problems. Thus, 

a software predictive model, which can categorize program modules into fault-prone or non fault-prone, 

not only locate the troublesome modules earlier, but also benefits the designers to effectively use the 

resources to the accurate ones, which have internal faults, with the utmost probability. In addition, these 

models may even be used to guide maintenance activities during the operations phase [17,18]. 

Since software categorization plays a critical role in the software quality field, nowadays more and 

more modeling pattern recognition [19], statistical analysis, and machine learning [20] techniques are 

employed in building predictive models such as neural networks [21,22], discriminant power [23], fuzzy 

classification [24], classification trees [5,19,25-27], regression trees [28], support vector machine, dis­

criminant analysis and finite mixture models. All these techniques are employed to build predictive 

models and extract information from massive data, this process is called "learning". In this thesis, two 

types of learning algorithms are studied, supervised and unsupervised. Supervised learning, as the name 

indicates, needs training data sets which are provided to support the extraction of rules and pattern out, 

to generate a discriminant function by looking at the input and output of the learning data sets. Then, 

test data sets apply this discriminant function to map input observations to desired outputs, fault-prone 

or non fault-prone, to evaluate the generalized ability of the built predictive models. Normally, training 

and test data sets are randomly selected from an identified data set with observations and their labels, 

collected from previous projects. Despite the great interest in prediction models, only few studies have 

been devoted to compare and evaluate the different techniques used. Unsupervised learning algorithms 

only use the model observations, having no need of their corresponding labels. In this context, unsu­

pervised learning algorithms deserve much more focus and development. However, there are only few 

unsupervised algorithms that have been used by the software engineering community. 

This thesis is composed of four chapters. The introductory chapter, presents the recent situation in 
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Chapter 1. Introduction 

software categorization domain. The second chapter begins with the description of several widely used 

methodologies applied in software categorization context, then in order to make an evaluation and com­

parison based on recognized indicators, we conduct an experiment by using real data set. Consequently, 

we establish a new unsupervised algorithm, called finite Dirichlet mixture model, examined by deter­

ministic maximum likelihood and Bayesian approaches in the third chapter. In the last chapter, we 

summarize the achieved results and conclude this thesis. 
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I 
CHAPTER 

Empirical Evaluation of Selected Algorithms 

for Complexity-Based Classification of 

Software Modules 

In this chapter, we will perform a survey of selected algorithms including unsupervised and supervised 

ones, for software categorization. Using a real data set, the classification results are compared and 

analyzed. 

2.1 Modules Representation Using Complexity Metrics 

The different classification approaches that we will describe in this thesis represent each software mod­

ule using complexity metrics which have been developed to measure software quality and capture mod­

ules features [2,4,29-31]. Indeed, each module is considered to be a multidimensional vector in the 

complexity metrics space. These metrics are not only part of measurable ' software attributes which 

can be gathered in the early life cycle of software design, but also are proven indicators which de­

scribe the software complexity and analyze its improvement [35,36]. In many previous studies, it was 

observed that the software complexity is directly related to software quality and fault-correction activ­

ity [2,37-40], which means, for instance, that fault counts and change counts are highly correlated. 

Thus, measures of software complexity are good indicators understanding and modeling the quality of 

software. 

Software metrics are constructed by a variety of measures of program codes. Many product metrics 

'See [32—34], for instance, for interesting discussions about measurement theory in software engineering. 
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and techniques to evaluate them have been proposed [41^+3]. In particular, Lines of Code (LOC) 

is generally closely related to the number of faults found later when executing software. In addition 

to the Lines of Code, there are other well-known and widely used measures of product metrics. For 

instance, Halstead's software science [44] is an approach dedicated to build software complexity mea­

sures by identifying a set of basic elements describing the modules, such as operands and operators [45]. 

Operands refer to variables and constants, and operators indicate symbols or combination of symbols 

that affect the values of operands. The basic measures of this approach is based upon four scalar num­

bers derived directly from the module's source code: (1) the number of unique operators (2) the number 

of unique operands (3) the total number of operators (4) the total number of operands. Furthermore, the 

basic Halstead complexity measures are combined in a number of ways to produce additional measures, 

which are widely adopted as indicators in vast majority cases. Halstead's complex metrics are popularly 

employed in evaluating mainstream programming, such as Fortran and Pascal. 

During the past decade, object-oriented approaches have been extensively used in software development 

environments. The conceptual and structural nature of these approaches, have created new challenges 

in the software quality field such as exploring new and special metrics [46,47], and assessing software 

quality in object-oriented environments [48]. A well-known example is Chidamber and Kemerer's met­

rics suite proposed in [49] and widely studied and evaluated in the literature [46,50]. 

The main reason that software complexity metrics are widely used, is that they can be collected in the 

very early software life cycle. Some of them are obtained directly from measuring the source codes and 

high-level design, and some are even taken from the software specifications. However, since part of the 

components of complexity metrics is the combination of some of the others, there are potential linear 

relationship within them [51,52]. Besides, some of the metrics used may be redundant with marginal 

contribution [53]. Thus, it is necessary to explore the structure of observations to understand the mu­

tual collinearity existing within the components [54]. In this thesis, we adopt principal components 

analysis technique to investigate the underlying relationship between every two predictors and process 

observations beforehand. 

2.2 Statistical Methods 

Different techniques have been proposed to develop a predictive relationship between software com­

plexity metrics and the categorization of the modules into fault-prone and non fault-prone 2. These 

2Note that some studies have re-examined the analysis under the assumption that only two classes can be distinguished by 
considering a number of differentiable groups instead of two (See [55,56], for instance). 
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predictive models are built generally from examples [20] using training data sets composed of labeled 

observations (i.e modules taken, for instance, from historical projects). Then, according to these built 

models new unlabeled modules can be identified as fault-prone or non fault-prone which allow software 

engineers to detect troublesome modules in the early life-cycle of a software product. Before building a 

quality prediction model, an important step generally implemented is validating [57] and analyzing the 

software metrics used, to examine the interrelationship among them, to reduce the dimensionality of the 

observations describing the modules and then simplifying the quantity of calculations. Note that the val­

idated metrics can then be applied on multiple projects [58]. Principal Components Analysis (PCA) is 

the most used technique for this task and allows the extraction of the most relevant information brought 

by the used metrics. In the next section, we will introduce these most successful techniques in details, 

mainly centering around their usefulness in software quality prediction. 

2.2.1 Principal Components Analysis 

Principal Components Analysis (PCA) is a widely used exploratory multivariate technique [59]. Sup­

pose we have a set of N modules X = ( X I , X 2 , . . . , X J V ) , where each module is represented by a 

d-dimensional vector, of complexity metrics xu,l = l,...,d,X{ — (xn,Xi2,Xi3,..^Xi,i) G Md, 

i = 1 , . . . , JV, where two or more metrics have high degree of linear correlation. This is called mul-

ticollinearity, and it is a major problem in many models such as regression analysis built on the basic 

assumption that selected variables are independent [29]. When multicollinearity exists among some 

metrics, the established statistical model become unstable, and coefficients parameters estimated by 

training data sets are very sensitive [15]. Besides, the model will not be robust enough to forecast re­

sponse variables of new observations. A solution to this problem is the application of PCA to transform 

correlated metric data into orthogonal variables. As in practice, software complexity metrics are often 

found highly correlated to each other and are a linear combination of a small number of orthogonal 

metric domains [60], PCA has been applied in many works [7,10,15,61-63]. 

PCA finds a linear transformation WT which maps the d-dimensional metrics vectors space into a new 

space with lower dimension dnew < d. The d"""-dimensional vectors x"€W are given by: 

3-new = WTX. ( ] ) 

With PCA we try to find the optimal projection E which maximizes the determinant of the scatter matrix 

WTY,W of the new projected samples Xnew = (x?ew,..., xnjfw) 

£ = a rgmax |W r EW| (2) 
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where S is the scatter matrix of the original data 

E = £(*,- - x)(Xi - x)T (3) 

x is the mean vector of X 

* = jsr^at< (4) 

and 1? = [2?i,... ,£^.«.] is composed of the d-dimensional eigenvectors of S corresponding to the 

dnew largest eigenvalues [64]. 

2.2.2 Discriminant Analysis 

Discriminant Analysis technique [59] is applied when we attempt to build a predictive model of groups 

membership based upon observed characteristics of each observation (i.e module). In software catego­

rization case, this technique generates a discriminant function which can classify software modules as 

either high or low risk according to the software complexity metrics [7-9,15]. This discriminant func­

tion, generated from a set of observations of labeled modules, can then be applied to new observations 

with software measurements but unknown groups membership. There are several discriminant analysis 

models (i.e linear, non linear and logistic discriminant model) that can be chosen depending on the data 

type of predictive variables such as all quantitative, all qualitative or mixed [65]. 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) was used extensively by software engineering researchers to both 

assess software quality [10,15] and evaluate software metrics [66,67]. LDA assumes that the classes 

are linearly separable and follow homoscedastic gaussian distributions. Under this assumption, one can 

show that the optimal subspace where we can perform the classification is given by the vectors W which 

are the solution of the following generalized eigenvalue problem 

HbW = \X„W (5) 

where £ „ is the within-class scatter matrix and given by 

M tij 

Ew = ^2'^2(xi-xj)(xi-xj)
T (6) 
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where rij is the number of vectors in class j and Xj is the mean of class j . £& is the between-class 

scatter matrix and given by 
M 

^^Ypj-^x^-xf (7) 
3=1 

where M is the total number of classes. The linear discriminant model generally used, to differentiate 

fault-prone from non fault-prone modules, is based on the following generalized squared distance: 

D?(x) = {x- XJ)T-L-\X - xj) (8) 

where, Xj represents the mean vector of class j € {1,2} and Ep is the so-called pooled covariance 

matrix given by: 

Sp = S=i^i (9) 
E;= .ini 

PA*) = ^ 2 _,,o J , x (10> 

where S j is the covariance matrix of class j and rij represents the number of modules in class j . Thus, 

the posterior probability of membership of x in class j is : 

According to the discriminant function given by the previous equation, a vector x is assigned to the class 

j yielding to the greater posterior probability. Despite its effectiveness, a major inconvenient of LDA is 

the Gaussian assumption which is not the best choice [61]. A solution to this problem is nonparametric 

discriminant analysis. Another major drawback of LDA is the linearity of the classification surface. 

