
Modeling and Analysis of the Generalized Warehouse
Location Problem with Staircase Costs

Iman Niroomand

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Industrial Engineering) at

Concordia University

Montreal, Quebec, Canada

June 2008

© Iman Niroomand, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42523-7
Our file Notre reference
ISBN: 978-0-494-42523-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Modeling and Analysis of the Generalized Warehouse
Location Problem with Staircase Costs

Iman Niroomand

The Capacitated Warehouse Location consists of determining the number and locations

of capacitated warehouses on a set of potential sites such that demands of predefined

customers are met. Two typical assumptions in modeling this problem are: the capacity of

warehouses is constant and that warehouses are able to truly satisfy customer demands.

However, while these kinds of assumptions define a well structured problem from the

mathematical modeling perspective, they are not realistic. In this thesis we relaxed such

constraints based on the fact that warehouses can be built in various sizes and also

warehouses can put in orders for unsatisfied customers' demand directly to the

manufacturing plant with additional costs. This flexibility can lead to best decision

making ability for managers and supply chain specialists to decide between higher

capacity level with higher fixed and variable costs at the warehouse or direct ordering

from the manufacturing plant. A new non linear integer programming formulation with

staircase costs for multiple commodities in supply chain network is presented, and new

method for linearizing the model is described. Computational results indicate that

reasonably good solution can be obtained by the proposed linear model. Also for solving

larger problems we developed a Tabu Search algorithm. The comparisons of the result

between nonlinear/linear model and the Tabu Search algorithm are also presented.

iii

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible.

I am deeply grateful to my supervisor, Dr.Bulgak and Dr.Bektas for their enthusiasm,

inspiration, and great efforts to explain things clearly and simply. This thesis would not

have been possible without their encouragement and useful comments.

My warm thanks are due to Dr.Defersha , my friends, and my colleagues for their

precious comments and support in fulfillment of my thesis. I wish to thank my entire

extended family for providing a loving environment for me. My brothers, my sister-in-

law, my cousins were particularly supportive.

Lastly, and most importantly, I wish to thank my parents, Shahla Tabrizi and Bahaeddin

Niroomand. They bore me, raised me, supported me, taught me, and loved me. To them I

dedicate this thesis.

Iman Niroomand, June 2008.

IV

Table of Contents

Special Symbols viii

List of Tables ixx

List of Figures x

Chapter 1: Introduction 1

1-1 Contribution of this research 3

Chapter 2: Literature Review 5

2-1 Facility location problem 5

2-2 Tabu Search heuristic in location problem 10

2-3 Literature Review Summary 13

Chapter 3: Problem Description and Model Formulation 14

3-1 Non-linear mathematical model 19

3-2 Linear Mathematical model 21

3-3 Summary 27

Chapter 4: Computational Experiments with Lingo 8.0 & Lingo 10 28

4-1 Non Linear Model analytical examples 28

4-2 Linear Model analytical examples 30

4-3 Summary 32

Chapter 5: TABU SEARCH FRAME WORK 34

5-1 Initialization 38

5-2 Diversification 39

5-3 Duplication (Reverse solution) 41

v

5-4 Feasibility 42

5-5 Assignment of Customers and Commodity placement: 44

5-6 Selecting best initial solution 47

5-7 Summary 48

Chapter 6: Tabu Search Implementation 49

6-1 Aspiration Criterion: 54

6-2 Computational Results: 56

6- 3 Summary 63

Chapter 7: Conclusions and Future Research 64

References 66

Appendix 1: First Lingo and Tabu Search sample problem 68

Appendix 2: Tabu Search pseudo code: 70

Appendix 3: Nonlinear Lingo code: 71

Appendix 4: Linear Lingo code: 74

VI

Special Symbols

G = (V,E) Where Fis the set of the nodes and E is the set of edges,

V is partitioned as V = {0} u W u C with W as the set of potential warehouse nodes

and C as the customer nodes

keK, The set of commodities.

j eW, The set of nodes for potential warehouses.

meQ, Q = {1,..., q) The index set of capacity levels

i eC , The set of customers

bk, The size of commodity k

f j m, The cost of opening a warehouse on a potential nodej eW at capacity level m.

Sj m, Capacity of warehouse j at level m.

dt k, The amount of demand of customer / for commodity k

hj mk, The holding cost of commodity k at warehouse j at capacity level m.

Z\mk, The amount of commodity that is stored at each level m.

AZ jmk, Aggregate of product k that is stored in warehouse j till level m.

cjk, The lost opportunity cost of unsatisfied demand from warehouse(s).

tJm , Auxiliary Binary variable that run warehouse j with maximum opened level m.

yj m, Binary variable equal to 1 if warehouse j is opened at capacity level m.

xtJ, Binary variable equal to 1 if customer i that is assigned to warehouse j , and 0

otherwise

vii

Zx
jk, The total amount of commodity k e K stored at warehouse j e W

Z2
jk, The total amount of commodity k e K requested from the plant by warehouse

jeW

viii

List of Tables

Lingo solution for appendix one problem, 29

Different size nonlinear sample problems with Lingo 8.0 30

Different size linear sample problmes with Lingo 10.0 31

Nonlinear model and Tabu Search result comparison, 56

Linear model and Tabu Search result, 57

Larger problems with 10 potential warehouse locations 58

Tabu Search process time in comparison with Lingo 10, 69

Lingo 10 objective bound for problem 11 to 20 61

IX

List of Figures

Schematic of proposed model 14

Staircase cost function 18

Initial solution flowchart 37

An initial solution example,. 38

Binary solution for warehouse capacities.. 39

Random initial solution for warehouse capacities 40

Reversal initial solution for warehouse capacities^ 42

Tabu Search flow chart 50

Generating neighbor by Add and Drop move 51

Generating neighbor by creating new level capacity _ 52

Lingo and Tabu Search objective value comparison 60

Lingo objective bound and Tabu Search objective value comparison 62

x

Chapter 1: Introduction

The problem of locating warehouses and allocating customers covers the core component

of distribution system design. The ability to produce and market plant product is

dependent in part on the location of the warehouses and ability of customer demand

fulfillment. Capacitated Warehouse location problem (CWLP) is defined as opening

capacitated warehouses at some candidate locations in order that the total cost of meeting

the customer demands is minimized.

The facility location problem is applicable in many sections such as industrial firms and

assembly plants. It is applicable to government agencies which must decide about the

location of offices, schools, hospitals and fire stations. Communication companies and

air flight controllers also use this problem for servicing their customers. In every case,

service quality depends on the location of the facilities in relation to other facilities and

customers.

A very common assumption in most of the existing research is that the total capacity of

all potential warehouses is sufficient to meet the total demand. Although this assumption

helps define a well-structured problem from the mathematical modeling perspective, it is

in fact restrictive and not realistic, hence rarely held in practice (Bektas and Bulgak,

2008). The modeling approach in this thesis breaks away from the existing research in

relaxing this restrictive assumption.

1

Another approach to locate and build warehouses is motivated by the fact that these

facilities can be built in different sizes. Therefore, there would be a tradeoff between

choosing larger size warehouses and direct ordering from the manufacturing plant

whenever demand is not fully satisfied.

This fact (what fact?) prompts us consider Staircase cost function for setting up new

warehouse size for each potential location. In practice, there is often a need for

considering several different possible sizes of each warehouse/plant. To deal with this

situation (what situation?) we consider a facility location problem with staircase shaped

costs. This approach not only will allow us to deal with different sizes, but also with

different holding costs/production costs at different levels of production at a plant

(Holmberg and Ling, 1997). For instance, consider a firm willing to operate warehouses

in order to facilitate its distribution operation for multiple products. An appropriate

warehouse size will have two advantages, first it eliminates extra cost of running large

size warehouses, second it allows customer demands to be fully satisfied with minimum

cost.

We consider the problem in a supply chain setting with multiple commodities and

propose a model that simultaneously determines the number and the location of the

warehouses which are opened among the set of potential locations (location problem), the

assignment of customers to warehouses where their demand will be satisfied with

minimum cost, the amount of products which are stored at each warehouse at appropriate

2

level by going through the staircase shaped costs and finally the most suitable size is

selected for each nominated warehouse that leads to minimum cost for entire network .

This problem provides an opportunity for managers or supply chain specialists to come

with a trade off between larger capacity size level of warehouse or direct ordering to

plant by extra cost. This trade off at end converges to best minimum cost for decision

maker in entire network system.

1-1 Contribution of this research

The focus of this thesis is on modeling and solution of a new issue in warehouse location

problem with staircase costs that helps supply chain specialists and managers to develop

better supply chain network by reducing the total cost of establishing warehouses,

commodities and customer assignment. Not only this research considers opportunity of

having warehouses with different levels but also each warehouse is capable of satisfying

extra demands by direct ordering from plant, an issue that has not been studied before. As

a matter of fact, by considering these two options (ordering to plant directly or having

larger size warehouse) simultaneously we are able to bring a trade-off for decision maker.

We provide a literature review in chapter 2. Formal description of the problem along with

mathematical notation and integer Non-linear programming formulation will be described

in chapter 3. Integer linear model of problem will be described in Chapter 4.Chapter 5

shows the experimental problems with Lingo 8.0 for both non linear model and linear

3

model. Chapter 5 explains the Tabu Search frame work for generating feasible solution.

Chapter 6 shows the Tabu Search implementation for problem and computation

experiences. Tabu Search result and Lingo solution is compared in Chapter 7 and finally

the conclusion and suggestions for further research comes in chapter 8.

4

Chapter 2: Literature Review

2-1 Facility location problem

There is an extensive literature on facility location problems. Klose and Drexl (2005)

reviewed most cases in facility location models which have contributed to the current

state-of-the-art. There are different models in facility locations that Klose and Drexl

classified them in nine categories:

1. The shape or topography of models in the plane, network location models or

mixed -integer programming models.

2. Minimum vs. Maximum objective function.

3. Models without capacity constraint vs. with capacity constraint.

4. Single stage models vs. multi-stage models.

5. Single product models vs. multi-product models

6. Inelastic demand vs. elastic demand.

7. Static models vs. dynamic models.

8. Deterministic models vs. probabilistic models.

9. Each pair supply and demand models vs. combined location models

Some of popular models in literature are:

• Continues location models.

