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ABSTRACT 

Modeling and Analysis of the Generalized Warehouse 
Location Problem with Staircase Costs 

Iman Niroomand 

The Capacitated Warehouse Location consists of determining the number and locations 

of capacitated warehouses on a set of potential sites such that demands of predefined 

customers are met. Two typical assumptions in modeling this problem are: the capacity of 

warehouses is constant and that warehouses are able to truly satisfy customer demands. 

However, while these kinds of assumptions define a well structured problem from the 

mathematical modeling perspective, they are not realistic. In this thesis we relaxed such 

constraints based on the fact that warehouses can be built in various sizes and also 

warehouses can put in orders for unsatisfied customers' demand directly to the 

manufacturing plant with additional costs. This flexibility can lead to best decision 

making ability for managers and supply chain specialists to decide between higher 

capacity level with higher fixed and variable costs at the warehouse or direct ordering 

from the manufacturing plant. A new non linear integer programming formulation with 

staircase costs for multiple commodities in supply chain network is presented, and new 

method for linearizing the model is described. Computational results indicate that 

reasonably good solution can be obtained by the proposed linear model. Also for solving 

larger problems we developed a Tabu Search algorithm. The comparisons of the result 

between nonlinear/linear model and the Tabu Search algorithm are also presented. 
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Chapter 1: Introduction 

The problem of locating warehouses and allocating customers covers the core component 

of distribution system design. The ability to produce and market plant product is 

dependent in part on the location of the warehouses and ability of customer demand 

fulfillment. Capacitated Warehouse location problem (CWLP) is defined as opening 

capacitated warehouses at some candidate locations in order that the total cost of meeting 

the customer demands is minimized. 

The facility location problem is applicable in many sections such as industrial firms and 

assembly plants. It is applicable to government agencies which must decide about the 

location of offices, schools, hospitals and fire stations. Communication companies and 

air flight controllers also use this problem for servicing their customers. In every case, 

service quality depends on the location of the facilities in relation to other facilities and 

customers. 

A very common assumption in most of the existing research is that the total capacity of 

all potential warehouses is sufficient to meet the total demand. Although this assumption 

helps define a well-structured problem from the mathematical modeling perspective, it is 

in fact restrictive and not realistic, hence rarely held in practice (Bektas and Bulgak, 

2008). The modeling approach in this thesis breaks away from the existing research in 

relaxing this restrictive assumption. 

1 



Another approach to locate and build warehouses is motivated by the fact that these 

facilities can be built in different sizes. Therefore, there would be a tradeoff between 

choosing larger size warehouses and direct ordering from the manufacturing plant 

whenever demand is not fully satisfied. 

This fact (what fact?) prompts us consider Staircase cost function for setting up new 

warehouse size for each potential location. In practice, there is often a need for 

considering several different possible sizes of each warehouse/plant. To deal with this 

situation (what situation?) we consider a facility location problem with staircase shaped 

costs. This approach not only will allow us to deal with different sizes, but also with 

different holding costs/production costs at different levels of production at a plant 

(Holmberg and Ling, 1997). For instance, consider a firm willing to operate warehouses 

in order to facilitate its distribution operation for multiple products. An appropriate 

warehouse size will have two advantages, first it eliminates extra cost of running large 

size warehouses, second it allows customer demands to be fully satisfied with minimum 

cost. 

We consider the problem in a supply chain setting with multiple commodities and 

propose a model that simultaneously determines the number and the location of the 

warehouses which are opened among the set of potential locations (location problem), the 

assignment of customers to warehouses where their demand will be satisfied with 

minimum cost, the amount of products which are stored at each warehouse at appropriate 
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level by going through the staircase shaped costs and finally the most suitable size is 

selected for each nominated warehouse that leads to minimum cost for entire network . 

This problem provides an opportunity for managers or supply chain specialists to come 

with a trade off between larger capacity size level of warehouse or direct ordering to 

plant by extra cost. This trade off at end converges to best minimum cost for decision 

maker in entire network system. 

1-1 Contribution of this research 

The focus of this thesis is on modeling and solution of a new issue in warehouse location 

problem with staircase costs that helps supply chain specialists and managers to develop 

better supply chain network by reducing the total cost of establishing warehouses, 

commodities and customer assignment. Not only this research considers opportunity of 

having warehouses with different levels but also each warehouse is capable of satisfying 

extra demands by direct ordering from plant, an issue that has not been studied before. As 

a matter of fact, by considering these two options (ordering to plant directly or having 

larger size warehouse) simultaneously we are able to bring a trade-off for decision maker. 

We provide a literature review in chapter 2. Formal description of the problem along with 

mathematical notation and integer Non-linear programming formulation will be described 

in chapter 3. Integer linear model of problem will be described in Chapter 4.Chapter 5 

shows the experimental problems with Lingo 8.0 for both non linear model and linear 
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model. Chapter 5 explains the Tabu Search frame work for generating feasible solution. 

Chapter 6 shows the Tabu Search implementation for problem and computation 

experiences. Tabu Search result and Lingo solution is compared in Chapter 7 and finally 

the conclusion and suggestions for further research comes in chapter 8. 
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Chapter 2: Literature Review 

2-1 Facility location problem 

There is an extensive literature on facility location problems. Klose and Drexl (2005) 

reviewed most cases in facility location models which have contributed to the current 

state-of-the-art. There are different models in facility locations that Klose and Drexl 

classified them in nine categories: 

1. The shape or topography of models in the plane, network location models or 

mixed -integer programming models. 

2. Minimum vs. Maximum objective function. 

3. Models without capacity constraint vs. with capacity constraint. 

4. Single stage models vs. multi-stage models. 

5. Single product models vs. multi-product models 

6. Inelastic demand vs. elastic demand. 

7. Static models vs. dynamic models. 

8. Deterministic models vs. probabilistic models. 

9. Each pair supply and demand models vs. combined location models 

Some of popular models in literature are: 

• Continues location models. 

• Network location models 

• Mixed-integer programming models. 

This review paper would be a comprehensive survey of the related problems for facility 

locations. 
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Holmberg et al. (1994) studied solving the staircase cost facility location problem with 

decomposition and piecewise linearization. Facility location problems with linear 

transportation costs and one fixed cost for each possible facility is the objective of this 

paper and staircase structured costs are introduced. Author uses staircase costs at several 

level of production. For obtaining solution a combination of piecewise linearization and 

Benders decomposition is used. This method provides the possibility of getting upper 

and lower bounds on the optimal objective function. 

Sridharan (1995) reviewed heuristic and exact procedures for the capacitated plant 

locations problem. This author has studied scheduling problem for several machines for a 

given operation. The objective of this problem is minimizing the total purchase and fixed 

cost of operating the machines. The model of this problem is the same as the Capacitated 

Plant Location Problem (CPLP). The first stage of this problem chooses a subset of 

machines and the second stage of this model assigns the parts to the chosen machines. He 

examined different heuristic methods such as the greedy heuristic, and Lagrangean 

heuristic. For exact procedures alter methods such as LP relaxation and Benders 

decomposition has been used. 

A Lagrangean heuristic for the facility location problem with staircase costs has proposed 

by Holmberg and Ling (1997). The authors developed a heuristic solution for the 

capacitated facility location problem with staircase shaped production cost functions. 

This approach gives this opportunity to deal with different sizes and different production 
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costs at different levels of production at a plant. A Lagrangean heuristic is used to obtain 

a near optimal dual solution. 

A multi commodity, multi plant facility location problem has been studied by Pirkul et al. 

(1998) where a heuristic solution procedure was developed for a mixed integer 

programming model. In this proposed model customers get their multiple product of by 

open warehouses while warehouses receive these products from several manufacturing 

plants. The objective function of this model minimizes the fixed cost of establishing and 

operating the plants and the warehouses plus the variable cost of transporting units of 

products. For solving this model, Lagrangian relaxation of the model is provided and a 

heuristic solution procedure is introduced. 

Hindi et al. (1999) studied Efficient solution of larger scale, single-source, capacitated 

plant location problems. The contribution of this paper is about assigning of all one 

particular customer demands to only one single plant. By this assumption the capacitated 

plant location problem reduces to the single-source plant location problem. The objective 

of this work is to develop a solution procedure capable of providing solution to large 

scale problems. For reaching this goal, a heuristic solution that combines Lagrangian 

relaxation with restricted neighbourhood search is provided that can solve large problem 

instances. 
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The capacitated plant location problem with multiple facilities in the same site is studied 

by Ghiani et al, (2002). The contribution of this paper is to consider several facilities in 

the same site such as the location of polling stations. A Lagrangian relaxation and a 

tailored Lagrangian heuristic are proposed in this paper. 

Cortinhal and Captivo (2003) presented upper and lower bounds for the single source 

capacitated location problem with a Lagrangean relaxation. This paper considers a subset 

of plants and customers which each customer is assigned to one of these plants such that 

the total cost is minimized. The objective of this paper is to develop solution procedure 

can provide good solution for SSCLP. Therefore after presenting Lagrangian relaxation 

upper bounds are given by Lagrangian heuristics followed by search methods and by one 

Tabu Search meta-heuristic. 

Lorena and Senne (2004) studied a column generation approach to capacitated p-median 

problems. The capacitated p-median problem (CPMP) tries to find optimal location of p 

facilities with regard to distances and capacities for the service to be given by each 

median. In this paper, Lagrangean relaxation directly identified from the master problem 

dual and provides new bounds and new productive columns through a modified knapsack 

sub problem. 
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Wu et al. (2006) expanded the model proposed by Gianpaolo Ghiani et al. They 

considered capacitated facility location problem with general setup cost which allows 

multiple facilities in the same site. This model is a mixed integer programming and the 

new features of this model considers the setup costs as fixed term plus a second term that 

depends on the size of the facility. Both Uncapacitated and Capacitated models are 

formulated in this paper and solved by general MIP solver. Also, a Lagrangean heuristic 

algorithm is proposed for solving the problem. 

