
Security Analysis of an E-commerce Solution

Yazan El-Hamwi

A Thesis

in

The Concordia institute

of

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

July 2008

Yazan El-Hamwi, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42519-0
Our file Notre reference
ISBN: 978-0-494-42519-0

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Security Analysis of an E-commerce Solution

Yazan El-Hamwi

The escalation in the number of people with access to the Internet has fuelled the growth of e-

commerce transactions. In order to stimulate this growth in e-commerce, the adoption of new

business models will be required. In this thesis, we propose the idea of bringing the multi-level

marketing business model into the e-commerce world. For e-commerce applications to take

advantage of the business potential in this business model, some challenging security problems

need to be resolved.

Our proposed protocol provides a method for fair exchange of valuable items between

multiple-parties in accordance with the multi-level marketing business model. It also provides the

required security services needed to increase the overall customers' trust in e-commerce, and hence

increase the rate of committed online transactions. These security services include content

assurance, confidentiality, fair exchange and non-repudiation.

The above security services are usually attained through the use of cryptography. For

example, digital rights management systems deliver e-goods in an encrypted format. As these e-

goods are decrypted before being presented to the end user, cryptographic keys may appear in

the memory which leaves it vulnerable to memory disclosure attacks. In the second part of this

thesis, we investigate a set of memory disclosure attacks which may compromise the

confidentiality of cryptographic keys. We demonstrate that the threat of these attacks is real by

iii

exposing the secret private keys of several cryptographic algorithms used by different

cryptographic implementations of the Java Cryptographic Extension (JCE).

Acknowledgement

I would like to express my deepest sense of gratitude to my supervisor, Dr. Amr Youssef, for

his patient guidance, encouragement and advice throughout this study.

Special thanks to Dr. Willian Atwood and Dr. Mourad Debbabi for their help in the protocol

verification part of this thesis.

I am also thankful to my lab-mates: Hamad Ben Saleeh, Saad Inshi, Mohamed Raslan, and

Esam Elsheh for helping me throughout my research. Appreciation goes to my friend Hani

Safadi at McGill University for his valuable opinions.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, wife and

brothers for their love and support during my studies at Concordia University. This thesis would

not have been possible without their love.

v

List of Contents

Security Analysis Of An E-Commerce Solution ii

Abstract iii

Security Analysis of an E-Commerce Solution iii

List of Contents vi

List of Tables x

List of Figures xi

List of Acronyms xii

Chapter 1 Introduction . Error! Bookmark not defined.

1.1 Aims And Objectives 16

1.2 Achievements And Contributions Error! Bookmark not defined.

1.3 Thesis Outline Error! Bookmark not defined.

Chapter 2 Multi-Party Fair Exchange Protocol For Multi-Level Marketing .Error! Bookmark

not defined.

2.1 Multi-Level Marketing Error! Bookmark not defined.

2.1.1 Abusing Multi-Level Marketing Error! Bookmark not defined.

vi

2.2 The Multi-Party Fair Exchange Protocol Error! Bookmark not defined.

2.3 Multi-Level Marketing And The Multi-Party Fair Exchange ProtocolError! Bookmark

not defined.

2.3.1 TTP Involvement Error! Bookmark not defined.

2.4 Multi-Party Fair Exchange Sub-Protocols Error! Bookmark not defined.

2.4.1 Phase 1: Acquiring Encrypted Product Sub-Protocol..Error! Bookmark not defined.

2.4.2 Phase 2: Multi-Party Exchange Sub-Protocol (Main Protocol). Error! Bookmark not

defined.

2.4.3 Phase 3: Recovery Sub-Protocol Error! Bookmark not defined.

Chapter 3 Security Analysis of the Multi-Party Fair Exchange Protocol Error! Bookmark not

defined.

3.1 Protocol Parties' State Transition Error! Bookmark not defined.

3.1.1 Distributor State Transition: Error! Bookmark not defined.

3.1.2 Client State Transition Error! Bookmark not defined.

3.1.3 Merchant State Transition Error! Bookmark not defined.

3.1.4 Trusted Third Party State Transition Error! Bookmark not defined.

3.2 Formal Verification of Protocols Error! Bookmark not defined.

3.2.1 Overview of Formal Verification Methods Error! Bookmark not defined.

3.3 Model Checking Error! Bookmark not defined.

vii

3.4 Formal Verification of the Multi-Party Fair Exchange Protocol.. Error! Bookmark not

defined.

3.4.1 Model Implementation Error! Bookmark not defined.

Chapter 4 Memory Disclosure Vulnerabilities Error! Bookmark not defined.

4.1 Background and Motivation Error! Bookmark not defined.

4.3 Random Access Memory Error! Bookmark not defined.

4.3.1 Memory Management Error! Bookmark not defined.

4.3.2 Memory Management Goals Error! Bookmark not defined.

4.3.3 Process Isolation Error! Bookmark not defined.

4.4 Java Security Error! Bookmark not defined.

4.4.1 Java Cryptography Architecture Error! Bookmark not defined.

4.4.2 Advanced Encryption Standard (AES) in JCE Error! Bookmark not defined.

4.4.3 RSA in JCE Error! Bookmark not defined.

4.5 Supporting Tools Error! Bookmark not defined.

4.6 Cryptographic Key Signature and Cryptographic Key Scanner... Error! Bookmark not

defined.

4.6.1 AES Key Signature Error! Bookmark not defined.

viii

4.6.2 RSA Key Signature Error! Bookmark not defined.

4.7 Countermeasures Error! Bookmark not defined.

4.8 Discussion and Conclusion Error! Bookmark not defined.

Chapter 5 Conclusion and Future Works Error! Bookmark not defined.

5.1 Achievements Error! Bookmark not defined.

5.2 Future Research Work Error! Bookmark not defined.

List of References Error! Bookmark not defined.

IX

List of Tables

2.1: Acquiring encrypted goods sub-protocol description 29

2.2: Multi-party Exchange sub-protocol (main protocol) 35

2.3: Recovery sub-protocol message exchange 37

4.1: AES key signature associated with encryption and decryption 81

4.2: AES key signature associated with key generation 82

4.3: AES key signature associated with encryption and decryption when using BEA JRockit 5.0... 83

4.4: AES key signature associated with key generation when using BEA JRockit 5.0 85

4.5: RSA key signature associated with encryption and decryption 86

x

List of Figures
2.1: Acquiring encrypted goods sub-protocol description 26

2.2: Encrypted Product Assurance 28

2.3: Multi-party exchange sub-protocol (main protocol) 34

2.4: Recovery sub-protocol 36

3.1: Referee state transition 41

3.2: Client state transition 43

3.3: Merchant state transition 45

3.4: Trusted Third Party state transition 48

3.5: XPINLTL Manager 60

4.1: Memory hierarchy 67

XI

List f Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

CA Content Assurance

CBC Cipher-Block Chaining

CEGAR Counter Example Guided Abstraction Refinement

CFB Cipher feedback

CL Client

COM Commission

CSP Cryptographic Service Provider

DES Data Encryption Standard

DRM Digital Rights Management

DST Distributor

EP Encrypted Product

EPA Encrypted Product Assurance

xn

FIFO First-In First-Out

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

J2SE Java 2 Platform, Standard Edition

JCA Java cryptography Architecture

JCE Java Cryptography Extension

LTL Linear Temporal Logic

MER Merchant

MLM Multi-Level Marketing

MRMC Markov Reward Model Checker

OFB Output Feedback

OP Order of Purchase

GR Good Request

PROMELA Process or Protocol Meta Language

RAM Random Access Memory

REF Referral

xm

ROP Referred Order of Purchase

RSA Public Key Cryptographic algorithm described by Rivest, Shamir, and Adleman

SET Secure Electronic Transaction protocol

SSL Secure Socket Layer protocol

STTP Semi Trusted Third Party

TLS Transport Layer Security protocol

TO Transaction Order

TTP Trusted Third Party

xiv

Chapter 1

Introduction

Electronic commerce, commonly known as e-commerce, consists of buying and selling products,

information, and services over the Internet [1]. It provides customers with the flexibility of

purchasing without leaving the houses with just few clicks. The web development and the

increasing number of Internet users are contributing to the e-commerce business revolution.

Purchasing any merchandize on the Internet has never been so popular. E-commerce not only

includes Business-to-Consumer (B2C) e-commerce, but also includes Business-to-Business

(B2B) e-commerce where the transactions are conducted between companies rather than between

a company and a customer [1].

E-commerce transactions allow the purchase of valuable electronic goods (e-goods) from

online websites such as e-bay (e-purchase). The required security services for an e-commerce

protocol include confidentiality, fair exchange, non-repudiation, and content assurance [2].

Non-repudiation consists of two parts: non-repudiation of origin and non-repudiation of

receipt. Non-repudiation of origin guarantees that data or product has originated from the

claimed source, while the non-repudiation of receipt guarantees that the data has been received

by the claimed entity. It protects parties against each other from falsely denying having sent or

received an item during a transaction. While Fair exchange ensures that either all involved

1

parties receive expected items or no party receives any valuable item. It guarantees that a

merchant and a customer involved in a transaction receive the payment and the e-good

respectively. Content assurance security service assures the receiver of an item to be delivered

the expected e-good item that was ordered.

In this thesis, we investigate some aspects of the multi-level marketing business model.

One example of this model is the case when a special user, distributor, refers a merchandize

provided by a merchant to a customer, and the customer goes on and buy that merchandize from

the merchant and the distributor gets a commission for the referral. This is a typical transaction

in the multi-level marketing model. We propose bringing this business model into the e-

commerce world. Our first contribution in this thesis, is the proposal of a multi-party fair

exchange protocol; a protocol that can be used as a building block to provide the ability to

securely and fairly exchange e-goods among multiple parties in a Digital Rights management

system according the multi-level marketing business model [3].

In order to provide confidentiality and other security services for e-goods and other

components of a digital rights management systems, we use cryptography not only to secure

communication but also applications. To provide strong protection, cryptography depends on the

assumption that cryptographic keys are kept secret. This assumption is hard to assure, not

because a cryptographic algorithm is not computationally strong enough, but because of the

existence of side channel attacks that may reach used cryptographic keys while in use in

memory. Such attacks make it relatively easy to compromise sensitive information such as

cryptographic keys. In this thesis, we investigate a class of attacks, namely memory disclosure

2

attacks [4] which exploit memory disclosure vulnerabilities to compromise the confidentiality of

cryptographic keys. We demonstrate that the threat is real by formulating an attack that exposes

private and secret keys used by many cryptographic implementations of the Java Cryptographic

Extension (JCE).

1.1 Aims and Objectives

One of our main objectives of this research work is to increase the user's confidence in e-

commerce by attracting new customers to the e-commerce business through the facilitation of

implementation of a new business model, namely the multi-level marketing model. Exchanging

items between multiple parties in a fair way is an important building block in committing e-

commerce transactions. In particular, we try to rise above the inherent unfairness when

exchanging valuable items between parties on the Internet. The proposed protocol should be able

to safeguard the involved parties form all types of fraud and misuse that disrupt e-commerce

transactions. It should meet the security requirements of all parties and does not discriminate

against any well behaving party.

Such a system would increase the overall customer's trust in e-commerce and increase

the rate of committed online transactions.

The proposed multi-party exchange protocol facilitates the exchange of products between

parties which is a core operation in an e-commerce business. Exchanging items between multiple

parties facilitates the bringing of multi-level marketing business model into e-commerce. This

exchange can also empower digital rights systems by allowing a secure exchange of e-goods.