• Network location models

• Mixed-integer programming models.

This review paper would be a comprehensive survey of the related problems for facility

locations.

5

Holmberg et al. (1994) studied solving the staircase cost facility location problem with

decomposition and piecewise linearization. Facility location problems with linear

transportation costs and one fixed cost for each possible facility is the objective of this

paper and staircase structured costs are introduced. Author uses staircase costs at several

level of production. For obtaining solution a combination of piecewise linearization and

Benders decomposition is used. This method provides the possibility of getting upper

and lower bounds on the optimal objective function.

Sridharan (1995) reviewed heuristic and exact procedures for the capacitated plant

locations problem. This author has studied scheduling problem for several machines for a

given operation. The objective of this problem is minimizing the total purchase and fixed

cost of operating the machines. The model of this problem is the same as the Capacitated

Plant Location Problem (CPLP). The first stage of this problem chooses a subset of

machines and the second stage of this model assigns the parts to the chosen machines. He

examined different heuristic methods such as the greedy heuristic, and Lagrangean

heuristic. For exact procedures alter methods such as LP relaxation and Benders

decomposition has been used.

A Lagrangean heuristic for the facility location problem with staircase costs has proposed

by Holmberg and Ling (1997). The authors developed a heuristic solution for the

capacitated facility location problem with staircase shaped production cost functions.

This approach gives this opportunity to deal with different sizes and different production

6

costs at different levels of production at a plant. A Lagrangean heuristic is used to obtain

a near optimal dual solution.

A multi commodity, multi plant facility location problem has been studied by Pirkul et al.

(1998) where a heuristic solution procedure was developed for a mixed integer

programming model. In this proposed model customers get their multiple product of by

open warehouses while warehouses receive these products from several manufacturing

plants. The objective function of this model minimizes the fixed cost of establishing and

operating the plants and the warehouses plus the variable cost of transporting units of

products. For solving this model, Lagrangian relaxation of the model is provided and a

heuristic solution procedure is introduced.

Hindi et al. (1999) studied Efficient solution of larger scale, single-source, capacitated

plant location problems. The contribution of this paper is about assigning of all one

particular customer demands to only one single plant. By this assumption the capacitated

plant location problem reduces to the single-source plant location problem. The objective

of this work is to develop a solution procedure capable of providing solution to large

scale problems. For reaching this goal, a heuristic solution that combines Lagrangian

relaxation with restricted neighbourhood search is provided that can solve large problem

instances.

7

The capacitated plant location problem with multiple facilities in the same site is studied

by Ghiani et al, (2002). The contribution of this paper is to consider several facilities in

the same site such as the location of polling stations. A Lagrangian relaxation and a

tailored Lagrangian heuristic are proposed in this paper.

Cortinhal and Captivo (2003) presented upper and lower bounds for the single source

capacitated location problem with a Lagrangean relaxation. This paper considers a subset

of plants and customers which each customer is assigned to one of these plants such that

the total cost is minimized. The objective of this paper is to develop solution procedure

can provide good solution for SSCLP. Therefore after presenting Lagrangian relaxation

upper bounds are given by Lagrangian heuristics followed by search methods and by one

Tabu Search meta-heuristic.

Lorena and Senne (2004) studied a column generation approach to capacitated p-median

problems. The capacitated p-median problem (CPMP) tries to find optimal location of p

facilities with regard to distances and capacities for the service to be given by each

median. In this paper, Lagrangean relaxation directly identified from the master problem

dual and provides new bounds and new productive columns through a modified knapsack

sub problem.

8

Wu et al. (2006) expanded the model proposed by Gianpaolo Ghiani et al. They

considered capacitated facility location problem with general setup cost which allows

multiple facilities in the same site. This model is a mixed integer programming and the

new features of this model considers the setup costs as fixed term plus a second term that

depends on the size of the facility. Both Uncapacitated and Capacitated models are

formulated in this paper and solved by general MIP solver. Also, a Lagrangean heuristic

algorithm is proposed for solving the problem.

Keskin and Uster (2007) developed a meta-heuristic approach for a multi-product

production/distribution system design problem. This mixed integer problem considers a

multi-product, two-stage production/distribution system problem where a fixed number

of capacitated distribution centers with attention to capacitated suppliers and retail

locations are to be located to minimize the total costs. The authors provide meta-

heuristic procedures such as population-based scatter search and tube search for the

solution of the problem. This two-stage balances the amount of products that are

transported to customer and the products which are received by DC (Distribution Center).

A branch-and-price algorithm for the capacitated facility location problem has been

studied by Klose and Gortz (2007), where the authors employ column generation method

in order to solve a corresponding master problem exactly. This approach is based on

relaxing the demand constraints in a Lagrangean manner. A hybrid mixture of sub

gradient optimization and a "weighted" decomposition method is applied for master

9

problem. They also use column generation procedure embedded in branch and price

algorithm for computing optimal solution.

Bektas and Bulgak (2008) have developed Lagrangean based solution approaches for the

generalized problem of locating capacitated warehouses. The novelty of this paper

supports the relaxation of the assumption that the total capacity of all potential

warehouses is sufficient to meet the total demand. The authors relax this assumption by

having no restriction on the total capacity and the demand. A new integer programming

formulation for this problem is presented, and algorithm based on Lagrangean relaxation

and decomposition is described for its solution.

2-2 Tabu Search heuristic in location problem

The Tabu Search algorithm is a heuristic algorithm used to solve a variety of problems in

operation research field such as scheduling, healthcare, facility location and production.

Among large number of Tabu Search articles that exist in literature, we selected those

applied to facility location problems which share common terms to our proposed model.

Rolland et al. (1996) considered an efficient Tabu Search procedure for the p-median

problem. Their model investigates a set of nodes (facility) of size p in which the

weighted sum of the distances is minimized. Some feature of used Tabu Search can be

summarised here. First the search considers Add and Drop moves. Second to move from

one local optima to another one efficiently where search path includes infeasible

10

solutions. Third they used random Tabu time. The result of Tabu Search shows Tabu

Search algorithm performs better and other available heuristics.

Delmaire et al. (1999) studied the implementation of TB for the single source capacitated

plant location problem. A reactive GRASP heuristic, a Tabu Search heuristic and two

different hybridization schemes that combine the GRASP and Tabu Search

methodologies are used in this paper. Two phases have been investigated in this paper:

constructive phase which at this level different sets of open plants are selected and initial

allocations within the open plants are obtained. Tabu Search is used as improving phase

in second phase. Tabu Search provides a mechanism to strengthen the local search.

Gendron et al. (2003) studied a Tabu Search with slope scaling for the multi commodity

capacitated location problem with balancing requirements. The authors have utilized

slope scaling approach to provide initial solutions for the Tabu Search. This method takes

into account the capacities and their impact on each move. The proposed version includes

iterative procedure where a multi commodity network flow is solved at each iteration.

Then this initial solution is improved by the Tabu Search.

Minghe Sun (2006) studied solving the uncapacitated facility location problem using

Tabu Search. In this paper the Tabu Search performance is compared against the

11

Lagrangian method and heuristic method that exists in literature. The result of Tabu

Search matches or dominates other competitive methods.

Keskin and Uster (2007) studied meta-heuristic approaches with memory and evolution

for a multi-product production/distribution system design problem. They developed a

mixed integer problem for a fixed number of capacitated distribution centers which are

located with respect to capacitated suppliers and retail locations. They provided meta-

heuristic procedures, including a population-based scatter search and trajectory-based

local and Tabu Search for this model.

12

2-3 Literature Review Summary

In this chapter we reviewed facility location literature. We reviewed the existing models

and the solution techniques to solve these models. From this review, we concluded that

further improvements to the existing models can make the existing location problem

more realistic. By considering this fact that every single facility can come with different

level size with different fixed and variable costs can make the existing models more

challenging. Holmberg (1996) who has considered staircase cost function in a production

problem developed a mathematical model. By extending the proposed model of Bektas

and Bulgak (2008), we could reach to new model formulation that will be introduced in

Chapter 3.

13

Chapter 3: Problem Description and Model Formulation

The problem is formally defined as opening warehouses on a subset W CLW with

different potential s izesmeQ, assigning each customer to a single opened warehouse

and determining the amount of each commodity to be stored at each opened warehouse

with specific size, such that the total cost of distributing the commodities to customers

and holding cost of commodities at warehouses are minimized. If an opened warehouse

j e W is unable to fully satisfy the demand of the customers assigned to it, then the

demand is partially satisfied. Any amount of unsatisfied demand for commodity k e K is

requested further from the production plant by warehouse j e W with an additional cost

of producing/delivering the product as well as the lost opportunity cost of supplying in

full the customer's demand.

Figure 3-1 shows a schematic illustration of proposed model.

Figure 3-1 Schematic of proposed model

14

By appropriate decision level of warehouse capacity in competition market, the supply

chain specialists and managers can have trade off between larger capacity size and direct

order to plant. The right capacity can satisfy the customer demand fully and reduce the

cost of fixed costs and variable costs of larger or smaller one. Therefore, we can improve

the model by staircase structured costs. The staircase model allows fixed cost to appear at

several levels of warehouse capacity, and also allows the linear holding cost coefficients

to vary between different intervals of storage amount.

In reality a warehouse can be built in different sizes, finite set with not too many

elements. Each possible size yields a certain fixed cost and a certain capacity of the

facility. We thus have a cost function with several fixed costs at different levels (fJm)

.This fixed cost appears for building a warehouse of size m at location j with possible

sizes of m e Q at location j

We model the problem in an integer linear programming and define the following three

sets of decision variables. The two first sets of binary variables associate with warehouse

selection with specific size, and assignment of customers to the warehouses, respectively.

_ (1 if node; G W is selected as a warehouse with size m,
yi'm ~ I o otherwise

1 if customer ieC is assigned to the (opened) warehouse jGW,
0 otherwise

15

If an opened warehouse j e W is unable to fully satisfy the demand of the customers

assigned to it, then the demand is partially satisfied. Any amount of unsatisfied demand

for commodity k e K is requested further from the production plant by this warehouse

with an additional cost of producing/delivering the product as well as the lost opportunity

cost of supplying in full the customer's demand.

