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Abstract 

Statistical Spatial Color Information Modeling in Images and Applications 
Walid Elguebaly 

Image processing, among its vast applications, has proven particular efficiency in quality control 

systems. Quality control systems such as the ones in the food industry, fruits and meat industries, 

pharmaceutic, and hardness testing are highly dependent on the accuracy of the algorithms used to 

extract image feature vectors and process them. Thus, the need to build better quality systems is tied to 

the progress in the field of image processing. 

Color histograms have been widely and successfully used in many computer vision and image pro

cessing applications. However, they do not include any spatial information. We propose statistical mod

els to integrate both color and spatial information. Our first model is based on finite mixture models 

which have been applied to different computer vision, image processing and pattern recognition tasks. 

The majority of the work done concerning finite mixture models has focused on mixtures for continuous 

data. However, many applications involve and generate discrete data for which discrete mixtures are 

better suited. In this thesis, we investigate the problem of discrete data modeling using finite mixture 

models. We propose a novel, well motivated mixture that we call a multinomial generalized Dirichlet 

mixture. 

Our second model is based on finite multiple-Bernoulli mixtures. For the estimation of the model's 

parameters, we use a maximum a posteriori (MAP) approach through deterministic annealing expecta

tion maximization (DAEM). Smoothing priors to the components parameters are introduced to stabilize 

the estimation. The selection of the number of clusters is based on stochastic complexity. 
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CHAPTER 1 I 

Introduction 

Human vision is the primary source of information about the outside world, and it plays a major role in 

human perception. With all the advances in technology, our dependence on vision and images has be

come increasingly stronger. Today, digital image processing is in the heart of most areas of science since 

image collections exist to serve many purposes including: medicine, art, geography,...etc. Although im

age processing has been applied in different areas, it has proven particular efficiency in quality control 

systems. 

In the food industry, for instance, machine vision methods were used to obtain 3D measurements of 

the different types and sizes of loaves for bread production [1]. For the tea process, image processing 

techniques were used to monitor the tea leaf color for fermentation, to inspect the tea taster, and to 

estimate the quality of the tea by different tea planters. In the fruits and meat industries, image pro

cessing methods were implemented to detect numerous defects in shape, color, size, and texture of the 

fruits [2,3], and to grade the quality of the meat [4]. 

Image processing was also applied in other industries like in pharmaceutic to find out missing tablets 

in the inspection of tablet strips [5], in hardness testing by PATNI computer systems to measure metal 

diameter, and in fish food to repair coating quality in can ends of metal containers [6]. Thus, the 

significance of the ability to classify, search, and retrieve images from an image collection can't be 

overemphasized. 

Unfortunately, indexing and classifying images has many difficulties in comparison to text. For 

instance, images do not satisfy the requirements of a language; they do not have a clear purpose or 

meaning that might help in classifying them, nor can they be searched by keywords to extract relevant 

needed information and this is due to the fact that keywords are subjective and can mean different things 

to different people. Researchers around the world tried to overcome these problems and proposed many 
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methods and algorithms to better index and classify the images. 

One of the very first attempts to index color images was the color histogram [7,8]. The histogram 

is an effective yet simple method of indexing based on the color feature of the images; it counts the 

number of occurrence of each color in the image. The major drawback in the color histogram is its lack 

of spatial information. In an attempt to overcome this problem, Pass et al. introduced the histogram 

refinements [9-12] approach which uses the color coherence vectors. Because of its high computational 

cost and to further improve the indexing of images, Huang et al. introduced the color correlogram [13, 

14]. The correlogram expresses the spatial correlation of color changes with distances in the image. 

Another approach introduced by Lee et al. is the spatial color descriptor for image retrieval and video 

segmentation [15] which outperforms the histogram, its refinements, and the autocorrelogram. 

This thesis addresses statistical modeling of spatial color information in images. The following 

background material is presented to provide context for this work. 

1.1 Histograms 

As an image feature vector, color histograms can be used in many image related applications including 

content-based image retrieval [16-18], object indexing and localization [7], image subregion querying 

[7], video cut detection [ 19], as well as some other video processing applications. Color histograms have 

several advantages like easiness of computation, insensitivity to small changes and partial occlusions, 

and storage efficiency by only taking an 0(n2) space [7,8,13]. 

Let / be an image of pixels p(x,y), each pixel has a certain color defined using a color space. 

Different color spaces have been proposed. In the following, we give some examples: 

1.1.1 Color Spaces 

•RGB color space 

RGB is the most commonly used color space, and it is composed of primary colors: Red, Green, and 

Blue which are considered additive primaries. The representation of the RGB color space is a cube in 

which the diagonal from (0,0,0) "black" to (1,1,1) "white" represents the grayscale. 

•HSV color space 

The HSV stands for: Hue, saturation, and value (intensity). The hue and saturation components are very 

related to the way human eye perceives colors. The representation of the HSV color space is a hexacone 

where hue is defined as an angle in the range [0,211] relative to the red axis. The saturation is the depth 
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or purity of the color and is measured as the radical distance from the central axis with values between 

0 and 1. The intensity value [0,1] determines the particular gray shade to which this transformation 

converges. 

• L * A* B* color space 

The LAB color space with coordinates ]*, a*, and b* is based on nonlinearly-compressed CIE XYZ 

color space coordinates but perceptually more linear. It is designed to approximate the human vision 

as its L component closely matches the human perception of lightness, the A component's position lies 

between the red and green, while the B component lies between the yellow and blue. Many of the colors 

within the LAB color space fall outside the gamut of human vision, and are therefore purely imaginary. 

•XYZ color space 

The CIE XYZ system is at the root of all colorimetry. It is defined such that all visible colors can be 

defined using only positive values and the Y value is luminance. Consequently, the colors of the XYZ 

primaries themselves are not visible. The chromaticity diagram is highly non-linear, in that a vector of 

unit magnitude representing the difference between two chromaticities is not uniformly visible. A color 

defined in this system is referred to as Yxy. A third coordinate, z, can also be defined but is redundant 

since x + y + z = 1 for all colors. 

1.1.2 Color Histograms 

For a pixel p in an image / , let I(p) corresponds to a pixel p, and let Ig denotes its color g, for which 

I(jp) = g. Then the histogram for the color gi is defined as: 

h9i(l) = PpeX(P e 2g,) (l) 

When dealing with large databases, the histograms of two different images can be the same, this is 

due to the fact that they do not include any spatial information. The color histograms are susceptible to 

false positives and are not robust to large appearance changes [13]. To decrease the computation time 

and memory storage, the sum and difference histograms are computed [20]. The sum and difference 

histograms with parameters (d\, d2) over the domain D (where D is a subset of indexes specifying the 

texture region) are 

hs(i;dl7d2) = Card{(k,l) € D,Sk,i = i} (2) 

hdU;dud2) = Card{(k,l) € D,Dktl = j} (3) 

where d\ and d2 are the relative positions of the two pictures. 

3 



To overcome several problems including the distractions in the background, the viewing from differ

ent viewpoints, the occlusion, and the different images resolution; Swain et al. introduced the histogram 

intersection [8]. It is defined as the intersection between a model histogram and an image histogram. In 

other words, it is the number of pixels from the model that have corresponding pixels with similar color 

in the image. Given two histograms, Q and / , each containing m colors, the intersection is denned as: 

m 

^minfQi , / , - ) (4) 

1 = 1 

They also proposed the incremental intersection used for indexing into a large database efficiently. 

The idea behind it is to compare only the largest bins of the image and construct a partial histogram 

intersection. 

The main disadvantage of the histogram is its lack of spatial information. This missing information 

may result that two images with difference appearances (See Fig.l .1) can have the same histogram (See 

Fig. 1.2). Researches have come up with other image feature vectors where the spatial information is 

Figure 1.1: Two different images having same histogram 

included which improves the images indexing and retrieval tasks. 

1.2 Approaches to Introduce the Spatial Information 

1.2.1 Histogram Refinements 

Pass et al. introduced the histogram refinement [9,10] by dividing the pixels in the image into classes 

based upon some local property (texture, orientation, relative brightness,...etc.), and then comparing the 

pixels of the classes using any standard method. The color coherence vector is an example of histogram 

refinement in which the buckets are divided based on whether they are part of a large group of pixels 
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Figure 1.2: Color histogram of both pictures 

with the same color (coherent) or not. r is the value which if the size of the connected components 

exceeds, the pixels are defined as coherent. Two images / and I' can be compared using their CCV's 

by using the LI distance the following equation: 

Accv = \(aj-ap\ + \(0i - # ) | (5) 

where ctj and j3j are the number of coherent and incoherent pixels of the color j respectively. The 

histogram refinement incorporates spatial information to overcome the problem of the color histogram, 

it is efficient and gives better results than the histogram. 

Another approach introduced by Pass et al. is the joint histogram [11]. The idea behind joint 

histograms is to add extra information to the image summary to overcome the histogram problem. One 

or more local features (edge density, texture, gradient magnitude, rank) are selected to be used in parallel 

with the color histogram. Some of the advantages of the joint histogram is the fact that any improvement 

in the histogram can be applied directly, as well as the fact that it preserves the robustness of the color 

histogram. 

Joint histograms support parallel computation which can decrease the computation time if multiple 

processors were used simultaneously. On the other hand, the joint histogram takes a significantly larger 

space and longer computational time than the color histogram. To overcome the limitations of the joint 

histogram, Zabih and Pass proposed the reduced intersection [11] as an extension to their work. In the 

reduced intersection only the largest entries in the color histogram are computed, leading to a decrease 

in the indexing and retrieval times for large databases. 
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1.2.2 Color Correlogram 

The color correlograms express the spatial correlation of color changes with distance in the images. 

