
Framework for Indoor Video-based Augmented

Reality Applications

Bechir Khabir

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science

(Electrical and Computer Engineering)
at

Concordia University
Montreal, Quebec, Canada

August 2008

©Bechir Khabir, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45307-0
Our file Notre reference
ISBN: 978-0-494-45307-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Framework for Indoor Video-based Augmented Reality Applications

Bechir Khabir

Augmented Reality (AR) has been proven to be useful in many fields such as medical

surgery, military training, engineering design, tourist guiding, manufacturing and

maintenance. Several AR systems and tracking tools have been reviewed and examined.

Taking into consideration the different shortcomings of the available AR systems, a

framework for indoor video-based AR applications is proposed to integrate four main

components of AR applications, which are large scale virtual environment, mobile

devices, interaction methods and video-tracking, in one system. The proposed framework

benefits from the rapidly evolving technology in virtual modeling by combing GIS maps

and 3D virtual models of cities and building interiors in one single platform. Interaction

methods for AR applications are introduced, such as the automatic 3D picking which

allows for a location-based data access. In addition, a practical method is proposed for the

configuration and the deployment of video tracking. This method makes use of the XML

mark-up language to allow for future extensions and simplified interchangeability. An

implementation of the proposed approach is developed to demonstrate the feasibility of

the framework. Different case studies are carried out to validate the applicability of the

system and identify its benefits and limitations.

111

ACKOWNLEGEMENTS

It is indeed a great pleasure for me to express my sincere appreciation and thanks to my

respectable supervisor Dr. Amin Hammad who gave me the opportunity to pursue my

Master's degree and provided the initial concept for this research project. His profound

knowledge and thoughtful instructions have always shed light on my way to pursue this

thesis work.

I would like to express my special gratitude to my dear mother Mabrouka, my dear father

Said and my wife Kaouthar for having been always there for me by encouraging and

caring for my aspirations. To them, I dedicate this thesis.

During these demanding years of study, the support of our Infra-group was of extreme

importance. I would like to thank Cheng Zhang, Elaheh Muzaffari, Sara Fadaee, Khaled

El-Emmari, Prasana Devarakonda, Yongxin Hu and Jian Jiang for their cooperation and

contribution in the development of the 3D model and the database. In addition, the help

of all other friends in this project is appreciated.

IV

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES viii

LISTOFABBREVATIONS ix

CHAPTER 1 INTRODUCTION 1

1.1 GENERAL BACKGROUND 1

1.2 RESEARCH OBJECTIVES 2

1.3 THESIS ORGANIZATION 2

CHAPTER 2 LITERATURE REVIEW 4

2.1 INTRODUCTION 4

2.2 MIXED REALITY (MR) 4

2.3 AUGMENTED REALITY (AR) 5

2.4 WHYAR? 8

2.5 APPLICATIONS OF AR 9

2.6 INTERACTION IN AR ENVIRONMENTS 16

2.7 NAVIGATION AND WAYFINDING IN AR ENVIRONMENTS 17

2.8 TRACKING TECHNOLOGIES, TOOLS, AND SYSTEMS 19

2.9 SUMMARY AND CONCLUSIONS 29

CHAPTER 3 FRAMEWORK FOR INDOOR VIDEO-BASED AUGMENTED
REALITY APPLICATIONS 31

3.1 INTRODUCTION 31

3.2 PROPOSED FRAMEWORK 31

3.2.1 Large scale 3D virtual model 33

3.2.2 Mobile Devices 35

3.2.3 Video Tracking 36

3.2.4 Interaction 38

3.3 TRACKING PROCESS 43

3.3.1 Registration 43

3.3.2 Marker Requirements 43

3.3.3 Marker Recognition 44

v

3.3.4 Tracking Algorithm 45

3.3.5 Computing Transformations 46

3.3.6 Video Tracking Parameters 47

3.4 CONFIGURATION 50

3.5 SUMMARY AND CONCLUSIONS 57

CHAPTER 4 IMPLEMENTATION AND CASE STUDIES 58

4.1 INTRODUCTION 58

4.2 SELECTION OF DEVELOPMENT TOOLS 58

4.3 BACKGROUND OF THE CASE STUDIES 61

4.4 HARDWARE COMPONENTS 62

4.5 IMPLEMENTING THE FRAMEWORK 62

4.5.1 Database model 62

4.5.2 GIS integration 63

4.5.3 Building the VR model of the campus 63

4.5.4 Virtual Scene Visualization 64

4.6 USER INTERFACE DEVELOPMENT 68

4.7 UML CLASS DIAGRAMS 75

4.7.1 Description of the main classes 75

4.7.2 Design Patterns Used in the Implementation 82

4.8 CASE STUDIES 83

4.9 HARDWARE TESTING 90

4.10 SOFTWARE TESTING 92

4.10.1 Unit Testing 93

4.10.2 Requirements Testing 97

4.11 SUMMARY AND CONCLUSIONS 100

CHAPTER 5 SUMMARY, CONCLUSIONS, AND FUTURE WORK 101

5.1 SUMMARY 101

5.2 CONCLUSIONS AND CONTRIBUTIONS 102

5.3 FUTURE WORK 104

REFERENCES 105

Appendix A: XML files for describing markers 112

VI

Appendix B: Software requirements and installation guide of the prototype system
115

Appendix C: Unit Testing 118

Appendix D: Requirement Testing 123

Appendix E: Equipment used in the prototype system 130

Appendix F: Usability Testing 133

1. Usability and usefulness 133
2. Usability Definition 133
3. Usability Guidelines for AR Systems 133
4. The Evaluation Checklist 136
5. IsoMetrics 136
6. Evaluation heuristics for VE Displays 137

Appendix G: Ladybug Spherical Camera Interface 139

Appendix H: List of publications 141

vu

LIST OF FIGURES

Figure 2.1: MR continuum (adapted from Milgram and Kishino, 1994) 5
Figure 2.2: Schematic of an optical see-through HMD AR system (Azuma, 1997) 6
Figure 2.3: Schematic of a video-based AR system (Azuma, 1997) 7
Figure 2.4: Spice jar in an AR museum application (Liarokapis et al., 2004) 10
Figure 2.5: AR Pong marker setup (ARPE, 2003) 11
Figure 2.6: Cannon Fodder AR game (ARPE, 2003) 12
Figure 2.7: A remote user highlighted by a wireframe box (Livingston et al., 2002) 13
Figure 2.8: AR bridge construction model (Behzadan et al., 2006) 14
Figure 2.9: Virtual car front superimposed on a real car model (Frund et al., 2003) 15
Figure 2.10: An ARToolkit test example (ARToolkit website, 2005) 24
Figure 2.11: Tracking accuracy with respect to distance from a marker of 80 mm

(ARToolkit website, 2005) 25
Figure 2.12: Testing the effect of distance on ARToolkit accuracy (Adapted from Pierre

etal.,2002) 25

Figure 3.1: Summary of the proposed framework 32
Figure 3.2: Example of data used in creating the 3D models 34
Figure 3.3: Examples of detailed 3D CAD models 35
Figure 3.4: Picking Behavior 40
Figure 3. 5 Automatic picking state machine 40
Figure 3.6: Tracking algorithm 45
Figure 3.7: Different transformations used in computing the user location and orientation

47
Figure 3.8: Example of printed marker (scaled to fit in the page) 51
Figure 3.9: Different measurements used in the video tracking configuration 53
Figure 3.10: The XML schema for the marker library 56

Figure 4.1: Concordia University campus map 61
Figure 4.2: GIS information 63
Figure 4.3: Scene graph (Walesh and Gehringer, 2001) 65
Figure 4.4: The different display modes 68
Figure 4.5: Main User Interface.... 69
Figure 4.6: Control Pane 70
Figure 4.7: Direction assistance features 70
Figure 4.8: Setting options for AR mode 71
Figure 4.9: System Display Setting options 72
Figure 4.10: Using the Measurement Tool 74
Figure 4.11: Different options in the Measurement Tool 74
Figure 4.12: Class diagram for CurrentArrowBehavior 77
Figure 4.13: Class diagram for Marker 78
Figure 4.14: Class diagram for ARPatternTransformGroup 79
Figure 4.15: Class diagram for ARBehavior 80
Figure 4.16: Class diagram for PickhighlightBehavior 81

vm

Figure 4.17: Two locations and orientation of the user during navigation 84
Figure 4.18: AR and VR views as seen by the user at Location 1 85
Figure 4.19: AR and VR views as seen by the user at Location 2 85
Figure 4.20: Text augmentation in AR and VR modes 86
Figure 4.21: Detailed 3D model of one floor and the HVAC ducts 87
Figure 4.22: The augmentation of the HVAC model as seen by the user 88
Figure 4.23: Paper map of the campus area 90

IX

LIST OF TABLES

TABLE 4.1: SOFTWARE TOOLS USED IN THE IMPLEMENTATION 60

TABLE 4.2: SOFTWARE APIS USED IN THE IMPLEMENTATION 61

TABLE 4.3: HARDWARE COMPONENTS OF THE PROTOTYPE SYSTEM 62

TABLE 4.4: SPECIFICATIONS OF TEST DIGITAL VIDEO CAMERAS 91

TABLE 4.5: SPECIFICATIONS OF THE HMDs 91
TABLE 4.6: DETECTION RANGE FOR DIFFERENT MARKER SIZES 92

TABLE 2.1: RESULTS OF THE ACCURACY TEST OF ARTOOKIT (PIERRE ET AL., 2002) 26

TABLE B.l: SUMMARY OF LIBRARIES USED IN THE PROTOTYPE SYSTEM 117

TABLE C.l: TEST CASES FOR ANIMATEDARROW 118

TABLE C.2: TEST CASES FOR MARKER 118

TABLE C.3: TEST CASES FOR MARKER (CONTINUED) 119

TABLE C.4: TEST CASES FOR JARTOOLKIT3D_MAIN 119

TABLE C.5: TEST CASES FOR JARTOOLKIT3D_MAIN (CONTINUED) 120

TABLE C.6: TEST CASES FOR JARTOOLKIT3D 121

TABLE D.l: REQUIREMENT TESTING FOR FEATURE 1 123

TABLE D.2: REQUIREMENT TESTING FOR FEATURE 2 124

TABLE D.3: REQUIREMENT TESTING FOR FEATURE 3 125

TABLE D.4: REQUIREMENT TESTING FOR FEATURE 4 126

TABLE D.5: REQUIREMENT TESTING FOR FEATURE 5 127

TABLE D.6: REQUIREMENT TESTING FOR FEATURE 6 127

TABLE D.7: REQUIREMENT TESTING FOR FEATURE 7 128

TABLE D.8: REQUIREMENT TESTING FOR FEATURE 8 128

TABLE D. 9: STRESS TESTING 129

X

LIST OF ABBREVATIONS

Abbreviation

2D
3D
AR
DB
GIS
GPS
GUI
HMD
I/O
JDBC
LBC
MR
VE
VR
VRML
HVAC

Description

Two-dimensional
Three-dimensional
Augmented Reality
Database
Geographic Information System

Global Positioning System
Graphical User Interface
Head-Mounted Display

Input/Output
Java Database Connectivity
Location-Based Computing
Mixed Reality
Virtual Environment
Virtual Reality
Virtual Reality Modeling Language
Heating, Ventilation and Air Conditioning

XI

CHAPTER 1 INTRODUCTION

1.1 GENERAL BACKGROUND

Augmented Reality (AR) allows interaction with 3D virtual objects and other types of

information superimposed over real world objects in real time (Azuma, 1997; Azuma et

al., 2001). The benefits of AR have been discussed in many engineering applications

including design perception (Dunston et al., 2002, see Chapter 2). The augmentation can

be realized by looking at the real world using a see-through Head-Mounted Display

(HMD) equipped with sensors that accurately track head movements (3 displacements

and 3 rotations) to register the virtual objects with the real objects in real time. The

augmentation can be a representation of both physical and non-physical objects. Non-

physical objects can be navigation aids such as paths and navigation arrows. Physical

objects can be existing in the real world but hidden. In this case, the augmentation can

help the user perceive virtual models of hidden physicals objects or their attributes based

on the task context. In addition, symbolic representations of objects that are difficult to

see can be added, such as defects, as will be explained in the Case Study 2 in Chapter 4.

On the other hand, physical objects can be non-existing in the real world such as future

plans for new buildings that could be shown as augmentation to help urban planners

visualize these plans, as will be discussed in Case Study 3 in Chapter 4.

As opposed to Virtual Reality (VR) applications that allow the user to navigate, using

input devices, in many different motions and directions such as flying, walking and

orbiting, navigation in AR applications is tightly associated with the user's physical

movement. In AR environments, the user's movements are continuously tracked and the

1

virtual augmentation is updated according to his/her current location and orientation.

Using AR, users do not have to look back and forth at the real world and the computer

screen to mentally achieve the spatial mapping of the information displayed on the

screen. This helps them better focus on their actual tasks and improves their efficiency

and safety. The main challenge of AR is the requirement for accurate 3D spatial

databases and head tracking. A broadening range of AR applications have been

demonstrated in many fields such as medical surgery aid, aerospace maintenance guide,

military training, engineering design, etc. (See Chapter 2).

1.2 RESEARCH OBJECTIVES

This research investigates a framework for indoor video-based AR applications. The

framework includes a practical and simplified method for configuring video-based

tracking in indoor AR applications. The research has the following main objectives:

(1) To investigate a framework for indoor video-based AR applications.

(2) To investigate a practical method for the configuration of video tracking in AR

applications.

(3) To investigate the deployment of large scale Virtual Environments (VEs) in AR

applications.

1.3 THESIS ORGANIZATION

This study will be presented as follows:

Chapter 2 Literature Review: This chapter presents the current situation of AR and its

applications in different fields. Different tracking technologies for AR are presented as

2

well as different tracking systems and tools. In addition, interaction and navigation

methods in AR systems are summarized.

Chapter 3 Framework for indoor video-based AR applications: In this chapter, a generic

framework for large scale indoor vide-based AR applications is introduced as well as a

practical method for the configuration and deployment of video tracking for AR

applications.

Chapter 4 Implementation and Case Studies: In this chapter, several case studies are

used to demonstrate the prototype system using the proposed approaches.

Chapter 5 Summary, Conclusions, and Future work: This chapter summarizes the

present research work, highlights its contributions, and suggests recommendations for

future research.

3

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

VR has been described as a visualization technology that completely substitutes the

user's view of the real world with a computer generated graphics that represent a view of

a synthetic virtual world to allow him/her to interact in more natural ways with a world

that can be, due to its huge size, out of reach (Livingston, 1998). On the other hand,

instead of completely replacing the user's view, AR systems, keep the original real world

view and add to it virtual objects that are merged in such a way that they appear

consistently aligned with the real world and behave the same way as their real

counterpart. The main hardware components of AR systems are a display subsystem

through which the user sees the virtual and the real world, an image generation subsystem

that renders the proper image onto the display subsystem, and a tracking subsystem that

detects the user's location and orientation in real time.

2.2 MIXED REALITY (MR)

Mixed Reality (MR) was introduced by Milgram and Kishino (1994) to depict the

different combinations of the virtual and real components through a virtuality continuum

(Figure 2.1). At the two extremes of the continuum are the real world (Figure 2.1(a)) and

the totally VE (Figure 2.1(d)). In the middle region lies the MR. Near the real world end

is the AR (Figure 2.1(b) where the perception of the real world is augmented by computer

generated data.

4

This technology combines the viewing of the real-world or video-based environments

with superimposed 3D virtual objects that can be manipulated by the viewer. Thus, AR

supplements, rather than replaces, the user's real world (Virtual Reality Laboratory

website, 2006). The most recent advancement in AR is a wearable system in which users

wear a backpack with a portable computer, see-through HMD, and headphones with

motion trackers to place and manipulate virtual objects as they move within their real

world (Halden Virtual Reality Center, 2006). The other variation of MR is the

Augmented Virtuality (AV) (Figure 2.1(c)) which is a term created by Milgram and

Kishino (1994) to identify systems which are mostly synthetic with some real world

imagery added, such as texture mapping video, onto virtual objects.

Mixed Reality

Real Augmented Augmented Virtual
Environment Reality (AR) Virtuality (AV) Environment

Figure 2.1: MR continuum (adapted from Milgram and Kishino, 1994)

2.3 AUGMENTED REALITY (AR)

AR systems aim to enhance the user's perception of the real world and the interaction

with it by augmenting it with 3D virtual objects that are rendered to co-exist in the same

space. To create the illusion of seeing both the real world objects and the virtual objects

in the same environment, in other words to blend them together, they need to be

5

accurately aligned; this alignment is called registration (Azuma et al., 2001). Azuma

(1997) defines AR systems as having the following properties: run interactively and in

real time, combine real and virtual objects in a real environment, and register them with

each other. Theoretically, the graphics of the virtual world would flawlessly integrate into

the real world but, practically, due to many possible imperfection factors, registration

errors can occur causing jittering and instability in the rendered graphics.

AR systems can be classified into two categories: optical-based technologies (Figure 2.2)

and video-based technologies (Figure 2.3). In optical-based systems, a Head Mounted

Display (HMD), equipped

with see-through lenses, is used to see the real world combined with computer generated

virtual objects. The virtual objects are superimposed on the real world by means of

combiner lenses placed in front of the eyes allowing the user to look directly into the real

world. On the other hand, in the video-based systems, a closed view HMD is used to

allow the user to see a video of the real world, captured by a video camera, blended with

the virtual objects and displayed on opaque monitors placed in front of the eyes.

Scene
generator

Graphic
images

Real
world

Optical
combiners

Figure 2.2: Schematic of an optical see-through HMD AR system (Azuma, 1997)

I Video compositor I

Video cameras
Real
World

Combined video

Figure 2.3: Schematic of a video-based AR system (Azuma, 1997)

The optical see-through HMD, when compared with the video see-through HMD

(Azuma, 1997), has the advantage of not limiting the real world resolution by allowing

the user to directly perceive the real surrounding environment and also has the advantage

of being safer in case of sudden electricity cut off; but, the virtual objects for

augmentation cannot completely occlude the real world since they always appear semi-

transparent. On the other hand, the video see-through HMD has the advantage of

flexibility in merging the real world with the virtual objects and thus allows for a realistic

occlusion. In addition, the video see-through HMD allows for easier match of brightness

of the real and the virtual objects since the brightness of both the video frames and the

VE can be adjusted by the user. Also, in case of video see-through AR, the video frames

7

can be used as an additional source for the user location tracking as opposed to the optical

see-through that has to rely on other tracking technologies.

2.4 WHY AR?

AR has been proven to make the tasks easier to perform in many fields (Brian, 2004),

such as manufacturing, building and civil engineering and inspection, by augmenting the

human senses with information that cannot be directly detected by the user's own senses.

Also, AR can reduce attention switching between the virtual media and the real world

which helps in eliminating short term memory demands. Reducing attention switching

can also help in improving the user's safety by keeping his/her focus on the virtual model

without losing focus on the real world. On the other hand, AR can direct the user's

attention by providing task information that is chronologically organized according to the

user's task sequence. By providing the user with only the relevant information to the task

at the right time, the user can focus on this task more easily. Through AR, information

becomes more specific, efficient, timely and accurate (Chung, 2002).

In addition, AR systems, compared to VR systems, are characterized by requiring much

less computational resources to compute synthetic images to display on real images since

only the images for augmentation need to be computed. Also, AR systems provide more

realistic view of the environment, through the real images, which keeps the user

connected with the real world (Romao et al., 2004).

8

2.5 APPLICATIONS OF AR

(1) Medical

One of the medical applications of the AR is during a surgery. Before carrying out a

surgery, data resulting from Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI) scan is gathered to generate a 3D model of an affected area in the

human body; then, the model is registered with the patient and displayed right on

his/her body during a surgery which helps the surgical team to find the path to the

affected area.

One other medical application of AR is during the ultrasound scanning; the

ultrasound images are used to create a volumetric representation of the fetus that is

displayed on the abdomen of the pregnant woman in real time (Azuma, 1997); this

helps the doctor to get a more realistic view of the fetus during the different

pregnancy stages.

(2) Manufacturing, Maintenance and Repair

During the performance of aerospace maintenance tasks, AR can help in information

processing by controlling attention and by supporting short and long term memory

through immediate access to information. Instead of referring to several repair

manuals, the maintenance technician could use an AR display to see only the

information pertinent to the repair. In this display, the real equipment would be

augmented with annotations and step-by-step instructions. For example, the location

of a hardware that must be removed could be highlighted (Vallino, 1998).