The third set includes the following two variables that are related to the amount of

commodities. The first variable in this set denotes the amount of commodities stored at

each warehouse, and is defined as follows:

Zjk = the amount of commodity kGK stored at warehouse jeW

The second variable denotes the additional amount of requests that are made from a

warehouse jG W to the facility and is shown below.

Zjk = the amount of commodity kGK requested from the facility by warehouse jGW

VariablesZy^ and Zfk are defined as non-negative general integers to denote the specific

amount of commodities stored and transported.

For Staircase cost function term we define auxiliary variableZ^ fc which is a non-

negative integer variable and denotes the amount of product k£K that is stored at

16

warehouse / sizem. The total warehouse cost of level m is sum of fixed open cost and

stored product holding cost. If tjshows required space by warehouse j we have:

(3-1)

ro iftj = o

{. fj,m + YikeK^ljlm,k^j.m.k ^Sj,m-1 < fy < SjiTn ,m E Q

Where Sji0 = 0,

In order to increase the capacity from certain level to larger one we define:

tejim = Sjim - S;-m_i V; £ W, m £ Q (3"2)

And the cost of increasing capacity would be:

M),m = fj,m ~ fj,m-l + 2jfcetf(fy,rn,fc — fy,m-l,fc) TimeQ Zj,m-l,k Y/ e " ^ > m e 2

(3-3)

As figure 2 shows, the cost of increasing the capacity from size 5a to size S2would

increase the fix cost from ft to f2 and inventory holding cost from hjlk tohj2ik •

17

u
YtuJy

y *fu
VhLLkz)

•j,\,k~j,k\

MK

A

AS, 5, AS2 S2

Figure 3-2 staircase cost function

Where/y0 = 0 and Zj0k = 0

Appropriate level of warehouse / G W will be defined by the following formula:

'0 iftj<Sjim.lt
i

Let ljk€K^j,m,k ~

— j J,UI-J->

A S , - if tj>Sjim,
,m

U5,-m

(3-4)

Therefore we have:

tj = EfceJrMjfc = EmE<?Efce* M£m,fc w h e r e ° ^ Ifce* M/>i , fc ^ A 5 / ,m Y/ 6 (3

18

3-1 Non-linear mathematical model

Minimize:

T.jeW iLmegGLkeK ^•j,m,k^i,m,k + ^fj,m.yj,m) + £;'eW Siee Efceif d-i,kxi,jci,i + Hj'eW Eme2 ^j,k^j,k (3-1-1)

Subject to

I y 6 W * u = i , v i e e (3-1-2)

XijZyji.VieCjeW (3-1-3)

< ASjirnyjirn, VjEW,mEQ (3-1-4)

> ASj>m-iyjirn,VjEW,mEQ (3-1-5)

Z/fc = Smes Z/m>fc, V j e W , f e 6 / f (3-1-6)

Z}ik + Zfik = Xiee diikxtJ, VjEW.keK (3-1-7)

JCy G {0,1}, Vi E C,j E W (3-1-8)

yJ>m E {0,1}, V; EW.mEQ, (3-1-9)

19

Zjk, Zfk E 1+, V; 6 W, k e K (3-1-10)

Zjmk E Z+, V; EW,meQ,kEK (3-1-11)

This is a nonlinear MIP capacitated facility location problem with staircase cost function.

The objective function of this problem is composed of three cost elements. The first part

is the total cost of opening the warehouse with a specific capacity from the available

capacities and holding cost of each product at that particular warehouse level. The second

term denotes the total shipping cost of each product to each customer that has been

assigned to a specific warehouse. The last part shows the cost of ordering the product

k E /^directly from the production plant that cannot be satisfied by the warehouse due to

the capacity restriction. In objective function, the non-linearity term causes by different

cost between the two continue level of capacity and decision of opening the higher level

(A/y.m).

In this model constraint (3-1-2) assigns each customer to only one warehouse, and

constraint (3-1-3) implies that customers are assigned only to warehouses that already

exist. Constraint sets (3-1-4) and (3-1-5) ensure that the level of storage corresponds to

the correct level on the staircase cost function for each warehouse. Number (3-1-6) keeps

amount of product fe 6 if in all level m E Q for warehouse JEW .Constraint (3-1-7)

ensures that the demand for all the customers will be met, either by the warehouse or the

production facility.

20

3-2 Linear Mathematical model

In non-linear model we had:

I, jew T,meQ ^fj,myj,m =

(3-2-1)

T.jewT.meQ(fj,m ~ fj,m-l + 2fce/f(^/,m,k "~ ^j,m-l,k))yj,m Vj EW.mEQ

That,

2jjewlumeQ\.ljkeK\.'lj,Tn,k ~ >lj,m-l,k)ljmeQ^j,m-l,k)yj,Tn >

is caused nonlinearity in model. If we try to re-write this phrase in such way that non-

linearity eliminated we have linear model.

For this purpose, we re-define kfj.m a nd w e add aggregate product variable which is

denoted by (AZjmk). This variable shows sum of each product that is stored up to

maximum opened capacity level. For example, if a warehouse; E W opened with third

capacity level,j4Zy3jfc shows sum of product k E K that is stored in first, second, and

third level capacity of warehouse/ € W.

We use new definition for Afj m as follow:

Mj.m = fj.m ~ fj,m-l VjEW.mEQ (3-2-2)

21

So, we can substitute old objective function terms by new ones as described above:

LijeW Z,meQ Ilfcetf ty ,mikAZj imk + 2ujsW LmeQ ^fj,myj,m (3-2-3)

At this time we need to add some constraints that let AZjiTriik stores sum of product k 6 K

up to maximum opened capacitym £ Q.

In reference to Defersha and Chen (2008) we can use following constraints for this

purpose:

AZLmik > £2UZj>mik + Mtj>m -M,VjEW,mEQ,kEK (3-2-4)

AZJimik < JZ=i Z},m,u ,VjeW,mEQ,kEK (3-2-5)

AZjiTriik < MtjiTn, Vj E W, m 6 Q, k E K (3-2-6)

Constraint (3-2-4) implies if new binary variable tj mget value 1 then constraint (3-2-4)

will be:

22

AZj,m,k * 2m=l Zlm,k > Y/ 6 W, 771 E Q, k E K (3-2-7)

Then Constraint (3-2-4) and (3-2-5) will turn to equality constraint:

AZJimik = S £ = 1 Zjimik ,VjEW,mEQ,kEK (3-2-8)

So, AZjmk will be sum of product k E K in all level capacity of warehouse j E W up to

capacity m 6 Q.But if binary variabletJ>m get value zero AZj:Tnk will be zero by

Constraint (3-2-6).

At this step, following constraints let tj m equals to maximum opened level that means

only maximum capacity level (m) of warehouse (J E W) get value 1 and other tjms get

zero.

tj.m<yj,myjew,meQ (3-2-9)

2™:gt,-m = l V ; 6 W (3-2-10)

tj,m Z t},m-x + MyjiTn - MV; e W, m E Q (3-2-11)

Constraint (3-2-9) guarantees that if y;-<m = 0 , auxiliary tjm cannot be 1. Constraint (3-

2-10) assures that only one capacity of related warehouse can get value l.For instance, if

a warehouse j E W is built with second capacity level then we will havety>2 = 1. In case

23

that a warehouse j G W should not be built then we have t,(0 = 1 that satisfy constraint

(3-2-10). Finally, constraint (3-2-11) causes warehouse; G W be operational with

maximum available capacity level.

Using above modification in non-linear model, we propose the following linear model for

our problem.

Minimize:

LjewlimeQLkeKhj^icAZjmjt + LjewJ^meQ ^fj,m.yj,m + LjewllieeLikeK d-i,kxi,}ci,) +

Ey'eW Ernes fy.k fy,k (3-2-12)

lj&vXtj = l,VieC (3-2-13)

xtJ<yJtl,viecjew (3-2-14)

LkEK frfc Zj.m.k
< ASJ>myJim,VjEW.mEQ (3-2-15)

EfcGif h Zf,m-i,k > ASj,m-iyj,m, V; G W, 771 6 Q (3-2-16)

Ilk = ZmeQ Zlm,k, Vj£W,kEK (3-2-17)

Zfa + Zf,k = Ziee diikXiiP VjeW.kEK (3-2-18)

24

AZj,mjk * I%=1 Zjimik + MtLm -M,VjEW,meQ,keK (3-2-19)

AZj,m,k < £m=iZ}> m > k ,VjEW,mEQ,kEK (3-2-20)

AZjmM ^ Mti,m>Vj£W,meQ,kEK (3-2-21)

tj,m<yj>rn,VjeW,mEQ (3-2-22)

rZl h.m = l v; e W (3-2-23)

tjim > tlm.x + MyLm -M,VjEW,mEQ (3-2-24)

Xtj E {0,1}, Vi EC,j EW (3-2-25)

y ; - m G { 0 , l } , V ; e W , m G 2 , (3-2-26)

tjirnE{0,l},VjEW,mEQ,
(3-2-27)

Z/ft,Z/fc e Z+,Vj EW,kEK (3-2-28)

25

Zjmk E %+, V; EW,mEQ,kEK (3-2-29)

AZji7n:k E 1+, V; EW,mEQ,kEK (3-2-30)

In new model constraint (3-2-13) assigns each customer to only one warehouse, and

constraint (3-2-14) implies that customers are assigned only to warehouses that already

exist. Constraint sets (3-2-15) and (3-2-16) ensure that the level of storage corresponds to

the correct level on the staircase cost function for each warehouse. Number (3-2-17)

keeps amount of product k E K in all level m E Q for warehouse JEW .Constraint (3-

2-18) ensures that the demand for all the customers will be met, either by the warehouse

or the production facility. Constraints (3-2-19) to (3-2-22) open warehouses with

maximum available capacity and constraints (3-2-23) and (3-2-24) assign correct decision

binary variable for appropriate capacity level of warehouse; G W .