Keskin and Uster (2007) developed a meta-heuristic approach for a multi-product 

production/distribution system design problem. This mixed integer problem considers a 

multi-product, two-stage production/distribution system problem where a fixed number 

of capacitated distribution centers with attention to capacitated suppliers and retail 

locations are to be located to minimize the total costs. The authors provide meta-

heuristic procedures such as population-based scatter search and tube search for the 

solution of the problem. This two-stage balances the amount of products that are 

transported to customer and the products which are received by DC (Distribution Center). 

A branch-and-price algorithm for the capacitated facility location problem has been 

studied by Klose and Gortz (2007), where the authors employ column generation method 

in order to solve a corresponding master problem exactly. This approach is based on 

relaxing the demand constraints in a Lagrangean manner. A hybrid mixture of sub 

gradient optimization and a "weighted" decomposition method is applied for master 
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problem. They also use column generation procedure embedded in branch and price 

algorithm for computing optimal solution. 

Bektas and Bulgak (2008) have developed Lagrangean based solution approaches for the 

generalized problem of locating capacitated warehouses. The novelty of this paper 

supports the relaxation of the assumption that the total capacity of all potential 

warehouses is sufficient to meet the total demand. The authors relax this assumption by 

having no restriction on the total capacity and the demand. A new integer programming 

formulation for this problem is presented, and algorithm based on Lagrangean relaxation 

and decomposition is described for its solution. 

2-2 Tabu Search heuristic in location problem 

The Tabu Search algorithm is a heuristic algorithm used to solve a variety of problems in 

operation research field such as scheduling, healthcare, facility location and production. 

Among large number of Tabu Search articles that exist in literature, we selected those 

applied to facility location problems which share common terms to our proposed model. 

Rolland et al. (1996) considered an efficient Tabu Search procedure for the p-median 

problem. Their model investigates a set of nodes (facility) of size p in which the 

weighted sum of the distances is minimized. Some feature of used Tabu Search can be 

summarised here. First the search considers Add and Drop moves. Second to move from 

one local optima to another one efficiently where search path includes infeasible 
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solutions. Third they used random Tabu time. The result of Tabu Search shows Tabu 

Search algorithm performs better and other available heuristics. 

Delmaire et al. (1999) studied the implementation of TB for the single source capacitated 

plant location problem. A reactive GRASP heuristic, a Tabu Search heuristic and two 

different hybridization schemes that combine the GRASP and Tabu Search 

methodologies are used in this paper. Two phases have been investigated in this paper: 

constructive phase which at this level different sets of open plants are selected and initial 

allocations within the open plants are obtained. Tabu Search is used as improving phase 

in second phase. Tabu Search provides a mechanism to strengthen the local search. 

Gendron et al. (2003) studied a Tabu Search with slope scaling for the multi commodity 

capacitated location problem with balancing requirements. The authors have utilized 

slope scaling approach to provide initial solutions for the Tabu Search. This method takes 

into account the capacities and their impact on each move. The proposed version includes 

iterative procedure where a multi commodity network flow is solved at each iteration. 

Then this initial solution is improved by the Tabu Search. 

Minghe Sun (2006) studied solving the uncapacitated facility location problem using 

Tabu Search. In this paper the Tabu Search performance is compared against the 
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Lagrangian method and heuristic method that exists in literature. The result of Tabu 

Search matches or dominates other competitive methods. 

Keskin and Uster (2007) studied meta-heuristic approaches with memory and evolution 

for a multi-product production/distribution system design problem. They developed a 

mixed integer problem for a fixed number of capacitated distribution centers which are 

located with respect to capacitated suppliers and retail locations. They provided meta-

heuristic procedures, including a population-based scatter search and trajectory-based 

local and Tabu Search for this model. 
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2-3 Literature Review Summary 

In this chapter we reviewed facility location literature. We reviewed the existing models 

and the solution techniques to solve these models. From this review, we concluded that 

further improvements to the existing models can make the existing location problem 

more realistic. By considering this fact that every single facility can come with different 

level size with different fixed and variable costs can make the existing models more 

challenging. Holmberg (1996) who has considered staircase cost function in a production 

problem developed a mathematical model. By extending the proposed model of Bektas 

and Bulgak (2008), we could reach to new model formulation that will be introduced in 

Chapter 3. 
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Chapter 3: Problem Description and Model Formulation 

The problem is formally defined as opening warehouses on a subset W CLW with 

different potential s izesmeQ, assigning each customer to a single opened warehouse 

and determining the amount of each commodity to be stored at each opened warehouse 

with specific size, such that the total cost of distributing the commodities to customers 

and holding cost of commodities at warehouses are minimized. If an opened warehouse 

j e W is unable to fully satisfy the demand of the customers assigned to it, then the 

demand is partially satisfied. Any amount of unsatisfied demand for commodity k e K is 

requested further from the production plant by warehouse j e W with an additional cost 

of producing/delivering the product as well as the lost opportunity cost of supplying in 

full the customer's demand. 

Figure 3-1 shows a schematic illustration of proposed model. 

Figure 3-1 Schematic of proposed model 
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By appropriate decision level of warehouse capacity in competition market, the supply 

chain specialists and managers can have trade off between larger capacity size and direct 

order to plant. The right capacity can satisfy the customer demand fully and reduce the 

cost of fixed costs and variable costs of larger or smaller one. Therefore, we can improve 

the model by staircase structured costs. The staircase model allows fixed cost to appear at 

several levels of warehouse capacity, and also allows the linear holding cost coefficients 

to vary between different intervals of storage amount. 

In reality a warehouse can be built in different sizes, finite set with not too many 

elements. Each possible size yields a certain fixed cost and a certain capacity of the 

facility. We thus have a cost function with several fixed costs at different levels (fJm) 

.This fixed cost appears for building a warehouse of size m at location j with possible 

sizes of m e Q at location j 

We model the problem in an integer linear programming and define the following three 

sets of decision variables. The two first sets of binary variables associate with warehouse 

selection with specific size, and assignment of customers to the warehouses, respectively. 

_ (1 if node; G W is selected as a warehouse with size m, 
yi'm ~ I o otherwise 

1 if customer ieC is assigned to the (opened) warehouse jGW, 
0 otherwise 

15 



If an opened warehouse j e W is unable to fully satisfy the demand of the customers 

assigned to it, then the demand is partially satisfied. Any amount of unsatisfied demand 

for commodity k e K is requested further from the production plant by this warehouse 

with an additional cost of producing/delivering the product as well as the lost opportunity 

cost of supplying in full the customer's demand. 

The third set includes the following two variables that are related to the amount of 

commodities. The first variable in this set denotes the amount of commodities stored at 

each warehouse, and is defined as follows: 

Zjk = the amount of commodity kGK stored at warehouse jeW 

The second variable denotes the additional amount of requests that are made from a 

warehouse jG W to the facility and is shown below. 

Zjk = the amount of commodity kGK requested from the facility by warehouse jGW 

VariablesZy^ and Zfk are defined as non-negative general integers to denote the specific 

amount of commodities stored and transported. 

For Staircase cost function term we define auxiliary variableZ^ fc which is a non-

negative integer variable and denotes the amount of product k£K that is stored at 
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warehouse / sizem. The total warehouse cost of level m is sum of fixed open cost and 

stored product holding cost. If tjshows required space by warehouse j we have: 

(3-1) 

ro iftj = o 

{. fj,m + YikeK^ljlm,k^j.m.k ^Sj,m-1 < fy < SjiTn ,m E Q 

Where Sji0 = 0, 

In order to increase the capacity from certain level to larger one we define: 

tejim = Sjim - S;-m_i V; £ W, m £ Q (3"2) 

And the cost of increasing capacity would be: 

M),m = fj,m ~ fj,m-l + 2jfcetf(fy,rn,fc — fy,m-l,fc) TimeQ Zj,m-l,k Y/ e " ^ > m e 2 

(3-3) 

As figure 2 shows, the cost of increasing the capacity from size 5a to size S2would 

increase the fix cost from ft to f2 and inventory holding cost from hjlk tohj2ik • 

17 



u 
YtuJy 

y *fu 
VhLLkz) 

•j,\,k~j,k\ 

MK 

A 

AS, 5, AS2 S2 

Figure 3-2 staircase cost function 

Where/y0 = 0 and Zj0k = 0 

Appropriate level of warehouse / G W will be defined by the following formula: 

'0 iftj<Sjim.lt 
i 

Let ljk€K^j,m,k ~ 

— j J,UI-J-> 

A S , - if tj>Sjim, 
,m 

U5,-m 

(3-4) 

Therefore we have: 

tj = EfceJrMjfc = EmE<?Efce* M£m,fc w h e r e ° ^ Ifce* M/>i , fc ^ A 5 / ,m Y/ 6 (3 
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3-1 Non-linear mathematical model 

Minimize: 

T.jeW iLmegGLkeK ^•j,m,k^i,m,k + ^fj,m.yj,m) + £;'eW Siee Efceif d-i,kxi,jci,i + Hj'eW Eme2 ^j,k^j,k (3-1-1) 

Subject to 

I y 6 W * u = i , v i e e (3-1-2) 

XijZyji.VieCjeW (3-1-3) 

< ASjirnyjirn, VjEW,mEQ (3-1-4) 

> ASj>m-iyjirn,VjEW,mEQ (3-1-5) 

Z/fc = Smes Z/m>fc, V j e W , f e 6 / f (3-1-6) 

Z}ik + Zfik = Xiee diikxtJ, VjEW.keK (3-1-7) 

JCy G {0,1}, Vi E C,j E W (3-1-8) 

yJ>m E {0,1}, V; EW.mEQ, (3-1-9) 
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Zjk, Zfk E 1+, V; 6 W, k e K (3-1-10) 

Zjmk E Z+, V; EW,meQ,kEK (3-1-11) 

This is a nonlinear MIP capacitated facility location problem with staircase cost function. 

The objective function of this problem is composed of three cost elements. The first part 

is the total cost of opening the warehouse with a specific capacity from the available 

capacities and holding cost of each product at that particular warehouse level. The second 

term denotes the total shipping cost of each product to each customer that has been 

assigned to a specific warehouse. The last part shows the cost of ordering the product 

k E /^directly from the production plant that cannot be satisfied by the warehouse due to 

the capacity restriction. In objective function, the non-linearity term causes by different 

cost between the two continue level of capacity and decision of opening the higher level 

(A/y.m). 