To overcome this problem, SVMs can be used to offer both linear and non-linear flexible classification 

surfaces. Moreover, discriminant analysis is less appropriate, when many of the metrics are discrete and 

an alternative approach in this case is logistic regression [68]. 

Nonparametric Discriminant Analysis 

Nonparametric Discriminant Analysis (NDA) does not make assumptions about the distribution of the 

data and was widely used for classification in the case of software quality modeling [7-9,61,69-71]. 

Let fj be the multivariate probability density function representing class j . Nonparametric discriminant 

analysis is based on the empiric estimation of the densities fj which gives an approximation fj to it as 

the following: 
1 _"* 

fj(xi\X) = —Y^Kj(xi\xjk,\) ( l l ) 
3 j = i 



where Kj(xi\xjk, A) is a multivariate normal kernel on vector Xj, with modes at Xjk which is a vector 

in class j , and given by 

Kjixilx^X) = (27rA2)-^/2|EJr
1/2exp((^)(xi - xik)

TY,-jx{xi - xjk)) (12) 

where A is a smoothing parameter chosen by optimizing the misclassification rates of cross validation on 

the training data set [69]. Then, the classification is based, in the case of our problem, on the following 

rule 

{ 1 if f}(x>) -> V2. 
hfri) "i (13) 

2 otherwise 
2.2.3 Multiple Linear Regression 

Multiple linear regression [72] performs a summary of the relationship between the module types, fault 

prone or non-fault prone, and the software complexity metrics, which is represented as a multivariate 

linear regression model. Here the determined module type, so-called response variable or dependent 

variable, is denoted as Y, and the software complexity metrics, which are composed of independent 

indicators, are represented as a .̂ Written mathematically, the standard multiple regression is, 

Yi ~ A> + PlXil + 02Xi2 + - + PiXid + £i (14) 

where fa are the coefficient parameters, and e, are normally distributed random variables, called error 

terms on the assumption that mean equals to 0 and variance is unknown and constant. Some approaches 

are widely employed to estimate the parameters, such as least square estimations, least absolute value 

estimation, relative least squares and minimum relative error procedures [73]. Least square estimation 

is the most used method among them, and the estimated regression model parameters are yielded by 

minimizing Y,iLi(Yi - Yi)2, where Yt = /?0 + ftaru + 02Xi2 + — + faxid, % and & represent esti­

mated values. 

Multiple linear regression models are built from a set of potential large number of predictive terms, 

and a subset of significant independent terms should be determined to enter into the multiple regression 

models [74]. Some techniques are employed for adding or removing explanatory variables from the 

model: forward selection, backward elimination and stepwise regression, which are all iterative proce­

dures. Forward selection starts with an empty subset in the model and add one explanatory variable 

(which most contribute to the model) at a time, continuing the iterations until reaching a certain stop 

criterion. On the contrary, backward elimination beginning with all the predictors, removes one of them 

(considered the most redundant) in every iterative procedure. Stepwise regression [74] can be referred 
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as a forward selection with replacement. In each subsequent iterative step, the model is evaluated, us­

ing computed statistical significance, with or without a potential predictor to see if it contributes to the 

explanatory power of the model. After determining the most significant complexity metrics and estimat­

ing the model parameters, the linear combination of the predictors can be used to predict if the future 

modules are high-risk or not. 

2.2.4 Logistic Regression 

Logistic regression [75] was extensively used in software engineering for both metrics validation [46] 

and modules classification [12,18,68,76-78]. It is a widely applied statistical modeling technique 

when the dependant (i.e response) variable has only two possible values which is the case in our studied 

problem (fault-prone vs. non fault-prone). The independent variables (software metrics in our case), 

however, may be categorical, discrete or continuous. The logistic regression model is given by the 

following form [75] 

In ( n(-Xi) ) = A) + pxxa +... + faxu (15) 

where n(xi) is the probability of the event: the module x, is fault-prone, and has the following multi­

variate exponential form 

, <. _ exp(/30 + ftxji + ... + /3dxid) 
nXi) ~ 1 + expCflo + A xa + ... + pdxid) 

The ratio i**^-) is usually interpreted as odds of occurrence, which compares the probability of the 

event fault-prone to the probability of the non fault-prone one. This odds ranges form zero to infinity, 

whereas its logarithm ranges from 0 to 1, and called the log odds or the logit. From Eq. 15, we can see 

that the x_^.\ has a linear relationship with xt, and the parameters'/Ji,#2, . . . ,&, so-called regression 

coefficients, embody the changes in the log odds. The estimation of these coefficients is in general based 

on the maximum likelihood approach and can be carried out with a wide variety of statistical software 

packages [75]. 

In practical applications, after the logistic regression model is set up, a threshold is experimentally 

designated to determine if the new modules are troublesome or not. For example, the threshold can be 

determined through a classification rule that minimize the expected cost of misclassification [18,68,69]: 

c,„,»(„) = < 1 = /-*- '~" »iS&>fe3? (l7) 
2 : non fault - prone otherwise 

10 



where Cj and Cn are respectively the cost of type I (a non-fault prone is classified as fault-prone) and 

type II (a fault-prone is classified as non fault-prone) misclassification; and 7r„/p and 7r/p represent the 

prior probabilities of non fault-prone and fault-prone, respectively. 

2.2.5 Support Vector Machine 

Support Vector Machine (SVM) [79] is a two-class classification method that has been used successfully 

in many applications dealing with data classification in general and software modules in particular [80]. 

In the following, we briefly summarize the theory of SVM. For two-class pattern recognition, we try to 

estimate a function / : Rd ->• {±1} using I training d-dimensional vectors X{ and class labels yi, 

(x1,y1),...,(xl,yi)eRdx{±l} (18) 

after the training the function / should be able to correctly classify new test vectors x into one of the two 

classes. Suppose that we have a hyperplane separating the first class (positive class) for the the second 

class (negative class). The idea behind SVM is to find the optimal hyperplane permitting a maximal 

margin of separation between the two classes and defined by 

w.x + b = Q weRd,beR (19) 

corresponding to decision function 

f{x) = sign(w.x + b) (20) 

where b is the distance to the hyperplane from the origin and w is the normal of the hyperplane which 

can be estimated through the use of training data by solving a quadratic optimization problem [79]. w 

can be estimated by 
i 

w = Y2viXi (21) 

where Vi are coefficient weights. 

In general, classes are not linearly separable. In order to overcome this problem, SVM can be extended 

by introducing a kernel K to map the data into another dot product space F using a nonlinear map 

# : Rd -> F (22) 

In this new space F, the classes will be linearly separable. The kernel K is given by 

K(x,Xi) = ($(ar).$(xi)) (23) 
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and measures the similarity between data vectors x and Xi. Then, the decision rule is 

f(x) = signl^2viK(xi,x) + b) (24) 
^ »=i ' 

An important issue here is the choice of the kernel function and some well-known classic choices are 

• Polynomial with degree d: 

K(Xi,x) = (xJx+l)d (25) 

• Radial basis function (RBF) with parameter a: 

K(xi,X) = eM=^~-) (26) 

• Sigmoid with parameters K and 6: 

K(xi, x) = ta,nh(Kxf x + 9) (27) 

2.2.6 Finite Mixture Models 

Finite mixture models are among the most applied and accepted statistical approaches [81]. Finite 

mixture models have several clear attractions: they have a solid grounding in the theory of probability 

and statistics, they are flexible enough to approximate any other statistical model and they are a natural 

choice when the data to model is heterogenous [81]. Moreover, finite mixtures permit a formal approach 

to unsupervised learning. The use of finite mixture models as a statistical tool for early prediction of 

fault-prone program modules has been investigated, for instance, in [82]. Finite mixtures can be viewed 

as a superimposition of a finite number of component densities and thus adequately model situations 

in which each data element is assumed to have been generated by one (unknown) component. More 

formally, a finite mixture model with M components is defined as 

M 

3=1 

The parameters of a mixture for M clusters are denoted by 0 = (&i,... ,9M,P), where P — (pi, • • • , pu ) 

is the mixing parameter vector. Of course, being probabilities, the pj must satisfy 0 < pj < 1, j — 

1 , . . . , M and 52i=i Pj = 1- Th e choice of the component model p(xi\9j) is very critical in mixture 

decomposition. The number of components required to model the mixture and the modeling capabil­

ities are directly related to the component model used [81]. In the past two decades, much effort has 

been devoted to Gaussian mixture models estimation and selection (i.e determination of the number of 
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components). 

The multivariate Gaussian probability density function is the common assumption when using finite 

mixture models and is given by 

where /ij and T,j denote the mean and covariance metrix of each component respectively. Thus, in the 

case of a finite Gaussian mixture model, we have Bj — {fij, £ j ) . 