9

Boeing researchers have been developing an AR display to replace the large work

frames used for making wiring harnesses for their aircraft (Vallino, 1998). Using this

experimental system, the technicians are guided by the augmented display that shows

the routing of the cables on a generic frame used for all harnesses. The augmented

display allows a single fixture to be used for making the multiple harnesses.

(3) Museum Exhibitions and Tourist Guiding

AR has been used in a cultural heritage application (Figure 2.4) to provide museum

visitors with an AR interface to visualize cultural artifacts (Liarokapis et al., 2004)

The most important advantage of such application is the capacity to exhibit a great

number of artifacts in a limited space, in this case a table-top environment.

§s$Sb944.24.!S
3,$n<J»9tt

A':od j

i

s
I

Figure 2.4: Spice jar in an AR museum application (Liarokapis et al., 2004)

10

(4) Entertainment

AR Pong (Figure 2.5), Cannon Fodder (Figure 2.6), Sphere of Influence and others

are prototypes of AR games that have been developed by ARPE group (2003); the

two main components of the games are an AR Gaming Table defined using ARToolkit

(Kato et al., 1999) paper markers and a rig composed of a webcam, a projector, and a

high-end consumer-level computer. In the AR Pong, two players physically interact

with the game using two paddle glyphs (paper markers) to move their paddles and

two other glyphs are used to calibrate the gaming table to adjust the virtual ball into

the real physical environment. In the Cannon Fodder game, the players directly and

physically control the VE using virtual cannon with which to shoot attacking goblins.

The goblins pass between two cannons attempting to get to a castle. The game ends

when a certain number of goblins reach the castle.

Figure 2.5: AR Pong marker setup (ARPE, 2003)

11

Figure 2.6: Cannon Fodder AR game (ARPE, 2003)

Another example of AR application in entertainment is during a baseball game

broadcasting. The system places an advertisement in the broadcasted image so that it

appears on the outfield wall of the stadium. To calibrate the electronic billboard to the

stadium, images are taken from typical camera angles and from zoom settings to build

a map of the stadium to locate the spots where advertisements will be inserted. Pre-

specified reference-points in the stadium are used to allow the system to

automatically determine the camera angle being used and refer to the pre-defined

stadium map to insert the advertisement in the correct spot.

(5) Military Training

One of the applications of AR in military is a Battlefield AR System (Livingston et

al., 2002) prototype that has been developed for military operations in urban terrains.

The system consists of a wearable computer, a wireless network system, and a

tracked see-through HMD. The system is aimed to assist the war-fighter by

improving the situational awareness for effective military operations in urban

environment. A 3D model of objects in the real environment, that is used to generate

12

the registered graphical overlay, is stored in a shared database available for all users.

This database contains information about the objects, e.g., threat classification and

general description, etc. Information about the objects' relevance to each other and to

the user's task is also stored in the shared database. This system can be used to

facilitate collaboration between different mobile users as well as between them and a

command center through the automatic information distribution as shown in Figure

2.7 where the a user location is highlighted and made available to all remote users.

Figure 2.7: A remote user highlighted by a wireframe box (Livingston et al., 2002)

(6) Engineering Design

A prototype system has been proposed (Wang et al., 2004) for design review

collaboration in a MR environment: MRCVE (Mixed Reality-based Collaborative

Virtual Environments). The system has been aimed to help ensure the quality of

designs by amplifying the effectiveness of the design review team. Two scenarios for

the system have been proposed: the first scenario consists of a MR-based

collaborative design face-to-face conferencing where the 3D designs appear in space

13

among the designers, reviewers and customers. The designs can be modified by some

users who are equipped with 3D CAD functionalities. The second scenario consists of

an MR-based collaborative virtual space conferencing where a workspace can be

setup to allow 3D CAD models to be uploaded, edited or downloaded through any

client computer.

In addition, an AR-based platform has been proposed (Behzadan et al., 2006) to

generate a mixed reality view of a real world construction site with virtual

construction CAD models in an outdoor environment. The proposed platform uses

HMD, Global Positioning System (GPS), orientation tracker and a portable computer.

One of the prototypes of the system that has been developed is UM-AR-GPS-

ROVER; it has been used to demonstrate a chronological simulation of scheduled

construction activities for an erection of a structural steel frame. This prototype

(Figure 2.8) allows to, interactively, place 3D CAD models at any selected location in

an outdoor environment.

Figure 2.8: AR bridge construction model (Behzadan et al., 2006)

14

The automobile industry has been, also, one of the fields of application of AR (Frund

et al., 2003). An AR-based application has been developed to be used at the design

phase of new cars. The application displays virtual car components superimposed on

real cars to show design variants or to support design reviews (Figure 2.9). Using this

application, the user can select a virtual component from a list of virtual components,

presented in a menu, and place them on a real car; the hand gesture is used to interact

with the AR scene.

Figure 2.9: Virtual car front superimposed on a real car model (Frund et al., 2003)

(7) Robotics and Telerobotics

In the domain of robotics and telerobotics an augmented display can assist the user of

the system. A telerobotic operator uses a visual image of the remote workspace to

guide the robot. ARGOS (Milgram et al., 1995) is a tool that has been developed to

improve the operator's comprehension of the remote environment and to provide an

interactive modeling of the remote world. This tool uses a stereo-graphic cursor as a

15

probing tool that can be positioned anywhere in the stereoscopic video scene. It

consists, also, of a virtual manipulator that is a full stereographic 3D model of the

remote robot being controlled. The manipulator is then superimposed onto the real

robot to be remotely operated within the real 3D work space.

2.6 INTERACTION IN AR ENVIRONMENTS

Slay et al. (2001) separates MR interaction techniques into two categories, exocentric and

egocentric metaphors. Exocentric interaction occurs when the user interacts with the

scene from outside the VE. Egocentric interaction occurs when the user is imbedded in

the VE. There may be far more possible actions that can be performed on objects than

such Graphical User Interfaces (GUIs) can realistically provide (Kaiser et al., 2003).

Kaiser argues that most prior approaches have placed too much functionality on a too

impoverished communications channel (3D arm/hand motions), and that by incorporating

multimodal interaction, the burden of various interactive functions can be off-loaded to

appropriate modalities, such as speech and gesture, in a synergistic fashion. In particular,

by incorporating speech into the interface, the user could describe unseen/unknown

objects and locations or invoke functions, while his/her hands and eyes may be engaged

in some other tasks. However, unlike direct manipulation interfaces, multimodal interface

architectures must cope first and foremost with uncertainty.

In addition to the challenges posed by 3D interaction, AR interaction adds the presence of

uncertainty caused by the possibly imperfect knowledge about the components of the

system and the low accuracy of the tracking devices. One of the main functionalities in

the AR environments affected by uncertainty is the object selection. Kaiser et al. (2003)

16

proposed multi-modal interaction to disambiguate the object being selected by the user.

Kaiser's system integrates speech, head tracking and glove-based finger tracking for

gesture recognition to allow the user to select objects using vocal commands, head and

hand movement, and 3D virtual volume.

Tracking uncertainty is behind one of the major issues in AR: the registration error. To

overcome this issue, Coelho (2005) proposed an uncertainty aware system that deals with

uncertainty using registration error estimates. To allow the user to select objects, this

system detects the collision between the estimated registration error region of the pointer

and the region of each object in the scene.

Interactivity, on the other hand, refers to all types of interaction an application can

support. Unlike VR systems, AR can support all kinds of interaction devices as well as

tangible interaction mechanisms (Liarokapis, 2006). But, interactivity cannot always be

beneficial to the user in the case of high workload conditions (Chung, 2002); in such

conditions, a very high interactive system can cause a decrease in the user performance.

2.7 NAVIGATION AND WAYFINDING IN AR ENVIRONMENTS

Navigation is defined as the process of moving in an environment; this definition has

been extended to include the process of wayfinding, which is the process of finding one

or more routes to a destination in an environment (Liarokapis et al., 2006).

Mobile, wearable and Location-Based Computing (LBC) have emerged in the AR

navigation and consequently have posed new challenges related to the unpreparedness for

the indoor and outdoor environment.

17

Unlike VR environments that have to provide foil sensory information to the user to be

able to carry out a way finding task, AR environments provide just maps or directions to

facilitate the task and keep the sensory inputs to the real world. Since the navigation

process is cognitive in nature (Brian, 2004), a good representation of spatial knowledge

can be significantly beneficial to the user. Spatial knowledge can have three different

representations: (1) Landmark knowledge which consists of descriptive information of

places in the environment that are clearly distinguishable; (2) Route knowledge which

consists of the knowledge of mentally defined routes between different locations; and (3)

Survey knowledge which consists of a mental map of the environment (Brian, 2004).

In wayfinding, the user must be able to effectively move in the environment to obtain

different views and acquire an accurate "mental map" of his/her surroundings

(Mozaffari, 2006); hence, a virtual 2D map can help the user locate him/herself and

decide on the next move to get to the destination. Map orientation is, also, significantly

important in helping the user during navigation. The orientation of the map can be either

egocentric, which means the user's forward orientation is always up, or allocentric, which

means the north direction is always up. For environments where the user is directly

represented and participating, such AR environments, the literature suggests that the

egocentric map orientation is more convenient (Brian, 2004).

Reitmayr et al. (2004) developed a tourist guide AR system that guides the user from

his/her current location to a destination through the shortest path. The shortest path is

displayed in the form of 3D cylinders, linked by arrows, augmenting the real world scene.

The path is dynamically computed based on the user location that is automatically

updated while the user is moving. The system allows the user to browse information

18

about the different touristic sites and also allows different concurrent users to collaborate

and communicate information. ANTS is another AR navigation system (Romao et al.,

2004) that can be used to explore physical structures and natural elements of the

surrounding real world for environmental management purposes. The system works on

desktop computers and Personal Digital Assistants (PDAs). The ANTS system

architecture is made up of three main components: a mobile user AR module that

communicates with a 3D model server and a geo-referenced database.

Since, in AR, virtual objects are blended and registered with real world objects, the effect

of perceiving depth in the virtual augmentation has been found enhancing for the AR

navigation. For example, the virtual objects need to be occluded by real objects that are

nearer to the user and need to be lit by the same light sources of the real world (Tatham,

1997) and have consistent shadows. In their assessment of the usefulness of depth cues

and the benefits of stereoscopic displays, Sands et al. (2004) concluded that extra sources

of depth information (in this case, addition of shadows and coordinates) can significantly

increase the accuracy of the selection of targets, rendered on a stereoscopic display, using

3D cursor.

2.8 TRACKING TECHNOLOGIES, TOOLS, AND SYSTEMS

2.8.1 Tracking Technologies

(1) Magnetic Trackers

A magnetic tracker consists of a transmitter and the sensors. The tracking system

measures the strength of a set of magnetic fields generated by the transmitter. Four

magnetic fields have to be measured: the environmental field, which includes the

19

Earth's magnetic field, and three orthogonal fields. At each sensor, twelve

measurements are taken for each field. All this information is used to compute the

position and orientation of the sensor with respect to the transmitter.

Magnetic systems are considered robust, fast and inexpensive compared to other

technologies (Livingston, 1998).

(2) Mechanical Trackers

Mechanical trackers are made up of jointed mechanical arms. The orientation and

position of each joint of an articulated arm are tracked using rotary transducers

(Livingston, 1998).

Mechanical tracking systems are limited to tracking only one object. They have been

used widespread for hand tracking as well as tracking all parts of the human body.

The accuracy of the measurements of these systems is considered excellent when

compared to the magnetic system. But, on the other hand, they may limit the freedom

of movement of the user due to the arms attached to the human body (Brunner et al.,

2003).

(3) Acoustic Trackers

Combining a given room temperature and a time of flight of ultrasonic sounds, the

acoustic tracking system computes a three degrees-of-freedom position of a

transmitter. The system is made up by a transmitter carried by a user and a series of

sensors.

20

Acoustic systems suffer from environmental interference like the temperature

variation from possible obstructions between transmitter and receiver. These systems

are limited in accuracy and speed.

(4) Inertial Trackers

The inertial trackers measure velocity and acceleration and use the rigid-body

kinematics to compute the change in position and orientation based on an initial

position. To get a full 6-DOF tracking, this system has to be combined with other

tracking system that provides an accurate initial position.

Since the inertial trackers make relative measurements, they accumulate error over

time which causes drifting in space. Misalignment with gravity vector is an additional

cause of error. A tilt error of one degree in ten seconds can cause about nine meters of

position error (Brunner et al., 2003).

(5) Radio Waves Trackers

Radio waves tracking systems measure the time of flight and phase difference of

radio waves. An example of these systems is the Global Positioning System (GPS)

which provides tracking over the whole surface of the Earth. The GPS uses orbiting

satellites to transmit radio waves that are tracked by a receiver. Twenty-four earth-

orbiting satellites are used to guarantee at least four of them are available at any time

anywhere on the earth. GPS is widely used for mobile mapping and data collection

tasks thanks to its availability, low cost and good accuracy.

(6) Optical Trackers

Optical trackers use sensors to detect light and measure angles to determine the user's

pose. The target light to be detected by the sensors can be emitted and powered,

21

known as active target, or reflected (not powered), known as passive target. Examples

of active targets are the light-emitting diode and the infrared LEDs (ILEDs) (Brunner

et al., 2003). Examples of passive targets are reflective materials and high contrast

patterns. The targets are detected through simple video cameras or lateral-effect

photodiodes. On one hand, optical trackers are considered highly accurate and well

suited for real-time systems for their high update rate (Brunner et al., 2003). On the

other hand, these trackers require a clear line of sight between the sensor and the

target and suffer from obscuration difficulties.

2.8.2 Video Tracking tools and systems

(1) ARToolkit

ARToolkit is one of the most widely used fiducial (also called marker) tracking

systems. It was developed in 1999 by Hirokazo Kato and Mark Billinghurst at the

Human Interface Technology Lab of the University of Washington. ARToolkit

supports full pose calculation and fiducial identification. It is freely distributed as an

open source software library written in C and C++ (ARToolkit website, 2005).

ARToolkit has been the core of a wide variety of AR systems and applications, that

use vision-based tracking, thanks to its ease of use, documentation and free

distribution (Middlin, 2002)

ARToolkit allows video tracking of markers using a video camera and computer

vision algorithm to calculate the camera position and orientation relative to physical

markers in real time. Some of the features of ARToolkit are: single camera

position/orientation tracking, the ability to use any square marker patterns, easy

22

camera calibration, and tracking speed suitable for real-time AR applications. The

tracking range can be improved by varying the size of the markers (Hammad et al.,

2005).

ARToolkit markers are square shaped images surrounded by a predetermined black

band. The black band is used to detect candidate images from the captured ones.

Then, the interior image is used to find the final candidate. The fiducial relative

position and orientation with respect to the camera is computed using its four corners.

The marker recognition algorithm (Rekimoto, 1998) used by ARToolkit consists of 5

steps: (1) Binarization: each captured video image is binarized using the adaptive

threshold method; (2) Connected component Analysis: the system searches for

connected regions of binary-1 (black) pixels. Then, for each region a heuristic

checking is done to select code candidate areas; (3) Code frame fitting: for each

region a quad-tangle is fitted on the frame of the region using the least-square

method. Then, transformation parameters are computed based on the four corners of

this quad-tangle; (4) Decoding and error checking: a corresponding image is

projected on the code rectangle space then a Cyclic Redundancy Check (CRC) is

done to get the recognized code ID; and (5) Camera position and pose estimation: the

recognized code frame is used to estimate the camera pose. ARToolkit allows using

multi markers at the same time (Hammad et al., 2005).

23

While there is no systematic process for designing ARToolkit fiducials, some

characteristics are recommended to get a reliable and acceptable tracking (see Section

3.3.2 of Chapter 3).

Figure 2.10: An ARToolkit test example (ARToolkit website, 2005)

Figure 2.10 shows an example where two paper markers are randomly placed on a

table. Each marker is detected using ARToolkit and virtual 3D objects are rendered.

The virtual objects remain displayed on the markers as long as the markers are

properly visible even if they are moving. The detection range of the markers and the

accuracy of the tracking depend on many parameters, as discussed in Section 3.3.6 of

Chapter 3, but the main parameters are the marker edge size, the slant in the depth

direction and the distance of the camera from the marker. Figure 2.11 shows the

effect of the distance from a marker of 80 mm edge length, and the slant in the depth

direction on the accuracy of the tracked positions. The further the marker is from the

camera the higher is the error in the position and the more sensitive to the slant the

tracking becomes.

24

60 •

85 A

0 100 200 300 400 500 600 700

distance [mm]

Figure 2.11: Tracking accuracy with respect to distance from a marker of 80 mm

Figure 2.12: Testing the effect of distance on ARToolkit accuracy (Adapted from

Pierre et al., 2002)

Figure 2.12 shows the configuration of an experiment carried out to test the accuracy

of ARToolkit where the camera is a placed at relatively a long distance ranging from

1 to 2.5 m (Pierre et al., 2002). The marker edge size is 20 cm and the height of the

3V

"E W~

0-f

-to--

-20- i 1 r

25

camera with respect to the marker plane is 1.34 m. The results of the test in Table 2.1

show an increasing error value that is directly affected by the increasing distance (d)

of the camera from the marker.

Table 2.1: Results of the accuracy test of ARTookit (Pierre et al., 2002)

d(m)

Error (mm)

1

±14

1.5

±18

2

±22

2.5

±27

(2) Cybercode

Cybercode was developed by Jun Rekimoto and Yuji Ayatsuka (Rekimoto et al.,

2000) at Sony Computer Science Laboratories in 2000. The Cybercode is a tracking

system based on two dimensional barcode fiducials. Cybercode can be used to

determine the 3D positions and IDs of tagged objects. The fiducial are required to

have four black corners.

(3) ARTag

ARTag is a marker detection system developed by Mark Fiala (2004) at the Institute

for Information Technology of the National Research Council. ARTag has been

inspired from ARToolkit and is claimed to have lower false positives and lower inter-

marker confusion rates. According to ARTag documentation, ARToolkit is faster than

ARTag when a small number of patterns are loaded, but for larger number of patterns

ARTag is faster. Unlike ARToolkit, ARTag does not use pattern file to detect

markers, instead, it uses digital algorithm. ARTag offers the option to use marker

arrays to allow different markers of the array to be detected even when one or more

are occluded.

26

(4) Mixed Reality Toolkit (MXRToolkit)

MXRToolkit is a Software Development Kit (SDK) for MR applications; it consists

of a set of libraries for fiducial video tracking and for 3D model rendering.

MXRToolkit also provides, through its interfaces, much functionality for low-level

tracking such as estimation algorithms, optimization, and networking and geometry

routines. One of the applications built with MXRToolkit is 3DLive; it consists of an

AR system that captures a real person from many viewpoints then superimposes a 3D

image of the person onto the fiducial marker in real time (MXRToolkit website,

2005)

(5) Mixed Reality Interface Toolkit (MRIT)

MRIT is an AR interface toolkit developed at the Department of Informatics in the

University of Sussex (Liarokapis et al., 2004). MRIT has been proposed to be used as

an exemplar for the development of AR applications; it is claimed to provide realistic

audio-visual augmentation, such as shadows, without sacrificing its efficiency. MRIT

fiducial tracking is based on the wide spread toolkit: ARToolkit. Two display

methods are supported in MRIT: the monitor based displays and the video see-

through displays with a resolution of 800x600. The tracking robustness of this system

is directly affected by ARToolkit registration errors.

(6) OSGAR

OSGAR is a toolkit developed at Georgia Institute of Technology for the

development of AR applications (Coelho, 2005); this system automatically computes

estimates for the tracking registration errors and makes them available for the AR

application designer to be used in setting up the different augmentations

27

corresponding to the different registration errors. OSGAR is claimed to be an

adaptive AR system that is aware of the uncertainty in the real world.

(7) Studierstube

Studierstube is an environment for the development of collaborative AR applications.

Studierstube is built on top of the Open Inventor graphics API which is, in turn, built

on top of OpenGL (Ledermann et al., 2002). Through Open Inventor, Studierstube

claims to provide an object-oriented framework for the creation of interactive 3D

graphics applications. Studierstube is a collection of Open Inventor extensions,

providing support for creating AR applications. Studierstube supports different input

and tracking hardware through its tracking middleware, called OpenTracker, as an

additional layer between the possibly heterogeneous tracking hardware and its API.

