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ABSTRACT 

Framework for Indoor Video-based Augmented Reality Applications 

Bechir Khabir 

Augmented Reality (AR) has been proven to be useful in many fields such as medical 

surgery, military training, engineering design, tourist guiding, manufacturing and 

maintenance. Several AR systems and tracking tools have been reviewed and examined. 

Taking into consideration the different shortcomings of the available AR systems, a 

framework for indoor video-based AR applications is proposed to integrate four main 

components of AR applications, which are large scale virtual environment, mobile 

devices, interaction methods and video-tracking, in one system. The proposed framework 

benefits from the rapidly evolving technology in virtual modeling by combing GIS maps 

and 3D virtual models of cities and building interiors in one single platform. Interaction 

methods for AR applications are introduced, such as the automatic 3D picking which 

allows for a location-based data access. In addition, a practical method is proposed for the 

configuration and the deployment of video tracking. This method makes use of the XML 

mark-up language to allow for future extensions and simplified interchangeability. An 

implementation of the proposed approach is developed to demonstrate the feasibility of 

the framework. Different case studies are carried out to validate the applicability of the 

system and identify its benefits and limitations. 
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CHAPTER 1 INTRODUCTION 

1.1 GENERAL BACKGROUND 

Augmented Reality (AR) allows interaction with 3D virtual objects and other types of 

information superimposed over real world objects in real time (Azuma, 1997; Azuma et 

al., 2001). The benefits of AR have been discussed in many engineering applications 

including design perception (Dunston et al., 2002, see Chapter 2). The augmentation can 

be realized by looking at the real world using a see-through Head-Mounted Display 

(HMD) equipped with sensors that accurately track head movements (3 displacements 

and 3 rotations) to register the virtual objects with the real objects in real time. The 

augmentation can be a representation of both physical and non-physical objects. Non-

physical objects can be navigation aids such as paths and navigation arrows. Physical 

objects can be existing in the real world but hidden. In this case, the augmentation can 

help the user perceive virtual models of hidden physicals objects or their attributes based 

on the task context. In addition, symbolic representations of objects that are difficult to 

see can be added, such as defects, as will be explained in the Case Study 2 in Chapter 4. 

On the other hand, physical objects can be non-existing in the real world such as future 

plans for new buildings that could be shown as augmentation to help urban planners 

visualize these plans, as will be discussed in Case Study 3 in Chapter 4. 

As opposed to Virtual Reality (VR) applications that allow the user to navigate, using 

input devices, in many different motions and directions such as flying, walking and 

orbiting, navigation in AR applications is tightly associated with the user's physical 

movement. In AR environments, the user's movements are continuously tracked and the 
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virtual augmentation is updated according to his/her current location and orientation. 

Using AR, users do not have to look back and forth at the real world and the computer 

screen to mentally achieve the spatial mapping of the information displayed on the 

screen. This helps them better focus on their actual tasks and improves their efficiency 

and safety. The main challenge of AR is the requirement for accurate 3D spatial 

databases and head tracking. A broadening range of AR applications have been 

demonstrated in many fields such as medical surgery aid, aerospace maintenance guide, 

military training, engineering design, etc. (See Chapter 2). 

1.2 RESEARCH OBJECTIVES 

This research investigates a framework for indoor video-based AR applications. The 

framework includes a practical and simplified method for configuring video-based 

tracking in indoor AR applications. The research has the following main objectives: 

(1) To investigate a framework for indoor video-based AR applications. 

(2) To investigate a practical method for the configuration of video tracking in AR 

applications. 

(3) To investigate the deployment of large scale Virtual Environments (VEs) in AR 

applications. 

1.3 THESIS ORGANIZATION 

This study will be presented as follows: 

Chapter 2 Literature Review: This chapter presents the current situation of AR and its 

applications in different fields. Different tracking technologies for AR are presented as 
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well as different tracking systems and tools. In addition, interaction and navigation 

methods in AR systems are summarized. 

Chapter 3 Framework for indoor video-based AR applications: In this chapter, a generic 

framework for large scale indoor vide-based AR applications is introduced as well as a 

practical method for the configuration and deployment of video tracking for AR 

applications. 

Chapter 4 Implementation and Case Studies: In this chapter, several case studies are 

used to demonstrate the prototype system using the proposed approaches. 

Chapter 5 Summary, Conclusions, and Future work: This chapter summarizes the 

present research work, highlights its contributions, and suggests recommendations for 

future research. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 INTRODUCTION 

VR has been described as a visualization technology that completely substitutes the 

user's view of the real world with a computer generated graphics that represent a view of 

a synthetic virtual world to allow him/her to interact in more natural ways with a world 

that can be, due to its huge size, out of reach (Livingston, 1998). On the other hand, 

instead of completely replacing the user's view, AR systems, keep the original real world 

view and add to it virtual objects that are merged in such a way that they appear 

consistently aligned with the real world and behave the same way as their real 

counterpart. The main hardware components of AR systems are a display subsystem 

through which the user sees the virtual and the real world, an image generation subsystem 

that renders the proper image onto the display subsystem, and a tracking subsystem that 

detects the user's location and orientation in real time. 

2.2 MIXED REALITY (MR) 

Mixed Reality (MR) was introduced by Milgram and Kishino (1994) to depict the 

different combinations of the virtual and real components through a virtuality continuum 

(Figure 2.1). At the two extremes of the continuum are the real world (Figure 2.1(a)) and 

the totally VE (Figure 2.1(d)). In the middle region lies the MR. Near the real world end 

is the AR (Figure 2.1(b) where the perception of the real world is augmented by computer 

generated data. 
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This technology combines the viewing of the real-world or video-based environments 

with superimposed 3D virtual objects that can be manipulated by the viewer. Thus, AR 

supplements, rather than replaces, the user's real world (Virtual Reality Laboratory 

website, 2006). The most recent advancement in AR is a wearable system in which users 

wear a backpack with a portable computer, see-through HMD, and headphones with 

motion trackers to place and manipulate virtual objects as they move within their real 

world (Halden Virtual Reality Center, 2006). The other variation of MR is the 

Augmented Virtuality (AV) (Figure 2.1(c)) which is a term created by Milgram and 

Kishino (1994) to identify systems which are mostly synthetic with some real world 

imagery added, such as texture mapping video, onto virtual objects. 

Mixed Reality 

Real Augmented Augmented Virtual 
Environment Reality (AR) Virtuality (AV) Environment 

Figure 2.1: MR continuum (adapted from Milgram and Kishino, 1994) 

2.3 AUGMENTED REALITY (AR) 

AR systems aim to enhance the user's perception of the real world and the interaction 

with it by augmenting it with 3D virtual objects that are rendered to co-exist in the same 

space. To create the illusion of seeing both the real world objects and the virtual objects 

in the same environment, in other words to blend them together, they need to be 
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accurately aligned; this alignment is called registration (Azuma et al., 2001). Azuma 

(1997) defines AR systems as having the following properties: run interactively and in 

real time, combine real and virtual objects in a real environment, and register them with 

each other. Theoretically, the graphics of the virtual world would flawlessly integrate into 

the real world but, practically, due to many possible imperfection factors, registration 

errors can occur causing jittering and instability in the rendered graphics. 

AR systems can be classified into two categories: optical-based technologies (Figure 2.2) 

and video-based technologies (Figure 2.3). In optical-based systems, a Head Mounted 

Display (HMD), equipped 

with see-through lenses, is used to see the real world combined with computer generated 

virtual objects. The virtual objects are superimposed on the real world by means of 

combiner lenses placed in front of the eyes allowing the user to look directly into the real 

world. On the other hand, in the video-based systems, a closed view HMD is used to 

allow the user to see a video of the real world, captured by a video camera, blended with 

the virtual objects and displayed on opaque monitors placed in front of the eyes. 

Scene 
generator 

Graphic 
images 

Real 
world 

Optical 
combiners 

Figure 2.2: Schematic of an optical see-through HMD AR system (Azuma, 1997) 



I Video compositor I 

Video cameras 
Real 
World 

Combined video 

Figure 2.3: Schematic of a video-based AR system (Azuma, 1997) 

The optical see-through HMD, when compared with the video see-through HMD 

(Azuma, 1997), has the advantage of not limiting the real world resolution by allowing 

the user to directly perceive the real surrounding environment and also has the advantage 

of being safer in case of sudden electricity cut off; but, the virtual objects for 

augmentation cannot completely occlude the real world since they always appear semi-

transparent. On the other hand, the video see-through HMD has the advantage of 

flexibility in merging the real world with the virtual objects and thus allows for a realistic 

occlusion. In addition, the video see-through HMD allows for easier match of brightness 

of the real and the virtual objects since the brightness of both the video frames and the 

VE can be adjusted by the user. Also, in case of video see-through AR, the video frames 
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can be used as an additional source for the user location tracking as opposed to the optical 

see-through that has to rely on other tracking technologies. 

2.4 WHY AR? 

AR has been proven to make the tasks easier to perform in many fields (Brian, 2004), 

such as manufacturing, building and civil engineering and inspection, by augmenting the 

human senses with information that cannot be directly detected by the user's own senses. 

Also, AR can reduce attention switching between the virtual media and the real world 

which helps in eliminating short term memory demands. Reducing attention switching 

can also help in improving the user's safety by keeping his/her focus on the virtual model 

without losing focus on the real world. On the other hand, AR can direct the user's 

attention by providing task information that is chronologically organized according to the 

user's task sequence. By providing the user with only the relevant information to the task 

at the right time, the user can focus on this task more easily. Through AR, information 

becomes more specific, efficient, timely and accurate (Chung, 2002). 

In addition, AR systems, compared to VR systems, are characterized by requiring much 

less computational resources to compute synthetic images to display on real images since 

only the images for augmentation need to be computed. Also, AR systems provide more 

realistic view of the environment, through the real images, which keeps the user 

connected with the real world (Romao et al., 2004). 
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2.5 APPLICATIONS OF AR 

(1) Medical 

One of the medical applications of the AR is during a surgery. Before carrying out a 

surgery, data resulting from Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) scan is gathered to generate a 3D model of an affected area in the 

human body; then, the model is registered with the patient and displayed right on 

his/her body during a surgery which helps the surgical team to find the path to the 

affected area. 

One other medical application of AR is during the ultrasound scanning; the 

ultrasound images are used to create a volumetric representation of the fetus that is 

displayed on the abdomen of the pregnant woman in real time (Azuma, 1997); this 

helps the doctor to get a more realistic view of the fetus during the different 

pregnancy stages. 

(2) Manufacturing, Maintenance and Repair 

During the performance of aerospace maintenance tasks, AR can help in information 

processing by controlling attention and by supporting short and long term memory 

through immediate access to information. Instead of referring to several repair 

manuals, the maintenance technician could use an AR display to see only the 

information pertinent to the repair. In this display, the real equipment would be 

augmented with annotations and step-by-step instructions. For example, the location 

of a hardware that must be removed could be highlighted (Vallino, 1998). 
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Boeing researchers have been developing an AR display to replace the large work 

frames used for making wiring harnesses for their aircraft (Vallino, 1998). Using this 

experimental system, the technicians are guided by the augmented display that shows 

the routing of the cables on a generic frame used for all harnesses. The augmented 

display allows a single fixture to be used for making the multiple harnesses. 

(3) Museum Exhibitions and Tourist Guiding 

AR has been used in a cultural heritage application (Figure 2.4) to provide museum 

visitors with an AR interface to visualize cultural artifacts (Liarokapis et al., 2004) 

The most important advantage of such application is the capacity to exhibit a great 

number of artifacts in a limited space, in this case a table-top environment. 

§s$Sb944.24.!S 
3,$n<J»9tt 

A':od j 

i 

s 
I 

Figure 2.4: Spice jar in an AR museum application (Liarokapis et al., 2004) 
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(4) Entertainment 

AR Pong (Figure 2.5), Cannon Fodder (Figure 2.6), Sphere of Influence and others 

are prototypes of AR games that have been developed by ARPE group (2003); the 

two main components of the games are an AR Gaming Table defined using ARToolkit 

(Kato et al., 1999) paper markers and a rig composed of a webcam, a projector, and a 

high-end consumer-level computer. In the AR Pong, two players physically interact 

with the game using two paddle glyphs (paper markers) to move their paddles and 

two other glyphs are used to calibrate the gaming table to adjust the virtual ball into 

the real physical environment. In the Cannon Fodder game, the players directly and 

physically control the VE using virtual cannon with which to shoot attacking goblins. 

The goblins pass between two cannons attempting to get to a castle. The game ends 

when a certain number of goblins reach the castle. 

Figure 2.5: AR Pong marker setup (ARPE, 2003) 
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Figure 2.6: Cannon Fodder AR game (ARPE, 2003) 

Another example of AR application in entertainment is during a baseball game 

broadcasting. The system places an advertisement in the broadcasted image so that it 

appears on the outfield wall of the stadium. To calibrate the electronic billboard to the 

stadium, images are taken from typical camera angles and from zoom settings to build 

a map of the stadium to locate the spots where advertisements will be inserted. Pre-

specified reference-points in the stadium are used to allow the system to 

automatically determine the camera angle being used and refer to the pre-defined 

stadium map to insert the advertisement in the correct spot. 

(5) Military Training 

One of the applications of AR in military is a Battlefield AR System (Livingston et 

al., 2002) prototype that has been developed for military operations in urban terrains. 

The system consists of a wearable computer, a wireless network system, and a 

tracked see-through HMD. The system is aimed to assist the war-fighter by 

improving the situational awareness for effective military operations in urban 

environment. A 3D model of objects in the real environment, that is used to generate 
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the registered graphical overlay, is stored in a shared database available for all users. 

This database contains information about the objects, e.g., threat classification and 

general description, etc. Information about the objects' relevance to each other and to 

the user's task is also stored in the shared database. This system can be used to 

facilitate collaboration between different mobile users as well as between them and a 

command center through the automatic information distribution as shown in Figure 

2.7 where the a user location is highlighted and made available to all remote users. 

Figure 2.7: A remote user highlighted by a wireframe box (Livingston et al., 2002) 

(6) Engineering Design 

A prototype system has been proposed (Wang et al., 2004) for design review 

collaboration in a MR environment: MRCVE (Mixed Reality-based Collaborative 

Virtual Environments). The system has been aimed to help ensure the quality of 

designs by amplifying the effectiveness of the design review team. Two scenarios for 

the system have been proposed: the first scenario consists of a MR-based 

collaborative design face-to-face conferencing where the 3D designs appear in space 
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among the designers, reviewers and customers. The designs can be modified by some 

users who are equipped with 3D CAD functionalities. The second scenario consists of 

an MR-based collaborative virtual space conferencing where a workspace can be 

setup to allow 3D CAD models to be uploaded, edited or downloaded through any 

client computer. 

In addition, an AR-based platform has been proposed (Behzadan et al., 2006) to 

generate a mixed reality view of a real world construction site with virtual 

construction CAD models in an outdoor environment. The proposed platform uses 

HMD, Global Positioning System (GPS), orientation tracker and a portable computer. 

One of the prototypes of the system that has been developed is UM-AR-GPS-

ROVER; it has been used to demonstrate a chronological simulation of scheduled 

construction activities for an erection of a structural steel frame. This prototype 

(Figure 2.8) allows to, interactively, place 3D CAD models at any selected location in 

an outdoor environment. 

Figure 2.8: AR bridge construction model (Behzadan et al., 2006) 
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The automobile industry has been, also, one of the fields of application of AR (Frund 

et al., 2003). An AR-based application has been developed to be used at the design 

phase of new cars. The application displays virtual car components superimposed on 

real cars to show design variants or to support design reviews (Figure 2.9). Using this 

application, the user can select a virtual component from a list of virtual components, 

presented in a menu, and place them on a real car; the hand gesture is used to interact 

with the AR scene. 

Figure 2.9: Virtual car front superimposed on a real car model (Frund et al., 2003) 

(7) Robotics and Telerobotics 

In the domain of robotics and telerobotics an augmented display can assist the user of 

the system. A telerobotic operator uses a visual image of the remote workspace to 

guide the robot. ARGOS (Milgram et al., 1995) is a tool that has been developed to 

improve the operator's comprehension of the remote environment and to provide an 

interactive modeling of the remote world. This tool uses a stereo-graphic cursor as a 
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probing tool that can be positioned anywhere in the stereoscopic video scene. It 

consists, also, of a virtual manipulator that is a full stereographic 3D model of the 

remote robot being controlled. The manipulator is then superimposed onto the real 

robot to be remotely operated within the real 3D work space. 

2.6 INTERACTION IN AR ENVIRONMENTS 

Slay et al. (2001) separates MR interaction techniques into two categories, exocentric and 

egocentric metaphors. Exocentric interaction occurs when the user interacts with the 

scene from outside the VE. Egocentric interaction occurs when the user is imbedded in 

the VE. There may be far more possible actions that can be performed on objects than 

such Graphical User Interfaces (GUIs) can realistically provide (Kaiser et al., 2003). 

Kaiser argues that most prior approaches have placed too much functionality on a too 

impoverished communications channel (3D arm/hand motions), and that by incorporating 

multimodal interaction, the burden of various interactive functions can be off-loaded to 

appropriate modalities, such as speech and gesture, in a synergistic fashion. In particular, 

by incorporating speech into the interface, the user could describe unseen/unknown 

objects and locations or invoke functions, while his/her hands and eyes may be engaged 

in some other tasks. However, unlike direct manipulation interfaces, multimodal interface 

architectures must cope first and foremost with uncertainty. 

