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ABSTRACT 

Frobenius Structures on Orbit Spaces of Coxeter Groups 

and Hurwitz Spaces 

Maiko Ishii 

Here we describe the Frobenius Manifold as a geometric reformulation of the solution 

space to the W D W equations. Relations between Frobenius Algebras, Frobenius 

Manifolds and 2D-Topological Field Theories are shown, and we examine the An case 

from the class of polynomial solutions to W D W as Topological Landau-Ginzburg 

Models. The An case is also described from the point of view of singularity theory from 

which it originated, and we show Dubrovin's constructions for Frobenius manifolds 

on the orbit spaces of Coxeter groups and Hurwitz spaces with the An case as the 

main example. 
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Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 1 

I n t r o d u c t i o n 

Here we present a system of differential equations from the papers of physicists 

concerning 2D-topological field theories from the early 90's. Their problem was to find 

a quasihomogeneous function F(t),t = (f1...*™) such that the third derivatives of it 

for all t are structure constants of an associative algebra. Solving for the prepotential 

F(t), we get a complicated system of partial differential equations called the WDVV 

equations. (Named for physicists E. Witten, R. Dijkgraaf, E. Verline and H. Verlinde.) 

Dubrovin has given a beautiful geometric re-formulation of the solution space to 

WDVV into a Probenius Manifold, which helps to determine interesting solutions [7]. 

Physically, these solutions to WDVV describe the moduli space of Topological 

Conformal Field Theories, where the prepotential F(i) encodes all the data of the 

correspondent theory. The tangent vectors on the moduli space of these theories 

are the physical operators used to perturb their Lagrangians. There are two large 

classes of Probenius manifolds: those that are described by the unfoldings of sin­

gularities (polynomial moduli: topological Landau-Ginzburg models, and complex 

moduli: topological B-models) and those that are described by quantum cohomolo-

gies (Kahler moduli: topological A-models). The famous mirror conjecture relates 

these two families, most often by showing the equivalence of their prepotentials [10]. 

Probenius manifolds have been known in singularity theory since K. Saito's paper 

and Saito's theorem which says the residue form and product on a Jacobian algebra 

give a flat metric, where the residue form and algebra have a ring structure on the 

tangent sheaf to the space of parameters of a deformation [14], [2]. Dubrovin's Probe­

nius structure on a manifold defines such a ring structure on the tangent sheaf with 

a flat connection, and a flat metric in addition to some compatibility conditions. 

To describe physical theories, it is necessary to preserve certain symmetries, so the 

outline of finding the Probenius manifolds invariant under the actions of the Coxeter 

symmetry groups is a good one. Also, it has been proven that certain tensor products 

of Probenius Manifolds are also Probenius Manifolds, so interesting T C F T models 

might be built from the basic ones on the space of orbits of Coxeter Groups. One of 

Dubrovin's conjectures is that for a class of solutions to WDVV with good analytic 

properties, the monodromy group of the resulting Probenius Manifold is finite. He 

also conjectures that all polynomial solutions to WDVV are constructed in this way. 

These particular Probenius structures can also be described by a Hurwitz space 

with certain restrictions [4],[7],[16]. A Hurwitz space is the moduli space of pairs (L, A) 

where L is a compact genus g Riemann surface, and A is a degree N meromorphic 

function. The critical points of A give the canonical coordinates of the Probenius 
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structure, and the ramification points of the covering. The covering is a collection 

of N copies of CP1 glued at the branchcuts. Two coverings are called equivalent if 

they can be obtained from one another by a permutation of sheets. The meromorphic 

function A which is invariant under the action of a finite Coxeter group W acting on 

L, will be called the superpotential of the construction, from which the prepotential 

of the correspondent FVobenius manifold is found. 



Chapter 1 

WDVV Equations and Frobenius 

Structure 

We now give the definitions of W D W equations, Frobenius algebras and Frobe­

nius manifolds, and show that Frobenius manifolds give a coordinate-free geometriza-

tion of the solutions to W D W [7], [9], [2]. We then show the example of main 

consideration throughout the following chapters, give the physical normalization for 

the prepotentials, and describe the class of polynomial solutions to WDVV [7]. 

1.1 WDVV Equations, Frobenius Algebras and Frobe­

nius Manifolds 

Definition 1.1.1 The WDVV system is the following system of nonlinear partial 

differential equations and 3 conditions, where the third derivatives of the function 

F(t) (prepotential or free energy) of n variables t = (i1, „.,£") satisfy: (Sum over 

repeated indices is assumed throughout this paper.) 

*m ,u m*) = MM Xu &F(t) 
dPdtfidfr' dndtsdv dVdtPdtx' dt"dtsdtf K ' ' } 

The third derivatives of F(t) will be denoted as 

The Three Conditions of Normalization, Associativity and Quasihomogeneity are 

3 
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1) Normalization: nap is a constant, symmetric, nondegenerate matrix 

Va0 •= Cia0(t) (1.1.2) 

with inverse 

ft* = irk*)-1 

2) Associativity: The functions 

^(t):=fa) (1-1-3) 

are structure constants of an associative n-dimensional algebra At with genera­

tors ei,...,en and commutative multiplication 

ea*efi = cl0ey = c^e 7 (1.1.4) 

The basis vector e,\ is the unit for all the algebras At 

4.W :=?%. = £ (1-1-5) 

3) Quasihomogeneity: F(t) must be quasihomogeneous in its variables up to a 

quadratic polynomial. (Since the addition of one does not change the third 

derivatives.) 

F(cdlt\...,c***") = c^Fit1 , . . . ,*") + quadratic terms (1.1.6) 

for any nonzero c and some numbers (weights) d\,.. .,dn,dp. The quasihomo­

geneity condition is generalized in terms of the Euler vector field. We assume 

there exists a vector field E 

E = ^dat
ada (1.1.7) 

a 

where 

LieEF(t) = E(F) = J ^ dat
adaF = dFF + quadratic terms (1.1.8) 

a 

Remark 1.1.1 The associativity condition is equivalent to the WDVV equations. 
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Writing out the associativity condition we have for all a, /?, 7, 

(ea * e0) *eJ = ea* {ep * e7) 

(eQ * e8) * e7 = (nsxcQ0Xes) * e7 = rfxcaBxnx,xc5lliex 

ea * {e0 * a,) = ea * rfxCfrXes = rfxcp1xrfi1Ca&ifi\ 

Since the generators eA are independent and the constant matrix ifx is invertible, we 

have 

CaffXTl^Cs^n = CfiyxTI^CaSp 

which is equivalent to equation (1.1.1) 

A Probenius Algebra is a finite dimensional vector space with multiplication and 

bilinear form. 

Definition 1.1.2 An algebra A over C is a Frobenius Algebra if: 

(i) It is a commutative associative C-algebra with a unity e 

(ii) It admits a C-bilinear symmetric nondegenerate inner product 

AxA-+C,a,bt-+{a,b) (1.1.9) 

being invariant in the following sense: 

(a*b,c) = {a,b*c) (1.1.10) 

We may have a family of Erobenius Algebras depending on the parameters t = 

(t1,..., tn). Denoting the space of parameters by M, we will have a fiber bundle 

t€MlAt (1.1.11) 

which will be identified with the tangent bundle TM of the manifold M. We may 

now define the Probenius Manifold. Let M be an n-dimensional manifold. 

Definition 1.1.3 M is a Frobenius Manifold if the structure of a Frobenius Algebra 

is specified on any tangent plane TtM at any point t in M smoothly depending on the 

point such that 

(Fl) The invariant inner product {,) is a flat metric on M. 
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(F2) The unity vector field e is covariantly constant w.r.t. the Levi-Civita connection 

V for the metric (,) 

Ve = 0 (1.1.12) 

i.e., the unity vector field e is flat. 

(F3) (Potentiality) Let 

c(u,v,w) := (u*v,w) (1.1.13) 

The following ^-tensor is required to be symmetric in the fields u, v, w, z 

{Vzc)(u,v,w) (1.1.14) 

(F4) The Euler vector field E must be determined on M such that 

V(V£) = 0 (1.1.15) 

and the associated one-parameter group of diffeomorphisms acts by conformal 

transformation of the metric (,) and by rescalings on the Frobenius algebras 

TtM. i.e. For arbitrary vector fields u and v, and some constants D and d\: 

LieE (u,v) := E(u,v) - {[E,u],v}- (u,[E,v]) = D{u,v) (1.1.16) 

and 

Lies{u * v) := [E, u * v] — [E, u] * v — u * [E, v] = d\U * v (1.1.17) 

Remark 1.1.2 Some remarks are in order: 

(1) The metric here denotes a complex non-degenerate symmetric bilinear form. 

