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ABSTRACT

Frobenius Structures on Orbit Spaces of Coxeter Groups

and Hurwitz Spaces

Maiko Ishii

Here we describe the Frobenius Manifold as a geometric reformulation of the solutioﬁ
space to the WDVV equations. Relations between Frobenius Algebras, Frobenius
Manifolds and 2D-Topological Field Theories are shown, and we examine the A,, case
from the class of polynomial solutions to WDVV as Topological Landau-Ginzburg
Models. The A, case is also described from the point of view of singularity theory from
which it originated, and we show Dubrovin’s constructions for Frobenius manifolds
on the orbit spaces of Coxeter groups and Hurwitz spaces with the A, case as the

main example.
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Introduction

Here we present a system of differential equations from the papers of physicists
concerning 2D-topological field theories from the early 90’s. Their problem was to find
a quasihomogeneous function F(t),t = (!...t") such that the third derivatives of it
for all t are structure constants of an associative algebra. Solving for the prepotential
F(t), we get a complicated system of partial differential equations called the WDVV
equations. (Named for physicists E. Witten, R. Dijkgraaf, E. Verline and H. Verlinde.)
Dubrovin has given a beautiful geometric re-formulation of the solution space to
WDVYV into a Frobenius Manifold, which helps to determine interesting solutions [7].

Physically, these solutions to WDVV describe the moduli space of Topological
Conformal Field Theories, where the prepotential F'(t) encodes all the data of the
correspbndent theory. The tangent vectors on the moduli space of these theories
are the physical operators used to perturb their Lagrangians. There are two large
classes of Frobenius manifolds: those that are described by the unfoldings of sin-
gularities (polynomial moduli: topological Landau-Ginzburg models, and complex
moduli: topological B-models) and those that are described by quantum cohomolo-
gies (Kahler moduli: topological A-models). The famous mirror conjecture relates
these two families, most often by showing the equivalence of their prepotentials [10].

Frobenius manifolds have been known in singularity theory since K. Saito’s paper
and Saito’s theorem which says the residue form and product on a Jacobian algebra
give a flat metric, where the residue form and algebra have a ring structure on the
tangent sheaf to the space of parameters of a deformation [14], [2]. Dubrovin’s Frobe-
nius structure on a manifold defines such a ring structure on the tangent sheaf with
a flat connection, and a flat metric in addition to some compatibility conditions.

To describe physical theories, it is necessary to preserve certain symmetries, so the
outline of finding the Frobenius manifolds invariant under the actions of the Coxeter
symmetry groups is a good one. Also, it has been proven that certain tensor products
of Frobenius Manifolds are also Frobenius Manifolds, so interesting TCFT models
might be built from the basic ones on the space of orbits of Coxeter Groups. One of
Dubrovin’s conjectures is that for a class of solutions to WDVV with good analytic
properties, the monodromy group of the resulting Frobenius Manifold is finite. He
also conjectures that all polynomial solutions to WDVYV are constructed in this way.

These particular Frobenius structures can also be described by a Hurwitz space
with certain restrictions [4],[7],[16]. A Hurwitz space is the moduli space of pairs (L, A)
where L is a compact genus g Riemann surface, and )\ is a degree N meromorphic
function. The critical points of A give the canonical coordinates of the Frobenius
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structure, and the ramification points of the covering. The covering is a collection
of N copies of CP! glued at the branchcuts. Two coverings are called equivalent if
they can be obtained from one another by a permutation of sheets. The merombrphic
function X which is invariant under the action of a finite Coxeter group W acting on
L, will be called the superpotential of the construction, from which the prepotential
of the correspondent Frobenius manifold is found.



Chapter 1

WDVYV Equations and Frobenius

Structure

- We now give the definitions of WDVV equations, Frobenius algebras and Frobe-
nius manifolds, and show that Frobenius manifolds give a coordinate-free geometriza-~
tion of the solutions to WDVV [7], [9], [2]. We then show the example of main
consideration throughout the following chapters, give the physical normalization for
the prepotentials, and describe the class of polynomial solutions to WDVV [7].

1.1 WDVYV Equations, Frobenius Algebras and Frobe-

| nius Manifolds

Definition 1.1.1 The WDVYV system is the following system of nonlinear partial
differential equations and 3 conditions, where the third derivatives of the function
F(t) (prepotential or free energy) of n variables t = (t!,...,t*) satisfy: (Sum over
repeated indices is assumed throughout this paper.)
PF(t) w OCFR) BF(t) A BF(t)
DB OrOPOE | OrOPIR|  Dredro
The third derivatives of F(t) will be denoted as

(1.1.1)

BF(t
o8 = i

The Three Conditions of Normalization, Associativity and Quasihomogeneity are
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1) Normalization: n,p is a constant, symmetric, nondegenerate matric

Nap = C]aﬂ(t) (112)
with inverse
1% = (7jap) ™
2) Associativity: The functions
2 5(t) = n"Ceap(t) (1.1.3)

are structure constants of an associative n-dimensional algebra A; with genera-

tors ey, ..., e, and commautative multiplication
€a * €5 = Clp€y = Choby (1.1.4)
The basis vector ey is the unit for all the algebras A,

Eo(t) = 1My = 38 (1.15)

3) Quasihomogeneity: F(t) must be quasihomogeneous in its variables up to a
quadratic polynomial. (Since the addition of one does not change the third

derivatives.)
F(cht,...,c™t") = T F(t,. .., t") + quadratic terms (1.1.6)

for any nonzero ¢ and some numbers (weights) di,...,dn,dr. The quasihomo-
geneity condition is gehemlized in terms of the Euler vector field. We assume
there exists a vector field F

E=Y dt0, 1.1.7)
where |

LiegF(t) = E(F) = ) " dat*8,F = dpF + quadratic terms (1.1.8)

Remark 1.1.1 The associativity condition is equivalent to the WDVV equations.
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Writing out the associativity condition we have for all o, 3,7,
(ea * €5) * €4 = €4 % (€5 * €,)

A P3) A
(€ * 3) * €y = (T) Caﬁ,\ea) * €y = 7" Capr”] "057,;6,\
_ 3y A by
€a * (eﬂ * e‘y) = €q ¥ 1T Caya€5 =1 CpaaT] "cm;,,e,\

Since the generators ey are independent and the constant matriz n® is invertible, we
have

A — A
CapT) " Coyn = CopxT"" Casy

which is equivalent to equation (1.1.1)

A Frobenius Algebra is a finite dimensional vector space with multiplication and

bilinear form.
Definition 1.1.2 An algebra A over C is a Frobenius Algebra if:
(i) It is a commutative associative C-algebra with a unity e

(i) It admits a C-bilinear symmetric nondegenerate inner product

Ax A— C,a,br> (a,b) (1.1.9)

being invariant in the following sense:
(axb,c)=(a,bxc) (1.1.10)

We may have a family of Frobenius Algebras depending on the parameters ¢ =
(8, ...,t"). Denoting the space of parameters by M, we will have a fiber bundle

t € M (1.1.11)

which will be identified with the tangent bundle TM of the manifold M. We may
now define the Frobenius Manifold. Let M be an n-dimensional manifold.

Definition 1.1.3 M is a Frobenius Manifold if the structure of a Frobenius Algebra
is specified on any tangent plane T,M at any point t in M smoothly depending on the
point such that

(F1) The invariant inner product {,) is a flat metric on M.
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(F2) The unity vector field e is covariantly constant w.r.1. the Levi-Civita connection
V for the metric (,)
Ve =0 (1.1.12)

i.e., the unity vector field e is flat.

(F3) (Potentiality) Let
c(u,v,w) := (u*v,w) (1.1.13)

The following 4-tensor is required to be symmetric in the fields u,v,w, z

(V.0)(u,v,w) | (1.1.14)

(F4) The Euler vector field E must be determined on M such that
V(VE)=0 (1.1.15)

and the associated one-parameter group of diffeomorphisms acts by conformal
transformation of the metric (,) and by rescalings on the Frobenius algebras

T:M. i.e. For arbitrary vector fields u and v, and some constants D and d,:
Lieg (u,v) == E (u,v) — ([E, u},v) — (6, [E,v]) = D‘(u, v) (1.1.16)
and

Lieg(uxv) :== [E,uxv] - [E,u} v —ux [E,v]=djuxv (1.1.17)

Remark 1.1.2 Some remarks are in order:

(1) The metric here denotes a complex non-degenerate symmetric bilinear form.

(2) The Potentiality condition is equivalent to the ezistence of a closed 1-form e :=
(e,-) on M, so one may replace (1.1.12) by Lie. (-,-) =0

(3) If the vector fields X, Y, W, Z are flat, then the coﬁdition of Potentiality‘
Vx(Y*Z)~Y*Vx(2)-Vy(X*2)+ X xVy (Z)-[X,Y]*Z =0
is equivalent to the total symmetry of both

(U, V,W) 1= (U +V,W)
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and
Vze(X,Y,2)

(4) We consider only the case where the scaling constant d; # 0, and then designate
dy =1 by a rescaling of E.

