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Abstract

Generation of 2-D Digital Filter from an active analog network with Application in
Image Processing

Venkatraman Sundharesan

A new approach to generate 2-D filters having variable magnitude characteristics
from an active analog doubly terminated network has been proposed. An active analog
circuit with reactance elements in T section in the feedback has been considered. Its
stability has been ensured and a 2-D analog lowpass filter has been generated. The
impedance values for the filter is obtained in comparison with type I chebyshev filter
with 1db ripple in the pass band.

The 2-D analog lowpass filter has been transformed to digital domain by applying
the generalized bilinear transformation. Similarly 2-D digital high pass filter has been
obtained. The 2-D digital bandpass filter has been obtained by cascading the lowpass and
highpass filters.

The 2-D digital filters are studied under five different cases. These five different
cases are based on the coefficients of generalized bilinear transformation and the op-amp
gain parameter. The effect of each generalized bilinear transformation coefficient and the
op-amp gain on the filter output is studied by individually varying them.

Finally, performance comparison between the infinite gain and finite gain
configuration has been done for the lowpass filter with a basic image processing
application. A basic application for 2-D digital highpass filter with finite gain has been

illustrated in image processing.
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Chapter 1

Introduction

Digital filter is just like a filter which operates on digital signals. It’s a
computation which takes one sequence of numbers i.e. the input signal and produces a
new sequence of numbers i.e. the filtered output signal. Thus digital filter can be
considered as a mathematical equation which translates one digital signal to another. [1]

Digital filter can provide any required degree of precision. Digital filter
characteristics can be easily changed, they are much more reliable and repeatable, they
are free from component drift and no tuning is required.

Design of Multi-dimensional filter has increasingly attracted considerable
attention during the recent years and is still receiving significant interest by both theorists
and practitioners. Multi-dimensional signal processing has many applications in modemn
day devices and many practical systems because of which, this subject is still being
investigated in important areas as moving-objects recognition, robotics, medical imaging
and so on. [2]

Two dimensional (2-D) digital systems have gained lot of attention due to its high
efficiency, high speed computations, permitting high quality image processing and

analysis, also providing greater application flexibility and adaptability. The 2-D digital



filters have numerous applications in various fields such as image processing, video
signal processing and seismic signal processing [3].

The 2-D digital filter can be classified into 2-D Finite Impulse Response (FIR)
filter or non recursive filter and Infinite Impulse Response (IIR) filter or recursive filter.
In this work, concentration would be given to the design of 2-D IIR filter or recursive

filters.

1.1 Research Objectives

The primary objective of this research is to design a stable 2-D active analog LC
filter and obtain its equivalent in digital domain by applying transformation which hasn’t
been done so far in the literature and to study its characteristics. Its lowpass, highpass
and bandpass configurations would be developed and its characteristics would be studied.

The preliminary goal of this thesis is to develop a suitable structure for 2-D
analog active IIR stable filter. The stability is ensured by making sure that the transfer
function polynomial is {a Very Strict Hurwitz Polynomial (VSHP).

Once a stable 2-D analog filter has been developed, suitable transformation would
be applied to obtain the equivalent 2-D digital lowpass filter. After obtaining the 2-D
digital lowpass filter, suitable frequency transformation are applied to get the equivalent
highpass filter and bandpass filters.

At last the 2-D digital active LC lowpass, highpass and bandpass filters

applications are demonstrated with the image processing applications.



1.2 Infinite Impulse Response Filters (IIR Filters)

The transfer function of 2-D IIR filters can be described by using 2-D z-transform

[3] and can be expressed as a ratio of two-variable polynomials as follows:

Nd(zl’ZZ) = i=0 j=0 (1 1)
D,(z,,z,) ﬁ:ZL:b gkl .
k<1 2

H,(z),z,)=

where bgo=1, ajj and by are real coefficients. For any input signal X(z,z), the output
Y(z1,2) of the filter is given by

Y(z,,2,)=H(z,,2,)*X(z,,2,) (1.2)

In the 2-D IIR filter, one important problem to be dealt with is stability.
According to the stability theorem [4][5], the 2-D IIR filter is guaranteed to be stabie iﬁ
the bounded-input bounded-output (BIBO) sense, if there exists no value of z; and z, for
which D(z1,z;) = 0 for both |z;| > 1and |z;| > 1 [3]. This means it is highly preferable that
the given analog transfer function must have VSHP denominator [4]. Therefore, the
design of a 2-D IIR filter requires obtaining the coefficients ajj and by in eqn. (1.1) so that
H(e",',6,%) approximates a given response G(j,, joz) where ©; and w; are horizontal

and vertical spatial frequencies respectively, which also ensures the stability of the filter.

1.3  Different methods of designing a 2-D IIR filters [3, 7, 8]
One of the methods of designing a IIR filter can be classified into three steps: the
design using analog prototype filter, the design using digital frequency transformation

and last one is computer-aided design. In the first step, an analog filter is designed to the



(analog) specification and the analog filter transfer function is transformed into digital
system function using transformation. In the second step, it’s assumed that a digital low-
pass filter can be designed. The desired digital filter is obtained from the digital low-pass
filter by digital frequency transformation. The last step uses some algorithm to choose

the coefficients so that the response is as close as possible to the desired filter.

Steps one and two would be used to get the 2-D active LC IIR filter. First an
analog filter is designed and it is made sure that its transfer function is a VSHP in order to
ensure the stability of the filter. Then its equivalent lowpass digital filter is obtained by

applying generalized bilinear transformation (GBT).

Highpass and bandpass filters are obtained from the lowpass by using the second

step mentioned above.

1.4  2-D Stability Criteria - Very Strict Hurwitz Polynomial [4]

In one-dimensional (1-D) systems (both analog and discrete), a filter having
required specifications with the transfer function having no common factors between the

numerator and the denominator is designed. Let

_NG)

= D.(s) (1.3)

Ha (S)

be a transfer function in the analog domain with N,(s) and D,(s) being relatively prime.
In order that the function is stable, D,(s) should be a strictly Hurwitz polynomial (SHP).

A SHP contains its zeros strictly in the left half of the s-plane. Similarly, if

N, ()

H,(z)= D, (2)

(1.4)



is a transfer function in the discrete domain with N4(z) and Dy(z) relatively prime, then
Dy(z) should be a Schur polynomial in order that Hy(z) shall be stable. A Schur
polynomial contains its zeros strictly within the unit circle.

In the case of 2-D analog systems, there is a possibility that both even and odd
parts of a polynomial may become zero simultaneously at a specified set of points, but
not in their neighbourhood. This phenomenon is known as singularities, which makes the
filter unstable. There are two kinds of singularities which have to be avoided.

Consider a 2-D analog system H,(s1,s2) such as

Na(Sl’SZ)

Ho(s1:50) = D._(s,,5,)
a\“192v2

(1.5)

Two kinds of singularities might arise for the above analog system which has to be
avoided,
(1) Da(810,820) = 0 and N,(s10,820) # 0, this leads to non-essential singularity of the
first kind at (s10,520).
(i)  Da(s10,820) = 0 and Ny(s10,520) = O, this leads to non-essential singularity of the
second kind at (S10,520).
The similar situation exists in the case of 2-D discrete systems also. This leads to
a class of polynomials called Very Strict Hurwitz Polynomials (VSHP) which doesn’t

contain singularities of the type mentioned above. A VSHP is defined as follows:

“Da(s1,82) is a VSHP, if ———— does not possess any singularities in the
Da (Sl ’S2)

region {(s1,52) | Re s;1>0,Re s2> 0, |s;] < oo, and |sp| < 0}
The different methods of generating a VSHP and its properties have been

discussed in detail in [4].



1.5 Generation of VSHP [8]

When a VSHP is used in the denominator of a 2-D analog transfer function, it is

ensured that the resulting 2-D digital transfer function obtained by the application of the

well-known bilinear transformation is stable. Therefore, VSHP is highly useful in the 2-

D digital filter design. A two-variable VSHP is generated and it is assigned to the

denominator of the 2-D analog transfer function, then double bilinear transformation is

applied to obtain the transfer function in digital domain. Here, the method used to

generate a VSHP is reviewed.

One of the simplest methods of generating a VSHP is to start from the VSHP

D, (5),5,) = ;5,5 + ayy8, + apS, + dy,

The reactance function is

G, (51’52) =

QS T ay15,

On applying the transformation

- by,s,8, + by,
l byos +by$,
Where b >0, b0, by;>0 and by>0

This result in

F,(s,,5,)

G,,(5,5,) =
pen 0,2(5,,5,)

Where

_ 2
P, (5),8,) = a;,by,5,5; + aybyys, + (auboo + agoby )52

2
Qaz(svsz) =ay,s,; + (alobu +ay,by, )5152 + a5y,

_ 9SSy +ay

(1.6)

1.7

(1.8)

(1.9)

(1.10)

(1.11)



The polynomial Dyy(s1,82)=Paa(s1,52)+Qa2(s1,52) is a VSHP in which s, is of unity degree
and s; is of second degree. When the transformations s; as in eqn. (1.8) and

_ G818, TGy

G051 €S, (1.12)
Where ¢;1>0, ¢16>0, ¢¢1>0 and cy>0 are applied for G,i(s1,52) in eqn. (1.9), the resulting

VSHP contains s; and s; of second degree each. The resulting reactance function is given

by

Ga3(S1,SZ) =f£§§]_ﬁz)_
- (1.13)

Where

_ 2.2 2
F, (51’52) = ay,0,,C15;' S5 + ApeDoeCioSt + (aoobmcm + @yobyiCo1 + AbyeCy + ay1By i€y )5152
2
+ Go4Dy o153 + @1DooCoo

(1.14)

and

2 2
O, (51’52) = (alobnc]o + ao1b1ocn)51 S, + (alobllcm + aOlbIOCII)SISZ + (ambooclo + oo )Sl

+(@10b00Cor + GoiboiCon )5 (1.15)

These transformations are applied again if a higher order VSHP is required.

