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ABSTRACT 

Ghosting and its Recovery Mechanisms in Multilayer Amorphous Selenium 
X-ray Detectors 

Farzin Manouchehri 

During the last 15 years, many efforts have been directed towards the development of 

digital detectors for X-ray imaging. Direct conversion stabilized amorphous Selenium (a-

Se)-based X-ray image detection with an active matrix array is one of the most widely 

used approaches which can provide excellent X-ray images, and is commercially 

available for mammography and general radiography. However, the X-ray sensitivity of 

a-Se detectors used in these systems changes as a result of previous X-ray exposures. 

This change in sensitivity which creates ghosting is recoverable by resting the detector 

for several hours. In this work, the physics of ghosting and its recovery mechanisms in 

multilayer a-Se detectors are experimentally and theoretically investigated. 

A numerical model is developed to study the time and exposure dependent X-ray 

sensitivity of multilayer a-Se X-ray imaging detectors on repeated X-ray exposures. This 

model considers accumulated trapped charges and their effects (trap filling, 

recombination, electric field profile, electric field dependent electron-hole pair creation 

energy), the carrier transport in the blocking layers, X-ray induced meta-stable deep trap 

center generations, and the effects of charge injection. The time dependent carrier 

detrapping and structural relaxation (recovery of meta-stable trap centers) are also 

considered. The continuity equations for both holes and electrons, trapping rate 

equations, and the Poisson's equation across the photoconductor for a step X-ray 
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exposure are simultaneously solved by the Backward Euler finite difference method. It is 

found that the sensitivity in a rested sample is recovered mainly by the carrier detrapping 

and the recombination of the injected carriers with the existing trapped carriers. The 

sensitivity is expected to recover almost fully by resting the sample longer than the 

recovery time constant of the meta-stable trap centers. The theoretical model agrees well 

with the experimental results. 
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Chapter 1 

Introduction 

1.1 X-ray Imaging 

An X-ray (or Rontgen ray) is a form of electromagnetic radiation with the wavelength in 

the range of 10-0.01 nanometers corresponding to frequencies in the range of 30 PHz-30 

EHz. X-ray is produced by accelerating electrons and colliding them with a metal target 

(e.g. Tungsten). An accelerated electron decelerates upon colliding the metal target and if 

it contains enough energy, it can knock out an electron from the inner shell of the metal 

atom. Consequently, electrons from higher energy levels can fill out the vacancy and as a 

result X-ray photons will be emitted. The discovery of X-ray approximately 100 years 

ago by Wilhelm Rontgen led very quickly to the development of radiology and medical 

imaging which is one of the best methods to medical diagnosis [1]. 

1.2 Digital X-ray Imaging 

Digital technology has revolutionized our lives. We are collecting, processing, sending, 

analyzing, and using more and more information at a faster pace. Among all applications, 

medical imaging is not an exception, and among all methods of medical imaging, X-ray 

imaging is used more frequently than others. The two most important advantages of 

digital X-ray imaging are; 

1) Image portability. 

2) Improvement in image quality and dose utilization. 
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Many medical modalities, such as CT, MRI, and ultrasound are inherently digital. 

However, standard, X-ray radiography and fluoroscopy are still primarily based on 

analog technology of screen/film and the image intensifier. 

Medical X-ray imaging has recently made advances in areas such as improved film and 

screens, reduced exposure rates and improved equipment, but still almost 65% of X-ray 

imaging is accomplished with film screen systems. In these systems, the cassettes are 

loaded with film and taken to the examination room then to the X-ray equipment and 

after exposure they are returned to the dark room for development before a final image 

can be viewed. This procedure is a time consuming method which can be hastened 

through a digital process [2]. Practical digital X-ray imaging is based on TFT AMFPI 

(Thin film transistor active matrix flat panel imagers). 

1.3 Flat Panel Detectors 

A flat panel X-ray image detector is a large area integrated circuit that is able to capture 

an X-ray image and convert it to a digital form. These flat panel detectors can replace X-

ray film/screen cassettes of today, and hence provide a smooth transition to digital 

radiography. 

The flat panel consists of many pixels. Each pixel acts as an individual detector which 

produces a certain amount of charge relative to the amount of radiation it receives. There 

are two most common approaches to convert X-ray photons to electric charges. In the 

first approach known as indirect conversion, a layer of phosphor is used to convert X-ray 

to visible light, and then this visible light will be converted to electric charges through a 

pin photodiode incorporated to each pixel. However, in the second approach known as 
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direct conversion a suitable photoconductor which is able to convert the incident X rays 

directly to charge in one step is utilized [3]. 

For both indirect and direct conversions, the image is constructed by the charges residing 

on the panel's pixels. These charges are simply read out by scanning the arrays row by 

row using the peripheral electronics and multiplexing the parallel columns to a serial 

digital signal. This signal is then transmitted to a computer for storage and display. 

1.4 Indirect Conversion Detectors 

Indirect conversion systems based on thin film transistor arrays are constructed by adding 

amorphous Silicon photodiode circuitry and a scintillator as the top layers of the thin film 

transistor array. The scintillator converts the absorbed X-ray photons into visible light 

photons which are proportional to the radiated X-ray energy. These visible light photons 

are then converted to the electric charges using photodiode circuitry. It is worth to say 

that each photodiode in this method represents one pixel. The electric charges at each 

pixel are finally read out by the peripheral electronic circuitry. There are two types of 

scintillators used in this approach, structured and unstructured scintillator. If an 

unstructured scintillator is used, the visible light can be spread out to the neighboring 

pixels which can reduce the spatial resolution. To relatively solve this problem, structured 

scintillator made of Cesium Iodide crystals, which are grown on the detector, are used 

[4]. 

1.5 Direct Conversion Detectors 

Direct conversion stabilized amorphous Selenium based X-ray image detectors with an 

active matrix array is one of the most widely used approach which can provide excellent 
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X-ray images and are commercially available for mammography and general 

radiography, and are under consideration for use in fluoroscopy and portal imaging [5-7]. 

It has been found that a direct conversion system can provide images that are superior in 

quality compared to that of an indirect conversion system and is also easier and cheaper 

to manufacture due to their simple structure [8-9]. As mentioned before, the layers 

including photodiode and scintillator (used in indirect conversions) will be replaced by a 

photoconductor in direct conversion. A flat panel active matrix direct conversion X-ray 

image sensor using a-Se as a detector is shown in Figure 1.1. 

Figure 1.1 A direct conversion based square flat panel detector used for digital 
radiography (Courtesy of ANRAD Corp.). 

A simplified schematic diagram of cross-sectional structure of two pixels of a-Se is 

shown in Figure 1.2. As can be seen in this figure, a photoconductor is sandwiched 

between two parallel plates representing the two electrodes. The top electrode is the 

radiation receiving electrode and the bottom electrode contains pixels collecting the 

electric charges. These collected charges will be stored on the pixel capacitors to form a 

latent image. A high voltage is applied between the two electrodes and consequently an 

electric field is provided within the detector. The electron hole pairs (EHPs) produced 
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due to X-ray photon absorption travel across the photoconductor and along the electric 

field lines. The radiation receiving electrode can be connected to either a positive or 

negative voltage with respect to the bottom electrode. Therefore, two types of detectors 

are defined; positively and negatively biased detectors respectively. Each of these 

detectors has its own characteristics and responses and is discussed in chapter 4. 

H.v 

iTop electrode/Radiation 

inV<.ffiftHEZI receiving 

;&m8B Bottom electrode 

Data line 

Figure 1.2 A simplified schematic diagram of the cross-sectional structure of two pixels 
of the photo conductive self-scanned X-ray image detector [2]. 

Each TFT has three electrical connections. The gate is to control the "on" or "off state of 

the TFT; the drain is connected to the pixel electrode and the pixel storage capacitor (Qj), 

which is made by overlapping the pixel electrode with either the adjacent gate line or a 

separate ground line; the source is connected to a common data line. A large band gap (> 

2 eV), high atomic number semiconductor or X-ray photoconductor (e.g. stabilized 

amorphous Selenium, a-Se) layer is coated onto the active matrix array to serve as a 

photoconductor layer. 

The capacitance of the photoconductor layer over the pixel is much smaller than the pixel 

capacitance Cy, therefore, most of the applied voltage drops across the photoconductor. 



To read out the latent image charge, Qy, the appropriate TFT is turned on every At 

seconds and the charge signal is transferred to the data line and hence to the charge 

amplifier. These signals are then multiplexed into serial data, digitized, and fed into a 

computer for imaging. 

1.6 Image Formation 

As mentioned before the most important difference between indirect and direct methods 

is that in direct method, X-ray photons are directly converted to electron hole pairs. Due 

to the application of an electric field across the detector, it can also be seen that charge 

transport is limited along vertical filed lines, significantly reducing lateral information 

spread. This phenomenon means that the output error in relation to the input radiation is 

minimized by the array resolution limited by the device geometry. 

During the exposure time, the FET's are in the off mode while charge is collected at the 

signal storage capacitor. At the end of the exposure a positive pulse is applied to the FET 

gates starting with the first gate. The data lines connected to the FET source collect the 

charge from the drain. This charge is propagated to charge amplifiers connected to the 

data lines. The signals from the row are multiplexed and propagated to an ADC and 

stored in the computer memory. The readout process continues row by row [2]. 

1.7 Specific Requirements of X-ray Imaging Systems 

Various medical systems such as chest radiology, mammography and fluoroscopy are 

designed based on certain specifications required for that application. Table 1.1 schemes 

the specifications for flat panel detectors for chest radiology, mammography and 

fluoroscopy 
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Table 1.1 Specifications for different applications of digital X-ray imaging systems. kVp 
is the maximum kV value applied across the X-ray tube during exposure time, and the 

maximum energy of emitted X-ray photons is equal the kVp value. (These data are taken 
from Rowlands and Yorkston [3]). 

Detector size 

Pixel size 

Number of pixels 

Readout time 

Spectrum 

Average dose 

Radiation dose 

Chest radiology 

35 cm x 43 cm 

200 (xm x 200 |am 

1750x2150 

~ l s 

120 kVp 

300 uR 

30 - 3000 uR 

Mammography 

18 cmx 24 cm 

50 nm x 50 jam 

3600 x 4800 

- I s 

30kVp 

12mR 

0.6-240 mR 

Fluoroscopy 

25 cm x 25 cm 

250 urn x 250 urn 

1000 x 1000 

-1/30 s 

70kVp 

I M R 

0 . 1 - 100 uR 

1.8 Ideal X-ray Photoconductors 

The photoconductor used in a digital X-ray image system is the core of the flat panel 

digital X-ray imager. Therefore, the selection and the fabrication process of the 

photoconductor can extremely affect the performance of the system. Consequently, it is 

necessary to identify some important characteristics of an ideal photoconductor in order 

to figure out the advantages and the disadvantages of the present model and finally to 

guide a search for developing the performance of the photoconductor. Some of the most 

important ideal characteristics of a photoconductor are as follows: 

i) The photoconductor should absorb as many X-ray photons as possible within a 

practical thickness. This condition simply means that over the energy range of interest, 
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the absorption depth 8 of the X-ray must be substantially less than the photoconductor 

thickness. Therefore, it is possible to avoid unnecessary patient exposure. 

ii) The photoconductor must be able to generate as many EHPs as possible due to the X-

ray radiation. It means that the amount of energy required to produce a single EHP, W±, 

must be as low as possible. Typically, W± increases with the band gap Eg of the 

photoconductor. 

iii) The diffusion of carriers should be negligible as compared to their drift. This property 

ensures less time for lateral carrier and leads to better spatial resolution. 

iv) In an ideal photoconductor, there should be no bulk recombination among generated 

electrons and holes drifting to the electrodes. Bulk recombination is proportional to the 

product of the concentrations of holes and electrons. In the range of clinical exposures the 

bulk recombination is negligible due to the small signal of radiation. In this case 

obviously, Augur recombination is also negligible [10]. 

v) Deep trapping of carriers should be as low as possible for an ideal photoconductor. 

For both electron and hole, /ur'F (the schubweg) » L, where ft is the drift mobility, r' is 

the deep trapping time (lifetime), F is the electric field, and L is the detector thickness. 