(5) Frobenius manifolds are Pseudo-Riemannian manifolds where the bilinear form
corresponds to the Riemannian metric. The metric and corresponding Levi-

Civita connection must be flat.
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1.2 Coordinate-Free Formulation and the A, Ex-
ample

Theorem 1 Any solution of the WDVV equations with dy # 0 defined in a domain

of t € M determines in this domain the structure of a Frobenius manifold by the

- formulae:
O * 0 := c4(t)0, (1.2.3)
(O 05) = Tap (1.2.2)
Here 0, = % and e := 0y. Conversely, locdlly any Frobenius manifold with such

structure admils a solution of the WDVV equations.

Proof. For a solution F of the WDVV equations, the metric (1.2.2) is constant
in the coordinates %, so it is flat on M. In the flat coordinates covariant derivatives
are partial derivatives, so the unity vector field e is covariantly constant. Also since

partial derivatives commute, the expression

O'F (t)

Vzc (u7 v, w) = a‘sco‘[h (t) = m

is totally symmetric in the four vector fields. The final property is satisfied, since the
1-parameter group of diffeomorphisms for the vector field (1.1.7)

LiegF(t) = E(F) = Z d,t*9, F + quadratic terms

acts by rescalings defined for an algebra A with unit e by:
axb— kaxb,e— ke

for a, b from A and k¥ nonzero constant. And in the flat coordinates, V(VE) = 0.
Conversely, locally on a Frobenius manifold M we can choose flat coordiantes so that -
the inner product is constant. Since M is a Pseudo-Riemannian manifold, the Levi-
Civita connection by definition is compatible with the metric g, and also Vg := 0.
This gives the normalization condition. The covariant constancy of e allows by a
linear change of coordinates to set € := z2r. The tensors 9ycagy(t) and cagy(t) being
symmetric in vector fields &, imply the existence of the prepotential function F
whose third and fourth derivative tensors to which they correspond, are symmetric.
Remark (1.1) shows the structure of the associative algebra, which is equivalent to
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the WDVYV equations for F. This gives the Associativity condition. The generalized
Quasihomogeneity condition is satisfied by F. By the fourth property of Frobenius
Manifolds, the Euler vector field gives the quasihomogeniety of F. Given (1.1.16),
(1.1.17) and that V(VE) = 0, we have

Liegcagy = (1+ D)cog,
In terms of the prepotential F,
Lieg0,0307F = (14 D)0,030yF
Since Lieg commutes with the covariant derivative,
8,0307|LiegF — (1+ D)F] =0
and the generalized quasihorﬁogen’eity conditid_n is obtained:
LiegF = (1+ D)F + quadratic terms

End of proof.

' -Example 1.2.1 We will see in chapter 3 that the following is an example of a Frobe-
nius manifold, and it lends itself to a construction on the orbit space of the Cozeter

group A,,. Consider M the affine space of all polynomials
M= {Ap)=p"" +a.p" ' + ..+ arlay, ...,a, € C} (1.2.3)

At any point, its tangent space is a vector space of polynomials with degree less
than n. The algebra Ay on the tangent space (also called a Milnor ring) is endowed

with multiplication

A, = Clpl/(V)'(p) (1.2.4)

The inner product, unity vector field and Euler vector field are respectively:
f(p)g(p)
< f, g >\= TCSFW——XT) (1.2.5)

where X(p) = %
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(1.2.6)

(1.2.7)
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1.3 Physical Normalization and Polynomial Solu-
tions to WDVV

We now introduce the normalization for the prepotential F' prescribed by the

physical literature.

Lemma 1 The scaling transformations generated by the Euler vector field E (1.1.8)

act by linear conformal transformations of the metric n,p

LieET)ag = (dp - d])‘)')ag (1.3.1)

Proof. Differentiating (1.1.8) wrt t!, t* and t# and recalling Liegd, = —d,0,, we
obtain the Lie derivative of the metric. End of Proof.

Corollary 1 If ny; = 0 and all the roots of E(t) are simple then by a linear change
of coordinates t* the matriz 1,5 can be reduced to the antidiagonal form

Nap = 5aﬁ,n+1

In these coordinates F(t) has the following form for some function f(t2,...,t")

L oay2 1 1n—1 —a+1 2
o n _- aiNn—Q .. n 1. .
F(t) = 5(t')t" + 5t a§=2t ¢ + f(e%,...,t") (1.3.2)
The sum
da+dn——a+1

does not depend on o and
dp =2d, +d,.

When the degrees are normalized so that dy = 1, they have the form
dy=1-¢q, dp=3-d
for numbers qu, ..., qn, dy, d given by
=0, ¢=d, gog+gnonn=d

Proof. If (e;,e;) = 0 then vector e, may still be chosen to be an eigenvector of
the scaling transformations of the Euler vector field (i.e. roots of E(t)). Using only
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such eigenvectors on the orthogonal complement of the span of e; and e,, 7,5 can
be reduced to the antidiagonal form. Recalling 7,4 := €144, the antidiagonal form in
these coordinates determines the above form of the prepotential F'. Independence of
the sum d, + d,,_o41 and dp = 2d; + d,, follow directly from the action of the scaling

transformations on the metric, (1.3.1). End of proof.

Example 1.3.1 Let us look at the n = 3 case in the algebra A, with basis e; = 1, es,

es and prepotential function F for some function f(z,y)
1, 1 9
F(t) - §t1t3 + -2—t1t2 + f(t2, t3) (1.3.3)
The multiplication table (with subscripts of f as partial derivatives) is given by
eg = fa:a:yel + fa:a:a:e2 +es

eze3 = fope1 + farye2 ‘ (1.3.4)
é§ = fywe1 + foyye2

The associativity condition
(e3)es = ea(eze3) (1.3.5)

gives the following partial differential equation for f (z,9)

2oy = fowy + feaa Foy (1.3.6)
Note that (1.8.5) is the only associativity equation for n =3, i.e.,

(€3)e2 = es(eses)
gives nothing new.

Dubrovin has conjectured that any solution of WDVV with good analytic proper-
- ties has a discrete group for its monodromy group, as we shall investigate in chapter
3. Starting this way, Frobenius manifolds are constructed on the orbit spaces of Cox-
eter groups, generating a class of solutions that are polynomial in nature. Let us now

describe these with examples from dimension n = 3.

Polynomial Solutions of WDVV
Consider Frobenius Manifolds whose structure constants are all analytic at the point
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t = 0. The Frobenius algebra Ay := T;_oM has at point t = 0 structure constants
c,5(0) and basis vectors ey, . . ., €. The g, as defined in Corrolory (1) give the degrees
of the basis vectors as

dege, = qo

The germ of the Frobenius Manifold near ¢ = 0 is a deformation of the algebra Ay,
and thus the algebras A; for ¢ # 0 are deformations of Ay. This analytic deformation
is physically relevant as we shall see in chapter 2. The algebra Ay corresponds to the
primary chiral algebra of a topological conformal field theory; an operator algebra of
the perturbed topological field theory. If in the normalization of (1.3.2) we constrain
that the degrees degt, be positive real numbers, then 0 < d < 1. Paired with the
quasihomogeneity condition (1.1.6), this amounts to finding the polyndmia.l solutions
F(t) of the WDVV equations.

Example 1.3.2 We consider the case of dimension n = 3. The prepotential is, as
before (1.3.3)

1 1
F(t)= §tft3 + ‘étltg + f(ta,3)

The degrees as prescribed by the normalization are:

degt! =1 (1.3.7)
d
degt* =1— =
eqgt 5
degt® =1-4d
degf =3-d

f(2y) =) apea™y?

must satisfy the quasihomogeneity condition, i.e.

The function

apg 70  when p+q—3=(§+q——1)d

Now the function f has two possible forms.
1) For n odd: n,m € N,

4-2km_kn—1 n 2m
= arT d=
f Ek k Yy e
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2) For m odd: n,m € N,

_ 2(n —m)

4—km, kn-1
= d
f ; arz'Fmy “tm

The powers in f must be nonnegative, and cases for which f is a cubic or lower

are uninteresting. This leaves three possibilities:
a) f=az®y* '+, n>3 (1.3.8)

b) f=ay"', n>5
C) f — a$3yn-—1 4 b$2y2n_1 +C.’L'y3n_1 +dy4n—1’ n Z 2

As in the example preceding, f must satisfy the partial differential equation (1.3.6)
from which we may solve for n. In (1.3.6) f with form a) deems n = 3; with form b)
there is no solution; with form c) deems n =2 or n = 3. We thus have as the three
remaining polynomial solutions for WDVV with positive degrees of t* in dimension

3:
s+ 4,2 32 3

F=231=_"2,723, 3 1.3.9
2 T4 Teo (1.3.9)
s+ 482 t3ts tA3 ]

F = 1 2 ,2 2°3 3 1.3.10
2 6 6 210 ( )

’ Bty + 4,12 132 25 !