1.6  Bilinear Transformation [6],[12]

Most often used transformation method in the literature is GBT method, in order
to transform a analog filter into a digital filter.

zZ,—a;

s. =k,

i i

,Where i=12 (1.16)
z, +b,



The bilinear transformation maps the entire (s;, s2) biplane on to the entire (zi, z2)

biplane, on one-to-one basis. The stability condition for the bilinear transformation is

k#0, |a|<1, |p|<1 (1.17)

1.7  Verification of VSHP [4]

In order to determine whether a given two-variable polynomial Dy(s;, s2) is a
VSHP or not, whether it is a SHP or not has to be determined. To ensure this the
following procedures would be followed:

i.  Determine that D, (s;, 1) is SHP in s;.
ii.  From the given polynomial D,(s},s;), formulate
Da(jonjo2)=[Ax(w2)w:]

Ap(w)of + A,_(0,)0of " +....+ 4y (@,) o
+ 4(@,)w, + 4y(@,)

Da(ja)l,ja)z) ={

) Bp(a):,_)a)," +Bp_1(co2)co1”‘1 F oo + (1.18)
B (w,)o, + B,(w,)

where Ai(®;) and Bj(w,), 1=0,1,1,2....... p are polynomials in o,

iii. Now (1.18) shall be rearranged in the form of Inners as follows:

Bp Bp-l Bp—2 - - - 0 0 0
Q Bp Bp-l - e 0 0 0
0 0 Bp — - 0 0 0
0 0 0 B p B -l B B2 B P3 -
0 o o 0 Bp Bp-l Bp-2 -
0 0 0 0 An An-l Ap-2 - - -
0 0 0 Ap Ap—l Ap-2 Ap-3 - -
0 0 Ap - - 0 0 0
0 Ap Ap-l - - ) ° 0
Ap Ap-l Ap-z - 0 0 0



iv.  In order that D,(s;,s5) is a SHP, it is required that the inner determinants A>0,
k=1,2,.....p, for all w,.
v.  If the certain conditions of D,(s;,s») are satisfied then it can be conclude that

the given D,(s;,52) is a VSHP. The conditions are:

D, sl,—l—J?&—Q—,as s, >0and s, >0 (1.19)
S, 0
1 0
D,|—,s, | # o as s, >0and s, >0 (1.20)
St
1 1 0
D|—,—|#—,ass,>0and s, >0 (1.21)
5, 8, 0

In order to determine whether the generated polynomial is VSHP or not condition
(v) would be used to verify. Once a VSHP is generated and is used in the denominator of
a 2-D analog transfer function, it is guaranteed that the resulting 2-D digital transfer

function obtained by applying the well-known bilinear transformation is stable [10],

[11],[12].

1.7  Organization of the thesis

In chapter 1, IIR filter, a special type of polynomial for 2-D filter called VSHP,
one of the methods of generating a VSHP that would be used in this thesis, methods to
test whether obtained polynomial is VSHP and the transformation used to obtain a
transfer function in digital domain from an analog domain transfer function are discussed.

Chapter 2 describes the method to obtain the transfer function of the 2-D active
digital filter with infinite gain op-amp and finite gain op-amp. Stability of the transfer

function is tested and the impedance values are found.
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Chapter 3 outlines the method to obtain the transfer function of the lowpass filter
in digital domain by applying the GBT to the analog transfer function obtained in chapter
2 for both infinite gain and finite gain cases. Then effect of GBT coefficient and the op-
amp gain parameter k on the filter output characteristics would be studied.

Chapter 4 presents the method to obtain the transfer function of the highpass filter
in digital domain by applying suitable GBT to the analog transfer function obtained in
chapter 2. Then the effect of the individual GBT coefficients and op-amp parameter k on
the 2-D digital highpass filter output would be studied.

Chapter 5 is a description of the method to obtain the bandpass filter in digital
domain from the transfer function of the lowpass and highpass filter in the digital
domain. Then effect of individual GBT coefficients and op-amp gain parameter k on the
filter output would be examined.

In chapter 6 few applications of 2-D digital filters in image processing for image
restoration and image enhancement has been discussed. The performance of the 2-D
active digital filter in lowpass configuration would be compared for the filter with finite
gain op-amp and infinite gain op-amp.

Chapter 7 summarizes the work done and outlines future initiatives that can be

undertaken.
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Chapter 2
Design of 2-D active IIR filter with T section in the feedback

2.1 Introduction

In the literature of the two dimensional filter design and analysis, so far study has
been carried out in the passive domain only [14], [15], [16]. Filters have been designed
by first ensuring the stability. In this work the possibilities of designing a 2-D active
filter would be examined and its characteristics would be studied. In order to ensure
stability, we would be using VSHP criteria.

The presence of operational amplifier in the 2-D active filter leads to two cases,
operational amplifier with infinite gain and the other one with finite gain. Practical
applications involving 1-D active filter, op-amp with finite gain are of interest. Detailed
study of design procedures and characteristics of the 2-D active filter, with infinite gain
op-amp and finite gain op-amp would be done.

Active networks containing impedances such as inductors and capacitances will
have frequency and phase response which may be advantageous to the engineers in the
filter design applications. An active network with a T network in the feedback path as

shown in fig.2.1 would be considered.
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Figure 2.1: An active filter with T network in the feedback path.

The 2-D analog filter is obtained by substituting impedance values for Z,, Z,, Z3
and Z4. The stability of the transfer function is ensured by ensuring the denominator
polynomial is VSHP. The various method of testing VSHP is described later in this
chapter and one of the methods would be employed.

Various possibilities of generating a VSHP by fitting different impedance values
for Z1, Z,, Z3 and Z, are tried out. Once the transfer function with a VSHP polynomial is
obtained and then the impedances values are found out, then generalized bilinear
transformation is applied to obtain the equivalent digital filter.

By applying node voltage analysis to the circuit diagram in fig. 2.1 the transfer
function of the filter in analog domain for the two cases are obtained. The transfer

function of the filter with infinite gain op-amp is

V, Z,Z,+Z,Z,+Z,Z,

Yo
Z Z,(Z,+R,)

@2.1)
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Transfer function for op-amp with finite gain k is

Vo _ kZ,AZ
V. ZZk+D)+AZ(R +1)+ 2,2, 2.2)

where, AZ =Z,Z, + 2,2, +Z,Z,
Different values are substituted for impedances Z,, Z,, Z; and Z, in the above two

equations and various possibilities of generating a VSHP are obtained.

2.2  Stability test of the transfer function with infinite gain operational

amplifier.
The transfer function of the filter with infinite gain op-amp is given by eqn. (2.1).

The transfer function has four impedance variables Z,, Z,, Z3 and Z, and these

CASE 71 72 73 74 VSHP/NOT VSHP

1 1/81C1 | 1/8,C, | SoLs SiL4 VSHP

2 | 1/S.C; [1/S:Cs |SoLs | 1/S1Cs | Not Vshp H(1/S1,S,)=0/0
3 1/81Cy { 1/S,Cy | 1/S,Cs | 1/S1Cy | Not Vshp H(S4,1/5,)=0/0
4 l/SICI 1/SzC2 1/SzC3 S]L4 Not VShp H(l/S],Sz)=O/O
5 l/SICI Ssz SzL3 S]L4 Not VShp H(l/S],SQ)“—'O/O
6 1/81C1 S2L2 Sng, 1/S]C4 Not VShp H(l/S],S2)=O/O
7 1/S1C1 | S2L» 1/S2C3 | 1/S1C4 | Not Vshp H(S1,1/82)=0/0
8 1/§1Cy | S2l, 1/S2C3 | SiLa4 Not Vshp H(S4,1/S,)=0/0
9 SlLl SzLZ Sng, S]L4 Not VShp H(l/S],Sz)=O/0
10 SiLy S)L, SyL3 1/81C4 | Not Vshp H(1/8,,S2)=0/0
11 S]L] Ssz 1/SzC3 1/S]C4 Not VShp H(I/Sl,1/82)=0/0
12 SlLl Ssz 1/SzC3 SlL4 Not VShp H(S],l/Sz)=O/0
13 SiLy 1/8,C, | Sols SiLs VSHP

14 Si1Ly 1/5,C, SoLs 1/51C4 | Not VShp H(l/S],Sz)—_-O/O
15 SlL1 1/SzC2 1/SzC3 1/81C4 Not VShp H(I/Sl,32)=0/0
16 SiLs 1/8,C, | 1/S2C5 | SiLls Not Vshp H(1/S,,S,)=0/0

Table 2.1: Impedance combinations for stable filter with infinite gain op-amp.
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impedances are reactance’s in two dimension (si, s;). These impedances would be either
inductor or capacitor or combination of inductor and resistor or capacitor and resistor.
Various possibilities for these impedances to generate a fourth order VSHP is tested out
in the Table 2.1. In Table 2.1, for the cases 1-16 impedances Z; and Z4 are considered to
be in s; domain and impedances Z, and Z; are considered to be in s; domain.

