
Registry Composition in Ambient Networks

Fatna Belqasmi

A Thesis
in

The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

June 2008

© Fatna Belqasmi, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42549-7
Our file Notre reference
ISBN: 978-0-494-42549-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Registry Composition in Ambient Networks

Fatna Belqasmi, Ph.D.
Concordia University, 2008

Ambient Networks (AN) is a new networking concept for beyond 3G. It is a product of

the European Union's Sixth Framework Program (FP6). Network composition is a core

concept of ANs. It allows dynamic, scalable and uniform cooperation between

heterogeneous networks. ANs can host various registries. These registries may be of

different types (e.g. centralized, distributed), store heterogeneous types of information

(e.g. raw data vs. aggregated data), and rely on different interfaces to access the stored

information (i.e. protocols or programming interfaces). When ANs compose, the hosted

registries need to compose. Registry composition is a sub-process of network

composition. It provides seamless and autonomous access to the content of all of the

registries in the composed network.

This thesis proposes a new architecture for registry composition in ANs. This overall

architecture is made up of four components: interface interworking, data interworking,

negotiation and signaling. Interface interworking enables dynamic intercommunication

between registries with heterogeneous interfaces. Data interworking involves

dynamically overcoming data heterogeneity (e.g. format and granularity). Interface and

data interworking go beyond static interworking using gateways, as done today. The

negotiation component allows the negotiation of the composition agreement. Signaling

coordinates and regulates the negotiation and the execution of the composition

agreement.

iii

Requirements are derived and related work is reviewed. We propose a new functional

entity and a new procedure to orchestrate the composition process. We also propose a

new architecture for interface interworking, based on a peer to peer overlay network. We

have built a proof-of-concept prototype. The interface-interworking component is used as

the basis of our new architecture to data interworking. This architecture reuses

mechanisms and algorithms from the federated data base area. The thesis proposes as

well a new architecture for on-line negotiation. The architecture includes a template for

composition agreement proposals, and a negotiation protocol that was validated using

SPIN. A new signaling framework is also proposed. It is based on the IETF Next Step in

Signaling (NSIS) framework and was validated using OPNET. Most of these

contributions are now part of the AN concept, as defined by the European Union's Sixth

Framework Program.

IV

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Rachida Dssouli and Dr. Roch Glitho for their

support, guidance and motivation. I thank Dr. Dssouli for her warm encouragements,

good advices and kindness. Her continuous support was of great help. I thank Dr. Glitho

for his assistance and for always being their when I need him. I learned a lot from

working with him. Without his continuous encouragement, patience and valuable advices

this thesis would not have been possible. His vision and enthusiasm had a great impact on

my scientific development and the research work presented in this thesis.

I would like to thank my supervisory committee members, Dr. Agarwal, Dr. Debbabi and

Dr. Rilling, for their advices and comments at different stages of this research. I would

also like to thank Dr. F. Khendek, his comments and ideas were always helpful.

Special thanks to Concordia University, Ericsson and the Natural Sciences and

Engineering Research Council of Canada (NSERC) for their financial support. I thank

Ericsson for giving me the opportunity to work in its Research and Development

department.

Many thanks as well to all my colleagues from the ambient network project, for their

constructive comments. Our participation (as a non EU member) in the ambient network

project was sponsored by Ericsson Canada, NSERC of Canada and "Ministere du

Developpement Economique, de 1' Innovation et de 1'Exportation" (MDEIE) of Quebec.

I am also grateful to all my colleagues at the TSE lab at Ericsson Canada, for their help

and suggestions. It has been a good pleasure to work with all of you.

DEDICATION

This dissertation is dedicated to my parents ~ Fatna and Ali —, and my brothers and

sisters ~ Fatiha, Fatima, Halima, Mohammed, Amina and Ahmed — for their

unconditional support, encouragement, love and continuous confidence in me. They are a

source of energy and motivation in everything I do.

VI

Table of Content

ACKNOWLEDGEMENTS v

DEDICATION vi

Table of Content vii

List of Figures xii

List of Tables xv

Acronyms and Abbreviations xvi

CHAPTER I : Introduction 1

1.1 Motivations 1

1.2 Problem Statement and thesis objectives 4

1.3 Summary of contributions 5

1.4 Thesis organization 8

CHAPTER II: Background 9

III Network cooperation in 3G networks 9

II.l.l IMS Architecture 10

II. 1.2 Network cooperation at the control layer 11

II.1.3 Limitations of network cooperation in 3G 13

II. 2 Ambient Networks 15

11.2.1 Overall architecture 16

11.2.2 Media delivery 17

11.3 Network composition 19

11.3.1 Composition degrees and scenarios 20

11.3.2 Composition steps 24

vii

II. 4 Conclusions. 28

CHAPTER III: Review of the related work 30

111.1 Requirements 30

III.1.1 Requirements on overall architecture 30

III. 1.2 Information publication and discovery architecture 31

III.l.3 Negotiation architecture 32

III. 1.4 Signaling framework 33

111.2 Review of the related work 36

111.2.1 Information publication and discovery architecture 36

111.2.2 Negotiation architecture 48

111.2.3 Signaling framework 51

III. 3 Conclusions 56

CHAPTER IV : General architecture for registry composition 58

IV. 1 Architectural components and overall composition procedure 58

IV. 1.1 Architectural components 58

IV. 1.2 Overall procedure for registry composition 59

IV.2 Potential approaches to composition 60

IV.2.1 Potential approaches to the creation of post-composition registries 60

IV.2.2 Potential approaches to registry intercommunication 64

IV. 3 Illustrative scenarios 65

IV.3.1 First scenario 66

IV.3.2 Second scenario 67

IV.4 Conclusions 69

CHAPTER V : Information Publication and Discovery after Composition 71

VI Interface Interworking architecture 71

V.l.l Background on P2P overlay networks 72

V.1.2 Architectural principles and scenario 73

vin

V.1.3 Procedures 76

V.1.4 Overlay protocol and messages 82

V.2 Data Interworking architecture 85

V.2.1 Problem statement 86

V.2.2 A new architecture for data interworking 88

V.3 Conclusions 93

CHAPTER VI: Negotiation architecture 94

VI. 1 Negotiation architecture 94

VI. 1.1 Background on negotiation 95

VI. 1.2 General principles of our architecture 96

VI.1.3 Proposals'template 97

VI. 1.4 Main negotiation steps 99

VI.2 Negotiation protocol 102

VI.2.1 Negotiation messages 102

VI.2.2 State diagrams 106

VI.3 Support of nodes departure 109

VI.3.1 Voluntary departure 110

VI.3.2 Forced departure 113

VIA Conclusions 115

CHAPTER VII : Signaling framework 116

VIII Extensions toNSIS 116

VILLI General architecture 117

VII. 1.2 Messaging layer APIs 120

VII. 1.3 Routing information 122

VII. 2 An NSIS based Signaling Application for Registry Composition (SARC) 122

VII.2.1 APIs 123

VII.2.2 Message types and format 124

VII.2.3 End-to-end behavior 126

IX

VII. 3 Conclusions 127

CHAPTER VIII: Proof of concepts and evaluations 129

VIII. 1 General architecture 130

VIII. 1.1 Background on network programmability 130

VIII. 1.2 Protocol deployment on-the-fly 132

VIII. 1.3 Software architecture for protocol deployment on-the-fly 133

VIII.2 Prototype 134

VIII.2.1 What is implemented 134

VIII.2.2 How it is implemented 136

VIII. 3 Information publication and discovery after composition architecture 139

VIII.3.1 Architecture of the virtual registries 140

VIII.3.2 Application Programming Interfaces (APIs) 141

VIII.3.3 Prototype 142

VIII.4 Conclusions 147

CHAPTER IX : Formal validation, simulations and evaluations 149

IX. 1 Negotiation architecture 149

IX.1.1 The validation environment 149

IX.1.2 Validation models 150

IX.1.3 Correctness requirements 153

IX.1.4 Validation results and discussion 156

IX.2 Signaling framework. 159

IX.2.1 Simulation environment and set-up 159

IX.2.2 Simulation models and scenarios 163

IX.2.3 Measurements and analysis 166

IX.3 Conclusions 173

CHAPTER X : Conclusions and future work 175

X.l Summary of contributions 175

x

X.2 Future work 179

X.2.1 Registry composition related 180

X.2.2 Network composition related 181

References 182

XI

List of Figures

Figure II. 1: Simplified IMS architecture 10

Figure II.2: A roaming scenario in IMS networks , 12

Figure II.3: Simplified sequence diagram for connection establishment 13

Figure II.4: Ambient Network architecture 17

Figure II.5: SATO network architecture 19

Figure II.6: Network composition degrees 21

Figure II.7: A comprehensive composition scenario 23

Figure II.8: Network composition procedure 26

Figure II.9: GANS protocol stack 28

Figure III. 1: An example of X-ad hoc network 38

Figure III.2: An example of communication between two nodes 38

Figure III.3: Simple merging scheme for Chord 40

Figure III.4: A merging example for CAN-based DHTs 41

Figure III.5: A general bridging scheme 42

Figure III.6: Examples of a domain and data source models 45

Figure III.7: Concepts mapping example 47

Figure III.8: CA negotiation in Ambient Networks 50

Figure III.9: CASP signaling architecture 53

Figure III.10:NSIS protocol stack 54

Figure IV. 1: RCE architectural components 59

Figure IV.2: Registries' composition scenario 66

Figure IV.3: A composition scenario 68

Figure V. 1: General architecture 74

Figure V.2: Illustrative scenario 76

Figure V.3: Registry joining procedure 79

Figure V.4: Voluntary departure procedure 80

Figure V.5: Overlay application architecture 89

Figure V.6: Procedure for answering requests 91

xu

Figure V.7: Query and query plan example 92

Figure VI. 1: Example of a proposal template 98

Figure VI.2: Example of two composing networks 98

Figure VI.3: Negotiation steps 101

Figure VI.4: Sequence diagram for successful negotiation 105

Figure VI.5: Negotiation rejected by the mediator 105

Figure VI.6: Negotiation rejected by destination participants 106

Figure VI.7: Participant state diagram 108

Figure VI.8: Mediator state diagram 109

Figure VI.9: The initiator quits the negotiation 111

Figure VI.10: Mediators' overlay network 112

Figure VI. 11: Forced departure of the initiator during the initiation phase 113

Figure VII. 1. Framework architecture 118

Figure VII.2: Name resolution using DEEP 120

Figure VII.3: Signaling entities and topology 123

Figure VII.4: Sending a message to multiple destinations 127

Figure VIII. 1:DINA architecture 132

Figure VIII.2: Protocol deployment using DINA 134

Figure VIII.3: Implemented scenario for protocol deployment on-the-fly 136

Figure VIII.4: Sequence diagram for new protocol deployment 139

Figure VIII.5: Architecture of an overlay node 140

Figure VIII.6: Implemented scenario for registry overlay 142

Figure VIII.7: registry advertisement template 144

Figure VIII.8: Multicast groups created 146

Figure IX. 1: An example of temporal claims used 156

Figure IX.2: Simulation set-up and node architecture 161

Figure IX.3: Signaling Layer state diagram 161

Figure IX.4: Messaging Layer state diagram 162

Figure IX.5: Connection Manager state diagram 162

Figure IX. 6: A simulation scenario presenting the case where three networks

are trying to compose 163

xni

Figure IX.7: The simulation model for agreement execution 164

Figure IX.8: Registry state diagram 165

Figure IX.9: RCE state diagram 166

Figure IX.10: Number of messages for a successful negotiation 168

Figure IX.11: Total number of exchanged packets 169

Figure IX.12: Negotiation time delay 169

Figure IX.13: Message propagation time delay, for RON creation 171

Figure IX.14: RON creation time delay 171

Figure IX. 15: Total number of exchanged messages, for RON creation 172

Figure IX.16: Quit time delay 173

xiv

List of Tables

Table III-1: Requirements for registry composition in ANs 35

Table III-2: Summary of the review of the work related to the interface and data

interworking 48

Table III-3: Summary of the review of the negotiation related work 51

Table III-4: Summary of the review of signaling related work 55

Table IV-1: Analysis of the approaches to the creation of post-composition registries... 63

Table IV-2: Analysis of the intercommunication approaches 65

Table V-l: Messages between virtual registries 84

Table V-2: Messages between a virtual registry and a post-composition registry 85

Table VI-1: Negotiation messages and message codes 104

xv

Acronyms and Abbreviations

1G:

2G:

3G:

4G:

AN:

ACS:

ASI:

AS:

ANI:

ARI:

API:

CA:

C-FE:

CM-FE:

CA:

CAN:

CASP:

CIB:

CSCF:

C-mode:

D-mode:

DB:

DBMS:

DEEP:

DHT:

DNS:

EGIST:

FDBS:

FE:

First Generation Wireless System

Second Generation Wireless System

Third Generation Wireless System

Forth Generation Wireless System

Ambient Network

Ambient Control Space

Ambient Service Interface

Application Server

Ambient Network Interface

Ambient Resource Interface

Application Programming Interface

Composition Agreement

Composition Functional Entity

Context Management Functional Entity

Composition Agreement

Content-Addressable Network

Cross Application Signaling Protocol

Context Information Base

Call Session Control Function

Connection mode

Datagram mode

DataBase

DataBase Management System

Destination Endpoint Exploration Protocol

Distributed Hash Table

Domain Name System

Extended General Internet Signaling Transport

Federated DataBase Systems

Functional Entity

XVI

GANS: Generic Ambient Network Signaling

GIST: General Internet Signaling Transport

GQS: Global QoS Server

GM: Group Management

GPRS: General Packet Radio Service

GSLP: GANS Signaling Layer Protocol

GTLP: GANS Transport Layer Protocol

HSS: Home Subscriber Server database

HTTP: Hypertext Transfer Protocol

IETF: Internet Engineering Task Force

I-CSCF: Interrogating Call Session Control Function

I-Net: Infrastructure Network

IMS: IP Multimedia Subsystem

IP: Internet Protocol

IPDI: Information Publication and Discovery Interface

IDOQL: Java Data Object Query Language

ITU-T: International Telecommunication Union- Telecommunication

Standardization Sector

MAA: Multimedia-Auth-Answer

MAR: Multimedia-Auth-Request

MANET: Mobile Ad-hoc NETwork

MIB: Management Information Base

ML: Messaging Layer

MRA-FE: Multi-Radio Access Funtional Entity

MRM: Message Routing Method

NAD-FE: Network and Advertisement FE

N-EGIST: Negotiation Extended General Internet Signaling Transport

NSIS: Next Step in Signaling

NTLP: NSIS Transport Layer Protocol

NSLP: NSIS Signaling Layer Protocol

OSL: Overlay Support Layer

PAN: Personal Area Network

P-CSCF: Proxy Call Session Control Function

xvn

P2P:

PDP:

QoS:

QoS-FE:

RCE:

RR:

RON:

RSVP:

SARC:

SIP:

S-CSCF:
SATO:

SC:

SS:

SP:

SNMP:

SOAP:

SQL:

SMTP:

SPIN:

TCP:

TL:

TLS:

UAA:

UAR:

UDDI:

UDP:

URI:

UMTS:

UpNp:

VoIP:

VR:

WLAN:

Peer-to-Peer

Pervasive Discovery Protocol

Quality of Service

QoS Functional Entity

Registry Composition Entity

Resource Registry

Registry Overlay Network

Resource ReSerVation Protocol

Signaling Application for Registry Composition

Session Initiation Protocol

Serving Call Session Control Function
Service-aware Adaptive Transport Overlays

SATOClients

SATOServers

SATOPorts

Simple Network Management Protocol

Simple Object Access Protocol

Structured Query Language

Simple Mail Transfer Protocol

Simple PROMELA INterpreter

Transmission Control Protocol

Transport Layer

Transport Security Layer

User Authentication Answer

User Authentication Request

Universal, Description, Discovery and Integration

User Datagram Protocol

Universal Resource Identifier

Universal Mobile Telecommunications System

Universal plug and play

Voice over IP

Virtual Registry

Wireless Local Area Network

XVlll

X-adhoc: extended ad-hoc

XR: extended ad-hoc Registry

XML: Extensible Markup Language

xix

CHAPTER I: Introduction

This chapter starts by motivating the problem. After that, it states the problem and

presents the thesis objectives, and summarizes the contributions along with the related

publications. It ends with the thesis organization.

1.1 Motivations

Cooperation between networks is no novelty. It emerged with the first generation (1G) of

wireless systems, where cellular networks belonging to different operators cooperate to

give roaming end-users seamless access to basic services. 2G and 3G wireless systems

have further strengthened the concept. However, the cooperation in 1G/2G/3G wireless

systems has several drawbacks. It relies on off-line agreements and manual configuration

operations. It also enables access to a very limited set of services (i.e. those identified in

the agreement). The emergence of new networks (e.g. Mobile ad-hoc networks, wireless

sensor networks, personal area networks) and new end users' needs brings new

challenges and new requirements. End users are not only interested in accessing new

services. They would like to do this ubiquitously, transparently, over any access

technology, and over any type of network.

Ambient Networks (AN) is an emerging networking concept for beyond 3G fixed and

wireless networks, designed to meet these challenges [1]. It was developed in the context

1

of AN project, a multi-national collaborative project of the European Union's 1ST Sixth

Framework Program (FP6). The project brought together a strong consortium of leading

operators, equipment suppliers and research organizations including universities from the

European Union and also from different parts of the world. It covers the networking part

of the Wireless World Initiative (WWI), whose objective is to define future

communication systems that provide users with the best user experience while

minimizing the cost of purchase, use and ownership of the systems. Reference [2] gives

more details on WWI.

Network composition is one of the key features of Ambient Networks [3], envisioned to

allow a level of network cooperation which goes far beyond the static cooperation of

today. It provides a uniform, dynamic and scalable cooperation between heterogeneous

networks at the control layer, where a network can range from a single node to a full-

fledged operator network [4]. The cooperation process via network composition is

transparent to the end users, but takes user context and network context into account. It

allows seamless and instantaneous access to new services - a significant advance over

traditional networks that require extensive manual configuration. In its strongest form,

known as network integration, two networks can merge and form a single network.

Dynamic network cooperation at control layer is principally enabled through a new

common control plane -called Ambient Control Space (ACS)-- that can be deployed

over various existing and future types of networks. The ACS is the set of the functions

offered by the control layer and is organized in functional entities (e.g. QoS FE, Mobility

FE). Applications can access and use the ACS functionalities through a well defined

interface, called Ambient Service Interface (ASI).

2

Ambient Networks can host several registries. A registry is any authoritative store of

information or repository of data. Examples are Management Information Bases (MIB),

relational databases and Context Information Bases (CIB) [5]. When Ambient Networks

compose, the hosted registries need to compose. Registry composition is a sub-process of

network composition. It provides seamless, autonomous and uniform access to the

updated content of all of the registries in the composed network. There are several

motivations for registry composition. A first motivation is that the registries' content may

need to compose. Indeed, when Ambient Networks compose, the content of the hosted

registries may be kept as it is; modified or even merged. Content merging can happen for

instance when a new service is proposed by the composed network, by combining

elementary services provided by the composing networks. A second motivation is that

entities in the composed network may need access to a content hosted by a registry that

was in a different network before composition. The interface of such registry (e.g.

SNMP, SQL) may be different from the one used by the interested entity. The granularity

and the format of the registry content may also be different from those supported by the

interested entity. A third motivation is that new registries may need to be created in order

to store the composed content.

Registry composition supports both the ACS functional entities and the applications

running above the ACS. Indeed, each ACS functional entity may use a private registry to

store information that is related to its functioning and needs to access this information

after composition. The Context Management-FE (CM-FE) for instance collects, filters,

aggregates, and provision context information (i.e. user-related and network-related

information), and this information may be stored in a private registry. After ANs

3

compose, each FE may also need to access information stored by peer-FEs in other

networks.

Furthermore, applications running above the ACS may need to access registries that are

part of the real network over which the ACS is deployed. After network composition, the

applications may need to access some or all of the registries hosted by the composed

network, including those that were part of a different network before composition and

those that may be added due to the composition.

1.2 Problem Statement and thesis objectives

The registries to compose may be of different types (e.g. centralized, distributed), they

may store heterogeneous types of information (e.g. raw data vs. aggregated data) that is

presented using different formats (e.g. Object oriented database, relational database), and

they may rely on different interfaces to access the stored information (i.e. protocols such

as P2P information discovery protocols [6] or programming interfaces such as UDDI

APIs [7]). Two types of problems are therefore related to registry composition: Interface

interworking and data interworking. Interface interworking involves autonomously

enabling the intercommunication between registries with heterogeneous interfaces. Data

interworking involves autonomously overcoming data heterogeneity (e.g. format, type

and granularity). Data interworking and interface interworking in the context of registry

composition goes beyond static interworking using gateways, as done today. The main

difference is that in registry composition both interface interworking and data

interworking are done on the fly.

4

A third problem related to registry composition is negotiation. Indeed, before composing

the registries, the entities responsible for the composition in each network should

negotiate a composition agreement. Registry composition in Ambient Networks is an

autonomous process. Therefore, an on-line negotiation framework is needed. A signaling

framework is also needed, to allow the exchange of the negotiation messages between the

involved entities.

The objectives of this thesis are as follows:

• Identify how is the composition initiated and when, what are its main steps, and

which entity orchestrates it.

• Enable clients to publish and discover information after registry composition

• Provide an architecture for the negotiation of registry composition.

• Provide a signaling framework for the composition.

This implies the definition of new functional entities, principles, algorithms and

interfaces, and their implementation and evaluation.

1.3 Summary of contributions

This section summarizes the main contributions of the thesis and gives pointers to the

related papers we have published. Most of these contributions have been proposed to the

AN consortium and are now part of the AN concept, as defined by the European Union's

Sixth Framework Program.

• Critical review of related work: We have derived general requirements for the

composition architecture, and specific requirements that are related to information

5

publication and discovery, negotiation and signaling. We have also reviewed related

work in light of the requirements.

• General architecture for registry composition ([8], [9]): We have proposed a new

functional entity and a new procedure to orchestrate registry composition. The new

entity is called Registry Composition Entity (RCE). We have identified the sub-

functional entities that make up the RCE and the role of each one of them. We have

also identified and analyzed the potential approaches to registry composition and

interworking between heterogeneous registries. A proof-of-concept prototype was

implemented to show the feasibility of our proposal.

• Interface Interworking ([9], [10]): We have proposed a new architecture for

interface interworking, based on a peer-to-peer overlay network. We have chosen the

concept of peer-to-peer overlay networks because it enables scalability, full

decentralization and self-organizing. The overlay network is created and configured

on-the-fly, and its creation process is orchestrated by the RCE.

The architecture includes procedures for the on-the-fly creation and churn of the

overlay network, procedures for information publication and discovery after

composition, and an overlay protocol. A proof-of-concept prototype was

implemented.

• Data Interworking ([9], [11]): We proposed a new architecture for data

interworking, using as basis the interface interworking solution. The architecture

reuses mechanisms and algorithms from the federated database systems and proposes

new procedures to solve data composition and interworking autonomy. We have also

implemented a proof-of-concept prototype.

6

• Negotiation architecture ([9], [12], [13]): We proposed a new architecture for on

line negotiation. To the contrary of existing negotiation solutions, our architecture

allows a third party to create and validate the composition agreement-proposals. This

will enable the negotiation to proceed even if one of the negotiating parties does not

have the reasoning logic to create the proposals or does not have enough resources to

execute this logic.

The proposed architecture includes a template for the composition agreement

proposals, a negotiation protocol, and a discussion of the main steps of the

negotiation. The protocol definition includes the protocol entities and messages, and a

description of the negotiation-related state diagrams. Correctness requirements for the

negotiation protocol were derived and used to validate the protocol using SPIN, a

software tool for simulating and validating processes in a distributed system.

• Signaling Framework ([9], [14]): We proposed a new signaling framework for

registry composition in Ambient Networks. It is a backward compatible extension of

the IETF Next Step in Signaling (NSIS) framework. NSIS allows signaling about a

data flow along its path. We selected NSIS as the basis for our framework because it

is modular and easily extensible. Furthermore, it has already been successfully used

as the basis for signaling in different areas (e.g. QoS, signaling through mailboxes

such as firewalls).

The proposed signaling framework is used for both the negotiation and execution of

the composition agreement. It was simulated using OPNET ~ a software tool for

network modeling and simulation--, and measurements was taken regarding the

negotiation time delay and the network load in terms of number of exchanged

7

messages. The measurements show that the delays and the network load remain

acceptable.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 discusses network cooperation in

3G network and gives background information on Ambient Networks and network

composition. Chapter 3 presents the identified requirements, and reviews the related

work. Chapter 4 is devoted to the general architecture. It describes the new functional

entity (i.e. RCE), presents the overall composition procedure, and discusses the potential

approaches to registry composition and to interworking between heterogeneous registries.

Chapter 5 discusses information publication and discovery after composition. It starts by

presenting the architecture for interface interworking, and then describes the data

interworking architecture. Chapter 6 describes the proposed negotiation architecture, and

Chapter 7 describes the signaling framework. Chapter 8 presents the prototypes, along

with performance evaluation. Chapter 9 describes the formal validation process and

results of the negotiation protocol. It also presents the simulation models and results for

the signaling framework. Chapter 10 concludes the dissertation and discusses items for

future work.

8

CHAPTER II: Background

This chapter starts by introducing network cooperation in 3G networks and its

shortcomings in order to motivate the need for Ambient Network (AN) composition.

Next, it provides background information on ANs. Then, it presents network composition

in the context of ANs and discusses how it overcomes the limitations of 3G network

cooperation.

II. 1 Network cooperation in 3G networks

IP Multimedia Subsystem (IMS) is the key element of 3G networks [15] . It is an overlay

network on top of the packet-switched network, providing multimedia services to mobile

end-users. The IMS architecture is organized in two layers: service layer and control

layer. This section discusses network cooperation at the control layer of IMS and

pinpoints its shortcomings. We have selected IMS because it is the quintessence of what

can be done in today's networks when it comes to network cooperation. We start by a

brief introduction of the IMS architecture, before discussing network cooperation at the

control layer and its shortcomings. This cooperation is also known as interworking in the

literature.

9

II.l.l IMS Architecture

IMS uses the Session Initiation Protocol (SIP) [16] to provide multimedia services to the

end users. Figure II. 1 presents the IMS architecture. The service layer includes a set of

IMS application servers (AS) that host and execute value-added IMS services (e.g. IP

multimedia conference, divert incoming calls to an email address). The control layer

comprises the core IMS control nodes responsible for call or session management (e.g.

set-up, modification, teardown, charging).

One of the core elements of the control layer is the Call Session Control Function (CSCF)

that is a set of SIP servers or proxies, used to process SIP signaling packets in the IMS.

The CSCF servers are of three types: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-

CSCF) and Serving-SCSF (S-CSCF). P-CSCF is the first point of contact » in the

signaling plane — between the IMS terminal and the IMS network. Its main functionality

IMS-AS IMS-AS

Service/Application
Lil.MT

CSCF
Control Layer

\ Databases (HSS, SLF)

IP Connectivity
Layer

\
C Access Network (e.i>. GPRS, }

S . _ - *~ *•"
WLAN. DSUu

/
.....J"

IP Access
Layer

Figure II. 1: Simplified IMS architecture

10

is to authenticate the user and to generate charging information.

The I-CSCF is a SIP proxy located at the edge of an administrative domain and it is

usually located in the home network. The S-CSCF is the central node of the signaling

plane. It is a SIP server that can act as a SIP registrar. The S-CSCF performs the session

control and is always located in the home network. Another element in the control layer

is the Home Subscriber Server database (HSS) that stores the user profile, which includes

all the user-related data required to handle multimedia sessions (e.g. user's location,

telephone records, security information, services to which the user is subscribed). The

user can connect to an IMS network through the IP connectivity layer, using various

access technologies (e.g. GPRS, WLAN).

II.1.2 Network cooperation at the control layer

Cooperation at the control layer between two IMS networks is principally meant to

provide roaming, which enables end users to use their mobile terminals in networks other

than their home networks. Figure II.2 presents an example of a roaming scenario. Bob is

roaming to a network outside his home network, and he wants to contact Alice, a user in

his home network. The sequence of messages exchanged to set up a connection between

the two users is presented in Figure II. 3. For the sake of clarity, we assume that the two

users are served by the same S-CSCF.

The connection establishment procedure has two phases: registration and session set-up.

In the registration phase, the IMS terminal requests the authorization to use the IMS

service by registering with the IMS network. This is done by sending a SIP REGISTER

request to the P-CSCF, which forwards the request to the I-CSCF in the home network.

The I-CSCF then contacts the HSS to verify if a roaming agreement exists between the

11

visited network and the home network and if an S-CSCF is already assigned to the user.