F=213""172 5 1°2 __.263 + __;_03 + __39360 (1.3.11)

The prepotential (1.8.9) has the same form as in Example 1 with n = 3, that we will
see in chapter 3 may be constructed on the orbit space of the Cozeter group A,. In
the same vein, polynomials (1.3.10) and (1.8.11) are related to the Coxzeter groups
B,, and H,, respectively. »



Chapter 2

Topological Field Theories

Here we describe topological field theories as background independent quantum
field theories, describe the matter sector of such theories, and give Atiyah’s axioms
[1],[7],[10], [11). We then show that the matter sector for a 2D-topological field theory
is always encoded by a Frobenius algebra[1],[7),[9]. The moduli space generated by
topological conformal field theories is a Frobenius manifold, and we give the example
of Topological Landau-Ginzburg models, which we will see in chapter 3 corresponds

to the Frobenius manifold of Example (1.1) {7],[10}.

2.1 2D-Topological Field Theories and Atiyah’s Ax-
ioms

A quantum field field theory (QFT) in its Lagrangian formulation may be specified
on a D-dimensional manifold ¥ as:

1) A family of Iocal fields ¢4(z), z € L. These may be functions or sections of a
fiber bundle over X. A metric g;j(z) is usually one of the fields (the gravity field).

2) A Lagrangian L = L(yp, ¢. ...) and classically, the Euler Lagrange equations:

S .
m = 0 (21.1)
Slel = /Z L(p, ¢z .. .)dE (21.2)

3) A Quantization procedure via the path integral approach where a path inte-
gration measure [dyp)] is constructed (but almost never well-defined) and the partition

15
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function Zy, results from path integration over the space of all fields ¢(x).
Zs = /[d(p]e_sl"’] (2.1.3)

Correlation functions (The output of a QFT: its physical observables) are defined
similarly: :
(Pa(x)pp(x) )5 = / [@e)pa(z)pp(e) - - =51 (2.1.4)

Here the definition of a QFT involves a choice of a manifold 3 on which the
QFT lives and a choice of metric, a background field. Thus, the correlation functions
are calculated in a certain background. We now consider a class of 2D-QFTs: 2D-
topological field theories (TFT). These are background independent QFTs; those
whose correlation functions do not depend upon the choice of metric. TFTs are

‘invariant wrt arbitrary changes of the metric g;;(z) on a 2D surface X:

8g:(z) = arbitrary, 6S=0
As a step towards a rigorous account of TFTs, Atiyah formulated axioms describing
them for arbitrary dimension. These axioms describe correlators of fields in the mat-
ter sector of a 2D-TFT. In this sector, the local fields ¢;(z), . .., ¢n(z) do not contain
a metric on the surface £. Atiyah found that in the matter sector, the correlators

of the fields obey three simple axioms. Here we describe the matter sector and give

Atiyah’s axioms for dimension D = 2.
Matter Sector for a 2D-TFT:
1) A: the space of local physical states. We assume A is finite-dimensional.
dimA=n < oo
2) The assignment 7°
T :(3,08) — vnax) € Azom) (2.1.5)

which only depends on the topology of the pair (3,0%) for £ an oriented 2-surface,
and J%, its oriented boundary. We are assigning to each local physical state v; an
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oriented 2-surface with oriented boundary. (Note that when the surface is closed, it’s

boundary is null.) The linear space Az sy is:

Cifoxr =190
(£,05) = i . X (2.1.6)
A ®...® A if 3E consists of k oriented cycles Cy...Cy
A= A if C; is oriented with 2 (2.1.7)
A*(dual) otherwise
Atiyah’s Axioms for a 2D-TFT:

The 2D-TFT T satisfies 3 axioms. (Only the orientation of the boundary 0% is shown.
A cycle C; will be oriented with the surface ¥ if ¥ remains to the left traversing in
the direction of C;. Assume the surfaces are oriented wrt the external normal vector.)

1) Normalization:

-

= id € A* ®A

- o -
- - -

-

Figure 2.1: Normalization

2) Multiplicativity: If

(Z,0%) = (51,0%:) U (52,0%) (2.1.8)
then
Yo%) = V(my,0m) © Uny,0%) € A om) (2.1.9)
and :
A(E,az) = A(E;,azl) ® A(Ez,azz) (2110)
3) Factorization: The operation of contraction for tensor products:
A®. QA4 - A®..0AR®.. A Q...0 A (2.1.11)
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is defined when A; and A; (the hats denote their omission) are dual to each other

and identity on the other factors. Pictorially, we see that if (X,0%) and (¥, 0%') are

identical outside of a ball and inside are as in figure 2.2, then

X dX Y, 0%’
Ciy, G
Figure 2.2: Factorization

Yx,ox) = fojo contraction of vz sxv) (2.1.12)

is obtained by gluing together the cycles C;, and Cj,.

Now we present a symmetric polylinear function v, s on the space of states A; the

genus g correlators of the fields ¢,,, - - ., Pa, For example:
And in some basis ¢, ..., p,in A:
Ups(Pr @ --- @ Pa,) = (Pan -+~ Py (2.1.13)
Vg,s =

O 0O

Q’O Var
cA*@ATRAF

Figure 2.3: Hereg=2and s =3
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2.2 2D-Topological Field Theories and Frobenius
Algebras

Now we come to the main theorem of the chapter. The space of states A (the
matter sector of a 2D-TFT) carries é natural structure of a Frobenius algebra, and
all the genus g correlators of the fields can be expressed very simply in terms of this
algebra [7]. '

Theorem 2 Let (I) The tensors c, ), on A form a Frobenius algebra structure with

€ A" ®A" ®A = HOM(A®A , A)

Figure 2.4: Multiplication

= € A*®A*

Figure 2.5: Inner Product

unity e defined as in figure 2.6.
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Figure 2.6: Unity

(1) Let the Handle operator H be defined as in figure 2.7.

Figure 2.7: Handle operator

Then, the genus ¢ correlators may be expressed as the following R.H.S. product in

the algebra.
(Poy - - Par)y = (Pas * - - - * Pas H,) (2.2.1)

Proof:

(I) The a.lgebra‘must be commutative. Looking at figure 2.4, the multiplication
¢ is seen to be commutative since we may always exchange pant legs by a homeo-
morphism. Similarly, by figure 2.5 the inner product 5 is seen to be symmetric by
a homeomorphism. The multiplication must also be associative, and this is demon-

strated in figure 2.8:
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Figure 2.8: Associativity

The more general k-product is realised by the k-leg pants in figure 2.9:

e HOM(A®¥  A)

Figure 2.9: k-product

21
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The Identity:

Figure 2.10: Identity

The inner product n must be nondegenerate, so we find its inverse. Let

=
Il

)
} .
I c A®A
)
[}

Figure 2.11: Inverse

22
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Then, 7 is easily seen to give the identity cobordism, so 7 = 5™!.

1 1
! I'
1 !
| |
3 1]
AY \
id

Figure 2.12: Nondegeneracy

The multiplication c (figure 2.4) must be compatible with the inner product 7
(figure 2.5) as indicated by the following:

0 - (%

Figure 2.13: Invariance
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(I1) For any v, ;, we may construct these correlation functions using members of
the algebra. For example, using the multiplication ¢, the inner product 7, the 3-leg

product and 3 handle operators H,, we have:

Figure 2.14: Correlation functions

End proof.

For a TFT 7 (2.1.5) and unity e (figure 2.6), the image of e under T gives the
vector space A := T (e). The image of the co-unity § (e with reversed boundary
orientation) under 7 gives the dual space A* := T () Note that the pairing 5 and
unity e may be used to define §:

Figure 2.15: Co-unity 6
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The nondegeneracy of  given the co-pairing 5! as seen in figure 2.14, yields an
isomorphism between A and A* - the identity cobordism as seen in figure 12. This is
the content of Atiyah’s axiom [1] 8%+ A = 0% > A",

The boundary 9% of T (if % # 0) consists of oriented cycles C;. C; will correspond
to A if oriented with ¥, and will correspond to A* if oriented agaihst Y.. The gluing
along a cycle C; (the disjoint union of (2;,0%;) and (X2,0%2)) corresponds to the
tensor product contractions of dual vectors. We now see several examples of this {11],

using the notations from chapter 1:

Example 2.2.1 czﬂ tAQA— A EA QA ®A, a(2,1)-tensore, @ eg = Casy
a '

Figure 2.16: Multiplication ¢

. LI
: Clp :=N"Cop

Example 2.2.2 e: C— A € A, vectors

Figure 2.17: Unity e
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Example 2.2.3 0: A — C € A*, co-vectors

Figure 2.18: Co-Unity ¢

Example 2.24 n: A@ A— Ce€ A* @ A*, a (2,0)-tensor 0, =< e,, ¢, >

Figure 2.19: Pairing 7

26
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Example 2.2.5 7! : C—> A® A€ A® A, 4 (0,2)-tensor " =< e, e, >

n'= = ()

Figure 2.20: Co-pairing 77!