Correlograms have been used to replace color histograms in different applications such as content-based 

image retrieval, image subregion querying and localization, video cut detection,and image indexing and 

classification [13] [14]. 

For a distance d £ [n], the correlogram of the image / is defined for (<?,, gj) at a distance d. 

^ W = PPi€Xgi,P2ex(P2 € lgj\\Pi -P2 = d\) (6) 

which gives the probability that given any pixel pi of level <?;, a pixel p2 at a distance d in certain 

direction from the given pixel pi is of level <7J. 

Color correlograms are stable and scalable in contrary to the histograms. The correlogram is easy 

to compute with a fairly small feature size. When compared to the histogram and its refinements from 

the performance point of view, the correlogram showed better results in images indexing and retrieval, 

and video cut detection [14]. The correlogram is robust in tolerating large changes in appearance of the 

same scene as well as partial occlusions. The Autocorrelogram only considers the correlation between 

the identical colors and takes only 0{md) space. 

®{
g
dHi) = i{

9
d)

g(i) (7) 

It gives the probability that pixels p\ and p2, d away from each other, are of the same level g,. 

Because the correlogram takes 0(m2d), and to overcome its storage efficiency and computation 

time problem, the banded correlogram [14] is in general used. 

(d+ l )6 - l 

^ w = £ 7J&W l^d^h (8) 

d'=db 

If only local information is needed, a small set of distances is enough to capture the spatial correlation 

of pixels, and reducing the dimensions of the feature. The banded correlogram takes only m2d/b space, 

but it is more susceptible to false matches than the correlogram since 

| / - / ' l y , L l < | / - / ' U 1 (9) 

which follows the triangle inequality. 

Another correlogram related method to facilitate image subregion querying by avoiding exhaustive 

searching in an image, is to define the correlogram intersection [14]. 

Vrf) (Oni) = r ^ ( Q n / ) (io) 
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We measure the presence of Q in I by the distance \Q — Q n I\ L 

The Edge correlogram [13] [14] is obtained by adding the edge information to the color correlogram, 

it augments the discriminative power of the correlogram. Suppose £ : / -> {0, 1}; 1 for an edge and 0 

otherwise. Then the edge correlogram can be obtained by: 

, C+ if I(P) = C and £(P) = 1, 
I'(P) = { (11) 

C- if I{P) = C and £(P) = 0 

The main disadvantage of the edge correlogram is that it takes double the space required by the 

correlogram which is (4m2d) space. 

1.2.3 Spatial Color Descriptor 

The spatial color descriptor [15], proposed by Lee et al. to enhance the performance of image and video 

analysis, overcomes the two main problems faced by the conventional color descriptors. The algorithm 

uses the color edge information as well as the augmented histogram based on colors quantized in the 

HLS color space. The augmented histogram consists of the color adjacency histogram and the color 

vector angle histogram. The color adjacency histogram includes the spatial information of edge color 

pairs, while the color vector angle histogram shows the distribution of the smooth image pixels. The 

proposed algorithm is divided into four parts: 

-•Color edge detection 

Color vector angles are used to identify color edges because they lessen the effect of illumination, and 

they are sensitive to differences in hue and saturation. The angle separating the color pair (PI) and (P2) 

represents the perceptual color difference between them (See Fig. 1.3). In a 3 x 3 mask, the maximum 

color vector angle between the center pixel and all eight neighbor pixels is calculated using [21]: 

V?V,V?V2' 

and then 

sm(6)max =max[sin(0)ycv1,sin(0)vcv2,---,sin(0)vcv8] (13) 

If the maximum angle 6 is bigger than 0.09 the center pixel is classified as an edge pixel, else it is 

classified as a smooth pixel. 

-+CoIor space conversion and nonuniform quantization 

The image is conversed from the RGB to the HLS color space to facilitate the computation and auto

mated image segmentation. Very good results can be achieved when using the HLS color space. After 

sm(0)„1>t,2 = (1 - ,}T\.*')* (12) 
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Figure 1.3: Color vector angle 

Table 1.1: Quantization levels for H, L, and S. 
Number of colors 

32 

Acl 
H 
1 

iroiiu 
L 
4 

itic 
S 
1 

Lov 
H 
7 

v chrc 
L 
3 

>matic 
S 
1 

High chromatic 
H L S 
7 1 1 

the conversion of the image to the new color space, the color space is divided into three subregions: 

achromatic, low chromatic, and high chromatic, depending on saturation related values. Because some 

components are more important that others for a specific subregion, the image is non-uniformly quan

tized into 32 colors (See Table: 1.1). 

—>CoIor adjacency histogram 

After the detection of the color edges, a color adjacency histogram of the each edge pixel and the neigh

boring pixel with the maximum angle is constructed. It is a 32 x 32 matrix representing the count of 

each color pair. The histogram will normally include many empty bins and only a few peaks. In order 

to reduce the computational cost and avoid fine comparisons, when the pixel count of a certain bin in 

the histogram exceeds a certain threshold, it will be classified as effective with a " 1 " , else a noneffective 

"0". To further refine the histogram, the storage cost is reduced by performing a decimal conversion to 

the binary stream of each row in the binary matrix. 

—•Color vector angle histogram 

For all smooth pixels, a color vector angle histogram is constructed. The number of frequencies of 

each color over the entire image is inserted in the corresponding bin of the histogram. For better color 

classification and because of the large number of smooth pixels, a classification of the smooth pixels is 
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performed. Depending on the maximum color vector angle between the pixel and the eight-connectivity 

neighbors, the pixel is classified either into two bins A or Bin B. If the angle is bigger than 0.045 the 

pixel is counted in Bin A, else it is counted in Bin B. 

The augmented histogram, which consists of the color adjacency histogram and the color vector 

angle histogram, is then used as the color descriptor for image retrieval and video segmentation. Exper

imental results show that the spatial color descriptor achieve better results than the color histogram and 

the autocorrelogram in terms of recall and precision. 

1.3 Contributions 

The contributions of this thesis are as follows: 

KS' Discrete Data Clustering Using Finite Mixture Models: We investigate the problem of discrete 

data modeling using finite mixture models. We propose a novel, well motivated mixture that 

we call the multinomial generalized Dirichlet mixture. The novel model is compared with other 

discrete mixtures. We designed experiments involving spatial color image databases modeling 

and summarization to show the robustness, flexibility and merits of our approach. 

"s* Integrating Spatial and Color Information in Images Using A Generative Statistical Framework: 

We propose a statistical model to integrate both color and spatial information. Our model is based 

on finite multiple-Bernoulli mixtures. For the estimation of the model's parameters, we use a 

maximum a posteriori (MAP) approach through deterministic annealing expectation maximiza

tion (DAEM). Smoothing priors on the components parameters are introduced to stabilize the 

estimation. The selection of the number of clusters is based on stochastic complexity. The results 

show that our model achieves good performance in a specific image classification problem (city 

vs. landscape). 

1.4 Thesis Overview 

The organization of this thesis is as follows: 

• The first Chapter contains an introduction to image histogram and spatial information, a brief 

review of some well known approaches found in the literature. 
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• In Chapter 2, we introduce a finite mixture model as an effective method for different computer 

vision, image processing and pattern recognition tasks. We propose a multinomial generalized 

Dirichlet mixture to model discrete data. The novel model is compared with other discrete mix

tures and a conclusion is drawn. Two shorter versions of this work have been published in IEEE 

ICASSP [22] and PAKDD [23]. A long version has been submitted to pattern recognition and 

revised [24]. 

• In Chapter 3, we propose a statistical model to integrate both color and spatial information. Our 

model is based on finite multiple-Bernoulli mixtures. A detailed description of the algorithm and 

its applications will be presented. A shorter version of this work has been accepted at ICANN 

[25]. A long version has been submitted to pattern recognition letters [26]. 

• In the Conclusions Chapter, we summarize the various methodologies and contributions that were 

presented , and we propose several future research directions that are directly or indirectly related 

to the work performed in this thesis. 
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I 
CHAPTER 

Discrete Data Clustering Using Finite Mixture 

Models 

Finite mixture models have been applied in different computer vision, image processing and pattern 

recognition tasks. The majority of the work done concerning finite mixture models has focused on 

mixtures for continuous data. However, many applications involve and generate discrete data for which 

discrete mixtures are better suited. 

In this chapter, we investigate the problem of discrete data modeling using finite mixture models. 

We propose a novel, well motivated mixture which we call a multinomial generalized Dirichlet mixture. 

The novel model is compared with other discrete mixtures. We designed experiments involving spatial 

color image databases modeling and summarization to show the robustness, flexibility and merits of our 

approach. 

2.1 Introduction 

Discrete data appear in many pattern recognition, machine learning, computer vision and image pro

cessing applications. In computer vision, for example, discrete data are present in several applications 

such as texture modeling, narrowing the semantic gap for content-based image summarization and re

trieval [27], histogram clustering and image segmentation [28]. In this work, we are motivated by 

the need to construct powerful statistical approaches to model, analyze and cluster this type of data. 

Different statistical models have been proposed and were generally dedicated to text classification 

and language processing. The majority of these models make the naive Bayes assumption and are 

11 
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based on rnulti-variate Bernoulli distributions [29], Poissons mixtures [30,31] or multinomial distri

butions [32]. It is well-known that the multinomial distribution performs well in the case of discrete 

data modeling [33]. However, recent works have shown that even this distribution has some drawbacks 

such as considering that the events to model are independent [27,34-36]. Different smoothing tech

niques have been proposed to overcome these problems. The most successful approach is the use of 

the Dirichlet distribution as a prior to the multinomial which results in a completely formal statistical 

model [27,35,37,38]. This is due to the fact that the Dirichlet is a conjugate prior to the multinomial 

distribution [39]. Despite this conjugacy property, the consistency of its estimates as a prior, its flexibil

ity and its ease of use (See [40,41 ] for many other interesting properties of the Dirichlet), the Dirichlet 

distribution has a very restrictive negative covariance structure which makes its use as a prior in the case 

of positively correlated data inappropriate [42,43] as we will show in the next section. 