In addition to the challenges posed by 3D interaction, AR interaction adds the presence of 

uncertainty caused by the possibly imperfect knowledge about the components of the 

system and the low accuracy of the tracking devices. One of the main functionalities in 

the AR environments affected by uncertainty is the object selection. Kaiser et al. (2003) 
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proposed multi-modal interaction to disambiguate the object being selected by the user. 

Kaiser's system integrates speech, head tracking and glove-based finger tracking for 

gesture recognition to allow the user to select objects using vocal commands, head and 

hand movement, and 3D virtual volume. 

Tracking uncertainty is behind one of the major issues in AR: the registration error. To 

overcome this issue, Coelho (2005) proposed an uncertainty aware system that deals with 

uncertainty using registration error estimates. To allow the user to select objects, this 

system detects the collision between the estimated registration error region of the pointer 

and the region of each object in the scene. 

Interactivity, on the other hand, refers to all types of interaction an application can 

support. Unlike VR systems, AR can support all kinds of interaction devices as well as 

tangible interaction mechanisms (Liarokapis, 2006). But, interactivity cannot always be 

beneficial to the user in the case of high workload conditions (Chung, 2002); in such 

conditions, a very high interactive system can cause a decrease in the user performance. 

2.7 NAVIGATION AND WAYFINDING IN AR ENVIRONMENTS 

Navigation is defined as the process of moving in an environment; this definition has 

been extended to include the process of wayfinding, which is the process of finding one 

or more routes to a destination in an environment (Liarokapis et al., 2006). 

Mobile, wearable and Location-Based Computing (LBC) have emerged in the AR 

navigation and consequently have posed new challenges related to the unpreparedness for 

the indoor and outdoor environment. 
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Unlike VR environments that have to provide foil sensory information to the user to be 

able to carry out a way finding task, AR environments provide just maps or directions to 

facilitate the task and keep the sensory inputs to the real world. Since the navigation 

process is cognitive in nature (Brian, 2004), a good representation of spatial knowledge 

can be significantly beneficial to the user. Spatial knowledge can have three different 

representations: (1) Landmark knowledge which consists of descriptive information of 

places in the environment that are clearly distinguishable; (2) Route knowledge which 

consists of the knowledge of mentally defined routes between different locations; and (3) 

Survey knowledge which consists of a mental map of the environment (Brian, 2004). 

In wayfinding, the user must be able to effectively move in the environment to obtain 

different views and acquire an accurate "mental map" of his/her surroundings 

(Mozaffari, 2006); hence, a virtual 2D map can help the user locate him/herself and 

decide on the next move to get to the destination. Map orientation is, also, significantly 

important in helping the user during navigation. The orientation of the map can be either 

egocentric, which means the user's forward orientation is always up, or allocentric, which 

means the north direction is always up. For environments where the user is directly 

represented and participating, such AR environments, the literature suggests that the 

egocentric map orientation is more convenient (Brian, 2004). 

Reitmayr et al. (2004) developed a tourist guide AR system that guides the user from 

his/her current location to a destination through the shortest path. The shortest path is 

displayed in the form of 3D cylinders, linked by arrows, augmenting the real world scene. 

The path is dynamically computed based on the user location that is automatically 

updated while the user is moving. The system allows the user to browse information 
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about the different touristic sites and also allows different concurrent users to collaborate 

and communicate information. ANTS is another AR navigation system (Romao et al., 

2004) that can be used to explore physical structures and natural elements of the 

surrounding real world for environmental management purposes. The system works on 

desktop computers and Personal Digital Assistants (PDAs). The ANTS system 

architecture is made up of three main components: a mobile user AR module that 

communicates with a 3D model server and a geo-referenced database. 

Since, in AR, virtual objects are blended and registered with real world objects, the effect 

of perceiving depth in the virtual augmentation has been found enhancing for the AR 

navigation. For example, the virtual objects need to be occluded by real objects that are 

nearer to the user and need to be lit by the same light sources of the real world (Tatham, 

1997) and have consistent shadows. In their assessment of the usefulness of depth cues 

and the benefits of stereoscopic displays, Sands et al. (2004) concluded that extra sources 

of depth information (in this case, addition of shadows and coordinates) can significantly 

increase the accuracy of the selection of targets, rendered on a stereoscopic display, using 

3D cursor. 

2.8 TRACKING TECHNOLOGIES, TOOLS, AND SYSTEMS 

2.8.1 Tracking Technologies 

(1) Magnetic Trackers 

A magnetic tracker consists of a transmitter and the sensors. The tracking system 

measures the strength of a set of magnetic fields generated by the transmitter. Four 

magnetic fields have to be measured: the environmental field, which includes the 
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Earth's magnetic field, and three orthogonal fields. At each sensor, twelve 

measurements are taken for each field. All this information is used to compute the 

position and orientation of the sensor with respect to the transmitter. 

Magnetic systems are considered robust, fast and inexpensive compared to other 

technologies (Livingston, 1998). 

(2) Mechanical Trackers 

Mechanical trackers are made up of jointed mechanical arms. The orientation and 

position of each joint of an articulated arm are tracked using rotary transducers 

(Livingston, 1998). 

Mechanical tracking systems are limited to tracking only one object. They have been 

used widespread for hand tracking as well as tracking all parts of the human body. 

The accuracy of the measurements of these systems is considered excellent when 

compared to the magnetic system. But, on the other hand, they may limit the freedom 

of movement of the user due to the arms attached to the human body (Brunner et al., 

2003). 

(3) Acoustic Trackers 

Combining a given room temperature and a time of flight of ultrasonic sounds, the 

acoustic tracking system computes a three degrees-of-freedom position of a 

transmitter. The system is made up by a transmitter carried by a user and a series of 

sensors. 
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Acoustic systems suffer from environmental interference like the temperature 

variation from possible obstructions between transmitter and receiver. These systems 

are limited in accuracy and speed. 

(4) Inertial Trackers 

The inertial trackers measure velocity and acceleration and use the rigid-body 

kinematics to compute the change in position and orientation based on an initial 

position. To get a full 6-DOF tracking, this system has to be combined with other 

tracking system that provides an accurate initial position. 

Since the inertial trackers make relative measurements, they accumulate error over 

time which causes drifting in space. Misalignment with gravity vector is an additional 

cause of error. A tilt error of one degree in ten seconds can cause about nine meters of 

position error (Brunner et al., 2003). 

(5) Radio Waves Trackers 

Radio waves tracking systems measure the time of flight and phase difference of 

radio waves. An example of these systems is the Global Positioning System (GPS) 

which provides tracking over the whole surface of the Earth. The GPS uses orbiting 

satellites to transmit radio waves that are tracked by a receiver. Twenty-four earth-

orbiting satellites are used to guarantee at least four of them are available at any time 

anywhere on the earth. GPS is widely used for mobile mapping and data collection 

tasks thanks to its availability, low cost and good accuracy. 

(6) Optical Trackers 

Optical trackers use sensors to detect light and measure angles to determine the user's 

pose. The target light to be detected by the sensors can be emitted and powered, 
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known as active target, or reflected (not powered), known as passive target. Examples 

of active targets are the light-emitting diode and the infrared LEDs (ILEDs) (Brunner 

et al., 2003). Examples of passive targets are reflective materials and high contrast 

patterns. The targets are detected through simple video cameras or lateral-effect 

photodiodes. On one hand, optical trackers are considered highly accurate and well 

suited for real-time systems for their high update rate (Brunner et al., 2003). On the 

other hand, these trackers require a clear line of sight between the sensor and the 

target and suffer from obscuration difficulties. 

2.8.2 Video Tracking tools and systems 

(1) ARToolkit 

ARToolkit is one of the most widely used fiducial (also called marker) tracking 

systems. It was developed in 1999 by Hirokazo Kato and Mark Billinghurst at the 

Human Interface Technology Lab of the University of Washington. ARToolkit 

supports full pose calculation and fiducial identification. It is freely distributed as an 

open source software library written in C and C++ (ARToolkit website, 2005). 

ARToolkit has been the core of a wide variety of AR systems and applications, that 

use vision-based tracking, thanks to its ease of use, documentation and free 

distribution (Middlin, 2002) 

ARToolkit allows video tracking of markers using a video camera and computer 

vision algorithm to calculate the camera position and orientation relative to physical 

markers in real time. Some of the features of ARToolkit are: single camera 

position/orientation tracking, the ability to use any square marker patterns, easy 
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camera calibration, and tracking speed suitable for real-time AR applications. The 

tracking range can be improved by varying the size of the markers (Hammad et al., 

2005). 

ARToolkit markers are square shaped images surrounded by a predetermined black 

band. The black band is used to detect candidate images from the captured ones. 

Then, the interior image is used to find the final candidate. The fiducial relative 

position and orientation with respect to the camera is computed using its four corners. 

The marker recognition algorithm (Rekimoto, 1998) used by ARToolkit consists of 5 

steps: (1) Binarization: each captured video image is binarized using the adaptive 

threshold method; (2) Connected component Analysis: the system searches for 

connected regions of binary-1 (black) pixels. Then, for each region a heuristic 

checking is done to select code candidate areas; (3) Code frame fitting: for each 

region a quad-tangle is fitted on the frame of the region using the least-square 

method. Then, transformation parameters are computed based on the four corners of 

this quad-tangle; (4) Decoding and error checking: a corresponding image is 

projected on the code rectangle space then a Cyclic Redundancy Check (CRC) is 

done to get the recognized code ID; and (5) Camera position and pose estimation: the 

recognized code frame is used to estimate the camera pose. ARToolkit allows using 

multi markers at the same time (Hammad et al., 2005). 
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While there is no systematic process for designing ARToolkit fiducials, some 

characteristics are recommended to get a reliable and acceptable tracking (see Section 

3.3.2 of Chapter 3). 

Figure 2.10: An ARToolkit test example (ARToolkit website, 2005) 

Figure 2.10 shows an example where two paper markers are randomly placed on a 

table. Each marker is detected using ARToolkit and virtual 3D objects are rendered. 

The virtual objects remain displayed on the markers as long as the markers are 

properly visible even if they are moving. The detection range of the markers and the 

accuracy of the tracking depend on many parameters, as discussed in Section 3.3.6 of 

Chapter 3, but the main parameters are the marker edge size, the slant in the depth 

direction and the distance of the camera from the marker. Figure 2.11 shows the 

effect of the distance from a marker of 80 mm edge length, and the slant in the depth 

direction on the accuracy of the tracked positions. The further the marker is from the 

camera the higher is the error in the position and the more sensitive to the slant the 

tracking becomes. 
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Figure 2.11: Tracking accuracy with respect to distance from a marker of 80 mm 

Figure 2.12: Testing the effect of distance on ARToolkit accuracy (Adapted from 

Pierre et al., 2002) 

Figure 2.12 shows the configuration of an experiment carried out to test the accuracy 

of ARToolkit where the camera is a placed at relatively a long distance ranging from 

1 to 2.5 m (Pierre et al., 2002). The marker edge size is 20 cm and the height of the 
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camera with respect to the marker plane is 1.34 m. The results of the test in Table 2.1 

show an increasing error value that is directly affected by the increasing distance (d) 

of the camera from the marker. 

Table 2.1: Results of the accuracy test of ARTookit (Pierre et al., 2002) 

d(m) 

Error (mm) 

1 

±14 

1.5 

±18 

2 

±22 

2.5 

±27 

(2) Cybercode 

Cybercode was developed by Jun Rekimoto and Yuji Ayatsuka (Rekimoto et al., 

2000) at Sony Computer Science Laboratories in 2000. The Cybercode is a tracking 

system based on two dimensional barcode fiducials. Cybercode can be used to 

determine the 3D positions and IDs of tagged objects. The fiducial are required to 

have four black corners. 

(3) ARTag 

ARTag is a marker detection system developed by Mark Fiala (2004) at the Institute 

for Information Technology of the National Research Council. ARTag has been 

inspired from ARToolkit and is claimed to have lower false positives and lower inter-

marker confusion rates. According to ARTag documentation, ARToolkit is faster than 

ARTag when a small number of patterns are loaded, but for larger number of patterns 

ARTag is faster. Unlike ARToolkit, ARTag does not use pattern file to detect 

markers, instead, it uses digital algorithm. ARTag offers the option to use marker 

arrays to allow different markers of the array to be detected even when one or more 

are occluded. 
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(4) Mixed Reality Toolkit (MXRToolkit) 

MXRToolkit is a Software Development Kit (SDK) for MR applications; it consists 

of a set of libraries for fiducial video tracking and for 3D model rendering. 

MXRToolkit also provides, through its interfaces, much functionality for low-level 

tracking such as estimation algorithms, optimization, and networking and geometry 

routines. One of the applications built with MXRToolkit is 3DLive; it consists of an 

AR system that captures a real person from many viewpoints then superimposes a 3D 

image of the person onto the fiducial marker in real time (MXRToolkit website, 

2005) 

(5) Mixed Reality Interface Toolkit (MRIT) 

MRIT is an AR interface toolkit developed at the Department of Informatics in the 

University of Sussex (Liarokapis et al., 2004). MRIT has been proposed to be used as 

an exemplar for the development of AR applications; it is claimed to provide realistic 

audio-visual augmentation, such as shadows, without sacrificing its efficiency. MRIT 

fiducial tracking is based on the wide spread toolkit: ARToolkit. Two display 

methods are supported in MRIT: the monitor based displays and the video see-

through displays with a resolution of 800x600. The tracking robustness of this system 

is directly affected by ARToolkit registration errors. 

(6) OSGAR 

OSGAR is a toolkit developed at Georgia Institute of Technology for the 

development of AR applications (Coelho, 2005); this system automatically computes 

estimates for the tracking registration errors and makes them available for the AR 

application designer to be used in setting up the different augmentations 
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corresponding to the different registration errors. OSGAR is claimed to be an 

adaptive AR system that is aware of the uncertainty in the real world. 

(7) Studierstube 

Studierstube is an environment for the development of collaborative AR applications. 

Studierstube is built on top of the Open Inventor graphics API which is, in turn, built 

on top of OpenGL (Ledermann et al., 2002). Through Open Inventor, Studierstube 

claims to provide an object-oriented framework for the creation of interactive 3D 

graphics applications. Studierstube is a collection of Open Inventor extensions, 

providing support for creating AR applications. Studierstube supports different input 

and tracking hardware through its tracking middleware, called OpenTracker, as an 

additional layer between the possibly heterogeneous tracking hardware and its API. 

The different display devices that can be used with Studierstube are See-through head 

mounted display, Virtual Table (VT) and other back-projection display surfaces (e. g., 

a stereo wall or CAVE) and semi-transparent mirror setups, like the Virtual 

Showcase, that reflect the projected image from a half-silvered mirror. 

While Studierstube uses XML as an input language for tracking configuration and 

uses Open Inventor scripts to load and create 3D models, it does not allow connection 

between the virtual models and any database management system (DBMS) such as 

Oracle or SQL Server. In addition, Studierstube is difficult to configure due to the 

lack of detailed documentation and tutorials and the required manual calculations. 

Furthermore, Studierstube has been found unable to load VRML files of large size 

such as buildings. 
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(8) AM1RE 

AMIRE is a framework for the design and implementation of MR applications 

sponsored by the Information Society Technologies program of the European Union 

(AMIRE website, 2007). AMIRE has been aimed to allow content experts to design 

and implement mixed reality applications without detailed knowledge about the 

needed MR technologies. In this framework, object-oriented properties are used as a 

generic mechanism for configuration. Different components of the designed MR 

application communicate through communication slots. AMIRE allows dynamically 

loading and replacing C++ and XML libraries at run time. The 3D virtual models are 

loaded in the form of 3ds files (Hoffmann, 2001). 

2.9 SUMMARY AND CONCLUSIONS 

In this chapter different variations of MR have been explained focusing on AR. The 

benefits of AR and its applications have been presented as well as the different tracking 

technologies and the tracking tools used for indoor video-tracking. In addition, several 

AR systems have been reviewed from the literature, but most of them share the following 

limitations: 

(1) Difficult configuration: The main AR systems that have been tried require significant 

amount of manual calculations during the configuration of the tracking to be able to 

register the real world with the VE. 

(2) Platform dependency: Most of AR systems that have been found in the literature have 

been written in the C++ programming language which is a platform dependant 

language. 
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(3) Lack of GIS integration: The existing AR systems do not use Geographic Information 

System (GIS) maps; as a result, they do not consider geographic information in the 

registration of the virtual models with the real world and they do not use a unique and 

global coordinate system; instead, many local coordinate systems in the different 

locals, such as rooms, corridors, etc., have to be defined and used in the computations 

required to configure and deploy the tracking. In addition, not using GIS maps 

prevents exchanging geographic data with other systems. 

(4) Small scale: The existing AR systems have been used for small environments such as 

one building or just few floors. Consequently, the application range, in which these 

systems can be used, is limited. 
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CHAPTER 3 FRAMEWORK FOR INDOOR VIDEO-BASED 

AUGMENTED REALITY APPLICATIONS 

3.1 INTRODUCTION 

As discussed in Chapter 2, the existing video-based AR systems have not been intended 

for large scale environments and do not use GIS maps; in addition, these systems require 

time consuming manual calculations for the configuration and registration of the tracking 

markers. 