Example 2.2.6 id: A—- A€ A*® A

Figure 2.21: Identity

27
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Example 2.2.7 ¢ : AR AR A€ A* ®A* ® A°, a (3,0)-tensor cop = afal;“(gﬂ

p
o 1 Ceap
£

Figure 2.22: 3-point function

Example 2.2.8 Using the co-pairing n"¢ and 3-point function c.p, we can recover

the multiplication ¢ by gluing along €; contracting €

p
Ch: Y =
Q| 1 N°C o
. T

Figure 2.23: ¢} 3 = 7"Ceap

AL AL D
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Example 2.2.9 Similarly, we can construct the 3-point function c g, using the pair-

ing N, and the multiplication 3y

¥ v )
Cepy: = : 1‘|80LC;;‘,r
P p
£ -
c .

Figure 2.24: ¢y = NcaCj,

Remark 2.2.1 Here it is easy to see that e lowers indices and n® raises indices.

Example 2.2.10 The Frobenius algebra may also be characterized by equipping A
with the multiplication c, unit e, co-unit @, a co-multiplication p and the so-called

Frobenius relation shown in the following ﬁgure.

Figure 2.25: Frobenius Relation

From this, the vector space A will be associative and of finite dimension, the co-
maultiplication will be associative, and (A, 0) will define a Frobenius algebra [11].
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2.3 'Topological Conformal Field Theories and Topo-
logical Landau-Ginzburg Models

Theorem 2 says that the matter sector of 2D-TF'T is always encoded by a Frobe-
nius algebra. The Frobenius algebra on the space of states A is called the primary
chiral algebra of the TFT. To preserve as much information as possible in generating
the correlators from the Lagrangian, not only the Lagrangian but also its topologically

invariant deformations are considered:
L—L+) L&

where t* are coupling constants. We now have a moduli space of TFTs. A large,
physically relevant class of such moduli spaces of TFTs are topological conformal field
theories (TCFT). There is a physical theorem which asserts the canonical moduli
space of a TCFT carries the structure of a Frobenius Manifold [7]. Examples of
TCFT include the Topological A-models (Kahler moduli) and Topological B-models
(complex moduli) famously related by mirror symmetry and ones we consider next:
Topological Landau Ginzburg models (polynomial moduli, which are included in the
family of topological B-models). |

Example 2.3.1 Topological Landau-Ginzburg (LG) Models:
The Bosonic part of the LG action is:

s= [ d2z<]%|2+ X)) (231)

where A(p) is a holomorphic function called the superpotential, and S is a functionel
of the holomorphic p(z) called the superfield. The Classical states correspond to the
critical points of A(p), where

pi == p(z) for X(p;) = O,i.= 1...n

A family of LG models (the moduli space of the LG-theory) is obtained by deforming
the superpotential '
A= Ap;th,...,t"°)

for parameterst = (t!,...,t"), and the Frobenius structure on the space of parameters
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s given by: ) )
. O(Adp)d’ (Mdp
(6, 5’)/\ = /\,Zzores-———(-l—i—(p)—— (232)
N OAdp)P (Adp)” (Adp)
(0,0,0"), = )‘Z::()res D)y (2.3.3)

where the vector fields 0, , " on the space of parameters are taken keeping p constant.

For the particular superpotential

Mp) =p™"

its deformed superpotential matches the polynomial of Ezample (1.1). We will see
this in chapter 3.



Chapter 3

Unfoldings of Singularities and the
Orbit Space of a Coxeter Group

We will describe the unfoldings of singularities of A, type in section one and verify
its Frobenius structure [2],[14]. In section two we describe the Frobenius structure on
the space of orbits of a Coxeter group [4],[7], and in the third section we verify that
the structures from Examples (1.1} and (2.1) are Frobenius, and coincide with the
Frobenius structure on the orbit space of Coxeter group A, [7}, [17].

3.1 Unfoldings of Singularities

Using unfoldings, one may construct a product and flat metric on the space of
parameters M = C™ and establish canonical coordinates that determine the Euler
vector field [2],[14]. In this section we will see how our main example of A,-type
exhibits a natural Frobenius Manifold structure in the unfoldings of singularities.
The unfolding F¢ of the polynomial f(z) = z"**! giveé the space of parameters a rich
structure. Consider only germs, so M = C". By choosing a basis for the vector
space QF, (the Jacobian algebra), the tangent space T,C" is given the structure of a
commutative algebra with unit. Here the product at a point £ € C” is denoted by
*¢, and the &-axis gives the identity vector field '% in all T;C". A theorem by K.
Saito states there is an isomorphism of vector bundles over C", so that at any point
¢ the isomorphism Qp, — T;C" transports the bilinear form ¢ to a flat metric on C*
[14]. Let us consider the unfolding Fy, flat metric and bilinear form ¢ in our main

example.

Example 3.1.1 A, -type unfolding: Let us consider the polynomial f(z) = z™*! and

32
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its unfolding
Fo=2"""1 6,027+ +& ((eC) (3.1.1)

Its space of parameters is the affine space of all polynomials F;. At any point, the
tangént space is the vector space of polynomials with degree < n — 1. The product
a *¢ 3 at this point of Qp, = Clz]/ < FE, > 1is the remainder of a3 in the Fuclidean
division by Fy.

The one-form @ is

1 adz adz
— | —=" = —Respo— - (3.1.2
7 omi o F, R (3.1.2)

To see that it defines a flat metric, we look for the flat coordinates in which @ is

constant. To do this we invert and solve the équation
wn+1 — F{( Z)

w=z+0(z"")

expanding the solution for z large, so that

w wn wntl

t ¢ ’
z=w+ "“‘+...+—°+0< 1 ) (3.1.3)

where ty . .. t,_1 15 a basis of the vector space of symmetric polynomials. Thenty... . t,_1

are seen to be the flat coordinates by,

a , az r nti

b—t-(Ff) = F(z(w, t))g = Fy(2(w,tyw™* (3.1.4)

and using
Fg(z)dz = (n+ )u"dw - (3.1.5)

we have
o 0 ’ —Ontiti

g(gt—_-(FE), %(FE)) = —Res;=coF(2(w, t))w dz (3.1.6)
= —(n + 1)Resy—oow " Hidw (3.1.7)
= (n+ 1)0isjn1 (3.1.8)
(3.1.9)

the metric flat and nondegenerate everywhere.
Now we would like to establish the canonical coordinates and the Fuler vector field.
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The canonical coordinates are chosen to be the critical values of F : xz; = F(g;). The
vector fields forming a basis for the algebra QF, are then 5‘2—{. For any polynomial P €

Clz,. .., zk] with m critical points, the vector field is written in canonical coordinates
as:
= g
P= P(qg; 3.1.10
> Pl (3.1.10)

The unity vector field is:

1= 3a (3.1.11)

The unfolding F} itself is now an Euler vector field

m a m a
Fe = Z;FE(%)BT = Z;xia—xi = E (3.1.12)

i

since it rescales the product *; according to (1.1.17). Lastly, we check the Euler
vector field E acts by conformal transformations of the metric and that V(VE) = 0.
Looking at the Euclidean division of F by Fg , we may write the Euler vector field E
in coordinates (£, ...,&—1) as -

n-—-1

_— n—j+1. 0
E; = ;0 T+T_£’a_§,- (3.1.13)

In flat coordinates, and recaliing Jrom (8.1.3)
t; = —Ei+Bi(Ei+1,‘-~,£n-—l) 0<i<n-1

we assume deg(&;) = n—j+ 1 so that deg(Fe(z)) =n+1, deg(B;) =n—i+1 and
both F ‘and B; are homogeneous. Then,

n—1 .
n—-]+1 8t,-
E-t;= Z —_— : (3.1.14)
=0 n+1 8{, .
n—i+1 n—i+1 =R n-j+1 08B
= t:— ; — A Y i B 11
n+1 ( n+1 j=12-+:1 n+1 E’agj) (31.15)
—_3 1
=nirly (3.1.16)

n+1
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by the homogeneity of B;, so that in flat coordinates,

n-1 .
n—j+1, 0
E — L S 3.1.17
¢ ,_Zo nt1 Dot (3:1.17)

Any space of parameters of a versal unfolding is isomorphic to the space of orbits
of a Coxeter group, and we will see their Frobenius structure in the next section.
Also Dubrovin conjectured that all polynomial solutions of the WDVYV equations are
potentials of these structures. This was later proved by Hertling [8].



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 36

3.2 Frobenius Structure on the Orbit Space of a
Coxeter Group

In this section, we first define the intersection form, flat pencil of metrics and
the monodromy group of a Frobenius manifold {4],[7]. We thén show the Frobenius
structure on the orbit space of a Coxeter group. These manifolds are polynomial in
nature and each possesses a finite Coxeter group as its monodromy group {7].