An important problem in the case of finite mixture models is the estimation of the parameters. During 

the last two decades, the method of maximum likelihood (ML) has become the most common approach 

to this problem [81]. It is well known that the maximum likelihood (ML) estimate: 

QML = ajgmax{L(e, X)} (30) 

where L(0 , X) is the log-likelihood corresponding to a M-component is: 

N N M 

L(e,x) = loglJ^ie) = ^ log&M^w (31> 
i—l i—1 j—1 

The maximization defining the ML estimates is subject to the constraints over the mixing parameters 

and can not be found analytically [81]. However, the ML estimates of the mixture parameters can be 

obtained using expectation maximization (EM) and related techniques [81]. The EM algorithm is a 

general approach to maximum likelihood in the presence of incomplete data. In EM, the "complete" 

data are considered to be yi = {xi, zt}, where Zi — (zn,..., zn^), with: 

1 if Xi belongs to class j 
zi5={ (32) 

0 otherwise 

constituting the "missing" data. The relevant assumption is that the density of an observation x,, given 

z^ is given by ]~Ij=i p(xi\0j)ZiS - The resulting complete-data log-likelihood is: 

JV M 

L(0, ZtX) = Y,Y, Zii lo^Xi \°i)Pi) ( 3 3 > 
i=l j=l 

where Z = (z\,..., zN). The EM algorithm produces a sequence of estimates {0*, t = 0 ,1 ,2 . . .} by 

applying two steps in alternation until some convergence criterion is satisfied: 

1. E-step: Compute Zij given the parameter estimates from the initialization: 

~ _ p (g j |g j )P j 
13 nr=iP(*i\*>')P' 
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2. M-step: Update the parameter estimates according to: 

s (*+ l ) _ 

1 N 

^ y-w ... 

Eili %[(*»-/^K*.--Mf)T] 

0 = argmaxe £(©> 2>, X) 

The quantity % is the conditional expectation of Zij given the observation xi and parameter vector Q. 

The value z\- of £,-j at a maximum of equation ( 33) is the conditional probability that observation i 

belongs to class j (the a posteriori probability); the classification of an observation x, is taken to be 

{k/z*k — maxjzfj}, which is the Bayes rule. When we maximize the function given by equation 9, we 

obtain: 
,..,x i JL 

(34) 

(35) 

(36) 

Another important problem now is the selection of the number of components M which best describes 

the data. For this purpose, many approaches have been suggested. From a computational point of 

view, these approaches can be classified into three classes: deterministic, stochastic, and resampling 

methods [81]. The most used approaches, however, are the deterministic methods which can themselves 

be classified in two main classes: in the first, we have approximate Bayesian criteria like the Schwarz's 

Bayesian information criterion (BIC) [83] and the Laplace-empirical criterion (LEC) [81]. The second 

class contains approaches based on information/coding theory concepts such as the minimum message 

length (MML) [84], Akaike's information criterion (AIC) [85], and minimum description length (MDL) 

criterion [86]. A more detailed survey of selection criteria approaches can be found in [81]. For instance, 

the authors in [82,87], have used the AIC criterion given by 

AIC(M) = -21,(9, X) + 2Np (37) 

where Np is the number of parameters in the model and is equal to Md + (M — 1) + Md(d + l ) /2 in 

the case of finite Gaussian mixture models. The selection of the optimal number of clusters M* is done 

by M* = argminM AIC(M). 
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2.3 Experimental Results 

In this section, we experimentally evaluate the performance of the different approaches presented in the 

previous section on a real data set called Medical Imaging System (MIS) [2]. In the following, we first 

describe the data set, the metrics used and the experimental methodology, then we give and analyze the 

experimental results. 

2.3.1 The MIS Data Set, Metrics and the Experimental Methodology 

MIS is a widely used commercial software system consisting of about 4500 routines written in approx­

imate 400,000 lines of Pascal, FORTRAN, and PL/M assembly code. The practical number of changes 

(faults) as well as 11 software complexity metrics of each module in this program were determined 

during three-years system testing and maintenance. Basically, the MIS data set used in this thesis, is 

composed of 390 modules and each module is described by 11 complexity metrics acting as variables: 

• LOC is the number of lines of code, including comments. 

• CL is the number of lines of code, excluding comments. 

• TChar is the number of characters 

• TComm is the number of comments. 

• MChar is the number of comment characters. 

• DChar is the number of code characters 

• JV = JVa + JV2 is the program length, where JV*i is the total number of operators and N2 is 

the total number of operands. 

• N = r}\ log2 »/i + 772 log2 »72 Js an estimated program length, where 771 is the number of 

unique operators and 772 is the number of unique operands. 

• Np = (log2 r)i)l + (log2 772)! is Jensen's [39] estimator of program length. 

• V(G), McCabe's cyclomatic number, is one more than the number of decision nodes in the 

control flow graph. 

• BW is Belady's bandwidth metric, where 

BW=~yiLi (38) 

and Li represents the number of nodes at level i in a nested control flow graph of n nodes 

[39]. This metric indicates the average level of nesting or width of the control flow graph 

representation of the program. 
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Figure 2.1 shows the number of faults found in the software as a function of the different complexity 

metrics. According to this figure, it is clear that the number of changes (or faults) increases as the 

metrics values increase. 

In documented MIS data set, modules 1 to 114 are regarded as non fault-prone (number of faults less 

than 2), and those with 10 to 98 faults are considered to be fault-prone. Thus, there are 114 non fault-

prone and 89 fault-prone modules. 

Resampling is an often used technique to test classification algorithms by generating training and test 

sets. The training set is used to build the software quality prediction model, and the test set is used to 

validate the predictive accuracy of the model. In our experiments, we have used fc-fold cross validation 

where original data sets are divided into k subsamples of approximately equal size. Each time one of 

the k subsamples is selected as test data set to validate the model, and the remaining k — 1 subsamples 

acts as training data sets. Then, the process is repeated k times, with each of the k subsamples used 

exactly once as test data set. The k results are averaged to produce a misclassification error. Our 

specific resampling choice was 10-fold cross validation. In the case of our problem, there are two types 

of misclassification, type I and type II. Type I misclassification occurs when a non fault-prone module 

is wrongly classified as fault-prone and type II misclassification occurs when a fault-prone modules is 

mistakenly classified as non fault-prone. In our experiments, type I and type II misclassification rates 

are used as the measure of effectiveness and efficiency to compare the different selected classification 

algorithms. In order to assess the statistical significance of the different results achieved by supervised 

algorithms, we have used Student's t test; and for unsupervised one (i.e finite mixture model), a test 

for the difference of two proportions has been employed [88]. To conduct Student's t test, let pA' be 

the misclassification rate of test data set i (i from 1 to 10) by algorithm A, and pB represents the same 

meaning. If we suppose 10 differences pM — p^> _ pW are achieved independently, then we can use 

Student's t test to compute the statistic t = P V ^ / V n^'i ' w n e r e "=10 and P — ^ !C"=i P a ­

using the null hypothesis, this Student's distribution has 9 (n-1) degrees of freedom. In this case, 

the null hypothesis can be rejected if \t\ > £9,0.975 = 2.262. To compare the results achieved by 

unsupervised algorithms, we adopt another statistical test to measure the difference. Let PA represents 

the proportion of misclassified modules by algorithm A, so does pB. Suppose PA and pg are normally 

distributed, so that their quantity of difference (pA — pB) is normally distributed as well. The null 

hypothesis is rejected if | z | = \(pA -pB)/y/2p(l-p)/n\ > Z0.97b = 1.96, wherep= (pA +pB)/2. 
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2.3.2 Experimental Results and Analysis 

PCA Results 

As a first step in our experiments, we have applied PCA to the MIS data set. Table 2.1 shows highest 

five eigenvalues as well as their corresponding eigenvectors and they express 98.57% of the features 

of the datasets in all. The columns from domain 1 to domain 5 are the principal component scores. 

According to this table, we can see that the first two largest eigenvalues express up to 90.8% informa­

tion of the original dataset and then could be considered as comprehensive to some extent to describe 

the MIS dataset. Fig. 2.2 shows the PCA results by considering the first two components. Each of 

Table 2.1: Principal Components Analysis for MIS. 
Complexity Matrix 

LOC 
CL 

TChar 
TComm 
MChar 
DChar 

N 
N 
NF 

V(G) 
BW 

Eigenvalue 
% Variance 

%Cumulative 

Domain 1 
0.3205 
0.3159 
0.3226 
0.2992 
0.2729 
0.3230 
0.3176 
0.3167 
0.3166 
0.3052 
0.1751 
9.1653 
83.32 
83.32 

Domain 2 
0.0903 
0.0270 
0.1287 
0.1577 
0.2911 
0.0191 
0.0056 
0.0092 
0.0120 
-0.2011 
-0.9077 
0.8224 

7.48 
90.8 

Domain 3 
-0.0526 
0.1029 
-0.1794 
-0.2484 
-0.6850 
0.2246 
0.2785 
0.3312 
0.3358 
-0.0763 
-0.2593 
0.4662 
4.24 
95.04 

Domain 4 
-0.2928 
0.3481 
0.1792 
-0.6689 
0.2304 
0.0319 
-0.0172 
-0.0078 
0.0007 
-0.4917 
0.1319 
0.2330 

2.12 
97.16 

Domain 5 
-0.4016 
-0.5452 
0.1572 
-0.0144 
0.2915 
0.0341 
0.0772 
0.3617 
0.3589 
-0.3771 
0.1502 
0.1546 

1.41 
98.57 

the eleven predictors is represented in this figure by a vector, the direction and length of which de­

note how much contribution to the two principal components the predictor provides. The first principal 

component, represented by the horizontal axis, has positive coefficients for all components. The sec­

ond principal component, represented by the vertical axis, has positive coefficients for the components 

BW',V(G), almost no coefficients for the components DChar, N,N,NF, and negative coefficients 

for the remaining five. Note that in Fig. 2.2, the components BW, V(G) and MChar are standing 

out, which indicate that they have less correlation with other indicators. On the contrary, the indicators 

DChar, N, N, and NF are highly correlated. 
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Classification Result 

In this subsection, we present the results obtained using the different classification approaches that we 

have presented in the previous section. Table 2.2 shows these results with and without PCA pretreat-

ment. In this table, type I and type II errors, and the accuracy rates which represent the ratio of the 

corrective classification modules to the total, are employed as the indicators to compare the overall clas­

sification capabilities. Comparing the different approaches using the accuracy rates, it is clear that the 

PCA pre-process improves generally the results and that LDA with PCA pretreatment performs best in 

our case, achieving highest accuracy rate 88.76%. 

