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ABSTRACT 

Robustness in Risk Classification 

by Ivan Mendoza 

Risk classification is a process of grouping together individuals with similar risk 

levels into categories that insurance companies use in order to decide how premium 

rates should differ in each category. This process is conditioned on the information 

available about the insured and the contract, which is stored in many variables. 

Because of the large number of variables and the fact that many interactions 

exist between them, multivariate analysis techniques such as Principal Component 

Analysys (to reduce the dimensionality of data) and Cluster Analysis (to group indi­

viduals with similar characteristics), are applied for this purpose. Here we recommend 

the application of both methods to obtain better results. 

Insurance data usually contains information regarding unexpected extreme losses 

(catastrophes), modeled with heavy tailed distributions, which may be considered as 

outliers. Therefore, robust methods for both multivariate techniques are applied by 

using an algorithm that implies the use of several robust estimators existing nowadays. 

We compare our results with those obtained from a classical approach. 
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Chapter 1 

Risk Classification 

1.1 Introduction to Insurance 

An insurance contract is a promise of compensation for specific future losses in ex­

change for periodic premium payments. It is designed to protect the financial welfare 

of an individual, company or entity in the case of unexpected events. Such contracts 

are called insurance policies. In some cases the policy holder pays part of the loss, 

called the deductible, and the insurer pays the excess of the loss over the deductible. 

Hence, the purpose of insurance is to transfer the insured's uncertainty of loss to the 

insurer for the certainty of a smaller premium payment. This uncertainty of loss is 

called insurance risk. 

Since the insurer assumes an individual insured's risk, the premium should be 

based on the expected value of the insured's losses. The expected loss for an insured 

is the average or probable number of losses (or claims) times the average cost of such 

claims. The premium should also include the expense of servicing the policy plus a 

margin for profit and a contingency or reward for taking the risk. 

Insurers do not try to predict the actual losses of each insured, but only the ex-
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pected loss. It is the loss variance that motivates individuals to purchase insurance, 

while the variation in expected losses, from one individual to another, motivates in­

surers to price policies differently. 

To establish a fair price for insuring an uncertain event, estimates are made from 

the probabilities associated with the occurrence, frequency and magnitude of such 

events. These estimates are obtained by using the past experience. In order to derive 

a price, individuals who are expected to have the same costs are grouped together. 

The actuary then calculates a price for the group and assumes that this price is ap­

plicable to all members of the group. 

1.2 Risk Classification Standards 

As seen in the previous section, the expected loss of individual policyholders is impor­

tant in the pricing of insurance. To estimate this vital quantity, insurers use different 

methods. One of the most important that implies the use of statistical analysis is to 

observe the experience of a group of similar risks over a short, recent period of time. 

This grouping of similar risks to estimate costs is called Risk Classification. 

Furthermore, this group observation process also involves the law of large num­

bers. If we know the expected losses in advance, then the actual losses will tend to 

approximate the expected losses at the end of the year for the insurance company 

as a whole. On the other hand, observing a smaller number of similar risks over a 

short period of time gives greater confidence that the expected losses are more closely 

estimated. In Houston (1960), the author notes that if the classes are fairly stable 

over time, they do not even need to have similar individual expected losses in order to 

gain a good estimate of the class expected losses. Only the variance of actual losses 
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from the mean for each individual insured in the class should be similar. 

Definition 1.1 We define risk classification as the formulation of different premiums 

for the same coverage, based on the grouping of risks with similar risk characteristics 

(rating variables). 

Risk classification is intended simply to group individual risks having reasonably 

similar expectations of loss. Variables included in a classification system are tradi­

tionally chosen so that the following standards or conditions are generally met (for 

more details, see Walters, 1981): 

1. Similar risks should be assigned to the same class with respect to each variable, 

whereas dissimilar risks should be assigned to different classes, so that there 

are no clearly identifiable subsets with a significantly different loss potential or 

expected loss in the same class. 

2. The common characteristics used to identify insureds as similar should reason­

ably relate to the potential for loss. 

3. The classes should be exhaustive and mutually exclusive; that is, each insured 

should belong to at least one, but only one, class with respect to each rating 

variable. 

4. There should be clear and objective phraseology in the definition of classes, 

with no ambiguity as to what class individual insured belongs. 

5. An insured should not be easily able to misrepresent or manipulate his classifi­

cation. 

6. The cost of administering a rating variable should be reasonable in relation to 

the benefits received. 

7. The class rating factors should be susceptible to measurement by actual expe­

rience data. 
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The first standard is what is meant by homogeneous classes. Classes that are 

homogeneous will take fewer risks to obtain reasonable estimates of expected costs. 

The second standard aids to maintain homogeneous classes by avoiding spurious mea­

sures which likely have potentially identifiable subsets. The third, fourth and fifth 

standards deal with classes being well-defined and help to ensure that each risk is 

actually placed in the right class, avoiding unequal application of the classification 

system. The two final standards deal with the meaning of practical, which is related 

to "workable, useable and sensible": being cost-effective is important because an in­

efficient system could increase total costs beyond the value of the information to be 

obtained. 

1.3 Statistical Considerations 

Risk classification systems are generally based on statistical analysis, modified by 

informed judgement. Some considerations of statistical nature, which form part of 

the design of such a system, are: 

- Homogeneity: The expected costs for each of the individual risks in a class 

should be reasonably similar. Significantly dissimilar risks should be assigned to 

different classes. The occurrence, timing and magnitude of an unexpected event 

for a specific risk cannot be predicted in advance. Thus, it is inevitable that 

not all risks in a class will have identical actuarial claim experience. Instead, 

the individual risk's claim experience will be statistically distributed around the 

average experience for the class. 

The concept of homogeneity is based upon expected costs as viewed when the 

risk is originally classified. 

- Credibility: An important statistical principle is that "the larger the number 

of observations, the more accurate are the statistical predictions that can be 
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made". Hence, it is desirable that each of the classes in a risk classification 

system be large enough to allow credible statistical predictions about that class. 

- Predictive Stability: Elements of a risk classification system must be useful 

for predicting future costs. This predictive capability must be responsive to 

changes in the nature of insurance losses. For example, nowadays the impact 

of automobile bumpers meets certain federal safety standards and at one time 

very few cars had safe bumpers. 

These statistical considerations are sometimes conflicting each other. For exam­

ple, increasing the number of classes may improve homogeneity, but at the expense 

of credibility. Consequently, there is no single statistically correct risk classification 

system. In the final analysis the system adopted will reflect the relative importance 

of each of these considerations. 

The classification of risks is fundamental to any true insurance system in order 

to group those with similar risk characteristics. This process requires the collection 

of huge volumes of data from daily operations and it is conditioned on information 

available about the insured and about the contract, which is called input profile. This 

amount of data is often under-utilized, since insurer's information is stored in hun­

dreds of variables. The analysis of such data involves the application of advanced 

multivariate statistical analysis and modeling techniques to find useful patterns and 

relationships, to reduce dimensionality and to create groups in order to provide key 

facts that can drive decision making. For the purpose of this thesis, multivariate 

analysis will provide a way to classify the insurer's risk in different classes to apply 

different premium calculations. 

Assuming databases with n vector observations and p variables, one of the most 

commonly used techniques to reduce dimensionality is Principal Component Analysis 

(PCA). It creates, for each observation, a new set of k transformed variables (scores), 
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where k < p, that basically reconstructs the original database without loosing much 

information content and simplifies the graphical representation. 

Insurance databases contain information of thousands of insureds and according 

to the statistical considerations explained above, the purpose of risk classification is 

to create groups in order to define the premium to be charged to those insureds. This 

classification can be done by any of the existent multiple clustering methods, detailed 

in Section 2.3. With these methods we create a partition of the database in subsets, 

so that individuals in each subset share the same characteristics, based on similarity 

(or dissimilarity) measures. 

In many practical applications, we often find empirical distributions with an asym­

metric heavy tail which extend towards positive and negative values skewing results 

and conclusions. Using multivariate statistical techniques with such distributions is 

more difficult because extremal points, called outliers, have a strong influence on 

parameter estimation. When the distribution is symmetric (around the mean), the 

problems caused by outliers can be reduced by using robust estimation techniques, 

which basically try to ignore or downweight the outliers' effect-

In any type of insurance contract we often find individuals who are significantly 

different to the rest in some attributes in such a way they influence any estimator 

obtained. Currently, those individuals are treated differently or simply excluded 

from the database, which sometimes result in errors as insurers do not consider that 

event's insurer anymore for future predictions. Therefore, the purpose of this thesis 

is to find a method that allows classifying individuals according to their insurance 

risk by considering a transformation of their input profile, even when there exist more 

than one "rare" insureds. 
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Chapter 2 

Multivariate Analysis 

2.1 Introduction 

Multivariate analysis techniques are useful when observations are obtained from a set 

of variables of interest, usually called dependent or response variables, and one wants 

to relate these variables with another set of variables, called independent or predictor 

variables. The last thirty years have witnessed numerous new results in multivariate 

analysis, in many different directions. 

Some possible practical goals of the analysis are: reduction of the dimensionality 

(principal component analysis, factor analysis, canonical correlation); identification 

(discriminant analysis); exploratory models (multivariate linear models). For more 

details about these techniques, the reader is referred to Johnson (1982). 

In the following sections, matrices will be denoted with capital bold letters. We 

will assume that our data matrix X has dimension (n x p), where n denotes the 

number of observations and p the number of variables. An observation vector will 

be always indicated in lower case bold letters, e.g., x, = (x?1, ...,Xip)' stands for the 

zth observation and for a random vector we will use capital letters, e.g., the vector 
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X = [Xi, ...,XP]' E W indicates a vector of random vectors Xi,...,Xp, where each 

random vector contains n observations. Therefore, we can sometimes define the vector 

X = [xx, ... ,xn], where each x» is defined as before. Finally, F means a distribution 

In the classical approach, the location parameter of a p-variate random variable 

X is given by its expectation: 

fj, = E(X) = [E(X2), ...,E(XP)}' = [/i!, ...:/ip}' 

and its dispersion is described by the covariance matrix: 

Cov(X) = E[(* - ii){X - »)'} = fo] - E, 

where a{j = Cov(Xi, Xj) = E[(Xt - m){Xj - ptj)} and ait = E[(Xt - mf] = V(X,) for 

i,j = 1, ...,/? and S is a symmetric and positive semidefinite matrix. 

As a result we have that for each deterministic vector a and matrix A, the mean 

and variance work well under the affine equivariance property: 

E(AX + a) = AEpf) + a, 

Cov(AX + a) = ASA'. 

Hence, the data collected are usually displayed in matrix form, where the rows 

represent observations and the columns represent the variables. When the multivari­

ate responses are samples from one or more populations one makes the assumption 

that those samples come from a multivariate probability distribution. In many texts, 

the multivariate normal distribution (MND) is typically the assumed distribution. 

Considering X = [xj, ...,x„], with each Xj having p-variate normal Np(n, X) dis­

tribution with density: 

/ (x) = ? — = e x p ( - ^ x - f i y s - ^ x - ^ ) ) , (2-1) 
( 2 T T ) » / 2 ^ | £ 



where | S | stands for the determinant of S. 

Under this distribution, the MLEs of fx and £ for sample X are respectively the 

sample mean and sample covariance matrix: 

1 " 
x = ave(X) = — \ x,-, 

n 

£ = a v e { ( X - x ) ( X - x ) ' } , 

which also work well under the affine transformation of the sample mean and covari-

ances. 