The different display devices that can be used with Studierstube are See-through head

mounted display, Virtual Table (VT) and other back-projection display surfaces (e. g.,

a stereo wall or CAVE) and semi-transparent mirror setups, like the Virtual

Showcase, that reflect the projected image from a half-silvered mirror.

While Studierstube uses XML as an input language for tracking configuration and

uses Open Inventor scripts to load and create 3D models, it does not allow connection

between the virtual models and any database management system (DBMS) such as

Oracle or SQL Server. In addition, Studierstube is difficult to configure due to the

lack of detailed documentation and tutorials and the required manual calculations.

Furthermore, Studierstube has been found unable to load VRML files of large size

such as buildings.

28

(8) AM1RE

AMIRE is a framework for the design and implementation of MR applications

sponsored by the Information Society Technologies program of the European Union

(AMIRE website, 2007). AMIRE has been aimed to allow content experts to design

and implement mixed reality applications without detailed knowledge about the

needed MR technologies. In this framework, object-oriented properties are used as a

generic mechanism for configuration. Different components of the designed MR

application communicate through communication slots. AMIRE allows dynamically

loading and replacing C++ and XML libraries at run time. The 3D virtual models are

loaded in the form of 3ds files (Hoffmann, 2001).

2.9 SUMMARY AND CONCLUSIONS

In this chapter different variations of MR have been explained focusing on AR. The

benefits of AR and its applications have been presented as well as the different tracking

technologies and the tracking tools used for indoor video-tracking. In addition, several

AR systems have been reviewed from the literature, but most of them share the following

limitations:

(1) Difficult configuration: The main AR systems that have been tried require significant

amount of manual calculations during the configuration of the tracking to be able to

register the real world with the VE.

(2) Platform dependency: Most of AR systems that have been found in the literature have

been written in the C++ programming language which is a platform dependant

language.

29

(3) Lack of GIS integration: The existing AR systems do not use Geographic Information

System (GIS) maps; as a result, they do not consider geographic information in the

registration of the virtual models with the real world and they do not use a unique and

global coordinate system; instead, many local coordinate systems in the different

locals, such as rooms, corridors, etc., have to be defined and used in the computations

required to configure and deploy the tracking. In addition, not using GIS maps

prevents exchanging geographic data with other systems.

(4) Small scale: The existing AR systems have been used for small environments such as

one building or just few floors. Consequently, the application range, in which these

systems can be used, is limited.

30

CHAPTER 3 FRAMEWORK FOR INDOOR VIDEO-BASED

AUGMENTED REALITY APPLICATIONS

3.1 INTRODUCTION

As discussed in Chapter 2, the existing video-based AR systems have not been intended

for large scale environments and do not use GIS maps; in addition, these systems require

time consuming manual calculations for the configuration and registration of the tracking

markers.

Taking into consideration the aforementioned shortcomings of the different reviewed AR

systems, a framework for indoor video-based AR applications is proposed in this chapter.

The framework is based on four main components being large scale virtual models,

mobile devices, video tracking and interaction. The proposed approach aims to allow the

use of large scale virtual models in AR applications, as well as to provide a practical and

easy configuration and deployment of markers for video-tracking.

3.2 PROPOSED FRAMEWORK

The proposed framework (Figure 3.1) combines four main components to form a basis

for indoor video tracking in large scale AR applications. The four components are large

scale virtual models, mobile devices, video tracking, and interaction. In addition to the

common 2D plans and drawings, a large number of architectural engineers design 3D

virtual models of exteriors of buildings as well as interiors. This framework proposes, for

the creation of the large scale VE, the use of 3D virtual models of the interior and exterior

of buildings provided in a standard format such as VRML, GIS maps and Digital

Elevation Models (DEMs) of terrains.

31

Large scale 3D Virtual
Model

External building model

Internal building model

Objects

GIS Maps

<T

±2.

Database

Indoor Video-based AR Applications

Mobile Devices

Tablet PC

Video/Optical See-
through HMD

Single/Multiple
Camera Interface

Video
Tracking

Geo-referenced
Fiducials Design

Registration

Configuration

Interaction

Visualization and
Feedback

Control

Navigation and Access

Task-oriented
Augmentation

Figure 3.1 Summary of the proposed framework

32

Mobile devices form one of the components proposed in the framework to allow the user

to move inside buildings and to be able to see the augmentation on the video of the real

world. User interaction is, also, one of the main components of the framework. It is based

on five sub-components: visualization and feedback, control, navigation and access. The

fourth component of the framework is video tracking. In this framework, the user

location and orientation are tracked using real-time video recognition of geo-referenced

fiducials.

3.2.1 Large scale 3D virtual model

The large scale VE is mainly built based on several GIS layers. First, the exterior contour

representation of buildings is constructed and added to a building layer (Figure 3.2(a)).

GIS attributes for each polygon in the layer are used to specify different base levels and

the heights. Another layer is also added to represent pedestrian areas surrounding the

buildings as shown in Figure 3.2(b). Objects of interest such as traffic lights, street lights

and street furniture, are added to the 3D model as an object layer (point layer) in the GIS.

The facades of buildings are captured in images then applied on virtual buildings using

texture mapping techniques. The locations of the images are retrieved from the GIS layer

of the exterior of the buildings. The different GIS layers are then transformed into a large

scale 3D model of the environment. The layers are used to automatically extrude the 2D

shapes into 3D shapes, to add the texture mapping, and to insert the 3D objects into the

virtual 3D model. An example of the resulting 3D model is shown in Figure 3.2(d). The

interior representation of a building is loaded into the VE in the form of 3D CAD models

33

that have been transformed from 2D drawings, as shown in Figure 3.2(c), to 3D models

and translated to a suitable format, such as the VR Modeling Language (VRML).

V * *

'

A .

•
h'

v. f
>

i y

-w

/
\

/

-

(a) Building layer (polygons) (b) Block layer

j _ ; . _ % &

(c) Floor Plan (for extrusion) (d) Rendering example of a building exterior

Figure 3.2: Example of data used in creating the 3D

Figure 3.3(a) shows an example of a floor in a building and Figure 3.3(b) shows an

example of a Heating, Ventilation and Air Conditioning (HVAC) system of a floor. To be

able to load the model of the building into the virtual 3D model at the right global

location, two diagonal points from the VE are selected to compute the location and

orientation of the CAD model of the building interior. The coordinates of the two points

34

are used to calculate the transformation matrix, including rotation, scaling and translation,

from the local coordinate system of the CAD model to the global coordinate system of

the VE including the difference that may be in the orientation of the coordinate axes used

in different visualization software.

In addition to the geometry, each element of the buildings and the objects in the virtual

model is linked to a unique record in a database where the attributes, related to it, are

saved. The database can serve as a lifecycle database for cost, scheduling and other

information of maintenance, inspection and other activities.

(a) Model of one floor M o d e l of an HVAC system

Figure 3.3: Examples of detailed 3D CAD models

3.2.2 Mobile Devices

Mobile devices make up one of the main components of indoor AR environments. They

are essential for real-time AR applications since the user location is tracked while moving

and the view, displayed for the user, needs real-time update to reflect the changes in the

location. In this framework, the proposed mobile devices consist of a Tablet-PC equipped

with a high-resolution digital video camera, an HMD and a wireless network card; this

latter would allow the user to exchange information with other users through a wireless

local area network and the Internet. This feature is crucial in case of emergency where the

35

user needs real-time guidance and collaboration with other users; in this case, the

different users would be able to see their current locations and also get assistance from a

remote office where the real-time locations of the all the user can be spotted. In addition

to the aforementioned mobile devices, this framework proposes the use of single or

multiple (spherical) digital video cameras, which is a new type of digital video cameras,

to be able to cover a wide field of view in the captured video frames, and hence make the

video tracking more reliable and stable.

3.2.3 Video Tracking

As mentioned in the conclusions of Chapter 2, the main available video tracking toolkits

have been found difficult to configure and to deploy. They all require time consuming

manual calculations to find the real world locations and orientations of the tracking

markers and to register them with the right virtual world location and orientation. The

problem is manifested especially when the toolkits are deployed in larger areas, such as a

whole campus or even one large building.

In this framework, an innovative and practical approach has been proposed to facilitate

the configuration and deployment of the video tracking for AR applications by

eliminating all manual calculations. In the proposed approach, the 3D virtual models of

the deployment areas are used not only to be displayed (partially or totally) as

augmentation but also to compute the locations and orientations of the markers and to

register them with the real world. Since the 3D models are based on real GIS maps and

are all in the same coordinate system as the real world, absolute real world locations of

the markers are automatically computed by the system. During the tracking, the absolute

locations of the markers simplify the system computation of the user absolute location

36

which, in turn, simplifies locating the user inside a building as well as in the global real

world coordinate system.

The virtual models are also used to automatically compute the relative locations and

orientations of the markers to allow the user to easily locate them in the real world.

The proposed system tracks visual markers placed at configured locations in the real

world. The markers are monochrome patterns printed on white papers inside black

squares. Before using the patterns, they are captured by the user using a tracking toolkit

called ARToolkit and a digital video camera then saved in binary pattern files. The

binary pattern files are preloaded into the system prior to the tracking.

The proposed approach is made up of two phases: configuration phase and tracking

phase. In the configuration phase (see Section 3.3 for details), the user makes use of the

system to interactively specify the locations and orientations of the maker relative to the

virtual model and then pastes them in their appropriate locations. Since the VE coordinate

system is the same as the real world coordinate system, the measurements and positions

in the virtual world can be used in the real world without any scaling or conversion. In

the tracking phase (see Section 3.4 for details), based on the absolute real world locations

and orientations of the markers and the relative user locations and orientations with

respect to the markers, the absolute user location and orientation within the real and

virtual world environment are automatically computed in real time and the user's virtual

view is updated accordingly.

37

3.2.4 Interaction

The proposed user interaction is based on the following components (Barrilleaux, 2001):

(1) visualization and feedback, (2) control, (3) access and navigation, and (4) task-

oriented augmentation.

The proposed framework aims to facilitate the user interaction with the real and the

virtual world in AR applications. It improves the data collection and access by allowing

the user to interact with geo-referenced infrastructure models to automatically retrieve the

necessary information in real time, based on their location and orientation, and the task

context.

(1) Visualization and feedback

Displaying graphical details: The proposed system graphically displays to the user

detailed information about a room in a building, such as the direction to that room, the

working hours of the staff, the status of the personnel (busy, in a meeting, will be right

back, etc.) retrieved in real-time from a central database. This can happen in a proactive

way based on spatial events, such as the proximity of the user to a door of an office. This

helps focus the user's attention on specific locations. The user of the system can control

the level of details of representing objects depending on his or her needs.

Displaying non-graphical information and instructions: The user interface can provide

links to documents related to the building, such as, regulations and specifications. In

addition, the system allows for displaying context sensitive instructions on the steps

involved in a specific task, such as instructions about submitting an application form to

an admission desk in a university.

38

(2) Control

The proposed system interprets the user input differently depending on the selected

feature and the context. For example, clicking with a pointing device can result in

selecting a menu option or in picking an object from the 3D virtual world; it can also

result in the creation of a virtual object at the picked location to be used as an indicator

for future reference (see Chapter 4, Case Study 2). In addition, the user can directly

control the system by physically moving. In this case, the system tracks his/her physical

location and orientation and updates his/her view point accordingly.

(3) Access & Navigation

(a) Access: Accessing data is directly achieved through a location based behaviour that

runs real-time video tracking and triggers the automatic picking feature. The user just

needs to physically walk or move to the object for which information is needed then

stands in front of it for a short period of time. Then, relevant data will be automatically

retrieved from the database and displayed as an augmentation to the real world. Other

information can also be retrieved on demand through manual picking or by using menus

and buttons.

(b) Picking Behavior

The picking behavior consists of using pointing devices to pick 3D locations from the 3D

virtual model. It also permits the user to get absolute location in the real world coordinate

system without having to perform any conversions.

The picking starts when the user clicks on the scene; once a click is detected, the 2D

screen coordinates of the pointing device are retrieved; a 3D location corresponding to

39

the 2D coordinates is computed by referring to the current user view point in the virtual

world. A picking ray (other picking shapes such as cylinders and cones can be used) is

created and extends from the 3D user location at the view point to the 3D model. A set of

vertices where the ray intersects with the model are returned in a list. The closest vertex

to the user view point is computed and used to get the closest 3D object; then information

about the object is fetched from the database. To each 3D object in the 3D virtual world

corresponds an ID that links it to a corresponding record in a database. The database

contains relevant information about each 3D object in the virtual world.

Figure 3.4 shows an example of picking a wall from a 3D virtual model of a building.

The picking ray extends from the view point to the 3D model. The first object

encountered by the ray is the wall which makes it the picked object.

Figure 3.4: Picking Behavior

40

(c) Automatic Picking

The automatic picking process consists of six main operations as shown in Figure 3.5: (1)

Tracking user location: the user location is continuously tracked using the indoor video

tracking; (2) Tracking user interaction: The user interaction is tracked to find out if the

system has entered in an idle state. Whenever the user moves or generates an event (e.g.,

using the pointing device), a trigger is automatically launched to reset the idle time;

Tracking information Idle time

Location Tracking

Do: Update user view point with
the new location if different
from old location.

Reset

1
Timer checking

Do: Calculate elapsed time
Exit: Elansed time = 2 sec

Pick Reset

Automatic picking

Do: Pick object located at the
center of the scene and get
object ID.

Input processing

Do: Process input (update
viewpoint, save data in
database)

Element ID
retrieved

Pointing device input Pointing device input

Information display

Do: Retrieve relevant information
about the picked element and
display it.

Element data
retrieved

r \
Information input

Do: Input new information
about the picked element by
the user.

Figure 3.5: Automatic picking state machine

(3) Computing idle time: The idle time is calculated by comparing the current system

time with the last system time when the idle timer was restarted. If the idle time is two

seconds, then the automatic picking is launched; (4) Automatic picking: The element that

lies at the center of the scene is the one that will be automatically picked. The picking

consists of creating a picking tool, selecting a picking mode, creating a picking shape,

41

picking the closest element, calculating the intersection point, and retrieving the picked

element; (5) Displaying relevant information: Based on the ID of the picked element, a

query is generated and executed on the database. The returned data is displayed as a text

augmentation; (6) Information input: Based on the displayed data about the picked

element, the user is able to input new information about the element and save it in the

database for future reference.

(d) Navigation: In addition to the conventional navigation systems based on 2D maps,

the system can also present navigation information in 3D. Within a specific task, the

system can guide a user by providing him/her with 3D navigation arrow and focusing

his/her attention on the next element of the task. For example, in emergency situations,

the system displays 3D arrows to navigate the user to the closest location of an

emergency exit. The system may give the user some tips about the emergency type and

the recommended actions to take, thus reducing the risk of injuries.

The 3D arrows displayed for the user show him/her the path to any object of interest. The

arrow gets oriented from the current user location to the next closest point on the path to

the target. The different paths are predefined based on the floor plan and preloaded into

the system. If the user cannot take a straight path to the target object because of an

obstacle, he/she can take a different path because the system will dynamically guide

him/her, based on his/her changing location, to the closest point on the path.

(4) Task-oriented Augmentation

Augmentation can be adjusted by the system based on the task selected by the user. The

task context affects the type of objects (physical and/or non-physical) to be displayed as

augmentation. For example, in the case of navigation guidance, only non-physical

42

objects, such as 3D arrows, are shown as augmentation to allow for minimum occlusion

of the real world. On the other hand, in the case of urban planning, that will be discussed

in Chapter 4, the virtual models of future planned buildings can be shown as

augmentation.

3.3 TRACKING PROCESS

3.3.1 Registration

The registration refers, as described in Section 2.2, to the alignment of the real world

objects with the virtual world objects in the same environment to create the illusion, for

the user, that they both co-exist in the same world. Because of the high accuracy

requirements of the registration, numerous errors can occur. These errors can be divided

into two types: static and dynamic. Static errors are the ones that cause registration errors

even when the user's viewpoint and the objects in the environment remain completely

still. Dynamic errors are the ones that have no effect until either the viewpoint or the

objects begin moving (Drasic et al., 1996).

3.3.2 Marker Requirements

As was mentioned earlier, a marker consists of a custom-drawn pattern printed inside a

black square on white paper. Using a toolkit and a camera, the patterns are captured and

saved in binary files. To get robust marker detection and a high recognition performance,

the patterns must have the following characteristics (Charles et al., 2002, ARToolkit

website, 2004):

(1) Unique within the used set of patterns: The patterns should be unlikely to be confused

with the other patterns used by the tracking application.

43

(2) Clear and simple: The patterns should be clearly distinguishable from the surrounding

environment and should be as simple as possible to reduce the recognition time.

(3) Black & white: Monochrome patterns are favoured to color ones because the used

toolkit (ARToolkit) has been designed to recognize black and white patterns and

because uniquely identifying a colour pattern can be drastically affected by the

lighting conditions.

(4) Inside a black square: The shape of a square design yields four corner points for

tracking purposes. Edges are constructed straight between the corner points. This

allows the corners to be determined by line fitting to the edges, yielding

measurements that are less sensitive to noise in the vicinity of the corner and

quantization errors. The black border of the square yields a maximum contrast

relative to the white background. Once the corners have been located, the interior can

be warped to a common frame of reference for comparison to a database of marker

images.

(5) Not rotationally symmetric: asymmetric patterns allow for the unambiguous

determination of the position and orientation of the marker relative to a calibrated

camera.

3.3.3 Marker Recognition

The marker recognition is carried out using ARToolkit. The recognition algorithm has

been explained in Section 2.8.2. The detection range of a marker depends on many

parameters such as the size and the lighting conditions; more details about these

parameters can be found in Section 3.3.6.

44

3.3.4 Tracking Algorithm

The video tracking, as shown in Figure 3.6, starts by grabbing a real time video frame

from the video camera. The grabbed video frame is then sent to ARToolkit tracking

which analyzes the frame and searches for the previously registered markers (or patterns).

Start

R e t r i e v e v i d e o f r a m e

A n a l y z e v i d e o
f r a m e

Y e s

R e t r i e v e m a r k e r
r e l a t i v e l o c a t i o n
w i t h r e s p e c t t o

c a m e r a

31
R e t r i e v e r e a l w o r l d
l o c a t i o n a s s o c i a t e d

w i t h m a r k e r

I
C o m p u t e a b s o l u t e

u s e r l o c a t i o n i n r e a l
w o r l d

M o v e v i r t ua l v i e w
t o t h e a b s o l u t e

u s e r l o c a t i o n

Figure 3.6: Tracking algorithm

45

When a marker is detected, the transformation matrix defining the marker 3D location

and orientation with respect to the camera is computed. Then, the absolute location of the

marker in the real world is retrieved from the database. Next, the transformation matrix

and the absolute location are combined to compute the absolute camera location and

orientation (which are considered as the user location and orientation) in the real world.

Then, the virtual world view is moved to the computed absolute camera location and

orientation. The absolute camera location and orientation in the real world are used in the

virtual world without any modification thanks to the capability of the development

environment to represent real world coordinate systems within the virtual world. This

cycle of tracking continues running until the user stops it.

3.3.5 Computing Transformations

The used tracking toolkit (ARToolkit) provides a 3D relative location and orientation of

the detected paper marker in the video camera coordinate system.

To compute the absolute user location and orientation in the virtual world, two

transformations are needed (as shown in Figure 3.7). First, the transformation defining

the paper marker location and orientation in the video camera coordinate system (TMu) is

inverted to get the location and orientation of the user (i.e. video camera) with respect to

the paper marker (TUM Equation 3.1). Second, based on the transformation defining the

absolute marker location and orientation in the world, noted as TMw, the final absolute

location and orientation of the user in the world (Tuw Equation 3.2), are computed as

follows:

TUM = TMU (3.1)

Tuw =
 TUM TMW (3.2)

46

TMW

N X . Marker

User

Figure 3.7: Different transformations used in computing the user

location and orientation

3.3.6 Video Tracking Parameters

The video tracking in AR applications can be affected by several parameters that are

inter-related and strongly depend on the available video capture devices: (1) Field of

view: The wider the field of view is the wider will be the area covered and thus the higher

will be the probability of detecting a marker. (2) Video resolution and frame rate: The

higher the resolution is the more precise will be the captured frames, which reduces false

positives. On the other hand, the higher the resolution is the lower will be the frame rate.