It sends a User Authentication Request (UAR) to the HSS (step 3), which answers with a

User Authentication Answer (UAA) message (step 4). If this is not the first time the user

registers, the UAA includes the address of the S-CSCF allocated to him. If this is the first

registration, the UAA includes a set of S-CSCF capabilities that the I-CSCF can use to

choose an appropriate S-CSCF for the user. The I-CSCF then forwards the REGISTER

message to the S-CSCF that proceeds with the user authentication. The S-CSCF sends a

Multimedia-Auth-Request (MAR) message to the HSS to save its address for future

usage, and downloads the user profile for authentication purposes (step 6). The HSS

responds with a Multimedia-Auth-Answer (MAA) (step7). The OK message (step 8) is

sent back to the user to indicate the success of the REGISTER request.

Bob Visited Network
HomeWetwork

Figure II.2: A roaming scenario in IMS networks

When Bob decides to communicate with Alice (i.e. session set-up phase), his terminal

issues an INVITE request that it sends to the P-CSCF (step 11). The P-CSCF forwards

the request to the S-CSCF which he had gotten the address for during the registration

phase (i.e. in the OK message). The S-CSCF routes the INVITE request to Alice's

terminal, thought the P-CSCF serving Alice. Alice's terminal answers with an OK

response to inform the caller that it accepted the session. The response traverses the same

proxies the INVITE message traversed. The caller confirms the receipt of the OK

12

response via an Ack message. The session set-up Phase ends with the establishment of a

communication session with the destination terminal.

Bob's IMS
Terminal

f

Visited Network Home Network

P-CSCF

(1) REGISTER

Registration Phase

(10) OK

(11) INVITE

I-CSCF

(2) REGISTER

(9) OK

H2)INVrT

Session set-up Phase

(18) OK

H91 ACK
(20) ACK

HSS

(3)UAR

(4HJAA

(5) REGISTER

< (8) OK

(17) OK

^Vl^flpy/y

S-CSCF

(6) MAR

(7)MAA

P-CSCF

(13)INVrTEj

(21) ACK

Alice's IMS
Terminal

(14) INVITE

^ (15) OK

(22) ACK

Figure II.3: Simplified sequence diagram for connection establishment

II.1.3 Limitations of network cooperation in 3G

We divide the shortcomings of today's network cooperation at the control layer into two

categories: general shortcomings and shortcomings related to specific tools/frameworks

used for the cooperation. For the general shortcomings, the cooperation is based on an

off-line negotiated roaming agreement between the user and his or her operator and

between the latter and the operator of the visited network. In the registration phase of the

13

previous scenario, for instance, an off-line agreement between the visited network and the

home network and an off-line agreement between Bob and his operator are required. The

HSS is manually configured to reflect these agreements. If there is no off-line roaming

agreement between Bob and his operator, Bob will be refused access to the IMS network

provided by this operator. If there is no off-line agreement between the two operators,

Bob will be refused roaming via this particular visited network, even if he has a roaming

agreement with his operator.

The need for off-line agreements allows access to only a limited range of services and

makes cooperation time consuming and sometimes impossible. Indeed, this cooperation

can only work with pre-arranged and fixed services between a pre-known set of

operators, which have been clearly identified in the manually created agreements.

Another general related shortcoming is the lack of session mobility support. Today's

network cooperation at the control layer provides support for user mobility, terminal

mobility and limited support for service mobility. User mobility is the possibility to have

access to one's services independently of the terminal used. Terminal mobility refers to

the possibility of having access to ones services when moving in the network. Service

mobility is the possibility to have access to one's services when roaming in a different

network. In today's networks, the range of services that are "mobile" is pre-determined

by the roaming agreement and is usually limited to the basic service (e.g. two-party voice

call). Session mobility refers to the user's ability to continue an ongoing session while

switching between terminals or changing their attachment point while moving.

The shortcomings related to the tools used are basically SIP related. Indeed, IMS uses

SIP as its session control protocol. SIP is a signaling protocol that allows only limited

14

functionalities. It only allows signaling for session set-up, modification and tear down. It

cannot, for instance, be used to negotiate an on-the-fly roaming agreement, nor can it be

used to dynamically update the HSS to add access to a new service in a user profile. To

overcome the off-line-agreement limitation in the previous scenario, there should be a

mechanism and related protocols that will allow Bob to establish his call, even if there is

no prior roaming agreement between the two operators or between Bob and his operator.

When HSS in the home network discovers that there is no agreement with the visited

network, it should be possible for the two operators to dynamically negotiate one (e.g.

using previous agreements or previously-established agreement template). When the S-

CSCF receives Bob's REGISTER request, it could interpret it as a request for the

roaming service (if required), and initiate a negotiation with Bob, triggering a dynamic

modification of Bob's profile within the HSS, in order to reflect the new status. Ideally,

all of these actions should be transparent to the end user or require minimal user

intervention.

Ambient network composition aims at overcoming these different shortcomings. It

provides a means for on-line agreement creation and execution, and provides an

enhanced support for mobility.

II.2 Ambient Networks

ANs include several functional entities [1] [17]. This section presents the overall

architecture and the detailed description of media delivery, one of the functional entities

(FEs). We have selected media delivery because we will use it later in describing a

network composition scenario.

15

II.2.1 Overall architecture

The overall AN architecture (Figure II.4) includes three main components: the ambient

connectivity, the Ambient Control Space (ACS) and the ambient interfaces. Ambient

connectivity abstracts the existing network infrastructures to which the AN functionality

is added. The ACS encompasses the control layer functional entities, such as Quality of

Service FE (QoS-FE), Network Advertisement and Discovery FE (NAD-FE), Context

Management FE (CM-FE), Composition FE (C-FE), and Multi-Radio Access FE (MRA-

FE). QoS FE allows dynamic control of QoS to be technologically independent. NAD-FE

provides an advertisement mechanism to enable an AN and its FEs to be advertised to

other ANs and enables the FEs of a given network to discover other ANs and their FEs.

CM-FE manages context (i.e. user-related or network-related information) within and

across AN borders. It enables the collection, processing and dissemination of the context

information to the interested entities. C-FE is one of the key functions of the ACS [4],

and is responsible for orchestrating the network composition procedure. MRA-FE is

another important FE of AN architecture [18]. It allows transparent and flexible

advertisement, discovery and selection of appropriate access networks to serve each

particular session, while hiding the heterogeneity of the accesses' technologies. MRA-FE

also provides service continuity when the user moves between accesses and simultaneous

communication over multiple accesses. Media delivery is discussed in the next sub

section.

The ambient interfaces are divided into three types: Ambient Service Interface (ASI),

Ambient Network Interface (ANI) and Ambient Resource Interface (ARI). The ASI

enables applications in the service/application layer to exploit the ACS capabilities. The

16

ANI allows communication between different ANs. The ARI provides the ACS with the

necessary control mechanisms to manage the connectivity layer resources (e.g. routers,

switches, proxies, media gateways). The AN architectural layers: Service/Application,

Ambient Control and Ambient Connectivity, correspond to the Service/Application

Layer, Control Layer and IP Connectivity Layer, respectively, of the IMS architecture.

Anihiviit
I.

Scr\k-iv.Application Layer
1 / \ml>fcin

ZA in 11-it JUT

Amlm-nt C oiinecti\ilv l.a\cr

jient
NetWork

Into rface

Figure II.4: Ambient Network architecture

II.2.2 Media delivery

Service-aware Adaptive Transport Overlays (SATO) is a concept developed in ANs that

is responsible for the provisioning of advanced and customized media delivery services

across heterogeneous networks [19]. It dynamically adapts the content to deliver,

according to the user's preferences, network context, the desired end device and the

services(s) to support. It can also be used to provide new network value-added services

like virus scan, pro-active caching and P2P services such as Voice over IP (VoIP). In

sharp contrast to today's content delivery networks and overlay systems that are limited

17

to a specific service (e.g. Skype for voice and instant messaging but not for IPTV), SATO

supports all types of services.

Figure II. 5 presents the SATO architecture. It is composed of end-devices that are either

clients - called SATOClients (SC), or servers - called SATOServers (SS), and a set of

intermediate nodes. The intermediate nodes host the so-called SATOPorts (SP) that are

the components responsible for data processing (e.g. media transcoding). When a media

transport service is needed, an analysis of the required SPs is performed, and a service

chain is created to represent the order in which they have to be executed. Next, the actual

nodes running the different SPs are chosen based on the service requirements (e.g. QoS,

security level). The SATO routing algorithm is then executed to select the best path for

end-to-end service delivery, based on the QoS requirement, and the OSL (Overlay

Support Layer) routing table is configured accordingly. The OSL is responsible for

forwarding the received data to the correct SP that corresponds to the correct SATO.

18

« # # % » i

Mectia Applications •' Services

ASI

ACS
Context

Information
»^«J Over.ay r^^

| Management FE K«. s<

. - - __*»* Mobility

Security

ARI

»

NodJj?'—" "2 0 U t e !

Node

Figure II.5: SATO network architecture

II.3 Network composition

ANI

•Mrtyiag
Heimark
tmmtum

ANs support different degrees of composition, to accommodate a wide range of situations

[3] [20]. The composition degrees represent the level of cooperation between the

composing networks and describe how resources are managed and used after

composition. This section presents the network composition degrees, followed by a

discussion of the composition steps. We provide a comprehensive survey of network

composition in reference [21].

19

II.3.1 Composition degrees and scenarios

Three degrees of AN composition are possible: network interworking, control sharing

and network integration (Figure II.6). They represent the level of cooperation between the

composing networks and describe how resources are managed after composition.

Network interworking is the most common degree of network composition in real life,

where each network keeps control over its resources. Composition allows the

coordination of the tasks performed in each of the composing networks. One example is

dynamic roaming between two operators that have agreed that users are automatically

authenticated in their home network, as opposed to the static roaming of today's

networks.

Indeed, unlike roaming as it is today, if no agreement exists between the user and the

visited network or between the latter and the home network, the agreement is created on-

the-fly as part of the composition process. Another example is to use network

interworking to provide dynamic and automatic access to a new service (e.g. Internet

access). This is the case of a scenario presented in reference [22]. In this scenario, John's

Personal Area Network (PAN-J) enables access to the Internet only via the UMTS

interface provided by John's mobile phone. Anne's PAN (PAN-A) provides Internet

access via an Ethernet link. This access is more reliable and cheaper than the UMTS

access. By composing the two networks, John will have seamless access to this service.

Indeed, when approaching PAN-A, PAN-J will automatically detect that accessing the

Internet via Anne's Ethernet link is more suitable, and then it will automatically switch

from UMTS to WLAN access. The network handles all the issues related to connecting

John to the Internet via the Ethernet link transparently and automatically.

20

With control sharing, composing networks remain separate but share some of their

resources. They may exercise joint control over the shared resources, but they maintain

control over their individual resources. If common control of certain resources is

required, a new AN is created to maintain these resources (Figure II.6.c). One example is

when several PANs build a dynamic ad-hoc network for a conference, where they share

some files and the same internet access. If the control of only certain resources is

delegated to a particular AN, the composition is called control delegation and is a special

case of control sharing (Figure II.6.d). A moving network dynamically delegating

authentication to an access network is a typical example.

a: Network interworking b: Network integration

c: Control sharing

Figure II.6: Network composition degrees

In network integration, all of the participating networks merge into a new common

composed network (Figure II.6.b). The composed network consists of all of the logical

and physical resources of the composing networks. An example is a step-by-step creation

21

and expansion of a mobile infrastructure network, where groups of equipment are

configured and tested as separate networks, then integrated into the infrastructure

network. After integration, the individual networks are no longer observable from

outside. For more information on AN composition types, the reader can consult reference

[23]. Figure II. 7 presents a comprehensive network interworking composition scenario

[24]. In this scenario, it is 08 AM, Bob is at his home, and he is willing to attend a phone

conference with some colleagues at 08h30 AM. Bob owns a Personal Area Network

(PAN) that consists of a laptop and a mobile phone. To access the conferencing server,

Bob's PAN needs to be connected to Internet.

When Bob's PAN is bootstrapped, it detects the home network and decides to compose

with it. The composition is triggered by the need for Internet access. Next, Bob asks to

log on to the conference server. This triggers the creation of a SATO overlay network

between Bob's laptop and the conferencing server, for end-to-end service delivery. Since

the conference has not yet started, Bob decides to watch the news while waiting.

Therefore, another SATO network is set up with an IPTV Server (Figure II.7.a). At

08h30, the news session is automatically brought to the background and the conference

session is resumed. After some time, Bob has to leave for an appointment at his office.

He turns his laptop off, which triggers the hand over of the two running sessions to the

mobile phone.

While on the way to his office, the signal connecting him to his home network gets

weaker (Figure II.7.b). At the same time, using access discovery, his PAN is aware of the

access networks in his vicinity. When the original signal gets too weak, the most suitable

access network is selected by the MRA-FE, the PAN composes with the new access

22

network and the ongoing session is adapted to the new context information (e.g.

according to the link conditions of the new access network, a new transcoding SATO

Port is added to adapt the multimedia streams to the new bit-rate and special resolution).

/ , ./-Broadband
/̂ 5&I»*i!5§: access

« • • * * " • * • « »

IP TV »»»
•

- - • —Server *«
~-"y*r *

'•fe> *.

a. John's PAN composes with his home
network and he starts listening to the news.

V Conferencing
*•» Server

.•***"" IPTV**» #

-»»*- Server \

**^ Conferencin <
*•,. g Server ^**

Bob s PA> "i """""

b. John's PAN composes with the access network and
continues the conferencing session.

Figure II.7: A comprehensive composition scenario

23

II.3.2 Composition steps

The composition process encompasses a certain number of distinct phases. To realize

these different phases, the composing networks need to exchange different types of

messages ~ in the different phases of the composition ~ in order to coordinate and

regulate the composition. Therefore, a generic signaling framework is required. In this

section, we start by presenting the composition phases and then we describe the signaling

framework.

A. Composition phases

The composition process comprises five phases: media sense, discovery/advertisement,

security and interworking establishment, composition agreement negotiation and

composition agreement execution (Figure II.8). In the first phase, an AN discovers a

medium that can allow communication with a neighboring network. This includes the

identification of a link to a remote network not in the physical vicinity of the interested

composing network. Media sensing may be triggered by different events, such when a

PAN needs to compose with an access network to provide Internet access to its owner, or

the case where two operator-managed networks are connected for the first time. Another

example is where an operator connects a new access point to its network. The

composition can also be triggered by a user application (e.g. a user requires composition

with a remote network in order to achieve a certain QoS needed by the application at

hand).

After a communication medium has been established, a composing network may either

pass to an advertisement or a discovery phase. In the first case, the network advertises its

resources, capabilities, services and possibly the related pricing information to the other

24

network(s). The advertisement message includes the network identifier, which is used to

bind each advertisement to a particular network. In the discovery phase, the network

listens to the other networks' advertisements or actively discovers its neighbors by

sending a discovery request.

After the candidate ANs for composition have been selected thanks to the

discovery/advertisement phase, a basic security and interworking connectivity is

established between these networks. This may include authentication and authorization of

the different ANs by a trusted third party, and the generation and sharing of a

cryptographic session key. The composing networks then negotiate the composition

agreement, where they agree - among other items ~ on the identifier of the composed

network, on how the resources of the composing and composed networks are accessed

and managed, and decide on the compensation information. The composition agreement

is digitally signed by each network in order to guarantee non-repudiation. The

composition process is then completed by the composition agreement execution phase,

where the network elements are configured to reflect the content of the negotiated

agreement,

25

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Media Sense

Discovery / Advertisement

Security and Internetworking
t Establishment - -m

Composition Agreement
Negotiation

Composition Agreement
Execution

Figure II.8. Network composition procedure

B. Signaling framework

A signaling framework for AN should meet two main requirements: support of symbolic

names and support of session mobility. Indeed, to address other peer networks or

functional entities, an AN may use symbolic names (e.g. CompositionFE@Netl.com)

instead of IP addresses. Furthermore, an AN is a very dynamic environment, where

entities may leave and join the network at any time, using the same or a different IP

address and port number.

Generic Ambient Network Signaling (GANS) [25] is a generic signaling framework,

conceived to support these requirements. It is a backwards-compatible generalization of

the IETF Next Step in Signaling (NSIS) [26], a suite of protocols for signaling about a

data flow along its path (reference [27] gives tutorial-level information on NSIS). It

extends NSIS by allowing control signaling between FEs rather than exclusively along

the data path and by supporting symbolic names and session mobility. And, as in NSIS,

GANS architecture is composed of two layers: a generic lower layer named GTLP

26

mailto:CompositionFE@Netl.com

(GANS Transport Layer Protocol) and a signaling application upper layer called GSLP

(GANS Signaling Layer Protocol) (Figure II.9). GTLP provides common transport layer

services to higher layer signaling applications, such as locating signaling peers (i.e. a peer

FE in another AN), establishing signaling relation and security association between pairs

of signaling FEs and maintaining signaling relations if, for example, a peer FE is

relocated or reconfigured. The GSLP includes the actual signaling applications (e.g.

negotiation of networks' composition).

GTLP comprises two main building blocks: Destination Endpoint Exploration Protocol

(DEEP) and Extended General Internet Signaling Transport (EGIST). DEEP is a generic

name resolution protocol for heterogeneous environments. It resolves symbolic names

into host ID/locator (e.g. IP address), relying on existing name resolution systems such as

DNS, multicast DNS [28] and Link Local Multicast Name Resolution [29]. A mechanism

is provided to allow dynamic update and storage of the IP address-symbolic name

binding. EGIST provides the actual transport framework for the signaling applications

messages. It uses existing transport and security protocols (e.g. UDP, TCP, TLS), to

provide the transport and security services needed. It has two modes of operation:

Datagram mode (D-mode) and Connection mode (C-mode). The transport protocols used

by each mode are UDP and TCP, respectively.

When EGIST receives a signaling message, if the destination counterpart is identified by

its symbolic name, the latter is passed to DEEP that returns the corresponding address.

Then, EGIST creates a message association with the destination end points, encapsulates

the received signaling message and sends it to the destination.

27

GANS Signaling
Layer

GANS Signaling
Application 1

NSIS Signaling
Application

GANS Signaling
Application 2

GANS
Transport

Layer
(GTL)

DEEP
encapsulation

Destination endpoint
exploring

UDP

I f —
Extended-

1r~ii

GIST encapsulation (c- 1 GIST state
mode & d-mode f maintenance

Extended GIST: Message layer

GIST routing state •
extension

1 _

Transport Layer Security (TLS)

TCP
1

SCTP DCCP

A. 1
Other

' protocols

IP Layer Security

IP and lower layers

II.4 Conclusions

Figure II.9: GANS protocol stack

IMS-IMS control layer cooperation is limited to roaming. This is a static cooperation,

based on off-line negotiation of the roaming agreement and off-line setup of the required

configurations. Furthermore, it offers a limited support for mobility (i.e. session mobility

not supported), and provides access to a limited set of services (i.e. those identified in the

roaming agreement).

Network composition in the context of ANs enables dynamic cooperation among

heterogeneous ANs. It requires no (or minimal) user intervention or off-line

configuration. It is an instantaneous process, unlike today's time consuming roaming,

which demands off-line roaming agreement and time to manually implement that

28

agreement. The composition process is basically the same, independent of the technology

used by the networks to compose, and independent of the type (e.g. PAN, operator

network) or the size of these networks. It may be applied recursively, where a composed

network may compose again. An AN can also participate in more than one composition

process and may be part of different composed networks concurrently, except for

network integration. Network composition also provides an enhanced support for the

mobility related to today's networks, by supporting, for instance, session mobility and

media flow mobility. Network composition is carried out via the ANI, over the Generic

Ambient Network Signaling framework (GANS). GANS is a set of protocols that enables

signaling among ANs (e.g. to negotiate the composition agreement, to carry out the inter-

authentication).

29

CHAPTER III: Review of the related work

In this thesis, we propose an overall architecture for registry composition in ANs. This

overall architecture is made up of three components: an architecture for information

publication and discovery after composition, a negotiation architecture and a signaling

framework. This chapter presents requirements for the overall architecture and for each

of the architectural component. It also critically reviews the related work in light of these

requirements.

III.l Requirements

III. 1.1 Requirements on overall architecture

The heterogeneity of the ANs and the hosted registries put stringent requirements on the

overall architecture. The first requirement is that it should be independent of the type of

composing networks and registries, and independent of the degree of network

composition. This will make the architecture support all types of ANs, registries and AN

composition degrees (i.e. interworking, control sharing and integration), with a unified

composition process.

Furthermore, the architecture should enable a fully autonomous composition. Indeed,

network composition is an automated process, which should run without user

intervention. Therefore, as a sub-process of network composition, registry composition

30

should be autonomous. In addition, since composed networks may need to decompose,

the architecture should be designed in a way to support the decomposition of the

composed registries.

Moreover, given that many ANs can compose at the same time and each network can

host more than one registry (e.g. a MIB, a CIB and a UDDI registry), the architecture

should scale in terms of the number of composing networks and in terms of the number

of registries hosted by each network. Additionally, to take advantage of previews works,

the architecture should allow the re-use of existing solutions, if any (e.g. allow the use of

existing protocols and mechanisms for information publication and discovery).

III.1.2 Information publication and discovery architecture

The first requirement on the architecture for information publication and discovery after

composition is that it should deal with both interface interworking and data interworking.

To support interface interworking, the architecture should enable clients to access the

post-composition registries that are using different interfaces than the ones used by

clients. Post-composition registries are the registries that belong to the composed

network. The initial registries hosted by the composing networks are called pre-

composition registries. To support data interworking, the architecture should allow clients

to get information with the level of granularity and the format they need, from any of the

post-composition registries. The second requirement is that the interface interworking

and data interworking should be done on-the-fly. This means that the interworking

solution should be provided only when needed and according to the current situation,

which exclude the use of any static solution such as static gateways.

31

The most common registries are either centralized or peer-to-peer (P2P). Therefore, the

third requirement is that the information publication and discovery architecture should be

suitable for both centralized and peer-to-peer registries. This means that it should be

distributed and should allow dynamic self-organization.

The fourth requirement is that the architecture should be transparent to the clients. It

should also not violate the publishing and discovery policies of the composed registries.

Moreover, the architecture should insure the discovery of existing information in a timely

and efficient manner, with at least the same probability of discovery as the existing

popular P2P discovery protocols.

III. 1.3 Negotiation architecture

The negotiation of the registry composition is conducted by the RCEs of the composing

networks. Therefore, the overall architecture requirement on scalability implies that the

negotiation architecture should scale in the number of negotiating parties (each

composing network has an RCE). The second requirement is that an agreement should

always be reached. This implies among other things that the execution of the negotiation

protocol should terminate (e.g. it is loop-free).

Moreover, the negotiation architecture should allow a third party to arbitrate the

negotiation and create the Composition Agreement proposals (CA-proposals). This will

enable the negotiation to proceed even if none of the negotiating RCEs has the reasoning

logic to create the proposals or does not have enough resources to execute this logic. And

to take account of the nodes heterogeneity in an AN, the negotiation architecture should

allow the third party to be either co-located with an RCE or be an independent entity (e.g.

in case the RCE does not have enough resources to support the needed functionalities).

32

And since entities may leave and join at any time in ANs, the architecture should also not

rely on a permanently centralized entity.

III.1.4 Signaling framework

The signaling framework should support the negotiation and execution of the

composition agreement, for registry composition. Second, it should support symbolic

names and session mobility, not rely on a permanently centralized entity and be

lightweight. Indeed, in ANs, entities may leave and join the network at any time -using

the same or a different IP address and port number- and they may use symbolic names to

address destination entities. Furthermore, an AN can include different types of devices,

with heterogeneous capabilities. Therefore, the signaling framework should be

lightweight in order to be used by any of theses devices (e.g. including devices with

limited resources).

Third, the signaling framework should be independent of the negotiation model: it

should support negotiation with or without mediator, support different decision models

for the negotiation (e.g. Accept-it-or-leave-it, offer/counteroffer [30])) and support

different negotiation approaches. Negotiation can be either one-to-one (i.e. between two

entities) or one-to-many (i.e. one entity communicating with more than one entity at the

same time) or many-to-many. Therefore, to be independent of the negotiation model, the

framework should also allow point-to-point and point-to-multipoint message delivery.

Point-to-point message delivery is used for one-to-one negotiation. Point-to-multipoint is

used for one-to-many and many-to-many negotiation. The main existing negotiation

approaches are parallel negotiation and sequential negotiation [31] . These approaches are

defined when the negotiating parties are negotiating multiple issues. They correspond to

33

negotiating parties presenting all their demands/offers at once and one by one

respectively.

Fourth, the signaling framework should allow exchange of the negotiation agreements

and proposals. Fifth, it should be modular and extensible. Sixth it should separate the

semantic of the signaling application (i.e. registry composition) from the message

delivery, so that it can be easily extensible. Seventh, it should support flow-dependent

signaling applications ~ where the signaling messages follow the flow data path, such as

in RSVP ~ and flow-independent signaling applications (e.g. SIP).

Table III-l summarizes all of the requirements for registry composition in ANs

Overall architecture

Rl

R2

R3

R4

R5

Independent of the types of composing ANs and registries and of the degree of

composition

Enable autonomous composition

Support autonomous registry decomposition

Scalability in terms of the number of composing networks and the number of

registries hosted by each network.

Allow the usage of existing protocols, mechanisms and frameworks, if any.

Information publication and discovery architecture

R6

R7

R8

R9

RIO

Deals with both interface interworking and data interworking

Interface and data interworking should be done on-the-fiy

Suitable for both centralized and peer-to-peer registries.

Imply no changes on the clients.

The publishing and discovery policies of the composed registries should not be

34

violated

Rl l Insure the discovery of existing information in a timely and efficient manner

Negotiation architecture

R12 Scalability in terms of the number of negotiating parties (sub-requirement of

R4)

R13 An agreement should always be reached.

R14 Allow a third party to arbitrate the negotiation and create the CA-proposals

R15 Allow the third party to be either co-located with an RCE or be independent.

R16 Do not rely on a permanently centralized entity

Signaling framework

R17 Support CA negotiation and execution

R18 Support symbolic names and session mobility, not rely on a permanently

centralized entity and be lightweight.

R19 Independent of the negotiation model

R20 Allow exchange of the negotiation agreements and proposals

R21 Modular and extensible

R22 Separate the semantic of the signaling application from the message delivery

R23 Support flow-dependent and flow-independent signaling applications

Table III-l: Requirements for registry composition in ANs

35

III.2 Review of the related work

There is no existing overall architecture related to the overall architecture for registry

composition. However there are existing architectural components related to the three

registry composition architectural components (i.e. information publication and

discovery, negotiation and signaling). Therefore, we discuss and analyse the work related

to each component separately. The next sub-section is dedicated to information

publication and discovery, followed by sub-sections on negotiation and signaling.

III.2.1 Information publication and discovery architecture

In this section, we review a middleware architecture for inter ad-hoc network

communication, network interworking approaches, Distributed Hash Tables (DHT)

composition & decomposition, and distributed and federated databases. A DHT is a

distributed system that efficiently maps "keys" onto "values", and efficiently routes

queries about information to the unique owner of the key related to that information [6] .

The mapping of information to numeric keys is done using a hash function.

A. A middleware architecture for inter ad-hoc networks communication

Reference [32] describes an approach for the creation and composition of registries on-

the-fly to facilitate interface interworking. It focuses on the connectivity between two

nodes that belong to distinct and heterogeneous ad-hoc networks. It is based on a

resource awareness service that enables dynamic resource discovery. It also defines a

new network model, called the Xtended ad-hoc model (X-adhoc), for interface

interworking between two nodes.

36

X-adhoc consists of the collection of the distinct ad-hoc networks that are involved. The

networks may use different discovery mechanisms (e.g. Jini [33], Chord [34], UpnP

[35]), and different underlying communication infrastructures (e.g. IP). It is assumed that

each network has a gateway to access the other networks. The X-adhoc model creates an

overlay network made up of the different gateways (Figure III.l).

After the X-adhoc is created, a Resource Registry (RR) is added to each network, and an

X-adhoc Registry (XR) is added to the X-adhoc network. Each node in each involved

network will publish a description of the resources it is willing to share with others in its

own RR (e.g. resource id, type, technical aspects). It also publishes the policies that

regulate the sharing and usage for each shared resource. The RR includes also the

preferences of the resource owner. The XR maintains a record for each gateway. This

record includes the gateway id, the gateway policies and the set of nodes seen by the

gateway in its own network.

When a node wants to communicate with another node, it starts by querying the RR of its

network to locate the destination node. If the node is in another network, the source node

will start by locating a gateway in its own network. Then, this gateway will communicate

with the XR to locate a gateway in the destination network. After that, the two nodes will

communicate through the gateways of their respective networks (Figure III.2).

37

Figure III.l: An example of X-ad hoc network
Figure III.2: An example of communication

Between two nodes

This approach does not address the composition of registries that already exist in the

involved ad hoc networks. It actually creates new registries and somehow composes them

in order to enable nodes in one network to access resources in another network. This

approach only supports the interworking degree of composition, and is therefore not

independent of the degree of network composition. Furthermore, it does not deal with

both interface interworking and data interworking, because it only provides interface

interworking. In addition, in order to achieve connectivity between different nodes, the

involved networks must host the appropriate gateways that need to be created and

configured offline. Therefore, with this approach, interface and data interworking are not

done on-the-fly.