The schubweg is the distance, a carrier drifts before it is deeply trapped and unavailable 

for conduction. 

vi) Charge injection/Dark current through the electrodes into the photoconductor is a 

source of noise which should be as small as possible. This condition means that the 

contacts to the photoconductor should be non-injecting contacts and the thermal 
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generation of carriers due to defects or states in the band gap should be substantially 

small. The larger the band gap of a photoconductor is, the less the conductivity the 

photoconductor will have. The dark current should preferably not exceed -10 - 1000 

pA/cm , depending on the clinical applications [2]. This condition conflicts with the 

second condition mentioned above. 

vii) The longest carrier transit time must be shorter than the access time of the pixel. 

viii) The properties of the photoconductor should not change with repeated number of 

X-ray exposures. Being exposed by the X-ray, some properties of the photoconductor are 

undermined. 

ix) The photoconductor layer should be coated easily and cheaply onto a large area 

AMA circuit without damaging the electronic circuits. For instance, annealing the 

photoconductor material at temperatures above 300°C can damage the a-Si:H TFTs in the 

AMA panel. A large area detector is necessary in diagnostic radiography applications 

because there is no practical way of focusing X-ray radiation. 

x) The temporal artifacts such as ghosting (the reduction in the detector sensitivity) 

should be as small as possible (ghosting mechanism is explained in Chapter 2). 

The large area coating in areas typically 30 cm x 30 cm or greater, rules out the use of X-

ray sensitive crystalline semiconductors, which are difficult to grow in such large areas. 

Thus, only amorphous or polycrystalline (poly) photoconductors are currently practical 

for use in large area X-ray image detectors. Amorphous Selenium (a-Se) is one of the 

most highly developed photoconductors for large area detectors due to its commercial use 

as an electro-photographic photoreceptor [11]. In fact, the direct conversion flat panel 
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imaging technology has been made possible by the use of two key elemental amorphous 

semiconductors: a-Si:H (used for TFTs) and a-Se (used for photoconductor layer). 

Although their properties are different, both can be readily prepared in large areas, which 

is essential for an X-ray image sensor. Amorphous Selenium can be easily coated as thick 

films (e.g. 100-1000 urn) onto suitable substrates by conventional vacuum deposition 

techniques without the need to raise the substrate temperature beyond 60-70°C (well 

below the damaging temperature of the AMA, e.g. ~ 300°C for a-Si:H panels). Its 

amorphous state maintains uniform characteristics to very fine scales over large areas. 

Thus currently stabilized a-Se (a-Se alloyed with 0.2-0.5%As and doped with 10-40 

ppm CI) is the preferred choice for X-ray image sensors because it has an acceptable X-

ray absorption coefficient, good charge transport properties for both holes and electrons 

and in addition, dark current in a-Se is much smaller than many competing 

polycrystalline detectors [2,12]. 

1.9 Motivations 

Among significant parameters used to describe the performance of a-Se based X-ray 

image detector, the sensitivity of the detector is one of the most critical ones especially 

the stability of sensitivity under repeated X-ray exposures (sensitivity is explained in 

chapter 2). It is found experimentally that the X-ray sensitivity of the detector decreases 

with subsequent exposures [13-15]. Change of sensitivity creates ghosting effect. A 

limited number of experiments have been done so far towards the study of change in the 

sensitivity of detectors [14-15]. As such, the change of sensitivity versus accumulated X-

ray exposure and time, in a-Se based detectors, still remains an interesting research area. 

In addition to experimental studies, a few theoretical models have been proposed in order 
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to systematically study the change of sensitivity. The previous model by Kabir et al. [13] 

has many limitations. For instance, it is based on monolayer (intrinsic) a-Se detectors, 

while practical detectors are mostly based on multilayer a-Se detectors, and also they 

ignore the charge injection. Based upon these challenges in developing the theoretical 

and experimental study of change in sensitivity, the motivation of this work can be 

categorized as follows, 

(i) Experimental study: A few experimental studies have been reported in literature to 

examine the sensitivity as a function of accumulated exposure [14-15], but there is no 

report of sensitivity recovery process. The study of change in detector sensitivity with 

repeated X-ray exposure and time, at different operating conditions could be instructive 

in order to improve the existing knowledge of this topic. The comparison of theoretical 

model with experimental data can explain the underlying mechanisms that cause ghosting 

and its recovery. 

(ii) Modeling: As mentioned before, previous models are applicable for monolayer 

(intrinsic) a-Se based detectors. However, the practical detectors are made of multilayer 

structures, e.g. p-i-n. These models do not consider the effects of charge injection, whose 

importance is described in the latter chapter. For practical purposes, it is essential to use 

multilayer a-Se based detectors in order to decrease the amount of dark current [16-17]. 

Furthermore, the recovery process in a rested a-Se detector has not been theoretically 

modeled so far. This study is helpful to understand the reasons that are attributed to 

sensitivity fluctuations. 
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1.10 Research Objectives 

The overall objectives of this thesis are: (i) to measure the sensitivity, ghosting and its 

recovery of multilayer a-Se based detectors under different operating conditions (e.g. 

applied biases) and on different samples, and (ii) to develop a theoretical model which is 

practical and consistent with reality. 

In theoretical modeling part of this thesis, the previous model [13] is modified by 

incorporating carrier injection and carrier transport in blocking layers such that it can be 

applied to a multilayer a-Se detector. 

Multilayer a-Se based sample refers to the three layers of n, i and;?, mostly known as n-i-

p samples in which i layer is sandwiched between n and p layers (n and p layers are 

commonly called blocking layers). Figure 1.3 illustrates a multilayer single X-ray 

detector. The specifications of n, i, and/? layers will be discussed in chapter 3. 

Figure 1.3 A view of a multilayer detector. X-rays could be radiated either on the n or p 
layer for positively and negatively biased samples. 

Furthermore, the present model is capable of predicting the change of dark current versus 

time and includes carrier transport in all three layers. Including all these known effects 

into the theoretical model, it would be useful to compare the simulation results with 
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experimental data in order to study the cause of change in sensitivity versus accumulated 

exposure. 

1.11 Thesis Outline 

This thesis is divided into five chapters. Following the introduction chapter, a review of 

some useful theories of detectors and properties of a-Se is given in chapter two. The 

theoretical model and the details are given in chapter three. In chapter four, results and 

discussions are presented. Summary, contributions and recommended future work are 

presented in chapter five. 
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Chapter 2 

Background Theories and a-Se 

Properties 

In this chapter basic theories including X-ray interactions in photoconductor and X-ray 

image photoconductor specifications are discussed. 

2.1 X-ray Interactions in Photoconductors 

A portion of the incident X-ray is attenuated in the photoconductor layer of the detector. 

Attenuation is the removal of X-ray photons from the X-ray beam by either absorption or 

scattering events in the photoconductor layer. The fraction of the X-ray photons that are 

attenuated in the photoconductor layer is called the quantum efficiency r\ of the detector, 

and r\ is determined by the linear attenuation coefficient a cm"1 and the photoconductor 

-aL 

thickness Last] =1 -e 

The energy of X-ray applicable to medical X-ray imaging varies from 10 keV to 120 

keV. The X-ray interactions with a material can be divided into three different effects, 

which are photoelectric effect, Rayleigh scattering, and Compton scattering. The incident 

X-rays can be completely absorbed in the medium (photoelectric effect) or scattered 

(Rayleigh or Compton scattering). 

Rayleigh scattering involves the elastic (coherent) scattering of X-rays by atomic 

electrons. The energy of the scattered X-ray remains the same as that of the incident X-
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ray and there is no energy transfer from the X-ray to the medium. However, the scattered 

X-ray experiences a change in its path compared to that of the incident X-ray, and this 

change can undermine medical imaging, where the detection of scattered X-rays is 

undesirable. 

Compton scattering involves an incoherent (inelastic) scattering of an X-ray photon by an 

atomic electron. Compton scattering usually happens when the energy of the X-ray 

photon is much greater than the binding energy of the atomic electron. Therefore, the 

Compton effect occurs with outer-shell of the atom, essentially free electrons in the 

medium. This interaction includes an electron of kinetic energy E", an ionized atom, and 

a scattered X-ray photon of energy E that is lower than the incident photon energy E. 

Therefore, some energy is transferred to the medium in Compton scattering phenomenon. 

The transferred energy depends on the scattering angle which is random. Rayleigh and 

Compton scattering phenomena are illustrated in Figure 2.1. 

Incident X-ray ^ O — ^ Incident X-ray 

(a) Rayleigh scattering (b) Compton scattering 

Figure 2.1 (a) The X-ray photon interacts with an orbiting electron {Rayleigh scattering), 
(b) the X-ray photon interacts with an outer-shell electron and creates and electron of 

kinetic energy E" {Compton scattering) [18]. 

In the photoelectric interaction, the incident X-ray interacts with an electron in the 

medium, and the whole photon energy is transferred to the electron. Part of this energy is 

used to overcome the binding energy of the electron, and the remaining fraction becomes 
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the kinetic energy of the photoelectron. In this case the atom becomes ionized. If the 

energy of the incident X-ray is less than the binding energy of the electron, photoelectric 

interaction with that electron is not energetically feasible and hence will not occur. K-

shell (the most inner shell) electrons are bound more tightly to the atom (higher binding 

energy) than outer-shell (L shell, M shell, and etc.) electrons. Thus, it photoelectric 

interaction is energetically unfeasible with K-shell electrons, interaction may still occur 

with an outer-shell electron. The binding energy associated with the K shell is called the 

K edge and so on for other shells. If an electron is released from an inner core shell, then 

a vacancy is replaced in its parent atom. Consequently, a cascade of electron transitions 

can occur, which can produce one or more characteristics X-rays (also called fluorescent 

X-rays) or alternately a series of non-radiative transitions involving Auger electrons will 

take place, resulting in the complete local deposition of energy through charged particles. 

The characteristics X-rays are named as K-fluorescent, L-fluorescent etc. based on the 

electron receiving shell. The photoelectric process is shown in Figure 2.2. 

Fluorescent x-ray 

Q Energetic electron 

Figure 2.2 When photoelectric phenomenon occurs, the whole energy of the incident X-
ray photon is transferred to an electron which is released from the atom. An electron from 
the outer shell fills the vacancy in the inner shell which produces fluorescent X-ray [18]. 

Incident X-ray 
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Energetic primary electrons created by photoelectric effect or Compton scattering travel 

in the solid, can cause ionization along its path and create many electron-hole pairs 

(EHPs). They can also interact with matter and produce bremsstrahlung radiation. When 

energetic electrons approach very close to the nucleus of the atom, they interact with the 

Coulomb field of the nucleus and orbit partially around the nucleus, and hence decelerate 

with the reduced energy. The loss in energy will appear as bremsstrahlung (breaking) 

radiation 

Primary interaction of X-rays with the medium can be divided into two main categories. 

First, the creation of scattered photons including scattered X-rays through Compton or 

Rayleigh scattering events and the characteristics X-rays from photoelectric effect. 

Second, the creation of high energy photoelectrons by the photoelectric effect and the 

Compton scattering event. The high energy photoelectron transfers energy to the medium 

and hence creates EHPs, and also some of its energy can be lost by bremsstrahlung 

radiation. The entire process is random. However, the average energy absorbed in the 

medium by the primary X-ray interaction can be determined and is described by the 

energy absorption coefficient a . Thus, (a /a) E is the average absorbed energy E by 
en en ab 

primary X-ray interaction per attenuated X-ray photon of energy E. For a sample which is 

thick enough, the escaped radiations from the primary interaction can interact with 

atomic electrons of the medium like primary X-rays but at different points. Thus, the 

actual average absorbed energy per attenuated X-ray photon of energy E in a very thick 

detector is higher than (a /a) E. 
en 

The total mass attenuation and energy absorption coefficients of a-Se as a function of 

photon energy for diagnostics medical X-rays are shown in Figure 2.3. Figure 2.3 also 
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shows the individual contribution of photoelectric effect, Rayleigh and Compton 

scattering to the total attenuation. The mass attenuation (or energy absorption) coefficient 

of a material is the attenuation (or energy absorption) coefficient divided by its density. 

The photoelectric effect is the dominant interaction process in a-Se for diagnostics 

medical X-rays as shown in Figure 2.3. There is a sharp jump in the overall attenuation or 

energy absorption coefficient of a-Se at the photon energy of 12.66 keV (K-edge energy 

in a-Se) because of the onset of photoelectric interaction of X-rays with K-shell electrons. 

200 
Photoa eaerggy QceV) 

Figure 2.3 The overall mass attenuation and energy absorption coefficient in a-Se vs. 
photon energy [19]. 

2.2 X-ray Sensitivity 

The X-ray sensitivity of an image detector is defined as the amount of collected charge 

per unit area per unit amount of exposure. 

