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Abstract 

Generation of 2-D Digital Filter from an active analog network with Application in 
Image Processing 

Venkatraman Sundharesan 

A new approach to generate 2-D filters having variable magnitude characteristics 

from an active analog doubly terminated network has been proposed. An active analog 

circuit with reactance elements in T section in the feedback has been considered. Its 

stability has been ensured and a 2-D analog lowpass filter has been generated. The 

impedance values for the filter is obtained in comparison with type I chebyshev filter 

with ldb ripple in the pass band. 

The 2-D analog lowpass filter has been transformed to digital domain by applying 

the generalized bilinear transformation. Similarly 2-D digital high pass filter has been 

obtained. The 2-D digital bandpass filter has been obtained by cascading the lowpass and 

highpass filters. 

The 2-D digital filters are studied under five different cases. These five different 

cases are based on the coefficients of generalized bilinear transformation and the op-amp 

gain parameter. The effect of each generalized bilinear transformation coefficient and the 

op-amp gain on the filter output is studied by individually varying them. 

Finally, performance comparison between the infinite gain and finite gain 

configuration has been done for the lowpass filter with a basic image processing 

application. A basic application for 2-D digital highpass filter with finite gain has been 

illustrated in image processing. 
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Chapter 1 

Introduction 

Digital filter is just like a filter which operates on digital signals. It's a 

computation which takes one sequence of numbers i.e. the input signal and produces a 

new sequence of numbers i.e. the filtered output signal. Thus digital filter can be 

considered as a mathematical equation which translates one digital signal to another. [1] 

Digital filter can provide any required degree of precision. Digital filter 

characteristics can be easily changed, they are much more reliable and repeatable, they 

are free from component drift and no tuning is required. 

Design of Multi-dimensional filter has increasingly attracted considerable 

attention during the recent years and is still receiving significant interest by both theorists 

and practitioners. Multi-dimensional signal processing has many applications in modern 

day devices and many practical systems because of which, this subject is still being 

investigated in important areas as moving-objects recognition, robotics, medical imaging 

and so on. [2] 

Two dimensional (2-D) digital systems have gained lot of attention due to its high 

efficiency, high speed computations, permitting high quality image processing and 

analysis, also providing greater application flexibility and adaptability. The 2-D digital 
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filters have numerous applications in various fields such as image processing, video 

signal processing and seismic signal processing [3]. 

The 2-D digital filter can be classified into 2-D Finite Impulse Response (FIR) 

filter or non recursive filter and Infinite Impulse Response (IIR) filter or recursive filter. 

In this work, concentration would be given to the design of 2-D IIR filter or recursive 

filters. 

1.1 Research Objectives 

The primary objective of this research is to design a stable 2-D active analog LC 

filter and obtain its equivalent in digital domain by applying transformation which hasn't 

been done so far in the literature and to study its characteristics. Its lowpass, highpass 

and bandpass configurations would be developed and its characteristics would be studied. 

The preliminary goal of this thesis is to develop a suitable structure for 2-D 

analog active IIR stable filter. The stability is ensured by making sure that the transfer 

function polynomial is a Very Strict Hurwitz Polynomial (VSHP). 

Once a stable 2-D analog filter has been developed, suitable transformation would 

be applied to obtain the equivalent 2-D digital lowpass filter. After obtaining the 2-D 

digital lowpass filter, suitable frequency transformation are applied to get the equivalent 

highpass filter and bandpass filters. 

At last the 2-D digital active LC lowpass, highpass and bandpass filters 

applications are demonstrated with the image processing applications. 



1.2 Infinite Impulse Response Filters (IIR Filters) 

The transfer function of 2-D IIR filters can be described by using 2-D z-transform 

[3] and can be expressed as a ratio of two-variable polynomials as follows: 

/ J 
^^jctljzl'z2

j 

Nd (zx, z2) i=Q J=0 

d(z,'Z2) Z Z V * ^ 
yfc=0 1=0 

, Z , Z 2 

where boo=l, a,j and bw are real coefficients. For any input signal X(zi,Z2), the output 

Y(zi,Z2) of the filter is given by 

Y(zi,z2) = H(zl,z2)*X(zi,z2) ( 1 2 ) 

In the 2-D IIR filter, one important problem to be dealt with is stability. 

According to the stability theorem [4] [5], the 2-D IIR filter is guaranteed to be stable in 

the bounded-input bounded-output (BIBO) sense, if there exists no value of zj and Z2 for 

which D(zj,Z2) = 0 for both |zi| > land |z2| > 1 [3]. This means it is highly preferable that 

the given analog transfer function must have VSHP denominator [4]. Therefore, the 

design of a 2-D IIR filter requires obtaining the coefficients ay and bid in eqn. (1.1) so that 

H(e)(Yi,e'a)2t2) approximates a given response G(jooi, J002) where coi and 002 are horizontal 

and vertical spatial frequencies respectively, which also ensures the stability of the filter. 

1.3 Different methods of designing a 2-D IIR filters [3, 7, 8] 

One of the methods of designing a IIR filter can be classified into three steps: the 

design using analog prototype filter, the design using digital frequency transformation 

and last one is computer-aided design. In the first step, an analog filter is designed to the 
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(analog) specification and the analog filter transfer function is transformed into digital 

system function using transformation. In the second step, it's assumed that a digital low-

pass filter can be designed. The desired digital filter is obtained from the digital low-pass 

filter by digital frequency transformation. The last step uses some algorithm to choose 

the coefficients so that the response is as close as possible to the desired filter. 

Steps one and two would be used to get the 2-D active LC IIR filter. First an 

analog filter is designed and it is made sure that its transfer function is a VSHP in order to 

ensure the stability of the filter. Then its equivalent lowpass digital filter is obtained by 

applying generalized bilinear transformation (GBT). 

Highpass and bandpass filters are obtained from the lowpass by using the second 

step mentioned above. 

1.4 2-D Stability Criteria - Very Strict Hurwitz Polynomial [4] 

In one-dimensional (1-D) systems (both analog and discrete), a filter having 

required specifications with the transfer function having no common factors between the 

numerator and the denominator is designed. Let 

Ha{s)^^M ( L 3 ) 
" Da{s) 

be a transfer function in the analog domain with Na(s) and Da(s) being relatively prime. 

In order that the function is stable, Da(s) should be a strictly Hurwitz polynomial (SHP). 

A SHP contains its zeros strictly in the left half of the s-plane. Similarly, if 

DAz) 
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is a transfer function in the discrete domain with Nd(z) and Dd(z) relatively prime, then 

Da(z) should be a Schur polynomial in order that Ha(z) shall be stable. A Schur 

polynomial contains its zeros strictly within the unit circle. 

In the case of 2-D analog systems, there is a possibility that both even and odd 

parts of a polynomial may become zero simultaneously at a specified set of points, but 

not in their neighbourhood. This phenomenon is known as singularities, which makes the 

filter unstable. There are two kinds of singularities which have to be avoided. 

Consider a 2-D analog system Ha(si,S2) such as 

HM,s2) = * ^ & (1.5) 

Two kinds of singularities might arise for the above analog system which has to be 

avoided, 

(i) Da(sio,S2o) = 0 and Na(sio,S2o) ^ 0, this leads to non-essential singularity of the 

first kind at (sio,S2o). 

(ii) Da(sio,S2o) = 0 and Na(sio,S2o) = 0, this leads to non-essential singularity of the 

second kind at (sio,S2o). 

The similar situation exists in the case of 2-D discrete systems also. This leads to 

a class of polynomials called Very Strict Hurwitz Polynomials (VSHP) which doesn't 

contain singularities of the type mentioned above. A VSHP is defined as follows: 

"Da(si,S2) is a VSHP, if does not possess any singularities in the 

region {(si,S2) | Re si > 0, Re s2 > 0, |si| < QO, and |s2| < oo}" 

The different methods of generating a VSHP and its properties have been 

discussed in detail in [4]. 



1.5 Generation of VSHP [8] 

When a VSHP is used in the denominator of a 2-D analog transfer function, it is 

ensured that the resulting 2-D digital transfer function obtained by the application of the 

well-known bilinear transformation is stable. Therefore, VSHP is highly useful in the 2-

D digital filter design. A two-variable VSHP is generated and it is assigned to the 

denominator of the 2-D analog transfer function, then double bilinear transformation is 

applied to obtain the transfer function in digital domain. Here, the method used to 

generate a VSHP is reviewed. 

One of the simplest methods of generating a VSHP is to start from the VSHP 

Da{slts2) = ausxs1+awsx+aQXs2+aaQ 

The reactance function is 

(1.6) 

GaM,S2) 

On applying the transformation 

_ "\\S\S2 "*"%) 

bi0s"+bms2 

(1.7) 

(1.8) 

Where bn>0, bi0>0, b0i>0 and b00>0 

This result in 

G (s s \ = Pa2(SVS2) 
Ua2V!,l>':,2/ n , ^ 

^a2\S\^S2) (1.9) 

Where 

la2\S\iS2) = ail^ll'S'l'S2 "^(xAo^l "*"V.flll*00 +a00^0lj'S2 (\ \Q\ 

Qa2\Sl'S2 J" ^Ol^ +Vai0^11 "'"^Ol^lO/5!^ + a i0%) ( 1 1 1 ) 
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The polynomial Da2(si,S2)=Pa2(si,S2)+Qa2(si,S2) is a VSHP in which si is of unity degree 

and S2 is of second degree. When the transformations si as in eqn. (1.8) and 

C\ \S\S2 ' C00 
s2=-

^lO^l +C01"S'2 (1 -12 ) 

Where cn>0, Cio>0, Coi>0 and coo>0 are applied for Gai(si,S2) in eqn. (1.9), the resulting 

VSHP contains si and S2 of second degree each. The resulting reactance function is given 

by 

G (s s \ = ^xnhl 
±£a3V'VS2) (1.13) 

Where 

*ai\Sl>S2)~ a\A\CUS\ S2 ~*~ C00%)C10'S'l "*" l°00^01C01 "*" °00^01C01 + 011%)C11 ^~ a\\^nC00)S\S2 

+ ^00^0^01*2 + a i l ^ 0 0 C 0 0 

(1.14) 

and 

*Zal\S\>S2/= lai0^11C10 "*" ̂ filO^lPi S2 "*" lai0^11C01 "*" <301^>10C11/S'l'5'2 "*" Vfll<A>0C10 ~*~ ^01^10^0/^1 

+ laio%)coi + ao Aicoo )s2 (1.15) 

These transformations are applied again if a higher order VSHP is required. 

1.6 Bilinear Transformation [6J,[12J 

Most often used transformation method in the literature is GBT method, in order 

to transform a analog filter into a digital filter. 

s. = k, Z'~a' , where i = 1,2 (1.16) 
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The bilinear transformation maps the entire (si, S2) biplane on to the entire (zi, Z2) 

biplane, on one-to-one basis. The stability condition for the bilinear transformation is 

kt*o, y<i , y < i (1.17) 

1.7 Verification ofVSHP[4] 

In order to determine whether a given two-variable polynomial Da(si, S2) is a 

VSHP or not, whether it is a SHP or not has to be determined. To ensure this the 

following procedures would be followed: 

i. Determine that Da (si, 1) is SHP in Si. 

ii. From the given polynomial Da(si,S2), formulate 

Da0G>iJ©2)=[Ap(CD2)(Q2] 

Da{jcox,j(a2) = 

+ j 

Ap{o)2)cox
p + Ap_x(co2)coP-x +.... + A2(co2)o)x 

+ Ax{col)cox + AQ(6)2) 

Bp(co2)a)x
p+Bp_x(co2)corx+ +' 

Bx(co2)o)x + BQ(co2) 

where Ai(o>2) and Bi(©2), i=0,1,1,2 p are polynomials in (02. 

(1.18) 

hi. Now (1.18) shall be rearranged in the form of Inners as follows: 

BP 

0 
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0 
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IV. 

V. 

In order that Da(si,S2) is a SHP, it is required that the inner determinants Ak>0, 

k=l,2, p, for all 0)2-

If the certain conditions of Da(si,S2) are satisfied then it can be conclude that 

the given Da(si,S2) is a VSHP. The conditions are: 

D. 

D 

D. 

f P 
si>— 

V S2J 

,s2 
\sl J 

^ —, as s, —> 0 and s, —> 0 
0 ' 2 

# —, as s, —» 0 and s7 -> 0 
0 ' 2 

1 O 0 
V s! 5 2 y 

*—, as s, -> 0 owe? 5, —> 0 
0 

(1.19) 

(1.20) 

(1.21) 

In order to determine whether the generated polynomial is VSHP or not condition 

(v) would be used to verify. Once a VSHP is generated and is used in the denominator of 

a 2-D analog transfer function, it is guaranteed that the resulting 2-D digital transfer 

function obtained by applying the well-known bilinear transformation is stable [10], 

[11],[12]. 

1.7 Organization of the thesis 

In chapter 1, IIR filter, a special type of polynomial for 2-D filter called VSHP, 

one of the methods of generating a VSHP that would be used in this thesis, methods to 

test whether obtained polynomial is VSHP and the transformation used to obtain a 

transfer function in digital domain from an analog domain transfer function are discussed. 

Chapter 2 describes the method to obtain the transfer function of the 2-D active 

digital filter with infinite gain op-amp and finite gain op-amp. Stability of the transfer 

function is tested and the impedance values are found. 
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Chapter 3 outlines the method to obtain the transfer function of the lowpass filter 

in digital domain by applying the GBT to the analog transfer function obtained in chapter 

2 for both infinite gain and finite gain cases. Then effect of GBT coefficient and the op-

amp gain parameter k on the filter output characteristics would be studied. 

Chapter 4 presents the method to obtain the transfer function of the highpass filter 

in digital domain by applying suitable GBT to the analog transfer function obtained in 

chapter 2. Then the effect of the individual GBT coefficients and op-amp parameter k on 

the 2-D digital highpass filter output would be studied. 

Chapter 5 is a description of the method to obtain the bandpass filter in digital 

domain from the transfer function of the lowpass and highpass filter in the digital 

domain. Then effect of individual GBT coefficients and op-amp gain parameter k on the 

filter output would be examined. 

In chapter 6 few applications of 2-D digital filters in image processing for image 

restoration and image enhancement has been discussed. The performance of the 2-D 

active digital filter in lowpass configuration would be compared for the filter with finite 

gain op-amp and infinite gain op-amp. 