Taking into consideration the aforementioned shortcomings of the different reviewed AR 

systems, a framework for indoor video-based AR applications is proposed in this chapter. 

The framework is based on four main components being large scale virtual models, 

mobile devices, video tracking and interaction. The proposed approach aims to allow the 

use of large scale virtual models in AR applications, as well as to provide a practical and 

easy configuration and deployment of markers for video-tracking. 

3.2 PROPOSED FRAMEWORK 

The proposed framework (Figure 3.1) combines four main components to form a basis 

for indoor video tracking in large scale AR applications. The four components are large 

scale virtual models, mobile devices, video tracking, and interaction. In addition to the 

common 2D plans and drawings, a large number of architectural engineers design 3D 

virtual models of exteriors of buildings as well as interiors. This framework proposes, for 

the creation of the large scale VE, the use of 3D virtual models of the interior and exterior 

of buildings provided in a standard format such as VRML, GIS maps and Digital 

Elevation Models (DEMs) of terrains. 
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Figure 3.1 Summary of the proposed framework 
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Mobile devices form one of the components proposed in the framework to allow the user 

to move inside buildings and to be able to see the augmentation on the video of the real 

world. User interaction is, also, one of the main components of the framework. It is based 

on five sub-components: visualization and feedback, control, navigation and access. The 

fourth component of the framework is video tracking. In this framework, the user 

location and orientation are tracked using real-time video recognition of geo-referenced 

fiducials. 

3.2.1 Large scale 3D virtual model 

The large scale VE is mainly built based on several GIS layers. First, the exterior contour 

representation of buildings is constructed and added to a building layer (Figure 3.2(a)). 

GIS attributes for each polygon in the layer are used to specify different base levels and 

the heights. Another layer is also added to represent pedestrian areas surrounding the 

buildings as shown in Figure 3.2(b). Objects of interest such as traffic lights, street lights 

and street furniture, are added to the 3D model as an object layer (point layer) in the GIS. 

The facades of buildings are captured in images then applied on virtual buildings using 

texture mapping techniques. The locations of the images are retrieved from the GIS layer 

of the exterior of the buildings. The different GIS layers are then transformed into a large 

scale 3D model of the environment. The layers are used to automatically extrude the 2D 

shapes into 3D shapes, to add the texture mapping, and to insert the 3D objects into the 

virtual 3D model. An example of the resulting 3D model is shown in Figure 3.2(d). The 

interior representation of a building is loaded into the VE in the form of 3D CAD models 
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that have been transformed from 2D drawings, as shown in Figure 3.2(c), to 3D models 

and translated to a suitable format, such as the VR Modeling Language (VRML). 
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(c) Floor Plan (for extrusion) (d) Rendering example of a building exterior 

Figure 3.2: Example of data used in creating the 3D 

Figure 3.3(a) shows an example of a floor in a building and Figure 3.3(b) shows an 

example of a Heating, Ventilation and Air Conditioning (HVAC) system of a floor. To be 

able to load the model of the building into the virtual 3D model at the right global 

location, two diagonal points from the VE are selected to compute the location and 

orientation of the CAD model of the building interior. The coordinates of the two points 
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are used to calculate the transformation matrix, including rotation, scaling and translation, 

from the local coordinate system of the CAD model to the global coordinate system of 

the VE including the difference that may be in the orientation of the coordinate axes used 

in different visualization software. 

In addition to the geometry, each element of the buildings and the objects in the virtual 

model is linked to a unique record in a database where the attributes, related to it, are 

saved. The database can serve as a lifecycle database for cost, scheduling and other 

information of maintenance, inspection and other activities. 

(a) Model of one floor <b> M o d e l of an HVAC system 

Figure 3.3: Examples of detailed 3D CAD models 

3.2.2 Mobile Devices 

Mobile devices make up one of the main components of indoor AR environments. They 

are essential for real-time AR applications since the user location is tracked while moving 

and the view, displayed for the user, needs real-time update to reflect the changes in the 

location. In this framework, the proposed mobile devices consist of a Tablet-PC equipped 

with a high-resolution digital video camera, an HMD and a wireless network card; this 

latter would allow the user to exchange information with other users through a wireless 

local area network and the Internet. This feature is crucial in case of emergency where the 
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user needs real-time guidance and collaboration with other users; in this case, the 

different users would be able to see their current locations and also get assistance from a 

remote office where the real-time locations of the all the user can be spotted. In addition 

to the aforementioned mobile devices, this framework proposes the use of single or 

multiple (spherical) digital video cameras, which is a new type of digital video cameras, 

to be able to cover a wide field of view in the captured video frames, and hence make the 

video tracking more reliable and stable. 

3.2.3 Video Tracking 

As mentioned in the conclusions of Chapter 2, the main available video tracking toolkits 

have been found difficult to configure and to deploy. They all require time consuming 

manual calculations to find the real world locations and orientations of the tracking 

markers and to register them with the right virtual world location and orientation. The 

problem is manifested especially when the toolkits are deployed in larger areas, such as a 

whole campus or even one large building. 

In this framework, an innovative and practical approach has been proposed to facilitate 

the configuration and deployment of the video tracking for AR applications by 

eliminating all manual calculations. In the proposed approach, the 3D virtual models of 

the deployment areas are used not only to be displayed (partially or totally) as 

augmentation but also to compute the locations and orientations of the markers and to 

register them with the real world. Since the 3D models are based on real GIS maps and 

are all in the same coordinate system as the real world, absolute real world locations of 

the markers are automatically computed by the system. During the tracking, the absolute 

locations of the markers simplify the system computation of the user absolute location 
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which, in turn, simplifies locating the user inside a building as well as in the global real 

world coordinate system. 

The virtual models are also used to automatically compute the relative locations and 

orientations of the markers to allow the user to easily locate them in the real world. 

The proposed system tracks visual markers placed at configured locations in the real 

world. The markers are monochrome patterns printed on white papers inside black 

squares. Before using the patterns, they are captured by the user using a tracking toolkit 

called ARToolkit and a digital video camera then saved in binary pattern files. The 

binary pattern files are preloaded into the system prior to the tracking. 

The proposed approach is made up of two phases: configuration phase and tracking 

phase. In the configuration phase (see Section 3.3 for details), the user makes use of the 

system to interactively specify the locations and orientations of the maker relative to the 

virtual model and then pastes them in their appropriate locations. Since the VE coordinate 

system is the same as the real world coordinate system, the measurements and positions 

in the virtual world can be used in the real world without any scaling or conversion. In 

the tracking phase (see Section 3.4 for details), based on the absolute real world locations 

and orientations of the markers and the relative user locations and orientations with 

respect to the markers, the absolute user location and orientation within the real and 

virtual world environment are automatically computed in real time and the user's virtual 

view is updated accordingly. 
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3.2.4 Interaction 

The proposed user interaction is based on the following components (Barrilleaux, 2001): 

(1) visualization and feedback, (2) control, (3) access and navigation, and (4) task-

oriented augmentation. 

The proposed framework aims to facilitate the user interaction with the real and the 

virtual world in AR applications. It improves the data collection and access by allowing 

the user to interact with geo-referenced infrastructure models to automatically retrieve the 

necessary information in real time, based on their location and orientation, and the task 

context. 

(1) Visualization and feedback 

Displaying graphical details: The proposed system graphically displays to the user 

detailed information about a room in a building, such as the direction to that room, the 

working hours of the staff, the status of the personnel (busy, in a meeting, will be right 

back, etc.) retrieved in real-time from a central database. This can happen in a proactive 

way based on spatial events, such as the proximity of the user to a door of an office. This 

helps focus the user's attention on specific locations. The user of the system can control 

the level of details of representing objects depending on his or her needs. 

Displaying non-graphical information and instructions: The user interface can provide 

links to documents related to the building, such as, regulations and specifications. In 

addition, the system allows for displaying context sensitive instructions on the steps 

involved in a specific task, such as instructions about submitting an application form to 

an admission desk in a university. 
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(2) Control 

The proposed system interprets the user input differently depending on the selected 

feature and the context. For example, clicking with a pointing device can result in 

selecting a menu option or in picking an object from the 3D virtual world; it can also 

result in the creation of a virtual object at the picked location to be used as an indicator 

for future reference (see Chapter 4, Case Study 2). In addition, the user can directly 

control the system by physically moving. In this case, the system tracks his/her physical 

location and orientation and updates his/her view point accordingly. 

(3) Access & Navigation 

(a) Access: Accessing data is directly achieved through a location based behaviour that 

runs real-time video tracking and triggers the automatic picking feature. The user just 

needs to physically walk or move to the object for which information is needed then 

stands in front of it for a short period of time. Then, relevant data will be automatically 

retrieved from the database and displayed as an augmentation to the real world. Other 

information can also be retrieved on demand through manual picking or by using menus 

and buttons. 

(b) Picking Behavior 

The picking behavior consists of using pointing devices to pick 3D locations from the 3D 

virtual model. It also permits the user to get absolute location in the real world coordinate 

system without having to perform any conversions. 

The picking starts when the user clicks on the scene; once a click is detected, the 2D 

screen coordinates of the pointing device are retrieved; a 3D location corresponding to 
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the 2D coordinates is computed by referring to the current user view point in the virtual 

world. A picking ray (other picking shapes such as cylinders and cones can be used) is 

created and extends from the 3D user location at the view point to the 3D model. A set of 

vertices where the ray intersects with the model are returned in a list. The closest vertex 

to the user view point is computed and used to get the closest 3D object; then information 

about the object is fetched from the database. To each 3D object in the 3D virtual world 

corresponds an ID that links it to a corresponding record in a database. The database 

contains relevant information about each 3D object in the virtual world. 

Figure 3.4 shows an example of picking a wall from a 3D virtual model of a building. 

The picking ray extends from the view point to the 3D model. The first object 

encountered by the ray is the wall which makes it the picked object. 

Figure 3.4: Picking Behavior 
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(c) Automatic Picking 

The automatic picking process consists of six main operations as shown in Figure 3.5: (1) 

Tracking user location: the user location is continuously tracked using the indoor video 

tracking; (2) Tracking user interaction: The user interaction is tracked to find out if the 

system has entered in an idle state. Whenever the user moves or generates an event (e.g., 

using the pointing device), a trigger is automatically launched to reset the idle time; 

Tracking information Idle time 

Location Tracking 

Do: Update user view point with 
the new location if different 
from old location. 

Reset 

1 
Timer checking 

Do: Calculate elapsed time 
Exit: Elansed time = 2 sec 

Pick Reset 

Automatic picking 

Do: Pick object located at the 
center of the scene and get 
object ID. 

Input processing 

Do: Process input (update 
viewpoint, save data in 
database) 

Element ID 
retrieved 

Pointing device input Pointing device input 

Information display 

Do: Retrieve relevant information 
about the picked element and 
display it. 

Element data 
retrieved 

r \ 
Information input 

Do: Input new information 
about the picked element by 
the user. 

Figure 3.5: Automatic picking state machine 

(3) Computing idle time: The idle time is calculated by comparing the current system 

time with the last system time when the idle timer was restarted. If the idle time is two 

seconds, then the automatic picking is launched; (4) Automatic picking: The element that 

lies at the center of the scene is the one that will be automatically picked. The picking 

consists of creating a picking tool, selecting a picking mode, creating a picking shape, 
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picking the closest element, calculating the intersection point, and retrieving the picked 

element; (5) Displaying relevant information: Based on the ID of the picked element, a 

query is generated and executed on the database. The returned data is displayed as a text 

augmentation; (6) Information input: Based on the displayed data about the picked 

element, the user is able to input new information about the element and save it in the 

database for future reference. 

(d) Navigation: In addition to the conventional navigation systems based on 2D maps, 

the system can also present navigation information in 3D. Within a specific task, the 

system can guide a user by providing him/her with 3D navigation arrow and focusing 

his/her attention on the next element of the task. For example, in emergency situations, 

the system displays 3D arrows to navigate the user to the closest location of an 

emergency exit. The system may give the user some tips about the emergency type and 

the recommended actions to take, thus reducing the risk of injuries. 

The 3D arrows displayed for the user show him/her the path to any object of interest. The 

arrow gets oriented from the current user location to the next closest point on the path to 

the target. The different paths are predefined based on the floor plan and preloaded into 

the system. If the user cannot take a straight path to the target object because of an 

obstacle, he/she can take a different path because the system will dynamically guide 

him/her, based on his/her changing location, to the closest point on the path. 

(4) Task-oriented Augmentation 

Augmentation can be adjusted by the system based on the task selected by the user. The 

task context affects the type of objects (physical and/or non-physical) to be displayed as 

augmentation. For example, in the case of navigation guidance, only non-physical 
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objects, such as 3D arrows, are shown as augmentation to allow for minimum occlusion 

of the real world. On the other hand, in the case of urban planning, that will be discussed 

in Chapter 4, the virtual models of future planned buildings can be shown as 

augmentation. 

3.3 TRACKING PROCESS 

3.3.1 Registration 

The registration refers, as described in Section 2.2, to the alignment of the real world 

objects with the virtual world objects in the same environment to create the illusion, for 

the user, that they both co-exist in the same world. Because of the high accuracy 

requirements of the registration, numerous errors can occur. These errors can be divided 

into two types: static and dynamic. Static errors are the ones that cause registration errors 

even when the user's viewpoint and the objects in the environment remain completely 

still. Dynamic errors are the ones that have no effect until either the viewpoint or the 

objects begin moving (Drasic et al., 1996). 

3.3.2 Marker Requirements 

As was mentioned earlier, a marker consists of a custom-drawn pattern printed inside a 

black square on white paper. Using a toolkit and a camera, the patterns are captured and 

saved in binary files. To get robust marker detection and a high recognition performance, 

the patterns must have the following characteristics (Charles et al., 2002, ARToolkit 

website, 2004): 

(1) Unique within the used set of patterns: The patterns should be unlikely to be confused 

with the other patterns used by the tracking application. 
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(2) Clear and simple: The patterns should be clearly distinguishable from the surrounding 

environment and should be as simple as possible to reduce the recognition time. 

(3) Black & white: Monochrome patterns are favoured to color ones because the used 

toolkit (ARToolkit) has been designed to recognize black and white patterns and 

because uniquely identifying a colour pattern can be drastically affected by the 

lighting conditions. 

(4) Inside a black square: The shape of a square design yields four corner points for 

tracking purposes. Edges are constructed straight between the corner points. This 

allows the corners to be determined by line fitting to the edges, yielding 

measurements that are less sensitive to noise in the vicinity of the corner and 

quantization errors. The black border of the square yields a maximum contrast 

relative to the white background. Once the corners have been located, the interior can 

be warped to a common frame of reference for comparison to a database of marker 

images. 

(5) Not rotationally symmetric: asymmetric patterns allow for the unambiguous 

determination of the position and orientation of the marker relative to a calibrated 

camera. 

3.3.3 Marker Recognition 

The marker recognition is carried out using ARToolkit. The recognition algorithm has 

been explained in Section 2.8.2. The detection range of a marker depends on many 

parameters such as the size and the lighting conditions; more details about these 

parameters can be found in Section 3.3.6. 
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3.3.4 Tracking Algorithm 

The video tracking, as shown in Figure 3.6, starts by grabbing a real time video frame 

from the video camera. The grabbed video frame is then sent to ARToolkit tracking 

which analyzes the frame and searches for the previously registered markers (or patterns). 

Start 

R e t r i e v e v i d e o f r a m e 

A n a l y z e v i d e o 
f r a m e 

Y e s 

R e t r i e v e m a r k e r 
r e l a t i v e l o c a t i o n 
w i t h r e s p e c t t o 

c a m e r a 

31 
R e t r i e v e r e a l w o r l d 
l o c a t i o n a s s o c i a t e d 

w i t h m a r k e r 

I 
C o m p u t e a b s o l u t e 

u s e r l o c a t i o n i n r e a l 
w o r l d 

M o v e v i r t ua l v i e w 
t o t h e a b s o l u t e 

u s e r l o c a t i o n 

Figure 3.6: Tracking algorithm 
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When a marker is detected, the transformation matrix defining the marker 3D location 

and orientation with respect to the camera is computed. Then, the absolute location of the 

marker in the real world is retrieved from the database. Next, the transformation matrix 

and the absolute location are combined to compute the absolute camera location and 

orientation (which are considered as the user location and orientation) in the real world. 

Then, the virtual world view is moved to the computed absolute camera location and 

orientation. The absolute camera location and orientation in the real world are used in the 

virtual world without any modification thanks to the capability of the development 

environment to represent real world coordinate systems within the virtual world. This 

cycle of tracking continues running until the user stops it. 

3.3.5 Computing Transformations 

The used tracking toolkit (ARToolkit) provides a 3D relative location and orientation of 

the detected paper marker in the video camera coordinate system. 

To compute the absolute user location and orientation in the virtual world, two 

transformations are needed (as shown in Figure 3.7). First, the transformation defining 

the paper marker location and orientation in the video camera coordinate system (TMu) is 

inverted to get the location and orientation of the user (i.e. video camera) with respect to 

the paper marker (TUM Equation 3.1). Second, based on the transformation defining the 

absolute marker location and orientation in the world, noted as TMw, the final absolute 

location and orientation of the user in the world (Tuw Equation 3.2), are computed as 

follows: 

TUM = TMU (3.1) 

Tuw =
 TUM TMW (3.2) 
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N X . Marker 

User 

Figure 3.7: Different transformations used in computing the user 

location and orientation 

3.3.6 Video Tracking Parameters 

The video tracking in AR applications can be affected by several parameters that are 

inter-related and strongly depend on the available video capture devices: (1) Field of 

view: The wider the field of view is the wider will be the area covered and thus the higher 

will be the probability of detecting a marker. (2) Video resolution and frame rate: The 

higher the resolution is the more precise will be the captured frames, which reduces false 

positives. On the other hand, the higher the resolution is the lower will be the frame rate. 