As in the univariate case, we define the Mahalanobis distance between vectors x 

and /J, with respect to the matrix £ as: 

d(x, / i ,£) = ( x - ^ ) ' S _ 1 ( x - / / ) . (2.2) 

It is known (Seber, 1984) that if x ~ Np(fj,, £ ) , then d(x, /x, £ ) ~ x%-

Then, we can define the multivariate outlyingness measure as _D2- = c?(x,-,x, S), 

with S = S. Thus, assuming that the estimators x and S very close to their true 

values, we may examine the Q-Q plot of Di vs. the quantiles from a x% distribution 

to detect observations for which D{ is "too high". This approach can be useless when 

n is small. 

The zero-order Pearson correlation between two random variables Xi and Xj is 

given by: 

= av =
 cov(xi>Xj) i2 3) 

Pii wjj y/viXiMXjY 
where —1 < Pij < 1. The correlation matrix for the random vector X is: 

P = \pij\-

9 
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As a result, we have: 

p = (diagS)-1/2E(diagE)-1/2 

S = (diagE)1/2p(diagE)1/2 

where ( d i a g S ) ^ 2 represent the diagonal matrix with diagonal elements equal to the 

square root of the diagonal elements of S. 

2.2 Principal Component Analysis 

The first introduction of Principal Component Analysis (PCA) was made by Karl 

Pearson in 1890 and a formal treatment was made by Hotelling (1933) and Rao 

(1964). In PCA we transform a set of p correlated variables into a smaller set of 

uncorrelated hypothetical constructs called principal components (PCs). None of the 

variables is assumed as dependent and no grouping of observations is used. The PCs 

are used to discover the relationship or dependence existing among all variables. 

More details about PCA are given in Johnson (1982) and Timm (2002). 

2.2.1 Model for PCA 

Principal Component Analysis is a dimension reduction technique that deals with a 

random vector Y' = [Yi,...,Yp], with a vector mean (x and covariance matrix £ of full 

rank p. If the variables are correlated, the swarm of points is not oriented parallel to 

any of the axes represented by those variables. Therefore, we find natural axis of the 

ellipsoid generated by those points by translating the origin to fx and then rotating 

the axis. After rotation, the new variables (principal components) will be uncorre­

lated and the goal is that the variance of the j th component is maximal, j = 1, ...,p. 
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The simplest way to reduce the dimension is to take only one element of the ob­

served vector and get rid of all others, but this approach is not reasonable, since we 

lose the interpretation of the data. An alternative method is to weight all variables 

equally, but this again is not desirable. 

Thus, we take the first principal component of Y as the linear combination Z\ = 

p[Y = pnYi + ... +pipYp. One aim is to maximize the variance of the projection Zi, 

i.e., to choose Pi such that 

v(z 1 ) = v(P
,
1y) = ? ; £ ? ! (2.4) 

is maximal, subject to the constraint that p^pj = 1. This condition is imposed to 

ensure the uniqueness of the principal component. 

Using the method of Lagrangian multipliers, we find that: 

L = p ' 1 S p 1 - A 1 ( p ' 1 p 1 - l ) , 

where £ is the covariance matrix of Y. Therefore, 

dh 
= 2Spx - 2AJP! = 0 ^> [S - Aiflpj = 0, 

<9Pi 

where 0 is a column vector with each of its p entries equal to zero. 

In order to have a nontrivial solution, the determinant |S — Ail| must be equal 

to 0. Computing the determinant with Ai as an unknown, produces a p degree poly­

nomial in Aj that, when we set equal to zero, constitutes the characteristic equation. 

Any of the nonzero solutions of that equation can be plugged into the matrix equation 

and the resulting set of equations provide us the coefficients for px . 

Hence, each root of the characteristic equation A! makes [S — Ajljpj = 0 true 

and this happens iff p'jSpj = Ajp'jPj. However, we require that p'jPj = 1, thus 
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Ai = p'jSpj. That means, each root of the characteristic equation is equal to the 

variance of the combined variable generated by the coefficients of the characteristic 

vector associated with that root. Since we need this variance to maximize (2.4), the 

coefficients of the first principal component will be the characteristic vector associated 

with the largest characteristic root. 

To determine the second principal component, the linear combination Z2 — p'2Y 

is constructed such that it is uncorrelated with Z\ and has maximal variance. To 

have Z2 to be uncorrelated with Zx, the covariance between Z2 and Z\ must be zero. 

However, Sp'x = pxAi so that, 

0 = Cov(Z2, Zi) = p ' 2 Sp! = P2P1A1, 

implies that p2Pj = 0. Therefore, to maximize V(Z2) = p 2Ep 2 , we find that, 

L = p'2Sp2 - A2(p2p2 - 1) - 0(PzPi), 

then 
dL 
— = 2Sp 2 - 2A2p2 - 6Pl = 0 & 2[S - A2I]p2 = 0 P l , 

which implies (by multiplying both sides by p[), 

2p'1[£-A2I]p2 = 0p /
l P l , 

therefore, after expanding the last equation and using that p^pj = 0: 

0 = 2p'1Sp2. 

However, by definition of px , we know that Sp a = Ai p j , therefore 

P 2 S P l = P2AlPl = 0. 

Then, we have that 6 = 0, and p2 must satisfy the equations 

[E - A2I]p2 = 0. 

12 



Thus p2 will be one of the characteristic vectors of £ and, given our goals, it will 

be the characteristic vector associated with the second largest characteristic root, 

that means Xi > A2. 

More generally, by Theorem A.\ (Spectral Decomposition Theorem) there exists 

an orthogonal matrix P(p XJJ), which is conformed by eigenvectors of £ , such that 

P ' S P = A = diag[\j], 

where Aj > A2 > ...Ap > 0. Therefore, we set 

Z = P T , (2.5) 

where the E(Z) = P'lt, the Cov(Z) = A and the jih element Zj of Z is the jih 

principal component of Y. 

As a result, we have: 

X ) V(^) = ir(E) = tr(A) = £ \{Z5). 
3=1 i = i 

Note that PCA does not require the normality assumption for the estimation of 

principal components, since any matrix can be decomposed using Theorem A.l. How­

ever, if Y ~ Np(0, S) , we know that Y has associated a constant density ellipsoid of 

the form F 'S~ 1 F = Q > 0 centered at the mean n = 0. Thus, (2.5) represents a 

rotation of the old axes into the new principal axis so that the new components in the 

new coordinate system are uncorrelated and have maximum variance. Hence, PCA 

is a procedure to transform a MND into a set of independent normal distributions, 

because under normality, no correlation implies independence. 

It is well known that principal components are not independent of the scales in 

which the variables are measured and it is very common to find variables with differ­

ent scales, specially in Risk Theory. Therefore it is recommended to standardize the 
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variables as a first step, which means to derive the PCs from the correlation matrix p. 

Let Y* = Y — p, then the principal components with mean zero and variance Xj 

are given by: 

c,- = P ; y = P ; ( y - / i ) . (2.6) 

To standardize the components with regard to both location and scale, we con­

struct the standardized components 

so that the E{Z*) = 0 and the V(Z*) = 1 for j = 1, 2,..., p. 

In matrix notation, 

C = P / ( Y - / x l n ) 

Z* = ( A 1 / 2 ) - ^ ' ^ - pln) = ( A 1 / 2 ) - ^ , 

where ln is the column vector with all n components equal to 1 and A is a diagonal 

matrix with diagonal elements equal to the eigenvalues. Then: 

Cov(Z*) = (A1^2)~1E(A1/2)-1 = p. 

Hence, the principal components of Z may be obtained from the eigenvectors of 

the correlation matrix p of Y. All previous results hold when using standardize vari­

ables, with some simplifications. However, the results derived from X are, in general, 

not the same as the ones derived from p. 

The relationship between Y and the principal components can be expressed as 

follows: 

Y = PZ, 

Y = /LX1„ + P C , 

14 



Y = /il„ + PA1/2Z* = Mln + QZ*, 

where the matrix Q = [g^] is called the covariance loading matrix, that is, the 

covariance between Y and Z*. Therefore, the covariance between Yh and the j t h 

standardized principal component, Z*, is: 

Cov(yh, Z*) = phjyf\hj = Qhj, h = l, ...,p. 

By selecting only k components Ci,C2,...,Cp, where k < p, the variable Yh can 

be estimated as: 
k 

yh = Vh + Yl VhiZh h = l, ...,p, 

so that 

Y = /x + QZ*. 

In practice, we use the sample mean Y, sample covariance S and sample correlation 

matrices R as estimators for the population parameters p,, S and p1 respectively. 

2.2.2 Number of Components 

In order to effectively summarize the data, we have several criteria to define the 

number of components: 

- Retain sufficient components to have a specified percentage of the total univari­

ate variance (p|) accounted by k principal components, say 70% — 80%, that 

is: 

Pk £S=1A,- tr(?3) • 

- Retain the components whose eigenvalues are greater than the average of the 

eigenvalues. When using a correlation matrix, this average is 1. 

- Use the scree graph, a plot of eigenvalues Aj versus i, and look for a natural 

break between the large eigenvalues and the small ones. 
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- Test the significance of the larger components. First, it may be useful to conduct 

a preliminary test for complete independence (which requires the assumption 

of normality) among all variables. If independence holds, there is no point in 

getting principal components, since the variables themselves already provide all 

the essential information. 

To test the significance of the larger components, Ave test the hypothesis that the 

last k eigenvalues are small. The implication is that the first sample components 

capture all the essential information, whereas the last ones reflect noise. The 

test statistic, which has an approximate ^-distribution, is: 

u=(n — ) ( H n A - ] P In A,), 
i=p—k+1 

where A = £LP_ f c + 1 £ . We reject H0 if u > X\v and v = \{k- l)(k + 2). 

In practice, when data are highly correlated and data can be represented by 

a small number of principal components, the first three methods will usually 

agree on the number of components to retain. 

2.2.3 Outlier Detection Using PCA 

An outlier is an observation that is numerically distant from the bulk of data. Esti­

mators derived from data sets including outliers may provide wrong results. 

Principal Component Analysis is sensitive to the presence of outliers. An extreme 

outlier may generate a single component. If we cannot remove the outlier from the 

data matrix, we may use a robust estimator of the covariance or correlation matrix. 
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Rao (1964) suggests investigate the distances: 

A2 = (Y- Y)'(Y -Y)=J2 (^ZD2 ~ X2
{p-ky 

j=k+i 

An informal plot of Df, •••,D^ may be used to detect outliers. Hawkins (1974) 

suggests a modification of the previous formula by dividing each term D\ by Xj to 

improve convergence to a chi-square distribution. 

To measure the degree of outlyingness, we will use two distances: the score dis­

tance (SDi) and the orthogonal distance (ODi). The first one is nothing but the 

square Mahalanobis distance, defined in (2.2), applied to the principal components 

and eigenvalue vectors obtained by PCA (that is, information about the covariance 

of the scores), so that we have: 

SDi = y/C'ih-^Ci = i i = l 3 

for i = 1, ...,n. The orthogonal distance, that is, the distance between the observa­

tions and their projections in the Ar-dimensional PCA, is defined as: 

ODi = 11^-^11, i = l,...,n. (2.8) 

To distinguish between regular observations and outliers, we construct a diagnos­

tic plot, where on the horizontal axis it graphs the score distance and on the vertical 

axis, the orthogonal distance of each observation. 

To classify the observations we draw two cut-off lines. The horizontal cut-off 

line is given by \/xti-(a/2)> because the squared Mahalanobis distance of normally 

distributed scores is approximately xl distributed and usually a is 5%. The vertical 

cut-off line is more difficult to determine, because the distribution of the orthogonal 

distances is not exactly known. However, Box (1954) gives a good approximation for 

this unknown distribution, given by g\X2
g2-, where g\ and g2 are unknown parameters 
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that can be estimated by the method of moments (Nomikos and MacGregor, 1995) 

or by the approximation of a chi-squared distribution to the normal distribution of 

Wilson-Hilferty (1931). 