Sensitivity = Q/(A . X), (2.1) 

2 

where Q is the collected charge in Coulomb (C), A is the radiation-receiving area in cm , 

-2 -1 

and X is the amount of radiation in Roentgen (R). The unit of sensitivity is C cm R . 

One Roentgen is the quantity of radiation that creates ions carrying a total charge of 
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2.58x 10 Coulombs per kg of air. It has been found that on average, it takes 33.97 eV to 

produce an ion pair in air. Thus the energy absorbed in one kilogram if air by a 1 R 

-4 

exposure is, 2.58x10 C/kg x 33.97 J/C = 0.00876 J/kg. The schematic diagram 

representing the equivalent circuit of a photoconductive detector is shown in Figure 2.4. 

A photoconductor layer is sandwiched between two large area parallel plate electrodes. A 

charge amplifier is connected to the pixel electrode (bottom electrode) and measures the 

collected charge by integrating the induced X-ray photocurrent through the pixel 

electrode (the integration time is longer than the exposure time). The radiation-receiving 

electrode (top electrode) is biased with a voltage V to establish an electric field F in the 

photoconductor. The biasing voltage can be positive or negative. The X-ray generated 

electrons and holes are drifted in opposite directions by the applied field and give rise to a 

transient X-ray photocurrent and the integration of the photocurrent is the collected 

charge. 

Detector 

Collected 
charge, Q 

Charge 
amplifier 

X-ray, X 

Area, A 

Figure 2.4 The schematic of a three-layer X-ray image detector biased with voltage V. 
The area of the top and bottom electrodes is A [2]. 
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2.3 Image Ghosting 

Ghosting phenomenon is the sensitivity reduction in an X-ray image detector due to the 

previous exposures. If a sample were under repeated X-ray exposures, it would record the 

effects of each previous exposure which is observable in the next exposures. As shown in 

Figure 2.5, a shadow impression of a previously acquired image is noticeable in 

subsequent uniform exposure. In this case, different areas have different sensitivities. In 

fact, ghosting is a phenomenon that can be seen only in subsequent exposures. Ghosting 

has also the potential to affect the X-ray image quality and this can be more severe while 

the images are produced at a faster pace compared to general radiography, i.e., in 

fluoroscopy. 

m i 11111 m i i i i i i i i i 

X-ray exposure over a I m a § e o f subsequent 
rectangular area uniform exposure 

Figure 2.5 A shadow impression of a previously acquired image is detectable in 
subsequent uniform exposure. Ghosting is revealed as a reduction in pixel sensitivity in 

previously exposed areas and can only be seen with subsequent X-ray images. 

2.4 Amorphous Selenium (a-Se) 

Amorphous Selenium (a-Se) and its alloys have been well studied because of their 

importance in commercial xerography during the 1960s and 1970s. Amorphous Selenium 
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which is usually alloyed with 0.3% As, and doped with ppm level CI is called stabilized 

amorphous Selenium and is presently a preferred material to be used as a photoconductor 

in X-ray medical image detectors. Stabilized a-Se, not pure a-Se, is used in the X-ray 

sensors, because pure a-Se is thermally unstable and crystallizes with time which varies 

from months to years depends on limited conditions [20]. It has been found that the rate 

of the crystallization can be reduced by alloying a-Se with small amount of As (0.2%-

0.5%>). Arsenic (As) atoms have a valency of III and so they are triply bonded and can 

link Se chains. Therefore, this characteristic can increase the viscosity of the amorphous 

structure. On the other hand, As can increase the amount of specific defects which act as 

hole traps and can decrease hole lifetime. The reduction in hole life time can be 

compensated for by adding a halogen (e.g. CI) in the ppm level. The X-ray sensitivity of 

such a detector is related to the optical and electronic properties of the photoconductive a-

Se layer. Therefore, a comprehensive understanding of the properties of a-Se is necessary 

in order to optimize the performance of these detectors. The density of a-Se is 4.3 g/cm , 

relative permittivity er = 6.7, and energy gap Eg ~ 2.22 eV. 

Selenium belongs to a set of elements called chalcogens which are located in the group 

VI column of periodic table. The atomic number of Selenium is 34, and there are twenty 

eight inner core electrons and six electrons in its valance band. Therefore, its atomic 

structure can be shown by [Ar] 4s23d104p4. The two electrons in the s-states along with an 

electron pair in one of the p-states do not participate in bonding and form a lone-pair 

(LP). The left two singly occupied p-states form covalent bonds with other atoms to form 

a solid. These two singly occupied p-states also split into bonding (B). In Se, the bond 

angle is about 105°. The currently known/accepted density of state model for a-Se is 
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shown in Figure 2.6. This model is developed using various measurements including both 

electro-photographic and photoconductivity experiments [20-22]. 
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Figure 2.6 Experimentally measured density of state for amorphous Selenium [20-22] 

There are many localized states in the so-called forbidden gap in a-Se. Some of these 

localized states are located near the band edges {shallow traps) and some of them are 

located deep in the energy band (deep traps). Various defects can cause localized states 

(both shallow and deep traps). These defects are stable at room temperature. Both 

shallow and deep trap centers can affect the movement of electrons and holes as shown in 

Figure 2.7 Deep traps can basically prevent charges from moving across the sample and 

shallow traps reduce charges' drift mobility. The effective mobility fi, can be defined as 

the mobility /uo in the extended states and is reduced by the trapping and release events 

due to the existence of shallow traps, 

?r +T„ 
-Mo' (2.2) 

where xc and T> are the average capture and release times in shallow traps [20]. The 

capture time is defined as the mean time that takes a carrier to drift before it is trapped in 

shallow trap centers. In the same way the release time is the mean time that takes a 
22 



trapped carrier to be released from shallow trap centers. Thermal processes mostly 

dominate re-emissions from shallow trap centers. The drift mobilities in the extended 

2 2 

states; the hole mobility// ~ 0.3 cm /V-s and the electron mobility// - 0 . 1 cm /V-s at 

room temperature [23-24]. The room-temperature effective hole mobility « is 
2 

independent of the preparation of the sample and has a value of ~ 0.12 cm /V-s whereas 

2 

the effective electron mobility ju is in the range 0.003-0.006 cm /V-s [25]. 

Conduction band 

Shallow hole trap •<• 

> Shallow electron trap 

Valence band 

Figure 2.7 An illustration of the band gap of a photoconductor. Shallow and deep trap 
centers are shown for both electrons and holes. 

Traveling across the photoconductor, carriers may experience many shallow trap and 

release phenomena because the release time due to the shallow trap is very short. Table 

2.1 shows some common ranges of important properties of a-Se such as carrier mobilities 

and life-times. 
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Table 2.1 Typical ranges of some important carrier properties in a-Se 

Property 

Hole mobility 

Hh (cm2/Vs) 

Electron mobility 

fte (cm2/Vs) 

Hole lifetime 

Th (\XS) 

Electron lifetime 

Te (US) 

Hole range 

HhTh (cm2/V) 

Electron range 

lueTe (cm2/V) 

Typical range 

0.12-0.14 

0.003 - 0.006 

20 - 200 

200 - 1000 

2xl0"6-2xl0"5 

Ixl0"6-6xl0"6 

As mentioned before, shallow traps reduce the mobility of carriers whereas deep traps 

prevent carriers from moving. Once a carrier is deeply trapped, it remains immobile until 

enough amount of energy, which is able to excite the trapped carrier back into the 

extended states, is transferred through a lattice vibration. Therefore, the carrier can drift 

again. The deep trap charge release time is very high. Consequently, once a carrier is 

deeply trapped, it is essentially removed from conduction, particularly under a high 

electric field applied across the sample. The high electric field causes the carrier 

transition time to be much less than carrier release time. As a result, the carrier life-time 

strongly depends on the concentration of deep trap centers rather than shallow trap 

centers. The charge life-time depends strongly upon the material, its impurities and 

preparation methods. For example, temperature of the a-Se substrate in the course of 

evaporation process can affect hole life-time. The less the substrate temperature is, the 
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less the hole life-time will be. Nevertheless, the electron life-time does not seem to be as 

much substrate-temperature dependent as holes. Increasing the concentration of As in a-

Se decreases hole life-time, but increases electron life-time. In addition, the hole life-time 

increases significantly with adding CI (chlorine) whereas the electron life-time decreases. 

Chlorine doping is more dominating in the sense of carrier ranges (JUT' product) than that 

of As doping. The typical ranges of electron and hole life-times are presented in Table 

-8 3 -1 

2.1. Taking deep trap capture coefficient C ~ 10 cm s , and x' - 50 us, then the deep 

12 -3 

hole trap concentration is, N =U / C U X' ~ 5 x 10 cm [261. 
r ' Oh r0h trh h L J 

The energy levels of hole and electron deep trap centers are about -0.85 eV above the 

valence band and ~1 eV below the conduction band respectively [21, 27]. The carrier 

release times are related to the trap energy depth, Et, by vo^expiE/KT), where K is 

Boltzmann constant, vo is phonon frequency, typically 1012 Hz, and T is the absolute 

temperature. Therefore, at room temperature the release times for electrons and holes are 

about few hours and less than 10 minutes. The release time-constant for shallow trapped 

holes is even less than 100 ns. 

The EHP creation energy, W± strongly depends on the electric field but weakly depends 

on incident X-ray photon energy E [28-29]. The creation energy W± decreases with 

increasing electric field. In amorphous Selenium, the electron hole pair 

creation/generation energy follows an empirical relation given by [30], 

W„w*+?&1, (2.3) 
± ± pn 

where B(E) is the constant depending on the energy, W± is the saturated electron hole 

pair creation energy (when electric field is infinity), and n is normally 0.7 through 1 [31]. 
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The energetic primary photon can create many EHPs, but only a fraction of the created 

electron hole pairs are collectable. This phenomenon means that a certain fraction of the 

created EHPs will be recombined before they can contribute to the photocurrent. There 

are two most important explanations of recombination process. The first explanation is 

called Geminate recombination (Gemini - The twins). In this type of recombination, the 

simultaneously generated electron and hole pairs are attracted to each other by Columbic 

force and may finally recombine. The second possible way is the recombination between 

non-geminate electrons and holes generated close to each other in the track of high 

energy electron created by an incident X-ray photon. This possible type of recombination 

is called columnar recombination. The fact is that in both cases, with increasing the field, 

which tries to separate the oppositely charges carriers, the amount of the charges which 

can escape from recombination should increase. If the field dependence of W in a-Se is 

dominated by geminate or columnar recombination has not been fully determined and is 

presently a topical field of research [32]. Nevertheless, the energy dependence of W is 

better understood. The overall change in creation energy from 20 keV to 6 MeV is of the 

factor of three. This fact appears to be due to a reduction of recombination with increase 

in energy. 

14 

The dark resistivity of a-Se is about 10 O-cm. The dark current in a-Se photoconductors 

2 

is less than the acceptable level (1 nA/cm ) for an electric field as high as 20 V/um. For 

2 

p-i-n structure of a-Se detectors, dark current is less than 100 pA/cm at fields as high as 

20 V/um [33]. 
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Chapter 3 

X-ray Sensitivity, Ghosting and its 

Recovery in Multilayer a-Se 

In this chapter, following the analytical calculations of X-ray sensitivity of the detector, 

the dynamic ghosting and its recovery model are presented. However, before this, a brief 

discussion about trapping and recombination mechanisms in a-Se is necessary. 

3.1 Trapping and Recombination Mechanisms in a-Se 

It is well known that most of the deep trap centers in well-rested a-Se at room 

temperature are either positively or negatively charged [34-35]. The positive defects are 

the over-coordinated atoms of the type Sej (D+). The negative defects are the under-

coordinated atoms of the type Se[" (D~). These two defects are called valence alternation 

pair (VAP). If the atoms of the pair (Sej and Sef) are in close proximity, they are 

termed an intimate valence alternation pair (IVAP). The VAPs or IVAPs are 

thermodynamically derived structural defects, and the most native deep defects in a-Se 

are believed to be the IV AP types [34-35]. The I VAP centers and the overall structure of 

the material would appear neutral owing to the close proximity of positive and negative 

defects. Therefore, IVAPs act as low cross-sectional deep trapping centers rather than 

acting as high cross-sectional bimolecular recombination centers. Biegelson and Street 
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demonstrated that the most of the electrical and optical properties agree well with the 

IVAP model [35]. 