The frame rate of the video is a main factor that affects the video tracking; the higher the 

frame rate is the more robust will be the tracking (3) Marker edge size: The bigger the 

size of the marker is the wider will be the detection range. (4) Light condition: The darker 

World 
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the video frame is the lower is the chance of detecting a marker. The following 

paragraphs explain how these parameters have been considered in the proposed approach. 

(1) Field of View 

The field of view of the video of the real world is one of the major factors that can affect 

indoor AR applications. The wider the field view is, the more complete our 

understanding of the world around us will be (Drasic et al., 1996). A narrow field of view 

decreases our confidence in the video of the real world. The field of view of the video is 

actually the field of view of the digital video camera. 

Since the proposed video AR system tracks markers through a video camera, a narrow 

field of view can also effect the tracking awareness of the system and hence the system 

robustness. To get a wide field of view, a new type of video camera called spherical can 

be used in the future. This camera is equipped with five cameras on five sides of a cube; 

the system tracks the markers from the five sides; the possibility of detecting a marker 

around the user is very much higher than when just one camera is used. 

On the other hand, the field of view of the virtual world is also a crucial parameter in the 

video AR applications. The virtual objects augmenting the real world have to be in the 

same field of view as the real world in order to get an augmentation that is realistic and 

fully consistent with the real world surrounding the user. The proposed system allows the 

user to manually adjust the field of the view of the virtual world to make it fit the field of 

view of the camera. 
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(2) Video Resolution and Frame Rate 

A high video resolution provides high precision of video frames which reduces the 

possibility of confusing markers and thus making the tracking more accurate and reliable. 

The frame rate is also one of the main factors that affect video tracking. The frame rate is 

usually related to the video resolution; the higher the video resolution is the lower is the 

frame rate. A combination of resolution and frame rate needs to be selected based on the 

user requirements and the hardware limitations. On the other hand, the video resolution 

affects the field of view; a low video resolution cannot display a wide area covered by a 

wide field of view; so a wide field of view requires a high resolution to display the whole 

captured area. 

The proposed system allows the user to select a combination of video resolution and 

frame rate based on the available hardware capabilities. 

(3) Marker Edge Size 

The marker size directly affects its detection range. The bigger the edge size is the longer 

will be the detection range. The choice of the marker edge size is related to the number 

and distribution of markers that can be visible within a certain range; the marker needs to 

have an edge size that makes its detection range interfere with the detection range of 

another marker to get a continuous detection range from one marker to the other. So, the 

choice of the marker edge size is related to the number of markers that can be placed in a 

certain region. For practical reasons, markers cannot be so numerous or so big in such a 

way that they disturb the aesthetics or functionalities of the environment by covering 

most of the wall spaces. Different marker edge sizes have been used in the 

implementation of the system (more details can be found in Chapter 4). 
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(4) Lighting Condition 

The lighting condition is also one important factor that can affect the video tracking of 

markers. Since the system tracks markers through a digital video camera, the detection 

robustness depends on the clarity of the captured video frames; the darker the video 

frame is the more likely a marker will be confused with other markers and the shorter will 

be the detection range. The proposed system has been tested in different lighting 

conditions (more details can be found in Chapter 4). 

3.4 CONFIGURATION 

The proposed configuration of the video tracking for AR applications is carried out in 

four phases: (1) Marker design, (2) marker locating in the virtual and the real world, (3) 

pasting markers at their real locations, and (4) saving the markers locations and the 

related entities to be deployed by the system. 

Phase 1; Designing Markers 

Since designing markers that fulfill the marker design requirements is time consuming 

and needs each marker to be manually captured using the camera and saved into a binary 

pattern file, a tool called PatternMaker, developped by Johnson et al. (2002, has been 

used to automatically generate clear and simple patterns including their binary ARToolkit 

files and their pictures. This tool generates patterns in the form of grids of black squares 

that are not rotationally symmetric and clear. 

Every marker is printed on a white paper along with its name; an arrow pointing to the up 

direction of the marker is also printed on the paper. The pattern binary file and the picture 
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file also have the same name as the marker to make it easy to match each printed pattern 

with its files. Figure 3.8 shows an example of a printed marker. 

A 

Pattern: 4x4_98 

Figure 3.8: Example of printed marker (scaled to fit in the page) 

Phase 2: Locating Markers 

Marker locating, as shown in Figure 3.9, consists of two main steps: first, the user needs 

to select the absolute location of the marker in the virtual world that corresponds to its 

real world location where it will be pasted. Second, to be able to physically paste the 

marker at their real world location, the user needs to decide on a physical reference edge 

that will be used in taking measurements that would allow him/her to accurately find the 

physical location. The two main steps are described below. Markers should be pasted on 

flat surfaces. 
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Step 1: Locating markers in the virtual world 

(1) The 3D virtual models of the interior of the buildings are loaded into the system. 

(2) The user navigates in the virtual scene to the area (e.g. corridor, room) where to 

place the marker. 

(3) Using the picking tool, the user clicks at the virtual location, noted as Pj, which 

corresponds to the physical location where he/she intends to paste the marker. 

(4) The system records the picked location in the format of real world 3D 

coordinates. 

(5) The system computes the normal vector to the surface, noted as N, at the picked 

location. 

Step 2: Locating markers in the real world 

(1) The user decides on an edge, in the virtual model, that corresponds to a physical 

edge, to be used as a reference in measuring the location of the marker with 

respect to it (e.g. an edge of a wall). 

(2) The user picks two points, noted as P2 and P3, on the reference edge to define a 

vector V that defines the direction along which the marker will be aligned. P2 has 

to be at a physically identifiable location such as the intersection of a wall edge 

and the floor. 

(3) The system computes the vector V and the angle, noted as a, between V and the 

line made up of P3 and P]. 

(4) The system computes the distance, noted as di, between P3 and Pi. 
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Figure 3.9: Different measurements used in the video tracking configuration 

Phase 3: Pasting Marker 

While the computed entities Pi, V and N are sufficient for the system to accurately define 

the marker location and orientation, the user still needs the other computed entities a and 

d2 to easily find the physical location where to paste the marker. The steps to paste the 

marker are as follows: 

(1) Locate the physical reference edge. 

(2) At P2, measure an angle on the surface from the edge equal to a and draw a line of 

length equal to d2 from P2. The end of the drawn line is P], which corresponds to the 

center of the marker to be pasted. 

(3) Paste the marker at Pi making the up direction of the marker parallel to the reference 

edge. 

53 

Refe 

Real World 



The computed entities required by the system, vectors V and N and the point P^ are then 

saved in an extensible mark-up language (XML) file. Extra transformations (translation, 

rotation and scaling) for adjustment to the tracking transformations can also be added in 

the same XML file. 

The measurement of the distances, the angles and the direction and normal vectors are 

carried out using the measurement tool of the system 

The different measurements carried out by the system are depicted in the following 

equations: 

Using the Law of Cosine, the angle a is computed as follows: 

7 7 7 

d-i = d2 + d3 — 2 d2 d2 cos a (3.3) 

_i fd2
2+d3

2-d1
2\ 

a= cos 1(——° (3.4) 
V 2d2d3 J v ' 

Phase 4: Saving the configuration 

The different entities computed in the previous phases are saved in an XML file. The 

format of the XML file has been designed using the XML schema shown in Figure 3.10. 

The schema defines a complex type called MarkerLibrary that contains a sequence of 

markers. A marker is a complex type made up often elements as follows: 

3DPoint is a complex type made up of three components: x, y and z values of type 

double. 

3DVector is a complex type made up of three components: x, y and z values of type 

double. 
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PatternFiieName is a string that contains the file name of the binary pattern file. 

LinkiD is a string that contains identification information that can be used to link the 

marker to a record in a database or to any other type of information. 

Caption is a string representing a text that can be displayed as an augmentation when 

the marker is detected; the caption string can be empty. 

AbosoluteLocationinWorld is of the type 3DPoint; it represents the x, y and z 

coordinates of the location in the real world to which the center of the marker is to be 

associated. 

PatternSideDimension is a real number that represents the length, in millimetre, of the 

edge of the marker. 

Normaivector is of type 3DVector; it represents the normal vector to the marker surface 

when pasted at its real world location. 

DirectionVector is of type 3DVector; it specifies the direction vector along which the 

marker is aligned. 

Translation is of type 3DVector; it is made up of three components; each component 

contains a translation distance, in meter, along each axis (x, y and z axis) of the 

coordinate system. The translation distance will be added to the tracked user location. 

Rotation is of type 3DRotation; it is made up of three components; each component 

contains a rotation angle, in radian, around each axis (x, y and z axis) of the coordinate 

system. The rotation angle will be added to the tracked user orientation. 

Scale is of type 3DScale; it is made up of three components; each component contains a 

scaling factor, between 0 and 1, around each axis (x, y and z axis) of the coordinate 

system. The scale factor will be multiplied by the tracked user location. 
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<?xml version="l.0" encoding="utf-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema 

<xs:element name="MarkerLibrary" type="Mar 

<xs:complexType name="MarkerLibrary"> 
<xs:sequence> 

<xs:element name="Marker" type="Marker 
</xs:sequence> 

</xs:complexType> 

<xs:complexType name="Marker"> 
<xs:sequence> 
<xsrelement name="PatternFileName" 
<xs:element name="LinkID" 
<xs:element name="Caption" 
<xs:element name="PatternSideDimension" 
<xs:element name="AbosoluteLocationInWor 
<xs:element name="NormalVector" 
<xs:element name="UpDirection" 
<xs:element name="DirectionVector" 
<xs:element name="Translation" 
<xs:element name="Rotation" 
<xs:element name="Scale" 
</xs:sequence> 

</xs:complexType> 

<xs:complexType name="3DPoint"> 
<xs:attribute name="x" 
<xs:attribute name="y" 
<xs:attribute name="z" 

</xs:complexType> 

<xs:complexType name="3DVector"> 
<xs:attribute name="x" 
<xs:attribute name="y" 
<xs:attribute name="z" 

</xs:complexType> 

<xs:complexType name="3DRotation"> 
<xs:attribute name="x" 
<xs:attribute name="y" 
<xs:attribute name="z" 

</xs:complexType> 

<xs:complexType name="3DScale"> 
<X5:attribute name="x" 
<xs:attribute name="y" 
<xs:attribute name="z" 

</xs:complexType> 

</xs:schema> 
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Figure 3.10: The XML schema for the marker library 
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3.5 SUMMARY AND CONCLUSIONS 

In this chapter, a framework for AR applications has been proposed to allow the 

integration of four main components: (1) Large scale 3D virtual models, (2) Mobile 

devices, (3) Video tracking and (4) Interaction. The framework uses 3D virtual models of 

real world structures such as building and combines them with real world geographic data 

such GIS maps in one system that is based on the same coordinate system. In addition, a 

practical method has been proposed to simplify the configuration and the deployment of 

markers for the video-tracking. The proposed approach is characterized by the following: 

- Integrates large scale 3D virtual models of buildings along with detailed interior 3D 

virtual models in one single system. 

- All 3D virtual models are represented in one single coordinate system that represents 

the real world coordinate system based on GIS. 

- It introduces different interaction methods for indoor AR applications. 

- It provides a practical method, for the registration of the virtual world with the real 

world that covers both the configuration and the deployment stages of the markers. 
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CHAPTER 4 IMPLEMENTATION AND CASE STUDIES 

4.1 INTRODUCTION 

Based on the proposed framework, a prototype system has been developed to illustrate its 

feasibility and practicality. The prototype system has been implemented in Java 

programming languages, which is platform independent, and used Java bindings for the 

different tools that are not available in pure Java. Using the object oriented Java3D API, 

the system seamlessly integrates different 3D virtual models and 2D GIS maps in one 

single environments that represents the real world. The implemented system also uses 

Java Database Connectivity (JDBC) to connect a relational database to the different 

elements in the virtual models. This chapter explains how the prototype system has been 

implemented and presents three case studies to demonstrate its different implemented 

features and illustrate their usefulness. 

4. 2 SELECTION OF DEVELOPMENT TOOLS 

To implement the proposed system, a selection had to be made regarding the main 

programming language, the 3D graphics Application Programming Interface (API), the 

3D virtual models import formats, the database format and the GIS maps API. 

The different choices of programming languages were related to the choices of the 3D 

graphics APIs. The main 3D graphics APIs available are OpenGL and DirectX. The 

OpenGL API is known by its speed of rendering and by its availability on many 

platforms such as Unix, Linux and Windows. DirectX is also a popular 3D graphics API 
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but available only on the Windows platform. The main programming languages 

considered were C++ and Java. Java is a multi-platform object-oriented programming 

language; it is known by its advanced capabilities such as servlets and applets that run on 

almost all available platforms without the need to recompile them. It is known also for its 

multithreading, network programming, simplicity, and ease of use. In addition, an 

important amount of Java reusable libraries are available in the World Wide Web. 

However, Java applets and applications do not run as fast as the applications written in 

other programming languages such as C++. On the other hand, C++ is also an object-

oriented programming language; it is known by its run and compilation speed; but, C++ 

is not platform independent and is not as easy to learn as Java. 

Based on the advantages of Java, it has been selected as the main programming language 

in implementing the proposed system. In addition to the aforementioned advantages of 

Java, an object-oriented 3D graphics API is also available in Java, known as Java3D. 

Java3D allows the programmer to describe a 3D scene using coarser-grained graphical 

objects and defining objects for elements such as appearances, transformations, materials, 

lights, etc. Compared to OpenGL, the code of Java3D is more readable, maintainable, 

reusable, and easier to write (Selman, 2002). 

Building custom applications that incorporate GIS and mapping capabilities in Java was 

possible by using a Java edition of the GIS API MapObjects. It helps the programmers 

build applications that perform a variety of geography-based display, query, and data 

retrieval (MapObjects-Java, 2006). 
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The standard used for importing 3D VR models is VR Modeling Language (VRML). 

VRML is the most popular interoperability standard for describing interactive 3D objects 

and virtual worlds delivered across the Internet (Nadeau and Moreland, 1996). 

The database of the 3D objects in the VE is designed with Microsoft Access to represent 

the information of all the objects, such as buildings. JDBC is used to access information 

stored in databases. The details about software requirements and installation guide of the 

prototype system are included in Appendix C. 

Based on the selected programming language, Java, the software tools and APIs shown in 

Table 4.1 and Table 4.2 have been selected for the purpose of covering most of the 

development phases. In order to allow the project to be shared among different 

developers Microsoft SourceSafe has been selected to manage the database of the source 

code. JUnit has been selected to write and run different unit testing inside the same 

development environment. 

Table 4.1: Software tools used in the implementation 

Tool 

Borland JBuilder Enterprise version 

Javadoc 

JUnit 

Microsoft SourceSafe 

Microsoft Access 

Purpose 

Development environment 

Inline documentation generator 

Unit testing 

Source code version control 

Database management 
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Table 4.2: Software APIs used in the implementation 

API 

Java3D 

JARToolkit 

MapObjects Java (MOJ) 

JDBC 

Purpose 

3D graphics 

Marker detection 

GIS Interface 

Database interface 

4.3 BACKGROUND OF THE CASE STUDIES 

Concordia University downtown campus (Sir George Williams Campus) in Montreal has 

been chosen as the subject of the case studies (Figure 4.1). Concordia is a large urban 

university in Montreal. The growth of Concordia's downtown campus has led to build 

two new buildings, the Integrated Engineering, Computer Science and Visual Arts 

Building and the new John Molson School of Business. 
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Figure 4.1: Concordia University campus map 
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4.4 HARDWARE COMPONENTS 

The hardware components that have been used in the implementation of the framework 

and the different case studies are shown in the Table 4.3 and consist of a Tablet PC and a 

Laptop, an HMD and a digital video camera. 

Table 4.3: Hardware components of the prototype system 

Device Type 

HMD 

Tablet PC 

Laptop 

Digital Video 
Camera 

Brand 

MicroOptical 

Panasonic ToughBook CF-18 

Toshiba Tecra M4 

Dell XPS 

Logitech QuickCam for 
Notebooks Pro 

Specifications 

Resolution: 800x600 
Transparency: opaque 
FOV: 16°horiz./20°diag. 

CPU: 1 GHz 
RAM: 512 MB 

CPU: 1.86GHz 
RAM: 1 GB 

CPU: 3.2 GHz 
RAM: 4 GB 

Resolutions: 640x480 @ 30fps 

4.5 IMPLEMENTING THE FRAMEWORK 

4.5.1 Database model 

Object-relational data model has been used in the proposed framework in the design of 

the database. The data has been stored in a relational database while the operations on the 

database have been developed in the object-oriented language: Java. To be able to 

retrieve and store data from and into the relational database JDBCD has been used. Using 
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JDBC, data is retrieved by passing an SQL (Structured Query Language) query to the 

database. Thanks to the JDBC, the database does not have to be in a Microsoft Access 

file but rather it can be an Oracle database or any other format that can be accessed by 

JDBC since, just like Java, JDBC is a platform independent interface. 