26

3-3 Summary

In this chapter we first presented a model to cover facility location staircase cost function

then we linearized it. We transformed the nonlinear model to a linear model by

eliminating the nonlinearity term in the objective function. As it is clear in the linear

model objective function, the first part assigns appropriate holding cost to warehouse

JEW products and the second part assign appropriate fix cost value to warehouse JEW

level m E Q. So there is no non-linear term in objective function. The rest of objective

terms are equal to non-linear model.

In the next chapter, we will show the computational result of the non-linear model and

linear model by Lingo 8.0 and Lingo 10 software and we compare these two sets of

results together.

27

Chapter 4: Computational Experiments with Lingo 8.0 &
Lingo 10.

4-1 Non Linear Model analytical examples

We used Lingo 8.0 for coding and testing the model. We generated random problems

with different number of warehouses, capacities, customers, commodities, demands, and

different shipping cost.

These random problems have been evaluated on a 1.6 GHz Pentium PC with 1024 MB

RAM. We find optimal solution for small problems at early stage of problem running.

For example, we obtain optimal solution for the first problem Table 4-1 (see the appendix

1) in 5 second.

This optimal solution has been shown in Table 4-1. Warehouse 1 is set to its maximum

capacity which is 210000 units and warehouse 2 is set to its maximum capacity which is

170000 units. Customer 2 and Customer 3 are assigned to warehouse 1 and Customer 2 is

assigned to warehouse 2. All demands are being fully satisfied by warehouses (Z:
jk) and

no order is being released by any warehouse to satisfy customer demands. (ZL = 0).

28

Warehouse

W,

w2

Selected warehouse

Capacity

m3 = 210000

m3 =170000

Z1

Z,1, = 9000

Z_2 = 6000

Z\tl = 6000

Z^2 = 4500

z2

2^2=0

Z2
2,,=0

22
2,2=o

Assigned

customer

C2

c,

Table 4-1 Lingo solution for appendix 1 problem

However, when we increase the number of warehouses, capacities, customers and

products gradually we rarely get a feasible solution for two reasons. First of all, the non-

linearity term causes each solution fall in a local optimum. Secondly, as the size of the

problem increases gradually, we rarely reach a feasible solution by the end of a pre-

specified time (maximum 3 hours).

29

Problem

1

2

3

4

5

6

7

8

9

10

W

2

2

3

3

4

4

5

5

6

6

m

3

3

4

5

5

6

5

5

4

6

C

3

5

6

8

12

15

12

15

15

20

JT

2

3

5

5

6

8

8

8

6

10

Iterations

16509

53197

39444608

40083603

189618630

6744323

11072710

6097317

19628275

4174448

Processing

time

00:00:05

03:00:00

03:00:00

03:00:03

03:00:01

03:00:01

03:33:14

03:38:01

03:00:01

03:00:01

Objective

value

163800

3.39675e+006

3.18685e+007

4.93807e+007

504648

3.2792e+006

2.14585e+008

4.1133e+006

N/A

N/A

State

Optimal

Feasible

Feasible

Feasible

Feasible

Feasible

Feasible

Feasible

Unknown

Unknown

Table 4-2 different size Non linear sample problems with Lingo 8.0

Table 4-2 confirms that we are not able to obtain feasible solution when the size of

problem increases gradually. In section 4-2, we try to solve same Table 4-2 problems

with linear model. We will compare the differences at the end.

4-2 Linear Model analytical examples

We solved problems 1 to 10 in Table 4-2 for linear model experiments by Lingo 10

software. The result of these experiments is shown in Table 4-3. The results obtained

suggest that our problem is NP hard and it cannot be solved by branch and bound method

in reasonable time.

30

Problem

1

2

3

4

5

6

7

8

9

10

W

2

2

3

3

4

4

5

5

6

6

w

3

3

4

5

5

6

5

5

4

6

C

3

5

6

8

12

15

12

15

15

20

^

2

3

5

5

6

8

8

8

6

10

Iterations

172

29694

43371835

12387

687169

502615

4303

63830616

4009909

18453071

Processing

time

00:00:05

00:00:08

00:01:04

00:00:06

00:01:04

00:01:27

00:00:12

01:38:01

03:00:01

03:00:01

Objective

value

163800

3.39596e+06

1.64991e+07

2.84864e+07

500259

3.0551le+06

2.06428e+08

1.12045e+06

1.82949e+07

8.57393e+06

State

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Feasible

Feasible

Table 4-3 different size linear sample problems with Lingo 10.0

As it shown in Table 4-2, for problems 1 to 8 we obtain the optimal solution. As the size

of problems increase, solution obtained stay at a feasible state and for larger problems

there would be no solution at all. Linear model facilitates the problem solving by

providing better solution as it shown in Table 4-3. More problems get optimal solution

but when the size of problem increases the chance of getting optimal solution decreases

as well. For this reason, we used a Meta heuristic algorithm approach for solving larger

problems.

31

4-3 Summary

In this chapter we solved some problems for both nonlinear and linear models with Lingo

8 and Lingo 10. As it shown in Table 4-2 the results obtained by the linear model when

the size of problems get large are reasonably better than the results we obtain from the

non-linear model. Another important issue is about processing time of problems when the

size of problems increases. We acquire better solution in a shorter time frame with the

linear model than the nonlinear model.

However, in larger size problems linear model barely reaches a feasible solution. For

covering large size problems, we are going to develop a Meta heuristic for our problem.

Among different kind of Meta heuristic methods such as simulated annealing, genetic

algorithm and Tabu Search, we choose Tabu Search because it uses flexible memory and

responsive exploration in guiding the solution process to move from one trial solution to

another. By responsive exploration, it determines a search direction in the solution space

based on the properties of the current solution and the search history and converges to

optimal or near optimal solution at the end.

In next Chapter, we will use a Meta heuristic method the Tabu Search, in an attempt to

find better feasible solutions for larger problems within an acceptable processing time. In

next chapter we will develop Tabu Search method for our model. Then, we simulate the

model with Tabu Search algorithm to compare the results with Lingo 8.0 and Lingo 10

32

solutions. For having better comparison we will compare the Tabu Search final solution

with both non-linear and linear model results.

33

Chapter 5: TABU SEARCH FRAME WORK

The proposed model is considered to be an NP-Hard problem with reference to the

model with a multi commodity (k), single holding cost (hJk) for all j eW and one

potential available capacity for each warehouse is NP-Hard (Bektas and Bulgak, 2008).

Thus, we develop a Meta Heuristic method for solving our model at this stage to reach

better solutions. Tabu Search (TS) is a popular optimization technique used in a variety

of optimization problems (Glover and Laguna 1997). The beneficial advantage of Tabu

Search is escaping from local optimality especially in combinatorial problems where for

reaching this goal, a move that leads to the next considered solution can be accepted even

if the cost of this solution is worse than the current solution. (Ah Kioon et al. 2008)

As the literature defines, Tabu Search generalizes the basic local search procedure which

is terminated when an improved solution in the neighborhood of the current solution

cannot be found. Precisely, Fred Glover (1997) proposed new approach, which he called

Tabu Search, to allow local search methods to overcome local optima. The principle of

Tabu Search is to pursue a local search whenever it encounters a local optimum by

allowing non-improving moves; cycling back to previously visited solutions is prevented

by the use of memories, called Tabu lists that record the recent history of the search.

Tabu lists containing attributes can be more effective for some domains, although they

raise a new problem. When a single attribute is marked as Tabu, this typically results in

more than one solution being Tabu. Some of these solutions that must now be avoided

could be of excellent quality and might not have been visited. To mitigate this problem,

"aspiration criteria" are introduced: these override a solution's Tabu state, thereby

34

including the otherwise-excluded solution in the allowed set. A commonly used

aspiration criterion is to allow solutions which are better than the currently-known best

solution (Glover 1997).

In this manner, we set the best non-improving solution as our current solution when it is

not in Tabu list or it satisfies the aspiration criterion. With Tabu Search we can escape

from the local optima and explore the larger subset of solution space. Therefore for

advancing our procedure, we must specify an initial solution that is chosen from a set of

feasible solutions with the best objective value, the way that Tabu moves, the time that

Tabu lasts, and the aspiration criteria which dictates how to overrule a Tabu.

Although, we can start with any solution in feasible region but the best way is founding a

good initial solution which converges to best solution at lowest computation time.

For finding an initial solution we got an idea from Uster and Keskin (2007). We employ

following steps to have a good initial solution:

• Initialization

• Diversification

• Duplication

• Feasibility

• Customers assignment and Commodity placement

• Selecting Best Solution

35

For specific number of trrax we generate two kind of initial solutions (primary and

reverse initial solution). Then we check the feasibility for these generated solutions. After

feasibility check, we select the solution which returns lowest cost and store it as best

initial solution. This method will continue till ̂ > m̂ax is satisfied.

At end, we will announce best initial solution which has been found as our permanent

initial solution. Figure 5-1 illustrates the flowchart of initial solution phase.

36

Figure 5-1 Initial solution flowchart

Following section's explanation makes initial solution phase comprehensible.

37

5-1 Initialization

Initial solution is a binary vector y that consists of the warehouses and the proper

capacities. For instance, suppose we have 3 possible warehouse locations that are able to

create up to four different capacities. Figure 5-2 shows an example of an initial solution.

0 0 0 1 1 0 0 1 1 1 0
^ , 1 yh2 yi,3 ylA y. yi,i y2,s y2,4 y3,i y*,i y^ y3,*

i o o o
^1,1 yi,2 y\,- y^

Warehouse 1

1 1 0 0
y 2,1 y 2,2 y 2,3 y 2,4

Warehouse 2

1 1 I 0
^3,1 y 3,2 ^3,3 y3,

Warehouse 3

Fieure 5-2 an initial solution example

As it shown in the figure 5-2, the first warehouse is set to its first capacity level, the

second warehouse is opened with second capacity level and third warehouse uses its third

capacity level as initial solution.

38

For generating new solutions we randomly generate initial solution with jxm elements

with binary value (0, 1) in diversification step. We repeat this procedure for t times to

cover more area of our feasible region.

5-2 Diversification

Let yjmbe the elements of an initial binary solution (Y) as it illustrated in figure 5-3.