A single photogenerated hole can be captured by one IVAP (Sej and Sej") and the IVAP 

transforms to the defect of the form (Sej and Sej) [35]. Then, this defect (Sej and 

Sej) turns into an exposed positively charged defect with higher cross-section [36], and 

may attract a drifting electron by coulombic attraction described by Langevin 

recombination process [37-38]. However, the Sej* defect can release its captured hole by 

the thermal activation process and return to the Sej" state, thereby retaining the previous 

IVAP state. There is a possibility that Sej of the (Sej and Sef) pair may interact with 

nearby Sej" to make an IVAP (Sej and Sej"), and Sej* is separated from its initial pair. 

However, the Se^ defect is unstable, and it can also lower its energy by utilizing LP 

electrons on neighbouring atoms for bonding. Consequently, Sej1 can be converted to 

Se|j [34]. 

Similarly, a single photogenerated electron can be captured by one IVAP (Sej and Sej") 

and creates (Se3 and Sef) defect. Then, this defect state (Se ĵ and Se[") turns into an 

exposed negatively charged defects with higher cross-section, and may attract a drifting 

hole by Langevin recombination process. There is a possibility that Sej" of the (Se^ and 

Sef) pair may interact with nearby Sej to make an IVAP (Sej and Sej") and Sê j is 

separated from its initial pair. The Se° defect is unstable, and can also be transferred to 

Sej and Sej" states [34], 2&J -» Sej + &,". 
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The above phenomenon suggests that only a certain fraction/of the trapped charges (or 

the exposed charged defect states) act as recombination centers for oppositely charged 

drifting carriers [39], and the returning of the meta-stable defect states (Se^ or Sef) to 

the IVAP defect states can be considered as the creation of deep trap centers. 

One of the characteristic properties of an amorphous semiconductor is the existence of a 

wide range of effects when exposed to light. At room temperature, the incident light may 

create unstable neutral defect states Se3 and Sej or meta-stable charged defect states 

Sej and SeJ" [36, 40-41]. The unstable neutral defect states Se3 and Sej may decay 

into the normal two-fold bond, or into a meta-stable VAP or IVAP [40]. Fritzsche [42] 

analysed all available evidences and concluded that illumination by light tends to induce 

atomic rearrangements and also VAP-like defects. 

The creation of meta-stable deep trap centers in a-Se by X-rays has also been reported in 

the literature [43-44]. Recently, Rau et al. performed the hole X-ray time of flight (TOF) 

method to determine hole lifetime as a function of exposure or dose. They observed a 

monotonous decrease of hole lifetime, initially with a strong slope and with a smaller 

nearly linear slope at higher dose. The initial rapid drop in hole lifetime was attributed to 

the hole recombination with the trapped electrons, and the slow linear drop with dose 

suggested the generation of additional deep trap centers. Nesdoly [45] also performed a 

systematic study of X-ray induced changes in carrier transport properties in a-Se. The 

results suggested the creation of X-ray induced IVAP-like defects and that the 

concentration of IVAPs increases with increasing X-ray exposure or dose. It was also 

found that these IVAPs decay back to their equilibrium concentration within few hours. 

Since the amount of IVAPs in a rested sample is a thermodynamically derived value [46], 
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the atomic arrangements relax to their original states with time and the concentration of 

X-ray induced extra IVAPs decay to zero over time. Recently, the structural relaxation 

phenomenon in a-Se and its effects on the increase of carrier lifetimes have been reported 

by Allen et al. [47]. In their work, a ~15-20 hour structural relaxation time constant was 

observed. 

3.2 Analytical X-ray Sensitivity Model 

Some efforts have been made so far in order to study the change of the X-ray sensitivity 

of a photoconductor such as a-Se. Nemirovsky et al. [48] have studied charge collection 

efficiency based on exponential absorption of X-ray radiation. Kasap [31] has proposed a 

model for calculating X-ray sensitivity of a-Se detectors based on the consideration of 

exponentially decaying distribution of electron and hole pair (EHP) generation and 

distributed charge trapping effects across the photoconductor thickness. Kasap calculated 

the amount of collected charge in the external circuit for a mono-energetic X-ray beam by 

integrating the Hecht charge collection equation combined with X-ray attenuation profile. 

Kabir also analytically studied [49] the X-ray sensitivity of a-Se based detectors by 

solving the continuity equation, considering the drift of electrons and holes in the 

presence of deep traps under the situation of exponentially decaying distribution of 

electron-hole pair generation across the photoconductor thickness. An expression is 

derived for the amount of collected charge in terms of W±, X-ray exposure X, linear 

attenuation coefficient a and energy absorption coefficient a of the photoconductor, 
en 

transport properties of the photoconductor (i.e., carrier mobility (i, and carrier lifetime r1), 

the operating conditions (i.e., electric field F and X-ray photon energy E) and 

photoconductor thickness L. A generalized expression for charge carrier transport and 
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absorption-limited normalized sensitivity is also derived in terms of the following 

normalized parameters: 

A = normalized attenuation depth (attenuation depth/thickness) = \l{aL), 

x = normalized electron schubweg (electron schubweg per unit thickness) = ux' F/L, and 
e e e 

x = normalized hole schubweg (hole schubweg per unit thickness) = u x' F/L. 
h h h 

where u and x' are the mobility and deep trapping time (lifetime) of electrons (holes), 
e(h) e(h) 

respectively. Equivalently, x and x are the normalized carrier lifetimes (carrier lifetimes 

per unit transit time) for electrons and holes, respectively. When the charge collection 

and absorption-limited X-ray sensitivity is divided by the maximum sensitivity the 

normalized sensitivity will be obtained. Maximum sensitivity is the total collected charge 

if all the radiation is absorbed, then converted to charges which are all collected by the 

external circuit. The normalized sensitivity is determined by the X-ray absorption profile, 

photoconductor thickness and the charge collection efficiency, and closely controlled by 

A, x and x . 
' e h 

In this model, the following assumptions have been made to allow the problem to be 

analytically tractable. (1) The thermal equilibrium concentration of charge carriers is 

negligibly small. (2) The diffusion of carriers is negligible compared with their drift 

because of high applied field across the photoconductor. (3) A constant drift mobility /JL 

and a single deep trapping time (lifetime) x' are assigned to each type of carriers (holes 

and electrons) since the interrupted field time-of-flight measurements indicate a single 

deep trapping time for both types of carriers [31, 50]; the drifting carrier concentration 

falls exponentially as exp(-£'/x' ), where t' is the time. (4) The field remains relatively 

uniform. (5) The loss of carriers by deep trapping is more significant than bulk 
31 



recombination. (6) The trapped charge concentrations are very small compared to the trap 

center concentrations and thus trap saturation effect is negligible. (7) The photoconductor 

is exposed to a mono-energetic pulse of X-ray radiation that has a very short duration 

compared to the charge carrier transit times across the sample thickness. The assumptions 

(1) to (3) are the valid general assumptions for the photoconductors used in X-ray image 

detector for diagnostic medical applications. The assumptions (4) through (6) are valid 

for small signal operation (e.g. low carrier densities). In this case, there would be no 

interaction between drifting carriers. Since the detector system is linear by the 

assumptions (1) to (6), the assumption (7) can also be conveniently made to calculate X-

ray sensitivity for small signal case. 

The X-rays are attenuated exponentially as exp(-ouc') along the photoconductor thickness 

[31] and generate electron hole pair (EHP) concentration that follows the X-ray photon 

attenuation profile as shown in Figure 3.1. The X-ray generated carriers follow the 

straight electric field lines and either reach the electrodes or become trapped in the 

photoconductor. Figure 3.1 shows the hole and electron concentrations at the instant of 

carrier generation and also at a later time when the two distributions have drifted apart. It 

is assumed that the X-ray receiving electrode is biased positively. If the X-ray receiving 

electrode is negatively biased, then the electron and hole drifts have to be reversed. 

Neglecting the secondary photon interaction and taking 0 as the number of X-ray 

photons per unit area, then, a <P Eexp(-ax')/W is the initial collectable hole or electron 
en 0 ± 

concentration at location x'. Note that the absorbed energy in the medium due to the 

secondary photon interaction is much less than the primary photon interaction. The 

secondary photon interaction is neglected in obtaining normalized sensitivity calculation 
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because it does not have any significant influence on the normalized sensitivity. As such, 

the initial hole or electron distribution across the medium is [51], 

p'(x',0) = n'(x',0) = ae"m° exp(-ax') = B exp(-ax') 
w. 

(3.1) 

where B (=a E<P /W) is the electron or hole concentration at location x'= 0 and time, f 
1 en 0 * ' 

= 0. 

n'(x',f) 

x'f= 0 ftj^t x'f=L 
***x> 

Figure 3.1 Hole and electron concentration profile due to X-ray photo-generation [51]. 

The incident X-ray photons per cm is related to X-ray exposure X by, 

^ 0.00876xl(T3X 
$ 0 = (3.2) 

where X is in Roentgens, E is in eV, a . and p are the energy absorption coefficient and 
air air 

2 -1 

the density of air respectively (a /p . is in cm g )[18]. 

33 



Considering the assumptions mentioned above, the continuity equation for holes under 

positive bias is given by, 

4>'(s',Q = dp'(x',t') p\x',t') 

a' Mh 3c' r'h ' K ' } 

where p'(x',t') is the concentration of holes at location x' at time t', and F is the applied 

field V/L [51]. 

The following normalized parameters for holes are introduced, 

x=x'/L, t = t'/th, T/J= x'h/th, A=l/(aL), andp=p'/p0 , (3.4) 

where t = L/u F = transit time of the holes across the semiconductor. Thus, T is the 
h rh h 

normalized hole lifetime (hole lifetime per unit transit time). Charge carrier 

concentrations are normalized with respect to the total collectable EHP generation in the 

photoconductor as if the total EHP is uniformly distributed over the sample volume. 

Therefore, the normalized parameter for hole concentration can be calculated as follows, 

p0=n0 =- $Bexv(-ax')dx' = BA(l-e~UA) = BArj, (3.5) 

L o 

where rj = 1 - exp(-l/A); quantum efficiency of the medium. The quantum efficiency 

represents that fraction of incident X-rays which interact with the detector [51]. 

Solving the normalized coordinates of equation (3.3), we can calculate the normalized 

collected electrons and holes. 

The total collected charge is the sum of the collected charges due to holes and electrons. 
The total normalized collected charge, Q = Q + Q , which represents the charge 

h e 

collection efficiency. The normalized sensitivity s is the product of the normalized 

collected charge Q and the quantum efficiency n. Consequently, 
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_I ! -1 _i _i i -L-L 
S/S0 =rh[(l-e A ) + A / (e " -e A)] + r e [ ( l - e * ) - — - ( 1 - e r- '•)] 

A / T h - l A / r e - 1 

= Sholefth, A)+Selectron (*e, A) = S (th, Te, A), ( 3 .6 ) 

2 -1 

where e is the elementary charge. If W is in eV, a /p is in cm g and exposure is in 
* air air 

-2 -1 

Roentgens as in equation (3.2), then sensitivity is in C cm R . S is a constant that 

depends on the X-ray photon energy and the material properties of the photoconductor 

since W is a material property and can be taken as constant for a given material [52]. For 

those materials {e.g. a-Se) that have a field dependent W, then S depends on the field 

[28-31]. The sensitivity S for a detector of finite thickness in which carrier collection is 

not perfect is always less than S . 

The two square brackets on the right hand side of the normalized sensitivity s expression 

(equation 3.6) represent the relative contributions of hole and electron transport to the 

overall sensitivity for a given A. It is assumed that the radiation receiving side of the 

detector is biased positively. If the bias polarity is reversed, then T and T must be 

interchanged. The normalized sensitivity expression (3.6) takes into account only the 

charge transport and absorption effects. Note that s(r , r, A) = s + s =1 when all 
h e hole electron 

the incident radiation is absorbed and all the charges are collected, that is x , T »1 and A 
h e 

« 1. The sensitivity then is simply S and controlled by W . 
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3.3 Dynamic X-ray Sensitivity Model 

Recent studies on a-Se based X-ray image detectors show that, the sensitivity of the 

photoconductor decreases with subsequent exposures [14, 53]. It is necessary to say that 

this reduction in the sensitivity because of accumulated exposures (known as ghosting) 

can be recovered and is reversible by some means such as letting the sample rest or 

shining light to the sample. The study of ghosting in a-Se based detectors has been a 

topical research area for several years because the exact reasons and the origins of this 

phenomenon have not been fully resolved. The reduction in sensitivity is usually shown 

as a function of exposure. Although the sensitivity reduction in a-Se photoconductor is 

not significantly large, the accurate studying and modeling of that would be important in 

order to characterize the photoconductor more precisely. 