While most of the data have been stored in a relational database, the tracking 

configuration information has been stored in an XML file. The latter offers an ease of use 

and customization in addition to its popularity and its wide use in configuring 

applications. Examples of the used XML can be found in Appendix B. 

4.5.2 GIS integration 

A GIS sub-system is created using MapObjects Java Edition (MapObjects-Java, 2006). 

The map includes several layers (Figure 4.2) related to Montreal City, such as a border 

layer (Figure 4.2(a)) and other layers for roads (Figure 4.2(b)), blocks around the campus 

(Figure 4.2(c)) and Concordia buildings. 

(a) Border layer (b) Road layer (c) Downtown campus 

Figure 4.2: GIS information 

4.5.3 Building the VR model of the campus 

The 3D virtual model of Concordia downtown campus is developed using the following 

data: (1) 2D CAD drawings of the buildings obtained from the Facilities Management 
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Department of the university; (2) A digital map of the city of Montreal (roads and blocks) 

obtained from the municipality of Montreal; (3) VRML library of small objects 

developed to embed in the 3D model, such as traffic lights, fire hydrants and street 

furniture; and (4) Orthogonal digital images of the facades of the buildings collected 

using a digital camera. 

The 2D CAD drawings of the buildings are imported as a layer in Arc View (ArcView, 

1996) and edited to create the outline of buildings. The map of the area is imported in 

Arc View to create the block layer. The other layers including the image layer, object layer 

and tree layer are created using Arc View. The required attribute information of the layers 

is input in the attribute tables of the layers. 

The GIS layers, images and 3D objects described above were integrated and translated 

into VRML. The translator application developed in Visual Basic uses a GIS library 

(MapObjects) to extrude the GIS shape files and create a number of VRML files that 

constitute the virtual 3D model. 

4.5.4 Virtual Scene Visualization 

Java 3D has been used as the main 3D graphics API. In Java 3D, the VE can be created in 

the form of a scene graph. Scene graphs are defined by a tree structure grouping different 

nodes of groups and sub-groups of virtual objects. Virtual objects define geometry, 

location, orientation, appearance, sound, light and many other compound types. 

BranchGroup nodes are used to form a tree structure based on parent-child relationships 

(Figure 4.3). TransformGroup nodes can be constructed to form a group of geometry 

objects on which a Transform3D object can be applied. Transform3D defines a geometric 

transformation for the objects grouped by the parent TransformGroup. Geometric 
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transformation can be a combination of translation, rotation and scaling (Walesh and 

Gehringer,2001). 

In the AR mode, the scene graph properties, such as transparency and polygone mode, 

can be modified to decrease the occlusion of the real world. Using the user interface, the 

user can manually adjust, at run time, the different visual properties of the scene graph to 

make them convenient for the AR mode. 

VirtualUniverse 

BG ) BranchGroup Nodes 

TG ) TransformGroup Nodes 

Node Components 

A < „ . , 

Z ^ — » view 

iew Platform / 
\ 

— • 

i 

Canvas3D • Screen3D 

Physical Body Physical Environment 

Figure 4.3: Scene graph (Walesh and Gehringer, 2001) 

To visualize the VE, two main BranchGroups have been created: The Augmentation 

BranchGroup and the Virtual Model BranchGroup. 

(1) Creating the Augmentation Branch: To be able to show the augmentation when 

other virtual objects of the model are hidden (e.g. the buildings are hidden but HVAC 

ducts are shown), the virtual augmentation needs to be created and attached to a separate 

BranchGroup called AugmentationBranchGroup. The augmentation is dynamically 
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created and attached to the virtual scene graph. It can be of two types: a 3D Text or a 3D 

shape. The text content of the 3D Text Augmentation is loaded from the Caption field 

from the XML marker configuration. The 3D text augmentation is created using the 

3DOrientedShape class of Java3D. This class creates a 3D text that is always facing the 

virtual user view point. The 3D shape augmentation can be a 3D directional arrow, a 

sphere, a cylinder, a cube or a 3D line. The 3D directional arrow is dynamically created 

when the user selects the direction option to get assistance in finding a target (see Case 

Study 1 for more details). The sphere, the cylinder, the cube and the 3D line can be 

created by the user by picking their 3D locations at run time (see Case Study 2 for an 

example of creating a sphere). The 3D line can, also, be automatically created, when the 

user selects the direction option, to highlight a path to a target. 

(2) Creating the Virtual Model BranchGroup: The virtual model is created then 

imported into the system in the form of VRML files. The VRML files are imported into 

the Java 3D scene graph using the VRML 97 API (J3d.org, 2006). The different objects 

loaded from the VRML files are assigned unique IDs to link them to a database that 

contains more information about them. The unique IDs are automatically loaded into the 

system and used to retrieve information about the objects at run time using the JDBC 

interface. The different virtual models loaded into the system can be both two 

dimensional and three dimensional: 

(a) Loading three dimensional CAD files: As an example of 3D CAD model, one floor of 

a building (the fifth floor of the EV building) is prepared and translated into VRML. 

In order to locate the model of the floor in the virtual 3D model, two points that 

correspond to two corners on a diagonal of the building are picked. The coordinates 
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of the points are used to calculate the transformation matrix, including rotation, 

scaling and translation, from the local coordinate system of the CAD model to the 

global coordinate system of the virtual model. One of the main issues encountered in 

positioning the virtual model of the floor is the difference in the coordinate system 

axes used in different 3D CAD Tools. For example, the axis representing the height 

direction is considered as the Y-axis in Java 3D and as the Z-axis in 3D Studio Max. 

(b) Loading two dimensional CAD files: 2D drawings are loaded in the format of DWG 

and DXF files. DWG files are loaded and visualized using the DWGLoader library 

(MapObjects Java, 2003). The 2D DXF files are loaded and visualized using 

DXFLoader library (j3d.org, 2006). 2D drawings such as the floor plans can be 

loaded into the augmentation BranchGroup then superimposed on the real world to 

allow the user to get a realistic view of the plan before building the walls. 

(3) Display Modes: Different display modes (Figure 4.4) can be selected at run time to 

allow the user manually adjust the virtual model according to his/her needs. The virtual 

model can be rendered in solid mode, wireframe mode, or transparent mode. 

The transparent mode is used in the AR environment setting. In this case, the background 

of the virtual scene is filled with real-time video frames coming from the digital video 

camera and most of the virtual model is made transparent except the selected 

augmentation such as the directional 3D arrow. The wireframe mode can, also, be used in 

the AR environment setting since it does not completely occlude the video background of 

the real world. The solid mode is used during the configuration stage in VR setting to 

register the markers with the real world. 
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(a) Transparent mode (b) Solid mode (c) Wireframe mode 

Figure 4.4: The different display modes 

4.6 USER INTERFACE DEVELOPMENT 

Since some of the VR operations cannot be carried out in the AR mode, the system 

automatically adjusts the user interface to leave only applicable operations based on the 

mode (VR or AR) selected by the user. 

Figure 4.5 shows the main user interface of the system. It is made up of two main panes: 

a Rendering Pane and Control Pane. In the Rendering Pane, the video of the real world, 

retrieved from the digital video camera, is rendered. On top of the real world, the 3D 

Virtual objects making up the whole VE or just the augmentation are also rendered. The 

Control Pane is made up of a set of sub-panes: a Tree sub-pane, a GIS map sub-pane, a 

Directions sub-pane, a Tracking sub-pane, a Recording sub-pane, and a System Setting 

and Measurements sub-pane. The Tree sub-pane is for tree navigation of the VE. It 
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contains a logical tree of a set of buildings that is automatically created by reading the 

names of the buildings from a database. Using the tree, the user can highlight a building. 

The GIS map sub-pane contains two maps: The first one is a 2D GIS map representing 

the streets; the second one is a detailed map representing one floor plan. The 2D maps 

show the current user location. Since, in AR mode, the location of the user is 

continuously tracked, the 2D maps are automatically updated with the new location each 

time a change is detected. 

c i ^ l o l o l - i l t l o j C H i M n 
iBse udEftW [Database n d S ^ W e H W ^ ^ r t * * 

JBelcoroe YTT 

Rendering pane 

Figure 4.5: Main User Interface 

J\_ 
Control pane 
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Figure 4.6: Control Pane 

Directions 

J Fifth Floor oF new build... • 

JExit • 

Start 

Find 

Fire Phone 

Fire Elevators 

Figure 4.7: Direction assistance features 

The Directions sub-pane allows the user to get real-time direction assistance to find a 

selected destination (as shown in Figure 4.7). The user selects a destination from a list of 

destinations that are preloaded into the system. For example, if the user selects Exit, the 

system displays a 3D path in the form of a thick colored line that goes to the closest exit 

in the floor. In addition, the system displays, as discussed in Section 4.8, an animated 3D 

arrow that is oriented to the path that takes to the closest exit. 

The Tracking sub-pane allows the user to start AR mode by clicking on Start AR which 

automatically starts the video-tracking. The user can click on Show 2D Map to show or 
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hide the GIS map sub-pane. The user can, also, play a prerecorded tracking path by 

clicking on the Recorded Tracking button which gives the user the option to browse to 

the file that contains the prerecorded path and play it. The Full Screen button allows the 

user to hide all panes to leave more space for the Rendering Pane. 

When the video-tracking is started, the system connects to the available digital video 

camera; once the connection is established the system automatically switches the 

displayed 3D virtual models to a full transparency mode and starts rendering the video 

frames into the background of the Rendering Pane as shown in the left part of the Figure 

4.5. The system, also, automatically displays the AR Setting sub-pane (Figure 4.8) in 

which the user can change the field of view of the 3D virtual scene, adjust its 

transparency level as well as the tracking scale. The field of view option allows the user 

to adjust the virtual world scene to the field of view of the video camera. On the other 

hand, the transparency option allows the user to manage the occlusion of the real world, 

during the AR mode, by making the virtual scene in different levels of transparency. The 

Tracking Scale option allows the user to modify the scale in which the coordinates 

retrieved from the tracking are considered. The tracking scale of 1 means that 1 meter in 

the real world corresponds to 1 meter in the virtual world since the virtual world is in the 

same coordinate system as the real world. Changing the scale to a number 'n' means that 

moving in the real world of 'n' meter corresponds to 1 meter in the virtual scene. 

, AR Setting 

Field of View *" } """" "~ j g j 

Transparency ) ' ' ' Jo j 
t 

I . I ' [ n i • • ' • • • •*• • IWWIIUM. • •WJA»» . I . . !—. • ' — • ' > inrra tanatiU wimtfiiwuiir, nna < 

; I f aCKiOQ DCaie / j l 

Figure 4.8: Setting options for AR mode 
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The Recording sub-pane allows the user to record his/her changing locations into a file 

that can be played using the Recorded Tracking option. In the same sub-pane, the user 

can get a tinier for the recording to see how long it took when moving from one location 

to another. 

§ Display Setting .JELxl 

Rendering Attributes - i 

f"~ Texturing f~ Objects f~ Trees || 
11 

T DEM r TIM r Steieo i! 

I - Ambient Light ,v Direction Light 1 p Direction Light2 1 

f~ Automatic Speed I " Arrow f Building Names '\ 

I Street Names ,w Picking \ J 

Tracking setting - ! 

I™* Automatic Picking f7 Tracking On Map p" CentralPoints On Map '•', 

Navigation behavior 

forbit"^] f 

Geometry 

| Solid ~^] 

Figure 4.9: System Display Setting options 

Figure 4.9 shows the System Display Setting that can be displayed by clicking on System 

Setting in the Control Pane. The System Setting is designed to change the different 

parameters of the system. This sub-pane is made up of the Rendering Attributes group, 

Tracking Setting group, the Navigation Behavior group and the Geometry group. The 

Rendering Attributes group contains several check boxes that can be used to control the 

different rendering settings of the VR. The main settings are the visual cues, such as 
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building names, the different 3D lights, the manual picking, and the stereoscopic 

rendering mode. The stereoscopic mode can be used to render the VE in a more realistic 

mode which helps in perceiving depth in the virtual augmentation. This option can be 

used only if the user wears an HMD capable of displaying two different images for each 

eye. The Tracking Setting group contains the Automatic Picking option that can be 

enabled or disabled to allow to user to pick an element from the VE by looking at it 

continuously for a certain short time (e.g. 2 sec). In the same group the user can select the 

Tracking On Map which allows the user to see his/her location highlighted in the 2D GIS 

Map sub-pane while he/she is moving. The user can, also, have the 2D maps 

automatically zoomed-in to show more details around the his/her current location using 

the CentralPoints On Map option. The Navigation Behavior group can be used to change 

the navigation type in the VE when the VR mode is turned on. The different navigation 

types are: Orbit, Fly and Drive. The Geometry group allows the user to change the 

polygon mode for all objects in the VE to make them in different modes: wire-fame, 

point cloud or solid. 

From Control Pane, the Measurements tool (Figure 4.10 and Figure 4.11) can be started 

to allow the user to perform different kind of measurement on the VE. This tool can be 

used to measure four type of entities (as shown in Figure 4.11): the distance between two 

or more points, the angle between two lines made up of three points, the vector going 

from one point to another and the surface normal at a point. This tool is used in 

combination with the picking tool; so the user needs to pick 3D point using a pointing 

device; the picked points would be highlighted using red spheres. Then, the user needs to 

select which entity to compute and click on Measure. The system performs the selected 

73 



measurements and displays the results in the bottom of the Rendering Pane inside the 

Message window. The Measurement tool is used in configuring the markers for video-

tracking as discussed in Section 3.4. 

b» Picked point is at (298687.1217871913, 72.29893169608415, -5039511.54723S06) 

b » Picked point is at (298687.5509581189, 73.20209162466503, -5039512.23123891) 

The vector going from the first selected point to the last is: (0.42917, 0.90315, -0.68400) 

Figure 4.10: Using the Measurement Tool 

i=. Measurements... ^Sk-*-'-:^sJSj2y 

Measure t Clear Last Point j Clear Selection 

Angle 

Vector 

Surface Normal 

Select what to measure] 

Figure 4.11: Different options in the Measurement Tool 
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4.7 UML CLASS DIAGRAMS 

4.7.1 Description of the main classes 

(1) Class CurrentArrowBehavior (Figure 4.12): This class is derived from behavior 

class in Java3d. The interaction with 3D scene in Java3D is provided through behaviors. 

This behavior wakes up every time the location of the viewpoint in the VE changes, gets 

the coordinates of the new location and places an arrow oriented from this location 

towards the next destination. 

(2) Class Marker (Figure 4.13): This class holds all necessary information about a 

marker to which will be associated an absolute 3D location in the VE. 

(3) Class ARPatternTransformGroup (Figure 4.14): This class extends the Java3D 

TransformGroup. It is used for retrieving the relative location and orientation of the user 

with respect to the camera and computing the final absolute location and orientation of 

the user. It is, also, used for displaying 3D text augmentation that is always facing the 

user, based on the computed location and orientation. 

(4) Class ARBehavior (Figure 4.15): This is a Java3D behavior continuously displaying 

the video streams coming from the camera and scanning them for the markers. When a 

marker is detected, this behavior notifies ARPatternTransformGroups with the relative 

coordinates of the user with respect to the camera. 

(5) Class PickHighLightBehavior (Figure 4.16): This is a class derived from the 

Java3D MouseBehavior which is derived from Behavior. This class is used for the 

manual 3D picking. When a mouse click is detected a pick ray is created and used by the 

Picklntersection class to compute the intersection points with the 3D model. The points 
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are then return the PickHightLightBehavior class which computes the closest one to the 

user location then creates a sphere to show it. 

(6) Class MainConsole: This is a Java frame window that holds, in a tab structure, 

JcbSimulationViewer panel and the Login panel. 

(7) Class Arrow (Figure 4.12): Creates a 3D arrow that consists of a Cylinder and a 

Cone. 

(8) Class ModelPane (Figure 4.12 and Figure 4.14): This class is an applet contained 

inside a JPanel that is attached to the JcbSimulation Viewer. It runs the 3D rendering of 

the Java3D canvas. 

(9) Class JARToolkit3D_Main (Figure 4.15): This is a class responsible for initializing 

the AR mode, configuring the markers and attaching the AR tracking behavior to the 3D 

canvas (ModelPane). 

(lO)Classs JcbSimulation Viewer (Figure 4.16): This class is Java panel designed to 

contain all the 2D user interface components (e.g. buttons, slider bars, list, etc. ) and the 

3D canvas. 
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m_arpGr BranchGroup 
m_arrG; BranchGroup 
m_FrameWakeupCondition: WakeupCondition 
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m_pane: ModelPane 
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DestinationLocation: Point3d 
m_arrow: AnimatedArrow 
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% # attachArrow(): void 
<& [JP currentArrowBehavior(): void 
^ dp currentArrowBehavior(): void 
% $f GeFinalDestination(): Point3d 
% t f GetNextTargetO: Point3d 
<k J initializeQ : void 
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Figure 4.12: Class diagram for CurrentArrowBehavior 
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Figure 4.13: Class diagram for Marker 
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Figure 4.14: Class diagram for ARPatternTransformGroup 
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Figure 4.15: Class diagram for ARBehavior 
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Figure 4.16: Class diagram for PickhighlightBehavior 
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4.7.2 Design Patterns Used in the Implementation 

(1) The Singleton pattern: One of the requirements is that only one sub window for 3D 

rendering is allowed. For this purpose, the singleton pattern has been used to make the 

instantiation of the class ModelPane, which creates the 3D canvas, occur only once. The 

other requirement is that only one instance of ARToolkit is allowed, so the singleton 

pattern was used to ensure that one instance is created the first time then returned each a 

request for an instance is received. 