(2) The Potentiality condition is equivalent to the existence of a closed 1-form e := 

(e, •) on M, so one may replace (1.1.12) by Liee {-, •) = 0 

(3) If the vector fields X, Y, W, Z are flat, then the condition of Potentiality 

Vx{Y*Z)-Y*Vx (Z) -VY{X*Z) + X*VY (Z) -[X,Y]*Z = 0 

is equivalent to the total symmetry of both 

c(U,V,W):=(U*V,W) 
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and 

Vzc(X,Y,Z) 

(4) We consider only the case where the scaling constant d^ =£ 0, and then designate 

d\ — \ by a rescaling of E. 

(5) Frobenius manifolds are Pseudo-Riemannian manifolds where the bilinear form 

corresponds to the Riemannian metric. The metric and corresponding Levi-

Civita connection must be flat. 
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1.2 Coordinate-Free Formulation and the An Ex­

ample 

Theorem 1 Any solution of the WDVV equations with d\ =£ 0 defined in a domain 

of t € M determines in this domain the structure of a Frobenius manifold by the 

formulae: 

da*d0:=clf}(t)d1 (1.2.1) 

<0a,fy>:=>7«0 (1-2-2) 

Here da := -^ and e :— dy. Conversely, locally any Frobenius manifold with such 

structure admits a solution of the WDVV equations. 

Proof. For a solution F of the WDVV equations, the metric (1.2.2) is constant 

in the coordinates ta, so it is flat on M. In the flat coordinates covariant derivatives 

are partial derivatives, so the unity vector field e is covariantly constant. Also since 

partial derivatives commute, the expression 

B^F (i) 
Vzc («, v, w) = dscafh (t) = QpWdPdt* 

is totally symmetric in the four vector fields. The final property is satisfied, since the 

1-parameter group of diffeomorphisms for the vector field (1.1.7) 

LiejsF(t) = E(F) = Y^ dat
adaF + quadratic terms 

a 

acts by rescalings defined for an algebra A with unit e by: 

a*b i—• ka*b,e \—• ke 

for a, b from A and k nonzero constant. And in the fiat coordinates, V (VE) — 0. 

Conversely, locally on a Frobenius manifold M we can choose flat coordiantes so that 

the inner product is constant. Since M is a Pseudo-Riemannian manifold, the Levi-

Civita connection by definition is compatible with the metric g, and also V<? := 0. 

This gives the normalization condition. The covariant constancy of e allows by a 

linear change of coordinates to set e :— -gp. The tensors d^Ca^{t) and ca/97(<) being 

symmetric in vector fields dm imply the existence of the prepotential function F 

whose third and fourth derivative tensors to which they correspond, are symmetric. 

Remark (1.1) shows the structure of the associative algebra, which is equivalent to 
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the WDVV equations for F. This gives the Associativity condition. The generalized 

Quasihomogeneity condition is satisfied by F. By the fourth property of Frobenius 

Manifolds, the Euler vector field gives the quasihomogeniety of F. Given (1.1.16), 

(1.1.17) and that V(V£) = 0, we have 

LieEcadl = (1 + D)ca/3l 

In terms of the prepotential F, 

LieBdadpfryF = (1 + D)dad0d1F 

Since LieE commutes with the covariant derivative, 

dad0d^[LieEF - (1 + D)F] ^ 0 

and the generalized quasihomogeneity condition is obtained: 

Lie^F = (1 + D)F + quadratic terms 

End of proof. 

Example 1.2.1 We will see in chapter 3 that the following is an example of a Frobe­

nius manifold, and it lends itself to a construction on the orbit space of the Coxeter 

group An. Consider M the affine space of all polynomials 

M = (A(p) = pn+1 + anp
n~x + ... + oi|oi,...,an e C) (1.2.3) 

At any point, its tangent space is a vector space of polynomials with degree less 

than n. The algebra A\ on the tangent space (also called a Milnor ring) is endowed 

with multiplication 

Ax=C\p]/(\)'(p) (1.2.4) 

The inner product, unity vector field and Euler vector field are respectively: 

<f,9>x=res^&ffi (1.2.5) 

where X'(p) — ^ 
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e = 
d 

day 

E = -^Y>~i + l^a 
re + 1 ddi 

(1.2.6) 

(1.2.7) 
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1.3 Physical Normalization and Polynomial Solu­

tions to WDVV 

We now introduce the normalization for the prepotential F prescribed by the 

physical literature. 

Lemma 1 The scaling transformations generated by the Euler vector field E (1.1.8) 

act by linear conformal transformations of the metric r)ap 

LieEr}a0 = (dF - d^rj^ (1.3.1) 

Proof. Differentiating (1.1.8) wrt t1, ta and tfi and recalling Liepd\ = —didi, we 

obtain the Lie derivative of the metric. End of Proof. 

Corollary 1 lfr]u=0 and all the roots of E(t) are simple then by a linear change 

of coordinates ta the matrix nap can be reduced to the antidiagonal form 

Va/3 — <W,n+l 

In these coordinates F(t) has the following form for some function f(t2,... ,tn) 

1 1 n - l 

F(t) = ^(t1)2^ + ^t1 ^ tatn~a+1 + f(t2, ...,tn) (1.3.2) 

The sum 

2V ' 2 
a=2 

da + «n_Q+l 

does not depend on a and 

dp = 2d% + dn. 

When the degrees are normalized so that di = l, they have the form 

da = 1 — qa dp = 3 — d 

for numbers qi,..., qn, dn, d given by 

Qi = 0, qn = d, qa + g„_Q+i = d 

Proof. If (ei,ei) = 0 then vector en may still be chosen to be an eigenvector of 

the scaling transformations of the Euler vector field (i.e. roots of E(t)). Using only 
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such eigenvectors on the orthogonal complement of the span of e\ and en, r}ap can 

be reduced to the antidiagonal form. Recalling t)ap := CiQ/9, the antidiagonal form in 

these coordinates determines the above form of the prepotential F. Independence of 

the sum da + d„_a+i and dp — 2d\ + dn follow directly from the action of the scaling 

transformations on the metric, (1.3.1). End of proof. 

Example 1.3.1 Let us look at the n = 3 case in the algebra At with basis e\ — 1, e2, 

e3 and prepotential function F for some function f(x, y) 

F(t) = \t\h + \txt% + f(t2, t3) (1.3.3) 

The multiplication table (with subscripts of f as partial derivatives) is given by 

^2 Jxxy^l ' Jxxx*'2 ~> 

^2^3 = fxyyCl + fxxy^2 

e 3 ~ / w y e l ' Jxyy&2 

The associativity condition 

(el)e3 = e2(e2e3) 

gives the following partial differential equation for f(x, y) 

Jxxy = Jyyy < Jxxxjxyy 

Note that (1.3.5) is the only associativity equation for n — 3, i.e., 

(ei)e2 = e3(e3e2) 

gives nothing new. 

Dubrovin has conjectured that any solution of W D W with good analytic proper­

ties has a discrete group for its monodromy group, as we shall investigate in chapter 

3. Starting this way, Probenius manifolds are constructed on the orbit spaces of Cox­

eter groups, generating a class of solutions that are polynomial in nature. Let us now 

describe these with examples from dimension n = 3. 

Polynomial Solutions of WDVV 

Consider Probenius Manifolds whose structure constants are all analytic at the point 

(1.3.4) 

(1.3.5) 

(1.3.6) 
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t = 0. The Frobenius algebra A0 := Tt=oM has at point t = 0 structure constants 

c^g(0) and basis vectors e j , . . . , e„. The ga as denned in Corrolory (1) give the degrees 

of the basis vectors as 

degea = qa 

The germ of the Frobenius Manifold near t = 0 is a deformation of the algebra A0, 

and thus the algebras At for ^ 0 are deformations of Ao. This analytic deformation 

is physically relevant as we shall see in chapter 2. The algebra Ao corresponds to the 

primary chiral algebra of a topological conformal field theory; an operator algebra of 

the perturbed topological field theory. If in the normalization of (1.3.2) we constrain 

that the degrees degta be positive real numbers, then 0 < d < 1. Paired with the 

quasihomogeneity condition (1.1.6), this amounts to finding the polynomial solutions 

F(t) of the WDVV equations. 

Example 1.3.2 We consider the case of dimension n = 3. The prepotential is, as 

before (1.3.3) 

F(t) = 1^3 + ^4 +f(t2,t3) 

The degrees as prescribed by the normalization are: 

degt1 = 1 (1.3.7) 

degt2 = 1 - g 

degt3 = l-d 

degf — 3 — d 

The function 

f(x,y) = ^2apgafyq 

must satisfy the quasihomogeneity condition, i.e. 

