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ABSTRACT
Forensic Analysis of Windows Physical Memory

Ali Reza Arasteh

With the ubiquitous application of IT in different industries, digital forensic has become
an essential element in IT security for discovering and mitigating the root causes of IT
incidents. In this context, forensics memory analysis has recently gained great attention
in cyber forensics community. However, most of the proposals in this area have focused
on the extraction of important kernel data structures such as executive objects from
the memory. This thesis discusses techniques for forensic analysis of Windows physical
memory. The state of the art on digital forensic with focus on memory forensic is
elaborated in this thesis. Additionally the thesis introduces new techniques for Windows
memory forensics. The techniques that are elaborated in this thesis are classified into
two categories; physical memory parsing, and execution history analysis. The first
category introduces different in-memory structures of Windows operating system that
are of forensic value during a digital investigation. The second category proposes an
approach to analyze the stack memory of process threads to reveal partial execution
histories of processes. The result of applying this technique enables the investigator to
discover what actions performed by processes at the time of the incident. An algorithm
was developed for this purpose that produces all the possible execution history paths.

At the end, the introduced techniques are evaluated and empirical results are provided.
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Chapter 1

Introduction

With the advent of computer technology and ubiquitous use of computers in numerous
aspects of human life, cyber security has drawn great attention in the past few years.
Having interconnected networks of computers as an integral part of every industry has
made our lives exceedingly dependent on sound and reliable operation of the underlying
information technology infrastructures. These reliability requirements very often stem
from the nature of the industry or field in which IT is being used. Health industry,
financial companies, governmental agencies, telecommunication, and customer service
units are among many industries that are becoming more and more relying on flawless
operation of their underlying IT infrastructure. The service level agreements that are
guarantied by service providers can destroy the whole company’s prospect and credibility
in the event of service unavailability due to IT malfunctioning.

In this context, security professionals have strived to devise new techniques,
approaches and solutions to improve the overall security of the IT infrastructure. Vari-
ous solutions have been invented to automatically detect, stop and prevent the attacks

against IT infrastructures. Many governmental and private funds have been allocated to



research and development in cyber security. A variety of security software and hardware
products has been introduced to the market whose main goal is to protect confidentiality,
integrity and availability of systems and services.

Despite this increased awareness of I'T industry of security concerns and the recog-
nition of the need for a secure and reliable infrastructure that is immune to different
cyber attacks, current security practices have not been able to provide IT with a secure,
practical and effective basis on which different industries can build their required func-
tionalities. Many security products are either too costly to be adaptable by mid-sized
and small businesses or have strong resource requirements that renders them inapplica-
ble in resource-intense environment. Intrusion detection systems [/] have proved to be
ineffective in correct detection of malicious activities and are notorious for flooding their
stake holders with a plethora of false positives unless a great amount of effort is put into
tuning them. Even after excessive tuning, they can not keep up with the traffic in large
networks and can either play the role of a choke point in the network (i.e. when used
in in-line mode) or miss some malicious traffic in well-designed attacks []. Firewalls
are only able to detect certain obvious attacks and are not usually aware of the appli-
cation layer flows where the majority of the attacks and vulnerabilities exists. Many
companies underestimate the importance and destructive effects of insider threat and
have limited or no visibility to their internal network activities in the event of internal
security incident.

These factors and the borderless nature of cyber attacks have let many crim-
inals/offenders walk away due to the lack of supporting evidence for conviction. In
this context, cyber forensics ['] plays a major role by providing scientifically proven
methods to gather, process, interpret, and use digital evidence to elaborate a conclu-

sive description of cyber crime activities, stop the ongoing criminal activities against



or using IT infrastructures and provide recommendation to prevent future attacks. A
forensics investigation is initiated in the sequel of a security incident notification. A
security incident [%°] is defined as any event that have potentially lead to or includes
the breach of the security policy of the company. A security policy is a statement of
management strategy as regards security. A digital forensic process could also be initi-
ated for purposes other than security such as retrieval of lost information, determining
the root cause of a failure, etc.

The digital forensics process [] is defined as a sequence of steps that are followed
in a predefined order during a digital forensic investigation. A comprehensive forensic

investigation process usually includes the following steps:

e Notification and escalation of the incident to the proper investigation authority (i.e.
Incident Handling and Response Team, Law Enforcement Authorities, Computer

Emergency Response Teams (Certs)).

e Verification of the incident to assure the existence of the incident and determine

the extent of the damage.
¢ Planning for containment, eradication and root cause investigation.

e Acquiring the authorization to collect the evidence that is used during the inves-

tigation.

e Collecting evidence in a forensically sound manner to prevent any change to the

evidence.
e Analysis of the evidence to determine the root-cause of the incident.

e Preparation of the investigation report or other required means of presenting the

result of the investigation to the requesting authority.



e Follow-ups that include the required actions to prevent future incidents, lesson

learnt, and the disposition of the evidence.

In a commercial software market flooded by security products, the development of
forensics I'T solutions for law enforcement has been limited. Though outstanding results
have been achieved for forensically sound acquisition of evidence, little has been done on
the analysis of the acquired evidence. This is particularly evident for volatile evidence
such as physical memory and system cache, which is mainly due to the volatile and
unstable nature of data that resides on these types of storage. However, if not damaged,
the information that is acquired from such sources is one of the most pertinent and
definitive evidence and therefore should be analyzed during the initial phases of the
investigation.

Physical memory as forensic evidence has recently received some attention in
forensic community. However, most of the work on physical memory analysis is limited to
forensically sound acquisition of physical memory using different software and hardware
solution and the extraction of forensically important kernel data structures such as
structures that represent processes and files from the acquired image of the physical
memory. This is while, knowing which processes were executing or which files have been
opened during the incident do not allow to answer many questions that involve the order
of the activities performed by the attacker or what a process has done during its course
of execution.

This thesis contributes to the state of the art research on forensic analysis of

physical memory in several areas as follows:

e Provides details on physical memory layout of Windows operating system and
discusses the inner details of Windows kernel components. This information has

been acquired through reverse engineering of Windows operating system code as



well as from different books, forums and papers.

o Identifies Windows kernel components and structures that entail forensically valu-

able information.
e Develops a process for forensic analysis of Windows physical memory.

e Proposes an approach for performing stack trace analysis on the retrieved infor-

mation to extract a partial execution path of the process.

In this thesis, the author introduces new techniques for forensics analysis of Win-
dows physical memory. These techniques are classified into two categories: evidence ex-
traction and execution reconstruction. The first category of these techniques discusses
different pieces of evidence that are useful during a digital investigation and are retriev-
able from an image acquired from physical memory. These pieces of evidence are mainly
information that is stored by the operating system in different data structures about
various operations and processes that are executing. In introducing these techniques,
several structures that are maintained by different components of Windows operating
system such as memory manager, process manager, etc. are addressed and the relevancy
of the information that they store is discussed from a forensics standpoint. The major-
ity of these techniques have been presented and known to digital forensics community.
However, in this study, the author tries to bring together all of these techniques and fill
some of the existing gaps with his own findings. These findings mainly consist of sev-
eral previously undocumented Windows operating system structures that are relevant
to forensic analysis and approaches for more effective analysis of these structures.

The second category of Windows physical memory analysis techniques discusses
an approach to reconstruct the execution of processes that were executing at the time

the image was taken from the physical memory. These techniques consist of two steps.



The first step is to model the execution of a process by analyzing the process executable.
The second step is to find all of the execution paths in the process execution model that
generate an execution trace that matches the existing traces in the physical memory
image. In this study, we only focus on the execution traces that exist on the process
stack. Therefore, the execution paths that are detected by this technique are in the
form of a chain of function calls and returns. More accurate results could be achieved by
including other execution traces such as process heaps into the analysis. It is important
to notice that this research is mainly focused on the forensic analysis of the physical
memory of Windows operating system.

Due to the fact that Windows is a closed source operating system, little doc-
umentation and tools are available on the forensic analysis of this operating system.
Nevertheless, Windows is one of the most prevalent operating systems that is being
used in almost any environment and therefore is involved as a source of evidence in
many investigations. However, it is important to emphasize the fact that many of
the techniques that are discussed in this thesis can be applied to the forensic analysis
of physical memory of other operating systems while some details might differ. The
first category of the introduced techniques are dependent on the internal structures of
Windows operating system and are therefore only applicable to this operating system.
Similar approaches exist for Unix based operating systems that are out of the scope of
this thesis. The second category of techniques for forensic analysis of physical memory,
however, is not exclusive to any operating system since it only depends on the appli-
cation of stack mechanism for implementing function calls and returns, which is the
mechanism used by most of the existing modern operating systems.

The rest of this thesis is structured as follows: Chapter two starts with a back-

ground on Windows operating system, different components of this operating system



and the interaction of these different components with each other and the external en-
vironment. The chapter continues by introducing Windows object management and
forensically valuable information that could be acquired by investigating these objects.
Chapter three discusses other valuable information that could be extracted from Win-
dows security manager, cache manager and memory manager. These two chapters de-
scribe the first category of Windows physical memory forensic analysis techniques. In
discussing each technique, relevant Windows structures are detailed. Chapter four dis-
cusses the state of the art in digital investigation and forensic analysis of Windows
physical memory in detail. In this chapter, the author frequently refers to Windows
operating system structures that are introduced in Chapters two and three. Chapter
five elaborates on our approach in forensic analysis of Windows physical memory. This
chapter discusses the second category of forensic analysis techniques that are detailed in
this thesis. The chapter continues with a discussion on the implementation details of the
system developed for forensic analysis of Windows physical memory using the techniques
introduced in this thesis. This chapter ends by providing some empirical analysis results
from using the developed system to analyze images taken from several systems. Chapter

six, concludes this discussion and proposes some possible future research directions.



Chapter 2

Forensics Analysis of Windows

Memory

This chapter and chapter three introduce the preliminary techniques for the forensic
analysis of Windows operating system physical memory. The information provided
in these chapters constitutes the primary knowledge required in forensic analysis of
Windows physical memory. The more advanced analysis techniques that are discussed in
later chapters are built on the background information that is provided in these chapters.
This chapter focuses on Windows operating system structures, object management and
process management. The next chapter describes other related components of Windows
including security management, memory management and cache management.

Please notice that since the exact details of some of Windows operating system
structures are different based on the Windows version and even from one service pack
to another, due to space limitations, in this thesis only Windows XP service pack 2 is
discussed. For other versions of Windows, many concepts are the same as presented here

with slight differences in some structure fields and offsets. This chapter starts with an



introduction to the overall architecture of Windows operating system. This introduction
is followed by a detailed discussion on different Windows operating system components

that are of relevance during forensic investigation of a memory image.

2.1 Windows Operating System Architecture

Figure 2.1 shows the overall architecture of Windows operating system [2]. Windows
executes in two modes: User mode and kernel mode. Components that execute in the

user mode are:

e System support processes, such as the winlogon process. These processes are not

started by the service control manager of Windows.
¢ Windows service processes such as Task Scheduler and Spooler services.

e User applications, that host the ordinary processes running under user logons.
These processes can be of six types: Windows 32-bit, Windows 64-bit, Windows
3.1 16-bit, MS-DOS 16-bit, POSIX 32-bit, or OS/2 32-bit.

e Environment subsystem server processes, that implement part of the support for
different operating system environments. Each process might use one of these

server processes based on its type and required services.

e Subsystem DLLs act as a wrapper for kernel services and are used by user appli-

cations and environment subsystem server processes.

In Windows, user applications don’t call the native Windows operating system
services directly; rather, they go through one or more subsystem dynamic-link libraries

(DLLs). The role of the subsystem DLLs is to translate a documented function into the



Figure 2.1: Windows operating system overall architecture
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appropriate internal (and generally undocumented) Windows system service calls.

The kernel-mode components of Windows include the following operational units:

¢ Windows executive that includes memory manager, process and thread man-
ager, security manager, I/O manager, networking, and interprocess communication

manager.

o Windows kernel that handles the low-level operating system functionalities includ-

ing scheduling, interrupt and exception dispatching.

e Device drivers including both hardware device drivers that handle the I/O opera-

tions for each hardware and the drivers for file system and network communication.

e Hardware abstraction layer (HAL) that is an abstraction layer implemented in

software that isolates the kernel from the hardware platforms differences.
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¢ Windowing and graphics system that provides for the graphical user interface

(GUI) functions such as handling Windows, user interface controls, and drawing.

2.2 Objects

Windows object manager is a component of Windows Executive that provides for a
unique interface for creation and handling of objects. In Windows, Each object repre-
sents an entity that is created during the operating system operation. Windows uses
two sets of objects: The kernel objects and the executive objects. Executive objects are
objects created by different Windows executive components such as memory manager,
and process manager. Process, threads and section objects are examples of the executive
objects. Kernel objects are not accessible to user mode applications. Examples of kernel
objects include mutant object that are used for synchronization.

From the forensics stand point, executive objects contain most useful information
that can be extracted about the incidents from memory. This information includes the
processes, threads, files and registry keys accessed by the process, etc. Each object has
an object header and an object body. The object header is used by object manager to
manage the objects and the object body is controlled by the component that creates
the object. An object header points to the list of processes that has access to that
object. Below is the structure of an object header. The structure layout is produced
using the dt command in Windbg debugger. This command displays type information
about different structures in Windows (Figure 2.2).

The object header contains information that helps object manager to maintain
object operation. This information contains the number of pointers and handles to an
object, quota information, etc. A forensic analyst can use the information contained

in this structure to identify the type of an object, the name of it, who has access to

11



kd> dt _object_header nt!_OBJECT_HEADER

+0x000 PointerCount : Int4B

+0x004 HandleCount : Int4B

+0x004 NextToFree . Ptr32 Void

+0x008 Type : Ptr32 _OBJECT_TYPE
+0x00c NameInfoOffset : UChar

+0x00d HandleInfoOffset : UChar

+0x00e QuotalnfoOffset : UChar

+0x00f Flags : UChar

+0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void

+0x014 SecurityDescriptor : Ptr32 Void

+0x018 Body : _QUAD

Figure 2.2: Using dt command to view the details of .object_header structure.

an object and verify if the object is deleted. Below are the description of forensically

important fields:

e Field PointerCount is the number of pointers from the kernel components to the

object.

e Field HandleCount is the number of handles that processes has opened to this
object. An object can be accessed both by user-land processes and kernel com-
ponents. User-land processes can only access an object through a handle. Kernel
components can also have pointers to the object. A pointer is the memory ad-
dress at which the object is located. A handle is an index into the handle table as
discussed later in this section. A forensic analyst can verify if an object is deleted
or is still in use by checking the number of handles and pointers to the extracted
object. If both of these counters (number of handles and pointers) are zero, then

the object is no longer used by any component.

e Field ObjectType contains information about all objects of a specific object type

12



and links together all those objects. This field can be used to identify the type of

an object. Moreover, in order to find all of the objects of the same type (such as

all of the processes), an analyst can use the information contained in this structure

to locate the beginning of the list that links all of these objects together. Below

is the structure of _object_type:

kd> dt _object_type ntdll!_OBJECT_TYPE

+0x000
+0x038
+0x040
+0x048
+0x04c
+0x050
+0x054
+0x058
+0x05¢
+0x060
+0x0ac

+0x0b0

Mutex : _ERESOURCE
Typelist : _LIST_ENTRY
Name : _UNICODE_STRING
DefaultObject : Ptr32 Void
Index : Uint4B
TotalNumberOfObjects : Uint4B

TotalNumberOfHandles : Uint4B
HighWaterNumberOfObjects : Uint4B

HighWaterNumberOfHandles : Uint4B

Typelnfo : _OBJECT_TYPE_INITIALIZER
Key : Uint4B
ObjectLocks : [4] _ERESOURCE

Structure _LIST_ENTRY is a doubly linked list structure. This structure is used

in Windows kernel whenever there is a need for a doubly linked list. Using this

structure, a type object for a process links all the object of a specific type together.

kd> dt _LIST_ENTRY

+0x000

+0x004

Flink : Ptr32 _LIST_ENTRY

Blink : Ptr32 _LIST_ENTRY

13



Flink is the forward link pointing to the next structure and Blink is the Backward

link pointing to the previous structure.

Field NameOffset specifies the offset of the structure _0BJECT_HEADER_NAME_IN-
FO from the beginning of structure .O0BJECT.HEADER. This structure contains nam-
ing information for the object. However, this offset should be subtracted from the
address of structure _OBJECT_HEADER meaning that, if present, structure _OBJECT_
HEADER_NAME_INFO is before structure .0BJECT_HEADER. Typical values are 0, 10 or
20, depending on the presence of a .0BJECT_CREATOR_INFORMA-

TION header part. This structure is detailed below:

kd> dt nt!_OBJECT_HEADER_NAME_INFO
+0x000 Directory : Ptr32 _0BJECT_DIRECTORY
+0x004 Name : _UNICODE_STRING

+0x00c QueryReferences : Uint4B

Field Name contains the name of the object. However not all object use this struc-
ture to store the name of the object. The name field is of type _UNICODE_STRING,
which is a structure used in Windows to store strings. As shown below, field Buffer
is a pointer to the beginning of the string and field Length specifies the length of

the string.

Field HandleDBOffset is the offset value that should be subtracted from the base
address of the header to obtain the address of structure OBJECT_HANDLE_DB. This
structure contains the list of processes that have handles to the object. In [1] this

structure is defined as below:

struct _OBJECT_HANDLE_DB {

14



union {

struct _EPROCESS *Process;

struct _OBJECT_HANDLE_DB_LIST *HandleDBList;
}

DWORD HandleCount;

struct _OBJECT_HANDLE_DB_LIST {
DWORD Count;

OBJECT_HANDLE_DB Entries [];

If only one process has opened a handle to an object, then flag 0B_FLAG_SINGLE_
PROCESS in field ObjectFlags is set and field Process points to a valid process
block. If flag OB_FLAG_SINGLE_PROCESS is cleared, then field Hand1eDBList points
to a list of type OBJECT_HANDLE_DB_LIST that contains an array of structures of
type OBJECT_HANDLE DB and field HandleCount contains the number of handles to

the object.

The rest of the fields in this structure are for quota and security management which are

not relevant to our discussion.

2.2.1 Memory pools

Windows objects are allocated in memory storages called pools. Windows has two types
of pools: paged pools and non-paged pools. The former is the memory that can be paged
out to the page file while the latter is always resident in the physical memory and is

never paged out. Memory pools are created by the kernel at the start time of the system



and depending on the allocation requirements of the system could be expanded or freed
later on. Pool allocations are used for the allocation request that are smaller than the
page size. Each allocated unit starts with a pool header structure of type _-POOL_HEADER.

This structure is detailed below:

kd> dt _POOL_HEADER

+0x000 PreviousSize : Pos 0, 9 Bits
+0x000 PoolIndex : Pos 9, 7 Bits
+0x002 BlockSize : Pos 0, 9 Bits
+0x002 PoolType : Pos 9, 7 Bits
+0x000 Ulongil : Uint4B

+0x004 ProcessBilled : Ptr32 _EPROCESS
+0x004 PoolTag : Uint4B

+0x004 AllocatorBackTraceIndex : Uint2B

+0x006 PoolTagHash : Uint2B

Considering the fact that Windows objects are allocated in memory pools, it is possible
to retrieve allocated or deleted object by searching in system pools and analyzing every
allocated pool entity. Structure _POOL_HEADER can be used to locate these allocation

units. The following is the description of the important fields of this structure:
e Field PreviousSize is the size of the previous pool block in eight-byte units.
e Field BlockSize is the size of the described pool block in eight-byte units.

e Field PoolType is the type of the pool. Using this field we can identify if the pool

is paged or non-paged.

16



e Field Ulongl, if valid, points to the _[EPROCESS block of the process whose allocation

is charged for the allocation of this block.

e Field PoolTag is the label of the pool unit which identifies the content of the pool.

However, it is important to notice that there is no authorization process for the use

of a specific tag. Therefore, a process can use any tag for this field. These tag val-

ues are defined in c:/Program Files/Debugging Tools for Windows/Triage/

Pooltag.txt. Below are some important tags with their description.

CM
Cc
File
Proc
Thre
Devi
Driv
Key
Sect
Symb
Toke

NDPt

nt!cm
ntlcc
<unknown>
nt!ps
nt!ps
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
nt!se

ndis.sys

Configuration Manager (registry)
Cache Manager allocations (catch-all)
File objects

Process objects

Thread objects

Device objects

Driver objects

Key objects

Section objects

Symbolic link objects

Token objects

TCPIP

By scanning for these tag values in the physical memory, Windows executive ob-

jects can be identified and extracted. This technique is discussed in more details

in chapter two.

17



2.2.2 Handle table

In order for a process to use an object it must acquire a handle to it. A handle is an index
to the process handle table. The process handle table is pointed by its -EPROCESS block
and contains pointers to the objects that the process has a handle to. The process handle
table is implemented using a three level scheme. The first level contains pointers to the
middle level tables. The middle level tables contain arrays of pointers to sub-handle
tables. The sub-handle tables contain the address of the objects.

In Windows 2000, at the time of the process creation, all of the tables in the
three levels are allocated. The low 24 bits of the object handles is divided into three 8
bit fields each being an index to the relative handle table. In Windows XP and Windows
2003, the tables are created as needed and only the lowest level table is created at the
process creation time. Each table consists of 8 byte entries and the size of the table
is the number of entries that fit into a page minus one. The subtracted entry is for
auditing purposes. Therefore, in Windows XP and Windows 2003, depending on the
size of the table, the addressing scheme deffers.

Figure 2.2.2 shows the structure of a handle table entry. On 32 bit system each
handle is 4 bytes long. The pointer to the object header or handle table is 24 bits in
Windows 2000 and in Windows XP and Windows 2003 it is 31 bits. Since the entries
are in the system address space, the first bit is always one and therefore this bit can be
used for locking purpose. This way, the object manager locks the entire process handle
table only when the process is creating a new handle or closing an existing handle. The
rest of the times, the object manager locks the entry only and lets other threads to use

other entries in the handle table.

18



Figure 2.3: Handle table entry structure
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Lock bit

)
i

ol
H

Pointer to object header A

32 bit access mask
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The address of the handle table of a process is stored in the fleld HandleTable in
the _EPROCESS block of the process. This field points to a structure of type HANDLE_TABLE.

This is structure is shown below:

kd> dt _HANDLE_TABLE
+0x000 TableCode : Uint4B // This is the address of
// the Top level table.
+0x004 QuotaProcess . Ptr32 _EPROCESS
+0x008 UniqueProcessId : Ptr32 Void // Table owner process ID
+0x00c HandleTableLock : [4] _EX_PUSH_LOCK
+0x01c HandleTableList : _LIST_ENTRY

+0x024 HandleContentionEvent : _EX_PUSH_LOCK

+0x028 Debuglnfo : Ptr32 _HANDLE_TRACE_DEBUG_INFO
+0x02c¢ ExtralnfoPages : Int4B

+0x030 FirstFree : Uint4B

+0x034 LastFree : Uint4B

+0x038 NextHandleNeedingPool : Uint4B

+0x03c HandleCount : Int4B Number of handle entries.
+0x040 Flags : Uint4B
+0x040 StrictFIFO : Pos 0, 1 Bit

Field TableCode of this structure points to the top level table. Figure 2.2.2
depicts the mechanism for translating a handle to the virtual address of the object it is

referring to.
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Figure 2.4: Handle to object address translation and a view of handle table

l The address of the ton level table. l

kd> de e1£23640 /f““““ ‘ The address of the Process object (Eprocess) I

e1f23e40 1379001 86951340 00000140 00000000 .7.@...........
e1f23e50 00000000 00000000 00000000 e35c1dfe .............. \
e1£23e60 e4767ae4 00000000 00000000 00000000 .zv.............
e1f23e70 00000320 00000000 00001000 00000218 ...
e1£23¢80 00000000 00000000 00010802 746c7847 ... Cxlt
e1f23e20 0c020801 64546553 00000101 05000000 ...3eTd........
e1f23eal 00000014 00300002 00000002 00140000 ... 0.,
e1f23eb0 10000000 00000101 05000000 00000012

kd> lhandle 0 2

processor number 0, process 86951340

PROCESS 86951340 Sessionld: 0 Cid: 01d0  Peb: 7{df000 ParentCid: 01al
DirBasge: 076006e0 ObjectTable: elf23ed0 HandleCount: 536.

Image: windbg exe kY

The address of the
_HANDLE TABLE struct

For Auditing

New version of handle/table at e1379000 with 536 Entries in use

kd> dc e10be000 / :
£10b£000 00000000 fEffftfe ce59 00120089——"""" tTIS freheaiey of the abject
£10be010 870£2661 00120089 e av’e.

e10be040 86ca%f79 00120089
e10be050 866971e1 0012008
e10be060 8670149 00120099 e476c13% 00R0005
e10be070 869129f1 00120089 e27cd5el 000005

Points to the one byte after

the objsct header.

0004: Object: 8678ce70/ Granted Access: 00120089

Object: 8678ce70 Tyye: (871e7040) File
ObjectHeader: 8678 ceS8

Obiect address = size of the obiect header (0x18) + address of the obiect header
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Entry_number = (Handle / 4)
If (Entry_number >= ((page_size) * (page_size) / 32) {
// There are three levels
Middle_table_address = *(_EPROCESS.ObjectTable
+ [Entry_number/(page_size)*(page_size)/32]);
Handle_table_address = *( Middle_table_address
+ [Entry_number/(size of a page/8)]);
Object_header_address = *(Handle_table_address + Entry_number*8)-1;

Object_address = Object_header_address + 0x18;

} else if (Entry_number >= size of a page/8){

// There are two levels

Handle_table_address = *(_EPROCESS.ObjectTable
+[Entry_number/(size of a page/8)]1);
Object_header_address = *(Handle_table_address + Entry_number*8)-1;

Object_address = O0Object_header_address + 0x18;

} else{ //There is one level
Handle_table_address = (*_EPROCESS.QObjectTable);
/* The first 8 bytes are for auditing
* purpose and are not pointing to an object

* address.
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*/
Object_header_address = *(Handle_table_address + Entry_number * 8)-1;

Object_address = 0bject_header_address + 0x18;

Using the information stored in the handle table of a process, the forensic analyst
can locate all of the objects that a process is using or have used previously but is in
use by kernel or other processes. Each object, depending on its type, can provide useful
information to the analyst. In the following sections, different object types that can

contain forensic related information are discussed.