The recombination between X-ray photo-generated electrons and holes (i.e., bimolecular 

recombination) can be neglected while the radiation is assumed to be as small signal, 

because the bulk recombination between drifting holes and electrons is strongly 

proportional to the product of the concentration of photo-generated holes and electrons. 

The bulk carrier trapping has the following effects; i) due to each exposure, some of the 

carriers are trapped within the bulk of the photoconductor which can act as a capture 

centers for oppositely charged drifting carriers generated in the subsequent exposures. 

Therefore, the trapped carriers may recombine with the subsequently generated 

oppositely charged carriers leading to reduce charge collection efficiency, ii) As the 

number of exposures increases, the concentration of trapped carriers will increase which 

in turn can alter the electric field distribution across the photoconductor and hence 

change the EHP creation energy (W±) in subsequent exposures. Considering these facts, 
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the X-ray sensitivity in the photoconductor is determined in each subsequent exposure. It 

is also reported that X-ray exposure can create new meta-stable deep trap centers which 

can reduce carrier lifetimes and sensitivity [54-56]. The release time of detrapped holes 

and electrons are in the range of several minutes and hours, respectively. Therefore, the 

amount of detrapped holes is significantly larger compared to the amount of detrapped 

electrons within a certain time. 

It is worth to remind that, the model described in section 3.2 is an analytical model which 

is true for a rested sample in which there is no history of radiation. In order to be able to 

systematically study the change of sensitivity in a sample being exposed to accumulated 

X-ray radiation, a dynamic model which is capable of considering deep trapping of 

charge carriers, trapped charges due to the previous exposure, recombination between 

trapped charges and drifting carriers, electric field dependent electron-hole pair creation 

energy, detrapping of trapped carriers with time, and X-ray induced new meta-stable trap 

center generation must be taking into account. 

Considering all the mentioned phenomena, Kabir studied the change of sensitivity 

(ghosting) for a monolayer a-Se sample [13]. The previous model [13] has the following 

drawbacks; (i) it is applicable to a single layer detector since it doesn't consider the 

effects of blocking layers on carrier generation and charge collection, (ii) it neglects the 

carrier injections from the metal electrodes and the collection of detrapped holes. These 

phenomena influence the trapped carrier distributions, electric field, and charge 

collection. 
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In this thesis however, the model is extended by considering three-layer photoconductor 

(known as n-i-p I p-i-n samples) instead of monolayer samples, and including effects of 

charge injection through electrodes into the blocking layers. 

The objective of this chapter as the core of the thesis is: 

To introduce the theoretical developed model based on three-layer a-Se detector 

including dark current contribution in charge collection efficiency and charge 

distributions across the photoconductor. The three layers across the detector are defined 

based on the specific characteristics of a-Se. The continuity equations for photo-

generated and injected electrons and holes, trapping rate equations and poisson equation 

are solved simultaneously across the photoconductor by the finite difference method. 

The results are reported in chapter 4. 

3.4 Theoretical Ghosting Model for Multilayer a-Se Detectors 

Three-layer a-Se consists of three layers of n, intrinsic, and p. The definition of n and p 

layers is not the same as the conventional definition of these doped layers. The/?- and n-

layers (commonly called the blocking layers) are appropriately doped to serve as unipolar 

conducting layers that can easily trap electrons and holes, respectively, but allow the 

transport of oppositely charged carriers. The rate of emission of these deeply trapped 

carriers is so small that there is no significant current injection into the bulk of a-Se layer. 

This property means that the p and n layers have very high concentration of deep trap 

centers for electrons and holes respectively. In other words, the mobility-life time product 

(Mh(e) x Th(e)) of holes (electrons) in the n(p) layer is much less than that in the intrinsic 

layer while the mobility-life time product of holes (electrons) in the p(n) layer is assumed 
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to be the same as that in the intrinsic layer. The thin (a few microns) blocking layers start 

trapping charge carriers right after applying the bias field [57]. 

A multilayer photoconductor is sandwiched between two large area parallel plate 

electrodes and is biased with voltage V applied across the photoconductor. The photo-

generated EHPs drift along the electric field lines. The diffusion of carriers is negligible 

compared to their drift because of the high applied electric field across the sample. 

In ghosting measurement experiments, a series pulse of X-ray exposures is applied to the 

detector and the X-ray sensitivity of each X-ray exposure is measured. The exposure 

duration is typically 50-250 ms and there is a time gap (dark-time) of few minutes 

(typically 1 to 5 minutes) between two successive X-ray exposures. During the exposure, 

the rates of carrier injections due to dark current and carrier detrapping are much smaller 

than that of X-ray generated carriers. Therefore, the effects of dark current and carrier 

detrapping on the carrier dynamics during the exposure time are neglected. However, 

these effects are considered within the few minutes gap between two successive X-ray 

exposures [57]. Figure 3.2 shows serial X-ray pulses radiated to the sample with a dark-

time of 1 -5 minute(s) between each two successive exposures. 

A constant drift mobility ju and a single deep trapping time (lifetime) r' are assigned to 

each type of carrier (holes and electrons). The holes' (electrons') lifetimes in the intrinsic 

andp (n) layers are identical. As Figure 3.2 shows, during X-ray exposures, p'(x', t') is 

defined as the free hole concentration, n'(x', t') as the free electron concentration,/?' (x', t') 

as the trapped hole concentration, and n' (x1, t') as the trapped electron concentration at 

point x' at time t'. Therefore, following equations are true [13]; 
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Figure 3.2 Schematic diagram of present model illustrating a three-layer photoconductor 
sandwiched between two large area parallel plate electrodes used in the model. An 

electron and a hole are generated at x' and are drifting under the influence of the electric 
field F. Holes and electrons are trapped in n and/? layers respectively right after applying 

H.V. 

(i) The continuity equations for electrons and holes when positive bias is applied through 

the sample are, 

dn' d(n'F') ri , , , , ,. _m. 
ot ox r 

a 
l(p'F') p_ ' * ' \ « ~<xx T = -JUH ~a., '-^—Ctp'nl+gix'rfe 

dx,' 

(3.7) 

(3.8) 

where F{x', t') is the electric field in the photoconductor, g(x', t') is the electron hole pair 

(EHP) generation rate, a is the linear attenuation coefficient of the photoconductor, Ce is 

the capture coefficient between free electrons and trapped holes, and C/, is the capture 

coefficient between free holes and trapped electrons. For an a-Se photoconductor, a 

recombination-type capture process follows the Langevin recombination mechanism [58-

59] and thus Ch = ejUh/e and Ce = e/jjs. It is worth to say that the bulk recombination is 

ignored due to the small signal radiation, 

(ii) The trapping rate equations for deep trapping are as follows; 
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%r = K-C.n'p't. (3-9) 

*L. = ?L-Chp'n'r (3-10) 

(iii) The poisson equation is, 

£ ! = ! ( , ' + ,;-„'-„;). (3.11) 
OX £ 

Considering X-ray induced meta-stable deep trap center generation and trap filling, the 

trapping times for electrons and holes are, respectively [13], 

T . =• 

\ + {NXe~n,)IN0e 

(3-12) 

r i = — - — , (3.13) 0h_ 

where NXe(h) is the concentration of X-ray induced deep trap centers, No is the 

concentration of initial deep trap centers, and % is the initial carrier trapping time. The 

concentration of X-ray induced deep trap centers depend on the photoconductor material, 

the irradiation energy and the amount of exposure. The X-ray induced deep trap center 

generation kinetics is taken to be a first rate equation such that [39] 

NXe(X) = Nse[l-cxV(-^)}, (3.14) 

NXh(X) = Nsh[l-exp(~)}, (3.15) 

where Ns is the saturation value of the X-ray induced deep trap centers, D is an irradiation 

energy dependent constant, and X is the amount of accumulated exposure. The value of D 

is usually large compared to typical exposures in medical X-ray imaging and thus the 
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meta-stable deep trap center generation is almost proportional to the accumulated X-ray 

exposure. 

The effects of charge transport properties (JUT) and attenuation coefficient of 

photoconductor materials on the detector performances depend on L and FQ through the 

following normalized parameters; the normalized attenuation depth (attenuation 

depth/thickness) A = 1/ (ccL), the normalized electron schubweg (electron schubweg per 

unit thickness) re =juer'eFo/L and, the normalized hole schubweg (hole schubweg per unit 

thickness) % = fih r'hFo/L. The schubweg {/UTT) is the distance a carrier drifts before it is 

deeply trapped and unavailable for conduction. Equivalently, xe and % are the normalized 

carrier lifetimes (carrier lifetimes per unit transit time) for electrons and holes, 

respectively. For simplicity, we use the normalized distance coordinate x, where x = x'lL. 

The time coordinate is normalized with respect to the transit time of electrons te (te -

L//jeFo, te is the longest transit time). Therefore, the normalized time coordinate t = t'/te. 

The normalized electric field, F = FIF$. Charge carrier concentrations are normalized 

with respect to the total photogenerated charge carriers per unit area, QQ (electrons / m2) 

in the photoconductor as if the total charge carriers are uniformly distributed over the 

sample volume. 

Let go be the EHP generation rate for a uniform electric field of F0. Then, the total 

collectable EHPs generated in the photoconductor layer per m2 are given by [60], 

where Tis the exposure time, 77 = 1- exp(-l/A) is the quantum efficiency of the detector, 

Eab is the average absorbed energy per X-ray photon of energy E, X is the exposure (X is 
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in Roentgens), Wo is the EHP creation energy (WQ is in eV) of the photoconductor for 

electric field of FQ and incident photon energy of E, a^ and pair are the energy absorption 

9 1 

coefficient and the density of air respectively {a^Jp^ is in cm g"). 

The equations (3.7) through (3.11) can now be recast into the dimensionless forms: 

— = ~Az-2 fc0npt+Ke\ (3.17) 
at ax Te 

^.r>Ml^JL^ +Ke-i, (3.18) 
dt dx * rh

 H 

^P-fcw (3-19) 
a rh 

^ = ̂ -fc,r,Pnt, (3.20) 
a xe 

and 

— = Co[p + Pt-n-n,)> (3-21) ox 

where r^ = \ih/[ie, c0 = eQo/sF0, n = n'/po, p = p'/po, n, = n't/p0, pt = p'Jpo, and K{x,t) = 

{teW0}/{T?]A W{x,t)}. The ratio W0/W(x,t) = g(x,t)/g0. W(x,t) is the electron hole pair 

creation energy at the instantaneous electric field F(x,i). 

During the dark-time, the equations (3.21) through (3.25) are still valid except the carrier 

generation term, Kexp(-x/A), in equations (3.17) and (3.18) must be replaced by the 

carrier injection rates gde and gdh, respectively. Figure 3.3 shows the sample during dark-

time. 
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Figure 3.3 The schematic of positively biased sample showing the sample status and 
generation within the dark-time. The generation is due to injection. 

It can be assumed that the carrier trapping due to the dark current, over a long time, is 

effectively uniform in the blocking layers. The trapped carriers in the blocking layers 

reduce the electric field at the metal/a-Se interfaces, which reduces the subsequent carrier 

injections and thus reduces the dark current. Assuming blocking contacts, the injected 

current densities in low mobility (mobility, ju < 1 cm2/V-s) semiconductor due to hole and 

electron injections in n-i-p structure are given by, [61] 

kT 

Je(t) = ejueNcF2(t)exp\ <t>e-rPs^M) 
kT 

(3.22) 

(3.23) 

Therefore, the expressions of gde and g^ are given by, [61] 

PoT [ T 

gde (0, t) = — ^ exp<{ 
PoT 

(3.24) 

(3.25) 
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where F\(t) is the instantaneous electric field at the metal/n layer interface, F%(t) is the 

instantaneous at the metal/p-layer interface, p = J-^— is the Schottky coefficient, e (=Eo 

er) is the permittivity of the photoconductor, Vt is the thermal voltage, Ny(c) is the 

effective density of states in the valence (conduction) band, cp is the effective barrier 

height for injecting carriers from metal into the blocking layers considering the effect of 

surface states. Here, y is a fitting parameter and close to unity. The subscripts h and e 

stands for holes and electrons respectively. 

Equations (3.17) through (3.21) are nonlinearly coupled partial differential equations. 