B. Network interworking approaches

The approaches for network interworking as known today tackle the interface

interworking issue. Network interworking is provided via protocol interworking. There

38

are three approaches [36] to protocol interworking: protocol conversion [37], protocol

overlapping [38] and protocol complementation [39]. In protocol conversion, a user-

transparent converter is used between two heterogeneous networks. This converter

receives messages from one protocol, interprets them and delivers appropriate messages

to the other protocol. Protocol overlapping modifies one of the protocols to make it

absorb the other. The first protocol will act as a base to support the functioning of the

second. Protocol complementation builds a virtual layer on top of the original protocols

to provide a uniform view to the users.

The three approaches require the usage of gateways between the networks to

interconnect. These gateways implement the converter, the absorbing protocol or the

uniform protocol of the virtual layer. The gateways are created and configured offline.

Therefore, with the three approaches, interface and data interworking are not done on-

the-fly. They also do not deal with both interface interworking and data interworking,

because they only handle interface interworking. Furthermore, they are not independent

of the degree of network composition, because they only support network interworking

degree of composition.

C. Distributed hash tables composition

DHT composition solutions also tackle the interface interworking issue. We split the

DHT related work into two categories: DHT merging and DHT bridging. In DHT

merging, all of the nodes of the DHTs to compose are merged in a unique and uniform

DHT. In DHT bridging, gateways are used to enable automatic communication between

the different DHT systems. The trivial way to merge two DHT structures is to move the

nodes of the smaller structure to the other structure, one by one. This implies

39

redistributing the data of the discarded structure and re-establishing the neighbourhood

connections, which generates a huge amount of network traffic. Reference [40] proposes

an optimization of the merging scheme for DHTs based on the Chord protocol: when

joining the larger DHT, each node maintains its ID, the key-value pairs it manages and its

finger-table entries (Figure III.3). The finger-table is a list of references to some long

distance nodes in the DHT structure, used to optimize the search process (i.e. the search

request can be sent to the next node and to all of the nodes in the finger table

simultaneously).

Figure III.3: Simple merging scheme for Chord

Reference [41] presents another optimization scheme, for merging heterogeneous CAN-

based DHTs when their hosting wireless networks dynamically compose. The merging

negotiation is conducted through the points of contact (i.e. the nodes with physical

connections with other DHT-structures) of the DHTs to compose (Figure III.4.a). The

40

points of contact of the absorbing DHT (i.e. xl and x4) give up some of their key spaces

to those of the absorbed DHT (i.e. y2 and y3). The given up key spaces are selected from

within the owned key spaces, which minimizes the disturbance of the neighboring nodes

(Figure IIIAc). Indeed, only the points of contact of the absorbing DHT would have to

update their key spaces. The points of contact of the absorbed DHT will be responsible

for distributing their obtained key space to the other members of their original DHT that

wants to join the absorbing DHT (Figure IIIAd).

1

XI
1
1

1
1

X3 X5!

/ ^
/ O

X2

X4

\3 o

1)111

o/-/~
o / /
(a) DHTs to merge

XI

Y2 X2

! X4
X3 |X5 : Y 3

I L J

-

\2 -o N 1 /

° /
1)1112 /

XI
"""I rl

X3 X5

f

X2

X4
Y3

(b) Before merging (c) After merging with Y2 (d) After merging with Yl

Figure III.4: A merging example for CAN-based DHTs

Examples of DHT bridging are presented in references [41] and [42]. In reference [41],

the points of contact in the composing DHTs play the role of gateways between the two

DHTs. Each node in a given DHT structure should maintain at least the address of one

gateway in its network. If searched data is not found in the client's DHT, the request is

forwarded to the other DHT structure through any of the existing gateways. This solution

41

was designed for CAN- based DHTs. Reference [42] proposes a general bridging scheme

for homogeneous, heterogeneous and assorted DHTs (Figure III.5). Homogeneous DHTs

use the same DHT implementation and key-size (e.g. both DHTs are 160-bit Chord-

based). Heterogeneous DHTs use the same implementation, but different key-size (e.g. a

160-bit Chord-DHT and a 256-bit Chord-DHT). Assorted DHTs use different

implementations and/or key-size (e.g. a 160-bit Chord-DHT and a 256-bit CAN-DHT).

The solution defines two types of gateways: nodes that are member of more than one

DHT (e.g. node B in Figure III.5) and nodes that are physically connected to a node that

is a member of a different DHT (node Z). To forward a request from DHT-2 to DHT-1, B

performs the messages mapping between the two structures. Z should forward requests

from DHT-2 to DHT-3. However, Z does not support DHT-3 implementation. Therefore,

it sends a request to M, which will express the request in a format understandable by the

DHT-3. Nevertheless, reference [42] does not provide much information on how the

requests (and the answers) are reformulated before being passed to the disparate DHT.

tarn PHT2/ iGtwa'd,,19 a m

P

m •
Figure III.5: A general bridging scheme

None of the two solutions —presented in [41] and [42]-- deal with both interface

interworking and data interworking. Indeed, they only handle interface interworking.

42

Furthermore, none of them allow interface interworking to be done on-the-fly. Indeed,

both solutions have the following limitations: in the case of merging, the nodes of the

absorbed DHT must support the protocol of the absorbing DHT. With bridging, the

gateways must support the protocols of both composing DHTs prior to composition.

Furthermore, none of the two solutions is independent of the type of composing

registries, because they both support only one type of registry: DHT-based registries.

D. Distributed and federated databases

Distributed and federated database systems tackle the data interworking issue. Distributed

databases allow applications to operate on distributed data as if it was all managed by a

single database management system (DBMS) running on a single machine, where

distributed means that the data is spread across a variety of different databases, stored in

multiple computers located in the same or diverse physical locations [43]. Distributed

database content can also be distributed into separate partitions/fragments in the same or

disparate machines. A federated system is a distributed system, usually heterogeneous,

where the constituent databases are autonomous. Heterogeneity in Federated DataBase

Systems (FDBS) arises due to several factors, such as the differences in data structures,

semantics and the supported query languages.

FDBS systems provide some means for interface interworking. They are viewed by the

clients as a single unit [44], and the location and the database platforms used for the

implementation are transparent to the clients. Using their local database systems, clients

can access information on other databases that make up the system. However, since the

FDBS are created and configured off-line, the required request-translation mechanisms

43

and gateways are defined and implemented off-line. Therefore, the FDBS presents the

same limitations as the previous solutions, regarding interface interworking (i.e. access to

the information is not fully automated). Furthermore, the composition process is not

autonomous.

Data composition in the context of database systems is closely related to the data

interworking problem. Much work has been done in this area since the emergence of

distributed databases and FDBS [43][45][46][47]. To compose data from different

sources, the FDBS field provides mechanisms for describing (or modeling) the content

and structure of available data sources and for creating the related domain models. A

domain model describes the domain about which information is stored in the data

sources. Data source models can be created from the external schema of the sources (e.g.

the database schema). The FDBS field also provides mechanisms for describing query

capabilities of available data sources and mechanisms for describing the clients' queries

and efficient algorithms for creating query planes, using the source descriptions. A query

plan is the set of sub-queries and relevant data sources (and their execution sequence) that

are required to answer a client request. The FDBS field also provides the algorithms

needed to combine the results of the different sub-queries to get the final result.

Figure III.6 presents a fragment of a domain model representing military transportation

planning domain (a) and a data source model embedded in the domain model (b) [48].

The modeled domain involves the movement of personnel and materiel from one location

to another using various transportation means (e.g. aircraft, trucks). In the two models,

the circles denote concepts and the arrows indicate relations between concepts. For

example, the Port concept has two sub-concepts (i.e. Sea-Port and Air-Port) and an

44

attribute named geocode. Shaded concepts (e.g. AFSC-Air-Port) represent those that can

be retrieved directly from some database.

When a user query is received, the solution starts by identifying which data sources

contain the data relevant to the concepts (e.g. Sea-Port) referenced in the received query

(e.g. AFSC-Sea-Port). For those concepts which appear to have no matching data

sources (e.g. Rail-Port), the solution determines if any knowledge encoded in the domain

model (e.g. relationships to other concepts) permits reformulation in a way that will

enable suitable data sources to be identified. A request to retrieve the names of existing

rail-ports (i.e. select name from Rail-Port) for instance can be transformed to a request for

the names of Sea-Ports with a railway capability (i.e. select name from Sea-Port where

rail='Y'). Then, this can be reformulated to requesting the names of existing AFSC-Sea-

Ports, that can be directly retrieved from a database.

GEO
Geoloc

(a).

prt*pth L Port I

AFSC /
S63 / x
Port PACF f Ra i i \

Sea \ Port
Fcrt

prt.Raw

, **' prtpwoife

/ j t — - T Sea
|9rt,tip> W Port

I Port j

f * | | jwtrs

port.tfrlg

ptttrs

AFSC

iftejMitjiin« y " 0 "

Jg rvtl j t ' oiis»s.S1s8SI»ig

7 Rai i

/ ; v Port /

cfanfs.rioatng

S3MBB2tKm

(b).

Figure III.6: Examples of a domain and data source models

45

After the data sources are identified, the solution creates the query plan that when

executed will provide the requested information. To request -for instance- the names of

all ports with rail facilities in Germany, three sub-queries are needed: One to each of the

two databases that contain the related information (i.e. one containing information about

ports and the other containing information about geographic locations) and one to

combine the intermediate results obtained by the first two sub-queries.

To simplify the modeling tasks and the addition of new data sources, the domain model

and the models of different data sources should be independent of each other. Therefore,

to execute the query plan, the domain-level concepts (used in the sub-queries) should be

transformed into concepts that can be retrieved directly from databases. Reference [49]

provides a simple transformation mechanism: The domain model includes a mapping

table that, for each concept in the data model, the table includes the corresponding

concept in each data source. An example of a such table is presented in Figure III. 7. The

different columns present the domain model concepts and the concepts used by two

different databases (i.e. C2 and S2) respectively.

The FDBS proposed solutions deal only with data interworking. They deal with the

resolution of the different problems related to data heterogeneity (e.g. differences in data

semantic, syntax, and granularity). However, they do not allow data interworking to be

done on-the-fly, because federated database systems are created and configured offline in

these works. Furthermore, they are not suitable for peer-to-peer registries, because they

all assume a static environment.

46

UAttribute
Customer ID
Customer Name
Customer Phone
Order ID
Order Date
Order Quantity
Order Status
Part ID
Part Hardness
Part Length
Part Price
Part Quantity

C2

Order. orderlD
Order, date
Order.quantity
Order, status
Parts.part#
Parts.hardness
Part, length
Order.price
Parts.quantity

S2
Buyer.buyerNo
Buyer.name
Buyer.phone
Order.orderNo
Order, date
Order.quantity
Order, status
Prod.prodNo
Prod.hardness

Order.price
Stock.quantity

Figure III.7: Concepts mapping example

Table III-2 gives a summary of the review of the work related to information publication

and discovery. If the necessary gateways are available, the X-adhoc and DHT

composition approaches provide an automated registry composition for the network

interworking degree of network composition (and for network integration in case of DHT

merging). For network interworking approaches, the interworking process should be

applied for each two heterogeneous interfaces. Therefore, the approaches do not satisfy

the scalability requirement. The same is applied to the FDBS solutions, which provide a

partial automation of the process allowing access to existing information. Indeed, the

FDBS systems are created off-line, but when they are running, clients can have an

automatic access to the information stored in any of the system constituents.

47

Requirement

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rll

X-ad hoc

NO

YES

YES

YES

YES

NO

YES

NO

YES

YES

YES

DHT

composition

NO

YES

YES

YES

YES

NO

YES

YES

YES

YES

YES

FDBS

NO

NO

NO

NO

YES

NO

NO

NO

YES

YES

YES

Network
interworking
approaches

NO

NO

YES

NO

YES

NO

NO

NO

YES

YES

YES

Table III-2: Summary of the review of the work related to the interface and data

interworking.

III.2.2 Negotiation architecture

We split the negotiation related work into three categories: the negotiation architectures

that rely on a permanently centralized entity, architectures that do not support the use of a

third party, and architectures that do support a third party and do not rely on a

permanently centralized entity. An example of the first category is presented in reference

[50]. It is a framework for the negotiation of QoS, in wired and wireless networks, based

48

on the central entity "Global QoS Server (GQS)" that is responsible for providing Service

Level Agreements to mobile terminals.

A second example is presented in reference [4]. It presents two approaches for

negotiating ANs composition: Centralized and distributed. In the centralized approach

(Figure III.8.b), only the C-FEs of the composing networks negotiate with the peer

entities. Each C-FE negotiates both its CA-related parameters and the parameters

provided by its sub-ordinate X-FEs (i.e. the X-FEs in its network). X-FE refers to any FE

in the network Ambient Control Space (ACS). When the negotiation process is triggered,

each X-FE communicates its local information related to CA negotiation (e.g.

recommended boundary conditions, preferences, capabilities) to the C-FE. The C-FE

conducts the entire negotiation process using the received information. It controls the

correlation and assessment of the recommendations received from the different X-FEs in

its ACS, as well as the correlation and assessment of the proposals/counter-proposals

received from the peer C-FE(s).

In the distributed approach (Figure III.8.a), both the C-FE as well as each X-FE negotiate

with its respective peer FEs. Each C-FE orchestrates the negotiation of its sub-ordinate

X-FEs. When triggered, the initiating C-FE signals its peer C-FEs. Then, each C-FE will

signal its sub-ordinate X-FEs to start the negotiation with their respective peers. When all

X-FEs (including peer C-FEs) have finished their negotiation, they signal their

completion back to their local C-FE. Each C-FE will then compile the various results of

its sub-ordinate X-FEs negotiations into a global and validated CA document.

49

llsnaaentni-'.

FE . J

(a): Distributed CA negotiation (b): Centralized CA negotiation

Figure III.8: CA negotiation in Ambient Networks

It is clear that the first category of solutions do not satisfy the requirement on reliance on

a permanently centralized entity. The second category does not allow a third party to

arbitrate the negotiation and create the CA-proposals.

The C-FE in the centralized approach (Figure III.8.a) plays the role of a mediator

towards the X-FEs of its ACS, where it conducts the negotiation process on behalf of

them. However, each C-FE is required to implement all the logic related to the

negotiation, which fail to meet our requirement on allowing the third party to be either

co-located with an RCE or be independent. In the distributed approach, each peer X-FEs

negotiate directly and no mediator is supported. Therefore, the distributed approach does

not allow a third party to arbitrate the negotiation and create the CA-proposals.

In the third category, to the best of our knowledge, there is no solution that allows a third

party to create proposals. Furthermore, the solutions in this category are either designed

50

to resolve a specific problem or they are general enough to be used in different

circumstances. In the first case, these solutions do not address the particularities of

registry composition and their related problems. In the second case, the solutions are too

cumbersome, which can affect their scalability. Furthermore, we still have to specify the

negotiation mechanisms and parameters concerning the registry composition. Reference

[51] is a good example of a general solution.

Table III-3 gives a summary of the review of the negotiation related work. All the

requirements related to composition (i.e. Rl, R2 and R3) are not relevant for the existing

solutions, because none of them deal with registry composition specificities.

Requirement

Rl, R2, R3

R12

R13

R14

R15

R16

Category 1

-

NO

YES

NO

-

NO

Category 2

-

Could be if not
centralized
YES

NO

-

Could be

Category 3

-

NO (they are too
cumbersome)
YES

NO

-

YES

Table III-3: Summary of the review of the negotiation related work.

III.2.3 Signaling framework

We split the signaling related work into two categories: signalization for specific

applications (e.g. QoS, call control) and general signaling frameworks that can be used by

various applications. The first category includes Resource ReSerVation Protocol (RSVP),

51

Session Initiation Protocol (SIP) and H.323. We review these three protocols. RSVP is a

resource reservation protocol, for simplex (i.e. in only one direction.) multicast and

unicast data flows. In RSVP [52], the signaling sessions are defined by the IP addresses

of the source and the destination, which prevents RSVP from supporting session

mobility. Furthermore, RSVP does not support symbolic names and the signaling is flow

dependent. It also presents a tight coupling between the signaling semantic (i.e. resources

reservation) and the delivery of the signaling messages.

SIP and H.323 are designated to call control. SIP is an IETF standard and H.323 a set of

specifications from ITU-T. SIP [16] is a point-to-point protocol. It does not separate the

semantic of the signaling application from the message delivery. It is not designed for

negotiation and it does not support session mobility. Indeed, if the destination address

changes during the same session, there is no way to deal with this change and an error

message 'destination unreachable' is sent to the entity trying to contact the entity whose

address has been changed. H.323 also does not separate between transport and signaling

functionalities, and it does support neither session mobility nor symbolic names.

Examples of the second category are Cross Application Signaling Protocol (CASP), NSIS

and GANS. CASP is a general-purpose signaling protocol suite [53][54], which is

employed to establish a control state about data flow along its path in the network. Figure

III. 9 presents CASP architecture. It consists of a generic messaging layer and a client

layer. The messaging layer transports the signaling messages between the signaling peers,

where as the client layer consists of a next-hop discovery client and any number of

signaling client protocols (e.g. QoS client for QoS resource reservation). CASP addresses

the session mobility problem by introducing the concept of a location-independent

52

session identifier. It also reuses the existing transport and security protocols and

decouples message transport from the next signaling hop discovery.

NAT Client H

QoS Client
Next-hop

Discovery Client

Signaling Message Transport

1
Transport Protocol (e.g. TCP, SCTP, UDP)

Client
Layer

Messaging
Layer

Figure III.9: CASP signaling architecture

The INSIS framework re-uses many CASP concepts. It is modular and flexible and it

supports different applications. Furthermore, it enables signaling across different network

environments. It can be used in different parts of the Internet (e.g. at the edge, in the core)

and it supports mobility by allowing efficient service re-establishment after handover

[55]. Its modular architecture enables lightweight implementations and framework

extensibility. This feature allows it to work over different kinds of networks for various

types of applications. Examples of NSIS-based signaling protocols are the extended

RSVP QoS signaling protocol [56] and the middlebox configuration protocol [57].

The framework architecture is composed of two layers (Figure III. 10): the NSIS

Transport Layer (NTLP) that provides the application independent signaling

functionalities (e.g. message transport), and the NSIS Signaling Layer (NSLP) that

53

consists of a set of signaling applications providing application specific functionalities

(e.g. resource reservation).

General Internet Signaling Transport (GIST) provides a concrete solution for the NTLP

[58]. Its architecture is composed of a common messaging layer, running over a set of

existing transport and security protocols (e.g. UDP, TCP, TLS). It has two modes of

operation: Datagram mode (D-mode) and Connection mode (C-mode). The transport

protocols used by each mode are UDP and TCP, respectively.

NSIS Signaling
Layer

Signaling
Application 1

Signaling
AppHeation 2

Signaling
Application 3

NSIS Transport
Layer

G I S T - M e S S a g i n g L a y e r (General Internet Signaling Transport)

Transport Layer Security (TLS)

UDP TCP SCTP DCCP
Other

protocols

IP Layer Security

IP and lower layers

Figure 111.10: NSIS protocol stack

GANS is a backward compatible generalization of NSIS. Its main extensions are the

support of symbolic names, session mobility, and flow independent signaling applications

[59]. Signaling applications can address destinations using symbolic names, which are

translated by GANS' transport layer into corresponding IP addresses. A mechanism is

provided to allow dynamic update of the IP-Symbolic name binding.

CASP and NSIS do not support both flow-dependent and flow-independent signaling

applications, because they only define flow dependent signaling. They do not support

54

symbolic names, and along with GANS, they support only one-to-one communication.

Therefore, none of CASP, NSIS and GANS is independent of the negotiation model.

Table III-4 gives a summary of the review of signaling related work. All the requirements

related to composition (i.e. Rl, R2, R3, R4, R17 and R20) are not relevant for the

specialized solutions, because their main objective is not to exchange the negotiation

agreements and proposals. The general frameworks meet the majority of our

requirements, but they do not provide any signaling application that can be used for

registry composition (i.e. none of the designed signaling applications deal with the

registry composition specificities).

Requirements

Rl, R2, R3,

R4

R5

R17

R18

R19

R20

R21

R22

R23

Signalization for specific applications

RSVP

NO

-

NO

NO

-

NO

NO

NO

SIP

YES

-

NO

NO

-

YES

NO

YES

H.323

NO

-

NO

NO

-

NO

NO

NO

General frameworks

CASP

YES

YES

YES

NO

NO

YES

YES

YES

NO

NSIS

YES

YES

YES

NO

NO

YES

YES

YES

NO

GANS

YES

YES

YES

YES

NO

YES

YES

YES

YES

Table III-4: Summary of the review of signaling related work

55

III.3 Conclusions

There is no existing overall architecture related to the overall architecture for registry

composition. However there are existing architectural components that are related to the

three components of the registry composition architecture (i.e. information publication

and discovery, negotiation and signaling).

No existing solution meets all of our requirements for information publication and

discovery after composition. DHT composition and decomposition solutions meet most

of our requirement, but they are limited to a specific type of registries (i.e. DHT based

registries) and they rely on gateways that should be created and configured offline. No

solution exists for autonomous interface interworking. Only database systems deal with

data interworking. Data composition in the context of FDBS resolves most of the

problems related to data interworking, but FDBS are created offline. Therefore, we

propose a new architecture for interface interworking and reuse the FDBS mechanisms

and algorithms to propose a new data interworking architecture. The data interworking

architecture provides a new procedure for solving autonomy.

For negotiation, the negotiation architectures that support a third party and do not rely on

a permanently centralized entity are more appropriate for registry composition. However,

the existing architectures do not meet any of the requirements related to registry

composition. They are either designed to resolve a specific problem or general enough to

be used in different circumstances. The specific architectures do not tackle the registry

composition problem. The general solutions can be extended to address registry

composition specificities, but they are too cumbersome. Furthermore, no existing

architecture allows a third party to create and validate agreements. Therefore, we need to

56

design a framework that is specific to registry composition, allows a third party to create

and validate agreements, and do not rely on a permanently centralized entity.

For signaling, NSIS provides a promising signaling framework for registry composition.

It is modular, easily extensible and has already been successfully used as the basis for

signaling in different areas (e.g. QoS, signaling through mailboxes such as firewalls).

GANS extends the NSIS messaging layer by resolving three more issues related to

registry composition: use of symbolic names and support of session mobility and flow

independent signaling applications. Thus, we use NSIS as basis for the design of our

signaling framework, we reuse the GANS extensions, and we add support for group

management (to allow point-to-multipoint message delivery) and a new signaling

application to deal with the registry composition specificities.

57

CHAPTER IV: General architecture for registry
composition

To orchestrate the registry composition process, we propose a new functional entity

called the Registry Composition Entity (RCE). RCE is a sub-functional entity of the

network composition-FE (C-FE), the functional entity that orchestrates network

composition. This chapter starts by presenting RCE architectural components and the

overall composition procedure. After that, it discusses the potential approaches to registry

composition and to intercommunication between heterogeneous registries. This is

followed by two illustrative scenarios. The conclusion is presented after that.

IV. 1 Architectural components and overall composition procedure

This section starts by presenting the architectural components of the RCE and the role of

each one of them. After that, it discusses the overall composition procedure.

IV. 1.1 Architectural components

RCE is made up of three components (Figure IV. 1): Composition Agreement negotiator

(CA-negotiator), composition manager and co-ordination component. The CA-negotiator

creates the composition agreement, after negotiating with the RCEs of each of the

composing networks. An example of issues to negotiate is which protocol to use to

enable intercommunication between heterogeneous registries. The interworking protocol

agreed on may be supported by none of the composing registries. In a such case, the

58

negotiating RCEs should also negotiate where and how to get the protocol (e.g. from a

protocol server or to be created on-the-fly) and where it can be installed (e.g. based on

resource availability and security policies). Examples of parameters used for CA

negotiation are the protocol stack used -by each composing registry- for publication and

discovery, the type of the discovery approach used (e.g. centralized, peer-to-peer) and the

information publication and discovery interface (IPDI) used.

The composition manager is responsible for executing the composition agreement. This

includes the configuration of the relevant network nodes and the execution of the

necessary tasks, in order to reflect the composition agreement. An example is to install

the negotiated intercommunication protocol, on the nodes agreed on. The co-ordination

module enables intercommunication between different RCEs.

Registry Composition Ei

6
CA

negotiator

' /

i t ' ly

Co-ordination
Module

7 ^

Composition
agreement

S
* \

Composition
manager

Figure IV. 1: RCE architectural components

IV. 1.2 Overall procedure for registry composition

Registry composition is executed as part of the network composition procedure, and is

done during the last two phases of network composition (i.e. composition agreement

negotiation and composition agreement execution). The registry-related procedures for

the negotiation and the execution of the composition agreement are executed as sub-

59

procedures of the network-related procedures that have the same name. Indeed,

negotiation of network composition can be seen as a set of sub-procedures for

composition negotiation between peer functional entities in the composing networks (e.g.

the peer QoS FEs negotiate the QoS related parameters) and a global procedure executed

by the C-FE, which monitors and orchestrates these different sub-procedures and creates

the global agreement. Each FE can also be responsible for executing its related part of the

global composition agreement.

Composition of the registries is initiated by the C-FEs of the composing networks.

Indeed, when the network composition reaches the stage where the registries must

compose (i.e. network composition negotiation phase), each C-FE informs the RCE of its

own network. Then, the different RCEs communicate to negotiate the composition

agreement.

IV.2 Potential approaches to composition

This sub-section identifies and analyses potential approaches to the creation of the post-

composition registries, and to intercommunication between heterogeneous post-

composition registries (i.e. registries that are using heterogeneous information publication

and discovery interfaces). It starts by reviewing potential approaches related to the

creation of post-composition registries. Then, it discusses the post-composition

intercommunication approaches.

IV.2.1 Potential approaches to the creation of post-composition registries

As we have seen in the background chapter, in network interworking (i.e. the first degree

of network composition), the original networks keep control over their individual

60

resources (including registries) after composition. In control sharing, a new network is

created and some of the resources of the original networks become part of the shared

space. In network integration, all of the original resources belong and are controlled by

the new network.

Three approaches are therefore possible for the creation of the post-composition

registries: keeping each of the pre-composition registries, creating a new registry to store

the shared resources and keeping the original pre-composition registries for resources that

are under the control of the individual composing networks, and using a single new

registry for the composed network.

In the first approach, existing pre-composition registries are kept as they are and updated

by deleting the resources that are no more available after composition. The new resources

that may be created after composition are added to any of the pre-composition registries.

The pre-composition registries become therefore the post-composition registries, in this

case.

In the second approach, pre-composition registries are also kept as they are, and a new

registry is created to store the shared resources. Newly created resources are either added

to the shared registry (if it is a shared resource) or to any of the pre-composition registries

(if not). In the third approach, a new registry is created or one of the existing ones is

selected, and the whole content of the pre-composition registries is copied to this registry.

It is clear that the first approach is the best choice for network interworking, because the

composing networks remain separate and keep separate control over their registries. In

case of network integration, the registry of the composed network can be seen as the

collection of all of the individual registries that belong to that network. Therefore, the

61

first approach can also support network integration by configuring the pre-composition

registries to appear to the clients as a single registry. This means that when a client sends

a discovery request to one of the pre-composition registries, the requested information

should be searched for in all of the pre-composition registries. To support control sharing,

the shared resources can be designated using policies (e.g. if Netl resources are shared

with Net2 users, new policies are added -to Netl registry for instance- to reflect that).

The second approach can support network interworking and network integration in a

similar way as the first approach. In case of control sharing, a new registry needs to be

created on-the-fly and the shared resources should be copied from the pre-composition

registries to the newly created one. Furthermore the components of the created network

should be configured to access the new registry.

The third approach can be efficient if the network composition is permanent and the

content of the composing registries is similar and relatively small. If the content is large

or heterogeneous, the processing overhead (e.g. to copy the whole content) ~ in term of

time delay, network overhead and resources used— can be too significant, and probably

inacceptable. However, even in case of permanent composition, the approach remains too

cumbersome for network interworking and control sharing, and generally not needed.

Indeed, in the two cases, each composing network still benefit from some autonomy and

independence from the other networks. Therefore, some resources still need to be

separated (e.g. resources that are under the control of each network).

Table IV-1 presents a summary of the analysis of the three approaches, according to the

degree of network composition and according to their support for registry decomposition.

The first approach seems to be the best choice for temporary composition. However, it

62

can compete with the third approach in case of permanent composition. Indeed, in

permanent composition, the third approach can be costly —in term of processing

overhead--, but it is efficient in responding to requests (all the content is in the same

place). The first approach is easy to implement and it provides a good solution for load

balancing among the post-composition registries, but it can be less efficient than the third

approach when it comes to answering queries.

In this thesis, we use the first approach, because it supports all three degrees of network

composition and supports network decomposition. Furthermore, it is the best solution for

network interworking that is the most common degree of network composition in real

life.