In this chapter, we present a discrete finite mixture model [44] based on both a generalization of the 

Dirichlet distribution and the multinomial. We stress the fact that the parent distribution in the pro

posed model is the multinomial and that the generalized Dirichlet is the prior distribution. The key 

contribution in this chapter lies on the introduction of the generalized Dirichlet mixture as a smoothing 

technique to deal with the modeling problems that arise when using the multinomial. The choice of the 

generalized Dirichlet is motivated by the excellent results obtained when we have used it as a parent 

distribution in different pattern recognition and computer vision tasks [43,45,46]. The estimation of 

the parameters of our mixture model is based on the maximum likelihood estimation by invoking the 

expectation maximization (EM) approach. In order to accelerate the EM convergence, we have also 

introduced a Newton-Raphson step. The proposed mixture model is applied to an important problem in 

computer vision which is the introduction of spatial constraints in color histograms. Indeed, we propose 

a generative model for this task. Our generative model is used for image databases categorization using 

both labeled and unlabeled images. 

2.2 The Multinomial Generalized Dirichlet Mixture 

2.2.1 The Dirichlet Assumption 

Let X = (Xi,..., XD) be a discrete vector which means that each element Xd, d = 1, 

discrete and takes on values 1,2,... ,V. Then, the joint probability of X is given by 

., D in X is 

(1) 
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where 8{Xd = v) is an indicator function, it = (iri,..., irv) is the parameter vector, nv — p(Xd — v), 

J2v=i nv — 1> ar>d fv — S d = i ${Xd = v)- The distribution given by Eq.(l) is a multinomial distri

bution based on the samples and is different from the well-known following multinomial distribution 

which model the counts of the samples ' 

where / = ( / i , . . . , j y ) . In this chapter, we will use the distribution given by Eq.(l) as we would like to 

model the samples and not their counts. Using Eq.(l), the samples will be used to set the probabilities, 

obtaining 
Jw ,~, 

*v, = = v T ( 3 ) 

which gives poor estimate [27,48]. Indeed, by using the multinomial, we suppose that the occurrence 

of a given event is independent of other events which is generally incorrect. Then, the majority of the 

researchers assign a single Dirichlet or a Dirichlet mixture prior to the parameter vector of multinomial 

distribution to moderate the extreme estimates given by Eq.(3) [27]. The Dirichlet distribution with V 

parameters a = {a\,..., ay) is defined by 

l l „ = i r ( a « ) v=i 

The Dirichlet distribution depends on V parameters ai,...,ay, which are all real and positive. In spite 

of its flexibility and the fact that it is conjugate to the multinomial, the Dirichlet has a very restrictive 

covariance matrix. Indeed, the covariance between 7i\, and TTW is [41,42] 

COV(TTV^W) = - — y — — v — 
( E ; = i " 0 2 ( E ; = i a i + l) 

Thus, any two random variables in n = {iti,... ,irv) n a v e t o be negatively correlated which is not 

always the case. In general, this negative correlation violates experimental observations [49] as shown 

in [50] and [51], in the case of biological data and data describing microelectronic chips, respectively. 

For instance, if jf describes the normalized histogram of an image or the normalized frequencies of 

some words in a document, two entries irv and TTW may be positively correlated. Another restriction of 

the Dirichlet distribution is that the variables with the same mean must have the same variance as shown 

in [52]. Then, if we wish, for instance, that different TTV have the same expectation a priori, then they 

must also have the same variance which can make our model unrealistic. AH these disadvantages can 

be handled by using the generalized Dirichlet distribution. 
1 See [47] for a discussion about the difference between samples and counts modeling 
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2.2.2 The Multinomial Generalized Dirichlet Distribution 

The generalized Dirichlet pdf is defined by [50] 

v - i 

*«»=n^c-(.-E,)" 
where B(av,pv) = ^ " j J + ^ M ' = («i, Pi,--- ,aV-i,Pv-i), av > 0,/3„ > 0, 7„ = pv - av+1 -

[3v+i for v = 1 . . . V — 2 and 7v- i — Pv-i — 1- Note that the generalized Dirichlet distribution is 

reduced to a Dirichlet distribution with parameters (a.\,... , c ty_i ,ay = /?y-i) when/3„ = a„+i + 

/?„+i. Thus, the generalized Dirichlet includes the Dirichlet as a special case. Compared to the Dirichlet, 

the generalized Dirichlet has V — 2 extra parameters which is a very important advantage. Indeed, as 

the Dirichlet has V parameters, when constructing a Dirichlet prior and if the mean probabilities of 

the variables have been fixed, it remains only one degree of freedom (by fixing the value of Ylv=i Q«) 

to adjust the distribution [53]. For the generalized Dirichlet, however, it remains V — 1 degrees of 

freedom which makes it more flexible for several applications [43]. The general moment function of 

the generalized Dirichlet distribution is [54] 

E^ ,n2 ,...,*v_1) = J ] B{av+ Pv+Sv) 
v~l v ' 

where Sv = rv+±+rv+2 + . • .+ry-i for?; = 1,2,.. . , V — 2<mdSv-i = 0. Then, we can show that the 

mean and the variance of the generalized Dirichlet distribution satisfy the following conditions [50,54] 

M̂ = -rrn-4fl- (4) 

OLv + Pv ^Jl Ofe + Pk 

Var(nv) = E(*v) ( " ' + \ j f P* + \ • - £ ( , „ ) ) (5) 
\ av + pv + 1 £± ak + pk + 1 / 

and the covariance between TTV and nw is 

Cov(7rv,nw) = E(TTW) ( , J , 1 TT l a , T ~ E ^ 
V av + pv + 1 £Jj a* + /^ + 1 

Note that the generalized Dirichlet distribution has a more general covariance structure than the Dirichlet 

distribution and that variables with the same mean do not need to have the same variance. In addition 

to these properties, the generalized Dirichlet is conjugate to the multinomial distribution and the joint 

distribution of X and jf is (See appendix A) 

^^^Uj^f^^-p^ (6) 
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where av = av + ft and 0V = fiv + fv+1 + ... + fv for v = 1 , . . . , V - 1, -yv = )3V - av+1 - /3V+1 

for v = 1 , . . . , V — 2 and 7y_j = P V - I ~ 1- Integrating over n, we obtain the marginal distribution of 

X 

P(X\0 = [p(X,w\Odn = [ J * / T T ^ - ^ I - £ > ) ^ 
•/if „=1

 J3\av,Pv) Jjj l=1 

v-i 1 v - i 

We call this density the multinomial generalized Dirichlet distribution (MGD). Then, the posterior is 

given by 

which is a generalized Dirichlet with parameters (a1: /31,..., av_1,(3v_1). Then, by taking the gener

alized Dirichlet as a prior to the multinomial and according to Eq.(4) and Eq.(7), we obtain 

•nw=E[Tiw\X\£\ = —-—• I I - — (8) 
aw+pw + nw ^ at + Pi+ nt 

where m = ft + ft+i + ... + fv- When j3v — av+i + pVfi, it is straightforward to verify that this 

equation is reduced to 

*„ = E[nw \X;i}= ^ y , J w „ (9) aw + ft 

where ay = j3v-i, which represents the expectation when we consider a Dirichlet distribution, with 

parameters (ai,..., ay ) , as a prior. Note that Eq.(9) is reduced to Eq.(3) when av = 0, v = 1 , . . . , V, 

and to the well-known Laplace smoothing equation 

1 + fw 

v + TLifv 
when av = l,v = 1 , . . . , V. 

2.2.3 The Multinomial Generalized Dirichlet Mixture 

Suppose now that we select a generalized Dirichlet mixture as a prior to the multinomial. A generalized 

Dirichlet mixture with M components is defined as 

M 

p(if|0) = ^2P(TT\^J)PJ 

3 = 1 
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where pj (0 < pj < 1 and J2j=iPj = 1) a r e t n e mixing proportions and P(TT\£J) is the general

ized Dirichlet. The symbol 0 = (£I,...,£M,PI,--- ,PM) refers to the entire set of parameters to be 

estimated. With a mixture prior, the joint distribution of X and jf is 

M V-l 
1 a ' - » _ 1 ' | _ 

1=1 

and the marginal distribution of X is 

j=l „=l n\a3v,P3v) l=1 

r M M V-l Bl ' a' \ 

P(X\Q) = / P(^,jfie)«w=Sft-p^ico=Eft n B „ A
 (10) 

We call this density the multinomial generalized Dirichlet mixture (MGDM). Then, the posterior is 

given by 

n f f t l *>(*,*!©) E J = i f t I I „ = i S K S - y ^ ' ( 1 - E J = I ^ ) 7 " 
P{TV\X,B)- -

And (See Appendix B) 

j = l a}W + /'jW & = 1 " j f c "+" Pjk 

where 

P\3\A^]) - M -> 
Y,j=iPjp(x\£j) 

and represents the posterior probability. Note that Eq.( 11) is reduced to Eq.(8) when j = 1. 

2.3 Maximum Likelihood Estimation 

Given a set of independent vectors X = {Xi,.. .,XN}, the log-likelihood corresponding to an M-

component MGDM is given by 

JV , M . 