These nondimensionalized coupled equations are simultaneously solved by the finite 

difference method. After applying high voltage, it is assumed that there is an enough 

interval time for the dark current to reach a stable state before any exposure. With this 

assumption, the necessary initial conditions are, 

n(*,0) = 0, p(x,0) = 0, Pt(x,0)i=nl(x,0)t = 0, 

(3.26) 

PXx>°)n=P,o> n,(x>Q)P=n
to 

where indices of i, n , or p represent the intrinsic, n, and/> layers. The initial F(x, 0) and 

the instantaneous electric field F(x,t) can be determined by solving the equation (3.21) 

with a boundary condition i.e., 

[F{x,t)dx = \ . (3.27) 

After EHP generation due to an X-ray exposure, one type of carrier drifts towards the 

radiation-receiving electrode (top electrode) and the other type of carrier drifts towards 

the other electrode (bottom electrode). For positive bias, electrons move towards the 

radiation-receiving electrode and holes move towards the bottom electrode. Therefore, 
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right after (or shortly after) X-ray exposure, the free hole concentration at x = 0 and the 

free electron concentration at x - 1 are zero since the carriers would have started drift. 

The total normalized current density due to X-ray generated carriers is given by [62-63], 

j{t)= | F M [ « M + ^ M K (3-28) 

The integration of current over time period of interest is the normalized collected charge 

or charge collection efficiency. The product of the normalized collected charge and the 

quantum efficiency represents the normalized X-ray sensitivity. 

A considerable amount of hole detrapping is expected during an experimental study of 

ghosting. The detrapped carrier can be trapped again in an arbitrary position and can later 

be detrapped. For simplicity, the resultant amount of detrapped carriers can be estimated 

by assigning an average detrapping time and neglecting further trapping. There is a time 

gap of t0ff of few minutes (typically 1 to 5 minutes) between two successive X-ray 

exposures. The hole detrapping probability within time t0ff for a carrier with a detrapping 

time xrh is [\-exp(-t0ff/ rrh)]. 

Figure 3.4 shows the schematic of positively biased sample showing the virtual process 

of hole detrapping and re-trapping during the dark-time. 

The current density due to detrapping of holes at positive and negative bias is given, 

respectively, [64], 
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Figure 3.4 The schematic of positively biased sample showing the virtual process of hole 
detrapping and re-trapping during the dark-time. 

]Pt(x,t)exp( ) 

7r(0= j T-^(l-x)dx, 
Trh 

J, .(<)= J-
p,(x,t)exp( ) 

-^-{x)dx-

(3.29) 

(3.30) 
0 ' r t 

The amount of collected charges due to hole detrapping is calculated by integrating the 

current over the time gap (dark-time). The collected charge due to the detrapped holes 

will be added to the collected charges due to the exposure and dark current. 

3.5 Theoretical Ghosting Recovery Model for Multilayer a-Se Detectors 

The reduced sensitivity of the sample is eventually recovered with time by resting the 

sample. During resting period the trapped carriers and the amount of meta-stable trap 

centers are released exponentially with time. Therefore, the time-dependent 

concentrations of trapped carriers and meta-stable trap centers are given by, 

p, (x, t + At) = p, (x, t) exp( ) , 

nt (x, t + At) = nt (x, t) exp( ) ; 

(3.31) 

(3.32) 
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NM(X,t + to) = N,ha-e~D)™P(—)> (3.33) 

and 

NXe(X,t + At) = JV j e ( l -e^)exp(—) , (3.34) 

where &t is the infmitesimally small time step, rrh(e) is the release time of holes 

(electrons), and xrN is the characteristic decay time for the meta-stable trap centers. 

The experimental sequence of different pulses is shown in Figure 3.5 Initially and in the 

first step, test pulses are used to measure the sensitivity. The dose of each test pulse is 

much less than that of ghosting pulse. Therefore, the sensitivity reduction of the sample is 

negligible when the test pulses are illuminated. In the second step, the sample is exposed 

by the ghost pulse so that the desirable amount of ghost can be achieved. In the third step, 

the recovery process begins in which the test pulses are again used to measure the 

sensitivity. 

Test pulses Ghost Test pulses 

Figure 3.5 Three different steps of ghosting recovery simulation, (i) reading the initial 
sensitivity by radiating test pulses, (ii) radiating ghost pulse, (iii) recovery process, 

radiating the test pulses. 

There is a dark-time of around 2-5 minutes between each two successive test pulses. It is 

necessary to say that the approach used to model and simulate the ghosting recovery 

process is the same as ghosting model described in section 3.3. 
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Chapter 4 

Results and Discussions 

In this chapter the measurement results which have been obtained through experimental 

studies of ghosting and its recovery along with their simulation results are presented. The 

objectives of this chapter are, 

(i) To report the effects of the blocking layers (n, p) on relative sensitivity of the detector 

and electric field profile (charge distribution) across the sample, 

(ii) To study the ghosting in a multilayer a-Se based detector while charge injection 

(dark current) through metal I n(p) is taken into account, 

(iii) To study the dark current change versus accumulated exposure and time, 

and 

(iv) To present the experimental study and measurement results of ghosting and its 

natural recovery process. The results of theoretical study are compared with related 

experimental data obtained through experiments. In this section the effects of different 

factors contributing in natural ghosting recovery are studied. 

4.1 Sensitivity Reduction and Ghosting 

The instantaneous electric field, free and trapped carrier distributions are obtained by 

numerically solving the equations (3.17) through (3.21) with appropriate initial and the 

boundary conditions during both exposure and dark-times. The relative X-ray sensitivity 

is calculated as a function of accumulated X-ray exposure or dose. The relative X-ray 

sensitivity is obtained by normalizing the sensitivity by the expected sensitivity before 
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any X-ray exposure. The amount of EHP generation from a fixed exposure is calculated 

using equation (3.16). The electron-hole-pair creation energy W± in a-Se has a strong 

dependence on the electric field and weak dependence on the X-ray photon energy [28-

29]. The quantity W± decreases with increasing electric field and photon energy. The 

values of W± were taken from the work of Blevis, Hunt, and Rowlands [28]. 

The numerical model is fitted to the experimental data. For a positively biased sample the 

applied electric field, FQ = 3 V/um and L = 498 um, and therefore, A = 1.56. The 

thicknesses of the n and/? layers are assumed to be 20 um and 5 um as described in [5]. 

The hole detrapping time is assumed as r^ » 10 minutes in all three layers (n-i-p) and No 

« 5 x 1018 m"3 for both holes and electrons in the intrinsic layer. The quantity No in the n 

and/? layers is assumed to be 1021 m"3 in the present calculations. Figure 4.1 (a) shows 

the relative sensitivity of a n-i-p detector as a function of accumulated X-ray exposures. 

The closed circles in Figure 4.1 (a) represent the experimental data. The average photon 

energy Eav is 55 keV for an 80 kVp applied X-ray spectrum with 23.5 mm Al filtration. 

The mobility-lifetimes of carriers in intrinsic layer are (^ih^oh)i « 3.5 x 10"6 cm2/V and 

{pie^oe)i ~ 2.2 x 10"6 cm2/V (experimentally measured values). The integration time for 

the signal collection is 1 second within the 2-min dark-time. The numerical results 

considering effective recombination coefficient (f= 0.25) in all three layers in the present 

model agree well with experimental data. The fitted values of Nse (=Nsh) and D are 1.5 

xlO19 m"3 and 2 R, respectively. The recombination between trapped and the oppositely 

charged drifting carriers, and X-ray induced new deep trap centers are mainly responsible 

for ghosting in multilayer a-Se-based X-ray detectors the same as monolayer a-Se based 

detectors [13]. 
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Figure 4.1 (b) shows the field distributions across the photoconductor under positive bias 

for different accumulated X-ray exposures. The electric field at the radiation-receiving 

electrode increases with increasing cumulative exposure. The electric field distributions 

reach a steady value after a large accumulated exposure. Since the X-ray absorption 

profile is exponential across the photoconductor, it is expected that the total EHP 

generation is somewhat greater under positive bias because most of the X-ray photons are 

absorbed in the high field region. 
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Figure 4.1 (a) Relative X-ray sensitivity vs. accumulated X-ray exposure for a 
positively biased n-i-p a-Se detector. The closed circles represent experimental data 

and the solid line represents the theoretical fit to the experimental data, (b) The electric 
distributions across the photoconductor for different cumulative X-ray exposures [57]. 

Figure 4.2 shows the effect of blocking layers on electric field across the positively 

biased sample. As is obvious, adding n and p layers decreases the electric field at the two 

ends and particularly at the top end (in positively biased sample) where the most amount 

of generation is expected. 
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Figure 4.2 (a) Electric field profile for a positively biased intrinsic sample considering 
an effective recombination coefficient (/"= 0.25), including holes detrapping during 2-
min dark-time, Collection of detrapped holes in 1 sec, (b) the electric field of the n-i-p 

sample, including hole detrapping, the same conditions as Figure 4.2 (a). 

As mentioned above, the electric field in the blocking layers is lower than that of a 

monolayer (intrinsic layer) sample. Therefore, the X-ray sensitivity of n-i-p detector is 

somewhat lower than that of a monolayer detector as shown in Figure 4.3. The effect of 

dark current on absolute sensitivity is also shown in Figure 4.3. A visual inspection of 

Figure 4.3 shows that the contribution of the dark current on absolute sensitivity is not 

significant [57]. 
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Figure 4.3 A comparison of the normalized sensitivity in a monolayer based detector 
(previous model) [13] shown with dashed line, a n-i-p based detector without injection 

shown with dotted line, and present model shown with solid line (positively biased, 
present model) [57]. 

The normalized charge distributions across the photoconductor are shown in Figure 

4.4. As illustrated the concentration of holes and electrons are significantly large in n 

and p layers respectively. The concentration of holes and electrons in n and p layers 

respectively are determined by EHP generation due to X-ray radiation, charge 

injections and charge detrapping. 
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Figure 4.4 (a) The normalized hole concentration, and (b) the normalized electron 

concentration across the positively biased sample 
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Figure 4.5 (a) shows the relative X-ray sensitivity as a function of accumulated exposure 

for a negatively biased p-i-n a-Se detector. The electric field F$ = 6 V/um and L = 1000 

urn, and therefore, A = 0.78. The mobility-lifetimes of carriers are measured as (///, z'o/i)/* 

5.7 x 10"6 cm2/V and (//e/0e)« * 5.2 x 10"6 cm2/V. The hole detrapping time rdh = 10 

minutes in all three layers (p-i-n), and NQ = 3 x 1018 m"3 for both holes and electrons in 

the intrinsic layer. All other parameters are the same as in Figure 4.1. The numerical 

results considering effective recombination coefficient (f- 0.3) in all three layers in the 

present model agree well with experimental data. Fitted values of Nse (=Nsh) and D are 

1.6 xio19 m"3 and 1.5 R, respectively. Figure 4.5 (b) shows the field distributions across 

the photoconductor for different accumulated X-ray exposures. The electric field at the 

positive electrode (bottom electrode) increases with increasing cumulative exposure. 
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Figure 4.5 (a) Relative X-ray sensitivity versus cumulative X-ray exposure for a 

negatively biased p-i-n a-Se detector. The closed circles represent experimental data 
and the solid line represents the theoretical fit to the experimental data [57]. (b) The 

electric distributions across the photoconductor for different cumulative X-ray 
exposures [57]. 
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Figure 4.6 shows the effect of blocking layer on electric field across the negatively biased 

sample. As is obvious, adding n and p layers decreases the electric field at the two ends 

but particularly at the bottom and as opposed to that in positively biased sample. 

Normalized distance, x Normalized distance, x 

(a) (b) 
Figure 4.6 (a) Electric field profile for a negatively biased intrinsic sample considering an 

effective recombination coefficient (/"= 0.3), including holes detrapping during 2-min 
dark-time, Collection of detrapped holes in 1 sec (b) the electric field of the p-i-n sample, 

including hole detrapping, without charge injection. 

It is evident from Figures 4.1 (b) and 4.5 (b) that the reduction in electric field at the 

radiation receiving electrode in negatively biased sample is much less than that in 

positively biased sample which causes less reduction in sensitivity due to the blocking 

layer in negatively biased sample. Therefore, by including charge injection into the model 

the normalized sensitivity of the present model will be somewhat higher than the 

previous model. 

Figure 4.7 shows the comparison of normalized sensitivity among three different 

scenarios including previous model (intrinsic sample), p-i-n based sample while charge 

injection is ignored, and the complete model including charge injection. 
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Figure 4.7 A comparison of the normalized sensitivity in a monolayer based detector 
(previous model) [13], and ap-i-n based detector (negatively biased, present model), 

the effect of dark current is also shown. 

