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ABSTRACT 

A Model-based Fault Recovery for the Attitude Control 

Subsystem of a Satellite using Magnetic Torquers 

Jessica Nathalia Parra Bernal 

Concordia University, 2008 

The interest in small satellites for scientific missions and Earth observations has been 

increasing steadily in recent years and magnetic torquers have been found attractive as 

suitable choice of actuators for the purpose of attitude control. Magnetic torquers are 

commonly used for momentum desaturation of reaction wheels, damping augmentation in 

gravity gradient stabilized spacecraft, and reorientation of the spin axis in spin-stabilized 

spacecraft. Furthermore, their use as sole actuators for 3-axis stabilization of satellites in 

Low-Earth Orbit (LEO) has also been proven effective and advantageous when compared 

to other types of actuators. 

The autonomy of complex dynamical systems that are vulnerable to failures has been 

an important topic of research during the past few years. Particularly, in aerospace appli­

cations, where several constraints such as telemetry and hardware redundancy limitations 

make the management of on-board problems, a difficult task for ground control. 

With this in mind, an autonomous recovery from faults in magnetic torquers in LEO 

in 



satellites constitutes the main focus of the work investigated in this dissertation. A self-

recovery mechanism, which extends the capabilities of the attitude control subsystem to 

operate under the presence of actuator faults is developed. The solution generated takes 

into account the management of the control authority in the system by taking advantage of 

the non-faulty actuators. In other words, the recovery mechanism that is proposed in this 

thesis does not utilize hardware redundancy as the existing actuators are used to perform 

the required control action. 

The effects of the delay in initiating the recovery solution, the presence of noise in 

the magnetic field measurement, and the responses of the system that is recovered from 

concurrent faults are also investigated through numerical simulations. These simulations 

are carried out by using a model that includes relevant environmental disturbances and a 

realistic model of the geomagnetic field. A reduction in the average steady state error is 

obtained in response to and due to the application of the proposed recovery mechanism, 

which is applicable to the system even in the presence of fault detection delays, presence 

of noise in the magnetic field measurement and concurrent faults. 
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Chapter 1 

Introduction 

The use of small satellites for scientific missions and Earth observations is more attractive 

due to lower complexity, shorter construction time, and reduced power consumption, when 

compared to a large size spacecraft. Recently, researchers have focused their attention on 

the attitude stabilization of small satellites using magnetic torquers (also known as mag­

netic rods). This type of actuator generates a torque when the magnetic moment (produced 

by the current passing through an electric coil) interacts with the geomagnetic field. The 

utilization of magnetic torquers is applicable in the attitude stabilization of small satellites 

in Low-Earth Orbit (LEO), where the strength of the geomagnetic field is sufficient to gen­

erate the required control torques. 

Considerable efforts have been invested in the development of tools to make dynam­

ical systems capable of operating satisfactorily, regardless of the presence of faults. Relia­

bility, safety and extended degree of autonomy are shown to be achieved by incorporating 

Fault Diagnosis, Isolation and Recovery (FDIR) mechanisms in the design of the control 
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system. 

In view of the above reasons, the present work is focused on proposing a model-based 

actuator-fault recovery strategy as applied to magnetic torquers in the attitude control sub­

system of a LEO satellite. 

The following subsections introduce the statement of the problem considered, objec­

tives of the dissertation, a summary regarding relevant literature, contributions of the thesis, 

and an outline of the remaining chapters. 

1.1 Problem Statement 

To propose a self-recovery mechanism for the attitude control subsystem of a satellite that 

is actuated by magnetic torquers. 

1.2 Thesis Objectives 

The purpose of this work is to propose a self-recovery mechanism for the attitude control 

subsystem of a satellite that is actuated by magnetic torquers. Our goal is to demonstrate 

that it is possible to reallocate the required control effort obtained by means of a recon­

figured control law so that under faulty conditions the performance of the attitude control 

subsystem remains still satisfactory. 
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1.3 Literature Review 

1.3.1 Attitude Control of Satellites using Magnetic Torquers 

The attitude control of a satellite using magnetic torquers is to be differentiated from the 

control using reaction wheels, thrusters, or other types of actuators. The fact that the torque 

produced is a function of the variation of the magnetic field at the orbital position of the 

satellite makes the attitude control problem distinct from other control mechanisms. The 

following descriptions correspond to the work that are found in the literature regarding the 

development of attitude control laws for satellites using magnetic torquers. 

References [8], [9], [10], and [11], deal with the design of state feedback stabilizing 

controllers and reference [12] addressed the solution through an LQR controller. In refer­

ence [13] the authors considered the case of isoinertial satellites and developed outer and 

inner-loop controllers with state feedback and sliding mode control. In reference [14] the 

authors presented an explicit model-predictive control law, and in reference [15] the au­

thors introduced the solution to the attitude control problem of magnetic actuated satellites 

using neural networks in the implementation of the controller. 

In [16] a pulse width modulation control for low power consumption torquers is devel­

oped. The work described in [17] combines the design of adaptive control for the attitude 

control, using two magnetic torquers and one reaction wheel, with a fuzzy logic supervisor 

in charge of managing a multilevel controller for different operating modes. 
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Model predictive control is used in the regulation of magnetically actuated satellites 

in [18]. 

References [5], [19] and [20] introduced the use of continuous-sliding mode control, 

while [21] and [22] utilized optimum control techniques with LQR in the linearized equa­

tions of the satellite. An energy based control was also presented in [5], in which a type of 

error cross product control was implemented and the stability of the system was justified 

using an energy function that characterizes the motion of the satellite. 

Among the work in the literature as reviewed above, a model-based nonlinear control 

strategy is considered to be quite adequate for the application of our proposed fault recovery 

solution. This type of control scheme that is derived from a "better" approximation of the 

real system (not obtained by means of linearization of the equations of motion) as shown 

is believed to provide a more appropriate control torque that is required for stabilizing the 

attitude of the satellite for a larger range of operations. 

1.3.2 Fault Detection, Isolation and Recovery 

A Fault Diagnosis, Isolation and Recovery (FDIR) module is in charge of detecting, iden­

tifying and generating a mechanism to allow acceptable performance of the system that is 

subject to a fault. The following are some of the main concepts that are used in the field of 

FDIR: 
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• A fault is considered as a departure from an acceptable range of an observed variable 

or a calculated parameter associated with a process [23], 

• The event or root cause of a fault, is also referred as a malfunction or a failure. It 

is defined, as well, as a permanent interruption or stoppage of a systems ability to 

perform a required function under specified operation conditions [24], 

• a system which includes the capacity of detecting, isolating, identifying or classifying 

faults is called a fault diagnosis system [25], 

• Failure mode is a particular way/approach in which a failure/malfunction could oc­

cur, 

• Fault detection is the determination of the presence of fault(s) in a system, 

• Fault isolation corresponds to the recognition of the kind, location, and time of the 

detected fault. It follows the fault detection/recognition step, 

• Fault identification is the determination of the size and time-variant behavior of a 

fault: It follows the fault segregation/isolation step, 

• Fault diagnosis includes the fault isolation and identification, and 

• Fault modeling is the definition of a linguistic and mathematical model to describe 

a specific fault effect. 

In order to determine the nature of faults, a general classification of the types of faults can 

be found in [23]. This classification separates the faults according to their cause, which 

could be: 
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• Gross parameter changes in a model due to unmodeled processes or interaction of 

disturbances entering the system through model variables, or 

• Structural changes or hard failures in the equipment such that the model equations 

should be restructured or rederived in order to describe the current process situation, 

or 

• Malfunctioning sensors and actuators which cause deviation of plant state variables 

beyond acceptable values. 

Models for failures in actuators, sensors and structural damage can be found in [26], [27], 

and [28]. 

The existing methods for implementing fault detection are classified into qualitative, 

quantitative and process-history based methods in [23], [29] and [30]. These references 

explain that qualitative and quantitative methods belong to the type of detection that is 

based on process model information. The characteristics of these approaches are briefly 

explained below. 

1.3.2.1 Process-Model Based Techniques 

To apply these techniques as addressed in [31], among others, it is of great importance to 

have a fundamental understanding of the process. The interaction between process vari­

ables should be defined through qualitative causal models or quantitative models as de­

scribed below. 
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• Qualitative Causal Methods: 

A cause-effect reasoning about the system's behavior is employed, instead of mathe­

matical relations between variables of the system [32]. These methods mimic human 

reasoning by generating hypotheses on the status of the process; however, they might 

be found to be computationally costly and less certain than other methods. 

• Quantitative Methods: 

The objective of using these approaches [25] is to generate information about the 

location and timing of a fault, using the measurements available in the system as 

well as precise mathematical relationships among them. It is assumed that a precise 

model of the plant is available. State estimation, parameter estimation and parity 

equation approaches are the major sub-classes of model-based fault detection and 

isolation (FDI). 

1.3.2.2 Process History-Based Methods 

In process history based methods, the availability of large amount of historical process data 

is required [30]. The data is transformed and presented as a priori knowledge to a diagnos­

tic system (expert systems and trend modeling methods are widely used in this stage of the 

fault detection). They can also be classified into quantitative and qualitative techniques. 

However, there is not a single method to handle all the requirements of a good detection 

system. Hybrid mechanisms such as those presented in [31] and [33] have been used to 
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overcome these limitations. 

1.3.3 Fault Recovery 

Upon detection of a fault, an "optimal" selection of the possible configurations of non-

faulty components is one of the goals of the fault recovery mechanism. It is also required 

that the quality of the performance under faulty conditions be maintained despite the pres­

ence of faults. 

In [34], it is stated that generating a plan to correct an on-board anomaly, fault, or 

failure remained almost exclusively a ground responsibility. However, considering the cost 

of telemetry and data analysis, as well as the risks of communication delays or failure, on­

board recovery is, nowadays, a desirable feature in aerospace applications. 

Several methods have been studied in the literature such as [35],[36],[37],[38], [39], 

and [27], among others, for applications to control reconfiguration of systems subject to 

failure. A brief review of these work that are employed in fault recovery is described below. 

Reference [40] is an extensive survey on the state of the art on reconfigurable fault-

tolerant control systems. The authors detail that the existing model-based reconfigurable 

control design methods are classified into the following approaches: (a) linear quadratic 
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regulator; (b) eigenstructure assignment; (c) pseudo-inverse; (d) model-following; (e) adap­

tive control; (f) gain scheduling or linear parameter varying; (g) variable structure and 

sliding mode control; (h) model predictive control; (i) feedback linearization and dynamic 

inversion, among others. Other classifications are based on the criteria of the mathematical 

tools used, design approaches, and the way of achieving reconfiguration. 

Multiple-model based reconfiguration methods can be found in [28], [41], and [42]. 

These references have in common the definition of a bank of multiple models and corre­

sponding controllers, according to the type of faults that could affect the system. A switch­

ing mechanism among the models and the corresponding controllers is also a component 

of this solution. 

The use of model-predictive methods is addressed in [43]. A state-space approach 

and a nonlinear-in-parameters neural network is used in [38] to estimate the fault and to 

reconfigure the controller. 

An example of fault recovery using magnetic torquers is found in [35]. The recov­

ery action was determined from ground control (not on-board) and it was commanded via 

telemetry to the failing satellite. Other example of fault recovery in a satellite that uses 

magnetic torquers for momentum damping due to the effect of the attitude control with 

reaction wheels is found in [?], where an optimization mechanism is used to calculate the 

required outputs from the magnetic actuators. 
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The control allocation in over-actuated systems is presented in [45], [46], [47] and 

[48]. The authors introduce algorithms by means of which the control effort is allocated 

among the available actuation resources. 

1.4 Methodology 

The methodology pursued in this thesis can be partitioned in the following steps: First, 

mathematical equations that are needed to represent the system under healthy operating 

conditions will be employed in the implementation of a model. This model will include 

relevant environmental disturbances, and the design and implementation of an adequate 

controller that guarantees the desirable performance of the attitude control system. It will 

also include the model characterizing the dynamics of the actuators. 

Then, the effects of different types of failures in the magnetic torquers will be an­

alyzed and formulated. Based on the model of the system that is operating under faulty 

conditions, the problem of reallocating the required control effort, among the non-faulty 

actuators will be studied. 

Assuming the availability of a fault diagnosis system, the solution to the reallocation 

problem will then be implemented according to the analysis that is made regarding the ef­

fects of each type of fault and the reallocation problem. The solution will be tested through 
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simulations by assuming that the fault detection system has a delay in determining the pres­

ence of a fault. The response of the recovery mechanism will also be evaluated under the 

effect of noise in the magnetic field measurement. 

The implementation of the recovery solution will as well be extended to the realloca­

tion of the control effort and the recovery of the system that is subject to the presence of 

concurrent faults. 

1.5 Contributions of This Thesis 

To the best of the author's knowledge, the problem of autonomous fault recovery in mag­

netic torquers is still an open area of research and the present work constitutes a contribu­

tion to the study of additional capabilities and properties of these type of actuators for the 

attitude control of satellites. A comprehensive analysis of the operation of the magnetic 

torquers is made. The nonlinear control scheme chosen from [19], [5], and [20] is analyzed 

by using the results obtained and the stability of the equilibrium point in the system without 

faults is presented. 

The solution developed takes into account the management of the control authority in 

the system by taking advantage of the non-faulty actuators. In other words, the recovery 

mechanism that is proposed in this thesis does not utilize hardware redundancy as the ex­

isting actuators are used to perform the required control action. A comprehensive stability 

analysis of the faulty system under the recovery mechanism proposed is also included. 
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The effects of the delay in initiating the recovery solution, the presence of noise in 

the magnetic field measurement, and the responses of the system that is recovered from 

concurrent faults are also investigated through numerical simulations. These simulations 

are carried out by using a model that includes relevant environmental disturbances and a 

realistic model of the geomagnetic field. 

A reduction in the average steady state error has been found in response to the recov­

ery mechanism. Positive results include, also, the successful recovery regardless of finite 

delay in the detection of the failure and concurrent failure of two magnetic torquers for 

certain applicable cases. 

1.6 Thesis Outline 

This dissertation is divided into five chapters that are described as follows. Chapter one 

introduces the objectives of this thesis. An overview of the motivations, the statement of 

the problem and a brief discussion regarding FDIR approaches are made. Furthermore, the 

contributions of this thesis are also detailed. 

The second chapter presents the theory and fundamentals of the attitude control sub­

system of a satellite. In the first place, it will describe the different coordinate systems 

that serve as reference to the relative and absolute positions of a satellite. It describes the 
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dynamics and kinematics equations that model the angular rates and positions of a satellite. 

The discussion on the various environmental disturbances to which a spacecraft is subject 

to is also presented. A section of the chapter is dedicated to describing the model that is 

used to represent the geomagnetic field, as well as the generation of its values at satellite's 

position in the orbit. This chapter also introduces the concepts related to the operation of 

the magnetic torquers, the control law used in the development of the present work and 

stability considerations. 

Chapter three contains the details regarding the fault recovery mechanism that is pro­

posed. It shows the model representing each type of failure to which the actuators will be 

subject to, such as Float, Hard Over (HO), Lock-In-Place (LIP) and Loss of Effectiveness 

(LOE). The formulation to the recovery reallocation solution is described and the analyti­

cal results are described. The stability analysis of the closed-loop system recovered from 

failures are also discussed. 

The fourth chapter presents the results that are obtained from the simulations'" of the 

proposed recovery mechanism. The responses of the system under each type of failure are 

shown followed by the corresponding recovery results using constrained solutions to the 

control effort reallocation problem. The simulations results including finite delays in the 

initiation of the recovery after a failure occurs are presented. Furthermore, the responses of 

the system recovered from failures considering the presence of noise in the magnetic field 

measurement are shown. Finally, the responses of the recovery system from the application 

of concurrent faults are also included. 
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The last chapter lists the conclusions and the work accomplished in this thesis as well 

as the open problems that the author considers to be addressed and investigated in future. 
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Chapter 2 

Theory and Fundamentals of Attitude 

Control Subystem 

In this chapter, the concepts that are used in the modeling of the satellite attitude control 

subsystem will be described. First, different coordinate systems that serve as reference to 

the relative and absolute positions of a satellite will be presented. The calculations of the 

position and rate of the satellite are described by means of dynamics and kinematics equa­

tions. -

In addition, the models for the geomagnetic field are formulated, along with the gen­

eration of the values at the satellite's position in the orbit. This model is required for the 

simulation of the operation of the magnetic torquers. In the following sections, the various 

environmental disturbances to which a spacecraft is subject to, such as aerodynamic drag, 

solar radiation and magnetic disturbance torques are also explained. Finally, the operation 

of the magnetic torquers, the control law used in the present work and the corresponding 
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stability considerations are presented. 

2.1 Coordinate Systems 

Different coordinate systems are used in order to identify the diverse forces and torques 

that are acting on the spacecraft as well as to determine its orientation and motion rate. The 

attitude control problem is defined as the generation of a control input so that the desired 

orientation of the spacecraft with respect to a reference frame is achieved. 

Earth Centered Inertial Frame 

This is the inertial frame located at the geographical center of the Earth, as illustrated in 

Figure 2.1. The axes that represent the relative position of any point around the Earth are 

defined as: 

• ix: Pointing toward the vernal equinox 

• iy\ Completing the orthogonal axes frame 

• iz\ Along Earth's polar axis of rotation 

Orbital Frame 

The Orbital frame represents the position of the satellite as a point rotating around the 

Earth. Each axis is defined as follows: 

• 6X: Along the orbit direction 

• oy: Perpendicular to the orbit plane 
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\ Line of Nodes 

Figure 2.1: Orbital elements and inertial reference frame (Adapted from [1]). 