Using the latter implies that the orthogonal distance to the power 2/3 is approx­

imately normally distributed with mean and variance: 

M=(W/3(l-~), 

We can obtain estimates of fi, and a using the univariate MCD, defined in Sec­

tion 3.2.4. The vertical cut-off value is then equal to (fx + (rz0.975)
3/2, where z0975 = 

$(0,975) is the 97.5% quantile of the Gaussian distribution. 

The orthogonal and the score distances now define four types of observations: 

Regular observations have small orthogonal and score distances. When samples have 

a large score distance but small orthogonal distance, we call them Good leverage ob­

servations. In Figure 2.1 we can identify observations 1 and 2 in this latter category, 

i.e., these observations lie close to the space spanned by the principal components but 

far from the regular data. This implies that they are very different from the bulk, but 

there is only a small loss of information, when they are replaced by their fitted values 

in the PCA-subspace. Orthogonal outliers have a large orthogonal distance, but a 

small score distance, see case 3 in Figure 2.1. They cannot be distinguished from 

regular observations once they are projected onto the PCA subspace, but they lie far 

from this subspace. Therefore, it would be dangerous to replace that sample with 

its projected value, as its outlyingness would not be visible anymore. Bad leverage 

observations, such as observations 4 and 5 in Fig 2.1, have large orthogonal and score 

distances. They lie far outside the space spanned by the principal components and 

after projection far from the regular data points. Their degree of outlyingness is high 
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Figure 2.1: Different types of outliers, 

in both directions and they have a large influence in the classical PCA. 

Thus, the outlier map displays the ODi vs SDi and it classifies observations 

according to the lines given by the cut-offs described before. 

2.3 Cluster Analysis 

In cluster analysis, (CLAN) we look for patterns in data by grouping observations 

into clusters. The goal is to find an optimal grouping for which the observations 

within each cluster are similar, while observations in different groups are not similar. 

For more references and details about CLAN see Timm (2002). 

Unlike the previous section data will be represented a s a n x p matrix: 

y'i " 

y'n. 
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where y{ = (yn,..., yip),i — 1,..., n is an observation vector. 

Since CLAN attempts to identify the observation vectors that are similar in order 

to group them into clusters, the technique uses an index of similarity or dissimilarity 

between each pair of observations. A convenient measure of proximity is the distance 

between two observations, which is considered a measure of dissimilarity. 

One of the most common distance function is the Euclidean distance between two 

objects. Given the matrix Y, the square of the Euclidean distance between two rows 

y r and ys is defined as: 

d2
rs = (yr - y j ' ( y r - y j = ||yr - y j 2 -

The (n x n) data matrix D = [drs] is called the Euclidean distance matrix, which is 

a special case of the Minkowski metric (L\-norm), the dissimilarity measure may be 

represented as: 

dr'=(^2\yrj-ysj\x) > 

varying A to change the weight assigned to larger and smaller distances. 

To eliminate the dependence on the units of measurement in variables, we can use 

the square of the Mahalanobis distance, defined in (2.2), as a proximity measure as 

follows: 

4s = (yr - yJ'sr^yr - y j = ||yr - y j 2 , 

where E is the covariance matrix of Y. 

To initiate a CLAN, one constructs a proximity matrix to represent the strength 

of the relationship between pair of rows on Y. There are essentially two types of 

clustering: hierarchical and partitioning clustering methods. 
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The hierarchical algorithm includes agglomerative and splitting procedures. The 

first type starts from the finest partition possible (each observation forms a cluster) 

and groups them, whereas the second type starts with a cluster that contains all of 

the observations. Both of them are used to cluster either observations or variables. 

The partitioning algorithm starts from a given definition of clusters and proceeds 

by exchanging elements between groups until a certain score is optimized. The first 

algorithm is the most used in practice. 

When clustering items, hierarchical and partitioning clustering methods may be 

combined to get a better identification of clusters. As a first step, one may use a 

hierarchical procedure to identify the seeds and number of clusters, then one can use 

a partitioning method to refine the cluster solution. 

2.3.1 Hierarchical Algorithms 

This method uses the elements of a proximity matrix to generate a tree diagram or 

dendrogram. Steps are as follows: 

1. Begin with n clusters, each containing only a single object. 

2. Search the dissimilarity matrix D for the most similar pair. Let the pair chosen 

be associated with element drs so that object r and s are selected. 

3. Combine objects r and s into a new cluster (rs) using some criterion and reduce 

the number of clusters by 1 by deleting the row and column for objects r and s. 

Calculate the dissimilarities between the cluster (rs) and all remaining clusters, 

using the criterion, and add the row and column to the new dissimilarity matrix. 

4. Repeat steps 2 and 3, (n — 1) times until all objects form a single cluster. At 

each step, identify the dissimilarity at which the clusters are merged. 
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Letting r € R represent any element in cluster R and s G S be any element in 

cluster S, one computes the distance between the new group R + S and any other 

cluster T. For this step, the following distance function is used: 

d(T, R + S) = 8ld{T, R) + 52d{T, S) + S3d(R, S) + 64\d{T, R) - d{T, S)\. 

The S's are weighting factors that change the criterion in Step 3 above, according 

to Table 2.1. Here nR, ns., nr are the number of observations in cluster R, S and T, 

respectively. 

Name 

Single linkage (Nearest-Neighbor) 

Complete linkage (Farthest-Neighbor) 

Average linkage (unweighted) 

Average linkage (weighted) 

Centroid 

Median 

Ward (Incremental sum of squares) 

Si 

1/2 

1/2 

1/2 

nR 
nR+ns 

n-R 
nR+ns 

1/2 

UR+TIT 
nR+ns+nT 

k 

1/2 

1/2 

1/2 

ns 
nR+ns 

ns 
nR+ns 

1/2 

ns+nr 
nR+ns+n-r 

h 

0 

0 

0 

0 

nRUS 

(nR+ns)2 

-1/4 
nT 

rt-R+ns+nT 

$4 

-1/2 

1/2 

0 

0 

0 

0 

0 

Table 2.1: Different agglomerative hierarchical clustering methods. 

2.3.2 Partitioning Algorithms 

These methods are only applied to cluster observations and one knows a priori the 

number of clusters k, which are either centroids or seeds. The process is initiated 

using the raw data matrix Y and not a dissimilarity matrix D. It usually follows the 

following steps: 

1. Select k centroids or seeds. 

2. Assign each observation to the nearest centroid using some L^-norm. usually 

the Euclidean distance. 
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3. Reassign each observation to one of the k clusters based upon some criterion. 

4. Stop if there is no reallocation of observations or if reassignment meets some 

convergence criterion; otherwise, return to step 2. 

The k seeds might be the first k observations at some defined level of separation, 

k random seeds and other variations. Once seeds are selected, each observation is 

evaluated for assignment or reassignment using multivariate statistics that involve 

the determinant and trace of the within and between-cluster variability. 

K-means Algorithm 

This method was first studied by MacQueen (1967) and extended by Anderberg (1975) 

or Hartigan and Wong (1979) provided some modifications. The basics steps are as 

follows: 

1. Select k seeds. 

2. Assign each of the n — k observations to the nearest seed and recalculate the 

cluster centroid (mean, median, or other depending on the L\-norm). 

3. Repeat step 2 until all observations are assigned or until changes in clusters 

centroids become small (no reassignments are made in cluster membership). 

In step 2, the seed may or may not be updated. Two tests may be made for 

seed replacement. An observation may replace one of a pair of seeds if the distance 

between the seeds is less than the distance between an observation and the nearest 

seed. The former seed becomes an observation in the recalculation of the centroid. 

If an observation fails this test, we can use another one. The observation replaces 

the nearest seed if the smallest Euclidean distance from the observation to all seeds, 

other than the nearest one, is greater than the shortest distance from the nearest seed 

to all seeds. For one pass of the data, all observations are associated with k clusters. 
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This process is repeated until all changes in clusters seeds become small based upon 

a convergence criterion. 

2 . 3 . 3 T h e S i l h o u e t t e V a l u e 

In order to measure the power of the algorithm used to classify observations, we 

can construct the silhouette plot (Rosseeuw, 1987) and a corresponding quality index 

allowing to select the optimal number of clusters. For each object i we denote by A 

the cluster to which it belongs and compute: 

«(*') := \A\_i Yl W'fi* \A\ _ 

that is, the average dissimilarity of i to all other objects of A. 

Now consider any cluster C. different from A, and put 

d(i,C) •=T^i^2d(i,j), 
' ' jec 

that is, the average dissimilarity of i G A to all other objects of C. Then, for all 

clusters C ^ A we take the smallest of the distances: 

b(i) := mm d(i, C). 

The cluster B which attains this minimum, that is, d(i, B) — b(i), is called the 

neighbor of object i £ A. The silhouette value s(i) is then defined as: 

s(.) = ^~a(fj,r (2-9) 

Clearly, s(i) always lies between —1 and 1. The value s(i) may be interpreted as 

follows: 

- s(i) ~ 1 =£• object i is well classified (in A). 

- s(i) ~ 0 =>• object i lies intermediate between two clusters {A and B). 

- s(i) w -1 => object i is badly classified (closer to B than to ^4). 
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The silhouette of the cluster A is a plot of all its s(i), ranked in decreasing order. 

The entire plot shows the silhouettes of all clusters below each other, so that quality 

of the clusters can be compared: a wide silhouette is better than a narrow one. 

Finally, the quality index mentioned before is the overall average silhouette width of 

the silhouette plot, defined as the average of the s(i) over all objects i in the data set. 
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Chapter 3 

Robustness 

All statistical methods are based on model assumptions about the data analyzed for 

a problem, where some are only a crude approximations of reality. For instance, 

the most widely used model assumption is that the observed data follow a normal 

(Gaussian) distribution. In practice this model may describe well the majority of 

observations, even if some others may seem to follow a different pattern. They are 

identified as atypical data, in the sense that they are observations far from the bulk 

of the data. They are called outliers. 

3.1 Robust Univariate Estimators 

The robust approach to statistical modeling and data analysis aims at deriving me­

thods that produce reliable parameter estimates, irrespective of the distribution as­

sumed. That is, if the data does not contain outliers, the robust method gives ap­

proximately the same results as the classical approach. While if a small proportion 

of outliers are presented, the robust method gives approximately the same result as 

the classical method applied to the "typical" data. The first great steps forward to 

the idea of statistical robustness occurred in the 1960's with the work of John Tukey 

(1960, 1962), Peter Huber (1964, 1967) and Frank Hampel (1971, 1974). 
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Many location estimators, such as the mean, are highly sensitive to outliers. In 

insurance, outliers can be due to rare events, such as catastrophes, but they can also 

be due to data entry errors. A robust estimator can limit the influence of a single 

observation on the parameter estimation. 

3.1.1 M-est imators of Location 

We assume that the outcome Xi of each observation depends on the "true value" fj, 

and a, the location and scale parameters, respectively. The location model is given 

by: 

Xi = /i + aui, i = l,...,n, (3-1) 

where Ui,U2, —un are independent random variables with the same distribution func­

tion F and we assume a is known. 

It follows that X\,X2, •••,xn are independent with common distribution function: 

FvAx) = F(x;fi,a) = F^ J, 

that belongs to a family of parametric distributions {Fg[x)\9_ E fi}. 

Assume that F has a density / = F', given by: 

f(x;/i,a) = - / ( ). 
a \ a / 

Then the joint density of the observations (the likelihood function) is: 

L(x1,...,xn;fi,a) = — Uf(^~)-

Assuming a known, the maximum likelihood estimator (MLE) of JJL is the value /x, 

depending on Xi,...,xn, that maximizes L(xi,...,x„;/j,,a): 

fl = Ji{xi. ••••xn) = argmaxL(a;i, ....xn;/j.) (3-2) 
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where arg max stands for "the value maximizing". 

The goal will be to find estimators which are: i) "nearly optimal" when F is 

exactly normal and ii) "nearly optimal" when F is approximately normal, that is, 

contaminated normal distribution. 