3

Our other emphasis, in this thesis, is the evaluation of the security services provided by

cryptographic libraries which is heavily used in securing e-goods delivered by many e-commerce

applications. These cryptographic libraries provide the security services needed for securing

many communications, applications and systems. These libraries are successful in these services

as long as it is successful in keeping sensitive information such as passwords and private keys

secret. We explore Memory disclosure attacks against some of these popular cryptographic

libraries. In Particular, we show that some popular implementations of the Java Cryptography

Extension (JCE) have memory disclosure vulnerabilities. We describe the vulnerabilities, for

many symmetric and public key algorithms. Then we discuss a set of counter measures to these

vulnerabilities.

1.2 Achievements and Contributions

The presented research work in this thesis has led to the following contributions and

achievements:

• The design of the multi-party fair exchange protocol, a protocol that facilitates the fair

exchange of valuable items between multiple parties according the multi-level marketing

business model. The exchange of items is done among a distributor, a client, and a

merchant with the aid of a trusted third party. Our protocol provide the following

features:

4

a. A fair exchange of items. That is, as the distributor provides a referral, she gets a

commission, as the client pays for a product or service she gets it, and asthe

merchant provides the product or service she gets paid. While the role of the

trusted third party is to ensure either all parties get their expected items or none of

them does. Our protocol provides fairness in the sense that either all parties get

their expected items or none gets any valuable item [2].

b. Content assurance of the delivered items. That is each one of the three parties

involved in the protocol should get her exact expected item. In a media

distribution system, a customer who has bought a song or a book with a certain

quality in a certain format, should get her song or book in the exact right

specification that she has asked for and so does the merchant and distributor; they

should get their exact amount of payment.

We provide informal and formal security analysis of the protocol. We achieve the formal

verification analysis of the fairness property by modelling the protocol using PROMELA

modelling language, then running the SPIN model checker to verify the fairness property

described in Linear Temporal Logic against the PROMELA model of the protocol [18].

Verification of the security requirements and the protocol simulation provide assurance of the

correctness of the protocol and its security properties to an acceptable level.

In order to secure a distributed system or application they have to run in a secure

environment. A system is assumed to be secure only as long as it is successful to keep the

5

cryptographic keys secret that it uses safe. The security of entire system becomes vulnerable

once its cryptographic keys or passwords are compromised.

We describe scenarios of locating cryptographic keys and passwords in memory by

running multiple experiments on multiple cryptographic algorithms. Our main focus is to detect

key signatures. These key signatures allow locating cryptographic keys used by the

implementations of the Java Cryptography Extension (JCE) in the memory. We will present the

key signature of both symmetric and public-key algorithms. Finally, we propose a set of

countermeasure that makes exploiting the described vulnerabilities more difficult but

unfortunately still possible.

1.3 Thesis Outline

The rest of the thesis is organised as follows:

• In Chapter 2, we describe the multi level marketing business model, then we move into

presenting the design of the multi-party fair exchange protocol and sub protocols. We

also describe how our multi-party fair exchange protocol can serve into an online service

for selling products and services on the net and still adopt the multi-level marketing

business model.

• In Chapter 3, we conduct formal analyses of the fairness property of our proposed multi

party fair exchange using the SPIN model checker.

• In Chapter 4, we present the vulnerability of locating and extracting cryptographic keys

used by many applications and servers in the memory.

6

• Finally, our conclusions and suggestions for possible future research work are presented

in Chapter 5.

7

Chapter 2

Multi-party Fair Exchange Protocol

for Multi-level Marketing

2.1 Multi-Level Marketing

Multi-level marketing, also known as "network" marketing and "matrix" marketing, is a

combination of direct marketing and franchising. It is a business model that adds the power of

networking (sharing of resources, connection with people, and information) to the traditional

marketing process.

Statistics show that large percent of the cost of any product or service you pick up is not

in manufacturing but in distribution [11]. Multi-level marketing is a business model that is

booming business all around the world; it is used in all states of the Unites States and here in

Canada where it became a growing multi-billion dollar industry. The reputation of multi-level

marketing has been affected by "pyramid" schemes and Ponzi scams which are illegal in Canada

and most other countries [11].

8

The difference between traditional marketing and multi-level marketing is that in

traditional marketing, the product reaches the consumers by a chain of middlemen who act as a

link between the manufacturer and the consumer. Each middleman gets his profit from the

difference between the price of selling and the price of buying. However, in Multi-level

marketing, people signing up with the company as distributors receive commissions for the sales

they made and whoever they recruit in the "downline".

2.1.1 Abusing Multi-Level Marketing

In the most illegal "pyramid" schemes, participants attempt to make money solely by recruiting

new participants (clients) into the program. The Ponzi scheme is an illegal pyramid scheme

named after Charles Ponzi, who took advantage of thousands in England, who invested their

money in a postage stamp speculation scheme back in 1920s [11].

Usually legal pyramid schemes are associated with the sales of a product or service, and

this could help in recognizing the legality of some multi-level marketing schemes. Another

theme that distinguishes illegal "pyramid" schemes is the promise of a very high return in

exchange for doing nothing but to handing over your money, and encouraging others to do the

same. This is caused by the difficulty in providing the promised profits in pyramid schemes.

9

2.2 The Multi-Party Fair Exchange Protocol

The purpose of this protocol is to allow the three parties to perform an online transaction where

each one of them is sure that the exchange of items, and money, is done in a fair and secure way.

The three parties involved in this transaction are the distributor, client and merchant in the

following described way.

First, the distributor refers a product or service to a client in exchange for a commission

on the transaction that will take place between the client and the merchant. Then, the client buys

the product or the service from the merchant. The client presents a referred order of purchase to

the merchant and she expects to get the product or service in return. As, the merchant wants to

get paid in exchange for selling a product or providing a service to the client, the merchant

understands that she will pay a Commission to the distributor who referred the client.

2.3 Multi-Level Marketing and The Multi-Party Fair Exchange Protocol

The multi-party exchange protocol can be the core protocol of an online implementation of

multi-level marketing for selling products and services on the net. Multi-level marketing

transactions take place between three parties: the distributor, the clients and the merchant, where

the distributor recommends a service or a product to the client who can obtain the product or

service online from the merchant. Once the client does so, the three parties get their expected

items from the transaction committed with the aid of a Trusted Third Party (TTP) .This is exactly

what our protocol is trying to accomplish by trying to make sure that the distributor gets his/her

10

commission, the client gets his/her product or service, and the merchant get paid for what has

sold.

Building a system on the top of this protocol will transfer the traditional multi-level

marketing model to the e-commerce world. Such a transfer would require a protocol that can act

as the base for the exchange transaction. We believe that our protocol is an attempt to fulfill this

role.

Taking the multi-level marketing model into an online model would require more than

the core protocol. It would require a complete system that should include all aspects of payment,

the hierarchical commissioning for distributors, and content distribution, etc.

2.3.1 TTP Involvement

The involvement of a trusted third party is important to have a low communication cost.

A high communication cost occurs in graduate exchange protocols which do not involve a

trusted third party in the transaction. It is also proven in Pagnia and Garnter [6] that exchange

protocols over the Internet cannot achieve strong fairness without the involvement of a TTP [2].

Two-party protocols cannot achieve this property. Many Two party fair exchange protocols [7,

8, 9, and 10] that do not require the involvement of a TTP have been proposed but they fail to

provide practical implementation of fairness. The help of a trusted third party in our protocol has

helped in achieving the following security requirements:

11

a. The Need for Manual Dispute Resolution

In order to provide true fairness, we use an online TTP which allows all parties to get their

expected items and no harm is caused to any party under all circumstances even if one party

misbehaves or permanently disconnects. In addition, phase three (recovery sub-protocol) acts as

a dispute resolution protocol that provides this dispute resolution in a predefined automated way

that does not require any manual involvement.

b. Fair Exchange

Researchers have defined several levels for fair exchange including strong fairness, true fairness,

and weak fairness [2]. But in general we describe an exchange to be fair if at the end of the

exchange, either all parties get their expected items in the transaction or no party gets any piece

of information about any item of other parties. The TTP helps achieve fair exchange between

multiple parties and makes sure that all parties get their items at the end of the protocol even if

one party or more behaves unfairly.

c. Content Assurance

While fair exchange ensures that each party gets his item, content assurance ensures that each

party gets the expected correct item it is waiting for. Phase one (the acquiring encrypted product

sub-protocol) assures the client that the product that it will be purchasing matches a certified

12

description of the product, and prevents the merchant from providing a different product than the

one the client requested. The involvement of the TTP allows ensuring this property.

We tried to reduce the overhead of the involvement of the TTP so that it does not become

a performance or a security bottleneck. We tried to reduce the communication cost by reducing

the number of messages exchanged with the TTP and reducing the processing cost by reducing

the amount of processing of information and messages required by the TTP.

2.4 Multi-Party Fair Exchange Sub-Protocols

This protocol is composed of three phases or sub-protocols and each one of them has a smaller

objective but if combined together they achieve the protocol overall objectives, these sub-

protocols are:

1. Acquiring encrypted product sub-protocol: This sub-protocol delivers the Encrypted

Product to the client, and provides content assurance.

2. Multi-party Exchange sub- protocol (Main Protocol): This sub-protocol allows the

exchange Referral, payment decryption key, Receipt and Commission between the three

parties, distributor, client, and merchant with the help of the trusted third party.

3. Recovery sub-protocol: This sub-protocol guarantees the achievement of the fairness

property; this phase is considered a complementary of the Multi-party Exchange sub-

protocol.

13

2.4.1 Phase 1: Acquiring Encrypted Product Sub-Protocol

The aim of this phase of the protocol is to deliver the Encrypted Product to the client, and to

assure the client that the product that it received matches the specification described (the

properties related to the content and its quality).

The client starts this phase by sending a good request (GR) to the merchant asking for a

product using identification and specification information of the product included in the (GR).

The merchant replies with the Encrypted Good (EG) and the Encrypted Product Assurance

(EPA) which provides content assurance to the client.

Distributor
(Referee)

EG GR

Trusted Third
Party Merchant

Phase one

Figure 2.1: Acquiring encrypted goods sub-protocol description

14

CL -^ MER :GR

MER ^ CL :EP,EPA

Message Description

GR Good Request

EG Encrypted Good (Product)

EPA Encrypted Product Assurance

Table 2.1: Acquiring encrypted goods sub-protocol description

This sub-protocol delivers an encrypted copy of the client requested product from the merchant

to the client. The client has to make sure that the encrypted product matches the description

provided by the merchant and signed by the trusted party by doing simple mathematical

operations.

EPA = Sign TP (Desc P, HP, HEP, Hk)

Where:

Desc pis the description of product, its quality, and every other useful info that describes the

product.

HP = H (P) is the hash value of the product (P).

HEP = H (EG) is the hash value of the Encrypted product (EG).

Hk = H (K) is the hash value of the decryption Key K of the Encrypted Good (EG).

Sign TP is the signature of the Trusted Party on the previous items.

15

Symmetric
Encryption

Hash Y

Symmetric Key

Hash Nteh

Description of product, its quality, and every other useful information that

describes the product.

Hr= H (P) is the hash value of the product P.

Hkf= H (EP) is the hash value of she Encrypted product EP,

Hi- H (K) is the hash value of the decryption Key K of the Encrypted

product EP.

Figure 2.2: Encrypted Product Assurance

16

EPA links the encrypted good (EG), its description, its decryption key, and the product

itself all together. The hash value of the product gives the client the ability to verify the product

once she decrypts the EP while the hash value of the key allows the client to verify that she

received the right decryption key from the merchant once she buy the product from that

merchant. The digital signature provided by the trusted party ensures the correctness of this

information, including the description of the product, hash value of it, the hash value of its

encryption and the hash value of the decryption key.