Approach
1

Approach
2

Approach
3

Network
interworking

Supported
easily

Supported
easily

Too
cumbersome

Control
sharing

Supported
easily

Anew
registry
should be
created on-
the-fty

Too
cumbersome

Network
integration

Supported easily

Supported easily

Supported with a
certain overhead
(all the content
should be copied
to a single
registry)

Registry
decomposition

Supported easily

Supported easily,
except in case of
decomposition
after control
sharing
composition.

Too costly: the
composed
content should
be distributed
again.

Comments

Seems to be the
best choice.

Can be efficient
in case of
permanent
network
integration

Table IV-1: Analysis of the approaches to the creation of post-composition

registries.

63

IV.2.2 Potential approaches to registry intercommunication

Considering that after composition, the composed network may host several registries;

these registries must communicate in order to respond to clients' requests.

Intercommunication between heterogeneous registries can be provided using two

approaches. The first is to create gateway(s) between the concerned registries on-the-fly.

The other option is to deploy a common protocol on-the-fly to these registries. This can

be either a standard protocol specified off-line, or one of the protocols supported by the

registries, chosen during the negotiation. The usage of a standard protocol will limit the

number of protocols to deploy, and hence provide more scalability.

The first approach requires the ability to create the necessary interworking protocols on-

the-fly, or their existence in the network before composition. The second approach

requires reconfiguring the registries to use the old protocol to maintain communication

with the clients that use that protocol (clients must not be changed), and use the newly

installed protocol to communicate with the other registries.

The two approaches require on-the-fly deployment of protocols (e.g. deploy the common

protocol to registries or interworking protocols to gateways).

Table IV-2 presents a summary of the analysis of the two approaches, according to the

number of protocols to deal with, the simplicity, the network storage and processing

overhead, and the time needed for the solution to take place. A significant difference

between the two approaches is that the gateway approach is less scalable, because a

different interworking protocol is needed for each two different protocols. On the other

hand, the protocol deployment requires more configurations (to use the two protocols and

to translate from one protocol to another). An interesting approach can be an approach

64

that somehow combines the two approaches. An example is to use a standard protocol for

intercommunication between registries, a common configuration procedure, and varies

the translation solution depending on the protocol used by each registry (to translate

between the standard protocol and the protocol used by the registry).

In this thesis, we use this last combined approach. This will lower the number of

protocols to deal with and the network storage, and facilitate the nodes configuration.

Protocol
deployment

Gateway

Number of
protocols to deal
with

1: the same
protocol is
deployed each time
(i.e. the standard
protocol)

Many: for each
two different
protocols, we have
a different
interworking
protocol)

Network
storage and
processing
overhead
Only one
protocol should
be stored

Different
protocols should
be stored or
created on-the-
fly

Time needed

- Time to deploy
the protocol and
configure the node

- Time to deploy
the protocol and
configure the node

+
- Create the
interworking
protocol (if it does
not exist)

Simplicity

The node should
be configured to
support the two
protocols, and
mapping
procedures
between the two
protocols should
be added
Mapping
between
protocols is
already part of
the interworking
protocol

Table IV-2: Analysis of the intercommunication approaches

IV.3 Illustrative scenarios

This section presents two scenarios, illustrating both the approaches to the creation of the

post-composition registries and the approaches to intercommunication between

heterogeneous registries. In these two scenarios, the pre-composition registries are kept

65

as they are. The first scenario uses the protocol deployment approach for registry

interworking. The second one uses the gateway approach.

IV.3.1 First scenario

John is a very busy businessman, who decides to take a vacation. He is visiting Paris for

the first time on a guided tour in a bus. He also wants to keep up-to-date on the status of

his business. So, he is often connected to the Internet using his laptop. Today, he received

an important document that he has to review as soon as possible. To do this, he needs to

get the document printed. Unfortunately, the moving network available in the bus does

not provide such a service. However, his preferences and requirements for printing

quality and format are added to his profile and stored in the moving network. During one

of the bus stops, a wireless static network with a printer that provides a service that fulfils

John's printing requirements (Figure IV.2) is available.

Figure IV.2: Registries' composition scenario

The two networks use distributed registries for storing information about the services

provided and they use different discovery protocols; let us say PI and P2. The registries'

composition is activated by the C-FEs when the networks' composition is automatically

initiated, once the two networks get close enough. Using the interchanged network

66

characteristics and some predefined policies, the RCEs of the two networks realize that in

order to enable the inter-network service discovery, P2 must be deployed in the Net-1

registry.

Furthermore, this deployment is deemed to be possible through some verification carried

out by the RCEs. Next, the composition agreement is executed and the Net-1 registry

prepares to communicate with the registry of Net-2.

According to their policies, the discovery and use of Net-2 services by Net-1 does not

violate the discovery policies of Net-2 (nor those of Net-1). So, Net-1 automatically

discovers the printing service, creates a connection between John's laptop and the printer

using the WLAN interface, the document is formatted using John's preferences and

added to the printer spool. John is informed that his document will be ready in 2 minutes

and that he can pick it up before his bus leaves. He is also provided with detailed

instructions so that he will find the printer.

IV.3.2 Second scenario

In this scenario, a static network (Net-1) hosts a conferencing application that creates a

conference between a given numbers of users, who are in their respective offices (Figure

IV.3). Each user's location is calculated and stored in a relational database - R1-- using

the format "The user Ul is in room Rl". Alice and Bob are visiting Net-1, where they

have temporary offices. When they move, their coordinates (x,y) are stored in registries

R2 and R3 of their respective Personal Area Networks. R2 is an object-oriented database,

and R3 is a distributed registry that uses the Pervasive Discovery Protocol (PDP [60]) for

information publication and discovery. Each of the three networks uses a different

technology for user localization.

67

Alice's"FAN{Net-3~)

Figure IV.3: A composition scenario

We assume that John is already in his office and that Bob and Alice are still on their way.

When they arrive at their offices, the conferencing application should create a conference

between the three users. However, this will not happen because the application is

unaware of Bob and Alice's location. This is because the interface (i.e. SQL) and the data

granularity supported by the conference application are different from that provided by

Net-2 and Net-3. Furthermore, the localization technologies used are different, which

prevents Net-1 from directly getting Bob and Alice's location. Therefore, to enable the

application to get the needed information, the three registries have to compose.

After the RCEs of the composing networks negotiate a composition agreement, they

agree that the composing registries should be kept as they are and that gateways should

be created in order to enable registries' intercommunication. They also agree that the

protocol to be used by the gateways is PDP. We assume that Rl and R2 also support

68

PDP. Therefore, each RCE configures the registry of its network as a gateway between

the local clients (i.e. the clients inside the network) and the other two registries.

After the gateways are configured, when the conferencing application issues a request to

get the current locations of John, Bob and Alice, the request will get to Rl. Rl will

respond about John's location, and asks the other two registries about Bob and Alice's

locations. It can for instance start by asking R2. R2 will give Bob's location. Since the

location of Alice is not yet resolved, Rl asks R3.

IV.4 Conclusions

In this chapter, we have proposed a general architecture for registry composition. We

have proposed a new functional entity (i.e. RCE) and a new procedure to orchestrate the

composition. The RCE is made up of: CA-negotiator that negotiates with the other RCEs

and creates the composition agreement, the composition manager that executes the

composition agreement and the co-ordination component that enables

intercommunication between different RCEs. Registry composition is initiated by the C-

FEs of the composing networks, and is executed as part of the network composition

procedure.

We have also identified and analyzed the potential approaches to the creation of post-

composition registries and to intercommunication between heterogeneous post-

composition registries. For the creation of post-composition registries, we selected to

keep the pre-composition registries as they are. This is because this approach provides an

easy support for all three degrees of network composition and for network

decomposition. For registry intercommunication, we selected to use a standard protocol

69

to enable intercommunication, and vary the inter-protocol translation solution according

to the protocol used by each registry. This approach provides more scalability and is less

costly (in term of network storage) and less time consuming.

The proposed general architecture can also be used for registry decomposition, where the

RCEs of the decomposing networks negotiate and execute a decomposition agreement.

The architecture is independent of the type of composing networks, network composition,

and composing registries.

70

CHAPTER V: Information Publication and Discovery
after Composition

The architecture for information publication and discovery after composition deals with

two issues: interface interworking and data interworking. In this thesis, we propose an

architecture for interface interworking and another one for data interworking. The data

interworking architecture is an extended version of the interface interworking

architecture. This chapter presents the two architectures. It starts by interface

interworking. Then, it describes how the proposed architecture is extended to support

data interworking. The conclusion is presented after that.

V.l Interface Interworking architecture

We based our architecture on Peer-to-Peer (P2P) overlay network mechanism. We

selected P2P overlay networks because they enable scalability, full decentralization and

self-organizing. It also allows information publication in a distributed manner, which

suites most ANs (entities can leave and join at any time).

This section starts by background information on P2P overlay networks. Then, it presents

the architectural principles of the proposed overlay network and an illustrative scenario.

71

This is followed by a description of the related procedures. The section concludes with a

discussion of the overlay protocol and messages.

V.l.l Background on P2P overlay networks

Peer-to-Peer networks are distributed networks in which all nodes are equivalent in

functionality and perform similar tasks [61] [62]. The different peers are autonomous and

operate without centralized organization or control. They are able to organize themselves

into some network topology and are capable of preserving connectivity when nodes join

or leave the network.

A peer-to-peer network usually consists of a large number of equal peer-nodes. Each

node acts both as a client and as a server, towards the other nodes in the network. Every

peer stores local content and makes some/all of it available to other peers. The nodes of

the network are connected in order to share resources such as files, computing power and

network bandwidth.

Overlay networks are networks that run on top of an existing infrastructure, and provide

additional functionality [63] [64]. They create a virtual topology on top of an existing

physical one. P2P overlay networks are P2P networks, where the connected peers

construct a set of logical connections with their neighbors. The overlay network is not

necessarily the same as the physical one.

P2P overlay networks can be structured or unstructured [6]. In structured overlay

networks, each data item is assigned a key, and the peers in the network are organized

into a graph that maps each data key to a peer. The mapping of data items to numeric

keys is done using a hash function. Each data item is stored at a particular peer. To find

where a given data is stored, the peers use a hash table. The hash table is a data structure

72

that maps keys onto values that help locating the node that possesses the data item. This

technique enables an efficient discovery of data items, using given keys. However, it does

not support complex queries and it is necessary to store a copy or a pointer to each item at

the peer responsible for the data item's key.

In unstructured overlay networks, data items are randomly distributed over the peers. To

look for a certain content, the peers use different techniques such as flooding or random

walks. Each peer visited evaluates the query locally on its own content. Unstructured

overlay networks enables the usage of complex queries, but theirs search techniques are

inefficient in some circumstances, because queries for content that are not widely

replicated must be sent to a large fraction of peers.

V.1.2 Architectural principles and scenario

One type of node makes up the overlay network that we propose: the Virtual Registry

(VR). A virtual registry communicates with the other virtual registries using the "Overlay

Interface" and with post-composition registries using the "Registry Interface". The

overlay network is called the Registry Overlay Network (RON).

V.l.2.1 Architectural principles

For each different Information Publication and Discovery Interface (IPDIs) (i.e. protocol

or programmatic interface) used by a post-composition registry, we have one and only

one corresponding node in the RON network, and that corresponding node supports this

interface (Figure V.l). Each overlay node supports only one IPDI. Each client

communicates with the pre-composition registry which, before composition, belonged to

73

the same network as the client. Each post-composition registry communicates only with

the virtual registry that supports the same IPDI.

A description is associated with each post-composition registry; it includes the type of the

registry and the description of the information it contains. The main parts of this

description are: the registry address, the registry type (e.g. UDDI), the type of

information maintained by the registry (e.g. web services descriptions) and a brief

description that presents the purpose of this information (e.g. printing, user location).

Each post-composition registry maintains its own description.

The RON has a P2P overlay architecture, with a fully interconnected topology. It uses a

P2P protocol for information discovery and publication. This protocol fulfills a set of

requirements that are presented later in this section. The network architecture and the

related principles are illustrated in the following scenario.

Figure V.l: General architecture

V.l.2.2 Scenario

John has a laptop in which a printing application is installed. To print documents, the

application must know the address of a suitable printer. The information about printers

(e.g. addresses, printing characteristics) is stored in a relational database (Rl).

Information about other resources in the network to which the laptop belongs (e.g.

74

scanners, faxes) is stored in an object-oriented database (R2) (Figure V.2). When a

printing is requested, the application retrieves the printer address from the database,

connects to the printer and then prints the document. The printer to use is chosen

according to the printing characteristics it provides (and its availability).

When John is in motion, the usual printer becomes out of reach. Meanwhile, John

approaches another moving network (Net-2) that hosts a printer (P2) with the same

characteristics required by the printing application. P2's information is stored in a

distributed registry (R3). The two networks get close to a static network (Net-3) that

hosts two registries: a UDDI registry (R4) and an object-oriented database registry (R5).

When the three networks get close enough, the moving networks — Net-1 made up of

John's laptop and Net-2-- compose with Net-3. The RCEs of the three networks compose

the five registries and create the RON. The RON will be made up of four nodes: Nl uses

SQL as IPDI, N2 uses Java Data Object Query Language (JDOQL), N3 uses Pervasive

Discovery Protocol (PDP) and N4 uses UDDI APIs. PDP is a fully distributed protocol

for services discovery in ad-hoc networks [60]. JDOQL is an implementation of the

Object Query Language, a standard query language for object-oriented databases [65].

After the RON is created, if John orders a document to be printed, the registry overlay

network is used and the printing application automatically gets the address of P2 and

prints the document.

75

pi'SQL N4:l)DJDI
N2:JDOQL N3:PDP —

\ i !':>•.vis> " \

iPDP) - -
Nct-2

Composed Network

Figure V.2: Illustrative scenario

- _ \ .liJOUl i
*" *" •«. V% *

V _ — **
\ — • • • - « . « . « , « . — — ^

Static network (Net-3)

V.1.3 Procedures

This section presents the procedures related to the creation and the churn of the overlay

network, and procedures related to information publication and discovery after RON

creation.

Creation of the overlay network: The RON is created during the registries' composition

process. In this thesis, we assume that the RCE that orchestrates the composition of the

registries also orchestrates the creation of the overlay network. We further assume that it

has the following information: the types, the addresses and the IPDIs used by each post-

composition registry (e.g. it gets this information during the first steps of the negotiation).

In the case of a P2P registry, the address of the registry is in fact the address of the super-

node of the P2P network representing the registry. The super-node concept is used in

order to take advantage of the heterogeneous character of P2P systems, improving the

systems' performance. A super-node is generally chosen according to its capabilities (e.g.

bandwidth, processing power) to play a special role and/or to serve other nodes [66]. If

76

the network representing the registry does not use the super-node concept, one of the

existing solutions for electing a super-node can be used (e.g. [67]).

To create the overlay network, the RCE starts by building the multicast groups, based on

the list of IPDIs used by the post-composition registries. For each different IPDI, a

multicast group is created, which includes all the post-composition registries that support

that IPDI. Next, the RCE specifies a virtual registry for each group, and then it chooses,

for each overlay registry VRi, the real node (i.e. post-composition registry) that will

support the functionality of a particular VRi. Each VRi is mapped to a post-composition

registry that supports the same IPDI. If more than one registry supports the same IPDI,

the registry to which VRi is mapped is chosen randomly. With P2P registries, mapping is

done in the same way, except that the virtual registry is mapped to the super-node of the

chosen post-composition registry. At the end, the RCE activates the chosen nodes to act

as virtual registries. Each VRi retrieves the descriptions from each of the post-

composition registries that are part of its related multicast group, and publishes them to

the overlay network, using the overlay protocol.

Information publication and discovery: When a client wants to publish new

information, it sends a publication request to the same pre-composition registry that it

was in communication with before composition. This will result in the publication of the

new information into that registry.

To discover some information, the client sends a discovery request to the same registry. If

this registry has the requested information, it sends it to the client. If not, it redirects the

request to the virtual registry, which discovers the target post-composition registry that

77

contains the information the client is looking for. It then retrieves the requested

information from that registry and responds to the discovery request. If the registry that

receives the discovery request from the client is P2P, the request is redirected to the

virtual registry through the super-node of the former registry. The discovery of the target

registry is based on the registry description.

RON churn: After the creation of the RON, a new registry may want to join the

composed network (e.g. the composed network wants to compose with a new network

that hosts a registry, or a new registry is added to the composed network). A registry may

also need to leave (e.g. due to network decomposition). Two types of departure are

possible: voluntary departure, where the departing node decides to leave the network, and

forced departure, where a node is forced to disconnect from the network (e.g. node

failure). In this thesis, we consider both voluntary departure and forced departure. This

section presents the joining and departure procedures.

Join: Figure V.3 presents the procedure for joining the network, after the RON is created.

MGi is the multicast group represented by VRi.

78

Joining Registry (Ri)
that supports IPDIi

No

Yes

Add Ri to MGi
Create VRi and
Map VRi to Ri

Figure V.3: Registry joining procedure

Voluntary departure: given a post-composition registry Ri, the multicast group MGi to

which Ri belongs, and the virtual registry VRi representing MGi, Figure V.4.a presents

the procedure for a registry quitting the network (a P2P registry quits the network when

its last element quits the network). Figure V.4.b represents the procedure when the Ri is

P2P, the super-node (Si) of Ri wants to quit the network and Si is not the last element of

Ri.

(**). VRi replaces the super-node:

VRi is automatically aware of the new super-node of Ri. Indeed, VRi uses the same P2P

protocol (IPDI) as Ri. Therefore, VRi is part of Ri. Furthermore, in P2P networks,

whenever a new super-node is created, all the nodes of the network are informed.

(***). RCE replaces the super-node:

If MGi is null, the VRi also sends the address of an arbitrary node Nj of Rj to the RCE,

along with the quit message. The RCE activates Nj as a new temporary VRi. When the

new super-node -Sj- of Ri is elected, Nj informs the RCE, which deactivates Nj and

activates Sj as the new VRi.

79

Leaving Super-node Si of
Ri

Leaving Registry
(Ri)

Si sends a quit
message to VRi

Ri sends a quit message to
VRi

YES

VRi retrieves Si from MGi
and sends a quit message

to RCF* with MGi

VRi retrieves Ri from
MGi

(**) VRi replaces Si
in MGi with the new

super-node of Ri

Yes

RCE replaces VRi
with a random element

of MGi

Yes

VRi quits RON

(***) RCE
replaces VRi
with the new

suner-node of Ri

Yes

VRi sends a quit message
to RCE*, along with MGi

b: Super-node leaving procedure

*: The RCE that
orchestrated the RON
creation (the address of
this RCE is sent to the
VRis during the
activation phase)

a: Registry leaving procedure

RCE replaces VRi with
a random element of

MGi

Figure V.4: Voluntary departure procedure

Forced departure: To detect the eventual forced departure of the registries, we used the

heartbeat scheme proposed in reference [68]. The authors in [68] propose a session

recovery mechanism, for cluster-based signaling architecture for conferencing in

MANET. The mechanism is based on the concept of heartbeat, and the session is defined

as a signaling link between two entities participating in the conference. In the signaling

architecture for conferencing, the conference participants are organized in different

80

clusters. Each cluster has a super-member that maintains information about its cluster

members and the other super-member. This information should be updated according to

members' departure. The heartbeat scheme proposed to detect forced departure uses a

request/reply protocol. It defines two entities: sender and responder. The sender is the

entity that sends the heartbeat request. The responder is the entity that receives the

heartbeat request and responds to it. Each session in the conference maintains a heartbeat.

Heartbeat is defined as a periodic exchange of a request and a reply. If the session is

created between a super-member and a member, the super-member becomes the sender

and the member becomes the receiver. If the session is created between two super-

members, one of them (e.g. the one with more capabilities) becomes the sender and the

other one becomes the receiver. The sender periodically sends a heartbeat request to

responder and starts a timer. If the timer fires and no reply is received from the responder,

the sender re-sends the request and restarts the timer. If there is no reply upon a number

of requests, the sender considers that the responder has unintentionally departed.

The departing registry (Ri) can be either a virtual registry or a normal registry (i.e. no VR

is mapped to Ri). We consider the two cases.

(a). Forced departure of a normal registry: Each VRi is responsible for keeping track

of the normal registries belonging to its MGi. To detect the forced departure of normal

registries, we equate the super-member in the heartbeat scheme presented before to the

VR, and the members to the normal registries. The session is a link between a VR and a

normal registry.

If a normal registry disappears, its VRi detects its forced departure using the heartbeat

scheme, and removes it from the MGi.

81

(b) Forced departure of a virtual registry: Forced departure of virtual registries is

detected by the RCE that orchestrated the creation of the RON. In this case, we equate the

super-member to the RCE, and the members to the VRis. The session is a link between

the RCE and a VRi.

The RCE maintains a heartbeat session with each virtual registry. If a VRi leaves the

network, the RCE will detect its forced departure and replace it with a random element of

MGi. To keep the RCE up-to-date on the MGi elements, each VRi sends an update

message to the RCE each time a normal registry quits the network (via voluntary

departure or forced departure).

V.1.4 Overlay protocol and messages

The overlay protocol should fulfill a set of requirements that are refinements of the

requirements for the global information publication and discovery solution as presented

in the chapter on related work. First, it should be suitable for P2P, and therefore

distributed and not rely on a central entity. Furthermore, it should allow for self-

reorganization - enabling nodes to join and leave "easily". Second, it should enable the

publication of the registries' descriptions and the discovery of the registry that contains

given information using the registries' descriptions. Third, it should use time-efficient

mechanisms for publication and discovery. Fourth, it should be as simple as possible, to

allow its usage with small devices that require a small footprint. It also should scale in

terms of the number of nodes that make up the overlay network.

Many existing P2P protocols, such as Tapestry [69] and Chord [34], can be used as the

overlay protocol of our network architecture.

82

Messages:

Table V-l and Table V-2 below present the messages exchanged between two different

virtual registries, and between a virtual registry and a post-composition registry,

respectively.

Publish-

Description

Find-

Registry

Retrieve-

Informatio

n

Description: Publishes a description to the overlay network. Sent by

a virtual registry to the overlay network, after retrieving a description

from a post-composition registry.

* Address: Broadcast.

Parameters: The description to publish.

* Depending on the publication protocol used, it can also be Unicast

or Multicast.

Description: Finds the post-composition registry that stores a given

type of information. Sent by a virtual registry to the overlay network

when it receives a discovery request from a post-composition

registry, or when a retrieval request is received from another virtual

registry.

Address: Unicast and Anycast

Parameters: The description of the information to retrieve.

Description: Retrieves information from a post-composition registry.

Sent by a virtual registry (VR1) to a virtual registry (VR2), when

VR1 receives a discovery request from a post-composition registry

and discovers that the information to retrieve is stored in a registry

that belongs to the VR2 group.

83

Address: Unicast

Parameters: The target registry from which to retrieve the

information. The description of the information to retrieve.

Response Description: Sends a response to a post-composition registry, via a

virtual registry. Sent by a virtual registry (VR1) to a virtual registry

(VR2) when VR1 receives a request from the post-composition

registry via VR2.

Address: Unicast

Parameters: The target registry where the response is to be sent. The

response.

Table V-l: Messages between virtual registries

Get-

Description

Description: Gets the description of post-composition registries.

Sent by a virtual registry (VR1) to the post-composition registries

belonging to VR1 multicast group:

• At the creation time of the overlay network

• When a new registry j oins

Address: Multicast and Unicast

Retrieve-

information

Description: Retrieves information from a post-composition

registry. Sent by a post-composition registry (Rl) to a virtual

registry when Rl receives from a client a discovery request for

information that it does not have. Sent by a virtual registry (VR1) to

84

Response

a post-composition registry (Rl), when VR1: (a) receives the same

message from a post-composition registry (VR2) and discovers that

the requested information is stored by Rl (Rl and R2 belongs to the

same multicast group), (b) receives a retrieval request bound to Rl

from another virtual registry.

Address: Unicast.

Parameters: The target registry from which to retrieve the

information. The description of the information to retrieve.

Description: Sends a direct response to a post-composition

registry. Sent by a post-composition registry (Rl) to a virtual

registry (VR1) when Rl receives a request from VR1. Sent by VR1

to Rl, when VR1: (a) receives a request from Rl, (b) receives a

response bound to Rl from another virtual registry.

Address: Unicast

Parameters: The message target. The response

Table V-2: Messages between a virtual registry and a post-composition registry

V.2 Data Interworking architecture

We propose to extend the RON architecture to handle data interworking. This will require

extending the internal behavior of the virtual registries, in order to take into account data

heterogeneity. Indeed, when a virtual registry receives a discovery request, it has to know

where the related information is stored and especially, how to get it. This may require -

85

for instance- translation between the concept names used by the client and those used by

the target registry.

This section starts by describing the data interworking problem in more details. After

that, it presents our new data interworking architecture.

V.2.1 Problem statement

We divide the data interworking problem into four sub-problems: content update, content

mismatch resolution, content composition and content discovery after composition.

Content update deals with the consistency of the registry content after network

composition. Indeed, when ANs compose, some data may become obsolete or may need

to be updated. For instance, take the case of a registry maintaining the list of printers in

its network, where each printer is described by its name, the IP address and the port

number to use in order to communicate with it. After network composition, the IP

addresses may change (e.g. one of the networks is absorbed by another and thereby

requires changes to its addresses range and network mask). Therefore, the first step in

composing the registries' content in ANs is to dynamically update that content in order to

make it consistent.

Content mismatch resolution deals with content heterogeneity in terms of naming

mismatch (where different names are given to the same concept by different providers),

representation and structure mismatch, semantic and syntax mismatch, and granularity

mismatch (e.g. get the office where Alice is, using her coordinates).

Content composition oversees how the content from the different registries is composed.

Two different approaches may be used to solve this sub-problem: content integration and

content federation. In content integration, the content of the different registries is totally

86

merged and stored in a single registry (e.g. the one with more capabilities such as

processing power and bandwidth). In content federation, the different registries are kept

as they are, and higher-layer processing logic is provided to seamlessly answer requests

using the entire content. Content integration may be especially needed for network

integration. The content to integrate can either be of the same type or be heterogeneous.

If the content is heterogeneous (e.g. it has heterogeneous granularities), the integrated

content to be stored in the single registry is obtained by executing the appropriate content

mismatch resolution algorithms (e.g. aggregation). In content federation, clients are given

a uniform and transparent access to the content, which is spread over the different

registries. This is similar to federated database systems [70], where various autonomous

database systems are perceived as a unique system by end clients.

It is clear that content integration may be too costly, in terms of processing time and

power (e.g. to copy a huge amount of data from one registry to another). Furthermore,

some information may be lost when the content to compose is processed, which may

introduce an extra processing overhead when a request is received. If, for instance, all the

content is brought to the higher level of aggregation, we loose the lower granularity

information that may still be needed by some applications.

Therefore, we choose to use content federation for content composition in registries when

ANs compose. This will speed up the composition process, facilitate the decomposition,

if any, (i.e. due to the networks' decomposition) and enhance the content availability after

composition (i.e. if one registry fails; only its content becomes inaccessible).

Content discovery after composition deals with how clients will access the composed

content.

87

In this work, we reuse the FDBS mechanisms and algorithms to model contents and

queries, to resolve content mismatch, and to create and execute query-plans. We provide

new procedures for solving the autonomy and the content update issues.

V.2.2 A new architecture for data interworking

In order to answer clients requests, virtual registries execute some internal logic (e.g.

information publication and discovery procedure). We will call the module responsible

for executing this logic Overlay Application.

This section presents the functional components forming the overlay application and the

data interworking related procedures. It also presents an illustrative example that shows

how data interworking can be provided using the proposed architecture.

V.2.2.1 Architectural components

The architecture of the overlay application is presented in Figure V.5. It consists of the

Startup Module (SM), the Query Manager (QM), the Data Composition Manager (DCM),

the Query Execution Manager (QEM) and the Registry Interrogator (RI). The SM is

responsible for node bootstrapping. The QM is the module that receives the incoming

requests, before they are processed. The DCM is the module responsible for creating the

appropriate query plans to answer the received queries, by communicating with the other

DCMs. The algorithm used by the DCM should fulfill the following requirements:

• Distributed (i.e. does not require all registry descriptions to be stored in a single

node).

• Scalable in terms of the number of registries to compose.

88

Allows registries to leave and to be added without disturbing the algorithm's

functioning and efficiency.

Overlay Application (OA)

Startup Module (SM)

Query Manager
(QM)

Result

Query

Data Composition Manager
(DCM)

Query plan I

Sub-query

•

Query Execution Manager
(QEM)

j.
Registry

Interrogator (RI)

4-

Figure V.5: Overlay application architecture

Some data composition algorithms from the database systems field almost meet these

requirements ([71][72][73]). The QEM is responsible for executing the query plans

generated by the DCM and creating the final answer to the received request. The RI is the

module used to communicate with the registries targeted by the sub-queries. To

communicate with a registry using a different IPDI than that used by the current overlay

node, the RI starts by identifying the overlay node using the same IPDI as the target

registry, and then it transfers the message to it.

Each overlay node maintains the data model of the registries that it represents (i.e.

registries that support the same IPDI as the overlay node). A data model describes the

data content and serves as the registry description used by the DCM to create query plans.