0 0 0 0 0 0 0 0 0 0 0 0
^1,1 y 1.2 y 1,3 y 1,4 y 2,1 y 2,2 y 2,3 y 2,4 ^3,1 ^3,2 3^3,3 y 3,4

Figure 5-3 binary solution for warehouse capacities

The initial solution vector (Y) denotes an n-vector (n = j x m) which each component of

Y receives value 0 or 1, we randomly set these elements to zero and one. Algorithm 1

shows how we are able to generate these mentioned solutions. Algorithm 5-1 shows the

way of generating these initial solutions:

39

Algorithm 5-1 generating Initial solutions

1: for t=\ tot„

2: forj=\toWw

3: for m = \ to Qn

y\ji»] *~ Rand°m(W)

5: Next for

6: Next for

For example, above algorithm generates below solution (figure 5-4):

0 1 0 1 1 0 1 0 0 1 1
3̂ 1,1 yU2 yi,3 yh4 y2,i y2,2 y2>i y2,* J \ I y3,2 yi>3 y3l.

1 0 1 0 Warehouse 1
^1,1 yia yi,3 yu<

i i o l Warehouse 2
y2,i y2,i y2,3 y2

o o i i Warehouse 3
y3,i yi,2 ^3,3 y3,

Figure 5-4 Random Initial solution for warehouse capacities

40

5-3 Duplication (Reverse solution)

In reference to Glove 1997 we used Algorithm 5-2 for generating another solution by

inverting each element of generated solution in algorithm 1. Algorithm 5-2 shows the

way of creating another solution from generated solutions:

Algorithm 5-2 generating Reverse solutions

1: for t = \ totmsK

2: forj = ltoWmax

3: for m = \ to Qn

^ M - 1 - ^

5: Next for

6: Next for

Figure 5-5 shows reversed solution of figure 5-4 case which is created by algorithm 5-2.

0 1 0 1 0 0 1 0 1 1 0 0
^i,i J V ^ ,3 yXA y2,i y2,2 y2,3 y2A y3,i ys,2 y^ yiA

o i o i
^1,1 ylf2 yi.3 yu

Warehouse 1

41

"Q TQ |~~j r~Q 1 ^ Warehouse 2

yi,i y2,z y2,3 y2A

1 | 1 | 0 1 0 1 4 Warehouse 3
3^3,1 ^3,2 ^3,3 ^3,4

Figure 5-5 Reversed Initial solution for warehouse capacities

5-4 Feasibility

The trial solutions in the population generated by the diversification and duplication steps

would be infeasible in most cases due to violation of two constraints (3) and (4). For

instance, if the capacity of any warehouse j at level m is set to zero, then a higher

capacity level, e.g., m + l cannot be set to 1.

Therefore, we change these non feasible solutions into feasible one using algorithm (3)

given below. In the case of infeasibility (y jm < yjm+l), the algorithm changes the value

of yjmto one or the value of _y.m+1 to zero by generating a random variable (r) . Then

algorithm returns to the initial element (yjA). This procedure repeats until a feasible

solution generated.

42

Algorithm 3 generating feasible solution

1: for j=\ toW^

2: m <— 0

3: While m<Q^-\

4: if yUm < yJtm+1

5: r^Q<Rand<\

6: ifr<.5

8: else

10: m<-0

11: end if

12: else

13:

14: e«J w/zz'/e

15: Next for

m <— m+1

43

5-5 Assignment of Customers and Commodity placement:

After finding a feasible solution (Y1), we will assign customers to available warehouses

base on lowest shipping cost. Priority of assigning goes to customer with most product

demand. For handling this issue, we apply a similar heuristic that is used by Bektas and

Bulgak (2008) for our problem. We define customer assignment heuristic steps:

We will consider assignment decision by following formula:

V(i) e argmiJ] T d i k c u +c , > t (£d i k xbk -Sjm)+ ,
jsY' [keK keK J

Where (J X f c xbk -Sjm)+ = m a x (0 , (J X t xbk -SJmY),V(i) denotes the set of
keK keK

warehouses that customer i can be assigned to, and Sjm would be the highest level of

each warehouse that already is on hand. Summing up, each customer i is assigned to

warehouse j € Y1 such that the total cost of shipping between customer and warehouse (

X di,kcij)> an<i m e distribution cost of excess demand if exist (cjk (^ dt,k x bk - Sj m)+)
keK keK

minimized. Obviously, the capacity of warehouse j e Y1 is decreased by the amount

C^jdik xbk) whenever customer i is assigned to it. The assignment decision is
keK

terminated after each customer has been assigned to a warehouse. The resulting solution

is shown by xt ..

44

After each customer assigned to warehouse successfully, we try to determine how much

of commodities should store at each warehouse j eY1, precisely we wish to determine

values of the Z). as well as amount of the excess commodities which each warehouse
J*K

should order directly to plant (Z2
jk). It is possible that at previous step, not all

warehouses j e Y1 have customers assigned to them. If this happen, we will have new

feasible solution and we change the initial feasible solution to new one as follows:

Y1 <- Y1 = {j,m e Y1 \ 3i e C s.t V(i) = j}

In other word, new Y1 is the set of open warehouses with each element having at least

one assigned customer. For each j e Y1 the commodity placement can be represented by

followed integer programming formulation:

(CPj) Minimize J X ^ Z] . , + Yu^A S"5"1

keK keK

Subject to:

Y,bkZ\k<Shm 5-5-2
keK

Zl+Zj,k= I X * VkeK 5-5-3
ieC:V(l)=j

Zlk>0,Zlk>0,\/jeYJ,keK 5-5"4

45

The values for Zx
jk and Z2

jJc are calculated only for warehouses j eY1, also the right

hand side of constraint 2-3 is defined only for customers that are assigned to these

warehouses.

For solving {CP,) we use similar algorithm which has used by Bulgak and Bektas, 2008.

Algorithm 4 Heuristic to solve (CP.)

1: Sort commodities in an increasing order of J'm' . Let {k k t ,}denote this ordering

2: pcap = SJm

3: t = \

4: while pcap > 1 do

5: Z,U = m i n{IX*A/'
tec

6: pcap = pcap - Z)K x bk<

7: f ^ f + 1

8: ena" while

9: for all keKdo

10: Z^ ,=IX*Ay-^

11: end for

pcap

46

Commodities are sort by their J>m<k value. After that, the commodities by this given order

are placed in the warehouse up to capacity^ m . As soon as the capacity Sj>m is met, all

reminded commodities are supplied from the plant directly which is correspond to the

values of thcZJk . Based on these algorithms, final objective value for each feasible

solution is derived from following formula.

jeY' jsY1 i'eC ksK

As it clear we only need to find a feasible solution (Y), afterward we calculate the other

variables amount by two mentioned algorithms and we calculate the objective value for

each instance feasible solution.

5-6 Selecting best initial solution

After generating feasible solutions, the problem is solved for these solutions (Initial and

Reverse) by the heuristic methods described above. Afterwards, we select one solution

among these solutions which returns lower objective function value. We set this solution

as the best solution. According to the procedure above, for t times and we compare each

best solution in every period. If the best solution in the next iteration is better than the

previous one, we update the best solution, otherwise while loop continues till reach to t

number.

47

5-7 Summary

In initial phase we randomly opened and closed potential warehouses for determined

location with different capacities. Then, we assigned customers to this available

warehouse set and allocated customer demands to each warehouse by two different

heuristic algorithms. Furthermore, objective value for these solutions are compared to

each and best objective value and solution is selected as best initial solution.

We coded above algorithm in visual C++ 6.0 which passes best initial solution to Tabu

Search program. In next chapter, we will develop Tabu Search for our model, this Meta

heuristic method works on potential warehouse locations and warehouse capacities.

48

Chapter 6: Tabu Search Implementation

In this chapter we implement the Tabu Search algorithm as discussed in chapter 5 for the

proposed model. We explained how Tabu Search works and how it is able to find

solution by calculating the*,. .,Z];it andZ^ . After implementation we will compare the

Tabu Search results with both the non-linear and the linear model results for the same set

of problems. In this way we are able to show how close Tabu result is to optimal or near

optimal solutions.

The Tabu Search scheme for our problem is described as follows: we start with initial

solution (Y1) which we obtained in pervious section and we keep its objective function

value by calculating the*, .,Z]>jt andZJj/t. We also set this objective value as Best

Answer (0(YBest)) and Current Answer (^(Yc)).Then, we generate a certain sets of

neighborhoods first by opening new warehouses with different capacity levels and second

by increasing or decreasing capacity level of our current solution. If the best of these

moves is not Tabu and is better than overall solutions or, the best is Tabu but satisfies the

aspiration criterion we pick that move and consider it as best solution (7Bes');otherwise,

we pick the best move that is not Tabu and put as our current solution (Yc). Figure 6-1

illustrates the flowchart of the above explanation.

49

Start with \
initial solution I

Figure 6-1 Tabu Search flowchart
50

In reference to the scheme, first, we try to generate some neighborhood from the initial

solution (Current Solution) through closing or opening warehouse capacity.

Let A= {jeW,meQ: yjm=\} and^ = WI A, in this case we are able to create some

neighborhood by Add and Drop move. Add move consist of moves where a single

component {yJt„) is opened when it's already close and Drop move consist of moves

where a single component (yJm) is closed when it's already open. Second, we generate

some neighborhoods with different warehouse capacity levels.

Figure (6-2) shows generating new neighborhood from current solution. We generate new

solutions by opening/closing capacities from current solution. Suppose we have three

potential warehouse locations that can be set up to five capacities, our current solution

shows first warehouse is opened with its third capacity, second warehouse is set to its

second capacity and third warehouse is set to its first capacity.

Current solution ^ 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0

Generating neighbor <

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

1 1 i 1 0

1 m 0 0 0

1 0 0 0

First warehouse

Second warehouse

Third warehouse

New neighbor solution i=> | l | l | l | l | o | l | 0 | o | o | 0 | l | l | o | o | 0

Figure 6-2 Generating neighbor by Add and Drop Move

51

Consequently, we are able to generate different neighborhoods from current solution

through dropping or adding capacity to current warehouse level capacity.