2.4.2 Phase 2: Multi-Party Exchange Sub-Protocol (Main Protocol)

The purpose of the Multi-party Exchange sub-protocol and the Recovery sub-protocol is to

perform a transaction between three entities: distributor, client, and merchant with the help of a

Trusted Third Party (TTP). The transaction should provide fairness in a way that each party will

obtain his/her expected items, so that the client gets the key for the Encrypted Product that

matches the encrypted product description, the distributor gets his/her commission, and the

merchant is credited for the price of the product.

The distributor starts this sub-protocol by sending a Referral (REF) to the client. The

existence of a lookup service (LUS) can help the distributor find clients. Details of the client

discovery are outside the scope of this thesis. This Referral should be signed by the distributor to

prove the originality of the Referral. The client uses this Referral to order the referred product

from the merchant by sending a Referred Order of Purchase (ROP) which should include the

Referral, the Encrypted Good (EG), the product description, the product price and other items.

17

The payment is encrypted in a way that allows the trusted third party but not the merchant to

access the payment information; the payment can be encrypted using the public key of the

trusted third party. The Referred order of purchase ROP should be signed by the client to prove

the originality of the order and to help in dispute resolution.

Once the merchant receives the Referred Order of Purchase she can proceed with the

transaction by sending a Transaction Order (TO) to the trusted third party. This Transaction

Order should be signed by the merchant to prove the originality of the order. The Transaction

order should contain the Referral Order of Purchase with all its sub elements including the

Referral, the encrypted payment, the product description, the product price, the product

decryption key, and any other needed items.

When the trusted third party receives the Transaction Order, it does a series of verifications:

• It verifies the origin of the Referral, the Referred Order of Purchase, and the Transaction

Order messages by checking the signature of the distributor, client, and merchant respectively.!

• It verifies the correctness of the encrypted payment information provided by the client. The

trusted third party begins by decrypting the payment information using the TTP private key, and

then it checks its validity (For example, it checks the validity of the credit card information).

• It verifies the signature of the Encrypted Product Assurances (EPA), and matches the

information inside it including the requested product with the referred product by the distributor,

and the requested product by the client. It also makes sure that the hash value of the key provided

by the merchant matches the hash value of the key in the EPA.

18

If all the verification indicates a valid transaction, the trusted third party commits the

transaction by doing the following:

• Charging the client for the purchase of the product.

• Crediting the merchant for the cost of the product.

• Crediting the distributor with a Commission for his Referral.

• Generating a Receipt (RCT) for the previous money transfers. The Receipt should also

include the decryption key provided by the merchant, and a Commission that should be

forwarded to the distributor. This Commission should be signed with the TTP private

key.

If any of the verification indicates an invalid transaction for some reason, for example, the

client payment information is not valid or the product decryption key does not match the one in

the TTP signed Encrypted Product Assurance EPA, then the TTP will proceed by doing the

following:

• The TTP will not charge the client, use the payment information, credit the merchant or

the distributor, or does any money transfer.

• If the transaction was not completed because of the invalidity of the payment

information, the TTP sends a No Money (NM) message signed by the TTP private key to

the merchant indicating that no transaction took place because of the invalidity of the client

payment information.

19

• If the transaction was not completed because of any reason other than the invalidity of

the payment information, the TTP sends a No Transaction (NT) message signed with the

TTP private key to the merchant indicating that no transaction took place specifying the

reason for the incomplete transaction.

Distributor
(Referee)

Trusted Third
Party

-REF—

-COM or NT-

-TO

RCT or NT or NM

RCT or NT ROP

Merchant

Phase Two

Figure 2.3: Multi-party exchange sub-protocol (main protocol)

20

DST -* CL : R E F

CL -> MER : R 0 P

MER -» TTP : T O

TTP -* MER : R C T

MER -> CL :[RCT,NT,NM]

CL -» DST : C O M

Message Description

REF Referral

ROP Referred Order of Purchase.

TO Transaction Order

RCT Transaction Receipt

COM Commission

NT No Transaction

NM No Money

Table 2.2: Multi-party exchange sub-protocol (main protocol)

21

2.4.3 Phase 3: Recovery Sub-Protocol

The aim of the Recovery sub-protocol is to guarantee the achievement of the fairness property;

this phase is considered complementary to the Multi-party Exchange sub-protocol. The execution

of the Recovery sub-protocol is launched if an interruption or error in the execution of the main

protocol took place.

Distributor
(Referee)

T

CHC COM or NT

Trusted Third
Party

CHO

RCT or NT

Merchant

Phase Three

Figure 2.4: Recovery sub-protocol

22

CL -» TTP :CHO

TTP -» MER :[RCT,NT]

CL -» DST :[COM,NT]

DST -» TTP :CHC

TTP -» DST :[COM,NT]

Message Description

CHO Check Order

CHC Check for Commission

RCT Transaction Receipt

COM Commission

NT No Transaction

NM No Money

Table 2.3: Recovery sub-protocol message exchange

23

Chapter 3

Security analysis of the Multi-party Fair

Exchange Protocol

In this section, we provide formal verification for the fairness property of our multi-party fair

exchange protocol proposed in the previous chapter. We start by describing the behaviour of

each party using state transition. Then we provide a brief survey of formal verification methods

and tools that are used to verify protocol security properties and how we use these tools to

present a formal verification of the fairness property of the multi-party fair exchange protocol.

3.1 Protocol parties' state transition

In what follows, we show how the four parties involved in the protocol (i.e., distributor, client,

merchant, and trusted third party) move between different internal states by describing the

behaviour of each party after sending messages, receiving messages, and processing information.

24

3.1.1 Distributor State Transition

Fig. 3.1 shows the state transition that the distributor (referee) goes through during the protocol

execution and the inside details of the distributor's behaviour. The distributor moves from the

initial state (INITRE) to the REFSENTRE state by sending a Referral to the client. The

distributor stays in that state until one of the following events takes place: message received or a

timeout occurs. We discuss both cases:

a. Message Received

If the message received is a Commission {COM), the distributor moves to the SUCCESSRE

state which is a final state indicating that the transaction completed was successful and the

distributor gets his Commission for the Referral she made to the client, who used this Referral to

make a purchase.

If the message received is a No Transaction (NT) message, then the distributor moves to

the NTRE state which is a final state indicating that the transaction was not completed

successfully or did not take place at all. In this case, the distributor does not get a Commission

for the Referral she made to the client because no transaction took place.

25

b. Timeout

Once a timeout occurs, the distributor sends a Check Commission (CHC) message to the Trusted

Third Party and the state moves to CHCSENTRE state. The distributor waits for a reply from

the TTP, if the reply message received is a {COM), the distributor moves to the SUCCESSRE

state. However, if it is a No Transaction message, the distributor moves to the NT RE state. Both

SUCCESSRE and NTRE are final states. Reaching the SUCCESSRE state means that the

distributor received the Commission and the transaction took place, while reaching the NT_RE

state means that the distributor did not receive the Commission and no transaction took place.

If at any receiving state the distributor receives any other message than the expected one,

it moves to ERROR RE state which is also a final state.

26

SendREf

Receive ath«

Receive NT

Figure 3.1 : Distributor state transition

27

3.1.2 Client State Transition

Fig. 3.2 shows the state transition that the client goes through during the protocol execution and

the inside details of the behaviour of the client. The client moves from the initial state TNITJZL

to the REFRECCL once it receives a Referral {KEF) from the distributor. Then the client sends

a Referred Order of Purchase (ROP) to the merchant and the state of the clients state moves to

ROPSENTCL. The client stays in that state until it receives a message or a timeout passes.

1. Message Received

If the message received includes a Receipt (RCT), the client moves to the RCTRECCL, this

means that the client got her Receipt for the purchase she ordered from the merchant using the

Referral she got from the distributor.

If the message received is a No Transaction occurred (NT) or No Money (NM) message,

then the client moves to the NT CL state.

28

Receive NT.NM

Figure 3.2: Client state transition

29

3.1.3 Merchant state Transition

Fig. 3.3 shows the state transition that the merchant goes through during the protocol execution

and the inside details of the behaviour of the merchant. The merchant moves from the initial state

INITME to the ROPRECME once it receives a referred Order of purchase (ROP) from the

client. Then the merchant sends a Transaction Order (TO) to the TTP and the merchant moves to

TOSENTME state.

The merchant waits at the TOSENTME state for a reply from the Trusted Third Party.

If the TTP replies with a Receipt RCT, then the merchant forwards the RCT to the client, and

this means that the transaction was completed successfully and the payment info provided by the

client was correct. In this case, the merchant moves to SUCCESSME final state.

However if the TTP replies with a No Transaction occurred (NT) or No Money (NM)

message, this means that transaction did not complete successfully. For example, if the TTP

found that the payment info provided by the client is not correct, then the merchant moves to

NTME which is a final state

If at TOSENTME state the client receives any message other than the expected ones, it

moves to ERROR CL which is a final state.

30

Raeeive ottwi

Receive other
TO SENT M i

Figure 3.3: Merchant state transition

31

3.1.4 Trusted Third Party State Transition

Fig.3.4 shows the state transition that the Trusted Third Party goes through during the protocol

execution and the inside details of the behaviour of the Trusted Third Party. The Trusted Third

Party moves from the initial state INITTP to the TORECTP state once it receives the

Transaction Order (TO) from the merchant. Then the Trusted Third Party processes the

Transaction Order. The processing of the Transaction Order can lead to one of two results:

a. Transaction OK

If the Trusted Third Party verifies all transaction parameters including payment and the matching

good decryption key, and everything turns out to be correct according to the transaction process,

then the TTP processes the transaction and sends back a Receipt (RCT) to the merchant. In this

case, the TTP moves to SUCCESSTP state.

b. Transaction NOK

If the Trusted Third Party fails to verify one or more of the transaction parameters including

payment info and the decryption key, and cannot process a parameter according to transaction

process (e.g., the payment information provided by the client was not valid), then, processing the

transaction would lead the TTP into sending a No Transaction NT or No Money NM message

indicating that the transaction was not processed successfully.

32

After the TTP reaches the SUCCESSTP state, it can receive a request message related to

phase three of the protocol. If it receives a Check Commission (CHC) message from the

distributor, then the TTP replies with the Commission (COM) message. If the TTP receives a

Check Order (CHO) message from the distributor, the TTP will reply with the Receipt RCT

message.

After the TTP reaches the NTTP, it can receive a request message related to phase three

of the protocol. If it receives a Check Commission (CHC) message from the distributor, the TTP

will reply with a No Transaction (NT) message. However, if it receives a Check Order (CHO)

message from the distributor, the TTP will reply with a No Transaction (NT) message.

33

Re«»a other

Rf.ceJm IP

'Tmamiitm OX; Send Rol

Transacifcw* N O W 5»nd NT

[Rooriro CHC Send RCTI, \mmim CKO.' Send COM|

• NI_TP •

'fcteslw* CHC Send NT| [Re«*,« CHO/ Send NT|

Figure 3.4: Trusted Third Party state transition

34

file:///mmim

3.2 Formal Verification

The need for applying formal methods to check the security properties of security protocols has

been widely recognized in the field of designing and verifying network protocols. Formal

methods have been able to detect errors, to show weaknesses, and to provide attack exploitation

scenarios in protocols that were assumed for a long time to provide certain security properties.

One example is when Lowe [14, and 16] showed a flaw in the design of the Needham- Schroeder

public-key protocol [15]. These flaws have remained undetected for about 17 years till a formal

method, Failures Divergences Refinement (FDR) checker for Communicating Sequential

Processes (CSP) logic, was used. The flaw was detected in 1995 and the protocol was first

proposed in 1978. The field of formal verification methods has since gained wide attention from

researchers from all around the world.