P Qpg^O when p-\-q — 3= ( - + ? — l)d k2 

Now the function f has two possible forms. 

1) For n odd: n,m£ N, 

f = Y afe*4-2*"1/"-1 d - ^ - ^ 
n — m 
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2) For m odd: n,m € N, 

2(n — m) 
f = Y, afcX4-*"*!/*"-1 d = 

2n — m 

The powers in f must be nonnegative. and cases for which f is a cubic or lower 

are uninteresting. This leaves three possibilities: 

a) f = a x V " 1 + by2n~\ n>3 (1.3.8) 

b) f = ay"-\ n > 5 

c) / = a x V " 1 + bxY"'1 + cxy3"'1 + dy4n~\ n > 2 

As in the example preceding, f must satisfy the partial differential equation (1.3.6) 

from which we may solve for n. In (1.3.6) f with form a) deems n — 3; with form b) 

there is no solution; with form c) deems n — 2 or n — 3. We thus have as the three 

remaining polynomial solutions for WDVV with positive degrees of ta in dimension 
3: 

txt3 + tjt2 ig*3 , h (-, o n\ 
F~ 2 + ^ + 60 ( L 3 - 9 ) 

Fss^ + tA + ^ + M + ± (1.3.10) 

^ ^ T M + f + f + 4 (L3-H) 

The prepotential (1.3.9) has the same form as in Example 1 with n — 3, that we will 

see in chapter 3 may be constructed on the orbit space of the Coxeter group An. In 

the same vein, polynomials (1.3.10) and (1.3.11) are related to the Coxeter groups 

Bn and Hn respectively. 



Chapter 2 

Topological Field Theories 

Here we describe topological field theories as background independent quantum 

field theories, describe the matter sector of such theories, and give Atiyah's axioms 

[1],[7],[10], [11]. We then show that the matter sector for a 2D-topoIogical field theory 

is always encoded by a Frobenius algebra[l],[7],[9]. The moduli space generated by 

topological conformal field theories is a Frobenius manifold, and we give the example 

of Topological Landau-Ginzburg models, which we will see in chapter 3 corresponds 

to the Frobenius manifold of Example (1.1) [7],[10]. 

2.1 2D-Topological Field Theories and Atiyah's Ax­

ioms 

A quantum field field theory (QFT) in its Lagrangian formulation may be specified 

on a D-dimensional manifold E as: 

1) A family of local fields <pa(%), x € S. These may be functions or sections of a 

fiber bundle over E. A metric 9ij{x) is usually one of the fields (the gravity field). 

2) A Lagrangian L — L(<p, <px---) and classically, the Euler Lagrange equations: 

6S 0 (2.1.1) 
6ifa(x) 

S[<p]= [L(ip,yx...)dZ (2.1.2) 

3) A Quantization procedure via the path integral approach where a path inte­

gration measure [d<p] is constructed (but almost never well-defined) and the partition 

15 
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function Z s results from path integration over the space of all fields <p(x). 

Zx = J[dV>]e~SM (2-1-3) 

Correlation functions (The output of a QFT: its physical observables) are defined 

similarly: 

Here the definition of a QFT involves a choice of a manifold E on which the 

QFT lives and a choice of metric, a background field. Thus, the correlation functions 

are calculated in a certain background. We now consider a class of 2D-QFTs: 2D-

topological field theories (TFT). These are background independent QFTs; those 

whose correlation functions do not depend upon the choice of metric. TFTs are 

invariant wrt arbitrary changes of the metric g%j{x) on a 2D surface E: 

5gij(x) — arbitrary, 5S — 0 

As a step towards a rigorous account of TFTs, Atiyah formulated axioms describing 

them for arbitrary dimension. These axioms describe correlators of fields in the mat­

ter sector of a 2D-TFT. In this sector, the local fields <fi(x),..., <pn{x) do not contain 

a metric on the surface E. Atiyah found that in the matter sector, the correlators 

of the fields obey three simple axioms. Here we describe the matter sector and give 

Atiyah's axioms for dimension D = 2. 

Matter Sector for a 2D-TFT: 

1) A: the space of local physical states. We assume A is finite-dimensional. 

dimA — n < oo 

2) The assignment T 

T : (E, dT.) —> v{sm e A{S>ds) (2.1.5) 

which only depends on the topology of the pair (E, dH) for E an oriented 2-surface, 

and dE its oriented boundary. We are assigning to each local physical state Vi an 
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oriented 2-surface with oriented boundary. (Note that when the surface is closed, it's 

boundary is null.) The linear space A^,dT.) is: 

f C if d£ = 0 
As,0E) = { (2.1.6) 

j Ai <g>... <g> Ak if dT, consists of k oriented cycles C\... Ck 

_ J A if C, is ori 

* ~ \ .4* (dual) oth 

oriented with E . 
\£> J- - I J 

otherwise 

Atiyah's Axioms for a 2D-TFT: 

The 2D-TFT T satisfies 3 axioms. (Only the orientation of the boundary dT, is shown. 

A cycle Ci will be oriented with the surface S if S remains to the left traversing in 

the direction of Ci. Assume the surfaces are oriented wrt the external normal vector.) 

1) Normalization: 

Figure 2.1: Normalization 

2) Multiplicativity: If 

(S,0E) = (E^dEi) U (E2,0E2) (2.1.8) 

then 

«(S,0E) = f(Si,0Ei) ® W(s2,as2) ^ ^4(s,9S) (2.1.9) 

and 

A(Stas) = AEi,a£i) ® ^(S2,9E2) (2.1.10) 

3) Factorization: T h e ope ra t ion of cont rac t ion for tensor p roduc t s : 

Ax <g>... <g> ylfe -»• Ax <g>... <g> At <g> . . . <g> A,- <g> . . . <8> j4fc (2.1.11) 



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 18 

is defined when Ai and Aj (the hats denote their omission) are dual to each other 

and identity on the other factors. Pictorially, we see that if (E, dH) and (£', dT!) are 

identical outside of a ball and inside are as in figure 2.2, then 

Figure 2.2: Factorization 

^(E,as) = iojo contraction of U(S',ai:') (2.1.12) 

is obtained by gluing together the cycles C^ and CJ0. 

Now we present a symmetric polylinear function v9tS on the space of states A; the 

genus g correlators of the fields </?ai,..., <pat For example: 

And in some basis <pi,...,y„in A: 

VgAfm ® - - • <8> <Pa„) =•• (<Pai • • • <Pa»)g (2.1.13) 

Figure 2.3: Here g — 2 and s — 3 
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2.2 2D-Topological Field Theories and Frobenius 

Algebras 

Now we come to the main theorem of the chapter. The space of states A (the 

matter sector of a 2D-TFT) carries a natural structure of a Frobenius algebra, and 

all the genus g correlators of the fields can be expressed very simply in terms of this 

algebra [7]. 

Theorem 2 Let (I) The tensors c, rj, on A form a Frobenius algebra structure with 

\ J / e A*«>A*<8>A = HOM(A®A,A) 

Figure 2.4: Multiplication 

Figure 2.5: Inner Product 

unity e defined as in figure 2.6. 
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(D e = * € A 

Figure 2.6: Unity 

(II) Let the Handle operator H be defined as in figure 2.7. 

H= v: v t eA 

Figure 2.7: Handle operator 

Then, the genus g correlators may be expressed as the following R.H.S. product in 

the algebra. 

(<Pai •••tPak}g=(<Pai*---* Vak, Hg) (2.2.1) 

Proof: 

(/) The algebra must be commutative. Looking at figure 2.4, the multiplication 

c is seen to be commutative since we may always exchange pant legs by a homeo-

morphism. Similarly, by figure 2.5 the inner product rj is seen to be symmetric by 

a homeomorphism. The multiplication must also be associative, and this is demon­

strated in figure 2.8: 
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Figure 2.8: Associativity 

The more general k-product is realised by the k-leg pants in figure 2.9: 

U eHOM(A®k ,A) 

Figure 2.9: k-product 
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The Identity: 

Figure 2.10: Identity 

The inner product rj must be nondegenerate, so we find its inverse. Let 

r\ e A*® A 

Figure 2.11: Inverse 
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Then, fjrj is easily seen to give the identity cobordism, so fj — n . 

id 

Figure 2.12: Nondegeneracy 

The multiplication c (figure 2.4) must be compatible with the inner product 77 

(figure 2.5) as indicated by the following: 

Figure 2.13: Invariance 
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(i7) For any vg>s, we may construct these correlation functions using members of 

the algebra. For example, using the multiplication c, the inner product r\, the 3-leg 

product and 3 handle operators Hg, we have: 

Figure 2.14: Correlation functions 

End proof. 