L(x,e) = Y/^g(j2pjp(^j)) (12> 

It's well-known that the maximum likelihood (ML) estimate 2 

0ML=argmax{L(e,A-)} (13) 

2 W e are actually performing an empirical Bayes estimation, by maximizing over the generalized Dirichlet prior distribution 
parameters as opposed to the parameters of the multinomials. See [55] for more details about empirical Bayes approaches. 
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cannot be found analytically. The maximization defining the ML estimates is subject to the constraints 

0 < Pj < 1 ar>d £.-_! Pj = 1. Obtaining ML estimates of the mixture parameters is possible through 

EM and related techniques [56]. The EM algorithm is a general approach to maximum likelihood in the 

presence of incomplete data. In EM, the "complete" data are considered to be Yj = {Xi, Zt}, where 

Zt = (Zn,...,ZiM) with 

{ 1 if Xi belongs to class j 
(14) 

0 otherwise 

constituting the "missing" data. The relevant assumption is that the density of an observation Xi given 

Zi is given by n , = i P{Xi\ij)Zii • The resulting complete-data log-likelihood is 

N M , v 

L(X, 0, £) = E E Z» lo§ (PjP&\Zj)) (15> 

»=1 J = l \ ' 

The (^-function (the conditional expectation) of the complete-data log-likelihood in the above equation 

is 
N M N M ,V-1 

0(9; e<*)) = £ £ 4- logfe) + E E 4- log ( n ?^L+I^+) ) 
i = l j — \ i—\ J=L\ X ^=1 

(16) 

where Q^> is the value of 0 at iteration t and 

v{t)v(X-\£(t)) 
Zij = P(Zij = l\Xi; 9W) = ff P

t) ' g J (17) 

The first term in Eq.(16) can be maximized by updating pj as following 

P?+1) = ̂ jf^ (18) 

The maximization of the second term, however, does not yield to a closed form solution. Thus, we will 

use Newton-Raphson method which is based on the computation of the first and second derivatives. 

3Q(e;e<4>) N M 

dajv . . 
= E E ^ ( * (aiv + fc") - * (ai») 

i= i i = i ^ 

+ V(ajv + fiv) - 9(ajv + PJV + niv) ) (19) 

0Q(0;0<*>) 
JV M 

d/3jv . . = E E 4- (*(«*>+&«) - *(&«) 

+ *(/3j„ + n i v + i ) - *(a j w + /?j„ + n;„) ) (20) 



By computing the second and mixed derivatives of Q(Q; ©C) we obtain 

Ef=i E £ i Zij (*'(<*,-„ + /?,-„) - *'(«,-„) 

+\& (a,„ + /;„) - \P (aJt, + /3j„ + rtiv) J if «i = u2 = « 
d 2Q(6 ;e

( t ) ) 
(21) 

a2Q(9;6 ( t )) 
df3jvld/3jV2 

0 otherwise 

EJLi E£i 4' (*' (a* + &») - *' (ft«) 

+*'(/3j„ + n^+i) - * (aj» + ft« + niv) J if i (22) J Vi = D2 = V 

0 otherwise 

E£iE£ i £«(*'(«*, +ft.) 

- * ' ( a j „ +/?j„ 4-n™) J i f v i = w 2 = w (2-*) 

0 otherwise 

where \I> and \P' are the digamma and trigamma functions. Then, the Hessian matrix has a block-

diagonal structure 

a 2 Q ( 6 ; 6 ( t ) ) _ d 2 Q ( 9 ; e ( t ) ) 
dpJvldaJV2 dajvld/3jV2 

where 

Hfa) = b lock-d iag{# 1 (a j l , / ^ 1 ) , . . . , #y_ 1 (a , V ' - i , f tv - i )} 

/ 32Q(e;e
('>) a2Q(e;e

('>) 
H-vyQjvi Pjv ) — dajvdf3jv 

82Q(Q;0W) 0 2 Q(e;e ( t ) ) 
d/3jvdajv 02/3j„ 

and we have [57, Theorem 8.8.16] 

f f ( ^ ) " 1 = b l o c k - d i a g { H i ( a j i , ^ 1 ) - 1 , . . . , f r „ ( a i „ , ^ „ ) - 1 } 

We remark that Hv(ajV,fijV) can be written as: 

Hv(ajv,/3jv) = S + jaaT 

(24) 

(25) 

(26) 

(27) 

where 

5 = diag £f=i E£i % ( " *' («i») + *' (ajv + /,•„) ), E£i E j i 4- ( - *' (ft,) + *' (ft, + 

Tliv+l) )].7 = EJ!=i E'ir 4{*'(^.+ft,)-*'K-,+ft>--+«™)).«T = land7 ^ (E*=i A)"'-
Then, the inverse of the matrix Hi(aji,/3ji) is given by [57, Theorem 8.3.3]: 

Hv(ajv,pjv)-
1 =S~1 + S*a*a* (28) 



where: 

S~l = dias 

E £ i E £ I Zij [ - * > , - „ ) + *'(<*,•„ + / j o) 

E ^ i E j i i 4 ( - * '(&») + *'(&» + n«+i) 

(29) 

(ai/S1,a2/S2) 

1 

1 

E £ i E j i i Zij ( - * ' (&«) + * ' (&„ + n4„+1) 

(30) 

<5* = - 7 ( l + 7 ( l / 5 i + l / 5 2 ) 

N M 

Y, J2 ^j ( * ' (aJv + Pjv) - * ' (aJ» + &« + n™) ) 

E t i Ejii 4- (*' («;» + &«) - *' («;« + &« + »* 

(31) 

Er=i E ix Zij - * > ; » ) + * > * + / * ) 

E;V
=1 E = i zij ( * ("i« + ft?') - * («> + &« + niv) ) s - l 

E,=i E L 4- ( - *'(&«) + *'(&« + »wi) 

Given a set of initial estimates, Newton-Raphson method can now be used. The iterative scheme of the 

Newton-Raphson method is given by the following equation: 

m _ ^<-i) $>=$-l>-H{$-l>) 
xt-iu-idQiet&t-V) 

dg-v 
(32) 

•?(t 1)^-1 dQ(0;& —) j f referred to as the Newton direction. The introduction of the 

Hessian matrix helps to accelerate the convergence of our algorithm which can be viewed as a hybrid or 

w h e r e - t f ( £ V - " ) - 1 £ * P = i T 

generalized expectation maximization algorithm [58]. Note, however, that in order to converge to a local 

maximum, the hessian H(& ~ ) should be negative definite [56]. Consequently, all the submatrices 

Hv(ajV,Pjv) should be negative definite which is not always the case. The problem now is how to 
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approximate Hv(ajV,PjV) to be negative definite. Since the inverse of a negative definite matrix is 

negative definite, it follows that S'1 + d*a*a*T should be negative definite. Note that the two diagonal 

entries in S"1 are negative because the trigamma function is decreasing [59]. Then, since 7 > 0, a 

sufficient condition for Hv(ajv,(3jv) to be negative definite is: 11 + 7(1/Si + I/S2) I > 0 which 

suggests that 7 has to be replaced by min{7, 1/g
el_\/g }> where e is a small positive real constant, 

during the iterations [60]. 

2.4 Complete Algorithm of Estimation and Selection 

The initialization step is very important when we deal with mixture models and should take into account 

the nature of the data; i.e continuous or discrete. The majority of effective initialization algorithms such 

K-Means and Fuzzy C-Means [61] are dedicated to continuous data and cannot be applied to discrete 

data [62]. For instance, the classical K-means algorithm uses Euclidean distance which is inappropriate 

to cluster discrete data [63] and gives poor results [64]. In order to make our estimation algorithm 

less sensitive to local maxima, we have used an initialization scheme using both the spherical K-Means 

algorithm [63] and the method of moment (MM). The spherical K-Means algorithm was proposed 

in [63] as an extension to the classical K-Means algorithm and uses cosine similarity [65], rather than 

Euclidean distance, and thus is better suited for us. In order to apply this algorithm, we have computed 

the frequency vectors /,• associated with each Xt, i = 1 , . . . , N. Then, we have applied a preprocessing 

step, called normalized term frequency scheme, in order to form new vectors Fj = {Ya,..., Yw) that 

will be used as input to the spherical K-Means algorithm. The normalized term frequency scheme is 

based on the following equation [63] 

/ v v - 1 / 2 

^„ = /«,(X)/«) (33) 
^ 1=1 ' 

More details about this normalization scheme and the spherical K-Means algorithm can be found in [63]. 

INITIALIZATION Algorithm 

1. INPUT: Discrete vectors Xi, i = 1 , . . . , N, V, and number of clusters M. 

2. Compute the frequencies vectors /* = (fa,..., fiv)< i = 1 , . . . , AT. 

3. Apply the normalized term frequency scheme using Eq.(33), v = 1 , . . . , V , i = 1 , . . . , N. 

4. Apply the spherical K-Means [63] algorithm to obtain the elements of each component. 
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5. Apply the MM, based on Eq.(4) and Eq.(5), for each component j . 

6. Assign the data to clusters, assuming that the current model is correct. 

7. If the current model and the new model are sufficiently close to each other, terminate, else go to 

step 4. 

The MM is applied by using the first moment given by Eq.(4) and the second moment given by Eq.(5) 

of each / " v = 1,...,V, which form a system of linear equations to solve for ajV and fijV. 

Straightforward manipulations lead to the following equations for the initialization: 

E{A:]C 

n*=! 57r+fe - E (E£ / . » ) C " C 

° Hfc=i ajh+l3jk ° 

I l L i aJ+Bih - E \ ryf™f,,, )C-C 

(34) 

frv = J"7J f e ^ (35) 

C r ^ (36) 

An important part of the modeling problem is about determining the number of consistent clusters which 

best describe the data. For this purpose, many approaches have been suggested [44,66]. In our case, we 

have used the Bayesian information criterion (BIC) proposed by Schwarz [67] 

BIC(M) = \og(L(X), G) - l-Np \og(N) (37) 

where Np is the number of free parameters in the mixture model and is equal to M(2d + 1) in our case. 