3.2.1 Overview of Formal Verification Methods

Since the realization of the importance of formal methods in debugging and assuring security

properties in network security protocols, many software tools have been introduced to assist in

conducting the security analysis. These tools depend on different methodologies such as the

finite state exploration, state enumeration, belief logics, model checking, and inductive theorem.

Using these tools for this purpose has proven to be very successful in detecting bugs, and

presenting attack scenarios on network and security protocols.

35

Although Formal methods have been used for the verification of cryptographic protocols

including authentication protocols and key exchange protocols, only few used those methods to

verify security properties of fair exchange protocols.

Zhou and Gollmann [17] applied SvO logic by formalizing the goals of non- repudiation

services to study the validity of non-repudiation evidence. Protocols such as Kerberos, Secure

Socket Layer 3.0 (SSL 3.0), and Needham-Schroeder protocols were analysed using the Finite-

state exploration [19, 20, and 21]. While other protocols such as Secure Electronic Transaction

(SET), Transport Layer Security (TLS) and Smart Cards protocols were verified using the

inductive thermo proving method [25] in [22, 23, and 24]. Shmatikov and Mitchell analyzed a set

of contract signing and fair exchange protocols [32, 33, and 34] using the finite-state

analyser MurV. The automated model checker MOCHA was used by Kremer and Raskin [29,

30, and 31] to examine non-repudiation and fair exchange protocols.

A long list of software tools, based on different techniques, has been developed. The list

includes but not limited to SPIN model checker [35], BLAST model checker [34], theorem

prover Isabelle [36], model checkers Mocha [37], finite-state analysers MurV [38], Markov

Reward Model Checker (MRMC) [33], and Partial order reduction.

For the verification of our multi-party fair exchange protocol, we adopted model

checking for formal verification of the fairness property of the protocols using the SPIN model

checker. We used the specification language PROMELA for modelling the protocol and the

Linear Temporal Logic (LTL) for encoding property formulas.

36

3.3 Model Checking

Model Checking is the process of verifying whether or not a finite state concurrent system

satisfies a logical formula. This process is general enough to be applied to all kinds of logics,

applied structures, and models [12].

Model checking has emerged as a successful technology for verifying design

requirements. It has been used for verifying real industrial protocols such as the PCI local bus

protocol, commercial products, and hardware designs such as sequential circuit designs, and real

time and safety critical systems [13].

A very common method of the model checking process is conducted by verifying that the

structure and/or the design requirement of a hardware or software design, satisfies a property

(specification). If the model checker finds that the structure or design accepts the property, the

model checker will output a Yes result, otherwise it will output a No result. A No result is

usually accompanied with a counter example that explains where the property is found not

satisfied. The counter example can be very useful in correcting the structure by pointing at the

error. Once the error is found, it should be corrected and another model checking cycle should be

executed.

Temporal Logic formulas are often used to express the properties. While efficient

algorithms are used to traverse the system finite space, model checkers test whether or not the

temporal logic formulas hold.

37

SPIN

SPIN is an open source automata-based model checking software tool. SPIN was developed at

Bell Labs by Gerard J. Holzmann and others, and it is continuously evolving for more than 20

years. In 2001 SPIN was awarded the prestigious System Software award by the ACM. SPIN

was also used to analyze the concurrent plan execution module in NASA's DEhEP SPACE 1

module, the Mars exploration Rovers [18].

SPIN depends on model checking based techniques for the formal verification,

validation, and analysis of distributed software systems and data communication protocols. It

does that by examining the logical consistency of concurrent systems. It can also be used as a

simulator to explore all states in the execution paths through the system, and then it presents the

resulting execution trace to the user. It can also present to the user the trace of possible execution

paths that may lead to undesired states. However, simulation might face a problem of state space

explosion due to the exponential growth of the generated finite state machine.

Traversing a large state-space model can be done in a relatively short period of time.

However, state explosion problem is still common. Different techniques are used to avoid the

state explosion problem including Counter Example Guided Abstraction Refinement (CEGAR)

[39], partial reduction and symbolic algorithms.

SPIN is used to point out logical errors in concurrent systems including race

conditions, deadlocks, unspecified reception, and process incompleteness. SPIN can also be used

as a verification tool to prove the validity of a system against properties (specifications) or

design requirements by scanning the whole state-space. Partial order reduction theory is used to

38

optimize the scan. In very large state-space systems, SPIN can be used as a proof approximation

tool to validate properties and design requirements of a system's model.

PROMELA

PROMELA (Process or Protocol Meta Language) is a process verification modelling language

that supports the modeling of distributed systems as non-deterministic automata. It models the

parallel systems in a way that can be verified using a model checker. A PROMELA model may

consist of processes, variables and channels. While the process can specify the behaviour of the

concurrent system, the global variables and channels specify the environment that processes

communicate in.

A system that is modelled in PROMELA consists of three parts:

1. Dynamically created processes. Each process often represents different entities that are

running in parallel.

2. Channels, which allow message exchange between the processes. The message exchange

using the channels can be defined to be asynchronous (i.e., buffered) or synchronous (i.e.,

rendezvous).

3. Variables, which can be defined as global variables or local variables within the process.

Channels transfer messages between active processes. They can be defined locally with

in a process or globally. We define a channel using the keyword chart. Default messages are

stored in FIFO (First-in First-out) queue, so that the first message will be delivered first to the

39

receiving party and can also be defined to randomly choose a message from the queue. The

following syntax:

ChanX, Y[n]

declares an uninitialized channel X and uninitialized array of n elements. While the syntax:

Chan z = [m] of {mtype}

defines an array of m initialized messages. Each message is of type mtype.

LTL (Linear Temporal Logic)

LTL is a modal temporal language with a model that allows describing time constrains. LTL

allows writing properties and conditions in formulas. Those conditions are normally negated

before being verified by the model checker. Evaluation of LTL formulas is performed over the

execution paths of truth conditions. Describing time constrains allows expressing formulas that

involves time as a factor.

SPIN, PROMELA and LTL

Given a model system specified in PROMELA, SPIN can perform random or interactive

simulations of the system's execution or it can generate a C program that performs a fast

exhaustive verification of the system state space.

40

During simulations and verifications, SPIN ensures the absence of deadlocks, unspecified

receptions, and un-executable code. The verifier can also be used to prove the correctness of

system invariants and it can find non-progress execution cycles. Finally, it supports the

verification of linear time temporal constraints; either with PROMELA never-claims [18] or by

directly formulating the constraints in temporal logic.

PROMELA models can be analyzed with the any model checker, to verify that the

modeled system produces the desired behaviour.

The verifier is designed to be fast while using a minimal amount of memory. The

exhaustive verification performed by SPIN is conclusive. It provides confidence whether a

system's behavior is error-free or not. Many verification runs, that cannot usually be performed

with automated techniques, can be done in SPIN with a "bit state space" technique [54]. With

this method the state space is collapsed to a few bits per system state stored. Although this

technique doesn't guarantee certainty, the coverage is better, and often much better, than that

obtained with traditional random simulation

XSPIN

XSPIN is a graphical interface of SPIN written in TCL/TK. XSPIN provides an easy way to use

SPIN; it generates SPIN commands with the proper compile-time and run-time arguments and

converts SPIN command output to a graphical representation one. The ease of use comes from

the menu selection that provides different features such as syntax checking for PROMELA

language code, and code compilation and execution.

41

3.4 Formal Verification of The Fairness Property of The proposed Multi-

Party Fair Exchange Protocol

Each participant party in the protocol is defined as a process with the keyword proctype. A

process describes the behaviour of a party including the communication description, such as

sending and receiving messages, and processing data. For example,

Proctype partyX (chart c)

{Set of statement]

The most important step in model checking verification is to translate the protocol

specification and message exchange into PROMELA language so that the model checker SPIN

can read it. Fig. 3.5 shows a snapshot of the XSPIN graphical specification tool.

3.4.1 Model Implementation

In order to translate state transition shown in Figures [3.1, 3.2, 3.3 and 3.4] into a PROMELA

model that can be verified by SPIN model checker, we build a process for each one of the four

parties: client, distributor, merchant, and TTP. The statements inside each process implement the

logic and behaviour of communication channels for each party.

During the simulation of the protocol, whenever a party faces a set of choices of

behaviour, the party will randomly choose a move and execute it. For example, a timeout for

receiving a message is implemented by randomly assigning a value to a Boolean timeout

42

variable. This way we simulate the two behaviours of a party in both cases receiving and not

receiving the desired message in time. On the other hand, if the party has only one choice for a

move, that move will be executed.

Protocol Simulation

After modeling the multi-party exchange protocol in PROMELA language, we moved into

performing simulations using the graphical user interface XSPIN. These random simulations

provide assurance to an acceptable level that the protocol implementation is behaving in the

intended way by performing a set of random protocol runs.

One simulation run showed the four parties exchanging messages and this simulation

result in a success scenario where all parties get their expected items. The merchant gets her

money included in the receipt and so does the client, while the Distributor gets her commission

from the transaction. That means the TTP has successfully verified all the provided data in the

received messages such as payment information.

Another simulation run showed us how the four parties exchange messages where the

simulation run result in a situation where no party gets her expected item: The merchant did not

get her money and neither did the client, while the Distributor got no commission because the

transaction did not take place. This is means that the result of the TTP verification results in

invalid provided information or non- matching information.

43

3.4.2 Protocol Verification

We chose to verify the fairness property in our protocol. A protocol is said to satisfy strong

fairness if at the end of the protocol execution either all parties involved in the protocol get their

expected items or no party gets any useful information.

Using LTL formulas, we try to express the fairness property, so that the model checker

SPIN can verify the protocol against this property. The fairness property can be expressed by the

following formula provided that the protocol will not reach a deadlock state:

[] (p - > 0 4 | | B))

It can also be expressed in the following formula:

<>(A\\B),

where [] And < > are two LTL operators that stand for always and eventually respectively. So

the formula says" either the Distributor, customer, and merchant get their expected items

(property A) or none of them get her item (property B) at the end of the protocol execution

(property P)".

Where:

Property P: defines when the end of the protocol execution is reached.

define p (TTPstop —— true && MEstop == true && CLstop =

= true && RE stop == true)

Property A: When satisfied, all parties (the TTP, distributor, customer, and merchant)

should have gotten their expected items and the TTP has successfully processed the transaction.

44

define a (TTPTranOK = = true && MEGotFound == true && CLGetRct

= = true && REGetCom = = true)

Property B: When satisfied, all parties (the TTP, distributor, customer, and merchant)

should have not gotten any useful information or item and the TTP has not processed the

transaction successfully.

define b (TTPTranOK == false && MEGotFound =

= false && CLGetRct == false && REGetCom = = false)

Finally, we verify the PROMELA model by loading the model into Spin. We load the

fairness property, as an LTL formula, into the LTL Manager shown in Fig. 3.5. The result of the

verification using SPIN has confirmed that the fairness property is really satisfied by the

PROMELA model. By doing so, we have formally proved that the multi party fair exchange

protocol is indeed a fair exchange protocol.

A significant point that worth mentioning about formal protocol verification is that

although formal verification does a great help when verifying security properties of protocols, it

is limited to the accuracy of the modeling of the protocol. A model of the protocol may be

different from the protocol itself and the implementation of the protocol may also be different

from both the model and the protocol. We understood this limitation in our security analysis and

we provided both a formal and informal analysis to provide the confidence in the security

properties of the protocol.

45

LJS Linear Time Temporal Logic Formulae

Formula: []p ->(a || b)|

Operators: []|<^U)->hnqorliotj

Property holds for: <• All Executions (desired behavior) <"" No Executions (error behavior)

Load,..

Notes:

Use Load to open a file or a template.