2.3 Objects Internal Structure

Until now, the general structure of Windows objects including object headers and pool
headers were described. Figure 2.3 shows important Windows memory manager, object
manager and process manager in-memory structures and their inter-relationships. Since
each object, depending on its type, has a different body structure, in the following
sections, each object type is discussed separately. In discussing each type, we detail on

information that it stores and can be of forensic value during a digital investigation.
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2.3.1 _EJOB Structure

A job is a container for a set of processes that enables sand-boxing. The structure
describing a job is of type _EJOB. By default, all processes created by a process and
their descendants are associated with the same job object. This feature can be utilized
to identify all of the process created by a process or its descendants. A well-known
technique used by many malwares to survive a system restart is to add an entry to one
of the start-up registry keys that points to their executable. Processes involved in the
system start-up (i.e smss, csrss, services, lsass, userinit, winlogon and explorer) read
these start-up registry keys and run the executables specified by them. Job objects can
be used to locate processes created by these start-up processes in order to find suspicious
programs. Due to space limitations, the complete listing of this structure is provided in

Appendix 1 and only forensic related fields are detailed below:

e Field JobLinks contains a doubly linked list of all the executive jobs inside the
system. This linked list can be traversed to locate all of the job objects in the

memory.

e Field ProcessListHead is the head of a doubly linked list of the processes inside
the job. This link list can be traversed to locate all of the processes that were

created by the head of this list.

o Field SessionID: This filed contain the session Id that the job is running under.

This field can be later used to correlate job objects to different sessions.

2.3.2 _EPROCESS Structure

-EPROCESS is the main structure that describes a running process. For each process,

there exist one _.EPROCESS structure. All of these structures are linked in a doubly
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linked list. This structure is allocated in the kernel land in kernel memory pool with the

tag of Proc. This structure is the body of the Windows process object. Therefore, right

before this structure, there exist an object header of type Process. This structure is a

good starting point for the analysis of a suspicious process. Many information about

the process name, time of the creation, opened files, dlls and threads are either stored

or pointed by some fields in this structure. The forensic related fields in this structure

are detailed below. For the complete listing of this structure, please refer to Appendix

1.

Field Pcb is a structure that contains kernel related information for the process.

This structure is allocated in kernel land and is described later.

Field CreateTime contains the creation time of the process.

Field EzitTime holds the exit time of the process.

Field UniqueProcessld contains the process ID assigned to this process.

Field ActiveProcessLinks is a doubly linked list of processes currently running.

Field SessionProcessLinks is a doubly linked list of the structures of type -EPROCESS

structures as before but only for the processes in the session.

Field ObjectTable stores a pointer to the handle table containing the objects used

by the process as described before.

Field Token is a security token that contains the control access information for a
process. The security manager uses this information to enforce security policies of

the system.

Field VadRoot points to the root of the Virtual address descriptor tree. Windows

keeps an AVL tree of the virtual address ranges that have been allocated by the
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process. Each node in this tree is called a VAD. The VAD tree helps Windows to
allocated page table entries only when the region is accessed by the process. The

overall data structure of the VAD is shown below:

struct vad {
void *StartingAddress;
void *EndingAddress;
struct vad *ParentLink;
struct vad *Leftlink;
struct vad *RightLink;
DWORD Flags;
Struct _control_area *ca;

}VAD, *PVAD;

If field Flags is ViewUnmap, the VAD is describing a private area, if it is ViewShare,
the VAD is pointing to a shared area and therefore the control area structure
points to a valid object. Field StartingAddress is the starting address for the
virtual address range that this VAD represents. Field EndingAddress is the ending
address for the virtual address range that this VAD represents. Fields ParentLink,
LeftLink, and RightLink are used to implement a binary three of VAD structures
and are parent node, left child node, and right child node of the current VAD
respectively. As detailed in the next chapter, this structure can be used to extract

the memory used by a process.
Field VadHint points to the last VAD entry that has been allocated.

Field Win32Process points to a structure of type _W32PROCESS that exists in

win32.sys Windows driver. The details of this structure are not known. How-
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ever, here are some facts about this structure that can be of forensics importance.
The first four bytes of this structure is a pointer that points back to the _EPROCESS
block of the process. At the offset of 0x30, there is a looped pointer that points
back to the address of itself. At the offset 0x98, there is a pointer that points to
the next _-W32PROCESS structure forming a single linked list. These three character-
istics can be used for the detection of hidden, lost or partly overwritten _EPROCESS
blocks by searching through the memory looking for a structure with the stated

properties.
Field Job points to the _EJOB structure that the process is associated with.

Field SectionObject points to a structure of type _SECTION_OBJECT that describes
the mapped memory used for loading the image. This field can be used to extract
the process image from the memory as discussed in more details later in this

chapter.

Field SectionBaseAddress points to the image base of the process. This address is

the virtual address of the beginning of the process image inside the memory.

Field InheritedFromUnigqueProcessId contains the process ID of the process that

has created this process.

Field Session stores the Terminal Services Session ID that is the the ID of the

terminal session in which the processes is running.

Field ImageFileName contains the 17 characters of the name of the image file of

the process.

Field JobLinks is a list entry that lists all processes that are associated with this

process job.
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Field ThreadListHead is the head of a doubly linked list of structures of type
_ETHREAD for each of the running threads of the process. The _ETHREAD structure

is described later in this chapter.

Field Peb points to the process environment block of the process and is detailed

later in this chapter.

Field ModifiedPageCount contains the number of pages of memory that have been

modified by this process.
Field JobStatus contains the status of the job the process is part of.

Field Flags is a flag that specifies the creation status of a process. The meaning

of each bit in the this 32-bit is specified in the structure definition.

Field EritStatus stores the exit code of the process.

2.3.3 Process Environment Block

This is a high-level user-land structure which contains some of a process properties and

attributes. This structure can be used to:

Determine the base address of the process in memory. This base address can be

used for the extraction of the executables as discussed later in this chapter.
Identify OS version information.

Find the address to the location that information about dlls used by the process

is stored.
Locate the structure that stores information on the process execution parameters.

Acquire process heap information.
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For the complete listing of this structure, please refer to Appendix 1. The following

fields were identified to contain forensic related information:

e Field ImageBaseAddress is the base address of the process in memory that is the

memory address at which the process executable has been loaded.

e Field Ldr is a pointer to the _.PEB_LDR_DATA structure that contains the dll related

information of the process and is discussed later in this chapter.

o Field ProcessParameters is a pointer to a _rtl_user_process_parameters struc-
ture, which also contains loading data such as environment parameters for a run-

ning process. This structure is discussed later in this chapter.
e Field NumberOfProcessors specifies the number of processors of the system.
e Field ProcessHeap is a pointer to the process heap.

e Field ReadOnlySharedMemoryBase has a pointer to a system-wide shared memory

location. It is usually 0x7{6f0000.

o Field NumberOfHeaps contains the number of heaps that has been created by the

process.

e Field ProcessHeaps is a pointer to a pointer that lists all the heaps the process

has.
e Field OSMajorVersion stores the major version of the OS.
e Field OSMinorVersion stores the minor version of the OS.
e Field OSBuildNumber stores the OS build number.
o Field OSCSDVersion stores the service pack number.
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Field OSPlatformId contains the platform ID of the OS.

Field ImageSubsystemMajorVersion contains the major version of the subsystem.

Field ImageSubsystemMinorVersion stores the minor version of the subsystem.

Field CSDVersion has the service pack name in string format.

2.3.4 _rtl_user_process_parameters Structure

This structure contains the process runtime data such as the command line started the
process, window title and run time data. This structure can be used to extract the

following information:
e Process environment information.
e The command line instruction that started the process.
s The process executable address on the disk.
e Current directory, window and desktop name of the process.

The structure has a variable length and field Length contains the total length of
it. For the complete listing of this structure, please refer to Appendix 1. The following

fields have been identified as forensically relevant:

e Field CurrentDirectory contains the string showing the current directory of the

process.

e Field DIlPath is the list of directory paths that are searched for dlls needed by the

process.

e Field ImagePathName the complete path to the process executable.

31



e Field CommandLine the command-line which started the process.

e Field Environment points to the address in memory that the environment variables
for the process are stored. Below is a snippet showing part of the memory that

contains the environment variables for a process.

kd> dc 0x00010000 1100

00010000 004c0041 0055004c 00450053 00530052 A.L.L.U.S.E.R.S.
00010010 00520050 0046004f 004c0049 00340045 P.R.0.F.I.L.E.=.
00010020 00320043 0044005¢ 0063006f 00640075 C.:.\.D.o.c.u.m.
00010030 006e0065 00730074 00610020 0064006e e.n.t.s. .a.n.d.
00010040 00530020 00740065 00690074 0067006e .S.e.t.t.i.n.g.
00010050 005c0073 006c0041 0020006c 00730055 s.\.A.1.1. .U.s.
00010060 00720065 00000073 004e0041 005f0054 e.r.s...A.N.T.
00010070 004£0048 0045004d 0043003d 005c003a H.0.M.E.=.C.:.\.
00010080 0061006a 00610076 0061005c 00610070 j.a.v.a.\.a.p.a.

00010090 00680063 00240065 006e0061 002d0074 c.h.

®
!
W
o
o
!

000100a0 002e0031 002e0037 00240030 00690062 1...7...0.-.

=3 o’
(0]

000100b0 005c006e 00700061 00630061 00650068 n.\.a.p.a.c.
000100cO0 00610024 0074006e 0031002d 0037002¢ -.a.n.t.-.1...7.
00010040 0030002e 00410000 00500050 00410044 ..0...A.P.P.D.A.
000100e0 00410054 0043003d 005c003a 006f0044 T.A.=.C.:.\.D.o.
000100£f0 00750063 0065006d 0074006e 00200073 c.u.m.e.n.t.s.

00010100 006e0061 00200064 00650053 00740074 a.n.d. .S.e.t.t.
00010110 006e0069 00730067 0041005¢c 00640064 i.n.g.s.\.A.d.m.

00010120 006e0069 00730069 00720074 00740061 i.n.i.s.t.r.a.t.
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00010130 0072006f 0041005c 00700070 0069006c o.r.\.A.p.p.1l.i.
00010140 00610063 00690074 006e006f 00440020 c.a.t.i.o.n. .D.
kd> du 0x00010000

00010000 "ALLUSERSPROFILE=C:\Documents and"

00010040 " Settings\All Users"

o Field WindowTitle stores the window title of the running process.

o Field DesktopInfo contains the name of the desktop of the process.

e Field Shelllnfo stores Windows shell information for the process.

e Field RuntimeData contains the strings that the process needs during execution.

e Field CurrentDirectores contains the dll paths that might be needed in an array

of size 32 and type .RTL_DRIVE_LETTER_CURDIR. This structure is shown below:

0:001> dt _RTL_DRIVE_LETTER_CURDIR

+0x000 Flags : Uint2B
+0x002 Length : Uint2B
+0x004 TimeStamp : Uint4B
+0x008 DosPath : _STRING

The _STRING data type has the same structure as _UNICOEDEE_STRING.

2.3.5 _PEB_LDR_DATA Structure

This structure contains the list of the dlls that have been loaded by the the process.

This structure has the following fields.
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dt _PEB_LDR_DATA

+0x000 Length : Uint4B
+0x004 Initialized : UChar
+0x008 SsHandle ¢ Ptr32 Void

+0x00c InLoadOrderModulelList : _LIST_ENTRY
+0x014 InMemoryOrderModuleList : _LIST_ENTRY
+0x01c InInitializationOrderModulelList : _LIST_ENTRY

+0x024 EntryInProgress : Ptr32 Void

The main useful fields in this structure are InLoadOrderModuleList, InMem-
oryOrderModuleList, and InInitializationOrderModuleList each containing the doubly
linked list of the loaded dlls ordered by the initialization order, location in mem-
ory and defined loading order respectively. These linked lists, link structures of type

_LDR_DATA_TABLE_ENTRY which has the following format:

kd> dt _LDR_DATA_TABLE_ENTRY
+0x000 InLoadOrderLinks : _LIST_ENTRY
+0x008 InMemoryOrderLinks : _LIST_ENTRY

+0x010 InInitializationOrderLinks : _LIST_ENTRY

+0x018 Dl1Base : Ptr32 Void
+0x01c EntryPoint : Ptr32 Void
+0x020 SizeOfImage : Uint4B

+0x024 FullDllName : _UNICODE_STRING
+0x02c BaseDllName : _UNICODE_STRING
+0x034 Flags : Uint4B

+0x038 LoadCount : Uint2B

+0x03a TlsIndex : Uint2B
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+0x03c¢ HashLinks : _LIST_ENTRY

+0x03c SectionPointer : Ptr32 Void
+0x040 CheckSum : Uint4B
+0x044 TimeDateStamp : Uint4B
+0x044 LoadedImports : Ptr32 Void

+0x048 EntryPointActivationContext : Ptr32 Void

+0x04c Patchlnformation : Ptr32 Void

The first three fields are the structures of type LIST_ENTRY. Field BaseAddress
contains the based address of where the module is mapped in virtual memory. Field
FullDLLName and BaseDLLName are used for naming the dll file. Field TimeDateS-
tamp is the time the dll was loaded in the memory. Field SectionPointer is a pointer so
the section object representing this dll. Section object structure is discussed in detail

later when we discussed Windows caching.

2.3.6 _KPROCESS Structure

-KPROCESS or Process Control Block (PCB) is kernel object that contains information

about process threads scheduling. This structure can be used to:
e Develop a signature that can be used to locate the process objects.

e Find the page table directory of the process that is required for virtual to physical

memory translation.
e Find all of the process threads.

For the complete listing of this structure, please refer to Appendix 1. Field

Header in this is the dispatcher header that is used for synchronization purposes. This
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header exist at the beginning process and thread objects. This structure is detailed

below:

kd> dt _DISPATCHER_HEADER

+0x000 Type : UChar
+0x001 Absolute : UChar
+0x002 Size : UChar
+0x003 Inserted : UChar
+0x004 SignalState : Int4B
+0x008 WaitListHead ¢ _LIST_ENTRY

Field Type is the type of object the dispatch header is defined for. For process objects
this field is 0x3 and for thread objects this field has the value of 0x6. Field Size contains
the size of the object in units of four bytes. A. Schuster in his paper titled ” Searching for
processes and threads in Microsoft Windows memory dumps”, uses these information
along with the pool header tags to define patterns for process and thread objects [::].
The memory image is then scanned to located these objects by looking for the specified
patterns.

Another important field in this structure is DirectoryTableBase, which is the
address of the beginning of the page table directory of the process. This table is used
for virtual address to physical address translation and is detailed in the corresponding
section. Fields ReadyListHead, ThreadListHead, SwapListEntry are the linked list of
process threads that are in ready state, all the threads of this process and threads
whose context are being swaped respectively. Each entity in this list is a thread object.

A thread object in Windows is of type _ETHREAD and is discussed in the following section.
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2.3.7 _ETHREAD Structure

The _ETHREAD structure is the body of the thread object. This means that this structure
is preceded by an object header of type Thread. This structure can be used to find
information about the threads that are created with a process. For a complete listing
of this structure, refer to Appendix 1. The forensic relevant fields of this structure are

described below:

e Field Tcb is called Thread Control Block (TCB) and is of type KTHREAD. This

structure is detailed later.
e Field CreateTime is the creation time of the thread.
e Field ExzitTime is the exit time of the thread.
e Field ExitStatus is the exit status of the thread.
¢ Field Cid contains the process ID and the thread ID of this thread.

o Field ImpersonationInfo contains the thread impersonation information and is

discussed in detail in the next chapter.

e Field ThreadsProcess points to the -EPROCESS block of the process that created
the thread.

e Field ThreadListEntry is a linked list that links all the threads of a process to-

gether.

e Field CrossThreadFlags flag represents the state of the thread.
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2.3.8 _KTHREAD Structure

KTHREAD structure is the kernel thread object. This structure mostly contains in-
formation that are needed by kernel to manage the thread scheduling. For a complete
listing of this structure, refer to Appendix 1. There are some fields in this structure that

are of forensic value. These fields are described below:

e Field Header: This is the dispatch header that is used for synchronizing access
to the thread object. As discussed before, the constant values in this structure
can be used to define a memory layout pattern for this object. To locate the lost
or hidden threads inside the memory image, the memory image can be searched
looking for pieces of memory that resemble this pattern. This technique is detailed

in the next chapter.

e Field ThreadListEntry, WaitListEntry, SwapListEntry: These fields are used to
create a linked list of all process threads, threads that are in waiting state and

threads whose context is being swaped out respectively.

o Field ServiceTable This is the beginning address of the System Service Table (SST)
for this thread. The System Service Table is a table that has the addresses of
Windows kernel services. As discussed before, user-land processes do not directly
call the native operating system services. Different subsystems and DLLs wrap
these services with functions that are called by user-land processes. One of these
DLLs that host the majority of these native services is ntdil.dll. The DLL ntdll.dll
exports two sets of functions that are mostly wrappers for services inside the kernel
and start with NT or ZW. Except for the functions that are handled inside ntdll.dll
such as NtCurrentTeb(...), which performs a purely user-land operation, ntdll.dll

exported functions are routed to a function with the same name in ntoskrnl.exe
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[41]. The routing mechanism that is performed by the system consists of switching
the CPU from user mode to kernel mode, locating the service inside the kernel,
copying the function parameters from user-land stack to kernel-land stack and
executing the related service inside the kernel. In order to locate a service inside
the kernel, Windows uses the service descriptor table, that is located at the address
of symbol KeServiceDescriptorTable. This table is a structure consisting of four
members of type _SYSTEM_SERVICE_TABLE [!]. The first system call table is for
ntoskrnl.eze services and the second one is for win32k.exe. The details of structure

_SYSTEM_SERVICE_TABLE are shown below:

struct _SYSTEM_SERVICE_TABLE

{
PDWORD ServiceTable;
PDWORD CounterTable;
DWORD ServiceLimit ;
PBYTE ArgumentTable;
)

Field ServiceTable is the address of an array of the beginning address of each
service. Field ArgumentTable is an array that stores the number of argument bytes
for the corresponding service in the array that is pointed by field Service Table.
For example, the first service in the array that is pointed by field ServiceTable for
ntoskrnl.exe is NtAcceptConnectPort, which is at the address of 0x805a3104 and
takes six arguments that together take up 44 (0x2c) bytes on the thread stack

(Figure 2.6).

e Field KernelTime is the amount of time that the thread was executing in kernel-
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lThe ArgumentTable member of the system service table. |

kd> dd KeServiceDescriptorTable

8055b660
8055b610
8055b700
8055b710
8055b720
8055b730
8055b740
8055b750

kd> dd 80503940&—Intoskrnl.exe. ServiceTable points to the table that has the

80503240
80503950
80503960
80503970
80503980
80503990
805039a0
80503910

0000000 00000000 00000000 00000000
000$0000 00000000 00000000 00000000
000 The SYSTEM_SERVICE_STRUCTURE for ntoskrnl.exe |

00000002 UU0UZT IV BISUTZZT UUUUUUTT
£7b1£fa80 £678d9e0 86dbc0f4 806£4040
00000000 00000000 fffdodad ffffffff
603£f95e6 01c7c019 00000000 00000000

The ServiceTable member of system service table for

805a3104 [beginning address of each of the kernel services in memory.
80 c06 805ef3e6 805f2c4a 805f2¢8e

80613b9a 806148dc 80hea72e 805ea386

506q33¢2 The beginning address of NtAcceptConnectPort function |
806137dc TV TE O

80500db4 806148ce 80575974 80537e22

8060cde4 805baf64 805£3106 80621cd6

805£75£8 805a37f2 80621f2a 805a30ad

kd> u 805a3104

! c
805a3104
805a3109
805a310e
805a3113
805a3119
805a311f
805a3122
805a3124

kd> dd 80503db4

80503db4
80503dc4
80503dd4
80503ded
80503df4
80503e04
80503¢14
80503e24

C ctPort:
689c¢000000 push 0xS¢
68309b4d80 push 0x804d9b30
e8bd7cfoff call nt! _SEH_prolog (8053add0)
642124010000 mov eax,fs: [00000124]
8a8040010000 mov al, [eax+0x140]
884590 mov [ebp-0x70] ,al
84c0 test al,al
0£84b9010000 je nt !NtAcceptConnectPort+0x1df

bn01a |Number of bytes passed to NtAcceptConnectPort fucntion
0801810 as arguments on the stack.

140¢1008 0c102cOc 10201cOc 20141038
141c2424 34102010 080c0814 04040404
0428080¢ 1808181c 1808180c 040c080c
100c0010 10080828 0c08041c 00081004
0c080408 10040828 0c0c0404 28240428
0c0c0c30 0c0c0c18 0c10300¢ 0c0c0c10
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land.
Field UserTime is the amount of time the thread was executing in user-land.

Stack Information: One important information that can be found inside this struc-
ture is the stack information of the thread. Fields InitialStack, StackLimit and
KernelStack contain the stack base, the largest address that the stack can extend
to, and the current position of the stack pointer respectively. Field teb in this
structure points to a structure of type _TEB. This structure is allocated in user-
land. Aside from a pointer to the Process Environment Block of the process that
created this thread, the only forensically pertinent information that this struc-
ture contains is the user-land stack information. The first field in this structure
is of type NT_TIB. Fields StackBase and StackLimit in this structure contain the
stack base and the largest address the stack can extend to respectively. Structure

NT_TIB is shown below:

kd> dt _NT_TIB

+0x000 Exceptionlist : Ptr32 _EXCEPTION_REGISTRATION_RECORD
+0x004 StackBase : Ptr32 Void

+0x008 StackLimit : Ptr32 Void

+0x00c SubSystemTib : Ptr32 Void

+0x010 FiberData : Ptr32 Void

+0x010 Versiom : Uint4B

+0x014 ArbitraryUserPointer : Ptr32 Void

+0x018 Self : Ptr32 _NT_TIB

Knowing the content of the stack of the thread can be useful to recover some of

the activities of the thread during the incident. This technique is the basis of
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our approach for discovering the execution path and is detailed in chapter five. In
Windows, each user application thread has at least two stacks, one in user-land and
one in kernel-land. Accordingly, all functions that are called during the execution
of the thread have a stack frame either in kernel land stack or the thread’s user
land stack depending on the mode in which they are executing. A stack frame
contains information that needs to be saved during calling and returning of a
function. This information includes, the old value of Base Pointer Register (EBP),
the return address, function arguments, local variables, etc. Figure 2.7 shows a

stack frame on the stack after function caller calls function callee at address of n.

As it is shown in Figure 2.7, field OLD_EBP on the stack holds the address of the
previous frame’s OLD_EBP. This way, stack frames are chained together and by
following this chain each stack frame can be correctly identified. However, some
compilers tend to use the EBP pointer within the function as a general purpose

register. While this can optimize register utilization, it makes it impossible to

trace back the stack by following the EBP chain.

Another technique for identifying the boundaries of a stack frame is to look for
return addresses that points to right after a call instruction. In this technique, the
stack is traversed word by word testing which address is pointing to an instruction
after a call instruction. Using these two techniques, some of the functions called by
the program as well as the arguments passed to these functions can be retrieved.
Many functions receive as their arguments pointers to data objects that are of
forensics importance. For example, consider a program that checks if a string
that is entered by the user is the right password by comparing it to the stored
password string using the CompareString function. The pointer to the correct

password string that is kept in some of the program unknown data structures is
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Local variables

Return address of caller =
n+1

Old EBP Address points
< to caller’s Old EBP entry > Stack frame of callee

Arg 1

Arg 2

Arg 3

Local variables

Return address of caller

> Stack frame of caller
Old EBP Address

Y

Args ...

J

Figure 2.7: The stack frame compositions when function celler calls function callee at
the address of n
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passed to this function and therefore is stored on the stack. If the stack frame is
not overwritten by the later calls, by tracing this pointer the forensic investigator

can retrieve the right password.

Another example is when a program calls one of the services of ntdll.dll. A call to
ntdll.dll functions loads a service number, which is an index into the arrays kept
by the service descriptor table, and executes the sysenter command [ 7]. This
command changes the execution mode from user-land to the kernel-land and calls
kiFastSystemCallEntry. This function locates the service address and jumps to
the beginning of it. Figure 2.3.8, shows the thread’s stack during the execution of

a kernel service.

8
:
| I
- Old EBP . g
o)
% Ret into FastCallEntry M
2 Old EBP —] Old EBP =
2] . . ) @]
Z Ret into Ntdll Service Ret into FastCallEntryRet ‘g
= oo
= ( Local Vars
8 Old EBP —
>
3 1 Ret
g Arguments ...
Z

Previous Frame

Figure 2.8: Windows thread stacks during the execution of a kernel service

On returning from a kernel service, command sysezit is called. This command

44



switches the execution mode from kernel mode to user mode and jumps to the
KiFastSystemCallRet that simply returns from the user land ntdil.dll function
call to the caller. The provided kernel services can also be called by the drivers
and other kernel modules. In this case, the calling is performed either in the
context of a user application thread that has requested a service from the driver
or in the context of system thread if the driver creates its own execution thread

by calling PsCreateSystemThread.

Now suppose that a rootkit on the system tries to inject a DLL into the memory
of an arbitrary process every time that the system starts up by opening a handle
to the process using OpenProcess and then creating a remote thread inside the
process. Function OpenProcess receives as one of its arguments the process ID of
the process to be opened. Having this information, the investigator will be able

to identify the victim process at the time of incident.

In this chapter, we discussed the overall architecture of Windows operating sys-
tem and detailed on object manager and process manager of Windows as they relate
to digital forensics. Different structures and data items that they store and are forensi-
cally valuable were detailed. In the next chapter, we follow this discussion by detailing
other kernel components that store information that can be forensically valuable. These

components include Windows memory manager, security manager and cache manager.
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Chapter 3

Memory, Security and Cache

Management

In the previous chapters the overall architecture of Windows operating system as it is
related to forensic investigation was discussed. Furthermore, Windows object manage-
ment and possible information that could be acquired from certain Windows objects that
are of forensic value were elaborated. This chapter details other components of Win-
dows operating system as they are related to digital investigation. These components

are memory manager, cache manager and security manager.

3.1 Memory Manager

Memory manager is part of the Windows executive and therefore exists in the file
Ntoskrnl.eze. Memory manager is responsible for memory allocation and deallocation
operations, managing virtual memory, memory status management, process address
space management, disk and memory consistency maintenance and process address

space sharing and protection. As a forensic analyst you don’t need to know all the
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details of how each of these operations are performed by the operating system. How-
ever, a complete knowledge about virtual memory and memory page managements and
states is necessary in order to extract as much evidence from the memory as possible. In
the following sections, first the concept of virtual memory and how it is implemented in
Windows is detailed. A discussion will be followed on the manual procedure for virtual
address translation and finally as a sample application and an important source of evi-
dence, Windows file management and caching system is described to show the extraction

of the content of files that have been copied into memory.