• oz: Toward the center of the Earth 

Body Fixed Frame 

This frame is centered in the geometrical center of the body of the satellite. It has been 

defined to be alligned with the axis of the principal moments of inertia Jx,Jy,Jz, namely 

• bx: Aligned with the principal moment of inertia Jx 

• by: Aligned with the principal moment of inertia Jy 

bz: Aligned with the principal moment of inertia Jz 
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Control Reference Frame 

This reference frame is centered in the body of the satellite. The objective of the attitude 

control is to make the body axis align with the control reference frame. The axis of this 

system of coordinates are defined as: 

• rx: To be aligned with bx 

• ry:To be aligned with by 

• rz: To be aligned with bz 

2.2 Satellite Attitude Modeling 

The kinematics and dynamics equations characterize the angular position and angular rate 

of the system relative to a reference frame, respectively. This section will introduce the 

modeling equations that are employed to calculate the variables ft) and q, representing the 

attitude of the satellite in the orbit. 

The differential equation of the angular rate of the satellite's body frame with respect 

to the Earth centered inertial frame, is described by [3] 

Jai^-aixJcol + Tc + Tj (2.1) 

where J = diag{Jx,Jy,Jz} is the moments of inertia matrix, co'b is the vector in '•R3 describ­

ing the angular velocity of the body axis with respect to the inertial frame, and Tc and Tj 

are the control and disturbance torques, respectively. 
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As it can be seen, equation (2.1) is written in terms of the angular rate (0l
b, defined at 

the body's axis with respect to the inertial frame. The angular rate of interest for the purpose 

of attitude control for tracking a reference trajectory corresponds to the rate of the body 

with respect to the reference frame afh. Thus, it is necessary to obtain a representation of 

the vector ufh, in terms of the calculated (Ol
b and the reference rate (0l

r. The relation between 

the angular velocity of the body, with respect to the inertial and the reference frames, is 

defined as follows: 

(ot = a>r
h + Cr

h(Di -b^r (2.2) 

where Cr
b is the cosine rotation matrix [3] defined in terms of the quaternion parameters 

#1,42, 43, #4 as: 

cr
b = 

l - 2 ( ^ + ^ ) 2(qiq2 + q3q4) 2{qiq-i - q2qA) 

2(<7l<?2-g3<?4) l-2(q\+ql) 2(<?2<?3+<?1<?4) 

2(<7i<3-3 + <72<74) 2(92^3-91^4) l-2(q\ + ql) 

(2.3) 

The matrix in equation (2.3) relates the body and the reference frames. The matrix 

(2.3) can also be represented as: 

Cr
b = {q2

4 - qTq)I + 2qTq - 2q4Q, 

where Q is defined as the matrix: 

Q 

0 -93 q2 

<73 0 -q\ 

-<?2 q\ 0 
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and the quaternions q = [gi, #2,43] and #4 express, in this case, the angular position of the 

body axes with respect to the reference frame. The equations that formulate the attitude 

kinematics are function of the quaternions and are defined as: 

qA = -\{<)Tq (2-4) 

Equations (2.1), (2.2) and (2.4) are used in the derivation of the attitude control law 

and the fault recovery solution. 

2.3 Disturbance Modeling 

The environmental disturbances affect the attitude and orbital control of the satellite; how­

ever, for simplicity it is assumed that the disturbances to the orbital control system are 

compensated for. This section will present the types of disturbances that are taken into 

account in the model of the attitude control subsystem. 

The model of the geomagnetic field in Low-Earth Orbit (LEO) is described first. Since 

the geomagnetic field varies with the position of the satellite with respect to the inertial 

frame, the model of the orbital trajectory followed by the satellite will also be described. 

The section concludes with an introduction to the other types of environmental disturbances 

and explains which of these disturbances will be included in the attitude control model. 
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2.3.1 Model of the Geomagnetic Field in LEO 

The model of the geomagnetic field is a function of the magnetic potential expressed in 

spherical harmonics [2], as indicated in the following equation 

fl(0,A,r) = -VV(0,A,r) 

where B is the geomagnetic field and V is the magnetic potential. The parameters 0, A,, r 

are the latitude, longitude, and altitude of a point respectively, in the Earth-centered equato­

rial coordinates. The magnetic vector potential is formulated with the following function: 

V = « { E [ g n ( O c o s M ) + <'(Osin(mA)](^)("+1)^sin(0)}, 

where P™sin((j)) are the Schmidt semi-normalized associated Legendre functions and the 

parameters g%(t)and h%(t) are calculated as follows: 

W(t) = fG+%(t-to) 

Parameters-g™, g™, h™ and h% are provided in the geomagnetic field measurement 

results such as those referred in [2] and [49], and to = 2005 is chosen for simplicity as the 

reference date of the model and t is the time given in decimal years. The estimation of 

values of the geomagnetic field, using the model parameters in [2] or [49] could be made 

up to the year 2010. 

The geomagnetic field vector B is described by 7 elements [2]. These are: the orthog­

onal components X (northerly intensity), Y (easterly intensity), and Z (vertical intensity, 
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positive downwards), total intensity F, horizontal intensity H, inclination (or dip) / (the 

angle between the horizontal plane and the field vector, measured positive downwards), 

and declination (or magnetic variation) D (the horizontal angle between true north and the 

field vector, measured positive eastwards). These elements are calculated with the follow­

ing equations [2]: 

X(4>,X,r) = - £ (-/n+V £ (g^t)cos(mX) + h^t)sin(mX))dP^{<t>)) (2.5) 
n=l ' m = 0 

12 
F ^ ' A ' r ) = T^flS I A ( " + 2 ) I rn(g™(t)sm(mX)-h™(t)cos(mX))if(sin(<i>)) 

coi,\y)n=l r m=0 

(2.6) 

Z ( M , r ) = - 2 > + l ) ( - ) ( B + 2 ) f (g™(Ocos(mA) + ^(r)sin(mA))^(sin(0)) (2.7) 
n—1 m=0 

F = ^H2 + Z2 (2.8) 

/ / = V ^ + F2 (2.9) 

7 = arctan(—) (2.10) 

H 
Y 

D = arctan(-) (2.11) 
A. 

The elements of interest for the application of this thesis are the North,- East and Verti­

cal intensities as indicated in Figure 2.2. These values conform the vector B — [Bx,By;Bz]
T 

which, when transformed to the coordinates of the satellite body will represent the effects 

of the magnetic field in each one of the directions where the attitude control is applied. 

Low Earth Orbit Trajectory 

The types of orbits that a geocentric satellite can be designed to follow, according to its 

altitude, could be placed at Low-Earth (LEO), Middle-Earth (MEO) or High-Earth (HEO) 
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Figure 2.2: Geomagnetic field elements and coordinates (Adapted from [2]). 

altitudes with respect to the Earth-centered inertial frame. A satellite would be considered 

to be placed in a LEO if its altitude is less than 2000 Km. On the other hand, if the altitude 

of the satellite surpasses 2000 Km but less than 35,786 Km, it is said to be on a MEO. 

Satellites orbiting at higher altitudes will be at HE orbits. 

The application of magnetic torques for attitude control of satellites is possible at 

LEO because at such altitudes the intensity of the geomagnetic field is enough to allow the 

generation of required magnetic torques for the control action. For this reason, and because 

the geomagnetic field is a function of the position of the satellite with respect to the inertial 

frame, the equations to model the orbital trajectory [3] (specifically LEO) will be described 

in this part of the chapter. 
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Figure 2.3: Orbital elements. (Adapted from [3]). 

Figure 2.3 illustrates the elements that characterize any elliptical orbit. These ele­

ments are defined as follows: 

a: Semi major axis, 

e: Eccentricity, 

Q,: Right ascension longitude of the ascending node, 

i: Inclination of the orbit plane, 

tp: Time of perigee passage, and 

(0: Argument of the perigee. 

The radial position of the orbiting satellite can be determined, in terms of the eccentric 

anomaly (E) and the longitude of the semi major axis (a), using the expression below 

r = a(l-ecos(E)) (2.12) 

where eccentric anomaly (E) can be calculated at each time, by applying the following 
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equation 

tan(f) = y ^ t a n ( f ) (2.13) 

The parameter 9 in (2.13) is called true anomaly which represents the angle swept by 

the satellite from the time of passage by the perigee. To obtain the perigee passage time Tp, 

the Kepler's time equation should be used 

^Jn/a3(t-tp)=E-e sin(£) (2.14) 

and the position of the satellite in the orbital plane, in Cartesian coordinates is calculated 

as shown below 

x = rsin(0) 

y — rcos(0) 

z = 0 (2.15) 

Particularly, for a circular orbit, it can be seen in (2.13) that the value of 6 will be 

equal to the eccentric anomaly E, because the eccentricity e is equal to zero. Moreover, 

the semi major axis will be equal to the radius of the orbit, which in a circular orbit will be 

the constant r ~ RE + rs, where Rg is the mean equatorial radius of the Earth and rs is the 

altitude of the satellite above sea level. 

Consequently, Kepler's time equation (2.14) will become: 

^(t-tp)=E = 0 
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The values obtained by applying equation (2.15) are calculated in the Perifocal refer­

ence frame [3]. This reference frame is also an inertial frame which is fixed to the orbital 

plane. Axis x points toward the perigee of the orbit, y is located in the orbital plane, and 

z goes out of the orbital plane, completing the orthogonal reference frame. Therefore, a 

direction cosine matrix must be used to express the position of the satellite in orbit with 

respect to the geocentric equatorial frame. Using < x,y,z > unit vectors describing the geo­

centric equatorial reference frame (Earth-centered inertial frame), and <X,Y,Z> as those 

of the Perifocal reference frame, the components of the former are related to the latter as 

follows: 

where: 

C\\ C21 C31 

C\2 C22 C32 

Cl3 C23 C33 

X 

C\ 1 = cos(H) cos(co) — sin(£2) sin(cu) cos(/) 

C\2 — sin(n) cos(ft)) + cos(Q) sin(ft)) cos(z') 

C13 = sin(£i) sin(i) 

C21 = — cos(H) sin(©) — sin(£2) cos(ft>) cos(/) 

C22 = — sin(H) sin(©) + cos(£2) cos (to) cos(z') 

C23 = cos(ft))sin(i) 

C31 = sin(Q) sin(z') 

C32 = — cos(£2)sin(z) 

C33 = cos(i) 
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Finally, to apply the position values in calculating the geomagnetic field intensity, the 

transformation from Cartesian to spherical coordinates is made, namely 

r=y/X2 + Y2+Z2 

X = arctan(y,Z), 0 < X < 2zr 

(j) = arcsin(Z/r), 0 < (j) < K, 

where r is the altitude, X corresponds to the longitude, and </> is the latitude of the satellite 

with respect to the Earth-Centered reference frame. 

2.3.2 Other Environmental Disturbances 

Besides the magnetic disturbance torque, other environmental forces perturb the attitude 

control system. The types of disturbances that are known to be most significant for the 

attitude control at low Earth orbit are shown in Table 2.1, namely aerodynamic torque, 

gravity gradient torque, solar radiation torque, and magnetic disturbance torque [4]. 

Gravity Gradient Torque 

Due to the non-uniformity of the gravitational field over the satellite, a gravitational torque 

about the body's center of mass exists. This torque is modeled by means of the equation 

shown below 

Tg = 3C0^C°b(3)xJC°b{3), (2.16) 

where C£(3) is the third column of the cosine rotation matrix relating the position of the 

body axis with respect to the orbital frame and C0o is the constant orbital rate. 
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Disturbance 

AV Thruster 
Misalignment 

Aerodynamic 
Torque 

Gravity 
Gradient 
Torque 

Solar 
Radiation 
Torque 

Equation 

s x T 

±pV2CdA{uvxscp) 

3M 
^3U e x( l -U e ) 

Ks(Us-un)A 

us(a + rd) + 

un{2fs+fr<* 
x s c 

Definition of Terms 

s vector distance from center of 
mass to thrust application point 

T vector thrust 

p atmospheric density 
Cd drag coefficient (typically 2.25) 
A area perpendicular to u v 

V velocity 
u v unit vector in velocity direction 
s vector distance from center of 

mass to center of pressure 

H Earth's gravitational coefficient 
3.986 X101 4m3 /s2 

R0 Distance to Earth's center (m) 
1 Spacecraft inertia tensor 
ue Unit vector toward nadir 

Ks solar pressure constant 
4.644 XI0-6 N/m2 

sc vector from spacecraft 
center of mass to area A 

un unit vector normal to A 
us unit vector toward the Sun 
a surface absorptivity coefficient 
rs surface specular reflectance 

coefficient 
rd surface diffuse reflectance 

coefficient 
(Note: a + rs+ r^= 1) 

Table 2.1: Disturbance torques (Adapted from [4]). 

Gravity Torque constitutes as one of the most significant disturbances for the attitude 

control system of a satellite in LEO. 

Magnetic Disturbances 

This disturbance is so significant that specialized compensation is required in order to min­

imize its effect on the attitude control system. Permanent magnets are usually assembled 

to counteract the magnetic dipole of the spacecraft and care is taken in the location of the 

components prone to magnetization upon construction. This is done in order to reduce the 

residual dipole moment of the spacecraft, and thus, the presence of magnetic disturbances. 

More detailed information on how to determine the magnetic dipole moment of a spacecraft 
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can be found in [50]. Physical tests are done in order to accurately calculate the effects of 

the magnetism of the spacecraft. 

Aerodynamic Torque 

This torque is due to the effects of the atmospheric drag, which acts in the opposite direction 

of the velocity vector of the satellite. This type of disturbance can be calculated according 

to the corresponding equation in Table 2.1. However, as considered in [4] this is of more 

interest for the orbital control system. 

Solar Radiation Torque 

As a result of nuclear fusion reactions, the sun emits radiant energy that has a torque effect 

on the surface of the satellite facing the sun. Below 800 Km altitude, acceleration from 

drag is greater than that from solar radiation pressure and above 800 km, the acceleration 

from solar radiation pressure is greater. 

In Chapter 3, it will be shown that, in the worst case, aerodynamic drag and solar 

radiation disturbances are smaller than the magnetic and the gravitational disturbances for 

the small sized satellite that is used in our simulations. 

2.4 Magnetic Torquers 

Magnetic torquers have commonly been used for momentum management of reaction 

wheels, damping augmentation in gravity gradient stabilized spacecraft, and reorientation 
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of the spin axis in spin-stabilized spacecraft. Moreover, it has been shown in [16], [10], 

[11], [51], [52], among others, that their application for 3-axis attitude control produces 

also satisfactory results. 

The authors in [53] show that because of the sharp reduction in the geomagnetic field 

intensity with increasing altitude, the mechanical torques produced by magnetic torquers 

are small in magnitude. Hence, magnetic torquers are not suitable as primary actuators in 

spacecraft that are large or operate at high altitudes. Nevertheless, because of their low 

cost, weight and power requirements, compared to other types of actuators, magnetic tor­

quers provide an attractive option for small satellites operating at low altitudes. 

In this thesis, the study of 3-axis active attitude stabilization is brought to the appli­

cation of actuator-fault recovery. For this reason, this section is dedicated to describing 

the operational mechanism of magnetic torquers and considerations in applying the control 

laws that are used for attitude stabilization. 

2.4.1 Model of Magnetic Torquers 

Magnetic torquers are solenoids enclosing (or not) a magnetic core which produce a mag­

netic moment once a current flows through the coils. In the presence of a magnetic field, 

the magnetic moment generated by a magnetic torquer produces a torque. 

The equation describing the magnetic torque T a as the interaction of the magnetic 
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moment Ma produced by three orthogonal torquers and the geomagnetic field B is given 

by 

Ta = MaxB, 

where the output moment from the actuators Ma corresponds to: 

(2.17) 

Ma = £ kjNjAjicj _ (2.18) 
y=i 

For the j t h actuator, icj is the input current to the coil, Aj is the cross sectional area 

that the coil encloses, kj represents the permeability constant of the material of the core, 

and Nj is the number of coils in the solenoid. It is assumed that all the parameters other 

than / c are known and constant. In other words, the calculation of the control moment is 

interpreted as the calculation of the input currents for each one of the actuators. It is as­

sumed, for simplicity, that the values of kj, Aj and Nj are equal in all the magnetic torquers. 

Using the operation defined in (2.17), the torque generated by each of the actuators is 

reflected in two directions that are perpendicular to the axis of the moment produced. The 

torques due to the magnetic moment from each one of the actuators are formulated in the 

following expressions, where Tai for i = x,y,z represents the torque produced due to the 

magnetic torquer aligned to axis i. We have 

• The moment Max produced by the magnetorquer aligned with the X axis has an effect 

in the Y and Z directions, 

/ 

Tax = 

0 0 0 

0 0 ~Max 

0 Ma 0 

w ^ 

Bv 

KBZ/ 

-BzMax 

y ByMax ) 
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• The torque produced by the magnetorquer aligned with the Y axis is 

/ 

r « , = 

0 0 M ay 

V 

o o o 

-May 0 0 

\ 

/ 

Bx 

By 

\BZ ) 

( 

= 

\ 

BzMay 

~BxMay 

The torque produced by the magnetorquer aligned with the Z axis is 

/ 
0 

-M, az 

-Maz 0 

0 0 

0 0 0 

The total torque for each axis of the satellite's body is a result of the combined action 

of the torquers as presented below 

V 

Bx 

By 

\BZ ) 

( 

= 

\ 

ByMaz 
\ 

BxMa. 