Chapter 7 summarizes the work done and outlines future initiatives that can be 

undertaken. 
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Chapter 2 

Design of2-D active IIR filter with T section in the feedback 

2.1 Introduction 

In the literature of the two dimensional filter design and analysis, so far study has 

been carried out in the passive domain only [14], [15], [16]. Filters have been designed 

by first ensuring the stability. In this work the possibilities of designing a 2-D active 

filter would be examined and its characteristics would be studied. In order to ensure 

stability, we would be using VSHP criteria. 

The presence of operational amplifier in the 2-D active filter leads to two cases, 

operational amplifier with infinite gain and the other one with finite gain. Practical 

applications involving 1-D active filter, op-amp with finite gain are of interest. Detailed 

study of design procedures and characteristics of the 2-D active filter, with infinite gain 

op-amp and finite gain op-amp would be done. 

Active networks containing impedances such as inductors and capacitances will 

have frequency and phase response which may be advantageous to the engineers in the 

filter design applications. An active network with a T network in the feedback path as 

shown in fig.2.1 would be considered. 



z4 

12 

G-

Vin 

G-

A/W 
Ri -o 

V o u t 

-O 

Figure 2.1: An active filter with T network in the feedback path. 

The 2-D analog filter is obtained by substituting impedance values for Z\, Z2, Z3 

and Z4. The stability of the transfer function is ensured by ensuring the denominator 

polynomial is VSHP. The various method of testing VSHP is described later in this 

chapter and one of the methods would be employed. 

Various possibilities of generating a VSHP by fitting different impedance values 

for Zi, Z2, Z3 and Z4 are tried out. Once the transfer function with a VSHP polynomial is 

obtained and then the impedances values are found out, then generalized bilinear 

transformation is applied to obtain the equivalent digital filter. 

By applying node voltage analysis to the circuit diagram in fig. 2.1 the transfer 

function of the filter in analog domain for the two cases are obtained. The transfer 

function of the filter with infinite gain op-amp is 

ro 
V, 

Z2Z3 + Z3Z4 + Z4Z2 

(2.1) 
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Transfer function for op-amp with finite gain k is 

VQ__ kZ,AZ 

Tt~ z^ik+v+Azfo+ij+z^ (22) 

where, isZ = Z2Z.i + Z^Z^ + Z4Z2 

Different values are substituted for impedances Zi, Z2, Z3 and Z4 in the above two 

equations and various possibilities of generating a VSHP are obtained. 

2.2 Stability test of the transfer function with infinite gain operational 

amplifier. 

The transfer function of the filter with infinite gain op-amp is given by eqn. (2.1). 

The transfer function has four impedance variables Z\, Z2, Z3 and Z4 and these 

CASE 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 

16 

Zl 
I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

S1L1 

S1L1 

S1L1 

SiLj 

S1L1 

S1L1 

S1L1 

S1L1 

Z2 
1/S2C2 

1/S2C2 

1/S2C2 

1/S2C2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 
S2L2 

I/S2C2 

1/S2C2 

1/S2C2 

1/S2C2 

Z 3 

S2L3 

S2L3 

1/S2C3 

1/S2C3 

S2L3 

S2L3 

I/S2C3 

1/S2C3 

S2L3 

S2L3 

1/S2C3 

1/S2C3 

S2L3 

S2L3 

1/S2C3 

1/S2C3 

Z4 
S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

VSHP/NOT VSHP 
VSHP 
NotVshpH(l/Si,S2)=0/0 
NotVshpH(Si,l/S2)=0/0 
NotVshpH(l/Si,S2)=0/0 
NotVshpH(l/Si,S2)=0/0 
NotVshpH(l/Si,S2>=0/0 
NotVshpH(Si,l/S2)=0/0 
NotVshpH(Si,l/S2)=0/0 
NotVshpH(l/ShS2)=0/0 
NotVshpH(l/Si,S2)=0/0 
NotVshpH(l/Si,l/S2)=0/0 
NotVshpH(Si,l/S2)=0/0 
VSHP 
NotVshpH(l/Si,S2)=0/0 
NotVshpH(l/Si,S2)=0/0 

NotVshpH(l/Si,S2)=0/0 
Table 2.1: Impedance combinations for stable filter with infinite gain op-amp. 
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impedances are reactance's in two dimension (si, S2). These impedances would be either 

inductor or capacitor or combination of inductor and resistor or capacitor and resistor. 

Various possibilities for these impedances to generate a fourth order VSHP is tested out 

in the Table 2.1. In Table 2.1, for the cases 1-16 impedances Zi and Z4 are considered to 

be in si domain and impedances Z2 and Z3 are considered to be in S2 domain. 

For each and every case the impedance value is substituted in the transfer function 

and tested for VSHP test cases. The test cases are as follows [4] 

in V " l J 

0 LL 
0' 

1 

in V *2J 
0 " 

( 1 1 

.Si S~. in V°l °2 J 0 
(2.3) 

CASE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Table 2.: 

Z l 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

S1L1 

S1L1 

S1L1 

SiL, 

S1L1 

SiLj 

S1L1 

S1L1 

I: Impedj 

Z2 

I/S2C2 

1/S2C2 

1/S2C2 

1/S2C2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

1/S2C2 

1/S2C2 

1/S2C2 

1/S2C2 
ince com 

Z3 

SiL3 

S1L3 

I/S1C3 

I/S2C3 

SiL3 

S1L3 

I/S1C3. 

I/S2C3 

S1L3 

S1L3 

I/S1C3 

1/S2C3 

S1L3 

S1L3 

1/S1C3 

1/S2C3 
binations 

Z4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

j for stab 

VSHP/NOT VSHP 

NotVshpHa(Si,l/S2)=0/0 

Not Vshp Ha(l/Si,S2)=0/0 

Not Vshp Ha(Si,l/S2)=0/0 

Not Vshp Ha(Si,l/S2)=0/0 

Not Vshp Ha(Shl/S2)=0/0 

Not Vshp Ha(Shl/S2)=0/0 

Not Vshp Ha(l/Si,S2)=0/0 

Not Vshp Ha(Si,l/S2)=0/0 

Not Vshp Ha(l/Si,l/S2)=0/0 

Not Vshp Ha(Si,l/S2)=0/0 

Not Vshp Ha(l/Si,S2)=0/0 

Not Vshp Ha(l/Si,l/S2)=0/0 

Not Vshp Ha(l/Si,S2)=0/0 

Not Vshp Ha(l/ShS2)=0/0 

VSHP 

Not Vshp Ha(l/Si,S2)=0/0 

e filter with infinite gain op-amp. 

If all three conditions are satisfied then the corresponding impedance combination 

would make it possible for the transfer function to have a VSHP polynomial at the 



denominator, which ensures stability. The procedure to obtain a VSHP polynomial 

would be explained in the next section. 

In Table 2.2, the impedances values are kept similar to Table 2.1 but impedances 

Zi and Z3 are considered in si domain and impedances Z2 and Z4 are considered in S2 

domain. 

2.3 Stability test of the transfer function with finite gain operational 

amplifier. 

Various combinations tried for the infinite gain op-amp case will also be tried out 

for the 

CASE 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16 

Zl 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

I/S1C1 

SiL, 
S1L1 

SiL, 

S1L1 

S1L1 

SiL! 
S1L1 

SiL, 

Z2 

I/S2C2 

I/S2C2 

1/S2C2 

1/S2C2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

I/S2C2 

I/S2C2 

I/S2C2 

I/S2C2 

Z3 

S2L3 

S2L3 

1/S2C3 

1/S2C3 

S2L3 

S2L3 

1/S2C3 

1/S2C3 

S2L3 

S2L3 

I/S2C3 

I/S2C3 

S2L3 

S2L3 

I/S2C3 

I/S2C3 

Z4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

S1L4 

I/S1C4 

I/S1C4 

S1L4 

VSHP/NOT VSHP 
VSHP 
Not Vshp Ha(l/si,s2)=0/0 

Not Vshp Ha(l/si,l/s2)=0/0 

Not Vshp Ha(l/si,s2)=0/0 
Not Vshp Ha(l/si,s2)=0/0 

Not Vshp Ha(l/si,s2)=0/0 
Not Vshp Ha(l/sl5s2)=0/0 

Not Vshp Ha(shl/s2)=0/0 
Not Vshp Ha(l/si,l/s2)=0/0 

Not Vshp Ha(l/shs2)=0/0 

Not Vshp Ha(l/si,l/s2)=0/0 
Not Vshp Ha(s,,l/s2)=0/0 

Not Vshp Ha(si,l/s2)=0/0 
Not Vshp Ha(l/si,s2)=0/0 
Not Vshp Ha(si,l/s2)=0/0 
Not Vshp Ha(l/si,s2)=0/0 

Table 2.3: Impedance combinations for stable filter with finite gain op-amp. 



finite op-amp gain and the transfer function are obtained for the cases where VSHP are 

obtained after substituting the impedance values. 

In the table 2.1, 2.2, 2.3 and 2.4, the different cases with VSHP indicates that a 

VSHP polynomial can be obtained. Case 1 of Table 2.1 and Table 2.3 would be 

considered. In both these cases, a fourth order filter would be obtained by substituting 

the impedance values. Throughout this work, only these two cases would be considered 

for the comparative study as well as the importance of controlling the GBT coefficient 

CASE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Z l 

1/SiCi 

1/SiCi 

1/SiCi 

1/SiCi 

1/SiCi 

1/SiCi 

1/SiCi 

1/SiCi 

SiLi 

SiL, 

SiLi 

SiLi 

SiLj 

SiLi 

SiLi 

SiLi 

Z2 

1/S2C2 

I/S2C2 

I/S2C2 

I/S2C2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

S2L2 

I/S2C2 

I/S2C2 

I/S2C2 

I/S2C2 

Z3 

S1L3 

S1L3 

I/S1C3 

I/S2C3 

S1L3 

S1L3 

I/S1C3 

I/S2C3 

S1L3 

S1L3 

I/S1C3 

I/S2C3 

S1L3 

S1L3 

I/S1C3 

I/S2C3 

Z4 

S2L4 

I/S2C4 

I/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

S2L4 

1/S2C4 

1/S2C4 

S2L4 

VSHP/NOT VSHP 
VSHP 

Not Vshp Ha(l/si,s2)=0/0 

Not Vshp Ha(l/si,l/s2)=0/0 

Not Vshp Ha(l/sbl/s2)=0/0 

Not Vshp Ha(l/shs2)=0/0 

Not Vshp Ha(si,l/s2)=0/0 

Not Vshp Ha(l/s l5s2)=0/0 

Not Vshp Ha(l/si,s2)=0/0 

Not Vshp Ha(l/si,l/s2)=0/0 

Not Vshp Ha(si,l/s2)=0/0 

Not Vshp Ha(l/si,l/s2)=0/0 

VSHP 

Not Vshp Ha(si,l/s2)=0/0 

Not Vshp Ha(l/si,s2)=0/0 

Not Vshp Ha(si,l/s2)=0/0 

Not Vshp Ha(si,l/s2)=0/0 

Table 2.4: Impedance combinations for stable filter with infinite gain op-amp. 

and the gain parameter 'k' in the finite gain case will studied. Fourth order type I 

Chebyshev filter with ldb ripple would be considered to obtain the impedance values. 
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2.4 Generation of impedance values for filter [6] 

Consider the transfer function of a 1-D fourth order type I chebyshev filter with 

ldb ripple. In order to get the impedance values, the transfer function of the filter is 

expanded by continued fraction. 

The transfer function of the fourth order 1-D lowpass type I chebyshev filter 

(analog) with ldb ripple in the pass band is 

Vn 1 

Vin s4 + 0.7014s3 + 1.2745s2 +0.66675 + 0.2720 (2.4) 

0.2720 
V„ 3.676s4 + 2.578s3 + 4.685s2 + 2.452s +1 (2.5) 

After expanding the above transfer function eqn. (2.5) by continued fraction expansion 

we get 

Fig 2.2 LC filter section 

1^=1.426, L4=1.051, Ci=2.168, C2=1.131 (2.6) 

The above filter is a two stage LC filter section. The value of the inductor and the 

capacitor in the first stage will be considered for the si domain and the values in the 

second stage would be considered for the s2 section. 
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2.5 Transfer function of the active filter with infinite gain op-amp 

(Table 2.1, case 1) 

Transfer function of the 2-D analog active filter with infinite gain op-amp is 

obtained by substituting the impedance values for Z\, Z%, Z3 and Z4 from (Table 2.1, case 

l)in the eqn. (2.1). The impedance value for case 1 in Table 2.lis 

1 
SA 

z2 = 
1 

5 2 C 2 

52Xv3, Z 4 — S,L, l - £ - '4' (2.7) 

By substituting the above impedance value in eqn. (2.1), we get 

V, 

o_(„ „ \ _ sls2ClL3
 + 5 i s2LiL4C2C} +5, LAC] 

$2 <-"2~3 ~*~ S\S2^2^\*^i*-'3 

Then the test conditions specified in eqn. (2.3) are tested below 

(2.8) 

K 

1 

V5i 
" , 0 7 

V S2 J 

1 1 

v„ in \ s, s 

Uv 

*i= 

=0,s2=0 

4,s2=0 

_L4Cl 

0 

0 
C2L3 

0 
• * — 

0 

0 
* — 

0 

_ -^3-^4^-'2^1 

2 /@i,=0,i2=0 
0 

(2.9) 

(2.10) 

(2.11) 

From eqn. (2.9), (2.10) and (2.11), it's clear that the case 1 in Table 2.1 satisfies 

the test conditions mentioned in eqn. (2.3). It's possible to obtain a 2-D stable active IIR 

filter for these impedance values. In order to obtain that, the following method would be 

adhered 

The transfer function obtained would be of the nature 

LL(S S )-X?uh) 
Vin Q{SX,S2) 

(2.12) 
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In order to obtain a VSHP polynomial in the denominator the following transformation 

would be done [9] 

jy.fe.j2) _ fl,(o,o) 
Da{svs2) P{svs2) + Q{svs2) 

After obtaining a transfer function of the form specified in eqn. (2.13), test 

conditions specified in eqn. (2.3) should be satisfied. 