For the negatively biased sample, or p-i-n based structure, the normalized charge 

distributions across the photoconductor are shown in Figure 4.8. The same scenario 

mentioned and illustrated in Figure 4.4 for positively biased sample is true for 

negatively biased sample, except that the p and n layers are in the top and bottom 

electrodes. As illustrated the concentration of electrons and holes are significantly large 

in p and n layers respectively. The concentration of holes and electrons in n and p 

layers respectively are determined by EHP generation due to X-ray radiation, charge 

injections and charge detrapping. 
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Figure 4.8 (a) The normalized hole concentration, and (b) the normalized electron 
concentration across the negatively biased sample determined by the three most 

important phenomena i) EHP generation due to X-ray radiation, ii) charge injections, iii) 
hole detrapping. 

It is also evident from Figure 4.1 (b) and 4.5 (b) that the electric fields at both contacts 

increase with accumulated X-ray exposure. The dark current increases with increasing 

contact electric fields as is obvious from equations (3.22), and (3.23). Therefore, it is 

instructive to calculate the change in dark current during the experimental study of 

ghosting. Figure 4.9 (a) and (b) show the relative dark current density as a function of 

time. 

It is worth to say that the initial amount of dark current is calculated based upon the 

assumption that there is enough interval time between applying the high voltage and the 

first exposure so the initial dark current density for both positively and negatively biased 

detectors is the steady state dark current after applying the bias voltage but before any 

exposure. The initial amount of dark current density is ~ 7 pA/cm2 and ~ 25 pA/cm2 for 

positively and negatively biased respectively. 
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The concentration of the trapped holes and electrons in n and p layers respectively, 

determine the electric field at the two very ends of the sample. These concentrations are 

calculated based on the recent dark current model for stabilized a-Se [61]. During 

ghosting measurement, the dark current density is calculated at the end of the dark-time 

and right before the next exposure. There are 31 radiation pulses for positively biased 

sample, and 26 pulses for negatively biased sample. 
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Figure 4.9 (a) Relative dark current density vs. time for positively biased sample, (n-i-p 
based sample), with the conditions set for Figure 4.1 (b) relative dark current vs. time 
for negatively biased sample, (p-i-n based sample), with the conditions set for Figure 

4.5. 

As illustrated in both Figures 4.9 (a) and (b), the increase of dark current density is 

almost an order of magnitude, which has also been observed previously. In both biases, 

the relative dark current increases quickly during first few exposures and, after that, the 

rate of increase decreases with time. 

(The amount of ghosting strongly depends on the applied electric field. Figure 4.10 shows 

the relative sensitivity as a function of cumulated X-ray exposure and normalized electric 

field across the positively biased a-Se detector for the initial electric field FQ = 6 V/um. 
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The circles represent experimental data and the solid line represents numerical results. 

The theoretical result agrees well with the experimental data. All other parameters in 

Figure 4.10 are the same as in solid curve in Figure 4.1. The recombination coefficient/ 

varies between 0.25 and 0.3. This change in the recombination coefficient is not fully 

known. In Figure 4.11 the same scenario as mentioned above is shown for negatively 

biased sample. All other parameters in Figure 4.11 are the same as in solid curve in 

Figure 4.5. 
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Figure 4.10 (a) The relative sensitivity ofan-i-p based sample including charge injection 

and hole detrapping, collection of injected charges and detrapped holes is performed 
within 1 second during 2-min dark-time, (b) The electric field profile for the same 

sample. 
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Figure 4.11 (a) The relative sensitivity of ap-i-n based sample including charge injection 

and hole detrapping, collection of injected charges and detrapped holes is performed 
within 1 second during 2-min dark-time, (b) The electric field profile for the same 

sample. 

Figure 4.12 (a) and (b) show the relative dark current density as a function of time for the 

electric of Fo = 6 V/um and Fo = 10 V/um. A visual inspection of Figure 4.12 shows that 

the behaviour of the dark current remains the same as Figure 4.9 except the level of 

increase of the dark current seems to be lower. This difference is because of the different 

levels of changing in the electric fields at the two ends for both the cases that can be 

compared from Figures 4.10 (b) and 4.1 (b) for positively biased sample, and Figure 4.11 

(b) and 4.5(b) for negatively biased sample. The initial dark current is ~ 25 pA/cm2 and ~ 

40 pA/cm2 for positively and negatively biased sample respectively. 
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Figure 4.12 (a) Relatibe dark current density vs. time for positively biased sample, (n-i-

p based sample), with the conditions set for Figure 4.10 (b) relative dark current vs. 
time for negatively biased sample, (p-i-n based sample), with the conditions set for 

Figure 4.11. 

Figures 4.13 (a) and (b) show the relative sensitivity of a positively and negatively biased 

a-Se detector respectively as a function of cumulative X-ray exposure for different 

applied electric fields. The exposure dose is 0.08 R for each pulse. There are 31 pulses 

for positively biased sample and 26 pulses for negatively biased sample. The deep trap 

i o •> 

center concentration for both holes and electrons is No ~ 3 x 10 m" in the intrinsic 

layer. The quantity No in the n andp layers is assumed to be 10 m" . 

The ghosting level increases with decreasing applied electric field because of higher 

carrier trapping rate at lower applied electric fields. 
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(a) (b) 
Figure 4.13 The effect of electric field on the level of ghosting, the more the electric field 

is the less the amount of ghosting will be, (a) positively biased sample, (b) negatively 
biased sample in which, ne^0e~ 3.5 x 10"6 cm2/V and juhtoh« 9.6 * 10"6 cm2/V. 

As shown in Figure 4.13 (a), the relative sensitivity increases a little (0.2%) within the 

first pulse of radiation for Fo = 20 V/um. This phenomenon was observed by B. Zhao and 

W. Zhao in a specific experiment [65]. Figure 4.14 shows the comparison of relative 

sensitivities for the same sample while in one case the dark-time is 2 minutes and in the 

other case is 5 minutes. As illustrated, there is no increase in relative sensitivity when the 

dark-time is 5 minutes. This phenomenon may happen for some other reasons in addition 

to the main mechanism of recombination. The longer the dark-time is, the less the trapped 

electrons will be in the sample. This observable fact is happening due to the injected 

holes which can recombine with the trapped electrons. As such, the electric field will 

decrease at the entrance side. 
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Figure 4.14 The comparison of relative sensitivity between two different dark-times 
while other conditions are the same. Positively biased sample, (n-i-p), all the 

conditions are the same as Figure 4.13 except electric field and dark-time. 

4.2 Ghosting Recovery (Experimental Research) 

In this thesis, the change in sensitivity versus accumulated exposure, and time (ghosting 

and its recovery) has been studied experimentally and theoretically at the same time. 

Experimental research has been carried out in Anrad Corporation, St-Laurent, Montreal. 

A schematic of the setup utilized to accomplish the experiment is shown in Figure 4.15. 

For this specific experiment (ghosting and recovery), the whole process is automated 

through a PC. Tool Command Language (TCL) is used to select different parameters (i.e., 

number of test pulses, test pulse dose, dark-time between each two test pulses, ghost 

dose, number of test pulses in the recovery process,...) . 
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Figure 4.15 A schematic of the setup utilized to carry out the ghosting recovery process. 
The sample is placed in the sample box. The sensitivity is measured through PC using 

TCL. 

Each device of the setup is explained below; 

X-ray source: X-ray source or X-ray emitter is a box with which different parameters of 

radiation, i.e., kVp, can be adjusted. This device is temperature limited meaning that if it 

is over used (large numbers of X-ray pulses are used) an error message will be appeared 

on the screen of the PC. 

Al filter: When medical X-rays are being produced, a thin metallic sheet is placed 

between the emitter and the target, effectively filtering out the lower energy (soft) X-rays. 

This filter is often placed close to the window of the X-ray tube. The resultant X-ray is 

said to be hard. Soft X-rays overlap the range of extreme ultraviolet. 

Dosimeter: The dosimeter is used to measure the dosage of radiation. It must be reset 

before any experiment. The dosimeter is connected to a circular plate placed between the 

sample and the X-ray source. 

Sample box: The sample box includes a plate on which the sample is placed. There are 

two connections in sample box. One connection is for applying H.V bias, and the other 
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connection is the output of the sample which is connected to the charge amplifier. The 

distance between sample and the X-ray source is adjustable. 

H.V. controller: This device is used to apply either positive or negative bias to the 

sample. The device can be used in two modes of operation, remote or local which can be 

adjusted by a key on the back of the device. To change the type of bias (negative or 

positive) the device needs to be opened and is not automated. 

Charge amplifier (C.A.): The inverting-input of the charge amplifier is connected to the 

output of the sample. The output of charge amplifier is connected to oscilloscope. 

Oscilloscope: On the oscilloscope the wave form can be seen. This wave form is the 

current produced by collecting the photo-generated electron hole pairs in the sample. 

In this thesis experiments have been done so as to study the ghosting and its recovery. 

Table 4.1 shows important characteristics of the sample used in the experiments 

Table 4.1 Characteristics of the n-i-p sample used in experimental investigations for 
ghosting recovery. 

Sample: 029 - R745 

Structure 

Total length (pm) 

Dark current density (pA/cmz) 

Electron mobility-life time product (cm2/V) 

Hole mobility-life time product (cm2/V) 

Chlorine impurity concentration (ppm) 

n-i-p 

1000 

29 

2.8 x 10'b 

391 x 10"° ! 

2 
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The ghosting recovery measurement is performed on n-i-p and p-i-n structures following 

the sequence of Figure 3.6. The average photon energy is 55 keV, for 80 kVp (with 50 

mA amplitude of the tube current) applied X-ray spectrum with Al filtration. The test 

pulse dosage used for these experiments is around 0.5 mR. The pulse width of each 

radiation is 50 ms. 

The reason of adding chlorine to the sample is that it can increase the hole mobility-life 

time product. In this case, (for n-i-p samples) the more number of holes can be collected. 

The first experiment is performed with the applied electric field of FQ = 6 V/um. Figure 

4.16 shows the result of this experiment. There are 12 test pulses before the ghost pulse is 

applied. The dark-time between each two test pulses is 2 minutes. It is expected that the 

sensitivity decreases with applying the ghost pulses. However, as illustrated in this Figure 

ghost is not observed. The reason of not observing ghost is the relatively high electric 

field. It is necessary to remind that using this high electric field charge injection is 

significant. 
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Figure 4.16 Experimental result, .Fo= 6 V/um. Ten test pulses are radiated before the 
ghost pulse is applied. With applying ghost pulses, sensitivity does not decreases which 

can be due to the relatively high electric field. 
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In the next step the electric field is decreased so as to be able to reduce the sensitivity. 

The ghost pulse is applied after radiating 10 test pulses. This experiment is performed 

with the electric field of FQ = 3 V/um. Applying this voltage, it is possible to get ~ 15% 

decrease in the relative sensitivity. This result is consistent with the theoretical 

investigation done to study the effect of electric field on the level of ghosting. The dark-

time between each test pulses is 2 minutes. 

Positively biased sample (nip) 

FQ = 3 V/̂ m 

0 20 40 60 80 
Time, minute 

Figure 4.17 Experimental result, FQ= 3 V/um. Ten test pulses are radiated before the 
ghost pulse is applied. With applying ghost pulses relative sensitivity decreases ~ 15%. 

As can be seen in Figure 4.17, the ghost is not recovered in the recovery process. The 

relatively low electric field may prevent the ghost from recovering. Following this 

experiment, It has been decided to use the electric field of Fo = 5 V/um. In this 

experiment, the Al filter is removed in the course of applying the ghost pulse so as to 

achieve some level of ghost. Figure 4.18 illustrates the result of such investigation. 
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Figure 4.18 Experimental result, Fo = 5 V/um. Five test pulses are radiated before the 
ghost pulse is applied. The Al filter is removed during the ghost pulse, (X ~ 15R). (The 

dark-time between each two test pulses is 2 minutes). 

A possible argument about these experiments is the fact that, due to very high hole 

mobility-life time product of this sample (as indicated in Table 4.1) very small number of 

holes can be trapped in the sample so basically in this case, there would be few trapped 

holes which could be released and recover the ghost. It is not necessary to say that in the 

positively bias sample, there is small number of trapped electrons across the sample. In 

addition, the electron release time is in the range of several hours, so given the recovery 

time the effect of electron release may not be significant in this particular experiment. 

In addition to the above experiments that have been performed using positively biased 

sample, the result of other experiments that have been carried out using negatively biased 

sample will be presented. Table 4.2 shows some important characteristics of the p-i-n 

sample used in these experiments: 
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Table 4.2 Characteristics of the p-i-n sample used in experimental investigations for 
ghosting recovery. 