Table 2.3 lists the results achieved by using only the first two principal components as input to the 

selected algorithms except multiple linear regression (it is inappropriate to evaluate multiple linear re­

gression by only two predictors). By comparing these results with the results shown in table 2.2, it is 

clear that in most of the cases, the results are better when we consider all principal components. The 

only exception is the results achieved by Gaussian finite mixture model. When tracking the intermediate 

variables, it occurs that, for each module, the two procedures with or without PCA pretreatment, respec­

tively, arrive at the same probability of being fault-prone, as well as being non fault-prone. Table 2.3 

also shows that, Logistic Regression with PCA performs best, orderly followed by NDA with PCA and 

LDA with PCA. SVM technique still functions here, but when classifying with Sigmoid kernel function, 

the accuracy rate decreases a lot. 

Tables from 2.4 to 2.8 show the absolute value results of Student's t test when using different ap­

proaches with and without PCA. The statistical significance tests are conducted in order to make ex­

tensive comparisons under various circumstances. Tables 2.4 and 2.5 show comparisons between the 

different classification methods using the total eleven software complexity metrics with and without 

PCA, respectively. Table 2.6 shows also cross-comparisons, but with the first two significant principal 

components. In table 2.7 and 2.8, we investigate the statistical significance of the difference between 

the results achieved by each approach when we apply it with and without PCA by considering all the 

principal components and the first two most important components, respectively. The results in these 

four tables are computed using the outputs of every two algorithms, and any absolute value larger than 

9̂,o.975 = 2.262 represents a statistical difference. The inspection of these two tables reveals, that on 

the one hand the disparity do exist between some of the algorithms, being wise to select simpler al­

gorithm if the classification accuracy is not significantly different between the two; on the other hand 

we must point out that using merely the evaluation results with MIS data sets to measure the candidate 
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Table 2.2: Type I and Type II errors, and the accuracy rates using different approaches with and without 
PCA. 

LDA 
LDA + PCA 

NDA 
NDA + PCA 

Logistic Regression 
Logistic Regression + PCA 
Multiple Linear Regression 

Multiple Linear Regression + PCA 
SVM (Polynomial) 

SVM (Polynomial) + PCA 
SVM (RBF) 

SVM (RBF) + PCA 
SVM (Sigmoid) 

SVM (Sigmoid) + PCA 
Gaussian Mixture Model 

Gaussian Mixture Model + PCA 

Type I error 
9.22% 
6.92% 
1.60% 
2.43% 
9.08% 
6.43% 
22.37% 
12.04% 
10.67% 
12.94% 
14.33 

13.14% 
30.25% 
33.10% 
1.75% 
1.75% 

Type II error 
16.47% 
17.40% 
30.79% 
24.12% 
18.51% 
20.43% 
10.64% 
13.08% 
28.11% 
24.61% 
27.22 

20.55% 
26.63% 
25.31% 
41.57% 
41.57% 

Accuracy Rate 
87.24% 
88.76% 
85.71% 
88.17% 
87.21% 
88.14% 
82.69% 
85.69% 
81.59% 
81.76% 
79.95% 
82.88% 
70.88% 
72.28% 
80.78% 
80.78% 

algorithms is inappropriate to reach an absolute conclusion about the performance of the different ap­

proaches. Recent studies show that some factors seriously affect the performance of the classification 

algorithms [89]. Data set characteristics and training data set size are dominating factors. According 

to some empirical research,"best" prediction technique, depends on the context or data set characteris­

tics. For example, generally LDA outperforms for data sets coming from Gaussian Distribution or with 

some outliers. Moreover, increasing the size of training data sets is always welcomed and improve the 

prediction results. 

To sum up what we mentioned above, even if all the candidate classification algorithms have certain 

ability to partition data sets, choosing proper classifier strongly depends on the data sets characteristics 

and the comparative advantages of each classifier. LDA is more suitable for data sets following Gaus­

sian distribution and with unequal within-class proportion. The essence of this algorithm is trying to 

find the linear combination of the predictors which most separate the two populations, by maximizing 

the between-class variance, and at same time minimizing the within-class variance. However, to analyze 

non-Gaussian data which are not linearly related or without common covariance within all groups, the 

logistic regression is preferred. But, logistic regression has its own underlying assumptions and inherent 

restrictions. In empirical applications, logistic regression is better for discrete outcomes. Besides, under 

the circumstances of continuous responses, multiple regression is more powerful. As logistic regression 
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Table 2.3: Type I and Type II errors by processing first two principal components. 

LDA 
LDA + PCA 

NDA 
NDA + PCA 

Logistic Regression 
Logistic Regression + PCA 

SVM (Polynomial) 
SVM (Polynomial) + PCA 

SVM (RBF) 
SVM (RBF) + PCA 

SVM (Sigmoid) 
SVM (Sigmoid) + PCA 

Gaussian Mixture Model 
Gaussian Mixture Model + PCA 

Type I error 
1.77% 
1.55% 
2.25% 
2.25% 
5.63% 
3.76% 
9.09% 
13.49% 
24.17% 
16.46% 
71.73% 
51.27% 
20.17% 
20.17% 

Type II error 
37.53% 
36.37% 
38.83% 
38.00% 
22.27% 
24.48% 
88.17% 
23.63% 
18.23% 
19.09% 
35.32% 
31.69% 
15.73% 
15.73% 

Accuracy Rate 
82.81% 
83.23% 
82.85% 
83.36% 
86.67% 
87.09% 
60.54% 
81.74% 
78.38% 
82.26% 
45.28% 
58.24% 
81.77% 
81.77% 

NDA has no requirement concerning the distribution of data. Multiple Linear Regression is very effec­

tive when dealing with small quantity of independent variables, but easily being affected by outliers, so 

identifying and removing these outliers before building the model is necessary. The linear regression 

model generates unique coefficient parameters to every predictor. So, if the undesired outliers exist in 

training data sets, the built model with these fixed parameters can not provide reliable prediction for the 

software modules to test. In this context, other metbods robust to the contamination of data (e.g. robust 

statistics) should be used. Regarding SVM, it transfers data sets into another high-dimensional feature 

space by means of kernel function, and finds support vectors as the determinant boundary to separate 

data set. Because the classification is achieved by maximizing the margin between the two classes, that 

process maximizes the generalization ability of this learning machine, which will not be deteriorated 

even if the data are somewhat changed within their original range. However, a drawback of SVM is that 

the kernel function computation is time-consuming. Finite mixture model is an unsupervised statistical 

approach which permits the partition of data without the training procedure. This technique should be 

favored when historical data is very costly or hard to collect. 
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Table 2.4: Absolute-value results of resampled paired t test with 11 software complexity metrics with­
out PC A pre treatment. 

NDA 
Logistic Regression 

Multiple Linear Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

Logistic Regression 
Multiple Linear Regression 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

Multiple Linear Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Sigmoid) 

t test (type I error) 
vs. LDA 
2.0775 
0.0358 
2.0962 
0.3233 
1.6156 
3.8010 

vs. NDA 
1.9266 
3.9220 
3.2742 
3.8099 
4.9427 

vs. Logistic Regression 
1.7345 
0.4001 
1.2063 
4.3904 

vs. Multiple Linear Regression 
1.7914 
1.3103 
0.8530 

vs. SVM (Polynomial) 
0.7176 
3.6469 

vs. SVM (RBF) 
2.4779 

t test (type II error) 
vs. LDA 
2.0360 
0.2456 
1.1881 
1.3729 
1.1884 
1.2808 

vs. NDA 
5.7418 
3.7158 
0.4011 
0.8718 
0.6865 

vs. Logistic Regression 
1.1734 
1.1290 
2.1146 
1.1760 

vs. Multiple Linear Regression 
2.7224 
2.5823 
2.4620 

vs. SVM (Polynomial) 
0.1114 
0.2349 

vs. SVM (RBF) 
0.0879 
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Figure 2.1: The relationship between the metrics and number of CRs. 
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Table 2.5: Absolute-value results of resampled paired t test with PCA pretreatment. 