Given a Frobenius manifold M we may use the invariant inner product 7 (1.1.2),

to define another flat metric (,)" called the intersection form.

Definition 3.2.1 The intersection form is given by
(z,9)" =ig(z*y) (3.2.1)
Jor x,y € T*M and ig the inner derivative of a 1-form uﬁth the Euler vector field E.

The components of (,)* in flat coordinates t* are:

9% = (dt®, dtP)* = E(t)c’(t) ' (3.2.2)

where

P (t) ==n"c (1) (3.2.3)

Here 7 has been used to extend the multiplication and Frobenius structure from the
tangent bundle to the cotangent bundle. Having established these metrics as flat,
Dubrovin proved further that any linear combination of them is also flat, defining the
flat pencil of metrics. Consider two non-proportional metrics (,); and (,), and their

corresponding Levi-Civita connections V¥ and V.
Definition 3.2.2 Two metrics form a flat pencil if:

f) The following metric is ﬂfzt for \ arbitrary
97 =i + 2o | (324)
2) The Levi-Civita connection for this metric has the form

Y =r% +ar% (3.2.5)
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Consider the metrics (, )" and {,)” on the Frobenius Manifold M, where (,)" is induced
on T*M by 5 = (,) and the Euler vector field E is linear in the flat coordinates.

Proposition 3.2.1 The metrics (,)* and (,)” form a flat pencil on M.

Remark 3.2.1 On M, the difference tensor is defined by:
_ Aijk — Fls _ gl F-;’; (326)

Dubrovin’s geometry of flat pencils of metrics {7], gives the following proposition:

Proposition 3.2.2 For a flat pencil of metrics a vector field f = fi0; exists such
that the difference tensor (3.2.6) and the metric g¥ have the form

ATk = i) fF (3.2.7)

=Vif! +Vifi +cgi (3.2.8)

for some constant c. The vector field satisfies the equations -

AYAFE = NRAY (3.2.9)

where
AY = goro AT = Vo, Vi (3.2.10)
(95°05 — 95°91") Vs Var f* = 0 (3:2.11)

Conversely, for a flat metric g2 and solution f of (3.2.9),(3.2.11) the metrics g} ' and
92 form a flat pencil.

Later in this section, we will see that from the intersection form, Euler vector field
and unity vector field, one can uniquely reconstruct the Frobenius structure. We now
describe the monodromy group of a Frobenius Manifold.. The intersection form or
contravariant metric (,)" is degenerate on the discriminat locus ¥ where the discrim-
inant A(t) vanishes:

A(t) == det(g*?(t)) =0 (3.2.12)

¥ C M where
L= {tA(t) == det(g*(t)) = 0} (3.2.13)

Since (, }* and 7 are defined outside of the discriminant locus )3,‘ a Frobenius manifold
defined by (M/%,(,)") is not simply connected. Thus at any point there will be a
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nontrivial holonomy group at any point, being a discrete subgroup of O(n, C) [4]. An
isometry ® can be specified of a domain  in n-dimensional complex Euclidean space
E™ to the universal cover of M/3:

.0 M/S (3.2.14)

Then the action of the fundamental group (M /%) on the universal cover is lifted
to an action by the isometries of E™. This isometry (3.2.14) is contructed by fixing
a point pp € M outside of £ and expressing y = (¥',-..,y™) the flat coordinates
of (,)" in terms of the flat coordinates ¢ = (¢!,...,1") of . Germs of functions
¥ (t,...,t") will be multivalued around ¥, and the set of non-contractible loops
around X correspond to linear affine transformations of the y*’s. In this way, the map

and group homomorphism g is obtained:
p:m(M/E) — Isometries(E™) (3.2.15)

Definition 3.2.3 The image of the fundamental group under p defines the mon-
odromy group W (M) of the Frobenius Manifold:

W(M) = u(my(M/%)) C Isometries(E") (3.2.16)

Remark 3.2.2 The flat coordiantes y = (y*,...,y") are found by solving the follow-
ing system, where V denotes the Levi-Civita connection Jor the intersection form (the

Gauss-Manin connection):
VaVsy := g°(t)0u0py + T3 (1)0y = 0 (3.2.17)

fora,=1,...,n

Inversely, we next describe the construction of polynomial Frobenius manifolds
whose monodromy group is a Coxeter group preserving invariant the intersection'.
form (,)*. Let W be a finite Coxeter group; a finite group of linear transformations
of an n-dimensional Euclidean space V generated by reflections [5]. The orbit space
M = V/W has the structure of an affine variety, where the coordinate ring of M is
identified with the coordinate ring of W-invariant polynomials over V. The coordinate
ring of M has as a basis invariant homogeneous polynomials ’. Their degrees d; are
invariants of the group W. The maximal degree h is called the Coxeter number of
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w.
d; := deg(y*) (3.2.18)

d=h>dy>...>dp;>d,=2 (3.2.19)

For example, group A, has degrees d; = n + 2 — i and group B, has degrees d; =
2(n — i+ 1). The action of W is extended to the complexified space

M=VgC/W

Coordinates on V will be denoted by z*.The Euler vector field is:

_1 1 na \ 1 . 0
E=3(dy'd+... +dy"0,) = 3252 (3.2.20)
The invariant coordinates will be denoted as y™ and normalized as:
1 .
= o5 (@) +...+ (")) (3.2.21)

where (.,.) denotes the W-invariant Euclidean metric on V, and is extended onto M
as a complex quadratic form. We denote here by (.,.)* the contravariant metric on
the cotangent bundle 7* M induced by the W-invariant Euclidean metric on V.

Lemma 2 The Euclidean metric of V induces a polynomial contravariant metric ( ,

)* (the intersection form) on the space of orbits

97 (y) = (&', dy’)" - axlgﬁ (3.2.22)

and the corresponding polynomial contravariant Levi-Civita connection (the Gauss-
Manin connection)

oy Yy

= 920 Ozo9zb T
Remark 3.2.3 The intersection form (3.2.22) and Gauss-Manin connection (3.2.23)
are graded homogeneous polynomials that depend linearly on y', with degrees:

' (y)dy* = (3.2.23) -

deg 97(y) =d; +d; — 2 (3.2.24)

deg TP (y) = di + dj — dy, — 2 : (3.2.25)

Theorem 3 There ezists a unique, up to an equivalence, Frobenius Structure on the
space of orbits of a finite Cozeter group with the intersection form (3.2.22), the Euler
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vector field (3.2.20) and the unity vector field e := %,—

To prove this main theorem, we give the Saito metric (3.2.26) in lemma 3, Saito
flat coordinates t'(z),...,t"(z) in lemma 4, and the associated components of the
intersection form and Gauss-Manin connection in lemma 5. Then the existence of the
Frobenius structure on the orbit space of a Coxeter 'group is proven in lemma 6 with

uniqueness following.

Lemma 3 The triangular matriz
n(y) == 81g"(y) =0 fori+j>n+1 (3.2.26)

has constant nonzero antidiagonal elements

¢; = D), (3.2.27)
and
¢ = det(n?) = (=1)*F2ey,...,cn £ 0 (3.2.28)
Lemma 4 There exist homogeneous polynomials t!(z),...,t"(x) of respective degrees
dy,...,d, such that the matriz
n*f = 8,(dt*, dtP)* (3.2.29)

" 18 constant

Lemma 5 For coordinate t* normalized as in (3.2.21), we have the following (with

no summation over repeated indices):

na __ dﬂ o

o (da —

e ) e lge (3.2.31)

h
Lemma 6 Lett',...,t" be the Saito flat coordinates on the space of orbits of a finite

Cozeter grdup and
n°? = 8,(dt*, dt?)* (3.2.32)

be the corresponding constant Saito metric. Then there exists a quasihomogeneous
polynomial F(t) of degrece 2h+2 such that

(d +dﬂ

(dte, dtP)* = h 2) 1P 8,0, F (t) (3.2.33)
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The polynomial F(t) determines on the space of orbits a polynomial Frobenius struc-

ture with the structure constants

¢ 5(t) = 770050 F (£) (3.2.34)
the unity
e =0, (3.2.35)
the Euler vector field deat
E=Y(- ezt )20, (3.2.36)

and the invariant inner product 7).