In this model constraint (3-1-2) assigns each customer to only one warehouse, and 

constraint (3-1-3) implies that customers are assigned only to warehouses that already 

exist. Constraint sets (3-1-4) and (3-1-5) ensure that the level of storage corresponds to 

the correct level on the staircase cost function for each warehouse. Number (3-1-6) keeps 

amount of product fe 6 if in all level m E Q for warehouse JEW .Constraint (3-1-7) 

ensures that the demand for all the customers will be met, either by the warehouse or the 

production facility. 
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3-2 Linear Mathematical model 

In non-linear model we had: 

I, jew T,meQ ^fj,myj,m = 

(3-2-1) 

T.jewT.meQ(fj,m ~ fj,m-l + 2fce/f(^/,m,k "~ ^j,m-l,k))yj,m Vj EW.mEQ 

That, 

2jjewlumeQ\.ljkeK\.'lj,Tn,k ~ >lj,m-l,k)ljmeQ^j,m-l,k)yj,Tn > 

is caused nonlinearity in model. If we try to re-write this phrase in such way that non-

linearity eliminated we have linear model. 

For this purpose, we re-define kfj.m a nd w e add aggregate product variable which is 

denoted by (AZjmk). This variable shows sum of each product that is stored up to 

maximum opened capacity level. For example, if a warehouse; E W opened with third 

capacity level,j4Zy3jfc shows sum of product k E K that is stored in first, second, and 

third level capacity of warehouse/ € W. 

We use new definition for Afj m as follow: 

Mj.m = fj.m ~ fj,m-l VjEW.mEQ (3-2-2) 
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So, we can substitute old objective function terms by new ones as described above: 

LijeW Z,meQ Ilfcetf ty ,mikAZj imk + 2ujsW LmeQ ^fj,myj,m (3-2-3) 

At this time we need to add some constraints that let AZjiTriik stores sum of product k 6 K 

up to maximum opened capacitym £ Q. 

In reference to Defersha and Chen (2008) we can use following constraints for this 

purpose: 

AZLmik > £2UZj>mik + Mtj>m -M,VjEW,mEQ,kEK (3-2-4) 

AZJimik < JZ=i Z},m,u ,VjeW,mEQ,kEK (3-2-5) 

AZjiTriik < MtjiTn, Vj E W, m 6 Q, k E K (3-2-6) 

Constraint (3-2-4) implies if new binary variable tj mget value 1 then constraint (3-2-4) 

will be: 
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AZj,m,k * 2m=l Zlm,k > Y/ 6 W, 771 E Q, k E K (3-2-7) 

Then Constraint (3-2-4) and (3-2-5) will turn to equality constraint: 

AZJimik = S £ = 1 Zjimik ,VjEW,mEQ,kEK (3-2-8) 

So, AZjmk will be sum of product k E K in all level capacity of warehouse j E W up to 

capacity m 6 Q.But if binary variabletJ>m get value zero AZj:Tnk will be zero by 

Constraint (3-2-6). 

At this step, following constraints let tj m equals to maximum opened level that means 

only maximum capacity level (m) of warehouse (J E W) get value 1 and other tjms get 

zero. 

tj.m<yj,myjew,meQ (3-2-9) 

2™:gt,-m = l V ; 6 W (3-2-10) 

tj,m Z t},m-x + MyjiTn - MV; e W, m E Q (3-2-11) 

Constraint (3-2-9) guarantees that if y;-<m = 0 , auxiliary tjm cannot be 1. Constraint (3-

2-10) assures that only one capacity of related warehouse can get value l.For instance, if 

a warehouse j E W is built with second capacity level then we will havety>2 = 1. In case 
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that a warehouse j G W should not be built then we have t,(0 = 1 that satisfy constraint 

(3-2-10). Finally, constraint (3-2-11) causes warehouse; G W be operational with 

maximum available capacity level. 

Using above modification in non-linear model, we propose the following linear model for 

our problem. 

Minimize: 

LjewlimeQLkeKhj^icAZjmjt + LjewJ^meQ ^fj,m.yj,m + LjewllieeLikeK d-i,kxi,}ci,) + 

Ey'eW Ernes fy.k fy,k (3-2-12) 

lj&vXtj = l,VieC (3-2-13) 

xtJ<yJtl,viecjew (3-2-14) 

LkEK frfc Zj.m.k 
< ASJ>myJim,VjEW.mEQ (3-2-15) 

EfcGif h Zf,m-i,k > ASj,m-iyj,m, V; G W, 771 6 Q (3-2-16) 

Ilk = ZmeQ Zlm,k, Vj£W,kEK (3-2-17) 

Zfa + Zf,k = Ziee diikXiiP VjeW.kEK (3-2-18) 
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AZj,mjk * I%=1 Zjimik + MtLm -M,VjEW,meQ,keK (3-2-19) 

AZj,m,k < £m=iZ}> m > k ,VjEW,mEQ,kEK (3-2-20) 

AZjmM ^ Mti,m>Vj£W,meQ,kEK (3-2-21) 

tj,m<yj>rn,VjeW,mEQ (3-2-22) 

rZl h.m = l v; e W (3-2-23) 

tjim > tlm.x + MyLm -M,VjEW,mEQ (3-2-24) 

Xtj E {0,1}, Vi EC,j EW (3-2-25) 

y ; - m G { 0 , l } , V ; e W , m G 2 , (3-2-26) 

tjirnE{0,l},VjEW,mEQ, 
(3-2-27) 

Z/ft,Z/fc e Z+,Vj EW,kEK (3-2-28) 
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Zjmk E %+, V; EW,mEQ,kEK (3-2-29) 

AZji7n:k E 1+, V; EW,mEQ,kEK (3-2-30) 

In new model constraint (3-2-13) assigns each customer to only one warehouse, and 

constraint (3-2-14) implies that customers are assigned only to warehouses that already 

exist. Constraint sets (3-2-15) and (3-2-16) ensure that the level of storage corresponds to 

the correct level on the staircase cost function for each warehouse. Number (3-2-17) 

keeps amount of product k E K in all level m E Q for warehouse JEW .Constraint (3-

2-18) ensures that the demand for all the customers will be met, either by the warehouse 

or the production facility. Constraints (3-2-19) to (3-2-22) open warehouses with 

maximum available capacity and constraints (3-2-23) and (3-2-24) assign correct decision 

binary variable for appropriate capacity level of warehouse; G W . 
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3-3 Summary 

In this chapter we first presented a model to cover facility location staircase cost function 

then we linearized it. We transformed the nonlinear model to a linear model by 

eliminating the nonlinearity term in the objective function. As it is clear in the linear 

model objective function, the first part assigns appropriate holding cost to warehouse 

JEW products and the second part assign appropriate fix cost value to warehouse JEW 

level m E Q. So there is no non-linear term in objective function. The rest of objective 

terms are equal to non-linear model. 

In the next chapter, we will show the computational result of the non-linear model and 

linear model by Lingo 8.0 and Lingo 10 software and we compare these two sets of 

results together. 
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Chapter 4: Computational Experiments with Lingo 8.0 & 
Lingo 10. 

4-1 Non Linear Model analytical examples 

We used Lingo 8.0 for coding and testing the model. We generated random problems 

with different number of warehouses, capacities, customers, commodities, demands, and 

different shipping cost. 

These random problems have been evaluated on a 1.6 GHz Pentium PC with 1024 MB 

RAM. We find optimal solution for small problems at early stage of problem running. 

For example, we obtain optimal solution for the first problem Table 4-1 (see the appendix 

1) in 5 second. 

This optimal solution has been shown in Table 4-1. Warehouse 1 is set to its maximum 

capacity which is 210000 units and warehouse 2 is set to its maximum capacity which is 

170000 units. Customer 2 and Customer 3 are assigned to warehouse 1 and Customer 2 is 

assigned to warehouse 2. All demands are being fully satisfied by warehouses (Z:
jk ) and 

no order is being released by any warehouse to satisfy customer demands. (ZL = 0 ). 
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Warehouse 

W, 

w2 

Selected warehouse 

Capacity 

m3 = 210000 

m3 =170000 

Z1 

Z,1, = 9000 

Z\_2 = 6000 

Z\tl = 6000 

Z^2 = 4500 

z2 

2^2=0 

Z2
2,,=0 

22
2,2=o 

Assigned 

customer 

C2 

c, 

Table 4-1 Lingo solution for appendix 1 problem 

However, when we increase the number of warehouses, capacities, customers and 

products gradually we rarely get a feasible solution for two reasons. First of all, the non-

linearity term causes each solution fall in a local optimum. Secondly, as the size of the 

problem increases gradually, we rarely reach a feasible solution by the end of a pre-

specified time (maximum 3 hours). 
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Problem 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

W 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

m 

3 

3 

4 

5 

5 

6 

5 

5 

4 

6 

C 

3 

5 

6 

8 

12 

15 

12 

15 

15 

20 

JT 

2 

3 

5 

5 

6 

8 

8 

8 

6 

10 

Iterations 

16509 

53197 

39444608 

40083603 

189618630 

6744323 

11072710 

6097317 

19628275 

4174448 

Processing 

time 

00:00:05 

03:00:00 

03:00:00 

03:00:03 

03:00:01 

03:00:01 

03:33:14 

03:38:01 

03:00:01 

03:00:01 

Objective 

value 

163800 

3.39675e+006 

3.18685e+007 

4.93807e+007 

504648 

3.2792e+006 

2.14585e+008 

4.1133e+006 

N/A 

N/A 

State 

Optimal 

Feasible 

Feasible 

Feasible 

Feasible 

Feasible 

Feasible 

Feasible 

Unknown 

Unknown 

Table 4-2 different size Non linear sample problems with Lingo 8.0 

Table 4-2 confirms that we are not able to obtain feasible solution when the size of 

problem increases gradually. In section 4-2, we try to solve same Table 4-2 problems 

with linear model. We will compare the differences at the end. 

