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ABSTRACT
Enhancing Coverage Based Verification using Probability Distribution

Essam Arshed Ahmed

Functional Verification is considered to be a major bottleneck in the hardware
design cycle. One of the challenges faced is to automate the verification cycle itself.
Several attempts have been made to automate the verification cycle using Artificial
Intelligence (AI) approaches. On the other hand, coverage based verification is an
essential part of functional verification where the objective is to generate test vectors
that maximize the functional coverage of a design. It uses a random test generator
that can be directed by some AI algorithms. This process of adapting Al to direct
the test generator according to coverage is called Coverage Directed Test Generation
(CDG). CDG is a manual and exhausting process, but it is vital to complete the
verification cycle. To increase the coverage, a Cell-based Genetic Algorithm (CGA)
is developed to automate CDG. We propose a new approach of using CGA with ran-
dom number generators based on different probability distribution functions such
as Normal (Gaussiun) distribution, Exponential distribution, Gamma distribution,
Beta distribution and Triangle distribution. We apply the new approach on a 16x16
packet switch modeled in SystemC, where we define appropriately several static and
temporal coverage points and study the effect of the probability distribution on
the coverage rate using CGA as an optimization tool. Furthermore, we model the
same 16x16 packet switch using Verilog and express the same coverage points using
SystemVerilog and run the simulation using Verilog simulator and random number
generator based on Normal distribution, Exponential distribution and Uniform dis-
tribution to show their effect on coverage and compare the results with our approach.
Then experiments show that some probability distributions have more effect on the

coverage than other distributions.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the semiconductor industry has been growing fast and gaining more
profits. It is reported by Semiconductor Industry Association (SIA) that the global
chip sales hit $255.6 billion in 2007 with an increase of 3.2% from 2006, and it is
expected to grow by 7.7 in 2008 with a jump of 7 percent in 2009 and a rise of 8.5
percent in 2010 [4)[31]. The rapid growth in semiconductor devices is due to the
rapid demand from the market for computers, mobilz phones and other consumer
electronics [4]. In addition, the demand is not only for quantity but also for com-
plexity yet simplicity in using consumer electronics devices such as mobile phones,
handhelds, laptop computers, and digital cameras. Adding more functions to an
electronics device yet making it simple to use is a challenging task and requires a
significant amount of time and money to put all the functions and consequently
add more logic gates in a single chip. According to Moore’s law, the number of
transistors in a single chip was almost doubled every two years [7].

On the other hand, consumers would not appreciate electronic devices that fail
some of their functions during their normal life and from the manufacturers point

view, the cost of finding bugs through consumers is larger than the cost of verification



[44]. Thus, producing a chip that works correctly has become an essential task in
the chip developing process.

This rapid growth creates a lot of challenges and pressure on researchers and
engineers to design and fabricate workable chips functionally and physically within
strict design specifications and a rigid time frame. Research conducted by Collett
International shows that the number of chips that work from the first time is less
than 50% of the total chips fabricated [39]. It was also found that more than 70% of
the defects are due to functional errors rather than physical or other types of error.
These functional errors are due to incorrect implementation of the design specifi-
cation in hardware description language (HDL) code, or so-called bugs. Therefore,
it has become a vital issue to produce functionally correct and verified designs be-
fore the fabrication process. This will minimize the fabrication cost and reduce
time-to-market.

Transistor/Month
Transistor/Chip

A

Design Gap

Verification Gap

Figure 1.1: Design and Verification Gaps [42]

Verifying the functionality of the design or a chip is called Functional verifica-
tion. Functional verification is a bottleneck in any chip or System-on-Chip (SoC) de-
velopment process: it is reported that functional verification takes around 60%-70%

of chip development efforts in terms of time, and computer and personal resources



[28]. The challenges of functional verification come from the design complexity
(logic gates), design duration, and verification complexity. Figure 1.1 shows that
the design productivity growth continues to remain lower than complexity growth,
which in return increases the gap between the design and verification. Therefore,

functional verification becomes an essential part of any chip development process.

1.2 Functional Verification

The main task of functional verification is to compare the specification of a design
with its observed behavior to determine the equivalency between the specification
and the actual design, and any differences are reported as bugs. The word “design”
refers to Design Under Verification (DUV) [12]. The first step in this process is to
identify the main functions that need to be verified and divide them into fragments
and also to identify the areas of the design that are prone to bugs [41]. The next
step is applying one of the functional verification methodologies to simulate the
design and collect the simulation result. These methods can use either a directed
test scheme or a random test scheme.

There are several methodologies for tackling functional verification problems
and they are divided into simulation and formal methods. Formal methods use
mathematical expressions and mathematical reasoning to prove the correctness of
the design, but in simulation methods, the design is represented functionally and log-
ically by the semantic of a language which can be simulated to observe the behavior
of the design. Simulation methods can be further divided into several methodolo-
gies such as simulation-based verification, assertion-based verification, and coverage
based verification.

Formal verification focuses on systematic ways to prove or disprove the correct-
ness of the design using mathematical formal methods. Mathematical expressions

and symbols are used to express the properties of the design, then use mathematical



reasoning to prove or disprove the correctness of the properties regardless to the
input values [20]. There are three main approaches for formal verification: Model
Checking, Equivalence Checking, and Theorem Proving. Model checking and equiv-
alence checking are exhaustive techniques and cannot be used for large design due
to state-space explosion problem which partially solved by introducing Symbolic
Model Checking. On the other hand, Theorem Proving can be used to verify larger
designs but it is not very practical due to considerable human effort and expertise
needed [19].

Simulation-based verification is the most widely used in verification; almost
all Electronic Design Automation (EDA) tools support simulation based verification
where the testbench is built to provide valid scenarios to verify the logic behavior of
the design. A testbench can provide random, directed and constrained random input
over the entire input space of the design. The main advantage of this methodology
is that it is easy to control the input signal, it is easy to build, and it is easy to target
certain aspects of the design. On the other hands, its main drawback is that it is
difficult to control the internal signals and to observe their behavior at the output.

In assertion verification, the designer asserts a certain code or statement in
the code of hardware design to verify properties of the design. The asserted state-
ment does not affect the design behavior, but extracts useful information about the
properties of the design [11][44]. Assertion based verification is considered a white
box verification, where asserted statements are written in HDL or special asser-
tion language such as OpenVera Assertion (OVA), SystemVerlig Assertion (SVA) or
Property Specification language (PSL) [11].

Assertion-based Verification checks mainly two types of assertions [11]: (1)
Immediate assertion and (2) Concurrent assertion. The Immediate assertion is also
called static or event assertion [29]: it detects static events using a simple assertion
check to detect if the event occurs immediately or not. While Concurrent assertion,

also called temporal assertion [23], detects a sequence of events over a time period, it



means that a sequence of several events should occur before the final asserted event
is checked. There is another type of assertion, which is called pre-defined assertion
building blocks, which uses pre-defined assertion libraries and is developed by EDA
vendors and supported by assertion languages such OVL, PSL and SVA [44].

Coverage-based verification play an important role in functional verification
because it is used to assess the progress in the verification cycle and identify the area
of the design that has not been tested. The coverage-based verification requires to
define coverage tasks (coverage points and coverage group) that are used to quantify
coverage progress. Coverage tasks represent various functions and properties of the
design. They are classified into two main types as in assertion-based verification:
(1) Static coverage points and (2) Temporal coverage points [29]. A coverage group
is a set of coverage points. In this thesis, we are going to use the words Static and
Temporal to describe both the coverage points and assertions.

Coverage metrics is considered to be a measure of the coverage which answers
the question, how much coverage do we get and are we done? [12]. In other words,
it measures the completeness of the verification process and directs the verification
process towards unexplored areas of the design. Sets of criteria and thresholds are
established to compare with coverage metrics to determine whether all activities in

the verification process are completed or not. Coverage metrics help in:
1. Quantifying the completeness of the verification by applying heuristic measures

2. Identifying the areas of the design that are not covered and guiding the tes-

bench driver

There are several coverage metrics but the most widely used are code coverage,
finite state machine coverage, structural coverage and functional coverage. Each
metrics is used to assess part of the design and provide helpful information about
the area that has not been tested. The code coverage is used to verify the HDL

code of the design and it is divided into branch coverage, line coverage, expression



coverage and path coverage. The structural coverage focuses on logical structure of
the design. It refers also to toggle coverage and combinational coverage.

The finite state machine (FSM) coverage is a useful metric that provides more
information about the functionality of the design. FSM metrics focus on state
coverage and transition coverage. The state coverage shows the percentage of the
visited states and the transition coverage shows the percentage of the visited possible
transition or paths between the states [43]. Since the FSM of the complete design
may be very large and difficult to cover, it can be divided into two categories: (1)
Handwritten FSM that captures the behavior of the system at higher level; (2)
Automatic extraction of FSM from the design description. Functional coverage uses
the concept of coverage events or coverage tasks that define a property or function

of the DUV and it is specified in the coverage model to detect its occurrence.

1.3 Coverage Directed Test Generation

In any chip development process, the design’s specification serves as input for defin-
ing the verification and coverage tasks. The functional coverage process, in partic-
ular, can be seen as two steps: (1) defining the cover points; and (2) finding the
appropriate test to hit those points. This process is typical of coverage verifica-
tion processes in simulation-based verification and it is the most challenging and
exhausting task due to the manual effort of analyzing coverage information and
modifying testbench to enhance the coverage [34]. The functional coverage process
is also called Coverage Directed-test Generation (CDG).

Figure 1.2 shows the manual CDG where verification engineers guide the ran-
dom number generator by setting up directives and constraints. The random number
generator generates test vectors for the simulator. The simulator simulates the DUV
and the coverage points. At the end of the simulation, a coverage report is gener-

ated. The coverage report contains information about the coverage points that are



covered by the generated test patterns during the simulation. The verification en-
gineers analyze the coverage report and modify the constraints to cover the area of

the design that are not covered.

Design
Coverage Under

Points

Verification

| Test
Patterns

Simulator

Directives for
Randorn Cgverage
Number eport

|_Generator |

Figure 1.2: Manual Coverage Directed Test Generation

A constrained Random Number Generator (RNG) is the main part of the
testbench in coverage-based verification (Figure 1.2). Manual modification of such
constrained random number generators is not always feasible due to the poor con-
trollability from the primary inputs over the internal variables. A non-automatic
human-based technique, even if it succeeds in deciphering the previously mentioned
inputs/internals relationship, will result in a very tedious and time-consuming over-
all coverage optimization process. Thus, Coverage Directed-test Generation (CDG)
is a real problem in functional verification.

The problem lies in finding the best directives or constraints for the random
number generator to generate test patterns that achieve maximum coverage in less
time. Several attempts were made to solve this problem by automating the CDG
and replacing the human effort with an Artificial Intelligence (AI) technique to
analyze the coverage report and provide directives for the RNG based on pre-defined
knowledge and learning experience. Known Al algorithms that have been explored

are Neural Network, Bayesian Network, and Genetic Algorithms.



In general, coverage-based verification and CDG use uniform probability distri-
bution to generate random numbers. Although Al algorithms guide the constrained
RNGs to achieve maximum coverage, the time it takes to achieve such coverage
depends on the design’s inputs and its internal variable relationship. Therefore, it
does not guarantee that Al algorithms can achieve maximum coverage in a short
time, because the input that achieves maximum coverage may not be distributed
uniformly across the input domain. Therefore, other probability distributions can
be used to generate random numbers and enhance the coverage further by achieving
the maximum coverage in a short time.

In this thesis, we suggested using different probability distribution functions
to generate random numbers along with Al algorithms. The suggested distribu-
tions are Normal distribution, Exponential distribution, Gamma distribution, Beta

distribution, and Triangle distribution

1.4 Related Work

In this section, we present related work in the area of functional coverage-based veri-
fication using different methodologies and algorithms. We will focus on the Artificial
Intelligence algorithms such as a Bayesian Network, Neural Network and Genetic
Algorithms, as well as design’s functional properties and different methodologies
used to automate the verification cycle. Finally, we will present a brief review of
a methodology of cell-based genetic algorithm that is used to automate coverage
directed test generation.

Many attempts have been made to automate the verification cycle and close
the gap between analyzing the coverage result and modifying the testbench by us-
ing Artificial Intelligence algorithms such Neural Network, Bayesian Network and
Genetic Algorithms.