0 
/ 

/ 

Ta = 

BzMay-ByMaz 
\ 

-BzMax + BMaz 

y ByMax-BMay 

2.4.2 Size of the Magnetic Torquers 

The torque capability, as required from the actuators, is a very important sizing parameter 

for the selection and/or design of the magnetic torquers. This control authority must be 

large enough to counterbalance the disturbance torques and control the attitude during ma­

neuvers and following the transient events such as spacecraft separation, deployment, and 

failure recovery [4]. 

The authors in [4] provide various methods to size the required capabilities from 

the actuators. For the purpose of this thesis, the following equations for determining the 

minimum required torque action are used. 
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The torquing capability of an actuator may be set by an acceleration requirement 

such as that arising from an attitude slew maneuver (reorientation maneuver). This 

torque (Tman) can be calculated according to (2.19) or (2.20). 

Tman=J-a, (2.19) 

where J corresponds to the moments of inertia matrix and a is the acceleration re­

quirement 

A6J 

t dur 

where 6 is the maximum change in angle assumed and t^ur is the time required to 

reach such change. 

To cancel the disturbance torques, the norms of the worst case disturbance forces 

acting on the satellite's body are added. 

The worst case disturbance torques and the maneuvering requirement torque is con­

sidered as the total torque required from the actuators, namely 

J-total = l/nan ~r lsp ~r lmag ~r i-aero ~r lg-, (2.Z1) 

where the values Tman,Tsr, Triiag, Taero, and Tg are the maneuver, solar radiation, magnetic, 

aerodynamic and gravity torques, respectively. 

2.4.3 Magnetic Torquers and the Attitude Control Law 

Upon calculation of a required control torque Tc, it is desirable to find the value of the 

magnetic moment that should be obtained from the magnetic torquers. Since the control 
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input corresponds to the magnetic moment Mc, the value of Tc, and the geomagnetic field 

— > 
B, should be used to generate the applicable control signal. 

For the purpose of fault recovery, the controller that will be implemented corresponds 

to the nonlinear control scheme that is presented in [19], [5], and [20]. However, the control 

output is the amount of torque required Tc, expressed in the body's axis, as illustrated in 

Figure 2.4. On account of the constraint imposed by the operation of the magnetic torquers, 

the control moment should be obtained such that the torque produced is as close as possible 

to Tc. With this in mind, the authors in [54], propose to calculate the magnetic moment 

using the following equation 

-»• B x f c 
Mc = _» c (2.22) 

l l * l l 2 

where \\B\\2 is the Euclidean norm of the geomagnetic field vector and the operation x 

corresponds to the vector cross product. By using (2.22), the best possible toque, perpen­

dicular to the geomagnetic field is obtained. 

f \E l p^ 

Q,«) 
Ni'iilnii'.'ir Tc ('Sl'''lllil(ll-»llt '1111 Mc 

-*• \ IJV.!1I: ' I I ' ' IOC.|IK-IS 
T. 

• - • - > • Satellite 

Figure 2.4: Illustration of the attitude control system using magnetic torquers 
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2.4.4 The Cross Product Between the Desired Torque and the Mag­

netic Field 

The following concepts are analyzed in order to describe, in more detail, the operation that 

is used to calculate the magnetic moment that is to be commanded to the actuators. It is 

demonstrated that the torque T a that is obtained by using the operation proposed in (2.22) 

is as close as possible to the control torque T c. 

7 .A. /V A. 7 y\ /v /V 

Definition 2.1 ([55]) Let U = u\i + u^j + uj,k and V = v\i + V2J + V3&: be two vectors in 

9t3 with unitary direction vectors i,j,k. The Cross Product is a binary operation between 

the two vectors in the three-dimensional Euclidean space that results in another vector, 

perpendicular to the two input vectors, namely 
/\ /v A. 

i j k 

U\ «2 M3 

Vl V2 V3 

- (u2V3-U3,V2)l-(uiV3-U3V\)j+(u\V2-U2Vi)k (2.23) 

From the definition of the cross product in (2.23) the triple cross product of vectors 

U, V and W can be calculated by using (2.24), that is also known as the Lagrange's 

Formula, 

{U xV)xW =V(U-W)-~U{V-W) (2.24) 

The following Definitions 2.2 and 2.3 will be employed to compare the vector Tc and the 

vector Ta that is calculated by using equation (2.22). 

U x V = 
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Definition 2.2 ([55]) The projection (Proj) of the torque vector T c on the geomagnetic 

field vector B is the vector: 

-> ~fc~B-+ 
Proj-? B = - » - » B 

Tc B • B 

Definition 2.3 ([55]) Let T — T\i + T2j + T^k be the torque vector and B = B\i + B2j + 

B-sk be magnetic field vector. The Dot Product is the operation in 9t3 —> 91: 

~T • ~B =TiBx+T2B2 + T3B3 (2.25) 

The following Lemma shows that by applying (2.22) , the torque obtained is the 

perpendicular component of the vector T c. 

Lemma 2.1 Let T c and B be two vectors in the Eucledian space 9v. Let Mc, obtained 

from (2.22) be substituted in place of Ma in (2.17). Then, the vector T a will be equal to 

the perpendicular component of T c. 

Proof: Equation (2.17) can be written by using (2.22) as 

-»• (B x ~fc) x ~B 

'= 0P 
Using Definitions 2.1 and 2.3 and the property from (2.24), the vector T a can be 

expressed also as 

~TC(B-~B)-~B(TC-'B) 
T — 1 a — 

fill2 

= lrc-
B{T4'B) (221) 

\\B\\2 

36 



Based on Definition 2.2, it can be said that the parallel component (T c ||) of the vector 

T c, with respect to the vector B, is given by 

TCB 

\\B\\2 
B (2.28) 

Thus, the perpendicular component of T c with respect to the vector B will be: 

TCL=TC-TC\\ 

= T, B 
B 

(2.29) 

Therefore, as illustrated in the Figure 2.5, it can be seen from (2.27) and (2.29) that: 

Ta=Tc± (2.30) 

Mat 

Figure 2.5: Illustration of the operation to calculate the required magnetic moment. 

2.4.5 Closest Vector in Perpendicular Plane to the Geomagnetic Field 

In this section, it is demonstrated that in the Pg plane, the perpendicular to the geomagnetic 

field is the closest vector to the desirable torque which is obtained by using equation (2.22). 
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Figure 2.6: Torque and magnetic moment vectors in orthogonal planes. 

Lemma 2.2 Let B represents the geomagnetic field vector and T c — [Tc\, TC2, T^} be the 

desirable torque vector with angle 6 with respect to the vector B as shown in Figure 2.6. 

The vector T a that is closest to T c in the plane perpendicular to B is the component of 

T c perpendicular to B. The vector T a is obtained by substituting the vector Ma in (2.17) 

with Mc that is calculated as follows 

Jjc = l2l!£ (2.31) 
l l ^ l l 2 

Proof: The shortest distance \D\ between the point {Tc\,TC2,Tci,) and the plane perpen­

dicular to B, is the magnitude of the projection of vector T c to the normal to the plane. In 

addition, the normal to the plane perpendicular to B is defined as 

~B 
n = 

\\B 
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and the shortest distance \D\ is represented by 

\D\= Tc-n 

Therefore, the vector Ta that is closest to T c is 

% = 1*C-~D (2.32) 

It is known that the vector D is the component of T c that is parallel to B and thus, 

the difference between T c and D corresponds to the perpendicular component of T c with 

respect to B. 

It was verified that with the expression 

Mc = ^ ^ , (2.33) 
\\B\\ 

the torque T a = T c _L. Therefore, the closest vector to T c is obtained from (2.31). • 

Using the equation (2.33), the magnetic moment Mc will be perpendicular to the de­

sirable torque T c and the geomagnetic field B. Moreover, vector T a, in (2.17) will be the 

closest vector to T c if (2.31) is used to calculate the control moment. 

The conclusions that we have arrived are indicated in [10], where it is stated that by 

assuming that three independent control torques can be generated, an ideal torque from a 

control law can be applied by using equation (2.31). 
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It is important to note that the actuators using this control input do not always generate 

a torque equal to the desirable T c due to the reasons that are listed below. 

• Only the perpendicular component of T c with respect to B is obtained by applying 

(2.31) to calculate the magnetic moment. This operation is illustrated in Figure 2.5. 

• Only if the the angle 6 between the vectors T c and B is %, the second term of (2.27) 

is equal to zero, and T a = T c. 

• If T c is parallel to B there is no magnetic moment Mc where the magnetic torquers 

can produce the T c. 

In [53], it is stated that in the case where the inertial direction of the ambient magnetic 

field is constant, the component of the spacecraft angular momentum along the direction 

of the magnetic filed remains constant, and hence the attitude dynamics of the spacecraft 

are not controllable. However, in [53] the authors show that the time-varying nature of 

the magnetic field along an orbit leads to the possibility of full attitude controllability. 

The authors also show that the time variation of a constant dipole approximation of the 

geomagnetic field along a closed Keplerian orbit satisfies the conditions of controllability 

if the orbital frame does not coincide with the geomagnetic equatorial plane and does not 

contain the magnetic poles. 

2.5 Nonlinear Attitude Controller 

This section describes the design of a baseline control law that will be used for calculating 

the control moment. The authors in [19], [5], and [20] propose a nonlinear control law by 
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using what they call, as a "continuous-sliding condition, for the attitude stabilization of 

small satellites actuated by magnetic torquers only". The control law is designed for the 

purpose of aligning the body reference frame with the orbital frame. In this thesis, we have 

reformulated the equations so that the control objective is to track a reference trajectory by 

employing the following definitions. 

An auxiliary vector variable is defined by the authors in [19], [5], and [20] as follows 

S = J(Dr
b+ Aqqe (2.34) 

with Aq — diag([Li,L2,L^}) and L/ > 0, V7 = 1,2,3. The vector (o[ corresponds to the 

angular rate of the body axis with respect to the reference frame. Note that if the reference 

rate is constant this vector is equal to the angular rate of the body with respect to the inertial 

frame (Ol
b. Additionally, vector qe is composed of the first three elements of the quaternion 

error, which is defined in [3] as follows 

—qir q<\r q\r -qir 

qir ~q\r qAr -qir 

q\r qir qir q\r 

The operation <g) is referred to as the quaternion product, and qir and qt, for i = 

{1, 2, 3, 4} are the reference and the actual quaternion values, respectively. 

For design purposes, the authors in [19], [5], and [20] assumed that the control torque 

q\ 

qi 

qi 

q4 
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can be produced independently, in the directions of the x, y and z axes. The results of the 

application of this control law shows that the response of the system by using magnetic 

torquers is satisfactory. It will be shown in the next chapter that this control law is also 

effective for the recovery from faults in the actuators. 

The angular velocity of the body with respect to the reference frame (0b that is used 

in equation (2.34) can be expressed by [3] 

QJ£ = GJ£-C£O>; (2.35) 

where (Ol
r is the angular rate of the reference frame with respect to the inertial frame. The 

satellite's motion in terms of the auxiliary variable (2.34) can be formulated using equation 

(2.35) as 

S = J(bl
b- JCr

h(£?r - JCffi + A?qe (2.36) 

Disregarding the effects of the gravity gradient disturbance, the following expression 

can be derived from (2.36) 

S= -coj, xJal-J(C^l)o)i
r-JCr

b6)i. + ~JA(]{cor
bqe4-(O

r
bxqe) + Tc (2.37) 

where Ta corresponds to the applied control torque, and Clr
b is the skew-symmetric matrix 

constructed with the angular rate vector (Ob. Let the desirable torque be defined as 

Tdes = Teq ~ ^S (2.38) 

where A. is a positive constant number and the equivalent torque Teq, is defined as 

Teq = Tc-S (2.39) 

= (Ob x J(0'b + J(Cr
b£lr

b)(O
i
r + JCr

b(bi. - -JAq((O
r
bqe4 - (Or

b x qe) (2.40) 
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The desired control action is resolved into two components: perpendicular and par­

allel to the auxiliary variable vector S. The parallel component Tpri is responsible for di­

minishing the distance of the states to the manifold defined in S, whereas the perpendicular 

component Tprp only acts to make the trajectory move on a sphere surface. Taking this into 

account, the parallel component of the torque in (2.38) is calculated by using the following 

expression 

II sir 

The total magnetic moment to be commanded to the magnetic torquers is calculated 

from the following equation 

Bh x TDri 

and the applied control torque for a system without failure is given by 

- Ta=McxBb (2.43) 

2.6 Stability Analysis 

The nature of the attitude equations of a magnetically actuated spacecraft is nonlinear and 

time varying. The latter is due to the variations of the geomagnetic field along a given 

orbit. Attitude controllability of the dynamics of a spacecraft that is actuated by magnetic 

torquers is discussed in detail by the authors in [53]. The authors in [53] demonstrate 

that the time variation of a constant dipole approximation of the geomagnetic field along a 

closed Keplerian orbit guarantees the strong accessibility and controllability of the attitude 
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dynamics. This, in the case where the orbital plane does not coincide with the geomagnetic 

equatorial plane and does not contain the magnetic poles. 

As mentioned earlier, the system is modeled by the equations that are listed below. 

J(bi = -G)ixJ<Di + Tc 

(4 = <4-crbG>i-

<?e4 = 

S = 

Tc = 

±eq ~ 

--^(cor
b)

Tqe 

= J(ol + Aqqe 

{Teq-X)TS 

~ w 
= -S + Tc (2.44) 

It can be shown, following the proof that is presented by [5], that the Lyapunov func­

tion candidate in (2.45) is positive definite for all values of S if the torque Tc is the torque 

that is applied to the system (Tc = Ta in equation (2.39)). 

V = ^STS (2.45) 

The derivative of V along the trajectories of the system described by (2.44) is 

V=STS 

= ST(TC-Teq) 

= -A||S| |2 (2.46) 

which is negative definite for all values of S. This proves that the equilibrium [ft>£, qe, q^\ = [0,0,1] 
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is asymptotically stable [56]. 

However, our closed-loop system does not have the control input Tc, but instead the 

result of the cross product between the magnetic moment as calculated in equation (2.42) 

and the magnetic field B, as indicated in equation (2.43). This means that the the closed-

loop equations are to be modified and the above mentioned Lyapunov function will not 

be useful to demonstrate asymptotic stability of the closed-loop system that is actuated by 

magnetic torquers. 

It should be pointed out that the purpose of this thesis is not that of designing a control 

law for the attitude control of a satellite. It is beyond the scope of this work to present a 

formal proof of stability of the closed-loop system, however, we will leave indicated the 

closed-loop equations for future reference of the problem. 

The actual control input is represented by the following equation 

_McxB 

\\B\\2 

=ww{BxS)xB~w{BxS)xB (2'47) 
and the closed-loop equation can be expressed in terms of the variable S as follows 

S = Ta~-Te eq 

Ipa^ / „ „ A 

-\\Bnsf{BxS)xB~w{BxS)xB~Teq (2,48) 

If the value of Teq were sufficiently small, the derivative of the Lyapunov function 
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would be negative semidefinite such that 

V = STS 

= -TrmST[(BxS)xB] (2.49) 
\\B\\ 

by knowing that 

ST[(BxS)xB] = \\BxS\\2 

The requirements for this condition to hold (Teq = 0) are not studied in the present 

work. However, the results of the stable system as described by equation (2.44) are pre­

sented in Section 4.2, where suitable gains X and Aq are found to make the response 

bounded. 

2.7 Chapter Summary 

In this chapter fundamental concepts are introduced in modeling of the attitude control 

subsystem of a LEO satellite using magnetic torquers as actuators. Furthermore, the de­

scription of the coordinate systems, attitude dynamics and kinematics equations, as well as 

the environmental disturbances affecting the system are also presented. 

The model of the magnetic actuators, the geomagnetic field and design of a nonlinear 

control law to meet the goal of tracking a given reference trajectory have been introduced, 

as well as a discussion on the stability of the closed-loop system without fault. 
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The next chapter will explain the fault recovery mechanism that is proposed in this 

thesis. It will contain the model of each type of fault to which the actuators are prone 

to. It will include problem formulation as well as analytical solutions to the problem of 

reallocating the control effort when one actuator is subject to a failure. The stability analysis 

of the recovery solution is also presented. 
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Chapter 3 

Satellite Fault Recovery using Magnetic 

Torquers 

This chapter presents the derivations that are employed to develop the recovery solution to 

actuator faults. The first section of the chapter will describe the general representation of 

the types of faults that might affect the actuators. The second section will introduce the 

model of each type of fault, parameterized for the specific use of magnetic torquers. Fol­

lowing the-detection; classification and identification of faults, the proposed fault recovery 

mechanism and analytical solutions to the reallocation problem as well as a discussion on 

the stability of the closed-loop system under recovery will be presented. 

3.1 Types of Faults 

Dynamic control systems may be subject to faults in the actuators, sensors or abrupt changes 

in their physical structure. This work is focused on the study of failures in actuators. In this 
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section we present the parameterization of faults that is adapted from [26], which covers 

several different cases due to control effector faults. 