Sample: 325+328 

Structure 

Total length (fim) 

Dark current density (pA/cm ) 

Electron mobility-life time product (cm /V) 

Hole mobility-life time product (cm /V) 

p-i-n 

1088 

18 

3 x lO-0 

35 x 10"b 

As mentioned before, adding chlorine to the sample can basically increase the hole life

time. As in negatively biased sample electrons are collected, there is no need to add 

chlorine. 

The first experiment using negatively biased sample is done by applying the electric field 

of 5 V/um. The result is shown in Figure 4.19. 
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Figure 4.19 Experimental result, Fo = 5 V/um. Twelve test pulses are radiated before the 
ghost pulse is applied. The ghost pulse dose is ~1 R. 

Using the same approach, test pulses are used initially to measure the initial sensitivity. In 

this experiment, before the ghost pulse is applied, 12 test pulses are used with a dark-time 
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of 2 minutes between each two test pulses. After measuring the initial sensitivity, the 

ghost pulse is applied. The dose of the ghost pulse used for the p-i-n sample is ~ 1 R. The 

first test pulse has been radiated in 5 minutes since the ghost is completed. In the 

recovery process the dark-time between each two test pulses is 5 minutes. As can be seen 

from Figure 4.19 the ghosting is not fully recovered after almost three hours. This fact 

may have the meaning of the presence of other defects across the sample while the ghost 

is applied. The ghosting is expected to be fully recovered in much longer time than the 

recovery time. 

It is worth-mentioning that the experimental results strongly depend on the operating 

conditions, and the type of the sample. 

In order to do a comparative study on ghosting recovery, other experiment has been done 

using the same sample but with different electric field FQ = 10 V/um. Figure 4.20 shows 

the result of this experiment. A comparison between this Figure and Figure 4.19 show 

that the trend of recovery remains almost the same. 
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Figure 4.20 Experimental result, Fo= 10 V/|j,m. 12 test pulses are radiated before the 
ghost pulse is applied. The ghost pulse dose is ~1 R. 
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4.3 Ghosting Recovery (Theoretical Research) 

The theoretical ghosting recovery measurement is performed on p-i-n structure following 

the sequence of Figure 3.6. The initial sensitivity is measured using twelve test pulses. 

The thickness of the sample is 1088 um. The mobility-lifetimes of carriers in the intrinsic 

layer are (u/, zoh)i= 35><10"6 cm2/V and {pie zoe)i= 3><10*6 cm2/V (measured values). The 

initial deep trap concentration, No ~ 3xl018 m"3 for both holes and electrons in the 

intrinsic layer. The quantity No in the n and p layers is assumed to be 5x 10 m" . The 

time interval between each test pulse is 2 minutes. The average photon energy Eav is 55 k 

eV. The numerical results considering effective recombination coefficient if- 0.3) in all 

three layers in the present model agree well with the experimental data. After obtaining 

the change in sensitivity for 12 test pulses within first 24 minutes, the ghost pulse is 

applied. The total exposure for the ghost pulse is 1R. The sensitivity is measured in 5 

minute intervals after the ghost is achieved. Fitted values of Nse (=Nsh) and D are 2.5 

xlO18 m"3 and 1.5 R, respectively. Figures 4.21 (a) and 4.21 (b) show the sensitivity 

recovery as a function of time for a negatively biased p-i-n sample at an applied electric 

field of 5 V/um , and 10 V/um respectively. All other parameters in Figure 4.21 (b) are 

the same as Figure 4.21 (a). The dotted line represents sensitivity recovery considering 

only hole detrapping, the dot-dashed line shows the sensitivity recovery considering both 

hole and electron detrapping, and the dashed line represents the sensitivity recovery 

considering carrier detrapping and the effects of the injected carriers. The open circles 

show the experimental data and the solid line is the theoretical fit to the experimental 

data. In the ghosting recovery step, the dark-time between any two test pulses is 5 

minutes. The detrapping of holes and electrons are considered with time constants of 10 
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minutes and 3 hours respectively. The recovery time constant for the meta-stable trap 

centers is assumed to be 12 hours. It is evident from Figures 4.21 (a) and 4.21 (b) that the 

ghosting recovery is achieved mainly by the electron release. However, the 

recombination of the injected holes with the trapped electrons vanishes some of the 

trapped electrons, which also has a significant effect on the sensitivity recovery process 

(see the difference between the dotted and dot-dashed lines). The sensitivity is expected 

to recover fully by resting the sample longer than the recovery time constant of the meta-

stable trap centers (the structural relaxation time constant), which is ~15 to 24 hours [47]. 

The symbols represent the experimental data and the solid lines represent the theoretical 

fit to the experimental data. The model agrees well with the experimental results. 
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Figure 4.21 Measuring initial sensitivity, applying ghost pulse, and recovery process are 
shown. In the recovery process the effect of different phenomenon on ghosting recovery 

is illustrated. A) Shows the effect of hole release on ghosting recovery. B) Shows the 
effect of hole and electron release. C) Shows the effect of injection plus charge release, 
and D) is the fit curve including release of new meta-stable deep trap centers, (a) Fo = 

5V/um,(b)F0=10V/um. 

As mentioned in section 4.1 the electric fields at both contacts increase with accumulated 

X-ray exposure. The dark current mainly depends on the contact electric fields as 
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observed in the recent work by Mahmood et al. [61]. Therefore, it is instructive to 

calculate the change in dark current during the experimental study of ghosting and its 

recovery. Figure 4.22 (a) and (b) show the electric field distribution and the relative dark 

current as a function of time at an applied electric field of 10 V/um. The dark current is 

calculated by the model described in the recent model [61]. The initial dark current 

density is the steady state dark current after applying the bias voltage but before any 

exposure. The initial dark current density is assumed to be 18 pA/cm2, as measured in the 

identical samples [61]. During ghosting measurement, the dark current density is 

calculated at the end of the dark-time and right before the next exposure. There is an 

increase in dark current during initial test pulses and it settles at a bit higher (almost 5 

times of the initial dark current) value quickly. However, the dark current increases very 

rapidly during the ghosting dose, and it also decreases quite quickly after the ghosting 

dose. The X-ray generated carriers are trapped in the intrinsic layer. The X-ray generated 

carriers also recombine with the trapped carriers in the blocking layers (n and p layers), 

and temporally reduce the trapped carriers in the blocking layers. The resultant effect is 

the rapid increase of electric fields at the metal contacts, which enhances the carrier 

injection. After the ghosting dose, the high injected carriers are readily trapped in the 

blocking layer, which retains the trapped carriers in the blocking layers and reduces the 

contact electric field. The slow and monotonous decrease of dark current is due to the 

carrier releases in the intrinsic layer and the resultant redistribution of electric fields. Note 

that almost two orders of increase of dark current density during exposure has been 

observed previously [66]. As such, the present result is consistent with the previous work. 
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ghosting recovery process, (b) Relative dark current versus time for the conditions of 

Figure 4.21 (b). 
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Chapter 5 

Conclusion, Contribution, and Future 

Work 

In this thesis a theoretical/numerical model has been developed for calculating X-ray 

exposure and time dependent sensitivity reduction (ghosting), dark current, and ghosting 

recovery for a multilayer amorphous Selenium X-ray detectors. The model considers the 

effects of carrier transport in all three layers of the detector. Different operating 

conditions such as bias voltage and polarity (positively biased and negatively biased 

samples) are also included in the model. In this thesis the performance of such a system is 

modeled based on the physics of the individual phenomena and the systematic solution of 

the fundamental physical equations in a photoconductor layer which are; (1) 

Semiconductor continuity equation, (2) Poisson's equation, and (3) Trapping rate 

equations. The dynamic model ultimately is useful in developing samples to improve 

medical image quality and optimize the dosage of radiation for various medical imaging 

applications. 

5.1 Ghosting (Sensitivity Reduction) 

A numerical model is developed for calculating the dependence of the X-ray sensitivity 

of a multilayer a-Se based X-ray medical image detectors on repeated X-ray exposures 

and exposure history. The present model considers the transport phenomena such as deep 

trapping of charge carriers, trapped charges due to previous exposures, trap filling effects, 
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recombination between drifting and oppositely charged trapped carriers, space charge 

effects, electric field dependent charge carrier generation, X-ray induced new deep trap 

center generation, detrapping of trapped carriers and the effect of charge injections 

through the blocking layers with time for multilayer a-Se detectors. The electric field 

distribution across the photoconductor varies widely depending on operating conditions 

and exposure history. The electric field at the two ends of the photoconductor decreases 

due to the trapped holes and electrons in n and p layers respectively. The relative and 

absolute sensitivity have more reduction in multilayer photoconductor due to the less 

EHP generation at the radiation receiving side. The blocking layers have more effect in 

positively biased sample compared to a negatively biased sample. The relative sensitivity 

decreases with increasing accumulated X-ray exposure. The most important role of the 

dark current on ghosting is the trapping of injected carriers in the blocking layers which 

compensate the loss of trapped carriers during exposures. The amount of dark current 

also increases dramatically within the first few exposures and the increase of dark current 

will decrease with time and will be saturated after some times. The amount of ghosting is 

examined as a function of initial electric field. The more the electric field is the less the 

amount of ghosting will be. The concentration of deep trapped carriers in the blocking 

layers has been estimated with respect to the initial dark current obtained by the dark 

current model. The comparison of the numerical model with the experimental data shows 

that the recombination between trapped and the oppositely charged drifting carriers, 

electric field dependent charge carrier generation and X-ray induced new deep trap 

centers are mainly responsible for the sensitivity reduction in biased a-Se- based X-ray 

detectors. It is expected that the ghosting phenomenon may also be observed in other 
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photoconductive (e.g. Hgl , CdZnTe, and Pbl) detectors although it has not yet been 

measured. 

5.2 Ghosting Recovery 

The numerical model for ghosting is expanded in order to study natural ghosting 

recovery. The principals of recovery model are based on the ghosting model. Ghosting 

recovery model is examined for a negatively biased sample. In the recovery process the 

sample is rested for almost 3 hours and within this time the ghost is mostly recovered. 

The sensitivity in the rested sample is recovered mainly by the carrier detrapping and the 

recombination of the injected carriers with the existing trapped carriers. The electric 

fields at the metal contacts decrease with time in ghosting recovery process which leads 

to the reduction of dark current. The rate of the reduction of the dark current during 

recovery stage is very high initially and the reduction rate decreases with time. The 

sensitivity is expected to recover almost fully by resting the sample longer than the 

recovery time constant of the meta-stable trap centers (the structural relaxation time 

constant), which is in the time scale of 15-24 hours. The numerical result shows a very 

good agreement with the experimental data. 

It should be mentioned that both the ghosting and recovery studies have been followed by 

experimental studies as well. 

5.3 Contributions 

The author contributed to the following original developments: 

• A theoretical model has been developed by incorporating carrier transport in all three 

layers of the multilayer a-Se sample. 
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• Charge injection is included into the model so as to study the effect of dark current on 

charge collection and charge distributions across a multilayer sample. 

• Natural ghosting recovery is theoretically studied by extending the numerical model. 

Possible different phenomena and their contributions to the ghosting recovery were 

studied theoretically for the first time. 

• Useful experiments and measurements have been carried out to study the ghosting and 

its recovery in a-Se sample. The results were subjected to an investigation in terms of 

consistency with physical conceptions and theoretical model. 

5.4 Suggestions and Future Work 

Amorphous Se is one of the interesting materials in terms of unpredictable/uncertain 

behaviours that it has been shown so far and it still attracts researchers' attentions. For 

instance, the trapping and recombination mechanisms (the two most important 

phenomena known so far that control the ghosting) are still debatable. 

Furthermore, the developed numerical ghosting model has examined the sensitivity 

reduction in multilayer a-Se based X-ray detector, yet there are other common 

photoconductors (Hgl , CdZnTe, and Pbl) used in the medical X-ray image detectors. 

Both the ghosting and its recovery model can be implemented for the above multilayer 

photoconductors based upon the availability of the experimental data. The behavior of 

dark current with accumulated X-ray exposures and time can also be as systematically 

studied as what has been done in this thesis. 

Ghosting could also be erased by applying some external means. For example, applying 

light after each exposure may also erase ghosting. The illuminated light can create EHPs 

inside the sample and these created charges may recombine with the oppositely charged 
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trapped carriers and recover the sensitivity. It is instructive to study the appropriate 

wavelength of light within visible or near visible spectra to eliminate ghosting. Such 

investigations would be interesting to be followed on different types of samples (n-i, n-i-

p, p-i-n, i) with different thicknesses of different layers. This study may also help to 

investigate the exact physics of ghosting in this class of detectors. 
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