For a TFT T (2.1.5) and unity e (figure 2.6), the image of e under T gives the 

vector space A := T(e). The image of the co-unity 8 (e with reversed boundary 

orientation) under T gives the dual space A* :— T(0) Note that the pairing rj and 

unity e may be used to define 9: 

•CD-
Figure 2.15: Co-unity 0 



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 25 

The nondegeneracy of n given the co-pairing rj'1 as seen in figure 2.14. yields an 

isomorphism between A and A* - the identity cobordism as seen in figure 12. This is 

the content of Atiyah's axiom [1] dT, H-> A => dT, •-» A*. 

The boundary dT of E (if dT ^ 0) consists of oriented cycles C*. Ci will correspond 

to A if oriented with E, and will correspond to A* if oriented against E. The gluing 

along a cycle Ct (the disjoint union of {Tj,dTi) and (E2,<?E2)) corresponds to the 

tensor product contractions of dual vectors. We now see several examples of this [11], 

using the notations from chapter 1: 

Example 2.2.1 c ^ : A ® A -* A e A* <g> A* <g> A, a (2, l)-tensor ea®ep = c^e^ 

:Ci : = trc 

Figure 2.16: Multiplication c 

Example 2.2.2 e : C—>• J4 G A, vectors 

Figure 2.17: Unity e 
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Example 2.2.3 9 : A -> CeA*, co-vectors 

9 : 

Figure 2.18: Co-Unity 9 

Example 2.2.4 JJ : A <g> A -> C € A* <8> A*, a (2,0)-tensor r\lt =< e^,e6> 

*k := C i«y 

Figure 2.19: Pairing rj 
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Example 2.2.5 rfl : C-> A ® A € A <g> A, a (0,2)-tensor rpl =< e7,e£ > 

I f : : if: = (V1 

Figure 2.20: Co-pairing •q l 

Example 2.2.6 id : A -> A € A* ® A 

id = 

Figure 2.21: Identity 
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Example 2.2.7 cea0 : A <g> A ® A E A* <gi A* <g> A*, a (3,0)-tensor ceaB = JH^.0% 

'. V ^ E < $ 

Figure 2.22: 3-point function 

Example 2.2.8 Using the co-pairing rfe and 3-point function ctap, we can recover 

the multiplication c by gluing along e; contracting e 

: T T C . 

Figure 2.23: clp = rptcta0 
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Example 2.2.9 Similarly, we can construct the 3-point function ct/g7 using the pair­

ing rjCQ and the multiplication djL 

c* *1 C! 
•sec p'f 

Figure 2.24: c£/j7 = i]iacf^ 

Remark 2.2.1 Here it is easy to see that nap lowers indices and rfP raises indices. 

Example 2.2.10 The Frobenius algebra may also be characterized by equipping A 

with the multiplication c, unit e, co-unit 6, a co-multiplication /z and the so-called 

Frobenius relation shown in the following figure. 

Figure 2.25: Frobenius Relation 

From this, the vector space A will be associative and of finite dimension, the co-

multiplication will be associative, and (A, 6) will define a Frobenius algebra f 11]. 
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2.3 Topological Conformal Field Theories and Topo­

logical Landau-Ginzburg Models 

Theorem 2 says that the matter sector of 2D-TFT is always encoded by a Frobe-

nius algebra. The Frobenius algebra on the space of states A is called the primary 

chiral algebra of the TFT. To preserve as much information as possible in generating 

the correlators from the Lagrangian, not only the Lagrangian but also its topologically 

invariant deformations are considered: 

L-^L + ^eL^ 

where ta are coupling constants. We now have a moduli space of TFTs. A large, 

physically relevant class of such moduli spaces of TFTs are topological conformal field 

theories (TCFT). There is a physical theorem which asserts the canonical moduli 

space of a TCFT carries the structure of a Frobenius Manifold [7]. Examples of 

TCFT include the Topological A-models (Kahler moduli) and Topological B-models 

(complex moduli) famously related by mirror symmetry and ones we consider next: 

Topological Landau Ginzburg models (polynomial moduli, which are included in the 

family of topological B-models). 

Example 2.3.1 Topological Landau-Ginzburg (LG) Models: 

The Bosonic part of the LG action is: 

' - ! * * 

dp 2 

dz 
+ |A'(P)|2) (2.3.1) 

where X(p) is a holomorphic function called the superpotential, and S is a functional 

of the holomorphic p(z) called the superfield. The Classical states correspond to the 

critical points of \(p), where 

Pi := p(z) for \'(pi) — 0,i — l...n 

A family of LG models (the moduli space of the LG-theory) is obtained by deforming 

the superpotential 

\ = \(P;t1,. ..,*") 

for parameters t = (t1,... , t n ) , and the Frobenius structure on the space of parameters 
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is given by: 

(S, P. ff\ = £ ^ y M (2-3-3) 
A'=0 W' P 

where the vector fields d, &, d" on the space of parameters are taken keeping p constant. 

For the particular superpotential 

its deformed superpotential matches the polynomial of Example (1.1). We will see 

this in chapter 3. 



Chapter 3 

Unfoldings of Singularities and the 

Orbit Space of a Coxeter Group 

We will describe the unfoldings of singularities of An type in section one and verify 

its Probenius structure [2],[14]. In section two we describe the FVobenius structure on 

the space of orbits of a Coxeter group [4],[7], and in the third section we verify that 

the structures from Examples (1.1) and (2.1) are FVobenius, and coincide with the 

FVobenius structure on the orbit space of Coxeter group An [7], [17]. 

3.1 Unfoldings of Singularities 

Using unfoldings, one may construct a product and flat metric on the space of 

parameters M = C n and establish canonical coordinates that determine the Euler 

vector field [2],[14]. In this section we will see how our main example of Ai-type 

exhibits a natural FVobenius Manifold structure in the unfoldings of singularities. 

The unfolding F^ of the polynomial f(z) = zn+1 gives the space of parameters a rich 

structure. Consider only germs, so M = Cn . By choosing a basis for the vector 

space Qp( (the Jacobian algebra), the tangent space T^C" is given the structure of a 

commutative algebra with unit. Here the product at a point £ G C" is denoted by 

*£, and the £o-axis gives the identity vector field £- in all Tf C". A theorem by K. 

Saito states there is an isomorphism of vector bundles over Cn , so that at any point 

f the isomorphism Qp^ —»• T£Cn transports the bilinear form 0 to a flat metric on C n 

[14]. Let us consider the unfolding i^, flat metric and bilinear form 6 in our main 

example. 

Example 3.1.1 A„-type unfolding: Let us consider the polynomial f(z) = zn+1 and 

32 
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its unfolding 
Fi=zn+l+^_lZn-l+^+^ £€Cr) (3.1.1) 

Its space of parameters is the affine space of all polynomials F^. At any point, the 

tangent space is the vector space of polynomials with degree < n — 1. The product 

a *£ @ at this point of Qp = C[z]/ < F, > is the remainder of a/? in the Euclidean 

division by F^. 

The one-form d is 
1 f adz „ adz .„ , „. 

a"Wrip-'to»ir (312) 

To see that it defines a flat metric, we look for the flat coordinates in which 6 is 

constant. To do this we invert and solve the equation 

w 
Ji+1 F,{z) 

w = z + 0(z'1) 

expanding the solution for z large, so that 

= w+
tJtzl + ^, + ^ + o(^-] (3.1.3) 

w wn \wn+1J 

where to • • • t„_i is a basis of the vector space of symmetric polynomials. Then to • •. <n_i 

are seen to be the flat coordinates by, 

and using 

we have 

^(FJ = ^(z(w,t))^- = F'^z{w,t)w-n+i (3.1.4) 

Fi(z)dz = (n + l)wndw (3.1.5) 

<?( J ^ ) , £;&)) = -Resz=O0F^z{w,t))W-2n^dz (3.1.6) 

= - ( n + l)Resw=00w-"+i+jdw (3.1.7) 

= (n + l)6Hjjn_i (3.1.8) 

(3.1.9) 

the metric flat and nondegenerate everywhere. 

Now we would like to establish the canonical coordinates and the Euler vector field. 
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The canonical coordinates are chosen to be the critical values of F^ : x,- = F^qi). The 

vector fields forming a basis for the algebra QFK are then ^ . For any polynomial P 6 

C[z\,... ,Zk] with m critical points, the vector field is written in canonical coordinates 

as: 

The unity vector field is: 
771 r\ 

1 = 1 o x l 

The unfolding F^ itself is now an Euler vector field 

^ = E^%r = E ^ - : i ; < 3 1 1 2 > 
since it rescales the product *̂  according to (1.1.17). Lastly, we check the Euler 

vector field E acts by conformal transformations of the metric and that V(V-E) = 0. 