For each and every case the impedance value is substituted in the transfer function

and tested for VSHP test cases. The test cases are as follows [4]

Vo(l ) 0 Vo[ 1] 0 Vo(l 1] 0
—,8, |2—, —=|s8,— |E-, | ——|%—. (2.3)
Vin \S) 0 V., ) 0" V{5 s, 0
CASE | Z1 72 Z3 Z4 VSHP/NOT VSHP

1 1/S]C1 l/SQCQ S]L3 SZL4 Not VShp Ha(Sl,l/Sz)=O/O

2 1/81C1 1/82C2 SlL3 1/82C4 Not VShp Ha(1/81,82)=0/0

3 1/S]C1 1/82C2 1/81C3 1/82C4 Not VShp Ha(Sl,l/Sz)=O/0

4 1/S1C; | 1/8,C; | 1/8,Cs | SoLs | Not Vshp Ha(S4,1/S,)=0/0

5 1/81Ci | S2L, | SiLs | SoLs | Not Vshp Ha(S4,1/S,)=0/0

6 1/31C1 Ssz S]L;; 1/SzC4 Not VShp Ha(Sl,l/Sz)=0/0

7 1/8,Cy | S, 1/81C5 | 1/82C4 | Not Vshp Ha(1/8,,S,)=0/0

8 [1/SiC; S, | 1/8,Cs | Sols | Not Vshp Ha(S1,1/S2)=0/0

9 SiLi Solo | SiLs | SpLs | Not Vshp Ha(1/S1,1/S2)=0/0

10 SlLl Ssz SlL3 1/SzC4 Not VShp Ha(Sl,l/Sz)=0/0

11 Sik4 Sy, 1/8:C5 | 1/8,C4 | Not Vshp Ha(1/S1,52)=0/0

12 SiLy SoL, 1/S2Cs | S;Ls | Not Vshp Ha(1/S4,1/S2)=0/0

13 SlLl 1/SzC2 S]L3 SzL4 Not VShp Ha(l/Sl,Sz)=0/0

14 SiLy 1/8,C2 | SiLs 1/8,C4 | Not Vshp Ha(1/S4,S,)=0/0

15 SiLy 1/S,C, | 1/§1Cs | 1/8,C4 | VSHP

16 | SiLy 1/8,C2 | 1/82C3 | SoLs | Not Vshp Ha(1/81,S2)=0/0

Table 2.2: Impedance combinations for stable filter with infinite gain op-amp.

If all three conditions are satisfied then the corresponding impedance combination

would make it possible for the transfer function to have a VSHP polynomial at the



15

denominator, which ensures stability. The procedure to obtain a VSHP polynomial
would be explained in the next section.

In Table 2.2, the impedances values are kept similar to Table 2.1 but impedances
Z, and Z; are considered in s; domain‘and impedances Z, and Z4 are considered in s;

domain.

2.3  Stability test of the transfer function with finite gain operational

amplifier.

Various combinations tried for the infinite gain op-amp case will also be tried out

for the
CASE | Z1 72 Z3 74 VSHP/NOT VSHP

1 1/S1Cy | 1/S2C; | SaLs S;Ls | VSHP

2 1/S:Cy | 1/S2C;, | SaLs 1/8,C4 | Not Vshp Ha(1/s1,52)=0/0

3 1/S]C1 1/SzC2 1/SzC3 1/51C4 Not VShp Ha(l/Sl,l/Sz)=0/0
4 1/S:Cy | 1/S,C, | 1/S,C3 | S1Ly Not Vshp Ha(1/s1,82)=0/0

5 1/S:Cy | Sol, SoL; SiLy Not Vshp Ha(l/Sl,Sz)=0/0

6 l/SIC1 Ssz Sst 1/51C4 Not Vshp Ha(1/81,82)=0/0

7 1/S:C; | S, 1/S,C3 | 1/S,C4 | Not Vshp Ha(1/sy,s2)=0/0

8 1/8:C; | Sola 1/S,C5 | 114 Not Vshp Ha(s;,1/s2)=0/0

9 S]L] Ssz Sng S]L4 Not VShp Ha(1/81,1/82)=0/0
10 SlLl Ssz SzL3 1/51C4 Not VShp Ha(l/Sl,Sz)=O/0
11 SiLy SaL, 1/S,C5 | 1/5,C4 | Not Vshp Ha(1/s,1/s2)=0/0
12 SiLy SoLs 1/8,C;5 [ S;Ly | Not Vshp Ha(s;,1/s,)=0/0
13 SiLi 1/8,C5 | SaLs Sil4 Not Vshp Ha(sy,1/52)=0/0
14 | S|, 1/8,C, | SoLs 1/8,C4 | Not Vshp Ha(1/s;,,)=0/0
15 Si1L 1/82C, | 1/8,C3 | 1/S1C4 | Not Vshp Ha(sy,1/s2)=0/0
16 S]Ll 1/SzC2 1/SzC3 SlL4 Not VShp Ha(l/Sl,Sz)=0/0

Table 2.3: Impedance combinations for stable filter with finite gain op-amp.
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finite op-amp gain and the transfer function are obtained for the cases where VSHP are
obtained after substituting the impedance values.

In the table 2.1, 2.2, 2.3 and 2.4, the different cases with VSHP indicates that a
VSHP polynomial can be obtained. Case 1 of Table 2.1 and Table 2.3 would be
considered. In both these cases, a fourth order filter would be obtained by substituting
the impedance values. Throughout this work, only these two cases would be considered

for the comparative study as well as the importance of controlling the GBT coefficient

CASE 1 72 Z3 74 VSHP/NOT VSHP

1 1/S1Cy | 1/S5Cy | S1L;s S,Ls | VSHP

2 1/8:C; | 1/82C, | S1Ls 1/S,C4 | Not Vshp Ha(l/Sl,Sz)=O/O

3 1/81Cy | 1/82Cy | 1/81Cs | 1/8,C4 | Not Vshp Ha(1/s1,1/s,)=0/0
4 1/S]C1 1/SzC2 1/SzC3 SzL4 Not VShp Ha(1/81,1/82)=0/0
5 1/8;C; | S, SiL; NI Not Vshp Ha(1/s,,5,)=0/0

6 1/S]C1 Ssz S]L3 1/SzC4 Not VShp Ha(Sl,l/Sz)=0/0

7 1/81C1 Ssz 1/51C3 1/SzC4 Not VShp Ha(1/81,82)=0/0

8 1/S8,C; | SoL, 1/S,Cs | Sp14 Not Vshp Ha(l/Sl,Sz)=O/0

9 Si,4 SoLs SiLs SoLy Not Vshp Ha(l/Sl,l/Sz)=0/O
10 SlLl S, SlL3 1/SzC4 Not VShp Ha(81,1/82)=0/0
11 SiLy Sola 1/81C5 | 1/8,C4 | Not Vshp Ha(1/s;,1/s,)=0/0
12 SiLy SoL, 1/8,C3 | SoLy | VSHP

13 SlLl 1/SzC2 SlL3 SzL4 Not VShp Ha(Sl,l/Sz)=O/O
14 S]Ll 1/SzC2 S]L3 1/SzC4 Not VShp Ha(l/Sl,Sz)=O/O
15 SiL,4 1/8,C, | 1/5,Cs | 1/S2C4 | Not Vshp Ha(sy,1/s2)=0/0
16 Sils 1/8,C2 | 1/S,C5 | Sols Not Vshp Ha(s;,1/s2)=0/0

Table 2.4: Impedance combinations for stable filter with infinite gain op-amp.

and the gain parameter ‘k’ in the finite gain case will studied. Fourth order type I

Chebyshev filter with 1db ripple would be considered to obtain the impedance values.
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2.4  Generation of impedance values for filter [6]

Consider the transfer function of a 1-D fourth order type I chebyshev filter with

1db ripple. In order to get the impedance values, the transfer function of the filter is

expanded by continued fraction.

The transfer function of the fourth order 1-D lowpass type I chebyshev filter

(analog) with 1db ripple in the pass band is

v, 1

V, s*+0.7014s> +1.2745s% +0.6667s +0.2720 2.4)
v 0.2720

V., 3.676s*+2.578s +4.685s +2.452s +1 2.5)

After expanding the above transfer function eqn. (2.5) by continued fraction expansion

we get

Ls Ls
O———— Y Y Y Y Y Y O
Vin Ci—_— C,—— Vout
o O
Fig 2.2 LC filter section
L;=1.426, L4=1.051, C;=2.168, C,=1.131 (2.6)

The above filter is a two stage LC filter section. The value of the inductor and the
capacitor in the first stage will be considered for the s; domain and the values in the

second stage would be considered for the s; section.
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2.5 Transfer function of the active filter with infinite gain op-amp

(Table 2.1, case 1)

Transfer function of the 2-D analog active filter with infinite gain op-amp is

obtained by substituting the impedance values for Z;, Z,, Z; and Z4 from (Table 2.1, case

1)in the eqn. (2.1). The impedance value for case 1 in Table 2.1is

1 1

Z = Z, = s Zy=5,L,, Z,=s,L,.

Yo 5,C,
By substituting the above impedance value in eqn. (2.1), we get

v, $,5,C,L, +ss2L,L,C,C, +s!L,C,
(51 TP ) =-

Via S22C2L3 +S1S22C2C1RiL3

Then the test conditions specified in eqn. (2.3) are tested below

v (1 ] LC, 0
—,8, = —
@ 5,=0,5,=0 0

V., \s, 0
v, 1 J 0

Sy = *—
Vin P @5,=0,5,=0 C2L3 0
v,(1 1 _LLGC L0
Valsi s, @5,=0,5,=0 0 0

2.7)

(2.8)

2.9)

(2.10)

@.11)

From eqn. (2.9), (2.10) and (2.11), it’s clear that the case 1 in Table 2.1 satisfies

the test conditions mentioned in eqn. (2.3). It’s possible to obtain a 2-D stable active IIR

filter for these impedance values. In order to obtain that, the following method would be

adhered

The transfer function obtained would be of the nature

14

o

_ P(Svsz)
Z(SPSZ)— Q(SI’SZ)

(2.12)
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In order to obtain a VSHP polynomial in the denominator the following transformation

would be done [9]

N,(s,52) D,(0,0)

Aos)= ] ) ™ Pl +00rs)

2.13)

After obtaining a transfer function of the form specified in eqn. (2.13), test
conditions specified in eqn. (2.3) should be satisfied.
After applying the transformation mentioned in eqn. (2.13) to eqn. (2.8)

0 =0
s?|s2L,L,C,C, +L,C, |+
5 [s2C,C\R L, +5,C,L, ]+
[Sjchs]

H,(sy,5,)=— 2.14)

Eqn. (2.14) is obtained, which tends to become ‘0’. This trivial condition occurs
because the transfer function of the 2-D active IIR filter with infinite gain op- amp in eqn.
(2.8) is purely reactance function, which isn’t practically realizable. In order to obtain a
practically realizable transfer function, resistance is added either in series or in parallel to
the impedances, such that the denominator obtained is a VSHP polynomial.