Second alternative, we create new neighborhoods with different size capacity level by

setting each warehouse to new capacity level. Figure (6-3) shows possibility of

generating new warehouse capacity. Suppose we have three potential warehouse

locations that can be set up to five capacity levels, new neighborhoods can be generated

with setting each warehouse to new different capacity level. Figure (6-3) shows these

possible moves.

Generating neighbor <

1 1 1 1 0

I 1 1 1 1

1 1 0 0 0

-> First warehouse is set to level 4

•> Second warehouse is set to level 5

-> Third warehouse is set to level 2

New neighbor solution i=) 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0

Generating neighbor <

1 1 0 0 0

1 1 1 0 0

1 1 1 0

-• First warehouse is set to level 2

-> Second warehouse is set to level 3

->• Third warehouse is set to level 4

New neighbor solution ^ 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0

Figure 6-3 Generating neighbor by creating new level capacity

52

To prevent cycling and re-visiting previously visited solutions, Tabu move restrictions

are employed. In our implementation, we classify a solution obtained by Add / Drop or

Generating new capacities, as a Tabu if it corresponds to closing a capacity or open new

capacity which was opened or closed in an accepted solution in the course of the

procedure.

This Tabu move restriction is solved by employing Tabu tenure which is the number of

iterations that an open capacity or closed one of a specific warehouse remains a Tabu. For

simplicity we set Tabu tenure for a newly opened capacity or recently closed one for a

fixed number of iterations. In our case we define two Tabu lists. First, if new capacity

opens in new move we put this capacity in recently added capacity list which cannot drop

for a fix number of iterations, second if opened capacity drops in new move we put this

capacity in recently dropped list which cannot add for a fix number of iterations.

Therefore, the Tabu Search algorithm uses two tenure ADD and DROP lists where

TADD = (ThV...TLm)andTDROP = {TX,....Thm).

Tjm, in each list shows the recently opened/closed capacity of warehouse j , for example,

if Tjm > 0 for some j eW in one of above list then relevant warehouse is Tabu and can

not be dropped if it belongs to TADD list or cannot be added if it belongs to TDROP

53

list. Any warehouse capacity with a corresponding TJm equal to zero in TADD and

TDROP Tabu lists is non-Tabu and can be add/drop.

In all iterations, when a candidate solution results in opening or closing capacity m of

warehouse j , relevant T]m is assigned to the appropriate Tabu tenure and all other positive

entries in the Tabu lists are decreased by one.

6-1 Aspiration Criterion:

We define the aspiration criterion as solution involving Tabu move that has better

objective value than the best known answer, then the Tabu status is disregarded.

Otherwise, if the aspiration criterion is not satisfied, we continue to the next iteration with

the best non-Tabu solution.

An aspiration criterion is used to overrule the Tabu restrictions; therefore we can consider

the attractive unvisited solutions as well. Although one solution is a Tabu move, but it is

accepted as legitimate solution whenever it satisfies the aspiration criterion.

For Tabu algorithm input data, we define the maximum number of iterations, max

number of non-improving iterations and the Tabu tenure (Keskin and Uster, 2007). At the

beginning, no warehouse capacity is a Tabu; therefore add and drop Tabu lists consist of

zeros.

54

We search the both Add/Drop neighborhood and new warehouse capacity neighborhood

of the initial solution (Y1) per iteration and pick the best solution in the neighborhood (

Yc). Afterward, we check the Tabu status.

If the current solution (Yc) does not contain a Tabu move, we accept this solution as the

new initial solution. We also check if this solution is better from the best overall solution

(YBesl) that we have so far.

If it is, we update YBest and reset the number of non-improving solutions to zero; else we

add one to non-improving solutions. We require also updating the Tabu list, so we

decrease all positive entries by one and setting the value for newly closed, opened or both

to Tabu tenure.

If the current solution contains a Tabu move, essentially the aspiration criterion will be

checked. If the aspiration is satisfied, we accept the solution as best overall solution and

set non-improving solutions number to zero. We also update the Tabu list as well.

When the aspiration criterion is not satisfied, we pick the best non-Tabu solution as new

initial solution. Again, we update the Tabu list and increase the number of non-improving

solutions by one. Before moving to the next iteration, we check to see if the number of

non-improving solutions is smaller than its maximum or not. If not, we terminate the

Tabu Search and report the overall best solution as a result of the research. Otherwise the

55

procedure continues in this fashion until the preset total number of iterations or a preset

number of successive non-improving iterations are met.

6-2 Computational Results:

Appendix 2 shows Tabu Search pseudo code for our capacitated location model. We

coded Tabu Search algorithm in visual C++ 6.0 and run same problems of Table 4-2 for

comparison between nonlinear model and Tabu results. We set non-improving solutions

to 1000 iterations, maximum number of iterations to 2250, and Tabu tenure to number of

warehouses (j) multiply in maximum capacity (m) .

Problem

1

2

3

4

5

6

7

8

9

10

W

2

2

3

3

4

4

5

5

6

6

m

3

3

4

5

5

6

5

5

4

6

C

3

5

6

8

12

15

12

15

15

20

K

2

3

5

5

6

8

8

8

6

10

Tabu
Search

processing
time

00:00:02

00:00:04

00:00:10

00:00:11

00:00:08

00:00:02

00:01:45

00:03:05

00:00:06

00:00:10

Tabu Search
Objective

value

163800

3.39595e+06

1.86236e+07

3.09071e+07

504648

3.0551e+06

2.13883e+08

1.1649e+06

1.70125e+00
7

8.56848e+00
6

Lingo 8.0
Processin

g time

00:00:05

00:00:08

03:00:00

03:00:03

03:00:01

03:00:01

03:33:14

03:38:01

03:00:01

03:00:01

Lingo 8.0
Objective

value

163800

3.39675e+06

3.18685e+07

4.93807e+07

504648

3.2792e+06

2.14585e+08

4.1133e+06

N/A

N/A

Table 6-1 nonlinear model and Tabu Search result comparison

56

As it shown in Table (6-1), Tabu Search result is much better than nonlinear model

solutions in all cases. When the number of warehouses, capacities, products and

customers are increased Lingo software will not be able to enter to feasible state in non­

linear model. Problems 9 and 10 show this phenomenon.

Table (6-2), compares linear model and Tabu Search results for same problems of Table

(4-2).

P
ro

bl
em

1

2

3

4

5

6

7

8

9

10

W

2

2

3

3

4

4

5

5

6

6

m

3

3

4

5

5

6

5

5

4

6

C

3

5

6

8

12

15

12

15

15

20

K

2

3

5

5

6

8

8

8

6

10

Tabu Search

Objective

value

163800

3.39595e+06

1.86236e+07

3.0907le+07

504648

3.0551e+06

2.13883e+08

1.1649e+06

1.70125e+07

8.56848e+06

Lingo

10.0

Processin

g time

00:00:05

00:00:08

00:01:04

00:00:06

00:01:04

00:01:27

00:00:12

01:38:01

03:00:01

03:00:01

Lingo 10.0

Objective

value

163800

3.39596e+06

1.6499 le+07

2.84864e+07

500259

3.055 le+06

2.06428e+08

1.12045e+06

1.82949e+07

8.57393e+06

State

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Optimal

Feasible

Feasible

Table 6-2 linear model and Tabu Search result comparison

In most cases, linear model reaches to optimal solution but when the size of problems get

increased Lingo 10.0 stay at feasible state and cannot reach to optimal. A good point in

Tabu solutions is, given solutions are much near to optimal solution. In all cases, Tabu

57

solution is near to optimal solutions, and in larger problems (problem 9 and 10) we

acquire better solution than linear model.

At this time, we try to solve larger problems of linear model and Tabu Search for having

better comparison between solutions of linear model and Tabu Search. Table (6-3) shows

more problems with significantly larger number of warehouses, capacities, customers and

products.

For considering the proposed model carefully, we run all problems with different amount

of demands, shipping costs, penalty costs, fix open costs and capacity sizes to assure that

the problems have been solved over a large range of data.

We set maximum iteration for Tabu Search method to maximum 1500 iteration and

maximum non-improvement iteration to 1400 iteration and Tabu tenure to number of

warehouses (j) multiply in maximum capacity (m) as before.

Problem

11

12

13

14

15

16

17

18

19

20

W

10

10

10

12

12

12

15

15

15

15

m

5

5

5

6

6

6

6

6

6

6

C

20

35

40

20

30

35

25

30

35

40

K

10

10

15

20

15

20

10

15

20

20

Initial
solution by

Tabu
Search

2.8807e+06

4.5432e+06

1.3846e+08

5.3461e+07

3.4757e+07

5.8750e+07

2.2213e+07

2.8428e+07

2.7159e+07

3.2417e+08

Final solution
by Tabu
Search

2.1529e+06

1.8447e+06

1.2291e+08

2.7977e+07

9.4804e+06

4.2540e+07

4.0371e+06

5.0215e+06

1.8473e+07

2.634278e+08

Lingo 10
objective
function
solution

2.19469e+06

2.04029e+06

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Lingo 10
Status

Feasible

Feasible

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Table 6-3 larger problems with 10 potential warehouse locations
58

Table 6-3 shows the result of this comparison. When the size of problems gets larger as

we expected, we cannot reach feasible state by Lingo software after preset time for

solving models (3 hours). The very few first problems reach feasible state but these

objective functions are not better than Tabu solutions.

For our Tabu Search, the process starts off with best initial solution that already found by

initial phase and continues with Tabu Search algorithm.

Table 6-3 demonstrates that Tabu Search have had enormous improvement in opening

warehouses with different capacities and assigning customers to these opened warehouses

compare to initial solution value.

The Tabu Search solving process time for last ten problems has illustrated in Table 6-4

for comparison to Lingo processing time.

Problem number

11

12

13

14

15

16

17

18

19

20

Tabu Search solving time

00:13:36

00:16:13

00:17:40

00:21:20

00:22:00

00:29:15

00:28:00

00:22:00

00:28:00

00:36:00

Lingo 10 preset time

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

Table 6-4 Tabu Search process time in comparison with Lingo 10

59

The processing time of Tabu Search is reasonably faster than Lingo 10 and every node of

problem would be searched faster than the branch and bound method performed by

Lingo.

Figure 6-4 shows the difference between linear model and Tabu Search objective

function.