In [40], a Markov chain is used to generate test vectors for the DUV. The



parameters of the Markov chain are modified based on coverage analysis. A pre-
defined probability distribution, which depends on the current state of the DUV, is
used to analyze the coverage and guide the Uniform distribution RNG. This work
uses probabilistic and semi-formal analysis of sequential circuit specification to form
a model for verification in contrast to the approach where real HDL model or higher
abstraction model (SystemC). Along the same line of thought, a Bayesian Network
is used in [10] to define the relationship between the directives of a random test
generator and coverage space. A learning algorithm trains the data of the Bayesian
Ne‘éwork with correct knowledge to direct the random test generator. However, the
quality of those data affect the ability of Bayesian Network to encode the correct
knowledge. This is in contrast with totally free random data, which is only affected
by the seed of the random data generator.

In [35], a Neural Network is used for Priority Directed Test Generation. This is
done using two main modules: the Priority Control module and a Neural Learning
module. The Neural Learning module analyzes the result and feeds the learning
experience to the Priority Control module. The priority control module controls
the random test generation by specifying a set of rules and attributes that are
set manually. This algorithm uses several pre-selected test vectors with different
priorities instead of free random initialization as we do in this thesis. In fact, we
follow a similar flow, but use GA as the learning and optimizing algorithm.

Inductive Logic Programming (ILP), which is a subfield of machine learning,
is used in [15] as a learning method from examples in the context of CDG. An
implementation of ILP, called Progol, is used as case study which is provided with
pre-defined knowledge of functional tasks of the system and their relationship rules.
The Progol generates test directives for a random stimulus generator that generates
test vectors for DUV. The study targets only static coverage tasks.

In [14], an approach for automatic Coverage Directed test Generation (CDG)

is proposed where the constraint for the random number generator can be extracted



through simulations over a number of clock cycles. The tool analyzes the simulation
data (coverage information) and extracts input constraints automatically that are
used to control the internal signals, but the designer needs to specify the internal
constraints. The major advantage of this approach is that it optimizes a sequence
of the inputs but requires a lot of effort to define the constraints manually and it
does not target temporal properties.

Evolutionary algorithms such as genetic algorithms are also introduced in the
area of functional verification as an optimization technique to generate input test
vectors. For example, genetic algorithm is proposed in [9] where the input test
vector is a series of » numbers that are optimized and generated by a uniform
random number generator. This approach tackles temporal properties, for example,
when a transaction is output to a bus and is acknowledged, then its number appears
on the transaction indication bus after 3 clock cycles. In the same way, a genetic
algorithm is proposed in [6] to automatically generate biased random instructions to
verify microprocessor architecture at Register Transfer Level (RTL). Likewise, a GA
is used in [46] to generate a sequence of inputs applied to digital integrated circuits.
In this approach, each individual of the population represents a chain of inputs.

Another study, [45], used Genetic Algorithm in the context of CDG using
multilayered environment. The verification platform consists of five different layers
to make it reusable. The DUV is placed in signal layers (RTL layer) and each layer
provides a set of services. The coverage tasks are defined as function of inputs and
the DUV is viewed as FSM. The inputs are the generated input and the states are the
set of the machine’s state that are triggered by the inputs. This work did not tackle
the temporal properties of the DUV. The output of the design under verification is
checked automatically either by comparing with the behavioral model of DUV or
by comparing with the expected result in the scoreboard. The solution is encoded
in few chromosomes and only three chromosomes were randomly initialized at the

beginning of the simulation. Finally, this work did not show clearly the evolution

10



process of the GA.

After reviewing the above studies, we found some limitations, such as tar-
geting one property at a time [9], predetermined initial data in contrast with free
initialization [10], and targeting static properties [15]{14] except in [9]. In addition,
the genetic algorithms that were used do not provide a clear information about how
the coverage is measured and how the solution is presented by the GA. These limi-
tations were overcome by a recent work [34] that used Cell-based Genetic Algorithm
(CGA).

In CGA, the input domain is divided into sequences of inputs called cells.
Each cell has upper and lower limits and it represents a single input to the DUV.
The cells are randomly selected from the range of input domain. The range of the
input domain is from (2°) to (23! — 1). The number of cells and the range of the
input domain are defined by the user. The basic operation of CGA starts when a
certain number of cells is generated randomly, each cell targets the DUV and the
coverage information is collected. Then, CGA evaluates the coverage information
using pre-defined evaluation function, which is called fitness function. The fitness
function selects the most fitted cells based on pre-defined criteria and forwards them
to the next generation. The rest of the cells are forwarded for genetic operations to
produces new modified cells for the next generation. Experimental results showed
better coverage compared to Specman testbench [2] and pure random test generators.
On the other hand, CGA uses Uniform random number generator, and targets small
sets of static properties.

In this thesis, we are enhancing the work of [34] by adding random number
generators based on different probability distribution and study the effect of the
probability distribution on the coverage. Moreover, we are targeting larger sets of

static and temporal properties.
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1.5 Methodology

The general concept of performing coverage in hardware design, as depicted in Fig-
ure 1.3, involves both the design and the coverage points. The simulator, with cov-
erage reporting enabled, provides a coverage report including functional coverage
(cover groups, aésertions, and cover points). The classical technique for improving
coverage requires verification engineers to evaluate the report and decide to fine-
tune the tests (this may also involve changing the testbench components) in order

to maximize the coverage. This link is replaced in Figure 1.3 by the CGA box.

Coverage Design
Points Under
Verification
\ —] S =
Random Test
Number Patterns Simulator
anerato —
D|r:ac:\é§i1 for Coverage
Number [~ CGA 1« Report
Generator N

Figure 1.3: Automatic Coverage Directed Test Generation

The CGA analyzes the coverage information and optimizes the search for new
directives for the random number generator. In other words, it fine-tunes the input
and the system setting in order to hit a set of given coverage points. To perform this
operation, we propose to use the random test generators with constrained test gen-
erators that support several probability distributions. We propose five probability
distributions such as Normal (Gaussian), Exponential, Gamma, Beta, and Triangle
probability distributions. We implemented, tested and integrated the five distribu-
tions into the CGA. The random number generator generates random number based
on the selected distribution. For example, if Normal distribution is selected then the

CGA generates cells based on the mean and the standard deviation of the Normal
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distributions over the input domain. The algorithm task is to find the appropriate

numbers in the domain to maximize the coverage.

Selecting Random Number
Generator and its
Parameters

A 4

Generating Initial Random
Population

h 4

Run Simulation

|

Fitness Evaluation

l

Applying Genetic Operations

|

Generating New Population

Satisfy
Termination
Criteria

—— No

Yes

v
Display
Output

Figure 1.4: Flowchart of Proposed CGA Process

The overall CGA process is modeled in Figure 1.4. First, a random distribution
is chosen for the reset of the execution. Then, an initial population is defined. There
are several techniques available to define this initial population: randomly, using the

same random distribution used for the inputs, or a user-defined technique. After
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running the simulation, a fitness function is evaluated. This function evaluates how
good the previous population is in terms of coverage. There are several ways to
define the fitness. In general, the fitness is calculated based on the percentage of
the cover points being hit over the total number of cover points in the design.

The fitness evaluation guides the generation of the next generations. For
instance, we preserve some of the best elements in the population, perform cross-
over operations in order to generate new elements, add some mutations, and keep
some random members in order to preserve diversity. The overall run-evaluation-
generation process is performed until a given termination condition is hit (e.g., 95%

coverage or fitness is 0.99) or if the times run out.

1.6 Thesis Contribution

In this thesis, we have developed a methodology for automatic CDG attempting to
enhance the coverage using different probability distribution functions to generate
random numbers. In addition, we apply our methodology to a large number of static
and temporal coverage tasks of DUV.

In summary, the contribution of our thesis is as follows:

e We developed five random number generators based on different probability
distribution functions. The probability distribution functions we used are:
Normal distribution, Exponential distribution, Gamma distribution, Beta dis-
tribution, and Triangle distribution. We implemented the five RNGs using
different algorithms, then we tested and integrated them into the CGA.

e We applied our methodology to a large set of coverage points. We defined both
static and temporal properties of the design, and applied our methodology
using CGA and the five random number generators to verify those properties.

We used a 16 x 16 packet switch as a design under verification. We implemented
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the 16x16 packet switch as behavioral model and the coverage points using

SystemC.

e We also implemented the 16x16 packet switch as an RTL model using Verilog
HDL and coverage points in SystemVerilog. We simulated the RTL model and

compared the results with our approach.

1.7 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides an introduction to
the basic principles and operation of the genetic algorithms, then we present gen-
eral introduction to random number generators and basic concepts, formulae and
graphs of Normal, Exponential, Gamma, Beta and Triangle probability distribution
functions. We also introduce the basics of SystemC concepts and architecture, as
well as the basics of SystemVerilog language. In addition, we provide an illustrative
example of 32-bit CPU to demonstrate coverage metrics and extraction of coverage
points. In Chapter 3, we describe our detailed methodology and proposed genetic
algorithm, then we present random number generator and the algorithms to gener-
ate random numbers based on Normal, Exponential, Gamma, Beta, and Triangle
probability distribution functions. In Chapter 4, we describe the operation and
specification of the 16 x16 packet switch as a case study, then we represent the Sys-
temC and the Verilog models of the packet switch. Also, we describe the static and
temporal coverage points of the packet switch, then we represent the experiments
and discuss the simulation results. Finally, in Chapter 5, we present our conclusion

and the future work.
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Chapter 2

Preliminaries

This chapter describes briefly the main components on which we are going to build
our work in this thesis. The main components are Genetic Algorithms, SystemC,
SystemVerilog, coverage metrics, random number generator, and probability distri-

bution functions.

2.1 Genetic Algorithms

Genetic Algorithm is an adaptive heuristic search technique that is used to find
an optimum solution to a problem. Genetic Algorithm is based on evolutionary
algorithms, which use techniques inspired by the evolutionary theory of Darwin in
which the best (fittest) individuals survive. Since its introduction in the 1960’s by
John Holland [26], it has been experimented and applied to many areas of science and
engineering for search, optimization and machine learning problems where search
space is very large for traditional optimization methods to find the best solution.
GA is an iterative process implemented as computerized procedures. In each
iteration, it searches in different direction for good individuals (potential solution)
in the entire population. It performs a comparison among the potential solutions

and forwards the best solution over the next generation until it finds the optimum

16



solution and then terminates the iteration process.

GA does not guarantee a single best solution for the problem, but it always
provides a set of optimum solutions more efficiently compared to traditional search
techniques. GA considers multiple search points in a population at the same time,
and thus reduces the possibility to stuck in local minima during the simulation. This
is one of the main advantages of GA.

Simple Genetic Algorithm’s functionality starts with constant randomly gen-
erated population of size N. The individuals in the population are represented as
a binary string of length I Each individual in the initial population is evaluated
in order to generate a new generation. The generation of a new generation is re-
peated until the best solution is found or other criteria are met. The new generation
consists of highly-fitted individuals that are produced by applying mutation to the
offsprings. The individuals are evaluated by the fitness function [32].

The individual in the population is called a genome or chromosome of the
potential solution. The genome is the basic element of the final solution and there
are different ways to represent or encode a genome such as trees, hashes, linked lists,
etc., and it always depends on the problem. In general, GA uses a fixed length of

bits string to encode the genome as shown in Figure 2.1.

Solution

|111101oo1100001o]

Chromosome / Genome ‘1010011011001010'

[101001101100101O >

1110000001111111—'

Figure 2.1: Chromosome / Genome presentation
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After defining the genome, the population of potential solutions is defined.
The population is initially generated randomly most of the time, but it can be
generated using some heuristic algorithms. The population can also be loaded from
the previous generation. The size of the population is dependant on the complexity
of the problem and the size of search space. Population size is an important factor
in GA and it could be critical in some applications because it affects population
diversity and selective processes and hence it affects the evaluation process. The
size of the population in general remains constant over the generations but there
are some implementations of GA in which varying or dynamic population sizes are
used [24].

Genetic Algorithm has two main operators: crossover and mutation. Crossover
operation is applied to two selected individuals by exchanging part of their genome to
form a new individual. The location of the point where crossover occurs is selected
randomly, and the crossover can be at a single point or at two points for same
size of individuals. Figure 2.2 illustrates (a) single point and (b) two point crossover
operations. The crossover is applied to the individual based on crossover probability
Pc, arandom number r where r € [0, 1] is generated. If r < Pc then the chromosome

will be selected for the crossover, otherwise it will carryover to the next generation.

1010011011001010 1010011011001010

1110000001111111 11100000071111111

1010011001111111 101100000011;01010

1110000011001010 1110011011011111
(a) (b)

Figure 2.2: Crossover Operation

Mutation operation is applied to one individual by changing an arbitrary bit or
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bits from its chromosome. The bits are chosen randomly. The main purpose of the
mutation is to avoid slowing or stopping the evolution by minimizing similar chro-
mosomes. Mutation keeps the diversity of the population and helps to explore the
hidden areas in the search space. Mutation can occur at any bit in the chromosome

string with some probability Pm. Figure 2.3 illustrate the mutation operation.