After applying the transformation mentioned in eqn. (2.13) to eqn. (2.8) 

Sj [s2L3LAC2Ci +L4CjJ+ 

[52C2L3 J 

Eqn. (2.14) is obtained, which tends to become '0'. This trivial condition occurs 

because the transfer function of the 2-D active IIR filter with infinite gain op- amp in eqn. 

(2.8) is purely reactance function, which isn't practically realizable. In order to obtain a 

practically realizable transfer function, resistance is added either in series or in parallel to 

the impedances, such that the denominator obtained is a VSHP polynomial. 

After trying different combination, the impedance combination which would lead 

to a VSHP polynomial in the denominator and a non-zero value for the numerator is 

obtained. The combination for the impedance would be 

Zj — ^ ^ II ivj, Z 2 — ^ , Z 3 — S2L3 + /v 3 , Z 4 — Sj-Lg. 

(2.15) 1 —̂'1 *^2^-^2 

http://jy.fe.j2
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By substituting these impedance values in eqn. 2 .1 , we get 

V„(sx,s2) = P{svs2) = + sxs2(L4C2R3 + C ^ ) + sx{LA + C ^ ) + s ^ + R, 

Vin{svs2) Q(svs2) srfqC^R, +4(LiC3St+LiC^Rl) 

+ s^qC^Rfc + s2C2R3(Rx + Ri) 

Next apply the transformation in eqn. (2.13) to eqn. (2.16), we get 

(2.16) 

Ha(s\>s2)=-
R, 

+ L4C2ClRlRis2 

+ CXL4RX 

+ s, 

LT,L4C2 

^+ C-fZ^R^ 

'L4C2R3 + > 

+ ciL?,R\ 

<+CJC2RiRiRi 

+ {L4+C1RlR1) 

+ 

LiC2Rx + 
yL3C2Ri 

rL3 + 

+ C2R3Rx 

+ C2RA; 

+ R* 

(2.17) 

The resistances values are considered to be unity. Therefore 

Ri=l,Ri=l,R3=l (2.18) 

Substituting the impedance values in eqn. (2.6) and the resistance values in eqn. (2.18) in 

eqn. (2.17), we get 

1 
# « ( * i > * 2 ) = -

* 2 

_3.6749s2 

+ 2.5771s2 

+ 2.2786 

+ sx 

~5.1916s2
2 

+ 6.7323s2 

+ 3.2190 

+ 

~3.2256s2 

+ 3.6880s2 

+ 1 

(2.19) 

Since the stability of the filter is defined by the denominator of the transfer 

function, the numerator is considered to be a constant. For a stable filter, the filter's 

transfer function should be free of singularities of first and second kind (sec. 1.4) and 

moreover denominator polynomial is VSHP. Further based on the test methodologies 

described in sec.(1.6), we get 
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Da{sl,s2) = Da ,S2 

Vs! J 
= D. 

1 

V S2 . 
\ = D. 

1 1 ^ 0 

\S\ S2 J 0 
(2.20) 

As the non essential singularities of the first and second kind are eliminated, the 

denominator polynomial Da(si,S2) is a VSHP. The generalized bilinear transformation is 

applied to obtain the discrete domain equivalent, which must also be stable. 

2.6 Transfer function of the active filter with finite gain op-amp (Table 

2.3, case 1) 

By substituting the impedance values for Z\, 2a, Z3 and Z4 from (Table 2.3, case 

1) in the eqn. (2.2) and the transfer function of the filter is obtained. But by substituting 

these values you end up getting a transfer function in terms of reactance's which is not 

acceptable for practical application. So, resistances are added either in series or parallel 

to this impedance to get the appropriate transfer function. After trying out various 

combinations, one of the combination would be Zi=(l/siCi), Z2=l/s2C2, Z3=R.3+S2L3, 

Z4=siL,4. By substituting these values in eqn. (2.2) we get, 

K(svsi) K[ S\$2 'K A 1 1̂ 2 1 4 1 *̂1 4 '^2% w 

(sfslL3L4C2C^ +s^s2C1C2L4R3 + sfL4Q +s1s2Z,3C1 + slClR3)(Ri +1) 

+ (slL3C2 + s2C2Ri)(k+l) + sls2L4C2 

(2.21) 

The same procedure as in sec. (2.4) would be employed and we end up getting 

HAsi>Si)= — 
£/?, 

"^3 4 2 1*̂ 2 

+ C1C2Z,4i?3,s 

+ L4CX 

i°2 k+i) + s, 

l\M-i-i JUA t ^ 2 " 2 

L<C2 

+ W2L4Ri 

- f ^C .^+ l ) 
+ C1i?3(i?,. +l)+Ai, 

L,c2{k+\y2 

C2R3{k + \) 

-kR, 
(2.22) 
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In this case also the resistance values are considered to be unity, so 

Ri=l,R3=l (2.23) 

Substituting the impedance values in eqn. (2.6) and the resistance values in eqn. (2.23) in 

eqn. (2.22), we get 

*,2 

"7.3498s2
2 

+ 5.154 ls2 

+ 4.5571 

+ Sl 

"l.6951fa2
2 

+ (7.3718 + 1.1887&)s2 

+ 4.3360 + 1.05 \k 

+ 

"(l.6128£ + 1.6128)y2
2 " 

+ (0.2950& + 2.168>2 

+ k 

GBT is applied to obtain the digital equivalent lowpass, highpass and bandpass 

filter, and these things would be discussed in the next chapters. 

2.7 Summary 

In this chapter, the active filter with T network in the feedback path was 

introduced. The main challenge of designing a filter is to ensure its stability. In order to 

ensure stability, 2-D active filter transfer function stability is ensured by ensuring the 

polynomial is VSHP. 

The active filter consists of four impedances. In order to obtain a 2-D active 

filter, two impedances was considered in si domain and the other two impedances was 

considered in S2 domain. These impedances could be either an inductor or a capacitor in 

that domain. As it's an active filter, the possibility of filter with finite gain and infinite 

gain was also tried out. All possibilities were tabulated in Table 2.1, 2.2, 2.3 and 2.4. 

For each case, the possibility of generating a VSHP polynomial was found out. 

For the infinite gain case out of the 16 cases each in Table 2.1 and Table 2.2, only 

three cases were obtained in which a VSHP can be obtained. Similarly, for the finite gain 
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case out of the 16 cases each in Table 2.3 and Table 2.4, there was three possibilities of 

generating a VSHP. The resulting transfer function would be a reactance function, so in 

order to avoid that resistance were added in series or parallel with these impedances to 

generate appropriate transfer function. 

The inductor and capacitor values for these impedances was obtained from the 

fourth order type I chebyshev filter with ldb ripple. These values are then substituted in 

the transfer function of the 2-D active filter for the infinite gain case and the finite gain 

case for further analysis. 

This chapter mainly describes the method for choosing the transfer function 

which is VSHP in order to ensure stability from the different combinations of the 

impedances values for the filter. Among the total 32 combination for the 2-D active filter 

with infinite gain, three combinations which would be suitable for designing stable 2-D 

active filter was obtained. Similarly for the 2-D active filter with finite gain case, three 

combinations which are suited for designing 2-D digital filter were obtained. But only 

case 1 in Table 2.1 and Table 2.3 would be considered further in this thesis. 
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Chapter 3 

Two Dimensional Lowpass Filter 

3.1 Introduction 

A popular method to design a 2-D digital filter is to start from the analog part i.e., 

first obtain the analog transfer function for the filter and then apply the double bilinear 

transformations to the analog transfer function to obtain the equivalent digital filter. The 

denominator of the analog transfer function should be a VSHP, so that by applying 

double bilinear transformation a stable digital transfer function can be obtained. The 

stability conditions to be satisfied for the coefficients of GBT are discussed in [6]. 

To obtain a stable lowpass digital filter by applying the double bilinear 

transformation, the following conditions are to be satisfied 

1*2, | < 1, pj < 1, axbx < 0, |a2| < 1, p 2 | < 1, a2b2 < 0. In this chapter, these conditions would 

be fulfilled for the coefficients of bilinear transformation to obtain a stable digital 

lowpass filter. 

In chapter 2, the transfer functions of the filter with infinite gain op-amp and 

finite gain op-amp was obtained. Eqn. (2.19) represents the stable transfer function for 

the filter with infinite gain op-amp and eqn. (2.24) represents the stable transfer function 
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of the filter with finite gain op-amp. Both the equations represent the transfer function in 

analog domain. 

In this chapter the transfer function of the lowpass filter in digital domain for the 

both cases would be obtained by applying bilinear transformation and importance of each 

GBT coefficients and op-amp gain parameter on the filter output would be discussed in 

the following sections. 

3.2 Transfer function of2-D active digital lowpass filter 

The generalized bilinear transformation is applied to the transfer function in 

analog domain to obtain the equivalent digital lowpass filter [12]. Transformation to be 

applied for both the infinite gain and finite gain cases is 

s = k.y \ , whereh > 0,0 < a, < 1 and 0 < h < 1 

_,{z^-a)_ a _ - u 

[zx+b,) c 

_ (z2 -a2) _ b 
S2 ~ ^2 7 7 T ~ ^2 ~7' * ~~ Z2 ~ a2' ** ~ Z2 "*" ^2 

\z2+b2) d 

(3.1) 

(3.2) 

(3.3) 

where ki>0, k2>0, 0 < a i < l , 0<a2<l and bi=b2=l in particular to obtain a 

lowpass filter transfer function. By substituting eqn. (3.2), (3.3) in eqn. (2.19), we get 

c d 
HdL{Zl>Zl): 

k2a2 

"3.6749k^b2 +" 

2.577 lk2bd + 

_2.2786d2 

+ k,ac 

_5.1916k2b2 +" 

6.732k2bd + 

3.2190d2 

+ c2 

_3.2256k2b2 +" 

3.688k2bd + 

d2 

(3.4) 
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Eqn. (3.4) represents the transfer function of the 2-D IIR filter with infinite gain 

op-amp in digital domain, for case 1 in Table 2.1. 

Now by substituting eqn. (3.2), (3.3) in eqn. (2.24), transfer function of the 2-D 

IIR filter with finite gain op-amp, for case 1 in Table 2.3. 

After applying the transformation the transfer function is as given below: 

kc2d2 

Hda.(zvz2)= — 

k2a2 

+ c2 

~7.3498k2b2 +" 

5.1541k2bd + 

4.5571d2 

+ k,ac 

"l.6951kk2b2 + 

(7.3718 + 1.1887k)k2bd+ 

(4.3360 + 1.05 lk)d2 

"(l.6128 + 1.6128k)k2b2+~ 

(2.168 + 0.295k)k2bd + 

+ kd2 

(3.5) 

3.3 Frequency response of 2-D active digital lowpass filter with infinite 

gain 

MATLAB has been used to plot the contour and 3-D amplitude responses of the 

filter transfer function given by eqn. (3.4). In simulation runs, the GBT coefficient bi & 

b2 values are kept equal to unity and the other GBT coefficients ki, k2, ai and a2 would be 

varied. Frequency response of 2-D digital lowpass filter with infinite gain will be studied 

under four different scenarios i.e. by varying each GBT coefficient individually in each 

scenario. 

Let us consider all the GBT coefficients to be equal to unity i.e. kj=l, k2=l, ai=l 

and a2=l. For this condition, the 3-D amplitude-frequency response and contour plot of 

the 2-D digital lowpass filter with infinite gain is show in Fig. 3.1. The contour plots are 

elliptical in nature and the magnitude of amplitude-frequency response is close to unity. 
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Figure 3.1: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with infinite gain op-amp when all the coefficients are unity. 

Impedances values for the filter were obtained from a fourth order chebyshev 

filter with 1-db ripple in the pass band in chapter 2. In the next few sections the GBT 

coefficients would be individually varied to study its effect on the filter output 

characteristics. 

3.3.1 Case 1 

In case 1, the effect of GBT coefficient aj is studied. So ai is varied and other 

parameters are set as given below: 

ki^k^constant, bi=b2=l, a2=constant. 

ki=k2=0.5, bi=b2=l, a2=0.5, vary ai. 

Figs. 3.2 (a), (b), (c) and (d) are obtained by varying the GBT coefficient ai from 

0.1 to 0.75. As the value of ai is increased, there is a gradual increase in the magnitude 

of the amplitude-frequency response from 0.35 to 0.55 and there is very minute decrease 

in the pass bandwidth along the (0\ axis and the pass bandwidth along the ©2 axis remains 

constant. The GBT coefficient ai has a perceptible effect on the magnitude of the 

amplitude-frequency response. 
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Figure 3.2: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with infinite gain op-amp for case 1 (varying ai). 
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Figure 3.3: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with infinite gain op-amp for case 2 (varying &2). 
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In case 2, the effect of GBT coefficient a2 on the 2-D digital filter output is 

studied. In order to so, a2 is varied and other parameters are set as given below: 

ki=k2=constant, bi=b2=l, ai=constant. 

ki=k2=0.5, bi=b2=l, ai=0.5, vary a2. 

In Figs. 3.3 (a), (b), (c) and (d), there is a steady increase in the magnitude of the 

amplitude-frequency response from 0.35 to 0.55 of the filter as the value of a2 is 

increased from 0.1 to 0.75. There is very small decrease in the pass bandwidth along the 

o>2 axis and the pass bandwidth along the coi axis remains constant. The contour plots are 

elliptical in nature. The GBT coefficient a2 has a noticeable effect on the magnitude of 

the amplitude-frequency response of the filter. 

3.3.3 Case 3 

In case 3, the effect of GBT coefficient ki on the 2-D digital lowpass filter is 

studied. In order to study the effect of ki parameter, the value of ki is gradually increased 

and other parameter values are set as given below: 

k2=constant, bi=b2=l, ai=a2=constant. 

k2=l, bi=b2=l, ai=a2=:0.5, vary ki. 

Figures 3.4 (a), (b), (c) and (d) are obtained by varying the GBT coefficient ki. 

It's observed that as the value of ki is increased from 0.5 to 10 the pass bandwidth along 

the coi axis decreases and moreover the magnitude of the amplitude-frequency response 

decreases from 0.35 to 0.025. The pass bandwidth along the C02 axis remains constant. 