(2) The Factory pattern: In the VE mode, the user can select from a list the type of 3D 

navigation to be used with the mouse. Three types of navigation behavior are provided: 

drive, fly, and orbit. These types of behavior use the mouse to control the viewpoint 

motion. Each button on the mouse generates a different type of motion while the button is 

pressed. The distance of the pointing device location from the center of the display area 

controls the speed of motion. Since there are common functions that are called for all the 

behaviors, a parent class (MouseBehavior) has been created from which all mouse 

navigation behaviors are derived and which contains all common behavior functions. 

Then a factory class has been created which, in turn, creates one MouseBehavior based 

on the user selection; and common functions can be called from the returned instance. 

For example, for all the behaviors a call must be done to the method 

SetSchedulingBounds which sets the maximum 3D bounding sphere in which the 

behavior is applicable. 

The factory pattern has been created as a decision making class that returns instance of 

one of the several navigation behavior classes based on the selection provided by the user 

at run time. 
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4.8 CASE STUDIES 

Case Study 1: Navigation guidance 

This case study consists of a situation where a user needs guidance to get to a selected 

destination and needs information about the rooms in a floor of building. In this case, two 

scenarios are tested. The first scenario is that a student tries to find the way to emergency 

exit stairs that are closest to his/her current location. The second scenario is that a student 

tries to find a room in a building. The case study has been carried out on the fifth floor of 

the EV building of Concordia University. The student is equipped with a tablet PC, in a 

back bag, a digital video camera attached to a helmet and connected to the tabled PC, and 

a video see-through HMD also connected to the tablet PC on which the system runs. 

In the first scenario, different paths leading to the different emergency exits in the floor 

are pre-loaded into the application. Figure 4.17 shows the floor plan and the exit path 

selected by the system. Also, two locations of the user during the navigation are shown 

by bold arrows. Two markers have been pasted on the walls of the corridor near the two 

locations. The edge length of each of the markers is 4 inches. The system starts tracking 

the movements of the user as soon as a first marker is detected. A path to an exit is 

defined by a set of predefined 3D point in the world coordinate system. The system 

computes the closest 3D point to the current user location. While the user is moving 

towards the exit, the system continuously tracks his/her location. Based on the current 

user location, the system computes the closest path to an exit. Then, the system displays a 

3D directional arrow showing the user the direction to the closest exit. The orientation of 

3D directional arrow is updated every time a change in the user location is detected. 
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Figure 4.18 and Figure 4.19 show examples of the video that the user sees during the 

navigation. Figure 4.18 (a) shows the view as seen by the user through the HMD when 

he/she is at Location 1. At this location, the closest exit is on the right of the user; so the 

directional arrow points towards the right. Figure 4.18(b) shows the view of the virtual 

scene around the same location with the transparency set to opaque. When the user 

moves to the right around the Location 2, he/she is in the corridor that leads to the exit, so 

the directional arrow points ahead to tell the user to keep moving in the same direction as 

shown in Figure 4.19. 

In the second scenario, the student walks in the corridor and looks for the room 9-210. 

When the student walks near the room, the room number is displayed as a 3D text 

augmentation is always facing him/her. Figure 4.20 shows two different views when the 

student is near the door of the room. The first view (a) shows the augmentation in AR 

mode. The second view (b) shows the same augmentation in VR mode. 

Figure 4.17: Two locations and orientation of the user during navigation 
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( a) View in AR mode at Location 1 (b) View in VR mode at Location 1 

Figure 4.18: AR and VR views as seen by the user at Location 1 

( a) View in AR mode at Location 2 (b) View in VR mode at Location 2 

Figure 4.19: AR and VR views as seen by the user at Location 2 
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( a) Text augmentation in AR mode (b) Text augmentation in VR mode 

Figure 4.20: Text augmentation in AR and VR modes 
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Case Study 2; AR for HVAC inspection 

The 3D virtual model of the EV building in Concordia downtown campus is used as case 

study, for indoor video-based AR applications. The fifth floor and the HVAC (Heating, 

Ventilation and Air-conditioning) ducts installed on it have been modelled and loaded 

into the virtual model of the building. 

In this case study, the system is used to conduct an inspection for the HVAC ducts. The 

inspector uses the system to locate a duct of the HVAC system based on his/her tracked 

location and his/her task. The system is used to facilitate and speed up the process of 

finding the HVAC duct that is hidden behind the false ceiling. Instead of guessing or 

approximating the location of the duct, the inspector just needs to look towards the 

ceiling to have his/her location detected, and have the ceiling augmented with the 3D 

virtual model of the HVAC ducts. 

Figure 4.21: Detailed 3D model of one floor and the HVAC ducts 

87 



Figure 4.21 shows the virtual models of the fifth floor and the HVAC ducts. Both models 

have been imported into the system in the format of VRML files. Each element of the 

models, such as columns and ducts, is associated with an ID that links it to a database that 

contains more detailed information about that element. The facilities management 

inspector equipped with the AR devices can perform a routine inspection task for the 

HVAC system. The 3D HVAC elements (e.g., ducts) are seen through the HMD and the 

inspector's position and orientation are tracked and used to update the 3D view. 

Figure 4.22 shows an example of the results of the AR application used in a facility 

management project on the campus. This figure shows one virtual HVAC duct in the fifth 

floor and one marker attached to the ceiling. The figure simulates the view that the 

inspector can see when the real ceiling is augmented with the virtual model of the HVAC 

ducts. The inspector will be able to assign defects on the virtual model and retrieve duct 

element information to be displayed. 

Figure 4.22: The augmentation of the HVAC model as seen by the user 
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Two types of HMDs were used in this case study: Microvision Nomad ND2000 (2005) 

and MicroOptical SV-6 (2005). More details about the used hardware can be found in 

Section 4.9. 

Case Study 3: Map augmentation: 

The map augmentation is an example of Augmented Virtuality (AV) where a real map 

augments a 3D model of a city. The map (shown in Figure 4.23) is a paper-based 

representation of the real world. Since the area covered by the application in this case is 

small, only one marker has been used. 

This augmentation can be used in an urban planning application where several planners 

and engineers can be sitting around a table and looking at a map laid on it. On top of the 

map will be displayed a 3D model of the city. The engineers can interactively hide and 

show objects and buildings in the 3D virtual model. 

The main feature that differentiates this case study from the other two cases is the scaling. 

Since the real world representation on the paper map is scaled, the movement of the user 

while looking at the map had to be scaled too. 

Figure 4.24 shows the different views that the user can see through the HMD while 

looking at the map. The first view (a) shows a far view of the virtual model of the campus 

area and the second view (b) shows a closer view that the user can see when looking 

closer to the map. 
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Figure 4.23: Paper map of the campus area 

(a) Far AV view (b) Near AV view 

Figure 4.24: Example of different AV views as seen by the user 

4.9 HARDWARE TESTING 

Four digital video cameras were satisfactorily tested with ARToolKit: Logitech 

QuickCam, Logitech QuickCam Pro, Creative Ultra for Notebooks, and IO-Data USB 

CCD Camera (Table 4.4). Three types of HMDs were tested: Micro vision Nomad 

ND2000 (Microvision, 2005), MicroOptical SV-6 (MicroOptical, 2005) and I-glasses 

Video 3D Pro (lO Display Systems, 2006). Microvision Nomad ND2000 has a rugged, 
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monochrome red display (32 gray levels) readable in all lighting conditions with 

automatic brightness adjustment. MicroOptical SV-6 is smaller, less rugged and has a 

one-eye color display. I-glasses Video 3D Pro is also less rugged than the first one; it has 

a two-eye color display and earphones, and is 3D stereo capability. All displays support 

resolution of 800x600 pixels. Table 4.5 shows the basic specifications of both displays. 

After testing these displays under different conditions, it was found that the I-glasses is 

more suitable because of its overall superior visibility using colours and its 3D stereo 

capability. As for the size of the text displayed with the above resolution, it was found 

that a minimum font size of 25 points is required for comfortable readability. 

Table 4.4: Specifications of test digital video cameras 

Make 

Creative 

Logitech 

Logitech 

Sony 

Model 

Ulra for Notebooks 

Quickcam 

Quickcam Pro 

10 Data USB CCD 

Satisfactory Resolution and Frame 
Rate 

640x480 at 30 fps 

640x480 at 30 fps 

640x480 at 30 fps 

320x240 at 30 fps 

Table 4.5: Specifications of the HMDs 

Make 

Micro vision 

MicroOptical 

IO Display 
Systems 

Model 

Nomad 
ND2000 

SV-6 

I-glasses 
Video 
3D Pro 

Transpa 
r-ency 

Trans­
parent 

Opaque 

Opaque 

Resolu 
-tion 

(pixels) 

800x 
600 

800x 
600 

800x 
600 

FOV 

17°horiz. 
23° diag. 

16°horiz. 
20° diag. 

27° diag. 

Color 

Mono-
chrom 
ered 

Color 

Color 

Weight 
(g) 

128 

35 

226 

Signal 

SVGA 

SVGA 

SVGA 
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A test has been conducted to check the relationship between the size of a marker and the 

distance from the video camera (Logitech Quickcam: video resolution of 640x480 at 30 

fps) where the marker can be detected and tracked. These ranges were found to be 1.5 m 

and 3 m for markers with edge lengths of 20 cm and 50 cm, respectively. The effects of 

light conditions on the tracking were also measured. It was found that the camera can 

detect the marker even under dark lighting conditions. For example, the marker with the 

edge length of 50 cm can be detected under luminance equal to or greater than 4 Lux 

within the range of 3 m. 

Table 4.6 shows the detection range tests carried out on two different markers having 

edge sizes of 20 cm and 50 cm in the same lighting conditions. 

Table 4.6: Detection range for different marker sizes 

Marker Size 

20 cm 

20 cm 

50 cm 

50 cm 

50 cm 

Distance from Marker 

Less than 1.5 m 

Less than 3.0 m 

Less than 1.5 m 

Less than 3.0 m 

More than 3.0 m 

Detected (Yes/No) 

Yes 

No 

Yes 

Yes 

No 

4.10 SOFTWARE TESTING 

Preliminary tests for the prototype system have been carried out to cover the main 

functionalities and the main components. The first testing was the Unit testing. It 

consisted of writing test cases that are carried out inside the development environment to 

ensure that different methods of the main classes behave correctly and return the right 
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results. Next, requirement tests have been carried out to test the main features of the 

system and make sure they are correctly implemented. 

On the other hand, usability testing can be also carried out on the system but since the 

system is still a prototype, no usability testing has been performed at this stage. 

Nevertheless, Appendix F contains some usability testing guidelines and heuristics for 

AR applications that can be used for future testing of the system. 

4.10.1 Unit Testing 

The unit testing has been carried using Junit, which is a testing tool integrated inside the 

selected development environment (JBuilder). Several test cases have been built and 

executed to make sure the main classes in the implemented system are working properly. 

The detailed description of the different test cases can be found in Appendix E. 

Class AnimatedArrow (Table C.l) 

• testCreateArrow(): This test method ensures that there is always an arrow object 

created when the function CreateArrow is called. 

Reason for testing: Because visual testing of the arrow cannot be performed unless 

the arrow object exists. 

• testOrientationAlgorithm(): This test method ensures that the algorithm used to 

orient the arrow to the destination location is correct. 

Reason for testing: Because the orientation of the arrow is crucial for getting the right 

direction to the destination point. 
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Class Marker (Table C.2) 

All of the following test methods ensure that the properties saved for a paper marker after 

being loaded from a marker configuration file are correctly retrieved when they are 

needed. 

Reason for testing: Because if any of the marker properties are not correctly retrieved, 

the tracking of the user in AR mode will not be reliable. 

• testGetDirection() 

• testGetNormalVector () 

• testGetPatternFileName() 

• testGetPatternSize() 

• testGefRefPoint() 

• testGetRotation() 

• testGetScale() 

• testGetTextAugmentation() 

• testGetTranslation() 

• testSetUpDirection() 

Class JARToolKit3D_Main (Table C.3) 

• testGetInstance(): This test method ensures that there is always an instance 

of the class returned. 

Reason for testing: Because it is required by the used toolkit "ARToolkit" 

to create a singleton instance of it. 
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• testGetInstance_Null_ModelPane_Hanlding(): This method tests exception 

handling in case the parent window is passed to the class method ( 

Getlnstance). 

Reason for testing: Because the application must not crash or cause any 

serious problem when it fails to return an instance. 

• testMarkersLoadingFromNullFileO: This method tests exception 

handling when an empty file name is passed to the class method 

LoadMarkersFromFile 

Reason for testing: Because the application must not crash or cause any 

serious problem when no file name is provided. 

• testMarkersLoadingFromFile(): This method ensures that all the markers 

in the marker configuration file are loaded. 

Reason for testing: Because it is necessary to have all the markers in the 

configuration file loaded before starting the tracking in AR Mode. 

• testMarkerStoredlnfoO: This method ensures that the markers' properties 

stored in the configuration file are corrected loaded into memory and stored 

in the instances of the class Marker. 

Reason for testing: Because if any of the properties stored in the 

configuration file is not properly loaded into memory, the tracking in AR 

mode will not be correct and reliable. 
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• testMarkerOutOfRangelndexO: This method tests the exception handling 

in case a wrong index of the marker is passed. The marker index has to be 

within the range of the markers loaded from the configuration file. 

Reason for testing: Because if a wrong index of marker is passed the 

application must not crash and cause any serious problem for the user. 

• testSetTrackingScale(): This method makes sure the tracking scale is set 

for all the loaded markers. 

Reason for testing: Because if the tracking scale is not set for one marker, 

the tracking in AR mode will be inconsistent. 

Class JARToolKit3D (Table C.4) 

Reason for testing: Because if any of the marker properties are not corrected retrieved 

the tracking of the user in AR mode will not be reliable. 

• testGetlnstanceO 

• testCreateO 

• testlnitializeCameraO 

• testlnitializeCameraWrongFileNameO 

• testlnitializeCameraWrongPathQ 

• testCreateBackgroundQ 
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4.10.2 Requirements Testing 

Feature 1: Develop animated 3D arrow oriented from current user's location to the 

object of interest. 

Requirments: These requirment testing had to be performed visually following system 

usage scenerios (Table D.l). 

• The orientation of the arrow should be always adjusted based on the user location: 

It is necessary for the user who is navigating in the virtual and real environment to 

be able to locate the destination from anywhere in the space. 

• The arrow should be visible in AR mode: The system is designed to be used in 

AR mode in addition to the VR mode. 

Feature 2: Track and record the current user locations in VR mode by developping a 

behavior that repeatedly calulates the abosolute user location (Table D.2). 

Since the application is intended to be use in mobile and location-based situations in AR 

mode, it was necessary to, first, test the tracking of the user location in VR mode before 

AR mode. To test this feature, testing method has been used based on Geographic 

Information System (GIS) since the VE is based on real locations. In this test, the 

location of the users at every time step tt while navigating are recorded as points in a GIS 

layer. Later this layer can be visualized to make sure his/her navigation in the was tracked 

correctly. 

Requirments: 

• The tracking technology should be provided in VR Mode: It is necessary to track 

the user navigation to be able to provide guidance through the 3D oriented arrow. 
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• A behavior should be developed to repeatedly move the arrow to current user 

location. It is necessary to get updated guidance while the user is moving. 

Feature 3: Track the current user location in AR mode using the video tracking (Table 

D.3). 

Requirements: 

• Detect the user's movement with respect to the paper markers: This is necessary 

because the relative user location with respect the marker will be added to the 

stored absolute location of the marker. 

• Calculate the 3D coordinate representing the user's location in the real world: This 

is needed to compute the final absolute location of the user in real world thus being 

able to track him/her. 

Feature 4: Overlay the 3D animated arrow on the video of real object displayed using the 

HMD (Table D.4). 

Since our application provides the user guidance using an animated arrow in AR mode, 

this feature should be tested. We tested this feature visually by using our testing system. A 

sphere is added by default to the location of a marker. If the feature works coorectly, the 

sphere should be visible when the marker is detected by camera. In addition, an oriented 

arrow should be added to location of the sphere. 

Requirements: 

• Add an arrow to current location pointing to object of interest: The system is 

designed to guide the user in AR mode as well as in VR mode. 

Feature 5: Overlay a text augmentation on the video of real objects showing the 

recognized room number in the building (Table D.5). 
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This feature is usefull to give information about the environment to the user in AR mode 

so this feature should be tested. The testing process of this feature is similar to the 

previous one. However, a text showing the room number should be added to the same 

location of the sphere. 

Requirements: 

• Overlay a 3D text on the video showing the room number: This is needed to 

ensure that the system shows correct information about the environment. 

Feature 6: Control the field of view of VE in AR Mode (Table D.6). 

Requirements: In order to test this feature, the actual field of view can be compared wih 

the video field of view. It is important to test this feature because it adjusts the field of 

view of the virtual scene so that the user can match it with the field of view of the digital 

video camera. 

Feature 7: Control the transparency of the virtual objects in the virtual scene (Table D.7). 

Requirements: The user should be able to change the transparency level of the virtual 

objects in the scene to be able to completely hide them or show them partially transparent 

of completely opaque on top of the video frames. 