Proof. Using lemma 4 and proposition 3.2, we represent for some vector field f4(¢)

the tensor I'2#(t) as
T32(t) = n0,0,f°(t) (3.2.37)

Also, I'?#(t) must satisfy the conditions
goTH = ghorer (3.2.38)

For a = n, lemma 4 and the Euler identity it follows that

(dy = 1)g" =Y "nf(d, — d. + R)O.f" = (dy + dg — PO f” (3-2.39)

which gives the symmetry condition (3.2.41) by defining

) 2ed fr
= - 2.
R d -1 (3 40)
7?0, F7 = 0, FP (3.2.41)

A Hence there exists a quasihomogeneous polynomial function F(t) in ¢!,..., " with
degree 2h + 2 such that .
F® =n*g . F ' _ (3.2.42)

Equation (3.2.33) follows from (3.2.41) and (3.2.39), and writing

B(t) = n“*nﬁ“éxa,‘aqF (3.2.43)
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we have the following:

dg_
Ief = ( f;ll)cgf’ (3.2.44)
2Pl = )P (3.2.45)
o =03 (3.2.46)

End Proof.
This structure is unique. For a polynomial Frobenius structure on M with Euler
vector field (3.2.20) and Saito invariant metric, F'(t) must satisfy (3.2.33) up to a
quadratic polynomial. We consider in the Saito flat coordinates

dt® - dt? = n**P*0,0,0, F(t)dt" (3.2.47)
and by the definition of the intersection form we have
in(de®, %) = 2 3 d i naxn™353,0,F (1)  (3.248)
Y

- %(da + dp — 2naanPHONLF () = (dt*, diP)* (3.2.49)
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3.3 Example of Frobenius Structure on the Orbit
Space of Coxeter Group A,

The group W = A, acts on R™*" = (&, €1, ..., &,) by permutations

(&0,&1,-- -, &) = (&(0), E01)s - - - Eotm))

restricted to the hyperplane
o+&t...+6=0 ‘ (3.3.1)

The invariant metric is the Euclidean metric on (3.3.1), and the invariant polyno-
mials are the symmetric polynomials. A homogeneous basis in this ring of invariant
polynomials is given by the elementary symmetric polynomials:

@ = (1) (Eoby . Eh t ), k=1,...,n (3.3.2)

The complexified space of orbits M = C"/A, is then identified with the space of
polynomials A(p) from example (1.1). We now show that the Frobenius structure on
M from lemma 6 coincides with the structures of examples (1.1) and (2.1) [7], [17].

Theorem 4 1. For example (1.1), the inner product {,) and tensor c(.,.,.) =
(- *.,.), have the form

3'(\(p)dp)3”(\(p)dp) . :
(0,0, =— ZResdA:o (Ap) 5; (p)( (p)dp) (3.33)
F(MP)dp)" (\p)dp)D" (Ap)dp)
ooy _ 3.
o(&,8",0")y ==Y Resaro dpdr(p) (3.3.4)
2. Let q',...,q" be the critical points of the polynomial \(p),
X(@)=0, i=1,...,n
and
w=Ad), i=1,...,n (3.3.5)
be the critical values. Here u!,...,u™ are local coordinates on M near A where

A(p) has only simple roots. These local coordinates are the canonical coordinates

Jor multiplication of example (1.1) and in these canonical coordinates the metric



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 44

from ezample (1.1) has the diagonal form

(Vb= Do m(@, ) = s (3:36)

&, ", 3" are any tangent vectors on M in a point \, where derivatives are taken

keeping p constant. X' (p) and X'(p) are the first and second derivatives wrt p.

3. The metric on M induced by the invariant Euclidean metric at a point X for

which A(p) has simple roots may be written as

& (log)(p)dp)d” (log)(p)dp) (33.7)

(8’ ,3' ))\ = = Z Resgy—o dlogh (p)

Proof. 1. Equation (3.3.3) corresponds to the invariant inner product from exam-
ple (1.1):

f(p)g(p)
19)y = Respoo 07—
By letting & = f, @ = g and N(p) = ﬂ)‘;—g)— and denoting by w the meromorphic
differential: & (\p)dp)? (\(p)dp) '
_ p)dp p
w= T (3.3.8)

we apply residue theorem on w. The inner products are seen to correspond to each
other since the sum of residues of a meromorphic differential on the Riemann p-sphere

is zero.
Resp—oow + Z Respjcoow =0 (3.3.9)

Equation (3.3.4) corresponds to the multiplication from example 1.1. Using equation
(3.3.9) and letting f(p) = 3'(A(p)), 9(p) = &"(M(p)), and h(p) = 8" (A(p)) to re-write
it as:
, oy _ 9 (Mp)dp)d” (Mp)dp)3" (M(p)dp) '
A(&,0",0") = Respewo ~dpdA () (3.3.10)

For polynomials g(p) and r(p) where deg(q)' < n, f(p)g(p) = q(p) +r(p)X(p), and in
the Milnor ring C|p]/(X(p)), we will have the multiplication f * g = g so that

&' (A\(p)dp)d” (A(p)dp)3" (A(p)dp) _ q(p)h(p)
Resp—oo dpd>(p) = ReSp—co D) + ResSp—cor(p)h(p)dp

(3.3.11)

Since the second residue vanishes, the first residue is the inner product:

<(I7 h),\ = (f *g, h),\ = C(f, g9, h) (3312)
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2. The intersection form in the hyperplane coordinates has the form:

1

ab ab
=" — ——
g n+1

Denote the roots of X' (p) by ¢

ui=)\(qi) i=l,...,n

d:\(p) |p=qj = b;j

Using (3.3.14),(3.3.15) and the Lagrange interpolation formula, we get

1 X(p)

W)= v

Since A(p) and N(p) are given by

Mp)=(+&a+...+&) [J(r - &)

X(p)=]]p-d)
=1
it follows that
O = .. + B:6x) H(p &) - Z 20 5, = a00)

Substituting p = £, in the previous equation, we get

1
0= ——————, Ha=1,...,n
¢ (& — )N'(q)
From (3.3.3), (3.3.4), and (3.3.15) we obtain
1
<a“a ) ’J Xl( 1.)

1

C(ai,ai,a,') = (61 * 0, 61) = _-XF(—q—"j

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)
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Now we see that u!...u" are the canonical coordinates, since in the algebra we have

6,- * Bj - (51']'81'

3.From (3.3.4) and (3.3.15), we have

1

gii(u) := (0;,0:) = R

Using this, we obtain

. r -l_aﬁa &,
() =) o5
n ’U.i
o ; (€a — ¢')(& — ¢)N"(¢")
L A(p)
=2 R GG
— Oa,b — m

(3.3.21)

| (3.3.22)

(3.3.23)
(3.3.24)
(3.3.25)

(3.3.26)

So the intersection form (3.3.7) coincides with the W-invariant metric. End Proof.



Chapter 4

Hurwitz Spaces

Hurwitz spaces are moduli spaces of pairs (£, ), where £ is a Riemann surface
of genus g and ) is a meromorphic function on £ of degree N = n + 1. We will see
that these spaces with certain restrictions may be given the structure of a Frobenius
manifold [3],[4],[7},[13],[16],[15]. Dubrovin builds the Frobenius structure on a cover-
ing of the Hurwitz space, which is necessary for the more general cases g > 0. There
is also the notion of choosing between different primary differentials (or primitive
forms), that produce different solutions to WDVV but are also related by Legendre
transformations [7). The main A, example may also be described as a Frobenius
manifold constructed on a Hurwitz space. The simplest class of such Hurwitz spaces
where g = 0, £ is the Riemann sphere and )\ are rational functions from £ — L, is

where our main A, example falls [7],[13].

4.1 Hurwitz Spaces and Hurwitz Covers

Specifically, the Hurwitz space M = Hg., . ... is the space of equivalence classes
[A : £ — CP'] of N-fold branched covers with the following properties:

e nsimple ramification points Py, . .., P, € £ with distinct finite images u!,...,u" € .
C C CP". These are the critical values of A : v/ = A(P}), d\|p=0, j=1,...,n

e The pre-image \~*(0o) consists of m + 1 points: A~'(0c0) = 00y, ..., 00,, and
the ramification index of the map p at a point oo; is n; (1 < nj < N)

o The Riemann-Hurwitz formula gives the dimension n of space M as n = 2g +
N +2m, (where N =ng+ ...+ n,,) in terms of the genus g of £, degree N of

A and number of simple finite branch points m.

47
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e The one-dimensional affine group acts on M by:

(L5000, ...,00m;A;...) — (L£;000,...,00m;aX+b;...) (4.1.1)
W aut+b i=1,...,n (4.1.2)
I CP'
CP'
w’l) I CPl N
CP'
u! u’
/\V_*
A £

Figure 4.1: (£, ))

Remark 4.1.1 Some remarks are in order:

(1) The finite branch (ramification) points being simple expresses that only two
sheets are glued at each point.

(2) There are m + 1 points on the covering projecting to \(P) = oo on the base.
The numbers (n; + 1) give the number of sheets glued at every point, where n;

are the ramification indices from above.

(8) Two coverings are called equivalent if one can be obtained from the other by a
permutation of sheets. M = Hyyp, . a. i the space of equivalence classes of
sheets.