3.1.1 Virtual Memory

Windows uses virtual memory to manage memory operations of processes and operating
system components. Physical memory is divided into equal size units called page frames.
Each process is assigned a specific amount of virtual memory (4GB in Windows) and all
it knows is this virtual address space. This memory is called virtual due to the fact that
the addresses are not necessarily mapped to the same address on the physical memory.
Moreover, in order to support the 4GB virtual address space, Windows utilizes some
part of disk storage to keep the data of the running processes and operating system.
This part of the disk is called paging file or swap file and in Windows is represented as
pagefile.sys on disk. This file is not accessible through the explorer program. However,
after taking an image from the disk, it can be analyzed by available tools. It is important
to notice that CPU operations can only use data that resides on the Random Access
Memory (RAM) and therefore, if the data that is stored in the paging file is required,
this data should be brought back into the memory. If there is no free page frame in
the physical memory, Windows pages out some pages of memory to the paging file and

replaces the page frame’s content with the content of the page to be accessed.
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Each virtual address is mapped to its corresponding physical address using a
procedure known as virtual to physical memory translation. The virtual memory man-
agement works at the page granularity. This means that the virtual memory is mapped
to physical memory on per page basis. The operating system keeps the records of the
mapping between virtual pages to page frames in structures known as page tables. To
be more precise, there exist two types of these tables: page directory table and page
table. Through the use of these two tables, Windows implements the virtual to physical
memory address translation. In the Physical Address Extension(PAE) mode, one more
level is added in order to support a bigger virtual address space. This mode of operation
is detailed later in this section. The entries in the first page are called Page Directory
Entry (PDE). Each PDE points to the beginning of a page table. The page table in
turn consists of Page Table Entries (PTE). A PTE has the beginning address of a page
frame (physical address). A virtual address is divided into three parts (or four parts in
PAE mode). The first part is an index to the page directory table. Using this index,
Windows finds the page table that contains the PTE that describes the virtual address.
The second part of the virtual address is an index into this table. The PTE that this
index points to, contains the page frame number that the desired physical address is
part of. After finding which page frame in the physical memory contains the physical
address, the third part of the virtual address is used as an offset to this page. The
desired virtual address in fact describes the same address in the physical memory as the
physical address that is found by adding the beginning of the page frame to the third
part of the virtual address.

In the default virtual address management of Windows, each process has 4 GB of
virtual memory. This is because the virtual address in Windows is 32 bits. Therefore, 232

different virtual addresses are addressable. In order to support a bigger virtual address
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pointer to the beginning of the
page directory pointer table.
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Figure 3.1: Overall address translation in PAE mode. []

space, the Intel x86 Pentium Pro processor introduced a memory-mapping mode called
Physical Address Extension (PAE). The PAE mode allows accessing of up to 64GB of
physical memory on a 32 bit Windows running on current Intel x86 processors. In the
PAE mode, the virtual address is divided into four fields instead of three. However,
the support for the extended virtual address space rise from the fact that in PAE mode
PDEs and PTEs are 64 bits long instead of 32 bits in non-PAE mode of operation. A
schematic view of the whole address translation process in PAE mode is shown in Figure
3.1.

The PDE and PTE are 8 bytes long and have the specification shown in figure
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Page-Directory-Pointer-Table Entry
83 40 38 32

| Base Addr. or
Reserved

31 1211 98 543210
. PP
Page-Directory Base Address Avail | Reserved g \',rv Res | 1

Page-Directory Entry (4-KByte Page Table)

63 62 40 39 32

L Base Addr. or
Reserved

31 211 98786

543210
PIP|UIR
Page-Table Base Address Avail [0[0|0|A|C|W|(|/]|P
D|T[s W
Page-Table Entry (4-KByte Page)
83 62 40 38 32

. L . | Page Base Addr.
Reserved (setto 0) or Reserved

Execute Disable or Reserved

31 1211 887868543210
P P|PIU|R

Page Base Address Avail |G|AD|A(C\W/]/|P
T DITIS|W

Figure 3.2: Format of PDE and PTE in PAE mode.
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e

In PAE mode, the first level of address translation selects which page directory
pointer is pointing to the page directory for the virtual address. This page directory
pointers are stored in a table that is pointed by filed DirectorylableBase in _KPROCESS
structure of the process as discussed in the previous chapter. There are four page
directory pointer entries in this table.

To understand how the address translation in PAE mode works, let us follow the



translation procedure by an example. Suppose that we want to translate the virtual
address of 0xc2e61940. For this address, the forth page directory pointer entry will be
chosen since the two higher order bits are 11.

As it is shown below, the directory base (DirBase) is located at 07600820.

kd> !process PROCESS 870eecd8 SessionIld: 0 Cid: 05d8 Peb:
7££d6000 ParentCid: 0c68
DirBase: 07600820 ObjectTable: e4003948 HandleCount: 0.

Image: windbg.exe

Therefore, the Page directory pointer entry is located at the physical address
of 0x07600820 + 0x18(8%3) = 0x7600838. Below is the content of the page directory

pointer entry:

kd> !dd 7600838
# 7600838 0d4a6b801 00000000 £7b5cc00 00000000

# 7600848 1284£801 00000000 11740801 00000000

The bit 31 - 12 of the first 4 bytes contains the address of the page directory which is
0x0da6b000 and hence, the address of the page directory entry that contains the address
of the page table is PDT_ADDR + PDE_INDEX * SIZEOF.PDE = 0x0da6b000 + 0x17 * 8

= 0x0da6bObs.

kd> !dd 0da6b0b8
# da6b0b8 073£1963 00000000 073f£2963 00000000

# da6b0c8 073£3963 00000000 073£4963 00000000



Page Frame Reser- | Reser- | Reser- Global Large Dirty Acces-| Cache | Write |Kernel/| Read/ | Valid/
Number ved ved ved Page sed [Disabled Through| User | Write |Invalid

11 10 9 8 7 6 5 4 3 2 1 0

Figure 3.3: Field description of PDE and PTE.

Again according to the format of the PDE, the bits 31 - 12 of the first for bytes of
the PDE contains the address of the page table which is 0x073£1000 and therefore the
address of the page table entry containing the address of the physical page is PTT_ADDR

+ PTE_INDEX * SIZEOF_PTE = 0x073f1000 + Ox61 * 8 = 0x073£1308.

kd> !dd 0731308
# 73£1308 11d£3921 00000000 00000400 e1b11510

# 73£1318 00000400 e1b11518 00000400 e1b11520

In the same way the page frame number containing the address would be 0x11d£3 and
therefore the physical address of 0xc2e61940 will be 0x11df3940. This can be verified

as below:

kd> dd c2e61940

c2e61940 04e44029 01c6e382 04e44029 01c6e382

kd> !'dd 11d4£3940

#11d£3940 04e44029 01c6e382 0444029 01c6e382

Figure 3.1.1 is the definition of other fields in the PDE and PTE.

e Flag Accessed: Page was read before.
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Flag Cache disabled: The page should not be cached.
Flag Dirty: The page is dirty meaning that it was written to.
Flag Global: For multi-processors systems.

Flag Large page: The PDE describes a large page. A large page has the size of
4MB in default mode and 2MB in PAE mode. When this flag is enabled, the
PDE does not point to a page table anymore and it has the PFN of the large page

containing data.

Flag Kernel/User: Whether the page is kernel mode or user mode. If the page is

in kernel mode, then it can only accessed from the kernel land.

Flag Valid/Invalid: The page exists in the physical memory. However, if this
field is 0, the page might be still in memory. This happens when the page is in
transition state or the PTE or PDE points to a prototype PTE. These situations

are discussed in more details later.

Flag Write through: The write operation caching is disabled. To improve the disk
write operations, Windows caches the writes to a file for a certain amount of time
and writes all of the changes to the disk at once. If this bit is set, the writes to a

page is flushed to the disk as soon as they are executed.
Flag Write: The page is writable or only read-only.

Flag prototype: The PTE or the PDE points to a prototype PTE. Prototype PTEs

are discussed later in this section.

Flag Transition: The page is in transition state. Page states are discussed shortly.
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3.1.2 Page Frame Database

Aside from the page tables that keep track of the states of pages, Windows maintains
a database of the information regarding the current state of each page frame of the
physical memory. This database is called Page Frame Number database and is stored at
the address pointed by MmPfnDatabase kernel symbol. For each page frame, the status

of the page frame can be in one of the following states:

o Active: The page is pointed by a PTE. The page is said to be in active or valid
state. When a page is in valid state, it can be part of the working set of a process,
system, or non-paged part of the kernel. The working set of the process is the part
of the process address space that is currently stored in the physical memory rather
than the paging file. When a page frame is in active state, the corresponding PTE
has its valid bit set. In a 32-bit x86 system, the index of the page frame is stored
in the PTE in bits 31-12. As mentioned before, this index should be multiplied
by the page size to acquire the beginning address of the page frame to which the

virtual address is mapped.

e Transition: When a page is in transition state, it is not part of any workspace.
However, the corresponding PTE of the process that the page has been previously
part of its workspace still points to the page frame. A page is in transition state
when an I/O operation on the page is still in progress. When a page frame is in
transition state, the corresponding PTE has its transition bit set and the prototype

bit unset.

e Standby: A page is in standby state when it was previously part of a working set
and was removed later. Moreover, the page has not been changed since the last

time that it was read from or written to the disk. When a page is in this state,
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the corresponding PTE marks the page as invalid but the page frame number in
the PTE still points to the right page frame. In this state, the transition bit in
the PTE is set.

e Modified: A page is in modified state when it has been previously part of a working
set and it has been modified. However, the updated content of it hasn’t been
written to the disk. The page frame number in the corresponding PTE points to

the right page frame with dirty and transition bits set and valid bit unset.

e Modified no-write: A page in this state has been modified previously without its
content being written to disk. However, pages in this state will not be written to
disk. Drivers can use this page state to defer the writing of the modified pages to
the disk to a proper time. For example, NTFS drivers use this state of the page

to implement the journaling.

e Free: The page frame is free but it contains some data left from the previous
allocation of it. For security purposes, a page in this state should be zeroed out
before it can be allocated to a process.

e Zeroed: The page frame is zeroed out by the operating system and is ready to be
allocated to a process.

e Rom: The page frame content has been brought to memory from the read-only
memory (ROM).

e Bad: The page frame is not accessible due to hardware or parity fault.

The corresponding entry of each page frame in the page frame number database
describes the status of the page frame. Except for page frames in active states and bad

states, the rest of the entries in the page frame number database are part of one linked
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Figure 3.4: The state transition diagram of a page frame in Windows.

list of entries of the same type. Therefore, there exist six linked lists that link entries of
the page frame number database together. These linked lists are zeroed, free, standby,
modified, rom, and modified no-write. The page frame number entry is linked in one of
these lists based on its status as discussed above.

As the system continues operating, the status of the page frames are changed.
Figure 3.4 shows the state transition diagram for the states of a page frame. According
to the diagram, a page frame is allocated from the zero page list. After the page frame
becomes invalid, depending on whether or not it was changed and should be written
to disk, its state will change to one of the free, standby, modified, or modified no-write
states. After a page is moved from standby state to free, it will stay there until the
operating system is in need of more zero pages in which case it will be zeroed and will
be placed in the zero list. From forensic stand point, all page frames in states other

than zeroed could contain relevant evidence and should be analyzed.



All the entries in the page frame number database are of the same length. However,
depending on the state of a page frame, its corresponding entry has different internal

structure. A PFN database entry is of type MMPFN. This structure is detailed below:

kd> dt -r _MMPFN

+0x000 ul ! __unnamed
+0x000 Flink : Uint4B
+0x000 WsIndex : Uint4B
+0x000 Event . Ptr32 _KEVENT
+0x000 Header : _DISPATCHER_HEADER
+0x000 ReadStatus : Int4B
+0x000 NextStackPfn ¢ _SINGLE_LIST_ENTRY
+0x000 Next : Ptr32 _SINGLE_LIST_ENTRY
+0x004 PteAddress : Ptr32 _MMPTE
+0x000 u : __unnamed
+0x000 Long : Uint8B
+0x000 HighLow : _MMPTE_HIGHLOW
+0x000 Hard : _MMPTE_HARDWARE
+0x000 Flush : _HARDWARE_PTE
+0x000 Proto : _MMPTE_PROTOTYPE
+0x000 Soft : _MMPTE_SOFTWARE
+0x000 Trans : _MMPTE_TRANSITION
+0x000 Subsect : _MMPTE_SUBSECTION
+0x000 List : _MMPTE_LIST
+0x008 u2 : __unnamed
+0x000 Blink : Uint4B



Bit

Bit

Bit

Bit

Bits

Bit

Bits

1 Bit

2 Bits

1 Bit

1 Bit

16 Bits

: _MMPTE_HARDWARE

+0x000 ShareCount ¢ Uint4B
+0x00c u3 ¢ __unnamed

+0x000 el : _MMPFNENTRY
+0x000 Modified : Pos 0, 1
+0x000 ReadInProgress : Pos 1, 1
+0x000 WriteInProgress : Pos 2, 1
+0x000 PrototypePte : Pos 3, 1
+0x000 PageColor : Pos 4, 3
+0x000 ParityError : Pos 7, 1
+0x000 PagelLocation : Pos 8, 3
+0x000 RemovalRequested : Pos 11,
+0x000 CacheAttribute : Pos 12,
+0x000 Rom : Pos 14,
+0x000 LockCharged : Pos 15,
+0x000 DontUse : Pos 186,

+0x000 e2 : __unnamed
+0x000 ShortFlags : Uint2B
+0x002 ReferenceCount : Uint2B

+0x010 OriginalPte : _MMPTE

+0x000 u : __unnamed
+0x000 Long : Uint8B
+0x000 HighLow : _MMPTE_HIGHLOW
+0x000 Hard
+0x000 Flush : _HARDWARE_PTE
+0x000 Proto

: _MMPTE_PROTOTYPE
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+0x000 Soft : _MMPTE_
+0x000 Trans : _MMPTE_
+0x000 Subsect ¢ _MMPTE_
+0x000 List : _MMPTE_
+0x018 u4 : __unnamed
+0x000 EntireFrame : Uint4B
+0x000 PteFrame : Pos 0, 26
+0x000 InPageError : Pos 26, 1
+0x000 VerifierAllocation : Pos 27,
+0x000 AweAllocation : Pos 28, 1
+0x000 LockCharged : Pos 29, 1
+0x000 KernelStack : Pos 30, 1
+0x000 Reserved : Pos 31, 1

SOFTWARE

TRANSITION

SUBSECTION

LIST

Bits

Bit

1 Bit

Bit

Bit

Bit

Bit

Notice the use of the -r option for dt command. This option directs windbg to recur-

sively traverse the structure members and print the details of each structure. As you

can see several fields in MMPTE can have different meanings. Basically, there exist four

types of PFN database entry structures. Each of these types are discussed hereafter.

The first type is for active frames. This structure is shown below:

0x000 WsIndex : Uint4B
0x004 PteAddress : Ptr32 _
0x008 ShareCount : Uint4B
0x00c Flags : Uint2B

+0x000 Modified
+0x000 ReadInProgress

+0x000 WritelInProgress

MMPTE

: Pos O,
: Pos 1,

: Pos 2,
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+0x000 PrototypePte : Pos 3, 1 Bit

+0x000 PageColor : Pos 4, 3 Bits
+0x000 ParityError : Pos 7, 1 Bit
+0x000 Pagelocation . Pos 8, 3 Bits

+0x000 RemovalRequested : Pos 11, 1 Bit

+0x000 CacheAttribute : Pos 12, 2 Bits
+0x000 Rom . Pos 14, 1 Bit
+0x000 LockCharged : Pos 15, 1 Bit
+0x000 DontUse : Pos 16, 16 Bits

0x00e ReferenceCount : Uint2B

0x010 OriginalPte : _MMPTE

0x018 EntireFrame : Uint4B

Field PteAddress in this structure contains the virtual address of the PTE that points
to this page frame. Field ShareCount is the number of PTEs that refer to this page
frame. Field ReferenceCount is the number of references to this page frame. When a
page frame is first mapped to the working set of a process or system, or a device diver,
it is incremented and when it is deallocated, this counter is decremented. The difference
between fields ShareCount and ReferenceCount is that when the ReferenceCount is
zero, the page can be removed from the active state to one of free, standby, or modified
list. However, when ShareCount is zero, the page might still stay in active state since
there might be other references to it. Moreover, as said before, ShareCount is increased
every time that a process maps the page frame as part of its working set. However,
ReferenceCount is increased only the first time that the page frame is mapped to a

working set. Therefore, when a page frame has the ReferenceCount of one or more,
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it is active and when it is 0, then depending on the value of Flags, it can be in the
zeroed, modified, modified no-write free, bad, ROM or standby state. Field OriginalPte
contains the content of the PTE that points this page frame. Field EntireFrame is the
page frame number of the page table that holds the PTE that points to this frame.
As you will see later on, using this field, we can find the virtual address of a physical
address.

The second type of PFN database Entry is for pages that are in modified or

standby state. This structure is shown below:

0x000 Flink : Uint4B

0x004 PteAddress : Ptr32 _MMPTE

0x008 Blink : Uint4B

0x00c Flags : Uint2B
+0x000 Modified : Pos 0, 1 Bit
+0x000 ReadInProgress : Pos 1, 1 Bit

+0x000 WriteInProgress : Pos 2, 1 Bit

+0x000 PrototypePte : Pos 3, 1 Bit
+0x000 PageColor : Pos 4, 3 Bits
+0x000 ParityError : Pos 7, 1 Bit
+0x000 Pagelocation : Pos 8, 3 Bits

+0x000 RemovalRequested : Pos 11, 1 Bit

+0x000 CacheAttribute : Pos 12, 2 Bits
+0x000 Rom : Pos 14, 1 Bit
+0x000 LockCharged : Pos 15, 1 Bit
+0x000 DontUse : Pos 16, 16 Bits
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0x00e ReferenceCount : Uint2B
0x010 OriginalPte . _MMPTE

0x018 EntireFrame : Uint4B

As you can see, the only difference with the previous structure are the addition of the
two pointers Flink and Blink. Using these fields all of the PFN database entries that
have the same state are doubly linked together. As said before, for all of the pages in
this state field ReferenceCount is zero.

The third type of PFN database Entry is used for pages on the zero or free list.
The only difference from the previous structure is that instead of backward link, The
structure field at the offset of 0x8 stores a value that is used for cache usage optimization.
The fourth type of PFN database Entry is used for a page on which an I/O operation is
in progress but the page is no longer active. In this structure, the field at the offset of
0x0 contains the address of the event object that will be notified when the I/O operation
finishes.

We have previously discussed the manual procedure for virtual to physical address
translation. Using the page frame number database we can reverse this procedure to
find the virtual address that is mapped to a physical address. If you remember, field
ENitrFrame in structure MMPFN contains the page frame number of the page table that
contains the PTE pointing to this frame. This field can be used to reverse the virtual to
physical address translation process. Let us follow this process by an example. Suppose
that we want to find the virtual address that is mapped to the physical address of
0x12466000 in a system that operates in PAE mode. For demonstration, we use !pfn
command of windbg to show the content of a page frame number. This command
receives the page frame number as input. The output of executing !pfn command with

the page frame number of this address is shown below:
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kd> !pfn 12466
PFN 00012466 at address 812A5B28

flink 0000031F blink / share count 00000002 pteaddress CO710FD8

reference count 0001  Cached color O
restore pte 000000CO containing page 000A76 Active M
Modified

containing page shows the value of EntireFrame that is 0xA76. This is the page frame
number of a page table that has a PTE pointing to this frame. Therefore, if we search
through this page table for a PTE that points to the page frame number of 0x12466,
that is our page frame, we can find the index of the PTE in the page table and this
index divided by 8 (the size of PTE in PAE mode) is the 9 bits in the virtual address

that are used as the index in the third level page table. This process is shown below:

kd> !dd 0A76000 11000

# a76000 00acal63 00000000 00ae6143 00000000
# a76fd0 12431163 00000000 12466163 00000000
# a76fe0 12922163 00000000 1252a143 00000000
# a76ff0 12599143 00000000 000000cO 00009149
# a77000 00000000 00000000 00000000 00000000

# a77010 00000000 00000000 00000000 00000000

As you see, the PTE at the address of a76fd8 has the value of 12466 as its first 20
bits. Therefore the index of the PTE is (0xa76fd8 - 0xa76000) = £d8 and therefore,
the third level offset in the virtual address is £d8 / 8 = 1fb. We can apply the same

process with the PFN number of 0xa76 to find the second level offset and then the first
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level offset in the virtual address.

kd> !pfn A76
PFN O0000A76 at address 810B84ES8

flink 00000000 blink / share count 000001BC pteaddress C0603880

reference count 0001  Cached color O
restore pte 00000080 containing page 00032A Active M
Modified

kd> !tdd 32A000 11000
# 32a880 00a76063 00000000 0e52£063 00000000
# 32a890 0d6b7063 00000000 08b4f063 00000000

# 32a8a0 0458b063 00000000 04674063 00000000

(32a880 - 32a000) / 8 = 110

kd> !'dd 32A000 11000

# 32a010 00329063 00000000 0032a063 00000000
# 322020 02dd0063 00000000 00000000 00000000
# 32a030 00000000 00000000 03013163 00000000

# 322040 0301a163 00000000 03015163 00000000
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(322018 - 32a000) / 8 = 3

When we put the three offsets that we found in a 32 bit number we will have the

virtual address as:

Oxifb = 111111011
0x110 = 100010000
0x3 = 11

virtual address = 11 100010000 111111011 000000000000 = 0xE21FB0O0O

kd> !pte E21FB00O

VA e21£fb000
PDE at 00000000C0603880 PTE at 00000000C0710FD8
contains 0000000000A76063 contains 0000000012466163

pfn a76 ---DA--KWEV pfn 12466 -G-DA--KWEV

As you see, the output of executing !pte command with the virtual address we found,

has our starting page frame number of 0x12466. This command shows the details of

virtual to physical address translation.

3.2 File Extraction

When a file is created using Windows I/O functions such as CreateF'ile, Windows creates

a file object that represents the file in kernel. The file object is of type _FILE_OBJECT

and has the following structure:

kd> dt _FILE_OBJECT
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+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 DeviceObject : Ptr32 _DEVICE_OBJECT
+0x008 Vpb : Ptr32 _VPB

+0x00c FsContext ¢ Ptr32 Void

+0x010 FsContext2 : Ptr32 Void

+0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS
+0x018 PrivateCacheMap : Ptr32 Void
+0x01c FinalStatus : Int4B

+0x020 RelatedFileObject : Ptr32 _FILE_OBJECT

+0x024 LockOperation : UChar
+0x025 DeletePending : UChar
+0x026 ReadAccess : UChar
+0x027 WriteAccess : UChar
+0x028 DeleteAccess : UChar
+0x029 SharedRead : UChar
+0x02a SharedWrite : UChar
+0x02b SharedDelete : UChar
+0x02c Flags : Uint4B
+0x030 FileName : _UNICODE_STRING

+0x038 CurrentByteOffset : _LARGE_INTEGER

+0x040 Waiters : Uint4B
+0x044 Busy : Uint4B
+0x048 LastLock : Ptr32 Void
+0x04c Lock : _KEVENT
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+0x05¢c Event : _KEVENT

+0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT

In the structure shown above, field FileName contains the name of the file. Fields
from offset 0x26 to offset 0x2b describe different access modes defined at the time of
creating the file. PrivateCacheMap points to the private cache map of the process as
discussed later. For every file opened by a process, Windows creates a structure of
type .SECTION_OBJECT_POINTERS that is pointed by field SectionObjectPointer in the

file object that represents the opened file. This structure is shown below:

kd> dt _SECTION_OBJECT_POINTERS
+0x000 DataSectionObject : Ptr32 Void
+0x004 SharedCacheMap : Ptr32 Void

+0x008 ImageSectionObject : Ptr32 Void

Fields DataSectionObject and ImageSectionObject are pointers to structures of type
_CONTROL_AREA. Field DataSectionObject is used when the file is accessed as a data file
and field ImageSectionObject is used when the file is accessed as an executable. Field
SharedCacheMap is a pointer to the shared cache map of the file and is discussed later.
The _CONTROL_AREA structure is shown below:

kd> dt _CONTROL_AREA
+0x000 Segment : Ptr32 _SEGMENT
+0x004 Dereferencelist : _LIST_ENTRY
+0x00c NumberOfSectionReferences : Uint4B
+0x010 NumberOfPfnReferences : Uint4B
+0x014 Number(OfMappedViews : Uint4B

+0x018 NumberOfSubsections : Uint2B
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+0x01a FlushInProgressCount : Uint2B

+0x01c NumberOfUserReferences : Uint4B

+0x020 u : __unnamed

+0x024 FilePointer : Ptr32 _FILE_OBJECT
+0x028 WaitingForDeletion : Ptr32 _EVENT_COUNTER
+0x02¢c ModifiedWriteCount : Uint2B

+0x02¢e NumberOfSystemCacheViews : Uint2B

This structure stores information about the mapping of the file to the memory. Field
Segment is a pointer to a segment object that is of type .SEGMENT_OBJECT. This structure

is shown below:

kd> dt _SEGMENT_OBJECT
+0x000 BaseAddress : Ptr32 Void
+0x004 TotalNumberOfPtes : Uint4B
+0x008 SizeOfSegment : _LARGE_INTEGER
+0x010 NonExtendedPtes : Uint4B
+0x014 ImageCommitment : Uint4B
+0x018 ControlArea : Ptr32 _CONTROL_AREA
+0x01c Subsection : Ptr32 _SUBSECTION
+0x020 LargeControlArea : Ptr32 _LARGE_CONTROL_AREA
+0x024 MmSectionFlags . Ptr32 _MMSECTION_FLAGS

+0x028 MmSubSectionFlags : Ptr32 _MMSUBSECTION_FLAGS

Field Subsection in this structure points to the end of the control area of the
file that is the beginning of the first subsection of the file. A subsection is of type
_SUBSECTION and describes information about the physical address at which each section

of the file is mapped to memory. This structure is detailed below:
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kd> dt _SUBSECTION

+0x000 ControlArea : Ptr32 _CONTROL_AREA
+0x004 u ¢ __unnamed
+0x008 StartingSector : Uint4B

+0x00c NumberQOfFullSectors : Uint4B
+0x010 SubsectionBase : Ptr32 _MMPTE
+0x014 UnusedPtes : Uint4B
+0x018 PtesInSubsection : Uint4B

+0x01c NextSubsection : Ptr32 _SUBSECTION

Field StartingSector is the first sector of the file that this subsection represents. Field
NumberOfFullSectors is the number of the sectors that this subsection describes. Field
PtesInSubsection is the number of Page Table Entries (PTE) that the prototype page
table of this subsection contains. The prototype page table, that field Subsection-
Basepoints to, is a table that consist of prototype page table entries. If you remember
one of the flags in a PTE is called Ptototype and specifies whether or not the PTE
points to a prototype PTE. Prototype page tables are used to enable sharing of a page
of memory. The idea is to keep just one copy of a file inside the memory. So if more
than one process has mapped the file, then they all have PTEs pointing to the physical
addresses to which the pages are mapped. Now suppose that a shared page of memory
is swapped out to the paging file and then brought back in to the memory. In such
situation, memory manager should keep track of all PTEs that point to this page and
update all of them. However, instead of keeping another database for all the frames
inside the paging file, memory manager uses the prototype page tables. When the file is
first created or a shared page of memory is allocated, memory manager creates a table

of prototype page table entries that is pointed by a segment object. When a process
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accesses this page for the first time, the corresponding PTE in its page table is filled in
from the information in its prototype PTE. If the page is no longer used, the memory
manager swaps out the page from the memory and makes all PTEs point to the proto-
type PTE. When a page is faulted in later, this time memory manager only updates the
corresponding prototype page table entry instead of all PTESs since the rest of the PTEs
are pointing to the updated prototype PTE. Like regular PTEs, a prototype PTE can

be in one of the following states:
e Active

Transition

Modified-no-write

Demand Zero

Page file

Mapped file

The description of these states is the same as their corresponding states for page tables
and are not repeated. Based on the above discussion, we can extract a file by first finding
its subsections and then copying the content from the page frames that are described by
prototype page table entries that are pointed by the subsection. This process is shown

below:

kd> dt _FILE_OBJECT 0x81F32810

+0x000 Type : 5

+0x002 Size v 112

+0x004 DeviceObject : 0x82bel1738 _DEVICE_OBJECT
+0x008 Vpb : 0x82b8d2e8 _VPB
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+0x00c FsContext : 0xe21487£8

+0x010 FsContext2 : 0xe2148950

+0x014 SectionObjectPointer : 0x8286c22c _SECTION_OBJECT_POINTERS
+0x018 PrivateCacheMap : (null)

+0x01c FinalStatus : 0

+0x020 RelatedFileObject : (null)

+0x024 LockOperation : 0

+0x025 DeletePending 1 00

+0x026 ReadAccess : Ox1 ??