NDA 
Logistic Regression 

Multiple Linear Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

Logistic Regression 
Multiple Linear Regression 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

Multiple Linear Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Sigmoid) 

t test (type I error) 
vs. LDA 
1.6656 
0.1304 
1.0977 
1.1543 
1.1567 
2.6381 

vs. NDA 
1.3731 
2.2245 
2.7321 
3.0483 
2.9724 

vs. Logistic Regression 
1.3211 
1.7492 
0.0405 
0.0405 

vs. Multiple Linear Regression 
0.6748 
1.6699 
2.8554 

vs. SVM (Polynomial) 
0.0452 
2.3825 

vs. SVM (RBF) 
1.9211 

t test (type II error) 
vs. LDA 
1.3882 
0.5349 
1.0609 
1.9027 
0.5309 
1.4429 

vs. NDA 
0.5315 
3.4619 
0.0803 
0.6148 
0.2211 

vs. Logistic Regression 
1.3369 
0.7191 
0.1845 
0.1845 

vs. Multiple Linear Regression 
2.0658 
0.0130 
0.5899 

vs. SVM (Polynomial) 
0.5443 
0.0881 

vs. SVM (RBF) 
0.7198 
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Table 2.6: Absolute-value results of resampled paired t test with PCA pretreatment and using the first 
two significant principal components. 

NDA 
Logistic Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

Logistic Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

SVM (RBF) 
SVM (Sigmoid) 

SVM (Sigmoid) 

t test (type I error) 
vs. LDA 
1.6656 
1.6560 
3.3642 
3.0496 
4.2935 

vs. NDA 
1.1709 
3.2828 
3.0664 
4.0206 

vs. Logistic Regression 
3.3619 
2.6313 
3.6404 

vs. SVM (Polynomial) 
0.3338 
0.0525 

vs. SVM (RBF) 
0.3903 

t test (type II error) 
vs. LDA 
1.3882 
2.2456 
1.0491 
1.0105 
0.4204 

vs. NDA 
3.1772 
1.2730 
1.3567 
0.4859 

vs. Logistic Regression 
0.1842 
0.2801 
0.7881 

vs. SVM (Polynomial) 
0.0288 
0.6106 

vs. SVM (RBF) 
0.7060 

Table 2.7: Absolute-value results of resampled paired t test with 11 software complexity metrics with 
and without PCA-pretreatment. 

LDA 
NDA 

Logistic Regression 
Multiple Linear Regression 

SVM (Polynomial) 
SVM (RBF) 

SVM (Sigmoid) 

t test(type I error) 
0.5167 
1.0000 
0.5295 
3.1840 
0.5374 
0.2134 
0.2854 

t test(type II error) 
0.1782 
2.6938 
0.2353 
0.6866 
0.3915 
1.0780 
0.2130 



Table 2.8: Absolute-value results of resampled paired t test with 11 and 2 software complexity metrics. 

LDA 
NDA 

Logistic Regression 
SVM (Polynomial) 

SVM (RBF) 
SVM (Sigmoid) 

t test(type I error) 
2.2048 
0.1329 
0.2088 
2.7016 
2.7200 
1.5541 

t test(type II error) 
2.4728 
2.0252 
0.3632 
0.0303 
0.4772 
0.7272 
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CHAPTER 3 
Software Modules Categorization Through 

Likelihood and Bayesian Analysis of Finite 

Dirichlet Mixtures 

In this chapter we will explore a new unsupervised learning algorithm, finite Dirichlet mixture model, to 

classify software modules, by employing deterministic maximum likelihood and Bayesian estimation. 

The selection of the number of clusters for both approaches is based on the Bayesian Information Cri­

terion (BIC). Experimental results are presented using simulated data, as well as the Medical Imaging 

System (MIS) data sets. A shorter version of this chapter is accepted by IEEE International Conference 

on Intelligent Systems [90], and extended version is submitted to Journal of Applied Statistics [91]. 

3.1 Introduction 

The increasing availability of data in different fields has triggered the need for its analysis and model­

ing using statistical approaches [92]. The ultimate goal of these approaches is to describe and explain 

data with a probabilistic model. Finite mixture models [81,93,94] have been widely used to achieve 

this goal, since their introduction by Pearson [95], and are now applied in several disciplines. Indeed, 

finite mixture models allow the clustering of data into groups that are internally homogeneous. Mixture 

models could also be used to approximate distributions that cannot be modeled by standard parametric 

families. There are, however, three important issues that need to be addressed when dealing with finite 

mixture models: the choice of the component's densities, the estimation of the mixture parameters, and 

the selection of the number of clusters which best describes the data. The component's densities should 
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be chosen depending on the data being examined. For the estimation of the mixture parameters, some 

researchers have used the method of moments. The common current approaches to solve this prob­

lem are, however, based on the maximum likelihood or Bayesian techniques. An important part of the 

modeling problem is mainly concerned about determining the number of consistent components which 

best describe the data. For this purpose, many approaches have been suggested. From a computational 

point of view, these approaches may be divided into two main categories: deterministic and Bayesian 

methods (See [81] for a detailed survey of selection criteria approaches). 

In this thesis, we are interested in modeling data using a rich class of finite mixture distributions called 

the Dirichlet mixture, which is a multivariate generalization of the Beta mixture. Finite Beta mixtures 

have been studied by Bouguila et al. in [96], highlighting some difficulties when performing the likeli­

hood approach and proposing a Bayesian inference to estimate the parameters. In this thesis, we extend 

this study to the multidimensional case. Despite the fact that this distribution plays an important role 

in statistical inference, and also in contrast to the vast amount of theoretical work that exists regarding 

the characterization of the Dirichlet distribution (for instance, See [97-103]), very little work has been 

done, however, on its practical applications. The majority of the studies either consider a single Dirich­

let distribution [104,105] or use it as a prior to the multinomial [106-108]. Indeed, many researchers 

consider finite Gaussian mixtures for data modeling. The Dirichlet mixture, however, could offer better 

modeling capabilities as shown in [109-111] where it was used as a parent distribution and not as a 

prior for different image processing tasks. 

If the random vector X = {X\,...,Xd) follows a Dirichlet distribution with parameters a = ( a i , . ..,a<i), 

then the joint density function is given by 

IL=i r ( « i ) i=i 

where X)f=i -^i = l'» an<^ l a l = X)i=i a«i a» > 0 Vz = 1 . . .d. This distribution is the multi­

variate extension of the 2-parameter Beta distribution [96]. Unlike the normal distribution, the Dirichlet 

does not have separate parameters describing the mean and variation. The mean and the variance, how­

ever, can be calculated using ct as follows 

Hi = E{Xi) = p , (2) 

v„~< v \ «»(!«! - «0 tv. 
Var(Xi) = . (3) 

'The Dirichlet distribution can be extended easily to be defined in any <i-dimensional rectangular domain [aj , bj] x . . . x 
[ad,bd] where (ai,...tad) 6 Md and (bu... ,bd) £ l d . 
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Substituting Eq. (2) into Eq. (1), we may rewrite the Dirichlet distribution as follows 

JKXIH,M)= y l.n*ria|-1, (4) 
where /x = (/x1?..., /z<i). Note that this alternative parametrization was also adopted in the case of 

the Beta distribution by Bouguila et al. [96], providing interpretable parameters because fi and \a\ 

represent the mean and a measure of the sharpness of the distribution, respectively [107]. A large 

value of \a\ produces a sharply peaked distribution around the mean fi. And when \a\ decreases, the 

distribution becomes broader as depicted in Fig. 3.1. An additional advantage of this parametrization is 

that (j, lies within a bounded space, leading to an increase in computational efficiency. Therefore, this 

parametrization will be adopted throughout the thesis. 

(a) (b) (c) 

Figure 3.1: The Dirichlet distribution for different parameters, (a) |c*|=14, p,i = 0.25, p,2 — 0.5, tt3 = 
0.25. (b) |a|=21, /xj = 0.16, fx2 = 0.68, /x3 = 0.16. (c) |a|=28, /uj = 0.125, /x2 = 0.75, p,s = 0.125. 

A Dirichlet mixture with M components is defined as 

M 

p{X\t) = '$2p(X\\aj\,ni)pU) (5) 

where p(j) (0 < p(j) < 1 and £)j=iP(?) — 1) a r e t n e mixing parameters and p(X\\acj\, fj,j) is the 

Dirichlet distribution. The symbol £ denotes the entire set of parameters to be estimated, that is 

£ = (/*i, - • -, MM. I"il. • - •» |O:M| ,P(1) , • • .,p(M)). 

This set of parameters can be divided into three subsets £x = ( | a i | , . . . , |ajw|)» £2 =
 (A*I» ••••> M M ) ' 

and £3 = (p(l), - . . ,p(M)). Then, these three different parameters £ l 5 £2
 ar>d £3 c a n be estimated 

independently. 
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Most currently used statistical estimation techniques are deterministic. With deterministic ap­

proaches, a random sample of observations is drawn from a distribution or a mixture of distributions with 

unknown parameters assumed to be fixed. In contrast to deterministic methods, Bayesian approaches 

consider the parameters as random variables and allow probability distributions to be associated with 

them. In recent years, Bayesian estimation has become feasible due to the development of simulation-

based numerical integration techniques such as Markov chain Monte Carlo (MCMC) methods, which 

simulate required estimates by running appropriate Markov Chains using specific algorithms such as 

Gibbs sampler. 

In this chapter, we consider two procedures for finite Dirichlet mixture estimation, namely, the de­

terministic maximum likelihood (ML) estimation that will be developed in the next section and the 

Bayesian estimation that will be explained in details in Section 3.3. Section 3.4 is devoted to an impor­

tant problem in the case of mixture models, which is the selection of the number of clusters. In Section 

3.5 we present our experimental results where both procedures are compared in different applications. 