Symbol Definitions:
A #define p (TTPstop == true && MEstop == true && CLstop== true && REstop == true)

#define a (TTPTranOk== true && MEGotFund == true 8& CLGetRct== true && REGetCom ==
true)

v #define b (TTPTranOk== false && MEGotFund == false 8t& CLGetRct== false 8& REGetCom ==

Never Claim:
A (*

* Formula As Typed: [] p -> (a 11 b)
* The Never Claim Below Corresponds
* To The Negated Formula !([] p - > (a 11 b))
* (formalizing violations of the original)
*/

v never •{ /* !([] p -> (a | J b)) */

Verification Result: valid

<starting verification >

Generate

Run Verification

Help I Clear Close I Save As.

Figure 3.5: XPIN LTL manager

46

Chapter 4

Memory Disclosure Vulnerabilities

4.1 Background and Motivation

Many security solutions are proven to be secure only under a set of assumptions

including the assumption of keeping cryptographic keys secret. Once the secret cryptographic

key is revealed, the solution or the application's security is compromised. Typically,

cryptographic libraries are used to provide the security services needed for securing many

applications and systems. These libraries tend to keep the cryptographic keys in memory while

performing different cryptographic operations which makes the underlying systems vulnerable if

an attacker is able to locate the memory location where these keys are stored.

The problem of locating cryptographic keys in memory has first been recognized when

an efficient method to locate cryptographic keys and encrypted data was described by Shamir

and Someren [43]. One of the techniques that they described in their paper was entropy based; it

uses the fact that the entropy of the cryptographic keys is much higher than the entropy of non-

random data such as text files, images and executable codes. This technique does not calculate

the exact entropy value; rather it examines the number of unique byte values in a sliding window

of 64 bytes. Shamir and Someren [43] found that a 64 bytes window of non-random data

47

contains on average 30 unique byte values, while the same window of a typical cryptographic

key may, on average, contain about 60 unique byte values. This method can be used to locate

cryptographic keys in a large string of data such as hard disks, and memory dumps.

Contrary to common assumptions, the contents of a process that is running in the memory

may contain critical information such as cryptographic keys. These cryptographic keys may

become accessible using some tools and hence leave those keys vulnerable to other processes

running on the system. Although good programming practices would not leave critical

information in the memory vulnerable, it might become vulnerable if another user can get access

to the memory of a running process using a malicious (or forensic) tool.

The remanence of cryptographic keys in memory has become a vulnerability that

indirectly compromised the security of many organizations. The problem of employee's laptop

losses and theft with company's sensitive data on it has reached epidemic levels. Many recent

civil and military organizations have suffered from such accidents. For example, on January

2008, the British Royal navy lost a laptop with personal information of 600,000 new and

potential recruits of Navy, Royal Marines, and Air Force on it. Another recent accident took

place in West Perm Allegheny health system [53]. This accident put the personal information of

42,000 patients at risk when a laptop was stolen from a home care nurse. Although, it was

previously believed that encryption can be used to protect the information held on mobile

devices, some newly developed techniques managed to overcome the encryption of hard disks

exploiting the remanence of cryptographic keys in memory. In particular, Halderman et al. [44],

at the Center for Information Technology Policy at Princeton University, have proven that hard

48

disk encryption can be defeated using a "cold boot" attack. They found out that, when keeping

memory at lower temperature levels using liquid nitrogen, only little RAM reading errors occur

after 60 minutes. This observation can enable an attacker with physical access to copy the

contents of the memory where she can find the encryption secret key. We recall their method:

"To reconstruct an AES key, we treat the decayed key schedule as an error correcting code and

find the most likely values for the original key. Applying this method to keys with 10 percent of

bits decayed, we can reconstruct nearly any 128-bit AES key within a few seconds. We have

devised reconstruction techniques for AES, DES, and RSA keys, and we expect similar

approaches will be possible for other cryptosystems."[44].

In this chapter, we experimentally describe the extent and predictability of locating

cryptographic keys and passwords in memory. Such predictability makes a lot of systems

vulnerable to memory disclosure attacks.

Many applications and servers use the "SUNJCE" implementation of JCE (e.g. IBM®

WebSphere® application Server). The "SUNJCE" implementation of JCE comes by default

with most Java 2 SDK versions when a provider is accompanied. Many of these servers and

applications that use directly or indirectly (e.g. via an application server such as Oracle

Application Server lOg) this implementation of JCE are probably vulnerable to the described

attacks. Those applications and servers are used in financial institutions, Health institutions, and

governmental organizations. They utilize the JCE implementation to do different cryptography

operations such as encrypting, decrypting and signing of messages.

49

We demonstrate that these attacks are applicable on both symmetric and public-key

algorithms. We also believe that implementations of other algorithms are vulnerable to these

simple memory search attacks as well. We experiment locating the cryptographic keys of both

Advanced Encryption Standard (AES) and RSA in memory.

We also show the operating system's limitation in protecting passwords and

cryptographic keys. While our main focus was on cryptographic keys and passwords, this

approach can be extended to finding any sensitive data persisting in the memory. Hence, this

sensitive data becomes vulnerable to the same attack. Then, we also suggest several techniques

for partially mitigating this risk.

As a motivating example, consider a user using a computer in a library or a university

laboratory connected to a secure password-protected website using a web browser. The user

might be connected to his bank account, email, or any other secure website. In order to sign in

his account, she will have to provide the username and password. Once the user finishes, she

would normally signs out, close the web browser, and log off in best case scenarios. We

demonstrate that if another user logged in with some privileges on the same computer and

managed to scan the memory with some tool, then there is a big probability that he might find

much critical information the previous user had entered, hanging in the memory.

Another motivating example might be a user logged into a computer in an Internet cafe. It

is not hard to imagine different scenarios in which the user might be connected to an e-commerce

website, or a financial institution (e.g. bank) to do an online transaction. Once the user is

finished, another user who has captured the encrypted content sent over the network can locate

50

the cryptographic key using the technique and information that we provide in our experiment.

The fact that this cryptographic key was used to encrypt that content allows the attacker, in this

case, to have access to Credit Card Numbers, banking financial information and any other

encrypted sensitive data sent over the network. These types of simple memory scan attacks may

put secured websites working on Hypertext Transfer Protocol over Secure Socket Layer (HTTP

over SSL), and the website's users' account information at risk.

4.3 Random Access Memory

The concept of memory is wide and includes all types of memory that can provide permanent or

temporal storage of data and can be used by a digital computing system.

RAM stands for Random Access Memory; it is described as a volatile memory because in

order to keep the data that it holds, it has to have power supply. The word "Random" comes from

the fact that a series of data bytes can be retrieved from the RAM in a constant time regardless of

the physical location of that series of data bytes. This is possible because the RAM is constructed

as a two-dimensional grid of memory cells. In order to access any memory cell directly, we

supply the column and row that intersects that memory cell.

In the history of digital computing systems, different types of memory have been

developed and deployed. Evaluating these types takes into account different factors such as

speed of operation, latency time, ease of construction and use, and cost.

51

The content of the RAM, contrary to what is commonly known, is not completely lost the

moment the power is switched off. In fact, it starts fading away slowly after the power is turned

off and this raises a security concern as traces of the cryptographic key may remain in the RAM.

The used storage mechanisms in RAM vary from magnetic discs, tapes, and optical discs.

RAM that can be rewritten varies from Dynamic RAM, static RAM. Dynamic RAM is most

commonly made of memory cells constructed of a paired capacitors and transistors. While static

RAM is made of flip-flops that store bits of data.

Many computing systems have a memory hierarchy that consists of CPU registers, level

one and level two cache, DRAM, and virtual memory which is stored on hard disks. This

hierarchy serves different purposes while taking into consideration the compromise between

performance and cost. The CPU registers provide the CPU with its requirement for a very fast

access to data. Nevertheless, registers are relatively expensive so that small size is usually used.

On the other hand, hard drives are not expensive so large size is used but the access time is

relatively very high. When we go up in the memory hierarchy, the storage size and access time

decrease while the cost per storage unit increases.

Swapping helps solving the problem of RAM shortage by using the hard drive as an

additional memory, temporarily. This occurs usually when the computer system requires a lot of

memory during intensive application cycles or when the computer system runs a lot of memory

demanding applications. One disadvantage of Swapping is that it reduces the overall system

performance because of its dependency on using the hard disk, which has high access time, as a

computer memory.

52

IDflkl

I L'V. I »

' l . ' i: i j f ROM St'Jmtl^ Sfcir^gt- rftmow<«1b(c HrtVi'V

Figure 4.1: Memory hierarchy

4.3.1 Memory Management

Memory is an important resource of a computer system and needs to be managed efficiently.

This has lead to the realization of memory management as a critical subsystem in modern

operating systems.

One of the tasks of the memory management subsystem is to keep track of used memory

parts and parts that are not in use, to allocate parts of memory to processes when they need it,

and to free those parts once they are finished.

53

Another task of the memory management subsystem is to manage swapping. Swapping

moves processes or parts of them back and forth between the main memory and the secondary

storage. The swapping in and swapping out operations, which are relatively slow memory I/O,

have to be managed efficiently by the memory management subsystem in order to optimize the

performance.

The need for main memory is always growing and there has never been enough memory

for the operating system and active processes. The operating system and the active processes use

the memory to hold both data and the program code and hence allowing both them to run

efficiently.

4.3.2 Memory Management Goals

The memory management subsystem provides many objectives that include the following:

1. Providing large memory address space using virtual memory to satisfy the need of active

processes and the operating system for a large space that may be larger than the available

physical memory.

2. Allowing virtual memory addressing: this separates processes' memory addresses from

actual physical addresses. Virtual memory uses one of the following techniques or a

combination of them. These techniques include:

o Fixed Partitioning.

o Dynamic partitioning.

54

o Simple paging.

o Simple segmentation

o Simple segmentation

o Virtual memory paging

o Virtual memory segmentation

3. Providing memory protection: Processes should be protected against accidental,

intentional, and malicious interference from other active processes. Referencing memory

addresses dedicated to a process by another process should not be allowed without

permission.

4. Enforcing the memory protection requirement by the processor rather than the operating

system allows efficient assessment of permissibility of referencing a memory address.

While leaving this task for the operating system to do the assessment of memory

referencing violations and to anticipate all memory referencing that a program will make,

is not only time-consuming also not efficient as well.

5. Saving memory space by allowing multiple processes that are executing the same

program's instructions to share the same copy of the program's instruction. Memory

protection provides the flexibility of sharing memory between multiple processes

executing some common libraries or any program's code. Dynamic libraries and

command shells are examples of shared code between several processes.

55

6. Providing each process with its own virtual address space gives processes the impression

of having access to a large share of physical memory in a transparent way. The memory

management subsystem makes sure to divide the physical memory between processes in

a fair way.

4.3.3 Process Isolation

A fundamental function of operating systems security is process isolation. Process isolation

protects the system's integrity by isolating and preventing interference of one process with others

processes, operating system code or data, or protected operating system resources. System

resilience is another feature that the operating system can provide by the contribution of process

isolation. System resilience provides failure boundaries that allow a process or part of the system

to fail without affecting the rest of the system. Many mechanisms are used in operating systems

for process isolation enforcement. Most used mechanisms rely on hardware protection such as

page mapping, distinguishing user and kernel instructions, and memory segmentation.

The CPU memory management hardware enables process isolation by using two

mechanisms:

a. Running process are allowed to access only certain pages of the memory

b. Implementing privilege levels in order to prevent un-trusted code from accessing

certain pages of the memory.

56

Virtual memory and privilege levels increase the cost of inter-process communication

and affect the operating system overall performance.