First, it is assumed that three actuators are aligned to the body frame axes, thus having 

a direct effect in the generation of an output in three orthogonal directions, namely 

K(t) =diag[k\,k2,k-i) 

The above matrix represents in the model the gain values that characterize the effi­

ciency of each of the actuators present in the system. According to the type of a fault, the 

total output from the actuators ua(t) can be classified into 

K{t)uc{t) ki(t) = iyt<t0,i= 1,2,3 

K(t)uc(t) 0 < £ <kif(t) < 1,VY <tf 

ua{t) = { K(t)uc(t) ki(t) = 0,Vf < tf 

K(t)uc + aci(tf) kiit) = 0,Vf < tf 

K(t)uc + uci{tf) ki(t)=0,Vt <tf;uci(tf) = uminoruMax HO (Hard over) 

(3.1) 

where ua(t) — [uai(t),ua2(t),ua3(t)]T corresponds to the actual output produced by the ac­

tuators; uc(t) = [uc\{t),uC2{t),uci{t)}T is the control input commanded by the controller 

and uci{tf) is a constant fault value. In case of LIP fault, uci(tf) is a value within the range 

of operation of the ith actuator frozen at the time of failure (tf), whereas for the case of HO 

fault, uci(tf) is either the positive (umax) or negative (umi„) saturation value that character­

izes the failing actuator. 

No failure 

LOE (Loss of effectiveness) 

Float 

LIP (Lock-in-place) 
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The above mentioned representation and classification of faults will be employed to 

parameterize the effects of failures in the magnetic torquers. In such case, the actual output 

of the magnetic torquers will be presented in terms of the torque produced by the interac­

tion of the magnetic moment with the geomagnetic field. The total torque produced will be 

noted by Ta and the magnetic-moment control input will be Mx,My and Mz for each one of 

the actuators. 
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Figure 3.1: Illustration of faults in a typical control signal. 

Figure3.1 shows an example of the effects of different faults on a typical control 

signal. At time 2 the signal is subject to an HO failure where the magnitude decreases 

linearly until it reaches the negative level of saturation. An HO failure may also bring the 

signal to the positive saturation level. The model presented for the HO fault in equation 

(3.1) does not make explicit the rate of change with which the output from the failing 
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actuator reaches the saturation. The model assumes that the saturation value is reached 

instantaneously. At time 4, the failure that is represented is a 75% LOE. A float type of 

failure is present at time 6, where the value of the signal is equal to zero and finally, an LIP 

failure is shown at time 8, where the signal locks in a nonzero value. 

3.2 Definitions and Models of Faults in Magnetic Torquers 

In Section 2.4.1 it was discussed that the total torque (Ta) produced by the actuators in the 

healthy condition is given by 

/ 

T„ 

BzMy~ByMz 
\ 

-BZMX+BXMZ 

y ByMx-BxMy j 

(3.2) 

where Bx, By, Bz are the components of the geomagnetic field in the satellite's body frame, 

and Mx,My, Mz are the magnetic moments produced by each actuator. 

Following the classification that is described in (3.1), each fault in the magnetic tor­

quers (for instance, in the torquer aligned with the X axis) can be represented as described 

below. The representation of faults in the actuators aligned with the Y and Z axes can be 

stated similarly. 
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Float in the X-torquer: The magnetic moment Mx — 0, and 

Ta = 

( 
0 0 0 

0 1 0 

0 0 1 

\ / . . \ 
MY 

Mv 

BZMy - ByMZ 

-BXMZ 

\ 

x 

/ \ 
Bx 

Bv 

\BzJ 

(3.3) 

BXMy J 

Loss of Effectiveness (LOE) in the X-torquer: The control magnetic moment Mx gets 

multiplied by a gain 0 < k < 1, and 

Ta = 

/ 
k 0 0 

0 1 0 

0 0 1 

Mx 

My 

\Mzj 

X 

( \ 
Bx 

By 

\BZ) 

BzMy-ByMz 

-Bz(JcxMx)+BxMz 

By(kxMx)~BxMy 

(3.4) 

/ 

• Lock-in-place (LIP) or Hard over (HO) in the X-torquer: The representation of the 

HO and the LIP faults has the same structure. The parameter Mx could take the 
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values of MLIP or Msat, respectively, and 

/ 

Ta = 

/ 

0 0 0 

0 1 0 

0 0 1 

Mx 

My 

{MZ) 

+ 

(- \ 
Mx 

0 

{ ° J 

X 

Bx 

By 

\BZ) 

BzMy~ByMz 

\ 

\ 

-BzMx(tf)+BxMz 

ByMx(tf)-BxMy 

(3.5) 

3.3 Recovery From Actuator Faults 

The recovery mechanism proposed below corresponds to the reallocation of the control 

effort among the "capable" actuators, such that the torque action generated is as close as 

possible to the required control torque. Once the control law calculates the required torque 

Tc, if the actuators are faulty then the recovery mechanism is responsible and is tasked to 

redistribute the required moment among the remaining healthy actuators. 

For the scenarios studied (faults in the actuator that is aligned with the body's X axis 

without loss of generality), the reallocation solution should find values for M*,M* and M* 

in the case of LOE fault, and values of M* and M*, in all the other faulty cases, as shown 

in the expressions below. 
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• In the case of a float fault in the X-torquer, the action torque should be such that 

/ 

Ta = 

BzM;-ByM* 

-BXM*Z 

\ 

-BXM; 

(3.6) 

In the case of a Loss of Effectiveness fault in the X-torquer, the solution will produce the 

action torque 

/ 

Ta = 

BzM;-ByM* 
\ 

(3.7) -Bz(kxM*x)+BxM* 

y By(kxM*x)~BxM; j 

• In the case of a LIP or HO fault in the X-torquer, the solution found will produce the fol­

lowing action torque (note that the HO fault becomes a LIP fault in one of the saturation 

limits) 

/ 

Ta = 

BzM*-ByM* 
\ 

-BzMx(tf)+BxM* 

y ByMx(tf)-BxM; j 

(3.8) 

3.4 Implementation of a Fault Recovery System 

Figure 3.2 depicts the modules that conform the fault recovery system developed. The 

descriptions of each component of the attitude control subystem with fault recovery for 

actuator faults are provided below. 

• Attitude Control: This corresponds to a nonlinear controller designed to guarantee sta­

bility of the system without faults. 
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Figure 3.2: Attitude control subsystem augmented with a fault recovery for faults in the 

magnetic torquers. 

• Fault Detection and Isolation (FDI): Is in charge of generating fault alarms and infor­

mation about the type and magnitude of the fault(s). 

• Control Allocation and Recovery: Receives information from the FDI unit as well as 

current (measured or estimated) values of the states and attitude control. It generates the 

new distribution of the control effort among the magnetic torquers when the FDI system 

reports a fault. If no fault alarm is received, it calculates the required magnetic moment, 

using the cross product operation in (2.31). 

• Model of Actuators: This block contains the model of three orthogonal magnetic torquers 

aligned with the body's coordinate frame. Each model of the magnetic torquer includes 

a model of all the possible faults. The model of faults receives information from the FDI 

unit and generates a signal that represents the estimated performance of each magnetic 
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torquer according to its current status. 

• Model of Geomagnetic Field: This block represents the model of the geomagnetic field, 

calculated in the coordinates frame of the body as a function of the position of the satel­

lite in a circular orbit. 

• Orbital Trajectory: Contains the model of a LEO trajectory. Determines the position of 

the satellite with respect to the Earth-centered inertial frame in time. 

• Actuator: Represents the set of orthogonal actuators in charge of producing magnetic 

moments and magnetic torques when interacting with the geomagnetic field. 

• Satellite: Model of dynamics and kinematics equations of motion of a satellite including 

the effects of environmental disturbances. 

It is well-known that the FDI module might provide delayed information and perhaps 

some level of uncertainty regarding the fault detection time. As a consequence, the system 

might be out of bounds at the time the FDI module generates the corresponding fault alarm 

and when the recovery action is initiated. Additionally, it is understood that the measure­

ment of the magnetic field might also carry inaccuracies and delays. As shown in Chapter 

4, the effects of the delays and measurement noise will be incorporated in the evaluation of 

the recovery system through numerical simulations. However, for the sake of simplicity in 

this chapter the following common assumptions are made: 

• In the present work the fault identification is assumed to be accomplished instantly. Nev­

ertheless, in the fourth chapter, it will be shown that for some finite delays, the proposed 

recovery mechanism still remains effective. 
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• It is assumed for simplicity that the values measured (or calculated) for the geomagnetic 

field at each time are accurate. 

3.5 Control Reallocation Problem 

The recovery strategy will demand the best possible magnetic moments that actuators may 

generate, by minimizing the error between the required torque and the torque that can be 

produced by the healthy magnetorquers. Towards this end, let us define the error function 

according to: 

fe(M*) = (Tcx - Taxf + (Tcy - Tayf + (Tcz - Taz)
2 (3.9) 

where Tc and Ta correspond to the desired control torque and the applicable torque, re­

spectively. The applicable torque is defined for each type of fault from (3.6) - (3.8). The 

following theorems will be applied for analysis of the results that are obtained from our 

proposed optimization problem. 

Theorem 3.1 ([57]) Let f : Q. —> 3i, f E C2, be defined on an open convex set Q. E 9^n. 

Then, f is convex on Q. if and only if for each x E £1, the Hessian F(x) off at x is a positive 

semidefinite matrix. 

Theorem 3.2 ([57]) Let f : CI —» 9? be a convex function defined on a convex set Q, C 9?". 

Then, a point is a global minimizer of f over Q. C 9?" if and only if it is a local minimizer 

off-

We can show that the cost function chosen for the reallocation problem is convex and 

the theorem below states this result. 

57 



Theorem 3.3 The function fe{M*) in (3.9) is convex for all the faults that are defined and 

for all the values ofM* C 9^3. 

Proof: For the fault scenarios that are considered in the actuator that is aligned with the 

body axis X, let the variables Taj with j — {x,y,z} in (3.9) be substituted by the applicable 

torques from (3.6) to (3.8). The Hessian matrix corresponding to each case is computed as 

follows. 

• Float, HO and LIP Faults: 

In these cases, the cost function is defined in terms of the variables M* and M* Thus, 

the matrix F is given by 

F(M;,M*Z) = 

2BZ -\-2Bx —1BzBy 

-1BzBy 2By -\-2Bx 

(3.10) 

The corresponding eigenvalues of the above matrix are given by 

h = 2B2
X 

X2 = 2{B2
X+B2

y+B2
z) 

LOE Fault: 

The error function (3.9) was formulated in terms of the variables M*, M* and M* and the 

loss of effectiveness gain k. Therefore, the Hessian matrix is of size 3x3 and is defined 

as 

(3.11) F(M;,M*Z) = 

2k2B2
z+2k2BJ 

-2BxkBy 

—2BxkBz 

-2BxkBy 

2B2
Z+2B2

X 

—2ByBz 

-2BxkBz 

—2ByBz 

2B2 + 2B2 
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Furthermore, the eigenvalues of the Hessian matrix (3.11) are given by 

Ai = 0 

A2 = 2B2
X + 2BJ + 2B2 

A3 = {2B2
z+2B2)k2 + 2B2

X 

It can be seen from the eigenvalues of the Hessian matrices (3.10) and (3.11), that for 

all values of Mx € 9t3, the Hessian matrix of function fe is positive semidefinite. Similar 

results are obtained if the analysis is carried for faults in the other two actuators. It can 

be concluded that the function fe is convex for all types of faults and all values of M*, by 

applying Theorem 3.1. • 

According to the results that are formulated in Theorems 3.2 and 3.3, it can also be 

concluded that the solutions found from the optimum reallocation of the control effort will 

yield a global solution to the problem considered. 

The following section describes the formulation and the solution to the control real­

location problem. 

3.6 Analytical Solutions to the Unconstrained Control Re­

allocation Problem 

The problem of control reallocation was defined in the previous section in terms of an 

unconstrained optimization framework. Given that the cost function (3.9) is convex, the 
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following corollary can be employed to obtain the corresponding solutions. 

Corollary 3.1 ([57]) Let f : Q. —> 9?, / £ C1, be a convex function defined on the convex 

set £1 C Ren. Suppose the point x* £ Q. is such that 

V/(x*) = 0. (3.12) 

Then, x* is a global minimizer off over Q.. 

Below the first order sufficient conditions under each type of fault are obtained by 

using the Corollary 3.1. Additionally, the solutions to the unconstrained reallocation prob­

lem are given for each fault case in the actuator that is aligned with the X body axis. The 

results for the faults occurring in the Y and Z magnetorquers are similar and therefore are 

not stated. 

3.6.1 System Subject to Float Fault 

The cost function for this operating condition is adapted from (3.9) and by using (3.6) we 

obtain 

fFioat(M;,M*z) = (Tcx-M;Bz + M*By)
2 + (Tcy-M*zBx)

2 + (Tcz-M;Bx)
2 (3.13) 

The corresponding gradient vector is given by 

^fFloat — (3.14) 
-2BZ{TCX - M;BZ + M;By) + 2BX(TCZ + M*yBx) 

2By{Tcx -M*yBz + M*zBy) -2Bx(Tcy -M*BX) 

and by setting (3.14) equal to zero, and solving for M* and M*, the following solution is 
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obtained 

M, 

AC 

, _ (BXBZTCX - TCZB2
X -B2TCZ + ByBzTdesy) 

BX(B2+B2+B2) 

(—BzByTcz + BZ* Tcy + BxTcy — BxTcxBy) 
(3.15) 

BX(B2+B2+B2) 

This corresponds to a unique solution for the reallocation of control effort when one 

actuator is subject to a Float fault. 

3.6.2 System Subject to LOE Fault 

Similar to the previous case, the error function from (3.9) is defined in this case by using 

(3.7), namely 

fLE(M*,M*M*) = (Tcx-M;Bz + M*By)
2 + (Tcy-M*Bx + kM*Bzf + (Tcz + kM*By-M*yBx)

2 

(3.16) 

V/i LE 

The gradient vector is obtained according to 

2Bzk(Tcy - M{BX + kM*xBz) - 2Byk(Tcz + kM*By - M*BX) 

-2BZ{TCX - M;Bz+M*By) + 2BX{TCZ + kM*By - M;BX) 

2By(Tcx-M;Bz+M*By)-2Bx(Tcy-M*Bx) 

and by setting (3.17) equal to zero, and solving for Mx, M* and M* we get 

M*=MX 

(3.17) 

M; = 

MI 

(BXBZTCX - TczB
2
x-B

2
yTcz+ByBzTdesy) +M*kBy(B

2
x+B2

y+B2
z) 

BX(BI+B*+Bj) 

{-BzByTcz + B\ * Tcy + B2
xTcy -BxTcxBy) + M*kBz(B

2
X + BJ + B2

Z) 
(3.18) 

BX(B2+B2+B2) 

The above implies that any value for Mx could be chosen and substituted in the so­

lution for M* and M*. There is no unique solution to the recovery problem. We have 
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determined to use Mcx which corresponds to the desired magnetic moment. This value is 

calculated by using (2.42). 

3.6.3 System Subject to LIP or HO Fault 

When an LIP or HO fault occurs, the magnetic moment produced by the failing actuator 

freezes. This happens at a value within the saturation limit for an LIP fault, and equal to 

the saturation moment for an HO fault. The representation for the error function derived 

from (3.9) and the unconstrained optimization solutions are basically the same, that is 

fLIP(M*M*z) = (Tcx-M;Bz-M*zBy)
2 + (Tcy-M*zBx + MxBz)

2 + (Tcz-MxBy + M;Bxf 

Therefore, the gradient vector is defined as 

V/Ltf» = 
-2BZ(TCX - M;BZ + M*By) + 2BX(TCZ - MxBy + M*yBx) 

2By(Tcx-M;Bz + M*By) - 2Bx(Tcy - MxBy + M*Bx) 

and the solution for M* and M*, when (3.20) is set to zero is given by 

M; = 

M* = 

(B^MX + BxMxBy - B2
XTCZ + ByB

2Mx + BXBZTCX + ByBzTcy - B2
yTcz) 

BX(BI+Bj+Bl) 

(BZB2MX + BZB2MX + Bl~Mx + B2Jcy - BzByTcz + B2Tcy - BxTcxBy) 

Bx{Bl+B? + B\) 

(3.19) 

(3.20) 

(3.21) 

As stated in Theorem 3.3, due to the convexity of the cost function (3.9), the solution 

that is obtained for the reallocation of the control moment in case of each fault is global. 
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3.7 Analytical Solutions to the Constrained Control Real­

location Problem 

The solution to the unconstrained control allocation problem in the event of a fault in any 

of the actuators requires a division by the value of the magnetic field in the axis of the fault 

as shown in equations (3.15), (3.18) and (3.21). It is also known that as the position of the 

satellite approaches the poles or the equator the behavior of the magnetic field changes so 

that the strength of the yaw (Bz) and pitch (By) components diminish, respectively. This 

implies that the solution to reallocate the control effort will generate very large torques, 

which may not be physically possible for a magnetic torquer. It should be noted that each 

actuator is capable of producing control only up to its saturation moment. 

Consequently, a constrained formulation of the reallocation problem is necessary. The 

results are obtained for each type of fault as shown below. This constrained optimization 

problem is formulated as follows: 

" Min fe = (Tcx-Tax)
2 + (Tcy-Tay)

2 + (Tcz-Taz)
2 

Subject to: 

Msat,x,l <M*< Ms(us,2 

Msatj,i < M* < Msat^2 

Msat^i < M*z < Msat;Zt2 (3.22) 

where MsatyX^ for example, is the upper saturation (positive) moment for the torquer 

aligned with the X body axis, and Msat^i is the lower saturation (negative) moment. It 
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is assumed, for simplicity and without loss of generality, that the upper and lower satu­

ration moments are equal in magnitude. In addition, Tcj and Taj, for j = {x,y,z} are the 

desired and applicable controls, respectively. 

The concepts applied to solve the constrained reallocation problem are first introduced 

below. 