Looking at the Euclidean division of F^ by Ft, we may write the Euler vector field E 

in coordinates (£o, • • • -. fn-i) as 

In flat coordinates, and recalling from (3.1.3) 

U = - & + Bi(Cm, • • -, &.-i) 0 < i < n - 1 

we assume deg(£j) = n — j + 1 so that deg(F^(z)) = n + 1, deg(Bi) = n — i + 1 and 

botk F{ and Bt are homogeneous. Then, 

rc+1 v n + 1 A" n+1 Jd£,-

" ^ „U6, 
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by the homogeneity of Bi7 so that in flat coordinates, 

Any space of parameters of a versal unfolding is isomorphic to the space of orbits 

of a Coxeter group, and we will see their Frobenius structure in the next section. 

Also Dubrovin conjectured that all polynomial solutions of the WDVV equations are 

potentials of these structures. This was later proved by Hertling [8]. 
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3.2 Frobenius Structure on the Orbit Space of a 

Coxeter Group 

In this section, we first define the intersection form, flat pencil of metrics and 

the monodromy group of a Frobenius manifold [4],[7]. We then show the Frobenius 

structure on the orbit space of a Coxeter group. These manifolds are polynomial in 

nature and each possesses a finite Coxeter group as its monodromy group [7]. 

Given a Frobenius manifold M we may use the invariant inner product n (1.1.2), 

to define another flat metric (, )* called the intersection form. 

Definition 3.2.1 The intersection form is given by 

{x,y)*:=iB(x*y) (3.2.1) 

for x,y ET*M and ij$ the inner derivative of a Inform with the Euler vector field E. 

The components of (, )* in flat coordinates ta are: 

gap:={dta,dt0)* = Ee(t)^{t) (3.2.2) 

where 

dy.(t):=rr<£M (3-2-3) 

Here n has been used to extend the multiplication and Frobenius structure from the 

tangent bundle to the cotangent bundle. Having established these metrics as fiat, 

Dubrovin proved further that any linear combination of them is also flat, defining the 

flat pencil of metrics. Consider two non-proportional metrics (,)j and (,)£ and their 

corresponding Levi-Civita connections V\ and V£. 

Definition 3.2.2 Two metrics form a flat pencil if: 

1) The following metric is flat for A arbitrary 

j^gV+Xg? (3.2.4) 

2) The Levi-Civita connection for this metric has the form 

r* = rrfc + Aii (3.2.5) 
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Consider the metrics (. )* and (, }* on the Frobenius Manifold M, where (, )* is induced 

on T*M by 77 = (.) and the Euler vector field E is linear in the flat coordinates. 

Proposition 3.2.1 The metrics (,)* and (,)* form a flat pencil on M. 

Remark 3.2.1 On M. the difference tensor is defined by: 

Aijk = 9isrik
s-g?rik

s (3.2.6) 

Dubrovin's geometry of flat pencils of metrics [7], gives the following proposition: 

Proposit ion 3.2.2 For a flat pencil of metrics a vector field f = /'#,- exists such 

that the difference tensor (3.2.6) and the metric g1? have the form 

Aijk = V|V£/fc (3.2.7) 

gl^Vif + Vif + cg? (3.2.8) 

for some constant c. The vector field satisfies the equations 

AiJAf = AfA? (3.2.9) 

where 

A? := fttt.A-« = V 2 f e V ^ (3.2.10) 

(gTd1 - 9\s9?)V2sV2ifk = 0 (3.2.11) 

Conversely, for a flat metric gl% and solution f of (3.2.9),(3.2.11) the metrics g^ and 

g%2 form a flat pencil. 

Later in this section, we will see that from the intersection form, Euler vector field 

and unity vector field, one can uniquely reconstruct the Frobenius structure. We now 

describe the monodromy grpup of a Frobenius Manifold.. The intersection form or 

contravariant metric (, )* is degenerate on the discriminat locus S where the discrim­

inant A(t) vanishes: 

A(t) := det(gafi(t)) = 0 (3.2.12) 

S c M where 

S := {tA{t) := det{ga0(t)) = 0} (3.2.13) 

Since (, )* and 17 are defined outside of the discriminant locus E, a Frobenius manifold 

defined by {M/T., (, )*) is not simply connected. Thus at any point there will be a 
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nontrivial holonomy group at any point, being a discrete subgroup of 0(n, C) [4]. An 

isometry $ can be specified of a domain Q in n-dimensional complex Euclidean space 

En to the universal cover of M/E: 

$ : f t ^ M / E (3.2.14) 

Then the action of the fundamental group 7ri(M/E) on the universal cover is lifted 

to an action by the isometries of En. This isometry (3.2.14) is contructed by fixing 

a point po G M outside of E and expressing y = (y1,... ,yn) the flat coordinates 

of (,)* in terms of the flat coordinates t = (t1,.••>*") of n. Germs of functions 

y'it1,... ,tn) will be multivalued around E, and the set of non-contractible loops 7 

around E correspond to linear affine transformations of the y"s. In this way, the map 

and group homomorphism fx is obtained: 

H:ir1(M/Y,)-+Isometries(En) (3.2.15) 

Definition 3.2.3 The image of the fundamental group under [i defines the mon-

odromy group W(M) of the Frobenius Manifold: 

W(M) := /i(wi(M/E)) C IsometriesiE") (3.2.16) 

Remark 3.2.2 The flat coordiantes y = (y1,... ,yn) are found by solving the follow­

ing system, where V denotes the Levi-Civita connection for the intersection form (the 

Gauss-Manin connection): 

VaV0-=9ae(t)dadpy + T£(t)dty = O (3.2.17) 

for a , / ?= l,...,n 

Inversely, we next describe the construction of polynomial Frobenius manifolds 

whose monodromy group is a Coxeter group preserving invariant the intersection 

form (,)*. Let W be a finite Coxeter group; a finite group of linear transformations 

of an n-dimensional Euclidean space V generated by reflections [5]. The orbit space 

M — V/W has the structure of an affine variety, where the coordinate ring of M is 

identified with the coordinate ring of VK-invariant polynomials over V. The coordinate 

ring of M has as a basis invariant homogeneous polynomials y%. Their degrees a\ are 

invariants of the group W. The maximal degree h is called the Coxeter number of 
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W. 
di := degtf) (3.2.18) 

d-i = h > d2 > . . . > dn-i >dn = 2 (3.2.19) 

For example, group An has degrees di = n + 2 - i and group Bn has degrees di = 

2(n - i + 1). The action of W is extended to the complexified space 

M = V ® C/W 

Coordinates on V will be denoted by a;".The Euler vector field is: 

E - - ( d l 2 M + . . . + dny
ndn) = -xa— (3.2.20) 

The invariant coordinates will be denoted as yn and normalized as: 

y n = ^ ( ( * 1 ) 2 ) + --- + ( x n ) 2 ) ) ( 3 - 2 ' 2 1 ) 

where (.,.) denotes the W-invariant Euclidean metric on V, and is extended onto M 

as a complex quadratic form. We denote here by (., .)* the contravariant metric on 

the cotangent bundle T*M induced by the WMnvariant Euclidean metric on V. 

Lemma 2 The Euclidean metric of V induces a polynomial contravariant metric (, 

) * (the intersection form) on the space of orbits 

^ (V) = ( * W ) * := | £ ^ (3-2.22) 

and the corresponding polynomial contravariant Levi-Civita connection (the Gauss-

Manin connection) 

Remark 3.2.3 The intersection form (3.2.22) and Gauss-Manin connection (3.2.23) 

are graded homogeneous polynomials that depend linearly on y1, with degrees: 

deggii{y) = di + dj-2 (3.2.24) 

deg rij(y) ^di + dj-dk-2 (3.2.25) 

Theorem 3 There exists a unique, up to an equivalence, Frobenius Structure on the 

space of orbits of a finite Coxeter group with the intersection form (3.2.22), the Euler 
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vector field (3.2.20) and the unity vector field e := TA-

To prove this main theorem, we give the Saito metric (3.2.26) in lemma 3, Saito 

flat coordinates ^(x),...,tn(x) in lemma 4, and the associated components of the 

intersection form and Gauss-Manin connection in lemma 5. Then the existence of the 

Frobenius structure on the orbit space of a Coxeter group is proven in lemma 6 with 

uniqueness following. 