Windows NT keeps a separate page table directory for each process to prevent processes

from manipulating other processes' address space. We recall how the windows NT apply process

isolation "Depending on the process in execution, it switches to the corresponding page table

directory. As the page table directories for different processes point to different page tables and

these page tables point to different physical pages and only one directory is active at a time, no

process can see any other process's memory. ... All the kernel pages are marked as supervisor

pages; therefore, user-mode code cannot access them" [42].

Hardware protection and operating systems through memory management and other

operating system security features try to protect processes running on the machine. However,

attackers have been successful in writing malicious programs that are able to take advantage of

the OS provided APIs to scan the memory looking for cryptographic keys.

4.4 Java Security

Java security includes a large set of specifications, APIs, tools, and implementations of

commonly used security algorithms, mechanisms, and protocols. The Java security APIs cover a

wide range of areas, including secure communication, cryptography, and public key

infrastructure. Java security provides both a framework for writing secure applications, and a set

of tools that are helpful in managing applications' security.

57

4.4.1 Java Cryptography Architecture

The Java cryptography Architecture (JCA) and the Java Cryptography Extension (JCE) are

frameworks that are designed to provide cryptographic functionality for Java. The JCA is part of

Java 2 Security API while JCE is an extension to the JCA. JCE provides encryption and

decryption functionalities to the JCA. JCA and JCE were designed according to the following

principles:

i. Implementation Independence

Implementation independence allows the ability of using cryptographic functions without

worrying about the implementation. This feature is achieved using the provider-based

architecture. This architecture allows Cryptographic Service Providers (CSP), or simply

providers, to provide a package or more. Packages usually implement one or more cryptographic

service in accordance with the defined specification.

ii. Implementation Interoperability

Implementation interoperability requires different implementations from different cryptographic

service providers to offer services and accept services from each other. For example, for the

same cryptographic algorithm and compatible keys, an encrypted message using a provider can

58

be decrypted using another provider, and a signature generated by one provider can be verified

by another provider.

iii. Algorithm Independence

Algorithm independence can be attained by categorizing cryptographic services, then identifying

classes that provide the functionalities of these cryptographic services. These classes are called

engine classes. Examples of these engine classes include the Signature, MessageDigest,

KeyFactory, and KeyPairGenerator classes.

iv. Algorithm Extensibility

Algorithm extensibility allows new algorithms that are categorized in one of the supported

engine classes to be added easily.

Although JCE requirements provide the above principles, it does not focus on the

implementation security nor does it give any guideline on how to write a secure implementation.

It leaves the implementation to the provider to write a secure implantation of JCE.

59

4.4.2 Advanced Encryption Standard (AES) in JCE

In this section, we demonstrate how we can use Java to generate keys, and encrypt and decrypt

messages using the Advanced Encryption Standard (AES). The provided code works with Java 2

Platform Standard Edition (J2SE)

The KeyGenerator class acts as a symmetric key generator. The KeyGenerator object can

be re-used to generate symmetric keys. It is instantiated using one of the getlnstance methods.

The KeyGenerator object can be re-used for generating symmetric keys. The following code

demonstrates how to instantiate a KeyGenerator object for a specified algorithm. In this example

we generate it for the AES algorithm. The name of the requested key algorithm should be stated

in compliance with the Java Cryptography Extension Reference Guide [41].

KeyGenerator kgen = KeyGenerator.getInstance("AES");

kgen.init(256);

The following few lines shows how we use the Keygenerator object to generate a secret

symmetric key without utilizing a provider-based SecretKeyFactory. In order to get the key as

an array of raw bytes, we call the getEncoded method. The SecretKeySpec object constructs a

secret key from a given raw byte array. However, this constructor does not check any constraints

on the secret key, is it of a given length, does it go along with constraints of a specific

cryptographic algorithm ("AES" in our example), nor it does check if it is a weak or semi-weak

key.

60

SecretKey seckey = kgen.generateKeyQ;

bytefj raw - seckey.getEncoded();

SecretKeySpec seckeySpec = new SecretKeySpec(raw, "AES");

The Cipher object that we construct in the flowing code acts as the cryptographic service

provider for operations such as encryption and decryption. The Cipher object can be instantiated

using the Cipher's getlnstance method which takes an argument the name of the transformation

that need to be constructed. The transformation should always include the name of a

cryptographic algorithm (e.g., AES, DES), and may be followed by a feedback mode (e.g., CBC,

CFB, OFB) and padding scheme (e.g. PKCS5Padding). The transformation could be of the form

"algorithm" or "algorithm/mode/padding".

Cipher AES_cipher = Cipher.getlnstance("AES");

After constructing the Cipher Object, it has to be initialized to do one of the following

four operations: encryption, decryption, key wrapping, or key unwrapping. Along with the

operation mode (e.g. ENCRYPTMODE, DECRYPT_MODE, WRAP MODE or

UNWRAPMODE), we pass the secret key when calling the init method.

AES cipher.init(Cipher.ENCRYPT_MODE, seckeySpec);

AES cipher, init (Cipher.DECRYPT'MODE, seckeySpec);

61

The following few lines of code, shows how the Cipher object can be used to do both

encryption and decryption operations. The First line shows how to encrypt a string message after

converting it into an array of bytes. For the Cipher. doFinal method to do an encryption operation

the Cipher object has to be initialized with an operation mode of encryption. Also, the encryption

key has to be set (as we have shown in the previous lines of code). Encryption or decryption of

data with a specific secret key depends on how the cipher object was initialized.

bytefj encryptedMsg=

cipher.doFinal(("Hello: Please encrypt me! ").getBytes());

byte[] decryptedMsg =

cipher. doFinal(encrypted);

4.4.3 RSA in JCE

We will demonstrate how we can use Java to generate keys, encrypt and decrypt messages using

the RSA algorithm, this program works with Java 2 Platform Standard Edition (J2SE 5.0). RSA

is a public-key cryptographic algorithm that is developed by Ron Rivest, Adi Shamir, and

Leonard Adleman at MIT in 1977. RSA is used for both encrypting and signing of messages, and

it is considered a great advance in the public key cryptography field.

The RSA algorithm is widely used as an encryption and authentication algorithm. RSA is

widely used in web browsers and many products including Intuit's Quicken Lotus Notes. RSA is

62

an Internet encryption and authentication system that uses an algorithm developed in 1977 by

Ron Rivest, Adi Shamir, and Leonard Adleman.

RSA keys include a public key and a private key. The public key is used for encrypting

messages and verifying digital signatures and is made publicly available. While private key is

used for decrypting and signing messages, Messages encrypted using the public key can be

decrypted using the private key only. Public keys are also used to verify the signature of

messages singed using the corresponding private keys.

We will demonstrate how we can use the JCE API to generate public and private keys,

and encrypt and decrypt messages using the public key and private key respectively.

The KeyPairGenerator class generates pairs of public and private keys. The

KeyPairGenerator object can be re-used to generate pairs of keys. The KeyPairGenerator object

is instantiated using one of the getlnstance methods. The following code shows how to

instantiate a KeyPairGenerator object for a specified algorithm. The KeyPairGenerator object

has to be initialized with a source of randomness before the KeyPair is generated. In this

example we generate it for the RSA algorithm. The name of the requested key algorithm should

be stated in compliance with the Java Cryptography Extension Reference Guide [41]. Once the

keypair object is constructed, a public key and a private key can be extracted from it.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA ");

SecureRandom random = SecureRandom.getInstance("SHAlPRNG", "SUN");

keyGen. initialize^ 024, random);

63

KeyPair key_pair = keyGen.generateKeyPairQ;

Private_Key priv_key = key_pair.getPrivate();

Public_Key pub key = key_pair.getPublic();

The following code illustrates how to construct the Cipher object. The Cipher object acts

as the cryptographic service provider for operations such as encryption and decryption.

Cipher RSACipher = Cipher. getInstance("RS'A ");

After constructing the Cipher Object, it has to be initialized to do one of the following

four operations, encryption, decryption, key wrapping, or key unwrapping. Encryption and

decryption of data with a specific secret key depend on how the cipher object is initialized.

Along with the operation mode (e.g. ENCRYPTMODE, DECRYPT MODE, WRAPMODE or

UNWRAP MODE), we pass the public key, when calling the init method, to initialize the cipher

object to do the encryption operation using the provided public key.

RSACipher. init(Cipher.ENCRYPT_MODE, pubjcey);

bytefj encrypted_Msg =

cipher.doFinal(("Hello: Please encrypt me! ").getBytes());

64

For the Cipher.doFinal method to do a decryption operation, the Cipher object has to be

initialized with an operation mode of decryption (operation mode of DECRYPT MODE) and the

key has to be set to the private key.

RSA Cipher. init(Cipher.DECRYPTJAODE, privjcey);

byte[] decrypted_Msg = cipher. doFinal(encrypted);

4.5 Supporting Tools

With the help of a developed software tool and WinHex [50], we managed to find different key

signatures that we will describe in section 4.6. An undocumented windows library

"dumpmem.h" allows taking a snapshot of memory that can be searched to locate cryptographic

keys and key signatures. While WinHex presents the memory pages of a process as a continuous

block.

We ran our experiments on a machine running windows XP with Service Pack 2 installed

and logged in an administrator privilege user account. We searched the memory looking for

cryptographic keys and tried to determine the key signatures of different cryptographic

algorithms on different experiment settings.

The tool allowed us to search the memory and locate the AES secret key. It also allowed

us to perform a text search to find the text associated with the AES key signature.

65

The tool was useful while performing the RSA experiment, we used the binary search

capability to find different cryptographic parameters of RSA such as the large prime number p ,

q, and the modulus n where:

n = p x q

In the next section, we will be describing the key signatures for locating cryptographic

keys. These signatures will allow locating keys of different cryptographic systems such as AES

secret key and RSA private key.

4.6 Cryptographic Key Signature and Cryptographic Key Scanner

We define a cryptographic key signature as the pattern that allows finding a cryptographic key

that is hidden in a large amount of data (e.g. gigabytes of data). The signature can be a

characteristic byte-pattern; a fingerprint that can be used in locating the cryptographic key.

We introduce the idea of cryptographic key scanner, which is a program that uses the

cryptographic key signature to find cryptographic keys in large amount of data.

4.6.1 AES Key Signature

In this section, we report the finding of AES secret keys in memory then we identify AES key

signature; a pattern that allows finding AES keys in memory. We run experiments on many Java

written programs using the "SUNJCE" provider as the implementation provider for JCE. All the

66

experimented programs use AES to do cryptographic operations. The key length of AES keys

used was 128 bits. We ran the programs on a pc running Windows XP with service pack 2 and

SUN JDK 1.6.0-M05 installed.

We report that whenever one of the described programs is doing an AES encryption or

decryption operation on data, the AES secret key will be in the memory in address Y, where: Y=

X + 0x48+ Ox 30.

Address of

String Sl= "Java.security.key "

String S2= "java/security/key"

AES secret key

Shift address

X

X + 0x48

Y= X + 0x48+ 0x30

Table 4.1: AES-128 key signature associated with encryption and decryption

Whenever we find the string "Java,security.key" at address X, and String

"java/security/key" at address X + 0x48, we were able to locate the AES secret key at address

Y= X + 0x48+ ox30.

This means that we managed to identify an AES key signature for these described

programs. An attacker running a cryptographic key scanner can use the above signature to locate

AES secret keys in memory. What the cryptographic key scanner would do is that it will look for

67

the string SI ("java.security.key") in memory. It might look in the memory portion associated

with a process or in the whole memory for that string. When SI is located at address X, the

scanner will check for string S2 {"java/security/key") at address X + 0x48. If S2 is found, then

the attacker will be able to locate an AES secret key at address Y= X + 0x48+ Ox 30.