Having the BIC criterion and the initialization algorithm in hand, the complete algorithm for estimation 

and selection is as following: 

Algorithm 

For each candidate value of M € [Mm,n, Afmaa.]: 

1. Apply the INITIALIZATION Algorithm. 

2. E-Step: Compute the posterior probabilities ZJ • using Eq.(17). 

3. M-Step: 
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(a) Update the p\' using Eq.( 18). 

(b) Update the ^f using Eq.(32). 

4. Calculate the associated criterion BIC(M) using Eq.(37). 

5. Select the optimal model M* such that: 

M* = argmax BIC(M) 
M 

2.5 Experimental Results 

Our intent, in this section, is to compare our model with previously proposed approaches for discrete 

data classification and modeling. As we have mentioned in the introduction, discrete data are an impor

tant component in a wide range of domains and applications such as pattern recognition, image and text 

processing. In image processing and computer vision, for instance, features extraction is an important 

step for several applications such as content-based image database categorization and retrieval. The 

extracted features may be discrete (ex. color histogram) and then should be represented by a discrete 

model. We show the merits of our proposed approach by discussing the following two applications. In 

the first application, our approach is used to develop a generative model for spatial color image databases 

summarization. The second application concerns text document classification. 

2.5.1 A Generative Model for Spatial Color Image Databases Summarization 

In recent years, there has been a tremendous increase in the generation of digital images. As this content 

grows, the need for tools to summarize, filter and retrieve image databases becomes more important. 

A variety of techniques have been proposed to retrieve this content [68,69]. Although different, all 

these techniques agree on the fact that an efficient summarization scheme plays an important role. 

Summarizing an image database is very important because it simplifies the task of retrieval by restricting 

the search for similar images to a smaller domain of the database [70]. Summarization is also very 

efficient for browsing. Color histograms are widely used as features vectors for image summarization 

and retrieval [7,8] and are used in different systems [68,69]. This can be explained by the fact that 

histograms provide a stable object recognition in the presence of occlusions and over views change [7]. 

However, histograms do not include any spatial information which is an important issue in the human 

visual perception. Indeed, images with different appearance may have similar histograms which is a 
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critical problem in large image databases [11]. Different approaches have been proposed to integrate 

spatial information with color histograms [13,71]. In the next subsection, we propose a statistical model 

based on the multinomial generalized Dirichlet mixture (Eq.(lO)) to introduce the spatial information 

into color histograms. The proposed model is then applied to images databases summarization using 

both labeled and unlabeled images. 

The Generative Model 

In this first application, we present a probabilistic framework for images summarization using both color 

and spatial information. The problem of image summarization is of great importance given the huge 

number of images generated every day. Our summarization problem is the following: given a single 

unlabeled (its class is unknown) image, classify it into one of a set of learned classes. The learned 

models are generated from the training labeled images for each class. Let us introduce our generative 

model. Suppose that we have N labeled images Z;, i = 1,...,N classified in R classes and that 

the number of labeled images in each class r is equal to nr where ^ r = 1 nr = N. By associating a 

distribution and a weight to each class in the training set, we can suppose that each image I j is generated 

by a mixture of R distributions with parameters 7? = (7F1,..., 7T_R) 

R 

p{li\ir) = yiprp(Ij\wr) (38) 

The problem now is the determination of p(2j|7fr). For this, let us introduce some notations. An L x K 

image Zj is considered to be a set of pixels {Xilk, I = 1 , . . . , L; k = 1 , . . . , K}, where Xilk is the pixel 

in position (/, k) of image I , . The colors in I j are quantized into C colors c\,..., cc- The distribution 

p(Zi\Tcr) can be described in terms of the features of the image. In our case, the features are the pixels. 

In order to introduce the spatial information, the probability of a pixel should be conditioned on its 

neighborhood. By taking the neighborhood consisting of the pixels at a distance A € { A i , . . . , ADIS} 

measured using the L^ norm,p(2j|7fr) will be given by 

DIS L K 

P{ii\*r)=n n n ^x*- ̂  *•-.<* > ̂ ) ^ 
d=\l-\ k=l 

where \(l,k) - (l',k')\ = max{|Z - l'\, \k - k'\} = Ad. Note that Eq.(39) will represent the clas

sic image histogram, if we suppose that each pixel X{lk is independent of its neighborhood, which 

is actually the standard naive Bayes assumption [32]. According to Eq.(39) the parameters of an in

dividual mixture component are a multinomial distribution over the C x C possible color pairs and 
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can be written as irC(i,c,2,A<l|r> where h,t2 = 1,. ..,C and irCt^Ct^Ad\r = p{Xilk - ctl,Xillk, = 

ct2\\{l,k) -(l',k')\ = Ad ) , / , / ' = l,...,L,k,k' = 1 , . . . , K, which is the probability that a pixel of 

color ctl has at a distance A^ a pixel of color C(2. Then, Eq.(39) could be written as follows 

DIS C C 

P(Wr)=nnn -:::z^ m 
d=l ctl — 1 Ct2— 1 

fctl,cta,A* = Card{(Xilk,Xillk,) = (ctl,ct2)\\(l,k) - (l',k')\ = Ad) (41) 

where Card{} refers to the number of elements of a set. Learning our model consists of estimating the 

parameters irCt >C( j A d | r using the nr labeled images in class r. By noting that we can associate a C2-

dimensional vector of frequencies fiAd = (/j,Cl,Cl,Ad, • • • > fi,Cl,ccAd, • • • > fi,cc,cut\d,- • •, fi,cc,ccAd) 

to each image 2^ for each distance A^, the parameters are estimated using Eq.(l 1) 

M a- A
 Cl1 c ' 2 P'ic, c, Ad ^^r^pu^)-,—^^—n n - — v ? ? — 

j = l j,ct! ,c*2 ,A d ^ MJ,c, ,c«2 ,Arf C , =1 c , = 1 i ,c / ,c / ,A d ^ ^ j , c / ,c / ,Arf 

wherep(j | I i ;$), (o^C l i C l ,A d , • - - , 4 , , c c , A d . • • •>"j.cccA,,. • • • >a'j,cc,cc,Ad)
 a n d M a r e determined 

for each distance Ad using the algorithm in Section 2.4 applied to the data set composed of the images 

in class r. In our experiments, we take Mmin = 1 and Mmax — 10. Having all the parameters de

scribing Eq.(38) in hand, we can now assign a given test image lt to a particular mixture component in 

Eq.(38) by using the Bayes' rule: Z( i—> &rgmaxrprp(2t\TTr), wherepr = jf [61]. 

Spatial Color Image Databases Summarization 

In our experiments, we used a database containing 45100 images and composed of 10 homogeneous 

classes (See Figure 2.1). We divided the database into two sets. A data set containing 22550 images 

used for training. The remaining images were used for testing. The repartition of the different classes 

in the training and test sets is given in table 2.1. We considered the RGB space with color quantization 

into 512 colors ( 8 x 8 x 8 ) and the set of distances A = {1,3,5,7,9,11} used to introduce the spatial 

information (See Section 2.5.1). Further, we have considered only probabilities of pixels having same 

colors in order to reduce zero frequencies, which is a common approach and used, for instance, in the 

case of the autocorrelogram proposed by Huang et al. [13]. Then, each image was represented by a 

512-dimensional vector of frequencies. Table 2.2 shows the number of clusters found to represent each 

image class in the training set for each distance used. 

In order to measure the classification accuracy produced by our classifier, we have counted the number 
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Figure 2.1: Sample images from each group, (a) Classl, (b) Class2, (c) Class3, (d) Class4, (e) Class5, 
(f) Class6, (g) Class7, (h) Class8, (i) Class9, (j) ClasslO, 

Table 2.1: Repartition of the different classes in the training and test sets, 
class Training set Testing set 

Classl 
Class2 
Class3 
Class4 
Class5 
Class6 
Class7 
Class8 
Class9 

ClasslO 

2250 
2500 
3000 
1900 
2000 
2100 
2250 
2200 
2050 
2300 

2250 
2500 
3000 
1900 
2000 
2100 
2250 
2200 
2050 
2300 

of misclassified images (a misclassified image is an image that should be in class ji, but is classified 

in j where j ^ jj) in each class. The number of images misclassified when we used multinomial gen

eralized Dirichlet mixture (MGDM), was 2189, which represents an accuracy of 90.29 percent where 

the accuracy is measured by ( N ^ t o ° f ^ i ^ g ^ g ^ ^ ™ i e d i m a B e s x 100). Table 2.3 rep-

resents the classification accuracies when using the multinomial generalized Dirichlet mixture, multi

nomial Dirichlet mixture, single multinomial generalized Dirichlet (MGD), single mulinomial Dirichlet 

(MD), multinomial mixtures without smoothing (MM), multinomial mixtures with Laplace smoothing 

(MMLS), INITIALIZATION algorithm and the spherical K-Means. We have also compared our results 

with the FCA-MPL algorithm [62] which is an extension to the classical fuzzy c-means taking into ac

count the discrete nature of the data. Note that the improvement achieved by the MGDM, comparing 

to the other approaches, is highly statistically significant. We have also measured the training time of 
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Table 2.2: Number of clusters found to represent each images class in the training set for each distance 
used. 