1010011Q011001010

|

1010011111001010

Figure 2.3: Mutation Operation

2.1.1 Selection

Selection is a process where chromosomes are selected from a population for repro-
duction. During the process of evolution, a portion of the population is selected
to produce new offspring by applying certain methods. The new-born ofispring re-
places the discarded one. The selection process and method should prevent prema-
ture convergence and should be applied to a large enough diverse population. There
are several selection methods, but the most known are the Roulette Wheel selection
method, the Tournament selection method, and the Ranking selection methods.

In Roulette Wheel selection method, a chromosome is selected based on its
fitness value and the value of selection probability. Random probability number
is generated and compared to the chromosome’s fitness value, if the fitness value
is equal or less than the probability value, then the chromosome is selected. In
Tournament selection, few chromosomes are selected randomly to compete with

each other to remain in the population, and finally the most fitted one is selected
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for next generation.

2.1.2 Evaluation

Evaluation is very important in the genetic algorithm to find the optimum solution.
It is a process to evaluate the potential solution by using evaluation function or
fitness function. Fitness function is always dependant on the problem and it is very
important for an efficient evolution. There is no specific fitness function or method
to evaluate the potential solution. For example, assume the function F' is depend
on three independent variables z, y, and z, F=f(z, y, 2). The values of z, y, and
z will lead the value of function F to zero or close to zero (F=f(z, y, z)— 0). The
closer the value of F is to zero, the higher the fitness value. The above example
seems simple but in the real world where complex problems exist, it is very difficult
to formulate a fitness function that can express the effectiveness of the potential
solution. The fitness function should have all the information needed by GA for
guidance through search space to determine the correct potential solution.

The operation of of simple Genetic Algorithm is described in the following

steps :

e Initial Population

— create initial population

— evaluate individual in initial population
e Create new population

— select fit individual for reproduction
— generate offspring with genetic operator crossover
— mutate offspring

— evaluate offspring
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2.2 Random Number Generator

Increase in the design complexity in terms of inputs and functionalities make it
almost impossible to build testbenches or test cases that completely verify a design’s
features and its functions. Therefore, the solution is to create test vectors randomly
using a random number generator [36].

Random number generators are widely used in many verification environments
and are heavily adapted by many simulation-based hardware verification tools such
as Specman [37], VCS [17], and QuestaSim environments [12]. Also, they are used
by Neural Network and Genetic Algorithms during the process of learning and evo-
lution. Random number generators that are used in simulation-based verification
should be powerful enough to not produce sequences of repeated numbers within
short cycles that may be shorter than the simulation cycle. In general, poor random
number generators lead to misguided results. The random numbers generated by
verification tools are not completely random, but for practical purposes RNGs are

considered to be random if they follow the following properties:

1. Repeatability: the sequence of the generated numbers is the same for all seeds.

2. Randomness: the generated random numbers should be pure random and pass
all statistical tests for randomness such as frequency test, gap test, serial test,

and permutation test [18].

3. Long period: the random numbers should be generated for a period that is

much longer than the simulation time.

4. Insensitive to seeds: randomness and period of the generated numbers should

not depend on the initial seeds.

In addition, random numbers are generated based on different probability dis-

tribution functions. The most common distribution is Uniform distribution.
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2.3 Probability Distribution Function

Probability distribution is a fundamental concept in statistics, and the Probability
‘Distribution Function (PDF) is a function that describes values and their frequen-
cies of occurrence at random events. The values must cover all possible random
events and the total sum of probability is equal to 100%. It is defined in term of
Probability Density Function (PDF) and Cumulative Distribution Function (CDF).
The probability distribution is classified into two types: discrete probability dis-
tribution functions and continuous probability distribution functions. Like discrete
distribution function, continuous probability distribution functions are used in many
applications, and one of those applications is to generate random numbers based on
different probability distribution functions. Examples of such distribution functions
are Uniform distribution, Normal distribution, Beta distribution, Gamma distribu-
tion, Exponential distribution, Rice distribution, Triangular distribution, Wigner

Semicircle distribution, Weibull distribution, and Hyperbolic distribution [38].

2.3.1 Uniform Distribution Function

Uniform distribution is defined by two parameters: a (lower limit) and b (upper
limit), and the probability of any value that occurs between a and b is equal (Figure
2.4). A random number is said to be uniformly distributed in a < z < b if its
probability density function is described in Equation 2.1, where the probability of z
to be generated is equal along the interval [a, b].
0 fora<z<b
flz) = (2.1)
0 forx<aorz>hb,
A Uniform distribution is widely used in generating random numbers, which
is used in many applications. The Mersenne Twisted (MT) pseudo algorithm is

described in [22] and it generates a 32-bit long random integer. There are other
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random number generators that can use uniform RNG to generate random number
based on their distributions, such as Normal Distributions, Gamma Distributions,

Beta Distributions, Exponential Distributions, and Triangle Distribution.

f(x)
A

|

fF——rrrmccc e

[ 2 i T —

Figure 2.4: The Uniform Distribution Function

2.3.2 Normal Distribution Function

Normal distribution, also known as Gaussian distribution, is a continuous distribu-
tion function that is defined by two parameters: mean (1) and standard deviation
(o) of the distribution. The probability density function (pdf) of Normal Distribu-

tion of variable z is defined as:

P(z) = U\}%e"(x'“)z/(%z) (2.2)

Where:  z = variable  u = mean (average) o2 = variance
The Normal distribution is symmetric around its mean, as shown in Figure
2.5. The typical standard Normal distribution is obtained when y = 0 and o =
1. It is noted that there are two controlling parameters for Normal distribution:
by controlling those parameters we can plot different shapes of Normal probability

density function.
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Figure 2.5: The Normal Distribution Function

2.3.3 Exponential Distribution

Exponential distribution is another continuous distribution function that is defined

by the following equation:

flz;A) = (2.3)
0 , £ <0,
where: A > 0and z € (1, 00)
Exponential distribution describes time intervals between events that occur

continuously and independently at a constant average rate (Figure 2.6).

2.3.4 Gamma Distribution

Gamma distribution belongs to non-symmetric continuous probability distribution
that has two non-integer parameters, Scale factor § and Shape factor k¥ (Figure 2.7.
Gamma distribution can be used to drive other distributions such as Exponential
distribution and Uniform distribution by changing the values of its parameters. The

probability density function of the Gamma distribution can be expressed in terms
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of the gamma function I" as follows:
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Figure 2.7: Gamma Distribution Function
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2.3.5 Beta Distribution

Beta distribution also belongs to continuous probability distributions and it is de-
fined on the interval [0, 1] and parameterized by two parameters, typically denoted
by a and 3 whose values are greater than 0. The probability density function of the
beta distribution is described by following equations:
floinf) = i e (o (2.5)
Jo ue (1 — )Pt du B(a, B)
where: O0<z<1 aand(>0

There are different shapes of Beta distributions depending on the values of its
parameters (Figure 2.8). For example, if @ < 1 and # < 1 then we get a U-shaped

curve, for « = # = 1 we get a Uniform distribution.
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n
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N

Figure 2.8: Beta Distribution Function

2.3.6 Triangle Distribution

Triangular distribution is defined by three parameters: lower limit a, mode ¢, and

upper limit b (Figure 2.9). Its probability distribution function (pdf) is given in
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the equation 2.6 and its Cumulative distribution function (cdf) is given in equation

2.7, from which we can extract the inverse cdf which is presented in equation 2.8.

(F% fora<z<c
. _ 2(b—
f(a:,a,b,c)—{ (lr)(:_)—c-)‘ forc<z<b (26)
\ 0 for any other cases
—a)?
(b_“;)(c)_a) fora<z<c
F(z;a,b,¢) = { (2.7)
(b—z)?
\1—Wb——7) forc<z<b
’
Vzlb—a)c—a)+a ,0<z<(c—a)/(b—na)
b—/(A—-z)b—a)b—c ,(c—a/(b—a)<z<1
Py | 0~ VIR a (c-a/(b-a) 28
0 , <0
\ 1 , T > b,
2
ba

Figure 2.9: Triangle Distribution Function
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2.4 SystemC

SystemC is an open source system level design language based on C++. It consists
of a C++ class library and other libraries and a simulation scheduler that supports
clock, concurrent behaviours, and timed event simulations and descriptions of hard-
ware. In addition, SystemC provides a construct that helps to design hardware such
as signals, ports and modules. Signals, ports and modules are similar to correspond-
ing terms in HDL. SystemC can be run using most of the standard C++ developing
environment such as Microsoft Visual C++ or GNU gce, and its compilation process
is shown in Figure 2.10. In 1999, the first version of system level language called
SystemC was released. SystemC was a result of contributions from many research
groups and EDA companies, and after few years of improvement, SystemC has been

standardized by IEEE in 2005 [5].

SystemC
class & template
library

SystemC
Design files &
Testbench

(o
Complier

Object files

Linker

¥
Input fites Executable Output, Frace
files & log files

Figure 2.10: SystemC Compilation Process

SystemC is a powerful and general-purpose language, and it is very suitable
for describing complex and sophisticated systems. It can be used to build reusable

verification components and scalable testbenches [12]. Moreover, SystemC can be
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used to describe assertions for assertion based verifications such as in FSM machine.
Complete verification environments can be built from SystemC not only for design

written in SystemC but also for designs written in other HDL [5].

2.4.1 SystemC Architecture

The main architecture of SystemC is shown in Figure 2.11. The shaded area repre-
sents the SystemC main class library (core layer) which is built on the top of C++
standard programming language. The layer shown immediately above the SystemC
class library represents proprietary SystemC. C++ libraries are associated with spe-
cific design or verification methodologies or specific communication channels. The
user may use them and can add more libraries to them, and it is not a part of

standard SystemC. The main SystemC class library is divided into four categories:
1. The core language
2. The SystemC data types
3. The predefined channels
4. The utilities

The core language and SystemC data type are more essential and are typically
used together even though they may be used independently of one another. In
addition, the core of SystemC contains a process scheduler which makes the core a
simulation engine of the SystemC.

Processes are executed in response to the notification of events. Events are
notified at specific points in simulated time. In the case of time-ordered events,
the scheduler is deterministic. In the case of events occurring at the same point in
simulation time, the scheduler is non-deterministic [3].

In the core language, modules are basic structural blocks or classes which rep-

resent a system in a hierarchical order. A module holds a structure that represents
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Master/Slave, Verification, bus model, TLM interface libraries

C++ programming language

Figure 2.11: SystemC Architecture

a function of a hardware or software or both. Each module may contain variables,
ports, signals, channels, process, events and other core language elements and data
types. The ports are used to communicate with the outside environment of the
module while the processes perform the functionality of the module in a concurrent
way (Figure 2.12).

There are three kinds of processes: methods (SC.METHOD), threads (SC_TH-
READ), and clocked threads (cthread) (SC.CTHREAD). They run concurrently
when triggered by clock or events listed in the sensitivity list. Channels contains
communication mechanisms and can be used to connect processes together. Chan-
nels are considered to be an implementation of the interfaces. There are two types
of channels: hierarchical channels and primitive channels. Hierarchal channels are

modules while primitive channels are not modules.
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Figure 2.12: SystemC Components [5]

2.5 SystemVerilog

SystemVerilog is a major extension of Verilog HDL, it was developed originally by
Accellera, a consortium of EDA companies and users, who wanted to create next
generation of Verilog. SystemVerilog became IEEE standard in 2005 [36].

SystemVerilog is considered as a unified language for specification, design,
and verification. It provides syntax and semantics for assertion-based verification
or what is called SystemVerilog Assertion (SVA) and, coverage-based verification.
This is considered to be a major advantage of SystemVerilog [1]. Another advan-
tage of SystemVerilog is the Object Oriented Programming (OOP) capabilities that
helps to model a design and testbench at higher level of abstraction. Moreover,
it allows engineers to build reliable, repeatable, and flexible advanced verification
environment that can be used in verifying multiple designs [36].

SystemVerilog introduced many new features that can be used in design and
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verification of electronics circuits. Some of these features are: new data types, pro-
cedures and program blocks, interfaces, classes and inheritance, constraints random
number generators, queues and lists, assertion and coverage, synchronization, and

other improvements to existing Verilog features.