Definition 3.1 ([57]) An inequality constraint gj (x) < 0 is said to be active at x* ifgj (x*) = 

0. It is inactive at x* ifgj[x*) < 0. 

This amounts to defining gj = 0 (an active constraint), when the hypothesis of the 

solution is that the corresponding actuator is saturated. 

Definition 3.2 ([57]) Let x* satisfy g(x*) < 0, and let J(x*) be the index set of active in­

equality constraints, that is, 

J(x*)±{j:gj(x*)=0}. 

Then, we say thatx* is a regular point if the vectors 

Vgj(x*),l<J<m,jeJ(x*) 

are linearly independent. 

Theorem 3.4 ([57]) Let f : W —•> 5R, / e C1, be a convex function on the set of feasible 

points 

a = {x e 9?" : g(x) < 0}, 
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where g : 9T -> 9V, g 6 C1, andQ is convex. Suppose there exist x* G £1, jU* £ 9?p, -ywc/i 

rta£ 

7. / i * > 0 

2. D/(x*) + /i*TDg(x*) = Or; and 

3. jU*Tg(x*) = 0. 

77zera, x* w a global minimizer off over £1. 

Let us now define the following matrix 

L ( X , M ) = F ( X ) + [MG(X)], (3.23) 

where F(x) is the Hessian matrix of/ atx, and the notation [JUG(JC)] represents 

[/iG(x)] = jU!Gi(x) + • • • +juGp(x), 

where Gj(x) is the Hessian of the constraint gi(x) at x that is given by 

Gi(x) = 

dx\dx\ 

d282 
dx2dx\ 

d2gP 
dxndx\ 

d28i 
dx\ dx„, 

d2
82 

dx2dx„. 

dh 

Define also the set 

t(x*,H*) = {y : Dgj(x*)y = OJ E J(x*,H*)}, (3.24) 

where J(x*, jU*) = {; : gj = 0, jU* > 0}. 
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The second order sufficient conditions are stated in the next theorem to identify the 

solutions to the optimization problem. 

Theorem 3.5 Second-order Sufficient Conditions. ([57]) 

Suppose f,g^C2 and there exist a feasible point x* e 9t" and vector (i* e 3ip such that: 

1. /i* > 0, £>/(x*) + ji*TDg(x*) = 0 r , jU*Tg(**) = 0; and 

2. For ally G f (x*,fi*),y / 0, we haveyTh(x*,(l*)y > 0. 

Then, x* is a strict local minimizer off subject to g(x) < 0. 

For the problem under study, the inequality constraints g,-, for i = 1,2, • • -,6, are de­

fined as follows. 

81 = Wsat,x\ ~M*X ; g2 = -\Msat,x\ -M* 

83 = \Msat,y | - M* ; g4 = - \MsatJ | - M* 

g5 = \MsatiZ\-M*z ; ' g6 = -\Msat,z\-M* (3.25) 

where \Msatj \, j = {x, y, z} is the magnitude of the saturation moment for the actuator along 

the corresponding body axis. For simplicity, it is assumed that this value is equal for all 

the magnetic torquers (e.g. Msat^\ — ~Msat^2,iov i = x,y,z in equation (3.22)) and it is 

referred to asMsaI. 

For each type of fault, the second order sufficient conditions in Theorem 3.5 are ap­

plied in order to find a solution to the problem in (3.22). 
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3.7.1 System Subject to a Float Fault 

In presence of a float fault (in the actuator that is aligned with the body axis X), the gradient 

vector is obtained in terms of the variable moments M* and M*. The corresponding per­

formance index for this case was given in (3.13) and its gradient in (3.14). The first order 

necessary conditions for this faulty operating mode are governed by 

-2(TCX + MzBy -M;BZ)BZ + 2{TCZ + M*yBx)Bx + jU3* - tf = 0 (3.26) 

2(Tcx+M*zBy-M*yBz)By - 2(Tcy -M*BX)BX + £ - M6* = 0 (3.27) 

^(M;-Msat) + ̂ (-M;-Msat) + ̂ 5(M*-Msat) + ̂ 6(-M;-Msat)^0 (3.28) 

ti>0, V/ = 3,4,5,6 (3.29) 

The function L{M* ,i±*) defined in (3.23) is equal to the Hessian matrix H of fFloat given 

in (3.13), since G/, / = {1,2, •• ,6} is identically zero. The Hessian matrix is given by 

H(fFloat(M*)) = 
2BZ -\-2Bx —2BzBy 

2BzBy 2By -\-2Bx 

(3.30) 

The set of constraints, from (3.25), is reduced to g3,g4,g5 and g(,, since the value of 

Mx = 0 lies within the saturation values (gl and g2 are always inactive constraints). 

The solution to the constrained problem should be obtained by evaluating different 

combinations of assumed active and inactive constraints. For the present problem, it is 

only possible to leave one constraint active at a time, so that the number of equations is 

equal to the number of variables to solve for, namely, My,Mz and /i(* such that gi(M*) = 0 

(for the active constraint). 
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All constraints are inactive 

The solution for M* is the same as that in the unconstrained case as given by (3.15). This 

solution will be valid only if the values for M* are smaller than the saturation moment 

Msat. 

• Constraint #3 or §4 is active 

With this hypothesis, it is assumed that M* is equal to — \Msat\ or \Msat\, the negative or 

the positive saturation values, respectively. The solution is presented in the following 

form 

M* 

0 0 0 

0 0 0 

-By Bx 0 

lcy 

lcz 

+ M. sat 

0 

(B2
x+B2

y) 

ByBz 

}/(B2
x + B2) (3.31) 

From the first order conditions, the values of /X3 and [14, namely the multipliers corre­

sponding to the active constraint for the candidate solution are also found. By assuming 

saturation of the Y magnetorquer, [IT, is obtained to be 

-2Bx(MsatB
3
x + UsatBxB\ + MsalBxB) - BXBZTCX + TCZB^ + BJTCZ - ByBzTcy) 

M3 = B2
y+Bx 

(3.32) 

It follows that determining analytically the sign of / i | and identifying the feasibility 

of the hypothetical solution according to the condition (3.29) is not trivial due to the 

time varying nature of the magnetic field vector B . For implementation purposes, this 

hypothetical solution should be verified by evaluating the multipliers at each time. 
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Let us assume that this value is positive (|U| > 0), which corresponds to a possible 

solution to the optimization problem. Hence, the second order condition from Theorem 

3.5 should also be satisfied. Toward this end, first, the set t is defined 

T = {y:D83y = 0} = {y.[l,0}y = 0} 

= {[0,a}T,\/a eft} (3.33) 

We now have 

yTL(fFi0at)Y = 2a2(Bx+By)
2. (3.34) 

This implies that the matrix L{fpioat) is positive definite for all y G f and that if the 

solution (assuming that the actuator in the Y axis is saturated in the positive value) is 

feasible (fl^ > 0), it will be a strict local minimum. Furthermore, according to Theorem 

3.4, this will be a global minimizer of problem (3.22). 

Similarly, the solution by saturating the actuator in the Y axis corresponding to the 

negative saturation moment is obtained as shown below 

, _ -2Bx(MsatBx +MsatBxB
2

z +MsatBxB
2

y +BXBZTCX - TCZB2
X - B2

yTcz + ByBzTcy) 

(3.35) 

T = {y:[- l ,0]y = 0} = { [ 0 , a ] r , V a e * } 

which is the same vector that is used to obtain (3.34). 
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• Constraint g$ or g^ is active 

This implies thatM* is made equal to — \Msat\ or \Msat\, that is 

M*= < 

0 0 

Bz 0 

0 0 

0 

-Bx 

0 

*cx 

ley 

*cz 

+ M: sat 

0 

ByBz 

(B2
x+Bj) 

}/(B2
x+B2

z) (3.36) 

The values for /I5 and ^6 are given by 

-2Bx(MsatBx + MsatBxB
2
z+MsatBxB

2 +BzByTcz - B2^ - B2
xTcy + BxTcxBy) 

B2+B2 

-2BX(MsatBx + MsatBxBz + MsatBxBy - BzByTcz + BzTcy + BxTcy - BxTcxBy) 

Ms = 

M6 B2+Bj 

As mentioned earlier, it is assumed that for some values of Bx,By and Bz, we have 

fis > 0 or jU6 > 0. For these to be feasible solutions to the constrained optimization 

problem, the second order sufficient condition should be satisfied for all y £ f = {y : 

Dgi = 0J e 1}, namely 

f = {y:Dg5y = 0} 

= {y : [0, l]y = 0} 

= {[a,0]T} 

f = {y.Dg6y = 0} 

= {y:[0,- l ]y = 0} 

= {[a,0] r} 

It can be verified that in these two cases, y1L(fpioat)y > 0 is satisfied. Therefore, both 

solutions, if feasible, are global minimizers, as discussed in the previous case. 
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3.7.2 System Subject to an LIP Fault 

In presence of an LIP fault, moments M* and M* and the multipliers ju|, ju|, ^i|, /l^ should 

be found from the system of equations provided below 

-2(TCX + M*zBy-M;BZ)BZ + 2{TCZ + M*yBx-MxBy)Bx + jU3* - jU4* = 0 (3.37) 

2(Tcx + M*By-M;Bz)By-2(Tcy-M*Bx+MxBz)Bx + n*5-H*6=0 (3-38) 

^(M;-Msat)+^(-M;-Msat)+^5{M*z-Msat)+^(M;-Msat)^o (3.39) 

H?>OVieJ = {i:gi(M*)=0} (3.40) 

The Hessian matrix L(M*,n*) = H(fUp), since for all i = 1,2, • • -,6, Gt(M*) = 0. 

This matrix is equal to the matrix defined in (3.30) corresponding to the float fault. 

The solutions, under the hypothesis of /x(*, where only one constraint is active at a 

time are presented below. 

• All constraints are inactive 

The result for M* is the same as in the unconstrained case as presented in (3.21). As 

mentioned earlier, this will be a feasible solution only if the result satisfies all of the 

constraints g(M*). 

• Constraint gj, or g4 is active 

The hypothesis implies that M* is equal to — \Msat\ or \Msat\, the negative or positive 
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saturation moments, respectively. The following minimum candidate was obtained 

' 

< 

k 

0 

0 

-By 

~ 
0 0 

0 0 

Bx 0 

From the set of equations (3.40), the result for the multipliers n% (for saturation in the 

positive value of Msat) and / i | (for saturation in the negative value of Msat) are obtained 

as 

ju3* = { - 2Bx(MsatBx + MsalBxB
2
z + MsatBxB

2-ByB
2Mx 

-BlMx-ByBlMx-ByBzTcy + B^ + TczBl-BxBzTcJj/iBi+Bl), 

and 

ju| = { - 2Bx(MsatB
3
x+MsatBxB

2
z+MsatBxB

2
y+ByBlMx 

+ B3
yMx + ByB

2
zMx + ByBzTcy -B

2TCZ - TCZB2
X + BxBzTcx)}/(B2 +B2

X). 

It can be verified that if either gT, or #4 is considered active and (1% > 0 or / i | > 0, the 

second order sufficient conditions-are satisfied. This can be achieved by finding the set 

f for each case of active constraints and by determining if yTL(fup)y > 0, which was 

already obtained in the analysis of the float fault. 

In the case of an LIP fault, the Hessian matrix, as defined by (3.30), is positive definite 

for all y € T and all values of a G Si, such that, 

y=[a,0}T 

Z cy 

lcz 

+ 

MX(B2
X + B2) 

Msat{B2
x+B2) 

Bz(MsatBy + MxBx) 

}/(B2
x+B2) (3.41) 
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Therefore, for the values of Bx,By,Bz such that ju| > 0 or ]U| > 0 (in the case of an 

LIP fault), the solution with saturation of the actuator in the Y axis, is a strict global 

minimum. 

• Constraint g4 or g$ is active 

This corresponds to assigningM* — —\Msat\ orM* — \Msat\. The solution for M* will be 

now 

M*= < 

0 0 0 

Bz 0 -Bx 

0 0 0 

lcy + }/(B2+B2
z) (3.42) 

MX(BJ + Bf) 

Bz(MsatBy+MxBx) 

Msat(B
2
x+B2

z) 

The multipliers will have the following values for each case (g4 = 0 or gs = 0, respec­

tively), that is 

£ = {- 2Bx(MsatB
3
x+MsatBxB

2
z +MsatBxB

2+BxTcxBy-B
2
:MxBz 

- B2
xTcy - B2BZMX - B3

ZMX - B2
zTcy+BzByTcz)}l{B2

z+B2
x), 

and 

ju6* = { - 2Bx{MsatBl + MsatBxB\ + MsatBxB
2 - BxTcxBy + B2

XMXBZ 

+ B2
xT^ + B2BzMx + BlMx + B2Tcy-BzByTcz)}/(B2

z+B2
x) 

The same analysis as that conducted for the multipliers for the float fault can be ap­

plied in the case of an LIP fault, since the matrix L(fup) = L(fFloat)- In the case that 

it is assumed the actuator in the Z axis is saturated, the positive definiteness of L(fup) 

is guaranteed for all y e T : y — [0, a ] r , V a £ % This allows us to conclude that if 

the saturation of the actuator in the Z axis is a feasible solution, it is also a strict global 

minimum. 
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3.7.3 System Subject to an HO Fault 

The HO fault is a special case in which the constraints associated to the faulty actuator 

(g\(M*) or g2(M*) for positive or negative saturation, respectively) are always active. The 

system of equations corresponding to the first order necessary conditions is given by 

tf-M2=0 (3.43) 

-2BZ{TCX -M*yBz + M*By) + 2BX(TCZ + MsatBy + M*yBx) + tf - jLi4* = 0 (3.44) 

2By(Tcx -M;Bz + M*zBy) - 2Bx(Tcy -M*Bx+MsatBz) + / i | - ^ = 0 (3.45) 

If the HO fault is in the positive value of Msat, the following equation should be used 

-i4(2Msat)+/*3*(M; -MSM)+H%(-M; -Msat) 

+ jU5*(Mz* -Msat) + vl{-M*z-Msat) = 0 

Otherwise, if the saturation of Mx occurs in the negative value of Msat we use 

-Mi*(2Msat)+ju3*(M; - Msat)+VI{-M; - M^) 

+ ti(K -Msat) + n*6(-M* -Msat) = 0, (3.46) 

and to complete the first order necessary conditions we set 

Ht>0, V/ = l,2,.-.,6 (3.47) 

It can be shown that under the hypothesis of saturation of one more actuator, there will 

be no solution to the constrained optimization problem for the HO fault in one actuator. The 

only possible solution when M* < M5at, is the unconstrained solution that is also obtained 

in (3.18). However, it is known that for some values ofBx,By,Bz, the constraints gi(M*) < 0 
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will not be satisfied. Therefore, it is concluded that the HO fault can be recovered as a float 

fault only if the faulty actuator is shut down. 

3.7.4 System Subject to an LOE Fault 

The faulty actuator will generate a response that is governed by 

Mxf = kM* 

where 0 < k < 1 is the loss of effectiveness gain and M* is the control moment for the 

torquer in the X axis. The performance index is formulated by expression (3.16) and the 

gradient is given by (3.17). Hence, the first order conditions are defined according to 

2Bzk(Tcy - M*BX + kM*Bz) - 2Byk(Tcz + kM*By - MyBx) + jUi - \H = 0 (3.48) 

-2BZ(TCX - M;Bz+M;By) + 2BX(TCZ + kM*By - M;,BX) + /*, - JI4 = 0 (3.49) 

2By(Tcx~M*yBz+M*zBy) - 2Bx(Tcy -M*ZBX) + ^l5-^l6 = 0 (3.50) 

iiUK) - ti(-K)+^(M; -Msat)+nt(-M;-Msat) 

+ Hl(M;-Msat) + ^(-M*-Msat) = 0 (3.51) 

ju*>0, V 1 = 1,2, "- ,6 (3.52) 

The only solution that satisfies the constraints (3.48) through (3.52) are those results 

that are obtained for the unconstrained case which assumes that all the constraints are 

inactive (no saturation of the healthy actuators is required). This solution was given in 

(3.18) and it follows that it does not provide a unique solution for M*. In the unconstrained 
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optimization problem it was determined that the value M* = Mcx would be used for the 

purpose of analysis. However, if M* is left as a parameter of optimization, it will be possible 

to find values for M* such that the saturation constraints g,(M*), Vi = {1,2, • • -,6}, are 

satisfied. This property will be verified through numerical simulations in Section 4.4. 

3.8 System Subject to Concurrent Faults 

It was described earlier that the magnetic moment of one actuator has effects in two direc­

tions of the torque produced. In view of this fact it is possible to consider that as long as two 

of the three magnetic torquers remain functional, the reallocation of the control effort can 

still be achieved. This is possible even if one of the actuators (for example the X torquer) 

is subject to a fault such as an LIP, Float, or HO (fixed values for Mx), and a second or third 

actuator is subject to an LOE fault (regardless of the gain value), a value for M* and M* 

can be found. 

By following the derivations that are similar to those presented above for a single 

actuator fault, the reallocation algorithm is developed to enable the recovery from certain 

types of concurrent faults. The corresponding results are shown in the next chapter. 

The next section will describe the constrained optimization algorithm that is imple­

mented in simulations of the fault recovery in the attitude control system of a satellite with 

magnetic torquers. 
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3.8.1 Constrained Optimization Algorithm 

The constrained optimization algorithm implemented for simulations is adapted from the 

algorithm that is presented in [58]. This algorithm combines the Lagrange and the penalty 

function methods, known for formulating the constrained optimization problem as an un­

constrained problem. 