Feature 8: Control the video-tracking scale (Table D.8). 

Requirements: The user needs to be able to move the camera that is tracking the paper 

marker and change the value of the tracking scale. The movement should be scaled based 

on the selected scale. 
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4.11 SUMMARY AND CONCLUSIONS 

In this chapter a prototype system has been implemented to demonstrate the feasibility of 

the proposed approach. The system has been intended to be platform independent so all 

of its components were implemented in the Java programming language and for some of 

the tools Java binding to APIs were used. Different interaction methods have been 

implemented to allow for a direct and location-based access to information about 

elements of different structures, such building rooms, through the 3D picking tool. The 

prototype system implemented a hands-free navigation through the video tracking of geo-

referenced markers. In addition, a way-finding assistance has been implemented to help 

the user find the path to a selected destination while moving in the real and virtual world. 

On the other hand, the video tracking configuration and deployment method has been 

implemented and verified through cases studies. These case studies have also been used 

to verify the applicability and usefulness of the proposed approach. While the system has 

been proven applicable and useful, due to the limitation in the different hardware 

capabilities such as the video resolution, the frame rate and the field of view, the virtual 

objects rendered as augmentation appear with a slight mis-alignment with the real world. 

This mis-alignment error is a combination of the inaccuracy of the virtual model, tracking 

errors caused by ARToolkit, and the hardware limitations. 
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CHAPTER 5 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1 SUMMARY 

AR has been proven to be useful in many fields as mentioned in the Chapter 2, and 

several tools and systems have been reviewed and examined. Taking into consideration 

the different shortcomings of the available AR systems, a framework for indoor video-

based AR application has been proposed to integrate four main components of AR 

applications, which are large scale VEs, mobile devices, interaction methods and video-

tracking, in one system. The proposed framework benefits from the 3D virtual modeling 

by combining GIS maps and models of buildings and building interiors in one system. 

Different interaction methods for AR applications have been introduced, such as the 

automatic 3D picking which is used for a location-based data access. In addition, a 

practical method has been proposed for the configuration and the deployment of the 

video tracking. This method made use of the XML language to allow for future 

extensions and simplified interoperability. An implementation of the proposed framework 

has been developed to demonstrate its feasibility. Different case studies have been carried 

out to validate the applicability of the system and identify its benefits and limitations. The 

first case study consisted of an AR navigation assistance using a directional 3D arrow and 

3D text to help the user find a selected destination inside a building. The second case 

study demonstrated how the system can be used to help an HVAC inspector find one of 

the ducts and mark on it a 3D shape to indicate the location of a problem. The last case 

study illustrated the use of the system in adding scaled augmentation that fits on a paper 
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map of the Concordia Campus area. It also demonstrated the use of scaling during video 

tracking to make it fit the map scale. 

5.2 CONCLUSIONS AND CONTRIBUTIONS 

The proposed framework is characterized by its applicability to several fields, which is 

demonstrated by the case studies for navigation assistance, building inspection, and urban 

planning. The framework has the advantage of using real data, such as GIS maps, and 

integrating them in the same coordinate system as 3D virtual models defined in a 

standard file format (VRML) which allows for an easy exchange of data and more 

extensibility. In addition, the proposed video-tracking system is characterized by its 

affordability and ease of use. Moreover, using Java and Java3D object-oriented API, 

other tracking capabilities and tools can be easily integrated into the system thanks to the 

built-in Virtual Universe concept and Behavior, which is an object-oriented and extended 

type of multi-threading. 

The contributions of this research are grouped into the following areas: 

(1) A GIS-based approach for building VR models for AR applications has been 

developed. The approach integrates large scale 3D virtual models of buildings along 

with detailed interior 3D virtual models in one single system. All 3D virtual models 

are represented in one single coordinate system that represents the real world 

coordinate system based on GIS. 
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(2) A framework has been developed for indoor video-based AR applications to 

integrate four components: (1) Large scale 3D virtual models, (2) Mobile devices, (3) 

Video tracking, and (4) Interaction. 

(3) A practical and simplified method has been developed and implemented for the 

configuration and deployment of video tracking in indoor AR applications. 

(4) Different interaction methods for indoor AR applications have been developed, such 

as the automatic picking behavior. 

(5) A prototype system has been developed and implemented in Java, and three case 

studies have been used to demonstrate the feasibility of the above mentioned 

approaches and methods. The first case study demonstrated navigation assistance; the 

second case study demonstrated HVAC inspection; and the third case study 

demonstrated urban planning. 

On the other hand, the implemented prototype of the system is limited by the field of 

view of the used video cameras; this limitation can be overcome, in the future, as 

mentioned in Section 5.3, using spherical cameras. The system is also limited by the 

possible discontinuity of the video-tracking due to the limited visibility range of the 

different markers; this limitation can be reduced by using motion-tracking devices such 

as gyroscopes. The combination of the hardware limitations, the inaccuracy of the virtual 

model, and the tracking errors caused by ARToolkit, produced slight mis-alignment of 

the virtual augmentation with the real world. Reduced environment awareness of the 

users is another limitation imposed by the use of video-based HMD. 
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5.3 FUTURE WORK 

(1) Since the field of view of digital video cameras is crucial in the video-based detection 

of markers, spherical cameras, such as the Ladybug (Point Grey website, 2008), can 

be used in future works to make the system more aware of the surroundings and get a 

robust tracking which makes the system safer for the user. Appendix F explains the 

possible extension of the system to seamlessly link it with the Ladybug spherical 

camera. 

(2) Through the networking capability of the system, the user can be lively notified of an 

emergency. The system starts guiding the user to the closest exit and keeps him/her 

updated with the latest information about the emergency. The user can also 

dynamically change the exit plan based on the changes in the circumstances such as 

the collapse of a floor that makes the selected exit impossible or more risky. A similar 

capability has been introduced by the Chicago Fire Department to help the firemen 

collaborate during firefighting operations and get live notification about the changes 

in the surrounding conditions, such as room temperature (Fire Project website, 2008). 

(3) The tracking component of the system can be extended by other types of tracking 

such the Radio Frequency IDs (RFID to detect different hazardous places in a 

building and warn the user before entering in their perimeter. 

(4) A new path finding technique inside buildings can be used to dynamically select the 

closest path to the target. 

(5) Head tracking devices can be used to extend the indoor tracking by filling the gaps 

between the visibility ranges of the different markers. 

(6) Developing methods to reduce the errors discussed in the previous section. 
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Appendix A: XML files for describing markers 

1. Example of a Marker Library XML file: 

<?xml version="l.0" encoding="utf-8" ?> 
<MarkerLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\\BridgeResources\\Markers.xsd"> 

<Marker> 
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4 
x4_384_47.patt</PatternFileName> 

<LinkID>5125</> 
<PatternSideDimension> 115 </> 
<AbosoluteLocationInWorld> 

<x> 298700.412</x> 
<y> 72.689</y> 
<z> -5039511.305</z> 

</AbosoluteLocationInWorld> 
<NormalVector> 

<x> -0.836 </x> 
<y> 0.0 </y> 
<z> -0.548 </z> 

</NormalVector> 
<UpDirection> 

<x> 0 </x> 
<y> 1 </y> 
<z> 0 </z> 

</UpDirection> 
<DirectionVector> 

<x> 0.0</x> 
<y> 1.0</y> 
<z> 0.0</z> 

</DirectionVector> 
<Translation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Translation> 
<Rotation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Rotation> 
<Scale> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Scale> 
</Marker> 
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<Marker> 
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4 
x4_38 4_91.patt</PatternFileName> 

<LinkID>ElevatorCorner</> 
<PatternSideDimension> 115 </> 
<AbosoluteLocationInWorld> 

<x> 298696.60836248304 </x> 
<y> 73.15966358270978 </y> 
<z> -5039515.23124213 </z> 

</AbosoluteLocationInWorld> 
<NormalVector> 

<x> 0.0</x> 
<y> 0.0</y> 
<z> 1.0</z> 

</NormalVector> 
<UpDirection> 

<x> 0.0 </x> 
<y> 1.0 </y> 
<z> 0.0 </z> 

</UpDirection> 
<DirectionVector> 

<x> 0.0 </x> 
<y> 1.0 </y> 
<z> 0.0 </z> 

</DirectionVector> 
<Translation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Translation> 
<Rotation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Rotation> 
<Scale> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Scale> 
</Marker> 

<Marker> 
<PatternFileName>C:/BridgeResources/JARToolkitTestFolder/data/pattern/4 
x4_384_83.patt</PatternFileName> 

<LinkID>5125</> 
<PatternSideDimension> 115 </> 
<AbosoluteLocationInWorld> 

<x> 298702.487</x> 
<y> 72.767</y> 
<z> -5039506.637</z> 

</AbosoluteLocationInWorld> 
<NormalVector> 

<x> 0.546 </x> 
<y> 0.0 </y> 
<z> -0.837</z> 

</NormalVector> 
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<UpDirection> 
<x> 0 </x> 
<y> 1 </y> 
<z> 0 </z> 

</UpDirection> 
<DirectionVector> 

<x> 0.0</x> 
<y> 1.0</y> 
<z> 0.0</z> 

</DirectionVector> 
<Translation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Translation> 
<Rotation> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Rotation> 
<Scale> 

<x> 0.0 </x> 
<y> 0.0 </y> 
<z> 0.0 </z> 

</Scale> 

</Marker> 
</MarkerLibrary> 



Appendix B: Software requirements and installation guide of the prototype system 

Software requirements: 

(1) Borland JBuilder 2006 Enterprise: used to develop the prototype system; 

(2) MS Access (MS Access XP): used to store the data of the buildings; 

(3) ArcGIS (ESRI2004): used to develop GIS application; 

(4) Windows XP: used as the operation system. 

Installation guide: 

1. Copy four folders to corresponding driver and change the associated code in the 

project to match the driver path. The contents in these folders include: 

• Currproject or infra_project (The folder includes all codes of our project) 

• Javasoft (The folder includes all libraries which are required in our project) 

• Bridgere (The folder includes all 2d information) 

• BridgeResources (The folder includes all 3d information and models) 

2. Click Start->Control Panel-> Administrative Tools->Database Source. 

And add ODBC data source as below: 

• Microsoft Access Driver: Name: bridge, Location: C:\ BridgeResources\dbl .mdb 

(No password for data source is required, so just leave the password as blank.) 

3. Launch Jbuilder, open the project.jpx file. Then click the menu of Jbuilder: Project-

project Properties. Click the tab "Required Libraries". Then edit or add the path of 

libraries as below: 
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- VRML97 (VRML File Loader API) 

Download the library from: https://i3d-vrml97.dev.iava.net 

D:/javasoft/loaders/vrml97.jarVRML97 library 

- Jdk3D (Java development Kit 3D) - Version 1.3.1 

Download from http://java.sun.com/products/java-

media/3D/downloads/index.htmlJRE/1.3.1 09/lib/ext 

- DXFLoader (DXFfile loader API) - Version 1.0 is needed. 

Download from: http://www.johannes-raida.de/index.htm7cadviewer 

- JARToolkit Dlls: The dlls are located at D:\JavaSoft\JARToolkit Dlls 

Make sure you put these dll files in your JARToolkit Dlls directory, then click start-> 

Control Panel->System->Advanced->Environment Variables, please add the path of 

JARToolkit Dlls directory to the environment variable "path" of User Variables. 

- MO J (MapObject Java API) - Version 2.1 

Download from: http://www.esri.com/software/moiava/ 

Put the files in: C:/ESRI/MOJ21/lib add the tutsource.jar and tutorial.jar files that 

are available at the directory MOJ21\Samples\Tutorial. 

- JARToolkit (Java ARToolkit API) -Version 2.0 

Download from: http://ierry.c-lab.de/iartoolkit/ 

The needed files are: JARFrameGrabber.dll, JARToolkit.dll, JARVideo.dll, 

libARvideo.dll, libARvideod.dll, and msvcr70.dll 
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Table B. 1: Summary of libraries used in the prototype system 

Library 

VRML97 

JDK 3D 

DXFLoader 

MOJ 

ARToolkit 

JARToolKit 

Description 

VRML File 
Loader API 

Java 3D API 

DXF File Loader 
API 

MapObject Java 
API 

ARToolkit API 

Java Binding for 
ARToolKit API 

Source 

https://j3d-vrml97.dev.iava.net/ 

D:/javasoft/loaders/vrml97.jar 

http://java.sun.com/products/iavamedia/3D/ 
downloads/index.html 

D:/javasoft/ JRE/1.3.1_09/lib/ext 

http://www.johannes-
raida.de/index.htm?cadviewer 

D:/Javasoft/DxFloader/ 

http://www.esri.com/software/moiava/ 

http://www.hitl.washinctton.edu/artoolkit/ 

http://ierry.c-lab.de/iartoolkit/ 

D:\JavaSoft\JARToolkit Dlls 

Version 

1.3.1 

1.0 

2.1 

2.0 
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Appendix C: Unit Testing 

The following tables list the different test cases done in this study. Each table shows the 

class name and the methods that have been tested. 

Table C.l: Test cases for Animated Arrow 

Test Case 

testCreateArrow() 

testOrientationAlgorit 

hem() 

Test Data 

Null 

Point3f(0,0,0), 

Point3f(0,0,0) 

Expected Result 

Arrow object 

Angle= 0.493 

Traceab 
ility 
TR1 

TR2 

Table C.2: Test cases for Marker 

Test Case 

testGetDirection() 

testGetNormalVector() 

testGetPatternFileNam 

e() 

testGetPatternSize() 

testGetRefPoint() 

Test Data 

Vector3f(10.0f,0.56f, 

0.3i) 

Vector3f(0.0f, 0.5f, 0.9f) 

"C:\\BridgesResources\\ 

marker.txt" 

Marker.Size=40 

Point3f(298692.1306951 

222f, 73.8795095f, -

5039515.30027) 

Expected Result 

Vector3f(10.0f, 0.56f, 

0.3f) 

Vector3f(0.0f, 0.5f, 

0.9f) 

C :\\BridgesResources\ 

\marker.txt" 

40 

Point3f(298692.13069 

22f, 73.87950951054f, 

-5039515.30027f) 

Trace-
ability 
TR3 

TR4 

TR5 

TR6 

TR7 
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Table C.3: Test cases for Marker (continued) 

Test Case 

testGetRotation() 

testGetScale() 

testGetTextAugmentat 

ion() 

testGetTranslation() 

testSetUpDirection() 

Test Data 

Vector3d(0.0f, 0.5f, 0.9f) 

Vector3d(0.0f, 0.5f, 0.9f) 

"Room 9215" 

Vector3d(200.0f, 10.5f, 

O.lf) 

Vector3d(2.0f, 1.0f,0.0f) 

Expected Result 

Vector3d(0.0f, 0.5f, 

0.9f) 

Vector3d(0.0f, 0.5f, 

0.9f) 

"Room 9215" 

Vector3d(200.0f, 

10.5f, O.lf) 

Vector3d(2.0,1.0,0.0) 

Trace-
ability 
TR8 

TR9 

TRIO 

TR11 

TR12 

Table C.4: Test cases for JARToolKit3D Main 

Test Case 

testGetInstance() 

testGetInstance_Null_ 

ModelPane_Hanlding() 

testMarkersLoadingFro 

mNullFile() 

Test Data 

Null 

Null 

Null 

Expected Result 

Exception raised 

Exception raised 

Exception raised 

Trace-

ability 

TR13 

TR14 

TR15 
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Table C.5: Test cases for JARToolKit3D_Main (continued) 

Test Case 

testMarkersLoadingFro 

mFile() 

testMarkerStoredInfo() 

testMarkerOutOfRange 

Index() 

testSetTrackingScale() 

Test Data 

Path: "C:/Resources/ 

testmarkers.cfg" 

Path: "C:/Resources/ 

testmarkers.cfg" 

Path="C:/Resources/ 

testmarkers.cfg" 

Path=" C:/Resources/ 

testmarkers.cfg" 

Expected Result 

Path: 

"C:/Resources/ 

testmarkers.cfg" 

Path: 

"C:/Resources / 

testmarkers.cfg" 

Path="C:/Resour 

ces/ 

testmarkers.cfg" 

Path=" 

C:/Resources/ 

testmarkers.cfg" 

Trace-

ability 

TR16 

TR17 

TR18 

TR19 
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Table C.6: Test cases for JARToolKit3D 

Test Case 

testGetlnstance () 

testCreate () 

testlnitializeCamera () 

testlnitializeCameraWr 

ongFileName () 

testlnitializeCameraWr 

ongPath () 

testCreateB ackground 

0 

Test Data 

Null 

Null 

Path= "C:/Resources 

/JARToolkitTestFolder/data/ca 

mera_para.dat" 

Path="C:/Resources/JARToolkit 

TestFolder/data/camera_para.va 

t" 

Path= "C:/camera_para.dat" 

Null 

Expected Result 

Exception raised 

Exception raised 

Path= 

"C:/Resources 

/JARToolkitTest 

Folder/d 

a/camera__para.d 

at" 

Path="C:/Resour 

ces/JARToolkitT 

estFolder/data/ca 

mera_para.vat" 

Path= 

"C:/camera_para 

.dat" 

Exception raised 

Trace-
ability 
TR20 

TR21 

TR22 

TR23 

TR24 

TR25 
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Traceability Messages: 

TR1: Failed to create Arrow 

TR2: Wrong transformation detected! 