After trying different combination, the impedance combination which would lead
to a VSHP polynomial in the denominator and a non-zero value for the numerator is

obtained. The combination for the impedance would be

1 1
A ="S‘1‘CTII| Rl" Z, =

(2.15)
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By substituting these impedance values in eqn. 2.1, we get

s’s;L,L,C,CR, + s's,L,C,C,R, +s,s;L,L,C, + s!C,L,R,
ACTY) _ P(svsz) __T¥ 55,(LGR + CGLR) +5(L, + CRR) +5,L, + Ry
V(sis,) Qs 52) 5;CCLR, +5,(LGR + LGR) (2.16)
+55,QCRRR, +5,CR (R + R,)

Next apply the transformation in eqn. (2.13) to eqn. (2.16), we get

H (sl )8, ) = - - R, - -
‘ L,L,C, , | [(LGR Y,
(+ C1C2L3R1R,.]S2 (L3C2Ri jsz (2.17)
LL,C,CRs L,G,R, + L+
s}| +L,C,C,RR;s, |+5,| +| CL,R, s, [+ +| C,RR, s,
+CL,R, +C,C,RRR, +C,RR,
+(L, +C,RR,) +R,
L 4L _
The resistances values are considered to be unity. Therefore
R,=1, R=1, Rs=1 (2.18)

Substituting the impedance values in eqn. (2.6) and the resistance values in eqn. (2.18) in

eqn. (2.17), we get

1
H, (s,8,)=— (2.19)
b 3.6749s? 5.1916s? 3225652
st|+2.5771s, |+s,| +6.7323s, | +| +3.6880s,
+2.2786 +3.2190 +1

Since the stability of the filter is defined by the denominator of the transfer
function, the numerator is considered to be a constant. For a stable filter, the filter’s
transfer function should be free of singularities of first and second kind (sec. 1.4) and
moreover denominator polynomial is VSHP. Further based on the test methodologies

described in sec.(1.6), we get



21
1 1 1 0
D,(s,,5,)= Da(—l—,s2) = Da(sl,——) = D{—,——J z—  (220)
s s, 5,8, 0
As the non essential singularities of the first and second kind are eliminated, the

denominator polynomial D,(sy,s;) is a VSHP. The generalized bilinear transformation is

applied to obtain the discrete domain equivalent, which must also be stable.

2.6 Transfer function of the active filter with finite gain op-amp (Table

2.3, case 1)

By substituting the impedance values for Z, Z,, Z3 and Z, from (Table 2.3, case
1) in the eqn. (2.2) and the transfer function of the filter is obtained. But by substituting
these values you end up getting a transfer function in terms of reactance’s which is not
acceptable for practical application. So, resistances are added either in series or parallel
to this impedance to get the appropriate transfer function. After trying out various
combinations, one of the combination would be Z;=(1/5,C;), Z=1/5;C;, Z3=R3+s;L3,

Z4=s1L4. By substituting these values in eqn. (2.2) we get,

V. (51,8,) __ k(s;s;L,L,C, +5,5,C,L,R, + 5L, +5,L, + R,) 221)
V(s:8) (5183 LLCoC +575,C G LRy + 5T L,C, +5,5,L,C, +5,CR (R, +1)
+(s2L,C, +5,C,R)(k+1) +35,5,L,C,
The same procedure as in sec. (2.4) would be employed and we end up getting
kR
H,(s,,5,)=— = 2 -
f( 1 2) kL3L4C2S22 2
, L,C,(k+1)s?
L,L,C,Csy ‘ LG, C.R (k+1)
st | +C.CoLRys, (R, +1)|+s,| +| +kC,L,R, s, |+ +(+2L ;c jsz
3
+L,C, +L,C,(R, +1) iR, (2.22)
| +C\Ry(R, +1)+kL, |
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In this case also the resistance values are considered to be unity, so
Ri=1, Ry=1 (2.23)
Substituting the impedance values in eqn. (2.6) and the resistance values in eqn. (2.23) in

eqn. (2.22), we get

k 2.24
H_(s,,8,)=— 2.249)
v (515) 7.3498s? 1.6951ks> (1.6128% +1.6128)s?
s +5.1541s, |+s,| +(7.3718+1.1887k)s, |+| +(0.2950k + 2.168)s,
+4.5571 +4.3360+1.051k +k

GBT is applied to obtain the digital equivalent lowpass, highpass and bandpass

filter, and these things would be discussed in the next chapters.

2.7 Summary

In this chapter, the active filter with T network in the feedback path was
introduced. The main challenge of designing a filter is to ensure its stability. In order to
ensure stability, 2-D active filter transfer function stability is ensured by ensuring the
polynomial is VSHP.

The active filter consists of four impedances. In order to obtain a 2-D active
filter, two impedances was considered in s; domain and the other two impedances was
considered in s, domain. These impedances could be either an inductor or a capacitor in
that domain. As it’s an active filter, the possibility of filter with finite gain and infinite
gain was also tried out. All possibilities were tabulated in Table 2.1, 2.2, 2.3 and 2.4.
For each case, the possibility of generating a VSHP polynomial was found out.

For the infinite gain case out of the 16 cases each in Table 2.1 and Table 2.2, only

three cases were obtained in which a VSHP can be obtained. Similarly, for the finite gain
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case out of the 16 cases each in Table 2.3 and Table 2.4, there was three possibilities of
generating a VSHP. The resulting transfer function would be a reactance function, so in
order to avoid that resistance were added in series or parallel with these impedances to
generate appropriate transfer function.

The inductor and capacitor values for these impedances was obtained from the
fourth order type I chebyshev filter with 1db ripple. These values are then substituted in
the transfer function of the 2-D active filter for the infinite gain case and the finite gain
case for further analysis.

This chapter mainly describes the method for choosing the transfer function
which is VSHP in order to ensure stability from the different combinations of the
impedances values for the filter. Among the total 32 combination for the 2-D active filter
with infinite gain, three combinations which would be suitable for designing stable 2-D
active filter was obtained. Similarly for the 2-D active filter with finite gain case, three
combinations which are suited for designing 2-D digital filter were obtained. But only

case 1 in Table 2.1 and Table 2.3 would be considered further in this thesis.
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Chapter 3

Two Dimensional Lowpass Filter

3.1 Introduction

A popular method to design a 2-D digital filter is to start from the analog part i.e.,
first obtain the analog transfer function for the filter and then apply the double bilinear
transformations to the analog transfer function to obtain the equivalent digital filter. The
denominator of the analog transfer function should be a VSHP, so that by applying
double bilinear transformation a stable digital transfer function can be obtained. The
stability conditions to be satisfied for the coefficients of GBT are discussed in [6].

To obtain a stable lowpass digital filter by applying the double bilinear

transformation, the following conditions are to be satisfied

|a1| <1,

b|<1,ab <0,|a,|<1,

b2| <1,a,b, <0. In this chapter, these conditions would

be fulfilled for the coefficients of bilinear transformation to obtain a stable digital
lowpass filter.

In chapter 2, the transfer functions of the filter with infinite gain op-amp and
finite gain op-amp was obtained. Eqn. (2.19) represents the stable transfer function for

the filter with infinite gain op-amp and eqn. (2.24) represents the stable transfer function
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of the filter with finite gain op-amp. Both the equations represent the transfer function in
analog domain.

In this chapter the transfer function of the lowpass filter in digital domain for the
both cases would be obtained by applying bilinear transformation and importance of each
GBT coefficients and op-amp gain parameter on the filter output would be discussed in

the following sections.

3.2 Transfer function of 2-D active digital lowpass filter

The generalized bilinear transformation is applied to the transfer function in
analog domain to obtain the equivalent digital lowpass filter [12]. Transformation to be

applied for both the infinite gain and finite gain cases is

—

2—a)

s, =k, =, Wherek;>0,0<a,<1and 0<bh <1
(Zi+bi) 3.1
(Zl_al) a
5 =k =k—, a=z-a, c=z+h
(Zl+bl) ¢ (3.2)
P ) B S (3.3)
2 2(22+b2) Zd’ 2 22 2 2 .

where k;>0, k>0, 0<a;<1, 0<a;<1 and b;=by=1 in particular to obtain a

lowpass filter transfer function. By substituting eqn. (3.2), (3.3) in eqn. (2.19), we get

cd®
3.6749k;b” + 5.1916k;b” + 3.2256k3b” +
k’a?| 2.5771k,bd + |+ k,ac| 6.732k,bd + |+ c?| 3.688k,bd +

2.2786d* 3.2190d d’

HdL(ZnZz):_ 34
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Eqn. (3.4) represents the transfer function of the 2-D IIR filter with infinite gain
op-amp in digital domain, for case 1 in Table 2.1.

Now by substituting eqn. (3.2), (3.3) in eqn. (2.24), transfer function of the 2-D
[IR filter with finite gain op-amp, for case 1 in Table 2.3.

After applying the transformation the transfer function is as given below:

deL(Zl’ZZ)= - ke'd” (3.5)
7.3498kb> + 1.6951kk2b* +
kZa?| 5.1541k,bd + |+ k,ac| (7.3718 +1.1887k )k,bd +
4.5571d* (4.3360+1.051k )d

(1.6128 +1.6128k Jk3b? +
+c?[(2.168+0.295k Jk,bd +

+ kd?

3.3  Frequency response of 2-D active digital lowpass filter with infinite
gain

MATLAB has been used to plot the contour and 3-D amplitude responses of the
filter transfer function given by eqn. (3.4). In simulation runs, the GBT coefficient b; &
b, values are kept equal to unity and the other GBT coefficients ki, k», a; and a, would be
varied. Frequency response of 2-D digital lowpass filter with infinite gain will be studied
under four different scenarios i.e. by varying each GBT coefficient individually in each
scenario.

Let us consider all the GBT coefficients to be equal to unity i.e. k;=1, k=1, a,=1
and a=1. For this condition, the 3-D amplitude-frequency response and contour plot of
the 2-D digital lowpass filter with infinite gain is show in Fig. 3.1. The contour plots are

elliptical in nature and the magnitude of amplitude-frequency response is close to unity.
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Figure 3.1: 3-D amplitude-frequency response and contour response of the 2-D digital
lowpass filter with infinite gain op-amp when all the coefficients are unity.