The Augmented Lagrangian function is defined as follows 

m i 

L(x, A,p) = f(x) + Yd[max(-Xi + pgi,0)}2 

with A as the Lagrange multiplier and p as the adjustable penalty parameter. The values of 

A; are found iteratively by using the expression 

A* = h+i =max(Xk + 2pkg(xi),0) 

Algorithm 3.1 [58] 

1. Choose a tolerance £, the maximum number of iterations N, an initial search point 

XQ, an initial penalty parameter po = 1, and an initial value for the Lagrange multi­

pliers Ao = 0. Set k=0; 

2. Perform unconstrained optimization (linear search) on the augmented Lagrangian 

function L(XQ, A^, p&) to obtain X£. 

3. Update the value ofX^+i = maxiX^ + 2p£g(x£),0). 

4. Update the value ofp^i = 2p^ if ||A# — A^+i || < 0.5. 

77 



5. Check the tolerance criteria: if ||Xk — Xk+i|| < e, stop the algorithm, otherwise set 

XQ = X£ and return to step 2. 

6. Check the number of iterations. Ifk>n, stop the algorithm, otherwise set k = k + 1 

and return to step 2. 

Upon detection and identification of a fault, it is now possible that using the current 

status of the actuators we can find a solution to the reallocation problem. In other words, 

one checks if the types of faults are within the set of faults that can be recovered from. The 

recovery function then assigns the cost function that should be used according to the type 

of fault and uses the above algorithms to obtain the optimal solution. Finally, the results 

obtained from the reallocation algorithm are assigned as inputs to the magnetic torquers. 

3.9 Stability Analysis of System Recovered From Fault 

In this section, the stability of the system that is recovered from each type of fault is ana­

lyzed and investigated. The stability analysis will be based on the analytical solutions to the 

unconstrained optimization problem, and the torque commanded by the nonlinear control 

law obtained in Section 2.5. 

Knowing that the reallocation of the control effort among the non-faulty actuators has 

similar expressions to the faulty cases of the magnetic torquers that are aligned to the x,y 

or z axes, only the failure in one of the axes will be studied, without loss of generality, 

the recovery in the event of a fault in one of the magnetorquers that is aligned with the 

satellite's X axis will be analyzed. 
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3.9.1 Float and HO Faults 

As presented in Section 3.6, the solution to the unconstrained optimization problem for the 

reallocation of the control effort among torquers Y and Z directions due to a float fault, is 

obtained according to (3.15). It was noted that the HO fault would be treated as a float fault 

by disabling the faulty actuator from producing a moment. Therefore, the stability analysis 

presented in this section, is valid for the system under both types of faults (i.e. float and 

HO). The following theorem states that under the recovery mechanism, the equilibrium 

point of the system subject to float (or HO) fault in one of the actuators is stable. 

Theorem 3.6 Let the system represented by (2.44) be subject to afloat (or HO) fault in the 

actuator that aligned to the X axis of the satellite's body, and let 

' 0 0 0 

M* BXBZ ByBz —(Bx2 + By) 

-BxBy (Bx+Bz) -ByBz 

R[B x(Bx Tc)} 

>/Bx\\B\\ 

Bx\\B\\2 

with 

R 

0 0 0 

0 0 1 (3.53) 

0 - 1 0 

be the control input moment to the healthy actuators. 

Furthermore, assume that the fault occurs when the system is in steady state. Namely, 

Teq « 0. Then, the equilibrium point of the closed-loop system 

co£ = 0, qe = 0,(74e = l 
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is stable. 

Proof: The torque generated by applying the control moment given in (3.53) is 

= {R[Bx(BxTc)]}xB 

BX\\B\\2 

If the Lyapunov function candidate V is defined according to 

1 T 

v = -/s, 

it can then be shown that 

ST{R[B x ((B x 5) x B)} x B} =BX\\B\\2\\B x Sf. 

Furthermore, the derivative of V along the trajectories of the system can be expressed 

as 

V=STTa 

and if we assume that the fault occurs when the system is in steady state with Teq « 0 (this is 

quite a realistic and practical assumption that for all practical purposes faults do not occur 

during the initial transients of the mission), it can be concluded that 

V = -Xs\\BxS\\2 (3.54) 

Equation (3.54) is negative semidefinite for all values of S provided that the assump­

tion of Teq ~ 0 holds. This proves that the system recovered from a float (or HO) fault has 

a stable equilibrium point. Similar proofs can be derived for the case of fault in the other 

two orthogonal actuators. • 
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3.9.2 LOE Fault 

The unconstrained optimization problem has a solution that is presented by expression 

(3.18). It will be shown that by using the recovery solution that was proposed the system 

subject to an LOE fault has a stable equilibrium point. 

Theorem 3.7 Let the system represented as (2.44) be subject to an LOE fault in the actu­

ator that is aligned to the X axis of the satellite's body, and let 

R[Bx(BxTc)]+Mcx\\B\\2h 

BX\\B\\2 

with Mcx, the desired moment calculated from (2.31), 

~ 
0 0 0 

0 0 1 

0 - 1 0 

, and h = 

~ 
Bx 

Byk 

Bzk 

be the control input moments to the actuators. 

Furthermore, assume that the fault occurs when the system is in steady state. Namely, 

Teq « 0. Then, the equilibrium point of the closed-loop system 

G)£ = 0, qe = 0,g4e = l 

is stable. 

Proof: The torques that the actuators generate are given by 

_ {R[B x(Bx Tc)}} x B + Mcx\\Bfh x B 

BX\W 
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If the Lyapunov function candidate V = STJS is chosen by assuming that the fault 

occurs in the steady state operation of the satellite (so that Teq —>• 0), it can be shown that 

ST {{R[B x(Bx [(B x S) x B}) x B} = BX\\B\\2\\B x S||2. 

It is also true that 

Mrx = 
-\(S-jBy-S2Bz) 

llflll2 

In addition, the cross product between the vectors h and B are 

hxB 

-BykBz + BykBz 

BxkBz — BXBZ 

-BxkBy + ByBx 

0 

Bz{k-\) 

-By(k-\) 

Therefore, 

ST(hxB) = (l-k) (ByS3 - BZS2) 

By substituting these results into the derivative of the Lyapunov function one gets 

V = ST(Ta-Teq) 

X 
\B\ 

\BxS\\2 + (l-k)(ByS3-BzS2)
2] 

which shows that the equilibrium S = 0 is stable for all 0 < k < 1. • 

3.9.3 LIP Fault 

The solution that is obtained in (3.21) will be shown to guarantee that the equilibrium point 

is stable when the system is subject to an LIP fault in the actuator that is aligned with the 

satellite's X body axis. 
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Theorem 3.8 Let the system that is represented by (2.44) be subject to an LIP fault in the 

actuator that is aligned to the X axis of the satellite's body, and let 

M* = 
R[Bx(BxTc)]+Mx\\B\\2B 

n I I R I I 2 
(3.55) 

with 

R = 

0 0 0 

0 0 1 

0 - 1 0 

be the control input moments to the healthy actuators. 

Furthermore, assume that the fault occurs when the system is in steady state. Namely, 

Teq ~ 0. Then, the equilibrium point of the closed-loop system 

Q£ = 0,qe = 0,tf4e=l 

is stable. 

Proof: The torque that is applied by generating the moment in (3.55) is given by 

Ta = 
{R[B x(Bx Tc)]} x B + MX\\B\\2(B x B) 

BX\\B\\2 

The operation B x B — 0 simplifies the above expression so that it becomes equal to 

the result that was obtained for the float fault case. Consequently, the proof of stability is 

the same as the one described for Theorem 3.6. • 
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3.10 Chapter Summary 

This chapter first presented the effects of different types of faults in the magnetic actuators. 

A mechanism is proposed to reallocate the control effort among the healthy magnetic tor-

quers in the event of a given fault in one of the torquers. The analytical solutions to the 

unconstrained and constrained control reallocation problem have been developed. In ad­

dition, the stability property of the equilibrium point of the closed-loop recovered system 

when the recovery input is applied has been demonstrated formally. The results and theo­

rems presented in this chapter are verified and validated through a number of simulations 

that are presented in the next chapter. 
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Chapter 4 

Simulation Results 

The parameters, specifications, and constraints of the simulated system are described in 

the first section of this chapter. In the second section, the response of the system under 

each type of fault followed by the results of the corresponding recovery system using our 

proposed constrained reallocation solutions will be included. Furthermore, the simulation 

results that also include finite delays in the application of the recovery after occurrence of 

a fault will be presented. Finally, the response of the recovery system from two concurrent 

faults are presented. 

4.1 System Parameters, Specifications and Constraints 

The scenarios under study in this chapter correspond to a LEO satellite that is equipped 

with three magnetic torquers that are perpendicularly aligned. The attitude control design 

was addressed by taking into account that the actuators operate on the basis of interactions 
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between magnetic moments from a set of three orthogonal current-driven coils and the ge­

omagnetic field. 

4.1.1 Satellite Model Parameters 

The values indicated in Table 4.1 are parameters that define the shape and size of the satel­

lite that is used in this chapter for numerical simulations. It is assumed that the satellite 

has a shape of a rectangular prism and that its center of mass is located at the geometric 

center of the satellite. The moments of inertia and weight of the satellite that are used in the 

simulations correspond to the 0rsted satellite as identified in [5], which is equipped with 

magnetic torquers as main actuators for attitude control. 

0rsted qualifies as a micro satellite, characterized for having a weight that is less than 

lOOKg. 

SYMBOL 

ms 

lx 

ly 

k 

Jx 

Jy 

Jz 

VALUE 

61 [Kg] 

340[mm] 

450[mm] 

680[mm] 

2.904 [Kg/m2] 

3.428 [Kg/m2] 

1.275 [Kg/m2] 

NAME 

Total mass of the satellite 

Length along the x body axis 

Length along the y body axis 

Length along the z body axis 

First principal moment of inertia 

Second principal moment of inertia 

Third principal moment of inertia 

Table 4.1: Physical characteristics of a typical satellite [5]. 
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4.1.2 Orbital Trajectory and Geomagnetic Field 

The geomagnetic field is a variable of interest in the application of magnetic torquers for 

attitude control. Because the field is a function of the orbital position of the satellite, the 

model of a circular orbit is chosen for simulation purposes. The parameters in Table 4.2 

are used in the simulated model. 

ORBITAL ELEMENTS 

Semi-Mayor Axis (Km) 

Eccentricity 

Inclination (deg) 

Right Ascension of Ascending Node (deg) 

Argument of Perigee (deg) 

VALUES 

7,063.27 

0.00115 

98.127 

81.108 

90.0 

Table 4.2: Orbital elements for a typical simulation ([6] and [7]). 

The type of the orbit that is modeled is shown in Figure 4.1. The values of the orbital 

parameters are extracted from [6] and [7], which describe the orbital trajectory followed 

by a real satellite. Figure 4.2 shows the variation of the geomagnetic field as the satellite 

orbits around the Earth on a LEO with the parameters as given in Table 4.2. This figure is 

produced by using equations (2.5) to (2.7) and the values are calculated in nano Teslas. 

It should be noted that the orbital position of the satellite is controlled independently 

from its attitude. Orbital perturbations are neglected as it is assumed that the orbital trajec­

tory controller compensates for them. 
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flOOG -8000 

Figure 4.1: Circular LEO to be used in the simulation results. 

4.1.3 Size and Limitations of the Magnetic Torquers 

In order to utilize the applicable disturbance torques to the model, their worst case values 

are calculated as indicated in this section. The maximum values of the environmental 

perturbations are determined by using the equations given in Table 4.3. 

Table 4.4 shows the additional parameters that are used in calculation of the disturbance 

torques. The results for the numerical simulation example that is implemented are shown 

as follows: 

• Using equation (2.20), a maneuvering torque Tman = [0.1310, 0.1547, 0.0575]r^10-6 [Nm] 

is required to demand the satellite to reach its steady state in 2 orbits, or about 11,800 

seconds from a maximum angle of 9 = TC/2. 

• The worst-case disturbance torques that are calculated according to Table 4.3, and 
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Distur­
bance 

Gravity-
gradient 

Solar 
Radiation 

Magne­
tic Field 

Aerody­
namic 

Type 

Constant torque 
for Earth-
oriented 
vehicle, cyclic 
for inertially 
oriented vehicle 

Cyclic torque on 
Earth-oriented 
vehicle, 
constant for 
solar-oriented 
vehicle or 
platform 

Cyclic 

Constant for 
Earth-oriented 
vehicles, 
variable for 
inertially 
oriented vehicle 

Influenced 
Primarily by 

• Spacecraft 
inertias 

• Orbit altitude 

• Spacecraft 
geometry 

• Spacecraft 
surface 
reflectivity 

• Spacecraft 
geometry and 
eg location 

• Orbit altitude 

• Residual 
spacecraft 
magnetic 
dipole 

• Orbit 
inclination 

• Orbit altitude 

• Spacecraft 
geometry and 
eg location 

Formula 

where Tg is the max gravity torque; \i is the 
Earth's gravity constant (3.986 x 1014 m3/s2); 
R is orbit radius (m), 6 is the maximum deviation 
of the Z-axis from local vertical in radians, and 
/* and ly are moments of inertia about z and y 
(or x, if smaller) axes in kg-m2. 

Solar radiation pressure, 7^,, is highly 
dependent on the type of surface being 
illuminated. A surface is either transparent, 
absorbent, or a reflector, but most surfaces are 
a combination of the three. Reflectors are 
classed as diffuse or specular. In general, solar 
arrays are absorbers and the spacecraft body is 
a reflector. The worst case solar radiation 
torque is 

Tsp = F(cps - eg) 

where F = - M S ( 1 + <7)COSI' 

and Fs is the solar constant, 1,367 W/m2, c is 
the speed of light, 3 X10 8 m/s, As is the surface 
area, cp$ is the location of the center of solar 
pressure, eg is the center of gravity, q is the 
reflectance factor (ranging from 0 to 1, we use 
0.6), and / is the angle of incidence of the Sun. 

Tm = DB 

where Tm is the magnetic torque on the 
spacecraft; D is the residual dipole of the vehicle 
in amp 'turn -m2 (A-m2), and S is the Earth's 
magnetic field in tesla. Scan be approximated 
as 2MIR3 for a polar orbit to half that at the 
equator. M is the magnetic moment of the Earth, 
7.96 x 1015 tesla-m3, and R is the radius from 
dipole (Earth) center to spacecraft in m. 

Atmospheric density for low orbits varies 
significantly with solar activity. 

Ta = F(Cpa-cg)=FL 

where F= 0.5 [p CdAV2]; F being the force; 
Cd the drag coefficient (usually between 2 and 
2.5); p the atmospheric density; A, the surface 
area; V, the spacecraft velocity; c^ the center 
of aerodynamic pressure; and eg the center 
of gravity. 

Table 4.3: Simplified disturbance torques ([4]). 
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)l I 1 > 1 
0 0.5 1 1.5 2 

Time [Orbits] 

Figure 4.2: Geomagnetic field during two orbits as calculated in the geocentric coordinates. 

PARAMETER 

Altitude ASL (rs) 

Atmospheric Density (p) 

Drag Coefficient (Q) 

Reflectance Factor (q) 

Residual Dipole Moment (£>) 

Velocity of Satellite in Orbit 

Magnetic Moment of the Earth (Me) 

VALUE 

650[Km] 

2.64 x 1(T13 [Kg/m3] 

2 

0.6 

0.001 [Am2] 

7,531 [m/s] 

7.96 xlO1 5 [Tw3] 

Table 4.4: The environmental parameters that are defined for a typical satellite. 
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the values given in Tables 4.1 and 4.4 are: 

Gravity Gradient Torque:7.42jcl0~6 [Nm] 

Aerodynamic Torque: 5.79x10-7 [Nm] 

Magnetic Disturbance Torque: 4.58;cl0-8 [Nm] 

Solar Radiation Torque: 6.38jd0~8 [Nm] 

Ttotal < 8 . 6 7 J C H T 6 [Nm] 

The most important disturbances correspond to the gravity gradient torque and the 

aerodynamic drag, followed by the magnetic disturbance torque (if the residual moment is 

small enough) and the solar radiation impingement. These results are obtained by using 

Table 4.3 that is extracted from [4] which also introduces the simplified equations for esti­

mating the upper bounds of the environmental disturbance forces. 

As mentioned in Section 2.3.2, the magnetic dipole of the satellite is one of the im­

portant disturbances that one needs to take into account. However, special methods for 

compensating this particular disturbance are considered to be out of the scope of this thesis. 

In this thesis it is assumed that the magnetic dipole of the satellite is already compensated 

for, leaving a residue of O.OOlAm2. 

The maximum value of the magnetic moment is calculated as detailed below 

_2Me 
Bmax — -=£-

= 4.5861xl(T5 [7>n3] (4.1) 
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where Me is the magnetic moment of the Earth and R is the distance from the center of the 

Earth to the center of the satellite. 

Now, by using the values above and the average value of the geomagnetic field from 

(4.1), for a non-faulty system, the minimum moment that the torquers should produce in 

each direction is approximately given by 

= 0.19Aw2 

In [5] it is mentioned that the magnetic torquers on board of the 0rsted satellite are 

sized to produce a maximum amplitude moment of 2(Mm2, which in theory is sufficient 

to compensate for the above mentioned disturbances and maneuver torques. The satura­

tion value used in the simulation results that will be presented in this chapter was set to 

±\0Am2. 