To formalize this idea, we may imagine that a proportion (1 — e) of the observations 

is generated by the normal model, while a proportion e is generated by an unknown 

mechanism. This can be described by supposing: 

F = (1 - e)G + eH, (3.3) 

where G = N(p, o2) and H may be any distribution; for instance, another normal 

with a larger variance and a possibly different mean. In general, F is called a mixture 

of G and H, and it is called a normal mixture when both G and H are normal. 

If / is positive everywhere, we can use the logarithm function (which is increasing), 

to write (3.2) as: 
n 

/2 = a r g m m ] T p ^ - ! j , (3.4) 

where p(t) = — log f(t) + log/(0) is called a p-function. If p is differentiate, differ­

entiating (3.4) with respect to p, we have: 

X>(^) = 0- <3-5> 
where ip = p'. Therefore, given a function p derivable, no decreasing and with 

p(0) = 0, an M-estimator of location is a solution of (3.4). Note that if / is symmet­

ric, then p is even and hence tp is odd. 

For example, if F = N(0,1), then f(x) = -4= exp(—x2/2) and up to a constant, 
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p(x) = x2/2 and ip{x) = x. Hence (3.5) becomes: 

n 

i=l 

which solves for p = x. 

For p(x) = \x\, corresponding to the double exponential distribution, it can be 

shown that any median of solution of (3.4). In fact, the derivative of 

p(x) exists only for x ^ 0 and is given by the sign function: 

- 1 if x<0 

il>(x) = sgn(x) = < 0 if x = 0 , 

1 if x>0 

then (3.5) becomes: 
n 

Yl sgn(xi - p) = 0, 

which solves for p = medf^Ej, ...,xn), the sample median. 

A very common type of p and ^-functions with important properties is the family 

of Huber functions, see Figure 3.1: 

( x2 if \x\ < k 
Pk(x) = \ , (3.6) 

{ 2k\x\ - k2 if \x\ > k 

with derivative 2^ (x ) , where: 

{ x if\x\<k 
• (3-7) 

sgn(x)k if \x\ > k 

It is seen in Figure 3.1 that pk is quadratic in a central region, but increases only 

linearly to infinity. The M-estimators corresponding to the limit cases k —> oo and 

k —> 0 are the mean and median, and we define ipo(x) as sgn{x)1. 

-'The value of k is chosen in order to ensure a given asymptotic variance of the normal distribution. 
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Figure 3.1: Huber p- and ^-functions. 

Maronna (2006) showed that when n —* oo, then fL —> LIQ, where LIQ = po{F) is 

the solution of: 

E F ^ ( x - / x 0 ) ] = 0 , 

for a given distribution F and ip assumed increasing. Therefore, the distribution of 

fx is asymptotically: 

EF[?P(x - Lio)2} 
N ("»l)' with v 

EFty(x - ft)] 
1 2 - (3.8) 

In most cases of interest, ^(0) = 0 and ^'(O) exists, so that ip is approximately 

linear at the origin. Let 

W(x) = 
ip(x)/x if x ^ 0 

4>'{x) if x = 0 
(3-9) 

then (3.5) can be written as: 

^W{xi-Ji){xi-Jl) = ^ 
7 = 1 
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or equivalently, 

j2=^klWiX\ (3.10) 

where Wi = W(xt — jl), which expresses the location M-estimator as a weighted mean. 

3.1.2 M-estimators of Scale 

To measure the variability of a vector x = (xly x2,..., xn), we use the standard devia­

tion (SD), given by: 

S D ( x ) = f - i - ^ i - x ) 2 | > (3.11) 
in — I z—' J 

i = i 

where x is the sample mean, which is easily influenced by outliers, (see Section 3.1.4) 

and therefore SD lacks of robustness. One alternative estimator proposed is the mean 

absolute deviation (MD): 
1 n 

MD(x) = - ^ j ^ - x | , (3.12) 
j = i 

which is still sensitive to outliers, but less that the SD tough (See Tukey, 1977). 

A more robust alternative is to subtract the median of the absolute value, which 

yields the MAD estimate: 

MAD(x) = Medflx - Med(x)|). (3.13) 

Now, consider observations x, satisfying the multiplicative model: 

x,i = aui, (3.14) 

where M1? ..., un are i.i.d. with density /0 and a > 0 is the unknown parameter. The 

MLEof am (3.14) is: 

a = a r g m a x - I | / o ( 5 ) -
1 = 1 

Taking logs and differentiating with respect to a gives: 

-£#) = i, 
n *—* \ a / n ^—1 \ a . 

i = l 
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where p{t) = #(*) , with $ = - / ' / / . 

In general, an M-estimator of scale is any estimator that satisfies an equation of 

the form: 

i £>(!)=* ( 3 1 5 > 
where p is a p-function and 0 < 5 < 1 is a constant needed to have a solution in (3.15). 

As in the previous section, the M-scale estimator can be represented as a weighted 

RMS2 by defining: 

{ p(x)/x2 if x ^ 0 
W{x) = { V " . (3.16) 

I p"{x) if x = 0 

and then (3.15) is equivalent to: 
n 

62 

nd 
2 = 1 

Therefore, larger x values are assigned smaller weights. In the previous section 

we defined the M-estimator as a solution of (3.4), when a is known. However, it does 

not occur in practice, hence we need to replace it by an estimator a, such as those in 

(3.11), (3.12) or (3.13). 

3 . 1 . 3 T r i m m e d M e a n s 

Another robust estimation approach of location is to discard a proportion of the 

largest and smallest values. 

2The root mean square (RMS), also known as the quadratic mean, of observations (xi, ...,x„) is 

denned by: 

XRMS 
1 " 

n t—1 
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Definition 3.1 Letx^-j,..., X(„) be the ordered values ofx. The symmetrically trimmed 

mean or the 8-trimmed mean is: 

, Un 

xs(Ln,Un) = — — Y^ z(i), 

where Ln = [nJj and Un = n — Ln. 

We can also fix the proportion of cases trimmed and the proportion of cases 

covered. For the following estimators, we use Ln and Un as previously defined. Here 

[x\ denotes the "greatest integer" less than or equal to x and fx~\ denotes the "smallest 

integer" greater than or equal to x. 

Definition 3.2 The Winsorized mean is defined as follows: 

1 r Un ] 
W6(Ln, Un) = - LnxiLri+1) + ^2 x(i) + (n~ u„)x{Un)j. 

Definition 3.3 A randomly trimmed mean: 

Rs(L„, Un) = - _ ^T XW' 
i=Ln+\ 

where Ln < Un are integer valued random variables. Un of the cases are covered by 

the randomly trimmed mean, while n — Un + Ln of the cases are trimmed. 

3.1.4 The Influence Function 

Given a random sample xi,...,xn with a common distribution Fg{x) € {Fs;9 £ £1}, 

we define the empirical cumulative distribution function (c.d.f.), Fn, as follows: 

1 " 
Fn{x) = -y^j\Xi<x}, 

where I^j is the indicator function of event A. 
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By Glivenko Cantelli's theorem, it can be shown (see Devroye, 1997) that: 

lim Fn(x) = F(x) (almost surely). 
ra—>oo 

Therefore, we consider estimators 9 that are functionals Fn of this empirical c.d.f., 

9n — Tn(xi, ...,xn) = T(Fn), where T is assumed to be continuous, i.e., if Fn ^4" F, 

then T{Fn) - i T(F) (see Appendix B). Hence, 9n = T{Fn) -» T{F), which is called 

the consistency property. 

Now, what happens if we add one more observation with value a: to a very large 

sample? To measure this effect, we give the following definition: 

Definition 3.4 The sensitivity curve (SC) of the estimator Tn for the sample 

n>2, is: 

bCn{x;xi,..., xn-i, in) = n[in(xi, ...,xn-i,x) — Tn-\(xi, ....a;n_i)J, 

which is, in general, difficult to compute and it depends on the observed sample 

values. That is why, we define the asymptotic version of the SC of an estimator, 

when the sample contains a small fraction e of identical outliers. 

Definition 3.5 The Influence Function (IF) of a functional T at x under a true 

distribution F is given by: 

where I[x] is the indicator function of x. This function was introduced by Hampel 

(1971, 1974). Under appropriate regularity conditions, it can be proven that: 

/ IF(x; T, F)dF{x) = 0, and by Taylor's expansion: 

Tn = T{Fn) = T(F) + -J2lF(Xi;T,F) + (>„(-=). 
n *—' Vv/n/ 
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Also, y/n[Tn - T(F)} -> N[0, V(T, F)] in distribution, where: 

Hence, the influence function allows us to assess the relative influence of individual 

observations for the value of an estimate. If it is unbounded, an outlier may cause 

trouble. For example, ifTn(xi,...,xn) = xn, we have: 

^ ^ n r i -M; •••; Xn—l, Xnj X Xn—\ j 

and 

IF(x;T,Fe) = x-0, 

where T(Fe) — 9 is the mean of Fe. Hence the influence function is unbounded 

and therefore the sample mean is very influenced by outliers. Now, we define the 

maximum value of the influence function. 

Definition 3.6 The gross-error sensitivity of T at Fe is defined by: 

y*(T,Fe) = sup\IF(x;T,F9)\, 
X 

and by re-scaling it, we can compare different estimators: 

sxLPx\IF(x;T,Fe)\ 
1**(T1F„) = 

y/fIF(x;T,Fo¥dFe(x) 

The closer 7**(T, Fg) is to 1, the more robust is the estimator. It is proven (see 

Maronna, 2006) that the influence function for a location M-estimator of JJ, = Ta(Fe) 

given by (3.1), is: 

IF(x0;Ta,Fe) = a ^ ^ , (3.17) 

and for a scale M-estimator of a — Tb(Fe) given by (3.14), the influence function is: 

in^,Tb,F9)=a Pij/a)~^ (3.18) 
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3.1.5 The Breakdown Point 

The previous section defines the gross-error sensitivity as a measure of robustness 

of an estimator, when the sample contains a small proportion e of contamination. 

There is another measure that is used for a bigger (finite or infinite) proportion of 

contamination. It is called the Breakdown Point (BP). Roughly speaking, the BP of 

an estimator 9 of 9 is the largest amount of contamination that the data may con­

tain such that 8 still gives some information about 9, i.e., about the distribution of 

the "typical" points. In other words the BP is the smallest fraction of data points 

that we need to replace in order to move the estimator of the contaminated data set 

arbitrarily far away. 

Suppose m arbitrary data points z = (zi,...,zm) replace m data points from 

the original data x = (xi,...,xn), producing a corrupted sample with a proportion 

£m = fn/n of contaminated data. Thus, we observe the difference between the func­

tional on the original sample and the functional on the contaminated sample. 

Therefore, we define the maximum bias for an estimator 9n = T(Fn) = T„(x) = 

T„(xi, ...,£„) caused by em = m/n to be: 

b(9n,x,m) = sup \Tn(z) - Tn(x)|. 
z 

Definition 3.7 The breakdown point of 9 in x is defined as: 

e*(9,x) = —, 
n 

where m* = m,in{m : b(9n, x, m) = oo}. 

In general, the maximum BP is 1/2 and it is reached by some estimators, for 

instance, the sample median and M-estimators, based on a bounded ip. 
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The finite-sample version of a breakdown point is given by the replacement finite-

sample breakdown point (FBP) of 9n at x. It is the largest proportion e*(#„,x) of 

data points that can be arbitrarily replaced by outliers such that 9n is still bounded 

and also bounded away from the boundary of 0 , which is nothing else but a range of 

possible values3 of 9. 

More formally, let xm be the set of all data sets y of size n having n — m elements 

in common with x, then: 
— 777* 

e;(0n>x) = — , (3.19) 
n 

where 

m* = max {m > 0 : 9n(y) is bounded and also bounded away from 6 VyE Xm}-

For more details, see Donoho and Huber (1983). 