4-2 Linear Model analytical examples 

We solved problems 1 to 10 in Table 4-2 for linear model experiments by Lingo 10 

software. The result of these experiments is shown in Table 4-3. The results obtained 

suggest that our problem is NP hard and it cannot be solved by branch and bound method 

in reasonable time. 
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Problem 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

W 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

w 

3 

3 

4 

5 

5 

6 

5 

5 

4 

6 

C 

3 

5 

6 

8 

12 

15 

12 

15 

15 

20 

^ 

2 

3 

5 

5 

6 

8 

8 

8 

6 

10 

Iterations 

172 

29694 

43371835 

12387 

687169 

502615 

4303 

63830616 

4009909 

18453071 

Processing 

time 

00:00:05 

00:00:08 

00:01:04 

00:00:06 

00:01:04 

00:01:27 

00:00:12 

01:38:01 

03:00:01 

03:00:01 

Objective 

value 

163800 

3.39596e+06 

1.64991e+07 

2.84864e+07 

500259 

3.0551le+06 

2.06428e+08 

1.12045e+06 

1.82949e+07 

8.57393e+06 

State 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Feasible 

Feasible 

Table 4-3 different size linear sample problems with Lingo 10.0 

As it shown in Table 4-2, for problems 1 to 8 we obtain the optimal solution. As the size 

of problems increase, solution obtained stay at a feasible state and for larger problems 

there would be no solution at all. Linear model facilitates the problem solving by 

providing better solution as it shown in Table 4-3. More problems get optimal solution 

but when the size of problem increases the chance of getting optimal solution decreases 

as well. For this reason, we used a Meta heuristic algorithm approach for solving larger 

problems. 
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4-3 Summary 

In this chapter we solved some problems for both nonlinear and linear models with Lingo 

8 and Lingo 10. As it shown in Table 4-2 the results obtained by the linear model when 

the size of problems get large are reasonably better than the results we obtain from the 

non-linear model. Another important issue is about processing time of problems when the 

size of problems increases. We acquire better solution in a shorter time frame with the 

linear model than the nonlinear model. 

However, in larger size problems linear model barely reaches a feasible solution. For 

covering large size problems, we are going to develop a Meta heuristic for our problem. 

Among different kind of Meta heuristic methods such as simulated annealing, genetic 

algorithm and Tabu Search, we choose Tabu Search because it uses flexible memory and 

responsive exploration in guiding the solution process to move from one trial solution to 

another. By responsive exploration, it determines a search direction in the solution space 

based on the properties of the current solution and the search history and converges to 

optimal or near optimal solution at the end. 

In next Chapter, we will use a Meta heuristic method the Tabu Search, in an attempt to 

find better feasible solutions for larger problems within an acceptable processing time. In 

next chapter we will develop Tabu Search method for our model. Then, we simulate the 

model with Tabu Search algorithm to compare the results with Lingo 8.0 and Lingo 10 
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solutions. For having better comparison we will compare the Tabu Search final solution 

with both non-linear and linear model results. 
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Chapter 5: TABU SEARCH FRAME WORK 

The proposed model is considered to be an NP-Hard problem with reference to the 

model with a multi commodity (k), single holding cost (hJk) for all j eW and one 

potential available capacity for each warehouse is NP-Hard (Bektas and Bulgak, 2008). 

Thus, we develop a Meta Heuristic method for solving our model at this stage to reach 

better solutions. Tabu Search (TS) is a popular optimization technique used in a variety 

of optimization problems (Glover and Laguna 1997). The beneficial advantage of Tabu 

Search is escaping from local optimality especially in combinatorial problems where for 

reaching this goal, a move that leads to the next considered solution can be accepted even 

if the cost of this solution is worse than the current solution. (Ah Kioon et al. 2008) 

As the literature defines, Tabu Search generalizes the basic local search procedure which 

is terminated when an improved solution in the neighborhood of the current solution 

cannot be found. Precisely, Fred Glover (1997) proposed new approach, which he called 

Tabu Search, to allow local search methods to overcome local optima. The principle of 

Tabu Search is to pursue a local search whenever it encounters a local optimum by 

allowing non-improving moves; cycling back to previously visited solutions is prevented 

by the use of memories, called Tabu lists that record the recent history of the search. 

Tabu lists containing attributes can be more effective for some domains, although they 

raise a new problem. When a single attribute is marked as Tabu, this typically results in 

more than one solution being Tabu. Some of these solutions that must now be avoided 

could be of excellent quality and might not have been visited. To mitigate this problem, 

"aspiration criteria" are introduced: these override a solution's Tabu state, thereby 
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including the otherwise-excluded solution in the allowed set. A commonly used 

aspiration criterion is to allow solutions which are better than the currently-known best 

solution (Glover 1997). 

In this manner, we set the best non-improving solution as our current solution when it is 

not in Tabu list or it satisfies the aspiration criterion. With Tabu Search we can escape 

from the local optima and explore the larger subset of solution space. Therefore for 

advancing our procedure, we must specify an initial solution that is chosen from a set of 

feasible solutions with the best objective value, the way that Tabu moves, the time that 

Tabu lasts, and the aspiration criteria which dictates how to overrule a Tabu. 

Although, we can start with any solution in feasible region but the best way is founding a 

good initial solution which converges to best solution at lowest computation time. 

For finding an initial solution we got an idea from Uster and Keskin (2007). We employ 

following steps to have a good initial solution: 

• Initialization 

• Diversification 

• Duplication 

• Feasibility 

• Customers assignment and Commodity placement 

• Selecting Best Solution 
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For specific number of trrax we generate two kind of initial solutions (primary and 

reverse initial solution). Then we check the feasibility for these generated solutions. After 

feasibility check, we select the solution which returns lowest cost and store it as best 

initial solution. This method will continue till ̂  > m̂ax is satisfied. 

At end, we will announce best initial solution which has been found as our permanent 

initial solution. Figure 5-1 illustrates the flowchart of initial solution phase. 
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Figure 5-1 Initial solution flowchart 

Following section's explanation makes initial solution phase comprehensible. 
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5-1 Initialization 

Initial solution is a binary vector y that consists of the warehouses and the proper 

capacities. For instance, suppose we have 3 possible warehouse locations that are able to 

create up to four different capacities. Figure 5-2 shows an example of an initial solution. 

0 0 0 1 1 0 0 1 1 1 0 
^ , 1 yh2 yi,3 ylA y. yi,i y2,s y2,4 y3,i y*,i y^ y3,* 

i o o o 
^1,1 yi,2 y\,- y^ 

Warehouse 1 

1 1 0 0 
y 2,1 y 2,2 y 2,3 y 2,4 

Warehouse 2 

1 1 I 0 
^3,1 y 3,2 ^3,3 y3, 

Warehouse 3 

Fieure 5-2 an initial solution example 

As it shown in the figure 5-2, the first warehouse is set to its first capacity level, the 

second warehouse is opened with second capacity level and third warehouse uses its third 

capacity level as initial solution. 
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For generating new solutions we randomly generate initial solution with jxm elements 

with binary value (0, 1) in diversification step. We repeat this procedure for t times to 

cover more area of our feasible region. 

5-2 Diversification 

Let yjmbe the elements of an initial binary solution (Y ) as it illustrated in figure 5-3. 

0 0 0 0 0 0 0 0 0 0 0 0 
^1,1 y 1.2 y 1,3 y 1,4 y 2,1 y 2,2 y 2,3 y 2,4 ^3,1 ^3,2 3^3,3 y 3,4 

Figure 5-3 binary solution for warehouse capacities 

The initial solution vector ( Y ) denotes an n-vector ( n = j x m ) which each component of 

Y receives value 0 or 1, we randomly set these elements to zero and one. Algorithm 1 

shows how we are able to generate these mentioned solutions. Algorithm 5-1 shows the 

way of generating these initial solutions: 
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Algorithm 5-1 generating Initial solutions 

1: for t=\ tot„ 

2: forj=\toWw 

3: for m = \ to Qn 

y\ji»] *~ Rand°m(W) 

5: Next for 

6: Next for 

For example, above algorithm generates below solution (figure 5-4): 

0 1 0 1 1 0 1 0 0 1 1 
3̂ 1,1 yU2 yi,3 yh4 y2,i y2,2 y2>i y2,* J \ I y3,2 yi>3 y3l. 

1 0 1 0 Warehouse 1 
^1,1 yia yi,3 yu< 

i i o l Warehouse 2 
y2,i y2,i y2,3 y2 

o o i i Warehouse 3 
y3,i yi,2 ^3,3 y3, 

Figure 5-4 Random Initial solution for warehouse capacities 
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5-3 Duplication (Reverse solution) 

In reference to Glove 1997 we used Algorithm 5-2 for generating another solution by 

inverting each element of generated solution in algorithm 1. Algorithm 5-2 shows the 

way of creating another solution from generated solutions: 

Algorithm 5-2 generating Reverse solutions 

1: for t = \ totmsK 

2: forj = ltoWmax 

3: for m = \ to Qn 

^ M - 1 - ^ 

5: Next for 

6: Next for 

Figure 5-5 shows reversed solution of figure 5-4 case which is created by algorithm 5-2. 

0 1 0 1 0 0 1 0 1 1 0 0 
^i,i J V ^ ,3 yXA y2,i y2,2 y2,3 y2A y3,i ys,2 y^ yiA 

o i o i 
^1,1 ylf2 yi.3 yu 

Warehouse 1 
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"Q TQ |~~j r~Q 1 ^ Warehouse 2 

yi,i y2,z y2,3 y2A 

1 | 1 | 0 1 0 1 4 Warehouse 3 
3^3,1 ^3,2 ^3,3 ^3,4 

Figure 5-5 Reversed Initial solution for warehouse capacities 

5-4 Feasibility 

The trial solutions in the population generated by the diversification and duplication steps 

would be infeasible in most cases due to violation of two constraints (3) and (4). For 

instance, if the capacity of any warehouse j at level m is set to zero, then a higher 

capacity level, e.g., m + l cannot be set to 1. 