Lemma 3 The triangular matrix 

r)ij(y)-=d1g
ij(y) = Ofori + j>n + l (3.2.26) 

has constant nonzero antidiagonal elements 

d := ^n-i+1), (3.2.27) 

and 

c := det{rfj) = ( - l ) 2 ^ ^ , . . . , c + 0 (3.2.28) 

Lemma 4 There exist homogeneous polynomials tx{x),... ,tn(x) of respective degrees 

di,...,dn such that the matrix 

if* :=di{dta,dt0)* (3.2.29) 

is constant 

Lemma 5 For coordinate tn normalized as in (3.2.21), we have the following (with 

no summation over repeated indices): 

g™ = !kt« (3.2.30) 
n 

TT^dau 6P (3.2.31) 
fh 

Lemma 6 Let t1,..., t" be the Saito flat coordinates on the space of orbits of a finite 

Coxeter group and 

rf" = diidP^dtPy (3.2.32) 

be the corresponding constant Saito metric. Then there exists a quasihomogeneous 

polynomial F(t) of degreee 2h+2 such that 

(dta, dt?y = {da + d
lf~

2\aXrf'idxdtlF{t) (3.2.33) 
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The polynomial F(t) determines on the space of orbits a polynomial Frobenius struc­

ture with the structure constants 

ca/jW = r,^dadpdtF{t) (3.2.34) 

the unity 

e = dx (3.2.35) 

the Euler vector field 

E = Y(1 - ^-)tadQ (3.2.36) 
A—1 h 

and the invariant inner product r\. 

Proof. Using lemma 4 and proposition 3.2, we represent for some vector field f^(t) 

the tensor Tf(t) as 

Tf(t) = r)
aidr,d1f(t) (3.2.37). 

Also, T"P(t) must satisfy the conditions 

s/
aarp = gP*TY' (3.2.38) 

For a = n, lemma 4 and the Euler identity it follows that 

(d, - 1)<A = ] T rf<{dy - de + h)dtP = (dy + dfi - 2)rfldtP (3.2.39) 

which gives the symmetry condition (3.2.41) by defining 

jn fr 

h dj — 1 
(3.2.40) 

rf€dtFi = rf'dtF13 (3.2.41) 

Hence there exists a quasihomogeneous polynomial function F{t) in t1,..., tn with 

degree 2h + 2 such that 

Fa = naedtF (3.2.42) 

Equation (3.2.33) follows from (3.2.41) and (3.2.39), and writing 

cf{t) = rfxrf>idxdlid^F (3.2.43) 
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•7 

ra/3 

= 

cT 

4° 

h °1 

~ °7 C(T 

— Aa 
~°0 

we have the following: 

(3.2.44) 

(3.2.45) 

(3.2.46) 

End Proof. 

This structure is unique. For a polynomial Frobenius structure on M with Euler 

vector field (3.2.20) and Saito invariant metric, F(t) must satisfy (3.2.33) up to a 

quadratic polynomial. We consider in the Saito flat coordinates 

dta • dtp = r}aXr}^dxdtld^F(t)dt'1 (3.2.47) 

and by the definition of the intersection form we have 

iE{dta,dtP) = I Y , d^r,aXV^dxd^F(t) (3.2.48) 
7 

= \{da + dp- 2)r}aXrf»dxdllF{t) = {dta, dtP)* (3.2.49) 
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3.3 Example of Frobenius Structure on the Orbit 

Space of Coxeter Group An 

The group W = A„ acts on R"+ 1 = (£0,£1, • - •, £n) by permutations 

(Co, 6 > • • • .£»») *-* (£<T(0),£<T(1), • • - , & ( « ) ) 

restricted to the hyperplane 

£ o + 6 + - - + £n = 0 (3.3.1) 

The invariant metric is the Euclidean metric on (3.3.1), and the invariant polyno­

mials are the symmetric polynomials. A homogeneous basis in this ring of invariant 

polynomials is given by the elementary symmetric polynomials: 

a* = (-l)"- fe+1te>6--6fc-- • + •••), * = l , . . . , n (3-3.2) 

The complexified space of orbits M — Cn/An is then identified with the space of 

polynomials \(p) from example (1.1). We now show that the Frobenius structure on 

M from lemma 6 coincides with the structures of examples (1.1) and (2.1) [7], [17]. 

Theorem 4 1. For example (1.1), the inner product (,) and tensor c(.,.,.) = 

(. * ., .)A have the form 

<* »•>, ~ £ fe^./(AWX)(A(PW (3-3,3) 

*—' dpdXyp) 

2. Let q1,..., qn be the critical points of the polynomial \(p), 

X'(qi) = 0, i = l,...,n 

and 

u* = A(fl*), i = l,...,n (3.3.5) 

be the critical values. Here u1,..., un are local coordinates on M near A where 

X(p) has only simple roots. These local coordinates are the canonical coordinates 

for multiplication of example (1.1) and in these canonical coordinates the metric 
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from example (1-1) has the diagonal form 

<,>U=^%(«)(rft i<)2 , **(*) = j ^ (3-3-6) 

d'. d". &" are any tangent vectors on M in a point X, where derivatives are taken 

keeping p constant. X'(p) and X"(p) are the first and second derivatives wrt p. 

3. The metric on M induced by the invariant Euclidean metric at a point X for 

which X(p) has simple roots may be written as 

{cy,tvh = _ E ^ e S d A = o ^ ^ A ( p ^ ^ A ( ^ ) ( 3 3 ? ) 

Proof. 1. Equation (3.3.3) corresponds to the invariant inner product from exam­

ple (1.1): 

l f n \ P o o f(P)sJP) 

(f,9)x = Resp=00 

By letting cr" — f, & — g and X'(p) = —^- and denoting by tv the meromorphic 

differential: 
, , &{x{p)dp)ty'{x{p)dp) 
u=—2W)— ( 8) 

we apply residue theorem on to. The inner products are seen to correspond to each 

other since the sum of residues of a meromorphic differential on the Riemann p-sphere 

is zero. 
Restock) + ]jr Res\x\<00u = 0 (3.3.9) 

Equation (3.3.4) corresponds to the multiplication from example 1.1. Using equation 

(3.3.9) and letting f(p) = &{X{p)), g(p) = d"(X(p)), and h(p) = &"{X{p)) to re-write 

dpdXyp) 

For polynomials q{p) and r(p) where deg(q) < n, f(p)g(p) = q(p) + r(p)X'(p), and in 

the Milnor ring C\p]/(X'(p)), we will have the multiplication f*g — qso that 

(3.3.11) 

Since the second residue vanishes, the first residue is the inner product: 

(q, h)x = (f*g, h)x = c(f, g, h) (3.3.12) 
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2. The intersection form in the hyperplane coordinates has the form: 

ab = 5ab L_ (3.3.13) 
y n + 1 ; 

Denote the roots of A'(p) by q\ 

Ui = KQi) * = ! , - • • ,« (3.3.14) 

9iA(p)|p=gj = di,- (3.3.15) 

Using (3.3.14),(3.3.15) and the Lagrange interpolation formula, we get 

Since X(p) and A'(p) are given by 

n 

o=l 

it follows that 

(^6 =...+$e») na> - 6) - X) - ^ r ^ ° = d*w (3-3-17) 
6=1 a = l P k* 

Substituting p = £„ in the previous equation, we get 

^'"(c-^W)' ''a = 1'-'n (3318) 

Prom (3.3.3), (3.3.4), and (3.3.15) we obtain 

(ft-,ai) = - * i ^ j j (3.3.19) 

C(di, dU di) = (ft * di, di) = - j^-rr (3.3.20) 
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Now we see that u1... un are the canonical coordinates, since in the algebra we have 

dt * dj = 8^ (3.3.21) 

3.From (3.3.4) and (3.3.15), we have 

i f c ( „ ) : = ( a , a ) - = _ _ ! _ (3.3.22) 

Using this, we obtain 

n £ 

= ~ir&-«i)(&-9lw) (3'3'24). 
= - y ; ResdX=0-( c V

A ( P )
c x W v (3.3.25) 

n + 1 

So the intersection form (3.3.7) coincides with the W-invariant metric. End Proof. 



Chapter 4 

Hurwitz Spaces 

Hurwitz spaces are moduli spaces of pairs (£, A), where £ is a Riemann surface 

of genus g and A is a meromorphic function on £ of degree N — n + 1. We will see 

that these spaces with certain restrictions may be given the structure of a Probenius 

manifold [3],[4],[7],[13],[16],[15]. Dubrovin builds the Frobenius structure on a cover­

ing of the Hurwitz space, which is necessary for the more general cases g > 0. There 

is also the notion of choosing between different primary differentials (or primitive 

forms), that produce different solutions to W D W but are also related by Legendre 

transformations [7]. The main An example may also be described as a Probenius 

manifold constructed on a Hurwitz space. The simplest class of such Hurwitz spaces 

where g = 0, £ is the Riemann sphere and A are rational functions from £ —* £, is 

where our main An example falls [7],[13]. 