Impedances values for the filter were obtained from a fourth order chebyshev
filter with 1-db ripple in the pass band in chapter 2. In the next few sections the GBT
coefficients would be individually varied to study its effect on the filter output

characteristics.

3.3.1 Casel

In case 1, the effect of GBT coefficient a; is studied. So a; is varied and other
parameters are set as given below:

ki=ky=constant, b;=b,=1, ay=constant.
ki=k,=0.5, b1=by=1, a,=0.5, vary a,.

Figs. 3.2 (a), (b), (c) and (d) are obtained by varying the GBT coefficient a; from
0.1 to 0.75. As the value of a; is increased, there is a gradual increase in the magnitude
of the amplitude-frequency response from 0.35 to 0.55 and there is very minute decrease
in the pass bandwidth along the ®; axis and the pass bandwidth along the w, axis remains
constant. The GBT coefficient a; has a perceptible effect on the magnitude of the

amplitude-frequency response.
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Figure 3.2: 3-D amplitude-frequency response and contour response of the 2-D digital
lowpass filter with infinite gain op-amp for case 1 (varying a,).
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In case 2, the effect of GBT coefficient a, on the 2-D digital filter output is

studied. In order to so, a, is varied and other parameters are set as given below:
ki=k,=constant, b;=b,=1, a;=constant.
ki=k,=0.5, b;=b,=1, a,=0.5, vary a,.

In Figs. 3.3 (a), (b), (c) and (d), there is a steady increase in the magnitude of the
amplitude-frequency response from 0.35 to 0.55 of the filter as the value of a; is
increased from 0.1 to 0.75. There is very small decrease in the pass bandwidth along the
®; axis and the pass bandwidth along the ®, axis remains constant. The contour plots are
elliptical in nature. The GBT coefficient a; has a noticeable effect on the magnitude of

the amplitude-frequency response of the filter.

3.3.3 Case3

In case 3, the effect of GBT coefficient k; on the 2-D digital lowpass filter is
studied. In order to study the effect of k; parameter, the value of k; is gradually increased
and other parameter values are set as given below:

ky=constant, bj=b,=1, a;=a;=constant.
ko=1, b;=by=1, a;=a,=0.5, vary k.

Figures 3.4 (a), (b), (c) and (d) are obtained by varying the GBT coefficient k;.
It’s observed that as the value of k; is increased from 0.5 to 10 the pass bandwidth along
the ®; axis decreases and moreover the magnitude of the amplitude-frequency response
decreases from 0.35 to 0.025. The pass bandwidth along the ®; axis remains constant.
The contour plots are elliptical in nature, but there is a rotation in orientation along the

clockwise direction.
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Figure 3.5: 3-D amplitude-frequency response and contour response of the 2-D digital

lowpass filter with infinite gain op-amp for case 4 (varying k).
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In case 4, the importance of GBT coefficient k; on the 2-D digital lowpass filter
with infinite gain op-amp is studied by varying k, parameter and keeping the other
parameters values set as mentioned below:

ki=constant, b;=b,=1, a;=a,=constant.
k=1, bj=by=1, a;=a,=0.5, vary k.

Figs. 3.5 (a), (b), (c) and (d) are obtained by varying the coefficient k; of GBT. It
is observed that as the value of k; is increased from 0.5 to 10, the pass bandwidth along
the m, axis decreases and moreover magnitude of the amplitude-frequency response
decreases from 0.35 to 0.02. The pass bandwidth along the ®; axis remains constant.
The contour plots are elliptical in nature, as the value of k; is increased there is an

anticlockwise rotation in the orientation of the contour plots.

3.4 Frequency response of 2-D active digital lowpass filter with finite
gain

MATLAB has been used to plot the 3-D amplitude-frequency response and
contour plots of the filter for the transfer function in eqn. (3.5). For the simulation runs,
let the GBT coefficient b; & b; be equal to unity. So we are left with parameters ki, ko,
a; and a, as varying parameters. In this case, we would be having one more parameter
‘k’ gain of the op-amp. The frequency response of the 2-D digital lowpass filter with
finite gain is studied under five different cases based on the GBT coefficients which can
be varied and the gain of the op-amp. By varying these parameters individually,

importance of individual parameter on the filter output characteristics is studied.
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Figure 3.6: 3-D amplitude —frequency response and contour response of the 2-D digital
lowpass filter with unity gain op-amp and all the GBT coefficients are unity.

Initially, let us consider all the GBT coefficients to be unity i.e. k1=1, k=1, a;=1
and a,=land also gain of the op-amp k=1. For this condition, the 3-D amplitude-
frequency response and contour plots of the 2-D digital lowpass filter with finite gain is
show in Fig. 3.6. It is observed that the contour plots are elliptical in nature. Ripples are

also present in the output.

34.1 Casel

In case 1, the effect of GBT coefficient a; on the filter output characteristics is

studied. In order to study that, all other parameters are set as given below:
k=k,=k,=constant, b;=b,=1, a,=constant, vary a.
k=1, k;=0.5, k,=0.5, b;=1, b,=1, a,=0.5, vary a,.

From Figs. 3.7 (a), (b), (c) and (d), it is observed that, as the value of a; is
gradually increased from 0.1 to 0.75 the pass bandwidth decreases a bit along the ®; axis
and remains constant along the w; axis. The magnitude of amplitude-frequency response
increases from 0.3 to 0.55. The contour plots are elliptical in nature. Therefore the GBT

coefficient a; mainly affects the magnitude of the amplitude-frequency response.
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In case 2, GBT coefficient a; is varied and other parameter are set as given below:
k=k,=k,=constant, b;=b,=1, a;=constant, vary a,.
k=1, k;=k,=0.5, a,=0.5, b;=1, by=1 and vary a,

Figs. 3.8 (a), (b), (c) and (d) are obtained by varying the GBT coefficient a;, in the
filter transfer function. As the value of a; is gradually increased from 0.1 to 0.75 the pass
bandwidth decreases a bit along the ®, axis and there is also a gradual increase in the
magnitude of the amplitude response from 0.35 to 0.5. The contour plots are elliptical in
nature. The parameter a, mainly affects the magnitude of the amplitude-frequency

response.

3.4.3 Case3

In case 3, the effect of GBT coefficient k; on the digital filter output
characteristics is studied. In order to study the effect of k; parameter, value of k; is
varied and all other parameters are set as given below:

k=constant, k,=constant, b;=b,=1, a,= a,=constant, vary k;
k=1, k>=1, b;=by=1, a;=a,=0.5, vary k;.

From Figs. 3.9 (a), (b), (c) and (d), it can be seen that as the value of k; is
increased from 0.5 to 10 the pass bandwidth along the ®; axis decreases and more over
the amplitude of the magnitude response also decreases from 0.35 to 0.016. The contour

plots are elliptical in nature.
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Figure 3.9: 3-D amplitude-frequency response and contour response of the 2-D digital
lowpass filter with finite gain op-amp for case 3 (varying k;).
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Therefore the GBT coefficient k; affects the pass bandwidth along the ®, axis and
the magnitude of the amplitude-frequency response. As the value of k is increased, the
pass bandwidth along the ®; axis and the magnitude of the amplitude-frequency response

decreases.

3.44 Case4

In case 4, the effect of GBT coefficient k, on the digital filter output is studied.

Value of k; is varied and other parameter values are set as given below:
k=constant, kj=constant, b;=b,=1, a;=a=constant, vary k,
k=1, k;=1, b;=b,=1, a;=a,=0.5, vary ks.

In this case the value of kj is varied from 0.5 to 10, as the value of k; is increased
gradually the pass bandwidth along the ®, axis decreases to a greater extend and
moreover the magnitude of the amplitude-frequency plot decreases from 0.3 to 0.025
which is observed in Figs. 3.10 (a), (b), (c) and (d). The pass bandwidth along the o, axis
remains constant. The contour plots are elliptical in nature.

The GBT coefficient k; affects the pass bandwidth along w, axis and the

magnitude of the amplitude-frequency plot.
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Figure 3.10: 3-D amplitude-frequency response and contour response of the 2-D digital
lowpass filter with finite gain op-amp for case 4 (varying k).
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3.45 Cases
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lowpass filter with finite gain op-amp for case 5 (varying k).
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In case 5, the effect of op-amp gain parameter k on the digital filter output
characteristics is examined. Value of k is varied and other parameters are set as given
below:

k;=k,=constant, b;=b,=1, a;=a,=constant, vary k.
ki=k,=1.5, a;=a,=0.5, b;=b,=1, vary k.

From Figs. 3.11 (a), (b), (c) and (d), it is observed that as the value of op-amp
gain k is increased from 0.5 to 10, the magnitude of the amplitude-frequency response
increases from 0.08 to 0.4. The pass bandwidth along the ®; axis increases and the pass

bandwidth along the w; axis remains constant.

3.5 Summary

In this chapter, the transfer function of the 2-D digital lowpass filter was obtained
by applying the GBT to the analog transfer function obtained in chapter 2 represented by

eqn. (2.19) and eqn. (2.24). Eqn. (3.4) and (3.5) represent the transfer function of the 2-D

lowpass filter in digital domain with infinite gain op-amp and finite gain op-amp.

The transfer function for both the cases was obtained and the effect of each GBT
coefficient and op-amp gain parameter on the filter output characteristics was examined.
Table 3.1 summarizes the effect of each GBT coefficients on the filter output
characteristic of 2-D digital lowpass filter with infinite gain op-amp. Initially the GBT
coefficient a; was varied from 0.1 to 0.75. As the value of a, is increased, the magnitude
of the amplitude-frequency response increased. The pass bandwidth along the w; axis
decreased a bit, but the pass bandwidth along the ®, axis remained constant. Next, we

increased the value of a; from 0.1 to 0.75, the magnitude of amplitude-frequency
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GBT Value of Amplitude of Pass bandwidth | Pass bandwidth
coefficient GBT 3D magnitude along © axis along ®; axis
coefficient
response
aj ) ) l Constant
az T T Constant l
k; ) l l Constant
ks ) l Constant l

Table 3.1: Summary of the effects of GBT coefficients on 2D digital lowpass filter with
infinite gain.

response increased. But as far as pass bandwidths are considered, the pass bandwidth
along the ®, axis remained constant and the pass bandwidth along the o, axis decreased a
bit.