3.2 M L Estimation of a Dirichlet Mixture 

Now we consider ML estimation for an M-component mixture of Dirichlet distributions. Given the 

set of independent vectors X = {Xi,..., Xj?}, the log-likelihood corresponding to an M-component 

mixture is given by 

N N M 

L^,X) = \ogYlp(Xi\i) = Yi\0e^2p(Xi\\ai\,iJij)p{}). (6) 
i = l i=l j=l 

It is well-known that the ML estimate 

cannot be found analytically. The maximization defining the ML estimates is subject to the constraints 

0 < p{j) < 1 and YljLi P(J) — 1- J* 1S worth pointing out that obtaining ML estimates of the 

mixture parameters is possible using the expectation-maximization (EM)'algorithm and related tech­

niques [112]. The EM algorithm [113,114] is a general approach to maximum likelihood in the pres­

ence of incomplete data. In EM, the "complete" data are considered to be Yi = {X{, Zi}, where 

Zt = {Zn,...,ZiM) with 

{ 1 if Xi belongs to class j 
(8) 

0 otherwise 
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constituting the "missing" data. The relevant assumption is that the density of an observation Xi given 

Zi is given by n j l i Pixi\\ajl V>j)Zii• 

The resulting complete-data log-likelihood is therefore 

TV M 

where Z = {Zx,..., ZN}. 

The EM algorithm produces a sequence of estimates {£\ f = 0 ,1 ,2 . . .} by applying two steps in 

alternation (until some convergence criterion is satisfied) 

1. E-step: Compute Ztj given the parameter estimates from the initialization 

A p(-yj|l«jl»Mj)p(i) M m 

Ei=iP(^i l |a i l i /* i )PU) 

2. M-step: Update the parameter estimates according to 

$ = axgmax L(£,Z,X) (11) 

The quantity Ztj is the conditional expectation of Zij given the observation Xt and the parameter vector 

£. The value Z\j of Z^ at a maximum of Eq. (9) is the conditional probability that observation i belongs 

to class j (the posterior probability); the classification of an observation Xt is taken to be {k/Z?k = 

maxj Zfj}, which is the Bayes rule. When we maximize Eq. (11) by taking into consideration the 

constraints J2j=iPti) = 1 andp(j) > 0 V j e [1,M], we obtain 

pur=irtzt1) <i2> 
* • 1 

3.2.1 Estimation of the £2 Parameters 

For fixed /*,-, the likelihood for £x alone is given by 

TV r M 

P W W « I I £p(j)p(*illa;l) 
i=l '-j=l 

(13) 

where 

PixlM = y i^^1-1 (H) 

31 



Maximizing the log-likelihood function is equivalent to solving the following equation 

d\atj 
0, j = l,...,M (15) 

The first-order partial derivative of l o g p ^ l ^ ) with respect to \a.j | is given by 

d\o%P{X\Zx) 

d\aj\ 

N r M 

- E i=id\ai 
log 

N 
dWj 

^M 
Ei=1p(j"M-X'*ll«il) 

i = l ET=MJ)p(Xi\\aj\) 

apjf d 
p{Xi\\(Xj\) 

= ( *(KI) - E Mii*(Mji l«iI)) E ^ + E ( ̂ <i E W loS(^0 ). 

where * denotes the digamma function. Note that from Eq. (16), it is clear that we do not have a 

closed-form solution to Eq. (15). Thus, to estimate |aj-| we use the Newton-Raphson method as follows 

lor IW - Inr K*"1) (^ ^ P ^ ^ ) V ' dlogpjX]^) (16) 

On the other hand, the second-order partial derivative of logp{X|£x) with respect to \OLJ\ is given by 

d2\ ̂ M = (*'(|aill)-E"ii*'^«l«ill))E^ (17) 

3.2.2 Estimation of the £2 Parameters 

For fixed \ctj\, the likelihood function for £2 alone is given by 

N r M 

pim?)=n E ^ X ^ I ^ ) 

where 

*<•*«=r^r£ttill-,xii^,itt<1"1 * n K 

(18) 

(19) 

The maximization of the likelihood function Iogp(<¥|£2), subject to the constraints YLi=\ Pji = 

l , j e { l , . . . , M}, leads to the maximization of the following objective function 

d d 

^Mean{X,i2,K) = l ogp (A? |£ 2 ) + A j ( l - ^ M l i ) + • - • + A M ( 1 ~ ^^Ml), (20) 
Z=l ( = 1 

where A = (Ai, A 2 , . . . , A M ) denotes the Lagrange multipliers vector. 
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To solve this optimization problem, we first need to determine the solutions to the following equa­

tions 

*Mean(X,£2,A) = 0 (21) 
dfJtji 

d 
a A $Mean(* ,£ 2 ,A) = 0 (22) 

where j = 1 , . . . , M and I = l,...,d. 

Setting the equation 

d . , . . . . , " d 
^Mean{X,i2,A) = £ ) 2 y — l o g G ^ / * , . ) ) " A, (23) 

i | £ 4 (iog(jr«) - *(/xj7 l«yI)) - Aj la ' 

to 0 yields 

/*S_1)l«il(t) Ef=1 sg> ( M * « ) - ^ S T 1 ' ^ ) ) 
/ # = ^ ^- (24) 

Similarly, setting the equation 

-^Mean(X,^2,A) = l-^fifl (25) 
d 

dA 3 1=1 

to 0 yields 
d 

J>j! = l- (26) 

Substituting Eq. (24) into Eq. (26), we obtain 

X t i H i \ < * i \ Y t x zjiog(Xa) - *(Ai,-i|a>|)) 
1 _̂ = 1. 
A i 

Therefore, we get 
N 

u{t) -Pjl -

Ett MS-I} E L 3? (**<**) - *(^rl)i«iiw)) 

(27) 

Aj - 5~>i ' l«j lZ!^i ( log(^) - * M « j l ) Y (28) 

And substituting Eq. (28) in Eq. (24), we obtain 

M£_1) E!L ^ (iog(x«) - * 0 * r V l w ) ) 
(29) 

Having all these estimation equations, the complete algorithm for die parameters estimation may be 

summarized as follows: 
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1. Apply the initialization algorithm proposed in [110] 

2. E-Step: Compute the a posteriori probabilities: 

ij ZtLMxteMi) 
3. M-Step: 

(a) Update the \ctj\ using Eq. (16), j = 1 , . . . , M. 

(b) Update the fiji using Eq. (29), j = 1 , . . . , M, and l = l,...,d. 

(c) Update the p(j) using Eq. (12), j — 1 , . . . , M. 

4. If the convergence test is passed, terminate, else go to 2. 

3.3 Bayesian Estimation of a Dirichlet Mixture 

Bayesian estimation is based on learning from data using Bayes's theorem in order to combine both the 

prior information and the information brought by the data to produce the posterior distribution [115, 

116]. The prior information represents our prior belief about the parameters before looking at the data. 

The posterior distribution summarizes our belief about the parameters after we have analyzed the data. 

The posterior distribution can be expressed as 

P(£I*)«P(*IOP(0- (3°) 

From Eq. (30), we can see that Bayesian estimation requires a prior distribution p(£) specification for the 

mixture parameters. As in the case of the EM algorithm, the introduction of the Z vectors simplifies the 

Bayesian analysis [117]. This is done by associating with each observation Xi a missing multinomial 

variable Zi ~ M(l; Zn,..., ZiM), and the complete MCMC algorithm is given by [118] 

1. Initialization 

2. Stept: Fort=l,.. . 

(a) Generate zf - M(l;Z^~x\...,Z^1}) 

(b) Generate ^ fromp(£3 |zW) 

(c) Generate {^,^2)^ fromp^^Z^,X) 
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First we start with the distribution p(£3\Z), which is given by 

P{£s\Z) <x p f o K Z f o ) (3D 

and then we determine p(£3) and p(Z\£3). It is known that the vector £3 is defined on the simplex 

{(p(l),...,p(M)):Eji7 
Dirichlet distribution [118] 

{(p( l) , . . . ,p(M)) : J2j=i Pti) < 1}> t nus a natural choice, as a prior, for this vector would be the 

^)=^nll^-1 (32) 
where rj = (771,..., 7?M) is the parameter vector of the Dirichlet distribution. Moreover, we have 

N N N M M 

p(z\z3) = Up(zi\^) = i[p(i)z-...P(M)z^ = i[iip(j)z'^]ip(jrK 
Hence 

T(TM n) M M T(TM n ) M 

lij=l L \'lj) j - i j - i llj=l X Vlj) i=l 

oc X>(»?i + ni , . . . ,77A f+ nAf) (33) 

where V is a Dirichlet distribution with parameters (r)i + « i , . . . , ?7jvf + UM)- Note that both the prior 

and the posterior distributions, p(£3) and p(£3\Z) are Dirichlet. In this case we say that the Dirichlet 

distribution is a conjugate prior for the mixture proportions. We held the hyperparameters r]j fixed at 1 

which is a classical and a reasonable choice. 