4.1 Hurwitz Spaces and Hurwitz Covers 

Specifically, the Hurwitz space M = Hg;no>„.tnm is the space of equivalence classes 

[A : £ —> GP1] of N-fold branched covers with the following properties: 

• n simple ramification points P i , . . . , Pn € £ with distinct finite images u1,..., un € 

C C CF 1 . These are the critical values of A : v? — \(Pj), d\\pi=0, j = 1 , . . . , n 

• The pre-image A~?(oo) consists of m + 1 points: A_1(oo) = ooo,.. -, oom and 

the ramification index of the map p a t a point oo,- is rij (1 < nj < N) 

• The Riemann-Hurwitz formula gives the dimension n of space M as n = 2g + 

N + 2m, (where N = no + ... + nm) in terms of the genus g of £, degree N of 

A and number of simple finite branch points m. 

47 
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• The one-dimensional affine group acts on M by: 

(£; oo0, - • •, oom; A;...) i—• (£; oo0, • • •, oom; a\ + b;...) (4.1.1) 

u*>—>aui + b, i=l,...,n (4-1-2) 

(CX). 

CP1 

CP1 

CP1 N 

CP1 

Figure 4.1: (£, A) 

Remark 4.1.1 Some remarks are in order: 

(1) The finite branch (ramification) points being simple expresses that only two 

sheets are glued at each point. 

(2) There are m -f 1 points on the covering projecting to \{P) = oo on the base. 

The numbers (n,- + 1) give the number of sheets glued at every point, where Ui 

are the ramification indices from above. 

(3) Two coverings are called equivalent if one can be obtained from the other by a 

permutation of sheets. M = Hgrn0tm>ntn is the space of equivalence classes of 

sheets. 

Dubrovin constructs a Frobenius structure on a covering of the Hurwitz space. The 

ramification points u1,..., un will be the canonical coordinates for the multiplication 

of the tangent vector fields: 

d 
di * dj = Sijdu di := -^ (4.1.3) 
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The unit vector field e and the Euler vector field E generate the action of the affine 

group (4.1.2): 
n 

e = £> (4.1-4) 

n 

E^^tfdi (4.1.5). 

1-forms f2 on a manifold with a Frobenius algebra on the tangent planes are called 

admissible if a Frobenius manifold structure is determined by the invariant inner 

product: 

<d',d" >n:=n(d'*d") (4.1.6) 

A quadratic differential Q is called dA-divisible when it has the form Q = qdX 

where the differential q has no poles in the branch points of £. The corresponding 1-

form SIQ on the Hurwitz space M is determined by any Q holomorphic for |A| < oo on 

£. Since the 1-form OQ = 0, we may include also multivalued quadratic differentials 

on the universal covering of £. The monodromy transformation along a cycle 7 acts 

by 

Q ^ Q + q^dX (4.1.7) 

On a suitable covering M of M, the metrics will be defined by the 1-forms corre­

sponding to these multivalued differentials Q. The covering M — Mff;no>...nm is the 

space of sets 

ooo,.. . , oom; A; «o, . . . , km; 0 1 , . . . , ag; (4.1.8) 

with the same £,oo0, • • • > °°m a n ( i ^ from M, plus a canonical basis of cycles 0 1 , . . . , ag; 

bi,...,bg on C. The branch points Pi,...,Pn are the local coordinates on M, and in 

the neighbourhood of P near oo*: 

k?+1{P) = \{P), P near oo*' (4.1.9) 

where n* is the ramification index at 00*. 

Admissible quadratic differentials on the Hurwitz space are constructed as squares 

Q = <j>2 of primary differentials 4> on £ (or a covering of £). There are five types 

of primary differentials. (All differentials have zero a-periods except the holomorphic 

(f>si below. Also the coefficients 5,, ai,Pi,j, are independent on the point in M.) The 

five types of primary differentials with their characteristic singularities are: 
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1. A normalized Abelian differential of the second kind: 

(j) = <pti;o(P):——dkf(P), P near ool; i — 0,... ,m, a = l , . ..,«,-

(4.1.10) 

2. A normalized Abelian differential of the second kind: 

<(> := Sifo (4.1.11) 

Mp) := -dX{P), P near oo{; i = l,...,m (4.1.12) 

3. A normalized Abelian differential of the third kind: 

4>:=ai<})wi{P), res0Oi(pwi = l, r e s ^ o ^ = - 1 ; i = l , . . . , m (4.1.13) 

4. A normalized multivalued differential. (The differential undergoing analytic 

continuation along 6fc on C tranforms as: 

4> := MAP), MP + bj) - MP) = -6ijd\(P); i = l,...,9 (4.1.14) 

5. A normalized holomorphic differential: 

4>'=li4>+> f 4>*=&tj\ » = l,...,ff (4.1.15) 
Jaj 

For any primary differential <f> and corresponding multivalued quadratic differential 

Q = <f>2, QQ will be an admissible 1-form on the Hurwitz space M. The metric 

corresponding to Q.^ is defined for two tangent fields d', d" on M as: 

dS<t? = < d', d" > ^ : = n^(d' * d") (4.1.16) 

This gives a Frobenius structure on M for any (f>. For the function A, a multivalued 

function p on C is introduced: 

p(P):=p.v. f <j> (4.1.17) 
Jooo 

where the principal value is defined by omitting the divergent part of the integral as 

a function of the local parameter ko. Now <f> = dp and A(p) on C is locally a function 



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 51 

of the complex variable p. 
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4.2 Hurwitz Spaces and Frobenius Manifolds 

We now come to the main theorem of the chapter [7]: 

Theorem 5 Let M be open in M and specify that <j>(Pi) ^ 0, i = 1,. ..,N. For 

any primary differential (4-l-10)-(41-15), the multiplication (4-1.3), unity (4-1-4), 

Euler vector field (4-1-5) and 1-form Q^2 determine on M a structure of a Frobenius 

manifold. The corresponding flat coordinates tA, A = 1,...,N consist of the five 

parts: 

tA = (ti;a, i = 0,...,m, a = l,...,n,-; p\q\ t = l , . . . ,m; r\s\ i=l,...,g) 

(4.2.1) 

given by: 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

2. 

3. 

4-

5. 

The metric 

a. 

b. 

(H .16) in 

f,a 

P1 

<t 

s{ = 

— resoo^ apd\ 

— p.v. 1 dp 
Jooo 

= —reSootXdp 

rl = <p dp 

-hi** 
these coordinates have the (non-zero) forms: 

T)ti;ati;0 = 

<m .* 

• i j &ij&a+0,m+\ 

. - 1 . . . 
ni + l^ 

(4.2.7) 

(4.2.8) 
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c. 
Iris' = TT-Sij (4.2.9) 

And, for any other primary differential <p, the 1-form Q^ is admissible on the Frobe­

nius manifold. 

Proof of the theorem. 

For the multiplication (4.1.3), the metric d s | (4.1.16) is diagonal in the coordinates 
1 N 

u,...,uJ: 
dsl^r]ii{u)(dui)2 -* = 1 iV (4.2.10) 

rHi = resP£- (4.2.11) 
aX 

We now define a Darboux-Egoroff metric, then prove a lemma that for any <f>, d s | 

will be Darboux-Egoroff, and will satisfy invariance conditions that give the second 
and fourth properties of a Frobenius manifold (definition 1.1.3). 

Definition 4.2.1 A Darboux-Egoroff metric is flat, potential and diagonal. A diag­

onal metric ds2 = rju(du*)2 is called potential if 3 a function V 3 diV = r)u for all i. 

A potential diagonal metric is flat if the rotation coefficients jtj, i ^ j 

%(«) := ^ (4.2.12) 

satisfy the following for i,j,k distinct for all jij: 

dklij = Hklkj (4.2.13) 

n 

J > 7 i i = 0 (4.2.14) 

Remark 4.2.1 The rotation coefficients of the invariant metric also satisfy; 

n 

J2ukOklij = - 7 y (4.2.15) 
fc=i 

Lemma 7 For any primary differential (f> listed above (4-1.10)-(4115), the metric 

(4-1.16) is Darboux-Egoroff and also satisfies the invariance conditions: 

Lieeds2, = 0 (4.2.16) 
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LieEds2^ is proportional to ds2^ (4.2.17) 

The rotation coefficients of the metric do not depend on the choice of the primary 

differential (f>. 