2.6 Illustrative Example: 32-bit CPU

In this section, we use an illustrative example to demonstrate the notion of functional
coverage. We use 32-bit CPU (MIPS I) as an example because it has various func-
tions and components to demonstrate the concept of functional coverage. MIPS I is
one family member of the MIPS processor which is a RISC microprocessor architec-
ture developed by MIPS Technologies, and it uses 32-bit Instruction Set Architecture
(ISA) [16]. There are 32 general purpose 32-bit registers r0-r31 where register r0
is hardwired to the constant 0. MIPS has five pipelined stages, starting with the
Fetch stage, then the Instruction decode stage, the Execution stage, the Memory
stage and the Write back stage. The instructions are divided into three types: R, I,

and J, and every instruction starts with the opcode.

2.6.1 Functional Coverage Verification

Functional verification of a CPU is one of the most challenging and complex tasks
to perform. The major issue lies in identifying the functional coverage metrics [25].
We focus on functional coverage and present four verification models of different
functions in a pipelined microprocessor.

We use the terminology of Static coverage point to describe static property
and Temporal coverage point to describe temporal properties. Static property refers
to the validity of certain conditions applied to the value of variables at a specific
event or clock cycle. For example, detecting the condition where ADD instructions

produce a carry. On the other hand, a temporal property refers to the validity of
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certain conditions on the value of the variables across several clock cycles or events.
For example, when an interrupt instruction is detected, the action should be followed
with 2-3 clock cycles.

Several coverage metrics can be used to verify different functions of a CPU,
such as finite state machine metrics, instruction set metrics, internal register metrics

and exceptions metrics.

Finite State Machine Metrics

The MIPS architecture consists of five pipelined stages : Fetch, Decode, Execute,
Memory, and Writeback as shown in Figure 2.13. Instructions pass through these
stages in a synchronized clock cycle. One clock cycle is needed for each stage. The
pipelined stages can be expressed as a Finite Sate Machine (FSM) and define the
datapath for all the instructions. In order to verify the FSM of the pipelined stage,
the coverage points should represent the paths and the states of the FSM.

Start

Write

Figure 2.13: MIPS I CPU Finite State Machine

To fully verify the FSM, we have to verify every path and the transition of
every state. This can be done using assertion-based verification or coverage-based

verification. In assertion verification, each state can be represented as an static
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property and the transition between stages can be represented as temporal property.
An example of static property could be if an ADD instruction arrives at the Execute
state and the operands of the ADD instruction are detected at the input of Execute
state at certain clock cycle. An example of temporal property could be ”if at a
certain clock cycle the output of the Fetch state is an ADD instruction, then at the
next clock cycle, the output of the Decode state should be an ADD instruction”.
Since assertion-base verification is consider a white box verification method, there
are many properties that can be extracted from design specification and design HDL
implementation.

In the coverage based verification, the functions of the design is expressed
using the coverage tasks concept, where each function is defined as a coverage point.
The idea is to cover every state and path of the FSM. The following finite paths are
extracted from the FSM:

1. Fetch - Decode - Fetch
2. Fetch - Decode - Execute - Writeback

3. Fetch - Decode - Exceute - Memory - Writeback

The first path can be verified if branch instructions with branch taken or jump
instructions are detected. In case of branch instructions beq $rs, $rt, imm and bng
$rs, $rt, imm, three coverage points can be declared, Op_Code, RS, and RT. In case
of jump instructions j destination and jr $rs, two coverage points can be declared,
Op_Code and RS. The SystemVerilog syntax of the coverage points is described as

follows:

covergroup Pathi_Branch @(ClockEvent)
coverpoint Op_Code { bins OpCode = {4,5}; }
coverpoint RS { bins RSValue = {0, 8:15}; }
coverpoint RT { bins RTValue = {0, 8:15}; }
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corss Op_Code, RS, RT;

endgroup

In the above code, the cover point Op_Code is covered when the value of the
input OpCode is detected to be 4 or 5 at the ClockEvent. Similarly, the cover points
RS and RT are covered when their associated variables are equal to 0 or any number
from 8 to 15. The corss Op_Code, RS, RT is the cross coverage of all the three
points and if all the points are covered at certain clock event then the whole group

is covered. Same explanation is applied the following SystemVerilog syntax:

covergroup Pathl_Jump @(ClockEvent)
coverpoint Op_Code { bins OpCode = {2,8}; }
coverpoint RS { bins RSValue = {20:23}; }
corss Op_Code, RS;

endgroup

The second path can be easily verified with any arithmetic or logic instructions
and with branch-not-taken instruction. The coverage point can be expressed easily
with different types of instructions operands. We can use more than one coverage
group but since we need a high rate of coverage we will use only one coverage group.

The SystemVerilog syntax of the coverage points is described as follows:

covergroup Path2 @(ClockEvent)
coverpoint Op_Code { bins OpCode = {32:39, 8:15}; }
coverpoint RS { bins RSValue = {8:15, 16:25}; }
coverpoint RT { bins RTValue = {8:15, 16:25}; }
corss Op_Code, RS, RT;

endgroup

The third path can be verified with load and store instructions since both can

access the memory. The SystemVerilog syntax of the coverage points as follows:
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covergroup Path2 @(ClockEvent)
coverpoint Op_Code { bins OpCode = {32, 35, 40, 43}; }
coverpoint RS { bins RSValue = {8:15, 16:25}; }
coverpoint Imm { bins ImmValue = {0:65535}; }

corss Op_Code, RS, Imm;

endgroup

Instruction Set Metrics

MIPS has more than 32 instructions excluding the floating point instructions. Those
instructions are divided into three main types. In order to fully verify the function
of the CPU, all possible instructions with all possible combination of their operand
must be applied. In a real verification environment, it is quite an impossible job.
Therefore, a selected set of instructions are applied as test vectors. We define three
main coverage groups for each instruction type. It is also possible to define more
than three coverage groups based on the functions of the instructions such as a group
for arithmetic instruction and another for shift, logic, set, load, store and branch
instructions.

The coverage group as it is written in SystemVerilog syntax is as follows:

covergroup RType @(ClockEvent)
coverpoint Op_Code {
bins A = { [0:9]};
bins B = { [16:19], [24:27]};

bins C = { [32:39]};
bins D = { [42, 43];
¥

coverpoint RS {
bins RS_A = { [8:15], [16:25] };
}
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coverpoint RT {
bins RT_A = { [8:15], [16:25] };
}

coverpoint RD {
bins RD_A = { [8:15], [16:25] };
}

cross Op_Code, RS, RT, TD;

endgroup

Similarly, we can write the coverage group for I-type and J-type instructions.

Internal Register Metrics

MIPS has 32-bit General Purpose Register (GPR) labeled as RO, R1,..., R32. The
register R1 is hardwired to logic 0 and its value is always 0. Some of the GPR are
reserved for special purposes. For example, R31 is used to store the return address,
R29 is used by stack pointer, the R26 and R27 are used by the OS kernel [16].

To verify the GPR we need to verify the Read/Write operation to the registers.
Verifying 32 registers is not an exhausting process and it can be done using direct
testing or random testing. In the random testing, we detect any of the 32 registers
in any instruction at the position of source or target operand for read operation and
destination operand for write operation. For example, the ADD instruction required
3 operands as ADD $rd, $rs, $rt, if rd = 10001 and rs = 11000, and rt = 01000,
then we cover R17 for write operation and R25 and R8 for read operation. The
coverage group that verifies the Read/Write operation is similar to the instruction
set coverage group except we have two cover points for instruction and four cross

coverage points.

covergroup Read_Write @(ClockEvent)

coverpoint ROp_Code {
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bins A = { [32:39]};
}
coverpoint I0p_Code {
bins B = { [8, 15];
}
coverpoint RS {
bins RS_A = { [8:15], [16:25] };
}
coverpoint RT {
bins RT_A = { [8:15], [16:25] };
}
coverpoint RD {
bins RD_A = { [8:15], [16:25] };
¥
cross ROp_Code, RD; // write operation
cross I0p_Code, RT; // write operation
cross ROp_Code, RS, RT; // Read operation
cross IOp_Code, RS; // Read operation

endgroup

Flag Coverage GPR

In computer architecture, flags refers to one or more bit registers that are part of
the Status Register. The function of the flags or the status register is to indicate
the post-operation conditions; these flags are: zero flag, carry flag, overflow flag and
negative flag. For example, the carry flag is a single bit register that is set to 1 if the
add instruction produces a carry. It is essential to verify the flag register because

some of them if not all of them, such as carry flag, are considered to be among

corner cases in coverage verification [37].
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The flags register can be verified using assertion based methodology or coverage
based methodology. In assertion based verification, the flags can be expressed as an
static cover point which can be detected at the clock event. Similarly, other flags

can be expressed using SystemVerilog assertion syntax.

property flag_carry
@(posedge Clock) (Carry_Flag == 1);

endproperty

In the above code, the property flag.carry is covered if the Carry Flag is
equal to 1 at the positive edge of the clock.

In coverage based verification our objective is to find suitable instructions that
produce carry. Thus, the coverage group will consist of instructions, operands and
the flag register. The coverage group can be expressed using SystemVerilog syntax

as follows:

covergroup Cov_Carry @(ClockEvent) {

| coverpoint Op_Code { bins OpCode = {32, 33, 8, 9}; }
{8:15, 16:25}; }
{8:15, 16:25}; }
{8:15, 16:25}; }

coverpoint RS { bins RSValue

coverpoint RS { bins RSValue

coverpoint RS { bins RSValue

coverpoint Imm { bins ImmValue = {0:65535}; }

coverpoint carry { wildcard bins A = 2°bi}; }
corss Op_Code, carry;

endgroup
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Chapter 3

Improving Coverage using a

Genetic Algorithm

In this chapter, we present our detailed methodology for RNG based on different
probability distributions such as Normal, Exponential, Gamma, Beta, and Triangle
probability distribution. Also, we describe our proposed Cell-based Genetic Algo-
rithm and how we represent the cells based on different probability distributions.
Then, we describe various methods and techniques to implement and test the ran-
dom number generators based on different probability distribution such as Normal,
Exponential, Gamma, Beta and Triangle distribution. Also, we present histograms

that show the results of our implemented RNGs.

3.1 Methodology

The proposed methodology consists of several steps (Figure 3.1). First, we define
and model the coverage tasks of the DUV as Static and Temporal coverage tasks.
Each model of the coverage tasks has several coverage points that can act as in-
dividual coverage points or as group of coverage points. Second, we select one of

the probability distributions and its parameters and run the simulation, we repeat

40



the simulation for the same distribution but with different parameters of the prob-
ability distribution. Third, we repeat the simulation for all distributions and their
parameters, and finally we compare the results for all the simulations. In addition,
we repeat the above steps for a selected number of coverage points or sets of cov-
erage points in order to study the effect of different distributions on the number of

coverage points.

Probability Distribution

Probability Distribution Functions
Functions Parameters & Settings
! Immediate Design Concurrent
Coverage Under Coverage
Points Verification Points
Exponentia! = b 4 Y
°
& Random Test
Number Patterns Simulator
l Gamma } > enerato

¥
Directives for Coverage
Random |,
Number [ CGA « Report
Generator C

Figure 3.1: CGA Methodology with Multipie Probability Distributions

Figure 3.1 shows different probability distribution functions that are used to
generate random numbers. The user selects an appropriate probability distribution
function and its parameters values. Only one distribution along with its parameters
values is selected during the simulation. In this thesis, we choose five probability
distribution functions, which are Normal (Gaussian), Exponential, Gamma, Beta,
and Triangle distributions. Uniform, Normal and Exponential distribution are cho-
sen because they are widely used in many hardware design and simulation tools,
while Gamma and Beta distributions generate different probability curves based on

values of their parameters. Triangle distribution is chosen because its parameters
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are directly related to the input domain of DUV and can be used to identify range
in which maximum coverage can be achieved by controlling only one parameter, the
mode. For example, if a DUV has input domain in the range of 0 to 1000, then the
triangle distribution parameters will setup as follows: lower limit a=0, upper limit
b=100 and the value of mode ¢ will be controlled by the CGA within the range 0
to 100 to find the optimum coverage. Uniform distribution is also used by the CGA
to generate a random number for its operations such as mutation and crossover.

The overall flow of the proposed CGA is described in Figure 3.2. Initially,
a random distribution is selected by the user along with the values of its param-
eters. For example, if Normal distribution is selected then the values of mean p
and standard deviation o are set to predefined values. Next, the values of GA pa-
rameters are read from an input file. Some of the GA parameters are: maximum
population size, maximum number of generations, number of cell, number of simula-
tion cycles, tournament size, probability values for crossover, mutation and elitism,
selection type, fitness definition, fitness evolution formula and other related param-
eters. After that, the initial population is generated by using either a free random
initialization technique or fixed random initialization techniques.