Then the GBT coefficient k; was varied from 0.5 to 10. It was observed that the
magnitude of the amplitude-frequency response decreased and the pass bandwidth along
the o) axis also decreased. But the pass bandwidth along the ®; axis remained constant.

Finally, we varied the GBT coefficient k; of the 2-D digital lowpass filter with
infinite gain. Value of k, was increased from 0.5 to 10 and it was observed that the
magnitude of the amplitude-frequency response decreased and the pass bandwidth along
the o, axis also decreased. But the pass bandwidth along the ®, axis remained constant.

Table 3.2 sums up the effect of GBT coefficients and op-amp gain on the filter
output characteristic of 2-D digital lowpass filter with finite gain op-amp. As the GBT
coefficient a; and a; value was varied from 0.1 to 0.75, the magnitude of the amplitude-
frequency response increased. Moreover, when the value of a; was increased the pass
bandwidth along ©; axis decreased and when the value of a, was increased the pass

bandwidth along the w, axis decreased.
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GBT Value of Amplitude of Pass bandwidth | Pass bandwidth
GBT 3D magnitude along o, axis along w; axis
coefficient | coefficient response
aj 1 1 l Constant
ay il 7 Constant !
ki 1 l l Constant
ka ) ! Constant !
k T 1 1 Constant

Table 3.2: Summary of the effects of GBT coefficients on 2D digital lowpass filter with
finite gain.

Next the GBT coefficients k; and k, was varied from 0.5 to 10, the magnitude of
the amplitude-frequency response decreased in the both the cases. The pass bandwidth
along the ®; axis decreased, as the value of k; was increased. Similarly, the pass
bandwidth along the w; axis also decreased as the value of k, was increased.

Finally, the effect of op-amp gain ‘k’ on the filter output characteristics was
analyzed. As the value of k was increased from 0.5 to 10, the magnitude of amplitude-
frequency response increased and the pass bandwidth along the ®; axis decreased. But
the pass bandwidth along the w; axis remains constant.

Thus the effect of each and every individual parameter on the 2-D digital lowpass

filter output was studied successfully for the infinite gain and finite gain cases.
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Chapter 4

Two Dimensional Active Highpass Filter

4,1 Introduction

In this chapter, the method of obtaining the transfer function of 2-D digital
highpass filter from its analog transfer function by applying double bilinear
transformation has been discussed. After generating the transfer function in digital
domain, the effects of each GBT coefficient and the op-amp gain parameters on the filter
output characteristics are studied.

To obtain the transfer function of the highpass digital filter by applying the double
bilinear transformation, the following conditions are to be satisfied

k,>0,0 S|a1| <1,-1 Slbll <0[12]. In this whole chapter, these conditions would be

satisfied for coefficients of GBT to obtain a stable 2-D digital highpass filter.

4.2  Transfer function of 2-D active digital highpass filter

Below mentioned generalized bilinear transformation is applied to obtain the
transfer function of the highpass filter in digital domain. These conditions are discussed

in [7], [12].
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si=ki(zi+a‘), wherek, >0,0<a,<land-1<b <0

(Zi+bi) (4.1)
s, =k, (z’+a’)=k1£, e=z +a,, g=z +b,.

(Zl+bl) g (4.2)
P CLLR SR S S (4.3)
2 2 (Zz +b2) 2 h 2 2 2 2

Where k>0, k>0, 0<a;<1, 0<a;<1 and b;=b,=-1 in particular to obtain a

digital highpass filter transfer function. By substituting eqn. (4.2), (4.3) in eqn. (2.19),

we get
21.2
gh
H,\z,z,)= .
al22) 3.6749K12 + 51016882 +] [ 3.2256R¢ +] Y
K’e? 2.5771k,th + | +kaq 6.7323k,fh + |+ 2| 3.688k,th +
2.2786h’ 3.21901 h?

Eqn. (4.4) represents the transfer function of the 2-D IIR highpass filter with
infinite gain op-amp in digital domain, for case 1 in Table 2.1.

Next eqn. (4.2), (4.3) are substituted in eqn. (2.24) to obtain the digital equivalent
transfer function for the 2-D IIR highpass filter with finite gain op-amp, for case 1 in

Table 2.3. After applying the transformation, we get

deH(ZpZz) == 3 ke h (4.5)
7.3498k2f? + 1.6951kk2f? +
kZa?| 5.1541k,th + | +k,ac| (7.3718 +1.1887k )k, th +
45571h° (4.3360+1.051k )h?

(1.6128+1.6128k)k3f* +
+¢?|(2.168+0.295k )k, th +

kh2
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4.3  Frequency response of 2-D active digital lowpass filter with infinite
gain.

MATLARB is used to plot the 3-D amplitude-frequency response and the contour
plots of the filter transfer function in eqn. (4.4). The GBT coefficients b; and b, are set to
negative unity and the rest of the GBT coefficients k;j, k;, a; and a, are varied and the
corresponding filter responses are obtained. At the end, the effect of each GBT
coefficients on the filter output response can be judged.

Initially, let all the GBT coefficients value be set to unity i.e. k;=1, ko=1,a;=1 and
a=1. Amplitude-frequency response and contour plot of the 2-D digital highpass filter
with infinite gain op-amp is shown in fig. 4.1. In the next sections, GBT coefficients
would be varied individually and the effect of individual coefficient on the filter output

characteristics will be studied.
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Figure 4.1: 3-D amplitude —frequency response and contour response of the 2-D digital
highpass filter with infinite gain op-amp and all coefficient value equal to unity
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4.3.1 Case 1
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Figure 4.2: 3-D amplitude-frequency response and contour response of the 2-D digital

highpass filter with infinite gain op-amp for case 1 (varying a,).



49

In case 1, the effect of GBT coefficient a; on the filter output characteristics is

studied. Value of a; is varied and other parameters are set as given below:
ki=ko,=constant, b;=b,=-1, a;=constant, vary a.
ki=k,=1, b;=by=-1, a,=0.25, vary a,,

Value of the GBT coefficient a, is varied from 0.1 to 0.75 and the response of the
filter is obtained. Figs. 4.2 (a), (b), (c) and (d) represents the response of the filter
obtained for four different value of a;. The magnitude of amplitude-frequency response
increases from 0.14 to 0.22, as the value of a; is varied from 0.1 to 0.75. The contour
plots in the first and third quadrant are symmetrical; the second and fourth quadrant
contour plots are also symmetrical in nature. The stop bandwidth along the ®; axis
increases as the value of a; is increased and along the o, axis remains constant.

To sum up, GBT coefficient a; mainly affects the magnitude of the amplitude-

frequency response and the stop bandwidth along the ©, axis.

4.3.2 Case 2

In case 2, the effect of GBT coefficient a; on the 2-D digital highpass filter output
is studied. In order to study that, value of a, is varied and other parameter values are set
as given below:

ki;=k,=constant, b;=b,=-1, a;=constant, vary a,.
ki=k,=1, b;=by=-1, a;=0.25, vary a,.
In case 2, the value of GBT coefficient a; is increased gradually from 0.1 to 0.75

and the filter output response is obtained. Figs. 4.3 (a), (b), (c) and (d) shows the filter
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Figure 4.3: 3-D amplitude-frequency response and contour response of the 2-D digital
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51

output response for a;=0.1, 0.25, 0.5 and 0.75. As the value of a; is increased the
magnitude of amplitude response increases from 0.14 to 0.28. The stop bandwidth along

the o, axis increases and along »; axis remains constant.

4.3.3 Case 3

In case 3, the effect of GBT coefficient k; on the 2-D digital highpass filter output
is studied. The value of k; is varied gradually and other parameter values are set as given
below:

ks=constant, bj=b,=-1, a;=a=constant.
k=1, b;=b,=-1, a;=a,=0.25, vary k;.

Figs. 4.4 (a), (b), (c) and (d) represents the output response of the 2-D digital
highpass filter obtained by varying the value of the GBT coefficient k;. It is seen that as
the value of k; is increased from 0.5 to 10 the magnitude of amplitude-frequency
response decreases from 0.22 to 0.012.

From the contour plots, it’s inferred that when the value of k;<1 the pass
bandwidth along the ®; axis is larger. As the value ofk; is increased, the pass bandwidth

along the m; axis decreases and the pass bandwidth along the ®; axis remain constant.
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In case 4, the effect of GBT coefficient k, on the 2-D digital highpass filter with
infinite gain op-amp is studied. In order to study the effect of k, parameter, it’s value is
varied and other parameters are set as mentioned below:

ki=constant, b;=b,=-1, a;=a,=constant.
k=1, by=by=-1, a;=a,=0.25, vary k,.

The value of the GBT coefficient k; is varied in four steps and the output response
of the 2-D digital highpass filter is obtained as shown in figs. 4.5 (a), (b), (c) and (d). It’s
seen that as the value of k; is increased from 0.5 to 10, the magnitude of the amplitude-
frequency response decreases from 0.35 to 0.009 and as far as the contour plot is
concerned, it is observed that the pass bandwidth along the m, axis remains constant. But
the pass bandwidth along the @, axis decreases to a greater extend. Therefore, the GBT
coefficient k, affect both the magnitude of amplitude-frequency response and the pass

bandwidth along ®; axis.

4.4  Frequency response of 2-D active digital highpass filter with finite
gain

In this section, the effect of GBT coefficients and the op-amp gain parameters on
the output of 2-D digital highpass filter with finite gain op-amp is studied. In order to do
so, the values of the GBT coefficients are varied and its effect on the output of the 2-D
active digital highpass filter with finite gain is studied.