Dubrovin constructs a Frobenius structure on a covering of the Hurwitz space. The
ramification points u!,. .., u" will be the canonical coordinates for the multiplication

 of the tangent vector fields:

0

o (4.1.3)

6,' * 6j = (5,']'6,', 6,' =
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The unit vector field e and the Euler vector field ' generate the action of the affine
group (4.1.2):
e=)Y 6 (4.1.4)
=1 B

E=)"u'd; (4.1.5)
i=1

1-forms Q on a manifold with a Frobenius algebra on the tangent planes are called
admissible if a Frobenius manifold structure is determined by the invariant inner

product:
<,0" >q=0(0 x0") (4.1.6)

A quadratic differential @ is called d)-divisible when it has the form @ = qd\
where the differential ¢ has no poles in the branch points of £. The corresponding 1-
form Qg on the Hurwitz space M is determined by any @ holomorphic for [A| < co on
L. Since the 1-form Qg = 0, we may include also multivalued quadratic differentials
on the universal covering of £. The monodromy transformation along a cycle v acts
by

Q+— Q+gdr (4.1.7)

On a suitable covering Mof M , the metrics will be defined by the 1-forms corre-
sponding to these multivalued differentials Q). The covering M=M no,...nm 15 the

space of sets
(L;000,...,0m;X;Ko,y ... km;Q1,-..,8g301,...,bg) € Mging. o (4.1.8)

with the same £,00y, . .., 0op, and A from M, plus a canonical basis of cycles a,, . . ., ag;
by,...,by on L. The branch points P,,..., P, are the local coordinates on M, , and in
the neighbourhood of P near oo®:

kMt (P) = A(P), P near oo (4.1.9)

where n; is the ramification index at oo®.

Admissible quadratic differentials on the Hurwitz space are constructed as squares
Q = ¢? of primary differentials ¢ on L (or a covering of £). There are five types
of primary differentials. (All differentials have zero a-periods except the holomorphic
¢si below. Also the coefficients é;, aii, 3;,7; are independent on the point in M .) The
five types of primary differentials with their characteristic singularities are:
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1. A normalized Abelian differential of the second kind:

1 . .
¢ = @pia(P) := ——dk{(P), Pnear oo’; 1=0,...,m, a=1,...,n;
a

(4.1.10)

2. A normalized Abelian differential of the second kind:
¢ = iy (4.1.11)
¢ (P) := —dA(P), P near oo’; i=1,...,m (4.1.12)

3. A normalized Abelian differential of the third kind:

¢ = A;@ui(P), T€Sui@ys =1, TeS,0d,i =~-1; i=1,....m (4.1.13)

4. A normalized multivalued differential. (The differential undergoing analytic
continuation along b; on £ tranforms as:

¢ = Bidsi(P), ¢ri(P+b;)— ¢pi(P)=~05d\P); i=1,...,9 (41.14)
5. A normalized holomorphic differential:

¢ = 1idst ]( b =di; i=1....g (4.1.15)
a;

For any primary differential ¢ and corresponding multivalued quadratic differential
Q = ¢%, Qg will be an admissible 1-form on the Hurwitz space M. The metric
corresponding to Q2 is defined for two tangent fields 8,8 on M as:

dsg =< 8,0" >p2:=0(0' +8") (4.1.16)

This gives a Frobenius structure on M for any ¢. For the function ), a multivalued

function p on £ is introduced:

P

p(P) = p.v./ é (4.1.17)

oo

where the principal value is defined by omitting the divergent part of the integral as
a function of the local parameter ky. Now ¢ = dp and X(p) on L is locally a function
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of the complex variable p.
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4.2 Hurwitz Spaces and Frobenius Manifolds

We now come to the main theorem of the chapter [7]:

Theorem 5 Let M be open in M and specify that #P)+#0, i=1,...,N. For
any primary differential (4.1.10)-(4.1.15), the multiplication (4.1.3), unity (4.1.4),
Euler vector field (4.1.5) and 1-form Q 2 determine on M a structure of a Frobenius

manifold. The corresponding flat coordinates 4, A = 1,...,N consist of the five

parls:
tA=(@h i=0,...,m, a=1,...,n; p,¢, i=1,...,m; r' &, i= 1,...,9)
' (4.2.1)
given by:
1
e = resy b “pd) (4.2.2)
2. w_
P =p.v./ dp (4.2.3)
cop
3.
q' = —Teseo,Adp (4.2.4)
4.
= }{ dp (4.2.5)
b'.
> 1
f=——— ¢ M 4.2.6
=5 }{ p (4.26)
The metric (4.1.16) in these coordinates have the (non-zero) forms:
* 1
Misogiss = m6ij6a+ﬁ’ni+l (427)
b.

1
it = 7% (4.2.8)
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1
igi = =i 4.2.
Tiris 27m.61] ( 9)

And, for any other primary differential ¢, the 1-form Qg2 is admissible on the Frobe-

nius manifold.

Proof of the theorem.
For the multiplication (4.1.3), the metric dsi (4.1.16) is diagonal in the coordinates

ds? = m(u)(dw’)? i=1,...,N (4.2.10)

: #?
i = T‘GSHEX (4.2.11)

- We now define a Darboux-Egoroff metric, then prove a lemma that for any ¢, dsfb
will be Darboux-Egoroff, and will satisfy invariance conditions that give the second

and fourth properties of a Frobenius manifold (definition 1.1.3).

Definition 4.2.1 A Darbouz-Egoroff metric is flat, potential and diagonal. A diag-
onal metric ds® = n;(du’)? is called potential if 3 a function V 3 O,V = n;; for all i.

A potential diagonal metric is flat if the rotation coefficients 7,5, i#j

0jv/Mii
i) o= Y (4.2.12)
Vi
satisfy the following for i, j, k distinct for all y;;:
Ovi; = YarYii (4.2.13)
N 8y =0 | (4.2.14)
k=

Remark 4.2.1 The rotation coefficients of the invariant metric also satisfy;

Z uw*Oheyi; = —vij (4.2.15)
k=1
Lemma 7 For any primary differential ¢ listed above (4.1.10)-(4.1.15), the metric

(4.1.16) is Darbouz-Egoroff and also satisfies the invariance conditions:

Lie.ds; =0 (4.2.16)
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LieEdsz, is proportional to ds?,, (4.2.17)

The rotation coefficients of the metric do not depend on the choice of the primary
differential ¢.

Proof of the lemma:

Let z, be a local parameter near co,: z, = k. First, a pairing of differentials w®
w® is defined. w® and w® are holomorphic on £/(0c0p U ... U 00,,), and at the
infinite points behave as:

(Where i = 1,2 and cfj}z, r,(:;l, Ag), pg,),, qﬁzz, are constants.)

w® =" kdze +dY 1O\ logh, P — o0, (4.2.18)
k k>0
f w® = AD (4.2.19)
WP +as) —w(P) = apd(N), pPO) =) pN © (4.2.20)
>0
WP+ be) —wP(P) = dg®(N), ¢D(N) =1 N (4.2.21)
: >0

The bilinear pairing for w™®, w® is defined as:
(Where P, is a marked point on £ 3 A(Fp) = 0)

m (1) 00, 00,
c a a
< W@ 5= Z [ —k-2a (2) + C_1,40.D- / w® + 27i v.p. / r,(:l/\kw(”} +
k>0 Po

—ck a
a=0 k + 1 ’ PO
(4.2.22)
18
i _ (1) 2 (1) (2) (1 2
Sl L on s f o ap f ]
With these definitions, the following may be proved: v
Lemma 8 The following identity holds
(1),(2) '
'I‘GSPJ.w d‘:\J =0; < wPuw® > (4.2.23) -

Corollary 2 The pairing (4.2.22) of differentials w, WP is symmetric up to an
additive constant not depending on the moduli.
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From the previous lemma, we see the rotation coefficients of the metric (4.1.16)

are symmetric:
n]-j(u) = 6]- <¢¢p> jF=1,....N (4.2.24)

To prove the rotation coefficients satisfy (4.2.13) consider the differential
a,-a,-/am, i, 7, k, distinct (4.2.25)

which has poles only in P, P;, P;. The contour integral will be zero along a domain
AL obtained by cutting £ along a canonical basis passing through FP,. Connecting
Py at a vertex of the resulting 4¢-gon to the points ooy, ..., 00, and cutting along
these paths yields €. The sum of the residues vanishes, and by the symmetry of the
rotation coefficients (4.2.13) is obtained, from:

0iv/MiiOk\/Mii + Oin/M550k\/ M55 = /ex0:05/ ik (4.2.26)

Similarly, the rotation coefficients are independent of the primary differential ¢. Con-
sider the differential:
06 [ o0 i#i (4.2.27)

where ¢ is another primary differential. Since the sum of the residues vanishes, and

the rotation coefficients are symmetric,

50/ = /0 (4.2.28)

the rotation coefficients are the same for either metric. To prove (4.2.16) an operator
D, on functions f = f(P,u) is defined: (and extended as the Lie derivative by

requiring dD, = D.d)
of

=55 HO:f (4.2.29)

D.f:

Then for any ¢,
D.p=0 (4.2.30)

" For the metric (4.1.16), by using (4.2.24), the identity (4.2.14) is also obtained:

Oenjj = 0 (4.2.31)
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Similarly to prove the identity (4.2.17)>a.n operator Dg is defined:

a
Dg:= Aa + Og (42.32)
- Then for any ¢,
Dr = 8o (4.2.33)

For the primary differentials ¢ listed as in (4.1.10)-(4.1.15), the numbers [#] are given
by: :

«

[puse] = =5 (4.2.34)
[¢s] =1
[¢uwi] =0
o] = 1
[¢:] =0
From this, we may write:
o enfs = (2lg] — - (4.2.35)

which gives also (4.2.15). End proof of lemma 7.