Therefore, we change these non feasible solutions into feasible one using algorithm (3) 

given below. In the case of infeasibility (y jm < yjm+l), the algorithm changes the value 

of yjmto one or the value of _y.m+1 to zero by generating a random variable (r) . Then 

algorithm returns to the initial element (yjA ). This procedure repeats until a feasible 

solution generated. 
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Algorithm 3 generating feasible solution 

1: for j=\ toW^ 

2: m <— 0 

3: While m<Q^-\ 

4: if yUm < yJtm+1 

5: r^Q<Rand<\ 

6: ifr<.5 

8: else 

10: m<-0 

11: end if 

12: else 

13: 

14: e«J w/zz'/e 

15: Next for 

m <— m+1 
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5-5 Assignment of Customers and Commodity placement: 

After finding a feasible solution (Y1), we will assign customers to available warehouses 

base on lowest shipping cost. Priority of assigning goes to customer with most product 

demand. For handling this issue, we apply a similar heuristic that is used by Bektas and 

Bulgak (2008) for our problem. We define customer assignment heuristic steps: 

We will consider assignment decision by following formula: 

V(i) e argmiJ ] T d i k c u +c , > t (£d i k xbk -Sjm)+ , 
jsY' [keK keK J 

Where ( J X f c xbk -Sjm)+ = m a x ( 0 , ( J X t xbk -SJmY),V(i) denotes the set of 
keK keK 

warehouses that customer i can be assigned to, and Sjm would be the highest level of 

each warehouse that already is on hand. Summing up, each customer i is assigned to 

warehouse j € Y1 such that the total cost of shipping between customer and warehouse ( 

X di,kcij )> an<i m e distribution cost of excess demand if exist ( cjk (^ dt,k x bk - Sj m )+ ) 
keK keK 

minimized. Obviously, the capacity of warehouse j e Y1 is decreased by the amount 

C^jdik xbk) whenever customer i is assigned to it. The assignment decision is 
keK 

terminated after each customer has been assigned to a warehouse. The resulting solution 

is shown by xt .. 
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After each customer assigned to warehouse successfully, we try to determine how much 

of commodities should store at each warehouse j eY1, precisely we wish to determine 

values of the Z). as well as amount of the excess commodities which each warehouse 
J*K 

should order directly to plant (Z2
jk). It is possible that at previous step, not all 

warehouses j e Y1 have customers assigned to them. If this happen, we will have new 

feasible solution and we change the initial feasible solution to new one as follows: 

Y1 <- Y1 = {j,m e Y1 \ 3i e C s.t V(i) = j} 

In other word, new Y1 is the set of open warehouses with each element having at least 

one assigned customer. For each j e Y1 the commodity placement can be represented by 

followed integer programming formulation: 

(CPj) Minimize J X ^ Z ] . , + Yu^A S"5"1 

keK keK 

Subject to: 

Y,bkZ\k<Shm 5-5-2 
keK 

Zl+Zj,k= I X * VkeK 5-5-3 
ieC:V(l)=j 

Zlk>0,Zlk>0,\/jeYJ,keK 5-5"4 
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The values for Zx
jk and Z2

jJc are calculated only for warehouses j eY1, also the right 

hand side of constraint 2-3 is defined only for customers that are assigned to these 

warehouses. 

For solving {CP,) we use similar algorithm which has used by Bulgak and Bektas, 2008. 

Algorithm 4 Heuristic to solve (CP.) 

1: Sort commodities in an increasing order of J'm' . Let {k k t ,}denote this ordering 

2: pcap = SJm 

3: t = \ 

4: while pcap > 1 do 

5: Z,U = m i n{IX*A/' 
tec 

6: pcap = pcap - Z)K x bk< 

7: f ^ f + 1 

8: ena" while 

9: for all keKdo 

10: Z^ ,=IX*Ay-^ 

11: end for 

pcap 
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Commodities are sort by their J>m<k value. After that, the commodities by this given order 

are placed in the warehouse up to capacity^ m . As soon as the capacity Sj>m is met, all 

reminded commodities are supplied from the plant directly which is correspond to the 

values of thcZJk . Based on these algorithms, final objective value for each feasible 

solution is derived from following formula. 

jeY' jsY1 i'eC ksK 

As it clear we only need to find a feasible solution (Y ), afterward we calculate the other 

variables amount by two mentioned algorithms and we calculate the objective value for 

each instance feasible solution. 

5-6 Selecting best initial solution 

After generating feasible solutions, the problem is solved for these solutions (Initial and 

Reverse) by the heuristic methods described above. Afterwards, we select one solution 

among these solutions which returns lower objective function value. We set this solution 

as the best solution. According to the procedure above, for t times and we compare each 

best solution in every period. If the best solution in the next iteration is better than the 

previous one, we update the best solution, otherwise while loop continues till reach to t 

number. 
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5-7 Summary 

In initial phase we randomly opened and closed potential warehouses for determined 

location with different capacities. Then, we assigned customers to this available 

warehouse set and allocated customer demands to each warehouse by two different 

heuristic algorithms. Furthermore, objective value for these solutions are compared to 

each and best objective value and solution is selected as best initial solution. 

We coded above algorithm in visual C++ 6.0 which passes best initial solution to Tabu 

Search program. In next chapter, we will develop Tabu Search for our model, this Meta 

heuristic method works on potential warehouse locations and warehouse capacities. 
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Chapter 6: Tabu Search Implementation 

In this chapter we implement the Tabu Search algorithm as discussed in chapter 5 for the 

proposed model. We explained how Tabu Search works and how it is able to find 

solution by calculating the*,. .,Z];it andZ^ . After implementation we will compare the 

Tabu Search results with both the non-linear and the linear model results for the same set 

of problems. In this way we are able to show how close Tabu result is to optimal or near 

optimal solutions. 

The Tabu Search scheme for our problem is described as follows: we start with initial 

solution (Y1) which we obtained in pervious section and we keep its objective function 

value by calculating the*, .,Z]>jt andZJj/t. We also set this objective value as Best 

Answer (0(YBest)) and Current Answer (^(Yc)).Then, we generate a certain sets of 

neighborhoods first by opening new warehouses with different capacity levels and second 

by increasing or decreasing capacity level of our current solution. If the best of these 

moves is not Tabu and is better than overall solutions or, the best is Tabu but satisfies the 

aspiration criterion we pick that move and consider it as best solution (7Bes');otherwise, 

we pick the best move that is not Tabu and put as our current solution (Yc). Figure 6-1 

illustrates the flowchart of the above explanation. 
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Start with \ 
initial solution I 

Figure 6-1 Tabu Search flowchart 
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In reference to the scheme, first, we try to generate some neighborhood from the initial 

solution (Current Solution) through closing or opening warehouse capacity. 

Let A= {jeW,meQ: yjm=\} and^ = WI A, in this case we are able to create some 

neighborhood by Add and Drop move. Add move consist of moves where a single 

component {yJt„ ) is opened when it's already close and Drop move consist of moves 

where a single component (yJm ) is closed when it's already open. Second, we generate 

some neighborhoods with different warehouse capacity levels. 

Figure (6-2) shows generating new neighborhood from current solution. We generate new 

solutions by opening/closing capacities from current solution. Suppose we have three 

potential warehouse locations that can be set up to five capacities, our current solution 

shows first warehouse is opened with its third capacity, second warehouse is set to its 

second capacity and third warehouse is set to its first capacity. 

Current solution ^ 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 

Generating neighbor < 

1 1 1 0 0 

1 1 0 0 0 

1 0 0 0 0 

1 1 i 1 0 

1 m 0 0 0 

1 0 0 0 

First warehouse 

Second warehouse 

Third warehouse 

New neighbor solution i=> | l | l | l | l | o | l | 0 | o | o | 0 | l | l | o | o | 0 

Figure 6-2 Generating neighbor by Add and Drop Move 
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Consequently, we are able to generate different neighborhoods from current solution 

through dropping or adding capacity to current warehouse level capacity. 

Second alternative, we create new neighborhoods with different size capacity level by 

setting each warehouse to new capacity level. Figure (6-3) shows possibility of 

generating new warehouse capacity. Suppose we have three potential warehouse 

locations that can be set up to five capacity levels, new neighborhoods can be generated 

with setting each warehouse to new different capacity level. Figure (6-3) shows these 

possible moves. 

Generating neighbor < 

1 1 1 1 0 

I 1 1 1 1 

1 1 0 0 0 

-> First warehouse is set to level 4 

•> Second warehouse is set to level 5 

-> Third warehouse is set to level 2 

New neighbor solution i=) 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 

Generating neighbor < 

1 1 0 0 0 

1 1 1 0 0 

1 1 1 0 

-• First warehouse is set to level 2 

-> Second warehouse is set to level 3 

->• Third warehouse is set to level 4 

New neighbor solution ^ 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 

Figure 6-3 Generating neighbor by creating new level capacity 
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To prevent cycling and re-visiting previously visited solutions, Tabu move restrictions 

are employed. In our implementation, we classify a solution obtained by Add / Drop or 

Generating new capacities, as a Tabu if it corresponds to closing a capacity or open new 

capacity which was opened or closed in an accepted solution in the course of the 

procedure. 

This Tabu move restriction is solved by employing Tabu tenure which is the number of 

iterations that an open capacity or closed one of a specific warehouse remains a Tabu. For 

simplicity we set Tabu tenure for a newly opened capacity or recently closed one for a 

fixed number of iterations. In our case we define two Tabu lists. First, if new capacity 

opens in new move we put this capacity in recently added capacity list which cannot drop 

for a fix number of iterations, second if opened capacity drops in new move we put this 

capacity in recently dropped list which cannot add for a fix number of iterations. 

Therefore, the Tabu Search algorithm uses two tenure ADD and DROP lists where 

TADD = (ThV...TLm)andTDROP = {TX,....Thm). 