The contour plots are elliptical in nature, but there is a rotation in orientation along the 

clockwise direction. 
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Figure 3.4: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with infinite gain op-amp for case 3 (varying ki). 
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Figure 3.5: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with infinite gain op-amp for case 4 (varying k2). 
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In case 4, the importance of GBT coefficient k2 on the 2-D digital lowpass filter 

with infinite gain op-amp is studied by varying k2 parameter and keeping the other 

parameters values set as mentioned below: 

ki=constant, bi=b2=l, ai=a2=constant. 

ki=l, bi=b2=l, ai=a2=0.5, vary k2. 

Figs. 3.5 (a), (b), (c) and (d) are obtained by varying the coefficient k2 of GBT. It 

is observed that as the value of k2 is increased from 0.5 to 10, the pass bandwidth along 

the 0)2 axis decreases and moreover magnitude of the amplitude-frequency response 

decreases from 0.35 to 0.02. The pass bandwidth along the coi axis remains constant. 

The contour plots are elliptical in nature, as the value of k2 is increased there is an 

anticlockwise rotation in the orientation of the contour plots. 

3.4 Frequency response of 2-D active digital lowpass filter with finite 

gain 

MATLAB has been used to plot the 3-D amplitude-frequency response and 

contour plots of the filter for the transfer function in eqn. (3.5). For the simulation runs, 

let the GBT coefficient bi & b2 be equal to unity. So we are left with parameters ki, k2, 

ai and a2 as varying parameters. In this case, we would be having one more parameter 

'k' gain of the op-amp. The frequency response of the 2-D digital lowpass filter with 

finite gain is studied under five different cases based on the GBT coefficients which can 

be varied and the gain of the op-amp. By varying these parameters individually, 

importance of individual parameter on the filter output characteristics is studied. 
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Figure 3.6: 3-D amplitude -frequency response and contour response of the 2-D digital 
lowpass filter with unity gain op-amp and all the GBT coefficients are unity. 

Initially, let us consider all the GBT coefficients to be unity i.e. ki=l, k2=l, ai=l 

and a2=land also gain of the op-amp k=l. For this condition, the 3-D amplitude-

frequency response and contour plots of the 2-D digital lowpass filter with finite gain is 

show in Fig. 3.6. It is observed that the contour plots are elliptical in nature. Ripples are 

also present in the output. 

3.4.1 Case 1 

In case 1, the effect of GBT coefficient ai on the filter output characteristics is 

studied. In order to study that, all other parameters are set as given below: 

k=ki=k2=constant, bi=b2=l, a2=constant, vary ai. 

k=l, ki=0.5, k2=0.5, bi=l, 02=1, a2=0.5, vary ai. 

From Figs. 3.7 (a), (b), (c) and (d), it is observed that, as the value of ai is 

gradually increased from 0.1 to 0.75 the pass bandwidth decreases a bit along the coi axis 

and remains constant along the ©2 axis. The magnitude of amplitude-frequency response 

increases from 0.3 to 0.55. The contour plots are elliptical in nature. Therefore the GBT 

coefficient ai mainly affects the magnitude of the amplitude-frequency response. 
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Figure 3.7: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with finite gain op-amp for case 1 (varying ai). 
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Figure 3.8: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with finite gain op-amp for case 2 (varying &2). 
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In case 2, GBT coefficient a2 is varied and other parameter are set as given below: 

k=ki=k2=constant, 01=02=1, ai=constant, vary a2. 

k=l, ki=k2=0.5, ai=0.5, bi=l, b2=l and vary a2. 

Figs. 3.8 (a), (b), (c) and (d) are obtained by varying the GBT coefficient a2 in the 

filter transfer function. As the value of a2 is gradually increased from 0.1 to 0.75 the pass 

bandwidth decreases a bit along the co2 axis and there is also a gradual increase in the 

magnitude of the amplitude response from 0.35 to 0.5. The contour plots are elliptical in 

nature. The parameter a2 mainly affects the magnitude of the amplitude-frequency 

response. 

3.4.3 Case 3 

In case 3, the effect of GBT coefficient ki on the digital filter output 

characteristics is studied. In order to study the effect of ki parameter, value of ki is 

varied and all other parameters are set as given below: 

k=constant, k2=constant, bi=b2=l, ai= a2=constant, vary ki. 

k=l, k2=l, bi=b2=l, ai=a2=0.5, vary ki. 

From Figs. 3.9 (a), (b), (c) and (d), it can be seen that as the value of ki is 

increased from 0.5 to 10 the pass bandwidth along the ©1 axis decreases and more over 

the amplitude of the magnitude response also decreases from 0.35 to 0.016. The contour 

plots are elliptical in nature. 
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Figure 3.9: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with finite gain op-amp for case 3 (varying ki). 
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Therefore the GBT coefficient ki affects the pass bandwidth along the ©i axis and 

the magnitude of the amplitude-frequency response. As the value of ki is increased, the 

pass bandwidth along the ©i axis and the magnitude of the amplitude-frequency response 

decreases. 

3.4.4 Case 4 

In case 4, the effect of GBT coefficient k2 on the digital filter output is studied. 

Value of k2 is varied and other parameter values are set as given below: 

k=constant, ki=constant, bi=b2=l, ai=a2=constant, vary k2 

k=l, ki=l, bi=b2=l, ai=a2=0.5, vary k2. 

In this case the value of k2 is varied from 0.5 to 10, as the value of k2 is increased 

gradually the pass bandwidth along the ©2 axis decreases to a greater extend and 

moreover the magnitude of the amplitude-frequency plot decreases from 0.3 to 0.025 

which is observed in Figs. 3.10 (a), (b), (c) and (d). The pass bandwidth along the 001 axis 

remains constant. The contour plots are elliptical in nature. 

The GBT coefficient k2 affects the pass bandwidth along ©2 axis and the 

magnitude of the amplitude-frequency plot. 
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(d) 
Figure 3.10: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with finite gain op-amp for case 4 (varying k2). 
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Figure 3.11: 3-D amplitude-frequency response and contour response of the 2-D digital 
lowpass filter with finite gain op-amp for case 5 (varying k). 
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In case 5, the effect of op-amp gain parameter k on the digital filter output 

characteristics is examined. Value of k is varied and other parameters are set as given 

below: 

ki=k2=constant, bi=b2=l, ai=a2=constant, vary k. 

ki=k2=1.5, ai=a2=0.5, bi=b2=l, vary k. 

From Figs. 3.11 (a), (b), (c) and (d), it is observed that as the value of op-amp 

gain k is increased from 0.5 to 10, the magnitude of the amplitude-frequency response 

increases from 0.08 to 0.4. The pass bandwidth along the coi axis increases and the pass 

bandwidth along the ©2 axis remains constant. 

3.5 Summary 

In this chapter, the transfer function of the 2-D digital lowpass filter was obtained 

by applying the GBT to the analog transfer function obtained in chapter 2 represented by 

eqn. (2.19) and eqn. (2.24). Eqn. (3.4) and (3.5) represent the transfer function of the 2-D 

lowpass filter in digital domain with infinite gain op-amp and finite gain op-amp. 

The transfer function for both the cases was obtained and the effect of each GBT 

coefficient and op-amp gain parameter on the filter output characteristics was examined. 

Table 3.1 summarizes the effect of each GBT coefficients on the filter output 

characteristic of 2-D digital lowpass filter with infinite gain op-amp. Initially the GBT 

coefficient ai was varied from 0.1 to 0.75. As the value of ai is increased, the magnitude 

of the amplitude-frequency response increased. The pass bandwidth along the ©1 axis 

decreased a bit, but the pass bandwidth along the ©2 axis remained constant. Next, we 

increased the value of a2 from 0.1 to 0.75, the magnitude of amplitude-frequency 
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GBT 

coefficient 

ai 

a2 

ki 

k2 

Value of 
GBT 

coefficient 

T 

t 

T 

t 

Amplitude of 

3D magnitude 
response 

T 

T 

4 

4 

Pass bandwidth 

along coi axis 

1 

Constant 

4 

Constant 

Pass bandwidth 

along e>2 axis 

Constant 

4 

Constant 

4 
Table 3.1: Summary of the effects of GBT coefficients on 2D digital lowpass filter with 
infinite gain. 

response increased. But as far as pass bandwidths are considered, the pass bandwidth 

along the coi axis remained constant and the pass bandwidth along the ©2 axis decreased a 

bit. 

Then the GBT coefficient ki was varied from 0.5 to 10. It was observed that the 

magnitude of the amplitude-frequency response decreased and the pass bandwidth along 

the ©1 axis also decreased. But the pass bandwidth along the 002 axis remained constant. 

Finally, we varied the GBT coefficient k2 of the 2-D digital lowpass filter with 

infinite gain. Value of k2 was increased from 0.5 to 10 and it was observed that the 

magnitude of the amplitude-frequency response decreased and the pass bandwidth along 

the G>2 axis also decreased. But the pass bandwidth along the coi axis remained constant. 

Table 3.2 sums up the effect of GBT coefficients and op-amp gain on the filter 

output characteristic of 2-D digital lowpass filter with finite gain op-amp. As the GBT 

coefficient a\ and a2 value was varied from 0.1 to 0.75, the magnitude of the amplitude-

frequency response increased. Moreover, when the value of ai was increased the pass 

bandwidth along coi axis decreased and when the value of a2 was increased the pass 

bandwidth along the C02 axis decreased. 
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1 

4 
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Constant 

i 

Constant 

t 
Table 3.2: Summary of the effects of GBT coefficients on 2D digital 

Pass bandwidth 

along ct>2 axis 

Constant 

1 

Constant 

i 

Constant 

owpass filter with 
finite gain. 

Next the GBT coefficients ki and k2 was varied from 0.5 to 10, the magnitude of 

the amplitude-frequency response decreased in the both the cases. The pass bandwidth 

along the coi axis decreased, as the value of ki was increased. Similarly, the pass 

bandwidth along the co2 axis also decreased as the value of k2 was increased. 

Finally, the effect of op-amp gain 'k' on the filter output characteristics was 

analyzed. As the value of k was increased from 0.5 to 10, the magnitude of amplitude-

frequency response increased and the pass bandwidth along the coi axis decreased. But 

the pass bandwidth along the co2 axis remains constant. 

Thus the effect of each and every individual parameter on the 2-D digital lowpass 

filter output was studied successfully for the infinite gain and finite gain cases. 
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Chapter 4 

Two Dimensional Active Highpass Filter 

4.1 Introduction 

In this chapter, the method of obtaining the transfer function of 2-D digital 

highpass filter from its analog transfer function by applying double bilinear 

transformation has been discussed. After generating the transfer function in digital 

domain, the effects of each GBT coefficient and the op-amp gain parameters on the filter 

output characteristics are studied. 

To obtain the transfer function of the highpass digital filter by applying the double 

bilinear transformation, the following conditions are to be satisfied 

kt > 0, 0 < m < 1, — 1 < p, < 0 [12]. In this whole chapter, these conditions would be 

satisfied for coefficients of GBT to obtain a stable 2-D digital highpass filter. 

4.2 Transfer function of 2-D active digital highpass filter 

Below mentioned generalized bilinear transformation is applied to obtain the 

transfer function of the highpass filter in digital domain. These conditions are discussed 

in [7], [12]. 
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s =kji+£lil, wherekt > 0,0 < a{ < land-I <bt<0 

(zx+ax) , e , 
s. =£, 7 -4 = kx—, e = zl+al, g = zx+bv 

\zx+bx) 8 
M , v l 

Si — /C-) "7 " ~ — /^2 , J — Z2 + @2 9 M — ^ 2 2 '2 ""2 (z 2+6 2) 2h 

(4.1) 

(4.2) 

(4.3) 

Where ki>0, k2>0, 0<a i< l , 0<a2<l and bi=b2=-l in particular to obtain a 

digital highpass filter transfer function. By substituting eqn. (4.2), (4.3) in eqn. (2.19), 

we get 

-2t 2 

HdH{ZVZl) = — 
gV 

kfe2 

3.6749k^f2 + 

2.577 lk2fh + 

2.2786h2 

5.1916k2!2 + 

+ k1ac|6.7323k2fh + 

3.2190h2 

+ c' 

3.2256k^f2 + 

3.688k2fh + 

(4.4) 

Eqn. (4.4) represents the transfer function of the 2-D IIR highpass filter with 

infinite gain op-amp in digital domain, for case 1 in Table 2.1. 

Next eqn. (4.2), (4.3) are substituted in eqn. (2.24) to obtain the digital equivalent 

transfer function for the 2-D IIR highpass filter with finite gain op-amp, for case 1 in 

Table 2.3. After applying the transformation, we get 

k g V 
-"dff /VZ l 'Z2/ — 

2„2 k^a 

+ c 

7.3498k2f2 + 

5.1541k2fh + + k,ac| 

1.6951kk2f2 + 

_45571hz 

(l.6128 + 1.6128k)k2f
2 + 

(2.168 + 0.295k)k2fh + 

kh2 

(7.3718 + 1.1887k)k2fh+ 

(4.3360 + 1.05 lk)h2 

(4.5) 
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4.3 Frequency response of2-D active digital lowpass filter with infinite 

gain. 

MATLAB is used to plot the 3-D amplitude-frequency response and the contour 

plots of the filter transfer function in eqn. (4.4). The GBT coefficients bi and b2 are set to 

negative unity and the rest of the GBT coefficients ki, k2, ai and a2 are varied and the 

corresponding filter responses are obtained. At the end, the effect of each GBT 

coefficients on the filter output response can be judged. 

Initially, let all the GBT coefficients value be set to unity i.e. ki=l, k2=l,ai=l and 

a2=l. Amplitude-frequency response and contour plot of the 2-D digital highpass filter 

with infinite gain op-amp is shown in fig. 4.1. In the next sections, GBT coefficients 

would be varied individually and the effect of individual coefficient on the filter output 

characteristics will be studied. 

M=1.»»S^=t,**=5J»S«l,a=i «*I,<MJM*»*»'I 

wtmimtfmL «l.*nur»c 

Figure 4.1: 3-D amplitude -frequency response and contour response of the 2-D digital 
highpass filter with infinite gain op-amp and all coefficient value equal to unity 
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Figure 4.2: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with infinite gain op-amp for case 1 (varying ai). 
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In case 1, the effect of GBT coefficient ai on the filter output characteristics is 

studied. Value of ai is varied and other parameters are set as given below: 

ki=k2=constant, bi=b2=-l, a2=constant, vary a\. 

ki=k2=l, bi=b2=-l, a2=0.25, vary ai. 