Before varying each GBT coefficient individually, the output of the filter is
obtained by keeping all the GBT coefficients and the op-amp gain equal to unity. Fig.

4.6 represents the corresponding output.
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Figure 4.6: 3-D amplltude —frequency response and contour response of the 2-D digital
highpass filter with all the GBT coefficients equal to unity

From fig. 4.6 it can be observed that, ripples are present in the frequency response
in the first and third quadrant. The ripples present in the output can be minimized by
reducing the values of GBT coefficient a; and a; less than unity. In the upcoming
sections GBT coefficient b; and b, are set equal to negative unity and other parameters
are varied and its effects on the amplitude-frequency response and the contour plot of the

filter are studied.

4.4.1 Case 1

In case 1, the effect of GBT coefficient a; on the filter output characteristics is
examined. In order to do so, value of a; is varied and other parameters are set as given
below:

k=k;=k,=constant, bj=b,=-1, ay=constant, vary a,.
k=1, k1=2, kp=2, b;=-1, by=-1, a;=0.25, vary a,.

In case 1, the GBT coefficient a; is increased gradually in four steps from 0.1 to
0.75 and other parameters are set at a constant value. The response of the filter is
obtained and is shown in figs. 4.7 (a), (b), (c) and (d). It can be observed from the fig 4.7

that as the value of a; is increased from 0.1 to 0.75, the magnitude of 3-D amplitude plot
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increases from 0.12 to 0.28 and the pass bandwidth along the ®; axis decreases. The pass
bandwidth along the m, axis remains constant.
To sum up the GBT coefficient a; affects the magnitude of the amplitude response

and also the pass band width along the »; axis.

4.4.2 Case 2

In case 2, the effect of GBT coefficient a; on the filter output characteristics is
analyzed. In order to do so, value of a; is varied and other parameter values are set as
given below:

k=k,=k,=constant, b;=b,=-1, a;=constant, vary a;.
k=1, k;1=k,=1, a;=0.25, b;=-1, b,=-1 and vary a,,

Figs. 4.8 (a), (b), (c) and (d) shows the amplitude-frequency response of the 2-D
digital highpass filter for different values of GBT coefficient a, in the range of 0.1 to
0.75. As the value of a; is increased from 0.1 to 0.75, it is observed that the magnitude of
the amplitude response increases from 0.12 to 0.22. The pass bandwidth along the o,
axis decreases, but the pass band width along w; axis remains constant.

To sum up the GBT coefficient a, affects the magnitude of the amplitude-

frequency response and the pass bandwidth along the m; axis.
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4.4.3 Case3
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In case 3, the effect of GBT coefficient k; on the digital filter output
characteristics is examined. In order to study the effect of k; parameter, the value of k; is
varied and other coefficients of GBT are set as given below:

k=k,=constant, b;=b,=-1, a;= ay=constant, vary k;
k=k,=1, b;=by=-1, a;=a,=0.25, vary k;.

From figs. 4.9 (a), (b), (c) and (d) it can be seen that as the value of k; is increased
from 0.5 to 10 the pass bandwidth along the ®; axis decreases and more over the
magnitude of the amplitude-frequency response decreases from 0.75 to 0.008 and the
pass bandwidth along the ®; axis remains constant.

Therefore the GBT coefficient k; affects the pass bandwidth along the ©,; axis and

the amplitude of the magnitude response.

4.4.4 Case4d

In case 4, the effect of GBT coefficient k; on the digital filter output is studied. In
order to study the effect of k», value of k; is varied and other parameters are set as given
below:

k=constant, k;=constant, bj=b,=-1, a;=a,, vary k;
k=1, k1=5, bi=-1, by=-1, a;=0.5, a,=0.5, vary k.

Fig. 4.10 shows the response of the 2-D digital highpaés filter obtained by varying
the value of GBT coefficient k;. As the value of k; is increased from 0.5 to 10 the
magnitude of amplitude-frequency response decreases from 0.5 to 0.015, the pass
bandwidth along the w, axis decreases and the pass bandwidth along the ®; axis remains

constant.
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Therefore, the GBT coefficient k; affects the magnitude of the amplitude-

frequency response and the pass bandwidth along the o, axis.

4.4.5 Case 5

In case 5, the effect of op-amp gain parameter k on the digital filter output
characteristics is analyzed. In order to do so, the value Qf k is varied and other GBT
coefficients are set as given below:

k;=k,=constant, b;=b,=-1, a;=a, vary k.
ki=k,=1, a;=a,=0.25, b;=b,=-1, vary k.

Figs. 4.11 (a), (b), (c) and (d) are obtained by varying the op-amp gain k and by
keeping the GBT coefficient values at a constant value. It’s observed that as the value of
k is increased, the magnitude of the amplitude-frequency plot increases from 0.08 to 0.4,
the pass bandwidth along the ®; axis and ®; axis remains constant.

The op-amp gain k mainly affects the magnitude of the 3-D amplitude-frequency

plot.



63

= S Y S o= 28 222 28 b=t B3 10,25 A0 2 e Nt

%
£
5
£
E
5
=

-1
8
Wy in rad/gec

w

vt iy fardfsRc Wt o vedieur.

(a)
W 5 Rt Bt gl 25, 20 25 b=y Y=y =025 2A2=0.28 pt=1 A=t
i 3ed "%‘g ™
- A3 sy 2.0
Tl <
%&15 // )/// F
é o
g
2 B

. @
W i radfisec w1 in radieed

W5 b KO ot 35 M0 B BT B3=E

Hiaititue taspotse

witin tadige

wh i ndiEec

A= 25, 530 25 =1 50

Magpitude responsa
o
2

w2 it eadfzon

=3
by

@
Figure 4.11: 3-D amplitude-frequency response and contour response of the 2-D digital
highpass filter with finite gain op-amp for case 5 (varying k).
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4.5 Summary

The transfer function of the 2-D digital highpass filter for infinite gain op-amp
case was given by eqn. (4.4) and for finite gain op-amp case is given by eqn. (4.5). It was
obtained by applying the highpass GBT to analog transfer function given by eqn. (2.19)
and eqn. (2.24) in chapter 2.

The transfer function in the digital domain has GBT coefficients, in order to
examine the effect of each GBT coefficient on the filter output, every GBT coefficient
was varied individually and the output was examined. The result for the 2-D digital filter
with infinite gain op-amp has been summarized in Table 4.1.

Initially the GBT coefficient a; was varied from 0.1 to 0.75 and it was observed
that the magnitude of the amplitude-frequency plot also increased. The stop bandwidth
along the ®; axis increased and along , axis remained constant. Next, the value of GBT
coefficient a; was increased from 0.1 to 0.75, the magnitude of the amplitude-frequency
response increased along with it, the stop bandwidth along the ®; axis remained constant
and the stop bandwidth along the w, axis increased.

The value of GBT coefficient k; is varied from 0.5 to 10, the magnitude of the

amplitude-frequency response decreased, stop bandwidth along the ®; axis increased and

GBT Value of Amplitude of | Stop bandwidth | Stop bandwidth
coefficient GBT 3D magnitude along m, axis along m; axis
Coefficient response
ai 1 1 1 Constant
a 1 1 Constant 1
ki 1 l 1 Constant
ko, 1 l Constant 1

Table 4.1: Summary of effects of GBT coefficients on infinite gain highpass filter.
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stop bandwidth along the w, axis remained constant. Finally, the value of GBT
coefficient k, was varied from 0.5 to 10 and it was observed that the magnitude of the
amplitude-frequency response decreased with the increase in k; value, stop bandwidth
along the @, axis increased and stop bandwidth along the ®, axis remained constant.

Table 4.2, summaries the effects of GBT coefficients and the op-amp gain
parameter on the output of 2-D highpass filter with finite gain op-amp. GBT coefficients
were varied individually; to start with the GBT coefficient a) was varied from 0.1 to 0.75.
As the value of a; was increased, the magnitude of the amplitude-frequency response
increased with it, the stop bandwidth along the m; axis increased and the stop bandwidth
along the m, axis remained constant. Next the value of GBT coefficient a; was increased
from 0.1 to 0.75. It was observed that with the increase in the value of a, the magnitude
of the amplitude-frequency response increased, the stop bandwidth along the ®; axis
remained constant and the stop bandwidth along the o, axis decreased.

Followed by aj, the value of GBT coefficient k; was increased from 0.5 to 10. It

was observed that the magnitude of the amplitude-frequency response decreased, the stop

GBT Value of Amplitude of Stop bandwidth | Stop bandwidth
coefficient GBT 3D magnitude along o, axis along o, axis
coefficient response
a 1 ) ) Constant
a2 ) ) Constant !
ki T ) ) Constant
ky T l Constant 1
k 1 1 l Constant

Table 4.2: Summary of effects of GBT coefficients on finite gain highpass filter.
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bandwidth along the ®; axis decreased and the stop bandwidth along the ®, axis
remained constant. After that the value of GBT coefficient k, was increased from 0.5 to
10. It was observed that the magnitude of the amplitude-frequency response decreased,
the stop bandwidth along the ®; axis remained constant and the stop bandwidth along the
M7 axis increased.

Finally, the op-amp gain parameter k was varied from 0.5 to 10 and it was
observed that the magnitude of the amplitude-frequency response increased and the stop
bandwidth along the », and o, axis remained constant.

Thus the effect of GBT coefficients and the op-amp gain parameters on the output

of 2-D digital highpass filter for infinite gain and finite gain cases were studied.
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Chapter 5

Two Dimensional Bandpass Filter

5.1 Introduction

The bandpass filter is obtained by cascading the lowpass filter and highpass filter,
pass bandwidth of both the filters must overlap. In this chapter, the transfer function of
the bandpass filter is obtained from the transfer function of the lowpass filter and

highpass filter obtained in chapter 3 and 4 for both the infinite gain and finite gain cases.