Tjm, in each list shows the recently opened/closed capacity of warehouse j , for example, 

if Tjm > 0 for some j eW in one of above list then relevant warehouse is Tabu and can 

not be dropped if it belongs to TADD list or cannot be added if it belongs to TDROP 

53 



list. Any warehouse capacity with a corresponding TJm equal to zero in TADD and 

TDROP Tabu lists is non-Tabu and can be add/drop. 

In all iterations, when a candidate solution results in opening or closing capacity m of 

warehouse j , relevant T]m is assigned to the appropriate Tabu tenure and all other positive 

entries in the Tabu lists are decreased by one. 

6-1 Aspiration Criterion: 

We define the aspiration criterion as solution involving Tabu move that has better 

objective value than the best known answer, then the Tabu status is disregarded. 

Otherwise, if the aspiration criterion is not satisfied, we continue to the next iteration with 

the best non-Tabu solution. 

An aspiration criterion is used to overrule the Tabu restrictions; therefore we can consider 

the attractive unvisited solutions as well. Although one solution is a Tabu move, but it is 

accepted as legitimate solution whenever it satisfies the aspiration criterion. 

For Tabu algorithm input data, we define the maximum number of iterations, max 

number of non-improving iterations and the Tabu tenure (Keskin and Uster, 2007). At the 

beginning, no warehouse capacity is a Tabu; therefore add and drop Tabu lists consist of 

zeros. 
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We search the both Add/Drop neighborhood and new warehouse capacity neighborhood 

of the initial solution (Y1) per iteration and pick the best solution in the neighborhood ( 

Yc). Afterward, we check the Tabu status. 

If the current solution (Yc) does not contain a Tabu move, we accept this solution as the 

new initial solution. We also check if this solution is better from the best overall solution 

(YBesl) that we have so far. 

If it is, we update YBest and reset the number of non-improving solutions to zero; else we 

add one to non-improving solutions. We require also updating the Tabu list, so we 

decrease all positive entries by one and setting the value for newly closed, opened or both 

to Tabu tenure. 

If the current solution contains a Tabu move, essentially the aspiration criterion will be 

checked. If the aspiration is satisfied, we accept the solution as best overall solution and 

set non-improving solutions number to zero. We also update the Tabu list as well. 

When the aspiration criterion is not satisfied, we pick the best non-Tabu solution as new 

initial solution. Again, we update the Tabu list and increase the number of non-improving 

solutions by one. Before moving to the next iteration, we check to see if the number of 

non-improving solutions is smaller than its maximum or not. If not, we terminate the 

Tabu Search and report the overall best solution as a result of the research. Otherwise the 
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procedure continues in this fashion until the preset total number of iterations or a preset 

number of successive non-improving iterations are met. 

6-2 Computational Results: 

Appendix 2 shows Tabu Search pseudo code for our capacitated location model. We 

coded Tabu Search algorithm in visual C++ 6.0 and run same problems of Table 4-2 for 

comparison between nonlinear model and Tabu results. We set non-improving solutions 

to 1000 iterations, maximum number of iterations to 2250, and Tabu tenure to number of 

warehouses ( j ) multiply in maximum capacity (m) . 

Problem 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

W 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

m 

3 

3 

4 

5 

5 

6 

5 

5 

4 

6 

C 

3 

5 

6 

8 

12 

15 

12 

15 

15 

20 

K 

2 

3 

5 

5 

6 

8 

8 

8 

6 

10 

Tabu 
Search 

processing 
time 

00:00:02 

00:00:04 

00:00:10 

00:00:11 

00:00:08 

00:00:02 

00:01:45 

00:03:05 

00:00:06 

00:00:10 

Tabu Search 
Objective 

value 

163800 

3.39595e+06 

1.86236e+07 

3.09071e+07 

504648 

3.0551e+06 

2.13883e+08 

1.1649e+06 

1.70125e+00 
7 

8.56848e+00 
6 

Lingo 8.0 
Processin 

g time 

00:00:05 

00:00:08 

03:00:00 

03:00:03 

03:00:01 

03:00:01 

03:33:14 

03:38:01 

03:00:01 

03:00:01 

Lingo 8.0 
Objective 

value 

163800 

3.39675e+06 

3.18685e+07 

4.93807e+07 

504648 

3.2792e+06 

2.14585e+08 

4.1133e+06 

N/A 

N/A 

Table 6-1 nonlinear model and Tabu Search result comparison 
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As it shown in Table (6-1), Tabu Search result is much better than nonlinear model 

solutions in all cases. When the number of warehouses, capacities, products and 

customers are increased Lingo software will not be able to enter to feasible state in non­

linear model. Problems 9 and 10 show this phenomenon. 

Table (6-2), compares linear model and Tabu Search results for same problems of Table 

(4-2). 

P
ro

bl
em

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

W 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

m 

3 

3 

4 

5 

5 

6 

5 

5 

4 

6 

C 

3 

5 

6 

8 

12 

15 

12 

15 

15 

20 

K 

2 

3 

5 

5 

6 

8 

8 

8 

6 

10 

Tabu Search 

Objective 

value 

163800 

3.39595e+06 

1.86236e+07 

3.0907le+07 

504648 

3.0551e+06 

2.13883e+08 

1.1649e+06 

1.70125e+07 

8.56848e+06 

Lingo 

10.0 

Processin 

g time 

00:00:05 

00:00:08 

00:01:04 

00:00:06 

00:01:04 

00:01:27 

00:00:12 

01:38:01 

03:00:01 

03:00:01 

Lingo 10.0 

Objective 

value 

163800 

3.39596e+06 

1.6499 le+07 

2.84864e+07 

500259 

3.055 le+06 

2.06428e+08 

1.12045e+06 

1.82949e+07 

8.57393e+06 

State 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Optimal 

Feasible 

Feasible 

Table 6-2 linear model and Tabu Search result comparison 

In most cases, linear model reaches to optimal solution but when the size of problems get 

increased Lingo 10.0 stay at feasible state and cannot reach to optimal. A good point in 

Tabu solutions is, given solutions are much near to optimal solution. In all cases, Tabu 
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solution is near to optimal solutions, and in larger problems (problem 9 and 10) we 

acquire better solution than linear model. 

At this time, we try to solve larger problems of linear model and Tabu Search for having 

better comparison between solutions of linear model and Tabu Search. Table (6-3) shows 

more problems with significantly larger number of warehouses, capacities, customers and 

products. 

For considering the proposed model carefully, we run all problems with different amount 

of demands, shipping costs, penalty costs, fix open costs and capacity sizes to assure that 

the problems have been solved over a large range of data. 

We set maximum iteration for Tabu Search method to maximum 1500 iteration and 

maximum non-improvement iteration to 1400 iteration and Tabu tenure to number of 

warehouses (j) multiply in maximum capacity (m ) as before. 

Problem 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

W 

10 

10 

10 

12 

12 

12 

15 

15 

15 

15 

m 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

C 

20 

35 

40 

20 

30 

35 

25 

30 

35 

40 

K 

10 

10 

15 

20 

15 

20 

10 

15 

20 

20 

Initial 
solution by 

Tabu 
Search 

2.8807e+06 

4.5432e+06 

1.3846e+08 

5.3461e+07 

3.4757e+07 

5.8750e+07 

2.2213e+07 

2.8428e+07 

2.7159e+07 

3.2417e+08 

Final solution 
by Tabu 
Search 

2.1529e+06 

1.8447e+06 

1.2291e+08 

2.7977e+07 

9.4804e+06 

4.2540e+07 

4.0371e+06 

5.0215e+06 

1.8473e+07 

2.634278e+08 

Lingo 10 
objective 
function 
solution 

2.19469e+06 

2.04029e+06 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Lingo 10 
Status 

Feasible 

Feasible 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Table 6-3 larger problems with 10 potential warehouse locations 
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Table 6-3 shows the result of this comparison. When the size of problems gets larger as 

we expected, we cannot reach feasible state by Lingo software after preset time for 

solving models (3 hours). The very few first problems reach feasible state but these 

objective functions are not better than Tabu solutions. 

For our Tabu Search, the process starts off with best initial solution that already found by 

initial phase and continues with Tabu Search algorithm. 

Table 6-3 demonstrates that Tabu Search have had enormous improvement in opening 

warehouses with different capacities and assigning customers to these opened warehouses 

compare to initial solution value. 

The Tabu Search solving process time for last ten problems has illustrated in Table 6-4 

for comparison to Lingo processing time. 

Problem number 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Tabu Search solving time 

00:13:36 

00:16:13 

00:17:40 

00:21:20 

00:22:00 

00:29:15 

00:28:00 

00:22:00 

00:28:00 

00:36:00 

Lingo 10 preset time 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

Table 6-4 Tabu Search process time in comparison with Lingo 10 
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The processing time of Tabu Search is reasonably faster than Lingo 10 and every node of 

problem would be searched faster than the branch and bound method performed by 

Lingo. 

Figure 6-4 shows the difference between linear model and Tabu Search objective 

function. 

25000000 

20000000 

15000000 
01 
J3 
IB 
> 
01 

U 

jr IOOOOOOO 
o 

50000000 

5 
i 

i 

—ffi- • 
9 

HI 

• * • 
-IB-

8 
tUB - U * 

• Linear Objective value 

DTabu Objective Value 

6 8 

Problems 

10 12 14 

Figure 6-4 Lingo and Tabu Search objective value comparison 

We plot first twelve problems to compare the objective functions from both linear model 

and Tabu Search. As it clear both solutions are so close together that the difference is 

ignorable. 
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In Table (6-3) for the problems 13 to 20, since we could not reach to any solution by 

Lingo software we try to illustrate the difference between the Tabu Search solution and 

the Lingo objective bound. By this method, we can conclude how close Tabu Search 

solution is to the optimal bound. We consider problem 11 to 20 where Lingo fail to find 

optimal or feasible solution. The objective bound of these problems have shown in table 

6-5. 

Problem number 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Lingo objective bound 

1.97578e+06 

1.16727e+06 

1.18159e+08 

2.37865e+07 

7.7977e+06 

3.66703e+07 

2.67573e+06 

3.18389e+06 

1.4547e+07 

2.40929e+08 

Lingo 10 preset time 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

03:00:00 

Table 6-5 Lingo 10 objective bound for problem 11 to 20. 