Value of the GBT coefficient ai is varied from 0.1 to 0.75 and the response of the 

filter is obtained. Figs. 4.2 (a), (b), (c) and (d) represents the response of the filter 

obtained for four different value of ai. The magnitude of amplitude-frequency response 

increases from 0.14 to 0.22, as the value of ai is varied from 0.1 to 0.75. The contour 

plots in the first and third quadrant are symmetrical; the second and fourth quadrant 

contour plots are also symmetrical in nature. The stop bandwidth along the ©i axis 

increases as the value of ai is increased and along the a>2 axis remains constant. 

To sum up, GBT coefficient ai mainly affects the magnitude of the amplitude-

frequency response and the stop bandwidth along the coi axis. 

4.3.2 Case 2 

In case 2, the effect of GBT coefficient a2 on the 2-D digital highpass filter output 

is studied. In order to study that, value of a2 is varied and other parameter values are set 

as given below: 

ki=k2=constant, bi=b2=-l, ai=constant, vary a2. 

ki=k2=l, bi=b2=-l, ai=0.25, vary a2. 

In case 2, the value of GBT coefficient a2 is increased gradually from 0.1 to 0.75 

and the filter output response is obtained. Figs. 4.3 (a), (b), (c) and (d) shows the filter 
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Figure 4.3: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with infinite gain op-amp for case 2 (varying a2). 
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output response for a2=0.1, 0.25, 0.5 and 0.75. As the value of a2 is increased the 

magnitude of amplitude response increases from 0.14 to 0.28. The stop bandwidth along 

the G)2 axis increases and along ©i axis remains constant. 

4.3.3 Case 3 

In case 3, the effect of GBT coefficient ki on the 2-D digital highpass filter output 

is studied. The value of ki is varied gradually and other parameter values are set as given 

below: 

k2=constant, bi=b2=-l, ai=a2=constant. 

k2=l, bi=b2=-l, ai=a2=0.25, vary ki. 

Figs. 4.4 (a), (b), (c) and (d) represents the output response of the 2-D digital 

highpass filter obtained by varying the value of the GBT coefficient ki. It is seen that as 

the value of ki is increased from 0.5 to 10 the magnitude of amplitude-frequency 

response decreases from 0.22 to 0.012. 

From the contour plots, it's inferred that when the value of ki<l the pass 

bandwidth along the coi axis is larger. As the value of ki is increased, the pass bandwidth 

along the ©i axis decreases and the pass bandwidth along the 002 axis remain constant. 
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Figure 4.4: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with infinite gain op-amp for case 3 (varying ki). 
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4.3.4 Case 4 
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Figure 4.5: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with infinite gain op-amp for case 4 (varying k^). 
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In case 4, the effect of GBT coefficient k2 on the 2-D digital highpass filter with 

infinite gain op-amp is studied. In order to study the effect of k2 parameter, it's value is 

varied and other parameters are set as mentioned below: 

ki=constant, bi=b2=-l, ai=a2=constant. 

ki=l, bi=b2=-l, ai=a2=0.25, vary k2. 

The value of the GBT coefficient k2 is varied in four steps and the output response 

of the 2-D digital highpass filter is obtained as shown in figs. 4.5 (a), (b), (c) and (d). It's 

seen that as the value of k2 is increased from 0.5 to 10, the magnitude of the amplitude-

frequency response decreases from 0.35 to 0.009 and as far as the contour plot is 

concerned, it is observed that the pass bandwidth along the ©i axis remains constant. But 

the pass bandwidth along the oo2 axis decreases to a greater extend. Therefore, the GBT 

coefficient k2 affect both the magnitude of amplitude-frequency response and the pass 

bandwidth along co2 axis. 

4.4 Frequency response of 2-D active digital highpass filter with finite 

gain 

In this section, the effect of GBT coefficients and the op-amp gain parameters on 

the output of 2-D digital highpass filter with finite gain op-amp is studied. In order to do 

so, the values of the GBT coefficients are varied and its effect on the output of the 2-D 

active digital highpass filter with finite gain is studied. 

Before varying each GBT coefficient individually, the output of the filter is 

obtained by keeping all the GBT coefficients and the op-amp gain equal to unity. Fig. 

4.6 represents the corresponding output. 
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Figure 4.6: 3-D amplitude -frequency response and contour response of the 2-D digital 
highpass filter with all the GBT coefficients equal to unity 

From fig. 4.6 it can be observed that, ripples are present in the frequency response 

in the first and third quadrant. The ripples present in the output can be minimized by 

reducing the values of GBT coefficient ai and &2 less than unity. In the upcoming 

sections GBT coefficient bi and b2 are set equal to negative unity and other parameters 

are varied and its effects on the amplitude-frequency response and the contour plot of the 

filter are studied. 

4.4.1 Case 1 

In case 1, the effect of GBT coefficient ai on the filter output characteristics is 

examined. In order to do so, value of ai is varied and other parameters are set as given 

below: 

k=ki=k2=constant, bi=b2=-l, a2=constant, vary ai. 

k=l, ki=2, k2=2, bi=-l, b2=-l, a2=0.25, vary aj. 

In case 1, the GBT coefficient ai is increased gradually in four steps from 0.1 to 

0.75 and other parameters are set at a constant value. The response of the filter is 

obtained and is shown in figs. 4.7 (a), (b), (c) and (d). It can be observed from the fig 4.7 

that as the value of ai is increased from 0.1 to 0.75, the magnitude of 3-D amplitude plot 
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Figure 4.7: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 1 (varying ai). 
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increases from 0.12 to 0.28 and the pass bandwidth along the (t>\ axis decreases. The pass 

bandwidth along the a»2 axis remains constant. 

To sum up the GBT coefficient ai affects the magnitude of the amplitude response 

and also the pass band width along the ©i axis. 

4.4.2 Case 2 

In case 2, the effect of GBT coefficient a2 on the filter output characteristics is 

analyzed. In order to do so, value of az is varied and other parameter values are set as 

given below: 

k=ki=k2=constant, bi=b2=-l, ai=constant, vary a2. 

k=l, ki=k2=l, ai=0.25, b 1 =-1, b2=-l and vary a2. 

Figs. 4.8 (a), (b), (c) and (d) shows the amplitude-frequency response of the 2-D 

digital highpass filter for different values of GBT coefficient a2 in the range of 0.1 to 

0.75. As the value of a2 is increased from 0.1 to 0.75, it is observed that the magnitude of 

the amplitude response increases from 0.12 to 0.22. The pass bandwidth along the C02 

axis decreases, but the pass band width along rai axis remains constant. 

To sum up the GBT coefficient a2 affects the magnitude of the amplitude-

frequency response and the pass bandwidth along the CO2 axis. 
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Figure 4.8: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 2 (varying &i). 
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Figure 4.9: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 3 (varying ki). 
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In case 3, the effect of GBT coefficient ki on the digital filter output 

characteristics is examined. In order to study the effect of ki parameter, the value of ki is 

varied and other coefficients of GBT are set as given below: 

k=k2=constant, bi=b2=-l, ai= a2=constant, vary ki. 

k=k2=l, bi=b2=-l, ai=a2=0.25, vary ki. 

From figs. 4.9 (a), (b), (c) and (d) it can be seen that as the value of ki is increased 

from 0.5 to 10 the pass bandwidth along the coi axis decreases and more over the 

magnitude of the amplitude-frequency response decreases from 0.75 to 0.008 and the 

pass bandwidth along the ©2 axis remains constant. 

Therefore the GBT coefficient ki affects the pass bandwidth along the coi axis and 

the amplitude of the magnitude response. 

4.4.4 Case 4 

In case 4, the effect of GBT coefficient k2 on the digital filter output is studied. In 

order to study the effect of k2, value of k2 is varied and other parameters are set as given 

below: 

k=constant, ki=constant, bi=b2=-l, ai=a2, vary k2 

k=l,ki=5,bi=-l,b2=-l, ai=0.5, a2=0.5, vary k2. 

Fig. 4.10 shows the response of the 2-D digital highpass filter obtained by varying 

the value of GBT coefficient k2. As the value of k2 is increased from 0.5 to 10 the 

magnitude of amplitude-frequency response decreases from 0.5 to 0.015, the pass 

bandwidth along the ©2 axis decreases and the pass bandwidth along the ©1 axis remains 

constant. 
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Figure 4.10: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 4 (varying k2). 
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Therefore, the GBT coefficient k2 affects the magnitude of the amplitude-

frequency response and the pass bandwidth along the 002 axis. 

4.4.5 Case 5 

In case 5, the effect of op-amp gain parameter k on the digital filter output 

characteristics is analyzed. In order to do so, the value of k is varied and other GBT 

coefficients are set as given below: 

ki=k2=constant, bi=b2=-l, ai=a, vary k. 

ki=k2=l, ai=a2=0.25, bi=b2=-l, vary k. 

Figs. 4.11 (a), (b), (c) and (d) are obtained by varying the op-amp gain k and by 

keeping the GBT coefficient values at a constant value. It's observed that as the value of 

k is increased, the magnitude of the amplitude-frequency plot increases from 0.08 to 0.4, 

the pass bandwidth along the ©1 axis and ©2 axis remains constant. 

The op-amp gain k mainly affects the magnitude of the 3-D amplitude-frequency 

plot. 
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Figure 4.11: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 5 (varying k). 
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4.5 Summary 

The transfer function of the 2-D digital highpass filter for infinite gain op-amp 

case was given by eqn. (4.4) and for finite gain op-amp case is given by eqn. (4.5). It was 

obtained by applying the highpass GBT to analog transfer function given by eqn. (2.19) 

and eqn. (2.24) in chapter 2. 

The transfer function in the digital domain has GBT coefficients, in order to 

examine the effect of each GBT coefficient on the filter output, every GBT coefficient 

was varied individually and the output was examined. The result for the 2-D digital filter 

with infinite gain op-amp has been summarized in Table 4.1. 

Initially the GBT coefficient &\ was varied from 0.1 to 0.75 and it was observed 

that the magnitude of the amplitude-frequency plot also increased. The stop bandwidth 

along the coi axis increased and along CO2 axis remained constant. Next, the value of GBT 

coefficient &2 was increased from 0.1 to 0.75, the magnitude of the amplitude-frequency 

response increased along with it, the stop bandwidth along the ooi axis remained constant 

and the stop bandwidth along the (02 axis increased. 

The value of GBT coefficient ki is varied from 0.5 to 10, the magnitude of the 

amplitude-frequency response decreased, stop bandwidth along the coi axis increased and 
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Constant 
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Table 4.1: Summary of effects of GBT coefficients on infinite gain highpass filter. 
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stop bandwidth along the cfl2 axis remained constant. Finally, the value of GBT 

coefficient k2 was varied from 0.5 to 10 and it was observed that the magnitude of the 

amplitude-frequency response decreased with the increase in k.2 value, stop bandwidth 

along the ©2 axis increased and stop bandwidth along the ©1 axis remained constant. 

Table 4.2, summaries the effects of GBT coefficients and the op-amp gain 

parameter on the output of 2-D highpass filter with finite gain op-amp. GBT coefficients 

were varied individually; to start with the GBT coefficient ai was varied from 0.1 to 0.75. 

As the value of ai was increased, the magnitude of the amplitude-frequency response 

increased with it, the stop bandwidth along the ©1 axis increased and the stop bandwidth 

along the ©2 axis remained constant. Next the value of GBT coefficient a2 was increased 

from 0.1 to 0.75. It was observed that with the increase in the value of a2 the magnitude 

of the amplitude-frequency response increased, the stop bandwidth along the ©1 axis 

remained constant and the stop bandwidth along the 02 axis decreased. 

Followed by a2, the value of GBT coefficient ki was increased from 0.5 to 10. It 

was observed that the magnitude of the amplitude-frequency response decreased, the stop 
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Table 4.2: Summary of effects of GBT coefficients on finite gain highpass filter. 
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bandwidth along the coi axis decreased and the stop bandwidth along the ©2 axis 

remained constant. After that the value of GBT coefficient k̂  was increased from 0.5 to 

10. It was observed that the magnitude of the amplitude-frequency response decreased, 

the stop bandwidth along the coi axis remained constant and the stop bandwidth along the 

©2 axis increased. 

Finally, the op-amp gain parameter k was varied from 0.5 to 10 and it was 

observed that the magnitude of the amplitude-frequency response increased and the stop 

bandwidth along the coi and CO2 axis remained constant. 

Thus the effect of GBT coefficients and the op-amp gain parameters on the output 

of 2-D digital highpass filter for infinite gain and finite gain cases were studied. 
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Chapter 5 

Two Dimensional Bandpass Filter 

5.1 Introduction 

The bandpass filter is obtained by cascading the lowpass filter and highpass filter, 

pass bandwidth of both the filters must overlap. In this chapter, the transfer function of 

the bandpass filter is obtained from the transfer function of the lowpass filter and 

highpass filter obtained in chapter 3 and 4 for both the infinite gain and finite gain cases. 

5.2 Transfer function of2-D active digital bandpass filter 

The transfer function of the 2-D digital BPF with infinite gain op-amp is obtained 

by cascading the transfer function of the 2-D digital LPF with infinite gain op-amp given 

by eqn. (3.4) and the transfer function of the 2-D digital BPF with infinite gain op-amp 

given by eqn. (4.4). Similarly the transfer function is obtained for the finite gain case. 

It's required that kj>0 and 0<ai<l for the bandpass filter to be stable. Mathematically, 

For infinite gain op-amp case 

HdBp(zi,z2)=HdL(zi,z2) x HdH(zi,z2) (5.1) 
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For finite gain op-amp case 

HdfBp(zi,z2)=HdfL(zi,z2) x HdfH(zi,z2) (5.2) 

5.3 Frequency response of2-D digital bandpass filter with infinite gain 

MATLAB is used to plot the 3-D amplitude-frequency response and the contour 

plots of the transfer function of the filter with infinite gain obtained in eqn. (5.1). For the 

bandpass filter, the GBT coefficient ki, k2, ai and a2 are the variable parameters. These 

four GBT coefficients are varied individually and its effect on the filter output is 

analyzed. 

Initially let all the GBT coefficient values be set to unity in the lowpass filter and 

highpass filter. Fig. 5.1 represents the 3-D amplitude-frequency response of 2-D digital 

bandpass filter with infinite gain. 