The data models are intended for machine-to-machine communication between

89

heterogeneous nodes. Therefore, we have chosen XML as the underlying representation

language.

V.2.2.2 Procedures

This section presents a discussion of the content update and composition procedure and

the procedure for content discovery after composition.

Content update and content composition procedure: When RON creation is initiated,

each SM module starts up an instance of the QM, DCM and RI modules. Then, it

executes the necessary content updates on all of the registries supporting the same

interface as the overlay node to which the SM belongs. To communicate with the

registries involved, the SM uses the RI module.

The different registries are kept as they are, except the consistency updates. To create the

federated content, the data models of the different registries need to be integrated (e.g. the

relationships between the different concepts in the different models are created).

Therefore, after the consistency updates, the different DCMs communicate in order to

create the integrated model. This model is reused to answer received queries, and is

updated each time a registry quits or joins the composed network.

Content discovery procedure: After composition, each time a request is received by the

overlay application, the procedure in Figure V.6 is executed. If the request source is

another overlay node, this means that the current overlay node is the one using the same

IPDI as the target registry. To communicate with a registry targeted by the sub-queries in

the query plan, the QEM uses the RI.

90

Incoming Request

A registry

QM transfers the
request to DCM

nother
request source i s ^ f c ^ N o d f i

DCM creates the appropriate
query plan

DCM transmits the query plan
toQEM

Yes

QEM combines the results of all
sub queries and creates the final
response to client's request.

QM gets the response from the
destination registry, and sends it back
to the source overlay node.

QM asks Ri

QM gets the registry Ri
targeted by the sub-query

I
QEM Gets next sub-

query

Figure V.6: Procedure for answering requests

V.2.2.3 Illustrative example

To illustrate the proposed architecture, we discuss how it can be used to answer the

conferencing application requests in the second scenario presented in the previous

chapter. In this scenario, a conferencing application needs to get the current location of

John, Alice and Bob. The three users belong to three distinct networks (Net-1, Net-2 and

Net-3 respectively). The location of each user is stored in the local registry of its network

(RI, R2 and R3 respectively).

The three registries in the scenario are using three distinct IPDIs (i.e. SQL, JDOQL and

PDP). Therefore, the registry overlay network will be composed of three nodes: Nl, N2,

and N3, representing the registries RI, R2, and R3, respectively.

91

We assume that the registry Rl is using the schema Rl(#userID, locationRoom) for

information storage and that R2 and R3 are using the schema R2(#userID, locationX,

locationY). We also assume that we have a fourth registry R4 that is using the schema

R4(#roomID ,minX, maxX, minY, maxY) to describe the different offices using their

delimiting coordinates.

The conferencing application is configured to create a conference between John, Alice

and Bob. Therefore, it will issue a request for the location of each of them. The request

will go to Rl, the only registry known to the application. Rl will then reply regarding

John's location, but it will transfer the other two requests to Nl (Rl does not have the

requested information), where the request will get to the overlay application OAN1.

Within OAN1, the QM receives the request, determines that it is coming from a registry,

and it sends it to the local DCM. The DCM creates the necessary query plans and asks the

QEM to execute them. Figure V.7 presents the created query plan to get Bob's location.

A similar plan is used for Alice.

Query: get locationRoom where userlD = BoblD.

Query plan:

• Viewl:

• View2:

get(locationX, locationY) from R2 where userlD

for each(x,y) in viewl, get roomID

minX<x<maxX and minY<y<MaxY.

from

= BoblD.

R4 where:

Figure V.7: Query and query plan example.

92

V.3 Conclusions

In this chapter, we have proposed an overlay architecture for information publication and

discovery after composition. The proposed overlay architecture deals with both interface

interworking and data interworking. The registry of the composed network (i.e. the

composed registry) is seen as the collection of the individual registries in the composed

network. An overlay network is created on-the-fiy, to allow autonomous access to the

whole content of the composed registry. Clients can seamlessly access the composed

registry through the pre-composition registries of their networks.

If we analyze the overlay architecture with respect to the information publication and

discovery requirements, we can find that the architecture is very promising. Indeed, the

architecture supports all three degrees of network composition and it is suitable for both

P2P and centralized registries. Furthermore, clients in the composed network are able to

discover and publish information after composition, they have seamless and automated

access to the whole content, and the publishing and discovery policies of the composed

registries are not violated (i.e. the policies of each registry are still enforced by the same

registry after composition). The architecture also supports registry decomposition (i.e.

through nodes departure procedures) and is transparent to the clients. It reuses FDBS

mechanisms for data composition and P2P protocols for information publication and

discovery.

In Chapter 8, we will further discuss the implementation and performance measurement

of the overlay architecture.

93

CHAPTER VI: Negotiation architecture

As discussed in the chapter on general architecture, registry composition is based on a

composition agreement that is negotiated between the different parties involved in the

composition. This chapter presents an architecture for the dynamic negotiation of an

agreement for the composition of registries. It starts by introducing the negotiation

architecture and its components. Next, it presents the negotiation protocol for the case

when no entity leaves the negotiation when it is started. The section after that describes

how the negotiation protocol is extended in order to support entities departure during the

negotiation. This is because entities in ANs can join and leave the network any time. The

last section draws the conclusion.

VI. 1 Negotiation architecture

The negotiation is triggered by the C-FE of one of the composing networks (e.g. the one

that orchestrates network composition), and it is done among the RCEs of all of the

composing networks. The triggering C-FE gives as well the IDs and addresses of the

other RCEs to the triggered RCE (the triggering C-FE gets this information from the C-

FEs of the other composing networks).

Our negotiation architecture is made up of negotiating entities, a proposals' template, a

description of the main negotiation steps, and a negotiation protocol. This section starts

94

by background information on negotiation. Then, it presents the general principles of our

architecture. After that, it presents a template for the composition agreement proposals,

and describes the main steps of the negotiation. The negotiation protocol is presented in

the sections after that.

VI.1.1 Background on negotiation

During a negotiation process, the negotiating parties can either communicate directly or

via a mediator (i.e. a third party that arbitrates the negotiation). They can negotiate a

single issue (e.g. price) or multiple issues (e.g. price, quality). With multiple issues, they

can present all their demands at once or present them one by one [74]. The first approach

is called parallel negotiation and the second one is called sequential negotiation [31].

They can also negotiate a group of issues first (e.g. tightly coupled issues that can be

solved together) and then move on to another group. We call this last approach the hybrid

approach.

The main existing negotiation decision models are accept-it-or-leave-it., offer/answer,

offer/counteroffer and contract ranking. In the first model, one of the negotiating parties

makes an offer to the other(s) party(s), which has only the possibility to accept or reject

the offer. In the second model, the receiving party can also give feedback on its decision,

such as specifying why the offer is rejected. The third model allows the receiving party to

make a counter-offer if the first offer is rejected. In the contract-ranking model, the offer-

originating party creates a set of proposals that are sent to the interested party. The

receiving party ranks the received offers according to its own criteria and chooses the

most appropriate [75].

95

VI. 1.2 General principles of our architecture

To meet our requirement on allowing a third party to orchestrate the negotiation and

create proposals, we have identified two negotiation entities: participant and mediator.

The participant is any entity that is participating in the negotiation. A participant can be

either an initiator or a responder. The initiator is the entity that initiates the negotiation

process. The responder is the entity that receives a CA-proposal and decides the

acceptance or rejection. A participant can alternate between being an initiator or a

responder, but it can play only one of the two roles at any given time. The mediator is the

(third party) entity that orchestrates the negotiation process, and is responsible for

creating CA-proposals and arbitrating the negotiation. It can be either co-located with the

participant or be an independent entity.

The negotiating entities (i.e. RCEs) communicate via a mediator. They can negotiate

multiple issues using the hybrid approach, where a group of issues are negotiated at the

same time. This can optimize the general composition process. In case the set of

negotiation parameters include mandatory and optional ones, we can for instance start by

negotiating the mandatory ones. While negotiating the optional parameters, we can

execute these parts of the agreement that are only related to the mandatory parameters

(i.e. those independent of the optional parameters).

The negotiating parties use the offer/answer decision model. The offers are created by the

mediator and sent to the negotiating parties, which have to decide the acceptance or

rejection. Sending feedback to the mediator about the reason why the proposal is rejected

can help the mediator in creating a more suitable proposal for the next round of

negotiation.

96

VI.1.3 Proposals' template

The CA-proposals' template includes two main parts: a network specific part and a

composition related part. The network specific part includes the information that is

specific to each network and that is necessary for the composition negotiation. Such

information can be the type of the local registry(ies) (e.g. centralized, distributed), and

the local protocols used within the network and that influence the composition (e.g. the

interface -protocol or API- used for information publication and discovery). This

information is used by the mediator to make proposals.

The composition related part includes the information that is more related to the

composition and the negotiation. Such information is the maximum negotiation lifetime,

which is the time after which the negotiation is aborted if no agreement is reached. If an

agreement is reached, the filled template includes the agreement validity time that

specifies the time after which the agreement is no longer valid. It may also include, later

on, the output of the negotiation (i.e. the Composition Agreement).

Figure VI. 1 presents an example of a proposal template, used for the composition of the

two networks presented in Figure VI.2. Each RCE fills the first part of the template (i.e.

Network Related) with the local information. The template in Figure VI. 1 is filled with

the information related to net-1. The template can include as many <Registry> objects as

the number of the registries in the network. The RCE also specifies its preference for the

maxNegotiationLifeTime, if any. The filled template is sent to the mediator in the

initiation phase: with the first negotiation request (in case of an initiator) or with the

negotiation acceptance message (in case of other participants).

97

<NetworkRelated>
<Network>

<NetID> Net_l ID </NetID>
< Registry>

<Type> Centralized </Type>
<IPDI> SQL </IPDIl>
<Version> 1.1 </Version>

</ Registry>
< Registry>

<Type> Centralized </Type>
<IPDI> JDOQL </IPDIl>
<Version> 1.2 </Version>

</ Registry>
<StartingConditions> </StartingConditions>

</Network>
</NetworkRelated>
<CompositionRelated>

<maxNegotiationLifeTime> 50 </maxNegotiationLifeTime>
<Agreement>

< ValidityTime> 300 </ ValidityTime >
<AgreementBody> the actual content of the reached

agreement or of the CA-proposal
</<AgreementBody>

</Agreement>
</CompositionRelated>

Figure VI. 1: Example of a proposal template

Moving P2P network (Net-1)
Static network (Net-2)

Figure VI.2: Example of two composing networks

98

At the end of the negotiation, if an agreement is reached, the mediator fills the

<Agreement> object, before it sends the filled template to all of the participants. The

mediator can also fill the <NetworkRelated> object with the list of the registries that

accepted the negotiation.

VI. 1.4 Main negotiation steps

To initiate a negotiation, the initiator starts by locating the mediator to use. We assume

that it uses the co-located one, if any, or uses one of the existing solutions for discovery

(e.g. PDP [60]) to find the address of an existing mediator. We also assume that the

mediator has published its existence beforehand.

The main steps of the negotiation after the initiator locates a mediator are as follows

(Figure VI.3):

Initiation of the negotiation: The initiating RCE creates a negotiation request that it

sends to the mediator. The negotiation request includes the ID of the initiator, the IDs of

the entities with which it wants to negotiate (i.e. destination RCEs that we will now call

the destination participants) and the local parameters that can be used to create a proposal

(e.g. local IDPI, local registry type). The initiator can also include specific requirements

for the negotiation such as the IDs or the minimum number of participants that have to

accept before the negotiation takes place. We will call these conditions "starting

conditions". If the mediator accepts the request, it sends another negotiation request to

the destination participants. If they accept, they send their network related information to

the mediator. A mediator can reject to orchestrate a new negotiation because it does not -

99

for instance- have enough resource because it is already involved in other(s)

negotiation(s).

Negotiation: If the mediator accepts to orchestrate the negotiation and the starting

conditions are met, the mediator creates a first CA-proposal that it then sends to all of the

participants. These can either accept or reject the proposal. If a participant rejects the

proposal, it specifies the reason. If the proposal is rejected, the different participants

begin to negotiate a new one. This is repeated until an agreement is reached, or the

maximum negotiation lifetime expires.

Termination of the negotiation: At the end of the negotiation, if an agreement is

reached, the mediator creates the final agreement. This agreement is sent to all of the

participants. If the negotiation has stopped because of an error (e.g. time-out), the

mediator sends an error message to the participants to inform them that the negotiation

has failed, along with the error description.

100

RCE1 receives a negotiation
trigger

" - - » -3T-
RCEl sends a negotiation request

to the mediator

YES

The mediator sends a
negotiation request to the
destination participants

If the
mediator accepts
Ae negotiation^

NO

The negotiation
ends

Destination participants
respond to the mediator

Yes

Initiation phase

The negotiation
ends

The mediator creates a CA-
proposal and sends it to all

of the participants

The participants respond
to the mediator

Negotiation phase

The mediator creates the final
response and sends it to all of the

participants
Termination phase

Figure VI.3: Negotiation steps

101

VI.2 Negotiation protocol

The negotiation protocol entities are: participant and mediator (already described in

section VI. 1.2). This section describes the negotiation messages and the state diagrams of

the protocol entities.

VI.2.1 Negotiation messages

To support the offer/answer negotiation-decision-model, we designed our negotiation

protocol as a request-response protocol. Therefore, we have two messages: Request and

Response. We have defined three types of requests: Initiate, Offer and Ack. Each request

(except Ack) has a response message that is an Ok message. Each Ok message includes a

response code that specifies the type of the response. We have defined four response

types: Accept, Reject, Agreement and Error. A request can be point-to-point (e.g. Initiate

from the Initiator to the Mediator) or point-to-multipoint (e.g. Offer). All the response

types are point-to-point. Figure VI.4 illustrates the flow of messages in the case of a

successful negotiation.

Table VI-1 below describes the negotiation messages and message codes.

Initiate Description: Initiates a new negotiation. Sent by the initiator to the

mediator. Sent by the mediator to the destination participants, when it

receives an Initiate message and accepts to orchestrate the negotiation.

Address: Unicast and Multicast.

Parameters: ID of the initiator, IDs of the destination participants, local

parameter (e.g. local IPDI) and the starting conditions.

102

Offer

Ack

Accept

Description: Sends a CA-proposal to the participants. Sent by the

mediator to all of the participants.

Address: Multicast.

Parameters: The CA-proposal.

Description: Informs the participants about the outcome of the initiation

phase of the negotiation (i.e. the negotiation will take place or not).

Acknowledges the reception of the final response to the negotiation. Sent

by the initiator to the mediator or bye the mediator to the destination

participants (in the initiation phase). Sent by all of the participants to the

mediator, in the termination phase.

Address: Unicast and Multicast.

Parameters: A response code (i.e. Accept or Reject) to specify if the

negotiation is accepted or rejected (when sent by the mediator to the

destination participants in the initiation phase).

Description: Accepts new negotiation or a CA-proposal. Sent by a

destination participant to the mediator after it receives an Initiate request

and it accepts to participate in the negotiation. Sent by the mediator to a

participant to inform it that the negotiation has been accepted (after it

accepts to orchestrate the negotiation and verifies that the conditions for

the negotiation to take place are met). Sent by a participant to the

mediator to accept the received CA-proposal.

Address: Unicast and Multicast.

Parameters: The list of the participants that accepted the negotiation.

103

Reject

Agreement

Error

Description: Reject a new negotiation or a CA-proposal. Sent by the

mediator to the initiator or by a destination participant to the mediator

after it receives an Initiate request and it rejects to participate in the

negotiation (Figure VI.5). Sent by the mediator to all of the participants

to inform them that the negotiation has been rejected (i.e. the conditions

for the negotiation to take place are not met) (Figure VI.6). Sent by a

participant to the mediator to reject the received CA-proposal.

Address: Unicast and Multicast.

Parameters: Reason of rejection

Description: Sends the final agreement to the participants. Sent by the

mediator to all of the participants.

Address: Multicast

Parameters: The reached agreement.

Description: Sends an error message. Sent by a request receiver to the

source of the request when the last received request has generated an

error. Sent by the mediator to all of the participants if the negotiation

ends because of an error (e.g. timeout).

Address: Unicast and Multicast

Parameters: Error description.

Table VI-1: Negotiation messages and message codes

104

PI

Initiate

Mediator 0̂

OK: Accept

Ack

Loop until agreement
reached OR timeout

Offer

Ok: Accept/Reject

Pn

Initiate

Ok:Accept

Ack: Accept

) Create
Proposal

Offer

* < •

Ok: Accept/Reject

Ok: Final Agreement

Ack
Ack

Initiation
phase

Negotiation
phase

•> Termination
phase

Figure VI.4: Sequence diagram for successful negotiation

RCE1 Mediator

Initiate (RCElid, RCE2id...)

Ok: Reject (e.g. the mediator does got have enough
resources)

Ack

RCE2

Figure VI.5: Negotiation rejected by the mediator

105

RCE1 Mediator

Initiate (RCE1 id, RCE2id...)

Ok: Reject (e.g. all of the destinatk
"participants have rejected the negotia

Ack

Initiate (RCElid, RCE2id...)

OkReject

n
ion)

Ack: Reject

Figure VI.6: Negotiation rejected by destination
participants

VI.2.2 State diagrams

For the state diagrams, we focus on the core process of the negotiation (i.e. the initiation,

negotiation and termination phases). We assume that the composition agreement is

created only when all participants reach an agreement, and that no entity leaves the

negotiation after it is started. The negotiation process is triggered by a C-FE sending a tg-

Initiate message to the initiator.

Figure VI.7 presents the state diagram of the participant entity. Incoming messages are

prefixed with a question mark, the outgoing messages with an exclamation point and the

conditions are presented in brackets.

The initial state of the participant process is idle. If it receives a tglnitiate message (from

the RCE that initiates the negotiation), the participant becomes an Initiator. Therefore, it

requests a new negotiation process by sending an Initiate message to the mediator. It then

106

moves to the WaitingAcceptance state, where it waits for the acceptance of the

negotiation that he just requested. If the negotiation is rejected, it acknowledges the

response reception and goes back to the idle state. If the negotiation is accepted, it goes to

the Waiting_Offer state (where it waits for a proposal) after acknowledging the response

reception.

If while in the idle state the participant receives an Initiate message (from the mediator),

it takes the role of a Responder. Then, it first verifies if it can participate in a new

negotiation. If no, it sends a Reject message and goes back to the idle state after receiving

an acknowledgment of its response. If it decides to participate in the negotiation, it

responds by an Accept message and waits for confirmation that the negotiation will take

place. If it receives a negative confirmation (i.e. AchReject), it goes to the idle state. If it

receives a positive confirmation, it then waits for a CA-proposal. Each time a proposal is

received; the participant evaluates it, sends its response and waits for the mediator

response. If a final response is received, it acknowledges the response and returns to idle.

107

?tg.Initiate

! Initiate

^ _ ?Ok(Reject)
?Initiate !Ack

?Ok(Accept)
!Ack

?Ok(fina|Res)

!Ack

!Ok(|Accept)

?Ack(Accept)

Figure VI.7: Participant state diagram

The behavior of the mediator is presented in the state diagram of Figure VI.8. When in

the idle state, it can only accept an Initiate message. Then, it verifies if it can accept a

new negotiation. If this is not possible, it sends a Reject message and waits for the request

source to acknowledge the reception of its response. When this is done, it returns to idle.

If it accepts the negotiation, it sends an Initiate message to the destination participants

and waits for their acceptances (Waiting_Acceptances). It stays in this state until it has

received all the responses. If the minimum acceptances required (q) is not reached, the

mediator sends a Reject to the initiator and sends an Ack(Reject) to the other participants.

If the minimum is reached, an Accept message is sent to the initiator, an Ack(Reject) is

sent to the participants that rejected the negotiation, and an Ack(Accept) is sent to those

that accepted. When an Ack is received from the initiator, the negotiation phase is started,

where the mediator creates CA-proposals, sends them to the participants and waits for

108

their responses. When the negotiation is terminated, the mediator sends the final response

to the participants using an Ok message, and waits for their acknowledgments before

returning to idle.

Figure VI.8: Mediator state diagram

VI.3 Support of nodes departure

After the negotiation is started, the mediator or a participant may leave the negotiation

(e.g. due to network decomposition). Two types of departure are possible: voluntary

departure and forced departure. Voluntary departure is when the departing entity decides

to leave the negotiation (e.g. it is no more interested in the composition because the

109

network to which it belongs moved away from the other networks). Forced departure is

when the entity is forced to disconnect from the network (e.g. node failure, connectivity

problems). In this thesis, we consider the two types. We also consider participant

departure and mediator departure. We assume that when a participant (i.e. initiator or

responder) quits, the remaining participants are interested in continuing the negotiation

(e.g. if one network moves away, the other networks are sill close to each other).

VI.3.1 Voluntary departure

A. Participant voluntary departure

When a participant decides to quit the negotiation, it sends a Bye message to the

mediator. An initiator cannot send a Bye message before receiving a response to its

Initiate message. Indeed, if this is allowed, the mediator may receive the Bye message

before the Initiate one. The same requirement applies to the destination participant that

sent an Ok message to accept a negotiation.

Figure VI.9 presents the sequence diagram for a participant PI quitting during the

negotiation phase. When the mediator receives the Bye message, it sends a response

message and terminates the negotiation session with PI, by sending the final negotiation

response and accepting the final acknowledgment. The mediator also re-verifies the

starting conditions (e.g. the number of participants still two or more). If the conditions are

still met, the mediator continues the negotiation phase with the remaining participants. If

the conditions are violated, the mediator sends a final response message to these

participants, with an error message. If the mediator has already sent an offer message

when it receives the Bye message, it waits until it gets all the responses (except from the

quitting participant) before sending the next message. This will help in determining the

110

message to send (e.g. an agreement or a new proposal). If an agreement has been reached,

the final message includes the agreement and the list of participants that have accepted it.

PI

;

^ —

Initiate

Mediator

Offer

Bve

Ok (response to Bye)

Ok (final response)

Ack

[Con

.cop: Until agreement
eached OR timeout

l[" h
Pn

Offer

J Wait until responses received
from all Ps other than P1

litions OK&&CA accepted] Ok

\ \ 4 A c k :

Opn^itions OK && CA not accepted]Offer

\ « ° k
\ *

\ [Conditions not Ok]Ok: Error

Ack

Figure VI.9: The initiator quits the negotiation

B. Mediator voluntary departure

If an active mediator (i.e. the mediator that is orchestrating an ongoing negotiation)

decides to quit, it should insure that the negotiation process will continue among the

remaining participants. Therefore, it should find another mediator that can replace it. This

is done as follows:

111

Each mediator is responsible for keeping track of the other mediators in the network.

When a mediator joins the network, it publishes itself to the network members. When a

mediator receives a publication message from another mediator, it establishes a

connection with it. This results in the creation of an overlay network between all of the

mediators in the network (Figure VI. 10).

\ Overlay
.' network

Participant

Mediator-f———it̂ fe "V Wp) . ,
. , _ ^ , network

Figure VI.10: Mediators' overlay network

When an active mediator decides to quit, it sends a Bye message to one of its neighboring

mediators, along with the current status of the negotiation and its related information. If

no other mediator is part of the network, the mediator sends a Bye message to all of the

participants, which will terminate the negotiation process. The mediator cannot quit the

negotiation if it is waiting for a message from one or more participants. Indeed, if this is

allowed, the expected message will be lost, and the status transferred to the new mediator

will be corrupted. Therefore, the mediator should quit only when it is in a stable state (i.e.

no expected incoming message is missing). Moreover, it cannot quit in the termination

phase. The participants will get the address of the new mediator in the next message they

receive.

112

VI.3.2 Forced departure

A. Participant forced departure

A participant forced departure is handled by using a timer. If the mediator fails to receive

an expected message from a participant within the duration of a configurable timer, the

mediator considers that the participant to whom the timer is associated has been forced to

quit the negotiation.

i Pn

[Conditions not OK]
Ack: Reject

Figure VI.11: Forced departure of the initiator during the
initiation phase

Figure VI. 11 presents the case of the mediator failing to receive the Ack message that

terminates the initiation phase with the initiator. The mediator considers that this is a

forced departure of the initiator. Therefore, it re-verifies the negotiation starting

conditions. If these conditions are still met, the mediator sends an Ack message —

specifying that the negotiation is accepted— to all of the participants that accepted the

negotiation, and the negotiation process continues normally. The Ack message includes

the list of the participants that accepted to participate in the negotiation. If the conditions

113

are violated, the mediator sends an Ack message to the participants with the information

that the negotiation is rejected. If the mediator fails to receive a response message to an

Invite message, it interprets this as a Reject. Forced departure of the other participants

(i.e. not an initiator) is processed the same way as the initiator forced departure.

B. Mediator forced departure

Each active mediator (randomly) chooses one of its neighboring mediators as its backup.

We assume that the probability that both an active mediator and its backup leave the

network at the same time is very low. Each mediator detects the eventual forced

departure of the other mediators by sending periodic heartbeat messages. For the

detection of the mediators' forced departure, we used the scheme proposed in reference

[68] (already discussed in the previous chapter).

Authors in [68] propose a session recovery mechanism, for cluster-based signaling

architecture for conferencing in MANET. The conference participants are organized in

different clusters, and each cluster has a super-member that is responsible for detecting

the forced departure of the members of its cluster and the other super-members. To reach

this goal, each super-member maintains a heartbeat session with each member of its

cluster and with each of the other super-members. A session is defined as a signaling link

between two nodes and heartbeat is defined as a periodic exchange of a request and a

reply. The authors in reference [68] also propose an election algorithm to select a new

super-member among several candidates, using the candidates' capabilities.

114

In our case, we equate the super-member to the mediator, and the members to the

participants. The session is a link between a mediator and a participant or between two

mediators.

If a backup mediator is no longer reachable, the active mediator to which it is assigned

chooses a new backup. If the active mediator disappears, its backup will detect its forced

departure using the heartbeat scheme, and will continue its ongoing negotiation sessions.

VI.4 Conclusions

In this chapter, we have proposed a new architecture for negotiating an agreement for

registry composition. We have presented the architectural principles and a template for

the composition agreement proposals, and described the main steps of the negotiation.

We have also described the negotiation protocol (i.e. entities, messages and state

diagrams) and described how to support nodes departure during the negotiation. The

architecture handles both voluntary and forced departure, of both participants and

mediator.

The proposed architecture is very promising in meeting our negotiation requirements. It

allows a third party to arbitrate the negotiation and create the CA-proposals, does not rely

on a permanently centralized entity and it is independent of the types of composing ANs

and registries and of the degree of composition. It enables autonomous negotiation and

can be used to negotiate registry decomposition.

Chapter 8 discusses the validation of the negotiation protocol.

115

CHAPTER VII: Signaling framework

This chapter presents a general signaling framework for registry composition. The

framework is a backward compatible extension of the IETF-NSIS framework, and it

defines a new signaling application to support both the negotiation and execution of the

registry composition agreement. This chapter starts by presenting our extensions to NSIS.

Then, it describes the new signaling application. The conclusion is presented after that.

VII. 1 Extensions to NSIS

NSIS is a suite of protocols for signaling about a data flow along its path. We selected

NSIS as the basis for our work because it is modular and easily extensible. Furthermore,

it has already been successfully used as the basis for signaling in different areas (e.g.

QoS, signaling through mailboxes such as firewalls). NSIS was discussed in depth in the

chapter on related work.

To meet the requirements identified in chapter 3, for the signaling framework, we added

two types of extensions to the NSIS framework: a messaging layer extension and the

definition of a new Signaling Application for Registry Composition (SARC). The

messaging layer extension is to support flow independent applications, support symbolic

names and provide a group management solution to allow point-to-multipoint message

116

delivery. SARC application is designed to support different negotiation models, and

enable both the negotiation and execution of the composition agreements.

The first two messaging layer extension functions (i.e. support of flow-independent

applications and symbolic names) are already offered by the GANS framework, via the

Extended-GIST (EGIST) messaging layer. Thus, we used the EGIST as the basis for the

design of our messaging layer in order to provide support for group management. GANS

is a set of protocols that enables signaling among ANs (e.g. to negotiate the composition

agreement).

This section is organized as follows: The first subsection presents the general architecture

of our framework. The second subsection discusses the messaging layer extensions in

more detail, through the APIs that it provides. The third subsection presents how

signaling messages are routed towards the destination. SARC is presented in the section

after that.

VII. 1.1 General architecture

As in NSIS, our architecture has two layers: a signaling layer and a common layer

(Figure VII. 1). The signaling layer consists of the SARC application, but it can include

any other GANS, NSIS or new signaling application. The common layer provides the

functionalities that are common to all of the signaling applications (e.g. message

transportation from one node to another). It is composed of two layers: transport layer

and messaging layer. The transport layer is responsible for transporting negotiation

messages. The messaging layer (ML) executes the necessary common functions before

sending the message to its destination. The messaging layer uses existing standard

117

transport protocols (e.g. TCP, UDP), provided by the transport layer, to transmit

signaling messages.