The frame rate of the video is a main factor that affects the video tracking; the higher the

frame rate is the more robust will be the tracking (3) Marker edge size: The bigger the

size of the marker is the wider will be the detection range. (4) Light condition: The darker

World

47

the video frame is the lower is the chance of detecting a marker. The following

paragraphs explain how these parameters have been considered in the proposed approach.

(1) Field of View

The field of view of the video of the real world is one of the major factors that can affect

indoor AR applications. The wider the field view is, the more complete our

understanding of the world around us will be (Drasic et al., 1996). A narrow field of view

decreases our confidence in the video of the real world. The field of view of the video is

actually the field of view of the digital video camera.

Since the proposed video AR system tracks markers through a video camera, a narrow

field of view can also effect the tracking awareness of the system and hence the system

robustness. To get a wide field of view, a new type of video camera called spherical can

be used in the future. This camera is equipped with five cameras on five sides of a cube;

the system tracks the markers from the five sides; the possibility of detecting a marker

around the user is very much higher than when just one camera is used.

On the other hand, the field of view of the virtual world is also a crucial parameter in the

video AR applications. The virtual objects augmenting the real world have to be in the

same field of view as the real world in order to get an augmentation that is realistic and

fully consistent with the real world surrounding the user. The proposed system allows the

user to manually adjust the field of the view of the virtual world to make it fit the field of

view of the camera.

48

(2) Video Resolution and Frame Rate

A high video resolution provides high precision of video frames which reduces the

possibility of confusing markers and thus making the tracking more accurate and reliable.

The frame rate is also one of the main factors that affect video tracking. The frame rate is

usually related to the video resolution; the higher the video resolution is the lower is the

frame rate. A combination of resolution and frame rate needs to be selected based on the

user requirements and the hardware limitations. On the other hand, the video resolution

affects the field of view; a low video resolution cannot display a wide area covered by a

wide field of view; so a wide field of view requires a high resolution to display the whole

captured area.

The proposed system allows the user to select a combination of video resolution and

frame rate based on the available hardware capabilities.

(3) Marker Edge Size

The marker size directly affects its detection range. The bigger the edge size is the longer

will be the detection range. The choice of the marker edge size is related to the number

and distribution of markers that can be visible within a certain range; the marker needs to

have an edge size that makes its detection range interfere with the detection range of

another marker to get a continuous detection range from one marker to the other. So, the

choice of the marker edge size is related to the number of markers that can be placed in a

certain region. For practical reasons, markers cannot be so numerous or so big in such a

way that they disturb the aesthetics or functionalities of the environment by covering

most of the wall spaces. Different marker edge sizes have been used in the

implementation of the system (more details can be found in Chapter 4).

49

(4) Lighting Condition

The lighting condition is also one important factor that can affect the video tracking of

markers. Since the system tracks markers through a digital video camera, the detection

robustness depends on the clarity of the captured video frames; the darker the video

frame is the more likely a marker will be confused with other markers and the shorter will

be the detection range. The proposed system has been tested in different lighting

conditions (more details can be found in Chapter 4).

3.4 CONFIGURATION

The proposed configuration of the video tracking for AR applications is carried out in

four phases: (1) Marker design, (2) marker locating in the virtual and the real world, (3)

pasting markers at their real locations, and (4) saving the markers locations and the

related entities to be deployed by the system.

Phase 1; Designing Markers

Since designing markers that fulfill the marker design requirements is time consuming

and needs each marker to be manually captured using the camera and saved into a binary

pattern file, a tool called PatternMaker, developped by Johnson et al. (2002, has been

used to automatically generate clear and simple patterns including their binary ARToolkit

files and their pictures. This tool generates patterns in the form of grids of black squares

that are not rotationally symmetric and clear.

Every marker is printed on a white paper along with its name; an arrow pointing to the up

direction of the marker is also printed on the paper. The pattern binary file and the picture

50

file also have the same name as the marker to make it easy to match each printed pattern

with its files. Figure 3.8 shows an example of a printed marker.

A

Pattern: 4x4_98

Figure 3.8: Example of printed marker (scaled to fit in the page)

Phase 2: Locating Markers

Marker locating, as shown in Figure 3.9, consists of two main steps: first, the user needs

to select the absolute location of the marker in the virtual world that corresponds to its

real world location where it will be pasted. Second, to be able to physically paste the

marker at their real world location, the user needs to decide on a physical reference edge

that will be used in taking measurements that would allow him/her to accurately find the

physical location. The two main steps are described below. Markers should be pasted on

flat surfaces.

51

Step 1: Locating markers in the virtual world

(1) The 3D virtual models of the interior of the buildings are loaded into the system.

(2) The user navigates in the virtual scene to the area (e.g. corridor, room) where to

place the marker.

(3) Using the picking tool, the user clicks at the virtual location, noted as Pj, which

corresponds to the physical location where he/she intends to paste the marker.

(4) The system records the picked location in the format of real world 3D

coordinates.

(5) The system computes the normal vector to the surface, noted as N, at the picked

location.

Step 2: Locating markers in the real world

(1) The user decides on an edge, in the virtual model, that corresponds to a physical

edge, to be used as a reference in measuring the location of the marker with

respect to it (e.g. an edge of a wall).

(2) The user picks two points, noted as P2 and P3, on the reference edge to define a

vector V that defines the direction along which the marker will be aligned. P2 has

to be at a physically identifiable location such as the intersection of a wall edge

and the floor.

(3) The system computes the vector V and the angle, noted as a, between V and the

line made up of P3 and P].

(4) The system computes the distance, noted as di, between P3 and Pi.

52

Edge

t
t

i d 3
D
D
8

Figure 3.9: Different measurements used in the video tracking configuration

Phase 3: Pasting Marker

While the computed entities Pi, V and N are sufficient for the system to accurately define

the marker location and orientation, the user still needs the other computed entities a and

d2 to easily find the physical location where to paste the marker. The steps to paste the

marker are as follows:

(1) Locate the physical reference edge.

(2) At P2, measure an angle on the surface from the edge equal to a and draw a line of

length equal to d2 from P2. The end of the drawn line is P], which corresponds to the

center of the marker to be pasted.

(3) Paste the marker at Pi making the up direction of the marker parallel to the reference

edge.

53

Refe

Real World

The computed entities required by the system, vectors V and N and the point P^ are then

saved in an extensible mark-up language (XML) file. Extra transformations (translation,

rotation and scaling) for adjustment to the tracking transformations can also be added in

the same XML file.

The measurement of the distances, the angles and the direction and normal vectors are

carried out using the measurement tool of the system

The different measurements carried out by the system are depicted in the following

equations:

Using the Law of Cosine, the angle a is computed as follows:

7 7 7

d-i = d2 + d3 — 2 d2 d2 cos a (3.3)

_i fd2
2+d3

2-d1
2\

a= cos 1(——° (3.4)
V 2d2d3 J v '

Phase 4: Saving the configuration

The different entities computed in the previous phases are saved in an XML file. The

format of the XML file has been designed using the XML schema shown in Figure 3.10.

The schema defines a complex type called MarkerLibrary that contains a sequence of

markers. A marker is a complex type made up often elements as follows:

3DPoint is a complex type made up of three components: x, y and z values of type

double.

3DVector is a complex type made up of three components: x, y and z values of type

double.

54

PatternFiieName is a string that contains the file name of the binary pattern file.

LinkiD is a string that contains identification information that can be used to link the

marker to a record in a database or to any other type of information.

Caption is a string representing a text that can be displayed as an augmentation when

the marker is detected; the caption string can be empty.

AbosoluteLocationinWorld is of the type 3DPoint; it represents the x, y and z

coordinates of the location in the real world to which the center of the marker is to be

associated.

PatternSideDimension is a real number that represents the length, in millimetre, of the

edge of the marker.

Normaivector is of type 3DVector; it represents the normal vector to the marker surface

when pasted at its real world location.

DirectionVector is of type 3DVector; it specifies the direction vector along which the

marker is aligned.

Translation is of type 3DVector; it is made up of three components; each component

contains a translation distance, in meter, along each axis (x, y and z axis) of the

coordinate system. The translation distance will be added to the tracked user location.

Rotation is of type 3DRotation; it is made up of three components; each component

contains a rotation angle, in radian, around each axis (x, y and z axis) of the coordinate

system. The rotation angle will be added to the tracked user orientation.

Scale is of type 3DScale; it is made up of three components; each component contains a

scaling factor, between 0 and 1, around each axis (x, y and z axis) of the coordinate

system. The scale factor will be multiplied by the tracked user location.

55

<?xml version="l.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema

<xs:element name="MarkerLibrary" type="Mar

<xs:complexType name="MarkerLibrary">
<xs:sequence>

<xs:element name="Marker" type="Marker
</xs:sequence>

</xs:complexType>

<xs:complexType name="Marker">
<xs:sequence>
<xsrelement name="PatternFileName"
<xs:element name="LinkID"
<xs:element name="Caption"
<xs:element name="PatternSideDimension"
<xs:element name="AbosoluteLocationInWor
<xs:element name="NormalVector"
<xs:element name="UpDirection"
<xs:element name="DirectionVector"
<xs:element name="Translation"
<xs:element name="Rotation"
<xs:element name="Scale"
</xs:sequence>

</xs:complexType>

<xs:complexType name="3DPoint">
<xs:attribute name="x"
<xs:attribute name="y"
<xs:attribute name="z"

</xs:complexType>

<xs:complexType name="3DVector">
<xs:attribute name="x"
<xs:attribute name="y"
<xs:attribute name="z"

</xs:complexType>

<xs:complexType name="3DRotation">
<xs:attribute name="x"
<xs:attribute name="y"
<xs:attribute name="z"

</xs:complexType>

<xs:complexType name="3DScale">
<X5:attribute name="x"
<xs:attribute name="y"
<xs:attribute name="z"

</xs:complexType>

</xs:schema>

kerLibrar

">

y" />

" minOccurs="l" />

type=
type=
type=
type=

Id" type=
type=
type=
type=
type=
type=
type=

type=
type=
type=

type=
type=
type=

type=
type=
type=

Lype=
type=
type=

"xs:string"
"xs:string"
"xs:string"
"xs:double"
"3DPoint"
"3DVector"
"3DVector"
"3DVector"
"3DPoint"
"3DPoint"
"3DPoint"

"xs:double"
"xs:double"
"xs:double"

"xs:double"
"xs:double"
"xs:double"

"xs:double"
"xs:double"
"xs:double"

"xs:double"
"xs:double"
"xs:double"

/>
/>
/>
/>
/>
/>
/>
/>
/>
/>
/>

/>
/>
/>

/>
/>
/>

/>
/>
/> .

/>
/>
/>

Figure 3.10: The XML schema for the marker library

56

http://www.w3.org/2001/XMLSchema

3.5 SUMMARY AND CONCLUSIONS

In this chapter, a framework for AR applications has been proposed to allow the

integration of four main components: (1) Large scale 3D virtual models, (2) Mobile

devices, (3) Video tracking and (4) Interaction. The framework uses 3D virtual models of

real world structures such as building and combines them with real world geographic data

such GIS maps in one system that is based on the same coordinate system. In addition, a

practical method has been proposed to simplify the configuration and the deployment of

markers for the video-tracking. The proposed approach is characterized by the following:

- Integrates large scale 3D virtual models of buildings along with detailed interior 3D

virtual models in one single system.

- All 3D virtual models are represented in one single coordinate system that represents

the real world coordinate system based on GIS.

- It introduces different interaction methods for indoor AR applications.

- It provides a practical method, for the registration of the virtual world with the real

world that covers both the configuration and the deployment stages of the markers.

57

CHAPTER 4 IMPLEMENTATION AND CASE STUDIES

4.1 INTRODUCTION

Based on the proposed framework, a prototype system has been developed to illustrate its

feasibility and practicality. The prototype system has been implemented in Java

programming languages, which is platform independent, and used Java bindings for the

different tools that are not available in pure Java. Using the object oriented Java3D API,

the system seamlessly integrates different 3D virtual models and 2D GIS maps in one

single environments that represents the real world. The implemented system also uses

Java Database Connectivity (JDBC) to connect a relational database to the different

elements in the virtual models. This chapter explains how the prototype system has been

implemented and presents three case studies to demonstrate its different implemented

features and illustrate their usefulness.

4. 2 SELECTION OF DEVELOPMENT TOOLS

To implement the proposed system, a selection had to be made regarding the main

programming language, the 3D graphics Application Programming Interface (API), the

3D virtual models import formats, the database format and the GIS maps API.

The different choices of programming languages were related to the choices of the 3D

graphics APIs. The main 3D graphics APIs available are OpenGL and DirectX. The

OpenGL API is known by its speed of rendering and by its availability on many

platforms such as Unix, Linux and Windows. DirectX is also a popular 3D graphics API

58

but available only on the Windows platform. The main programming languages

considered were C++ and Java. Java is a multi-platform object-oriented programming

language; it is known by its advanced capabilities such as servlets and applets that run on

almost all available platforms without the need to recompile them. It is known also for its

multithreading, network programming, simplicity, and ease of use. In addition, an

important amount of Java reusable libraries are available in the World Wide Web.

However, Java applets and applications do not run as fast as the applications written in

other programming languages such as C++. On the other hand, C++ is also an object-

oriented programming language; it is known by its run and compilation speed; but, C++

is not platform independent and is not as easy to learn as Java.

Based on the advantages of Java, it has been selected as the main programming language

in implementing the proposed system. In addition to the aforementioned advantages of

Java, an object-oriented 3D graphics API is also available in Java, known as Java3D.

Java3D allows the programmer to describe a 3D scene using coarser-grained graphical

objects and defining objects for elements such as appearances, transformations, materials,

lights, etc. Compared to OpenGL, the code of Java3D is more readable, maintainable,

reusable, and easier to write (Selman, 2002).

Building custom applications that incorporate GIS and mapping capabilities in Java was

possible by using a Java edition of the GIS API MapObjects. It helps the programmers

build applications that perform a variety of geography-based display, query, and data

retrieval (MapObjects-Java, 2006).

59

The standard used for importing 3D VR models is VR Modeling Language (VRML).

VRML is the most popular interoperability standard for describing interactive 3D objects

and virtual worlds delivered across the Internet (Nadeau and Moreland, 1996).

The database of the 3D objects in the VE is designed with Microsoft Access to represent

the information of all the objects, such as buildings. JDBC is used to access information

stored in databases. The details about software requirements and installation guide of the

prototype system are included in Appendix C.

Based on the selected programming language, Java, the software tools and APIs shown in

Table 4.1 and Table 4.2 have been selected for the purpose of covering most of the

development phases. In order to allow the project to be shared among different

developers Microsoft SourceSafe has been selected to manage the database of the source

code. JUnit has been selected to write and run different unit testing inside the same

development environment.

Table 4.1: Software tools used in the implementation

Tool

Borland JBuilder Enterprise version

Javadoc

JUnit

Microsoft SourceSafe

Microsoft Access

Purpose

Development environment

Inline documentation generator

Unit testing

Source code version control

Database management

60

Table 4.2: Software APIs used in the implementation

API

Java3D

JARToolkit

MapObjects Java (MOJ)

JDBC

Purpose

3D graphics

Marker detection

GIS Interface

Database interface

4.3 BACKGROUND OF THE CASE STUDIES

Concordia University downtown campus (Sir George Williams Campus) in Montreal has

been chosen as the subject of the case studies (Figure 4.1). Concordia is a large urban

university in Montreal. The growth of Concordia's downtown campus has led to build

two new buildings, the Integrated Engineering, Computer Science and Visual Arts

Building and the new John Molson School of Business.

Sir George Williams Campus ? »-,»««..
1*55 ie Maisotinsuve Blvd. W. H3S IMS { , r r j

DBS
V Concordia

-*..

/

!***«« ^,'i/-.ia"""M^«*«

E3 a

/ / *
' /

EK/„ ,

."SV Q

:®s£

Figure 4.1: Concordia University campus map

61

4.4 HARDWARE COMPONENTS

The hardware components that have been used in the implementation of the framework

and the different case studies are shown in the Table 4.3 and consist of a Tablet PC and a

Laptop, an HMD and a digital video camera.

Table 4.3: Hardware components of the prototype system

Device Type

HMD

Tablet PC

Laptop

Digital Video
Camera

Brand

MicroOptical

Panasonic ToughBook CF-18

Toshiba Tecra M4

Dell XPS

Logitech QuickCam for
Notebooks Pro

Specifications

Resolution: 800x600
Transparency: opaque
FOV: 16°horiz./20°diag.

CPU: 1 GHz
RAM: 512 MB

CPU: 1.86GHz
RAM: 1 GB

CPU: 3.2 GHz
RAM: 4 GB

Resolutions: 640x480 @ 30fps

4.5 IMPLEMENTING THE FRAMEWORK

4.5.1 Database model

Object-relational data model has been used in the proposed framework in the design of

the database. The data has been stored in a relational database while the operations on the

database have been developed in the object-oriented language: Java. To be able to

retrieve and store data from and into the relational database JDBCD has been used. Using

62

JDBC, data is retrieved by passing an SQL (Structured Query Language) query to the

database. Thanks to the JDBC, the database does not have to be in a Microsoft Access

file but rather it can be an Oracle database or any other format that can be accessed by

JDBC since, just like Java, JDBC is a platform independent interface.

While most of the data have been stored in a relational database, the tracking

configuration information has been stored in an XML file. The latter offers an ease of use

and customization in addition to its popularity and its wide use in configuring

applications. Examples of the used XML can be found in Appendix B.

4.5.2 GIS integration

A GIS sub-system is created using MapObjects Java Edition (MapObjects-Java, 2006).

The map includes several layers (Figure 4.2) related to Montreal City, such as a border

layer (Figure 4.2(a)) and other layers for roads (Figure 4.2(b)), blocks around the campus

(Figure 4.2(c)) and Concordia buildings.

(a) Border layer (b) Road layer (c) Downtown campus

Figure 4.2: GIS information

4.5.3 Building the VR model of the campus

The 3D virtual model of Concordia downtown campus is developed using the following

data: (1) 2D CAD drawings of the buildings obtained from the Facilities Management

63

Department of the university; (2) A digital map of the city of Montreal (roads and blocks)

obtained from the municipality of Montreal; (3) VRML library of small objects

developed to embed in the 3D model, such as traffic lights, fire hydrants and street

furniture; and (4) Orthogonal digital images of the facades of the buildings collected

using a digital camera.

The 2D CAD drawings of the buildings are imported as a layer in Arc View (ArcView,

1996) and edited to create the outline of buildings. The map of the area is imported in

Arc View to create the block layer. The other layers including the image layer, object layer

and tree layer are created using Arc View. The required attribute information of the layers

is input in the attribute tables of the layers.

The GIS layers, images and 3D objects described above were integrated and translated

into VRML. The translator application developed in Visual Basic uses a GIS library

(MapObjects) to extrude the GIS shape files and create a number of VRML files that

constitute the virtual 3D model.

4.5.4 Virtual Scene Visualization

Java 3D has been used as the main 3D graphics API. In Java 3D, the VE can be created in

the form of a scene graph. Scene graphs are defined by a tree structure grouping different

nodes of groups and sub-groups of virtual objects. Virtual objects define geometry,

location, orientation, appearance, sound, light and many other compound types.

BranchGroup nodes are used to form a tree structure based on parent-child relationships

(Figure 4.3). TransformGroup nodes can be constructed to form a group of geometry

objects on which a Transform3D object can be applied. Transform3D defines a geometric

transformation for the objects grouped by the parent TransformGroup. Geometric

64

transformation can be a combination of translation, rotation and scaling (Walesh and

Gehringer,2001).

In the AR mode, the scene graph properties, such as transparency and polygone mode,

can be modified to decrease the occlusion of the real world. Using the user interface, the

user can manually adjust, at run time, the different visual properties of the scene graph to

make them convenient for the AR mode.

VirtualUniverse

BG) BranchGroup Nodes

TG) TransformGroup Nodes

Node Components

A < „ . ,

Z ^ — » view

iew Platform /
\

— •

i

Canvas3D • Screen3D

Physical Body Physical Environment

Figure 4.3: Scene graph (Walesh and Gehringer, 2001)

To visualize the VE, two main BranchGroups have been created: The Augmentation

BranchGroup and the Virtual Model BranchGroup.