4.2 Response of Satellite Without Fault 

The behavior of the satellite under normal conditions has been evaluated through numeri­

cal simulations by commanding the attitude control system to follow a zero reference with 

respect to the inertial frame, and the time varying trajectories shown in figures 4.3 and 4.4. 
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Figure 4.3: Time varying trajectory. Reference with respect to the inertial frame. 
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Figure 4.4: Slow time varying trajectory. Reference with respect to the inertial frame. 
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The Figures 4.3 and 4.4 show the Euler angles for the time varying reference trajec­

tories used in the simulations. In the first trajectory the angles follow sinusoidal paths with 

frequencies of the order of 10~7 rad/s, while the latter has lower frequencies of 10 - 8 radjs 

as indicated in expressions (4.2) and (4.3). 

0Jxr = 0.015 sin( 1.5 x 10~7?) radjs 

®l
yr = 0.025 sin(0.4 x 10_7r) rad/s 

col
zr = 0.05 sin(0.8 x 10~7t) rad/s (4.2) 

(jxr = 0.015 sin( 1.5 x 10~8f) rad/s 

0)jr = 0.025 sin(0.4 x 10~8f) rad/s 

co'zr = 0.05sin(0.8 x 10"8?) rad/s (4.3) 

In steady state, as it can be seen in the upper Figure 4.5, the response of the attitude 

control system following the zero reference results in Euler angles that are bounded within 

± 9 degrees. This satisfies the precision requirements of the mission for the sample satellite 

0rsted according to [5], where the control design criteria is to obtain a maximum error of 

10 degrees for roll and pitch, and 20 degrees for the yaw angle. The 0rsted satellite has 

been designed to map the Earths magnetic field, measure the charged particle environment, 

and study auroral phenomena [59]. It is also shown in the lower Figure 4.5 that the applied 

magnetic moments lay within ±0.1 [Am2], far below the saturation level of the magentor-

quers (± 10Am2). 
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Figure 4.5: Response of the satellite without fault following a zero reference with respect 

to the inertial frame. 
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Applied magnetic moment. Non faulty system 
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Figure 4.6: Response of the satellite without fault following the time varying reference in 

Figure 4.3. 
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Figure 4.7: Response of the satellite without fault following the time varying reference in 

Figure 4.4. 
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(b) Trajectory from Figure 4.3 

Figure 4.8: Quaternion errors. Responses from the system without a fault. 

98 



Figure 4.9: Quaternion errors. Response from the system without a fault following the 

trajectory of Figure 4.4. 

The Figures 4.6 and 4.7 show the response of the attitude control system that follows 

the time varying trajectories (4.2) and (4.3), respectively. In steady state the relative errors 

of the Euler angles are comparable to those obtained in the zero reference scenario. The 

"quaternion errors presented in Figures 4.8 and 4.9 confirm this similarity. 

4.3 Satellite Response Under Actuator Faults 

The following simulation results show the response of the satellite that is subject to the 

different faults that are described in Section 3.2, and without invoking a recovery action. 

The behavior of the Euler angles, the applied magnetic moment and the quaternion errors 

are shown for the zero and the time varying references from Figures 4.3 and 4.4. As can be 
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seen in Figures 4.10 to 4.12, the degradation of the relative errors is more significant when 

the system is commanded with a time varying trajectory. Also, a faster rate of change of 

the command reference results in larger steady state errors at earlier times. 

The response of the system subject to an LIP fault is shown in Figures 4.15 and 4.16. 

The effect of the constant input of 0.02 Am2 from the faulty magnetorquer is very signifi­

cant and the Figure 4.17 shows that the quaternion errors are larger when the trajectory that 

is followed is time varying. 

The simulations of the LOE faults presented in Figures 4.18 and 4.20 were carried out 

for 90% and 75% of loss of effectiveness, respectively, for the actuator alligned to the X 

axis of the body frame and following a zero reference. The results to the time varying ref­

erence in Figures 4.19 and 4.21 correspond to the reference input in Figure 4.4. Although 

the fault does not lead the system to instability, the quaternion errors shown in Figures 4.22 

and 4.23 indicate the effect of the fault in proportion to the loss of effectiveness gain, which 

is larger when the trajectory to follow is time varying. 

The HO fault was evaluated for the zero trajectory and the time varying trajectory 

in Figure 4.4 with a saturation level of ±10Am2 reached at a rate of 0.001 Am2/s. It is 

evident that the most critical fault is the HO, which leads the system to complete instability. 

However, although the response of the system remains bounded in the presence of float, LIP 

and LOE faults, the effects in the performance of the system are important, particularly 

when the reference trajectory is time varying. 
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Applied magnetic moment. Satellite subject to a Float fault. No recovery 
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Figure 4.10: Response of the satellite following a zero reference trajectory. System is 

subject to a float fault that is applied at time Tf = 13 oribts. 
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Applied magnetic moment. Satellite subject to a Float fault. No recovery 
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Figure 4.11: Response of the satellite following the time varying reference in Figure 4.3. 

System is subject to a float fault that is applied at time Tf = 13 orbits. 
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Figure 4.12: Response of the satellite following the time varying reference in Figure 4.4. 

System is subject to a float fault that is applied at time Tf = 21 orbits. 
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Figure 4.13: Quaternion errors. System is subject to a float fault that is applied at time 

Tf = 13 orbits. 
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Applied magnetic moment. Satellite subject to a LIP fault. 
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Figure 4.15: Response of the satellite following a zero reference with respect to the inertial 

frame. System is subject to a LIP fault that is applied at time Tf — 21 orbits. 
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Applied magnetic moment. Satellite subject to a LIP fault. 
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Figure 4.16: Response of the satellite following the time varying reference in Figure 4.4. 

System is subject to a LIP fault that is applied at time Tf = 21 orbits. 
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(a) Zero reference trajectory 
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(b) Trajectory from Figure 4.4. 

Figure 4.17: Quaternion errors. System is subject to a LIP fault that is applied at time 

7 / = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. No recovery 
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Figure 4.18: Response of the satellite following a zero reference. System is subject to a 

90% LOE fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. No recovery 
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Figure 4.19: Response of the satellite following the time varying reference in Figure 4.4. 

System is subject to a 90% LOE fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. No recovery 
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Figure 4.20: Response of the satellite following a zero reference. System is subject to a 

90% LOE fault that is applied at time 7/ = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. No recover/ 
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Figure 4.21: Response of the satellite following the time varying reference in Figure 4.4. 

System is subject to a 75% LOE fault that is applied at time Tf = 21 orbits. 
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Figure 4.22: Quaternion errors. System is subject to a 90% LOE fault that is applied at 

time Tf = 21 orbits. 
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Figure 4.23: Quaternion errors. System is subject to a 75% LOE fault that is applied at 

time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a HO fault. No recovery 
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Figure 4.24: Response of the satellite following a zero reference with respect to the inertial 

frame. System is subject to an HO fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a HO fault. No recovery 
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Figure 4.25: Response of the satellite following the time varying reference in Figure 4.4. 

System is subject to an HO fault that is applied at time Tf = 22 orbits. 
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Figure 4.26: Quaternion errors. System is subject to an HO fault that is applied at time 

Tr = 21 and TV = 22 orbits. ' / / 
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A qualitative comparison is performed for the response of the satellite with and with­

out fault (except for the HO fault). The data correspond to the estimated mean and standard 

deviation of the three main quaternion parameters. These values are calculated from the 

results of the simulations of the system in steady state as indicated in Figure 4.27. The 

statistical results are shown in Table 4.5 and Figure 4.28 for zero reference trajectory and 

Table 4.6 and Figure 4.29 for the time varying trajectory shown in Figure 4.4. 

I Z 
Roll 
Pitch 

Figure 4.27: A typical calculation of the settling time and the steady state values. 

The settling time of the response was calculated within the band that form the 10% 

of the upper and lower bounds of the signal in the last four orbits of the simulations. These 

are the values that are registered in the tables for comparison of the response among the 

different scenarios. 
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Figure 4.28: Mean and standard deviation of the quaternion errors according to Table 4.5. 

Satellite is following a zero reference and subject to faults without recovery. 

Mean and standard deviation (Stdv) of the quaternion errors 

No Fault 

Float 

LIP 

LOE 90% 

LOE 75% 

q\ Mean 

-0.0198 

-0.0384 

0.0433 

-0.0261 

-0.0249 

q\ Stdv 

0.0181 

0.0086 

0.0314 

0.0182 

0.0164 

qi Mean 

0.0114 

0.0069 

0.0121 

0.0232 

0.0235 

<72 Stdv 

0.0226 

0.0536 

0.0533 

0.0409 

0.0327 

qj Mean 

-0.0021 

-0.0213 

0.0052 

-0.0165 

-0.0137 

(?3 Stdv 

0.0336 

0.0108 

0.0435 

0.0242 

0.0255 

Table 4.5: Mean and standard deviation of quaternion errors in steady state. Healthy and 

faulty system following a zero reference trajectory. 
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Figure 4.29: Mean and standard deviation of the quaternion errors according to Table 4.6. 

Satellite is following a time varying trajectory subject to faults without recovery. 

Mean and standard deviation (Stdv) of the quaternion errors 

No Fault 

Float 

LIP 

LOE 90% 

LOE 75% 

q\ Mean 

-0.0058 

-0.0094 

0.0501 

-0.0095 

-0.0061 

q\ Stdv 

0.0168 

0.0587 

0.1548 

0.0354 

0.0259 

<?2 Mean 

-0.0031 

0.0145 

-0.1295 

-0.0020 

0.0017 

q2 Stdv 

0.0159 

0.0804 

0.2649 

0.0561 

0.0388 

^3 Mean 

0.0014 

-0.0123 

-0.1342 

-0.0013 

0.0018 

q-i Stdv 

0.0217 

0.0898 

0.3173 

0.0506 

0.0282 

Table 4.6: Mean and standard deviation of the quaternion errors in steady state. Healthy 

and faulty satellite following a time varying trajectory. 
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The faults applied occur due to a failure in the magnetic torquer aligned with the X 

axis of the satellite's body frame. Because the impaired magnetic moment affects the total 

torque in orthogonal directions, this fault has a clear effect in the steady state error of the 

angles associated with the orthogonal to the X axis (namely ql and q3). The largest impact 

in the attitude position is caused by the LIP and HO faults, followed by float and LOE. The 

HO fault has not been included in the figures above because an unstable behavior does not 

constitute a point for comparison. 

4.4 Response of the Recovered Satellite From Faults 

Taking into account the saturation limits that are reflected in the magnetic moment that the 

torquer is able to produce, the optimization solution to the control reallocation problem 

is constrained to lie within allowable values. For the simulation results shown below this 

saturation limit is calculated according to the sizing of the magnetic torquers that are ex­

plained in Sections 2.4.1 and 4.1.3. 

This section presents the results for the application of the recovery mechanism that 

we have proposed in the previous chapter as well as a quantitative comparison that is con­

ducted between the simulations for the system with and without the recovery scheme. 

121 



4.4.1 Constrained Recovery 

By using the recovery mechanism that was proposed, the following figures are obtained 

from the simulations of the system that is subject to each one of the faults. It can be seen 

in Figures 4.30 and 4.32 that the recovery from the float fault is successful for the zero 

reference and the time varying reference in Figure 4.4. It is shown in Figure 4.31 that the 

result of the recovery action when the satellite is following the trajectory in Figure 4.3 does 

not lead to a bounded equilibrium. 

The system has been recovered from the LIP faults for zero and time varying refer­

ences. Figures 4.36 and 4.37 show that as in the case of a float, the recovery from a LIP 

fault when the reference is that of Figure 4.4 is successful, whereas for the input of Figure 

4.3 the response is not bounded. 

LOE faults have been simulated for 90% and 75% following the time varying trayec-

tory in Figure 4.4 as shown in Figures 4.40 and 4.41, respectively. Recovery from HO 

faults are not shown since the recovery action is to shut down the failing actuator and to 

treat the system as if it were subject to a float fault. 
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Applied magnetic moment. Satellite subject to a Float fault. 
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Figure 4.30: Response of the satellite following a zero reference with respect to the inertial 

frame. System is recovered from a float fault that is applied at time Tf = 13 orbits. 
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Applied magnetic moment. Satellite subject to a Float fault. 
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Figure 4.31: Response of the satellite following the time varying reference in figure 4.3. 

System is recovered from a float fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a Float fault. 
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Figure 4.32: Response of the satellite following the time varying reference in Figure 4.4. 

System is recovered from a float fault that is applied at time Tf = 21 orbits. 

125 



1,2 

t 0.8 

0.4 

0.2 

14 16 18 20 
Orbits 

22 24 26 

(a) Zero reference trajectory 

1 I ' t ta iW-i : r'Wt'n^WBtMi>a|:|i|:M»|.B<.llitt«)^W<B..p 

i 

-0.4 
20 22 

q1 
- — q 2 
- - . -q3 
•-*— q4 

24 26 28 30 32 34 36 
Orbits 

(b) Trajectory from Figure 4.3 

Figure 4.33: Quaternion errors. System is recovered from a float fault that is applied at 

time Tf = 13 and Tf = 21 orbits, respectively. 
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Figure 4.34: Quaternion errors of system following the trajectory from Figure 4.4. System 

is recovered from a float fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LIP fault. 
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Figure 4.35: Response of the satellite following a zero reference. System is recovered from 

a LIP fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LIP fault. 
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Figure 4.36: Response of the satellite following the time varying reference in Figure 4.3. 

System is recovered from a LIP fault that is applied at time Tf = 21 orbits. 
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Figure 4.37: Response of the satellite following the time varying reference in Figure 4.4. 

System is recovered from a LIP fault that is applied at time Tf = 21 orbits. 
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Figure 4.38: Quaternion errors. System is recovered from a LIP fault that is applied at time 

Tf = 21 orbits. 
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Figure 4.39: Quaternion errors of system following the trajectory from Figure 4.4. System 

is recovered from a LIP fault that is applied at time Tf = 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. 
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Figure 4.40: Response of the satellite following a zero reference. System is recovered from 

a 90% LOE fault that is applied at time Tf — 21 orbits. 
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Applied magnetic moment. Satellite subject to a LOE fault. 
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Figure 4.41: Response of the satellite following a zero reference. System is recovered from 

a 75% LOE fault that is applied at time Tf — 21 orbits. 
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(a) System recovered from a 90% LOE fault. 
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(b) System recovered from a 75% LOE fault. 

Figure 4.42: Quaternion errors of system following a zero reference trajectory. System is 

recovered from LOE faults that are applied at time tf = 21 orbits. 
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Tables 4.7 and 4.8 and Figures 4.44 and 4.45 show the mean and standard deviation 

values of the quaternion errors in steady state for zero and time varying trajectories, re­

spectively. The results indicate, in general, that the system recovered from fault presents 

quaternion errors with smaller mean values for the zero and the time varying trajectories 

when we compare Figures 4.44 and 4.45 with the Figures 4.28 and 4.29 presented in the 

previous section. 

Figure 4.43: Comparison of response of the system with fault and recovered from fault. 

System is following a time varying reference. 

The Standard deviation values in Figure Figure 4.44 are also smaller than those shown 
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in Figure 4.28 for the system following a zero reference trajectory. However, the perfor­

mance improvement of the recovered system with respect to the faulty system is better ev­

idenced when we compare the results in Figures 4.29 and 4.45 for the system commanded 

with a time varying trajectory. 

Figure 4.43 shows the ratio of the response of the system that is recovered from fault 

and the system that is subject to fault without recovery when the system follows a time 

varying trajectory. In other words, the output of the system recovered from fault corre­

sponds to the percentage of the output of the faulty system that is shown in the . The Figure 

allow us to see that the performance of the system recovered from fault is improved with 

respect to the faulty system. 
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Figure 4.44: Mean and the standard deviation of the quaternion errors according to Table 

4.7. Satellite is recovered from faults while following a zero reference trajectory. 
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Mean and standard deviation (Stdv) of the quaternion errors 

No Fault 

Float 

LIP 

LOE 90% 

q\ Mean 

-0.0198 

-0.0163 

-0.0193 

0.0032 

q\ Stdv 

0.0181 

0.0109 

0.0209 

0.0394 

qi Mean 

0.0115 

0.0112 

0.0095 

-0.0241 

#2 Stdv 

0.0226 

0.0194 

0.0140 

0.0234 

qj, Mean 

-0.0021 

-0.0048 

-0.0095 

-0.0005 

q3 Stdv 

0.0336 

0.0286 

0.0288 

0.0281 

Table 4.7: Mean and standard deviation of the quaternion errors in steady state. Satellite is 

recovered from faults while following a zero reference trajectory. 
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Figure 4.45: Mean and the standard deviation of quaternion errors according to Table 4. 

Satellite is recovered from faults while following a time varying trajectory. 
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Mean and standard deviation (Stdv) of the quaternion errors 

No Fault 

Float 

LIP 

LOE 75% 

q\ Mean 

-0.0058 

-0.0044 

0.0032 

-0.0043 

q\ Stdv 

0.0168 

0.0134 

0.0394 

0.0130 

q2 Mean 

-0.0031 

0.0020 

-0.0241 

0.0014 

#2 Stdv 

0.0159 

0.0127 

0.0234 

0.0119 

qj Mean 

0.0015 

-0.0024 

-0.0005 

-0.0016 

qi Stdv 

0.0217 

0.0168 

0.0281 

0.0163 

Table 4.8: Mean and the standard deviation of quaternion errors in steady state. Satellite is 

recovered from faults while following a time varying trajectory. 

4.4.2 Recovery From HO Fault 

The HO fault can not be recovered by means of the recovery method that we have proposed 

since there is no solution to the constrained control reallocation for this particular case. 