For a mixture of Dirichlet distributions, it is therefore possible to associate with each \ctj\ a prior 

Pj(Ictj I) and with each fi^ a prior Pj(fij). For the same reasons as the mixing proportion, we can select 

a Dirichlet prior for fi^ 

l l ! = i r ( » l ) J=i 

For \ctj\, we adopt a vague prior of inverse Gamma shape p(\aj | - 1 ) ~ £7(1,1) as proposed in [119] 

p(\aj\) oc | a , - | - 3 / 2 e x p ( - 1/(21^1)). (35) 

Having these priors, the posterior distribution is then given by 

p{\<Xj\,Vi\Z,X) oc p( |aj | )p(Aij) .n piXiWctjliij) 

ex \aj\~^ exp ( - 1 / ( 2 | « , | ) ) P P ^ I fl^r 

n\<*j\) 
nr=1r(/ii(|aii) n(n*« 

Mjilttjl-l 
(36) 
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The hyperparameters $j are chosen to be equal to 1. Having all these posterior probabilities in hand, the 

steps of the Gibbs sampler are as follows 

1. Initialization 

2. Stept: Fort=l,.. . 

(a) Generate zf ~ M{1; Z ^ , . . .J?^) 

(b) Compute nf = £ i l i I <0= 

(c) Generate P<*> from Eq. (33) 

(d) Generate (\aj\, p ^ {j = 1 , . . . ,M) from Eq. 36 using the Metropolis-Hastings (M-H) 

algorithm. 

The M-H algorithm, originated in the 1950's in the literature of statistical physics [120-122], offers a 

solution to the problem of simulating from the posterior distribution. Starting from point (\aj\^0\fj,j '), 

the corresponding Markov chain explores the surface of the posterior distribution. At iteration t, the 

steps of the M-H algorithm can be described as follows 

1. Generate (\CXJ\,/I.,-) ~ q(\aj\,n^a^' 1 ),/x^ J )) and U ~ W[0,i] 

pMd i | ,^ i |a,*Uha i |<
t-1>,/*< t-1 ) | |d i | , / i i 

2. Compute r = —-7 • ^—-, ^ 
pha,|(«-i),/i< t-1>|z,*J»Ud i|,/i i||a i|(*-i),/*« t-1M 

3. If r < uthen ( | a , | « , M f ) = (K-|,M,-) else ( l a^W. /x f ) = fla^-D,^-1)) 

A major problem with this algorithm is the need to choose the proposal distribution q. The most generic 

proposal is the random walk Metropolis-Hastings algorithm, where each unconstrained parameter is the 

mean of the proposal distribution for the new value. Since \otj\ > 0, we have chosen the following 

proposal 

|a,-| ~ W(log(\aj\(
l-V),<T2), (37) 

where £N(log(\cij\(t~1')), a2) denotes the log-normal distribution with mean logflatjl^-1)), and vari­

ance a2 chosen to be equal to 0.01. Note that Eq. (37) is equivalent to 

log(|a j | ) = log(|«j|( t-1)) + e i, (38) 

where ej ~ Af(0, a2). However, for constrained parameters, this proposal is not efficient [123]. This is 

the case for the parameter [iji (since fiji belongs to the simplex [0,1]). To circumvent this problem, we 
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first transform fj,jt, I = l,...,d+ 1, j = 1 , . . . , M ton% — log(/Zj//(l - fiji)), and then we use the 

following proposal 

ii) ~ £M(\og(itf-\??), (39) 

where E2 — diagp.Ol,..., 0.01] is a diagonal matrix. 

With these proposals, the random walk M-H algorithm is composed of the following steps: 

1. Generate |a,-| ~ £jV(log(|a Jf
i-1)), a2) , /*}, - CtfQogifitf'^o3) and [/ ~ U[QA]. 

pUdjiii-^xjctfuif 1)|iog(/i;),s2)£JV(|ai|<
t-1»|iog(|dj|),ff

2) 
2. Compute r = —-?—^ ^—<r 

phd j|
< '-1\^<t-1)|2,Arj£Ar(/i-|iog(/x;( '-1)) is

2)£Ar(|dj||]og(|a i|('-i)),^) 

3. If r < t, then (fa^^f) = (|a,-|,^) else ( K l ^ / i f >) = (la^-D./if ""j 

where 

pda,-!,/*;^,^) ex | a j | -
3 / 2exp(- l / (2 |a i | ) )^=^nT(M*,) ' ' ' - 1 

lli=ir(wi)i=i 

r(|ay|) "i d / \ r ( M * , ) | a i l - i rf 

with T(/iJj) = e^ ' / ( l+eM i ' ) , and J(/x^) = e^' / ( l + e ^ 1 )2 denotes the Jacobian of the transformation 

Having our algorithm in hand, an important problem that needs to be addressed now is to determine the 

number of iterations needed to reach convergence [124]. This problem is discussed next. 

3.3.1 Convergence 

The development of appropriate diagnostic tools to establish Bayesian estimation convergence is an 

active research area, and different qualitative and quantitative approaches have been proposed in the 

literature [125, Chapter 6] [126-129]. Note that the convergence in the Bayesian case refers to the con­

vergence to a density and not to a single point as in the case of deterministic approaches. In general, it is 

not possible to provide a reliable convergence diagnostic through a single sequence of simulation [128]. 

Indeed, it is better to use two or more parallel chains to allow a complete coverage of the parameters 

space [130]. One of the most successfully used approaches was presented in [128]. However, this ap­

proach is useful only for univariate problems. Fortunately, an extension to multivariate problems was 

proposed in [129], and was applied with success in the case of finite multivariate ^-mixtures [131]. The 
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method of Brooks and Gelman [129] requires the simulation of m parallel chains with over-dispersed 

initial values, and then the comparison of between and within variances of these chains. Therefore, we 

define 

V = *LlAw + (1 + - ) B/L (40) 
L \ mj 

as the posterior variance-covariance matrix of £, where the length of each simulated sequence is 2L and 

^^i)EK?-^f-yT HI) 
- 771 

B/L=^iY,(h-lMi.-l.)
T (42) 

i = i 

i, = i E <$> <«) 
l=L+l 

1 m 

rn *•—^ J 

m . 

Then the value of the following measure, called multiple potential scale reduction factor (MPSRF) 

[129], is used to test the convergence 

R=^jr±+(l + ̂ \\1, (45) 

where Ai is the largest eigenvalue of W~1B/L. Note that as the simulation converge JR will tend to 1 

(See [129] for more details about this convergence diagnostic approach). 

3.4 Selection of the Number of Clusters 

The choice of the number of components M affects the flexibility of the model. For the selection of the 

number of clusters, we use integrated (or marginal) likelihood that has been used by both deterministic 

and Bayesian approaches [59,132-135], and it is defined as 

p(X\M) = j TT(£| X, M)di = Jp(X\£, M)ir(Z\M)d£, . (46) 

where £ is the vector of parameters of a finite mixture model, ir(£\M) is its prior density, and p{X\£, M) 

is the likelihood function. 

The main problem now is reduced to computing the integrated likelihood. In order to solve this 

problem, let £ denote the posterior mode satisfying 

Vlog(7r(£|*,M)) = 0 (47) 
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where V log(w(£\X, M)) denotes the gradient of \og(n(£\X,M)) evaluated at £ = £. The Hessian 

matrix of — log(ir(£\X, M)) evaluated at £ = £ is denoted by H(£). To approximate the integral given 

by Eq. (46), the integrand is expanded in a second-order Taylor series about the point £ = £, and the 

Laplace approximation gives 

p{X\M) = Jexp(log(*(Z\X,M)-±(e- £) rJT(£)(£-£))<*£ 

= n{t\X,M)Jezp ( - i(£ - «)rif(|)(€ - «))d€ 

= 7r(^|A',M)(27r)*v / | i?( |) | 

- p(A , | iM)7r(£|M)(27r)^V
/ | / / (C)| ) (48) 

where Np is the number of parameters to be estimated, which is equal to (d + 2)M in our case, and 

\H(£)| denotes the determinant of the Hessian matrix. Note that the Laplace approximation is very 

accurate as shown by Kass et al. [133,136]. Indeed, the relative error of this approximation, given by 

p(X\M) 
Laplace 

- p(X\M)correct ,,a. 
p{X\M)correct 

is Op(l/N). For numerical reasons, it is better to work with the Laplace approximation on the logarithm 

scale. Taking logarithms, we can rewrite Eq. (48) as 

log(p(^|M)) = log(p(Af|iM))+log(7r(C|Af)) + ^ l o g ( 2 f f ) + i l o g ( | H ( « ) | ) . (50) 

In order to compute the Laplace approximation, we have to determine £ and H(£). However, in many 

practical situations an analytic solution is not available. Furthermore, the computation of |if(£)| is 

difficult especially for high-dimensional data. Therefore, we use another efficient approximation [133] 

which can be deduced from Eq. (50) by retaining only the terms that increase linearly with N [134], 

and we obtain 

\og(p{X\M)) = log(p(X\lM)) - ^ log ( JV) , (51) 

which is the Bayesian information criterion (BIC) proposed by Schwarz [137]. This criterion coincides 

formally (but not conceptually) with the minimum description length criterion (MDL) proposed by 

Rissanen [86]. Using Eq. (51), the number of components in the mixture model is given by 

{M/ log(p(X\M)) = maxlog(p(A'|M)), M = Mmin,..., Mmax). 
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3.5 Experimental Results 

3.5.1 Synthetic Data 

We first use synthetic data to examine and compare the properties and effectiveness of both the likeli­

hood and the Bayesian approaches for finite Dirichlet mixture models estimation and selection. Four 

synthetic two-dimensional data sets were generated using different parameters. The parameters of the 

four generated data sets are listed in Table 3.1, and the resulting mixtures are shown in Fig. 3.2. 