(1) Creating the Augmentation Branch: To be able to show the augmentation when

other virtual objects of the model are hidden (e.g. the buildings are hidden but HVAC

ducts are shown), the virtual augmentation needs to be created and attached to a separate

BranchGroup called AugmentationBranchGroup. The augmentation is dynamically

65

created and attached to the virtual scene graph. It can be of two types: a 3D Text or a 3D

shape. The text content of the 3D Text Augmentation is loaded from the Caption field

from the XML marker configuration. The 3D text augmentation is created using the

3DOrientedShape class of Java3D. This class creates a 3D text that is always facing the

virtual user view point. The 3D shape augmentation can be a 3D directional arrow, a

sphere, a cylinder, a cube or a 3D line. The 3D directional arrow is dynamically created

when the user selects the direction option to get assistance in finding a target (see Case

Study 1 for more details). The sphere, the cylinder, the cube and the 3D line can be

created by the user by picking their 3D locations at run time (see Case Study 2 for an

example of creating a sphere). The 3D line can, also, be automatically created, when the

user selects the direction option, to highlight a path to a target.

(2) Creating the Virtual Model BranchGroup: The virtual model is created then

imported into the system in the form of VRML files. The VRML files are imported into

the Java 3D scene graph using the VRML 97 API (J3d.org, 2006). The different objects

loaded from the VRML files are assigned unique IDs to link them to a database that

contains more information about them. The unique IDs are automatically loaded into the

system and used to retrieve information about the objects at run time using the JDBC

interface. The different virtual models loaded into the system can be both two

dimensional and three dimensional:

(a) Loading three dimensional CAD files: As an example of 3D CAD model, one floor of

a building (the fifth floor of the EV building) is prepared and translated into VRML.

In order to locate the model of the floor in the virtual 3D model, two points that

correspond to two corners on a diagonal of the building are picked. The coordinates

66

http://J3d.org

of the points are used to calculate the transformation matrix, including rotation,

scaling and translation, from the local coordinate system of the CAD model to the

global coordinate system of the virtual model. One of the main issues encountered in

positioning the virtual model of the floor is the difference in the coordinate system

axes used in different 3D CAD Tools. For example, the axis representing the height

direction is considered as the Y-axis in Java 3D and as the Z-axis in 3D Studio Max.

(b) Loading two dimensional CAD files: 2D drawings are loaded in the format of DWG

and DXF files. DWG files are loaded and visualized using the DWGLoader library

(MapObjects Java, 2003). The 2D DXF files are loaded and visualized using

DXFLoader library (j3d.org, 2006). 2D drawings such as the floor plans can be

loaded into the augmentation BranchGroup then superimposed on the real world to

allow the user to get a realistic view of the plan before building the walls.

(3) Display Modes: Different display modes (Figure 4.4) can be selected at run time to

allow the user manually adjust the virtual model according to his/her needs. The virtual

model can be rendered in solid mode, wireframe mode, or transparent mode.

The transparent mode is used in the AR environment setting. In this case, the background

of the virtual scene is filled with real-time video frames coming from the digital video

camera and most of the virtual model is made transparent except the selected

augmentation such as the directional 3D arrow. The wireframe mode can, also, be used in

the AR environment setting since it does not completely occlude the video background of

the real world. The solid mode is used during the configuration stage in VR setting to

register the markers with the real world.

67

http://j3d.org

(a) Transparent mode (b) Solid mode (c) Wireframe mode

Figure 4.4: The different display modes

4.6 USER INTERFACE DEVELOPMENT

Since some of the VR operations cannot be carried out in the AR mode, the system

automatically adjusts the user interface to leave only applicable operations based on the

mode (VR or AR) selected by the user.

Figure 4.5 shows the main user interface of the system. It is made up of two main panes:

a Rendering Pane and Control Pane. In the Rendering Pane, the video of the real world,

retrieved from the digital video camera, is rendered. On top of the real world, the 3D

Virtual objects making up the whole VE or just the augmentation are also rendered. The

Control Pane is made up of a set of sub-panes: a Tree sub-pane, a GIS map sub-pane, a

Directions sub-pane, a Tracking sub-pane, a Recording sub-pane, and a System Setting

and Measurements sub-pane. The Tree sub-pane is for tree navigation of the VE. It

68

contains a logical tree of a set of buildings that is automatically created by reading the

names of the buildings from a database. Using the tree, the user can highlight a building.

The GIS map sub-pane contains two maps: The first one is a 2D GIS map representing

the streets; the second one is a detailed map representing one floor plan. The 2D maps

show the current user location. Since, in AR mode, the location of the user is

continuously tracked, the 2D maps are automatically updated with the new location each

time a change is detected.

c i ^ l o l o l - i l t l o j C H i M n
iBse udEftW [Database n d S ^ W e H W ^ ^ r t * *

JBelcoroe YTT

Rendering pane

Figure 4.5: Main User Interface

J_
Control pane

69

Directions

FiFth Floor oF new build... -^ | Start

~z\ Find I Exit

Trading

Recorded Tracing

Full 5creen

ding

Start Timer

Record Locations

System Setting

Start AR

Show 2D Map

1

j

Measurements

Figure 4.6: Control Pane

Directions

J Fifth Floor oF new build... •

JExit •

Start

Find

Fire Phone

Fire Elevators

Figure 4.7: Direction assistance features

The Directions sub-pane allows the user to get real-time direction assistance to find a

selected destination (as shown in Figure 4.7). The user selects a destination from a list of

destinations that are preloaded into the system. For example, if the user selects Exit, the

system displays a 3D path in the form of a thick colored line that goes to the closest exit

in the floor. In addition, the system displays, as discussed in Section 4.8, an animated 3D

arrow that is oriented to the path that takes to the closest exit.

The Tracking sub-pane allows the user to start AR mode by clicking on Start AR which

automatically starts the video-tracking. The user can click on Show 2D Map to show or

70

hide the GIS map sub-pane. The user can, also, play a prerecorded tracking path by

clicking on the Recorded Tracking button which gives the user the option to browse to

the file that contains the prerecorded path and play it. The Full Screen button allows the

user to hide all panes to leave more space for the Rendering Pane.

When the video-tracking is started, the system connects to the available digital video

camera; once the connection is established the system automatically switches the

displayed 3D virtual models to a full transparency mode and starts rendering the video

frames into the background of the Rendering Pane as shown in the left part of the Figure

4.5. The system, also, automatically displays the AR Setting sub-pane (Figure 4.8) in

which the user can change the field of view of the 3D virtual scene, adjust its

transparency level as well as the tracking scale. The field of view option allows the user

to adjust the virtual world scene to the field of view of the video camera. On the other

hand, the transparency option allows the user to manage the occlusion of the real world,

during the AR mode, by making the virtual scene in different levels of transparency. The

Tracking Scale option allows the user to modify the scale in which the coordinates

retrieved from the tracking are considered. The tracking scale of 1 means that 1 meter in

the real world corresponds to 1 meter in the virtual world since the virtual world is in the

same coordinate system as the real world. Changing the scale to a number 'n' means that

moving in the real world of 'n' meter corresponds to 1 meter in the virtual scene.

, AR Setting

Field of View *" } """" "~ j g j

Transparency) ' ' ' Jo j
t

I . I ' [n i • • ' • • • •*• • IWWIIUM. • •WJA»» . I . . !—. • ' — • ' > inrra tanatiU wimtfiiwuiir, nna <

; I f aCKiOQ DCaie / j l

Figure 4.8: Setting options for AR mode

71

The Recording sub-pane allows the user to record his/her changing locations into a file

that can be played using the Recorded Tracking option. In the same sub-pane, the user

can get a tinier for the recording to see how long it took when moving from one location

to another.

§ Display Setting .JELxl

Rendering Attributes - i

f"~ Texturing f~ Objects f~ Trees ||
11

T DEM r TIM r Steieo i!

I - Ambient Light ,v Direction Light 1 p Direction Light2 1

f~ Automatic Speed I " Arrow f Building Names '\

I Street Names ,w Picking \ J

Tracking setting - !

I™* Automatic Picking f7 Tracking On Map p" CentralPoints On Map '•',

Navigation behavior

forbit"^] f

Geometry

| Solid ~^]

Figure 4.9: System Display Setting options

Figure 4.9 shows the System Display Setting that can be displayed by clicking on System

Setting in the Control Pane. The System Setting is designed to change the different

parameters of the system. This sub-pane is made up of the Rendering Attributes group,

Tracking Setting group, the Navigation Behavior group and the Geometry group. The

Rendering Attributes group contains several check boxes that can be used to control the

different rendering settings of the VR. The main settings are the visual cues, such as

72

building names, the different 3D lights, the manual picking, and the stereoscopic

rendering mode. The stereoscopic mode can be used to render the VE in a more realistic

mode which helps in perceiving depth in the virtual augmentation. This option can be

used only if the user wears an HMD capable of displaying two different images for each

eye. The Tracking Setting group contains the Automatic Picking option that can be

enabled or disabled to allow to user to pick an element from the VE by looking at it

continuously for a certain short time (e.g. 2 sec). In the same group the user can select the

Tracking On Map which allows the user to see his/her location highlighted in the 2D GIS

Map sub-pane while he/she is moving. The user can, also, have the 2D maps

automatically zoomed-in to show more details around the his/her current location using

the CentralPoints On Map option. The Navigation Behavior group can be used to change

the navigation type in the VE when the VR mode is turned on. The different navigation

types are: Orbit, Fly and Drive. The Geometry group allows the user to change the

polygon mode for all objects in the VE to make them in different modes: wire-fame,

point cloud or solid.

From Control Pane, the Measurements tool (Figure 4.10 and Figure 4.11) can be started

to allow the user to perform different kind of measurement on the VE. This tool can be

used to measure four type of entities (as shown in Figure 4.11): the distance between two

or more points, the angle between two lines made up of three points, the vector going

from one point to another and the surface normal at a point. This tool is used in

combination with the picking tool; so the user needs to pick 3D point using a pointing

device; the picked points would be highlighted using red spheres. Then, the user needs to

select which entity to compute and click on Measure. The system performs the selected

73

measurements and displays the results in the bottom of the Rendering Pane inside the

Message window. The Measurement tool is used in configuring the markers for video-

tracking as discussed in Section 3.4.

b» Picked point is at (298687.1217871913, 72.29893169608415, -5039511.54723S06)

b » Picked point is at (298687.5509581189, 73.20209162466503, -5039512.23123891)

The vector going from the first selected point to the last is: (0.42917, 0.90315, -0.68400)

Figure 4.10: Using the Measurement Tool

i=. Measurements... ^Sk-*-'-:^sJSj2y

Measure t Clear Last Point j Clear Selection

Angle

Vector

Surface Normal

Select what to measure]

Figure 4.11: Different options in the Measurement Tool

74

4.7 UML CLASS DIAGRAMS

4.7.1 Description of the main classes

(1) Class CurrentArrowBehavior (Figure 4.12): This class is derived from behavior

class in Java3d. The interaction with 3D scene in Java3D is provided through behaviors.

This behavior wakes up every time the location of the viewpoint in the VE changes, gets

the coordinates of the new location and places an arrow oriented from this location

towards the next destination.

(2) Class Marker (Figure 4.13): This class holds all necessary information about a

marker to which will be associated an absolute 3D location in the VE.

(3) Class ARPatternTransformGroup (Figure 4.14): This class extends the Java3D

TransformGroup. It is used for retrieving the relative location and orientation of the user

with respect to the camera and computing the final absolute location and orientation of

the user. It is, also, used for displaying 3D text augmentation that is always facing the

user, based on the computed location and orientation.

(4) Class ARBehavior (Figure 4.15): This is a Java3D behavior continuously displaying

the video streams coming from the camera and scanning them for the markers. When a

marker is detected, this behavior notifies ARPatternTransformGroups with the relative

coordinates of the user with respect to the camera.

(5) Class PickHighLightBehavior (Figure 4.16): This is a class derived from the

Java3D MouseBehavior which is derived from Behavior. This class is used for the

manual 3D picking. When a mouse click is detected a pick ray is created and used by the

Picklntersection class to compute the intersection points with the 3D model. The points

75

are then return the PickHightLightBehavior class which computes the closest one to the

user location then creates a sphere to show it.

(6) Class MainConsole: This is a Java frame window that holds, in a tab structure,

JcbSimulationViewer panel and the Login panel.

(7) Class Arrow (Figure 4.12): Creates a 3D arrow that consists of a Cylinder and a

Cone.

(8) Class ModelPane (Figure 4.12 and Figure 4.14): This class is an applet contained

inside a JPanel that is attached to the JcbSimulation Viewer. It runs the 3D rendering of

the Java3D canvas.

(9) Class JARToolkit3D_Main (Figure 4.15): This is a class responsible for initializing

the AR mode, configuring the markers and attaching the AR tracking behavior to the 3D

canvas (ModelPane).

(lO)Classs JcbSimulation Viewer (Figure 4.16): This class is Java panel designed to

contain all the 2D user interface components (e.g. buttons, slider bars, list, etc.) and the

3D canvas.

76

core.jcb

JZ
Arrow ModelPane

iavax.media.j3d

JE
BranchGroup || WakeupCondition

l javaK.vecmath !

£ Point3d | [Vector3f ||

core.jcb |

I .;
DevetopmentSimplellniverse | i

com.sun.j3d.ul.ils.tiiilvrr*i:

I VioimrwiL>l » l fftfii-k
I • " - • • • — i - •• :

javaK.media.i3d

Behavior]*.:]

core.jcb

currentArrowBehavior

#af
f
f
f
4> f
?
ffl
#• a
§

m_arpGr BranchGroup
m_arrG; BranchGroup
m_FrameWakeupCondition: WakeupCondition
rnJnitialWakeupCondition: WakeupCondition
m_pane: ModelPane
m_PrevLocation: Point3d
m_Vector: Vector3f
DestinationLocation: Point3d
m_arrow: AnimatedArrow
m_Positions : Point3d[]
m PositionsSize : int

% # attachArrow(): void
<& [JP currentArrowBehavior(): void
^ dp currentArrowBehavior(): void
% $f GeFinalDestination(): Point3d
% t f GetNextTargetO: Point3d
<k J initializeQ : void

% i f LoadPathO : void
% J 3 processStimulusO : void
% ^ DrawLineQ: BranchGroup

Figure 4.12: Class diagram for CurrentArrowBehavior

77

http://iavax.media.j3d
http://javaK.media.i3d

AR Pack

JARToolKit3D Main TestMarker

net.sourceforge.jartoolkit.java3d

| ARPattemTransformGroup~[«s—

java.lang

javaH.vecmath

£
Point3f ||~Vector3d |rvector3f |

java.lang

| Object [o

AR Pack

w

Marker

<y 3 m_Direction : Vector3d

•^ 3 m_TransGroup : ARPatternTransformGroup
S m_UpDirection : Vector3d

^ J 1 getDirectionQ ; Vector3d
% (J8 getTransGroup() : ARPatternTransformGroup
% <#> getUpDirection(): Vector3d

% d 3 setDirection(): void
% j$ setTransGroup(): void
% # setUpDirectionQ : void

^ d " NormalVector: Vector3f
s/ J ° PatternFileName : String
,/• i j 3 PatternSize : float
v/ J 9 Ref Point 1 : Point3f
sy S1 Rotation : Vector3d
v- af* Scale : Vector3d
v" dP Text Augmentation : String
<? J 5 Translation : Vector3d

Figure 4.13: Class diagram for Marker

78

net.&ciurceforgr.jartnolkit.java3d.Behavior

javax.media.j3d

| TransformGroiipl--']

AR_Pack

Marker

Gore.jcb

DevelopmentSimpleUniverse 11 ModelPane

javaK.media.j3d

Transform3D

lavaK.vecmaLh

| Matrin4d 11 QiiaMd 11 Vectored |

net.sourcerorge.jartoolkit.utit

| flRPattern~H

Updateable
2>

net.sourceforge.jartoolkit.iava3d :

ARPatternTransformGroup

f
f
f

f
f *>.
••0

m
s
a
a
a
a
i

m_keepTransForm : boolean
m_matrix4dRotationAdjustment: Matrix4d
mjnatrixArray : double[]
m_pattern: ARPattern
m_transFormMatrix4d : Matrix4d
m_ParentL)niverse : DevelopmentSimpleUniverse
m_5avedRotation: Quat4d
m_AttachedMarker : Marker
m_bAugmentationDone: boolean
m_CameraCoordinateScale : Float
m_Old_transForm3DTmp : TransForm3D
m_ParentModelPane : ModelPane
OldPos : Vector3d

ARPatternTransformGroup(): void
ARPatternTransForrnGroup(): void
ARPatternTransformGroupO : void
DisplayTextQ: BranchGroup
getPatternO: ARPattern
getRelativeTransFormation(): Matrix4d
getTransFormation(): Matrix4d
SetAssociatedObjectlnfoQ : void
SetParentModelPaneO: void
SetScaleQ: void
updateQ : void
DrawLineQ: BranchGroup
MakeSphereQ: BranchGroup

Figure 4.14: Class diagram for ARPatternTransformGroup

79

http://javax.media.j3d
http://javaK.media.j3d

net.50urceforge.jartootkit.java3d.Beriavior

UpdateRegisteredObjectsBehavior
{subclasses = 1}

AR Pack

I JARToollCir3D_Main h

net.sourceforge.jartoolkit.java3d.util

JARToolKit3D

javax.media.;3d ;

ImageCom|»HMiil.-n Ini nji-t tnnfmmiii:''l>.llir.l ili-r

nel Ainin pfiirije.j.irrrinll'it.r urr

: lAI'liMillil -

iii-l.tniirt I'lniiiiM'ii l iiiilkil.viilL'uiii|iiil

: MWiLhirrSMirie - '

net.sourceforge.jartoolkit.java3d.Behavior

ARBehavior

fl m_dataArray: int[]

{& mjmage : ImageComponent2D

S m j a r j k : JARToolKit

fiS m_picHeight: int

§ m_picturesource : JARPictureSource

#• § mjjicWidth : int

fl mjhreshold ; int

§ m_updater: ImageComponent2D.Updater

<^ aP ARBehaviorQ : void

% # getThreshold(): int

^ (J* processStimulusO ; void

% t # setThresholdO: void

<^ i3 ARBehaviorQ : void

Figure 4.15: Class diagram for ARBehavior

80

http://net.sourceforge.jartoolkit.java3d.util

com.sun.j3d.util5.pickiruj.bphaviors

PickMftuseBehavlor

core.jcb

PickHighlightBehavior

* dp

4? J8

* i f
dP
<# dp
dp
dP
dP
of
* sP
rip
^ dP

dP bStr : String
Cx : double
C¥ : double
CZ : double
hStr ; String
inCollision : boolean
insp ; Inspection
Jcb : JcbSimulationViewer
LastlntersectionPoint : Point3d
low : Point3d
iRp : Point3d
nameStr : String
normal; Vector3f
se : ScrollingPanel_Element

*?• i j° tr : Transform3D
r# up : Point3d

uRp : Point3d
wEnter: WakeupOnCollisionEntry
wExit : WakeupOnCollisionExit
wStr ; String
xx : TransformGroup
aPicker : PickTool
AutoPick: boolean
AutoPickChanged : boolean
FontSize : float
highlightAppearance : Appearance
m_AddedMeasurementLines : ArrayList
m_AddedOb)ects : ArrayList
m_AvatarAdded : boolean
m_PickedNormals : ArrayList
m_PickedPoints : ArrayList

® m_picker : ModelPane
ffii m_Pointl : Point3d
SS m Pqint2 : Point3d

-# dP
4>
4-

i f
dP

*• i f
4?

&
&
+

dP
a
a
a
OS
a

a
a
#• a

JcbSimulationViewer [| MeasurementsPlg | '•

T
i

i \ Appear<inceUcil

java.sql

' 1 . ^
| Connection | [KcsuftSetH

model

r -| I icneralPatd Tuple [

r nm.sun. j3d.load<M'S

com.sun.j3d.utils.geometry

"1< 1 ± [beonietryInfo~l[~~NurmdlGenerator |[~~5phere 11

rDm.sun.j3d.utils.pic.king

| Pirklntersection] | PirkKesiilt |

Figure 4.16: Class diagram for PickhighlightBehavior

81

http://rDm.sun.j3d.utils.pic.king

4.7.2 Design Patterns Used in the Implementation

(1) The Singleton pattern: One of the requirements is that only one sub window for 3D

rendering is allowed. For this purpose, the singleton pattern has been used to make the

instantiation of the class ModelPane, which creates the 3D canvas, occur only once. The

other requirement is that only one instance of ARToolkit is allowed, so the singleton

pattern was used to ensure that one instance is created the first time then returned each a

request for an instance is received.