TR3: GetDirection returned wrong direction vector 

TR4: GetNormalVector returned wrong Normal Vector 

TR5: GetPatternFileName returned wrong Pattern file name! 

TR6: GetPatternSize returned wrong Pattern size! 

TR7: GetRefPointl returned wrong Reference Point coordinates 

TR8: GetRotation returned wrong rotation angle! 

TR9: GetScale returned wrong scaling! 

TRIO: GetTextAugmentation returned wrong Text augmentation! 

TR11: getTranslation returned wrong translation adjustment! 

TR12: Marker.SetUpDirection must not allow wrong direction vector. 

TR13: Failed to get a singleton instanc of JARToolKit3D_Main 

TR14: Failed to throw exception when an null ModelPane is passed 

TR15: Failed to throw exception in LoadMarkersFromFile! 

TR16: Wrong number of loaded markers from file! 

TR17: Wrong loaded Marker Coordinate 

TR18: Failed to throw exception in GetMarker when passed index is negative! 

TR19: Wrong scaling 

TR20: Failed to raise an exception 

TR21: Failed to create a singleton instance of the ARToolkit3D 

TR22: Failed to create an instance of JARToolKit3D 
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Appendix D: Requirement Testing 

Table D.7: Requirement testing for Feature 1 

Feature 1: Develop animated 3D arrow oriented from current user's location to the 

object of interest. 

Requirements 

1. The orientation of the 

arrow should be adjusted 

based on the user location. 

2. The arrow should be 

visible in AR mode. 

Scenario 

1 .Launch the application 

2.Click on the Settings 

button. 

3.Select "Arrow" 

4. A blue arrow oriented 

shows the location of the 

elevators of the fifth floor. 

1 .Launch the application 

2.Select AR mode. 

3.Click on the Settings 

button. 

4. Select "Arrow" 

5.A blue arrow oriented 

shows the location of the 

elevators of the fifth floor. 

Success Criteria 

The orientation of 

the arrow will be 

adjusted correctly. 

The arrow should be 

always visible. 
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Table D .8: Requirement testing for Feature 2 

Feature 2: Track and record the current user location in VR mode 

Requirement 

1. The tracking technology 

should be provided in 

VE. 

2. A behavior should be 

developed to add the 

arrow to current user 

location repeatedly. 

Scenario 

1 .Launch the application. 

2. Add the arrow. 

3.Press Start Record Location 

button. 

4. Input file name. 

5.Navigate in the VE start from 

EV building to Hall building. 

6.Press StopRrecordLocation 

button. 

1 .Launch the application. 

2.Add the arrow. 

3 .Navigate in the VE. 

4.An animated arrow points to 

the destination while 

navigating. 

Success Criteria 

The location of the 

user are recorded in 

the GIS file that the 

name is specified by 

user. 

The arrow is always 

visible. 

124 



Table D.9: Requirement testing for Feature 3 

Feature 3: Track the current user location in AR mode 

Requirement 

1. Detect the user's movement 

with respect to the paper 

markers. 

2. Calculate the 3D coordinate 

representing the user's 

location in the real world. 

Scenario 

1 .Launch the application. 

2.SelectARmode. 

3.Select the camera parameters. 

4. Navigate in the real world. 

1. Launch the application. 

2. Select AR mode. 

3. Select the camera parameters. 

4. Move in the real world. 

5. Go in front of the room 9.250 

Success Criteria 

See video 

background of real 

world in the VE. 

See the room umber 

overlaid on the video 

while moving in 

front of the room 
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Table D.10: Requirement testing for Feature 4 

Feature 4: Overlay the 3D animated arrow on the video of real object displayed using the 

HMD. 

Requirement 

Add an arrow to current 

location pointing to object 

of interest. 

Scenario 

1 .Launch the application. 

2.SelectARmode. 

3.Select the camera 

parameters. 

4.Click on setting button. 

5.Select Arrow. 

6.Move in the real world. 

Success Criteria 

See the arrow pointing 

to the object of interest 

while moving. 
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Table D.l 1: Requirement testing for Feature 5 

Feature 5: Overlay a text augmentation on the video of real objects showing the 

recognized room number in a building. 

Requirement 

Overlay a 3D text on the video 

showing the room number. 

Scenario 

1. Launch the application. 

2. Select AR mode. 

3. Select the camera parameters. 

4. Move in the real world. 

5. Go in front of the room 5.125 

Success Criteria 

See the room umber 

overlaid on the video 

while moving in 

front of the room 

Table D.l2: Requirement testing for Feature 6 

Feature 6: Control the field of view of VE in AR Mode. 

Requirement 

Adjust the field of view of 

virtual scene so that the user 

can match it with the field of 

view of the digital video 

camera. 

Scenario 

1- Launch the application. 

2-Select AR mode. 

3- Select the camera parameters. 

4- Navigate in the real world. 

5 - Change the field of view 

Success Criteria 

See video the VE 

matching the real 

world. 
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Table D.13: Requirement testing for Feature 7 

Feature 7: Control the transparency of the virtual objects in the virtual scene. 

Requirement 

Change the transparency ratio 

of the virtual objects in the 

scene 

Scenario 

1 - Launch the application. 

2 - Select AR mode. 

3- Select the camera parameters. 

4- Navigate in the real world. 

5 - Change the transparency 

level using the transparency 

slider 

Success Criteria 

See video the 

transparency of VE 

changing to different 

levels from opaque 

to a complete 

transparency. 

Table D.14: Requirement testing for Feature 8 

Feature 8: Control the video-tracking scale. 

Requirement 

The movement of the user 

while the video-tracing is 

running should be scaled 

based on the selected scale. 

Scenario 

1 - Launch the application. 

2 - Select AR mode. 

3- Select the camera parameters. 

4- Navigate in the real world. 

5 - Change the tracking scale 

using the scale slider to 2. 

Success Criteria 

See video the 

movement in VE 

matching twice the 

movement in the real 

world. 
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Table D. 15: Stress Testing 

Extreme situation 

When the marker is detected 

by camera but user moves the 

camera very frequently. 

Scenario of system usages 

1. Launch the application. 

2. Select AR mode. 

3. Select the camera parameters. 

4. Navigate in the real world. 

5. Stand In front of marker. 

6. Move the camera very 

frequently. 

System reaction 

There should not too 

much flickering in 

showing virtual 

object on the video 

of real world. 
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Appendix E: Equipment used in the prototype system 

(1) (2) (3) 

(4) (5) (6) 

(7) 
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Table E.l: Equipment specifications 

Device Type 

Tablet PC 

Laptop 

HMD 

Number 

(1) 

(2) 

(3) 

(4) 

Brand 

Panasonic 

ToughBookCF-18 

Toshiba Tecra M4 

Dell XPS 

I-gl asses 
3D Pro 

Specifications 
Processor: Intel® Pentium® M 
Processor ULV 753, 
1.20GHz 
Memory: 512MB+256MB SDRAM 
standard 
Hard Disk Driver: 40GB 
Display: (XGA) transmissive daylight 
readable TFT Active 
Matrix Color LCD, 
Pointing Device: Pressure sensitive 
touchpad with vertical 
scrolling support 
Battery Life: 7.0 hours 
Processor: Mobile Intel® Pentium® 
M 1.86GHz, 
Memory: 1GB DDR2, 
Hard Disk Driver: 80GB, 
Display: TFT Active Matrix colour 
LCD display w digitizer, 
Pointing Device: Touchpad + 
Accupoint, Toshiba Tablet Pen, 
Battery Life: 3.5 hours 

Processor: Intel® Core 2 Duo 2.5GHz 
Memory: 3GB 
Hard Disk Driver: 200GB 
Display: Standard LCD Display with 
2MP Camera 
Pointing Device: Pressure sensitive 
touchpad 
Battery Life: 2.5 hours 

Resolution: 800 x 600 
1.44 Million Pixels per Display 
True Black Background 
Field of View: 26 Degrees Diagonal 
Virtual Image Size: 70" at 13' 
Color Depth: 256 Levels per Color 
(True 24 Bit) 
Weight: < 226 gram 
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Table E.l: Equipment specifications (continued) 

Device Type 

HMD 

Digital Video 
Camera 

Number 

(5) 

(6) 

(7) 

Brand 

MicroOptical SV-6 

Microvision Nomad 
ND2000 

Logitech QuickCam 
for Notebooks Pro 

Specifications 

Display Format: 1280 x 1024 pixels, 
60 Hz refresh rate 
Display Color: 24-Bit. 
Field of View: Approximately 48° 
horizontal, 60° diagonal, 
Input Signal: SXGA format 
Brightness (nits): 30 fL max 

Display Format: SVGA 800x600 
pixels, 60 Hz refresh rate 
Display Color: Monochrome Red 
Field of View: 17.25° horizontal, 23° 
diagonal 
Input Signal: SVGA format 
Focus Range: Adjustable from 1 feet 
to infinity. 
Continuous Operation: 8 hours 

Resolutions: 640x480 @ 30fps 
Features: Built-in microphone 
Connectivity: USB 
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Appendix F: Usability Testing 

1. Usability and usefulness 

Usability and usefulness are related but different. Nielsen (1994) differentiates between 

usefulness and usability. "Usefulness is the issue of whether the system can be used to 

achieve some desired goal. Usability applies to all aspects of a system with which a 

human might interact..." 

The usability testing is about usability not usefulness. For example, a system can be 

amazingly easy to use but of no use. Finding out if a feature is useful can be during user-

needs assessment stage of the development process. "Usability testing is a poor way to 

assess utility" (Dillon, 2003). 

2. Usability Definition 

"Usability is the broad discipline of applying scientific principles to ensure that the 

system/site designed is easy to learn, easy to use, easy to remember, error tolerant, and 

subjectively pleasing" (The Usability Company, 2004). 

Usability evaluation is a process that aims to identify usability problems in user interface 

design (Mack and Nielsen, 1994). 

The usability is also defined as "the extent to which a product can be used by specified 

users to achieve specific goals with effectiveness, efficiency, and satisfaction in a 

specified context of use" (ISO 9241-11, 1998) 

3. Usability Guidelines for AR Systems 

Joseph L. Gabbard (Gabbard, 2001) from Virginia Tech's Systems Research Center 

presented a list of usability guidelines as preliminary results of a research on VE and AR 
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usability engineering. The main guidelines relevant to AR systems are summarized as 

below: 

(1) Multi-user mode 

o Information about other collaborative users should be always available even if 

they are physically occluded or located in a remote place. 

o In case of multi-user collaborative environment, users should be allowed to 

share tracking information. 

o In collaborative environment, users should be able to control the type and the 

extent of information to share or to keep private. 

(2) Navigation 

o Interaction techniques (e.g. navigation) should not require noticeable portion 

of the user's attention. 

o Spatial labels, signs, landmarks, and a compass that shows the North direction 

should be included when appropriate. 

o The user should be always able to find his/her location, altitude and 

orientation. Also, he/she should be able to know how to get to a certain 

location. 

o Non-direct manipulation should be possible (such as query-based selection) in 

case of temporal, descriptive, or relational selection criteria. 

o High frame rates and low latency are necessary for 3D target acquisition. 

o Accurate representation of location and orientation of graphics and text is 

recommended. 
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o For large environments, navigational grid and/or navigational map should be 

included. 

o Multiple degrees of freedom input is well suited for coarse positioning tasks, 

but not for tasks which require precision. 

o The number of degrees of freedom of the navigation technique and device 

should match the nature of the task. For example, menu selection should not 

require an interaction technique or device with more than two degrees of 

freedom. 

o The trackers should provide enough accuracy for small fractions of degrees in 

orientation and for few millimeters in position 

(3) Speech Recognition and Natural Language 

o The user should be able to record and playback annotations in a quick, 

efficient and unobtrusive way. Annotations should be seamlessly integrated. 

o The user should be able to edit, remove or save annotations. 

(4) Visual Feedback 

o The AR system should be responsive and prompt. Timing and response delay 

affects user performance. 

o The user should be allowed to adjust the visual display (e.g. illumination and 

contrast levels). 

o The wearable display should be sufficiently comfortable and optically 

transparent for the user. 
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(5) Visual clarity 

Information displayed on the screen should be clear, well organized, unambiguous 

and easy to read. 

4. The Evaluation Checklist 

The evaluation checklist consists of a set of specific questions intended for usability 

assessment. The checklist provides standardized and systematic way of identifying 

problem as well as improvement areas and good aspects of the system (Ravden et al., 

1989). 

Using this method, the evaluator will be asked to carry out tasks that have been designed 

to be performed as part of the evaluation. The tasks should represent the work the system 

is designed to perform, thus should test as many of the system functions as possible. 

The evaluation checklist is based on nine criteria that a well-designed user interface 

should meet (Ravden et al., 1989). These criteria are Visual clarity, Consistency, 

Compatibility, Informative feedback, Explicitness, Appropriate functionality, Flexibility 

and control, Error prevention and correction and User guidance and support. 

5. IsoMetrics 

IsoMetrics is a usability inventory developed at the University of Osnabruck (Gediga et 

al., 1999), based on seven usability principles from norm ISO-9241 Part 10, being: 

suitability for the task, self-descriptiveness, controllability, conformity with user 

expectations, error tolerance, suitability for individualization and suitability for learning. 

IsoMetrics is available in two different versions; the first is IsoMetrics short, designed for 

the evaluation of an existing product, known as summative evaluation, and the second is 
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IsoMetrics long, designed for the evaluation during the development process and known 

as formative evaluation. 

6. Evaluation heuristics for VE Displays 

Recently, a research team from Virginia Polytechnic Institute and State University 

(Shiratuddin et al., 2004) has carried out an experiment to compare and evaluate the 

effectiveness of five VE displays. The comparison has been based on six VE features. 

The effectiveness of these features can be considered as evaluation heuristics. 

Quality of visual presentation of the model 

Some VE displays provide better quality of visual presentation of the model by 

allowing the user to correctly and easily identify different elements and objects of the 

model and their sizes. The colors used in the 3D model should be distinctive and the 

textures should look as good as expected. Also, the colors should not be too shady or 

too dark. In addition, the images resolution should be high enough and evenly 

distributed. 

Physical comfort 

Fatigue is one of the main causes of discomfort. The weight of the HMD can be one 

of the reasons of fatigue. Also, using glasses can be bothering for the users and hence 

causes discomfort. In addition, losing focus on the 3D model can cause frustration 

and discomfort. 

Level of realism 

The VE display should provide realistic views and images of the environment. 3D 

models should be close to the real world (e.g. life-size). The system should provide 

wide and surrounding field of view and ease of seeing details and of keeping from 
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walking through walls. Moreover, walkthrough mode can considerably add to the 

realism of the system. 

Ease of navigation 

The simplicity of moving around in the VE is one of the factors that affect the ease of 

navigation. Similarity with videogames and existing widely used systems can 

substantially improve the easiness of navigation. Walkthrough mode makes the 

navigation easier as well as realistic. Navigation techniques should be easy to learn. 

Ability to keep one from getting lost 

The user should not feel disoriented or lost. Making the user think for a while on 

his/her movement and on how to navigate in the environment is one of the factors of 

disorientation and lost. 

Suitability for making decisions and performing tasks 

The ability to easily identify elements of the model, the large field of view and the 

walkthrough mode can significantly help in the group decision-making. Also, 

accommodating for more than one user at a time added a high sense of involvement 

and presence in the VE are considered very suitable for group decision. 
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Appendix G: Ladybug Spherical Camera Interface 

Since the video tracking relies on the field of view of the digital video cameras, a new 

type of digital camera, called Ladybug spherical digital camera, can be used to get a 

higher coverage of the real world environment. A configuration and interfacing method 

has been proposed, as shown in Figure G.l, to allow the system to use this type of camera 

and keep the same tracking toolkit (ARToolkit and its Java Binding JARToolkit). The 

spherical digital camera feeds the application with video frames from five cameras from 

the left, right, front, back and top sides. The proposed interface retrieves video frames 

from the five cameras, one video frame from each camera at a time through a Java Native 

Interface (JNI) that communicates with the cameras through the Ladybug Application 

Programming Interface (API). The video frame is then sent to the tracking toolkit 

(ARToolkit) through the JNI using JARToolkit to be checked for marker detection. When 

a marker is detected, ARToolkit returns a transformation matrix for the detected markers 

that defines its position and orientation with respect to the marker detected in the video 

frame and returns the identification number of the marker. Knowing the camera which 

detected the video frame containing the marker, the position and orientation of the marker 

and its identification are then sent to the main application to compute the user location 

and orientation. Based on the camera number, the marker identification and the 

predefined angles physically separating the cameras, the final user location and 

orientation is then computed and the virtual augmentation is displayed. 

The video frames from the front camera are rendered as the video of the real world on 

which the augmentation is added. 
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Ladybug 
API 

Java Native Interface Ladybug Spherical 
Camera 

Video Grabber 

Video Frame 
from Camera 

Video Frame 

Marker ID 
Transformation 
matrix #n 

Grab frame from Camera #n 

Send frame to ARToolkit 

Get transformation matrix #n 

Send transformation matrix 
#n to application 

Video Frames 

Transformation 
matrix 

Tracking Interface 

JARToolkit 

Java Native Interface 

±± 

Java 
Application 

Analyse Frame Detect Marker 

ARToolkit 

Figure G.l: Structure of a Ladybug API Interface Extension 

Note: 
- #n: Camera number from 1 to 5 
- Transformation Matrix #n: location and orientation of Camera #n with respect to a marker. 
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