+0x027 WriteAccess : Oxt

+0x028 DeleteAccess : 0

+0x029 SharedRead : Ox1

+0x02a SharedWrite : Ox1 7?

+0x02b SharedDelete : 00

+0x02c Flags : 0x140042

+0x030 FileName : _UNICODE_STRING "\Documents and Settings\

bestbuy\Local Settings\Temporary Internet
Files\Content.IE5\index.dat"

+0x038 CurrentByteOffset : _LARGE_INTEGER 0x0

+0x040 Waiters : 0
+0x044 Busy : 0
+0x048 LastLock : (null)
+0x04c Lock : _KEVENT
+0x05¢c Event : _KEVENT

+0x06c CompletionContext : (null)
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kd> dt _SECTION_OBJECT_POINTERS 0x8286c22c
+0x000 DataSectionObject : 0x82b5e898
+0x004 SharedCacheMap : (null)

+0x008 ImageSectionObject : (null)

kd> dt _CONTROL_AREA 0x82b5e898
+0x000 Segment : 0xe10963e0 _SEGMENT
+0x004 Dereferencelist : _LIST_ENTRY [ 0x0 - 0xO ]
+0x00c Number(QOfSectionReferences : 1
+0x010 NumberOfPfnReferences : 0x3d
+0x014 NumberOfMappedViews : 8
+0x018 NumberOfSubsections : 2
+0x0l1a FlushInProgressCount : O
+0x01c NumberOfUserReferences : 9
+0x020 u : __unnamed
+0x024 FilePointer : 0x828b8be8 _FILE_OBJECT
+0x028 WaitingForDeletion : (null)
+0x02¢ ModifiedWriteCount : O

+0x02e NumberOfSystemCacheViews : O

kd> dt _SEGMENT_OBJECT 0xel0963e0
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+0x000 BaseAddress

+0x004

+0x008 Size0fSegment

+0x010 NonExtendedPtes

+0x014 ImageCommitment

+0x018 ControlArea

+0x01c Subsection
+0x020

+0x024 MmSectionFlags

+0x028

kd> dt _SUBSECTION 0x82b5e8c8

+0x000 ControlArea
+0x004 u

+0x008 StartingSector

+0x00c¢ NumberOfFullSectors :

+0x010 SubsectionBase

+0x014 UnusedPtes

+0x018 PtesInSubsection :

+0x01c NextSubsection

kd> dd 0xe10a4000

e10a4000

TotalNumberOfPtes :

LargeControlArea :

MmSubSectionFlags :

: 0x82b5e898

0x940

: _LARGE_INTEGER 0x9‘00000920
: 0x940000

: 0

: 0x000004c0 _CONTROL_AREA

: 0x82b5e8c¢8 _SUBSECTION

(null)
(null)

(null)

: 0x82bb5e898 _CONTROL_AREA
: __unnamed

: 0

0x920

: 0xel10a4000 _MMPTE

: 0

0x920

: 0x81£f2c1c8 _SUBSECTION

17941123 00000000 0bO7b123 00000000
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e10a4010
e10a4020
e10a4030

e10a4040

1790123 00000000 06b35123 00000000
0635£123 00000000 10ae4123 00000000
000004c0 82b5e8c8 000004cO 82b5e8c8

000004c0 82b5e8c8 000004cO 82bb5e8c8

kd> !db 1794f000

#1794£000
#1794£010
#1794£020
#1794£030
#1794£040
#1794£050
#1794£060

#1794£070

To extract process executables, the same technique can be used. However, this
time the link to the beginning of the prototype page table entry is stored in a structure of
type -SEGMENT, which itself is pointed to by the section object representing the mapped
executable file. If you remember, field SectionObject in _EPROCESS block of a process

points to its section object. The section object is of type .SECTION_OBJECT as shown

below:

436c 6965 6e74 2055-726c 4361 6368
4d4d 4620 5665 7220-352e 3200 0000
0050 0000 8023 0100-£f626 0000 0000
0054 0728 0000 0000-00a0 6c23 0000
0050 aS00 0000 0000-1400 0000 4400
33b5a 3644 5331 4343-4400 0000 4633
5651 504c 4400 0000-5748 51ba 5731

4300 0000 4b44 4d37-4731 5142 4300

kd> dt _SECTION_OBJECT

+0x000
+0x004

+0x008

StartingVa : Ptr32 Void
EndingVa : Ptr32 Void
Parent : Ptr32 Void
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+0x00c LeftChild : Ptr32 Void
+0x010 RightChild : Ptr32 Void

+0x014 Segment : Ptr32 _SEGMENT_OBJECT

Although field Segment is declared by windbg to be of type _SEGMENT_OBJECT, it

is in fact of type _SEGMENT. This structure is shown below:

kd> dt _SEGMENT
+0x000 ControlArea : Ptr32 _CONTROL_AREA
+0x004 TotalNumberOfPtes : Uint4B
+0x008 NonExtendedPtes : Uint4B
+0x00c WritableUserReferences : Uint4B
+0x010 SizeOfSegment : Uint8B
+0x018 SegmentPteTemplate : _MMPTE
+0x020 NumberOfCommittedPages : Uint4B
+0x024 ExtendInfo : Ptr32 _MMEXTEND_INFO

+0x028 SystemImageBase : Ptr32 Void

+0x02c¢ BasedAddress : Ptr32 Void
+0x030 uil ¢ __unnamed
+0x034 u2 ¢ __unnamed
+0x038 PrototypePte : Ptr32 _MMPTE
+0x040 ThePtes : [1] _MMPTE

In this structure, field PrototypePte stores the beginning of the prototype page table.

As an example, below we have shown this process for extracting an executable file.

kd> dt _eprocess f7fac020

ntdll!_EPROCESS
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+0x000 Pcb : _KPROCESS

+0x06¢c ProcesslLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER Ox1c7ca32‘909a68c4
+0x078 ExitTime : _LARGE_INTEGER 0x0O

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x138 Sectionlbject : 0xe1899f90

kd> dt _SECTION_OBJECT 0xe1899£90

+0x000 StartingVa ¢ (null)
+0x004 EndingVa ¢ (null)
+0x008 Parent : (aull)
+0x00c LeftChild : (null)
+0x010 RightChild ¢ (null)
+0x014 Segment : 0xe1896710 _SEGMENT_OBJECT

kd> dt _SEGMENT 0xe1896710
+0x000 ControlArea : 0x81£1c008 _CONTROL_AREA
+0x004 TotalNumberOfPtes : 0x57
+0x008 NonExtendedPtes : 0x57
+0x00c WritableUserReferences : O
+0x010 SizeOfSegment : 0x57000
+0x018 SegmentPteTemplate : _MMPTE

+0x020 NumberOfCommittedPages : O
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+0x024 ExtendInfo
+0x028 SystemImageBase
+0x02¢ BasedAddress
+0x030 ul

+0x034 u2

+0x038 PrototypePte

+0x040 ThePtes

kd> dd 0xe1896750

1896750 0591b121 80000000
e1896760 16f6d121 00000000
e1896770 0Oefb1121 00000000
e1896780 17809121 00000000
1896790 10114860 00000000
e18967a0 07c32121 00000000
€18967b0 0e344121 00000000

e18967c0 0d27e121 00000000

kd> !db 0591b000

# 591b000 4d5a 9000 0300 0000-0400
# 591b010 b800 0000 0000 0000-4000
# 591b020 0000 0000 0000 0000-0000
# 591b030 0000 0000 0000 0000-0000
# 591b040 Oelf bale 00b4 09c¢d-21b8

# 591b050 6973 2070 726f 6772-616d

(null)

(null)

¢ 0x01000000
. __unnamed

¢ __unnamed

(1] _MMPTE

0557¢860
0cd52121
0558a121
09a85121
040£9121
04161121
13819121

0dd7c121

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000 ffff

0000 0000

0000 0000

0000 e800

014c cd21

2063 616e

7

: 0xel1896750 _MMPTE

6e6f is program canno



# 591b060 7420 6265 2072 756e-2069 6e20 444f 5320 t be run in DOS

# 591b070 6d6f 6465 2e0d 0d0a-2400 0000 0000 0000 mode....$.......

Another easier way for extracting the executable file of a process is to find the the
executable header of the file and then parse the header to find the virtual address of each
section of the file. If you remember, field ImageBaseAddress in structure _PEB of the
process contains the virtual address at which the file is mapped. Each executable file that
is in Portable Executable format starts with a header that describes different properties
about the file including loading requirements of the file. Among these information are
the sections of the file. Microsoft defines a section in the PE file as the basic unit of
code or data within a PE or COFF file. After an executable is loaded in memory, each
section of it is mapped in memory and the virtual addresses at which the sections are
mapped are stored in the part of the executable header known as section table. Section
table of the executable is in fact an array of entries of type _.IMAGE_SECTION_HEADER.

This structure is shown below:

0:040> dt -r _IMAGE_SECTION_HEADER
+0x000 Name : [8] UChar
+0x008 Misc . __unnamed

+0x000 PhysicalAddress : Uint4B

+0x000 VirtualSize : Uint4B
+0x00c VirtualAddress : Uint4B
+0x010 SizeOfRawData : Uint4B

+0x014 PointerToRawData : Uint4B
+0x018 PointerToRelocations : Uint4B
+0x01c PointerToLinenumbers : Uint4B

+0x020 NumberOfRelocations : Uint2B
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+0x022 NumberOfLinenumbers : Uint2B

+0x024 Characteristics : Uint4B

Field Name in this structure is the name of the section. Usually section names start
with a dot(.), although it is not a requirement. This field is intended for describing the
content of a section and can have any value of size equal or less than 8 bytes. Typical

section names names are as follows:
e .text/.code/CODE/TEXT: Section contains executable code (machine instructions).
e .testbss/TEXTBSS: Is used whens incremental Linking is enabled.
e .data/.idata/DATA/IDATA: Section contains initialized data.
e .bss/BSS: Section contains uninitialized data.

Field VirtualSize in this structure is the size of the section after it is mapped
into memory. We will use this field as the number of bytes that should be copied from
the memory to extract the section as it is mapped to memory. Field SizeOfRawData
is the size of the section in the file on the disk. This value could be equal, less than
or greater than the value that is stored in field VirtualSize depending on the alignment
requirements. However, if it is less than the value of field VirtualSize, the remainder
of the section will be filled out with zero and is not of forensic importance. Field
VirtualAddress is the address of the start of the section relative to the image base when
the section is loaded into memory. We will add this value to the image base of the
executable as we have found in the process environment block to acquire the virtual
address at which the section is mapped in the memory. Having the size of the section

and the virtual address of it, we can extract the content of the section from memory
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by first translating the virtual address of each page of the section and then copying the
content of the page until we reach the size of the section.

The section table of the executable is located after four other structures. These
structures are dos header, PE signature, file header (or COFF header) and optional file
header. The optional header can have a variable size and its size is stored in the file
header. The offset of the file header from the image base is stored in the dos header.
Therefore in order to find the offset of the section table, we have to read both the dos
header and the file header.

Dos header is of type -IMAGE_DOS_HEADER. The details of this structure is shown

below:

kd> dt _IMAGE_DOS_HEADER

+0x000 e_magic : Uint2B
+0x002 e_cblp : Uint2B
+0x004 e_cp : Uint2B
+0x006 e_crlc : Uint2B
+0x008 e_cparhdr : Uint2B
+0x00a e_minalloc : Uint2B
+0x00c e_maxalloc : Uint2B
+0x00e e_ss : Uint2B
+0x010 e_sp : Uint2B
+0x012 e_csum : Uint2B
+0x014 e_ip : Uint2B
+0x016 e_cs : Uint2B
+0x018 e_lfarlc : Uint2B
+0x01a e_ovno : Uint?2B
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+0x01c e_res : [4] Uint2B

+0x024 e_oemid : Uint2B
+0x026 e_oeminfo : Uint2B
+0x028 e_res2 : [10] Uint2B
+0x03c e_lfanew : Int4B

Field e_lfanew which is the last member of this structure at the offset of 0x3c has the
offset of a structure that contains PE signature, file header and optional header. This

structure is of type _IMAGE_NT_HEADERS. This structure is shown below:

kd> dt _IMAGE_NT_HEADERS

+0x000 Signature : Uint4B
+0x004 FileHeader : _IMAGE_FILE_HEADER
+0x018 OptionalHeader : _IMAGE_OPTIONAL_HEADER

Field Signature is the PE signature with the value of 0x4550 that is the hex value for
"PE”. Field FileHeader is the file header and has a member that stores the length of

structure OptionalHeader. This structure is shown below:

kd> dt _IMAGE_FILE_HEADER
+0x000 Machine : Uint2B
+0x002 NumberOfSections : Uint2B
+0x004 TimeDateStamp : Uint4B
+0x008 PointerToSymbolTable : Uint4B
+0x00c NumberQfSymbols : Uint4B
+0x010 SizeOfOptionalHeader : Uint2B

+0x012 Characteristics : Uint2B
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Field SizeOfOptionalHeader stores the size of the optional header. We use this value to
find the beginning of the section table. Field NumberOfSections is the number of the
section that exist in this file and therefore the size of the section table.

The extraction process for an executable from the memory based on the above

discussion is shown below:

kd> !'PEB 7f£df000 PEB at 7ffdf000
InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: Yes

ImageBaseAddress: 00400000

0:022> dd 00400000 + Ox3c 0040003c 00000108 OebalfOe cd09b400

4c01b821 .....

0:022> dt -r _IMAGE_NT_HEADERS (0x400000 + 0x108)

+0x000 Signature : 0x4550
+0x004 FileHeader : _IMAGE_FILE_HEADER
+0x000 Machine ¢ Ox14c

+0x002 NumberOfSections : 3

+0x004 TimeDateStamp : 0x44cc1896
+0x008 PointerToSymbolTable : O
+0x00¢ NumberOfSymbols : O

+0x010 SizeOfOptionalHeader : 0OxeO
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+0x012 Characteristics : 0x103
+0x018 OptionalHeader : _IMAGE_OPTIONAL_HEADER
+0x000 Magic : 0x10b

+0x002 MajorLinkerVersion : 0x8 ’’

0:022> dt -r _IMAGE_SECTION_HEADER (0x400000 + 0x108 + 0x18 + 0xeO0)
+0x000 Name : [8] ".text"
+0x008 Misc : __unnamed

+0x000 PhysicalAddress : 0x470491

+0x000 VirtualSize : 0x470491
+0x00c¢ VirtualAddress : 0x1000
+0x010 SizeOfRawData . 0x470600

+0x014 PointerToRawData : 0x400
+0x018 PointerToRelocations : O
+0x01c PointerToLinenumbers : O
+0x020 NumberOfRelocations : 0
+0x022 NumberOfLinenumbers : O

+0x024 Characteristics : 0x60000020

0:022> dt -r _IMAGE_SECTION_HEADER (0x400000 + 0x108 + 0x18 + 0Oxe0 +
0x28)

+0x000 Name : [8] ".data"
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+0x008 Misc : __unnamed

+0x000 PhysicalAddress : 0x7d014

+0x000 VirtualSize : 0x7d4014
+0x00c¢ VirtualAddress ¢ 0x472000
+0x010 SizeOfRawData : 0x7bc00

+0x014 PointerToRawData : 0x470a00
+0x018 PointerToRelocations : 0
+0x01c PointerTolLinenumbers : O
+0x020 NumberOfRelocations : O
+0x022 NumberOfLinenumbers : 0O

+0x024 Characteristics : 0xc0000040

0:022> dt -r _IMAGE_SECTION_HEADER (0x400000 + 0x108 + 0x18 + 0Oxe0 +
0x28 + 0x28)

+0x000 Name : [8] ".rsrc"

+0x008 Misc : __unnamed

+0x000 PhysicalAddress : 0Ox2d3fc

+0x000 VirtualSize : 0x2d3fc
+0x00c VirtualAddress : 0x4£0000
+0x010 Size0OfRawData : 0x2d400

+0x014 PointerToRawData : 0x4ec600
+0x018 PointerToRelocations : 0O
+0x01c PointerTolinenumbers : O

+0x020 NumberOfRelocations : O
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+0x022 NumberQOfLinenumbers : O

+0x024 Characteristics : 0x40000040

As you see above, we first find the offset of structure _IMAGE_NT_HEADERS by
looking at the offset of 0x3c from the image base that is field e_lfanew in the DOS
header. This field has the value of 0x108. Having the NT headers offset, we add the
offset to the image base and consult fields NumberOfSections and SizeOfOptionalHeader
to find the number of sections (three sections) and the size of the optional header (0xe0
bytes). The size of the optional header is added to the address of the optional header
to find the beginning of the first section header. This section header is used to find the
value of fields VirtualAddress and VirtualSize of the section. With these values we can
extract the section from the memory by copying VirtualSize bytes from memory starting
at the virtual address of VirtualAddress. This process is repeated for the second and
third section by adding the size of the section header structure to the beginning of the

previous section to find the next section header.

3.2.1 Cache Manager

Unless the file is created with flag FILE_FLAG_NO_BUFFERING set, the cache manager
caches some parts of the file in memory in order to improve the I/O operation perfor-
mance. This is where a lot of useful information can be extracted about the content
of the files. The file object contains links to structures that are maintained by cache
manger and are used to retrieve the content of the file.

Cache manager is a component of Windows that cooperates with memory man-
ager to provide data caching services to other components of Windows. For a file that
is created without specifying flag FILE_FLAG_NO_BUFFERING, at the first I/O operation

on the file, the cache manager creates a shared cache map and a private cache map.
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Moreover, 256 KB of the file will be mapped to virtual memory. As other regions of the
file is accessed, more and more of the file’s content will be mapped to memory. The
information about accesses to the file and the location where the file is mapped inside
the memory are kept in two data structures: private cache map and shared cache map.
If you remember, the file object representing a file has links to these two structures.

Each file object has a private cache map of type _PRIVATE_CACHE_MAP that keeps
the last two addresses inside the file that are accessed by the process. This information
will help cache manager in an operation called read-ahead. In this operation, cache
manager uses the information stored in the file object private cache to predict the
possible future addresses that will be read by the process and thus bring those portions
of the file into memory.

The shared cache map is of type _SHARED_CACHE_MAP and is where the locations

of the file content in memory are stored. These two structures are shown below:

kd> dt _PRIVATE_CACHE_MAP

+0x000 NodeTypeCode : Int2B

+0x000 Flags : _PRIVATE_CACHE_MAP_FLAGS
+0x000 UlongFlags : Uint4B

+0x004 ReadAheadMask : Uint4B

+0x008 FileObject : Ptr32 _FILE_OBJECT
+0x010 FileOffsetl : _LARGE_INTEGER

+0x018 BeyondLastBytel : _LARGE_INTEGER

+0x020 FileOffset2 : _LARGE_INTEGER

+0x028 BeyondLastByte2 : _LARGE_INTEGER

+0x030 ReadAheadOffset : [2] _LARGE_INTEGER

+0x040 ReadAheadlength : [2] Uint4B
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+0x048 ReadAheadSpinLock

+0x04c

PrivatelLinks

kd> dt _SHARED_CACHE_MAP

+0x000
+0x002
+0x004
+0x008
+0x010
+0x018
+0x020
+0x028
+0x030
+0x040
+0x044
+0x048
+0x04c
+0x050
+0x054
+0x058
+0x05¢
+0x060
+0x064

+0x06¢c

NodeTypeCode
NodeByteSize
OpenCount
FileSize
BcbList
SectionSize
ValidDataLength
ValidDataGoal
InitialVacbs
Vacbs
FileObject
ActiveVachb
NeedToZero
ActivePage

NeedToZeroPage

ActiveVacbSpinLock :

VacbActiveCount

DirtyPages

SharedCacheMapLinks

Flags

: Uint4B

: _LIST_ENTRY

: Int2B

: Int2B

¢ Uint4B

: _LARGE_INTEGER
: _LIST_ENTRY

: _LARGE_INTEGER
: _LARGE_INTEGER

: _LARGE_INTEGER

[4] Ptr32 _VACB

: Ptr32 Ptr32 _VACB
: Ptr32 _FILE_OBJECT
: Ptr32 _VACB
¢ Ptr32 Void
: Uint4B

. Uint4B

Uint4B

: Uint4B

: Uint4B

: _LIST_ENTRY

: Uint4B
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+0x070 Status : Int4B

+0x074 Mbchb . Ptr32 _MBCB

+0x078 Section : Ptr32 Void

+0x07c CreateEvent : Ptr32 _KEVENT
+0x080 WaitOnActiveCount : Ptr32 _KEVENT
+0x084 PagesToWrite : Uint4B

+0x088 BeyondLastFlush : Int8B

+0x090 Callbacks : Ptr32 _CACHE_MANAGER_CALLBACKS
+0x094 LazyWriteContext : Ptr32 Void

+0x098 Privatelist : _LIST_ENTRY

+0x0a0 LogHandle : Ptr32 Void

+0x0a4 FlushToLsnRoutine : Ptr32

+0x0a8 DirtyPageThreshold : Uint4B

+0x0ac LazyWritePassCount : Uint4B

+0x0b0 UninitializeEvent : Ptr32 _CACHE_UNINITIALIZE_EVENT
+0x0b4 NeedToZeroVach : Ptr32 _VACB

+0x0b8 BcbSpinLock : Uint4B

+0x0bc Reserved : Ptr32 Void

+0x0¢c0 Event : _KEVENT

+0x0d0 VacbPushLock . _EX_PUSH_LOCK
+0x0d8 PrivateCacheMap : _PRIVATE_CACHE_MAP

As said at the beginning of this section, shared cache map structure holds infor-

mation about the address at which each section of the file is mapped in memory. This

information is kept in structures called Virtual Address Control Block(VACB) of type
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_VACB. Each VACB represents one mapped view of the file that is a section of 256KB or

less of file’s content. This structure is shown below:

kd> dt _VACB
+0x000 BaseAddress : Ptr32 Void
+0x004 SharedCacheMap : Ptr32 _SHARED_CACHE_MAP
+0x008 Overlay : __unnamed
+0x010 Lrulist : _LIST_ENTRY

Field BaseAddress in this structure points to the base address of the mapped view
in the memory. Field SharedCacheMap is a pointer to the shared cache map structure
for this file. Using field BaseAddress, we can retrieve the section of the file that this view
represents from the memory. There is one VACB for each 256KB of a file. These VACBs
are kept in an array which is pointed by array Vacbs unless the file is 1IMB or less in
which case they are stored in an array of size four that is pointed by field InitialVacbs.
A VACB is active when field BaseAddress in this structure points to a valid address.
If the content of the section of the file that the VACB describes is not mapped to the
memory, then field BaseAddress is 0. The cache manager brings the file content into
memory as the file accesses different sections. Therefore, depending on which section of
the file are accessed, the file will be partially mapped to memory. This partial content
of the file can be extracted by going through the VACB arrays and copying the memory
content from the addresses that active VACBs point to. In the example that follows,
the content of a file object at the address of 0x87212028 that represents a JPG file is
extracted from the memory cache. You can see the JPG signature at the beginning of

the extracted memory chunk:

kd> dt _FILE_OBJECT 0x87212028
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+0x000 Type : b

+0x002 Size 1 112

+0x004 DeviceObject : 0x8735be30 _DEVICE_OBJECT
+0x008 Vpb : 0x873cc228 _VPB

+0x00c FsContext : 0xe4898040

+0x010 FsContext2 : 0xe4898228

+0x014 SectionObjectPointer : 0x871bd9b4 _SECTION_OBJECT_POINTERS
+0x018 PrivateCacheMap : 0x871b10e0

+0x030 FileName : _UNICODE_STRING "\Untitled.jpg"

.....

kd> dt _SECTION_OBJECT_POINTERS 0x871bd9b4
+0x000 DataSectionObject : 0xB6el2c78
+0x004 SharedCacheMap : 0x871b1008

+0x008 ImageSectionObject : (null)

kd> dt _SHARED_CACHE_MAP 0x871b1008

+0x000 NodeTypeCode 1 767

+0x002 NodeByteSize : 304

+0x004 OpenCount 1

+0x008 FileSize ¢ _LARGE_INTEGER 0x532e

+0x010 Bcblist : _LIST_ENTRY [ 0x871b1018 - 0x871b1018 ]
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+0x018 SectionSize : _LARGE_INTEGER 0x40000

+0x020 ValidDatalength : _LARGE_INTEGER 0x532e

+0x028 ValidDataGoal : _LARGE_INTEGER 0x532e

+0x030 InitialVacbs : [4] 0x873a0048 _VACB

+0x040 Vacbs : 0x871b1038 -> 0x873a0048 _VACB
+0x044 FileObject : 0x87212028 _FILE_OBJECT

+0x048 ActiveVach : 0x873a0048 _VACB

+0x04c NeedToZero : (null)

+0x050 ActivePage ¢ 0

+0x054 NeedToZeroPage : 0

+0x058 ActiveVacbSpinLock : O
+0x05¢c VacbActiveCount : 1
+0x060 DirtyPages : 0

+0x064 SharedCacheMaplinks : _LIST_ENTRY [ 0x8714dd8c - 0x86808cad ]

kd> dt _VACB 0x873a0048

+0x000 BaseAddress : 0xd5600000

+0x004 SharedCacheMap : 0x871b1008 _SHARED_CACHE_MAP

+0x008 Overlay : __unnamed

+0x010 Lrulist : _LIST_ENTRY [ 0x873a0dcO - 0x8739edel ]

kd> dc 0xd5600000 11000
45600000 eOffd8ff 464a1000 01004649 48000101 ...... JFIF..... H

d5600010 00004800 1600eiff 66697845 4d4d0000 .H...... Exif..MM
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d5600020 00002a00 00000800 00000000 4300dbff .*............. C
d5600030 04030500 05030404 05040404 07060505 ................
d5600040 0707080c Ob0f0707 110c090b 1112120f ................
d5600050 1311110f 13171c16 11151a14 18211811 .............. L

d5600060 1fldldla 17131f1f 1222422 1flelc24 ........ "$r.$...