The identity (4.2.16) is equivalent to condition (F2) from the definition (1.1.3) of the
Frobenius manifold. Also, the identity (4.2.17) is equivalent to the third condition
from (F4), equation (1.1.17). Given the Euler field (4.1.5) and multiplication (4.1.3),
the first and second conditions of (F4) equations (1.1.15), (1.1.17) are satisfied. Con-
dition (F3) is given by the following lemma [7][9}:

Lemma 9 If g is an Darbouz-Egoroff metric, (with respect to the canonical coordi-
nates ul, ..., u"), then the Frobenius structure with canonical basis -5-?‘-; has Vc sym-

metric.

Since we have a Darboux-Egoroff metric for any primary differential ¢ invariant with
respect to the multiplication (4.1.3), condition (F3) is satisfied. To complete the
Frobenius structure, the flat coordinates for the flat metric are established. Denote

the coordinates by 4, and define

¢a:= —0ardp (4.2.36)
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Then by lemma (7),

<atA 0t3 > Z TeSgr= 0¢ 495 ——6 < dadp > (4237)

JAj<oo dA

The non-zero coefficients ¢y aB) A(A B), ql(xA ) for the differentials ¢4 B are as defined

in equations (4.2.18)-(4.2.21). Using D.¢p = 0 from (4.2.30):

k+1
el = — & e (4.2.38)
oo (B)
¢ c"ﬂn—2a ¢B
e bp="r1 ( d/\)p., (4.2.39)
0. f App = }{ ¢B (4.2.40)
__9%8 J:]
e 4 ¢p = ——~(P +ba) + —=(P) (24

Then using the bilinear pairing (4.2.22), the forms of the metrics (4.2.7)-(4.2.9)

are obtained:

m Na—1
1 (‘3
0 < datn>=—3) (— <><>) _ (12.42)

a=0 \ e +1 k=0

A B B A A B
“ X o (0t ) ) — 5> (A 4 ADD)

a=1

End proof of the theorem.
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4.3 Hurwitz Space Hj, and the A,-example

Example 4.3.1 The Hurwitz space Hy,, corresponding to the main A,-type ezample

ponsists of all polynomials of the form
Ap)=p"" +ap" ' +...+a, a,...,0,€C (4.3.1)
The affine transformations A — aX + b act on (4.3.1) by
p— an+r1p, a; = a,,-a!'% for i>1, ayr—aa;+b (4.3.2)

To show the Frobenius structure, we show the metric (4.2.10) is Darbouz-Egoroff and
is flat for the flat coordinates. For primary differential ¢ = dp, the flat coordinates
(4-2.2) correspond to the flat coordinates in example (3.1). Let us denote these flat
coordinates as £,. By an affine transformation we can set the sum of the roots to zero

and leading coefficiént to one. Thus:

M) =@+a+...+&) [[(r- &) (43.3)
=J]e-¢) whe@ fo==) fa (4.3.4)

Since the roots are not independent:

dlogh(p) _ 1 1

= -~ L i=1,...,n 435
9¢; p—& p-& (4.3.9)

and for the metric (3.8.7) from chaptér 3:

. 1 1 \/ 1 1\
(O 8) == ) resanmo [(p— & P &) (p—Eo B p—Ej) Vdp] (4.3.6)

Then using (3.3.9) as in theorem 4,
we have for i = j: '

1 A
(0> O;) = resp=o [m:\—,dp] (4.3.7)

-1 (4.3.8)
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and fori# j:
-1 A 1 A
O, O¢.) = r€Spg, | ———=—dp| + res,=, ——————d} 4.3.9
(% 95,) P [(17—50)2 X p] =t [(P—§i)2_/\' P : ( )
=9 ' (4.3.10)
Giving constant coefficients: _
(O, ;) = 14 0y (4.3.11)
for the metric we denote here by g:
9= Z (a&)aﬁj)d&'d{i ' (4.3.12)
ij=1 L
=" (1 +8y)dede;  (4.3.13)
ij=1
= Z(d§1)2 l§o=— Yk ; (4314)

i=0

We have seen that g is Darbouz-Egoroff since in canonical coordiantes u; = A\(q:)

(using notations from chapter 3, theorem 4) g is diagonal and potential:

. (du,-)z
=) L 4.3.15
2w . (4315)
1 1 da,
n —-— 4.3.16
X(g) (n+1)0u (43.16)
with potentiality given by
1 0
i = —— = —V 4.3.17
NG o | (43.7)
where
Vo= —n (4.3.18)




Conclusion and Further

Developments

In summary, the solution space of the WDVV system was shown to carry a Frobe-
nius Manifold structure, and Frobenius Algebras were shown to correspond to the
matter sector of 2D-Topological Field Theories. The A,, example was given from the
class of polynomial solutions to WDVV, and the topological Landau—Ginzburg model
was seen to correspond to the A, case. We saw also how Frobenius structures are
built on the orbit spaces of Coxeter groups, and how Hurwitz Frobenius Manifolds are
constructed. The A,, case originally described as the unfolding of a versal singularity
was seen also to lend itself to the Coxeter orbit space construction and Hurwitz space
construction.

Frobenius structures and their prepotentials have been found on the orbit spaces of
B, and D,, [17], in addition to that found by Dubrovin for A,, which we describe here.
It would be interesting to construct an equivariant Hurwitz space via its correspondent
metric, one which reflects the invariance of A under the action of W, and reveal further
the rather intriguing differential geometry of these Hurwitz Frobenius manifolds. This

particular problem has motivated the present write-up.

60



Bibliography

[1] Atiyah, M., The Geometry and Physics of Knots. Cambridge University Press,
Cambridge, (1990).

[2] Audin, M., An introduction to Frobenius manifolds, moduli spaces of stable maps
and quantum cohomology, Preprint Louis Pasteur University and CNRS (May
1997).

[3] Bertola M., Frobenius manzfold structure on orbit space of Jacobi groups. I. Dif-
ferential Geometry and its Applications 13, (2000), 19 - 41.

[4] Bertola M., Frobenius manifold structure on orbit space of Jacobi groups. II. Dif-
ferential Geometry and its Applications 13, (2000), 213 - 233.

[5] Coxeter, H.S.M., Discrete groups generated by reflections, Ann. Math. 35, (1934),
588 - 621.

[6] Dubrovin B., Dzﬁerentzal geometry of the space of orbits of a Cozete‘r group,
Preprint SISSA (February 1993).

[7] Dubrovin B., Geometry of 2D topological field theories, Lecture Notes in Math.
1620 (1993) 120 - 348.

[8] Hertling C., Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge
Tracts in Mathematics 151, Cambridge University Press, Cambridge, (2002).

[9] Hitchin N., Frobenius manifolds. "Gauge theory and symplectic geometry (Mon-
treal, 1995),” NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer, Dor-
drecht (1997), 69 - 112,

[10] K. Hori et al., Mirror Symmetry American Mathematical Society, Providence,
(2003).

61



Frobenius Structures on Orbit Spaces of Coxeter Groups and Hurwitz Spaces 62

[11] Kock, J., Frobenius Algebras and 2D Topological Quantum Field Theories, Cam-
bridge University Press, Cambridge, (2003).

[12] Manin, Y., Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces AMS
Colloquium Publications 47, Providence, (1999).

[13] Riley, A. and Stranchan 1., A Note on the Relationship between Rational and
 Trigonometric Solutions of the WDVV Equations, Journal of Nonlinear Mathe-
matical Physics, 14 (1) (2007): 82 - 94.

[14] Saito K., Period mappings associated to a primitive form, Publ. RIMS. 19>(1983),
1231 - 1264.

[15] Shramchenko, V., Deformati_ons of Frobenius structures on Hurwitz spaces, In-
ternational Mathematics Research Notices (2005) 2005(6):339 - 387.

[16] Shramchenko, V., "Real doubles” of Hurwitz Frobenius manifolds, Communica-
tions in Mathematical Physics (2005) 256(3):635 - 680

[17] Zuo, D., Frobenius Manifolds Associated to B, and D, Revisited International
Mathematics Research Notices, 2007 (20), (2007).