A=l A=3 A=5 A=7 A=9 A=l l 
Class 1 
Class2 
Class3 
Class4 
Class5 
Class6 
Class7 
Class8 
Class9 

Class 10 

2 
3 
4 
2 
1 
2 
3 
2 
2 
4 

1 
2 
3 
2 
2 
2 
3 
3 
1 
2 

3 
4 
5 
2 
2 
1 
2 
3 
2 
2 

1 
2 
3 
2 
1 
2 
1 
3 
3 
3 

2 
2 
2 
1 
2 
2 
2 
2 
2 
1 

2 
1 
2 
2 
1 
2 
2 
2 
2 
2 

Table 2.3: Classification accuracies using different methods. 
Method Classification accuracy Training time (seconds) 
MGDM 
MDM 
MGD 
MD 
MM 

MMLS 
INITIALIZATION 
Spherical K-Means 

FCA-MPL 

90.29% 
83.54% 
85.10% 
82.15% 
80.35% 
81.07% 
82.11% 
78.40% 
78.34% 

350.48 
320.48 
290.32 
270.19 
210.08 
210.08 
240.12 
180.45 
190.13 

the different methods. For instance, the training times when using the INITIALIZATION algorithm and 

MGDM were 280.12 and 350.48 seconds, respectively, which show that the initialization helps to reach 

convergence rapidly. The training using the MGDM is slower than the MDM (320.54 seconds), which 

is acceptable since the gain in accuracy is significant. 

Figure 2.2 shows the accuracy of the classification, when using the three mixtures, as a function of the 

number of images in the training set. It is clear that the classification correctness increases as the number 

of training images increase. We have also tested the representation of the image colors in the HSV space 

and we did not remark much changes in the results. From the results, we can conclude that the MDM 

and the MGDM perform better than the multinomial. This can be explained by the sparseness problem; 

i.e the zero frequency problem [72,73]. Indeed, many frequencies are actually zero or have very small 

probabilities. Then, when the multinomial is used for modeling, prediction and classification, a large 

number of observations will be judged to be impossible based on the training data. The introduction of 

the Dirichlet and the generalized Dirichlet as priors can be viewed as smoothing technique [74] to deal 

with this problem. 
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Figure 2.2: Accuracy, using spatial color information, as a function of the number of images in the 
training set 

Spatial Color Image Database Summarization Using Labeled and Unlabeled Images 

From the previous application, we can see clearly that the accuracy of classification is improved by 

increasing the number of images in the training set (labeled images). However, obtaining these labeled 

images is very expensive in terms of time, since the labeling has to be done by a person. In this second 

application, we will try to improve the accuracy of our classification by using unlabeled images from 

the test set. Combining labeled and unlabeled images is an old approach in the statistics community (for 

instance see [75,76]). The basic idea is to use the available labeled images to train a classifier to label 

the unlabeled images, using the Bayes' decision rule, which will be added to the training set to build a 

new classifier. Roughly speaking the classifier is determined by estimating the vectors nr, r = 1 , . . . , R 

from the labeled and formerly unlabeled images. Indeed, each training class r is composed now of nl
r 

labeled images and n" formerly unlabeled images which will be used to estimate jfr. The complete-data 

log-likelihood function associated to each class r is then: 

L(r, e, 2) = ]T E z» los (PAZMJ)) + A E E z« los (PJP^MJ)) <42) 

where Xr is the set of images in class r and we have Xr = X1 U I " , where X1 and Xu represents respec

tively the labeled and formerly unlabeled images in class r. A £ [0,1] is a parameter introduced in order 
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to decrease the contribution of the unlabeled images to parameter estimation [32]. The maximization 

of Eq.(42) is performed exactly as Eq.(7) and the algorithm in Section 2.4 is used to estimate the pa

rameters. Figure 2.3 shows the effect of introducing 1000 unlabeled images, by varying the amount of 

labeled training images and by taking A = 0.3, on the classification accuracy achieved by the MGDM. 

From the experimental results, we can see clearly that the introduction of the unlabeled images can 

improve the classification accuracy especially when the number of labeled images is small. Indeed, 

according to our experiments, the classification accuracy improvement was statistically significant just 

when the number of labeled images was smaller than 18550. Figure 2.4 shows the influence of A on the 

classification accuracy when we use 6425 labeled images and 1000 unlabeled images. Note that when 

A is close to zero, the unlabeled images will have little influence and the classification accuracy is close 

to that obtained in the previous section. When A = 1, the labeled and unlabeled images will have the 

same weight. 
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Figure 2.3: Classification accuracy with and without 1000 unlabeled images. 

Image Retrieval 

As we have mentioned at the beginning of this section, categorizing images databases facilitates image 

retrieval by searching only the cluster or the category that is closest to a given image query. As in [70], 
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Figure 2.4: The effect of varying A on the classification accuracy when the number of labeled and 
unlabeled images is 18550 and 1000, respectively. 

we follow two steps to retrieve images that are similar to our query. First, we use the a posteriori prob

abilities to decide the nearest category to the image query. Second, we use the cosine similarity to find 

the most similar images to our query within the closest category. Of course, this similarity measure was 

applied after applying the preprocessing step described by Eq.(33). To compute the retrieval accuracies, 

we have used the following measures 

number of relevant retrieved images 
precision 

recall = 

total number of retrieved images 

number of relevant retrieved images 

(43) 

(44) 
total number of relevant images 

We took 1000 images from each class and each image was used as a query. Then, the measures in 

Eqs.43 and 44 were averaged over all the queries. Tables 2.4 and 2.5 present the retrieval rates, when 

25, 50, 75 and 100 images were retrieved from the database in response to a query, in term of precision 

and recall obtained when the MGDM, MDM and multinomial mixture were used. The results shown in 

these tables clearly indicate that the MGDM offers better modeling capabilities. 
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No. of retrieved images 
Model 25 50 75 TOO" 

MGDM 0.92 0.90 0.85 "0775~ 
MDM 0.88 0.86 0.82 "070" 

Multinomial mixture 0.80 0.76 0.66 0.61 

Table 2.4: Precision obtained for the images database. 

No. of retrieved images 
Model ""25 50 75 100" 

MGDM 
MDD mixture 

0.23 
0.22 

0.43 
0.41 

0.61 
0.58 

0.74 
0.67 

Multinomial mixture 0.20 0.35 0.47 0.56 

Table 2.5: Recall obtained for the images database. 
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CHAPTER 3 
Integrating Spatial and Color Information in 

Images Using A Generative Statistical 

Framework 

Color histograms have been widely and successfully used in many computer vision and image pro

cessing applications. However, they do not include any spatial information. In this chapter, we pro

pose a statistical model to integrate both color and spatial information. Our model is based on finite 

multiple-Bernoulli mixtures. For the estimation of the model's parameters, we use a maximum a poste

riori (MAP) approach through deterministic annealing expectation maximization (DAEM). Smoothing 

priors on the components parameters are introduced to stabilize the estimation. The selection of the 

number of clusters is based on stochastic complexity. The results show that our model achieves good 

performance in a specific image classification problem (city vs. landscape). 

3.1 Introduction 

Multimedia data are undergoing an important expansion in terms of volume and variety [77]. Color 

histograms are one of the most important and used techniques for image representation [7]. Because 

of their efficiency and effectiveness, histograms have been used as features vectors to represent images 

in many applications such as content-based image and video retrieval [78] and indexing [79], object 

localization [80] and identification [7], image segmentation [28], and video cut detection [81]. This 

can be explained by their trivial computation and the fact that histograms are invariant to translation 
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and rotation about the viewing axis, and provide a stable object recognition in the presence of occlu

sions and over views change [7]. For instance, a small number of histograms can represent adequately 

a three-dimensional object [7]. However, histograms do not include any spatial information which is 

an important issue in the human visual perception [82,83]. Indeed, images with completely different 

appearance and spatial colors organization may have similar histograms. Many approaches have been 

proposed to consider the spatial information [12,13,84]. A successful approach to tackle this problem 

and introduce the spatial information was proposed by Pass and Zabih [9]. Their technique is called his

togram refinement and imposes additional constraints on histograms. These constraints are introduced 

by subdividing the set of pixels having a given color into classes based on local features. A possible 

subdivision can be based on pixels spatial coherence where a pixel is considered as coherent if it is a part 

of a large group of connected pixels of the same color, and incoherent if not [9,10]. In this chapter, we 

propose a statistical framework to model the histogram refinement technique. Our framework is based 

on finite multiple-Bernoulli mixture models widely used in the case of document clustering [85] and 

recently introduced for image and video annotation [86]. We give an analytical solution for computing 

the evidence of these mixtures which is used to select the optimal number of the components. 

3.2 Model Learning 

3.2.1 The Model 

Let I aK x L image considered to be a set of pixels {Xo-, I = 1 , . . . , L; k = 1 , . . . , K}, where X\k is 

the pixel in position (I, k) of image I. The colors in / are quantized into C colors c i , . . . , c<> The color 

histogram H = (hCl,..., hCc) is a discrete vector of counts in which each hc represents the number 

of pixels of color c. According to its histogram, a given image can be represented by the following 

probability distribution 
cc L K cc 

^=nnn^" = e ) =n^ (i) 
e=ci (=1 k—\ c=c\ 

which is a multinomial distribution with parameters TT = {-KCI ,..., ircc } and 5{Xik = c) is an indicator 

function. 