25000000

20000000

15000000
01
J3
IB
>
01

U

jr IOOOOOOO
o

50000000

5
i

i

—ffi- •
9

HI

• * •
-IB-

8
tUB - U *

• Linear Objective value

DTabu Objective Value

6 8

Problems

10 12 14

Figure 6-4 Lingo and Tabu Search objective value comparison

We plot first twelve problems to compare the objective functions from both linear model

and Tabu Search. As it clear both solutions are so close together that the difference is

ignorable.

60

In Table (6-3) for the problems 13 to 20, since we could not reach to any solution by

Lingo software we try to illustrate the difference between the Tabu Search solution and

the Lingo objective bound. By this method, we can conclude how close Tabu Search

solution is to the optimal bound. We consider problem 11 to 20 where Lingo fail to find

optimal or feasible solution. The objective bound of these problems have shown in table

6-5.

Problem number

11

12

13

14

15

16

17

18

19

20

Lingo objective bound

1.97578e+06

1.16727e+06

1.18159e+08

2.37865e+07

7.7977e+06

3.66703e+07

2.67573e+06

3.18389e+06

1.4547e+07

2.40929e+08

Lingo 10 preset time

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

03:00:00

Table 6-5 Lingo 10 objective bound for problem 11 to 20.

As it shown in figure 6-5, the gap between objective bound of Lingo for problem 11 to 20

and Tabu Search objective function is negligible. At worst case, there is only a 6%

difference between the Tabu Search final answer and the Lingo objective bound.

However we should bear in mind the objective bound of Lingo may be tighter even after

preset time.

61

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

O.OOE+00

(

•
* y

tjjjl
i • Linear objective bound

: D Tabu search objective

_-JBL

) 2

w

4

9
9 g Bii

6 8

Problems

9

10

\

12

Figure 6-8 Lingo objective bound and Tabu Search objective value comparison

The near to optimal solution by proposed Tabu Search give us this opportunity to find a

reasonable solution in a very short time when other search methods fail to find at least

one feasible solution for larger problems.

62

6- 3 Summary

In this chapter we explained the way our Tabu Search goes for better solution in search

space and we provided how Tabu Search will improve solution by explaining Tabu

aspiration and Tabu tenure. Given solution by Tabu Search method for exact problems

shown in Table 6-2 and 6-3 illustrates how close these solutions are to optimal point.

Also by Tabu Search algorithm we acquire near to optimal solution in reasonable time

comparing to linear model processing time.

63

Chapter 7: Conclusions and Future Research

In this research, we considered the problem of locating capacitated warehouses in a

supply chain setting with staircase cost functions. A non linear integer programming

formulation is presented. Based on the mathematical techniques from the literature, we

transferred the nonlinear model to a linear model. We coded the nonlinear model in

Lingo 8.0 and linear model in Lingo 10 software. The linear model results are found to be

much better in comparison with the nonlinear model and we could reach on optimal

solution for small and medium size problems within a shorter time and in an efficient

way.

However for larger size problems, because of the NP hard structure of such problems, we

are not able to reach a feasible solution within a reasonable time frame. For this reason,

we developed a Tabu Search algorithm. The Proposed algorithm showed good quality

solutions compared to those from the nonlinear model, and near optimal solutions

compared to those from the linear model for medium size problems. However, when the

size of the problems increases, we cannot reach a feasible solution by the branch and

bound method employed by Lingo. By comparing the Tabu Search solutions with the

Lingo objective bound, we can conclude that the Tabu Search results are acceptable and

we can obtain good solutions for larger size problems using the Tabu Search algorithm.

For future research, we aim to develop hybrid meta-heuristic algorithms. In this way, one

meta-heuristic method (such as simulated annealing, Genetic algorithm) works on

64

customer binary variable which assigns customers to available warehouses. Accordingly,

we can get either optimal solution or improved near optimal solutions. Thus, the gap

between the Tabu Search result and optimal solution will be reduced, if we use hybrid

meta-heuristic methods.

Secondly, we aim to consider product demand to be stochastic as opposed to

deterministic which would be a much more realistic consideration. By choosing a

stochastic customer demand the way of solving problem gets more challenging. Further

research will improve the customer assignment to available warehouses by their product

types and demand.

65

References

1. Bektas, T. and Bulgak, A.A. Lagrangean-based solution approaches for the

generalized problem of locating capacitated warehouses, International

Transactions in Operational Research, 15:67-85, 2008.

2. Cortinhal, M.J. and Captivo, M.E. Upper and lower bounds for the single source

capacitated location problem. European Journal of Operational Research,

151:333-351,2003.

3. Defersha, F.M. and Chen, M. A linear programming embedded genetic algorithm for an

integrated cell formation and lot sizing considering product quality, European Journal of

Operational Research, 187:46-69, 2008.

4. Delmaire, H. and Diaz, J.A. and Fernandez, E. and Ortega, M. Reactive GRASP

and Tabu Search based heuristics for the Single Source Capacitated Plant

Location Problem, INFOR; 37:194, 1999.

5. Gendron, B. and Potvin, J. and Soriano, P. A Tabu Search with Slope Scaling for

the Muliticommodity Capacitated Location Problem with Balancing

Requirements. Annals of Operation Research, 122:193-217, 2003.

6. Ghiani, G. and Guerriero, F. and Musmanno, R. The capacitated plant location

problem with multiple facilities in the same site. Computers & Operation

Research, 29:1903-1912, 2002.

7. Glover, F. and Laguna, M. Tabu Search. Kluwer Academic Publishers: Dordrecht,

the Netherlands, 1997.

8. Hindi, K.S. and Pienkkosz, K. Efficient solution of large scale, single-source,

capacitated plant location problems. European Journal of Operation Research,

50:268-274, 1999.

9. Holmberg, K. Solving the staircase cost facility location with decomposition and

piecewise linearization. European Journal of Operation Research, 75:41-61,

1994.

66

10. Holmberg, K. and Ling, J. A Lagrangean heuristic for the facility location

problem with staircase costs. European Journal of Operation Research, 97:63-74,

1997.

11. Keskin, B.B. and Uster, H. Meta-heuristic approaches with memory and evolution

for a multi-production/distribution system design problem. European Journal of

Operation Research, 182:663-682, 2007.

12. Kioon, S.A. Tabu Search procedure for the design of integrated cellular

manufacturing systems with production planning and dynamic system

reconfiguration, PhD thesis, Concordia University, 2007.

13. Klose, A. and Drexl, A. Facility location models for distribution system design.

European Journal of Operational Research, 162:4-29, 2005.

14. Klose, A. and Gortz, S. A branch-and-price algorithm for the capacitated facility

location problem. European Journal of Operational Research, 179:1109-1125,

2007.

15. Lorena, L. and Serine, E. A column generation approach to capacitated p-median

problems. Computers & Operations Research, 31:863-876, 2004.

16. Pirkul, H. and Jayaraman, V. A Multi-commodity, Multi-plant, Capacitated

facility location problem: Formulation and Efficient heuristic solution. Computer

& Operations Research, 25:869-878, 1998.

17. Rolland, E. and Schilling, D.A. and Current, J.R. An efficient Tabu Search

procedure for the p-Median problem, European Journal of Operation Research,

96:329-342,1996.

18. Sridharan, R. The capacitated plant location problem. European Journal of

Operation Research, 87:203-213, 1995.

19. Sun, M. Solving the uncapacitated facility location problem using Tabu Search,

Computers & operation research; 33:2563-2589, 2006.

20. Wu, L. and Zhang, X. and Zhang, J. Capacitated facility location problem with

general setup cost, Computers & Operations Research, 33:1226-1241, 2006.

67

C
Ts

oo

A
m

ou
nt

60
00

45
00

50
00

35
00

40
00

25
00

H
ol

di
ng

co

st

hi
.i.

i

hl
,l,

2

h
1,

2,
1

h1
,2

,2

h
1,

3,
1

hi
,3

.2

h
2,

1,
1

hu

1*
2,

2,
1

1*
2,

2,
2

h,
3,

l

1*
2,

3,
2

A
m

ou
nt

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

1.
35

1.
5

1.
51

1.
65

1.
7

1.
8

Pe
na

lty

co
st

C
l,l

C
l,2

C
2,

l

C
2.

2

A
m

ou
nt

80
0

90
0

90
0

11
00

O
pe

ni
ng

 c
os

t

fu

fl
,2

fu

fl
l

f2
,2

f2
,3

A
m

ou
nt

10
00

25
00

30
00

15
00

30
00

50
00

Sh
ip

pi
ng

 c
os

t

C
l.l

C
2.

1

C
3.

1

C
U

C
2.

2

C
3.

2

A
m

ou
nt

2 3 2 4 4 4

C
ap

ac
ity

 s
iz

e

W
/,

/

W
l,2

W
13

W
2,

l

W
2,

2

W
2,

3

A
m

ou
nt

15
00

00

16
00

00

21
00

00

50
00

0

80
00

0

17
00

00

11

(D

3

3
B

-. X

0)

3 O

0)
 s1 c o

fi
) o

3
"

tt

Q
) 3 •a
,

o

D
em

an
d

"a "S3 ~<3 "<3

69

Appendix 2: Tabu Search pseudo code:

InPut: fj,m > hj^k, dik, c,j, cjyk, Y', <p(Y')

Output: Ybesl ,<p(Ybes'), XtJ, Z)^, Z)^

1. y*"«_y ' . (p(Ybes')^(p(Y')

2. YC^Y'; <p(Yc)<^<p(Y!)
3. maxlter*—q; Tabu Tenure <—(jxm); maxNonlmpr*— p
4. IterNo<—0; nonImpr<—0
5. while IterNo<maxIter

"• Generate t] solutions with different warehouse capacities.
7. Calculate objective value for t] solutions
8. Generate t2 solutions with adding/dropping warehouse capacities.
9. Calculate objective value for t2 solutions

10. for t <tx +t2 do

11. If (p(Y')<(p(Yc) then

12. Yc <^Y',(p(Yc)<^(p(Y')
13. end if
14. end for
15. If TADD[Tabu]=0 and TDROP[Tabu]=0 then

16. Y' <^Yc;(p{Y')<^(p{Yc)

17. If <p(Yc)<(p(YBesl) then

18. <p(YBest) < - <p(Yc);YBest < - 7 e ; nonlmpr<-0
19. else
20. nonImpr<— nonlmpr + 1
21. end if
22. Update Tabu list T.
23. else