The process runs as long as the number of generations is less than the max-
imum generation number that is set by the user. For each population size, the
program resets the coverage counters which are variables that count the number of
hits for each coverage points. The simulation for the DUV is run for pre-defined
cycles which are equal to number of simulation cycles multiplied by number of clock
tics. At the end of the simulation, coverage information is evaluated by a fitness
function and the coverage result is stored in an output file for each population.

In the next step, we apply genetic operations such as selection, crossover,
mutation and elitism on the selected chromosomes to produce new and more fitted
chromosomes. Finally, the process generates a new population of the next generation

and repeat the process for each generation as shown in Figure 3.2. The program

42



Selecting Random Number Generator

|

Setting Genetic Algorithm Parameters

v

Generating Initial Random Population

&
<

Y

No. of Population < Max.
Population Size

Reset Coverage Counters

'

Run Simulation

v

Fitness Evaluation

'

Store Coverage Information

Applying Genetic Operations

'

Generating New Population

No. of Generation < Max. No.
of Generation

/ Display Resuit /

END

Figure 3.2: CGA Process Flowchart,
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terminates when the number of generations reaches the maximum setup by the user.

At the end, the results are displayed and stored in an output file.

3.2 Proposed Genetic Algorithm

The proposed Cell-based Genetic Algorithm [34] is a search and optimization algo-
rithm used to enhance coverage results. CGA is based on a Genetic Algorithm where
the solution is encoded using the concept of cells. Each cell has certain numbers
generated randomly between two limits. In general, a Genetic Algorithm has the

following components:

1. Solution Representation

[\

. Initial Population

3. Fitness Evaluation

RN

. Genetic Operators (crossover and mutation)

[

. Other parameters (probabilities, selection methods, and termination criteria)

3.2.1 Solution Representation

Usually, a Genetic Algorithm uses a fixed-length bit string to encode a single value
solution. However, the solution of the CDG problem is represented by complex
and rich cells. A cell is the fundamental unit in a CGA and each cell represents a
weighted uniform random distribution over two limits: an upper limit and a lower
limit. Moreover, the near optimal random distribution for each test generator may
consist of one or more cells according to the complexity of that distribution.

The initial population contains a number of cells, where each cell has three
parameters, lower limit (L), upper limit (H) and weight (W). These parameters are

generated randomly within the range of input domain (0 — 2"-1), where n is number
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of inputs to DUV, and the maximum number of cells in the initial population is
defined by the user. The numbers in each cell are generated randomly based on the
selected probability distribution as shown in Figure 3.3 with a Normal (3.3(a)) and
a Triangle (3.3(b)) distribution.

—~ O

! (65535)

0 ’ r——] Cell3 S 2]" (65535)

(b)
Figure 3.3: Cell Definition

We call the list of cells that represent this distribution a Chromosome and
the number of chromosomes that represent the whole solution is called a Genome.
Each chromosome encapsulates many parameters used during the evolution process
including the maximum useful range L,,., for each test generator and the total
weight of all cells.

Each cell in the chromosome contains a set of random numbers. Those numbers
are considered as inputs to a DUV. During the simulation, the DUV is targeted by
every cell in the chromosome, and coverage information is collected for every cell in

the chromosome.
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3.2.2 Initialization

The CGA uses two initialization schemes:

Fixed period random initialization

In this scheme, we divide the range [0,L,;] into n; equal sub-ranges and then
generate random initial cells within each sub-range. This scheme is biased and not
random, but ensures that an input with a wide range will be represented by many

cells.

Random period random initialization

In this scheme, the cells are generated within the range [0,Lmq,] randomly. The
first cell is generated over the range [L;o,Hio], then the successive cells are generated
within [H;j,Lime.]. In other words, the lower limit of the next cell must come after

the end of the previous cell.

3.2.3 Selection

The CGA uses two methods of selection: (1) Roulette Wheel, and (2) Tournament
selection [26). The selection method is chosen by the user at the beginning of the
simulation. We use Tournament selection in our experiments because we can control

the selection of highly fitted cells by changing the tournament size.

3.2.4 Crossover

Crossover operators are applied on chromosomes with a probability P, for each

chromosome. In order to determine whether a chromosome will undergo a crossover
operation, a uniformly random number p € [0,1] is generated and compared to F..
If p < P, then the chromosome will be selected for crossover, or else it will be

forwarded without modification to the next generation. The value of P, is defined
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by the user. Crossover is important to keep useful features of good genomes of the
current generation and to forward that information to the next generation.

We define two types of chromosome-based crossover: (1) single point crossover,
where cells are exchanged between two chromosomes, and (2) inter-cell crossover,
where cells are merged together to produce a new offspring. Moreover, we assign
two predefined constant weights: Weoss_1 for single point crossover and Werpss—2
for inter cell crossover.

The selection of either type depends on these weights; we generate a uniform
number N € [1, Weross—1 + Weross—2) and accordingly we choose the crossover oper-

ators as follows:
e Single Point Crossover: 1 < N < Weppss~1

o Inter-Cell Crossover: Woss—i < N < Weross—1 + Weross—2

3.2.5 Mutation

Mutation operators introduce new features to the evolved population, which are
important to keep a diversity that helps the GA to escape from a local minima and
to explore hidden areas of the solution space.

Mutation is applied to individual cells with a probability P, for each cell, in
contrast to crossover operators, which are applied to pairs of chromosomes. More-
over, the mutation rate is proportional to the complexity of chromosomes such that
more complex chromosomes will be more sensible to mutation.

Due to the complex nature of the genome, we propose many mutation op-
erators that are able to mutate the low limit, high limit, and the weight of cells.
According to the mutation probability P,, we can decide whether a cell will be
selected for mutation or not. In the case a cell is chosen for mutation, we apply one

of the following mutation operators:

e Insert or delete a cell.
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e Shift or adjust a cell.

e Change a cell’s weight.

The selection of the mutation operator is based on predefined weights associ-
ated with each of them. The weight of each operator is setup initially at beginning
of the simulation in the same way as other GA parameters. Crossover operators are

selected similarly.

3.2.6 Fitness Evaluation

The evaluation of solutions represented by fitness values is important to guide the
learning and evolution process in terms of speed and efficiency. The potential solu-
tion of the CDG problem is a sequence of weighted cells that constrain a random
test generator to maximize the coverage rate of a group of coverage points. The
evaluation of such a solution is somehow like a decision-making problem where the
main goal is to activate all coverage points among the coverage group and then to
maximize the average coverage rate for all points.

The average coverage rate is not a good evaluation function to discriminate
potential solutions when there are mairy coverage points to be considered simulta-
neously. For instance, we may achieve 100% for some coverage points while leaving
other points totally inactivated. Accordingly, we have designed a four stage fitness
evaluation that aims to activate all coverage points before tending to maximize the

total coverage rate as follows:

1. Find a solution that activates all coverage points at least one time regardless

of the number of activations.

2. Push the solution towards activating all coverage points according to a prede-

fined coverage rate threshold CovRatel.
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3. Push the solution towards activating all coverage points according to a prede-

fined coverage rate threshold CovRate2 which is higher than CovRatel.

4. After achieving these three goals, we consider the average number of activation
of each coverage point. Either a linear or a square root scheme will be used to
favor solutions that produce more hits of coverage points above the threshold

coverage rate.

3.2.7 Termination Criterion

The CGA termination criterion checks for the existence of a potential solution that
is able to achieve 100% or other predefined values of coverage rate that is acceptable
for all coverage groups. If the CGA terminates without achieving the predefined
coverage rate, it terminates when the maximum number of generation is reached

and reports the best potential solution of the final generation run.

3.3 Random Number Generator

A random number generator (RNG) is a computational program that generates a
sequence of numbers without any specific pattern based Pseudo-Random Number
Generator (PRNG) algorithms. Random numbers uniformly distributed between 0
and 1 can be used as a base to generate random numbers of any selected proba-
bility distribution. Random number generators are frequently used in simulation
based verification. Besides, they are used by GAs and other evolutionary techniques
during the process of evolution and learning. Thus, it is required to have a good
random number generator. This is why we adopt the Mersenne Twister (MT) al-
gorithm [22] to generate a Uniform random number generator and to use it as a
base for other distribution random number generators. A Mersenne Twister is a
pseudo-random number generating algorithm designed for fast generation of very

high quality pseudo-random numbers. The algorithm has a very high order (623) of

49



dimensional equidistribution and a very long period of 219937 — 1. We implemented

five different random number generators based on Normal distribution, Exponential

distribution, Gamma distribution, Beta distribution and Triangle distribution.
There are a number of methods and techniques that can be used to extract

random number algorithms. Some of those techniques are [21]:
1. Inverse CDF technique
2. Acceptance-Rejection technique

3. Monte Carlo method

The inverse method involves finding the inverse cumulative distribution func-
tion of PDF and uses a Uniform RNG to generate random values that are substi-
tuted in an inverse CDF and generates random numbers. In the acceptance-rejection
method two samples are produced randomly z from F(z) and y from U(0,1), then
whether the function of z is greater than the value of y is tested. If it is, the value
of z is accepted. Otherwise, the value of z is rejected and the procedure is repeated
again. The Monte Carlo method is more complicated and involves extensive integral
computation on the summation of random numbers in certain domain.

There are other techniques for generating random numbers that are specific
to some probability distributions such as Box-Muller, Ziggurat algorithm and Polar
techniques for Normal distribution [33].

In this thesis, we applied different techniques and methods to formulate algo-
rithms to implement the five distribution RNGs. We used the Inverse Cumulative
Distribution Function (CDF) technique to formulate the algorithm for Exponential
and Triangle distributions [21]. The Acceptance-Rejection method is used to formu-
late Gamma and Beta distribution algorithm [30]. The Box-Muller method is used
to formulate the Normal distribution [33]. Since all RNG algorithms require one or
more independent uniformly distributed random numbers, we use the MT algorithm

to generate uniform random numbers for all the other distributions.
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All the random number generators were implemented using the C++ program-
ming language and the results were tested with Histograms using SPSS. The results
are tested with a large number of data (approximately one hundred thousand of
data) and the histograms were compared with plotted probability distribution func-

tions.

3.3.1 _Normal Distribution RNG

There are several methods for generating normally distributed random numbers
such as the Inverse CDF method, Box-Muller method and Ziggurat method. None
of these methods are error free, but they generate random numbers whose mean and
standard deviation are close to the expected one. Based on a performance metrics,
it is found that Box-Muller methods provide better performance [33]. The Ziggurat
method is a more accurate method but its implementation is quite complex. We used

the Box-Muller method to generate random numbers based on Normal distribution.

Box-Muller Method

This method converts a pair of independent uniformly distributed numbers into
a pair of random number with Normal distribution. The basic formulae for the

conversion are described in Equations 3.1 and 3.2.

y1 = v —21In(z;) cos(2nxs) (3.1)

y2 = v/ —2In(zy) sin(27 ) (3.2)

We begin with two independent random numbers, z; and z, in the range from
0 to 1, which are randomly generated from a Uniform distribution. Then apply the

above equations to obtain two new independent random numbers which are used to
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generate Normal distribution random number. To generate z; and z, randomly, the

MT algorithm is used with some modification to ensure a good quality generator.

Algorithm 1 Pseudo-code of Normal Distribution RNG

1
2
3
4
5:
6
7
8
9

: if n is odd then

t; «— Uniform_Random_Number(0, 1)
Ts — R8_.Uniform(R32)

v1 = +/—2In(z) cos(2mzs)
yp = v/ —21In(z,) sin(27z,)

: else

Y1 <— Y2

. end if
tne—n+1
10:

return Normal_Random_Number «— u+ 0 X y;

In Algorithm 1, the Uniform_Random_Number(0,1) is a function that generates

random numbers between 0 and 1, and R8_Uniform(R32) is another function that

generates 32-bit long integer random numbers. Both Uniform_Random_Number(0,1)

and R8.Uniform(R32) use the MT algorithm independently to generate the random

numbers. The Algorithm 1 is implemented and tested using histogram as shown in

Figure 3.4.

4,009

3,000

1,000

$0.00 100.00 150,00 200.00 250.00
Random Numbers

Figure 3.4: Histogram of Normal Distribution Function (¢ = 130, 0 = 25)

52



3.3.2 Exponential Distribution RNG

To generate exponentially distributed random numbers we use the inverse function
of the probability distribution function of exponential distribution (Equation 3.3).

Rand is a random number generated by the MT uniform random number.