In other words, the control effort required to overcome the forced saturation of an actuator 

surpasses the limited capabilities of the healthy magnetic torquers. It is suggested that since 

the system under float fault can be recovered, the HO failing actuator could be powered off 

and be considered as a float fault. Once an HO fault is detected, the action to follow will 

be to shut down the failing actuator and to report a float fault to the recovery system. 
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4.5 Effects of Delay of Fault Diagnosis in the Recovery 

System 

The problem of delayed fault diagnosis is not addressed analytically in this thesis. How­

ever, simulations including delays in the response of the recovery are conducted in order to 

evaluate the response of the proposed recovery method. We have found that regardless of 

the applied delays of up to 5000 s the simulated system did not become unstable under the 

effects of faults for the cases studied. 

Simulation results show that fault detection delays in the order of up to one orbit have 

the consequence of larger overshoots during the transient phase of the recovery. By com­

paring the response of the system recovered from float at the time of the fault in Figure 

4.32 and the faulty system recovered after 2,000s and 5,000s in Figures 4.46 and 4.48, 

respectively, it can be noticed that also the applied magnetic torques reach higher values 

when the fault is recovered late. A similar conclusion can be drawn for the case of an LIP 

fault that is recovered after 5,000s, as shown in Figure 4.50. 

In the special case of an HO fault, the response of the late-recovered system depends 

on the rate at which the actuator reaches saturation. The rate of change to the saturation 

of an HO fault was set to 0.001 Am2/s and to 0.005 Am2/s to show that the recovery was 

successful when invoked before and after the actuator had reached its saturation in Figures 

4.52 and 4.54, respectively. 
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Figure 4.46: Response of the satellite that is recovered from a float fault after a 2000s delay 

(7» from the time 7/ = 21 orbits when the fault is applied. Satellite is following the time 

varying reference of Figure 4.4. 
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Figure 4.47: Quaternion errors. Response of the satellite that is recovered from a float fault 

after a 2000s (Tr) delay from the time Tf = 21 orbits when the fault is applied. Satellite is 

following the time varying reference of Figure 4.4. 
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Applied magnetic moment. Satellite subject to a Float fault. 

1.5 

1 

0.5 

0 

0.5 

0 

-0.5 

i"? 

: i : fi ; ; i , i • 
! i i i 1 i i 

20 

20 22 24 26 
Orbits 

—. 

1 1 

i < 

! 

i 

i ! 
1 : 
( i 

J : t-"<;;,•:—"-\f~ v^-r»'--V-v.'"~-;; "V - -

30 32 

« 150 

2 50 

5 0-* 

20 22 24 26 
Orbits 

28 30 

! I ! | " ' • • ! " 

h •- '•• 

• s , • 
-••/••••^•ji'-:-'-' | * * f 

•i 

^^"-^^^^^|TO''T^~--li -̂-I'-'-̂ L' "J.---—i'---^' 
• \ / 

i ; y 

p^ 

RoB 
Pitch 
Yaw . 

: S 

•c^^^^^'sL 

I -

i 
32 

Figure 4.48: Response of the satellite that is recovered from a float fault after a 5000s 

delay (7» from the time 2/ when the fault is applied. System is following the time varying 

trajectory of Figure 4.4. 
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Figure 4.49: Quaternion errors. Response of the satellite that is recovered from a float fault 

after a 5000s delay (7» from the time Tf = 21 orbits when the fault is applied. Satellite is 

following the time varying reference of Figure 4.4. 
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Applied magnetic moment. Satellite subject to a LIP fault. 
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Figure 4.50: Response of the satellite that is recovered from an LIP fault after a 5000s 

delay (7» from the time Tf = 21 orbits when the fault is applied. Satellite is following a 

zero reference. 
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Figure 4.51: Quaternion errors. Response of the satellite that is recovered from an LIP fault 

after a 5000s delay (Tr) from the time Tf = 21 orbits when the fault is applied. Satellite is 

following a zero reference. 
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Applied magnetic moment. Satellite subject to a HO fault. 
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Figure 4.52: Response of the satellite that is recovered from an HO fault (with a 

0.001 Am2/s rate of change) after a 5000s delay (Tr) from the time Tf = 21 orbits when 

the fault is applied. Satellite is following a zero reference. 
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Figure 4.53: Quaternion errors. Response of the satellite that is recovered from an HO fault 

(with a 0.001 Am2/s rate of change) after a 5000s delay (Tr) from the time 7/ = 21 orbits 

when the fault is applied. Satellite is following a zero reference. 
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Applied magnetic moment. Satellite subject to a HO fault. 
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Figure 4.54: Response of the satellite that is recovered from an HO fault (with a 

0.005 Am2/s rate of change) after a 4500s (7» delay from the time Tf — 21 orbits when 

the fault is applied. Satellite is following a zero reference. 
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Figure 4.55: Quaternion errors. Response of the satellite that is recovered from an HO fault 

(with a 0.005 Am2/s rate of change) after a 4500s (7» delay from the time Tj — 21 orbits 

when the fault is applied. Satellite is following a zero reference. 
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4.6 Recovery of the System that is Subject to Faults and 

Measurement Noise 

The question of the effect of measurement noise arises due to the high importance of the 

value of the magnetic field for the calculation of the control action. The analytical discus­

sion of this particular issue is beyond the scope of this thesis but for the sake of complete­

ness the typical noise characteristics of the measurement signal from the magnetometer 

used in the sample satellite were investigated. Furthermore, simulations corresponding to 

the response of the system following a zero trajectory under normal conditions was carried 

out and compared to the response of the system recovered from a float fault, including the 

effect of noise in the magnetic field signal. 

The authors in [60] state that the 0rsted satellite is equiped with two types of high 

precision magnetometers: a ftuxgate magnetormer in charge of measuring the three vec­

tor components of the magnetic field and one overhauser magnetometer, which measures 

the absolute magnetic field strength and was intended mainly for intercalibration purposes. 

Considering then, that the fluxgate magnetometer would feed the attitude control system 

with the magnetic field data, the simulations below include the noise characteristics of this 

type of sensor according to [61]. 

By comparing the results of the performance of the system under normal conditions 

with and without presence of measurement noise, it can be seen that the steady state errors 

of the system that is subject to noise in the measurement of the magnetic field are larger. 
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The figure Figure 4.56 shows the proportion of the errors of the system with respect to 

those of the system that is subject to measurement noise. 

Figure 4.56: Comparison of steady state errors of system without and with measurement 

noise. System is following a zero trajectory. 
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Applied magnetic moment. Non faulty system 
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Figure 4.57: Response of the satellite under normal conditions that is subject to measure­

ment noise from the magnetometers. Satellite is following a zero reference. 
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Applied magnetic moment. Satellite subject to a Float fault. 
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Figure 4.58: Response of the satellite under normal conditions that is subject to measure­

ment noise from the magnetometers. Satellite is following a zero reference. 
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Figure 4.59: Quaternion errors. Response of the satellite under normal conditions and 

satellite that is recovered from a float fault that is applied at time Tf = orbits. Satellite is 

following a zero reference. 
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4.7 Recovery From Concurrent Faults 

It is not possible to reallocate the control effort under all types of fault when a second fault 

appears. Due to the saturation moment restriction of the actuators, and the limited capa­

bility of the faulty magnetic torquers, a recovery without hardware redundancy may not 

be applicable. Nevertheless, the effects of the second fault in the system and the applica­

tion of our proposed solution is evaluated in this section and simulation results are included. 

Concurrent faults refer to non-simultaneous occurring faults. With this in mind, dur­

ing the presence of one fault if a second fault occurs the recovery mechanism should re­

allocate the control effort within the capable actuators. For this purpose, an algorithm is 

implemented which applies the same optimization technique to reallocate the magnetic mo­

ment in order to have the resulting torque approximate the required control torque. 

When a float, LIP or HO fault occurs, the magnetic moment from the actuator be­

comes fixed. In the case of an HO fault, the only choice that is available is to interrupt the 

circulation of the current in the coils of the saturated torquer. Nevertheless, under an LOE 

fault, it is possible to obtain a magnetic moment that is proportional (the multiplying factor 

is the loss of effectiveness gain) to the control input yielding a degree of freedom that is 

available for control regardless of the fault. Assuming that only two of the three actuators 

are subject to faults and that one of these faults is an LOE fault, the control effort can still 

be reallocated using the procedure that was developed in the previous chapter. 

156 



The Figures 4.60 and 4.61 show the case of 90% LOE faults ocurring at times Tf\ = 21 

orbits and at Tf2 = 43 orbits in the actuators aligned to the X and Y axes, respectively. Fig­

ures 4.62 and 4.63 show the response of the system recovered from the avobe mentioned 

faults. 

The second scenario that is presented in Figures 4.64 and 4.65 is the occurrence of 

a 75% LOE fault at Tfl=2l orbits, followed by a LIP fault at time Tf2 = 43 orbits. The 

corresponding response of the recovered system is shown in Figures 4.66 and 4.67. 
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Applied magnetic moment. Satellite subject to concurrent faults. No recovery 
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Figure 4.60: Response of the satellite that is subject to 90% LOE faults that are applied 

at times Tf\ = 2 1 orbits and Tf2 = 43 orbits in the torquers alligned to the X and Y axis, 

respectively. Satellite is following a zero reference. 
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Figure 4.61: Quaternion errors. Response of the satellite that is subject to 90% LOE faults 

that are applied at times 7/i =21 orbits and 7/2 = 43 orbits in the torquers alligned to the 

X and Y axis, respectively. Satellite is following a zero reference. 

159 



Applied magnetic moment. Satellite subject to concurrent faults 

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

0.1 

ST 0 0 5 

£ 
S. 0 

2 -0.05 

-0.1 
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

„- 0.2 

I 0 
N 
5' -0.2 

4#^/#rH^^ 
_! I I I l_ 

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 
Orbits 

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 
Orbits 

62 64 66 68 70 

Figure 4.62: Response of the satellite that is recovered from 90% LOE faults that are 

applied at times 7/i =21 orbits and 7/2 = 43 orbits in the torquers alligned to the X and Y 

axis, respectively. Satellite is following a zero reference. 
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Figure 4.63: Quaternion errors. Response of the satellite that is recovered from a 90% 

LOE fault at time 7/j = 2 1 orbits and a second LOE of 90% at time 7/2 = 43 orbits in the 

torquers alligned to the X and Y axis, respectively. Satellite is following a zero reference. 
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Figure 4.64: Response of the satellite that is subject to 75% LOE and LIP faults that are 

applied at times Tf\ =21 orbits and Tp. = 43 orbits in the torquers alligned to the Y and Z 

axis, respectively. Satellite is following a zero reference. 
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Figure 4.65: Quaternion errors. Response of the satellite that is subject to 75% LOE and 

LIP faults that are applied at times Tf\ = 2 1 orbits and Tf2 = 43 orbits in the torquers 

alligned to the Y and Z axis, respectively. Satellite is following a zero reference. 

163 



Applied magnetic moment. Satellite subject to concurrent faults 

to 
3 
= -1 

-2 

~i—!—r 

-̂w~J> ^̂̂ _̂ v̂ /J 

_i i i i 
18 20 22 24 26 26 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

r: 
t.„5 

tmi 

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

0.2 

*T 0.1 

I 0 
1 - 0 , 

-0.2 

- i — i — i — r 

H '••{• 

>mmtm mid 

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 
Orbits 

15rT 

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 
Orbits 

Figure 4.66: Response of the satellite that is recovered from 75% LOE and LIP faults that 

are applied at times Tf\ = 2 1 orbits and Tfi = 43 orbits in the torquers alligned to the Y 

and Z, respectively. Satellite is following a zero reference. 
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Figure 4.67: Quaternion errors. Response of the satellite that is recovered from a 75% LOE 

and LIP faults that are applied at times Tf\ = 21 orbits and 7/2 = 43 orbits in the torquers 

alligned to the Y and Z axis, respectively. Satellite is following a zero reference. 

4.8 Chapter Summary 

This chapter has presented the characteristics of the model that is implemented for simulat­

ing the attitude control system of a satellite using magnetic torquers. The parameters of the 

system, as well as the calculated environmental disturbances for sizing the actuators were 

also formulated. 

In addition, the simulation results for each of the fault cases and the corresponding re­

covered systems as well as the effects of the delay in the fault detection and magnetic field 

measurement noise have been provided. A discussion about the response of the control 
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reallocation mechanism when the system is subject to concurrent faults is also included. 

Three scenarios were considered for the simulation of the system that is subject to faults 

and recovered from faults, namely, the command reference set to zero and two time varying 

references having different frequencies. 

The next chapter will present the conclusions of this thesis and future work to be 

conducted on fault recovery of magnetic actuators in the attitude control subsystem of a 

satellite. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

The dynamics and kinematics equations of motion for a LEO satellite are implemented in 

the Matlab's Simulink. The model includes the following features: 

• Major environmental disturbances such as gravity gradient torque, magnetic distur­

bance and aerodynamic drag, 

• Model of the orbital trajectory of the satellite, 

• Model of the geomagnetic field at satellite's position in a given orbit, 

• Model of a set of three orthogonal magnetic torques, including the fault modes (LIP, 

HO, LOE and Float), 

• Nonlinear attitude controller for trajectory tracking, and 

• Fault recovery system. 

167 



A comprehensive analysis of the environmental disturbances on the satellite simu­

lated indicate that the most significant environmental disturbances correspond to the gravity 

gradient torque and the disturbance due to the residual magnetic moment on the satellite. 

Based on these results, the actuators are sized to be able to compensate for the environmen­

tal disturbances and maneuvering efforts. 

In order to verify the satellite operation for calculating the desired magnetic moment 

from the torquers, a geometrical analysis of the torque and the magnetic moment as well as 

the magnetic field interaction was conducted. It was shown that the torque produced by the 

cross multiplying twice the desired torque (calculated using a nonlinear control law) with 

the magnetic field vector corresponds to the component of the desired torque in the plane 

that is perpendicular to the magnetic field. The resulting vector was shown to be the control 

moment that generates the closest torque to Tc (the desired control torque). 

The stability analysis of the closed-loop system that is actuated by the magnetic tor­

quers was presented. It was indicated that further work is required in the formal evaluation 

of the boundedness and the stability of closed-loop system when Teq ^ 0 for the specific 

control law that was employed by assuming a normal operation of the actuators. 

Different types of faults namely LIP, LOE, HO and Float in the actuators are utilized 

for the magnetic torquers. A complete analysis of the effects of each fault on the satellite 

attitude was also made. The solution proposed for the recovery from faults in the magnetic 

actuators was shown to be indeed effective for the recovery from Float, LOE and LIP faults. 
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The recovery of the system under HO fault by simply shutting down the actuator under the 

fault was considered. Results are shown to be satisfactory when after shutting down the 

faulty actuator, the fault was recovered as a float fault. 

Unconstrained and constrained optimization recovery strategies are developed and 

implemented numerically in simulations for the faulty magnetic torquers. The closed-loop 

stability of the system that is recovered from a fault was shown analytically for the solution 

to the unconstrained optimization problem. Moreover, the simulation results are shown for 

different faults scenarios and reference trajectories. 

The effects of the time delay on the response of the recovery system to active faults 

(due to the delay in the detection of a fault and subsequent late recovery reaction) were 

evaluated through simulations. It was observed that the delay has indeed an effect on the 

performance of the recovered system. However, for the duration of the delays that were 

considered, the recovery mechanism was still able to stabilize the system despite the pres­

ence of a fault. The effects of the presence of noise in the measurement of the magnetic 

field were also applied and through numerical simulations it could be seen that the steady 

state error of the sytem under this condition is larger. 

The recovery algorithm was also evaluated for operation under concurrent faults in 

some applicable cases, such as those involving the LIP, HO and LOE faults along with the 

occurrence of a second LOE fault. Due to the capability of each magnetic torquer to have 
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an effect on two control axes the results obtained showed that our proposed recovery so­

lution is also effective under these scenarios. Two examples of recovery from concurrent 

faults were also presented in simulations to verify our claims. 

A quantitative evaluation of the results was also made in order to compare the perfor­

mance of the satellite under faults with and without our proposed recovery strategy. The 

mean and the standard deviations of the angular positions are used for this analysis. The re­

sults demonstrate that the performance of the system under recovery is considerably better 

than the system under fault with no recovery solution. 

5.2 Future Work 

The control reallocation problem for the application considered in this thesis can be ex­

tended with a more complicated cost function that may involve parameters of the controller 

to be adjusted as well as the power consumption efficiency and fairness among the actua­

tors. Other control laws may also be used as baseline controller with which the reallocation 

approach introduced in this dissertation could be evaluated. 

In the particular case of magnetic torquers, the effort from each actuator had an effect 

on two of the control axes. Therefore, it is considered that this approach could be adapted 

for the application to other types of actuators, under similar conditions with hardware re­

dundancy. 
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The present work has assumed that the magnetic torquers are capable of producing a 

moment that is equal to the control input. However, it is clear that the physical properties of 

the coil materials, as well as the circuitry to drive the control current (or voltage) increase 

the complexity of the operation and therefore the dynamics of the actuator may deviate 

from an ideal performance. Further work could be done by incorporating the dynamics of 

the magnetic torquers and its integration with the fault recovery system. 

Finally, it is our opinion that the analysis of the system should incorporate the effects 

of delayed detection and inaccuracies in the magnetometer measurements. This would 

make it possible to determine formally the maximum allowable delays in the fault recovery 

(or fault detection) system to guarantee the stability of the closed-loop satellite as well as 

the required performance requirements and specifications under realistic situations. 
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