Address of

String S3=

"javax.crypto.spec.security.key "

String S4=

"j ava/crypto/spec/securitykeyspec "

AES secret key

Shift address

X

X + 0x68

Y= X + 0x68+ 0x60

Table 4.2: AES-128 key signature associated with key generation

In addition, we report that whenever one of the described programs is doing an AES

key generation operation, the generated AES secret key will be in the memory at address Y

where:

Y = X + 0x68+ Ox 60.

68

Whenever we find the string "javax.crypto.spec.security.key" at address X and string

"java/crypto/spec/securitykeyspec" at address X + 0x68, then there we were able to locate the

AES secret key at address Y= X + 0x68+ ox60.

This means that we managed to identify an AES key signature for any program that

generates AES keys. An attacker running a cryptographic key scanner can use the above

signature to locate AES secret key. The cryptographic key scanner will look for the string S3

"javax.crypto.spec.security.key" in memory. It might look in the memory portion associated with

a process or the whole memory for that string. When S3 is located at address X, the scanner will

check for string S4 "java/crypto/spec/securitykeyspec" at address X + 0x68. If S4 is found, then

the AES secret key will be found at address Y= X + 0x68+ 0x60.

The scanner can omit checking string S4 by directly checking the AES secret key at

address Y once it finds S3 at address X. However, by doing this and not using the whole key

signature, the accuracy of the scanner goes down and the ratio of false positives goes up.

This finding means that an attacker can run different types of attacks to extract AES

secret keys which are still persisting in the memory. For example, a lunch time attack can locate

an AES secret key for some critical information that the user has encrypted.

In some cases, the secret keys were not found exactly at address Y but rather a few

bytes before or after Y. However, the keys were always very relatively close to where the key

signature points.

69

When replacing Sun JDK with BEA JRockit 5.0 we found similar results. We have

been able to locate AES Keys when doing encryption and decryption of messages and when

generating keys. Tables [4.3, and 4.4] illustrate those results and define the AES key signatures

when using BEA JRockit 5.0 in both cases.

Address of
String Sl =

"Java, security.key"

S2=String

"j ava. security .key"

AES secret key

Shift address

X

X + 0x68

Y= X + 0x48+ OxcO

Table 4.3: AES -128 key signature associated with encryption and decryption when using BEA

JRockit 5.0

70

Address of

String S3=

"j avax. crypto. spec, security.key"

String S4=

javax.crypto.spec.secretkeyspec "

AES secret key

Shift address

X

X + 0x80

Y= X + 0x80 + 0x80

Table 4.4: AES-128 key signature associated with key generation when using BEA JRockit 5.0

4.6.2 RSA Key Signature

In this section we report the finding of RSA private keys in memory then we define an RSA Key

signature; a pattern that allows finding RSA keys in memory. The host operating system that was

used in these experiments was Windows XP with service pack 2 and SUN JDK 1.6.0-M05

installed. We run our experiments on many Java written programs using the "SUNJCE" provider

as the implementation provider for JCE. All these programs use RSA to do cryptographic

operations and they used RSA keys of 512 bits length.

We have not been able to associate the RSA key with fixed string as we did in AES.

However, we managed to define a key signature using modulus n which is part of the public key.

We report that whenever one of the described programs is doing an RS

71

A encryption or decryption operation on data, the RSA prime numbers P and <? was in

memory at addresses Y and Z respectively, where: Y= X + 0x48+ 0x30 and Z= X + 0x48+

[0x20:0x23].

Address of

Modulus n

P

Q

Shift address

X

Y= X + OxDO

Z= X + 0x48+ [0x20:0x23]

Table 4.5: RSA-512 key signature associated with encryption and decryption

When we find the modulus n at address X, Modulus n is part of the public key and is

not considered secret, we find the prime numbers P and Q at addresses Y and Z defined in Table

[4.5]. Finding these two prime numbers expose the private key.

This means that we managed to identify the RSA key signature for the described

programs, and an attacker running a cryptographic key scanner can use the above signature to

locate RSA private key. What the cryptographic key scanner would do is that it will look for the

host modulus n in memory. It might look in the memory portion associated with a process or in

72

the whole memory for that string. When modulus n is located at address X, the scanner will

check for P at address Y= X + OxDO and Q at address Z= X + 0x48+ [0x20:0x23].

This finding means that an attacker can run different types of attacks to extract RSA

private keys that are still persisting in the memory. For example, confidential information sent

over the network can be compromised if an attacker could locate the RSA private key that was

used to encrypt this information. An attacker can execute a lunch time attack to extract the RSA

private key, getting access to a users private key allows the attacker to implement many attacks.

The attacker can use this key to forge the host's digital signature or trick an authentication

system into trusting him as the real user.

It should be noted that other sensitive financial information, such as credit card numbers, can be

located using these memory scanning techniques. For example, it is known that credit card

numbers satisfy simple check sum formula (mod 10). Although the main objective of this

restriction is to facilitate the detection of errors when credit card numbers are used to carry any

financial transactions, the same detections algorithm can be used to detect target credit card

numbers in memory. Our experimental results show that using these well known check sums can

allow the attacker to easily gather potential credit card numbers from the memory. However,

because of the large number of false alarms, other signature information is needed to make such

attacks more practical.

73

4.7 Countermeasures

In order to hide cryptographic keys so that it is not accessible to cryptographic key scanners,

some techniques have been suggested. Some of these techniques make the task of the scanners

only more difficult but still possible.

One of the best techniques is to keep the cryptographic keys inside a smart card. Not only

the cryptographic key or part of it should not leave the smart card, but also encryption,

decryption and signing of data should take place inside the smart card itself [55]. Other

techniques include spreading the key over the program to lower the entropy of the key and hence

avoid entropy attacks that exploits the randomness properties of keys. Some techniques require

computation overhead such as constructing a set of values that when combined, they result into

the key. Then, it suggests spreading these values over the program [56].

White-box implementation has been suggested as a solution to prevent secret key

extraction on software running on malicious hosts. White-box implementation is widely used in

Digital Rights Management (DRM) software where the attacker has full access to the

implementation and execution of the software [45, 46, and 47]. Till now, white-box

implementations were used to embed fixed keys inside the implementation. We believe that a

dynamic-key white-box implementation, which is still a subject of ongoing research, can be a

software solution for preventing key extraction out of programs.

Another suggested method suggests distributing the secret keys among several systems, a

technique used to lower the chance of secret key exposure. A Threshold cryptosystem is one

example. Threshold cryptosystems are mostly useful for organizations preferring a public key for

74

the entire organization rather than a public key for each individual. Desmedt et al. [49] proposed

a method where for everyone in the organization to read a message, she must gather enough

employees with the required number of shadows to decrypt the message. This suggested method

alters the decryption process of RSA by requiring the employees to do partial calculations. Each

shareholder will transmit the result of the partial calculation separately to the designated

individual who will decrypt the message using those partial results.

Another approach to mitigate the risk of secret key exposure is called Forward Security.

The basic concept of Forward Security is to reduce the usage time of secret keys to short time

periods and make secrets from different time periods independent. Having short time periods

mitigate the risk of exposure of one of secrets, and making the secret keys independent limits the

risks to only messages encrypted during the short time period using the exposed key. However,

changing keys too often might be a challenge to the system. For instance, in a public key

infrastructure changing the public key frequently adds an inconvenience to many solutions.

Dodis et al. [48] proposed a key-insulated-security system where even when an adversary learns

a current signing key, she cannot generate signatures from future time periods. Two modules are

used: a home base and a signer. The signer, which is usually mobile, possesses a secret signing

key. The signer uses this secret signing key to sign messages. When the singing key expires at

the end of every time period, the signer updates the secret signing key by contacting the home

base then doing some local computations. The home base is usually stationary. The mobility of

the singer makes it more vulnerable to key exposure. However, such a key exposure is less

75

helpfUl to an adversary because the key was used for only short period of time. This model

provides the ability to limit the compromise of a key exposure to only one time period.

4.8 Summary and Conclusion

Techniques for efficiently locating secret keys in memory, as opposed to cryptanalysis

computations of unknown secret keys, have started to receive much attention.

Revealing cryptographic keys used by enterprises has become a continuous threat. Such

attacks are effective especially when users utilize a shared computer such as in libraries,

computer labs, or Internet Cafe's.

We explained how modern operating system tries to protect its running processes through

different methods such as process isolation. Then we gave an overview of Java cryptography

Architecture (JCA) and Java Cryptography Encryption (JCE). Then, we showed how we used a

set of tools to locate cryptographic keys. After that, we defined the terms key signatures and

cryptographic key scanner.

We examined the key signature of programs using two different implementations of JCE

to do cryptographic operations. We showed a detailed example of how to locate AES secret key

and RSA private key in memory and how an attacker can use this vulnerability to lunch different

types of attacks.

76

Chapter 5

Conclusion and Future works

In this chapter, we provide a summary of the main achievements of this thesis. We also point out

some future research directions that can lead into enhancing the development of secure e-

commerce protocols, and DRM systems.

5.1 Achievements

Throughout this work, we proposed a protocol that can be used as a building block for achieving

a secure fair exchange of valuable items between multiple parties within the multi-level

marketing business model and hence increase the users' confidence in e-commerce. Our protocol

is characterised with the following features:

• Ability to provide exchange of items between a distributor, a client, and a merchant with

the aid of a trusted third party.

• Fair exchange: That is, as the distributor provides a referral, she is assured to get her

commission; the client is assured to get the product or service she pays for; and the

merchant is also assured to get paid for the product or service she provides. In doing so,

the trusted third party ensures either all three parties get their expected items or none of

them does. In this sense, our protocol provides strong fairness.

77

• Content assurance: each one of the three parties should get her exact expected item. In a

DRM system, a customer who has bought a song or a book with a certain quality in a

certain format should get her purchased item in the exact right specification that she has

ordered. And so does the merchant and distributor; they should get their exact amount of

payment.

We provide some informal security analysis of the protocol. We provide formal verification of

the fairness property by applying the following steps:

• Modelling the protocol using PROMELA modelling language.

• Defining the strong fairness property using the linear temporal logic.

• Running the SPIN model checker to verify the fairness property against the PROMELA

model of the protocol. Verification provides the assurance of the correctness of the

security requirements of the protocol.

The multi-party exchange protocol can be used as the core protocol that provides the

exchange of merchandise between parties for an online implementation of multi-level marketing

e-commerce business.

On the other hand, a secure protocol or application has to run in a secure environment. A

system is assumed to be secure only under a set of assumptions including keeping the

cryptographic keys secret. Once the cryptographic secret is vulnerable, the security of entire

system becomes vulnerable as well.

78

In the second part of the thesis, we analyzed the predictability of locating cryptographic

keys and passwords in memory by running multiple experiments on multiple cryptographic

algorithms. Our main focus was on detecting key signature that can help locating cryptographic

keys in the "SUNJCE" implementation of the Java Cryptography Extension. We presented the

key signature of both a symmetric and a public-key algorithm namely, AES and RSA

respectively as examples. We also discussed a set of countermeasures that makes exploiting such

vulnerabilities more difficult.

5.2 Future Research Work

In this section, we provide some recommendations for future work that can further enhance our

research. These recommendations include the following:

• Providing a formal analysis for the other security properties of the proposed multi-party

fair exchange protocol.

• Designing and implementing different flavours of the multi-party fair exchange protocol

with a Semi Trusted Third Party and offline Trusted Third Party.

• Designing a solution that implements a complete multi-level marketing business model

and uses the multi-party fair exchange protocol as e-commerce protocol for payment and

exchange of items. Such solution may help identifying additional functionalities that need

to be added to the fair exchange protocol.

• Finding out the key signature for other symmetric and public key algorithms.