As it shown in figure 6-5, the gap between objective bound of Lingo for problem 11 to 20 

and Tabu Search objective function is negligible. At worst case, there is only a 6% 

difference between the Tabu Search final answer and the Lingo objective bound. 

However we should bear in mind the objective bound of Lingo may be tighter even after 

preset time. 
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3.00E+08 

2.50E+08 

2.00E+08 

1.50E+08 

1.00E+08 

5.00E+07 
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w 

4 
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Problems 

9 

10 

\ 

12 

Figure 6-8 Lingo objective bound and Tabu Search objective value comparison 

The near to optimal solution by proposed Tabu Search give us this opportunity to find a 

reasonable solution in a very short time when other search methods fail to find at least 

one feasible solution for larger problems. 
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6- 3 Summary 

In this chapter we explained the way our Tabu Search goes for better solution in search 

space and we provided how Tabu Search will improve solution by explaining Tabu 

aspiration and Tabu tenure. Given solution by Tabu Search method for exact problems 

shown in Table 6-2 and 6-3 illustrates how close these solutions are to optimal point. 

Also by Tabu Search algorithm we acquire near to optimal solution in reasonable time 

comparing to linear model processing time. 
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Chapter 7: Conclusions and Future Research 

In this research, we considered the problem of locating capacitated warehouses in a 

supply chain setting with staircase cost functions. A non linear integer programming 

formulation is presented. Based on the mathematical techniques from the literature, we 

transferred the nonlinear model to a linear model. We coded the nonlinear model in 

Lingo 8.0 and linear model in Lingo 10 software. The linear model results are found to be 

much better in comparison with the nonlinear model and we could reach on optimal 

solution for small and medium size problems within a shorter time and in an efficient 

way. 

However for larger size problems, because of the NP hard structure of such problems, we 

are not able to reach a feasible solution within a reasonable time frame. For this reason, 

we developed a Tabu Search algorithm. The Proposed algorithm showed good quality 

solutions compared to those from the nonlinear model, and near optimal solutions 

compared to those from the linear model for medium size problems. However, when the 

size of the problems increases, we cannot reach a feasible solution by the branch and 

bound method employed by Lingo. By comparing the Tabu Search solutions with the 

Lingo objective bound, we can conclude that the Tabu Search results are acceptable and 

we can obtain good solutions for larger size problems using the Tabu Search algorithm. 

For future research, we aim to develop hybrid meta-heuristic algorithms. In this way, one 

meta-heuristic method (such as simulated annealing, Genetic algorithm) works on 
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customer binary variable which assigns customers to available warehouses. Accordingly, 

we can get either optimal solution or improved near optimal solutions. Thus, the gap 

between the Tabu Search result and optimal solution will be reduced, if we use hybrid 

meta-heuristic methods. 

Secondly, we aim to consider product demand to be stochastic as opposed to 

deterministic which would be a much more realistic consideration. By choosing a 

stochastic customer demand the way of solving problem gets more challenging. Further 

research will improve the customer assignment to available warehouses by their product 

types and demand. 

65 



References 

1. Bektas, T. and Bulgak, A.A. Lagrangean-based solution approaches for the 

generalized problem of locating capacitated warehouses, International 

Transactions in Operational Research, 15:67-85, 2008. 

2. Cortinhal, M.J. and Captivo, M.E. Upper and lower bounds for the single source 

capacitated location problem. European Journal of Operational Research, 

151:333-351,2003. 

3. Defersha, F.M. and Chen, M. A linear programming embedded genetic algorithm for an 

integrated cell formation and lot sizing considering product quality, European Journal of 

Operational Research, 187:46-69, 2008. 

4. Delmaire, H. and Diaz, J.A. and Fernandez, E. and Ortega, M. Reactive GRASP 

and Tabu Search based heuristics for the Single Source Capacitated Plant 

Location Problem, INFOR; 37:194, 1999. 

5. Gendron, B. and Potvin, J. and Soriano, P. A Tabu Search with Slope Scaling for 

the Muliticommodity Capacitated Location Problem with Balancing 

Requirements. Annals of Operation Research, 122:193-217, 2003. 

6. Ghiani, G. and Guerriero, F. and Musmanno, R. The capacitated plant location 

problem with multiple facilities in the same site. Computers & Operation 

Research, 29:1903-1912, 2002. 

7. Glover, F. and Laguna, M. Tabu Search. Kluwer Academic Publishers: Dordrecht, 

the Netherlands, 1997. 

8. Hindi, K.S. and Pienkkosz, K. Efficient solution of large scale, single-source, 

capacitated plant location problems. European Journal of Operation Research, 

50:268-274, 1999. 

9. Holmberg, K. Solving the staircase cost facility location with decomposition and 

piecewise linearization. European Journal of Operation Research, 75:41-61, 

1994. 

66 



10. Holmberg, K. and Ling, J. A Lagrangean heuristic for the facility location 

problem with staircase costs. European Journal of Operation Research, 97:63-74, 

1997. 

11. Keskin, B.B. and Uster, H. Meta-heuristic approaches with memory and evolution 

for a multi-production/distribution system design problem. European Journal of 

Operation Research, 182:663-682, 2007. 

12. Kioon, S.A. Tabu Search procedure for the design of integrated cellular 

manufacturing systems with production planning and dynamic system 

reconfiguration, PhD thesis, Concordia University, 2007. 

13. Klose, A. and Drexl, A. Facility location models for distribution system design. 

European Journal of Operational Research, 162:4-29, 2005. 

14. Klose, A. and Gortz, S. A branch-and-price algorithm for the capacitated facility 

location problem. European Journal of Operational Research, 179:1109-1125, 

2007. 

15. Lorena, L. and Serine, E. A column generation approach to capacitated p-median 

problems. Computers & Operations Research, 31:863-876, 2004. 

16. Pirkul, H. and Jayaraman, V. A Multi-commodity, Multi-plant, Capacitated 

facility location problem: Formulation and Efficient heuristic solution. Computer 

& Operations Research, 25:869-878, 1998. 

17. Rolland, E. and Schilling, D.A. and Current, J.R. An efficient Tabu Search 

procedure for the p-Median problem, European Journal of Operation Research, 

96:329-342,1996. 

18. Sridharan, R. The capacitated plant location problem. European Journal of 

Operation Research, 87:203-213, 1995. 

19. Sun, M. Solving the uncapacitated facility location problem using Tabu Search, 

Computers & operation research; 33:2563-2589, 2006. 

20. Wu, L. and Zhang, X. and Zhang, J. Capacitated facility location problem with 

general setup cost, Computers & Operations Research, 33:1226-1241, 2006. 

67 



C
Ts

 
oo

 

A
m

ou
nt

 

60
00

 

45
00

 

50
00

 

35
00

 

40
00

 

25
00

 

H
ol

di
ng

 
co

st
 

hi
.i.

i 

hl
,l,

2 

h 
1,

2,
1 

h1
,2

,2
 

h 
1,

3,
1 

hi
,3

.2
 

h 
2,

1,
1 

hu
 

1*
2,

2,
1 

1*
2,

2,
2 

h,
3,

l 

1*
2,

3,
2 

A
m

ou
nt

 

2.
00

 

2.
50

 

3.
00

 

3.
50

 

4.
00

 

4.
50

 

1.
35

 

1.
5 

1.
51

 

1.
65

 

1.
7 

1.
8 

Pe
na

lty
 

co
st

 

C
l,l

 

C
l,2

 

C
2,

l 

C
2.

2 

A
m

ou
nt

 

80
0 

90
0 

90
0 

11
00

 

O
pe

ni
ng

 c
os

t 

fu
 

fl
,2

 

fu
 

fl
l 

f2
,2

 

f2
,3

 

A
m

ou
nt

 

10
00

 

25
00

 

30
00

 

15
00

 

30
00

 

50
00

 

Sh
ip

pi
ng

 c
os

t 

C
l.l

 

C
2.

1 

C
3.

1 

C
U

 

C
2.

2 

C
3.

2 

A
m

ou
nt

 

2 3 2 4 4 4 

C
ap

ac
ity

 s
iz

e 

W
/,

/ 

W
l,2

 

W
13

 

W
2,

l 

W
2,

2 

W
2,

3 

A
m

ou
nt

 

15
00

00
 

16
00

00
 

21
00

00
 

50
00

0 

80
00

0 

17
00

00
 

11
 

(D
 

3 

3 
B

-. X
 

0)
 

3 O
 

0)
 s1 c o
 

fi
) o
 

3
" 

tt
 

Q
) 3 •a
, 

o
 



D
em

an
d 

"a "S3 ~<3 "<3 

69 



Appendix 2: Tabu Search pseudo code: 

InPut: fj,m > hj^k, dik, c,j, cjyk, Y', <p(Y') 

Output: Ybesl ,<p(Ybes'), XtJ, Z)^, Z)^ 

1. y*"«_y ' . (p(Ybes')^(p(Y') 

2. YC^Y'; <p(Yc)<^<p(Y!) 
3. maxlter*—q; Tabu Tenure <—(jxm); maxNonlmpr*— p 
4. IterNo<—0; nonImpr<—0 
5. while IterNo<maxIter 

"• Generate t] solutions with different warehouse capacities. 
7. Calculate objective value for t] solutions 
8. Generate t2 solutions with adding/dropping warehouse capacities. 
9. Calculate objective value for t2 solutions 

10. for t <tx +t2 do 

11. If (p(Y')<(p(Yc) then 

12. Yc <^Y',(p(Yc)<^(p(Y') 
13. end if 
14. end for 
15. If TADD[Tabu]=0 and TDROP[Tabu]=0 then 

16. Y' <^Yc;(p{Y')<^(p{Yc) 

17. If <p(Yc)<(p(YBesl) then 

18. <p(YBest) < - <p(Yc);YBest < - 7 e ; nonlmpr<-0 
19. else 
20. nonImpr<— nonlmpr + 1 
21. end if 
22. Update Tabu list T. 
23. else 