3.3 Security Manager

Windows security manager is a component of Windows that is responsible for ensuring
the enforcement of access control policies over objects. When a thread accesses an
object, the security manager verifies if thread is authorized to perform the requested
type of access on the target object. This process is realized by maintaining the access
privileges of each thread as well as possible accesses to each object.

The thread privileges are kept in a structure of type _TOKEN. Field Token in
structure _EPROCESS of a process points to the security token of the process that contains
the access privileges of the process. Except for thread impersonation, this token is used
by the security manager to verify the authorization of an access. Thread impersonation
is discussed later in this chapter when we detail the security manager. For the complete
listing of structure _TOKEN please refer to Appendix 1. This structure has two important

arrays:

e Filed UserAndGroups points to an array of type _SID_AND_ATTRIBUTES. Each mem-
ber of this array contains a SID and the attributes describing whether or not the
entry is mandatory and default enabled. In Windows, each user account is as-
signed an identifier of variable length which is called SID. The users are identified

during the execution of the system based on their SID. The SID consists of a SID
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revision number, a 48 bit authority identifier, a variable number of sub-authority
identifiers or relative identifier (RID) . The authority value determines the agent
that assigned the SID. The sub-authority identifiers describe different components

trusted by the authority who issued the SID.

When Windows is installed, a SID will be assigned to the computer and each
local account. The local account SIDs are created by appending a RID to the
system SID. The RID starts from 1000 and is incremented for each new account.
Moreover, when a domain is created, a SID will be assigned to it and the new
SID will be used in assigning SIDs to the account that are created in this domain.
Windows assigns predefined RIDs to some local accounts and groups. Examples
include the administrator account that has the RID of 500 and the guest account
that has the RID of 501. Additionally, a set of built-in local and domain SIDs are
hard-coded in Windows installer. For each log on session, a SID is generated by

Winlogon process with value of S-1-5-5-0 and a random RID appended to it.

Field Privileges points to an array of type _-LUID_AND_ATTRIBUTES. The length of
this array is stored in field PrivilegeCount in the token. Each member of this array
specifies a privilege and wether or not this privilege is enabled. Windows security

privileges are listed below as defined in ntddk.h file:

#define SE_MACHINE_ACCOUNT_PRIVILEGE (6L)
#define SE_TCB_PRIVILEGE (7L)
#define SE_SECURITY_PRIVILEGE (8L)
#define SE_TAKE_OWNERSHIP_PRIVILEGE (9L)
#define SE_LOAD_DRIVER_PRIVILEGE (10L)
#define SE_SYSTEM_PROFILE_PRIVILEGE (11L)
#define SE_SYSTEMTIME_PRIVILEGE (12L)
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

SE_PROF _SINGLE_PROCESS_PRIVILEGE

SE_INC_BASE_PRIORITY_PRIVILEGE
SE_CREATE_PAGEFILE_PRIVILEGE
SE_CREATE_PERMANENT_PRIVILEGE
SE_BACKUP_PRIVILEGE
SE_RESTORE_PRIVILEGE
SE_SHUTDOWN_PRIVILEGE
SE_DEBUG_PRIVILEGE
SE_AUDIT_PRIVILEGE
SE_SYSTEM_ENVIRONMENT_PRIVILEGE
SE_CHANGE_NOTIFY_PRIVILEGE
SE_REMOTE_SHUTDOWN_PRIVILEGE
SE_UNDOCK_PRIVILEGE
SE_SYNC_AGENT_PRIVILEGE
SE_ENABLE_DELEGATION_PRIVILEGE
SE_MANAGE_VOLUME_PRIVILEGE
SE_IMPERSONATE_PRIVILEGE
SE_CREATE_GLOBAL_PRIVILEGE

SE_MAX_WELL_KNOWN_PRIVILEGE

(13L)
(14L)
(15L)
(16L)
(17L)
(18L)
(19L)
(20L)
(21L)
(22L)
(23L)
(24L)
(25L)
(26L)
(27L)
(28L)
(29L)
(30L)

(SE_CREATE_GLOBAL_PRIVILEGE)

Rootkits can overwrite or enable these privileges to gain the proper security au-

thorization level to perform their malicious activities.

The attribute field in each member of both of these arrays describes whether the privilege

or SID is enabled. According to ntddk.h, these attributes can have the following values:

#define SE_PRIVILEGE_ENABLED_BY_DEFAULT (0x00000001L)
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#define SE_PRIVILEGE_ENABLED (0x00000002L)
#define SE_PRIVILEGE_REMOVED (0X00000004L)
#define SE_PRIVILEGE_USED_FOR_ACCESS (0x80000000L)

Below you can see how the security context and privilege information can be

extracted from the token. First, the address of the hh.exe process token is found. The

content of the process token is shown afterwards.

kd> !process 86734600 PROCESS 86734600 SessionId: 0 Cid: 0734

Peb: 7£f£dd000 ParentCid: 0218

DirBase: 07200820 ObjectTable: e47baa20 HandleCount: 388.

Image: hh.exe

VadRoot 86e913d0 Vads 248 Clone O Private 4176. Modified 14233. Locked O.

DeviceMap 3294680

Token e23bfcf0
ElapsedTime 6 Days 05:17:29.793
UserTime 00:01:00.750
KernelTime 00:01:52.796
QuotaPoolUsage [PagedPool] 169364
QuotaPoolUsage [NonPagedPool] 9920

Working Set Sizes (now,min,max)

(3614, 50, 345) (14456KB, 200KB, 1380KB)

PeakWorkingSetSize 8988
VirtualSize 145 Mb
PeakVirtualSize 166 Mb
PageFaultCount 109026
MemoryPriority BACKGROUND



BasePriority 8

CommitCharge 5336

kd> dt _TOKEN e23bfcf0
+0x000 TokenSource : _TOKEN_SOURCE
+0x010 TokenId : _LUID

+0x018 AuthenticationId : _LUID

+0x020 ParentTokenId : _LUID

+0x028 ExpirationTime : _LARGE_INTEGER Ox7fffffff ffffffff
+0x030 TokenLock : 0x8729b378 _ERESOURCE

+0x038 AuditPolicy : _SEP_AUDIT_POLICY

+0x040 ModifiedId : _LUID

+0x048 SessionId : 0

+0x04c UserAndGroupCount : Oxb

+0x050 RestrictedSidCount : O

+0x054 PrivilegeCount : 0x14
+0x058 VariableLength : 0x26c¢
+0x05¢ DynamicCharged : Ox1f4

+0x060 DynamicAvailable : O

+0x064 DefaultOwnerIndex : O

+0x068 UserAndGroups : Oxe23bfe80 _SID_AND_ATTRIBUTES
+0x06c RestrictedSids : (null)

+0x070 PrimaryGroup : Oxe23d2e10

+0x074 Privileges : 0xe23bfd90 _LUID_AND_ATTRIBUTES
+0x078 DynamicPart : 0xe23d2el0 -> 0x501
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+0x07¢c DefaultDacl : Oxe23d2e2c _ACL
+0x080 TokenType : 1 ( TokenPrimary )

+0x084 ImpersonationLevel : O ( SecurityAnonymous )

+0x088 TokenFlags : 0x89

+0x08c TokenInUse : Ox1 ”?
+0x090 ProxyData : (null)
+0x094 AuditData ¢ (null)

+0x098 OriginatinglogonSession : _LUID

+0x0a0 VariablePart . Ox17

As mentioned before, field UserAndGroups points to the beginning of the array
that contains the SIDs. The first member of this array is at the address that is pointer
by field UserAndGroups, which is 0xe2269528. The content of this array member is

shown below:

kd> dt _SID_AND_ATTRIBUTES 0xe23bfe80
+0x000 Sid : Oxe23bfed8

+0x004 Attributes ¢

Field Sid points to the beginning of the location where the corresponding SID is

stored. The content of this location is shown below:

kd> dd 0Oxe23bfed8
e23bfed8 00000501 05000000 00000015 4632ecl1b
e23bfee8 e023eb71 13379b66 000001f4 00000501

e23bfef8 05000000 00000015 4632eclb e023eb71

Command !sid from windbg could also be used to view the SID.
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kd> !sid Oxe23bfed8 SID is:

8-1-5-21-1177742357-3760450417-322411366-500

Notice that the output of !sid command is in decimal format. For example, 1177742357
equals the hex value of 0x4632ec15. In the same way, field Privileges in the struc-
ture _TOKEN points to the beginning of the process privilege arrays at the address of

0x0xe23b£d90. The first member of this array is shown below:

kd> dt _LUID_AND_ATTRIBUTES 0xe2269438
+0x000 Luid : _LUID

+0x008 Attributes |
The content of field Luid is shown below:

kd> dd 0xe2269438
2269438 00000017 00000000 00000001 00000008

2269448 00000000 00000000 00000011 00000000

As you can see the privilege specified in this LUID is 0x17 which is SE_.BACKUP_PRIVILEGE
according to the above definitions. The value of 1 for field Attributes in this structure
means that the options is SE_PRIVILEGE_ENABLED_BY_DEFAULT. We can verify our results

using command !token of windbg as shown below:

kd> !token

Thread is not impersonating. Using process token...
_EPROCESS 871528a8, _ETHREAD 86d2c890, _TOKEN e20b0030
TS Session ID: O

User: S-1-5-21-1177742357-3760450417-322411366-500
Groups:

00 5-1-5-21-1177742357-3760450417~-322411366-513
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01

02

03

04

05

06

07

08

09

Attributes - Mandatory Default Enabled

S-1-1-0

Attributes - Mandatory Default Enabled
§-1-5-21-1177742357-3760450417-322411366-1011
Attributes - Mandatory Default Enabled
5-1-5-21-1177742357-3760450417-322411366-1096

Attributes - Mandatory Default Enabled

S-1-5-32-544

Attributes - Mandatory Default Enabled Owner

S-1-5-32-545

Attributes - Mandatory Default Enabled

S-1-5-4

Attributes - Mandatory Default Enabled

S-1-5-11

Attributes - Mandatory Default Enabled

S-1-5-5-0-82499

Attributes - Mandatory Default Enabled LogonId

S-1-2-0

Attributes - Mandatory Default Enabled

Primary Group: S-1-5-21-1177742357-3760450417-322411366-513

Privs:

00 0x000000017 SeChangeNotifyPrivilege

01 0x000000008 SeSecurityPrivilege

02

03

0x000000011 SeBackupPrivilege

0x000000012 SeRestorePrivilege
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04

05

06

07

08

09

10

11

12

13

14

16

16

17

18

19

Authentication ID:

Impersonation Level:

0x00000000c
0x000000013
0x000000018
0x000000009
0x000000014
0x000000016

0x00000000b

0x000000004d

0x00000000e

0x00000000a

0x00000000£
0x000000005
0x000000019
0x00000001c

0x00000001e

SeSystemtimePrivilege
SeShutdownPrivilege
SeRemoteShutdownPrivilege
SeTakeOwnershipPrivilege
SeDebugPrivilege
SeSystemEnvironmentPrivilege
SeSystemProfilePrivilege
SeProfileSingleProcessPrivilege
SelncreaseBasePriorityPrivilege
SeLoadDriverPrivilege
SeCreatePagefilePrivilege
SelncreaseQuotaPrivilege
SeUndockPrivilege
SeManageVolumePrivilege

Unknown Privilege

0x00000001d SelImpersonatePrivilege

TokenType:

Source:

Token ID: 37d4821£3

User32

Modified ID:

RestrictedSidCount: O

(0,15cle)
Anonymous

Primary

Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes
Attributes

Attributes

TokenFlags: 0x89 ( Token in use )

ParentToken ID: O
(0, 37d4821f5)

RestrictedSids:

00000000

Enabled

Enabled

Enabled Default

Enabled Default

One important thing to note is that the security context of users and processes in

Windows are based on SIDs rather than usernames. To acquire the username that cor-
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y Computer

3
HKEY_CLASSES:ROOT REG:52 {yakiy not sak).

{4 HKEY_CURRENT USER REG BINARY 02 H00t 00:00:00,66 6026 9¢ 94 99'8%5:c8 £7,01 00 00,
HKEY_LOCAL, MACHINE 7 =

Figure 3.5: Windows registry contains user account information.

responds to an SID, the registry key HKEY_LOCAL_MACHINE/SAM/SAM/Domains/Account/
Users could be used. This registry key contains the mapping between user and group
information and SIDs. The subkey Names under this key contains a subkey for each
account name. The key for each account name has a value the type of which specifies
another subkey under Users key that contains the account information for this user.
The SID of the user is stored in this key. Figure 3.5 shows this registry key’s content
and the account information for Administrator account. The command line shows the
output of tool psgetsid. This tool from Sysinternals can be used to find the SID of and
account or viceversa.

Knowing the security context and privileges of a thread, Windows security man-
ager maintains security by checking the accesses to objects against the access control

policy of each object. Each object has an Access Control List (ACL) that is made up
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of Access Control Entries (ACE). There exist two types of ACLs: Discretionary Access
Control List (DACL) and System Access Control List (SACL). DACL contains the type
of access each SID can have to the object. The access types could be of four types:
access allowed, access denied, allowed object, and denied object. Access allowed grants
access to the object. Access denied denies any access to the object. Allowed object
and denied object have the same meanings with the distinction that these access type
qualifiers are used in active directories and they can further specify which objects the
ACE is applied to where each object is uniquely identified in the network using a 128-bit
GUID. If DACL of an object is null, every user can access it and if it is zero no access
from any user is allowed.

The SACL specifies the auditing policy of the system. ACEs in this list contain
an SID, type of access and whether it should be logged or not. Based on these ACEs,
the object manager generates the proper audits. Each ACE can be of two types: system
audit and system object audit. Again system object audit ACEs have the same role as
system audit ACEs with the difference that they cover objects in the active directory
and specify which objects the ACE applies to.

The DASL and SACL of objects whose security is maintained by object man-
ager is specified in the header of the object. Field SecurityDescriptor in structure

_OBJECT_HEADER points to a structure that contains the following information:

e Header: The header contains information about which structure elements are
present, the revision number and how should these security properties be propa-

gated through inheritance.
e Owner SID: The SID of the principal who owns the object.

e Group SID: The SID of the group of the object and is only used by POSIX sub-

systems.
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e SACL and DACL.

The structure of security descriptor is shown below:

kd> dt _security_descriptor

nt!_SECURITY_DESCRIPTOR

+0x000 Revision : UChar
+0x001 Sbzl : UChar
+0x002 Control : Uint2B
+0x004 Owner ¢ Ptr32 Void
+0x008 Group : Ptr32 Void
+0x00c¢c Sacl ¢ Ptr32 _ACL
+0x010 Dacl : Ptr32 _ACL

Fields Owner and Group are pointers to the SID of the owner and primary group of
the object as stated above. Both fields Sacl and Dacl are of type _ACL. These two fields
contain the offset of the SACL and DACL of the object from the beginning of the object

security descriptor respectively. The structure _ACL is shown below:

kd> dt _ACL
+0x000 AclRevision : UChar
+0x001 Sbz1 : UChar
+0x002 AclSize : Uint2B
+0x004 AceCount : Uint2B
+0x006 Sbz2 : Uint2B

Field AclSize stores the size of the ACL array. Field AciCount has the number
of ACE entries in this ACL. The reason for including both the size of the ACL and the
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number of elements is that depending on the size of the ACE, it can have different sizes.
Each ACE starts with a header that identifies its type. The ACE header and different

types of ACE structures are shown below as documented by Doxygen project [:7].

typedef struct _ACE_HEADER {
BYTE AceType;
BYTE AceFlags;

WORD AceSize;

typedef struct _ACCESS_ALLOWED_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _ACCESS_DENIED_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _SYSTEM_AUDIT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _SYSTEM_ALARM_ACE {

ACE_HEADER Header;
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ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _ACCESS_ALLOWED_OBJECT_ACE
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _ACCESS_DENIED_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _SYSTEM_AUDIT_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;

GUID InheritedObjectType;
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DWORD SidStart;

typedef struct _SYSTEM_ALARM_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _ACCESS_ALLOWED_CALLBACK_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _ACCESS_DENIED_CALLBACK_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _SYSTEM_AUDIT_CALLBACK_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;
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typedef struct _SYSTEM_ALARM_CALLBACK_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD SidStart;

typedef struct _ACCESS_ALLOWED_CALLBACK_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;f
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _ACCESS_DENIED_CALLBACK_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _SYSTEM_AUDIT_CALLBACK_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;

DWORD Flags;
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GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

typedef struct _SYSTEM_ALARM_CALLBACK_OBJECT_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD Flags;
GUID ObjectType;
GUID InheritedObjectType;

DWORD SidStart;

Field AceType in _ACE_HEADER structure specifies the type of the ACE and can have one

of the following values:

#define ACCESS_ALLOWED_ACE_TYPE (0x0)
#define ACCESS_DENIED_ACE_TYPE (0x1)
#define SYSTEM_AUDIT_ACE_TYPE (0x2)
#define SYSTEM_ALARM_ACE_TYPE (0x3)
#define ACCESS_ALLOWED_COMPOUND_ACE_TYPE (0x4)
#define ACCESS_ALLOWED_OBJECT_ACE_TYPE (0x5)
#define ACCESS_DENIED_OBJECT_ACE_TYPE (0x6)
#define SYSTEM_AUDIT_OBJECT_ACE_TYPE (0x7)
#define SYSTEM_ALARM_OBJECT_ACE_TYPE (0x8)
#define ACCESS_ALLOWED_CALLBACK_ACE_TYPE (0x9)
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#define ACCESS_DENIED_CALLBACK_ACE_TYPE (0xA)
#define ACCESS_ALLOWED_CALLBACK_OBJECT_ACE_TYPE (0xB)
#define ACCESS_DENIED_CALLBACK_OBJECT_ACE_TYPE (0xC)
#define SYSTEM_AUDIT_CALLBACK_ACE_TYPE (0xD)
#define SYSTEM_ALARM_CALLBACK_ACE_TYPE (0xE)
#define SYSTEM_AUDIT_CALLBACK_0BJECT_ACE_TYPE (0xF)

#define SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE (0x10)

Field Mask in each ACE is of type ACCESS_MASK and defines the type of access as

discussed before. It can have one of the following values:

#define ACCESS_ALLOWED_ACE_TYPE (0x0)
#define ACCESS_DENIED_ACE_TYPE (0x1)
#define SYSTEM_AUDIT_ACE_TYPE (0x2)
#define SYSTEM_ALARM_ACE_TYPE (0x3)

Using these structure, the investigator is able to retrieve the access control poli-
of a process object is retrieved by first finding the object header of the process object
and then traversing through the security descriptor, and then DACL list of the security
descriptor. The !sd command in windbg does the same thing and its output is shown
in Figure 3.7. Please notice that in both figures, in order to find the security descriptor
of the object, the last three bits of field SecurityDescriptor are zeroed out since these

fields are used as flags and the security descriptor is 8-byte aligned.
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kd> !object 81£f8e568

Object: 81f8e568 Type: (82bcbcal) Process
ObjectHeader: 81£f8e550
HandleCount: 2 PointerCount: 125

kd> dt _OBJECT_HEADER 81£f8e550

+0x000 PointerCount : 125

+0x004 HandleCount Y

+0x004 NextToFree : 0x00000002

+0x008 Type : 0x82bcbcal _OBJECT_TYPE
+0x00c NameInfoOffset HEN VR

+0x00d HandleInfoOffset : 0 '!

+0x00e QuotaInfoOffset : 0 '’

+0x00f Flags : 0x20 ' !

+0x010 ObjectCreateInfo : 0x828fe810 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : 0x828fe810
+0x014 SecurityDescriptor : 0xe2071865

+0x018 Body : _QUAD

kd> dt _SECURITY_DESCRIPTOR (0xe2071865 & -8)
+0x000 Revision : Ox1 "¢
+0x001 Sbzl : 0"
+0x002 Control : 0x8004
+0x004 Owner : 0x00000054
+0x008 Group : 0x00000070
+0x00c Sacl : (null)
+0x010 Dacl : 0x00000014 _ACL

kd> dt _ACL (0xe2071860 + 0x14)

+0x000 AclRevision : 0x2 '
+0x001 Sbzl O
+0x002 AclSize : 0x40
+0x004 AceCount I
+0x006 Sbz2 : 0

kd> dd (0xe2071860 + 0x14 + 0x8)

e207187c 00240000 001fO0fff 00000501 05000000
e207188c 00000015 bSceéb5la b6d045de 76321bab
e207189c 000003ee 00140000 O0C1fO0fff 00000101
e20718ac 05000000 00000012 00000501 05000000
€20718bc 00000015 bSce65la btd045de 76321bab
e20718cc 000003ee 00000501 05000000 00000015
e20718dc b9ce65la b6d045de 76321bab 00000201
e20718ec 00000000 0cOb0415 61564d43 004c0000

Figure 3.6: The extraction of access control policies of the object.
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kd> !sd (0xe2071865 & -8)

~>Revision: Ox1

->Sbzl : 0x0

->Control : 0x8004
SE_DACL_PRESENT
SE_SELF_RELATIVE

->0wner : 8-1-5-21-3117311258~3067102686-1982995371-1006
->Group ¢ S-1-5-21-3117311258-3067102686-1982995371~513
->Dacl :

->Dacl : —>AclRevision: 0x2

->Dacl : =>8bzi : 0x0

->Dacl : ->AclSize 1 0x40

->Dacl ¢ =>AceCount : 0x2

->Dacl : —>8bz2 : 0x0

->Dacl : —>Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[0]: ->AceFlags: 0x0

->Dacl : =>Ace[0]: ->AceSize: 0x24

->Dacl : =>Ace[0]: ->Mask : OxOO1fOfff

->Dacl : ->Ace[0]: ->SID: S-1-5-21-3117311258-3067102686-1982995371-1006
->Dacl : —>Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : —>Ace[1]: ->AceFlags: 0x0

->Dacl : =>Ace[1]: ->AceSize: 0x14

->Dacl : =>Ace[1]: ->Mask : 0xO01fOfff

->Dacl : ->Ace[1]: ->SID: S-1-5-18

->8acl : 1is NULL

Figure 3.7: The output of {sd command.
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Chapter 4

Digital Investigation and Memory

Forensics

This chapter starts with a short discussion on the state of the art in digital investigation.
Different proposals on forensic analysis, and digital investigation processes are touched.
This discussion is followed by a detailed elaboration of the state of the art research on
physical memory forensics. During this discussion, different approaches are discussed in
detail. This discussion relies extensively on the structures that were introduced in the

previous section.

4.1 Digital forensics

The state of the art on cyber forensic analysis could be classified in the following cat-
egories: Baseline analysis, root cause analysis, common vulnerability analysis, timeline
analysis, semantic integrity check analysis and memory analysis.

Baseline analysis, proposed in [+, uses an automated tool that checks for the

differences between a baseline of the safe state of the system and the state during the
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incident. An approach to post-incident root-cause analysis of digital incidents through
the separation of the information systems into different security domains and modeling
the transactions between these domains is proposed in [].

The common vulnerability analysis [ ], involves searching through a database
of common vulnerabilities and investigating the case according to the related past and
known vulnerabilities. The timeline analysis approach [ ] consists of analyzing logs,
and scheduling information to develop a timeline of the events that led to the incident.
The semantic integrity checking approach [7] uses a decision engine that is endowed
with a tree to detect semantic incongruities. The decision tree reflects pre-determined
invariant relationships between redundant digital objects.

In [/ 7], P. Gladyshev proposes a formalization of digital evidence and event recon-
struction based on finite state machines. Other research on formalized forensic analysis
includes the formalization of event time binding in digital investigation [ ¢, ], which
proposes an approach to constructing formalized forensic procedures. The absence of
a satisfactory and general methodology for forensic log analysis has resulted in ad hoc

analysis techniques such as log analysis [.~] and operating system-specific analysis ['¥].

4.2 Forensic analysis of physical memory

The DFRWS memory forensics challenge [/] is considered as one of the initiatives for
the research on memory analysis. The challenge led to the development of two memory
analysis tools: Memparser [1::] and Kntlist [*] each capable of traversing the linked
list of process structures kept by the operating system to extract information about a
running process. In [%], M. Burdach presents an approach to retrieve process and file
information from the memory of Unix operating system by following the unbroken links

between data structures in the memory.
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These tools and approaches retrieve information on the processes that were run-
ning at the time of taking the memory image by first locating the process _EPROCESS
block and then extracting information regarding the threads created by the process,
process environment variables, loaded DLLs, owned objects, etc. The main shortcoming
of these tools is the fact that anti-forensic techniques exist that can hide an _[EPROCESS
block from these tools and therefore will not be noticed by the forensic analyst. The
main anti-forensic approach developed to defeat these tools is a technique called Direct
Kernel Object Manipulation [:]. If you remember, all of the processes that are running
are doubly linked together through a structure member named ActiveProcessLinks. This

field is of type _-LIST_ENTRY. A _LIST_ENTRY contains two fields as shown below:

kd> dt _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

Field Flink points to the next structure in the list and field Blink points to the previous
structure in the list. The technique works mainly by removing the _EPROCESS block
from this doubly linked list and changing the linked list members in a way that it
prevents the detection and side effects of this manipulation. This is accomplished by
changing field Blink in the ActiveProcessLinks of the next _EPROCESS structure in the
list to point to the _EPROCESS structure that is before the process to be hidden and
changing Flink in the ActiveProcessLinks of the previous _EPROCESS structure to point
to the _EPROCESS structure that is after the process to be hidden. What makes it
possible to hide a process without impacting the execution of it is that thread scheduler
of Windows operates on thread basis rather than process basis. Depending on their
states, the threads that are executing in the system are linked together in one of several

linked lists that system maintains. These lists are WaitList, SwapList, ThreadList and
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QueueList. Many malware analysis tools including kntlist and memparser or utilities
that gather information about the processes running such as Windows Task Manager
either use the API that is provided by kernel or walk though the linked list of "EPROCESS
structure in order to acquire information about each process. The main kernel API that
is used for this purpose is ZwQuerySystemInformation. Using this function, a variety
of information about the system such as processes running and loaded modules can
be retrieved. However, this API works again by traversing the linked list of different
structures maintained by kernel such as _EPROCESS active process linked list. Therefore,
removing a _EPROCESS structure from this linked list can effectively hide the process
from the eye of these tools.

Another anti-forensic technique that is used by malwares in order to hide their
existence is API hooking [77]. API hooking can be performed both at kernel and user
land level. This is accomplished by overwriting the memory location that stores the
address of a specific piece of code. For example, by overwriting the system service table
entry that points to the code that implements ZwQuerySystemInformation service to
make the calls to this function execute the code that the malware supplies, one can hide
a desired process from being detected by above tools.