3.2 Robust Multivariate Estimators 

The estimators of a multivariate location vector fj, and of its scatter matrix £ form 

the basis of multidimensional data analysis, since they are the input to many classical 

multivariate techniques. We know that the sample mean and variance are optimal 

if data comes from multivariate normal distribution, because they correspond to the 

maximum likelihood estimation (MLE) of the population parameters. However, they 

are extremely sensitive to the presence of outliers, as reviewed in the univariate case 

in Section 3.1.4. Therefore it is important to consider robust estimators for multi­

variate observations. 

3For example, for a scale or dispersion parameter, we have 6 = [0, oo], and the estimator should 

remain bounded, and also away from 0, in the sense that the distance between 9 and 0 should be 

larger than some positive value. 
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Simple robust estimators of a multivariate location parameter can be obtained by 

applying a robust univariate location estimator to each coordinate, but this lacks of 

affine equivariance. For dispersion, there exist simple robust estimators of the covari-

ance between two variables (pairwise covariances), which can be used to construct a 

robust covariance matrix (see Devlin, Gnanadesikan and Kettering, 1981 or Huber, 

1981) but apart from not being equivariant, the resulting matrix may not be positive 

semidefinite. Therefore, it is recommended to estimate them simultaneously to get 

equivariant estimators. 

For more details about robustness for multivariate analysis, see Maronna (2006, 

pp. 175-228). 

3.2.1 Multivariate M-estimators 

In Section 3.1 we defined M-estimators by generalizing MLE's for univariate location 

and scale estimators. Recall that a multivariate normal density has the form in (2.1) 

and also it can be written as follow: 

f(X, /x, £ ) = -L=h{d(X, fi, £) ) , (3.20) 

where h{s) = cexp(-s/2), with c = (2?r)-p/2 and d{X, ^ S ) = (X - n)'Trl{X - fx). 

Any density of this form is called elliptically symmetric (or "elliptical" for short) 

and when fi = 0 and X = cl it is called spherically symmetric (or just "spherical"). 

Let Xx, ...xn be an i.i.d sample from an / of the form in (3.20), where h is assumed 

to be everywhere positive. Hence, the likelihood function of / is: 

L(/i, s )=—jL- n h(d^», x)), 
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and maximizing L(/x, S) , yields the following minimization problem: 

n 

~2 log L(fi, S) = n log |S | + J2 P(di), (3-21) 

where p(s) = —2logh(s) and d{ = rf(xj, (J,, £ ) . 

Then, we obtain the M-estimators as a solution of (3.21): 

~ I X i WiM*.fr s)>* ( 3 2 2 ) 

s = ^ x ; w2{d{-Xi, n, s)}(X, - M)(X,- - ny, (3.23) 

with W = p' and where the functions W\ and W^ need not to be equal and both 

depend on the outlyingness measure d*. 

Uniqueness of solutions of (3.22) and (3.23) requires that d W2(d) be a nonde-

creasing function d, which is the multivariate version of the requirement that the 

p-function of a univariate M-scale be monotone. 

It is proved in Huber (1981) that if the Xj are i.i.d with distribution F, then 

under general assumptions, when n —> oo, M-estimators converge in probability to 

the solution (/x, X) of: 

E[W1(d)(x i-/ i)] = 0 

E[V^(d)(x i-/ i)(x,--A i) ' ] = S, 

where d = d(x, fx, S) . Huber also proves that y/nifi — jz, E — £ ) tends to a multi­

variate normal distribution. 

From an applied viewpoint, M-estimators can be considered as a simple modifi­

cation of classical estimators. They give full weight to observations assumed to come 

from the bulk of the data, but they reduce the weight (influence) of observations from 
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the tails of the contaminating distribution. In many applications, the functions Wx 

and W2 are chosen according to Huber's proposal (see Croux and Haesbroeck, 2000): 

W1{y) = and W2(y) = — , 
y py 

where ipii(y, k) = max{~k,mm(y, k)} is Huber's psi function, (3 is a constant making 

the covariance matrix estimator Fisher-consistent at normal models4 and q = Xp,o.9-

3.2.2 The Breakdown Point for Multivariate Robust Estima­

tors 

To define the breakdown point (BP) we will consider its asymptotic version. In this 

case we assume that: 

Wx{d)Vd and W2{d)d are bounded for d > 0. (3.24) 

For multivariate M-estimators, the asymptotic BP depends on the knowledge of LL 

and E. If S is known, Maronna (2006) showed that the BP of fj. is 1/2. On the other 

hand, if it is known, the asymptotic BP of the M-estimator of £ with W2 satisfying 

(3.24) is: 

^ = m i n ( l l - | ) , (3.25) 

where its maximum value is l/(p + 1), attained when K = p + 1, and hence: 

e* < —!—. (3.26) 

~p+l v ' 

Davies (1987) showed that the maximum FBP of any equivariant estimator for a 

sample in general position5 is fn*max/n. where. 
~n — p~ - ] . (3.27) 

2 

It is therefore natural to search for estimators whose BP is nearer to this maximum 

BP than that of monotone M-estimators. 
4For this purpose, we use the factor defined in (3.38) 
5To be in general position means that no hyperplane contains more than p points 
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3.2.3 Using Pairwise Robus t Covariances 

A robust pairwise covariance proposed initially by Gnanadesikan and Kettenring 

(1972) and studied by Devlin et al (1981) is based on the identity: 

Cov{X, y) = \ (SD(X + Yf - SD(X - y ) 2 ) . (3.28) 

They proposed to define a robust correlation by replacing the standard deviation 

by a robust dispersion o (they chose a trimmed standard deviation): 

and a robust covariance defined by: 

RCov(X, Y) = a{X)a{Y)RCoxr{X, Y). (3.30) 

The above pairwise robust covariances can be used to define a "robust correlation 

(covariance) matrix" of a random vector X = (x l5..., Xp)', which is symmetric but not 

necessarily positive semidefinite and is not afhne equivariant. Maronna and Zamar 

(2002) show that this problem can be overcome by using a robust a and a set of 

"principal directions". 

3.2.4 Es t imators Based on a Robus t Scale 

For the purpose of this work, it will be very useful to look for multivariate estimators 

for fx and S that minimize some measure of size of <2(x, fi, S ) . For a data set X call 

d(X, p,, S) the vector with elements d(xj,/5, £ ) , i = l,...,n and let a be a robust 

scale estimator. Then we can define the estimators /A and S by minimizing: 

£(d(*, £,£)), (3.31) 

with p, € MP, £ G <SP and | S | = 1, where Sp is the set of symmetric positive definite 

p x p matrices. The previous formulation is equivalent to minimizing | S | subject to 

a bound a. 
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The Minimum Volume Ellipsoid Estimator 

The simplest case is to define a as the sample median and the resulting location and 

dispersion matrix estimator is called the minimum volume ellipsoid (MVE) estimator. 

This estimator has a consistency rate of only nr1/3 and hence is very inefficient6. 

S-estimators 

Other estimators with better efficiency are the S-estimators (see Davies, 1987), de­

fined by (3.31) and taking for a an M-scale estimator satisfying: 

where p is a smooth bounded p-function. If p is differentiable, it can be shown that 

the solution of (3.31) must satisfy equations (3.22) and (3.23), that is: 

X > 2 (|f) (* - £) = 0 (3-33) 
i=i 

-TW2(^)(^ - £ ) ( * - fL)' = c% (3.34) 
n *—^ \o~ I 

i=i 

with W = p1, a = (r(di,..., dn) and c is a scalar such that | S | = 1. 

Davies (1987) proved that if p is differentiable, then for S-estimators, the distri­

bution of y/n(fl — pi, S — X) tends to a multivariate normal distribution. 

6A11 estimators considered in this section are considered consistent in the following sense: if 

Xj ~ Np(fi, E) then p = p. and X = cX, where c is a constant. Also, we assume that all estimators 

defined in this section are asymptotically normal: 

V^(lin-n)^Np(0,V„) , ^ v e c ( S n - S ) - i j V , ( 0 , V E ) , 

where q = p{p+ l ) /2 and for a symmetric matrix S , vec(S) is the vector containing the q elements 

of the upper triangle of X. The matrices VM and Vj; are the asymptotic covariance matrices of fl 

and X. Hence we say that (1 and X have a consistency rate of n - 1 / 2 
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We define the bisquare multivariate S-estimator as the one with scale given by 

(3.32) with: 

p(t) = min{l, 1 - (1 - tf}, (3.35) 

and with a weight function 

W(t) = 3(1 - t2)^^. 

In the univariate case, the bisquare scale estimator, call it rf, based on centered 

data %i with location p,, is the solution of: 

-J^Pbisq(^rR)=S, (3-36) 

where puSq(t) = min < 1,1 - (1 - t2)3 >. Note that pbisq{t) = p(t2) for p denned in 

(3.35), then (3.36) is equivalent to: 

-yP({Xi~Jr)=s, 
n z—' V a / 

with a = rj2. Now c?(x, /^, S) is the normalized squared distance between x and fx, 

which explains the use of p. 

The Minimum Covariance Determinant Estimator 

When the number of variables p is smaller than the data size n, the minimum co-

variance determinant estimator (MCD) can be used (see Rousseeuw, 1984). This 

location and covariance estimator is very popular because of its high resistance to­

wards outliers and because a fast algorithm for its computation has been developed 

by Rousseeuw and Van Driessen (1999). 

We consider a vector X — [x1? ...,xra], then the MCD method searches for the 

subset of h observations whose covariance matrix S has the lowest determinant7. 

'The number h determines the robustness of the estimator and should be at least [(n+p+ l ) /2 j , 

where [y\ denotes the "greatest integer" less than or equal to y. 
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Hence, we obtain the estimators JIMCD
 a n d ^>MCD by solving the following objective 

function: 

min|fcS*|, (3.37) 

where 

and 

1 h 

s* = - ^(x,- - ju*)(xi - pry 
i = l 

h 

The value for h e and if we are certain that the dataset L(n + p+l)/2j,nj 

contains less than 25% outliers, then we can obtain statistical efficiency by using 

h = [0.75nJ8. The default value for h in many statistical packages is [(n + p + 1)/2J. 

The MCD's breakdown is then (n — h + l ) /n, which means that we need at least 

n — h + 1 outliers to make the estimators worthless. Note that, when h = n we have 

the normal MLE estimators. 

The factor k is used to obtain consistency when data come from a multivariate 

normal distribution and it is defined by: 

medf d(x.i,fj,MCD, X M O D ) , - ^ ( X T D M M C O ' ^MCD) ) 
k v 2 

Ap,0.5 

(3.38) 

where xl,a denotes the a-quantile of the Xp distribution. 

The One-step Re-weighted Estimator 

A one-step reweighted estimator is obtained by: 

E n 
i = l Wi*i Vl 

H1 = 

E n i 

Er=i^( x »~^i ) ( x ' - ^ i ) / 

En -. ) 

8Note that in this case X and fi* are trimmed estimators, but not necessarily symmetric, as the 

one defined in Section 3.1.3. 
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where: 

{ 1 if d(xi, IIMCD-* ^MCD) < \/xl,o.975 

v 

0 otherwise 
Therefore, this estimator is also called the reweighted MCD estimator and it is 

equal to the classical mean and covariance matrix of data points with weight one. 

The Stahel-Donoho Estimator 

Section 2.1 describes a simple approach for detection of outliers using the Mahalanobis 

distance: for each observation compute an outlyingness measure and identify those 

points having a large value of this measure. The idea in the multivariate case is that 

a multivariate outlier should be an outlier in some univariate direction. 