Signaling
Laver

Signaling
Application 1 SARC

DEEP
encapsulation

Destination
endpoint exploring

*

Common
Layet n -=^ .

.N-EGIST encapsulation (c-
mode & d-mode)

Signaling
Application 3

Group
Management

J I

Messaging Layer (ML) N-EGiST routing stale, |
extension

EGIST state
maintenance

Transport Layer Security (TLS)

i
UDP

1
TCP SCTP DCP

1 1
Other

protocols

IP Layer Security

Transport Layer (TL)

IP and lower layers

Figure VII. 1. Framework architecture

Our general architecture components are related to the NSIS framework as follows: the

signaling layer, the common layer and the messaging layer correspond to the NSLP,

NTLP and (extended) GIST messaging layer, respectively. The messaging layer

comprises two main building blocks: Negotiation- EGIST (N-EGIST) and Group

Management (GM). N-EGIST is an extension of the GANS' EGIST. The main new

features added by our ML to those provided by EGIST are:

118

• Support of point-to-multipoint

• Group management: group members can be identified by their IP addresses and/or

symbolic names.

• Interaction between signaling applications and GM.

• Storage and maintenance of the name binding state, without modifying the routing

state information used by EGIST for routing messages towards the group members.

• Extension of EGIST APIs to handle point-to-multipoint message delivery.

Destination Endpoint Exploration Protocol (DEEP) was added by GANS and it is used to

get the IP address corresponding to a given symbolic name [25]. To translate symbolic

names into IP addresses, DEEP relies on existing name resolution systems (e.g. DNS).

Figure VII.2 presents a scenario where Nodel in Networkl wants to get the IP address

associated to the symbolic name: ServiceY@Network2. Nodel, Node2, Node3 and

Node4 are DEEP nodes. Nodel issues a name resolution request (i.e. DEEP EXPLORE

message), that it sends to the next DEEP node (i.e. Node2). Node2 uses a local name

resolution system (e.g. DNS) to resolve the "Network2" part of the symbolic name into

the IP address of a Network2 gateway (i.e. Node3). Node2 then sends the EXPLORE

request to Node3. Node3 also uses a local name resolution system to resolve the

"ServiceY" part of the symbolic name into the IP address of the node that provides

ServiceY (i.e. Node4). The request is then forwarded to Node4, which will send a

RESPONSE message with its IP address, directly to Nodel. Nodel address is included in

the EXPLORE message.

119

Nodel

Network =fcs:iutcr ! * . ' ;' Ner.vc-:k2
;5ou*c=; se-vios f (Destination

; NccleS /
t • ' * •

'V_^ _ " -̂-̂ ^
Neofrl

•+ DEEP EXPLORE

** DEEP RESPONSE

Figure VII.2: Name resolution using DEEP.

VII.1.2 Messaging layer APIs

The messaging layer Application Programming Interfaces (APIs) are the collection of

group management and N-EGIST APIs. These are discussed below.

A. Group Management:

The group management module provides the signaling applications with four APIs:

• Create_group: creates a communication group, to enable communication with more

than one destination (e.g. in case of one-to-many negotiation). This API takes as a

parameter the list of symbolic names and/or IP addresses of the destination entities.

Each group has a unique identifier.

• Add_member(group_id, name, ip): Adds a new member -identified by its name or IP

address- to a created group.

• Remove_member(group_id, name, ip): removes the member identified by its name or

IP address from a given group.

• Change_member_ip(name, ip): If a group member changes its IP address and the

application somehow becomes aware of the new address, it uses this API to make

necessary changes to the stored routing state.

120

B. N-EGIST

N-EGIST APIs are backward compatible with EGIST APIs. In fact, N-EGIST provides

the same primitives as EGIST, but it adds new parameters and slightly changes the

semantics of some parameters. This section presents only the changed primitives, with a

focus on the new and modified parameters.

• SendMessage: Is used by the signaling applications to send a message to one or more

destinations. It has two new parameters: groupid and minresp. Groupid identifies

the group to which the message should be sent. Minresp is the minimum number of

different responses that N-EGIST must receive before responding to the application.

The Timeout parameter, already defined by GIST, is used as the length of time the N-

EGIST layer can wait for min_resp responses.

• RecvMessage: Is used by N-EGIST to transmit received messages to signaling

applications. In the case of a response, N-EGIST verifies if this belongs to an

application that requires min_resp responses. If this is not the case, the response is

directly transmitted to the application. If the response belongs to an application that

requires min_resp responses, N-EGIST waits until it gets the minimum required

responses, or the waiting timeout expires. Then, it creates a list containing the number

of the responding parties along with their names and responses and passes it to the

signaling application.

121

VII. 1.3 Routing information

NSIS ~ and thus GANS ~ framework uses the Message Routing Method (MRM) to

specify how signaling messages are routed towards the destination. MRM is provided by

GIST, whose design supports multiple MRMs. Signaling applications indicate to GIST

the MRM to be used for message forwarding. The default MRM used by NSIS

framework is path-coupled, where the signaling messages follow the data-path. GANS

has added an MRM to enable the use of symbolic names and allow the exchange of non

data flow-related signaling messages. We add a new MRM to N-EGIST, in order to allow

message delivery to all the members of a given group. N-EGIST gets the IP addresses of

the group members and sends the message to each of them. The addresses of the group

members are stored in the routing state table when the group is created. Updating of the

name binding state is done in a similar manner as in GANS.

VII.2 An NSIS based Signaling Application for Registry Composition (SARC)

The primary function of SARC is to enable the exchange of messages related to registry

composition —encapsulated in SARC messages— between communicating peers. SARC

architecture includes two entities: Requestor and Responder. The Requestor is the entity

that sends a request and the Responder is the entity that responds to the request.

Signaling for negotiation and for agreement execution is end-to-end. Therefore, SARC

provides an end-to-end message delivery. In other words, the communication between the

Requestor and the Responder may go through a number of intermediate nodes, but the

signaling messages are terminated only at the destination node (Figure VII.3). The

122

forwarding of SARC messages is performed at the transport layer and their content is not

visible to the intermediate nodes.

Requestor

t 1
1 ir

SARC

4 .

1 •
Messaging

Layer
. 1 " I

Transport-
Layer

•

I

Transport-
Layer

Transport-
Layer

^

Responder

^

SARC

A ,

} \
Messaging

Layer
4 i

t J Transport-
Layer

Figure VII.3: Signaling entities and topology

The following sub-sections present the SARC APIs, describe SARC message types and

formats, and discuss the SARC end-to-end behavior.

VII.2.1 APIs

SARC provides the group management primitives described earlier, plus the following

two interfaces:

• SendMessage: Used by negotiating entities to send a message to peer entities. Its

main parameters are the type and the payload of the message to send, minresp, the

ID of the destination group (for sending requests), the destination IP address and

name (for sending responses), the decision model to use for the negotiation and the

negotiation approach.

123

• RcvMessage: Used by the SARC to pass the content of a received message to the

local negotiating entity.

VII.2.2 Message types and format

SARC messages consist of a common header, which indicates the message type, followed

by a body made up of a variable number of Type-Length-Value (TLV) objects. This

structure makes them flexible and easily expendable.

SARC messages are of two types: CANegotiation and CAExecution. CANegotiation

messages are used for CA negotiation, whereas CAExecution messages are used for CA

execution. Each of the two message types has sub-types. These sub-types are as follows:

• CANegotiation sub-types: Initiate, Ok, Ack, Offer, and Bye.

• CAExecution sub-types: ActivateNode, ConfigOvNode, Join, and Quit.

The Initiate message has three main TLV objects: Local Information, Conditions and

Negotiation Model. Local Information includes the information that is local for each

network and which is necessary for the creation of the agreement proposals. It includes a

list of Registry Information objects, where each Registry Information object describes a

registry in the composing network. It includes the registry type, IPDI, and address. The

Conditions object includes the Initiator conditions (if any) concerning the negotiation

(e.g. an agreement is reached only if it is accepted by all of the participants). The

Negotiation Model object includes information about the negotiation model to use.

Examples are the negotiation approach and the decision model.

Offer includes the definition of two objects: Offer Identifier and Offer Data. Offer

Identifier is a cryptographically random identifier chosen by the entity that created the

offer. Offer Data includes the offer content, and it may be itself a set of TLV objects.

124

Each Ok and Ack message carries a TLV INFO object, which contains a response code

and the corresponding object. The defined codes are as follows:

o Oxl: Accept

o 0x2: Reject

o 0x3: Agreement

o 0x4: Error

To each of the Agreement and Error codes corresponds a TLV object of the same name.

The Agreement object includes three main objects: Agreement Identifier, Agreement

Data and Agreement Validity Time. The first two objects are similar to Offer Identifier

and Offer Data. Agreement Validity Time specifies the time after which the agreement is

no longer valid.

Error has as object Error Data, which includes the error description. A message carrying a

Reject code may transport a Reason object, which describes the reason of the rejection. A

message with an Accept code may carry a Local Information object (i.e. when the

message is a response to an Initiate message, sent from a destination participant to the

mediator to accept the negotiation).

The ActivateNode message carries the list of the registries supporting the same IPDI as

the message destination. Each registry is described using a Registry Information object.

ConfigOvNode also uses a Registry Information object to carry information about the

overlay node (e.g. IP address). The Join and Quit messages carry a Registry Information

object, describing the registry that want to join or quit. If the Quit message is sent by an

overlay node, it should also include the list of the registries that are served by the quitting

125

node (i.e. the registries belonging to the multicast group maintained by the quitting

overlay node).

VII.2.3 End-to-end behavior

Figure VII.4 presents the procedure for a requestor sending a one-to-many message.

SARCi and MLi are the signaling application and the messaging layer on the requestor

side. At the destination side, the messaging layer gets the message, records the state

information, processes the message (e.g. verifies if minres is required), and passes it to

the Responder.

When creating the destination group, if any of the destination entities is described only by

its symbolic name, the messaging layer uses DEEP to get the corresponding IP address

(as described in GANS [25]).

126

Requestor (Ri)

Create destination
group (Gi)

MLi sends m2 to each of the
Gi members

MLi gets Gi members addresses
from state database

Ri passes the message (mi) to
send to SARCi using

SendMessage primitive

MLi encapsulates mi in an
appropriate ML messages m2

SARCi creates a
new session

Yes MLi creates a
new ML session

Nes

SARCi passes the
message to MLi

Figure VII.4: Sending a message to multiple destinations

VII.3 Conclusions

In this chapter, we have proposed a general signaling framework for registry

composition, based on the NSIS framework. The main extensions we have made are the

127

support of point-to-multipoint message delivery and the definition of a new signaling

application for registry composition.

The proposed framework benefits from the GANS and NSIS framework advantages and

fulfills all of the signaling specific requirements. It supports both the negotiation of

registry composition and the execution of the agreement reached. It is lightweight (NSIS

is a lightweight framework) and it supports symbolic names and session mobility. It is

modular, extensible and independent of the negotiation model. It allows the exchange of

the negotiation agreements and proposals. It separates the semantic of the signaling

application from the message delivery. It enables the usage of existing and standard

transport protocols (e.g. TCP, UDP). It supports flow-dependent and flow-independent

signaling applications.

128

CHAPTER VIII: Proof of concepts and evaluations

In the previous chapters, we presented a general architecture for registry composition, an

architecture for information publication and discovery after composition, a negotiation

architecture to negotiate registry composition, and a signaling framework for agreement

negotiation and execution. A part of this thesis, we validated the general architecture and

the information publication and discovery architecture through proof-of-concepts

prototypes, in order to show the feasibility of the main concepts (i.e. protocol deployment

on-the-fiy and registry overlay network, respectively). For the negotiation architecture,

we formally validated the negotiation protocol. The signaling framework scalability was

validated via simulations, in order to be able to capture the behavior in large scale

networks (compared to a prototype) and under different circumstances (e.g. different

scenarios).

This chapter focuses on the proof-of-concept prototypes and evaluations. It starts by the

prototype related to the overall architecture. Then, it presents the prototype related to

information publication and discovery. It concludes after that.

129

VIII. 1 General architecture

For the validation of the general architecture, we focused on the on-the-fly protocol

deployment, since it is required by the two registry intercommunication approaches (i.e.

gateway and protocol deployment).

Programmable networks can enable on-the-fly protocol deployment. For this reason, we

used them as the foundation of our architecture. This section starts by a short overview of

network programmability, as background information. After that, it discusses how to

deploy a new protocol on-the-fly, using network programmability. Then, it presents a

software architecture that will enable this deployment. After that, it presents a prototype

implemented using this architecture.

VIII. 1.1 Background on network programmability

Network programmability refers to the ability to inject executable mobile code into the

network elements (e.g. router, switch), to create new functionalities at run time [76]. It

enables the realization of application-specific service logic, or the performing of dynamic

service provision on demand. Active networks are programmable networks, extensible at

runtime, and they can accommodate the rapid evolution of protocols and services

required by applications [77] [78] [79].

Many active network architectures use mobile code technologies. There are three

approaches for active networking realization: active packets, active nodes and active

packets and nodes. In the first approach, transmitted packets carry the code to be

executed in the intermediate nodes. In the second approach, the packets carry the

reference to predefined functions that reside in the active nodes. In the third approach,

130

predefined and more complex code resides in the active nodes, where as specific and less

complex code is carried by the active packets.

To deploy a new protocol in active networks, two approaches are possible: in-bound and

out-bound [77]. In the in-bound approach, the protocol deployment is done in the same

flow as the data flow, using active packets. Active packets carry the data to be

transmitted and the protocol to execute in the crossed active nodes. In the out-bound

approach, the protocol deployment is done in a separate flow. This approach uses active

nodes and can achieve protocol deployment in two ways: The protocol can either be

injected into the first node and gradually propagated from one node to another on the first

packet path using this protocol, or downloaded from a protocol server.

There are many programmable network platforms such as DINA [80], ANTS [81],

CANES [82] and PLANet/SwitchWare Management [83]. A review of these platforms

and others is given in reference [76]. Our implementation architecture is based on DINA.

We have chosen DINA because it is freely available and it allows the usage of JAVA, as

opposed to proprietary languages or technologies used by some of the other platforms. It

is also more flexible in term of the active functionalities provided, as opposed to the other

platforms where the protocols to deploy are limited to those that can be created using the

primitive "functions" or "services" provided by the active nodes. Furthermore, DINA

allows the usage of "active packets" and "active packets and nodes" approaches. This

gives more flexibility compared to the other platforms that support only one approach.

DINA is a programmable network platform that enables the deployment and management

of programmable services [80] [84]. It can be attached to different types of network

nodes (e.g. routers, media gateways) and makes them active nodes. The main components

131

1 Execution Environment

Active Session 1

Session
Bioker

Interface

Information
Brokc-i

interface

-A-A-
Dr.i-i i- ' l P ••• I -H i

•

Divertor

Session
Broker

1 '

L

Active Session2

Session
Broker

Interface
¥

Control
Broker

Interface

Information
Broker

'

i

r

L

Control
Broker
1

1
k

QoS
Broker

I A
1 ,

T !

OS

Figure VIII. 1: DIN A architecture

of DINA are the active sessions, that present the active code to be executed, and a set of

brokers that enable active sessions to get information from and control the managed

nodes (Figure VIII. 1). When an active packet reaches an active node, it is diverted to the

session broker. The session broker will then create an active session that will execute the

code of the active packet.

vra.i.2 Protocol deployment on-the-fly

To enable the automatic deployment of protocols, as part of enabling registry

intercommunication, we propose the following solution: for each network, we use a

protocol server where we store the IPDI of the local registry, the standard protocol,

and/or the interworking protocol(s) needed for gateway creation. We assume that the

gateway solution is chosen only if the required interworking protocols are available in the

network (i.e. thy are not created on the fly, due to the significant overhead that would be

generated).

132

When protocol deployment is needed, RCEs negotiate the protocol to deploy and use one

of the protocol deployment approaches provided by active networks to make the protocol

available. The protocol agreed upon is downloaded to all appropriate nodes (registries

and/or gateways). This deployment is enabled by the software architecture presented in

the next section.

VIII. 1.3 Software architecture for protocol deployment on-the-fly

The software architecture that we propose is based on DINA. The main service

components of our architecture are the policy server, the protocol installer and the

installation broker (Figure VIII.2). The policy server and the protocol installer

components are added to the RCEs. The policy server includes and manages the policies

that regulate the registries' composition. The protocol installer is part of the composition

manager entity and is responsible for the initiation of the protocol installation. The

installation broker is added to the DINA platform on the gateway/registry side to enable

and control the actual protocol installation and activation.

Figure VIII.2 presents a scenario for deploying a protocol that resides in a protocol

server. After the composition agreement is created, the protocol installer creates the

active packet that is sent to the node where the protocol must be installed (steps 1 and 2).

When this packet is received by the session broker on the gateway/registry side, an

installation active session is created to execute the active code (step 3). It will start by

downloading the required protocol, and then use the installation broker to install and

activate the new protocol in the current node (steps 4,5,6 and 7, respectively).

133

Session Broker
I
I
I
i
1 . . -
I
I
J . . .

I M \ \

RCEOS

- 4

Protocol
Server

_v

!v 5 / Installation
1 Session
-K_

r*

i
:-l 6

Installation Broker

J
i

Session Broker
DINAi

I
l

. -7 L .

GW/Registry OS \

_ L

Figure VIII.2 : Protocol deployment using DINA

VIII.2 Prototype

VIII.2.1 What is implemented

As a prototype, we implemented the scenario in Figure VIII. 3, where a printing

application installed in the laptop needs to use the printer in Net-2. To this end, the

application has to get the printer address, which is stored in the Net-2 local registry. The

registry (Rl) of Net-1 is a distributed registry and uses Chord [34], a P2P protocol, for

information discovery and publication. Registry (R2) of Net-2 is implemented as a UDDI

registry and the printing service is implemented as a web service that is published to the

UDDI registry.

134

The UDDI (Universal Description, Discovery and Integration) registry provides standard

specifications for a web service registry [7]. A web service is a "software system

designed to support interoperable machine-to-machine interaction over a network' [85].

The web service architecture is based on the interaction between three roles: the service

provider, the service registry and the service requestor. The service provider creates a

web service and publishes its description to the service registry. The service requestor

discovers the web service by consulting the service registry, binds to the service

implementation and starts using the service. Communication between the three roles is

carried out using Simple Object Access Protocol (SOAP) messages [86]. The most

widely used transport protocol for SOAP is the HTTP protocol.

In the implemented prototype, the service requestor is the laptop, the service provider is

Net-2, the service registry is R2 and the web service that we are interested in is the

printing service. To access the R2 content, an implementation of UDDI APIs is used.

These APIs are used for publishing, discovering, and managing information about web

services. The R2 protocol stack is SOAP 1.1/HTTP 1.1. This represents the stack of

protocols (and their respective versions) used by the registry, in order to enable

communication with the service provider and requestor.

To use the printing web service, the client (i.e. the laptop) has to start by discovering the

service, through Rl. Since Rl does not include a UDDI APIs implementation, the laptop

is unable to discover the existence of the printing web service. So, at composition time,

Net-1 and Net-2 decide to make the laptop UDDI client compliant (i.e. the laptop

becomes the gateway between Rl and R2). Then, using the implementation architecture

presented earlier, the client UDDI APIs are installed in the laptop, as is the protocol

135

SOAP 1.1 because the laptop does not initially support this protocol. We assume that the

laptop supports HTTP 1.1. The client UDDI APIs are installed to enable the laptop to

communicate with the UDDI registry. HTTP and SOAP are required for service

discovery and execution.

For this prototype, we assume that the composition agreement has already been created

and that it consists of automatically deploying the UDDI APIs and the SOAP protocol.

We also assume that the RCE that initiates the protocol deployment knows the address of

the protocol server, and knows which port number on this server to use to download the

protocol to deploy. At the end of the composition, the laptop will automatically discover

the existence of the printing web service, and the document is automatically printed using

this service.

Figure VIII.3: Implemented scenario for protocol deployment
on-the-fly

VIII.2.2 How it is implemented

The protocol installer component of the protocol deployment architecture, is

implemented via the class Protocollnstallerlnterface. This class has one main public

method: createlnstallationPacket. This method is responsible for creating the active

packet to send to the registry, in order to ask it to install a new protocol. The active

136

packet includes the protocol server address and port number and the name of the protocol

to deploy.

The installation broker is implemented by the class InstallationBrokerlntcrface. This

class provides the functionalities required to download and install the new protocol. Its

main methods are:

• downloadProtocol(String protocolName, InetAddress protocolServerAddress, int

portNumber): This method downloads the protocol identified by the protocolName

parameter, from the protocol server located at the IP address and port number

specified in the parameters protocolServerAddress and portNumber, respectively. It

also downloads the active code that will generate the installation instructions.

• createSetupFile(String setupActiveCodeFileName): This method will search for the

file named by the setupActiveCodeFileName parameter in the downloaded protocol

directory. This file is used to generate a setup file, named setup.exe, which will be

used to install the new protocol. The setup.exe file must be created on-the-fly because

it is dependent on some local parameters that can be only determined at run time (e.g.

the directory the protocol is downloaded into, the directory where the DINA platform

is running).

• installProtocol (String protocolExecutablePath): This method will look for and

execute the generated setup.exe file, located on the path specified by the

protocolExecutblePath parameter. Installation and activation of the new protocol is

the immediate result.

• downloadAndInstallProtocol(String protocolName, InetAddress

protocolServerAddress, int portNumber): This method downloads the protocol

137

identified by the protocolName parameter, using the method downloadProtocol.

Once the protocol is downloaded, it is installed by calling the createSetupFile

method, then the method installProtocol.

After the new protocol is downloaded, it is saved to the local file system before being

installed. This is done via the FileBrokerlnterface class. The FileBrokerlnterface is

used by the active session to access the local file system. It is introduced to maintain the

separation between the local system and the active session. This will facilitate session

monitoring and control of the access to the system. It provides two methods:

• createDir(String newDirName, String ParentDir): This method creates a new

directory named newDirName if the directory does not already exist. If the directory

cannot be created, this method generates an exception to explain the failure reason.

• saveFile(String JileName, File parentDir, String info, Boolean append): This

method creates a new file named filename, if one does not already exist. Then, it

either overwrites the existing file or appends the info content based on the append

parameter.

138

Figure VIII.4 presents the sequence diagram for protocol deployment. It presents the

main steps and classes used for deployment. The class FileBrokerlnterface is not

presented in this diagram for the sake of clarity.

:CreateInstallationPacket :SessionBrokerInterface
(RCE side)

:ActivePacket

createActivePacket(

the active packet

the active packet

:SessionBroker
(Registry side)

the active packet

: installationBrokerlnterface

:ActiveSession

initiateActiveSessionf...)

downloadAndInstalProtdcol(...)

installProtoc

do wrlloadProtocol(...)

the protocol

>l(theProtocol)

D

Figure VIII.4 : Sequence diagram for new protocol deployment

VIII.3 Information publication and discovery after composition architecture

We focused on the interface interworking architecture, since it is also used as basis for

data interworking. In particular, we describe the implementation and creation of the

overlay network, and the information publication and discovery procedure. This section

presents the software architecture of the virtual registries and describes the implemented

prototype.

139

VIII.3.1 Architecture of the virtual registries

The architecture of a virtual registry is presented in Figure VIII.5. The Overlay-

Application module includes the intelligence and the logic required for information

discovery and publication. The IPD-Service module with the IPDI provides the "Registry

Interface" of the virtual registry. The Overlay-Service module with the overlay protocol

provide the "Overlay Interface". The "Registry Interface" is used to communicate with a

registry that supports the same IPDI as the overlay node to which the application belongs.

To communicate with a registry that supports a different IPDI, the application identifies

the overlay node that supports the same IPDI as the target registry and sends the message

to it. This node will then transmit the message to the target registry and send the

response, if any, back to the initiating node.

The re-director module is added to each registry, to enable registries to redirect the

requests received from clients to the RON when needed.

Virtual Uof>istrVj

A
Overlay

Application

IPD Service

^

Service Layer Overlay Service

Protocols lavcr
S

Overlay Protocol

Re-director

RL-;II Rcuisir\
(M'Dli)

Virtual Registry)

Figure VIII.5: Architecture of an overlay node

140

Next sub-section presents the application programming interfaces provided by the service

layer of the architecture

VIII.3.2 Application Programming Interfaces (APIs)

Two types of APIs are provided by the service layer: APIs provided by the IPD-Service,

and APIs provided by the Overlay-Service.

IPD-Service APIs: Used by the overlay-application to communicate with a registry that

supports the same IPDI, they are:

• Get_description_request: Gets the description of the registries given as parameters.

• Publish_info_request: Publishes information to a given registry.

• Retrieve_info_request: Retrieves information from a given registry.

• Send_response_request: Sends a given response to a given registry. The response

may be created by the local overlay application or received from another post-

composition or virtual registry. It can be of any type, such as: the requested

information (e.g. in the case of information discovery), a success response (e.g. the

information was correctly published) or an error response.

Overlay-Service APIs: Used by the overlay-application to communicate with another

overlay-application (the last two methods), or with a post-composition registry that

supports a different IPDI (the first three methods), via another virtual registry.

The first three primitives "PubIish_info_request", "Retrieve_info_request", and

"Send_response_request" are similar to the primitives of the same name presented

above. The only difference is that overlay-service APIs are used to send a message to a

registry with a different IPDI. The other two methods are:

141

• Publish_description_request: Publishes a registry description to the overlay

network.

• Find_registry_request: Finds the registry that stores given information, by

interrogating the overlay network.

VIII.3.3 Prototype

As proof of concept, we implemented the scenario presented in Figure VIII. 6 (the

scenario was already described in chapter 5).We consider that the registries Rl, R2, R4

and R5 are centralized. R3 is a P2P registry. This section discusses how the virtual

registries and the registry redirection modules are implemented, describes the end-to-end

behavior that summarizes how the RON is created and how the printing application gets

the requested information, and presents the performance evaluation.

Figure VIII.6: Implemented scenario for registry overlay

142

VIII.3.3.1 Modules implementation

Virtual registries: The implementation of the virtual registries is based on JXTA

middleware [87]. It is a set of open protocols that allow devices on the network to

communicate and collaborate in a P2P manner. We have chosen JXTA because it is

platform-independent, it allows an extensible and expressive description of the different

registries (i.e. the descriptions are not limited in the type and amount of information to

include) and it supports all types of network devices (e.g. PDAs, computers).

The Peer Discovery Protocol (PDP [87]) of JXTA is used as the overlay protocol of our

architecture. In JXTA, PDP is used to publish and discover resource advertisements. A

resource can be a peer, a peer group, or any resource or service that has an advertisement.

An advertisement is a meta-data document used to describe resources. JXTA

advertisements are presented in XML. In our case, the resources to advertise are the

different registries. Figure VIII. 7 shows the advertisement template we used to describe

the different registries.

The implementation of the virtual registries includes the implementation of the related

modules and APIs, and the related procedures, except those for RON churn and super-

node selection.

143

<RegistryAdv>

<Id> registry unique id </Id>

<Name> registry name (optional) </Name>

<registryAddress>

<address>the registry address (e.g. ip address)</address>

<port> registry port number </port> </registryAddress>

<registryType/>e.g. UDDI registry V3 </registryType>

<infoType>e.g. web services descriptions</infoType>

<infoDescription/> e.g. printing web service. A registry advertisement can

include more than one inoDescription elements. </infoDescription>

<repOvNode> provides information about the overlay node to use, in order to

communicate with the advertised registry</repOvNode>

</ RegistryAdv >

Figure VIII.7: registry advertisement template

Registry re-director module: The re-director module is implemented with the related

functionality. It includes two sub-modules: the "redirectorLogic" that implements the

necessary logic to enable real registries to redirect the requests received from clients to

the RON, and the "redirectorlnterface" that enables communication between the first

module and the traditional registry or an overlay node. The "redirectorLogic" provides

two main functions:

144

• setRepOvNode: configures the address of the virtual registry to which to redirect the

received requests, when necessary. It is called when the RON is created: when a

virtual registry VRi receives an activation message from the RCE, it sends two

messages to the members of MGi: "Getdescrition" to retrieve the registry's

description and "ConfigOvNode" to initiate the execution of the setRepOvNode

function.

• processRequest: processes the received requests (i.e. publication or discovery

requests), by executing the corresponding procedures. It is called when a new request

is received.

VIII.3.3.2 End-to-end behavior

The RCE creates four multicast groups (Figure VIII.8). Then, it chooses Rl, R2, R3 and

R4 as overlay nodes, which it will activate in order to act as VRI, VR2, VR3, and VR4,

respectively (i.e. this activates the virtual registry modules already installed in these

nodes). In the activation phase, each VRi gets the description(s) of the registry(ies) it

represents and publishes it(them) to the overlay network using the JXTA platform. It also

sends an activation message to the appropriate re-director module, in order to configure

the address of the representing overlay node.

When the printing application sends a request to Rl, the request is received by the re-

director module of Rl (Dl). Dl interrogates Rl for the requested information and gets a

null answer (Rl does not have the information). Then, Dl redirects the request to VRI,

and VRI uses the JXTA capabilities to discover the registry that maintains the requested

information (i.e. R3) and to send a Retrieve_information message to it. The response is

sent back to the application through VRI and Dl.