(2) The Factory pattern: In the VE mode, the user can select from a list the type of 3D

navigation to be used with the mouse. Three types of navigation behavior are provided:

drive, fly, and orbit. These types of behavior use the mouse to control the viewpoint

motion. Each button on the mouse generates a different type of motion while the button is

pressed. The distance of the pointing device location from the center of the display area

controls the speed of motion. Since there are common functions that are called for all the

behaviors, a parent class (MouseBehavior) has been created from which all mouse

navigation behaviors are derived and which contains all common behavior functions.

Then a factory class has been created which, in turn, creates one MouseBehavior based

on the user selection; and common functions can be called from the returned instance.

For example, for all the behaviors a call must be done to the method

SetSchedulingBounds which sets the maximum 3D bounding sphere in which the

behavior is applicable.

The factory pattern has been created as a decision making class that returns instance of

one of the several navigation behavior classes based on the selection provided by the user

at run time.

82

4.8 CASE STUDIES

Case Study 1: Navigation guidance

This case study consists of a situation where a user needs guidance to get to a selected

destination and needs information about the rooms in a floor of building. In this case, two

scenarios are tested. The first scenario is that a student tries to find the way to emergency

exit stairs that are closest to his/her current location. The second scenario is that a student

tries to find a room in a building. The case study has been carried out on the fifth floor of

the EV building of Concordia University. The student is equipped with a tablet PC, in a

back bag, a digital video camera attached to a helmet and connected to the tabled PC, and

a video see-through HMD also connected to the tablet PC on which the system runs.

In the first scenario, different paths leading to the different emergency exits in the floor

are pre-loaded into the application. Figure 4.17 shows the floor plan and the exit path

selected by the system. Also, two locations of the user during the navigation are shown

by bold arrows. Two markers have been pasted on the walls of the corridor near the two

locations. The edge length of each of the markers is 4 inches. The system starts tracking

the movements of the user as soon as a first marker is detected. A path to an exit is

defined by a set of predefined 3D point in the world coordinate system. The system

computes the closest 3D point to the current user location. While the user is moving

towards the exit, the system continuously tracks his/her location. Based on the current

user location, the system computes the closest path to an exit. Then, the system displays a

3D directional arrow showing the user the direction to the closest exit. The orientation of

3D directional arrow is updated every time a change in the user location is detected.

83

Figure 4.18 and Figure 4.19 show examples of the video that the user sees during the

navigation. Figure 4.18 (a) shows the view as seen by the user through the HMD when

he/she is at Location 1. At this location, the closest exit is on the right of the user; so the

directional arrow points towards the right. Figure 4.18(b) shows the view of the virtual

scene around the same location with the transparency set to opaque. When the user

moves to the right around the Location 2, he/she is in the corridor that leads to the exit, so

the directional arrow points ahead to tell the user to keep moving in the same direction as

shown in Figure 4.19.

In the second scenario, the student walks in the corridor and looks for the room 9-210.

When the student walks near the room, the room number is displayed as a 3D text

augmentation is always facing him/her. Figure 4.20 shows two different views when the

student is near the door of the room. The first view (a) shows the augmentation in AR

mode. The second view (b) shows the same augmentation in VR mode.

Figure 4.17: Two locations and orientation of the user during navigation
84

(a) View in AR mode at Location 1 (b) View in VR mode at Location 1

Figure 4.18: AR and VR views as seen by the user at Location 1

(a) View in AR mode at Location 2 (b) View in VR mode at Location 2

Figure 4.19: AR and VR views as seen by the user at Location 2

85

. ^ • t

(a) Text augmentation in AR mode (b) Text augmentation in VR mode

Figure 4.20: Text augmentation in AR and VR modes

86

Case Study 2; AR for HVAC inspection

The 3D virtual model of the EV building in Concordia downtown campus is used as case

study, for indoor video-based AR applications. The fifth floor and the HVAC (Heating,

Ventilation and Air-conditioning) ducts installed on it have been modelled and loaded

into the virtual model of the building.

In this case study, the system is used to conduct an inspection for the HVAC ducts. The

inspector uses the system to locate a duct of the HVAC system based on his/her tracked

location and his/her task. The system is used to facilitate and speed up the process of

finding the HVAC duct that is hidden behind the false ceiling. Instead of guessing or

approximating the location of the duct, the inspector just needs to look towards the

ceiling to have his/her location detected, and have the ceiling augmented with the 3D

virtual model of the HVAC ducts.

Figure 4.21: Detailed 3D model of one floor and the HVAC ducts

87

Figure 4.21 shows the virtual models of the fifth floor and the HVAC ducts. Both models

have been imported into the system in the format of VRML files. Each element of the

models, such as columns and ducts, is associated with an ID that links it to a database that

contains more detailed information about that element. The facilities management

inspector equipped with the AR devices can perform a routine inspection task for the

HVAC system. The 3D HVAC elements (e.g., ducts) are seen through the HMD and the

inspector's position and orientation are tracked and used to update the 3D view.

Figure 4.22 shows an example of the results of the AR application used in a facility

management project on the campus. This figure shows one virtual HVAC duct in the fifth

floor and one marker attached to the ceiling. The figure simulates the view that the

inspector can see when the real ceiling is augmented with the virtual model of the HVAC

ducts. The inspector will be able to assign defects on the virtual model and retrieve duct

element information to be displayed.

Figure 4.22: The augmentation of the HVAC model as seen by the user

88

Two types of HMDs were used in this case study: Microvision Nomad ND2000 (2005)

and MicroOptical SV-6 (2005). More details about the used hardware can be found in

Section 4.9.

Case Study 3: Map augmentation:

The map augmentation is an example of Augmented Virtuality (AV) where a real map

augments a 3D model of a city. The map (shown in Figure 4.23) is a paper-based

representation of the real world. Since the area covered by the application in this case is

small, only one marker has been used.

This augmentation can be used in an urban planning application where several planners

and engineers can be sitting around a table and looking at a map laid on it. On top of the

map will be displayed a 3D model of the city. The engineers can interactively hide and

show objects and buildings in the 3D virtual model.

The main feature that differentiates this case study from the other two cases is the scaling.

Since the real world representation on the paper map is scaled, the movement of the user

while looking at the map had to be scaled too.

Figure 4.24 shows the different views that the user can see through the HMD while

looking at the map. The first view (a) shows a far view of the virtual model of the campus

area and the second view (b) shows a closer view that the user can see when looking

closer to the map.

89

Figure 4.23: Paper map of the campus area

(a) Far AV view (b) Near AV view

Figure 4.24: Example of different AV views as seen by the user

4.9 HARDWARE TESTING

Four digital video cameras were satisfactorily tested with ARToolKit: Logitech

QuickCam, Logitech QuickCam Pro, Creative Ultra for Notebooks, and IO-Data USB

CCD Camera (Table 4.4). Three types of HMDs were tested: Micro vision Nomad

ND2000 (Microvision, 2005), MicroOptical SV-6 (MicroOptical, 2005) and I-glasses

Video 3D Pro (lO Display Systems, 2006). Microvision Nomad ND2000 has a rugged,

90

monochrome red display (32 gray levels) readable in all lighting conditions with

automatic brightness adjustment. MicroOptical SV-6 is smaller, less rugged and has a

one-eye color display. I-glasses Video 3D Pro is also less rugged than the first one; it has

a two-eye color display and earphones, and is 3D stereo capability. All displays support

resolution of 800x600 pixels. Table 4.5 shows the basic specifications of both displays.

After testing these displays under different conditions, it was found that the I-glasses is

more suitable because of its overall superior visibility using colours and its 3D stereo

capability. As for the size of the text displayed with the above resolution, it was found

that a minimum font size of 25 points is required for comfortable readability.

Table 4.4: Specifications of test digital video cameras

Make

Creative

Logitech

Logitech

Sony

Model

Ulra for Notebooks

Quickcam

Quickcam Pro

10 Data USB CCD

Satisfactory Resolution and Frame
Rate

640x480 at 30 fps

640x480 at 30 fps

640x480 at 30 fps

320x240 at 30 fps

Table 4.5: Specifications of the HMDs

Make

Micro vision

MicroOptical

IO Display
Systems

Model

Nomad
ND2000

SV-6

I-glasses
Video
3D Pro

Transpa
r-ency

Trans­
parent

Opaque

Opaque

Resolu
-tion

(pixels)

800x
600

800x
600

800x
600

FOV

17°horiz.
23° diag.

16°horiz.
20° diag.

27° diag.

Color

Mono-
chrom
ered

Color

Color

Weight
(g)

128

35

226

Signal

SVGA

SVGA

SVGA

91

A test has been conducted to check the relationship between the size of a marker and the

distance from the video camera (Logitech Quickcam: video resolution of 640x480 at 30

fps) where the marker can be detected and tracked. These ranges were found to be 1.5 m

and 3 m for markers with edge lengths of 20 cm and 50 cm, respectively. The effects of

light conditions on the tracking were also measured. It was found that the camera can

detect the marker even under dark lighting conditions. For example, the marker with the

edge length of 50 cm can be detected under luminance equal to or greater than 4 Lux

within the range of 3 m.

Table 4.6 shows the detection range tests carried out on two different markers having

edge sizes of 20 cm and 50 cm in the same lighting conditions.

Table 4.6: Detection range for different marker sizes

Marker Size

20 cm

20 cm

50 cm

50 cm

50 cm

Distance from Marker

Less than 1.5 m

Less than 3.0 m

Less than 1.5 m

Less than 3.0 m

More than 3.0 m

Detected (Yes/No)

Yes

No

Yes

Yes

No

4.10 SOFTWARE TESTING

Preliminary tests for the prototype system have been carried out to cover the main

functionalities and the main components. The first testing was the Unit testing. It

consisted of writing test cases that are carried out inside the development environment to

ensure that different methods of the main classes behave correctly and return the right

92

results. Next, requirement tests have been carried out to test the main features of the

system and make sure they are correctly implemented.

On the other hand, usability testing can be also carried out on the system but since the

system is still a prototype, no usability testing has been performed at this stage.

Nevertheless, Appendix F contains some usability testing guidelines and heuristics for

AR applications that can be used for future testing of the system.

4.10.1 Unit Testing

The unit testing has been carried using Junit, which is a testing tool integrated inside the

selected development environment (JBuilder). Several test cases have been built and

executed to make sure the main classes in the implemented system are working properly.

The detailed description of the different test cases can be found in Appendix E.

Class AnimatedArrow (Table C.l)

• testCreateArrow(): This test method ensures that there is always an arrow object

created when the function CreateArrow is called.

Reason for testing: Because visual testing of the arrow cannot be performed unless

the arrow object exists.

• testOrientationAlgorithm(): This test method ensures that the algorithm used to

orient the arrow to the destination location is correct.

Reason for testing: Because the orientation of the arrow is crucial for getting the right

direction to the destination point.

93

Class Marker (Table C.2)

All of the following test methods ensure that the properties saved for a paper marker after

being loaded from a marker configuration file are correctly retrieved when they are

needed.

Reason for testing: Because if any of the marker properties are not correctly retrieved,

the tracking of the user in AR mode will not be reliable.

• testGetDirection()

• testGetNormalVector ()

• testGetPatternFileName()

• testGetPatternSize()

• testGefRefPoint()

• testGetRotation()

• testGetScale()

• testGetTextAugmentation()

• testGetTranslation()

• testSetUpDirection()

Class JARToolKit3D_Main (Table C.3)

• testGetInstance(): This test method ensures that there is always an instance

of the class returned.

Reason for testing: Because it is required by the used toolkit "ARToolkit"

to create a singleton instance of it.

94

• testGetInstance_Null_ModelPane_Hanlding(): This method tests exception

handling in case the parent window is passed to the class method (

Getlnstance).

Reason for testing: Because the application must not crash or cause any

serious problem when it fails to return an instance.

• testMarkersLoadingFromNullFileO: This method tests exception

handling when an empty file name is passed to the class method

LoadMarkersFromFile

Reason for testing: Because the application must not crash or cause any

serious problem when no file name is provided.

• testMarkersLoadingFromFile(): This method ensures that all the markers

in the marker configuration file are loaded.

Reason for testing: Because it is necessary to have all the markers in the

configuration file loaded before starting the tracking in AR Mode.

• testMarkerStoredlnfoO: This method ensures that the markers' properties

stored in the configuration file are corrected loaded into memory and stored

in the instances of the class Marker.

Reason for testing: Because if any of the properties stored in the

configuration file is not properly loaded into memory, the tracking in AR

mode will not be correct and reliable.

95

• testMarkerOutOfRangelndexO: This method tests the exception handling

in case a wrong index of the marker is passed. The marker index has to be

within the range of the markers loaded from the configuration file.

Reason for testing: Because if a wrong index of marker is passed the

application must not crash and cause any serious problem for the user.

• testSetTrackingScale(): This method makes sure the tracking scale is set

for all the loaded markers.

Reason for testing: Because if the tracking scale is not set for one marker,

the tracking in AR mode will be inconsistent.

Class JARToolKit3D (Table C.4)

Reason for testing: Because if any of the marker properties are not corrected retrieved

the tracking of the user in AR mode will not be reliable.

• testGetlnstanceO

• testCreateO

• testlnitializeCameraO

• testlnitializeCameraWrongFileNameO

• testlnitializeCameraWrongPathQ

• testCreateBackgroundQ

96

4.10.2 Requirements Testing

Feature 1: Develop animated 3D arrow oriented from current user's location to the

object of interest.

Requirments: These requirment testing had to be performed visually following system

usage scenerios (Table D.l).

• The orientation of the arrow should be always adjusted based on the user location:

It is necessary for the user who is navigating in the virtual and real environment to

be able to locate the destination from anywhere in the space.

• The arrow should be visible in AR mode: The system is designed to be used in

AR mode in addition to the VR mode.

Feature 2: Track and record the current user locations in VR mode by developping a

behavior that repeatedly calulates the abosolute user location (Table D.2).

Since the application is intended to be use in mobile and location-based situations in AR

mode, it was necessary to, first, test the tracking of the user location in VR mode before

AR mode. To test this feature, testing method has been used based on Geographic

Information System (GIS) since the VE is based on real locations. In this test, the

location of the users at every time step tt while navigating are recorded as points in a GIS

layer. Later this layer can be visualized to make sure his/her navigation in the was tracked

correctly.

Requirments:

• The tracking technology should be provided in VR Mode: It is necessary to track

the user navigation to be able to provide guidance through the 3D oriented arrow.

97

• A behavior should be developed to repeatedly move the arrow to current user

location. It is necessary to get updated guidance while the user is moving.

Feature 3: Track the current user location in AR mode using the video tracking (Table

D.3).

Requirements:

• Detect the user's movement with respect to the paper markers: This is necessary

because the relative user location with respect the marker will be added to the

stored absolute location of the marker.

• Calculate the 3D coordinate representing the user's location in the real world: This

is needed to compute the final absolute location of the user in real world thus being

able to track him/her.

Feature 4: Overlay the 3D animated arrow on the video of real object displayed using the

HMD (Table D.4).

Since our application provides the user guidance using an animated arrow in AR mode,

this feature should be tested. We tested this feature visually by using our testing system. A

sphere is added by default to the location of a marker. If the feature works coorectly, the

sphere should be visible when the marker is detected by camera. In addition, an oriented

arrow should be added to location of the sphere.

Requirements:

• Add an arrow to current location pointing to object of interest: The system is

designed to guide the user in AR mode as well as in VR mode.

Feature 5: Overlay a text augmentation on the video of real objects showing the

recognized room number in the building (Table D.5).

98

This feature is usefull to give information about the environment to the user in AR mode

so this feature should be tested. The testing process of this feature is similar to the

previous one. However, a text showing the room number should be added to the same

location of the sphere.

Requirements:

• Overlay a 3D text on the video showing the room number: This is needed to

ensure that the system shows correct information about the environment.

Feature 6: Control the field of view of VE in AR Mode (Table D.6).

Requirements: In order to test this feature, the actual field of view can be compared wih

the video field of view. It is important to test this feature because it adjusts the field of

view of the virtual scene so that the user can match it with the field of view of the digital

video camera.

Feature 7: Control the transparency of the virtual objects in the virtual scene (Table D.7).

Requirements: The user should be able to change the transparency level of the virtual

objects in the scene to be able to completely hide them or show them partially transparent

of completely opaque on top of the video frames.

Feature 8: Control the video-tracking scale (Table D.8).

Requirements: The user needs to be able to move the camera that is tracking the paper

marker and change the value of the tracking scale. The movement should be scaled based

on the selected scale.

99

4.11 SUMMARY AND CONCLUSIONS

In this chapter a prototype system has been implemented to demonstrate the feasibility of

the proposed approach. The system has been intended to be platform independent so all

of its components were implemented in the Java programming language and for some of

the tools Java binding to APIs were used. Different interaction methods have been

implemented to allow for a direct and location-based access to information about

elements of different structures, such building rooms, through the 3D picking tool. The

prototype system implemented a hands-free navigation through the video tracking of geo-

referenced markers. In addition, a way-finding assistance has been implemented to help

the user find the path to a selected destination while moving in the real and virtual world.

On the other hand, the video tracking configuration and deployment method has been

implemented and verified through cases studies. These case studies have also been used

to verify the applicability and usefulness of the proposed approach. While the system has

been proven applicable and useful, due to the limitation in the different hardware

capabilities such as the video resolution, the frame rate and the field of view, the virtual

objects rendered as augmentation appear with a slight mis-alignment with the real world.

This mis-alignment error is a combination of the inaccuracy of the virtual model, tracking

errors caused by ARToolkit, and the hardware limitations.

100

CHAPTER 5 SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 SUMMARY

AR has been proven to be useful in many fields as mentioned in the Chapter 2, and

several tools and systems have been reviewed and examined. Taking into consideration

the different shortcomings of the available AR systems, a framework for indoor video-

based AR application has been proposed to integrate four main components of AR

applications, which are large scale VEs, mobile devices, interaction methods and video-

tracking, in one system. The proposed framework benefits from the 3D virtual modeling

by combining GIS maps and models of buildings and building interiors in one system.

Different interaction methods for AR applications have been introduced, such as the

automatic 3D picking which is used for a location-based data access. In addition, a

practical method has been proposed for the configuration and the deployment of the

video tracking. This method made use of the XML language to allow for future

extensions and simplified interoperability. An implementation of the proposed framework

has been developed to demonstrate its feasibility. Different case studies have been carried

out to validate the applicability of the system and identify its benefits and limitations. The

first case study consisted of an AR navigation assistance using a directional 3D arrow and

3D text to help the user find a selected destination inside a building. The second case

study demonstrated how the system can be used to help an HVAC inspector find one of

the ducts and mark on it a 3D shape to indicate the location of a problem. The last case

study illustrated the use of the system in adding scaled augmentation that fits on a paper

101

map of the Concordia Campus area. It also demonstrated the use of scaling during video

tracking to make it fit the map scale.

5.2 CONCLUSIONS AND CONTRIBUTIONS

The proposed framework is characterized by its applicability to several fields, which is

demonstrated by the case studies for navigation assistance, building inspection, and urban

planning. The framework has the advantage of using real data, such as GIS maps, and

integrating them in the same coordinate system as 3D virtual models defined in a

standard file format (VRML) which allows for an easy exchange of data and more

extensibility. In addition, the proposed video-tracking system is characterized by its

affordability and ease of use. Moreover, using Java and Java3D object-oriented API,

other tracking capabilities and tools can be easily integrated into the system thanks to the

built-in Virtual Universe concept and Behavior, which is an object-oriented and extended

type of multi-threading.

The contributions of this research are grouped into the following areas:

(1) A GIS-based approach for building VR models for AR applications has been

developed. The approach integrates large scale 3D virtual models of buildings along

with detailed interior 3D virtual models in one single system. All 3D virtual models

are represented in one single coordinate system that represents the real world

coordinate system based on GIS.

102

(2) A framework has been developed for indoor video-based AR applications to

integrate four components: (1) Large scale 3D virtual models, (2) Mobile devices, (3)

Video tracking, and (4) Interaction.

(3) A practical and simplified method has been developed and implemented for the

configuration and deployment of video tracking in indoor AR applications.

(4) Different interaction methods for indoor AR applications have been developed, such

as the automatic picking behavior.