To defeat these anti-forensic techniques, in his paper titled ”Searching for pro-
cesses and threads in Microsoft Windows memory dumps” [:], A. Schuster proposes an
approach to define signatures for executive object structures in the memory and recover
the hidden and lost structures by scanning the memory looking for predefined signatures.
We have already touched the idea when we talked about kernel pool structure. Now let
us discuss this approach in more details. As said before, Windows kernel uses a special
memory called pools for the allocation of memory. A pool allocation is preceded by a

pool header that contains information about the size of the allocation and the size of
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the previous pool allocation. Knowing that many executive objects are allocated from
this memory, we can scan through this memory and look for a set of patterns that are
defined for important structures such as _[EPROCESS or _ETHREAD. The address of this
part of the memory is stored by several kernel variables including MmPagedPoolStart,
MmPagedPoolEnd, MmNonPagedPoolStart, and MmNonPagedPoolEnd for the starting
and ending address of paged and non-paged pools respectively. However, an easier way
to obtain these addresses are through the structure that is called Kernel Processor Con-
trol Region (KPCR). In Windows 2000, XP, and Vista, this structure is always at the

hard coded virtual address of 0xffddff000. Below is the details of this structure:

kd> dt _KPCR
+0x000 NtTib : _NT_TIB
+0x01c SelfPcr : Ptr32 _KPCR

+0x020 Prcb . Ptr32 _KPRCB
+0x024 Irql : UChar

+0x028 IRR : Uint4B

+0x02¢ IrrActive : Uint4B

+0x030 IDR : Uint4B

+0x034 KdVersionBlock : Ptr32 Void
+0x038 IDT : Ptr32 _KIDTENTRY
+0x03c GDT : Ptr32 _KGDTENTRY
+0x040 TSS : Ptr32 _KTSS
+0x044 MajorVersion : Uint2B

+0x046 MinorVersion : Uint2B

+0x048 SetMember : Uint4B

+0x04c StallScaleFactor : Uint4B
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+0x050 DebugActive : UChar

+0x051 Number : UChar

+0x052 Spare0 : UChar

+0x053 SecondLevelCacheAssociativity : UChar
+0x054 VdmAlert : Uint4B

+0x058 KernelReserved : [14] Uint4B

+0x090 SecondlLevelCacheSize : Uint4B

+0x094 HalReserved : [16] Uint4B
+0x0d4 InterruptMode : Uint4B
+0x0d8 Sparel : UChar

+0x0dc KernelReserved2 : [17] Uint4B

+0x120 PrcbData : _KPRCB

Field SelfPcr points back to address stored in fs register which is the container KPCR
structure itself. Field NtTib stores state information about the stack of the process.
Field KdVersionBlock points to a structure of type .-KDDEBUGGER_DATA64. This structure
contains the value of many interesting unexported kernel variables. The complete listing
of structure KDDEBUGGER_DATA64 is shown appendix 1 as defined in the Debugging Tools
For Windows SDK [ '] in header file wdbgexts.h. As you can see, this structure has a
great deal of information useful in analyzing the physical memory including, the start
and end address of the paged and non-paged pools, page frame number database, the
head of the _EPROCEE linked list of active processes, the head of different page frame
database linked list such as zero, free, standby, modified, available, and modified no-
write lists, system cache start and system cache end, etc. The fact that the address
of this structure is stored in the KPCR structure whose address is known, makes it a

useful starting point. Another way to find the pool areas is using a structure of type
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MM_SESSION_SPACE that is pointed by field Session in any _EPROCESS structure that is

executing in a session. This structure is shown below:

kd> dt _MM_SESSION_SPACE

+0x000 ReferenceCount : Uint4B
+0x004 u : __unnamed
+0x008 SessionId : Uint4B

+0x00c SessionPageDirectoryIndex : Uint4B

+0x010 GlobalVirtualAddress : Ptr32 _MM_SESSION_SPACE
+0x014 ProcessLlist : _LIST_ENTRY

+0x01c NonPagedPoolBytes : Uint4B

+0x020 PagedPoolBytes : Uint4B

+0x024 NonPagedPoolAllocations : Uint4B

+0x028 PagedPoolAllocations : Uint4B

+0x02c NonPagablePages : Uint4B

+0x030 CommittedPages : Uint4B

+0x038 LastProcessSwappedOutTime : _LARGE_INTEGER

+0x040 PageTables : Ptr32 _MMPTE
+0x044 PagedPoolMutex : _FAST_MUTEX
+0x064 PagedPoolStart : Ptr32 Void
+0x068 PagedPoolEnd : Ptr32 Void

+0x06c PagedPoolBasePde : Ptr32 _MMPTE

+0x070 PagedPoolInfo : _MM_PAGED_POOL_INFO
+0x094 Color : Uint4B

+0x098 ProcessOutSwapCount : Uint4B

+0x09c ImagelList : _LIST_ENTRY
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+0x0a4 GlobalPteEntry ¢ Ptr32 _MMPTE
+0x0a8 CopyOnWriteCount : Uint4B

+0x0ac SessionPoolAllocationFailures : [4] Uint4B

+0x0bc AttachCount : Uint4B

+0x0c0 AttachEvent : _KEVENT

+0x0d0 LastProcess : Ptr32 _EPROCESS
+0x0d8 Vm : _MMSUPPORT
+0x118 Wsle : Ptr32 _MMWSLE
+0x11c WsLock : _ERESOURCE
+0x154 WsListEntry : _LIST_ENTRY
+0x15¢c Session : _MMSESSION

+0x198 Win32KDriverObject : _DRIVER_OBJECT
+0x240 WorkingSetLockOwner : Ptr32 _ETHREAD
+0x244 PagedPool : _POOL_DESCRIPTOR
+0x126c ProcessReferenceToSession : Int4B

+0x1270 Localeld : Uint4B

As you see, this structure also has the address information on memory pools. In order
to verify if a piece of memory constitute an executive object, A. Schuster verifies first
verifies if the memory section starts with a pool header, second checks if following the
pool header there exist an object header and third verifies if the executive object starts
with a dispatcher header. The type of the object can be defined based on the pool tag
and the object type pointed by the header of the object. He defines three sets of rules
for pool headers, object headers and dispatcher header. The followings are the rules

that are used to verify a possible pool allocation unit:

1. There must be enough space preceding the current pool allocation unit to fit in
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the previous pool allocation unit.

2. From the start of an assumed pool allocation unit, there must be enough space
left in the current page to fit in the pool allocation unit based on the size of the

block.

3. The assumed _POOL_HEADER structure has to be aligned on a 32 byte (for Windows

2000) or 8 byte boundary (later versions).

4. PoolType must be either zero for free blocks, non-paged class with an odd value
or paged class with an even value. However, since executive objects are allocated
in kernel non-paged pool, for recovering executive objects, even value should not

be considered.

5. PoolTag with the value of 0xe36£7250 specifies a pool that is allocated with
Proc tag and as shown before, pool units with this tag can denote that a pro-

cess .EPROCESS structure is stored in the pool unit.

6. PoolTag with the value of 0xe5726854 specifies a pool that is allocated with
Thre tag and as shown before, pool units with this tag can denote that a thread

-ETHREAD structure is stored in the pool unit.

Concerning object headers, the following two rules are defined for process and thread

executive objects:

1. For process objects, field Name in the object type structure that is pointed by field
Type in structure _.OBJECT_HEADER should point to a unicode string that has its
Buffer pointing to the string " process”. Therefore, field Name. Buffer should point
to a memory with content of 0x636£7250. Moreover, field Name.Length should be

equal to 0x0e and field Name.MazimumLength should contain the value of 0x10.
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2. Based on the same course of reasoning, for a thread object, field Name.Buffer
should point to a memory with the content of 0x65726854. Moreover, field
Name.Length should be equal to 0xOc and field Name.MazimumLength should

contain the value of 0xOe.

3. When an object is closed using function nt!obpFreeObject, field Type will be set
to the value of 0xbad0b0b0. Therefore, if the thread or process objects are closed,

their type will have this value instead of a pointer to a unicode string.

And finally the following rules are defined for the dispatcher header. As discussed before,
this header is used by Windows for synchronization of access to synchronizable objects
and is the first member of structures XKPROCESS and .KTHREADs that are at the beginning
of structures _.EPROCESS and _ETHREAD. T'wo fields in this structure, Size and Type, have

constant values during the life time of the object.

1. For process objects in Windows 2000, XP and 2003, field Type equals 0x01 and

Size is 0x1b.

2. For thread objects, Type equals 0x06. In Windows 2000 the value of field Size is
0x6¢c. In Windows XP, this value is 0x6c and for Windows 2003, field Size equals
0x72.

Schuster further specifies some properties of the structure members of struc-
tures _EPROCESS and _ETHREAD. These properties includes the size fields, synchroniza-
tion events, the page alignment of page directory tables, and the fact that pointers to
structures _EPROCESS and _ETHREAD should have values in the kernel address space and
therefore be greater than Ox7fffffff.

chris@bugcheck.org in his paper titled ?GREPEXEC: Grepping Executive Ob-

jects from Pool Memory” introduces some more specific internal structure signatures for
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grepping executive objects from memory. He also argues that some of these signatures
are breakable by simply assigning a field to another value that evades the signature
without impacting the operation of the operating system. Theoretically, it is possible to
completely change the part of the memory that stores a specific structure and modify the
operating system code through hooking or run time patching to continue its operation.
Moreover, defining an exact signature that can uniquely identify some important data
structures is not achievable. For example consider structure _SUBSECTION. As discussed
in the previous chapter, this structure contains the mapping address information of a
section of a file mapped to memory. However, due to the fact that most of the fields in
this structure can store different values, it is not possible to detect the structure by scan-
ning the memory. Lastly, it is possible that some part of a data structure is overwritten
by later memory allocations and therefore make it not comply with the signatures while
the rest of it that contain valuable information still exists in the memory.

Another research on memory forensics is the work in [7] that presents an exten-
sible framework (FATKit), which provides the analyst with the ability to automatically
derive digital object definitions from C source code and extract the underlying objects
from memory. In [2:], A. Walters and N. L. Petroni present an approach for extracting
in-memory cryptographic keying material from disk encryption applications. B. Carrier
and J. Grand in [2], discuss a strategy for robust address translation by incorporating
invalid pages and paging file to improve the completeness of the analysis. This approach
was detailed when we discussed the Windows memory manager in the previous section.

Most of the research on memory forensic analysis is focused on the extraction
of relevant data structures from memory. After extracting these data structures, the
forensic analyst will be left to analyze the gathered evidence to recover a time line from

the events that happened during the incident. However, insufficient research results and
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processes are available for the actual analysis of physical memory. In the next chapter,
we discuss a technique that can be used to extract a partial execution history of the
process from the extracted memory structures.

In this chapter we discussed the state of the art research on forensic analysis of
physical memory. Several proposals were discussed and the advantage and limitations of
each was discussed. The chapter was concluded with the emphasis on the fact that the
previous research works on forensic analysis of physical memory have mainly focused
on extraction of fdrensically valuable data structures and limited results and procedures
are available that can help the investigator interpret the extracted data according to the
facts of the case. In the next chapter we detail an analysis technique that can help an
investigator to reconstruct the events that took place at the time of the execution of a

process by analyzing program code and stack.

123



Chapter 5

Stack Trace Analysis

As discussed in the previous chapter, the research on digital investigation of physical
memory has been limited mostly to the extraction of operating system structures that
are of potential forensic value during the investigation. However, as we will show in this
chapter a more informed analysis of the traces left in the memory from the execution of
the programs can lead to better understanding of the chain of events happened during
the time of the incident. In this chapter we first provide an overall introduction to our
approach to forensic investigation and the motivations behind using this approach. This
introduction is followed by a detailed discussion of the theory, algorithm and proofs of

our approach.

5.1 Approach

In this section, we lay out the principles underlying our approach to the forensic analysis
of stack leftovers. What makes this approach possible is the way the stack operates in
the course of program execution. The stack mechanism is used in most of the prevalent

operating systems to make structured programming possible. For each function call
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made by a process, a stack frame is created and stored on the stack. The stack frame
contains the parameters passed to the function, the return address, the previous value
of the EBP register and the local variables of the function. These function call traces
enclose the history of what a process has done during its course of execution.

After a function returns, the stack pointer is moved down to point to the previous
stack frame. However, the returned function stack frame still resides in the memory until
another call is made by the process, and the stack grows up enough to overwrite the
frame. The depth of the stack at each point of the execution depends on the number of
nested function calls that are made by the process as well as the length of each stack
frame. Due to the fact that the depth of the stack has arbitrary values during the
execution, a large number of previously called function stack frames stay on top of the
stack untouched or partially overwritten. Moreover, current software engineering best
practices encourage the implementation of a service through long chain of function calls
with each component serving some part of the service requested. This fact intuitively
reenforces our proposition.

The correlation of the stack with the program source code reveals the execution
history of the program in terms of function call chains. We have developed a modeling
technique, an algorithm and the system that makes this approach possible. As shown
in Figure 5.1, the physical image acquired from the system under analysis is parsed to
retrieve the process executable code and thread stacks. The stack frames are extracted
by analyzing the thread stacks. The extracted executable is analyzed to produce the
Control Flow Graph of each function and all the resulting CFGs are combined to form
an abstract model of the program execution. The program model is correlated against
the stack residues to produce all the possible execution paths that could be executed

by the process and could generate the right stack leftover. For this purpose, we have
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developed an algorithm that takes the program execution model and the stack residues

and produces a state machine that contains all the solutions to the problem.

Some of the advantages of this technique include:

e The analysis is performed on the assembly code of the process that is extracted
from the memory and there is no need for the external provision of the source code
or executable. This feature overcomes the anti-forensic techniques that hide the
executable in the filesystem by hooking operating system APIs or injecting the

code directly into the memory.

The technique integrates the formal analytical power of state machines and pro-
gram models to retrieve the execution history of the process. This feature bestows

the precision required in most jurisdictions for digital investigations.

As stated before, the result of the analysis could reveal important facts about what
was performed by the process at the time of the incident rather than what exists
in the memory. This is of paramount importance to forensic investigation since
the final goal of forensics is to discover the activities performed by the suspects

with the exact order during the incident.

The presented verification algorithm is able to retrieve all possible solutions to the
problem. This enables the investigator to reach a sound and logical conclusion by

considering all the possible execution paths that the program could have taken.

The following sections discuss the details involved in this process.

5.2 Modeling the process and the stack traces

In this section, we elaborate our approach to stack analysis by enumerating each step

involved in the process and then discussing the details involved in each phase.
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Figure 5.1: Our approach; The program model is correlated with the stack traces.

approach consists of four phases. First, we generate the Control Flow Graph (CFG)
of all functions of the program. Second, the CFGs are transformed into finite state
machines (FSM). Third, the finite state machines are combined to form a Push Down
System (PDS). The resulting PDS models the program execution in terms of function
calls and returns made by the program. Fourth, we generate an FSM as the solution to
our problem by applying an algorithm that traverses the PDS model of the program,
while generating the FSM based on the stack residues. The resulting FSM reflects all
the possible execution paths that could be executed by the program and at the same
time can generate the leftover found on the stack. In the following sections, we elaborate
on each phase. As an example, consider the program shown in Figure 5.2. We use this
program to clarify each phase. For simplicity, we chose a program written in c. However,
it is important to note that since our approach only deals with function call and returns,

exactly the same procedure is applicable to the assembly code.
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#include <iostream> 31.

void op(int 1i); 32.

void h(int i, int j) { 33.

return; 34.

} 35.
void g(int i, int j) {

return; 36.

} 37.

void b(int i, int j, int k, int 1) { 38.

return; 39.

} 40.

void e(int i, int j, int k, int 1) { 41,

op(2); 42,

43,

. void a(int i, int j, int k, int 1) { 44,

if (4 == 49) { 45.

g(i,j); 46.

e(i,j,k,1); 47.

return; 48,

}else{ 49,

h(i,j); 50.

return; B1.

} 52.

53.

. void c(int i, int j, int k, int 1) { 54.

b(i,j,k,1); B5.

return; 56.

57.

. void d(int i, int j, int k, int 1) { 58.

h(i,j,k,1); 59.

return;
}
void op(int 1) {
char input;
printf("Input a value
betwean 1, 2:\n");
fflush(stdin);
scanf ("%c", &input);
a(i,0,0,0);
switch (input) {
case ’'17:
d(0,0,0,0);
break;
case ’2’:
c(0,0,0,0);
break;
}
return;
}

void inc(int i) {

if (1 < 10) {
inc(i+1);
} else {
op(1);
return;
}
}
void main() {
inc(0);
}

Figure 5.2: Sample program to analyze.
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5.2.1 Control Flow Graph

A control flow graph (CFG) [']] is a structure that characterizes possible execution paths
in a program. Vertices of the graph contain one or more instructions of the program
that execute sequentially. Edges in the graph show how control flow transfers between
blocks.

Let f be a function in a program P. The control flow graph for f is denoted by
Gt = (Vy, E¢) where V; is the set of vertices and Ey C V; x V is the set of edges. A
vertex in G is a basic block.

Each v € V; contains a sequential list of instructions in f satisfying the following
properties: There is no control-flow transfer into the middle of a basic block nor a
transfer out of the middle of a basic block. In defining basic blocks, notice that the call
to a function is considered as a transfer of control out of the basic block and therefore,
each basic block at most has one function call instruction. An edge (v, vx) € Ejf if there
exists a possible control flow from v; to vj.

The first step of our approach is the generation of a control flow graph of each
function called in the program. As an example, the control flow graph of function op of
the sample program is shown in Figure 5.3.

Having the CFG of a function, we generate the local automata model of the
CFG as discussed in [ #]. The local automata model of a CFG is a finite state machine
whose states represent nodes of the CFG and its transitions are defined based on the
control flows among different nodes of the CFG. Below is the formal definition of the
local automata model.

Suppose that F is the set of functions in program P, C is the set of function call
sites in P, and 6(c) denotes the target function of call site ¢c. The local automata model

of function f with control flow graph of Gy = (Vy, Ef) is defined as follows:
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35.printf(...);

38.a(4,0,0,0);

{ 34.char input; }

41.d(0,0, 0, 0); 44.¢(0,0,0,0);

42.break;

47 return;

Figure 5.3: The control flow graph of op.
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Let a < v indicate that vertex v € V; contains call site a. The local model

for fis Af = (Qy,X¢, 05,95, Ff), where:

] Qf=Vf

Ef=CfU{6}

Fy =y where Cy C C.

qr € V; is the CFG entry state.

Fy ={v € Vijvisa CFG exit state}
e Function call transition: d¢(p,a) = ¢ if a <p,a € Cf, and (p,q) € Ey.

e e-transition: §(p,e) = q if (p,q) € Ey and Va € Cf : =(a < p)

Please notice that we have changed the above model from the original version in
[11] by removing the system call transitions. This is due to two facts; Firstly since we
are analyzing the kernel stack as well as the user land stack we do not need to restrict
our analysis only to the user land system calls. Secondly, depending on the extent of the
analysis, a stack trace analysis could expand to only the functions inside the program,
the system calls, the library calls or even the low level kernel function calls. Therefore,
we have introduced the concept of the end function calls which are a set of function
names that are defined by the analyst to limit the depth of the analysis. The CFG of
end function calls has only one state which is both an entry and an exit state. Intuitively,
the local automata model of a CFG is a finite state machine whose states represent the
nodes of the CFG and edges are either the name of a function called from the originating
node, or €.

As explained in [/ ], the e-reduction algorithm is performed on the local models

to remove the € transitions. This will increase the performance of the system since the
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35.printf

Figure 5.4: The local automata model of op.

€ edges are always traversed without consuming any symbol from the input. As an
example, Figure 5.4 depicts the local automata model of function op. Notice that in
Figure 5.4, we have included the line number in the transition names to differentiate
among different calls to the same function. For the same reason, the definition of the
local automata model of a CFG contains the concept of the function call site rather than
the function name.

Until now, we have modeled the execution of the program as a set of local state

machines each representing the execution of a function in the program. However, in
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order to analyze the execution of a program as a whole, we have to combine the local
state machine models into a global model. The resulting model should encompass all
the possible control flows among the basic blocks of the program, while preserving the
inter-procedural control flows. We have developed a modeling approach using Push
Down Systems (PDS) [ /] that accurately models the execution of the program in terms
of function calls and returns made by the program. The model maintains the inter-
procedural execution flows.

A PDS is a triple P = (@Q,T', o) where @ is the final set of control locations, I is
the finite set of stack alphabets and ¢ C (@ x I') x (Q x I'*) is a finite set of transition
rules. The program execution in terms of the chain of function calls and returns made
by the program is modeled using a PDS. We combine the local automata models of

individual functions to form the PDS model of the whole program as follows:

Again suppose that F is the set of functions in program P, C is the set of
function call sites in P, 6(c) denotes the target function of call site c. The

combination of the local models of the functions of a program is defined as

the PDS P = (@, ', o) where:

Q=UQysforall feF.
o I' = C is the set of stack variables.

e Function call transition: o(p,e) = (g,r) if 3f € F,c € C such that

87(p,c) = r,q = gg(c) where gg(.) is the entry state of the local automata
model of 6(c).

e Function return transition: o(p,t) = (g,¢) if 3f € F,r € @ such that
6¢(r,c) = q,p € Fy() where Fy(, is the set of final states of the local

automata model of function 6(c).
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o

As an example, Figure 5.5 shows the resulting PDS model of the program in

Figure 5.2. For clarity, in the diagram, the stack operations are represented as labels of
edges. An edge labeled as a call site represents the push operation and an edge labeled
as a bared call site represents the pop operation. Notice that in our analysis we have
considered the scanf and printf functions as end functions. However, a more detailed
analysis could involve modeling the function calls inside these functions.

It is important to observe that the stack settings extracted from the memory
is actually a configuration of the PDS model of the program if we suppose that the
the PDS stack works in a similar way to the operating system stack. This means that
popping an element from the PDS stack only brings the stack pointer down and does
not remove the stack symbol from the stack. The configuration of a push-down system
at any stage in its processing is determined by its current state and the content of its
stack. In this case, we also have to include the position of the stack pointer of the PDS
in the configuration since the old frames are not removed from the stack, but the stack
pointer goes up and down along the stack.

To find the configuration of the program PDS at the time of the image was taken
from the memory, we have to specify the state of the push down system. Notice that
each line of the program can be mapped to a unique state of the PDS model of the stack.
This means that using the value of the Program Counter register (PC), we can precisely
specify the state of the PDS. Moreover, the stack of the program PDS can be thought of
as a simplified version of the program stack itself. Therefore, the Stack Pointer register
(SP) can be used to identify the position of the PDS stack pointer in the stack.

Another important fact to notice here is that a PDS does not have a starting
state. However, in our modeling, the starting state of the program, that is the state

representing the entry point of function main is considered as the entry state of the
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Figure 5.5: The PDS model of the program.
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PDS. Moreover, the content of the PDS stack at the beginning of its execution is empty

and the stack pointer points to the bottom of the stack.

5.2.2 Stack trace verification

In the previous section, we modeled the program execution. The model is able to capture
all the execution paths of the program based on the functions calls and returns made by
the program. In this section, we elaborate on our approach to generate all the possible
execution paths that could be executed by the program and ,if executed, would generate
the right stack residue.

A stack frame contains the address from which the program execution should
continue after the function returns. Based on this address, the callee, the caller and the
exact address of the call site in the code are identifiable. Consequently, each stack frame
in the stack leftover represents a unique call site. Moreover, the stack frame stores the
local variables and arguments. Therefore, depending on the number of local variables,
arguments and push/pops, the length of the stack frames can be different from each
others’. This means that a stack frame could be partially overwritten and therefore,
some traces might still remain from it.

Since the PDS model described above captures program flows based on the call
sites instead of the function name, each stack frame can be associated with a transition
in the PDS model. In addition to the call sites, information regarding the length of
the stack frame can be included in the model. Consequently, each function call in the
PDS model is modeled as a triple (site, callee,length) where site is the call site (line
number) of the call made to callee and length is the length of the frame at that point
of the execution. Accordingly, each frame in the stack trace is modeled as a five-tuple

(site, caller, callee, start, end) which represents function callee being called by function
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caller at call site site and the stack frame starts at the depth of start and ends at the
depth of end.

The length of the stack frame at each point of execution can be calculated stat-
ically by analyzing the assembly code | ]. However, as mentioned before, depending
on the comprehensiveness of the analysis, the modeling could include program function
calls, DDL calls and even kernel calls. It is important to notice that in calculating the
length of the stack frame which is assigned to a function call, we should consider whether
or not the function is chosen as an end function. Suppose that in our analysis, we have
chosen function A to be an end function while it actually calls another function B in
some DDL file. For our approach to work, we have to choose the length of the stack
frame representing A in a way that it reflects the changes calling A can make to the
stack. Therefore the selected frame length for the stack frame representing calling of A
in our model will be the sum of the actual length of the stack frame A and stack frame
B.

Depending on which execution path is taken by the process, the stack leftover can
be an arbitrary combination of stack frames. However, based on the function call model
of the program and the mechanism that stack works, a set of rules could be derived as

follows:

Suppose that function(A) represent the function call which has generated

stack frame A on top of the stack.
e Ifstack frame A = (¢, a,b, —, —) is on top of stack frame B = (f,d, e, —, —)
and a is not equal to e then function(A) has been called before function(B).

o Ifstack frame A = (¢, a, b, —, —) is on top of stack frame B = (f,d,a,—, —)
and there is no execution path in d’s control flow graph that exits

without calling any function, then function(A) has been called by
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function(B).

Using these properties, it is possible to discover a set of possible execution order
for functions representing stack frames. Having an order of the executions of the func-
tions whose frames are on the stack, one might be able to execute the program (or follow
the program control flow model) to generate the particular order of function execution.
However, the resulting execution path that could generate the function call order still
may not produce the same stack leftovers since the frames could be overwritten after
creation. Therefore, after finding an execution path that can generate the right order of
the function calls, the execution path should be actually executed to see if the resulting
stack leftover is the same as the one that has remained on the stack at the time of the
incident. Moreover, the execution of the process could involve infinite or long loops,
which can make it almost impossible to check all the execution paths. Therefore a solu-
tion to the problem should be presented in a way that abstracts all the possible paths
that can generate the right stack trace.

On the other hand, the state of the stack during the program execution can be
modeled as an FSM. Each state of the resulting FSM is the sequence of frames that
exist on the stack combined with the address the stack pointer is pointing to. The state
machine state changes as the result of a function call or return made by the program.
Having the state machine of the stack during the program execution reduces the problem
of execution history extraction to finding all the paths starting from the initial state of
the FSM to the state of the stack found at the time of the incident.

The only problem with this approach stems from the fact that the state machine
representing the states of the stack should be generated from the program source. Sup-
posing that the stack can fit up to n frames (with an average length) and the program

has m different function call sites, then the number of the states of the state machine
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is of o(m™). Moreover, in order to define the transitions between the states, one has to
consider all the states, one at the time. This is while most of these states are unreachable
from the stack’s initial state and are out of consideration. Therefore, we developed an
algorithm to generate only the relevant states and transactions. The algorithm eventu-
ally generate part of the complete stack finite state machine that is accountable for the
stack leftover.