*IS1jS3^I,*i=S:,»J=Ej!t=1.fl2=1 a1«l,«2«U>3=tJB=3 

w5: m .s5#$es -#|:«*jKfcee 

Figure 5.1: 3-D amplitude -frequency response and contour response of the 2-D digital 
bandpass filter with infinite gain op-amp and all coefficient value equal to unity. 

Amplitude-frequency response in the first and third quadrant is symmetrical and 

also the output in the second and fourth quadrant is symmetrical. The magnitude of the 
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amplitude-frequency response present in the second and fourth quadrant is larger than the 

magnitude of the amplitude-frequency in the first and third quadrant. 

In the next sections the effect of individual GBT coefficients on the filter output is 

analyzed. 

5.3.1 Case 1 

In case 1, the effect of GBT coefficient ai on the filter output characteristics is 

studied. In order to study that, the value of ai is varied and other parameter values are set 

as given below: 

ki=constant, k2=constant, bi=b2=l, a2=constant. 

ki=0. 5, k2=0.5, bi=b2=l, a2=0.25, vary ai. 

Fig. 5.2 shows the amplitude-frequency response of the 2-D digital bandpass filter 

obtained by varying the GBT coefficient ai from 0.1 to 0.75. From the amplitude-

frequency response it's observed that symmetry is retained between first and third 

quadrant and between second and fourth quadrant. The magnitude of amplitude-

frequency response in the first and third quadrant increases from 0.06 to 0.08 and in the 

second and fourth quadrant magnitude increases from 0.06 to 0.14. 

The pass bandwidth along the coi axis decreases with the increase in the value of 

al and the pass bandwidth along the G>2 axis remain constant. 
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Figure 5.2: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with infinite gain op-amp for case 1 (varying ai). 
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Figure 5.3: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with infinite gain op-amp for case 2 (varying a2). 
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In case 2, the effect of GBT coefficient a2 on the 2-D digital filter output 

characteristics are studied. In order to study that, the value of a2 is varied and other 

parameters are set as given below: 

ki=k2=constant, bi=b2=l, ai=constant. 

ki=k2=0.5, bi=b2=l, ai=0.25, vary a2. 

Fig. 5.3 is obtained by varying the GBT coefficient a2 from 0.1 to 0.75. Other 

GBT coefficients are set to above mentioned values. From figs. 5.3 (a), (b), (c) and (d) it 

is observed that as the value of a2 increased the magnitude of the 3-D amplitude-

frequency response in the first and third quadrant increases from 0.06 to 0.08 and in the 

second and fourth quadrant also the magnitude increases from 0.06 to 0.14. 

The pass bandwidth along the ©i axis remains constant and the pass band width 

along the o>2 axis decreases with the increase in the value of a2. 

5.3.3 Case 3 

In case 3, the effect of GBT coefficient ki on the 2-D digital bandpass filter output 

is analyzed. In order to study the effect of ki parameter, value of ki parameter is varied 

and other parameter values are set as given below: 

k2=constant, bi=b2=l, ai=a2=constant, vary ki. 

k2=0.5, bi=b2=l, ai=a2=0.25, vary ki. 

Figs. 5.4 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-

D bandpass filter obtained by varying the GBT coefficient ki in the range of 0.5 to 10. 

The magnitude of amplitude-frequency response in all the four quadrants of the output 
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Figure 5.4: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with infinite gain op-amp for case 3 (varying ki). 
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decreases as the value of ki is increased. Symmetry is preserved in first and third 

quadrant and in second and fourth quadrant. The magnitude of the amplitude-frequency 

response in the first and third quadrant decreases from 0.07 to 0.00003 and in the second 

and fourth quadrant magnitude decreases from 0.1 to 0.00003. 

As far as contour plots are considered, as the value of ki is increased greater than 

unity there is a 90 degree rotation in the orientation of the contour plot along the 

clockwise direction. The contour plots are elliptical in nature at the center. 

5.3.4 Case 4 

In case 4, the effect of GBT coefficient k2 on the 2-D digital bandpass filter with 

infinite gain op-amp is studied. In order to study the effect of k2 parameter, value of k.2 is 

varied and other parameters values are set as mentioned below: 

ki=constant, bi=b2=l, ai=a2=constant. 

ki=l, bi=b2=l, ai=a2=0.25, vary k2. 

Figs. 5.5 (a), (b), (c) and (d) represents the amplitude-frequency response of the 2-

D digital bandpass filter obtained by varying the GBT coefficient k2 and other parameters 

are set to the values as specified above. As the value of k2 is increased from 0.5 to 10 the 

magnitude of the amplitude-frequency response in the first and third quadrant decreases 

from 0.025 to 6e"6 and the magnitude of the amplitude-frequency in the second and fourth 

quadrant decreases from 0.04 to 6e"6. 

The pass bandwidth along the coi axis remains constant and the pass bandwidth 

along the ©2 axis decreases with the increase in the value of k2. Contour plots are 

elliptical in nature and are aligned along the ©2 axis for low values of k2 i.e. k2<l. As the 
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Figure 5.5: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with infinite gain op-amp for case 4 (varying k2). 
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value of k2 is increased i.e. k2>l the orientation of the contour plots is rotated by 90 

degree in anti clockwise direction and gets aligned along the coi axis. 

5.4 Frequency response of2-D active digital bandpass filter with finite 

gain 

In this section, the effect of each GBT coefficient and the op-amp gain parameter 

'k' on the amplitude-frequency response and contour plots of the 2-D digital bandpass 

filter with finite gain op-amp is examined. In order to do so, each of the parameter is 

varied individually by keeping other parameters constant. 

Initially all the GBT coefficients and the op-amp gain parameter values are set 

equal to unity. Fig. 5.6 represents the corresponding output. Ripples are present in the 

output. Symmetry is retained between the first and third quadrants and between second 

and fourth quadrants. The magnitude of the amplitude-frequency response in the first and 

third quadrants is greater than the magnitude of the amplitude-frequency response in 

second and fourth quadrant. 

Figure 5.6: 3-D amplitude -frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp and all coefficient value set equal to unity. 
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In the upcoming sections the effect of each GBT coefficient and op-amp gain 

parameter on the filter output would be studied. 

5.4.1 Case 1 

k=1;k1-0:5.K2=0.5.a1=0.1,«2=0.5.bl=1.b2=1 a1=0.1 ,a2=0.S,bi=1 ;b2=1 
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Figure 5.7: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with finite gain op-amp for case 1 (varying ai). 
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In case 1, the effect of GBT coefficient ai on the filter output characteristics is 

studied. In order to study that, the value of ai is varied and other parameter values are set 

as given below: 

k=constant, ki=k2=constant, bi=b2=l, a2=constant, vary ai. 

k=l, ki=0.5, k2=0.5, bi=l, b2=l, a2=0.5, vary ai. 

Fig. 5.7 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-D 

digital bandpass filter obtained by varying the GBT coefficient ai from 0.1 to 0.75. It's 

observed that the outputs in the first and third quadrants and in the second and fourth 

quadrant are symmetric. As the value of GBT coefficient ai is increased from 0.1 to 0.75, 

magnitude of the 3-D amplitude-frequency response in the first and third quadrants 

increases from 0.05 to 0.06 and the magnitude in the second and fourth quadrants 

increases from 0.07 to 0.1. The pass bandwidth along the coi and 002 axis remains almost 

constant. 

5.4.2 Case 2 

In case 2, the effect of GBT coefficient a2 on the filter output characteristics is 

examined. In order to study that, value of a2 is varied and other parameter values are set 

as given below: 

k=constant, ki=k2=constant, bi =b2=l, ai^constant, vary a2. 

k=l, ki=k2=0.5, ai=0.5, bi=l, b2=l and vary a2. 

Figs. 5.8 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-

D digital bandpass filter obtained by varying the GBT coefficient a2 from 0.1 to 0.75. 

The pass band width along both ©1 and ©2 axis remains constant. The magnitude of the 
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amplitude-frequency in the first and third quadrants increases from 0.05 to 0.06 and in the 

second and fourth quadrant the magnitude of amplitude-frequency response increases 

from 0.07 to 0.12. 

k=1 ,k1=0.5,k2=0.5,a1=a.5,a2=0.) ,b1=1 ,b2=1 a1=0.5,a2=0.1,b1=1;b2=1 
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a1=O5,a2=0.25,b1=1,t>»1 

k=1 ^1=0.5*2=0.5 ;a1=0.5.a2=0.S,b1=1 .b2=1 
(b) 

-1 0 1 
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a1=0.5,a2=O.5.b1=i,b2=1 

(c) 
k=1 ,k1=0.5,k2=0.5,a1=0.5,a2=Q.75,bt=l ,b2=1 a1=0.5,32=0.75,M=1,b2=1 

(d) 
Figure 5.8: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with finite gain op-amp for case 2 (varying a2). 
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Figure 5.9: 3-D amplitude-frequency response and contour response of the 2-D digital 
highpass filter with finite gain op-amp for case 3 (varying ki). 
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In case 3, the effect of GBT coefficient ki on the digital filter output 

characteristics is analyzed. In order to study the effect of ki parameter, the value of ki is 

varied and other GBT coefficients are set as given below: 

k=constant, k2=constant, bi=b2=l, ai= a2=constant, vary ki. 

k=0.5, k2=1.5, bi=b2=l, ai=a2=0.25, vary ki. 

Fig. 5.9 (a), (b), (c) and (d) represent the amplitude-frequency response of the 

bandpass filter obtained by varying the GBT coefficient k\. As the value of ki is 

increased from 0.5 to 10 the pass bandwidth along the ©i axis remains constant and along 

©2 axis the pass bandwidth decreases. The magnitude of the amplitude-frequency 

response in the first and third quadrants decreases from 0.003 to 3.5e"7 and in the second 

and fourth quadrant it decreases from 0.005 to 3e"7. 

5.4.4 Case 4 

In case 4, the effect of GBT coefficient k2 on the digital filter output is studied. In 

order to study the effect of k2 parameter, the value of k2 is varied and other GBT 

coefficient values are set as given below: 

k=constant, ki=constant, bi=b2=l, ai=a2, vary k2 

k=0.5, ki=0.5, bi=b2=l, ai=a2=0.25, vary k2. 

Figs. 5.10 (a), (b), (c) and (d) are obtained by varying the GBT coefficient k2 and 

keeping the other parameters at a constant value as said above. As the value of k2 is 

increased from 0.5 to 10, the magnitude of the amplitude-frequency response in the first 

and third quadrants decreases from 0.015 to 1.4e"5 and in the second and fourth quadrant 
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magnitude decreases from 0.025 to 1.4e~5. As far as the pass bandwidth is considered, it 

remains constant along the ©2 axis and the pass bandwidth along the ©i axis decreases. 

!<=0.5,Ms0.5,k2=0.5,a1=0.25,a2=0.2S,b1=1.b2=1 a1=0.25,a2=0.25,M=i:b2=1 

(d) 
Figure 5.10: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with finite gain op-amp for case 4 (varying k2). 
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Figure 5.11: 3-D amplitude-frequency response and contour response of the 2-D digital 
bandpass filter with finite gain op-amp for case 5 (varying k). 
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In case 5, the effect of op-amp gain parameter k on the digital filter output 

characteristics is studied. In order to study the effect of k parameter, the value of k is 

varied and other GBT coefficient values are set as given below: 

ki=k2=constant, bi=b2=l, ai=a, vary k. 

ki=k2=1.5, ai=a2=0.5, bi=b2=l, vary k. 

Fig. 5.11 (a), (b), (c) and (d) are obtained by varying the op-amp gain parameter k 

from 0.5 to 10, the magnitude of the amplitude-frequency response in the first and third 

quadrants increases from 0.0007 to 0.025 and in the second and fourth quadrants it 

increases from 0.0002 to 0.035, the pass bandwidth along the coi axis increases with the 

increase in the value of k and the pass bandwidth along the o>2 axis remains constant. 

The op-amp gain k mainly affects the amplitude of the 3-D magnitude response in 

the 2-D digital bandpass filter output. 

5.5 Summary 

The transfer function of the 2-D digital bandpass filter was obtained in sec. 5.2 for 

infinite gain case and finite gain case. The effect of GBT coefficient on the filter output 

was individually examined for both the cases. The effect of gain parameter k was 

examined for the 2-D digital bandpass filter with finite gain op-amp. The effect of these 

parameters on the filter output for infinite gain op-amp case has been summarized in 

Table 4.1 and for the finite gain case has been summarized in Table 5.2. 
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Table 5.1: Summary of effects of GBT coefficients on infinite gain bandpass filter. 
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Table 5.2: Summary of effects of GBT coefficients on finite gain bandpass filter. 
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Chapter 6 

Application of2-D digital filter in image processing 

6.1 Introduction 

An image is defined as a two-dimensional function, f(x,y), where x and y are 

spatial coordinates and the amplitude of f at any pair of coordinates (x,y) is called the 

intensity or gray level of the image at that point. When x, y and the amplitude values off 

are all finite, discrete quantities, we call the image a digital image. The digital image is 

composed of a finite number of elements, each of which has a particular location and 

value. These elements are referred to as picture elements, image elements and pixels 

[13]. 

6.2 Basics of filtering in Image Processing [13] 

Image processing is done either in spatial domain or frequency domain depending 

on the need of the application. Fourier transform of the spatial domain component 

provides its equivalent frequency domain component and inverse fourier transform of the 

frequency domain component gives its equivalent spatial domain component. 

In this work, an image is considered as a 2-D intensity matrix and the designed 2-

D digital filters are applied in the frequency domain for a standard application like image 

enhancement. 
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The 2-D fourier transformers are effective tools for image processing. The 2-D discrete 

Fourier transform pair is 

i M-\N-\ _ nJ *<V +y®i/) 

f(x,y) —> Image of size MxN. 

F (a>i, 0)2) —* Equivalent image of size MxN in frequency domain. 

The basics of linear filtering in both the spatial and frequency domains is the 

convolution theorem, which may be written as 

f{x, y) * h(x, y) <» H(ax, OJ2 )F(OJ1 ,GJ2) ^ 

and conversely 

f(x, y)h(x, y) <̂> H(o){ ,OJ2)* F(G)X , OJ2 ) ^ 

In eqn. (6.3) and (6.4), the symbol '*' indicates convolution of the two functions 

and the expressions on the sides of the double arrow constitute a Fourier transform pair. 