(5) A prototype system has been developed and implemented in Java, and three case

studies have been used to demonstrate the feasibility of the above mentioned

approaches and methods. The first case study demonstrated navigation assistance; the

second case study demonstrated HVAC inspection; and the third case study

demonstrated urban planning.

On the other hand, the implemented prototype of the system is limited by the field of

view of the used video cameras; this limitation can be overcome, in the future, as

mentioned in Section 5.3, using spherical cameras. The system is also limited by the

possible discontinuity of the video-tracking due to the limited visibility range of the

different markers; this limitation can be reduced by using motion-tracking devices such

as gyroscopes. The combination of the hardware limitations, the inaccuracy of the virtual

model, and the tracking errors caused by ARToolkit, produced slight mis-alignment of

the virtual augmentation with the real world. Reduced environment awareness of the

users is another limitation imposed by the use of video-based HMD.

103

5.3 FUTURE WORK

(1) Since the field of view of digital video cameras is crucial in the video-based detection

of markers, spherical cameras, such as the Ladybug (Point Grey website, 2008), can

be used in future works to make the system more aware of the surroundings and get a

robust tracking which makes the system safer for the user. Appendix F explains the

possible extension of the system to seamlessly link it with the Ladybug spherical

camera.

(2) Through the networking capability of the system, the user can be lively notified of an

emergency. The system starts guiding the user to the closest exit and keeps him/her

updated with the latest information about the emergency. The user can also

dynamically change the exit plan based on the changes in the circumstances such as

the collapse of a floor that makes the selected exit impossible or more risky. A similar

capability has been introduced by the Chicago Fire Department to help the firemen

collaborate during firefighting operations and get live notification about the changes

in the surrounding conditions, such as room temperature (Fire Project website, 2008).

(3) The tracking component of the system can be extended by other types of tracking

such the Radio Frequency IDs (RFID to detect different hazardous places in a

building and warn the user before entering in their perimeter.

(4) A new path finding technique inside buildings can be used to dynamically select the

closest path to the target.

(5) Head tracking devices can be used to extend the indoor tracking by filling the gaps

between the visibility ranges of the different markers.

(6) Developing methods to reduce the errors discussed in the previous section.

104

REFERENCES

AMIRE project website (2007). <www.amire.net>, (accessed July, 2007).

ARPE: Augmented Reality Prototyping for Entertainment Group (2003). Carnegie

Mellon University - Entertainment Technology Center,

<www.etc.cmu.edu/projects/ar/argt.html>, (accessed in 2006).

ARToolkit website (2005). <www.hitl.washington.edu/artoolkit>, (accessed 2005).

Azuma, R. (1997). Survey of Augmented Reality, Presence: Teleoperators and Virtual

Reality, 6(4), pp. 355-386.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and Maclntyre, B. (2001).

Recent Advances in Augmented Reality, IEEE Computer Graphics and

Animation, Nov/Dec 2001, pp. 34-47.

Behzadan, A., and Kamat, V. (2006). Animation of Construction Activities in Outdoor

Augmented Reality, Joint International Conference on Computing and Decision

Making in Civil and Building Engineering 2006 - Montreal, Canada.

Brian, G. (2004). Techniques for Assessing and Improving Performance in Navigation

and Wayfinding using Mobile Augmented Reality, Ph.D. thesis, University of

Central Florida, pp. 2-60.

Brunner, S., Bimber, O., and Mader, S. (2003). Report on Tracking Technology, Virtual

Showcases Project, The European Commission - Information Society

Technologies, pp. 10-15.

Charles O., Fan X., and Paul M. (2002). What is the best fiducial? The First IEEE

International Augmented Reality Toolkit Workshop, September 2002.

105

http://www.amire.net
http://www.etc.cmu.edu/projects/ar/argt.html
http://www.hitl.washington.edu/artoolkit

Chung, K. (2002). Application of Augmented Reality to Dimensional and Geometric

Inspection, Ph.D. thesis, Virginia Polytechnic Institute, pp. 35-45.

Christoph, K., and Bludau, HB. (2002). Applicability of Handheld Computers in Clinical

Information Systems: Comparison of Evaluation Methods. Second Conference

on Mobile Computing in Medicine, 2002, pp. 51-61.

Coelho, E. (2005). Spatially Adaptive Augmented Reality, Ph.D. Thesis, Georgia

Institute of Technology, pp. 7-9.

Drasic, D. and Mil gram, P. (1996). Perceptual Issues in Augmented Reality, SPIE

Volume 2653: Stereoscopic Displays and Virtual Reality Systems III, San Jose,

California, USA, January/February 1996, pp 123-134.

Dunston, P., Wang, X., Billinghusrt, M., and Hampson, B. (2002). Mixed Reality

Benefits for Design Perception. 19th International Symposium on Automation

and Robotics Construction (ISARC 2002), NIST, Gaithersburg, MD, 2002, pp.

191-196.

Fiala, M. (2004). ARTag Website, <www.artag.net>, (accessed June, 2006).

Fire Project website (2008). < fire.me.berkeley.edu>, (accessed in 2008).

Frund, J., Gausemeier J., Matysczok, C , and Radkowski, R. (2003). Application Areas of

AR-Technology within Automobile Advance Development, International

Workshop on Potential Industrial Applications of Mixed and Augmented

Reality, 2003.

Gabbard, J. (2001). Researching Usability Design and Evaluation Guidelines for

Augmented Reality

Systemswww.sv.vt.edu/classes/ESM4714/Student_Proj/class00/gabbard>,

106

http://www.artag.net
http://www.sv.vt.edu/classes/ESM4714/Student_Proj/class00/gabbard

(accessed in 2005).Gediga, G., Hamborg, K., and Duntsch, I. (1999). The

IsoMetrics Usability Inventory: an operationalization of ISO 9241-10 supporting

summative and formative evaluation of software systems.

Gerhard R., G., and Schmalstieg, D. (2004). Collaborative Augmented Reality for

Outdoor Navigation and Information Browsing. Proceedings of the Symposium

on Location Based Services and TeleCartography, Vienna, Austria, pp. 31-41.

Ph.D. Thesis,Halden Virtual Reality Center website (2006). <www2.hrp.no/vr>,

(accessed in 2006).

Hammd, A., Khabeer, B., Mozaffari, E., Devarakonda, P., and Bauchkar, P. (2005).

Augmented Reality Interaction Model for Mobile Infrastructure Management

Systems, 1st CSCE Specialty Conference on Infrastructure Technologies,

Management and Policy.

Hoffmann, E. (2001). The 3d Studio file format library, <lib3ds.sourceforge.net>,

(accessed in 2005)

IO Display Systems Website (2006), </www.i-glassesstore.com>, (accessed in 2006).

ISO 9241 -11, (1998). Guidance on Usability.

Kaiser, E., Olwal, A., McGee, D., Benko, H., Corradini, A., Li, X., Cohen, P., and

Feiner, S. (2003). Mutual Disambiguation of 3D Multimodal Interaction in

Augmented and Virtual Reality. Proceedings of the International Conference on

Multimodal Interfaces'03, November 2003.

Kato, H., Billinghurst, M., and Poupyrev, I. (1999). ARToolK.it version 2.33: A Software

Library for AR Applications, <www.hitl.washington.edu/artoolkit>, (accessed

December, 2004).

107

http://www.i-glassesstore.com
http://ARToolK.it
http://www.hitl.washington.edu/artoolkit

Ledermann, F., Reitmayr, G., and Schmalstieg, D. (2002). Dynamically Shared Optical

Tracking, The First IEEE International Augmented Reality Toolkit Workshop,

September 2002.

Liarokapis, F. (2006). An Exploration from Virtual to Augmented Reality Gaming,

Simulation & Gaming, Vol. 37, pp. 507-533.

Liarokapis, F., White, M., and Lister, P. (2004). Augmented Reality Interface Toolkit,

Proceedings of the International Symposium on Augmented and Virtual Reality,

pp. 761-767.

Livingston, M., Rosenblum, L., Julier, S., Brown, D., Baillot, Y., Swan, E., Gabbard J.,

and Hix, D. (2002). An Augmented Reality System for Military Operations in

Urban Terrain. Proceedings of the Interservice / Industry Training, Simulation,

& Education Conference (I/ITSEC '02), December 2002.

Livingston, M. (1998). Video-based Tracking with Dynamic Structured Light for Video

See-through Augmented Reality, Ph.D. Thesis, University of North Carolina, pp.

30-31 .

Macchiearella, N. (2004). Effectiveness of Video-Based Augmented Reality as a

Learning Paradigm for Aerospace Maintenance Training, Digital Avionics

Systems Conference, 2004, pp. 5.1-9.

MicroOptical website (2005). <www.microopticalcorp.com>, (accessed in 2005).

Middlin, P. (2002). Vision-based Tracking of Fiducials for Augmented Reality, Master of

Science Thesis, Michigan State University, pp. 6-7.

Milgram, P., and Kishino, F. (1994). Taxonomy of Mixed Reality Visual Displays. IEICE

Trans, on Information and Systems, Vol. E77-D, pp. 1321-1329.

108

http://www.microopticalcorp.com

Milgram, P., Rastogi and A., Grodski, J. (1995). Telerobotic Control Using Augmented

Reality, University of Toronto - Ergonomics in Teleoperation and Control Lab,

<vered.rose.utoronto.ca/people/paul_dir/RO-MAN95/roman95.html>, (accessed

April, 2007)

Mozaffari, E. (2006). Creating and Testing Urban Virtual Reality Models for Engineering

Applications, Master of Science Thesis, Concordia University, pp. 28-29.

MXRToolkit website (2005), Singapore Mixed Reality Lab,

<mxrtoolkit.sourceforge.net>, (accessed in 2006).

Nielsen, J. (1994). Usability Engineering, 1st edition, San Francisco, CA: Morgan

Kaufmann, pp. 24-25.

Nielson, J. (1995). www.useit.com/papers>, (accessed 2007).

Nomad Display Systems (2005). Microvision website, <www.microvision.com>,

(accessed in 2005).

Pierre, M., Wayne, P., and Bruce, HT. (2002). Measuring ARToolKit Accuracy in Long

Distance Tracking Experiments, The First IEEE International Augmented

Reality Toolkit Workshop, September 2002.

Point Grey Research website (2008). < www.ptgrey.com>, (accessed in 2008).

Romao, T., Correia, N., Dias, E., Danado, J., Trabucob, A., Santosb, C , Santosb, R.,

Camara, A., and Nobre, E. (2004). ANTS-Augmented Environments, Computers

& Graphics, pp. 625-633.

Ravden, S., and Johnson, G. (1989). Evaluating usability of human-computer interfaces -

a practical method, First Edition, Halsted Press, pp. 19-30.

109

http://www.useit.com/papers
http://www.microvision.com
http://www.ptgrey.com

Rekimoto, J. (1998). Matrix: A Realtime Object Identification and Registration Method

for Augmented Reality, Proceedings of Asia Pacific Computer Human

Interaction, 1998,p. 63.

Rekimoto, J., and Ayatsuka, Y. (2000). CyberCode: Designing Augmented Reality

Environments with Visual Tags, Proceedings of Designing Augmented Reality

Environments, 2000. pp. 1-10.

Sands, J., Lawson, S., and Benyon, D. (2004). Do we need Stereoscopic displays for 3D

Augmented Reality Target Selection Tasks? , Proceeding of the Eighth

International Conference on Information Visualisation, 2004, pp. 633-638.

Shiratuddin, M., Thabet, W., and Bowman, D. (2004). Evaluating the Effectiveness of

Virtual Environment Displays for reviewing Construction 3D Models, Virginia

Tech University, < http://research.cs.vt.edu/3di/>, (accessed July 2007).

Slay, H., Phillips, M., Vernik, R., and Thomas, B. (2001). Interaction Modes for

Augmented Reality Visualization, Proceedings of the Asia-Pacific symposium

on Information visualization, 2001, pp. 71-75.

Tatham, E. (1997). Depth Cueing for Augmented Reality, Proceedings of IEEE

Conference on Information Visualization, 1997, pp. 348-349.

The Usability Company (2004). What's Usability, <www.theusabilitycompany.com>,

(accessed in 2006).

Vallino, J. (1998). Interactive Augmented Reality, Ph.D. Thesis, University of

Rochester, pp. 16-17.

110

http://research.cs.vt.edu/3di/
http://www.theusabilitycompany.com

Virtual Reality Laboratory website (2006). Virtual Reality: a Short Introduction, Virtual

Reality Laboratory, University of Michigan, <www-VRL.umich.edu>, (accessed

2007).

Wang, X., and Dunston, P. (2004). Application of Mixed Reality to A/E/C

(Architecture/Engineering/Construction): Taxonomy, Prototype, and Evaluation.

Proceedings of ASCE Construction Research Council Research Symposium,

American Society of Civil Engineers (ASCE), November 2004, pp. 133-140.

I l l

Appendix A: XML files for describing markers

1. Example of a Marker Library XML file:

<?xml version="l.0" encoding="utf-8" ?>
<MarkerLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\\BridgeResources\\Markers.xsd">

<Marker>
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4
x4_384_47.patt</PatternFileName>

<LinkID>5125</>
<PatternSideDimension> 115 </>
<AbosoluteLocationInWorld>

<x> 298700.412</x>
<y> 72.689</y>
<z> -5039511.305</z>

</AbosoluteLocationInWorld>
<NormalVector>

<x> -0.836 </x>
<y> 0.0 </y>
<z> -0.548 </z>

</NormalVector>
<UpDirection>

<x> 0 </x>
<y> 1 </y>
<z> 0 </z>

</UpDirection>
<DirectionVector>

<x> 0.0</x>
<y> 1.0</y>
<z> 0.0</z>

</DirectionVector>
<Translation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Translation>
<Rotation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Rotation>
<Scale>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Scale>
</Marker>

112

http://www.w3.org/2001/XMLSchema-instance

<Marker>
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4
x4_38 4_91.patt</PatternFileName>

<LinkID>ElevatorCorner</>
<PatternSideDimension> 115 </>
<AbosoluteLocationInWorld>

<x> 298696.60836248304 </x>
<y> 73.15966358270978 </y>
<z> -5039515.23124213 </z>

</AbosoluteLocationInWorld>
<NormalVector>

<x> 0.0</x>
<y> 0.0</y>
<z> 1.0</z>

</NormalVector>
<UpDirection>

<x> 0.0 </x>
<y> 1.0 </y>
<z> 0.0 </z>

</UpDirection>
<DirectionVector>

<x> 0.0 </x>
<y> 1.0 </y>
<z> 0.0 </z>

</DirectionVector>
<Translation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Translation>
<Rotation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Rotation>
<Scale>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Scale>
</Marker>

<Marker>
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4
x4_384_83.patt</PatternFileName>

<LinkID>5125</>
<PatternSideDimension> 115 </>
<AbosoluteLocationInWorld>

<x> 298702.487</x>
<y> 72.767</y>
<z> -5039506.637</z>

</AbosoluteLocationInWorld>
<NormalVector>

<x> 0.546 </x>
<y> 0.0 </y>
<z> -0.837</z>

</NormalVector>

113

<UpDirection>
<x> 0 </x>
<y> 1 </y>
<z> 0 </z>

</UpDirection>
<DirectionVector>

<x> 0.0</x>
<y> 1.0</y>
<z> 0.0</z>

</DirectionVector>
<Translation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Translation>
<Rotation>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Rotation>
<Scale>

<x> 0.0 </x>
<y> 0.0 </y>
<z> 0.0 </z>

</Scale>

</Marker>
</MarkerLibrary>

Appendix B: Software requirements and installation guide of the prototype system

Software requirements:

(1) Borland JBuilder 2006 Enterprise: used to develop the prototype system;

(2) MS Access (MS Access XP): used to store the data of the buildings;

(3) ArcGIS (ESRI2004): used to develop GIS application;

(4) Windows XP: used as the operation system.

Installation guide:

1. Copy four folders to corresponding driver and change the associated code in the

project to match the driver path. The contents in these folders include:

• Currproject or infra_project (The folder includes all codes of our project)

• Javasoft (The folder includes all libraries which are required in our project)

• Bridgere (The folder includes all 2d information)

• BridgeResources (The folder includes all 3d information and models)

2. Click Start->Control Panel-> Administrative Tools->Database Source.

And add ODBC data source as below:

• Microsoft Access Driver: Name: bridge, Location: C:\ BridgeResources\dbl .mdb

(No password for data source is required, so just leave the password as blank.)

3. Launch Jbuilder, open the project.jpx file. Then click the menu of Jbuilder: Project-

project Properties. Click the tab "Required Libraries". Then edit or add the path of

libraries as below:

115

- VRML97 (VRML File Loader API)

Download the library from: https://i3d-vrml97.dev.iava.net

D:/javasoft/loaders/vrml97.jarVRML97 library

- Jdk3D (Java development Kit 3D) - Version 1.3.1

Download from http://java.sun.com/products/java-

media/3D/downloads/index.htmlJRE/1.3.1 09/lib/ext

- DXFLoader (DXFfile loader API) - Version 1.0 is needed.

Download from: http://www.johannes-raida.de/index.htm7cadviewer

- JARToolkit Dlls: The dlls are located at D:\JavaSoft\JARToolkit Dlls

Make sure you put these dll files in your JARToolkit Dlls directory, then click start->

Control Panel->System->Advanced->Environment Variables, please add the path of

JARToolkit Dlls directory to the environment variable "path" of User Variables.

- MO J (MapObject Java API) - Version 2.1

Download from: http://www.esri.com/software/moiava/

Put the files in: C:/ESRI/MOJ21/lib add the tutsource.jar and tutorial.jar files that

are available at the directory MOJ21\Samples\Tutorial.

- JARToolkit (Java ARToolkit API) -Version 2.0

Download from: http://ierry.c-lab.de/iartoolkit/

The needed files are: JARFrameGrabber.dll, JARToolkit.dll, JARVideo.dll,

libARvideo.dll, libARvideod.dll, and msvcr70.dll

116

https://i3d-vrml97.dev.iava.net
http://java.sun.com/products/java-
http://www.johannes-raida.de/index.htm7cadviewer
file://D:/JavaSoft/JARToolkit
http://www.esri.com/software/moiava/
http://ierry.c-lab.de/iartoolkit/

Table B. 1: Summary of libraries used in the prototype system

Library

VRML97

JDK 3D

DXFLoader

MOJ

ARToolkit

JARToolKit

Description

VRML File
Loader API

Java 3D API

DXF File Loader
API

MapObject Java
API

ARToolkit API

Java Binding for
ARToolKit API

Source

https://j3d-vrml97.dev.iava.net/

D:/javasoft/loaders/vrml97.jar

http://java.sun.com/products/iavamedia/3D/
downloads/index.html

D:/javasoft/ JRE/1.3.1_09/lib/ext

http://www.johannes-
raida.de/index.htm?cadviewer

D:/Javasoft/DxFloader/

http://www.esri.com/software/moiava/

http://www.hitl.washinctton.edu/artoolkit/

http://ierry.c-lab.de/iartoolkit/

D:\JavaSoft\JARToolkit Dlls

Version

1.3.1

1.0

2.1

2.0

117

https://j3d-vrml97.dev.iava.net/
http://java.sun.com/products/iavamedia/3D/
http://www.johannes-
http://raida.de/index
http://www.esri.com/software/moiava/
http://www.hitl.washinctton.edu/artoolkit/
http://ierry.c-lab.de/iartoolkit/
file://D:/JavaSoft/JARToolkit

Appendix C: Unit Testing

The following tables list the different test cases done in this study. Each table shows the

class name and the methods that have been tested.