145

Group: 1
[
Rl: [IPDI=SQL, ipAddress=l92.168.0.100, port=5200]

]
Group:2

[
R3: [IPDI=PDP, ipAddress=192.168.0.101,port=4221]

Group: 3
[
R2: [IPDI=JDOQL, ipAddress=l92.168.0.102, port=5202]
R5: [IPDI=JDOQL, ipAddress=l 92.168.0.103, port=5202]

]
Group: 4

[
R4: [IPDI=UDDI, ipAddress=192.168.0.105, port=5204]
]

Figure VIII.8: Multicast groups created

VIII.3.3.3 Performances evaluation

We measured the total time needed for RON creation (Tron-Creation) and the time overhead

for information discovery via the RON (T0Verhead)- Toverhead is the difference between the

time needed to discover information in R3 via the RON and the time needed if the client

(i.e. the printing application) has a direct access to R3.

We used the following configuration for running the prototype: Each registry (i.e. the

actual registry and the re-director module) is running in a different machine, whose

characteristics vary between machinel (Pentium 4 CPU 2.66 GHz, 512 MB of RAM) and

machine2 (Pentium M CPU 1.73 GHz, 504 MB of RAM). The RCE is running on

machine2.

Tron-creation is calculated using formula (1). Tmg and T„d are the time needed to create the

multicast group and the longest time to activate an overlay node, respectively. The

146

messages' transmission and propagation times are not considered. Tron-creation does not

depend on the number of the overlay nodes to activate, because these are activated in

parallel (i.e. via a multicast activation message). The measured Tmg is almost Oms. The

T„d average measured is 4ms.

rron-creation ~ 1 mg "*" Ind v U

ôverhead average is 1.3s. Most of this overhead is introduced by the execution of the

find_registry procedure. The average of Tfmd-registry is 1.1s, which is the time used by the

JXTA platform to discover a given information. This is somewhat high, due to a problem

we encountered when using JXTA: we were unable to discover a registry description

based on its attributes (e.g. infoDescription). Only a discovery based on the description

Unique ID is possible. Therefore, to implement the registrydiscovery procedure, we

started by discovering the list of all of the existing descriptions, and then we selected the

appropriate one by going through the list and comparing the attributes of each component

to the attribute values provided.

VIII.4 Conclusions

In this chapter, we proposed a software architecture for protocol deployment on the fly

and described the application programming interfaces provided by the service layer of the

architecture of the virtual registries that make up the overly network for information

publication and discovery after registry composition. We also described implemented

prototypes for protocol deployment on the fly and for the information publication and

discovery architecture.

147

Some important lessons were learned. First, DINA seems to provide a flexible platform

for the implementation of active nodes. The new designed deployment architecture seems

to be very promising for software deployment on the fly. It can basically be used to

install and activate any software or protocol, provided that the installation don't require a

re-boot of the machine and all its required actions can be executed using a combination

of the functionalities provided by the Java Virtual Machine and the Operating System.

Second, JXTA seems to provide a suitable platform for implementing the overlay nodes,

in the case of P2P and centralized networks. However, it may not be suitable for Mobile

Ad-hoc NETworks (MANETs). Indeed, JXTA does not efficiently support highly

dynamic environments, where nodes frequently leave and join the network.

148

CHAPTER IX: Formal validation, simulations and
evaluations

This chapter starts by presenting the formal validation of the negotiation protocol. After

that, it presents the scalability validation of the signaling framework, using simulations.

The conclusion is presented after that.

IX. 1 Negotiation architecture

For the validation of the negotiation architecture, we focus on the negotiation protocol,

because it is the core component of the architecture. We start by presenting the validation

environment used. Then, we present the validation models, define the correctness

requirements to validate and describe the validation process and results.

IX. 1.1 The validation environment

The validation is conducted using SPIN -Simple PROMELA INterpreter- [88]. It is a

software tool for simulating and validating programs written in PROMELA. PROMELA

is a language for modeling the interactions of processes in a distributed system. It is

defined at a high level of abstraction, which allows designers to focus on the system

design than in its implementation. PROMELA programs are called validation models.

149

PROMELA allows also the description of the correctness criteria about the behavior of

the validation models. These criteria can be expressed using two types of claims: they can

either be formalized as inevitable or impossible behaviors. In PROMELA, the correctness

criteria are expressed as behaviors that are claimed to be impossible.

SPIN includes two modules: simulator and validator. The simulator simulates the system

behavior by interpreting the PROMELA program on-the-fly. The validator validates the

model through an automatic application of the correctness requirements. There are two

main methods of validation: exhaustive search and controlled partial search. In the

exhaustive search, all reachable states of the interacting finite state machines of the

system to validate are explored. In controlled partial search, only a partial set of these

sates are analyzed. The states to analyze are selected in such a way that all major protocol

functions are tested. This technique is used when the system size does not allow the usage

of the exhaustive search.

IX. 1.2 Validation models

PROMELA models: We developed PROMELA validation models for the mediator, the

participant and the C-FE that initiates the negotiation. The first two models are based on

the behavior of the protocol entities (i.e. mediator and participant). The third model is

used only to send the triggering message -tg_Initiate- to the initiator.

We assume that the mediator and the participants are connected via a reliable link (when

they are reachable), so that no messages are reordered or duplicated. To release this

assumption, we can use a layered architecture where our protocol layer uses an under

layer transmission module that takes care of putting the received messages in the right

150

order and of removing the duplicated ones. An example of a such module is given in [88].

The usage of the transmission layer will not affect the behavior of our models.

We also assume that the composition agreement is created only when all of the

participants reach a common agreement. The only starting condition completely modeled

is the fact that the number of the accepting participants (i.e. participants that accepted the

negotiation) must be at least equal to a configurable variable min_participants

(min_participants' default value is 2). Starting conditions are the conditions for the

negotiation to take place. The details of the other conditions are part of the internal

processing of the mediator and they cannot affect the external behavior of the model

used. Nevertheless, to model the general case, we used a non-deterministic choice

between successful and fail, when verifying if the starting conditions are met.

The use of non-deterministic choice may result in choosing the successful case, even if

only one participant is in the session. To avoid this, we used the non-deterministic choice

only in case the number of participants in the negotiation is equal to min_participants or

more. This is modeled as follows:

if
::(nbrjparticipants < min_participants) ->

goto Fail;
::else ->

if
::True -> goto Fail;
::True -> goto Success;

fi
fi
Fail: /*processing for the negotiation rejection (if in the initiation phase) or termination

(if in the negotiation phase)*/

Success: /*continue the negotiation process*/

151

To model the case of entities quitting the negotiation, we used a non-deterministic choice

between sending the actual message (if the entity is interested in continuing the

negotiation), or the Bye message.

Communication channels: The models include the definition of three main channels of

communication: cfe_to_initiator, tomediator and to_participant. cfe_to_initiator is used

to send the triggering message tginitiate to the initiator. to_mediator is used by the

participants to send messages to the mediator. For the mediator to figure out which

participant sent him a given message, each participant is given a unique id within a

negotiation session, and each message includes the id of its sender.

To send a message to all of the participants, the mediator needs a point-to-multipoint

channel. However, PROMELA channels are only point-to-point. To model the point-to-

multipoint, we used a different channel for each participant. We then declared the

to_participant as an array of channels as follows:

chan tojparticipant[max_participants_number] = [QSZ] of {byte,byte}. QSZ is the

maximum size of each channel. Each message sent by the mediator includes the message

type (e.g. Ok) and the information conveyed by the message (e.g. Reject). The channel

associated to each participant is indexed by the participant id. For instance, the messages

intended to the participant whose id is 5 are written/read to/from to_participant[5].

Timeout simulation: our system includes two types of timeouts: negotiation timeout and

message timeout. The negotiation timeout is the timeout after which the negotiation is

aborted if no agreement is reached. The message timeout is the timeout that an entity

152

waits for a message, before it declares the message source unreachable. The first timeout

is modeled by the maximum number of times that the negotiation phase can be repeated.

The timeout is formalized as an integer that is incremented each time the mediator creates

an offer. The timeout fires when its value reaches a configurable upper-limit. The second

timeout is modeled by combining the default timeout of PROMELA and the simulation

of an entity never sending a given message. The default PROMELA timeout gives the

possibility to make an entity stop waiting for a message that can never be received. To

simulate an entity never sending a message, we used a "thief process that steals the

messages sent by this entity. This process is modeled as follows:

proctype Thief(int p_id) /*p_id is the id of the participant from which to steal messages*/

{

do

::toParticipant[p_id]?msg_type(process_id,msg_sub_type)

::toMediator?msg_type(msg_sub_type)

::skip

od

}

The Thief process randomly chooses to steal the current message sent to the mediator, to

the participant identified by p_id, or do nothing.

IX.1.3 Correctness requirements

The negotiation process can either terminate with a successful result (i.e. agreement

reached), or with an error. The first requirement (Rl) that we want to validate is that the

protocol is deadlock-free, there is no wrong unreachable statement (i.e. a statement that

must be reachable but it is not), and that the mediator and the participants go back to the

153

initial state (i.e. idle), in the two cases of the termination (i.e. success and error). To this

end, we mark the idle state as the only valid end-state for the two entities.

As a second requirement (R2), we are interested in validating that each started

negotiation phase is correctly terminated and that the negotiation phases are always

executed in a correct order. The initiation phase is started when the Initiate message is

sent (for the initiator) or received (for the mediator and destination participants), and

terminated by sending necessary Ack(s) (for the initiator and the mediator) or by

receiving an Ack (for the destination participants). An initiation phase is said to be

successful if it results on the acceptation of the negotiation (i.e. an Ack{Accept) is sent to

the destination participants and received from the initiator). The negotiation phase starts

at the end of a successful initiation phase. It terminates when an agreement is reached or

an error occurred. The termination phase starts at the termination of the negotiation phase

and terminates by sending (receiving) the final Ack(s) by the participants (the mediator).

To validate for instance that the negotiation phase always starts after the initiation phase

has been successfully completed, we instrumented the validation models by adding a

variable "successfullnitiation" to them. This variable is initialized to false and is turned to

true only when the initiation phase is successfully completed. To validate our

requirement, we added the statement Assert(successfullnitiation) to the mediator and

participant models, just before they start the negotiation phase. The added statements

(e.g. variable definition and assertions) are used only for validation and they do not affect

the protocol correctness.

Our third requirement (R3) is about the correctness of the different negotiation phases,

when all the negotiating entities are reachable during the whole negotiation process. For

154

the initiation phase, we want to validate that the mediator and the participants always

respond to an Initiate message, with a Reject or Accept message within a finite amount of

time. Similarly, in the negotiation phase, the responder should always respond with

Accept or Reject to the received Offer messages, within a finite amount of time. These

requirements are formalized using temporal claims. The claim in Figure IX. 1 formalizes

the requirements on the responder. It specifies that the following responder behavior is

absent from the model: the participant never receives an Initiate or an Offer message, or it

receives any of them and never responds to it, neither by Accept nor by Reject. Seen that

all of the participants have a symmetric behavior, the requirement was applied only to the

participant with the id 1. The requirement for the mediator can be formalized in a similar

way.

A similar procedure is followed to validate that each started negotiation session is

correctly terminated (R4). The session is created after the initiation phase is successfully

terminated, and is finished at the end of the termination phase. This can be formalized by

specifying that the following behavior is impossible: the session is never created or there

is a case where it is created and never/wrongly terminated (i.e. because the negotiation or

the termination phases never end).

Our last requirement (R5) is that the case of entities quitting the negotiation (i.e. by

getting unreachable or by sending a Bye message) is handled correctly. This means that

whenever an entity quits the negotiation, the system executes a correct sequence of

statements and goes to a correctly stable state in a limited number of steps. We also have

to re-verify the previous properties in this case. This requirement is also verified using

temporal assertions.

155

never { do
:: !to_participant[l]?[Initiate]&&

! to_participant[1] ? [Offer]
:: to_participant[l]? [Initiate]-> goto acceptO
:: to_participant[l]? [Offer] -> goto accept 1

od;
acceptO:

do
:: Itomediator? [Accept, 1 ,Initiate] &&

Itomediator? [Reject, 1 Jnitiate]
od;

accept 1:
do

:: !to_mediator?[Accept,l,Offer] &&
!to_mediator?[Reject, 1 ,Offer]

od;}

Figure IX. 1: An example of temporal claims used

IX. 1.4 Validation results and discussion

Validation environment:

Hardware: Pentium(R)4 2.20GHz, with 512 MB of RAM.

Software: Windows XP, SPIN 4.2.7, XSPIN 4.2.7

The search depth bound was 1,000,000 and the memory limit was 512 MB.

Validation process: the validation models were created and validated incrementally, in

three phases. In phase 1, we concentrated on the system behavior in case of the basic

negotiation approach. In phase 2, we extended the basic models with voluntary departure.

In phase 3, we validated the entire extended system (with voluntary and forced

departure). We started by processing the case of voluntary departure separately because it

is easier to handle a single set of problems at once, but also to make sure that the system

156

behaves correctly in this case. Indeed, forced departure is based on PROMELA timeout,

and PROMELA timeouts are executable whenever no other instruction is executable.

Therefore, their usage may hide some protocol design problems that may cause deadlock;

if the PROMELA timeout instruction is not used (e.g. the expected message is

erroneously not sent).

In each phase, we started by simulating the protocol behavior in different scenarios. First,

we simulated the negotiation process with three participants, in case of successful and

error termination. Then, we repeated the simulation with different values for

min_participants, different numbers of participants (from 2 to 10), and experienced the

cases where the number of participants that accepted the negotiation is less/equal or more

than min_participants. We then used the validator to confirm the simulation results in a

formal way.

As it was impractical to use the exhaustive search for the validation, we used the

supertrace mode. This is a controlled partial search technique [88], which requires much

less memory than exhaustive search, but still retains excellent coverage. An indicator of

that coverage is given by the factor "hash factor". This is calculated by the validator at

the end of the verification run and it indicates a very good coverage when it is greater

than 100.

Models creation and validation in phase 1 was relatively simple, because the sequence of

messages is very clear. However, we faced different types of problems when modeling

the extended approach. Soon after we started phase 2, SPIN detected different deadlock

situations. The majority of these deadlocks come from unspecified receptions and

messages' interleaving. For instance, when a participant Pi sends a Bye message in the

157

negotiation phase, it waits for Ok(Bye) message. If the mediator has sent the final

response (e.g. Ok(Agreement)) before receiving the Bye message, it will block waiting

for the final Ack message from Pi, that blocks waiting for Ok. To resolve this problem,

we modified the participant and the mediator models to take into account this scenario.

When the participant sends a Bye message, it can either receive an Ok(Bye) and then goes

for the termination of the negotiation, or directly receive a final response which closes the

negotiation. The mediator ignores any Bye message received after the final response is

issued.

Validation results and discussion: In phase 1, the validation process took less than one

minute and it required around 43 MB of memory for each correctness requirement. In

phases 2 and 3, the average time and memory used was 07 hours and 73 MB. An

exhaustive search would have required approximately 7145MB (number of stored states

* memory required for each state) of memory.

The validation process concluded, with acceptable probability (hash factor>100), that the

mediator and the participant models do not include any deadlock, that all theirs states are

reachable, and that at the end of each negotiation, the two entities are in a correct end-

state. It also concluded that the correctness assertions and the temporal claims are never

violated, which means that the correctness requirements associated are met.

158

IX.2 Signaling framework

This section presents the simulation environment and set-up, describes the simulation

models and scenarios used, and presents the simulation measurements along with their

analysis.

IX.2.1 Simulation environment and set-up

The validation was done using OPNET V.12.0, a software tool for modeling and

simulating communication networks and distributed systems [89]. OPNET provides a

comprehensive and modular environment for user development, based on Finite State

Machine (FSM). The supported programming language is Proto-C, a combination of C,

C++ and OPNET Event Simulation APIs.

For network composition to occur, at least two networks that were distant should get

close to each other. In the general case, one of these networks is mobile, and therein

wireless. Therefore, to capture this feature and the nature of the majority of ANs, our

network nodes are modeled as wireless nodes. This will also facilitate the modification of

the number of nodes in simulated networks.

Figure IX.2 shows an overall view of the simulation set-up and the modular architecture

of a wireless node. The OPNET environment provides the lower layer modules of the

architecture, such as wireless LAN transmitter and receiver, IP, TCP and UDP. We built

the modules associated to our signaling framework layers (i.e. Messaging Layer,

Signaling Layer and Application Layer) directly on top of the TPAL (Transport

Adaptation Layer) module. TPAL provides a common and uniform interface to the

transport layer. It enables the modules running on top of it to use any transport protocol

(e.g. TCP, UDP, AAL5, X.25 transport protocol, Frame Relay transport protocol) and to

159

be easily modified to use different transport protocols. It also allows entities to address

other entities using symbolic names (i.e. TPAL address). Interactions with remote

modules through TPAL are organized into sessions. A session is a single conversation

between two peer modules through a transport protocol.

Figure IX.4 and Figure IX.3 present the state diagrams of our Messaging Layer (ML) and

Signaling Layer (SL) respectively. When SL receives a message from the upper layer, it

encapsulates it in an SL message and transmits it to the ML. For each new TPAL session,

the MessagingLayer module spawns a new ConnectionManager (Figure IX. 5) process,

which will handle the connection. When a node receives a request to open a session (i.e.

via and OPENIND interruption), it also spawns a new ConnectionManager process that

will take care of the connection.

ML can receive a request to send a message to the TPAL session end-point before the

session is really established. Indeed, the application can issue a send request just after a

create_group request. Therefore, ML creates a new sending queue for each session to

create. The messages to send are added to the corresponding queue. When the session is

established, the ConnectionManager process starts by sending the pending messages.

Messages received from the upper layer, in order to be sent to the peer module, after

session establishment are directly transmitted to the ConnectionManager to handle them.

160

: Edit View Scenarios Topology Traffic Services Protocols DE5 Windows Help

Eg d £
K:C1 ra' BCES

i i D d
Me. Modules

* * * » # ip_encap

**•*. *buliir-U—

\ Packet streams.

*4|
wjr6TessJan_rflac I

LsSn

wUn j jo r t_n_0_0 wlan_port jx_0_0

Figure IX.2: Simulation set-up and node architecture

6 / 0 1 / 3 \ /
I I \ CdeFault)/

(REC^r

BHIHSb

12 fa

Figure IX.3: Signaling Layer state diagram

161

, ' 3 4 / 5

^IIMITlCC'lvlPLErE)

f (IN]T_rtAIt) ^

J
11/C \ $JPDATE_OONN) ^V * . " " - ' ' '

X / V v , y c&emwyw-' ._-"

• |Z ^^"'Q<3R0UP_CREATIDN_Vt)An

1:4/6

18/1

Figure IX.4: Messaging Layer state diagram

(ESTA6)|E£TAB_EffiC

(CONN_CLOSE)/CONN_CLOSE_El<EC ,
', ,'""-'-^ (CONN_ABORT)|GONN„flBORT_EXEG

12/0

I (pORT_BUSY)

16/0
(default) i „yf.^mmr\ "--^

/ i \ \
(PORT.FREEJ lpK_SEND)/PK_SEND_EXEC

<J>K_RCV)pK_RC V_EXEC

y us
^ - U (default)

Figure IX.5: Connection Manager state diagram

162

IX.2.2 Simulation models and scenarios

To separate the validation aspects (and measurements) of agreement negotiation from

those of agreement execution, we implemented the two concepts separately. This section

presents the simulation models and scenarios used for agreement negotiation and

execution.

A. Agreement negotiation

Our simulation model for negotiation is composed of a number of sub-networks, each

containing an RCE, the functional entity responsible for registry composition. The

mediator is modeled as a separate entity and is part of one of the composing networks

(Figure IX.6).

Figure IX.6: A simulation scenario
presenting the case where three networks

are trying to compose.

In order to evaluate different aspects of agreement negotiation, we implemented two

types of scenarios: successful negotiation and negotiation quitting. The case of an entity

joining a negotiation is not modeled, because no entity can join a negotiation when it is

started. The implementation of the successful negotiation scenario includes the definition

of two nodes: Mediator and Participant. They represent the negotiation protocol entities

163

(i.e. mediator and participant respectively). The list of the destination participants is

given to the initiator as parameter. In the negotiation quitting scenario, a participant quits

after it receives an offer from the mediator.

B. Agreement execution

Figure IX.7 presents the model used for the validation of the agreement execution part of

the signaling framework. The composed network hosts a given number of heterogeneous

registries, which should be organized into different multicast groups. The only modeled

RCE is the one that orchestrates the creation of the registry overlay network.

Figure IX.7: The simulation
model for agreement execution

We implemented three types of scenarios for agreement execution: RON creation, RON

joining and RON quitting. In the RON creation scenario, the RCE creates an RON

network between a predefined numbers of registries. This scenario includes the definition

of two different nodes: RCE and Registry. RCE is given the list of the multicast groups

(i.e. the negotiation output) to create as parameter. RON joining is modeled by a normal

registry (i.e. not a virtual registry) joining an already created RON. For RON quitting, we

only modeled the case of a virtual registry quitting the network. The case of a normal

164

registry quitting is simple (only one message is needed) and it is transparent to the other

entities in the network, except the virtual registry that receives the Quit message.

Figure IX.8 and Figure IX.9 present the state diagrams of Registry and RCE respectively.

We used the same state diagram to implement Registry nodes, but we used two

configuration parameters (i.e. join, quit) to specify which scenario to execute. To execute

the RON creation scenario, the two parameters are unset for all of the nodes in the

network. To execute the RON join/quit scenario, the join/quit parameter is set for the

registry that has to join/quit the network and for the RCE.

(Get "bnyp Id) Lj3R<-v_rnrfioO-rN<w!0 S-

Figure IX.8: Registry state diagram

165

Figure IX.9: RCE state diagram

IX.2.3 Measurements and analysis

This section presents the performance metrics, followed by a set of performance results

collected from the simulation. It also includes an analysis of these results.

A. Metrics

To validate our signaling framework, we focused on scalability, regarding the number of

negotiating parties (for negotiation) and the number of registries in the composed

network (for agreement execution), the negotiation and execution time delay and the

network load in terms of number of exchanged messages.

We used the following metrics to measure and evaluate our signaling framework:

166

• Network load: The number of messages transmitted. We measured and/or calculated

network load for negotiation, a participant and a mediator to quit the negotiation,

RON creation and for a registry to join and quit the RON.

• Delay: The delays are calculated in seconds. We measured the following types of

delays: total time delay for successful negotiation and for RON creation, average

propagation time delay for successful negotiation, RON creation and for a virtual

registry to quit the RON. Total time delay for successful negotiation is the total time

delay required for the complete negotiation. This is the difference between the time

when the initiator creates the first Initiate message, and the time when the mediator

receives the last Ack for the agreement. These measurements do not include the

delays for internal processing related to the negotiation (e.g. agreement creation).

Total time delay for RON creation is the total time delay required for the complete

RON creation. This is the difference between the time when the RCE creates the first

ActivateNode message and the time when the last registry receives a ConfigOvNode

message. A different ActivateNode message -containing different information such as

the multicast group members- is created for each virtual registry. Average

propagation time delay is the average time delay for a single message to get from the

source to the destination.

B. Agreement negotiation

During the simulation, we varied the number of composing networks and calculated the

scalability parameters in each case. In general, only a small number (e.g. 2 or 3) of

networks will compose at any given time. The case where a high number of networks

compose can be seen as a number of successive composition sessions between a limited

167

numbers of networks. This is because not all of the networks will get near each other at

the exact same time. Therefore, we have simulated the negotiation process for 2, 3, 5, 10,

15 and 20 entities.

As we can see in Figure IX. 10, to achieve a successful negotiation between two entities,

14 messages are needed (7 in case the mediator is co-located with one of the entities).

For each extra entity, 7 extra messages are needed. Therefore, the number (nbr) of

exchanged messages between n entities in a successful negotiation is nbr = 7n (7n-7 if the

mediator is co-located with one of the entities). This is because the messaging layer -at

the mediator side- sends a copy of each outgoing message to each of the group members.

The formula presented above was validated by the simulation results (Figure IX. 11). To

reduce the number of exchanged messages (nbr), a multicast solution can be utilized,

which will duplicate messages only when needed.

PI
Initiate

OK: Accept

Ack

Mediator

Initiate
Ok: Accept

Ack: Accept

Loop until agreement
reached OR timeout ZJ

Offer

Create
Prooosal

Offer

Ok: Accept/Reject ^ Ok: Accept/Reject

Ok: Final Agreement
Ack Ack

Figure IX.10: Number of messages for a successful negotiation

168

Figure IX. 12 presents the average message propagation time delay in each of the six

experiments. It also presents the total time delay for successful negotiation.

The time delay is linearly proportional to the number of composing networks, and it

remains barely noticeable by the client. The average time delay varies by less than 0.01 s

(0.05 s for total time delay) for each additional five networks. The total time to complete

negotiation between 20 ANs is less than 0.16 s.

Figure IX.11: Total number of exchanged packets.

0.18 |

0.16 i

0.14 ••

m0.12 i

io.1
« i '
10.08 i

'Z 1
0.06 -|

0.04 -1

0.02 '
1

0 - :-

> A . . J JNgt lMI- i> • r
- IT

Ti ' I- ni- M i, .

-

,
- - . - < «

(Number of composing ANs)

-
20

Figure IX. 12: Negotiation time delay

The number of messages exchanged to allow an entity to quit the negotiation is always

equal to two (i.e. Bye followed by Ok). The total time delay needed for a participant to

quit the negotiation is the time needed to exchange those two messages (about 0.04s in

case of 20 entities are negotiating). This time remains negligible compared to the total

169

negotiation time delay and the quitting process does not disturb too much the negotiation

process among the remaining parties. However, in case of a mediator quitting the

negotiation, the quitting time delay depends on the amount of information to be

exchanged between the new and the quitting mediators.

C. Agreement execution

We started with two heterogeneous registries (Rl and R2), where two overlay nodes

(OV1 and OV2) are needed. Then, we varied the number of registries from 2 to 35 and

the number of used overlay nodes from 2 to 7, and calculated the scalability parameters.

The average message propagation time delay (Figure IX. 13) and the total time delay

required for the complete RON creation (Figure IX. 14) varied depending on the number

of registries in the network and the number of overlay nodes used. They are linearly

proportional to the number of registries. However, for each number of registries, the

average propagation time delay is minimal for a different number of overlay nodes (e.g.

for five registries, the minimum average delay is obtained for 3 overlay nodes). The same

is applied to the total time delay.

This information can be used to optimally choose the number of registries to be served by

the same overlay node, instead of using a single overlay node for all of the registries

using the same IPDI as the overlay node, independently of their number.

170

0.08

0.07

0.06

V 0.05

"a" 0.04

••= 0.03

0.02

0.01

0

- 2 overlay node

- 3 overlay node

4 overlay node

5 overlay node

- 6 overlay node

- 7 overlay node:

10 20 30
total number of regist r ies

35

Figure IX. 13: Message propagation time delay, for RON creation.

S

O. I 4

0 . 1 2 -

0 . 1 -

0 . 0 8

o.oe -

0 . 0 4

0 . 0 2 -

o

I I 2 o v e r l a y n o d c j u

n 3 o v e r l a y n o d e u

I I 4 o v e r l a y n o d e s

1 1 5 o v e r l a y n o d t f n

• 6 o v e r l a y n o d e s

I I 7 o v e r l a y node?.

mil I
5 1 0

T o t a l n

mm

•
2 0 3 0

u m b e r o f r e g i s t r i e s
3 5

Figure IX. 14: RON creation time delay

Figure IX. 15 shows the number (nbrmsg) of messages exchanged for agreement execution.

For each number of registries (nbrreg), nbrmsg is the same independently of the number of

overlay nodes (nbrmsg = nbrreg). Indeed, in each case, the RCE sends a single

ActivateNode message to each overlay node (nbrOVnodes), and each overlay node sends

nbrsame_regs ConfigOvNode message, where nbrsame_regs is the number of registries that

have the same IPDI as the overlay node. The message sent by an overlay node to itself

(an overlay node is also a registry) is not counted, because it is not sent to the network.

171

Therefore, nbrmsg = nbrOVnodes + D (nbrsame_regs,i -1) = nbrreg. nbrsameregs,i can also be

reduced by using a multicast solution.

40

35

30

25

20

15

10

5

0

• 2 overt ay nodes

m 3 overt ay nodes

D 4 overt ay nodes

E3 5 overt ay nodes •

• 6 overlay nodes

• 7 overlay nodes

• JD (HI l l
J-Lij- 1 B 10 20 30

total number of registries

HI

35

Figure IX.15: Total number of exchanged messages, for RON creation

For a registry to quit RON, only one message is needed (i.e. Quit sent to the overlay

node). The quitting process is transparent to the other entities in the network (except the

overlay node). When an overlay node decides to quit, more processing, messages and

time are required. When an overlay node quits, the RCE should replace it, which is

equivalent to creating a RON with one overlay node and (nbrsame regs,i-l) registries.

nbrsame regS>i is the number of registries served by the quitting node, including itself. Figure

IX. 16 shows the average propagation and total time delay for an overlay node to quit,

where nbrsame_regs,i varies from 2 to 20, along with the average propagation and total time

delay for the creation of the related RON.