(a) (b) (c) (d) 

Figure 3.2: Mixture densities for the generated data sets 

Then, we estimate the parameters and the number of clusters of the mixtures representing these data 

sets. Table 3.2 gives the estimated parameters using both the likelihood and Bayesian approaches. It is 

worth noting that the estimates obtained by both approaches are similar and very accurate. Fig. 3.3-3.4 

depict the computed number of clusters for the generated data sets using the likelihood and Bayesian 

approaches, respectively. Note that in Fig. 3.3 the values Further, we run 20 independent parallel chains 

of 7000 iterations each to monitor the convergence of the proposed Bayesian algorithm. The multiple 

potential scale reduction factor discussed in subsection 3.3.1 came down to 1 within 3250, 3600, 3820 

and 4200 iterations for data sets 1,2,3 and 4, respectively. It is clear that the correct number of clusters 

is favored for all data sets, yet the Bayesian approach appears to be better at discriminating between 

models. 

3.5.2 Real Application 

Nowadays software products play an important role in different disciplines such as medicine and telecom­

munications. Improving the quality and reliability of these software products is an active research area, 

and different approaches, generally based on data analysis techniques, have been proposed [138,139]. 
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Table 3.1: Parameters of the different generated data sets {rij represents the number of the elements in 
cluster j). 

Data set 1 

Data set 2 

Data set 3 

Data set 4 

J_ 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
7 

l«il 
66 
105 
40 
92 
66 
105 
40 
92 
116 
66 
105 
40 
92 
116 
90 
64 
105 
40 
92 
116 
90 
60 

Hi 
0.16 
0.22 
0.37 
0.31 
0.16 
0.22 
0.37 
0.31 
0.52 
0.16 
0.22 
0.37 
0.31 
0.52 
0.33 
0.16 
0.22 
0.37 
0.31 
0.52 
0.33 
0.16 

f-j2 
0.24 
0.48 
0.47 
0.09 
0.24 
0.48 
0.47 
0.09 
0.34 
0.24 
0.48 
0.47 
0.09 
0.34 
0.33 
0.22 
0.48 
0.47 
0.09 
0.34 
0.33 
0.16 

Mi3 
0.60 
0.30 
0.16 
0.60 
0.60 
0.30 
0.16 
0.60 
0.14 
0.60 
0.30 
0.16 
0.60 
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Figure 3.3: Number of clusters found for the different generated data sets using likelihood approach, 
(a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4.Here X axis represents the number of clusters, 
and Y axis represents the MDL value. 

A software is composed of a great number of relatively independent unites, performing certain func­

tionalities, called modules. The classification of these modules into fault-prone and non fault-prone 

categories is important for software quality prediction and the identification of high-risk software com­

ponents [15,19, 80]. This classification is based on the description of the modules using software com­

plexity metrics which have been shown to be related to the faults in a given software [140]. In this 

section we use our mixture model for the clustering of software modules. The data used in our ex­

periments is taken from a software for a Medical Imaging System (MIS) widely used by the software 
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Table 3.2: Estimated parameters for the different generated data sets using both the likelihood and 

Bayesian approaches. \atj\ , flk, j&2, \£z andp(j)L are the estimated parameters using the likelihood 

approach. \a.j\ , p,ft, p,f2, fif3 andp(j)B are the estimated parameters using the Bayesian approach. 

Sell 

Set 2 

Set 3 

Set 4 

3 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
7 

l«jl A*fi Af2 /& PO')1, 

65.21 0.14 0.25 0.61 0.28 
105.42 0.20 0.51 0.29 0.31 
41.23 0.35 0.48 0.17 0.18 
94.03 0.30 0.11 0.59 0.23 
66.19 0.17 0.24 0.59 0.19 
104.77 0.21 0.55 0.24 0.18 
40.28 0.36 0.46 0.18 0.2 
90.17 0.28 0.11 0.61 0.21 
118.02 0.50 0.35 0.15 0.22 
65.09 0.14 0.25 0.61 0.21 
105.56 0.24 0.47 0.29 0.18 
40.44 0.38 0.46 0.16 0.2 
91.12 0.30 0.10 0.60 0.2 
114.98 0.50 0.36 0.14 0.1 
90.94 0.32 0.34 0.34 0.11 
65.17 0.17 0.23 0.60 0.19 
107.19 0.20 0.49 0.31 0.19 
40.25 0.36 0.45 0.19 0.21 
91.20 0.30 0.08 0.62 0.11 
114.99 0.53 0.32 0.15 0.09 
90.77 0.32 0.31 0.37 0.08 
61.05 0.15 0.14 0.71 0.13 

l«il Afi Af2 /*fs PU)B 

65.07 0.17 0.26 0.57 0.27 
104.68 0.23 0.47 0.30 0.31 
41.75 0.38 0.44 0.18 0.21 
93.88 0.29 0.12 0.59 0.21 
66.34 0.16 0.26 0.58 0.19 
104.69 0.20 0.47 0.33 0.19 
39.56 0.38 0.47 0.15 0.2 
91.46 0.30 0.10 0.60 0.21 
117.66 0.51 0.36 0.13 0.21 
65.71 0.15 0.24 0.61 0.21 
104.78 0.21 0.47 0.32 0.19 
40.34 0.39 0.45 0.16 0.2 
92.18 0.31 0.10 0.59 0.2 
117.18 0.51 0.33 0.16 0.1 
88.96 0.35 0.34 0.31 0.1 
64.97 0.15 0,22 0.63 0.2 
104.01 0.21 0.50 0.29 0.19 
39.74 0.35 0.47 0.18 0.21 
92.88 0.30 0.10 0.60 0.1 
114.87 0.51 0.36 0.13 0.08 
89.80 0.32 0.34 0.34 0.1 
60.95 0.15 0.17 0.68 0.12 

engineering community and can be found in [2]. More details about all these metrics can be found 

in [2,31,39]. Using these metrics each module was described by an 11 -dimensional vector. 

Our Bayesian and deterministic algorithms were applied to the 203 vectors representing the different 

modules. To monitor the convergence of the Bayesian algorithm, we run 5 parallel chains of 9000 itera­

tions each. The values of the multiple potential scale reduction factor are shown in Fig. 3.5. According 

to this figure convergence occurs around the 7500 iteration. 

Two types of errors can occur in our case. A Type I error when a non fault-prone module is classified 

as fault prone and a Type II error when a fault-prone is classified as non fault-prone. Table 3.3 shows 

the values of Type I and Type II errors when using both the deterministic and Bayesian algorithms. Ac­

cording to this table the two approaches give the same type I error which corresponds to 4 misclassified 

modules. The Bayesian approach outperforms the deterministic one in the case of type II error. 
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Figure 3.4: Number of clusters found for the different generated data sets using the Bayesian approach, 
(a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4. Here X axis represents the number of clusters, 
and Y axis represents the MDL value. 
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Figure 3.5: Plot of multiple potential scale reduction factor values. 

Table 3.4 shows the classification probabilities of the 4 misclassified modules causing Type I errors. 

From this table, we can clearly see that the Bayesian approach has increased estimated probabilities, 

associated with the misclassified data samples, of belonging to the correct class (i.e non fault-prone). 
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Table 3.3: Type I and Type II errors using both the deterministic and Bayesian approaches. 

Maximum Likelihood 
Bayesian 

Type I error 

3.51% 
3.51% 

Type II error 

28.08% 
26.96% 

Table 3.4: Classification probabilities (probabilities to be in the non fault-prone class) of the misclassi-
fied modules causing type I errors. 

Module Number 
6 

41 
69 
80 . 

Bayesian 
0.31 
0.34 
0.41 
0.37 

Maximum Likelihood 
0.27 
0.29 
0.42 
0.32 
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CHAPTER T - I 

Conclusion 

In this thesis, we have studied the software modules classification problem which is a fundamental issue 

in software engineering, and different techniques were employed to accomplish it. Indeed, a lot of work 

has been devoted to locate high-risk modules in early software life-cycle by using modeling techniques 

including supervised and unsupervised learning approaches. These software quality prediction models 

can point out "hot spots" modules that are likely to have a high error rate or that need high development 

effort and further attention. 

First, we performed a survey to compare and evaluate several selected modeling techniques using a real 

data set. The detailed experimental results and analysis were provided. Despite the success of many 

approaches, same problems still exist. An important problem is the choice of the number of metrics 

to describe a given module [53]. The description of the modules may include attributes based on sub­

jective judgements which may give rise to errors in the values of the metrics. Besides, the collection 

of historical modules used for training may include some modules for which an incorrect classification 

was made. Another problem is the lack of sufficient data for learning in some cases. 

Secondly, we proposed an unsupervised learning approach for software modules categorization. We 

present two algorithms for finite Dirichlet mixture estimation and selection. The first approach is de­

terministic based on maximum likelihood estimation using die EM algorithm. The second approach 

is purely Bayesian and is based on Gibbs sampling. Although the results obtained with these two 

approaches are frequently nearly similar, the approaches are conceptually different and can perform dif­

ferently in some cases. The Bayesian approach is coherent and flexible compared to the deterministic 

one, but it has the disadvantage of being computationally expensive. From the experimental result, we 

can conclude that the finite Dirichlet mixture model successfully accomplish software categorization 

with relatively smaller misclassification rates. Although the achieved partial results in chapter 2 are 
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Chapter 4. Conclusion 

better than what we got in chapter 3, the little discrepancy in these two sets of results does not deny 

the advantages of the finite Dirichlet mixture model, as a unsupervised learning technique which has no 

need of labelled collected training data sets, and possesses little inherent restrictions. 

Further work can be devoted to the selection of the most relevant software complexity metrics for a given 

classification problem. In addition, the explanation of unsupervised algorithms for the complexity-based 

classification problem still needs more work. Another promising future work could be the use of semi-

supervised approaches. 
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