More precisely, given a direction a E M? with ||a|| = 1, denote by a'X — 

(a'xi,..., a'xn) the projection of the data X along a. Let p, and a be robust uni­

variate location and dispersion statistics. The outlyingness with respect to X of a 

point x G W along a is defined by: 

x'a — u(a'X) 

"*•»> = g ( £ ) • 
The outlyingness of x is then defined by: 

t(x) = max t(x, a) (3.39) 
a 

The Stahel-Donoho estimator, proposed by Stahel (1981) and Donoho (1982), is 

a weighted mean and covariance matrix where the weights of x,- are nonincreasing 

functions of t(Xi). More precisely, let W\ and W2 be two weight functions and define: 

1 
jl = = j V" tWflX,-, (3.40) 

i n 

£ = ^ n 5 ^ wi2(xi - j5)(xi - $)', (3.41) 
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with 

Wij^WjMxi)), j = 1,2, 

where the weight functions must satisfy that tWx(t) and t2W2{t) are bounded for 

t > 0, in order that no term dominates. 

Maronna and Yohai (1995), showed that under the above condition, the asymp­

totic BP is 1/2 and for the FBP, Tyler (1990) and Gather and Hilker (1997) showed 

that the estimator attains the maximum BP given by (3.27) if /x is the sample median 

and the scale is: 

where z* denotes the ordered values of \z{ — Med(z)j and k = [(n + p)/2\. The right 

choice of the weight functions is very important for combining robustness and effi­

ciency. 

For more details about this estimator and its influence function, see Gervini (2002) 

and Zuo, Cui, and He (2004). 
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Chapter 4 

Robust Multivariate Statistical 

Techniques 

4.1 Introduction 

Section 2.2.1 describes Principal Component Analysis (PCA) as a classical method 

to explain the covariance structure using a small number of components. These com­

ponents are linear combinations of the original variables which allow us to analyze 

high-dimensional data. PCA is then one of the first steps in the data analysis, followed 

by discriminant analysis, cluster analysis or other multivariate techniques. Besides, 

this method can be used for detection of outliers, as we explained in Section 2.2.3. 

In this classical approach, the first component corresponds to the direction in 

which the projected observations have the largest variance. The second component 

is then orthogonal to the first and again maximizes the variance of the data points 

projected on it. Continuing with this procedure, we create all the principal compo­

nents, which correspond to the eigenvectors of the empirical covariance matrix. 

However, as explained in Section 3.1.2, both the classical variance, which is sup-
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posed to be maximized, and the classical mean are very sensitive to anomalous obser­

vations. As a consequence, the first components are attracted by these outliers and 

might not catch the variation of regular observations. Therefore, a robust method to 

reduce the influence of those outlying points is needed. 

4.2 Robust Principal Component Analysis 

In this section we describe a procedure to robustify PCA to reduce the influence of 

atypical observations in the obtention of the principal components. For this purpose, 

a robust estimator (/2, S ) of multivariate location and scatter is used to reduce the 

influence of outliers, instead of the classical sample mean and covariance matrix de­

rived from the Normal distribution. 

Consider a sample of p-dimensional observations x1 ; . . . . x„ and denote by d(xj. /5, S ) = 

(x,- — p,yS (xj — fl) the statistical distance between x, and the p x 1 vector of sam­

ple means p,, measured in the metric induced by the positive definite matrix S , the 

sample covariance or scatter matrix. 

An obvious way of modifying the classical PCA is to replace S by a robust es­

timator. The method proposed in this thesis is a combination of different robust 

estimators applied in the method proposed by Maronna (2006) in an effort to reduce 

the influence of outliers in the estimation of eigenvalues and eigenvectors. 

Let X = [xij] be an n x p matrix with rows vectors x,-, i = 1,..., n and therefore, 

columns vectors will be represented as x J , j = 1, ...,p. Let J2(.) and a(.) be univariate 

M-estimators of location and scale respectively, with /^-function given by (3.6). 

Thus, we obtain a robust dispersion matrix estimator S ( X ) and robust location 
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vector estimator £t(X) by following the next computational steps: 

1. Compute a normalized data matrix Y with columns yJ = JT^JT, and hence with 

rows Vj = D _ 1 x, for i = 1, ...,n, where D = diag(a(x1), ...,a(xp)), which makes 

the estimator scale equivariant. 

2. Compute a robust correlation matrix U = [Ujk] of X as the covariance matrix 

of Y by applying (3.29) to the columns of Y. That is1: 

U3j = 1, Ujk = \ [a(y + yfc)2 - a(y - yk)2], (j ? k). 

3. Compute the eigenvalues Xj and eigenvector e, of U (j = l,...,p) and let E 

be the matrix whose columns are the e /s . It follows that U = EAE', where 

A = diag(A1; ...Ap). In this step we use a classical PCA, as described in Section 

2.2. 

4. Compute the matrix Z with 

Zi = E'y,- = E'D-1x,- (for i = 1,..., n) 

so that (z1, ...,zp) are the principal components of Y. 

5. Compute d(z?) and j£(zJ') for j = 1, ...,p and set 

r ^ d i a g ^ z 1 ) 2 , . . . , ? ^ ) 2 ) 

and 

z / ^ z 1 ) , . . . , ^ ) ) ' . 

6. Transform back to X with 

Xj = Az,-, where A = DE. (4.1) 
1 Recall that this matrix is symmetric but not necessarily positive semidefinite and is not affine 

equivariant. 
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7. Set the robust location and covariance estimator of the original matrix X as 

/x(X) = Ai/, and S(X) = ArA' . (4.2) 

Using this definition of p, and £ allows us to replace the A '̂s, which may be neg­

ative, by the robust variances a(zj)2 of the corresponding directions. Maronna 

and Zamar (2002), show that this simple modification yields a positive definite 

matrix and approximately equivariant. 

Until this step, the process works well when the data have low correlations. 

Therefore, in order to have principal components Zj's less correlated, we iterate 

the process from Step 1-7 and this is possible by defining: 

ju(fc+1)(X) = A£(Z W ) , and S(fc+1)(X) = AS(Z(fc))A'. (4.3) 

The resulting estimator it is called the Orthogonalized Gnanadesikan-Kettenring 

(OGK). 

8. In order to increase the estimate's efficiency and to make it more equivariant, 

we use the robust estimators obtained from iteration in previous step as a 

starting points for the iteration of either the M- or S-estimator of location and 

covariance matrix, given in Section 3.2.1 and 3.2.4, respectively, which implies 

the use of weight functions of the distances d(x,-, ji, E) 

9. Finally, we use this final robust estimators as a parameters in the PCA to obtain 

the Robust Principal Components of X. 

Thus, to obtain a robust PCA, we use an estimator (/I, £ ) which is: scale equivari­

ant (given by Step 2), with principal components approximately uncorrelated (given 

by iteration from Steps 1-7), high efficient and more equivariant (given by Step 8). 
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4.2.1 The Influence Function of Eigenvectors and Eigenval­

ues 

Let X!,...,xn be an independently and identically distributed sample drawn from a 

p-variate distribution F (E $, which will be assumed to be the normal distribution 

JV(/Z. £ ) , where /J, e M.p and £ € «SP
2. Also, suppose that £ has distinct eigenvalues 

Aj > ... > Xp, with corresponding eigenvectors p l 7 . . . ,pp . 

An influence function, as denned in Section 3.1.4, is essentially the first derivative 

of the functional version of an estimator. Let T a statistical functional corresponding 

to an estimator £„ of S that sends an arbitrary distribution G £ # to T(G), whenever 

T(Fn) = S n , for every empirical distribution function Fn associated with observations 

x l7..., xn . If we assume that X is distributed according to G, then the notation T(X) 

instead of T(G) will be used. 

The functional representation of the eigenvectors and eigenvalues from S n are 

denoted by p T • and XTj, for j — l,...,p. At the empirical distribution function, 

PTj(Fn) = Pgn and A^^i^) = Ag .. Also, we assume T to be Fisher consistent 

for £ at F, that is T(F) = £ , and affine equivariant, meaning that T(J4X + b) = 

AT(X)A' for any b £ Rp and any p x p nonsingular matrix A This implies immedi­

ately that Fisher consistency also holds for the eigenvector and eigenvalue functionals, 

pT>j(F) = Pj and XTj(F) = Xj. Moreover, the functionals pTj and XTj are orthogo­

nal equivariant in the sense that: 

P r ^ r X ) = rPTJ(X) and A r j ( rX) = XTJ(X), 

for j = 1, ...,p and for any p x p orthogonal matrix T. All these results are shown in 

Croux and Haesbroeck (2000). 

2The set of symmetric positive definite p x p. 
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By definition, the influence functions of p r - and XTj are given by: 

IFfr PT, F) - | i m ^ l " - ^ + " - ] - f t . W , 

7F(x; A r j , F) = lim L- — , 

for j = l,...,p and where <5X denotes the point mass 1 at x. For more 

influence functions and statistical functional, see Hampel et al. (1986). 

The following lemma characterizes the general form of the influence function of a 

covariance matrix and will be used to derive (4.4) and (4.5): 

Lemma 4.1 For any affine equivariant covariance matrix functional T possessing an 

influence function, there exist two functions a?, (3T • [0, oo) —> K, such that: 

IF(x;T,F) = aT{d(x)}(x- fi)(x- p)' - / ? T M * ) } £ > (4-6) 

with d(x) = d(x, n, H) and F = NP(/J,, E) 

That influence function has been derived by Huber (1981, pp. 226) for M-

estimators and by Lopuha (1989, 1999) for S and for Reweighted estimators. The 

graph for functions ax for each estimator is extracted from Croux and Haesbroeck 

(2000) and showed in Figure 4.1. The corresponding functions C*M, &S and an are 

nonincreasing, meaning that their contribution to the influence function decreases as 

the distance between x and fj, in the metric imposed by S increases. The function 

acov, corresponds to the classic estimator and it is constant, implying that outliers 

are not given less weight. 

Theorem 4.1 Let F be a multivariate normal distribution with parameters /L* and 

S. Define the scores of X as Zk = p'k{X — /J,) for k = 1,...,£> and let d(x) = 

(xi — /i)'S~1(cci — fj). The influence functions of the eigenvectors and eigenvalues of 

T at F are given by: 

IF(x: XT:j, F) = aT{d{x))Z) - $T{d{x))\, 
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Figure 4.1: Examples of the function aT for different type of estimators. 

IF(x;pTj,F) = aT{d(x)} J^ A , l ^ Pk, 

forj = l,...,p 

It follows now from Critchley (1985) that: 

/F(x ; XTJ, F) = aT{ri(x)}/F(x; Xcov>j, F). 

Therefore, it is confirmed that the function aT needs to be interpreted as a down-

weighting function. A decreasing aT function implies a bounded influence function 

for eigenvectors. 

4.3 Robust Clustering Method 

Different techniques for identifying clusters of well-separated uncontaminated groups 

of data have been available for many years. However, this process becomes more 

difficult when data include outliers since these points can skew the shape estimates of 

the clusters or distort optimization criterion which mask separation between clusters. 

Robust clustering methods often give an accurate representation of data. Still, 

they do not usually identify particular outlying points which may be of interest or 
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importance. Therefore it is important to have a complementary outlier identification 

method. For instance, by calculating the Mahalanobis distance for each point to 

the center of the data, we can then create outlyingness measures, as we defined in 

previous chapters, to identify possible multivariate outliers, that is, points with a 

distance larger than some predetermined value. In the clustering context, outlier 

identification methods can be used individually on each cluster. 

4.3.1 Partitioning around medoids 

This partitioning around medoids algorithm (PAM) is based on the search for k 

representative objects, called medoids, among the objects of a data set (Kaufman 

and Rousseeuw, 1987). These medoids are computed such that the total dissimilarity 

of all objects to their nearest medoid is minimal, i.e., the goal is to find a subset 

{mi,..., rrik} C {1,.... n} which minimizes the objective function: 

n 

VJ min d(i,mt). (4-7) 

Each object is then assigned to the cluster corresponding to the nearest medoid. 