172

0.08
0.07
0.06
0.05
0.04
0 .03
0.02
0.01

0

-Avarage quit t ime delay
- Total quit t ime delay
Avarage creation t ime delay
Total creation t ime delay

5 10 15
number of regitries

2 0

Figure IX.16: Quit time delay

For a registry to join RON, two messages are needed: a Join message, followed by a

ConfigOvNode message sent by the overlay node. The joint time delay (i.e. the difference

between the time when the registry decides to join and the time when it receives the

ConfigOvNode message) is about 0.006 s.

IX.3 Conclusions

In this chapter, we have formally validated the negotiation protocol for registry

composition and validated the scalability of the signaling framework via simulations. For

formal validation, we described the validation models used and the correctness

requirement validated, and presented the validation process and results. For simulations,

we presented the simulation models and scenarios, described the performance metrics

used and analyzed the simulations' results.

SPIN and PROMELA were found very easy to use for modeling and validating the basic

behavior of the negotiation protocol (i.e. no entity leaves the negotiation when it is

started). However, some extra effort was needed to model the behavior of the extended

protocol (i.e. support nodes departure), and also to model the correctness properties. We

173

had especially to model the timers and the multicasting, two main properties needed by

the negotiation protocol models, but not directly supported by PROMELA.

During the validation process, we encountered some problematic situations that we did

not think about at design time. These problems were mainly related to unspecified

receptions, where an entity sends a request and waits for a specific response to that

request, but the responding entity sends a different message before having received that

request. The resolution of these problems helped us in improving the proposed

negotiation protocol.

OPNET was found very challenging to understand and use, but it provides a rich

environment for the simulation of all of the aspects of our framework that we were

interested in validating. Through the experiments on simulation scenarios, we have found

that the signaling framework is very promising in term of scalability. The generated

overhead in term of exchanged messages and in term of time delay remain acceptable, for

the number of networks and registries simulated. The simulation results also gave us a

hint about how to optimize our architecture for information publication and discovery,

depending on the number and characteristics (i.e. the IPDI used) of registries hosted by

the composed network.

174

CHAPTER X: Conclusions and future work

This chapter summarizes the contributions of this thesis. It also discusses the remaining

issues and directions for future work.

X. 1 Summary of contributions

Ambient Networks are a new networking concept for beyond 3G. Network composition

is a core concept of ANs. It enables a level of network cooperation which goes far

beyond the static cooperation of today. Network composition provides a uniform,

dynamic and scalable cooperation solution between heterogeneous networks, where a

network can range from a single node to a full-fledged operator network. ANs can host

several registries, such as management information bases and context information bases.

When ANs compose, the hosted registries have also to compose. Registry composition is

very challenging, because the registries to compose may be heterogeneous. They may be

of different types (e.g. centralized, distributed), and be accessible via different types of

interfaces (i.e. protocols or APIs). They may include various types of data, represented

using different formats (e.g. relational databases vs. object oriented databases). Their

content may be of varying granularity levels and it may also be described using different

syntaxes and semantics.

175

In this thesis, we proposed an overall architecture for registry composition in ANs. The

major contributions of this thesis are as follows:

• Identified the issues related to registry composition: Four types of issues are

related to registry composition: interface interworking, data interworking, negotiation

and signaling. Interface interworking deals with dynamic intercommunication

between registries that are using heterogeneous interfaces. Data interworking deals

with how to dynamically overcome data heterogeneity (e.g. data representation,

semantics and granularity). Negotiation allows the negotiation of a registry

composition agreement. Signaling is required to allow the exchange of the messages

related to the negotiation and execution of the composition agreement.

• Derived requirements for registry composition and reviewed related work: We

derived requirements for the overall composition architecture and for each of the

architectural components, and reviewed related work. The overall architecture is

made up of three components: an architecture for information publication and

discovery after composition, a negotiation architecture and a signaling framework.

The architecture for information publication and discovery after composition deals

with both interface interworking and data interworking.

We found that there is no existing overall architecture related to the overall

architecture for registry composition. However, there are existing architectural

components related to the three registry composition architectural components.

Nevertheless, none of them meets all of the related requirements. Existing interface

interworking and data interworking related architectures are all based on static

configuration and/or gateways. None of the existing negotiation architectures allow a

176

third party to create agreement proposals and none of them deals with registry

composition. For signaling, NSIS provides a most promising framework for signaling

about registry composition. However it misses some important requirements related

to registry composition.

• Proposed a general architecture for registry composition: We proposed a new

functional entity and a new procedure to orchestrate registry composition. We

identified and analyzed the different potential approaches to registry composition (i.e.

keep the composing registries as they are, keep the composing registries and create a

new one to host shared resources, copy all of the content of the composing registries

to a single registry). We also identified and analyzed the potential approaches to

enable intercommunication between heterogeneous registries (i.e. protocol

deployment on the fly, use gateways).

For our composition architecture, we choose to keep the composing registries as they

are. And to handle intercommunication between heterogeneous registries, we selected

to use a standard protocol to enable intercommunication, and vary the inter-protocol

translation solution according to the protocol used by each registry (to translate

between the standard protocol and the protocol used by the registry).

• Proposed an architecture for interface interworking: The architecture is based on

overlay P2P networks. It consists of an overlay network that includes for each

different interface used by a registry in the composed network, a single overlay node

that supports this interface. The overlay nodes also support a common overlay

protocol. To the contrary to the existing solutions, our overlay network is created on-

the-fly and it handles nodes joining and quitting the network.

177

• Proposed an architecture for data interworking: The data interworking

architecture is an extended version of the interface interworking architecture. It reuses

the FDBS algorithms and mechanisms to provide data interworking, and provides

new procedures to support autonomy and content update. Content update is a sub-

issue of data interworking when registries compose in ANs. It deals with the

consistency of the registry content after network composition. Indeed, when Ambient

Networks compose, some of the registries' content may become obsolete or may need

to be updated (e.g. a new service is proposed by the composed network ,by

combining two elementary services provided by the composing networks).

• Proposed a negotiation architecture: The architecture is made up of four

components: negotiating entities, negotiation protocol, template for the composition

agreement proposals and description of main negotiation steps. To the contrary to

existing negotiation solutions, our architecture allows a third party to create and

validate the composition agreement-proposals. The negotiation protocol is not relied

on a permanently centralized entity. It handles both voluntary and forced departures

of the entities involved in the negotiation (i.e. participants and mediator).

• Proposed a signaling framework: The proposed signaling framework is a backward

compatible extension of the IETF NSIS framework. The main extensions we have

made are the support of point-to-multipoint message delivery and the definition of

new signaling application for registry composition. The new signaling application

supports both the negotiation of registry composition and the execution of the

composition agreement.

178

• Proposed implementation architectures and built proof-of-concept prototypes:

We proposed software architectures for protocol deployment on-the-fly and for

overlay nodes. We also implemented two proof-of-concept prototypes to show the

feasibility of: protocol deployment on-the-fly and the interface interworking

architecture.

• Formally validated the negotiation protocol using SPIN: We derived correctness

requirements for the negotiation protocol and used them to validate the protocol using

SPIN. The validation process helped us improve our protocol, by calling our attention

to some problematic situations that we did not think about at the design time (e.g.

unspecified message receptions).

• Evaluated performance of the signaling framework using OPNET: We simulated

the signaling framework using OPNET. We built different scenarios and measured

different scalability parameters for the framework. We found that the signaling

framework is very promising in term of scalability. The generated overhead in term of

time delay is barely noticed by the clients. The simulation results also gave some hint

about how to optimize our architecture for information publication and discovery.

X.2 Future work

Network composition is a new and broad area that still under-researched. In this thesis,

we focused on registry composition and explored many of the related issues. However,

much work remains to be done to investigate other aspects of registry composition and

network composition. We organize this work into two categories: registry composition

related and network composition related.

179

X.2.1 Registry composition related

We classify the future work related to registry composition in four categories: overall

architecture, data interworking architecture, negotiation architecture and security.

• Overall Architecture: The characteristics of the composing networks may affect the

performance and the efficiency of the composition architecture. In MANET -for

instance- nodes can join and leave the network frequently and have heterogeneous

capabilities. It would be interesting to make the composition architecture take

advantage of those characteristics, in order to enhance its performance. An example is

to map the overlay nodes of the interface interworking architecture to the registries

with more capabilities, instead of randomly mapping them to any registry that

supports the same interface.

• Negotiation architecture: Beyond the negotiation architectural components

proposed by this thesis, the definition of a negotiation architecture includes the

definition of negotiation objects, negotiation strategies and negotiation mechanism

[90][91]. The negotiation objects are the different issues over which an agreement

should be reached (e.g. price, quantity). The negotiation strategies are the decision

functions that each negotiating entity will use for the evaluation of the received

proposals. The negotiation mechanism defines the rules of negotiation (e.g. obliging a

participant to improve on a previous offer). The study of the negotiation objects,

strategies and mechanisms is an interesting item for future work.

• Security: Security is an interesting open issue that we have not tackled in this thesis,

because it is not critical to the basic registry composition functionality. However, it is

180

important for the real deployment of the composition architecture. Indeed, the

composition should be initialized by an authorized entity and communications

between the entities involved in the composition (e.g. negotiating entities) should be

secured. The execution of the composition agreement should also be secured (e.g.

only the authorized protocols are deployed on-the-fly).

X.2.2 Network composition related

Many issues related to network composition still need to be investigated. An example is

how does network composition affects service provisioning and service continuity. Let's

consider -for instance- a scenario where a conference is created among a given number

of users that belong to separate networks. When these networks compose, the users'

connectivity information and the network(s) configuration may have been changed. The

challenge is how to insure the continuity of the conference session during and after

composition, in a transparent way.

Another example is how are the different functional entities in the ACS composed, when

their hosting networks compose. In case of QoS-FEs for instance, an interesting topic for

future work is how to provide end-to-end QoS after composition. Reference [92]

discusses other items for future work, related to network composition.

181

References

[1] N. Niebert et al, "Ambient networks: An architecture for communication networks

beyond 3G", IEEE Wireless Communications, Volume 11, Issue 2, pages: 14 - 22,

April 2004.

[2] "D18-A.4: Annex F AN System Description", FP6-CALL4-027662-AN P2/D18-A.4,

Ambient Networks Phase 2 public deliverable, December 2007, http://www.ambient-

networks.org/deliverables.html, June 2008.

[3] C. Kappler et al, "Dynamic Network Composition for Beyond 3G Networks: A 3GPP

Viewpoint", IEEE Network, Volume: 21, Issue: 1, pages: 47-52, January/February

2007.

[4] "D3-G.1 Design of Composition Framework", FP6-CALL4-027662-AN P2/D3-G.1,

Ambient Networks Phase 2 public deliverable, November 2006. http://www.ambient-

networks.org/deliverables.html, June 2008.

[5] "D1.4 AN Concepts", IST-2002-507134-AN/WP1-D04, Ambient Networks Phase 1

public deliverable, August 2005, http://www.ambient-

networks.org/phaselweb/main/deliverables.html, June 2008.

[6] E.K. Lua et al, "A survey and comparison of peer-to-peer overlay network schemes",

IEEE Communications Surveys & Tutorials, volume 7, Issue 2, pages: 72-93, Second

Quarter 2005.

[7] "UDDI, Universal description, discovery and integration of web services".

http://uddi.Org/pubs/uddi-v3.0.2-20041019.htm, April 2008.

[8] F. Belqasmi, J. Mattam, R. Glitho, R. Dssouli, F. Khendek, "An Architecture for

Composing Registries when Ambient Networks Compose", IEEE Consumer

Communications and Networking Conference (CCNC 07), pages: 503-507, January

2007.

[9] F. Belqasmi, R. Glitho, R. Dssouli, "Registry Composition in Ambient Networks",

submitted to IEEE Transactions on Computers on June 12, Special issue on

autonomic network computing.

182

http://www.ambient-
http://networks.org/deliverables.html
http://www.ambient-
http://networks.org/deliverables.html
http://www.ambient-
http://networks.org/phaselweb/main/deliverables.html
http://uddi.Org/pubs/uddi-v3.0.2-20041019.htm

[10] F. Belqasmi, R. Glitho, R. Dssouli, "An Overlay Architecture for Information

Publication and Discovery after the Composition of Registries in Ambient

Networks", IEEE Consumer Communications and Networking Conference (CCNC

07), pages: 105 - 109, January 2007.

[11] F. Belqasmi, R. Glitho, R. Dssouli, "Data Inter-working Aspect of Network

Cooperation in 4G: the Case of Registry Composition in Ambient Networks", IEEE

Broadband Convergence Networks (BCN), pages: 1 - 6, April 2008.

[12] F. Belqasmi, R. Dssouli, R. Glitho, "A Negotiation Framework for the

Composition of Registries in Ambient Network", IEEE Symposium on Computers

and Communications (ISCC2007), pages: 981-987, July 2007.

[13] F. Belqasmi, R. Glitho, R. Dssouli, "Validation of a Negotiation Protocol for

Registry Composition in Ambient", Global Information Infrastructure Symposium

(GIIS 2007), pages: 106-111, July 2007.

[14] F. Belqasmi, R. Glitho, R. Dssouli, "An IETF NSIS-Based Signaling Framework

for Negotiating Registry Composition in Ambient Networks", IEEE International

Conference on Networks (ICON 2007), pages: 272-277, November 2007.

[15] G. Camarillo, M.A. Garcia-martin, "The 3G IP Multimedia Subsystem: Merging

the Internet and the Cellular Worlds" (book), ISBN 0-470-87156-3, 2004.

[16] J. Rosenberg et al, "SIP: Session Initiation Protocol", RFC 3261, June 2002.

[17] "Connecting Ambient Networks-Requirements and Concepts", IST-2002-507134-

AN/WP3/D31, Ambient Networks public deliverable, June, 2004,

http://www.ambient-networks.org/phaselweb/main/deliverables.html, June 2008.

[18] "D2-C.1 Multi-Access & ARI design and Initial Specification", FP6-CALL4-

027662-AN P2/D02-C.1, Ambient Networks Phase 2 public deliverable, December

2006. http://www.ambient-networks.org/deliverables.html, June 2008.

[19] "D12-F.1 System Design of SATO & ASI", FP6-CALL4-027662-AN P2/D12-

F.l, Ambient Networks Phase 2 deliverable, December 2006, http://www.ambient-

networks.org/deliverables.html, June 2008.

[20] D. Zhou et al, "Ambient Network Interfaces and Network Composition", Global

Mobile Congress (CIC/IEEE GMC05), October 2005.

183

http://www.ambient-networks.org/phaselweb/main/deliverables.html
http://www.ambient-networks.org/deliverables.html
http://www.ambient-
http://networks.org/deliverables.html

[21] F. Belqasmi, R. Glitho, R. Dssouli, "Ambient Network Composition", Accepted for

publication in IEEE Network Magazine, special issue on Composable Context Aware

Services, July/August 2008.

[22] R. Campos et al, "Dynamic and Automatic Interworking between Personal Area

Networks using Composition", IEEE 16th International Symposium on Personal

Indoor and Mobile Radio Communications (PIMRC 05), Volume 2, pages: 947- 951,

September 2005.

[23] M. Johnsson et al, "Network composition", WWRF#15 (Wireless World Research

Forum Meeting 15), Paris, France, December 2005.

[24] "D5-H.1 Final Application Scenarios and Prototype Design", FP6-CALL4-

027662-AN P2/D5-H.1, Ambient Networks Phase 2 public deliverable, December

2006, http://www.ambient-networks.org/deliverables.html, June 2008.

[25] N. Akhtar et al, "GANS: A Signalling Framework for Dynamic Interworking

between Heterogeneous Networks", IEEE 64th Vehicular Technology Conference

(VTC 2006), pages: 1-5, September 2006.

[26] R. Hancock et al., "Next Steps in Signaling (NSIS): Framework", RFC 4080, June

2005.

[27] X. Fu et al, "NSIS: a new extensible IP signaling protocol suite", IEEE

Communications Magazine, Volume 43, Issue 10, Pages:133 - 141, October 2005.

[28] S. Cheshire, and M. Krochmal, "Multicast DNS", draft-cheshire-dnsext-

multicastdns-06.txt, Internet Draft, August 2006.

[29] B. Aboba, and D. Thaler, and L. Esibov, "Linklocal multicast name resolution

(LLMNR)", IETF RFC 4795, January 2007.

[30] I. Roussaki, M. Louta and L. Pechlivanos; "An Efficient Negotiation Model for

the Next Generation Electronic Marketplace", 12th IEEE Mediterranean

Electrotechnical Conference (MELECON 2004), Volume 2, Page(s):615 - 618, May

2004

[31] H. Li, J.J. Jeng, and J.Y. Chung; "Commitment-based approach to categorizing,

organizing and executing negotiation processes", IEEE International Conference on

E-Commerce (CEC 2003), page(s):12 - 15, June 2003.

184

http://www.ambient-networks.org/deliverables.html

[32] M.Patini et al, "A Middleware Architecture for Inter ad-hoc networks

Communication", Fourth IEEE International Conference on Web Information

Systems Engineering Workshops, pages:201 - 208, December 2003.

[33] S. Microsystem, "Jini community resources: Jini technology architectural

overview", January 1999,

http://wwws.sun.com/software/jini/whitepapers/architecture.html, April 2008.

[34] I. Stoica et al. "Chord: A scalable peer-to-peer lookup service for internet

applications", Conference on applications, technologies, architectures, and protocols

for computer communications, pages 149-160, August 2001.

[35] "UpnP: Universal plug and play", http://www.upnp.org/, April 2008.

[36] J. Chang and M.T. Liu, "An Approach to Protocol Complementation for

Internetworking", First IEEE International Conference on Systems Integration,

Page(s):205 - 2 1 1 , April 1990

[37] Z.P. Tao, G.V. Bochmann, and R. Dssouli, "An Efficient Method for Protocol

Conversion", 4th IEEE International Conference on Computer Communications and

Networks (IC3N 95), Pages:40 - 47, September 1995

[38] F. J. Lin and M. T. Liu, "A Formal Model for Protocol Interworking in ISDN".

IEEE International Conference on Communications, Volume 1, pages:107 - 113,

June 1988

[39] P. Dhar et al, "Network interconnection and protocol conversion-A protocol

complementation approach", IEEE International Conference on Computers,

Communications and Automation towards the 21st Century, Volume 1, pages: 116 -

120 November 1992.

[40] T. Heer et al, "Adapting Distributed Hash Tables for Mobile Ad Hoc Networks",

4th IEEE International Conference on Pervasive Computing and Communications

Workshop (PERCOM 2006), pages: 173-178, March 2006.

[41] L. Cheng et al, "Towards Distributed Hash Tables (De)Composition in Ambient

Networks", Proceedings of the 17th IFIP/IEEE Distributed Systems: Operations and

Management (DSOM), October 2006.

185

http://wwws.sun.com/software/jini/whitepapers/architecture.html
http://www.upnp.org/

[42] L. Cheng, "Bridging Distributed Hash Tables in Wireless Ad-Hoc Networks",

IEEE Global Telecommunications Conference (GLOBECOM 2007), pages: 5159-

5163, November 2007.

[43] C.J. Date, "An Introduction to Database Systems", eighth edition, ISBN 0-321-

19784-4, 2004.

[44] C.W. Chung: "DATAPLEX: An Access to Heterogeneous Distributed

Databases", Communications of the ACM, Volume 33, Issue 1, Pages: 70-80, January

1990.

[45] M.W.Bright, A.R.Hurson and S.Pakzad, "Automated Resolution of Semantic

Heterogeneity in Multidatabases", ACM Transactions on Database Systems, Volume

19, Issue 2, Pages: 212 - 253, June 1994.

[46] N. H.Cohen et al, "iQueue: A Pervasive Data Composition Framework", IEEE

Third International Conference on Mobile DataManagement (MDM'02), pages: 146-

153, June 2002.

[47] G. Wiederhold, "Mediators in the Architecture of Future Information Systems".

IEEE Computer, Volume 25, Issue 3, pages: 38-49, Mars 1992.

[48] Y. Arens et al, "Retrieving and Integrating Data from Multiple Information

Sources", International Journal on Intelligent and Cooperative Information Systems,

Volume. 2, No. 2, , pages:127-158, June, 1993

[49] J.L. Zhao, A. Segev, A. Chatterjee, "A universal relation approach to federated

database management", 11th International Conference on Data Engineering

(ICDE'95), pages: 261-270, Mars 1995.

[50] J.C. Chen et al, "Dynamic Service Negotiation Protocol (DSNP) And Wireless

Diffserv", IEEE International Conference on Communications, Volume 2, pages:

1033 -1038, 2002.

[51] C. Bartolini et al, "A Software Framework for Automated Negotiation", Book

"Software Engineering for Multi-Agent Systems III", LNCS 3390, Pages 213-235,

Springer-Verkag, 2005

[52] R. Braden et al, "Resource ReSerVation Protocol (RSVP)", RFC 2205, Septembre

1997.

186

[53] X. Fu, D. Hogrefe and S. Willert, "Implementation and evaluation of the cross-

application signaling protocol (CASP)", Proceedings of the 12th IEEE International

Conference on Network Protocols (ICNP 2004), Page(s):61 - 71, October 2004.

[54] H.Schulzrinne et al, "Design of CASP- a Technology Independent Lightweight

Signaling Protocol", In IPS'03, Salzburg, Austria, February 2003

[55] M. Brunner, "Requirements for Signaling Protocols", RFC 3726, April 2004.

[56] J. Manner, G. Karagiannis, and A. McDonald, "NSLP for Quality-of-Service

Signaling", IETF Internet draft, February 2008.

[57] M. Stiemerling et al, "NAT/Firewall NSIS Signaling Layer Protocol (NSLP)",

IETF Internet draft, February 2008.

[58] H. Schulzrinne and R. Hancock, "GIST: General Internet Signaling Transport",

draft-ietf-nsis-ntlp-13, Internet Draft (work in progress), February 2008.

[59] R. Campos et al, "On the Evaluation of the Extended Generic Internet Signalling

Transport Protocol", Proc. of the 15 1ST Mobile and Wireless Communications

Summit, Myconos, June 2006.

[60] C. Campo et al, "PDP and GSDL: a new service discovery middleware to support

spontaneous interactions in pervasive systems", Third IEEE International Conference

on Pervasive Computing and Communications Workshops (PerCom 2005

Workshops), Pages: 178 - 182, March 2005.

[61] X.L. Lin et al, "Active Peer to Peer", IEEE Sixth International Conference on

Networking (ICN *07), pages: 3 1 - 3 1 , April 2007.

[62] J. Risson and T. Moors, "Survey of Research towards Robust Peer-to-Peer

Networks: Search Methods", RFC 4981, September 2007.

[63] Y. Zhu and B. Li, "Overlay Networks with Linear Capacity Constraints",

IEEE Transactions on Parallel and Distributed Systems,

Volume 19, Issue 2, Page(s):159 - 173, February 2008

[64] J. Han, D. Watson, and F. Jahanian, "Topology aware overlay networks",

Proceedings of the 24th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM 2005).

Volume 4, Pages:2554 - 2565, March 2005.

[65] http://www.objectdb.eom/database/jdo/manual/chapter7/#7.l, April 2008.

187

http://www.objectdb.eom/database/jdo/manual/chapter7/%237.l

[66] Z. Xu and Y. Hu; "SBARC: A supemode based peer-to-peer file sharing system",

Eighth IEEE International Symposium on Computers and Communication (ISCC

2003). Volume 2, Page(s):1053 - 1058, June/July 2003

[67] V. Lo et al, "Scalable Supernode Selection in Peer-to-Peer Overlay Networks",

Second IEEE International Workshop on Hot Topics in Peer-to-Peer Systems

(HotP2P'05), Pages: 18-25 , July 2005.

[68] C. Fu, R. Glitho, and F. Khendek, "A Novel Session Recovery Mechanism for

Cluster-based Signaling Architecture for Conferencing in MANETs", In the

Workshop on Wireless Ad hoc and Sensor Networks (WWASN 2007), June 2007.

[69] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, "Tapestry: An infrastructure for

fault-tolerant wide-area location and routing" Technical Report: CSD-01-1141,

University of California and Berkeley, 2001.

[70] Amit P. Sheth and James A. Larson, "Federated Database Systems for Managing

Distributed, Heterogeneous and Autonomous Databases", ACM Computing Surveys,

Volume 22, Issue 3, pages: 183-236, September 1990.

[71] J.L. Zhao, A. Segev, and A. Chatterjee, "A universal relation approach to

federated database management", Proceedings of the Eleventh International

Conference on Data Engineering (ICDE 1995), Pages: 261 - 270, 1995.

[72] N.H.Cohen et al, "Composing pervasive data using iQL", Proceedings of the

Fourth IEEE Workshop on Mobile Computing Systems and Applications, pages: 94-

104, August 2002.

[73] Y. Arens et al, "Retrieving and Integrating Data from Multiple Information

Sources," International Journal of Intelligent & Cooperative Information Systems,

Volume 2, pages: 127-158, 1993

[74] M. Bennicke and P. Langendorfer, "Towards Automatic Negotiation of Privacy

Contracts for Internet Services", 11th IEEE International Conference on Networks

(ICON2003), Pages:319 - 324, September/October. 2003.

[75] I. Roussaki, M. Louta, and L. Pechlivanos; "An Efficient Negotiation Model for

the Next Generation Electronic Marketplace", Proceedings of the 12th IEEE

Mediterranean Electrotechnical Conference (MELECON 2004), Volume 2,

Pages:615 - 618, May 2004

188

[76] "Specification, design and implementation of the necessary components for the

enhancement of an active platform for the validation of the project approach",

CONTEXT-WP4-UPC-D4.2-101204Del, 1ST - 2001 - 38142 - CONTEXT,

December 2004, http://context.upc.es/deliverables.htm, June 2008.

[77] K.Psounis, "Active networks: applications, security, safety, and architectures",

IEEE Communications Survey, Volume 2, Issue 1, pages: 2-16, First Quarter 1999.

[78] D.L. Tennenhouse et al, "A survey of active network research", IEEE

Communications Magazine, Volume 35, Issue 1, Pages:80 - 86, January 1997

[79] J.M. Smith and S.M. Nettles, "Active Networking: One view of the past, present

and future", IEEE Transactions on Systems, Man, and Cybernetics, Part C, Volume

34, Issue 1 Pages:4 -18, February 2004.

[80] S.Vrontis et al, "Enabling distributed QoS management utilizing active network

technology", IFIP-IEEE International Conference on Network Control and

Engineering (Net-Con 2003), pages: 139-151, October 2003.

[81] "Active Networks at UW", University of Washington,

http://www.cs.washington.edu/research/networking/ants/, June 2008.

[82] "Composable Active Network Elements Project (CANES)",

http://www.cc.gatech.edu/projects/canes/, April 2008.

[83] D.S. Alexander et al., "The Switch Ware Active Network Architecture," IEEE

Network Special Issue on Active and Controllable Networks, Volume 12, Issue 3,

pages: 29-36, May/June 1998.

[84] KJean, N.Vardalach, and A.Galis, "Towards Programmable Context-aware Voice

Services", INTELLCOMM 2005, October 2005.

[85] W3C Working Group, "Web Services Architecture", Note 11, February 2004.

http://www.w3.org/TR/ws-arch/, April 2008.

[86] W3C web site for SOAP at http://www.w3c.org/TR/SOAP/, April 2008.

[87] "JXTA v2.0 Protocol Specification", http://www.jxta.org/, June 2008.

[88] Gerard J. Holzmann, "DESIGN AND VALIDATION OF COMPUTER

PROTOCOLS" (book), Bell Laboratories Murray Hill, New Jersey 07974.

189

http://context.upc.es/deliverables.htm
http://www.cs.washington.edu/research/networking/ants/
http://www.cc.gatech.edu/projects/canes/
http://www.w3.org/TR/ws-arch/
http://www.w3c.org/TR/SOAP/
http://www.jxta.org/

[89] http://www.opnet.com, April 2008.

[90] I. Roussaki, M. Louta and L. Pechlivanos; "An Efficient Negotiation Model for the

Next Generation Electronic Marketplace", Proceedings of the 12th IEEE

Mediterranean Electrotechnical Conference, (MELECON 2004),

Volume 2, Pages:615 - 618, May 2004

[91] M. Beer et al, "Negotiation in Multi-Agent Systems", The Knowledge

Engineering Review 14(3): pages: 285-289, 1999.

[92] "D26-G.2: Validated Composition and Compensation Architecture", FP6-

CALL4-027662-AN P2/ D26-G.2, Ambient Networks Phase 2 public deliverable,

December 2007. http://www.ambient-networks.org/deliverables.html, April 2008.

190

http://www.opnet.com
http://www.ambient-networks.org/deliverables.html