79

• Discovering whether other cryptographic libraries of other programming languages are

vulnerable, and whether key signature can be determined for such libraries, for example,

determining if the System. Security. Cryptography cryptography library of Microsoft .net

languages is vulnerable to such attacks.

• Designing cryptographic libraries that are not suitable to such vulnerabilities. One

cryptographic technique that can be useful for designing such a technique is Dynamic

white box implementation.

80

List of References

[1] W. Hanson, and K. Kalyanam, Internet Marketing and e-Commerce. South-Western College

Pub, 2006.

[2] I. Ray and I. Ray, "Fair Exchange in E-commerce", in ACMSIGEcomm Exchange,

September 2001.

[3] M. Geevarghese K., J. Manalel, and S. Zacharias, "Network Marketing: Exploitation of

Relationships - Myth or Reality?," International Marketing Conference on Marketing &

Society, 8 Oct. 2007.

[4] K. Harrison and S. Xu," Protecting Cryptographic Keys From Memory Disclosure Attacks,"

in 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN'07), June, 2007.

[5] "Federal Trade Commission," last accessed: April 2008. [Online]. Available: www.ftc.gov

[6] H. Pagnia and F. Gartner. "On the Impossibility of Fair Exchange without a Trusted Third

Party," TUD-BS-1999-02, University of Darmstadt, Germany, Technical Report, 1999.

[7] T. Tedrick, "How to exchange half a bit," in Advances in Cryptology: Proceedings of

Crypto'83, pp. 147-151, New York, 1984. Plenum Press.

[8] D. Boneh and M. Naor, "Timed commitments," in Advances in Cryptology: Proceedings of

Crypto 2000, vol. 1880 of Lecture Notes in Computer Science, pp. 236-254. Springer-

Verlag, 2000.

81

http://www.ftc.gov

[9] T. Tedrick, "Fair exchange of secrets," in Advances in Cryptology: Proceedings of

Crypto'84, vol. 196, Lecture Notes in Computer Science, pp. 434-438. Springer-Verlag,

1985.

[10]O. Markowitch and S. Saeednia, "Optimistic fair-exchange with transparent signature

recovery," in 5th International Conference, Financial Cryptography, Lecture Notes in

Computer Science. Springer-Verlag, 2001.

[11] S. Kosch, Kosch's guide to network marketing in Canada. Incor Publications, 1996.

[12]G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, New York:

Addison-Wesley Professional, 2003.

[13] A.Nenadic, "A security solution for fair exchange and non-repudiation in e-commerce,"

P.hd Thesis, University of Manchester, July 2005.

[14] G. Lowe, "An Attack on Needham-Schroeder Public-Key Authentication Protocol,"

Information Processing Letters, vol. 56, no. 03, pp. 131-133, Elsevier North-Holland, Inc.,

Amsterdam, The Netherlands, 1995.

[15]R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in Large

Networks of Computers," Communications of the ACM, vol. 21, no. 12, pp. 993-999, 1978.

[16]G. Lowe, "Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR,"

in Proceedings of the International Workshop on Tools and Algorithms for the Construction

and Analysis of Systems - TACAS '96, vol. 1055, pp. 147-166. LNCS, Springer-Verlag,

London, UK, 1996.

82

[17] J. Zhou and D. Gollmann, "Towards Verification of Non-Repudiation Protocols," in

Proceedings of the International Refinement Workshop and Formal Methods Pacific, pp.

370-380. Springer, 1998.

[18]"LTL checking with SPIN," last accessed: April 2008. [Online]. Available:

http://spinroot.com

[19] J. C. Mithcell, M. Mitchell, and U. Stern, "Automated Analysis of Cryptographic Protocols

using MurV," In Proceedings of the IEEE Symposium on Research in Security and Privacy,

pp. 141-151. IEEE Computer Society Press, 1997.

[20] J. C. Mithcell, V. Shmatikov, and U. Stern, "Finite-State Analysis of SSL 3.0," In

Proceedings of the USENIXSecurity Symposium, pp. 201-215, 1998.

[21]C. Meadows, "Analysing the Needham-Schroeder Public-Key Protocol: A Comparison of

Two Approaches," In Proceedings of the European Symposium on Research in Computer

Security - ESORICS '98, pp. 365-384. LNCS, Springer-Verlag, Berlin, Germany, 1996.

[22] G. Bella and L. C. Paulson, "Mechanising a Protocol for Smart Cards," In Proceedings of

the International Conference on Research in Smart Cards - eSmart '01, vol. 2140, pp. 19—

33. LNCS, Springer-Verlag, London, UK, 2001.

[23] G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano, "Formal Verification of

Cardholder Registration in SET," In Proceedings of the European Symposium on Research

in Computer Security - ESORICS '00, vol 1895, pp. 159-174. LNCS, Springer-Verlag,

London, UK, 2000.

83

http://spinroot.com

[24] L. C. Paulson, "Inductive Analysis of the Internet Protocol TLS," ACM Transactions on

Computer and System Security, vol. 02, no. 03, pp. 332-351, 1999.

[25] L. C. Paulson, "Proving Properties of Security Protocols by Induction," In Proceedings of

the Computer Security Foundations Workshop, pp. 70-83. IEEE Computer Society Press,

1997.

[26] V. Shmatikov and J. Mitchell, "Analysis of Abuse-Free Contract Signing," In Proceedings

of the International on Conference Financial Cryptography FC '00,vo\. 1962, pp. 174-191.

LNCS, Springer-Verlag, London, UK, 2001.

[27] V. Shmatikov and J. Mitchell, "Analysis of a Fair Exchange Protocol," In Proceedings of

the Symposium on Network and Distributed Systems Security - NDSS '00, pp. 119-128.

Internet Society, 2000.

[28] V. Shmatikov and J. Mitchell, "Finite-State Analysis of Two Contract Signing Protocols,"

Special issue of Theoretical Computer Science on Security, 283(2):419-450. Elsevier

Science Publishers Ltd., Essex, UK, 2002.

[29] S. Kremer and J-F. Raskin, "A Game-Based Verification of Non-Repudiation and Fair

Exchange Protocols," Journal of Computer Security, vol. 11, no. 03, pp. 399^429. IOS

Press, Amsterdam, The Netherlands. 2003.

[30] S. Kremer and J-F. Raskin, "Game Analysis of Abuse-Free Contract Signing," In

Proceedings Computer Security Foundations Workshop - CSFW '02, pp. 206-222. IEEE

Computer Society Press, 2002.

84

[31] S. Kremer and J-F. Raski, "A Game-Based Verification of Non-Repudiation and Fair

Exchange Protocols, " In Proceedings of International Conference on Concurrency Theory

CONCUR '01, vol. 2154, pp. 551-566. LNCS, Springer-Verlag, Berlin, Germany, 2001.

[32] S. Schneier, "Formal Analysis of a Non-Repudiation Protocol," In Proceedings of the IEEE

Computer Security Foundations Workshop, pp. 54-65. IEEE Computer Society Press, 1998.

[33]"MRMC," last accessed: April 2008. [Online]. Available:

www.cs.utwente.nl/~zapreevis/mrmc/

[34] "BLAST: Berkeley Lazy Abstraction Software Verification Tool," last accessed: April

2008. [Online]. Available: http://mtc.epfl.ch/software-tools/blast/

[35] J. Holzmann . The SPIN Model Checker: Primer and Reference Manual. New York:

Addison-Wesley Professional, 2003.

[36] L. C. Paulson, "Isabelle: A Generic Theorem Prover," LNCS 828, Springer-Verlag, 1994.

[37] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tapcsiran ,

"MOCHA: Modularity in Model Checking," In Proceedings of the International

Conference on Computer-Aided Verification, vol. 1427, pp. 521—525, LNCS, Springer-

Verlag, 1998.

[38]D. L. Dill, A. J. Drexler, A. J. Hu, and C. Han Yang, "Protocol Verification as a Hardware

Design Aid," In Proceedings of the IEEE Conference on Computer Design: VLSI in

Computers and Processors, pp. 522-525. IEEE Computer Society, 1992.

[39] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

"Counterexample-guided abstraction refinement," Proceedings of the 12th International

85

http://www.cs.utwente.nl/~zapreevis/mrmc/
http://mtc.epfl.ch/software-tools/blast/

Conference on Computer Aided Verification (CAV '00), vol. 1855, Lecture Notes in

Computer Science, pp. 154-169. Springer-Verlag, July 2000.

[40] W. Stallings, Operating Systems: Internals and Design Principles (4th Edition). Alexandria,

VA: Prentice Hall, 2000.

[41] "Java ™ Cryptography Extension (JCE), Reference Guide," last accessed: April 2008.

[Online]. Available:

http://java.sun.eom/j2se/l.4.2/docs/guide/security/jce/JCERefGuide.html

[42] P. Dabak, M. Borate, S. Phadke , Memory Management, M&T Books, October 1999,

Available: http://www.windowsitlibrary.eom/Content/356/04/2.html

[43] A. Shamir, and N. van Someren, "Playing Hide and Seek with Stored Keys," in Financial

Cryptography, pp. 118-124, 1999.

[44] J. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.

Feldman, J. Appelbaum, and E. W. Felten, "Lest We Remember: Cold Boot Attacks on

Encryption Keys," [Online]. Available: http://citp.princeton.edu/pub/coldboot.pdf

[45] S. Chow, P. Eisen, H. Johnson, P. van Oorschot, "A white-box DES implementation for

DRM applications," In Proceedings ofDRM2002 - 2nd ACM Workshop on Digital Rights

Management, 2002.

[46] S. Chow, P. Eisen, H. Johnson, P. van Oorschot, "A white-box cryptography and an AES

implementation," In Proceedings of SAC 2002 - 9th Annual Workshop on Selected Areas in

Cryptography, Lecture Notes in Computer Science, pp. 250-270, Springer, 2002.

86

http://java.sun.eom/j2se/l.4.2/docs/guide/security/jce/JCERefGuide.html
http://www.windowsitlibrary.eom/Content/356/04/2.html
http://citp.princeton.edu/pub/coldboot.pdf

[47] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, "White-Box Cryptography and an

AES Implementation," Proceedings of the Ninth Workshop on Selected Areas in

Cryptography (SAC 2002), Springer-Verlag lncs, August, 2002.

[48] Y. Dodis, J. Katz, S. Xu, and M. Yung, "Key-insulated public key cryptosystems," in

Advances in Cryptology (Eurocrypt 2002), vol. 2332, pp. 65-82, 2002.

[49] Y. Desmedt, and Y. Frankel, "Threshold cryptosystems,". In Proceedings Crypto'89, pp.

307-315.

[50] "WinHex," last accessed: April 2008. [Online]. Available: http://www.x-ways.net/winhex/

[51] B. Bloch, "Multi-level marketing: What's the catch?" Journal of Consumer Marketing,

1996, pp. 18-26.

[52] "U.S. Securities and Exchange Commission," last accessed: April 2008. [Online].

Available: http://www.sec.gov/answers/ponzi.htm

[53] "BreachBlog," last accessed: April 2008. [Online]. Available: http://breachbIog.com/

[54] "PROMELLA References," last accessed: April 2008. [Online]. Available:

http://spinroot.com/spin/Man/Ouick.html

[55] M. Blaze, J. Feigenbaum, and M. Naor, "A Formal Treatment of Remotely Keyed

Encryption," in: Eurocrypt '98, Springer LNCS.

[56] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography,

Springer, 2004.

[57] "E-commerce," last accessed: April 2008. [Online]. Available:

http://spinroot.com/spin/Man/Quick.html

87

http://www.x-ways.net/winhex/
http://www.sec.gov/answers/ponzi.htm
http://breachbIog.com/
http://spinroot.com/spin/Man/Ouick.html
http://spinroot.com/spin/Man/Quick.html