By considering the histogram refinement technique, a given image can be represented by a color coher

ence vector (CCV) [9,10] ((/Cl , hCl - f C l ) , . . . , (fcc, hCc — fCc)) which is a vector of pairs, one for 

each color. In each pair (/c, hc — fc), fc represents the number of pixels having color c and coherent 

(i.e the pixel is a part of a large group of connected pixels of the same color). Thus, an image can be 
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viewed as a collection of samples from a multiple-Bernoulli distribution. Indeed, we can assume that 

we sample from a multiple-Bernoulli distribution once for each pixel in the image, where each binary 

trial corresponds to the event that a pixel with a given color is coherent or not. Modeling the image in 

this manner gives us the following 

K L Cc W \rk' ( \ 1~Tk,~\ s(x'h=c) cc 

where r^ = 1 if pixel Xik is coherent and 0 if not. Note that this distribution allows fine distinc

tion between images that cannot be made when images are modeled using the multinomial distribution 

in Eq.(l). Indeed, consider two images I\ and J2 containing the same number of pixels having his

tograms H1 = {hl
Ci,..., hl

Cc), H2 = {h2
Ci,..., h2

cc), respectively; and coherence vectors CCV1 = 

((&X, -Si),-••,(tic,Kc -tic)) mdCCV2 = (Ul,hl-fl),...,(tic,h
2
cc-f

2
c)),re-

spectively. Suppose that we would like to compare these images. Typically discrete distributions are 

compared using the Kullback—Leibler (KL) distance. Using Eq.(l) to model images, we have: 

ifL(p(j1),p(/2)) = f ;Mi 0 g(^) (3) 
C=Cl C 

where H is the summation of H1 and H2. Using Eq.(2) to model images, we have: 

KL{p{h),p{I2)) = ]T 
C— C\ 

f l f l h} _ f l 7,1 _ f l 
(4) 

Then, if the two images have the same histogram there will not be any distinction between them when 

using Eq.(3) which will be equal to zero. On the other hand, it is clear that Eq.(4) will be greater than 0 

and then creates a finer distinction. For more flexibility and in order to improve the distinction between 

the image pixels, it is better to consider a finite mixture model of multiple-Bernoulli distributions to 

represent the image which gives us the following 

M cc 

p(i\&)=5> n 4 c (i - *ic)hc-f< (5) 
j = l C=Ci 

where pj (0 < pj < 1 and]T. x ;?_,• = 1) are the mixing proportions and 0 = (p i , . . . ,PM,T?I, •• -,^M)-

3.2.2 ML and MAP estimation 

Given a set of N images X — {h,-- • ,ijv}» where each image is represented by a coherence vector 

((/«d, hiCl - ficj,..., (ficc,hicc - ficc)), the loglikelihood corresponding to our mixture model 
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given by Eq.(5) is 
N N M 

logp(I|6) = logjjp^ie) = 5>g£>p(^ i ) (6) 
i=l i=l j=\ 

A known method to estimate the parameters is the ML approach given by &ML = argmaxe {log p(2 |0)} . 

Another widely used approach is based on the Bayesian MAP criterion and it is given by QMAP = 

argmaxe{logp(I|6) + logp(0)}, where p(Q) is a prior for the mixture parameters. Note that the 

maximization in both cases is done with respect to the constraints over the mixing parameters. The 

usual choice for obtaining ML and MAP estimation of mixture parameters is the EM algorithm which is 

a general approach in the presence of incomplete data [56]. In EM, the "complete" data are considered 

to be Y{ = {Ij, Zi}, where Zi = (Zn,..., ZiM) with Zij = 1 if 7j belongs to class j and 0 otherwise, 

constituting the "missing" data. The relevant assumption is that the density of an image Jj given Zi is 

given by n j=i P(^iWj)Zi' • The resulting complete-data log-likelihood is 

N M , v 

L(l, 0, Z) = £ E Zij log (PjPiliWj)) (7) 
1=1 j = l ^ ' 

The EM algorithm produces a sequence of estimates {©*, t = 0 ,1 ,2. . .} by applying two steps in 

alternation 

"(i) p(Jr<l'?(-t')p(-t) 

1. E-step: Compute Z)-' — — '-—TA—nr given the parameter estimates from the initialization. 
3 HjLiP(ii\*))Pj 

2. M-step: Update the parameter estimates according to 

e ( w > = argmaxe { £ £ i E ^ i z\f ^Wi\*?)pT)} 

in the case of ML estimation, or 

0(t+D = a r g m a x e ^LMAP(i,e,z) = EtiEf^zlfiogipihi^pf ) + iog(p(0))} 

for the MAP criterion. 

The quantity Zij represents the conditional expectation of Zij given the image Jj and parameter vector 

0 . The value Z^ of Zjj at a maximum of Eq.(7) is the conditional probability that observation i belongs 

to class j (the posterior probability). The EM algorithm is widely used in the case of finite mixture 

models estimation. However, it highly depends on initialization and it suffers from a local maxima 

problem because of the multimodal nature of the likelihood when we deal with mixture models [56]. 

Different extensions were proposed to overcome this problem [56] and one of the most successful 

extension of the EM was the deterministic annealing method [87] which has been used to avoid the 

initialization dependence and poor local maxima. Deterministic annealing is obtained by modifying the 
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E-step in which we compute the following parameterized variant of the original posterior probability 

and is given by [87] 

*% = - . : > : , . . , . S . L T (8) ,t) _ m-rwr 13 sjii Wi\*f)pfr 
where r = ^ and T corresponds to the computational temperature. The algorithm starts at high temper

ature which is lowered during the iterations. In the M-step we update the parameter estimates according 

to 
( N M -. 

Q(t+i) = ^ J L ( J>Q,z,T) = Y,H*& l°g(P(^l«i)PO')) [ (9) 
for the ML criterion and according to 

, N M N 

Q(t+D = a rgmax J LMAP(I> Q,Z,T) = J2Y, ^S ^Wi¥f)vf) + iog(p(e)) [ (io> 
*• i= i j = i ^ 

for the MAP criterion. Using the ML approach, we obtain the following estimates for the mixture 

parameters (See appendix C): 

1 N 

^ = ] v X ^ (11) 

Note that the estimation of TTJC is based only on the frequencies fic and ftic. It is well known, however, 

that estimation based only on the frequencies give "poor" estimates [27]. With the MAP, we can smooth 

these estimates. As a smoothing prior to the T?J = (TTJI ,..., TTJC), we choose a multiple-Beta distribu

tion which is a conjugate prior [85] p(jrj) = Y\%Cl r(a-c)r($c
jc)"?~*(1 " ^ ' c ) ^ - 1 . where a j c and 

(}jC are the hyperparameters. A conjugate prior for the mixing parameters is the Dirichlet distribution 

p(pi, • • • ,PM) = nMJ=r,V\ ilv=i Pi'~ > where rjj is the hyperparameters. Consequently the prior of 

the overall mixture model is the following product 

TYV n) M r Cc 

p r 0 ) = x v ^ = 1 ' / j y FT p^-1 TT ^Wei-Pic) a,-.-i (1 _ r (a j C + ^-e) a . c _i _ ^ . c 

Having this prior, the goal is to find the MAP parameter estimate which maximize Eq.(lO). We obtain 

(See appendix D) 

_ EiL a* + (v -*) (14) 
ft~ W + Mfa-1) U ; 

^ j c = jy U-,.> 

Ei= l Wy/ijc + Ojc + Pjc ~ 2 

Note that these equations are reduced to Eqs.l 1 and 12 when r\ = 1, OjC = 1 and /?^c = 1 (i.ep(0) is 

uniform and then the MAP model is reduced to the ML one). 
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3.3 Selection of the Number of Clusters and Complete Algorithm 

The choice of the number of components M may affect the flexibility of the model. For the selection 

of M we use integrated (or marginal) likelihood, which has been shown to be robust and efficient for 

models selection in the case of discrete data [88], and defined by 

p(l\M)= fir{Q\l,M)dQ = fp(l\e,M)n(Q)dQ (16) 

p{l\M) is called also the evidence and can be viewed as an information theory measure and its minus 

logarithm is called stochastic complexity, which is the shortest possible code length for coding the data 

with respect to the chosen model form (the number of clusters in our case), by Rissanen [89] (See [90, 

91] for more details). Computing the integrated likelihood is analytically intractable in practice and 

different approximations have been proposed [92]. Two well known approximations are the Bayesian 

Information Criterion (BIC) [67], which is equivalent to the first version of the minimum description 

length (MDL) proposed by Rissanen [93], given by 

iVplogiV 
logp(2) « logp(I |0) - (17) 

where Np is the number of parameters and 0 is the posterior mode, and the Akaike Information Crite

rion (AIC) [94] given by 

logp(J) « logp(I |0) - NP (18) 

Another approach is the Cheeseman-Stutz approximation used in the AutoClass system [95] which 

suggests the use of the complete data evidence p(l, Z) = f p(X, Z\0)n-(0)dQ , where 

JV M [- cc 

P(I,Z\O) = n i i f t i i # - ^ ' c " / i c 

j = l j i = l L C=Cl 
M r cc 

= n p? n * F _ i Zi3fu^ - ^ ) E i l 1 z'i{hic~f'c) <i9> 
j = l L C=C] 

where rij is the number of vectors in cluster j . Then, we have 

M 

p(I ,Z |0)7r(0) = Cons^JJ rij + rij — l IK ajc-l+Y.?=iZilfi. (20) 

X ( 1 - TTje) ft£-HEf=12ii(^-/,c) 
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Where Const = TJ^j='Vil TT^i Ut-r r,(ai\tmc\- T h e integral in Eq.(16) has the form of a Dirich-

let integral, then 

1 1 M r t n + n ) M cc r aic + Si=l ^U'/ieir [ Pjc + Y,i=l Zij(hic ~ fie)) 

p(I, Z) = Const^r^+^ JJ JJ _V Z_V )_ 
r (N + E ^ I % J ^=1 C=C1 r [ajc + pic + zf=1 Zyh*) 

(21) 

Interesting discussion about estimating the evidence in the case of finite mixture models can be found 

in [88]. Having Eq.(21) in hand, the complete algorithm is as follows: 

Algorithm 

For each candidate value of M: 

1. Set T 4- Tmi„ (Tmjn < 1), choose an initial estimate 0'°) and set t 4- 0 

2. Iterate the two following steps until convergence: 

(a) E-Step: Compute w\ • using Eq.(8) 

(b) M-Step: Update thep*.' using Eq.(14) and the n-' using Eq.(15) 

3. Increase r (r <— r x A) 

4. If r < 1, set t i- t + 1, go to step 3. 

5. Calculate the associated evidence using Eq.(21). 

6. Select the optimal model M* such that: M* — argmaxA-/ logp(I, Z) 

Experimentally, we have concluded that Tmi„ set to 0.04 is enough which is the same confirmation 

reached in [96]. For the temperature, we used A = 5 which is a choice that gives good results and 

corresponds to 3 phases as in [96]. 