In terms of filtering, we are interested in eqn. (6.3). 

Filtering in the frequency domain consists of multiplying the transfer function of 

the filter H (coi, C02) with the frequency domain equivalent of the image F(©i, ©2). The 

size of the image matrix and filter matrix has to be equal to get the best result or else both 

of them have to be a square matrix. 

Filtering would be done in the frequency domain. To demonstrate the application 

of the filter in image restoration, an image is corrupted with Gaussian noise of zero mean 
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and specified standard deviation. Then the corrupted image is conditioned with the 2-D 

digital filter to reduce the effect of noise. It's mathematically represented as 

fc(x>y) = f(x,y)+n(x,y) (6.5) 

f(x,y) —* Input image. 

n(x,y) —* Gaussian noise with zero mean and standard deviation a. 

fc(x,y) —> Image + noise i.e. corrupted image. 

fr(x, y) = IDF^Fcfa ,Q)2)- H{o)x, Q)2)] (6.6) 

fr(x,y) —»• Recovered image which is close to the original image. 

Fc(co 1,0)2) —• Corrupted image equivalent in frequency domain. 

H(co 1,002) —* Transfer function of the 2-D active filter. 

Various quality measures are available in the literature, those that correlate well 

with visual perception are quite complicated to compute. Most image processing systems 

of today are designed to minimize the Mean Square Error (MSE), the quantitative 

measure between two images fi(x,y), f2(x,y) which is defined as 

1 M-lN-l 2 

MSE = 7^7 Z Z Di (*. y) - fi (x> y)] (6-7) 

where MxN is the image dimension and its product gives total number of pixel in the 

image. The Peak Signal-to-Noise Ratio (PSNR) in decibels (dB) is more often used as a 

quality measure. The PSNR is defined as 

PSNR =\Q\og 10 
V2 A 

T max 

yMSE j 

(6.8) 

where ^max is the peak (maximum) intensity value of the image. For eight bit gray 

image, ^max=255. 
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6.3 Image Restoration [13] 

The objective of image restoration is to improve an image in some predefined 

sense. Restoration attempts to reconstruct an image that has been degraded by using a 

priori knowledge of the degradation phenomenon. The restoration technique is oriented 

toward modeling the degradation and applying the inverse process in order to recover the 

original image. Image restoration for most part is an objective process. 

An image degraded due to noise alone is considered. The noise in digital images 

arises during image acquisition and/or transmission. Noise which is independent of 

spatial coordinates and uncorrelated with respect to the image itself have been added to 

produce a degraded image. The lowpass filter in the spatial domain is equivalent to that 

of smoothing filter, as it blocks high frequencies corresponding to sharp intensity 

changes. 

A 8-bit gray level image has been considered and is corrupted by Gaussian noise 

with zero mean and standard deviation of o x 255 gray levels. The corrupted image is 

then conditioned with the 2-D digital lowpass filter of both configurations. The results 

are obtained individually for infinite gain case and finite gain case. 

The original image, corrupted image and the recovered/filtered output image for 

infinite gain case and finite gain case are show in figs. 6.1 (a), (b), (c) and (d) for a 

Gaussian noise with a=0.1. The quality of output image is measured in terms of mean 

square error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are tabulated in 

Table 6.1 for both the cases 2-D active lowpass filter. The results are calculated in 

comparison with the original image. From the results it is inferred that the 2-D digital 
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active filter with finite gain op-amp provides better performance when compared to 

infinite gain case. 

Original Image Image + Noise(with SD=0.1, MearpQ) 

(a) 

Output of low pass filter With infinite gain 

MSE=4654.029, PSNR=11.4525 

(b) 

Output of low pass filter with finite gain 

mm 

MSE=1399.6754, PSNR=T6.6705 MSE=1004.9742, PSNR=18.1093 

(c) (d) 
Figure 6.1: Image restoration using lowpass filter with (a) Original Image (b) Image with 
Gaussian noise (c) Image filtered with infinite gain lowpass filter and (d) Image filtered 
with finite gain lowpass filter. 
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^"~~~\--^FiIter Type 
Parameter ^ — . ^ ^ 

Mean Square Error (MSE) 
With Noise 

Peak Signal to Noise Ratio (PSNR) 
With Noise 

Mean Square Error (MSE) 

Peak Signal to Noise Ratio (PSNR) 

Finite Gain 
Filter 

4564.029 

11.4525 

1004.9742 

18.1093 

Infinite Gain Filter 

4564.029 

11.4525 

1399.6754 

16.6705 

Table 6.1: Comparison of infinite gain and finite gain lowpass filter. 

6.4 Image Enhancem ent [13] 

The purpose of image enhancement is to improve interpretability or perception of 

information in images for human viewers or to provide better input for other automated 

image processing techniques. Image enhancement techniques can be done either in 

spatial domain or frequency domain. 

Image enhancement has been done in frequency domain. In image processing the 

lowpass filter is expected to blur the image passed through it, as the high frequency 

components are lost as the image is passed through the lowpass filter which contributes to 

the sharpness of the image. 

From Table 6.1 it is inferred that filter with finite gain op-amp provides better 

performance, so 2-D digital filter with finite op-amp has been used to show its 

application in image enhancement. Fig. 6.2 (a) is the original image which is passed 

through the 2-D digital lowpass filter. Fig. 6.2 (b) shows the blurred image obtained as 

the output of the 2-D digital lowpass filter. 
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Original: Image Outputafier low pass filtering: 

(a) (b) 
Figure 6.2: Image enhancement using lowpass filter (a) Original Image (b) Blurred 
image. 

Fig. 6.3 (a) is the output obtained from a 2-D highpass filter. Highpass filter zero 

out the dc term, thus reduces the average value of an image to 0. The principal edges of 

the image is retained which can be seen from the fig. 6.3 (a) and histogram equalization is 

applied to the fig. 6.3 (a) in order to expand the gray scale region, by which the principal 

edges of the image are clearly visible. 

Without histogram equalization After applying histogram equalization 

Figure 6.3: Image enhancement using highpass filter (a) Output of a highpass filter (b) 
Output after adjusting gray level. 
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6.5 Summary and Discussion 

In image processing the most of the energy of a typical image is located at the low 

frequencies. The energy of the noise is often spread across the frequency axes in the case 

of a white noise or else in the higher frequency range depending on the distribution 

function. The 2-D digital lowpass filter provides a good noise removal property, but the 

high frequency component of an image such as edges are affected i.e. sharpness of the 

recovered image is lost. The 2-D digital highpass filter provides good edge detection in 

image processing. 

For testing the functionality of filters, a standard image is corrupted by additive 

Gaussian noise with known variance and mean. The 2-D digital lowpass filter derived 

from infinite gain op-amp and finite gain op-amp is used to decrease the noise from the 

corrupted noise. The performance comparison of these two kinds of filter is done by 

comparing MSE and PSNR of the recovered images. MSE and PSNR provide the 

quantitative measures of the image restoration. Image enhancement properties of the 2-D 

digital lowpass filter and highpass filter are also shown. 
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Chapter 7 

Conclusions 

A new technique is presented for generating a 2-D digital filter. In order to 

generate a second order 2-D digital filter, a doubly terminated network constituting a op-

amp, an input impedance and a reactance T network in the feedback path is considered. 

Various combinations have been tried out for the input impedance and the reactance T 

network which would lead to a stable transfer function. These combinations have been 

tried out for two different cases of the op-amp i.e. infinite gain and finite gain. The 

stability of the transfer function is checked by ensuing denominator polynomial of the 

transfer function is a VSHP. 

The impedance value of the transfer function is obtained by continued fraction 

expansion of the fourth order 1-D chebhyshev filter with 1-dB ripple in the pass band. A 

stable 2-D active filter in the analog domain is obtained. GBT is applied to the analog 

transfer function to obtain the equivalent 2-D digital lowpass filter. Subsequently 2-D 

digital highpass filter and bandpass filters are obtained by applying suitable 

transformation. 

The 2-D lowpass filter in digital domain is obtained for both the infinite gain op-

amp and finite gain op-amp cases. The effect of the GBT co-efficient on the amplitude-

frequency response of 2-D digital lowpass filter for infinite gain case and finite case are 
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studied, for the finite gain case effect of op-amp gain 'k' is also studied and the results 

are tabulated. It is observed that the GBT co-efficient ki and k2 mainly affects the pass 

bandwidth along the ©i and ©2 axis, co-efficient ai and a2 affects the magnitude of the 

amplitude-frequency response. For finite gain op-amp case the effect of op-amp gain 

parameter k on the filter output is studied. As the gain parameter k is increased the 

magnitude of the amplitude-frequency response also increases. 

The effect of GBT coefficient on the amplitude-frequency response of a 2-D 

highpass digital filter for the infinite gain op-amp and finite gain op-amp case has been 

studied and the results are tabulated. It is observed the GBT co-efficient k) and k2 affects 

the pass bandwidth along the coi and 0)2 axis and the GBT co-efficient ai and a2 affects the 

magnitude of amplitude-frequency response. 

The 2-D bandpass filter is obtained by cascading the 2-D digital lowpass filter and 

2-D digital highpass filter for the infinite gain case and finite gain case. The pass 

bandwidth of the bandpass filter is equal to the pass band area overlapped between the 

lowpass filter and highpass filter. The effect of GBT co-efficient on the amplitude-

frequency response is studied by varying each parameter individually. It is inferred from 

the results that the GBT co-efficient a\ and a2 affects the magnitude of amplitude-

frequency, the ki and k2 affects the pass bandwidth. 

At last, the application of 2-D digital lowpass filter in image processing for image 

restoration and image enhancement has been shown. Performance comparison has been 

done for the lowpass infinite gain and finite gain configuration with the image restoration 

application. From the results it is inferred that the 2-D digital filter with finite gain op-
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amp has better performance than the 2-D digital filter with infinite gain op-amp. 

Application of 2-D digital highpass filter has been illustrated. 

Scope of Future Work 

The impedance values for the filter are obtained by comparing with the fourth 

order type I chebyshev filter. The impedance values can also be obtained by comparing 

with other standard polynomial such as type II chebyshev or butterworth filter or any 

other standard filter. 

In the design of filter the resistance value has been considered to be equal to 

unity, different values can be tried out. 

For the T section in the analog circuit, only reactance combination has been tried 

out for the impedances. Other combinations can be tried out. 

Study has been done based on the amplitude-frequency response of the filter, 

phase response of the filter can also be studied. 

All pass filter and their combination can also be considered to generate a stable 2-

D digital filters. 

Depending upon the application requirement, suitable values for the co-efficient 

of the GBT can be determined based upon the properties of the filter like symmetry, 

amplitude characteristics and the response in the stop band. 
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Appendix 

A. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital lowpass filter with infinite gain op-

amp. 

% Operational amplifier with infinite gain. 

% Lowpass configuration 

% Obtained by applying Generalized Bilinear Transformation 

clear all; clc 

wl=-pi:pi/25:pi; w2=-pi:pi/25:pi; 

zll=exp(-j.*wl); z21=exp(-j.*w2); 

[zl,z2]=meshgrid(zl l,z21); 

% Input values for GBT coefficients 

al=input('Enter the value of al='); 

a2=input('Enter the value of a2='); 

kl-input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

%HLIG tranfer function of the filter with infinite gain. 

a=zl-al; c=zl+l;b=z2-a2; d=z2+l; 

dll-(klA2)-*(a.A2).*(3.6749.*k2A2.*(b.A2)+2.5771.*k2.*b.*d+2.2786.*d.A2); 
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dl2=(kl.*a.*c).*(5.1916.*k2A2*(b.A2)+6.7323.*k2.*(b.*d)+3.2190.*(d.A2)); 

dl3=(cA2).*(3.2256.*k2.A2.*b.A2+3.688.*k2.*b.*d+d.A2); 

NR=-(c.A2).*(d.A2);DR=dll+dl2+dl3; 

% Transfer function 

HLIG=abs(NR./DR); 

% Magnitude plot 

subplot(2,2 jj); contour3(wl ,w2,HLIG); 

surface(wl,w2,HLIG,'EdgeColor',[.2 .2 .2],'FaceColor','none'); 

grid on; view(-15,25); 

tifle(['kl =',num2str(kl ),',k2=',num2str(k2),',al =',num2str(al ),',a2=',num2str(a2)/,b 1 =',nu 

m2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l; subplot(2,2jj); [C,h]-contour(wl,w2,HLIG); 

clabel(C,h); set(h,'linecolor','black'); grid on; 

title(['al =',num2str(al ),',a2=,,num2str(a2),',b 1 =',num2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

B. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital lowpass filter with finite gain op-amp. 

% Operational amplifier with finite gain. 

% Lowpass configuration 

% Obtained by applying Generalized Bilinear Transformation 
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clear all; clc 

wl=0:pi/25:pi; w2=0:pi/25:pi; 

zl l=exp(-j.*wl); z21=exp(-j.*w2); 

[zl ,z2]=meshgrid(zl 1 ,z21); 

% Input values for GBT coefficients 

display('Enter the GBT coefficients values for finite gain filter'); 

al=input('Enter the value of al='); 

a2=input('Enter the value of a2='); 

kl=input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

% Input value for the gain of operational amplifier 

k=input('Enter the value of k='); 

%HLFG transfer function of the lowpass filter with finite gain 

a=zl-al; c=zl+l;b=z2-a2; d=z2+l; 

dll=(klA2).*(a.A2).*(7.3498.*k2A2.*(b.A2)+5.1541.*k2.*b.*d+4.5571.*(d.A2)); 

dl2=(kl.*a.*c).*(1.6951.*k.*k2A2.*(b.A2)+(7.3718+1.1887*k).*k2.*(b.*d)+(4.3360+1.0 

51*k).*(d.A2)); 

dl3=(cA2).*((1.6128*k+1.16128).*k2.A2.*(b.A2)+(2.168+0.2950*k).*k2.*b.*d+k.*d.A2); 

NR=-k.*(c.A2).*(d.A2);DR=dll+dl2+dl3; 

% Transfer function 

HLFG=abs(NR./DR); 

% Magnitude plot 
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subplot(2,2jj); contour3(wl,w2,HLFG); 

surface(wl,w2,HLFG,'EdgeColor',[.2 .2 .2],'FaceColor','none'); 

grid on; view(-15,25); 

title(['k=',num2str(k),',kl =',num2str(kl ),',k2-',num2str(k2);,al - ,num2str(al ),',a2=',num2 

str(a2),',b l=*,num2str(b 1 )/,b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l;subplot(2,2,jj); 

[C,h]=contour(wl ,w2,HLFG); 

clabel(C,h); set(h,'linecolor',lblack'); grid on; 

title(['al =',num2str(al ),',a2=',num2str(a2),',bl =',num2str(b 1 ),,,b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

C. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital highpass filter with infinite gain op-

amp. 