Ezp_Rand_Number = ScalingFactor x —In(1 — Rand) (3.3)

Algorithm 2 generates exponentially distributed random numbers and is adapted

with minor modifications from a program developed by Eliens [8].

Algorithm 2 Pseudo-code of Exponential Distribution RNG
H=MT32 + varl
L =MT32 % var2
T = Const2xL - Const3xH
if T is greater 0 then
seed =T
else
seed = Constl + T
end if
newseed = seed -+ Const4
return FEzp_Random_Number «— A x —log(1 — newseed)

Bl e R A T G s vy

._.
@

In Algorithm 2, MT82 is a uniform Mersenne Twister random number, varl,
var2, Constl, Const2, Const3, and Const{ are constant integer. A\ is the scaling

factor for exponential distribution.

Scale and Shift factor

It is noted that the numbers generated by log(1-newseed) are between 0 and 1 and it
is required that the number to be generated is an integer greater than 1. Therefore,
two parameters are introduced, the scaling and shifting parameters. The scaling
parameter extends the exponential line on the x-axis while the shifting parameter
shifts the starting point of the exponential graph towards the positive side of the

x-axis by the amount of the shift factor. The effect of scaling and shifting factors is
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shown in Figure 3.5. These two factors are important to increase the flexibility of
the random number generator and to target different coverage points in the input

space.
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Figure 3.5: Histogram of Exponential Distribution Function with Shift Factor of
100

3.3.3 Gamma Distribution RNG

The Rejection niethod is used to generate random numbers based on a Gamma
distribution. The method and C implementation are adapted with modification from
[30]. Algorithm 3 describes the method where two independent random numbers are
generated, value! and value? in the range [0,1]. Then, these two numbers are used
to calculate the Average and G (Gamma) values. Finally, G value is compared with
another random number as shown in line 15 of Algorithm 3, if G is less then the
generated random number then we calculate and return Gamma random number.
There are different shapes that can be plotted for a Gamma distribution func-
tion based on the value of k and 8, Gamma(k,§). We chose only three sets of val-
ues for Gamma distribution function, Gamma(2,2), Gamma(2,3), and Gamma(9,1).

The testing histograms for Gamma(9,1) is in Figure 3.6.
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Algorithm 3 Pseudo-code of Gamma Distribution RNG

1:

e T e T e T S S Gy e
PR AN o > ey

if K= 1.0then

return ScalingFactor x exponential(1l) + 6
end if
if K> 1.0 then
repeat
repeat
repeat
valuel «— 2 x RandReal() — 1
value2 «— 2 X RandReal() — 1
until (valuel x valuel) + (value2 x value2) > 1
y « value2/valuel
Average «— /2 X (K —1)+1xy+ (K —1)
until Average < 0
G+ (1+9y*) xIn(K -1 xlog Average/(K — 1) —y/2(K — 1) +1)
until RandReal() > G
return ScalingFactor x Average/0
. end if
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Figure 3.6: Histogram of Gamma Distribution Function (K = 9,0 = 1)
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3.3.4 Beta Distribution RNG

Random numbers based on Beta distribution can be generated using the Gamma
distribution function that is symbolized as I'(k, #). According to the Beta distribu-
tion properties, if X=Gamma(a, f) and Y=Gamma(8, 8), then X/(X+Y) is equal to
the Beta(q, ) distributed function where 6 is a constant value. Therefore, the Beta

distribution random number generator is generated using the following formula.

BetaRNG = ScalingFactor x (I'(a, 1) + (I'(e, 1) + (5, 1)))

There are different shapes that can be plotted for the Beta distribution function
based on the value of a and 0, Beta(a,#). We choose only three sets of values
Beta(2,2), Beta(5,10), and Beta(10,2). The testing histograms for Beta(2,2) and
Beta(10,2) are plotted in Figure 3.7 and Figure 3.8, respectively.
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Figure 3.7: Histogram of Beta Distribution Function (a = 2,0 = 2)
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Figure 3.8: Histogram of Beta Distribution Function (o = 10,8 = 2)

3.3.5 Triangle Distribution RNG

Triangular distribution is used where limited sample data is available and the rela-
tionship between the variables is known but the data is scarce. It is a very useful dis-
tribution for modeling processes where the relationship between variables is known.
Random numbers can be generated based on triangle distribution using the Inverse
CDF method. The inverse of the CDF is described in Equation 3.4, where z is a
uniform random number, it could be greater than 1 or between 0 and 1, f(z)=(0,1).
In our program since we need to generate a random integer number that is greater

that 1 (z > 1), the MT algorithm is used to generate z.

r\/flf(b—a)(c—a)+a ’0§x<(0—a)/(b—a)
Fxl(z) = o b—(1-a)b—-a)b-c ,(c-a/(b-a)<a<] (3.4)
0 , x <0
\1 ,CII>b

In Algorithm 4, we calculate the ratio A. Then, we generate random number

in the range between 0 to 1. The function Rand32 generates a 32-bit long uniform
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Algorithm 4 Pseudo-code of Triangle Distribution RNG
he(c—a)/(b—a)
z +— Rand32 x (1.0/4294967296.0)
if x > 0 AND < h then
return result — \/z x (b—a) x (c—a)) +a
end if
if ((x > h) AND (x < 1)) then
return result —b—+/(1—z) x (b—a) X (b—c))
end if
if (x > b) then
return result « 1
: end if
: if (x </ 0) then
return result — 0

. end if

Rl e e

random number and then it is divided by 2%2. The value of the result represents
triangle distributed random number. The testing histograms for Triangle(60,75,90)
and Triangle(10,30,150) are plotted in Figure 3.9 and Figure 3.10, respectively.
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Figure 3.9: Histogram of Triangle Distribution Function (a=60, c=75, b=90)
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Figure 3.10: Histogram of Triangle Distribution Function (a=10, ¢=30, b=150)

3.4 Summary

In this chapter, we described in details our methodology for improving the cov-
erage using different probability distribution functions. Then, we described the
proposed Cell-based genetic Algorithm where we explained how the probability dis-
tributions employed to represent the solution, and how the cells are mapped to DUV.
Thereafter, we described the other operations of CGA such initialization, selection,
crossover, mutation, fitness evaluation, and termination criteria.

In this chapter, we also introduced random number generators and different
methods and techniques that are used to build them. In addition, we described
the algorithms and methods that we used to implement random number generators
based on Normal, Exponential, Gamma, Beta and Triangle distributions. Also, we

presented several histograms that show the distributions of our implemented RNG.
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Chapter 4

Case Study Packet Switch

In this chapter, we will apply the methodology and algorithms developed in this
thesis on a 16x16 packet switch model. We will first describe the specification of
the packet switch and its model in SystemC and Verilog. Then, we will describe the
functional coverage points of the packet switch. Finally, we will show the experi-

mental results and discussion.

4.1 Design Description

The 16x 16 packet switch we use as a case study is based on the SystemC model of a
4 x4 multi-cast packet switch provided by SystemC library [27]. The packet switch
uses a pipelined self-routing ring of shift registers to route the incoming packets to
their destination. Figure 4.1 shows the general structure of the packet switch where
each input and output port has a FIFO buffer depth of 16 each. The input port
is connected to a sender process, and the output port is connected to the receiver
process. There are two clocks controlling the operation of the switch: the external
clock and the internal clock. The internal clock is 16 times faster than the external
clock. The shift register is triggered by the internal clock. The packets arrive at

the switch randomly and are then routed to destination based on the destination ID
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[27].
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Figure 4.1: Packet Switch Structure

The 16-bit packet contain data (8-bit), sender ID (4-bit) and destination ID
(4-bit) as shown in Figure 4.2.

2 . . 20
ke Data (8) e Send_ID(4) i  Dest_ID(4) _I
] I ] 1

Data Sender Destination

Figure 4.2: Packet Structure
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4.1.1 Specification

The packet is considered to be valid if any of its sections has a non-zero value,
otherwise the packet is invalid and it is ignored by the packet switch. When the
packet is unchanged over few or several clock cycles, then the output of the switch
core is zero-value.

The packet switch has 16 input and 16 output ports, and each port is connected
to a FIFO. The FIFOs are triggered by the external clock. Each FIFO connected to
a register in the ring of shift registers. Each register has two inputs and two outputs.
One input and one output are connected to the FIFOs, one input is connected to
the output of the previous register in the ring, and one output is connect to the
input of the next register in the ring. The operation of shift registers is triggered by
the internal clock.

Ideally, the sender sends the packet randomly to input port of the switch. If
the FIFO connected to the input is full, then the packet is dropped; otherwise the
packet is stored in the FIFO, and in the next positive edge of the external clock
cycle, the packet reaches the register. The register receives the packet from the
FIFO and sends it to the next register in the ring. The register also receives packets
from the previous register in the ring at the positive edge of the internal clock cycle.
The register also, checks the destination ID of the arrived packet and directs the
packet to the output FIFO if the destination ID matches the register ID.

There is no specific protocol that governs the operation of the packet switch.
The packet is routed to its destination based on the destination ID, when the sender
ID matches the destination ID, the packet needs 16 internal clock cycles to reach its

destination.
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4.1.2 SystemC Model

The SystemC model of the packet switch is an abstract model where the sender,
receiver, FIFOs and switch core are represented as SC_.MODULE processes as shown

in Figure 4.3.
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Figure 4.3: SystemC Model - Block Diagram
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The switch core has four main tasks: receive the packet, store the packet in
the FIFOs, rotate the packet in the ring registers, and deliver the packet to its
destination. The senders receive integer number (packtes) from the the genetic
algorithm (testbench) and convert them into 16-bit packets and then send them to
switch core. The receivers receive the packets and checks if the packets arrive in
time. The switch_cntrl is an internal clock which is 16 times fastér than CLK. Figure

4.4 shows the class diagram of the SystemC model for the packet switch.

sender

Read_port: sc_in«int>;

switch

Pkt_out: sc_out<pkt>;
send_pkt: unsigned long;

switch_cntrl: sc_in<bool>;
in0: sc_in<pkt>;
in1: sc_in<pkt>;

in15: sc_in<pkt>;

- {sink_id: int;

receiver

Pkt_in: sc_in<pkt>;

First: int;

void receive();

void send(); out0: sc_out<pkts:
outt: sc_out<pkt>;
Outt5: sc_out<pkt>;
void switch_core();
1 1 ! 1 *
[ * ]
clock_ctrl register FIFO
Switch_cntri: sc_out<bool>; Val: pkt; Reg[4]: pkt;
CLK: sc_in_clk; Free: bool; Full: bool;
Empty: bool;
void Clk_Gen(); Pntr: sc_uint<3>;
void pkt_in{const pki& data_pkt);
pkt pki_out();

Figure 4.4: SystemC Model - Class Diagram

4.1.3 Verilog Model

The Verilog model of the packet switch is divided into four major parts as shown
in Figure 4.5: sender, receiver, FIFO and register modules. The register and FIFO
modules are used to make the core of the switch. The sender is used to construct

the packet, while the receiver modules are used to display and monitor the received
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packet. The Verilog module is designed at RTL.
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4.2 Functional Coverage Points

We divided the coverage points into two categories as in [13]: static coverage point,
and temporal coverage point. In the Static coverage point, the function that needs
to be verified is described as a procedural statement and it is evaluated immediately.
In the Temporal coverage point, the function is time dependent and it is described

including the time notation. It is also evaluated at different stages on the time line.

4.2.1 Static Coverage Point

In the packet switch model, static coverage points describe the operation of the
external input and external output of each register in the shift ring register. The

pseudo-code of static coverage point can be expressed as:

At the Input of a register:

if (FIFO_In not empty) AND (Register is free) then
Read the packet from the FIFO
Set the register to not free
Increment No. of hits of coverage point 1

end if

At the output of a register:
if (Register not free) AND (dest ID equal register ID) AND (FIFO_Out not full)
then

Send the packet to FIFO_QOut

Set the register free

Increment No. of hits of coverage point 2

end if

SystemVerilog has a specific syntax to describe static assertion. It defines the
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property between two keywords property and endproperty as follows:

property pil;
@ (posedge M_Clk) not $stable(ROIn) && (ROIn != 16’h0000);

endproperty

At every positive edge of the external clock cycle (@(posedge M.Clk)), the
property pl checks if the input to register 1 (R0In) is not stable (its current value
is different than the previous value), and its value not equal to zero. If this property

is detected true then it is covered, otherwise it is not covered.