That is, object i is put into cluster Ri when medoid m^ is nearer to i than any other 

medoid mw, i.e., 

d(i, rrifij < d(i, mw) for all w = 1, ...k. 

The algorithm of PAM proceeds in two steps: 

1. Construct initial medoids: 

- m-i is the object with the smallest 5Z"=i d{i- mi) 

- m-2,...,mh decrease the objective (4.7) as much as possible. 

2. Repeat until convergence and consider all pairs of objects (i, j) with i € {mj,..., m^} 

and j <£ {mi, •••,rnk} and make i <-> j swap (if any) which decreases the objec­

tive most. That is, if the objective can be reduced by interchanging (swapping) 
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a selected object with an unselected object, then the swap is carried out and 

this is continued until the objective function can no longer be decreased. 

Since the objective function (4.7) only depends on dissimilarities between objects, 

PAM only needs a dissimilarity matrix. This method can be compared to the &-means 

method described before. In that method the center of each cluster is defined as the 

mean of all objects of the cluster and its goal is to minimize a sum of squared euclidean 

distances, implicitly assuming that each cluster has a spherical normal distribution. 

The PAM method is, as we will explain further, more robust because it minimizes a 

sum of unsquared dissimilarities and moreover, PAM does not need an initial guess 

for cluster centers. 
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Chapter 5 

Application to a Car Classification 

Database 

5.1 Database Description 

We use the low-dimensional car data 'cu. dimensions' available in S-PLUS and ex­

tracted from Consumer Reports (1990), where we have n = 111 observations (cars 

brands) with p = 11 variables related to different characteristics, such as: 

Variable 

xl 

x2 

Xz 

x. 
x5 

X6 

Description 

Length 

Wheel.base 

Width 

Height 

Front.Hd 

Rear.Hd 

Variable 

x7 

Xs 

x9 

X}o 

Xu 

Description 

Frt.Leg.Room 

Rear. Seating 

Frt.Shld 

RearShld 

Luggage 

Table 5.1: Variables in Car Database. 
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5.2 Use of the Robust PCA Method 

We obtain, as a preliminary analysis, correlations p(Xi,Xj) between some variables, 

for example, p(XuX2) = 0.83, p{XuX9) = 0.79 and p(X2, X3) = 0.80, which indicate 

a high association among the variables. Therefore a method to reduce dimensions is 

required, such as Principal Component Analysis. We also check for outliers by com­

puting an outlyingness measure for multivariate observations. Figure 5.1 compares 

(a) the classical Mahalanobis distance, based on normal estimators versus (b) a robust 

Mahalanobis distance based on robust estimators. This robust distance is computed 

using Stahel-Donoho estimators for location and covariance and it is clear that there 

are atypical observations. 

Classical estimators Stahei-Oonorto estimators 

20 40 20 40 80 100 

Incfes of observation inde* o( ob&ervalicn 

Figure 5.1: (a) Classical Mahalanobis Distance (b) Robust Mahalanobis Distance. 

According to Figure 5.1 several outliers are detected by both distances, but there 

is a significant difference when those are detected using robust estimators (24.32%) 

from those detected by the classical distance (10.81%) coming from normal estima­

tors. Thus, a method to robustify both location and covariance estimators is needed 

and the methodology described in Section 4.2 is applied. Under these estimators, a 

new Mahalanobis distance is computed and approximately 19% of observations are 

detected as outliers. In Figure 5.2 we compare both, classical and robust covariance 
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estimators. It is clear that there are differences between the Cov(XiyXj): i / j 

and ellipses generated using the corresponding location and covariance estimator in 

certain variables. 

Classical vs Robust covariance matrix estimator 

85.56 
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37.87 
33.33 
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3.91 
2.97 
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30.01 
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2.05 
0.62 

4.88 
1.44 

-0.82 
-0.1 

6.05 
2.72 

6.58 
1.95 

15.38 
2.26 

-8.88 
-0.S8 

o & o o o o o 
0.77 
048 

-0.14 
-0.06 

1.91 
0.55 

1.28 
0.8 

3.31 
0.92 

0.11 
0.39 

& o o o o o 
-0.32 
-009 

1.22 
1.41 
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1.04 
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0.25 2.99 2SI 4.98 

Classical 

Robust 

Figure 5.2: Classical and Robust Covariance Matrix. 

In order to know which dimensions are more influenced by outliers, a univari­

ate outlyingness based on the standardization t = (x* — x)/s of each observation is 

computed, where x and s are the sample vector of means and standard deviations, 

respectively. Those observations with |f| > 3 are considered outliers, a classification 

based exclusively on that dimension. Under this measure and using both classical 

and robust estimators, we detect that variables X4,XS and Xi0 contain at least 20% 

atypical observations. This analysis will be helpful hence forth. 

We use Principal Component Analysis to find the most important source of vari-
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ation among variables. In order to limit the effect of anomalous observations in the 

reduction of dimensionality in data, results from both classical and robust PCA are 

showed. Using any of the criteria described in Section 2.2 shows that, with k = 2 

components, there is an explained variance of 85.42% corresponding to classical PCA 

(CPCA) and 91.6% for robust PCA (RPCA), which in both cases is acceptable. 

In order to compare both analysis, we first display the score distance against the 

orthogonal distance and it is clear how different outliers are identified by each method. 

In Figure 5.3 we can distinguish some groups of points in each quadrant given by the 

cut-offs of 97.5% quantile of the ^-distribution. Using (a) CPCA, regular obser­

vations represent 76.6% of the total; good leverage represent 10.8% and orthogonal 

represent 12.6% of the observations. We might expect some bad leverage points, but 

those outliers are misclassified when using this method. The reason is the presence of 

outliers, since these observations are influencing the projection of observations onto 

the corresponding PCA subspace as it depends on the sample mean. Therefore, it 

would be dangerous to replace those observations with their projected values. How­

ever, when using robust estimators for location and covariance matrix, it is possible 

to handle outliers in a much better way than with classical PCA. The classification 

given by (b) RPCA is: 77.4% of regular points; 2.7% good leverage; 11.7% orthogo­

nal and 8.0% of bad leverage points, representing a big difference between these two 

methods. It is important to mention that those bad leverage points given by RPCA 

are classified as good leverage points in CPCA. 

Another difference between CPCA and RPCA is appreciated in the plot of scores, 

given in Figure. 5.4, where we observe the association between the first two principal 

components (or scores) obtained from both methods. We also compute the Maha-

lanobis distance based on classical and robust estimators, together with the tolerance 

ellipses defined by the set of vectors whose squared Mahalanobis distance is equal to 
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Classical PCA Robust PCA 

Score Distance 

W 

110 

111 

102 
104 

107 

109 

43 
2% at 99 

fcty 

1D6 

Score Distance 

(W 

36 

30 34 

12 

Figure 5.3: Score vs Orthogonal distances with Classical PCA. 

the same 97.5% quantile. Observations which fall outside the tolerance ellipse are 

by definition the good and bad leverages points, but it is clear in Figure 5.4 that 

(a) the corresponding ellipse is highly inflated towards outliers, which are identified 

as the bad leverage points. That means that the first two principal components are 

not lying in the direction of the highest variability of the regular points and they are 

being magnified by that set of atypical observations. This situation does not occur 

in Figure 5.4(b), where scores are obtained by RPCA and regular points are enclosed 

by the ellipse. 

On the other hand, assuming we choose two components to reduce dimensionality, 

we now describe the variables that better explain the first and second components 

in both the classical and robust PCA and we detect another crucial difference be­

tween these two approaches. As we previously mentioned, some variables have a 
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(a) Classical PCA (b) Robust PCA 

T 1 1 1 ' 

•60 40 -20 0 20 40 40 -20 0 20 40 

Comp.1 Comp/I 

Figure 5.4: Score plot obtained with (a) CPCA and (b) RPCA with their corres­

ponding 97.5% tolerance ellipses. 

large amount of outliers in its projection. In Figure 5.5(a), we observe the influence 

of outliers in the loadings of X8 and XiQ, in the first component given by CPCA, 

which is reduced in (b) when using RPCA. Note that in both cases the directions of 

projections are attracted by the bad leverage observations. Thus, using the robust 

approach, the first component is mainly composed by the overall length (Xi), the 

length of wheelbase (X2) and the width of car (Xz), while the second component is 

mostly explained by the rear fore-and-aft seating room (Xs) and rear shoulder room 

(* io ) . 

So far, we have reduced the original dimensionality p = 11 to k = 2, which 

allows us to have a better understanding of the database, since it is possible to plot 

a. 
£ 
0 
O 

^ J 

'1 
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Figure 5.5: Biplots: (a) CPCA, (b) RPCA. 

observations without loss of information. The purpose of this thesis is to identify 

clusters of well-separated groups to create a segmentation of individuals according to 

their attributes, by using these two scores (Zi, Z2), as new variables that summarize 

the association between original variables. 

5.3 Use of the Robust Clustering Method 

In order to analyze the influence of outliers in clustering, both the classical method 

(based on classical dissimilarity measures) and a robust one (based on robust ap­

proaches) are analyzed. A dissimilarity matrix is obtained to store all the pairwise 

distances between observations in a data set, which have been converted into scores 

according to results from the previous section. 
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Hierarchical Algorithm of Robust Scores • Complete Linkage Clustering with 3 segments: n1 * 67, n2= 39, n3= 5 
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Clustering with 4 segments: n1 = 38, n2= 29, n3* 39, n4= 5 
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(b) sv1 = 0.028, sv2= 0 69. s»3= 0,94 > Average silhouette = 0.3019 

Clustering with 5 segments: n l = 38, n2= 29, n3= 23, n4= 5, n5= 16 
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(d) sv1 = -013. s»2= 0.43. sv3= 0 1 2 . s-4= 0 32. s>5= 0.27 — > Average silhouette = 0.172 

Figure 5.6: Hierarchical Complete Linkage algorithm: (a) Dendrogram, (b) 3 clusters, 

(c) 4 clusters, (d) 5 clusters 

With the statistical software R (it could be another) a classical clustering pro­

cedure is ran, as described in Section 2.3, in order to analyze the impact of outliers 

in their results. We do this for both hierarchical and non-hierarchical methods. For 

each segmentation, the silhouette value (sv) given in (2.9) is calculated, in order to 

decide how many clusters will be considered to classify observations. 

After running different type of hierarchical algorithms, the dendrogram corres­

ponding to the Complete linkage method, as described in Section 2.3.1, is chosen and 

results are showed in Figure 5.6. According to the average silhouette value (asv), the 
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best classification is obtained using 4 segments, but this index (asv = 0.33) is close 

to 0, which indicates a high misclassification of individuals in each cluster. Note that 

Cluster 1 has a very small silhouette value and this is due to the intersection with 

Clusters 2 and 3. 

(a) K-means algorithm for Robust Scores 
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(b) ss1 = 049. sv2= 0.65. sv3= -018 > Average silhouette = 0.1962 

Clustering with 5 segments: n1 = 5, n2= 33, n3= 18, n4= 39, n5= 16 

Component 1 

(c) sv1 = 0.92. sv2= 0.5. sv3= -0.OS3. sv4= 0.37 - > Averaoe silhouette = 02058 

Component 1 

id) si'1 = 0.93. sv2= 0.13. sv3= 0.3, s>4= -0.0019. sv5= 0.43 -> Average silhouette = 0.1906 

Figure 5.7: Partitioning K-means algorithm: (a) Silhouette plot, (b) 3 clusters, (c) 4 

clusters, (d) 5 clusters. 