Table C.l: Test cases for Animated Arrow

Test Case

testCreateArrow()

testOrientationAlgorit

hem()

Test Data

Null

Point3f(0,0,0),

Point3f(0,0,0)

Expected Result

Arrow object

Angle= 0.493

Traceab
ility
TR1

TR2

Table C.2: Test cases for Marker

Test Case

testGetDirection()

testGetNormalVector()

testGetPatternFileNam

e()

testGetPatternSize()

testGetRefPoint()

Test Data

Vector3f(10.0f,0.56f,

0.3i)

Vector3f(0.0f, 0.5f, 0.9f)

"C:\\BridgesResources\\

marker.txt"

Marker.Size=40

Point3f(298692.1306951

222f, 73.8795095f, -

5039515.30027)

Expected Result

Vector3f(10.0f, 0.56f,

0.3f)

Vector3f(0.0f, 0.5f,

0.9f)

C :\\BridgesResources\

\marker.txt"

40

Point3f(298692.13069

22f, 73.87950951054f,

-5039515.30027f)

Trace-
ability
TR3

TR4

TR5

TR6

TR7

118

file:///marker.txt

Table C.3: Test cases for Marker (continued)

Test Case

testGetRotation()

testGetScale()

testGetTextAugmentat

ion()

testGetTranslation()

testSetUpDirection()

Test Data

Vector3d(0.0f, 0.5f, 0.9f)

Vector3d(0.0f, 0.5f, 0.9f)

"Room 9215"

Vector3d(200.0f, 10.5f,

O.lf)

Vector3d(2.0f, 1.0f,0.0f)

Expected Result

Vector3d(0.0f, 0.5f,

0.9f)

Vector3d(0.0f, 0.5f,

0.9f)

"Room 9215"

Vector3d(200.0f,

10.5f, O.lf)

Vector3d(2.0,1.0,0.0)

Trace-
ability
TR8

TR9

TRIO

TR11

TR12

Table C.4: Test cases for JARToolKit3D Main

Test Case

testGetInstance()

testGetInstance_Null_

ModelPane_Hanlding()

testMarkersLoadingFro

mNullFile()

Test Data

Null

Null

Null

Expected Result

Exception raised

Exception raised

Exception raised

Trace-

ability

TR13

TR14

TR15

119

Table C.5: Test cases for JARToolKit3D_Main (continued)

Test Case

testMarkersLoadingFro

mFile()

testMarkerStoredInfo()

testMarkerOutOfRange

Index()

testSetTrackingScale()

Test Data

Path: "C:/Resources/

testmarkers.cfg"

Path: "C:/Resources/

testmarkers.cfg"

Path="C:/Resources/

testmarkers.cfg"

Path=" C:/Resources/

testmarkers.cfg"

Expected Result

Path:

"C:/Resources/

testmarkers.cfg"

Path:

"C:/Resources /

testmarkers.cfg"

Path="C:/Resour

ces/

testmarkers.cfg"

Path="

C:/Resources/

testmarkers.cfg"

Trace-

ability

TR16

TR17

TR18

TR19

120

Table C.6: Test cases for JARToolKit3D

Test Case

testGetlnstance ()

testCreate ()

testlnitializeCamera ()

testlnitializeCameraWr

ongFileName ()

testlnitializeCameraWr

ongPath ()

testCreateB ackground

0

Test Data

Null

Null

Path= "C:/Resources

/JARToolkitTestFolder/data/ca

mera_para.dat"

Path="C:/Resources/JARToolkit

TestFolder/data/camera_para.va

t"

Path= "C:/camera_para.dat"

Null

Expected Result

Exception raised

Exception raised

Path=

"C:/Resources

/JARToolkitTest

Folder/d

a/camera__para.d

at"

Path="C:/Resour

ces/JARToolkitT

estFolder/data/ca

mera_para.vat"

Path=

"C:/camera_para

.dat"

Exception raised

Trace-
ability
TR20

TR21

TR22

TR23

TR24

TR25

121

Traceability Messages:

TR1: Failed to create Arrow

TR2: Wrong transformation detected!

TR3: GetDirection returned wrong direction vector

TR4: GetNormalVector returned wrong Normal Vector

TR5: GetPatternFileName returned wrong Pattern file name!

TR6: GetPatternSize returned wrong Pattern size!

TR7: GetRefPointl returned wrong Reference Point coordinates

TR8: GetRotation returned wrong rotation angle!

TR9: GetScale returned wrong scaling!

TRIO: GetTextAugmentation returned wrong Text augmentation!

TR11: getTranslation returned wrong translation adjustment!

TR12: Marker.SetUpDirection must not allow wrong direction vector.

TR13: Failed to get a singleton instanc of JARToolKit3D_Main

TR14: Failed to throw exception when an null ModelPane is passed

TR15: Failed to throw exception in LoadMarkersFromFile!

TR16: Wrong number of loaded markers from file!

TR17: Wrong loaded Marker Coordinate

TR18: Failed to throw exception in GetMarker when passed index is negative!

TR19: Wrong scaling

TR20: Failed to raise an exception

TR21: Failed to create a singleton instance of the ARToolkit3D

TR22: Failed to create an instance of JARToolKit3D

122

Appendix D: Requirement Testing

Table D.7: Requirement testing for Feature 1

Feature 1: Develop animated 3D arrow oriented from current user's location to the

object of interest.

Requirements

1. The orientation of the

arrow should be adjusted

based on the user location.

2. The arrow should be

visible in AR mode.

Scenario

1 .Launch the application

2.Click on the Settings

button.

3.Select "Arrow"

4. A blue arrow oriented

shows the location of the

elevators of the fifth floor.

1 .Launch the application

2.Select AR mode.

3.Click on the Settings

button.

4. Select "Arrow"

5.A blue arrow oriented

shows the location of the

elevators of the fifth floor.

Success Criteria

The orientation of

the arrow will be

adjusted correctly.

The arrow should be

always visible.

123

Table D .8: Requirement testing for Feature 2

Feature 2: Track and record the current user location in VR mode

Requirement

1. The tracking technology

should be provided in

VE.

2. A behavior should be

developed to add the

arrow to current user

location repeatedly.

Scenario

1 .Launch the application.

2. Add the arrow.

3.Press Start Record Location

button.

4. Input file name.

5.Navigate in the VE start from

EV building to Hall building.

6.Press StopRrecordLocation

button.

1 .Launch the application.

2.Add the arrow.

3 .Navigate in the VE.

4.An animated arrow points to

the destination while

navigating.

Success Criteria

The location of the

user are recorded in

the GIS file that the

name is specified by

user.

The arrow is always

visible.

124

Table D.9: Requirement testing for Feature 3

Feature 3: Track the current user location in AR mode

Requirement

1. Detect the user's movement

with respect to the paper

markers.

2. Calculate the 3D coordinate

representing the user's

location in the real world.

Scenario

1 .Launch the application.

2.SelectARmode.

3.Select the camera parameters.

4. Navigate in the real world.

1. Launch the application.

2. Select AR mode.

3. Select the camera parameters.

4. Move in the real world.

5. Go in front of the room 9.250

Success Criteria

See video

background of real

world in the VE.

See the room umber

overlaid on the video

while moving in

front of the room

125

Table D.10: Requirement testing for Feature 4

Feature 4: Overlay the 3D animated arrow on the video of real object displayed using the

HMD.

Requirement

Add an arrow to current

location pointing to object

of interest.

Scenario

1 .Launch the application.

2.SelectARmode.

3.Select the camera

parameters.

4.Click on setting button.

5.Select Arrow.

6.Move in the real world.

Success Criteria

See the arrow pointing

to the object of interest

while moving.

126

Table D.l 1: Requirement testing for Feature 5

Feature 5: Overlay a text augmentation on the video of real objects showing the

recognized room number in a building.

Requirement

Overlay a 3D text on the video

showing the room number.

Scenario

1. Launch the application.

2. Select AR mode.

3. Select the camera parameters.

4. Move in the real world.

5. Go in front of the room 5.125

Success Criteria

See the room umber

overlaid on the video

while moving in

front of the room

Table D.l2: Requirement testing for Feature 6

Feature 6: Control the field of view of VE in AR Mode.

Requirement

Adjust the field of view of

virtual scene so that the user

can match it with the field of

view of the digital video

camera.

Scenario

1- Launch the application.

2-Select AR mode.

3- Select the camera parameters.

4- Navigate in the real world.

5 - Change the field of view

Success Criteria

See video the VE

matching the real

world.

127

Table D.13: Requirement testing for Feature 7

Feature 7: Control the transparency of the virtual objects in the virtual scene.

Requirement

Change the transparency ratio

of the virtual objects in the

scene

Scenario

1 - Launch the application.

2 - Select AR mode.

3- Select the camera parameters.

4- Navigate in the real world.

5 - Change the transparency

level using the transparency

slider

Success Criteria

See video the

transparency of VE

changing to different

levels from opaque

to a complete

transparency.

Table D.14: Requirement testing for Feature 8

Feature 8: Control the video-tracking scale.

Requirement

The movement of the user

while the video-tracing is

running should be scaled

based on the selected scale.

Scenario

1 - Launch the application.

2 - Select AR mode.

3- Select the camera parameters.

4- Navigate in the real world.

5 - Change the tracking scale

using the scale slider to 2.

Success Criteria

See video the

movement in VE

matching twice the

movement in the real

world.

128

Table D. 15: Stress Testing

Extreme situation

When the marker is detected

by camera but user moves the

camera very frequently.

Scenario of system usages

1. Launch the application.

2. Select AR mode.

3. Select the camera parameters.

4. Navigate in the real world.

5. Stand In front of marker.

6. Move the camera very

frequently.

System reaction

There should not too

much flickering in

showing virtual

object on the video

of real world.

129

Appendix E: Equipment used in the prototype system

(1) (2) (3)

(4) (5) (6)

(7)

130

Table E.l: Equipment specifications

Device Type

Tablet PC

Laptop

HMD

Number

(1)

(2)

(3)

(4)

Brand

Panasonic

ToughBookCF-18

Toshiba Tecra M4

Dell XPS

I-gl asses
3D Pro

Specifications
Processor: Intel® Pentium® M
Processor ULV 753,
1.20GHz
Memory: 512MB+256MB SDRAM
standard
Hard Disk Driver: 40GB
Display: (XGA) transmissive daylight
readable TFT Active
Matrix Color LCD,
Pointing Device: Pressure sensitive
touchpad with vertical
scrolling support
Battery Life: 7.0 hours
Processor: Mobile Intel® Pentium®
M 1.86GHz,
Memory: 1GB DDR2,
Hard Disk Driver: 80GB,
Display: TFT Active Matrix colour
LCD display w digitizer,
Pointing Device: Touchpad +
Accupoint, Toshiba Tablet Pen,
Battery Life: 3.5 hours

Processor: Intel® Core 2 Duo 2.5GHz
Memory: 3GB
Hard Disk Driver: 200GB
Display: Standard LCD Display with
2MP Camera
Pointing Device: Pressure sensitive
touchpad
Battery Life: 2.5 hours

Resolution: 800 x 600
1.44 Million Pixels per Display
True Black Background
Field of View: 26 Degrees Diagonal
Virtual Image Size: 70" at 13'
Color Depth: 256 Levels per Color
(True 24 Bit)
Weight: < 226 gram

131

Table E.l: Equipment specifications (continued)

Device Type

HMD

Digital Video
Camera

Number

(5)

(6)

(7)

Brand

MicroOptical SV-6

Microvision Nomad
ND2000

Logitech QuickCam
for Notebooks Pro

Specifications

Display Format: 1280 x 1024 pixels,
60 Hz refresh rate
Display Color: 24-Bit.
Field of View: Approximately 48°
horizontal, 60° diagonal,
Input Signal: SXGA format
Brightness (nits): 30 fL max

Display Format: SVGA 800x600
pixels, 60 Hz refresh rate
Display Color: Monochrome Red
Field of View: 17.25° horizontal, 23°
diagonal
Input Signal: SVGA format
Focus Range: Adjustable from 1 feet
to infinity.
Continuous Operation: 8 hours

Resolutions: 640x480 @ 30fps
Features: Built-in microphone
Connectivity: USB

132

Appendix F: Usability Testing

1. Usability and usefulness

Usability and usefulness are related but different. Nielsen (1994) differentiates between

usefulness and usability. "Usefulness is the issue of whether the system can be used to

achieve some desired goal. Usability applies to all aspects of a system with which a

human might interact..."

The usability testing is about usability not usefulness. For example, a system can be

amazingly easy to use but of no use. Finding out if a feature is useful can be during user-

needs assessment stage of the development process. "Usability testing is a poor way to

assess utility" (Dillon, 2003).

2. Usability Definition

"Usability is the broad discipline of applying scientific principles to ensure that the

system/site designed is easy to learn, easy to use, easy to remember, error tolerant, and

subjectively pleasing" (The Usability Company, 2004).

Usability evaluation is a process that aims to identify usability problems in user interface

design (Mack and Nielsen, 1994).

The usability is also defined as "the extent to which a product can be used by specified

users to achieve specific goals with effectiveness, efficiency, and satisfaction in a

specified context of use" (ISO 9241-11, 1998)

3. Usability Guidelines for AR Systems

Joseph L. Gabbard (Gabbard, 2001) from Virginia Tech's Systems Research Center

presented a list of usability guidelines as preliminary results of a research on VE and AR

133

usability engineering. The main guidelines relevant to AR systems are summarized as

below:

(1) Multi-user mode

o Information about other collaborative users should be always available even if

they are physically occluded or located in a remote place.

o In case of multi-user collaborative environment, users should be allowed to

share tracking information.

o In collaborative environment, users should be able to control the type and the

extent of information to share or to keep private.

(2) Navigation

o Interaction techniques (e.g. navigation) should not require noticeable portion

of the user's attention.

o Spatial labels, signs, landmarks, and a compass that shows the North direction

should be included when appropriate.

o The user should be always able to find his/her location, altitude and

orientation. Also, he/she should be able to know how to get to a certain

location.

o Non-direct manipulation should be possible (such as query-based selection) in

case of temporal, descriptive, or relational selection criteria.

o High frame rates and low latency are necessary for 3D target acquisition.

o Accurate representation of location and orientation of graphics and text is

recommended.

134

o For large environments, navigational grid and/or navigational map should be

included.

o Multiple degrees of freedom input is well suited for coarse positioning tasks,

but not for tasks which require precision.

o The number of degrees of freedom of the navigation technique and device

should match the nature of the task. For example, menu selection should not

require an interaction technique or device with more than two degrees of

freedom.

o The trackers should provide enough accuracy for small fractions of degrees in

orientation and for few millimeters in position

(3) Speech Recognition and Natural Language

o The user should be able to record and playback annotations in a quick,

efficient and unobtrusive way. Annotations should be seamlessly integrated.

o The user should be able to edit, remove or save annotations.

(4) Visual Feedback

o The AR system should be responsive and prompt. Timing and response delay

affects user performance.

o The user should be allowed to adjust the visual display (e.g. illumination and

contrast levels).

o The wearable display should be sufficiently comfortable and optically

transparent for the user.

135

(5) Visual clarity

Information displayed on the screen should be clear, well organized, unambiguous

and easy to read.

4. The Evaluation Checklist

The evaluation checklist consists of a set of specific questions intended for usability

assessment. The checklist provides standardized and systematic way of identifying

problem as well as improvement areas and good aspects of the system (Ravden et al.,

1989).

Using this method, the evaluator will be asked to carry out tasks that have been designed

to be performed as part of the evaluation. The tasks should represent the work the system

is designed to perform, thus should test as many of the system functions as possible.

The evaluation checklist is based on nine criteria that a well-designed user interface

should meet (Ravden et al., 1989). These criteria are Visual clarity, Consistency,

Compatibility, Informative feedback, Explicitness, Appropriate functionality, Flexibility

and control, Error prevention and correction and User guidance and support.

5. IsoMetrics

IsoMetrics is a usability inventory developed at the University of Osnabruck (Gediga et

al., 1999), based on seven usability principles from norm ISO-9241 Part 10, being:

suitability for the task, self-descriptiveness, controllability, conformity with user

expectations, error tolerance, suitability for individualization and suitability for learning.

IsoMetrics is available in two different versions; the first is IsoMetrics short, designed for

the evaluation of an existing product, known as summative evaluation, and the second is

136

IsoMetrics long, designed for the evaluation during the development process and known

as formative evaluation.

6. Evaluation heuristics for VE Displays

Recently, a research team from Virginia Polytechnic Institute and State University

(Shiratuddin et al., 2004) has carried out an experiment to compare and evaluate the

effectiveness of five VE displays. The comparison has been based on six VE features.

The effectiveness of these features can be considered as evaluation heuristics.

Quality of visual presentation of the model

Some VE displays provide better quality of visual presentation of the model by

allowing the user to correctly and easily identify different elements and objects of the

model and their sizes. The colors used in the 3D model should be distinctive and the

textures should look as good as expected. Also, the colors should not be too shady or

too dark. In addition, the images resolution should be high enough and evenly

distributed.

Physical comfort

Fatigue is one of the main causes of discomfort. The weight of the HMD can be one

of the reasons of fatigue. Also, using glasses can be bothering for the users and hence

causes discomfort. In addition, losing focus on the 3D model can cause frustration

and discomfort.

Level of realism

The VE display should provide realistic views and images of the environment. 3D

models should be close to the real world (e.g. life-size). The system should provide

wide and surrounding field of view and ease of seeing details and of keeping from

137

walking through walls. Moreover, walkthrough mode can considerably add to the

realism of the system.

Ease of navigation

The simplicity of moving around in the VE is one of the factors that affect the ease of

navigation. Similarity with videogames and existing widely used systems can

substantially improve the easiness of navigation. Walkthrough mode makes the

navigation easier as well as realistic. Navigation techniques should be easy to learn.

Ability to keep one from getting lost

The user should not feel disoriented or lost. Making the user think for a while on

his/her movement and on how to navigate in the environment is one of the factors of

disorientation and lost.

Suitability for making decisions and performing tasks

The ability to easily identify elements of the model, the large field of view and the

walkthrough mode can significantly help in the group decision-making. Also,

accommodating for more than one user at a time added a high sense of involvement

and presence in the VE are considered very suitable for group decision.

138

Appendix G: Ladybug Spherical Camera Interface

Since the video tracking relies on the field of view of the digital video cameras, a new

type of digital camera, called Ladybug spherical digital camera, can be used to get a

higher coverage of the real world environment. A configuration and interfacing method

has been proposed, as shown in Figure G.l, to allow the system to use this type of camera

and keep the same tracking toolkit (ARToolkit and its Java Binding JARToolkit). The

spherical digital camera feeds the application with video frames from five cameras from

the left, right, front, back and top sides. The proposed interface retrieves video frames

from the five cameras, one video frame from each camera at a time through a Java Native

Interface (JNI) that communicates with the cameras through the Ladybug Application

Programming Interface (API). The video frame is then sent to the tracking toolkit

(ARToolkit) through the JNI using JARToolkit to be checked for marker detection. When

a marker is detected, ARToolkit returns a transformation matrix for the detected markers

that defines its position and orientation with respect to the marker detected in the video

frame and returns the identification number of the marker. Knowing the camera which

detected the video frame containing the marker, the position and orientation of the marker

and its identification are then sent to the main application to compute the user location

and orientation. Based on the camera number, the marker identification and the

predefined angles physically separating the cameras, the final user location and

orientation is then computed and the virtual augmentation is displayed.

The video frames from the front camera are rendered as the video of the real world on

which the augmentation is added.

139

Ladybug
API

Java Native Interface Ladybug Spherical
Camera

Video Grabber

Video Frame
from Camera

Video Frame

Marker ID
Transformation
matrix #n

Grab frame from Camera #n

Send frame to ARToolkit

Get transformation matrix #n

Send transformation matrix
#n to application

Video Frames

Transformation
matrix

Tracking Interface

JARToolkit

Java Native Interface

±±

Java
Application

Analyse Frame Detect Marker

ARToolkit

Figure G.l: Structure of a Ladybug API Interface Extension

Note:
- #n: Camera number from 1 to 5
- Transformation Matrix #n: location and orientation of Camera #n with respect to a marker.

140

Appendix H: List of publications

Conference papers:

(1) Mozaffari, E., Khabir, B., Zhang, C , Devarakonda, P., Bauchkar, P., and

Hammad, A. (2005). Interaction Models for Infrastructure Management

Systems Using Virtual and Augmented Realities, International Congress

of Urbistics, Montreal, Canada.

(2) Hammad, A., Mozaffari, E., Khabeer. B., and EL-Ammari, K. (2006).

Framework for Virtual and Mixed Reality Applications in Civil Engineering,

Joint International Conference on Computing and Decision Making in Civil

and Building Engineering, Montreal, Canada.

(3) Hammad, A., Khabeer, B., Mozaffari, E., Devarakonda, P., and Bauchkar, P.

(2005). Augmented Reality Interaction Model for Mobile Infrastructure

Management Systems, 1st CSCE Specialty Conference on Infrastructure

Technologies, Management and Policy Toronto, Ontario, Canada.

Journal papers:

(1) Hammad, A., Mozaffari, E. and Khabeer, B. (Submitted in 2006). Framework

for mixed reality applications in civil engineering, Journal of Computer

Animation and Virtual World.

141