4.2.2 Temporal Coverage Point

In the packet switch model, we define one temporal coverage point that verifies if
the packet arrives at its destination in 16 internal clock cycles if the sender ID is
equal to the destination ID. The pseudo-code of Temporal coverage point can be

expressed as:

At the input port of a Register

if (Sender ID = Destination ID)) then
Increment countl!
Stamp the packet with current time or clock

end if

At the output port of the a Register (input of an Output FIFO):
if ((countl > count2) then
Clock difference = ClockCount - Packet arrival Time
Increment count2
if (Clock difference = 16 Internal clock cycle) then

Increment No. of hits of coverage point 1
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end if
end if

In the above pseudo-code, when the sender ID is equal to the destination ID
of the packet at the input of a register, a counter which is initially equal to 0 is
incremented. Then the value of the current time is added to the packet since it is
needed to calculate the arrival time at the destination. At the output of the register,
if the countl! is greater than count2 indicating that sender ID is equal to destination
ID, then the arrival time is calculated and count? is incremented to become equal
to countl. Then, if the time difference is equal to 16 internal clock cycles, then the
coverage point is hit.

In SystemVerilog, this temporal assertion is described as follows:

property p2;

reg [15:0] Reg_ROIn;

@(posedge SW_Clk) (ROIn[7:4]==ROIn[3:0] && ROIn[15:8]!=8’h00,
Reg_ROIn=ROIn) ##16 (ROOut[7:4]==RO0Out[3:0] && ROCut==Reg_ROIn);

endproperty

The property p2 is checked at every positive edge of the internal clock cycle
(@(posedge SW_CIk)). The simulator checks if sender ID is equal to destination
ID (ROIn[7:4]==R0In[3:0]) and the data is not equal to zero (R0In[15:8/!=8h00),
then it stores the input value into temporary variable (Reg-ROIn=R0In). Then,
after 16 clock cycles the simulator checks if the output of the register received the
same data or not. If this property is detected true, then it is covered, otherwise it

is not covered.

4.3 Experimental Results

In this section, we describe the simulation results on the 16 x 16 packet switch

written in SystemC and Verilog HDL. The SystemC model is run with CGA and
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the Verilog model run under a VCS environment. Also, we will show the effects of

different distribution on the coverage rate.

4.3.1 Description of Experiments

We implemented the CGA with different probability distribution functions in C++.
The coverage points are expressed in SystemC. The program is run in Microsoft
Visual C++ 6.0 with SystemC 2.0.1 under Windows XP SP2 operating system on
AMD Turion 64x2 processor of 1.6GHz, and with 1GB of memory. The RNGs based
on Uniform distribution (Uniform), Exponential distribution ((Ezponential)), Beta
distribution (Beta(a, 3)), Gamma distribution (Garmma(K,0)), Normal distribution
(Normal(u, o)) and Triangle distribution (Triangle(a,c,b)) are coded as separate
C++ classes and are integrated into the CGA. The parameters of Normal and
Triangle distributions are selected within the range of 1 (2°) to 65535 (2'¢-1). For
Normal distribution, (Normal(u, o)), we selected three values for the mean (u) while
we kept the standard deviation (o) constant. In a similar way, we choose a set
of values for the three parameters of Triangle distribution, Triangle(a,c,b). For
Beta(a, ) and Gamma(K,0), we selected three sets of values for each based on
their effect on the distribution.

The Verilog model of the 16x16 packet switch is implemented in a synthe-
sisable Verilog HDL of the same specification as the SystemC model, and the Ver-
ilog model is run using the Synopsys VCS tool under Solaris 9.0 operating system
on Sun Ultra SPARC-IIi processor of 650MHz, with 512MB memory. Only three
RNGs based on uniform distribution $dist_uniform(seed, a, b), normal distribution
$dist_normal(seed, mean, std) and exponential distribution $dist_exponential(seed,
mean) were used due to lack of support for Beta, Gamma, and Triangle distribution
in VCS.

In following, we describe several experiments where SystemC model of the

16 x 16 packet switch is simulated with CGA and the implemented five distributions
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RNGs while the Verilog model is simulated with RNGs provided by Synopsys VCS
libraries.

CGA has several parameters that are predefined and their values are set up by
the user. Some of those parameters were kept unchanged from their default values
and some were changed due to their expected effect on the coverage. Some of the

parameters and their values are listed in Table 4.1.

Parameter value
Population Size 100
Number of Generations 100
Number of Cell 25
Number of Simulation Cycles | 50
Clock Tic )
Tournament Size 5
Crossover Probability 95
Mutation Probability 20
Elitism Probability 3

Table 4.1: GA Parameters

4.3.2 Experiment 1: 32 Static Coverage Points

In this experiment, we study the effect of different probability distributions on the
coverage rate using CGA as an optimization and search program with the 16x16
packet switch modeled in SystemC as DUV. The coverage tasks are defined in the
SystemC model as 32 static coverage points. The function of the coverage tasks is
to detect the external input and external output of each register in the ring of shift
registers. When the register receives the packet from an Input_FIFQO, the input cov-
erage task is triggered and when the register sends the packet to the Quiput_FIFO,
the output coverage task is triggered. In SystemC, these static coverage tasks are

written as follows:
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//At the input of a register
1f((!q0-in.empty)&&(RO. free))
}
RO.val = q0.in.pkt_out();
RO.free = false;
InCovTasklT? + +;

//At the output of a register
if((!RO. free)&&(R0.val.did == 0)&&(!q0-out. full))
}
q0_out.pkt_in(R0.val);
RO.free = true;
OutCovTaskl + +;

We start the simulation by selecting the probability distribution RNG and its
parameters which remains constant during the simulation. We run the simulation
for 100 generations where PopulationSize=100 and maximum number of cells is set
to NoOfCell=25. The result of the simulation is summarized in Table 4.2. The first
column shows the probability distributions and their parameters. The second col-
umn shows the values of the maximum fitness occurring during the simulation, while
the third column shows the generation number where maximum fitness occurred.
We run the simulation several times for each distribution. We obtain similar results
each time with slight variation due to the random nature of the CGA. The fitness
value reflects the coverage rate; if the fitness value exceeds 1.6, then all coverage

points are hit at least once and 100% coverage is achieved. The maximum fitness
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refers to the maximum value total average hits of all coverage points when all cov-
erage points must be hit. The result shows 100% coverage for all distributions. It
is noted that with some distributions, the maximum fitness is reached at an earlier

generation than others such as in the case of Exponential distribution (Figure 4.6).

Probability Distribution | Max. | Generation No. | CPU Time at
RNGs Fitness | at Max. Fitness | Max. Fitness
Uniform (MT) 2.06 98 315.12s
Exponential 1.98 27 , 86.8s
Beta (2-2) 1.87 87 289.14s
Beta(5-10) 1.77 77 254.57s
Beta (10-2) 2.055 82 279.82s
Gamma (2-2) 1.998 70 229.68s
Gamma (2-3) 1.976 51 166.73s
Gamma (9-11) 2.075 76 244.62s
Normal (10000-2000) 2.04 52 167.54s
Normal (30000-2000) 2.017 83 264.56s
Normal (50000-2000) 2.005 82 261.1s
Triangle (0-10000-65535) 2.254 58 188.4s
Triangle (0-30000-65535) 2.075 73 231.31s
Triangle (0-50000-65535) 1.996 98 308.7s
Triangle (0-15000-30000) 2.062 60 188.62s
Triangle (30000-45000-65535) | 2.075 62 249.23s

Table 4.2: Resuits of 32 Static Coverage Points

The same experiment is run with different values for population size (Pop-
ulationSize=20) and number of cells (NoOfCell=5). In this simulation we obtain
almost similar values to the previous simulation: the coverage rate is 100% except
for Gamma(9-11) where we get 96% coverage because we could not cover one cov-
erage point. The fitness values are lower than the values in the previous results due

to the lower value of number of cells.
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Figure 4.6: Maximum Fitness of 32 Static Coverage Points

4.3.3 Experiment 2: 16 Static Coverage Points

In this experiment, we repeat Experiment 1 with 16 static coverage points to detect
only the external inputs of each register. In addition, we select only one set of pa-
rameters for each distribution. The objective is to study the effect of reducing the
number of coverage points on generation number where the fitness value reaches its
maximum. Table 4.3 summarizes the results while Figure 4.7 compares the results

with the results of Experiment 1.

The results show that maximum fitness values are obtained at a lower number
of generation when the number of coverage points is decreased in general. In Exper-
iment 2 each generated packet must hit one coverage point, while in Experiment 1
it must hit 2 coverage points; this will help to achieve maximum coverage in a short

time for all coverage points.
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Probability Maximum | Generation No. | CPU Time
Distribution at at
RNGs Fitness Max. Fitness | Max. Fitness

Uniform (MT) 2.20859 38 56.406s
Exponential 2.1005 9 14.343s
Beta (10-2) 1.73994 18 29.844s
Gamma (2-2) 2.318 57 81.298s
Normal (30000-1000) 2.20859 17 25.156s
Triangle (0-30000-65535) 2.23994 33 47.39s

Table 4.3: Results of 16 Static Cdverage Points

[E 16 cover points ®32 cover points |

Generation Number

Uniform (MT) Exponential Beta(10-2)

Gamma(2-2) Normal(30000- Triangle(0-30000-

1000)

Probability Distribution

65535)

Figure 4.7: Maximum Fitness: 32 vs. 16 Static Coverage
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4.3.4 Experiment 3: Group Coverage Points

In this experiment, we repeat Experiment 1 but on a group of coverage points in
which we put every four coverage points into one group. Each group is seen by the
algorithm as one coverage point. For example, we select the first four coverage points
as one group, and if any of those coverage points is hit then the coverage group is
also hit. Thus, 32 coverage points are divided into eight coverage groups as listed
in Table 4.4. In addition, we select only one set of parameters for each distribution.
The objective is to study the effect of coverage group on generation number where
the fitness value reaches its maximum. In this simulation, the Genetic Algorithm
recognizes only eight coverage groups and tries to optimize for eight coverage points

instead of 32.

Coverage Group | Coverage points
Group 1 point 1 - point 4
Group 2 point 5 - point 8
Group 3 point 9 - point 12
Group 4 point 13 - point 16
Group 5 point 17 - point 20
Group 6 point 21 - point 24
Group 7 point 25 - point 28
Group 8 point 29 - point 32

Table 4.4: Coverage Groups

Probability Max. | Gen. No. at | CPU Time

Distribution Fitness | Max. Fit. | at Max. Fit.
Uniform (MT) 11.744 92 237.4s
Exponential 11.0868 54 167.5s
Beta (10-2) 9.585 88 279.3s
Gamma (2-2) 11.085 96 - 317.2s
Normal (30000-2000) 11.244 75 226.5s
Triangle (0-30000-65535) | 11.574 69 205.9s

Table 4.5: Results of 8 Static Coverage Groups

79



The results in Table 4.5 show an increase in the fitness value above 9.0 due to
the increase in the number of hits for each group. For example, if any of the coverage
points in the coverage group is hit, then the coverage group is hit. But, this does not
indicate that all coverage points of the group are hit. Figure 4.8 shows the generation
number where maximum fitness is obtained for Experiment 1 and Experiment 3. It
is noted that the maximum fitness reached in Experiment 1 is closer to that for
the number of generations in Experiment 3 except for Exponential and Gamma
distributions. But in case of the Exponential distribution, the maximum fitness is

achieved at a lower number of generations than other distributions.

& Point B Group

120

100

80

80 1

Generation Number

40 1

20

Uniform (MT) Exponential Beta(10-2) Gamma(2-2) Normal(30000-  Triangle(0-30000-
1000) 65535)

Probability Distribution

Figure 4.8: Maximum Fitness: Points vs. Group Static Coverage

4.3.5 Experiment 4: 16 Temporal Coverage Points

In this experiment, we study the effect of different probability distributions on 16
temporal coverage points. The function of the coverage task is to detect if the packet

arrives at its destination in 16 internal clock cycles when the packet sender ID is
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equal to its destination ID. Since there are 16 ports, 16 coverage points are defined.

The C code of the temporal coverage task can be written as follows:

//At the input of a register
if((1q0-in.empty)&&(RO. free)){
R0.val = q0_in.pkt_out();
if(R0O.val.sid == R0.val.did){

hit01 + +;
Total Hit + +;
RO.val.pkttime = SWCIkCount;
}
RO.free = false

}

/ / At the output of a register
1f((1g0_out.empty){
outpkt0 = q0_out.pkt_out();
if(hit01 > hit02){
hit02 + +;
tt = SWCIkCount — outpkt0.pkttime;
if(tt == 16){
covl + +;
TotalCov + +;

}

else;

TotalNotCov + +;

}

out0.write(outpkt0);
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In this experiment, we use another formula to calculate the fitness where 100%
coverage is reached if the fitness value exceeds 995. The results of the simulation is

summarized in Table 4.6.