3.4 Experimental Results: Image Classification (city vs. Land

scape) 

The main goal of this section is to show the importance of the introduction of spatial information through 

the comparisons of mixture of multinomials ', used to model the color information, and our model based 

See [27] for details about ML and MAP estimation in the case of multinomial mixtures. 
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on mixtures of multiple-Bernoulli used to model both the color and spatial information. We also de

signed experiments to compare ML and MAP estimation and the different selection criteria discussed 

in Section 3.3. Images are represented in the RGB 2 color space. The color space is discretized in 64 

distinct colors in the image. A pixel is considered coherent if the size of its connected components 

exceeds the fixed value of 300. Following [9], we have scaled all images to contain a total number of 

pixels equal to 38,978, so a region is considered as coherent if its area is about 1 % of the image. 

With the amount of digital information growing rapidly, the need for efficient automatic images cat

egorization techniques has increased. Images categorization facilitates navigation and content-based 

images retrieval, and at the same time provides tools for continual maintenance as images categories 

grow in size. In this section, we propose a categorization approach based on our statistical model. We 

mainly focus on a specific interesting organization problem: city images vs. landscape images for which 

coherence vectors were shown to give good results [97]. Our experimental study is conducted on an im

age database consisting of 30,000 images (15,000 city images and 15,000 landscape images) collected 

from various sources. Figure 3.1 shows examples of images from both classes. Note that compared to 

city images, landcape images have relatively constant colors. 

£y ~ "^ Pi i . ffi %̂  
Figure 3.1: Sample images from each group. Row 1: Landscape images, Row 2: City images. 

Our main problem in this section can be defined as follows: Given an input image, assign it to either 

the city or landscape class. The assignment is based on a set of training images which are already la

beled. All training images are passed through the color coherence vectors computation stage, and then 

through the mixture's parameters estimation stage, in which the color coherence vectors are modeled as 

multiple-Bernoulli mixtures. After this stage, city and landscape classes are represented by Mcuy- and 

^andscape-comPonents multiple-Bernoulli mixtures p(city\QCity) and p{landscape\Qian4cape), re

spectively. Finally, the classification stage uses the Bayesian decision rule, to determine to which class 

We have also tested the representation of the image colors in the HSV and LAB spaces and we did not remark much changes 
in the results. 
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Table 3.1: Classification accuracies for training set. 
Multiple-Bernoulli niixlure 

Multinomial mixture 

ML+BIC 
M.4* 
S5.87 

ML+C-S 
S4.M 
86.83 

"ML+AIC 
94.33 
85.12 

M A M J I O 

55.86 
S8.54 

MAt>+c:-s 

W.M 
SMI 

MAP+AIC 

<«.« 88.24 

each image will be assigned, given as following: image / is assigned to class "City" if p(I\QCity) > 

p{I\Qlandscape) and to class "landscape" otherwise. In our experiments we have used 10,000 images 

for training (5,000 city images and 5,000 landscape images). Figure 3.2 shows the number of clusters 

found for each training class when we apply our algorithm with the different selection criteria (BIC, 

Cheeseman-Stutz approximation (C-S) and AIC). Tables 3.1 and 3.2 shows the classification results for 

(a) (b) (c) 
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Figure 3.2: Number of clusters found for the two training classes, (a) Landscape with BIC, (b) Land
scape with Cheeseman-Stutz approximation, (c) Landscape with AIC, (d) City with BIC, (e) City with 
C-S approximation, (f) City with AIC. 

the training and test sets, respectively, when applying the multinomial and multiple-Bernoulli mixtures 

using ML and MAP estimation with different selection criteria. The best accuracies of 97.93% and 

90.33% (which corresponds to 207 and 1934 misclassified images for the training and test sets, respec

tively) were obtained with the multiple-Bernoulli mixture with MAP estimation and selection based on 
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Table 3.2: Classification accuracies for test set. 
Multiple-Bernoulli inixlure 

Multinomial inixlure 

ML+lilC 
85.48 
77.87 

MI.+C-S 
86.67 
78.54 

MUAIC 
85.48 
77.35 

M A P + B I C 

89.45 
80.07 

MAP+C-S 
96.33 
81.97 

MAI'+AIC 
88.87 
75.35 

Table 3.3: Confusion matrices for multiple-Bernoulli mixture for test set with, (a) MAP + C-S, (b) 
MAP + BIC, (c) MAP + AIC. 

t'icy 
Landscape 

Cily 
8701 
957 

landscape 
1599 
TO73 

Cily 
Landscape 

Cily 
863$ 
848 

Landscape 
l l 6 l 
9152 

Cily 
Landscape 

Cily 
8879 
813 

Landscape 
l l J l 
9187 

(a) (b) <c) 

C-S criterion. It is clear also that the best results (over 95% and 88% for the training and test sets, 

respectively) were obtained using multiple-Bernoulli mixtures, with MAP estimation, which show that 

the spatial color distribution can be effective to discriminate between landscape and city images. Tables 

3.3 and 3.4 show the confusion matrices for both the training and test sets using multiple-Bernoulli 

mixtures with MAP estimation and different selection criterion. From these tables, we can conclude 

that the selected number of clusters can affect the performance and that the C-S criterion is the best one 

in our case. Figure 3.3 shows the classification accuracies for the test set as a function of the number 

of images in the training set. According to this figure, increasing the number of images in the training 

set improves the classification accuracy which is actually an expected result showing that our model has 

good capacities to learn when additional images are introduced. 

Table 3.4: Confusion matrices for multiple-Bernoulli mixture for training set. (a) MAP + C-S, (b) MAP 
+ BIC, (c) MAP + AIC. _ ^ _ _ _ _ _ _ _ _ 

Cily 
Landscape 

Cily 
4705 
lis 

Landscape 
598 

4875 
Ciiv 

Landscape 

Ci.y 
4707 
151 

1 .nndscapc 
503 

4879 
City 

1 .and scape 

Ciiv 
4858 

65 

1 .andscape 
]4J 

4935 
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Figure 3.3: Accuracy, using Multiple-Bernoulli mixture with MAP estimation and different selection 
criteria, as a function of the number of images in the training set 
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CHAPTER *T I 

Conclusions 

This thesis has presented a finite mixture to model discrete data, and a statistical model to add spatial 

information to the well known image color histogram. Our algorithms are a follow up to some previous 

work and they achieve significantly better results. 

In chapter two, we have proposed, discussed and evaluated a novel finite mixture to model discrete 

data. This mixture model is based on both the generalized Dirichlet and the multinomial distributions. 

The recently proposed multinomial Dirichlet mixture has turned out to be a special case. We have also 

addressed the problem of the mixture parameters estimation. We have developed an EM algorithm ac

celerated by a Newton-Raphson step. The results obtained are very promising and show the merit of 

our model. Our proposed model is powerful and flexible enough to be adapted to a broad variety of ap

plications where discrete data plays an important role such as information retrieval and filtering, natural 

language processing and bioinformatics. We intend to use the proposed MGDM for text classification. 

In chapter three, a statistical model to add spatial constraints to the image histogram has been pro

posed. Each image pixel with a given color is considered to be coherent or not and then modeled as a 

multiple-Bernoulli mixture. All the model parameters are estimated using the MAP approach through 

the DAEM algorithm. To assess the capabilities of this model, experiments have been carried out in a 

specific image classification problem. Indeed, as was noted by Pass and Zabih [9], the pixels of a given 

bucket can be subdivided also into more than two classes. The subdivision could be based on many 

possible features such as texture, orientation, distance from the nearest edge, relative brightness and 

intensity gradients. 
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APPENDIX A 

V - l 

P(X,*\& = i[P(x\t)Pm) = 4- n „, 1 o .K'-Hi- I > F -
M = l 
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X 

n 1 

^ Q I + Z I - 1 / J _ 7 r \ ( / 3 i + / 2 + . . . + / v ) - ( a 2 + / 2 ) - ( / 3 2 + / 3 + - + / v ) 
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where a'v = av + fv and fi'v = /3V + fv+1 + ... + fv for v = 1 , . . . , V - 1, j v = fi'v - a'v+1 - /3„+1 

for v — 1 , . . . , V — 2 and 7v_j = /3V_1 - 1. 
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APPENDIX C 

With ML, we have to maximize L(X, ©, Z, T). Computing its derivative w.r.t TTJC, we obtain 
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N 
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APPENDIX D 

With MAP, we have to maximize LMAP(%, @, Z,T). Note that we have to introduce a langrange 
- M multiplier A to incorporate the constraint £ 7 -= 1 Pj = 1- Computing its derivative w.r.t pj, we obtain 

M 
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N 
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Ei= i » y + (»7 - 1) 

(1) 

Taking the derivative w.r.t A, we obtain 
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The previous two equations gives us 
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Appendix D. 

Computing its derivative w.r.t TTJC, we obtain 
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