24. If <p(Yc)<(p(YBest) then 

25. (p{YBest) < - (p(Yc); YBest <- Yc; nonlmpr-0 

26. Update Tabu list T. 
27. else 
28. nonImpr<— nonlmpr + 1 

29. Let Y° be the best non-Tabu solution. 

30. Y' <-Yc;(p(Y')^(p(Yc) 

31. Update the Tabu list T. 
32. end if 
33. end if 
34. if nonlmpr > MaxNomlmpr 
35. Terminate the Tabu Search. 
36. end if 
37. iterNo<— iterNo +1 
38. end while 
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Appendix 3: Nonlinear Lingo code: 

Sets: 
Warehouse/1..2/:j; 
Capacity/1. .4/:m,q; !I had. to define; one index more than real one to 
cover the index 0; 
Product/1..2/:k; 
Customer/1..3/ : i; 
HoldingCost(Warehouse,Capacity,Product):h; 
FixingCost(Warehouse,Capacity):f; 
StorageSize(Warehouse,Capacity):S; 
ShippingCost(Customer,Warehouse):c; 
Demand(Customer,Product):d; 
TotalStorage(Warehouse,Capacity,Product):z; 
ExtraCharge(Warehouse,Product):E; 
Size(product):b; 
CustomerVariable(Customer,Warehouse):x; 
WarehouseVariable(Warehouse,Capacity):y; 
WarehouseStock(Warehouse,Product):P; 
RequestStock(Warehouse,Product) re­
link (Warehouse, Customer, Product):L; 
Endsets 

Data: 

h= @OLE( 'C: \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','Hold'); 
d= ©OLE (' C : \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','Demand'); 
f= @OLE ( ' C : \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','OpenCost'); 
E= @OLE ( ' C: \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','Penalty'); 
b= @OLE ( ' C: \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','PSize'); 
S= ©OLE ( ' C: \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','CSize'); 
c= ©OLE ( ' C : \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','ShipCost'); 

©OLE ( ' C : \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','Z_j_m_k')=z; 

71 

file:///Documents
file:///problem
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file:///problem
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file:///probl
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls
file:///Documents
file://l/NLP.xls'


@OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','P_j_k')=P; 
@OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','R_j_k')=R; 
SOLE('C:\Documents and Settings\Iman Niroomand\My DocumentsXMy 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls1,'Y_j_m')=y; 
SOLE ( ' C: \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Lingo Sample 
Problems\problem l\NLP.xls','X_i_j')=x; 

End Data 

iConstraint(9); 
©for(CustomerVariable(i,j):©BIN (x(i,j))); 

! Constraint{10}; 
©for(WarehouseVariable(j,m)|m#GT#l:@BIN (y(j,m))); 

!Constraint (13) ; 
©for(TotalStorage(j,m,k):@GIN(z(j,m,k))); 

[Constraint(14); 
@for(RequestStock(j,k):@GIN(R(j,k))); 

!objective function; 

min=@sum(HoldingCost(j,m,k)|m#GE#2:h(j,m,k)*z(j,m,k))+ 
@sum(FixingCost(j,m)|m#GE#2:(f(j,m)-f(j,m-
1))*y(j,m))+@sum(HoldingCost(j,m,k)|m#GE#2:((h(j,m,k)-h(j,m-
l,k))*(©sum(Capacity(q)|q#LE#m-l:z(j,q,k))))*y(j,m)) + 
©sum(link(j,i,k):d(i,k)*x(i,j)*c(i,j))+ 
@sum(WarehouseStock(j,k):R(j,k)*E(j,k)) ; 

!Constraint(1); 
©for(Customer(i): 

©sum(Warehouse(j):x(i,j))=1); 

!Constraint(2); 
©for(CustomerVariable(i,j): 

x(i,j)<=y(j,2)); 

I Constraint(3); 
©for(StorageSize(j,m)|m#GE#2: 

©sum(product(k):b(k)*z(j,m,k))<=(s(j,m)-s(j,m-l))*y(j,m)); 
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!Constraint(4) ; 
©for(StorageSize(j ,m) |m#GT#2: 

©sum(product(k):b(k)*z(j,m-l,k))>=(s(j,m-l)-s(j,m-
2))*y(j,m)); 

!Constraint(6); 
©for(WarehouseStock(j,k): 

P(j,k)+R(j,k)=@sum(Customer(i):d(i,k)*x(i, j))); 

!Constraint(7); 
©for(WarehouseStock(j ,k) : 

©sum(capacity(m)|m#GT#l:z(j,m,k))=p(j,k)); 

!Constraint(8); 
©for(TotalStorage(j,m,k): 

z(j,m,k)>=0); 
@for(TotalStorage(j,m,k)|m#EQ#l: 

z(j,m,k)=0); 

1 Constraint(9); 
©for(WarehouseStock(j,k): 

p(j,k)>=0); 
[Constraint(10); 
©for(RequestStock(j,k): 

R(j,k)>=0); 
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Appendix 4: Linear Lingo code: 

Sets: 
Warehouse/1..15/:j; 
Capacity/1..7/:m,q; !I had to define one index more than real one to 
cover the index 0; 
Product/1..10/:k; 
Customer/1..25/:i; 
HoldingCost(Warehouse,Capacity,Product):h; 
FixingCost(Warehouse,Capacity):f; 
StorageSize(Warehouse,Capacity):S; 
ShippingCost(Customer,Warehouse):c; 
Demand(Customer,Product):d; 
TotalStorage(Warehouse,Capacity,Product):z,AZ; 
ExtraCharge(Warehouse,Product):E; 
Size(product):b; 
CustomerVariable(Customer,Warehouse):x; 
WarehouseVariable(Warehouse,Capacity):y,t; 
WarehouseStock(Warehouse,Product):P; 
ProblemsStock(Warehouse,Product):R; 
link(Warehouse,Customer,Product):L; 
Endsets 

Data: 

h= @OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','Hold'); 
d= ©OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','Demand'); 
f= ©OLE ( ' C : \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','OpenCost'); 
E= ©OLE ( ' C: \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','Penalty'); 
b= ©OLE (' C: \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','PSize'); 
S= ©OLE ('C: \Documents and SettingsMman Niroomand\My Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 
C++\Lingo 12\probleml2.xls','CSize'); 
c= ©OLE ('C : \Documents and SettingsMman NiroomandXMy Documents\My 
university Research\Thesis\DifferentModels\Larger Tabu Problems 

C++\Lingo 12\probleml2.xls','ShipCost'); 

End Data 

!objective function; 

min=©sum(HoldingCost(j,m,k)|m#GE#l:h(j,m,k)*AZ(j,m,k))+ 
©sum(FixingCost(j,m)|m#GE#2:(f(j,m)-f(j,m-
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l))*y(j,m))+@sum(link(j,i,k):d(i,k)*x(i,j)*c(i,j))+ 
@sum(WarehouseStock(j,k):R(j,k)*E(j,k)) ; 

! Constraint(1); 
©for(Customer(i): 

@sum(Warehouse(j):x(i,j))=1); 

!Constraint(2); 
©for(CustomerVariable(i,j): 

x(i,j)<=y(j,2)); 

!Constraint(3); 
@for(StorageSize(j,m)|m#GE#2: 

©sum(product(k):b(k)*z(j,m,k))<=(s(j,m)-s(j,m-l))*y(j,m)); 

!Constraint(4); 
@for(StorageSize(j,m)|m#GT#2: 

©sum(product(k):b(k)*z(j,m-l,k))>=(s(j,m-l)-s(j,m-
2))*y(j,m)); 

!Constraint(5); 
©for(WarehouseStock(j,k): 

P(j,k)+R(j,k)=@sum(Customer(i):d(i,k)*x(i,j))); 

[Constraint(6}; 
©for(WarehouseStock(j,k): 

©sum(capacity(m)|m#GT#l:z(j,m,k))=p(j,k)); 

!Constraint(7}; 
©for(TotalStorage(j,m,k): 

z(j,m,k)>=0); 
!Constraint(8); 
@for(TotalStorage(j,m,k)|m#EQ#l: 

z(j,m,k)=0); 

[Constraint(9); 
@for(WarehouseStock(j,k): 

p(j,k)>=0); 
iConstraint (10) ; 
©for(ProblemsStock(j,k): 

R(j,k)>=0); 
J Constraint(11); 
©for(TotalStorage(j,m,k)|m#GE#2: 

AZ(j,m,k)>=@sum(Capacity(q)|q#GE#2 #AND# 
q#LE#m:z(j,q,k))+10000000000*t(j,m)-10000000000); 
! C o n s t r a. i n t (12) ; 
©for(TotalStorage(j,m,k)|m#GE#2: 

AZ(j,m,k)<=@sum(Capacity(q)|q#GE#2#AND# q#LE#m:z(j,q,k))); 
!Constraint (13); 
©for(TotalStorage(j,m,k)|m#GE#2: 

AZ(j,m,k)<=10000000000*t(j,m)); 
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!Constraint(14); 
@for(StorageSize(j,m)|m#GE#l: 

t (j,m)<=y(j,m)); 
!Constraint(15); 
©for(Warehouse(j): 

©sum(Capacity(m)|m#GE#l:t(j,m))=1); 
!Constraint(16); 
@for(StorageSize(j,m)|m#GE#2: 

t(j,m)>=t(j,m-l)+10000000000*y(j,m)-
10000000000); 

! Constraint (1.7) ; 
©for(CustomerVariable(i,j):©BIN (x(i,j))); 

! C o n s t r a i n t {18) ; 
@for(WarehouseVariable(j,m)|m#GT#l:©BIN (y(j,m))); 

!Constraint(19); 

©for(WarehouseVariable(j,m):©BIN (t(j,m))); 

!Constraint(20); 
©for(TotalStorage(j,m,k):@GIN(z(j,m,k))); 

!Constraint(21); 
@for(ProblemsStock(j,k):@GIN(R(j,k))); 

!Constraint(22); 
©for(TotalStoragefj,m,k)|m#EQ#l: 

AZ(j,m,k)=0 
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