Our algorithm starts from the final state of the stack that is the state of the
stack at the time the image is taken from RAM. The algorithm traverses the stack state
machine backwards based on the transitions allowed in the program PDS model. This
means that the algorithm simultaneously traverses both the program PDS model and the
stack state machine backwards. While the algorithm traversing the stack state machine,
it tries to create what has remaind on the stack. Since the algorithm is traversing the
PDS model backwards, when a return transition is traversed, the frame existing after the
location where stack pointer is pointing to should represent the call site corresponding
to the return transition taken. Additionally, when a return transition is traversed, the
stack pointer is increased to point to the newly created frame on top of the stack. In
a similar way, when a call transition is traversed, the frame existing at the offset that
the stack pointer is pointing to should represent the call site corresponding to the call
transition taken. Moreover, when a call transition is traversed, the stack pointer is
moved down and the stack frame that previously was pointed to by the stack pointer is
freed.

For clarity, we first define the algorithm with the supposition that all the stack
frames are of the same length. We prove the soundness, completeness and finiteness
of the simplified version of the algorithm and then improve the algorithm to support

variable length stack frames. Before we start the formal definition of the algorithm,
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as an example, consider the program shown in Figure 5.2. The content of the stack
resulting from the execution of the program with inputs 1, 2 is shown in figure 5.2.2.

Figure 5.2.2 shows the first two steps of the algorithm. Note that the transitions
with a bar indicate the return from the call site.

To define the algorithm, we represent the state of the stack at each point of
execution as the sequence S = (fi, ..., fm, 8D, fm+1, --, fn) Where f;s represent the frames
on the stack sorted from the bottom of the stack toward the stack limit and sp represents
the location that the stack pointer is pointing to that is the top of the stack frame f,,.
Suppose that § = (X,Q, ¢, 0, F) is the state machine representing the stack of the
program. F is the set of final states and in this case contains only one state, which is
the state of the stack at the time of imaging the memory. The state gy is the initial
state which is (sp,as,...,a,) where Vi,a; = —. A frame is with the value of — means
that it can be overwritten with any arbitrary frame. Also suppose that D = (P,I',0) is
the PDS model of the program.

Suppose that at some point of the execution of the algorithm, the current stack
state is s = (fi,..., fm, 8P, fm+1,..., fn) and the current PDS state is p. The possible

backtracking transition at each state are defined using the following rules:

Rule 1. If3q,0(q, fm+1) = (p,€) then 6(r, fr, 1) = s wherer = (fi, ..., fm, fm+1, 8D, .., fn)-
Rule 2. 6(r, frn) = s where v = (fi, ..., 8D, —, fm+1s oy fn)-

Notice that in the second rule, we are replacing the frame f,, with — which is a
way to mark the region as a free region which can be overwritten by any arbitrary value.
In the first rule, free regions can match with any frame. After the possible transitions
are identified, the same step is performed on the newly entered state if the state has not

been expanded before.
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stack_trace!main + 0x4

call stack_trace!ILT+0(?7incYAXHZ) (00401050)
stack_trace!inc+0x93

call stack_trace!_chkesp (00408560)
stack_trace!inc+0x31

call stack_trace!ILT+0(?7incYAXHZ) (00401043)
stack_trace!inc+0x93

call stack_trace!_chkesp (00408560)

stack_trace!inc+0x31

call stack_trace!ILT+0(7opYAXHZ) (00401005)
stack_trace!op+0x93

call stack_trace!_chkesp (00408560)
stack_trace!op+0x71

call stack_trace! ILT+55(7dYAXZ) (0040103c)
stack_trace!d+0x50

call stack_trace!_chkesp (00408560)
stack_trace!d+0x40

call stack_trace! ILT+35(7hYAXZ) (00401028)
stack_trace'h+0x2a

call stack_trace!_chkesp (00408560)
stack_trace!a+0xla

call stack_trace!ILT+0(7opYAXHZ) (00401005)
stack_trace!op+0x93

call stack_trace!_chkesp (00408560)
stack_trace!op+0x83

call stack_trace!ILT+50(7cYAXH) (00401037)
stack_trace!c+0x38

call stack_trace!_chkesp (00408560)
stack_trace!c+0x28

call stack_trace!ILT+45(7bYAXH) (00401032)

Figure 5.6: Extracted stack traces

141



Final Stack

{inc,58) (Main, 53)

Wi S e 58
«—
- main . B3

main 9 inc
2 main 53
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Figure 5.7: Part of the execution of the stack FSM generation algorithm.

The algorithm marks all the transitions from an FSM state that are traversed so
that later if the same FSM state is being processed, those transitions are not analyzed
again. This is due to the fact depending on which PDS state we are at when we are
analyzing an FSM state, different transitions could be possible. The algorithm stops if
there is no more state left to be expanded. Figure 5.2.2 shows the pseudo code for the
algorithm. The algorithm has a queue that stores the states to be expanded. At each
step, after finding the transitions, the originating states (the states to be expanded) are
added to the beginning of the queue and then the next state from the queue is processed.

In the following discussion, we prove that the algorithm is sound, complete and
finite. To prove the soundness of the algorithm, we show that all function call chains
that are accepted by the resulting stack FSM, if executed by the program, will produce
the same trace that exist on the snapshot of the stack. To prove the completeness, we
show that the algorithm produces all the possible solutions to the problem. To prove
that the algorithm is finite, we show that the algorithm eventually stops.

Suppose that C is the set of all functions called by the program, S = (2, Q, g0, 9, F')
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Input: D:The PDS model of the program, t: The final state of the stack FSM., p: The
current state of D.
Output: S:The FSM that abstracts all the program execution paths that can generate
the stack residue.
Queue Q;
Q.add({t,p));
while @ is not empty do
{r,q) = Q.next();
Use rules 1,2 to get the set of all the possible transitions (s, ¢) — r.
foreach s do
if (—isMarked(s,c)) then
mark(s,c);
Q.add({s,u)), where u is the originating state of the transition in D that
changes S from s to r;
end
end

end

Figure 5.8: The pseudo code of the stack FSM generation algorithm with stack frames
of the same size.

is the resulting stack FSM of the execution of the algorithm on the PDS model of the
program D = (P,T',0), the stack leftover at the time of the incident is the sequence
T = (ai,...,an) where Vi,a; € C U {sp}, and L = {w € *|6*(qo,w) € F} is the

language that S accepts.

Theorem 1. Ift € L, then the execution of P with t as input, eventually produces T

on the stack.

To prove this theorem, we define function trace as below:
Definition. Suppose that D = (P,I',0) is a PDS, A =T'UY where T = {¢'|c € '} and
R = {(r0,...,mn)|r; € P}. Function trace : PDS x R — A* receives as input a PDS D
and a sequence of states U € R and returns sequence S which is produced as below:
for each transition of D from two subsequent states U;, U;+1 € P
if o(U;,€) = (Uj+1, f) then S = S.f.
if o(Ui, f) = (Uis1,¢€) then S = S.f".

143



Proof. According to the algorithm proposed, the configuration of the stack in the initial
state of the PDS model corresponds to the initial state of S. Moreover, the only final
state of S is the state that represents the configuration of D’s stack at the time of the
incident. Therefore, if a function call chain is accepted by S, then the execution of D

with the function chain as the input, generates the right stack configuration. O

Theorem 2. If t € P* is an execution of D that produces T on the stack, then
trace(D,t) € L.

Proof. We prove this theorem by contradiction. Suppose that It € P* such that the
execution of D according to t produces the right stack residue but S does not accept
E = trace(D,t). This means that at some point during the execution of the D and S,
D can make a transition but S cannot make a transition to the stack state which results
from the execution of D’s transition on its stack. Suppose that this stage happens when
D is transiting from state p; to p;+1. Further suppose that the state of S that it can not
make the desired transition from is s;. Since D is able to make a transition from p; to

p;+1 and there are only two types of transitions in D, we have

o(pi, f) = (Dit1,¢€) or o(pi,€) = (Piv1, F).

In both cases, according to the production rules, S can make a transition from s; to the

resulting PDS stack state which is a contradiction. a

Theorem 3. The algorithm to produce the stack FSM from the stack leftover and the

program PDS model is finite.

Proof. To find the FSM that produces function call chaings that if executed, will produce
the right stack residue, the algorithm traverses the stack states based on the transitions

allowed by the program (PDS model). Since the algorithm is marking the states it has
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visited before to prevent the reprocessing of a state, in the worst case, the algorithm
will traverse all the possible configurations of the stack. Since the length of the stack
and the function call sites of the program are both finite, therefore the number of states

of the stack is finite and consequently, the algorithm eventually stops. O

5.2.3 Variable length stack frames

Until now, we have supposed that stack frames are of the same length. This is while,
depending on the number of arguments and local variables, stack frames can have dif-
ferent sizes. In order to consider variable-length stack frames, we have to first locate the
frame boundaries. As it is explained in the next section, our algorithm for finding the
stack frame boundaries searches through the stack and identifies the return addresses.
Each return address represents a stack frame. Based on the number and types of local
variables and arguments of a function, we can specify the offset of the saved return
address from the frame boundaries as well as the size of the stack frames. For sim-
plicity, we do not consider other fields of a stack frame in our analysis. Therefore, the
stack residues can not be partitioned into clear-cut stack frames. Instead, we think of
the stack residues at the beginning of the algorithm as a vector of bytes. The value of
byte at some offsets in the vector are known which are the return addresses. As the
algorithm backwards through the PDS model and stack FSM model of the program,
the stack frames with predefined sizes are created and removed from the stack based on
the defined rules. The frame creations and removal rules are defined in a way that the
algorithm generates program execution paths whose execution will generate the right
values at offsets with known values.

Each state of the stack again is modeled as a sequence (a1, ..., Gm, 8P, Gm+1, .- On)-

However, this time a;s represent bytes of the stack instead of the stack frames. In order
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to specify the frame creation and removal rules, we define match relation as follows:

Definition. A stack frame f = (f1,...fn) where f;s represents bytes of the
frame, matches the byte array b = (by,...,b,) if Vi, (b; = —) V (b; = f;) and

we write match(f,b).

The match relation is used to verify if part of the stack matches the content of
a stack frame. In the following, we define the transition generation rules that describe
the possible stack state transitions during the execution of the algorithm. To define the
substitution rules, suppose that S = (3, @, qo, 9, F) is the state machine representing the
stack and D = (P,T', o) is the PDS model of the program. Suppose that at some point of
execution of the algorithm, the current stack state is s = (s1, ..., $m—1, SD, Sm, ..., Sn) and
the current PDS state is p. The possible state transitions are defined by the following

two rules.

Rule 3. If 3¢,f = (f1,.-, fx),0(q, ) = (p,€) and match(f, (sm,..., Sm+k-1)), then

6(Ta f/) = s where r = (Sla "-’Sm—laflv’“afkaspﬂ Sm+k "'asn) .

Rule 4. If 3¢,f = (f1,.., fx),0(g,€) = (p,f) and match(f, (Sm—k;..., Sm-1)), then

§(r, f) = s where 7 = (81, ..., Sm—k=1,Sps — sy =3 8my .oy Sn) -
k

Except for the state transition generation rules, the algorithm for building the
partial stack FSM stays the same. Therefore, proof of completeness, finiteness, and
soundness are as before.

Function Pointers

In the above discussion we implicitly supposed that the exact destination of a function

call can be identified at the compile time. However, the application of the function
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pointers can invalidate this supposition by allowing a process to specify the target of a
function call dynamically. To overcome this problem, when generating the PDS model,
for each function pointer call, we mark the destination as a free state and create a
free call and return transition to that state. A call transition that is designated as free
means that it can match any function call. Similarly, a free return transition means that
a return instruction to any function can match this transition. During the execution
of the second phase (finding the executed path), when we see a free return transition
(remember that we are traversing the PDS backward), we bind every return statement
in the program to this free return once and try to find the possible execution paths by
following the execution of the algorithm. It is important to note that this technique
can cause a performance degradation to the analysis. However, our analysis showed
that most of the function pointer calls are traceable at the compilation time and are
determined automatically by IDA Pro [ .] as discussed in the next chapter. Moreover,
most of the bindings for function pointer calls that can not be determined at compile
time prove to be wrong binding in the first and second step of the execution of the
algorithm after the assignment. As it is discussed in the future research direction, more
optimized approach can be achieved by considering other elements such as the values of

CPU registers in the analysis.

5.3 Design and Implementation

In this section, we discuss the design and implementation of the system that was devel-

oped based on the elaborated techniques in the previous sections. Simulated examples

are provided to demonstrate the effectiveness and short-comings of these techniques.
The Windows physical memory analyzer was developed as a plug-in for a digital

investigation framework. This framework was designed as an integrated framework that
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consists of a set of forensic analysis plug-ins. The framework was developed to meet the

following requirements:

e Product functionality: The framework should provide the investigator with
necessary analysis required during a digital investigation. This includes but not
limited to memory analysis, disk analysis, log analysis and email analysis. The
framework should be focused on analysis rather than acquisition of evidence. This
is due to the fact that many commercial and open-source solutions for acquisition
of evidence exist while the required analysis functionality are non-existing in the

existing solution.

e User characteristics: The target users of this software are mainly forensic agents
responsible for investigating through the incidence of an intrusion, finding enough
evidence, analyzing the evidences and generating judicially approved reports. The
framework should provide a simple to use user interface that does not require users
to have an indept knowledge of the automatic analysis performed in the framework

in order to use the result of the analysis.

e Operating environment: The software is aimed to be portable both on Win-

dows and Unix based operating systems.

e Design and Implementation Constraints: The software should be written
in Java, whenever required, uses native objects to get advantage from other pro-
gramming languages capabilities that lack in java such as certain system calls.
The design should be extendable both in terms of evidence resources and analysis
techniques meaning that the user should be able to introduce new resources for

evidence gathering phase and new analyzer plug-ins for the analysis phase.

Based on the above requirement, Java Server Framework (JPF) [] was chosen as the
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implementation framework for our forensic toolkit. JPF provides a runtime engine that
dynamically discovers and loads the plug-ins. A plug-in is a structured component that
contributes code and resources to the system and describes them in a structured way.
These plug-ins can further define extension points, well-defined method hooks that can
be extended by other plug-ins. JPF maintains a registry of available plug-ins and the
functions they provide. Figure 5.9 shows the high-level architecture of this framework.

The main components of JPF are described below:

e A plug-in is a structured component that describes itself to JPF using a plug-in
manifest. The plug-in manifest is an XML file which contains all the information

needed by the JPF framework about each plug-in.

e PluginRegistry is a set of interfaces that abstract meta-information about plug-ins

and plug-in fragments.

e PluginManager is the runtime system of the Framework. The main responsibility
of the manager is to activate (load plug-in code and call the plug-in initializer
class) plug-ins upon client code requests and manage inter plug-in dependencies.
It is also possible to deactivate plug-ins during the life of the application. This

feature may help to reduce application resources requirements.

e The ObjectFactory class allows application developers to easily create base JPF

objects: PluginRegistry, PluginManager and PathResolver.

The Windows physical memory plug-in was developed as one of the plug-ins in our digital
forensic investigation framework. This plug-in consists of five main components: Struc-
ture manager, Windows in-memory structure classes, file extraction, ThreadStackParser,

and stack trace analyzer. Most of the in-memory structure classes were introduced in
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Figure 5.9: JAVA Plug-in Framework (JPF) overall architecture.
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chapter 2. The java implementation of these classes includes necessary information to
correctly fill and use these structures.

Each in-memory structure inherits from WinStructure class that contains the re-
quired functions for filling structures from raw data. These functions includes £illList
Entry, £i11SingleListEntry, fillListEntryHead, fillSinglelListEntryHead, read
StructFromByteData, readObjectFromByteData, etc. The name of these functions de-
scribes their functionality. These function receive the class object of the structure that
should be extracted and call a function named extractUniqueStruct passing it the
class object and the beginning address of the structure in the raw image. Using java re-
flection, this function acquires the £i11Struct function that is defined by each Windows
in-memory structure class. Function £illStruct fills all of the fields of the structure
from raw data and returns the object.

One important task of extractUniqueStruct function as its name suggests is
to verify if the structure has previously been extracted and if it has, it retrieves the
extracted object rather than creating a new object. This is due to the fact that most of
Windows in-memory structure instances are pointed by several structures and therefore
the analyzer could have previously extracted them from memory. All WinStructure
objects share a static table called ExtractedObjects. This table is essentially con-
tains the mapping between the starting physical address of the structure and the object
representing the structure. Every time that extractUniqueStruct is called with the
starting address of a structure to be extracted, it calls the searchObject function that
uses ExtractedObjects table to search for a structure that has the same starting ad-
dress and type as the one to be extracted. It is important to notice that in addition
to the starting physical address, searchObject verifies the type of the stored object

and the structure to be extracted. This is because some structures could start at the
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same physical address but be of different types. An example that this situation exists
is when filling KThread and _EThread. If you remember, KThread is the first member
of EThread and therefore both of these structures start at the same physical address in
memory. By comparing the type of the stored object with the type of the structure to
be filled in, the right object can be retrieved.

The third component of Windows memory analysis plug-in is the file extractor.
File extraction functionality is implemented as part of the functionality of EProcess
and FileObject classes. Two techniques are used to extract files. For executable files,
the COFF header is used to extract the executable from the memory. For other types
of files, the SharedCacheMaps were used. These two techniques were discussed in detail
in chapter two. It is important to note that the content of the file in memory exists in
the form of a file when the file is opened as a memory mapped file by a process and this
is the only time that it can be extracted from the memory as it exists on disk.

The fourth component of the Windows memory analysis plug-in is the ThreadStac
kParser. This class is responsible for parsing the thread user-land and kernel-land
stacks. It performs the parsing based on the techniques discussed in chapter two. After
parsing the stack, it exports the stack to a file that can be used with the stack trace anal-
ysis component to discover the executed paths. Since in the current proposed approach
for stack trace analysis, only function calls are considered and other values on the stack
are not included in the analysis, The exported information includes the starting offset
of each stack frame and the return address that is stored in the frame. This information
is enough for the fifth component, the stack trace analyzer, to perform the analysis as
described in chapter four.

The stack trace analyzer is implemented as a plug-in for IDA Pro [ ]. IDA Pro

is one of the most popular disassemblers that provides an SDK for developing further
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analysis on executables that are disassembled in this environment. Please notice that this
plug-in is executed in IDA Pro environment and therefore, requires the information that
is extracted from the physical memory image to be imported into it. This information
consists of two data: the extracted executable, and the stack information. This plug-in
is written in c¢. As discussed in chapter four, the analysis is performed in three steps. In
the first step, the analyzer creates the control flow graphs (CFG) from the executables.
In this step, the stack trace analyzer scans each function from the first instruction to
its last instruction looking for jump, call and return instructions. When one of these
instruction is seen, a new state is created and a transition is added from the current
analysis state to the newly created state and the analysis is continued.

After the CFGs of all of the functions of the executable are created, the next step
is to combine these CFGs into a PDS. This task is performed by generate_pds_from_loc
al_models function declared in pds.model.cpp. For each CFG, this function examines
all of the outgoing transitions and if the instruction assigned to the transition is a call
instruction, a new transition is created from the state under examination to the starting
state of the CFG of the called function. In addition to this, a new transition is created
from each of the final states (return states) of the called function to the destination
state of the old transition. Next, the old transition is removed from the state under
examination.

After the PDS model is created, the last step of the analysis is performed ac-
cording to algorithm 5.2.2 discussed in chapter four. This algorithm is implemented in
process_fsm_state function. In order the for the function to perform correctly, it needs
to know the starting state for the analysis. This state is the state at which the program
was executing when the image was taken from memory and is detectable using the in-

struction pointer register. This is possible because each instruction in the executable is
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mapped uniquely to a single state in the created PDS model. As the algorithm traverses
the PDS model, it creates the final solution in the form of a state machine which is im-
plemented as a linked list of structures of type fsm_state. As an output, the program
creates a graphical view of this final state machine. The graphical view is created in

udg format that is viewable by uDraw [ ].

5.4 Experimental Result

As part of the integrated forensic investigation framework, the Windows physical mem-
ory forensic analyzer plug-in was developed with the required portability and usability
functionalities in mind. As shown in Figure 5.10, the Windows physical memory foren-
sic analyzer consists of two sub-panels. The left sub-panel contains the detailed values
of in-memory structures grouped by process name in the form of a jtree. The right
sub-panel contains six tabs. Each tab contains specific category of information. The
process tab contains information about the process such as process executable, name,
user land and kernel land time, etc. Information about loaded dlls are listed in the dll
tab. This information consists of the name, path, base address, entry point, and size
of the image. The thread tab contains information about the threads of the process
selected in the left tab. this tab lists all of the threads of the process and by selecting
each thread from the list, the investigator is able to see various information about the
thread. Moreover, the export stack button, allows the user to export the stacks of the
selected thread to a file that can be later used as the input to the stack trace analyzer
plug-in developed in IDA Pro. The object tab, contains the parsed handle table of
the process that contains information about all of the objects created by the process.
This information differs based on the type of the object and can be viewed by double

clicking on the object entity in the table. Environment tab contains the environment
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Table 5.1: The stack analysis result for the different processes.

Program Funcs# | PDS states# | FSM states# | Recovery%
dcfldd.exe if=test 200 3101 98 25
notepad.exe 88 2179 50 55
nc.exe -1 -p 80 168 2913 55 100
nc.exe localhost 80 168 2913 89 100
psexec.exe -s cmd 395 4321 200 83

information for each process. The last tab is the extracted files information that con-
tains the list of the files opened by the process. The user is able to export or view these
files by double clicking on them. Double clicking on the executables opens them with
disasm.exe program []. Figures 5.10 to 5.15 show the described plug-in tabs.

In order to verify the effectiveness of our algorithm in recovering the execution
history of executables, several softwares were executed using IDAPro debugger while the
function call tracing option was enabled. In executing each software, several actions were
performed and then an image was taken from the memory. This image was analyzed
using our Windows memory analyzer framework and the program executable, its stack(s)
and the instruction pointer was extracted and handed to our stack analyzer. The stack
analyzer output was compared with the trace that was acquired from executing the
software using IDApro with function call tracing option enabled. The result of this

analysis is shown in table 5.1.

As it can be deduced from table 5.1, the percentage of the execution path that could
be retrieved in each scenario varies. This is due to the fact that the effectiveness of our

technique depends on several factors including:
¢ The number of functions that are called by the application.

e The number of different execution paths that exist in the application.
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e The amount of time the application was running before the memory image was

acquired.
e The distribution of calls to system calls in application.
e The number of iterative operations.

Figure 5.16 shows the output of the stack analyzer for the execution of nc.exe.

In this chapter, we presented an approach to analyze the extracted information from
Windows physical memory in order to discover the execution path that was executed
by each thread. In this approach, we model the execution of a process as a PDS model
using static analysis techniques and correlate this global execution model with the stack
frames that are left on the stack after the execution of the process. The result of this
correlation is the partial execution path that could have been executed by the process
and if executed would leave the right stack trace on the stack. This result is modeled
with a finite state machine. The algorithm that we proposed for correlation of stack
traces and the process model is able to find all of the possible answers. We also proved
that this algorithm terminates after processing infinite number of states. Empirical
results were provided with emphasis on the fact that the effectiveness of our approach
depends on the implementation details of the program as well as the amount of traces

that are left on the stack.
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Figure 5.12: Windows physical memory analyzer - object tab.
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Chapter 6

Conclusion

In this thesis, physical memory was presented as an important evidence that can be
useful in a digital investigation. Through a detailed investigation of physical memory,
the analyst can discover the chain of events that occurred at the time of the incident.
However, this important source of information is often neglected in the course of many
investigations. This is mostly due to the complexities that are involved in accurate
analysis of this source of evidence that requires a detailed understanding of operating
system functionalities. The volatile nature of this media also adds to the complexities
involved in the forensic analysis of physical memory. Despite the difficulties involved
in the analysis of physical memory, it often contains information about the incident
that can not be acquired from other sources and therefore it is necessary to acquire and
investigate the physical memory during the course of the investigation.

This thesis shows the importance and advantage of the acquisition and analysis
of physical memory as a source of evidence in the course of the investigation. The
main focus of this thesis was on Windows physical memory. However, most of the

introduced techniques are applicable to other operating systems. The techniques that
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were introduced in this thesis can be classified into two different categories.

The first category of the discussed techniques are mainly focused on the extrac-
tion of forensic related information. This includes information about processes, files,
threads, registry keys, environment variables, etc. For each of these evidential items,
the in-memory structures that are managed by the operating system were introduced
and their application in extracting the related information was elaborated. Our exper-
imental results showed that a lot of this information still exist in memory long after
the process terminates or finishes the related task. In this thesis, our study was lim-
ited to the in-memory structures that are directly managed by the main components of
the operating system. This is while, many functionalities of the operating systems are
performed in the context of other processes such as lsass.exe, svchost.exe, and csrss.exe.
These processes whose operation is essential for proper functioning of Windows operat-
ing system manage several in-memory structures that may include forensically pertinent
information. However, little documentation exists on the functionality and operational
details of these processes. The author believes that a detailed study of theses processes
can reveal techniques for forensic analysis of physical memory that can provide the
investigators with valuable information.

The second category of memory forensic analysis techniques that were detailed
in this thesis involves an approach to reconstruct the execution of processes that were
executing at the time the image was taken from the memory. These techniques consist
of two phases. The first phase is to model the execution of the process by analyzing the
process executable. The second phase is to try to find an execution path in the process
executable model that generates an execution trace that matches the existing trace in
the image. The first phase is conducted in three steps; First, the executable is parsed

to extract the control flow graph of each function in the executable. Next each control
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flow graph is turned into a finite state machine. Last, the state machines representing
each function are combined into a pushdown system that represents the whole program.
During the second phase, the pushdown system of the executable is traversed based on
the information on the stack to produce all possible execution path of the program in
the form of a state machine.

In the second category of memory forensic analysis, the focus of the analysis is
to retrieve history rather than extracting leftover structures and object from raw data.
In this analysis, we included only the stack leftovers, and the executable code. The
result of this analysis entails the execution path that was executed by the process in
terms of function call and return. Although this result can provide valuable insights
and evidence, more accurate and useful results can be extracted if the argument values
that are passed to these functions are determined. The inclusion of arguments in the
analysis results requires dynamic analysis of program heap, stack, and registers. The
author strongly believes that the inclusion of heap and registry related information and
the correlation of these information with other existing evidence such as network logs
can reveal many information that are of outmost value in a digital investigation.