Probability Max. |[Gen. No.| Coverage | CPU Time
Distribution at at
RNGs Fitness Max. Fit, Rate Max. Fit.
Uniform (MT) 499.48 31 50 94.62s
Exponential 561.98 3 56 12.22s
Beta(2-2) 561.98 47 o6 145.4s
Beta (5-10) 561.88 41 56 127.42s
Beta (10-2) 561.88 33 56 104.2s
Gamma (2-2) 561.98 23 56 75.25s
Gamma(2-3) 499.48 61 50 204.1s
Gamma(9-11) 499.37 51 50 167.42s
Normal (10000-2000) 561.98 77 56 228.95s
Normal (30000-2000) 561.88 14 56 44.2s
Normal (50000-2000) 561.98 16 56 47.2s
Triangle (0-10000-65535) 499.48 58 50 171.64s
Triangle (0-30000-65535) 499.48 76 50 223.72s
Triangle (0-50000-65535) 499.48 37 50 108.92s
Triangle (0-15000-30000) 499.48 23 50 68.35s
Triangle (30000-45000-65535) | 499.48 27 50 79.73s

Table 4.6: Results of 16 Temporal Coverage Points

The results show almost 50% coverage for all distributions even when the sim-
ulation ran for more than 100 generations. The main reason is due to the fact that
the coverage point is only hit when the sender ID is equal to the destination ID
when the data arrives at its destination in 16 internal clock cycles. The results that
the CGA produce are based on the best population result of the entire generation.
In other words, if a single generation produces 50 populations and one population

produce best test vectors that gives highest coverage in the generation, then that
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population is reported as best population even thought it does not give 100% cov-
erage. It is observed that if we look at the entire generation, we find that all points

are covered in different populations.

4.3.6 Experiment 5: 32 Static Assertion (SVA)

Besides SystemC experiments, we simulated the Verilog model of a 16x16 packet
switch with static assertions using three different random number generators. 32 cov-
erage points are defined and coded using SystemVerilog Assertion. The three RNGs
are based on Uniform distribution $dist_uniform(seed, a, b), Normal distribution
$dist_normal(seed, mean, std) and Exponential distribution $dist-ezponential(seed,
mean) that are supported by Verilog HDL. The simulation ran for 200 thousand
cycles using a VCS tool, and 1300 packets were generated and sent to the packet
switch.

The objective of this study was the same as in Experiment 1, namely to study
the effect of probability distribution on the coverage, and to compare it with the
results in Experiment 1.

The results are summarized in Table 4.7. The seed value is set to 0, and we
experimented with the rundom value of the seed, which ranges randomly from 0 to
8 (SEED=urandom()%8). We obtained 100% coverage (here, coverage in terms of
the simulator semantics, which refers to hitting every cover point at least once) of
static assertion properties for all distributions after running for at least 200 thousand
cycles. A similar result is obtained with random seed, but with less hits for some
assertion points. The Uniform and Exponential distributions using random seeds
show less coverage at certain parameters as displayed in Table 4.7. The high coverage
with static assertions is due to the fact that each packet must hit two assertion

points.
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Probability Distribution | Coverage Rate
Uniform (0,0,65535) 100
Uniform (0,0,32500) 100
Exponential (0,5000) 100
Exponential (0,500) 100

Normal (0,10000,2000) 100
Normal (0,30000,2000) 100
Normal (0,50000,2000) 100
Uniform (rand(0-8),0,65535) 53
Exponential (rand(0-8),5000) 96
Normal (rand(0-8),30000,2000) 100

Table 4.7: Results of 32 Static Assertions (System Verilog)

4.3.7 Experiment 6: 16 Temporal Assertion (SVA)

In this experiment, we use the Verilog model of the 16x16 packet switch with
temporal assertion to simulate with three different distributions RNGs. 16 temporal
properties are defined and three random number generators were used and they
are based on Uniform distribution $dist_uniform(seed, a, b), Normal distribution
$dist_normal(seed, mean, std) and Exponential distribution $dist_ezponential(seed,
mean). The simulation run for 200 thousand cycles using VCS, where 1300 packet
were sent.

The results are summarized in Table 4.8, which seem to be similar to the

results of Experiment 5.

4.3.8 Experiment 7: Coverage-base Verification

In this experiment, we simulate the 16x 16 packet switch Verilog model with coverage
points enabled using the concept of coverage-based verification where the property
that needs to be verified is expressed as coverage point or coverage group. Similarly,
we use the same three random number generators as in Experiment 6. In addition,

16 coverage groups were defined where each group has two coverage points. The
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Probability Distribution | coverage rate
Uniform (0,0,65535) 100
Uniform (0,0,32500) 100
Exponential (0,5000) 100
Exponential (0,500) 93

Normal (0,10000,2000) 100
Normal (0,30000,2000) 100
Normal (0,50000,2000) 100
Uniform (rand(0-8),0,65535) 0
Normal (rand(0-8),30000,2000) 37
Exponential (rand(0-8),5000) 6

Table 4.8: 16 Temporal Assertions (SystemVerilog)

function of each coverage group is to detect at each positive edge of external clock
cycle if the sender ID is equal to the destination ID. We define the coverage points

as follows:

covergroup CovGpl @(posedge Clock);
coverpoint ROIn_SID
{ wildcard bins A = {4°b0001}; }
coverpoint ROIn_DID
{ wildcard bins B = {4’b0001}; }
corss ROIn_SID , ROIn_DID;

endgroup

Table 4.9 summarizes the simulation results. It is noted from the results that
when the simulation runs for 100 thousand clock cycles, we achieve a lower coverage
rate, but if the simulation runs for 300 thousand cycles, we achieve 100% coverage.
Moreover, with Uniform and Normal distributions we achieve a higher coverage than

Exponential distribution with less simulation cycles.
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Coverage rate at different clock cycles
Probability Distribution | 100 000 | 150 000 300 000
Uniform(0,0, 65535) 93.75 100 100
Exponential(0,5000) 50 75 100
Normal(0,30000,2000) 81.25 100 100

Table 4.9: Results of Coverage Groups

4.3.9 SystemC vs. Verilog

Table 4.10 compares the results of SystemC and Verilog simulations with the RNG
of constant seed (SEED=0) and of random seed (SEED=0-100). In case of random
seed for Verilog model, we the experiments until we achieve 100% in order to compare
with SystemC result. In case of Exponential and Normal distribution we achieve
100%, while in case of Uniform distribution we only achieve 43% even though we run
the experiment for long time. In the case of SystemC, the coverage increased to a
certain value and did not pass that value. This issue is more related to the DUV. The
coverage result reported by the CGA is the best result obtained in a population in the
entire generation and not as overall coverage of the entire generation. For example,
the Exponential distribution at third (3"%) generation reported 56% coverage but
the overall coverage of the entire (3"¢) generation was 100%. The overall coverage
is reported indirectly and needs to be calculated based on the number of hits for
each coverage point. The overall coverage for SystemC simulation with CGA is
calculated and reported in the last column of Table 4.10. Since the nature of the
CGA (SystemC) simulation is similar to the nature of VCS (SystemVerilog), the
results should provide a fair comparison. Therefore, we can obtain 100% coverage
using SystemC and CGA in a shorter time than System Verilog if proper distribution

(Exponential) is used.
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Probability Coverage Rate - CPU time in Sec.
Distribution SystemVerilog SystemC
RNGs Constant Seed | Random Seed | CGA (Gen. No.)
Uniform 100 - 3.83s 43 - 104.5s 100 (31) - 94.62s
Exponential 100 - 3.81s 100 - 17.8s 100 (3) - 12.22s
Normal 100 - 3.95s 100 - 34.9s 100 (14) - 44.2s

Table 4.10: SystemVerilog and SystemC Comparison (Temporal Assertions)

4.4 Discussion

We run several experiments using different parameters of RNG and CGA. The re-
sults show that not all distributions produce the same result. Maximum fitness or
maximum coverage is achieved in shorter time or with a smaller number of gen-
erations for some probability distributions such as exponential distribution. This
finding can be used to set up a termination criteria for the simulation. Also, the
maximum coverage is reached in shorter time if the number of coverage points is
decreased or grouped.

On the other hand, we found that the results were not consistent for all Sys-
temC simulations due to the random nature of the CGA. It might be useful to run
the simulation for each probability distribution RNG several times or even many
more times and then apply statistical methods to determine more accurate effects
of the probability distribution on the coverage. Also, we found that the coverage
did not improve after some generations, and it fluctuates around a certain value.
This result is due to the nature of the packet switch design and the structure of the
generated packet.

It is important to note that considering the relatively small size of the design,
the simulation time difference between the SystemC and Verilog implementations
was pretty minor. This explains why both simulations were able to reach high cov-
erage numbers in relatively comparable execution times. We do believe, however,

that for large designs the SystemC simulation at higher abstraction level would
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run much faster than the VCS simulation at RTL (hundred of cycles per second).
Therefore, it should be appropriated to optimize coverage at the higher level (e.g.,
TLM-Transaction Level Modeling) and reuse the tests for RTL (certainly, consid-

ering some minor modifications for the tests).
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a new approach of using Genetic Algorithms and ran-
dom probability distributions in order to improve coverage for hardware design. We
implemented, tested, and integrated random number generators based on Ezponen-
tial, Normal, Gamma, Beta and Triangle probability distributions with cell-based
genetic algorithm to automate the coverage directed test generation. We applied
our approach to SystemC and Verilog models of a 16x16 Packet Switch in which
we defined static and temporal coverage points.

It was found that each probability distribution has an effect on the coverage;
where in some distributions the coverage reaches its maximum within a small num-
ber of generations, while with others it reaches it after several generations. The
experiments show a consistency with the results for some probability distributions
when the experiments were repeated such as Exponential distribution, while in the
results of other distributions show slight differences due to the random nature of the
Genetic Algorithm.

It might be useful to run the simulation for each probability distribution RNG
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several times or even many more times and then apply statistical methods to deter-
mine more accurate effects of the probability distribution on the coverage. Moreover,
we found that the coverage did not improve after some generations and fluctuates
around a certain value. This result is due to the nature of the packet switch design
and the structure of the generated packet.

We implemented 16x 16 packet switch written in Verilog HDL and simulated
with with three different random number generator based on Uniform, Exponential,
and Normal probability distribution and studied their effect with constant seed and
random seed and compared it with SystemC simulation results.

It was found that the simulation time difference between the SystemC and
Verilog implementations was pretty minor due to the relatively small size of the
design. This explains why both simulations were able to reach high coverage numbers
in a relatively comparable execution times. We do believe, however, that for large
designs the SystemC simulation at higher abstraction level would run much faster
than the VCS simulation at RTL. Therefore, it should be appropriated to optimize
coverage at the higher level (e.g., Transaction Level Model - TLM) and reuse the

tests for RTL (certainly, considering some minor modifications for the tests).

5.2 Future Work

The RNG presented in this thesis generates acceptable, accurate results but further
enhancement can be made by using more accurate and complex algorithms. RNG
should generate integer numbers within a range of [0, 2°2 — 1]. Some RNGs based
on Exponential, Gamma and Beta distribution that we implemented in this thesis
generate numbers within the range of [0, 1] and then a scaling factor was used to
scale the numbers in the range of [0, 9999]. We believe that different algorithms
can be used to generate random numbers based on Exponential, Gamma and Beta

distributions.
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In addition, as a future work, from the practical point of view, we think it
is valuable to apply our approach to complex designs where regular simulators fail
to hit specific coverage points in a pure random execution mode. For example, we
can target our approach to explore designs such as a 32-bit microprocessor or an IP
Router.

Cell-based Genetic Algorithm plays the main role in our approach, therefore,
it is essential, from the theoretical point of view, to investigate several aspects of
the algorithm. For instance, we would like to explore any possible link between the
implementation of CGA and the best random distribution to use (or the parame-
ters of the random distribution). Another algorithm could be used to measure the
progress of the coverage based on random distributions or their parameters.

Another aspect of the algorithm that can be investigated is a sequence of
inputs over time rather than a static randomization over time. CGA generates a
series of inputs to the DUV, but the sequence of the inputs is not observed and
optimized by the CGA. Observing and optimizing sequences of inputs adds another
powerful feature to the CGA to target certain functions in a design.

Finally, we believe this thesis is an important milestone towards building a
complete environment for automatic coverage enhancing methodology. Therefore, it
is important to develop algorithms besides the GA to fully automate the verification

cycle taking into consideration the nature of the DUV.
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