Another important fact is that the average index is highly influenced by the in­

dex in Cluster 4 (sv4 — 0.92). which corresponds to a value computed using only 

5 observations. The same situation is repeated with all 5 clusters. In general, we 

conclude that this algorithm does not provide a good clustering of observations. This 

is mainly explained by the presence of outliers, since this algorithm is based on clas-
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sical dissimilarity measures. Note that, even when the highest asv is reached with 

4 segments, there is one cluster with sv close to 0, which indicates a poor classification. 

Now, we run the K-means algorithm explained in Section 2.3.2. We should expect 

some improvements in the results with respect to the previous algorithm, since this 

is an iterative method that looks for the best segmentation by assigning each obser­

vation to the nearest centroid in each run. But the problem is that it recalculates 

the initial clusters and the final result might differ each time. Therefore we generate 

5,000 clusters and the "mode" of the composition of the segmentation is chosen as 

a final result. Results from the final clustering are showed in Figure 5.7 and we do 

not observe any improvement neither in the avs nor in the sv for each cluster. Also, 

we still have important intersections between clusters, which make the average index 

smaller. 

In Section 4.3.1 we discuss the importance of the PAM algorithm as a robust 

method to classify observations, since it minimizes a sum of dissimilarities, instead 

of a sum of squared euclidean distances. Results are displayed in Figure 5.8, where 

there is a clear improvement in the segmentation with respect to previous algorithms. 

We first observe that the highest asv is reached with 4 clusters (asv=0.4355). Within 

each cluster there is a small intersection among clusters, as the sv is still high or at 

least greater than 0, comparing with previous algorithms. This situation is identified 

in (a), where the silhouette plot is displayed, showing a good separation between 

groups. Therefore, the PAM algorithm with 4 clusters will be considered the best one 

from these three algorithms analyzed. 

As a parentheses before going into details, it is important to remember that a 

first classification of observations was given by RPCA in Figure 5.3, where a group of 

86 regular observations, 3 good leverage points, 13 orthogonal observations and 9 bad 
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(a) PAH algorithm for Robust Scores 
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Figure 5.8: PAM algorithm: (a) Silhouette plot, (b) 3 clusters, (c) 4 clusters, (d) 5 

clusters. 

leverage points were detected. Comparing those groups with segments obtained with 

cluster algorithms, specially the one obtained by the PAM algorithm with 4 clusters 

that is illustrated in Figure 5.9, we see that some of the bad leverage observations (25, 

30, 32, 34 and 36) form a single cluster. Those points represent the "worst" scores, as 

they fall far from the bulk of the data and far from the projection. The rest of that 

group (102, 103, 105 and 106) is classified into the Clusters 1 (102 and 106 that are 

closer in orthogonal distance) and 2 (103 and 105 that are closer in score distance). 

This means that PAM assigns some bad leverage points to groups for which they 

share similar characteristics. 
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PAM of Robust Scores with 4 segments: n1 = 44, n2= 24, n3= 38, n4= 5 
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(c) svl = 0.46 = sv2= 0.38, sv3= 0.42, sv4= 0.68 > Average silhouette = 0.4355 

Figure 5.9: PAM algorithm for 4 clusters. 

This situation occurs with the orthogonal points (5, 24, 26, 39, 43, 44, 99, 104, 107, 

108, 109, 110, 111) where PAM allots observations into different clusters, according 

to their orthogonal and score distance. For instance, observations 26, 104, 107, 109, 

110 and 111 are assigned to Cluster 1, where those points keep a small score distance, 

which allow them to share characteristics with the rest of this cluster. Observations 

5, 39, 43, 44 and 108 are assigned to Cluster 2, where their common property is their 

closer orthogonal distance, except for observation 108, which looks very far from the 

rest. 

Good leverages points (6, 96 and 100) are allotted into Cluster 2 (6) and Cluster 3 

(96, 100) whose ellipses look inflated by the influence of those observations, see Figure 

5.9. Therefore the corresponding silhouette values are smallest in this segmentation 

67 



(sv2 = 0.38 and sv3 = 0.42). 

These segments can be used as a predictor in order to estimate the premium in a 

car insurance database, as it is easier to manage a variable with 4 categories instead 

of the original one with 111 car brands. Also, there are car characteristics that are 

not easy to differentiate by only knowing cars dimensions. With this classification it 

is possible to group cars that share some more detailed attributes. 

In conclusion, a reduction of dimensionality of data is first required to better 

explain the association among observations. We then apply a robust clustering algo­

rithm to create groups with similar characteristics. This way a more precise classifi­

cation is obtained. In order to describe each cluster and perhaps to name them, some 

intervals within each variable and then some crosstables may be created. 
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Appendix A 

Matrix Theory 

A.l Random Vector and Matrices 

A matrix AnXp is a set of observations with n rows and p columns: 

a 1 2 . . . dip 

&22 • • • &2p 

Q-n\ <^n2 • • • ^np 

We also write (a^-)' for A, where i — 1,2,..., n and j = 1.2, ...,p to indicate the 

number of rows and columns. Therefore, we call the transpose of A (A') the matrix 

with elements (a,-,-). A vector is a matrix with one column and is denoted as xpXl. 

Definition A . l A set of vectors al7 a^,..., a^ (k < n) are said to be linearly depen­

dent if constants c1; C2,.--, Ck, not all zero can be found such that X^=i cia» ~ 0 

Definition A.2 The rank of a matrix Anxp> rank(A), is defined as the maximum 

number of linearly independent rows (columns). A set of vectors are linearly indepen­

dent when they are not linearly dependent. The maximum possible rank of AnXp is 

the minimum of n andp, in which case A is said to be of full rank. 

an 

a-21 
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Definition A.3 The trace of a square matrix (n — p) ApXp, tr(A), is defined as the 

sum of its diagonal elements: 
p 

tr(A) = Y2 aa 

Definition A.4 The determinant of a square matrix ApXp, det(A), is defined as: 

det(A) = \A\ = J > C y ^ ^ ( - l ^ M y , 
j = i i = i 

where the M^ represent the minor matrix, i.e., the determinant of the matrix that 

results from A by removing the ith row and the jth column. This is called the Laplace's 

formula and it is very efficient for relatively small matrices. 

When p = 2, A = an a12 , the determinant of A is det(A) = ana22 — #12021-
#21 #22 

A matrix A is called singular if its determinant is 0. 

Definition A.5 / / a matrix A is square and of full rank, then A is said to be 

nonsingular and A has a unique inverse, denoted by A _ 1
; with the property that 

AA~1=A~1A=I, where I is the identity matrix, i.e., a matrix with ones in its diag­

onal and zeros otherwise, that is, J = diag(l, 1,.... 1) 

Definition A.6 Two vectors a and b of the same size (px 1) are said to be orthogonal 

if a'b = Y7,=i a-jbj = 0. 

Geometrically, orthogonal vectors are perpendicular. If a'a = 1, the vector a is 

said to be normalized. In fact, a vector a can always be normalized by dividing it by 

the scalar y/s^a. Thus c = -7== is normalized so that c'c = 1. 
va 'a 

A matrix A^x,, whose columns are normalized and mutually orthogonal is called 

an orthogonal matrix, thus A'A = AA' = I. Multiplication by an orthogonal matrix 

has the effect of rotating axes. 

If A n x m , where m < n, such that all m columns are orthogonal to each other. In 

that case we say that A is sub-orthogonal for those m columns. 
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A.2 Eigenvalues and Eigenvectors 

Consider a matrix ApXp. If there exists a scalar A and a vector 7 such that 

A7 = A7. (A.l) 

Then we call A an eigenvalue and 7 an eigenvector. To find A and 7, we write 

(A.l) as 

(A - AIP)7 = 0. (A.2) 

If IA — Alp I 7̂  0, then (A — AIp) has an inverse and 7 = 0 is the only solution. 

Therefore, in order to obtain nontrivial solutions, we set |A — AIP| = 0, that is, we 

need this matrix to be singular to find values of A that can be substituted in (A.2) 

to find the corresponding eigenvectors 7. The equation |A — AIP| = 0 is called the 

characteristic equation. 

Therefore, there are up to p eigenvalues A1; A2,..., Ap of A. For each eigenvalue Xj, 

there exists a corresponding eigenvector 7- given by equation (A.l). 

Suppose that the matrix A has the eigenvalues Aj, A2,..., Ap. Let A = diag(Xi, A2,..., Ap). 

The determinant and the trace of A can be rewritten as: 

\A\ = \A\ = f[Xj, (A.3) 

tr(A)=tr(A) = JT\j. (A.4) 

The following theorem is very useful and important for the purpose of the thesis. 

Theorem A. l (Spectral Decomposition) For a real symmetric matrix AnXn there 

exists an orthogonal matrix Pnxn with columns Pj such that A can be written as: 

A = PAP 

where A is a diagonal matrix with diagonal elements Xi > A2 > ... > A„. 
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For further details, see Rao (1973). 

From Theorem A l we know that A P = PA, P P ' = I = £" = 1 p ^ and A = 

PAP' = XT=i ^iPiPi- If * n e r(^0 = r — n-> ^ e n there are r nonzero elements on the 

diagonal of A. A symmetric matrix for which all Aj > 0 is said to be positive definite 

(p.d.) and positive semidefinite (p.s.d.) if some A; > 0 and at least one is equal to 

zero. 

Theorem A.2 (Singular Value Decomposition) Any matrix Bmxn can be presented 

as 

B= UQV, 

where U and V are orthogonal or sub-orthogonal and Q is an x n diagonal matrix. 

For further details of this theorem, see Rao (1973). 

If m is larger than n, then U is sub-orthogonal and V is orthogonal. If m is 

smaller than n, then after ignoring the last n — m zero columns of U, this reduced 

matrix, say U* and V are both orthogonal. The diagonal places of matrix Q contain 

the singular values of B 
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Appendix B 

Convergence of Random Variables 

B.l Convergence in Probability 

Definition B. l Let {Xn} be a sequence of random variables and let X be a random 

variable. Then {Xn} is said to converge in probability to X if for every e > 0, 

lim F(\Xn-X\ > e) = 0. 

n—>oo 

Pr 

We write Xn —> X to indicate convergence in probability. 

B.2 Convergence in Distribution 

Definition B.2 Let {Xn} be a sequence of random variables and let X be a random 

variable. Suppose that Xn has distribution Fn and X has distribution function X. 

We say that {Xn} converges in distribution to the random variable X if: 

lim Fn(t) = F(t), for anyteR 
n—»oo 

We write Xn —>• X to indicate convergence in distribution. 

79 



B.3 Convergence with Probabil i ty 1 

Definition B.3 Let {Xn} be a sequence of random variables and let X be a random 

variable. We say that {Xn} converges almost surely to the random variable X if and 

only if: 

P( lim Xn = X) = 1. 
n—>oo 

We write Xn —>' X to indicate convergence almost surely or almost everywhere or 

with probability 1. 

B.4 Convergence in Mean 

Definition B.4 Let {Xn} be a sequence of random variables and let X be a random 

variable. We say that {Xn} converges in the rth mean or in the U norm to the 

random variable X if for r > 1, W,\Xn\
r < oo for all n, and: 

lim E(\Xn-X\r) = 0. 
n—>oo 

We write Xn —> X to indicate convergence in rth mean. 

The chain of implications between the various notions of convergence, using the 

arrow notation, are as follows: 

a.s. Pr d 
- » =4> - > = > - > 

s, rx LT Pr 

Vr > s > 1 :—> =$• ^ 

For more details see Billingsley (1999). 

B.5 Consistency 

Definition B.5 A sequence Ti,T2,... of estimators is consistent for parameter & if: 

Tn -^ 9, as n —> oo. 
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B.6 The Continuous Mapping Theorem 

Theorem B. l Let {Xn} be a sequence of random variables with values in a metric 

space such that Xn —>• X and h is a continuous function on the metric space. Then: 

h(Xn) S h(X). 

For more details see Billingsley (1999). 
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