Proof of the lemma: 

Let za be a local parameter near ooa: za = fc"1. First, a pairing of differentials iv^\ 

u/2) is defined, u)^ and a/2) are holomorphic on £/(oo0 U . . . U oom), and at the 

infinite points behave as: 

(Where i — 1,2 and c£a, rj.„, Aa , p£.a, Qs,a are constants.) 

w ( i ) - E c £ 2 a d 2 o + d E r M A f c ^ A , F - o o a (4.2.18) 
fe fe>0 

I w® = A® (4.2.19) 
Jaa 

w « ( F + a a ) - w » ( P ) = dpW(A), P®(A) = E P S * (4 2-2°) 
s>0 

The bilinear pairing for UJ^\ u/2) is defined as: 

(Where P0 is a marked point on £ 9 HPb) — 0) 

< w w w w >:= - E 
a=0 

E TTTct + «-i-«M»- r - (2> + 2*i „ , . r r < > 
fcw(2) 

+ 
(4.2.22) 

+^i E [- i ww^+i ^ w ^ + 4 ? } jfw(2)] 
With these definitions, the following may be proved: 

Lemma 8 The following identity holds 

res*> ,v = dj < w(1)o;(2> > (4.2.23) 

Corollary 2 77ie pairing (4-2.22) of differentials a /^u / 2 ) is symmetric up to an 

additive constant not depending on the moduli. 



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 55 

Prom the previous lemma, we see the rotation coefficients of the metric (4.1.16) 

are symmetric: 

rjjjiu) = dj<<M>>, j = l,...,N (4.2.24) 

To prove the rotation coefficients satisfy (4.2.13) consider the differentia] 

didj I dk4>., i, j , k, distinct (4.2.25) 

which has poles only in Pi,Pj,Pk. The contour integral will be zero along a domain 

DC obtained by cutting C along a canonical basis passing through FQ. Connecting 

Po at a vertex of the resulting 4</-gon to the points ooo,.. -, ooTO and cutting along 

these paths yields dC. The sum of the residues vanishes, and by the symmetry of the 

rotation coefficients (4.2.13) is obtained, from: 

djy/rfadky/rjii + 9iy/rjj]dky/fjjj = y/rjkkdidjy/rjkk (4.2.26) 

Similarly, the rotation coefficients are independent of the primary differential <f>. Con­

sider the differential: 

d^fdjip, i^j (4.2.27) 

where (p is another primary differential. Since the sum of the residues vanishes, and 

the rotation coefficients are symmetric, 

yfiSfryfiL = yf^fisyf& (4.2-28) 

the rotation coefficients are the same for either metric. To prove (4.2.16) an operator 

De on functions / = f(P,u) is defined: (and extended as the Lie derivative by 

requiring dDe = Ded) 

Def:=^.+def (4.2.29) 

Then for any <f>, 

De<t> = 0 (4.2.30) 

For the metric (4.1.16), by using (4.2.24), the identity (4.2.14) is also obtained: 

deVjj = 0 (4.2.31) 
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Similarly to prove the identity (4.2.17) an operator DE is defined: 

DE:=\— + dE (4.2.32) 
oX 

Then for any <f>, 

DE4> = \<j>}4> (4.2.33) 

For the primary differentials 0 listed as in (4.1.10)-(4.1.15), the numbers [4>] are given 

by: 

[4>A = i 

[<M = o 

\M = i 

From this, we may write: 

dE4 = (2[<t>}-l)4 (4.2.35) 

which gives also (4.2.15). End proof of lemma 7. 

The identity (4.2.16) is equivalent to condition (F2) from the definition (1.1.3) of the 

Frobenius manifold. Also, the identity (4.2.17) is equivalent to the third condition 

from (F4), equation (1.1.17). Given the Euler field (4.1.5) and multiplication (4.1.3), 

the first and second conditions of (F4) equations (1.1.15), (1.1.17) are satisfied. Con­

dition (F3) is given by the following lemma [7] [9]: 

Lemma 9 If g is an Darboux-Egoroff metric, (with respect to the canonical coordi­

nates u1,... ,un), then the Frobenius structure with canonical basis ^ has Vc sym­

metric. 

Since we have a Darboux-Egoroff metric for any primary differential <f> invariant with 

respect to the multiplication (4.1.3), condition (F3) is satisfied. To complete the 

Frobenius structure, the flat coordinates for the flat metric are established. Denote 

the coordinates by tA, and define 

<f>A := -dtA\dp (4.2.36) 
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Then by lemma (7), 

< dtA,dtB >,= E
 r e S d A = o ^ r ^de< 4>A4>B > (4"2'37) 

|A|<oo 

The non-zero coefficients 4 a ' , A(
a ' , qa ' for the differentials 4>A,B are as defined 

in equations (4.2.18)-(4.2.21). Using De(j)B = 0 from (4.2.30): 

^ = ̂ TT^-M (4-2-38) 
' ^ a ~~T~ A 

* r * - ^ + ( s ) , (4-2-39) 
de <f \4>B=f to (4.2.40) 

de f </>B = - ^ ( P + 6«) + ^ ( P ) (4.2.41) 

Then using the bilinear pairing (4.2.22), the forms of the metrics (4.2.7)-(4.2.9) 
are obtained: 

m / .. na-l \ 

0. < MB >= - E h r r r E <3U.<fi.-i.. - (4-2-42) 
a=0 \ n a + 1 Jt=0 / 

m -I 1 9 

- E r b (*2««SU+C-V1U) - si E («i?4?+^'O 
o=l a a=l 

End proof of the theorem. 
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4.3 Hurwi tz Space HQ;TI and t h e j4n-example 

Example 4.3.1 The Hurwitz space H0<n corresponding to the main An-type example 

consists of all polynomials of the form 

A(p) =p n + 1 + anp"-1 + ... + oi, au...,aneC (4.3.1) 

The affine transformations A t—> a A + b act on (4-3.1) by 

p i—> a»+*p, at i—• aia~^+r~ for i > 1, Oii-> aai + b (4.3.2) 

To show the Frobenius structure, we show the metric (4-2.10) is Darboux-Egoroff and 

is flat for the flat coordinates. For primary differential <f> = dp, the flat coordinates 

(4-2.2) correspond to the flat coordinates in example (3.1). Let us denote these flat 

coordinates as£a. By an affine transformation we can set the sum of the roots to zero 

and leading coefficient to one. Thus: 

A(P) = (P+ & + ... +60 I I ( P - & ) (4"3-3) 

a = l 
n n 

= H(P - to) where £«, = - £ & (4-3-4) 
a—O a = l 

Since the roots are not independent: 

dlogX(p) 1 

d& P ~ Co P- 6 

and for the metric (3.3.7) from chapter 3: 

•t = l , . . . , n (4.3.5) 

<*.<W - - E — [ ( ^ - ^ ) ( ^ - j^) > ] (4.3, 6) 

Then using (3.3.9) as in theorem 4, 

we have for i = j : 

(9(t,d(i) = respBSf0 rfdp (4.3.7) 
| > - £ o ) 2 A ' 

= 1 (4.3.8) 
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and for i ^ j : 

( % . # & ) = reSP=io 

= 2 

1 A 
| > - 6 ) 2 A ' 

-,dp + resp^ 
1 A 

L(P-6)2A' 
7dp 

Giving constant coefficients: 

(%,%) = 1 + fy 

/or £/ie metric we denote here by g: 

n 

n 

^(^) 2 | «o=-E?=,4i 

(4.3.9) 

(4.3.10) 

(4.3.11) 

(4.3.12) 

(4.3.13) 

(4.3.14) 
z=0 

We have seen that g is Darboux-Egoroff since in canonical coordiantes w» = A(<&) 

(using notations from chapter 3, theorem 4) 9 is diagonal and potential: 

1 1 ftj„ 

with potentiality given by 

where 

X"(qi) (n+l)dui 

1 
rja S-v 

X"(qi) din 

n+1 

(4.3.15) 

(4.3.16) 

(4.3.17) 

(4.3.18) 



Conclusion and Further 

Developments 

In summary, the solution space of the W D W system was shown to carry a Frobe-

nius Manifold structure, and Probenius Algebras were shown to correspond to the 

matter sector of 2D-Topological Field Theories. The An example was given from the 

class of polynomial solutions to W D W , and the topological Landau-Ginzburg model 

was seen to correspond to the An case. We saw also how Frobenius structures are 

built on the orbit spaces of Coxeter groups, and how Hurwitz Frobenius Manifolds are 

constructed. The An case originally described as the unfolding of a versal singularity 

was seen also to lend itself to the Coxeter orbit space construction and Hurwitz space 

construction. 

Frobenius structures and their prepotentials have been found on the orbit spaces of 

Bn and Dn [17], in addition to that found by Dubrovin for A„ which we describe here. 

It would be interesting to construct an equivariant Hurwitz space via its correspondent 

metric, one which reflects the invariance of A under the action of W, and reveal further 

the rather intriguing differential geometry of these Hurwitz Frobenius manifolds. This 

particular problem has motivated the present write-up. 
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