Another possible application of the introduced techniques is in debugging and
software maintenance procedures. Using the elaborated techniques, one can reproduce
the chain of events that happened at the time of the incident. Therefore, the crash
information such as memory dumps and system snapshots can be analyzed using the

technique introduced in this thesis to point out the faulting execution paths.
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APPENDIX I - Internal Windows Structures

JOBs
kd> dt _EJOB
+0x000 Event : _KEVENT
+0x010 JobLinks : _LIST_ENTRY
+0x018 ProcessListHead : _LIST_ENTRY
+0x020 JobLock : _ERESOURCE
+0x058 TotalUserTime : _LARGE_INTEGER
+0x060 TotalKernelTime : _LARGE_INTEGER
+0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER
+0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER
+0x078 TotalPageFaultCount : Uint4B
+0x07c¢ TotalProcesses : Uint4B
+0x080 ActiveProcesses : Uint4B
+0x084 TotalTerminatedProcesses : Uint4B
+0x088 PerProcessUserTimelLimit : _LARGE_INTEGER
+0x090 PerJobUserTimeLimit : _LARGE_INTEGER
+0x098 LimitFlags : Uint4B
+0x08¢ MinimumWorkingSetSize : Uint4B
+0x0a0 MaximumWorkingSetSize : Uint4B
+0x0a4 ActiveProcessLimit : Uint4B
+0x0a8 Affinity : Uint4B
+0x0ac PriorityClass : UChar
+0x0b0 UIRestrictionsClass : Uint4B
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+0x0b4 SecuritylLimitFlags : Uint4B
+0x0b8 Token : Ptr32 Void
+0x0bc Filter : Ptr32 _PS_JOB_TOKEN_FILTER

+0x0c0 EndOfJobTimeAction : Uint4B

+0x0c4 CompletionPort : Ptr32 Void
+0x0c8 CompletionKey : Ptr32 Void
+0x0cc SessionId : Uint4B

+0x0d0 SchedulingClass : Uint4B
+0x0d8 ReadUOperationCount : Uint8B
+0x0e0 WriteOperationCount : Uint8B
+0x0e8 OtherOperationCount : Uint8B
+0x0f0 ReadTransferCount : Uint8B
+0x0f8 WriteTransferCount : Uint8B
+0x100 OtherTransferCount : Uint8B
+0x108 IoInfo : _IO_COUNTERS
+0x138 ProcessMemoryLimit : Uint4B
+0x13c JobMemoryLimit : Uint4B
+0x140 PeakProcessMemoryUsed : Uint4B
+0x144 PeakJobMemoryUsed : Uint4B
+0x148 CurrentJobMemoryUsed : Uint4B

+0x14c MemoryLimitsLock : _FAST_MUTEX

+0x16c JobSetLinks : _LIST_ENTRY
+0x174 MemberLevel : Uint4B
+0x178 JobFlags : Uint4B
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Structure _EPROCESS

kd> dt _EPROCESS

+0x000 Pcb : _KPROCESS
+0x06¢ Processlock : _EX_PUSH_LOCK
+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : Ptr32 Void

+0x088 ActiveProcessLinks : _LIST_ENTRY

+0x090 QuotaUsage : [3] Uint4B
+0x09¢c QuotaPeak : [3] Uint4B
+0x0a8 CommitCharge : Uint4B

+0x0ac PeakVirtualSize : Uint4B
+0x0b0 VirtualSize : Uint4B

+0x0b4 SessionProcessLinks : _LIST_ENTRY

+0x0bc DebugPort : Ptr32 Void

+0x0c0 ExceptionPort : Ptr32 Void

+0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE
+0x0c8 Token : _EX_FAST_REF

+0x0cc WorkingSetLock : _FAST_MUTEX

+0x0ec WorkingSetPage : Uint4B

+0x0f0 AddressCreationLock : _FAST_MUTEX
+0x110 HyperSpacelock : Uint4B
+0x114 ForkInProgress : Ptr32 _ETHREAD

+0x118 HardwareTrigger : Uint4B
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+0x11lc VadRoot : Ptr32 Void
+0x120 VadHint ¢ Ptr32 Void
+0x124 CloneRoot : Ptr32 Void
+0x128 NumberOfPrivatePages : Uint4B

+0x12c¢c NumberOfLockedPages : Uint4B

+0x130 Win32Process : Ptr32 Void
+0x134 Job : Ptr32 _EJOB
+0x138 SectionObject : Ptr32 Void

+0x13c SectionBaseAddress : Ptr32 Void
+0x140 QuotaBlock

Ptr32 _EPROCESS_QUOTA_BLOCK
+0x144 WorkingSetWatch

Ptr32 _PAGEFAULT_HISTQRY
+0x148 Win32WindowStation : Ptr32 Void

+0x14c InheritedFromUniqueProcessId:

Ptr32 Void
+0x150 LdtInformation : Ptr32 Void
+0x154 VadFreeHint : Ptr32 Void
+0x158 VdmObjects : Ptr32 Void
+0x15c DeviceMap : Ptr32 Void
+0x160 PhysicalVadList : _LIST_ENTRY

+0x168 PageDirectoryPte :
_HARDWARE_PTE_X86
+0x168 Filler : Uint8B

+0x170 Session : Ptr32 Void
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+0x174 ImageFileName : [16] UChar
+0x184 JobLinks : _LIST_ENTRY

+0x18c LockedPagesList : Ptr32 Void

+0x190 ThreadListHead : _LIST_ENTRY
+0x198 SecurityPort : Ptr32 Void
+0x19¢c PaeTop : Ptr32 Void
+0x1a0 ActiveThreads : Uint4B
+0x1a4 GrantedAccess : Uint4B

+0x1a8 DefaultHardErrorProcessing : Uint4B

+0xlac LastThreadExitStatus : Int4B

+0x1b0 Peb : Ptr32 _PEB

+0x1b4 PrefetchTrace : _EX_FAST_REF

+0x1b8 ReadOperationCount : _LARGE_INTEGER

+0x1c0 WriteOperationCount : _LARGE_INTEGER

+0x1c8 OtherOperationCount : _LARGE_INTEGER

+0x1d0 ReadTransferCount : _LARGE_INTEGER

+0x1d8 WriteTransferCount : _LARGE_INTEGER

+0x1e0 OtherTransferCount : _LARGE_INTEGER

+0x1e8 CommitChargelimit : Uint4B

+0xlec CommitChargePeak : Uint4B

+0x1f0 Awelnfo ¢ Ptr32 Void

+0x1f4 SeAuditProcessCreationInfo :
_SE_AUDIT_PROCESS_CREATION_INFO

+0x1£f8 Vm : _MMSUPPORT

+0x238 LastFaultCount : Uinté4B
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+0x23¢ ModifiedPageCount : Uint4B

+0x240 NumberQfVads : Uint4B
+0x244 JobStatus : Uint4B
+0x248 Flags : Uint4B
+0x248 CreateReported : Pos 0, 1 Bit
+0x248 NoDebugInherit : Pos 1, 1 Bit
+0x248 ProcessExiting : Pos 2, 1 Bit
+0x248 ProcessDelete : Pos 3, 1 Bit

+0x248 Wow64SplitPages : Pos 4, 1 Bit

+0x248 VmDeleted : Pos 5, 1 Bit
+0x248 OutswapEnabled : Pos 6, 1 Bit
+0x248 Outswapped : Pos 7, 1 Bit
+0x248 ForkFailed : Pos 8, 1 Bit
+0x248 HasPhysicalVad : Pos 9, 1 Bit

+0x248 AddressSpaceInitialized : Pos 10, 2 Bits
+0x248 SetTimerResolution : Pos 12, 1 Bit
+0x248 BreakOnTermination : Pos 13, 1 Bit
+0x248 SessionCreationUnderway : Pos 14, 1 Bit
+0x248 WriteWatch : Pos 15, 1 Bit

+0x248 ProcessInSession : Pos 16, 1 Bit

+0x248 OverrideAddressSpace : Pos 17, 1 Bit
+0x248 HasAddressSpace : Pos 18, 1 Bit

+0x248 LaunchPrefetched : Pos 19, 1 Bit

+0x248 InjectInpageErrors : Pos 20, 1 Bit

+0x248 VmTopDown : Pos 21, 1 Bit
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+0x248

+0x248

+0x248

+0x248

+0x248

+0x248

+0x24c

+0x250

+0x252

+0x253

+0x252

+0x254

+0x2565

+0x258

Unused3 : Pos 22, 1 Bit
Unused4 : Pos 23, 1 Bit
VdmAllowed : Pos 24, 1 Bit
Unused : Pos 25, 5 Bits
Unusedl : Pos 30, 1 Bit
Unused2 : Pos 31, 1 Bit
ExitStatus : Int4B
NextPageColor : Uint2B

SubSystemMinorVersion : UChar
SubSystemMajorVersion : UChar
SubSystemVersion : Uint2B
PriorityClass : UChar
WorkingSetAcquiredUnsafe : UChar

Cookie : Uint4B

179



Structure _PEB

kd> dt _PEB
+0x000 InheritedAddressSpace : UChar

+0x001 ReadImageFileExecOptions : UChar

+0x002 BeingDebugged : UChar
+0x003 SpareBool : UChar
+0x004 Mutant : Ptr32 Void

+0x008 ImageBaseAddress : Ptr32 Void
+0x00c Ldr : Ptr32 _PEB_LDR_DATA

+0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS

+0x014 SubSystemData : Ptr32 Void
+0x018 ProcessHeap : Ptr32 Void
+0x01c FastPebLock : Ptr32 _RTL_CRITICAL_SECTION

+0x020 FastPebLockRoutine : Ptr32 Void
+0x024 FastPebUnlockRoutine : Ptr32 Void
+0x028 EnvironmentUpdateCount : Uint4B
+0x02c KernelCallbackTable : Ptr32 Void
+0x030 SystemReserved : [1] Uint4B

+0x034 AtlThunkSListPtr32 : Uint4B

+0x038 Freelist : Ptr32 _PEB_FREE_BLOCK
+0x03c TlsExpansionCounter : Uint4B

+0x040 TlsBitmap : Ptr32 Void

+0x044 TlsBitmapBits : [2] Uint4B

+0x04c ReadOnlySharedMemoryBase : Ptr32 Void

+0x050 ReadOnlySharedMemoryHeap : Ptr32 Void
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+0x054
+0x058
+0x05¢
+0x060
+0x064
+0x068
+0x070
+0x078
+0x07c
+0x080
+0x084
+0x088
+0x08¢
+0x090
+0x094
+0x098
+0x09c¢
+0x0a0
+0x0a4
+0x0a8
+0x0ac
+0x0ae
+0x0b0
+0x0b4

+0x0b8

ReadOnlyStaticServerData : Ptr32 Ptr32 Void
AnsiCodePageData : Ptr32 Void
OemCodePageData : Ptr32 Void
UnicodeCaseTableData : Ptr32 Void
NumberOfProcessors : Uint4B
NtGlobalFlag : Uint4B
CriticalSectionTimeout : _LARGE_INTEGER
HeapSegmentReserve : Uint4B
HeapSegmentCommit : Uint4B
HeapDeCommitTotalFreeThreshold : Uint4B
HeapDeCommitFreeBlockThreshold : Uint4B
NumberOfHeaps : Uint4B
MaximumNumberOfHeaps : Uint4B
ProcessHeaps : Ptr32 Ptr32 Void
GdiSharedHandleTable : Ptr32 Void
ProcessStarterHelper : Ptr32 Void

GdiDCAttributelList : Uint4B

LoaderLock : Ptr32 Void
OSMajorVersion : Uint4B
OSMinorVersion : Uint4B
0SBuildNumber : Uint2B
0SCSDVersion : Uint2B
OSPlatformId : Uint4B
ImageSubsystem : Uint4B

ImageSubsystemMajorVersion : Uint4B
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+0x0bc
+0x0c0
+0x0c4
+0x14c
+0x150
+0x154
+0x1d4
+0x1d8
+0x1e0
+0x1e8
+0Oxlec
+0x1£0
+0x1£8
+0x1fc
+0x200
+0x204

+0x208

ImageSubsystemMinorVe

ImageProcessAffinityM

rsion

ask

: Uint4B

: Uint4B

GdiHandleBuffer : [34] Uint4B

PostProcessInitRoutin
TlsExpansionBitmap :

TlsExpansionBitmapBit
SessionId ¢ Ui
AppCompatFlags

AppCompatFlagsUser :

e : Pt
Ptr32
s : [3

nt4B

_ULARG

r32
Void

2] Uint4B

: _ULARGE_INTEGER

E_INTEGER

pShimData : Ptr32 Void

AppCompatInfo : Ptr32 Void

CSDVersion : _UNICODE_STRING

ActivationContextData :

ProcessAssemblyStorag

Ptr

eMap :

32 Void

Ptr32 Voi

SystemDefaultActivationContextData :

SystemAssemblyStorage

MinimumStackCommit

Map :

: Uint4B

Ptr32 Void
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Structure _rtl_user_process_parameters

dt _rtl_user_process_parameters

0x000
0x004
0x008
0x00c¢
0x010
0x014
0x018
0x01c
0x020
0x024
0x030
0x038
0x040
0x048
0x04c
0x050
0x054
0x058
0x05¢
0x060
0x064

0x068

MaximumLength
Length

Flags
DebugFlags
ConsoleHandle
ConsoleFlags
StandardInput
StandardQutput

StandardError

CurrentDirectory :

D11Path
ImagePathName
CommandLine
Environment
StartingX
Startingy
CountX
CountY
CountCharsX
CountCharsY
FillAttribute

WindowFlags

: Uint4dB

: Uint4B

: Uint4dB

: Uint4B

: Ptr32 Void

: Uint4B

: Ptr32 Void

: Ptr32 Void

: Ptr32 Void

_CURDIR

: _UNICODE_STRING
: _UNICODE_STRING
: _UNICODE_STRING
¢ Ptr32 Void

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

¢ Uint4B

: Uint4B
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0x06¢c

0x070

0x078

0x080

0x088

0x090

ShowWindowFlags
WindowTitle
DesktopInfo
ShellInfo

RuntimeData

CurrentDirectores :

: Uint4B

: _UNICODE_STRING
: _UNICODE_STRING
: _UNICODE_STRING

: _UNICODE_STRING

(32] _RTL_DRIVE_LETTER_CURDIR
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Structure _ KPROCESS

kd> dt _KPROCESS
+0x000 Header : _DISPATCHER_HEADER
+0x010 ProfilelistHead : _LIST_ENTRY

+0x018 DirectoryTableBase : [2] Uint4B

+0x020 LdtDescriptor : _KGDTENTRY
+0x028 Int21Descriptor : _KIDTENTRY
+0x030 IopmOffset : Uint2B
+0x032 Iopl : UChar
+0x033 Unused : UChar

+0x034 ActiveProcessors : Uint4B

+0x038 KernelTime : Uint4B

+0x03c UserTime : Uint4B

+0x040 ReadylListHead : _LIST_ENTRY

+0x048 SwaplListEntry : _SINGLE_LIST_ENTRY

+0x04c VdmTrapcHandler : Ptr32 Void

+0x050 ThreadListHead : _LIST_ENTRY
+0x058 ProcessLock : Uint4B
+0x05¢c Affinity : Uint4B
+0x060 StackCount : Uint2B
+0x062 BasePriority : Char

+0x063 ThreadQuantum : Char

+0x064 AutoAlignment : UChar
+0x065 State : UChar
+0x066 ThreadSeed ¢ UChar
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+0x067 DisableBoost : UChar

+0x068 PowerState : UChar
+0x069 DisableQuantum : UChar
+0x06a IdealNode : UChar
+0x06b Flags : _KEXECUTE_OPTIONS
+0x06b Executelptions : UChar
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Structure _ ETHREAD

kd> dt _ETHREAD
+0x000 Tcb : _KTHREAD
+0x1c0 CreateTime : _LARGE_INTEGER

+0x1c0 NestedFaultCount : Pos 0, 2 Bits

+0x1c0 ApcNeeded : Pos 2, 1 Bit
+0x1c8 ExitTime : _LARGE_INTEGER
+0x1c8 LpcReplyChain : _LIST_ENTRY
+0x1c8 KeyedWaitChain  : _LIST_ENTRY
+0x1d0 ExitStatus : Int4B

+0x1d0 OfsChain : Ptr32 Void
+0x1d4 PostBlockList : _LIST_ENTRY

+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT
+0x1dc ReaperLink : Ptr32 _ETHREAD

+0x1dc KeyedWaitValue : Ptr32 Void

+0x1e0 ActiveTimerListLock : Uint4B

+0xled ActiveTimerListHead : _LIST_ENTRY

+0xlec Cid : _CLIENT_ID

+0x1f4 LpcReplySemaphore : _KSEMAPHORE

+0x1f4 KeyedWaitSemaphore : _KSEMAPHORE

+0x208 LpcReplyMessage : Ptr32 Void

+0x208 LpcWaitingOnPort : Ptr32 Void

+0x20c ImpersonationInfo : Ptr32 _PS_IMPERSONATION_INFORMATION
+0x210 IrplList : _LIST_ENTRY

+0x218 TopLevellrp : Uint4B
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+0x21c DeviceToVerify : Ptr32 _DEVICE_0OBJECT
+0x220 ThreadsProcess : Ptr32 _EPROCESS
+0x224 StartAddress : Ptr32 Void

+0x228 Win32StartAddress : Ptr32 Void

+0x228 LpcReceivedMessageld : Uint4B

+0x22c¢ ThreadListEntry : _LIST_ENTRY
+0x234 RundownProtect : _EX_RUNDOWN_REF
+0x238 ThreadLock : _EX_PUSH_LOCK

+0x23c¢ LpcReplyMessageld : Uint4B

+0x240 ReadClusterSize : Uint4B

+0x244 GrantedAccess : Uint4B

+0x248 CrossThreadFlags : Uint4B

+0x248 Terminated : Pos 0, 1 Bit
+0x248 DeadThread : Pos 1, 1 Bit
+0x248 HideFromDebugger : Pos 2, 1 Bit
+0x248 ActivelmpersonationInfo : Pos 3, 1 Bit
+0x248 SystemThread : Pos 4, 1 Bit
+0x248 HardErrorsAreDisabled : Pos 5, 1 Bit
+0x248 BreakOnTermination : Pos 6, 1 Bit
+0x248 SkipCreationMsg : Pos 7, 1 Bit
+0x248 SkipTerminationMsg : Pos 8, 1 Bit
+0x24c SameThreadPassiveFlags : Uint4B
+0x24c ActiveExWorker : Pos 0, 1 Bit
+0x24c ExWorkerCanWaitUser : Pos 1, 1 Bit

+0x24c¢ MemoryMaker : Pos 2, 1 Bit
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+0x250 SameThreadApcFlags : Uint4B

+0x250 LpcReceivedMsgIdValid : Pos 0, 1 Bit
+0x250 LpcExitThreadCalled : Pos 1, 1 Bit
+0x250 AddressSpaceQwner : Pos 2, 1 Bit
+0x254 ForwardClusterOnly : UChar

+0x255 DisablePageFaultClustering : UChar
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Structure _ KTHREAD

kd> dt _KTHREAD

+0x000 Header : _DISPATCHER_HEADER
+0x010 MutantListHead : _LIST_ENTRY
+0x018 InitialStack : Ptr32 Void
+0x01c StackLimit : Ptr32 Void
+0x020 Teb : Ptr32 Void
+0x024 TlsArray : Ptr32 Void
+0x028 KernelStack : Ptr32 Void
+0x02c DebugActive : UChar
+0x02d State : UChar
+0x02e Alerted : [2] UChar
+0x030 Iopl : UChar
+0x031 NpxState : UChar
+0x032 Saturation : Char

+0x033 Priority : Char

+0x034 ApcState : _KAPC_STATE

+0x04c ContextSwitches : Uint4B

+0x050 IdleSwapBlock : UChar
+0x051 Spare0 : [3] UChar
+0x054 WaitStatus : Int4B
+0x068 WaitIrql : UChar
+0x059 WaitMode : Char
+0x05a WaitNext : UChar
+0x05b WaitReason : UChar
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+0x05¢
+0x060
+0x060
+0x068
+0x06¢
+0x06d
+0x06e
+0x06f
+0x070
+0x0d0
+0x0d4
+0x0d8
+0x0dc
+0x0dd
+0x0de
+0x0df
+0x0e0
+0x0e4
+0x0e8
+0x0£0
+0x118
+0x120
+0x124
+0x128

+0x129

WaitBlockList : Ptr32 _KWAIT_BLOCK
WaitListEntry : _LIST_ENTRY
SwapListEntry : _SINGLE_LIST_ENTRY
WaitTime : Uint4B
BasePriority : Char
DecrementCount : UChar
PriorityDecrement : Char

Quantum : Char

WaitBlock (4] _KWAIT_BLOCK
LegoData : Ptr32 Void
KernelApcDisable : Uint4B
UserAffinity : Uint4B
SystemAffinityActive : UChar
PowerState : UChar

NpxIrql : UChar
InitialNode : UChar
ServiceTable : Ptr32 Void

Queue : Ptr32 _KQUEUE
ApcQueueLlock : Uint4B

Timer ¢ _KTIMER
QueueListEntry : _LIST_ENTRY
SoftAffinity : Uint4B

Affinity : Uint4B

Preempted : UChar
ProcessReadyQueue : UChar
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+0x12a
+0x12b
+0x12c¢
+0x130
+0x134
+0x138
+0x140
+0x141
+0x142
+0x143
+0x144
+0x148
+0x14c
+0x164
+0x165
+0x166
+0x167
+0x168
+0x16¢c
+0x19¢
+0x1b0
+0x1b8
+0x1b9
+0x1ba

+0x1bb

KernelStackResident

NextProcessor
CallbackStack
Win32Thread
TrapFrame
ApcStatePointer
PreviousMode
EnableStackSwap
LargeStack
ResourceIndex
KernelTime
UserTime
SavedApcState
Alertable
ApcStatelndex
ApcQueueable
AutoAlignment
StackBase

SuspendApc

SuspendSemaphore :

ThreadListEntry
FreezeCount
SuspendCount
IdealProcessor

DisableBoost

: UChar

: UChar
: Ptr32 Void
: Ptr32 Void

: Ptr32 _KTRAP_FRAME

(2] Ptr32 _KAPC_STATE

: Char

: UChar

: UChar

: UChar

: Uint4B

: Uint4B

: _KAPC_STATE
: UChar

: UChar

: UChar

: UChar

¢ Ptr32 Void

: _KAPC

-KSEMAPHORE

: _LIST_ENTRY
: Char

: Char

: UChar

: UChar
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Structure _TOKEN

kd> dt _TOKEN

+0x000 TokenSource

+0x010 TokenId

+0x018

+0x020 ParentTokenId

+0x028 ExpirationTime

+0x030 TokenLock

+0x038 AuditPolicy

+0x040 ModifiedId

+0x048 SessionId

+0x04c UserAndGroupCount

+0x050

+0x054 PrivilegeCount

+0x058 VariableLength

+0x05¢c DynamicCharged

+0x060 DynamicAvailable

+0x064 DefaultOwnerIndex

+0x068 UserAndGroups

+0x06c RestrictedSids

+0x070 PrimaryGroup

+0x074 Privileges

+0x078 DynamicPart

+0x07¢c DefaultDacl

+0x080 TokenType

Authenticationld :

RestrictedSidCount

: Ptr32
: Ptr32
: Ptr32
: Ptr32
: Ptr32

: Ptr32

: _TOKEN_SOURCE

: _LUID

_LUID

: _LUID

: _LARGE_INTEGER

: Ptr32 _ERESOURCE
: _SEP_AUDIT_POLICY
: _LUID

: Uint4B

: Uint4B

: Uint4B

: Uint4B
: Uint4B
: Uint4B
: Uint4B

: Uint4B

_SID_AND_ATTRIBUTES
_SID_AND_ATTRIBUTES
Void
_LUID_AND_ATTRIBUTES
Uint4B

_ACL

: _TOKEN_TYPE
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+0x084 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL

+0x088 TokenFlags : Uint4B
+0x08c TokenInUse : UChar
+0x090 ProxyData : Ptr32 _SECURITY_TOKEN_PROXY_DATA
+0x094 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA

+0x098 OriginatinglogonSession : _LUID

+0x0a0 VariablePart : Uint4B

Structure _ KDDEBUGGER_DATAG64

struct _KDDEBUGGER_DATA64 {

DBGKD_DEBUG_DATA_HEADER64 Header;
ULONG64  KernBase;

ULONG64  BreakpointWithStatus;
ULONG64 SavedContext;

USHORT ThCallbackStack;

USHORT NextCallback;

USHORT FramePointer;

USHORT PaeEnabled:1;

ULONG64 KiCallUserMode;

ULONG64 KeUserCallbackDispatcher; // address in ntdll
ULONG64 PsLoadedModuleList;
ULONG64 PsActiveProcessHead;
ULONG64  PspCidTable;

ULONG64  ExpSystemResourcesList;
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ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG6E4
ULONG64
ULONG64
ULONG64

ULONG64

ExpPagedPoolDescriptor;
ExpNumberOfPagedPools;
KeTimelIncrement;
KeBugCheckCallbackListHead;
KiBugcheckData;
IopErrorLoglListHead;
ObpRootDirectorylObject;
ObpTypeUbjectType;
MmSystemCacheStart;
MmSystemCacheEnd;
MmSystemCacheWs;
MmPfnDatabase;
MmSystemPtesStart;
MmSystemPtesEnd;
MmSubsectionBase;
MmNumberOfPagingFiles;
MmLowestPhysicalPage;
MmHighestPhysicalPage;
MmNumberOfPhysicalPages;
MmMaximumNonPagedPoolInBytes;
MmNonPagedSystemStart;
MmNonPagedPoolStart;
MmNonPagedPoolEnd;
MmPagedPoolStart;

MmPagedPoolEnd;
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ULONG64
ULONG6E4
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG6E4
ULONG64
ULONG64
ULONG64

ULONG64

MmPagedPoolInformation;
MmPageSize;
MmSizeOfPagedPoolInBytes;
MmTotalCommitLimit;
MmTotalCommittedPages;
MmSharedCommit;
MmDriverCommit;
MmProcessCommit;
MmPagedPoolCommit;
MmExtendedCommit;
MmZeroedPagelistHead;
MmFreePageListHead;
MmStandbyPagelistHead;
MmModifiedPagelListHead;
MmModifiedNoWritePageListHead;
MmAvailablePages;
MmResidentAvailablePages;
PoolTrackTable;
NonPagedPoolDescriptor;
MmHighestUserAddress;
MmSystemRangeStart;
MmUserProbeAddress;
KdPrintCircularBuffer;
KdPrintCircularBufferEnd;

KdPrintWritePointer;
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ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64
ULONG64

ULONG64

KdPrintRolloverCount;
MmLoadedUserImagelist;
NtBuildLab;
KiNormalSystemCall;
KiProcessorBlock;
MmUnloadedDrivers;
MmLastUnloadedDriver;
MmTriageActionTaken;
MmSpecialPoolTag;
KernelVerifier;
MmVerifierData;
MmAllocatedNonPagedPool;
MmPeakCommitment;
MmTotalCommitLimitMaximum;
CmNtCSDVersion;
MmPhysicalMemoryBlock;
MmSessionBase;
MmSessionSize;

MmSystemParentTablePage;
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