24. If <p(Yc)<(p(YBest) then

25. (p{YBest) < - (p(Yc); YBest <- Yc; nonlmpr-0

26. Update Tabu list T.
27. else
28. nonImpr<— nonlmpr + 1

29. Let Y° be the best non-Tabu solution.

30. Y' <-Yc;(p(Y')^(p(Yc)

31. Update the Tabu list T.
32. end if
33. end if
34. if nonlmpr > MaxNomlmpr
35. Terminate the Tabu Search.
36. end if
37. iterNo<— iterNo +1
38. end while

70

Appendix 3: Nonlinear Lingo code:

Sets:
Warehouse/1..2/:j;
Capacity/1. .4/:m,q; !I had. to define; one index more than real one to
cover the index 0;
Product/1..2/:k;
Customer/1..3/ : i;
HoldingCost(Warehouse,Capacity,Product):h;
FixingCost(Warehouse,Capacity):f;
StorageSize(Warehouse,Capacity):S;
ShippingCost(Customer,Warehouse):c;
Demand(Customer,Product):d;
TotalStorage(Warehouse,Capacity,Product):z;
ExtraCharge(Warehouse,Product):E;
Size(product):b;
CustomerVariable(Customer,Warehouse):x;
WarehouseVariable(Warehouse,Capacity):y;
WarehouseStock(Warehouse,Product):P;
RequestStock(Warehouse,Product) re­
link (Warehouse, Customer, Product):L;
Endsets

Data:

h= @OLE('C: \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','Hold');
d= ©OLE (' C : \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','Demand');
f= @OLE (' C : \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','OpenCost');
E= @OLE (' C: \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','Penalty');
b= @OLE (' C: \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','PSize');
S= ©OLE (' C: \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','CSize');
c= ©OLE (' C : \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','ShipCost');

©OLE (' C : \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','Z_j_m_k')=z;

71

file:///Documents
file:///problem
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file:///problem
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file:///probl
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls
file:///Documents
file://l/NLP.xls'

@OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','P_j_k')=P;
@OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','R_j_k')=R;
SOLE('C:\Documents and Settings\Iman Niroomand\My DocumentsXMy
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls1,'Y_j_m')=y;
SOLE (' C: \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Lingo Sample
Problems\problem l\NLP.xls','X_i_j')=x;

End Data

iConstraint(9);
©for(CustomerVariable(i,j):©BIN (x(i,j)));

! Constraint{10};
©for(WarehouseVariable(j,m)|m#GT#l:@BIN (y(j,m)));

!Constraint (13) ;
©for(TotalStorage(j,m,k):@GIN(z(j,m,k)));

[Constraint(14);
@for(RequestStock(j,k):@GIN(R(j,k)));

!objective function;

min=@sum(HoldingCost(j,m,k)|m#GE#2:h(j,m,k)*z(j,m,k))+
@sum(FixingCost(j,m)|m#GE#2:(f(j,m)-f(j,m-
1))*y(j,m))+@sum(HoldingCost(j,m,k)|m#GE#2:((h(j,m,k)-h(j,m-
l,k))*(©sum(Capacity(q)|q#LE#m-l:z(j,q,k))))*y(j,m)) +
©sum(link(j,i,k):d(i,k)*x(i,j)*c(i,j))+
@sum(WarehouseStock(j,k):R(j,k)*E(j,k)) ;

!Constraint(1);
©for(Customer(i):

©sum(Warehouse(j):x(i,j))=1);

!Constraint(2);
©for(CustomerVariable(i,j):

x(i,j)<=y(j,2));

I Constraint(3);
©for(StorageSize(j,m)|m#GE#2:

©sum(product(k):b(k)*z(j,m,k))<=(s(j,m)-s(j,m-l))*y(j,m));

72

file:///Documents
file:///problem
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls'
file:///Documents
file://l/NLP.xls1
file:///Documents
file:///problem
file://l/NLP.xls'

!Constraint(4) ;
©for(StorageSize(j ,m) |m#GT#2:

©sum(product(k):b(k)*z(j,m-l,k))>=(s(j,m-l)-s(j,m-
2))*y(j,m));

!Constraint(6);
©for(WarehouseStock(j,k):

P(j,k)+R(j,k)=@sum(Customer(i):d(i,k)*x(i, j)));

!Constraint(7);
©for(WarehouseStock(j ,k) :

©sum(capacity(m)|m#GT#l:z(j,m,k))=p(j,k));

!Constraint(8);
©for(TotalStorage(j,m,k):

z(j,m,k)>=0);
@for(TotalStorage(j,m,k)|m#EQ#l:

z(j,m,k)=0);

1 Constraint(9);
©for(WarehouseStock(j,k):

p(j,k)>=0);
[Constraint(10);
©for(RequestStock(j,k):

R(j,k)>=0);

73

Appendix 4: Linear Lingo code:

Sets:
Warehouse/1..15/:j;
Capacity/1..7/:m,q; !I had to define one index more than real one to
cover the index 0;
Product/1..10/:k;
Customer/1..25/:i;
HoldingCost(Warehouse,Capacity,Product):h;
FixingCost(Warehouse,Capacity):f;
StorageSize(Warehouse,Capacity):S;
ShippingCost(Customer,Warehouse):c;
Demand(Customer,Product):d;
TotalStorage(Warehouse,Capacity,Product):z,AZ;
ExtraCharge(Warehouse,Product):E;
Size(product):b;
CustomerVariable(Customer,Warehouse):x;
WarehouseVariable(Warehouse,Capacity):y,t;
WarehouseStock(Warehouse,Product):P;
ProblemsStock(Warehouse,Product):R;
link(Warehouse,Customer,Product):L;
Endsets

Data:

h= @OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','Hold');
d= ©OLE('C:\Documents and Settings\Iman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','Demand');
f= ©OLE (' C : \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','OpenCost');
E= ©OLE (' C: \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','Penalty');
b= ©OLE (' C: \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','PSize');
S= ©OLE ('C: \Documents and SettingsMman Niroomand\My Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems
C++\Lingo 12\probleml2.xls','CSize');
c= ©OLE ('C : \Documents and SettingsMman NiroomandXMy Documents\My
university Research\Thesis\DifferentModels\Larger Tabu Problems

C++\Lingo 12\probleml2.xls','ShipCost');

End Data

!objective function;

min=©sum(HoldingCost(j,m,k)|m#GE#l:h(j,m,k)*AZ(j,m,k))+
©sum(FixingCost(j,m)|m#GE#2:(f(j,m)-f(j,m-

74

file:///Documents
file:///Iman
file:///Documents
file://12/probleml2.xls'
file:///Documents
file:///Documents
file://12/probleml2.xls'
file:///Documents
file://12/probleml2.xls'
file:///Documents
file://12/probleml2.xls'
file:///Documents

l))*y(j,m))+@sum(link(j,i,k):d(i,k)*x(i,j)*c(i,j))+
@sum(WarehouseStock(j,k):R(j,k)*E(j,k)) ;

! Constraint(1);
©for(Customer(i):

@sum(Warehouse(j):x(i,j))=1);

!Constraint(2);
©for(CustomerVariable(i,j):

x(i,j)<=y(j,2));

!Constraint(3);
@for(StorageSize(j,m)|m#GE#2:

©sum(product(k):b(k)*z(j,m,k))<=(s(j,m)-s(j,m-l))*y(j,m));

!Constraint(4);
@for(StorageSize(j,m)|m#GT#2:

©sum(product(k):b(k)*z(j,m-l,k))>=(s(j,m-l)-s(j,m-
2))*y(j,m));

!Constraint(5);
©for(WarehouseStock(j,k):

P(j,k)+R(j,k)=@sum(Customer(i):d(i,k)*x(i,j)));

[Constraint(6};
©for(WarehouseStock(j,k):

©sum(capacity(m)|m#GT#l:z(j,m,k))=p(j,k));

!Constraint(7};
©for(TotalStorage(j,m,k):

z(j,m,k)>=0);
!Constraint(8);
@for(TotalStorage(j,m,k)|m#EQ#l:

z(j,m,k)=0);

[Constraint(9);
@for(WarehouseStock(j,k):

p(j,k)>=0);
iConstraint (10) ;
©for(ProblemsStock(j,k):

R(j,k)>=0);
J Constraint(11);
©for(TotalStorage(j,m,k)|m#GE#2:

AZ(j,m,k)>=@sum(Capacity(q)|q#GE#2 #AND#
q#LE#m:z(j,q,k))+10000000000*t(j,m)-10000000000);
! C o n s t r a. i n t (12) ;
©for(TotalStorage(j,m,k)|m#GE#2:

AZ(j,m,k)<=@sum(Capacity(q)|q#GE#2#AND# q#LE#m:z(j,q,k)));
!Constraint (13);
©for(TotalStorage(j,m,k)|m#GE#2:

AZ(j,m,k)<=10000000000*t(j,m));

75

!Constraint(14);
@for(StorageSize(j,m)|m#GE#l:

t (j,m)<=y(j,m));
!Constraint(15);
©for(Warehouse(j):

©sum(Capacity(m)|m#GE#l:t(j,m))=1);
!Constraint(16);
@for(StorageSize(j,m)|m#GE#2:

t(j,m)>=t(j,m-l)+10000000000*y(j,m)-
10000000000);

! Constraint (1.7) ;
©for(CustomerVariable(i,j):©BIN (x(i,j)));

! C o n s t r a i n t {18) ;
@for(WarehouseVariable(j,m)|m#GT#l:©BIN (y(j,m)));

!Constraint(19);

©for(WarehouseVariable(j,m):©BIN (t(j,m)));

!Constraint(20);
©for(TotalStorage(j,m,k):@GIN(z(j,m,k)));

!Constraint(21);
@for(ProblemsStock(j,k):@GIN(R(j,k)));

!Constraint(22);
©for(TotalStoragefj,m,k)|m#EQ#l:

AZ(j,m,k)=0

76