% Operational amplifier with infinite gain . 

% GBT of Highpass filter 

clear all; clc 

wl=-pi:pi/25:pi; w2=-pi:pi/25:pi; 

zl l=exp(-j.*wl); z21=exp(-j.*w2); 

[zl ,z2]=meshgrid(zl 1 ,z21); 

% Input values for GBT coefficients 
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al=input('Enter the value of al='); 

a2=input('Enter the value of a2='); 

kl=input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

%HHIG transfer function of the filter with infinite gain. 

e=zl+al; g=zl-l; f=z2+a2; h=z2-l; 

dll=(klA2).*(a.A2).*(3.6749.*k2A2.*(b.A2)+2.5771.*k2.*b.*d+2.2786.*d.A2); 

dl2=(kl.*a.*c).*(5.1916.*k2A2*(b.A2)+6.7323.*k2.*(b.*d)+3.2190.*(d.A2)); 

dl3=(cA2).*(3.2256.*k2.A2.*b.A2+3.688.*k2.*b.*d+d.A2); 

NR=-(g.A2).*(h A2); DR=dl l+dl2+dl3; 

% Transfer Function 

HHIG=abs(NR./DR); 

% Magnitude plot 

jj=l; subplot(2,2,jj); contour3(wl,w2,HHIG); 

surface(wl,w2,HHIG,'EdgeColor',[.2 .2 .2],'FaceColor','none'); 

grid on; view(-15,25); 

title(['kl=',num2str(kl ),',k2=',num2str(k2),',al =',num2str(al ),',a2=,,num2str(a2),',b 1 =',nu 

m2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l; subplot(2,2,jj); [C,h]=contour(wl,w2,HHIG); clabel(C,h); 

setOVlinecolor'^lack'); grid on; 

title(['al =',num2str(al ),',a2=,,num2str(a2),,,b 1 =',num2str(b 1 ),',b2=',num2str(b2)]); 
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xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

D. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital highpass filter with finite gain op-amp. 

% Operational amplifier with finite gain . 

% GBT of Highpass filter 

clear all; clc 

wl=-pi:pi/25:pi; w2=-pi:pi/25:pi; 

zll=exp(-j.*wl); z21=exp(-j.*w2); 

[zl ,z2]=meshgrid(zl 1 ,z21); 

% Input values for GBT coefficients 

al=input('Enter the value of al='); 

a2=input('Enter the value of a2='); 

kl=input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

k=input('Enter the value of k='); 

%HHFG tranfer function of the filter with finite gain. 

e=zl+al; g=zl-l; f=z2+a2; h=z2-l; 

dll=(klA2).*(e.A2).*(7.3498.*k2A2.*(fA2)+5.1541.*k2.*f.*h+4.5571.*(h.A2)); 

dl2=(kl.*e.*g).*(1.6951.*k.*k2A2.*(f.A2)+(7.3718+1.1887*k).*k2.*(f*h)+(4.3360+1.05 

l*k).*(h.A2)); 

dl3=(g-A2).*((1.6128*k+1.16128).*k2.A2.*(fA2)+(2.168+0.2950*k).*k2.*f.*h+k.*h.A2); 

NR=-k.*(g.A2).*(h.A2); DR=dl l+dl2+dl3; 
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% Transfer Function 

HHFG=abs(NR./DR); 

% Magnitude plot 

jj=i; 

subplot(2,2 jj); contour3(wl ,w2,HHFG); 

surface(wl,w2,HHFG/EdgeColor',[.2 .2 .2],'FaceColor7none'); 

grid on; view(-15,25); 

title(['kl =',num2str(kl );,k2=',num2str(k2),',al =',num2str(al ),',a2=',num2str(a2),',b 1 =',nu 

m2str(b 1 )/,b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l; subplot(2,2jj); [C,h]=contour(wl,w2,HHFG); 

clabel(C,h); set(h,'linecolor','black'); grid on; 

title(['al =',num2str(al )/,a2=',num2str(a2),',bl =',num2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

E. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital bandpass filter with infinite gain op-

amp. 

% Operational amplifier with infinite gain. 

% Bandpass filter 

clear all; clc; 

wl=-pi:pi/25:pi; w2=-pi:pi/25:pi; 



zl l=exp(-j.*wl); zl2=exp(-j.*w2); 

[zl ,z2]=meshgrid(zl 1 ,zl 2); 

% Input values 

al =input('Enter the value of al ='); 

a2=input('Enter the value of a2='); 

bl=input('Enter the value of bl='); 

b2=input('Enter the value of b2='); 

kl=input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

iH; 

% HBPIG transfer function of bandpass filter with infinte gain op-amp. 

a=zl-al; c=zl+l; b=z2-a2; d=z2+l; 

dll=(klA2).*(a.A2).*(3.6749.*k2A2.*(b.A2)+2.5771.*k2.*b.*d+2.2786.*d.A2); 

dl2=(kl.*a.*c).*(5.1916.*k2A2*(b.A2)+6.7323.*k2.*(b.*d)+3.2190.*(d.A2)); 

dl3=(c.A2).*(3.2256.*k2.A2.*b.A2+3.688.*k2.*b.*d+d.A2); 

NR=-(c.A2).*(d.A2); DR=dll+dl2+dl3; 

HL=abs(NR./DR); 

e=zl+al; g=zl-l; f=z2+a2; h=z2-l; 

dhl=(klA2).*(e.A2).*(3.6749.*k2A2.*(f.A2)+2.5771.*k2.*f.*h+2.2786.*h.A2); 

dh2=(kl.*e.*g).*(5.1916.*k2A2*(f.A2)+6.7323.*k2.*(f.*h)+3.2190.*(h.A2)); 

dh3=(g.A2).*(3.2256.*k2.A2.*f.A2+3.688.*k2.*f.*h+h.A2); 

NRH=-(g.A2).*(h.A2);DRH=dhl+dh2+dh3; 

HH=abs(NRH./DRH); 
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% Transfer function of bandpass filter. 

HBPIG=(HL.*HH); 

% Magnitude plot 

subplot(2,2jj); contour3(wl ,w2,abs(HBPIG)); 

surface(wl ,w2,abs(HBPIG),'EdgeColor',[.2 .2 .2],TaceColor7none'); 

grid on; view(-25,25); 

title([',kl =',num2str(kl ),,,k2=',num2str(k2),',al =',num2str(al ),',a2=',num2str(a2),',b 1 =',nu 

m2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l; subplot(2,2,jj); [C,h]=contour(wl,w2,abs(HBPIG)); 

clabel(C,h); set(h,'linecolorVblack'); grid on; 

title(['al =',num2str(al ),',a2=',num2str(a2),',b 1 =',num2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

F. MATLAB code to plot the 3-D amplitude-frequency response and the 

contour response of the 2-D digital bandpass filter with finite gain op-amp. 

% Operational amplifier with finite gain. 

% Bandpass filter 

clear all; clc; 

wl=-pi:pi/25:pi; w2=-pi:pi/25:pi; 

zl l=exp(-j.*wl); zl2=exp(-j.*w2); 

[z 1 ,z2] =meshgrid(z 11 ,z 12); 



% Input values 

al=input('Enter the value of al='); 

a2=input('Enter the value of a2='); 

bl=input('Enter the value of bl='); 

b2=input('Enter the value of b2='); 

kl=input('Enter the value of kl='); 

k2=input('Enter the value of k2='); 

k=input('Enter the value of k='); 

% HBPFG transfer function of bandpass filter with finte gain op-amp. 

a=zl-al; c=zl+l; b=z2-a2; d=z2+l; 

dll=(klA2).*(a.A2).*(7.3498.*k2A2.*(b.A2)+5.1541.*k2.*b.*d+4.5571.*(d.A2)); 

dl2=(kl.*a.*c).*(-1.6951.*k.*k2A2.*(b.A2)+(7.3718-1.1887*k).*k2.*(b.*d)+(4.3360-

1.051*k).*(d.A2)); 

dl3=(c.A2).*((1.6128*k+1.16128).*k2.A2.*(b.A2)+(2.168-0.2950*k).*k2.*b.*d-k.*dA2); 

NR=-k.*(c.A2).*(d.A2);DR=dll+dl2+dl3; 

HL=(NR./DR); 

e-zl+al; g=zl-l; f=z2+a2; h=z2-l; 

dhl=(klA2).*(e.A2).*(7.3498.*k2A2.*(fA2)+5.1541.*k2.*f.*h+4.5571.*(h.A2)); 

dh2=(kl.*e.*g).*(-1.6951.*k.*k2A2.*(f.A2)+(7.3718-1.1887*k).*k2.*(f.*h)+(4.3360-

1.051*k).*(h.A2)); 

dh3=(g.A2).*((1.6128*k+1.16128).*k2.A2.*(f.A2)+(2.168-0.2950*k).*k2.*f.*h-k.*hA2); 

NRh=-k.*(g.A2).*(h.A2); 
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DRh=dhl+dh2+dh3; 

HH=(NRh./DRh); 

% Transfer function of bandpass filter. 

HBPFG=abs(HL.*HH); 

% Magnitude plot 

subplot(2,2 jj); contour3(wl ,w2,abs(HBPFG)); 

surface(wl ,w2,abs(HBPFG),'EdgeColor',[.2 .2 .2],'FaceColor,,'none'); 

grid on; view(-25,25); 

title(['k=^num2str(k);,kl=^num2str(kl);,k2=^num2str(k2),,,al=,,num2str(al),,5a2=',num2 

str(a2),',b 1 - ,num2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec1); zlabel('Magnitude response'); 

% Contour plot 

jj=jj+l; subplot(2,2,jj); [C,h]=contour(wl,w2,abs(HBPFG)); 

clabel(C,h); set(h,'linecolor','black'); grid on; 

title(['al =',num2str(al ),',a2=',num2str(a2),',b 1 =',num2str(b 1 ),',b2=',num2str(b2)]); 

xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); 

G. MATLAB code for performance comparison of lowpass filter with 

infinite gain and finite gain op-amp configuration. 

% Filter Application to image processing. 

clear all; clc; 

% Generation of fiilter transfer function. 

HLIGl=lfg(); 



original_image=imread('G:\My Documents\lena2.jpg'); 

% Data format of the image is changed. 

image_d=mat2gray(original_image); 

figure, imshow(imaged); title('Original Image'); 

% Gaussian noise added to the image. 

deg_image=:imnoise(image_d,'gaussian',0,.l); image_d_freq=rfft2(deg_image); 

HLIGl=fftshift(HLIGl); 

fil_image_freq=HLIGl .*image_d_freq; % Filtered image in frequency domain. 

% Filtered image in spatial domain. 

fil_image_spa=real(ifft2(fil_image_freq)); 

% Image data reformat 

display(' The min value before reformatting'); min(fil_image_spa(:)); 

fil_image_spa_rf=fil_image_spa+abs(min(fil_image_spa(:))); 

display('The min value after reformatting'); 

min(fil_image_spa_rf(:)); 

fil_image_spa_rf=fil_image_spa_rf./max(fil_image_spa_rf(:)); 

display('The max value after reformatting'); 

max(fil_image_spa_rf(:)); MN=size(original_image); 

M=MN(1,1);N=MN(1,2); 

display('MSE and PSNR of the image with noise') 

sum=0; 

for i=l :M 

forj=l:N 
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I l l 

sum=sum+(deg_image(ij)*255-image_d(i,j)*255)A2; 

end 

end 

figure; 

imshow(deg_image, []); 

title('Image + Noise(with SD=0.1, Mean=0)'); 

MSE=sum*(l/(M*N));PSNR=10*loglO(255A2/MSE); 

xlabel([,MSE=',num2str(MSE);,PSNR=,,num2str(PSNR)]); 

display('MSE and PSNR of the image after LPF'); 

sum=0; 

for i=l:M 

forj=l:N 

sum=sum+(fil_image_spa_rf(iJ)*255-image_d(ij)*255)A2; 

end 

end 

MSE=sum*(l/(M*N));PSNR=10*loglO(255A2/MSE); 

figure, imshow(fil_image_spa_rf); 

title('Output of lowpass filter with infinite gain'); 

xlabel(['MSE=,,num2str(MSE),',PSNR=',num2str(PSNR)]); 

H. MATLAB code to exhibit the performance of lowpass filter with finite 

gain op-amp configuration. 

% Filter application for subjective processing. 
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% Filter Application to image processing. 

% Lowpass filter 

clear all; clc; 

HLIGl=lfg(); 

original_image=imread('G:\My Documents\lena2.jpg'); 

figure; imshow(original_image); 

original Jmage=mat2gray(original_image); 

original_freq=fft2(original_image); 

HLIGl=fftshift(HLIGl); 

fil_image_freq=HLIGl.*original_freq; 

fil_image=real(ifft2(fil_image_freq)); 

figure; imshow(fil_image, []); 

/. MATLAB code to exhibit the performance of highpass filter with finite 

gain op-amp configuration. 

% Filter application for subjective processing. 

% Filter Application to image processing. 

% Highpass filter with finite gain. 

clear all; clc; 

HLIGl=hfg(); 

original_image=imread('G:\My Documents\lena2.jpg'); 

figure; imshow(originalimage); title('Original Image'); 

original_image=mat2gray(original_image); 
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original_freq=fft2(original_image); 

HLIGl=fftshift(HLIGl); 

fil_image_freq=HLIGl.*original freq; 

fil_image=Teal(ifft2(fil_image_freq)); 

figure; imshow(fil_image, []); 

title('Without any hisequalization'); 

figure; imshow(histeq(gscale(fil_image),256),[]); 

title('After applying histogram equalization'); 

display('GoodBye!!!'); 