5.2  Transfer function of 2-D active digital bandpass filter

The transfer function of the 2-D digital BPF with infinite gain op-amp is obtained
by cascading the transfer function of the 2-D digital LPF with infinite gain op-amp given
by eqn. (3.4) and the transfer function of the 2-D digital BPF with infinite gain op-amp
given by eqn. (4.4). Similarly the transfer function is obtained for the finite gain case.
It’s required that k;>0 and 0<a;<1 for the bandpass filter to be stable. Mathematically,
For infinite gain op-amp case

Hgpe(z1,22)=Ha(z1,22) X Han(z1,22) (5.1)
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For finite gain op-amp case

Hamp(z1,22)=Han(21,22) X Ham(z1,22) (5.2)

5.3  Frequency response of 2-D digital bandpass filter with infinite gain

MATLARB is used to plot the 3-D amplitude-frequency response and the contour
plots of the transfer function of the filter with infinite gain obtained in eqn. (5.1). For the
bandpass filter, the GBT coefficient ki, k;, a; and a; are the variable parameters. These
four GBT coefficients are varied individually and its effect on the filter output is
analyzed.

Initially let all the GBT coefficient values be set to unity in the lowpass filter and
highpass filter. Fig. 5.1 represents the 3-D amplitude-frequency response of 2-D digital

bandpass filter with infinite gain.

EE R ab=T a2 el B2

ai=1,43=1 b=t ha=1

aigtitudé fspohie
W2 in sxdigee
E-]

w2 in ragiteee 3

wi b edfser
Figure 5.1: 3-D amplitude —frequency response and contour response of the 2-D digital
bandpass filter with infinite gain op-amp and all coefficient value equal to unity.

Amplitude-frequency response in the first and third quadrant is symmetrical and

also the output in the second and fourth quadrant is symmetrical. The magnitude of the
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amplitude-frequency response present in the second and fourth quadrant is larger than the

magnitude of the amplitude-frequency in the first and third quadrant.

In the next sections the effect of individual GBT coefficients on the filter output is

analyzed.

5.3.1 Casel

In case 1, the effect of GBT coefficient a; on the filter output characteristics is
studied. In order to study that, the value of a, is varied and other parameter values are set

as given below:

ki=constant, ky=constant, b;=b,=1, a,=constant.
k;=0. 5, k=0.5, bi=br=1, a,=0.25, vary a.

Fig. 5.2 shows the amplitude-frequency response of the 2-D digital bandpass filter
obtained by varying the GBT coefficient a; from 0.1 to 0.75. From the amplitude-
frequency response it’s observed that symmetry is retained between first and third
quadrant and between second and fourth quadrant. The magnitude of amplitude-
frequency response in the first and third quadrant increases from 0.06 to 0.08 and in the
second and fourth quadrant magnitude increases from 0.06 to 0.14.

The pass bandwidth along the ®; axis decreases with the increase in the value of

al and the pass bandwidth along the w; axis remain constant.



70

S50 S0 05 A 20w

W=0E R0 5 Ri=0 1 W0=0 8 =1 B

@
2

Magrituda mapanse
o .
2

wi insadfsae

@
g

Magriduda response
Wi W iadfen

KIS0 5 420 5,510 5,420 25, 50=1 2= AT AR =1 KOt
P
2 T
3 3 f
§ 3 { w? 5 }
g g - 2
3 J | e =
- £ ey
= @ g, "'—"":-::‘v, :
= ¥, ‘”; A A
WD)l
2 St e b ,& £ o S
QU L R T M
: i S —
2 RS 1 o 3 i i i
3 2 - 2 1 B ' 2 3
e wi i radiec Wi ifs radiee
(©
WIS K2RIS a 1D 75 a0 25 T B2=1 SI=(L75 A2 26 =t
3ET
By -
- ¥ ] l"
5015 ] g
2 1 ;
£ o 5 K\k‘:._
H] -1 N o
2 5o E—2
= 5
1t \Q\ )
3 "
T 3 \\\L‘:
2
. 3 2 r 3 1 2 3
w2 in radise wh n raene Wi sadieat

(d
Figure 5.2: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with infinite gain op-amp for case 1 (varying a,).
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5.3.2 Case?2
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Figure 5.3: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with infinite gain op-amp for case 2 (varying a,).
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In case 2, the effect of GBT coefficient a, on the 2-D digital filter output
characteristics are studied. In order to study that, the value of a, is varied and other
parameters are set as given below:

ki=k,=constant, b;=b,=1, a;=constant.
ki=k,=0.5, b;=b,=1, a;=0.25, vary a,.

Fig. 5.3 is obtained by varying the GBT coefficient a, from 0.1 to 0.75. Other
GBT coefficients are set to above mentioned values. From figs. 5.3 (a), (b), (c) and (d) it
is observed that as the value of a, increased the magnitude of the 3-D amplitude-
frequency response in the first and third quadrant increases from 0.06 to 0.08 and in the
second and fourth quadrant also the magnitude increases from 0.06 to 0.14.

The pass bandwidth along the ®; axis remains constant and the pass band width

along the ®; axis decreases with the increase in the value of a,.

5.3.3 Case 3

In case 3, the effect of GBT coefficient k; on the 2-D digital bandpass filter output
is analyzed. In order to study the effect of k; parameter, value of k; parameter is varied

and other parameter values are set as given below:

ko=constant, b;=b,=1, aj=a=constant, vary k;.

k2=0.5, b1=b2=1 , a1=a2=0.25, vary k1.

Figs. 5.4 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-
D bandpass filter obtained by varying the GBT coefficient k; in the range of 0.5 to 10.

The magnitude of amplitude-frequency response in all the four quadrants of the output
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decreases as the value of k; is increased. Symmetry is preserved in first and third
quadrant and in second and fourth quadrant. The magnitude of the amplitude-frequency
response in the first and third quadrant decreases from 0.07 to 0.00003 and in the second
and fourth quadrant magnitude decreases from 0.1 to 0.00003.

As far as contour plots are considered, as the value of k; is increased greater than
unity there is a 90 degree rotation in the orientation of the contour plot along the

clockwise direction. The contour plots are elliptical in nature at the center.

5.3.4 Case4

In case 4, the effect of GBT coefficient k; on the 2-D digital bandpass filter with
infinite gain op-amp is studied. In order to study the effect of k, parameter, value of kj is
varied and other parameters values are set as mentioned below:

ki=constant, b;=b,=1, a;=a;=constant.
k=1, b1=b,=1, a;=a,=0.25, vary k».

Figs. 5.5 (a), (b), (c) and (d) represents the amplitude-frequency response of the 2-
D digital bandpass filter obtained by varying the GBT coefficient k, and other parameters
are set to the values as specified above. As the value of k; is increased from 0.5 to 10 the
magnitude of the amplitude-frequency response in the first and third quadrant decreases
from 0.025 to 6¢” and the magnitude of the amplitude-frequency in the second and fourth
quadrant decreases from 0.04 to 6e*.

The pass bandwidth along the ®; axis remains constant and the pass bandwidth
along the o, axis decreases with the increase in the value of k;. Contour plots are

elliptical in nature and are aligned along the w; axis for low values of k; i.e. ko<1. As the
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Figure 5.5: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with infinite gain op-amp for case 4 (varying k»).
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value of kj is increased i.e. ko>1 the orientation of the contour plots is rotated by 90

degree in anti clockwise direction and gets aligned along the o, axis.

5.4  Frequency response of 2-D active digital bandpass filter with finite
gain

In this section, the effect of each GBT coefficient and the op-amp gain parameter
‘k’ on the amplitude-frequency response and contour plots of the 2-D digital bandpass
filter with finite gain op-amp is examined. In order to do so, each of the parameter is
varied individually by keeping other parameters constant.

Initially all the GBT coefficients and the op-amp gain parameter values are set
equal to unity. Fig. 5.6 represents the corresponding output. Ripples are present in the
output. Symmetry is retained between the first and third quadrants and between second
and fourth quadrants. The magnitude of the amplitude-frequency response in the first and
third quadrants is greater than the magnitude of the amplitude-frequency response in

second and fourth quadrant.

k=1,1=1 k2=1 a1

0.0

Magritude response

o
w2:in rad/sec

w2.in'radfgec . )
? wiin rad/sec wi inrad/sec

Figure 5.6: 3-D amplitude —frequency response and contour response of the 2-D digital
highpass filter with finite gain op-amp and all coefficient value set equal to unity.
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In the upcoming sections the effect of each GBT coefficient and op-amp gain

parameter on the filter output would be studied.

5.4.1 Casel

k=1 K1=0i8 K220.5,41=0.1,62=0.5,b1=1 5221 21=01,32=05 p1=1,2=1

Magnitude Tespanse
w2 in radfsec

ka

AT
".‘»,"'u:!:‘"‘%\,ﬂ\““.‘.‘.':&;

AT

T 0.07
w2.inradisec . 3 2 1 0 ! 2 3
wl inrad/sec wiinrad/sec
(a)
k=1K1=0.5k2=0.5,a1=0.25,a2=0.5,h1=1 b2=1 21=0.25;22=0.5 b1=1:b2=1
3 : - T v
0.1 \\ = ﬁ):———\)
NS )
PGB,
g ) B
gom g 1 l@ [\"\:;—-*_,_.SW
Som 2 == -
H ) '
° ()] Es 2 )
S : =
2 i, 2ptiH s
0 A e L’// ==
5 . 0 1 2 3 3 D e S e == 3
. 3 2 3 2 E] 1 2 E]
w2in rad/sec w1 in'radfsec w1 in-rad/sec
k=1 k1=0.5,k2=0.5,a1=0.5 8205 b1=1,b2=1 a1=0.5,52=0.5,61=1,b2=1
3 '
. PATS S EOA1/8 Fa SN\ W Y
g
g o TEAVRNNR Sma S )
5 €
&
3 e
2
g X " 3 { 1
. 3 - 3 2 -1 0
W2 in'rad/gec whin fad/sec whin rad/sec
(c)
k=1k1=0.5 k2=0.5,a1=0.75,52=0.5;b1=1;b2=1 a1=0.75,32=0.5 bt=1 b2=1
3 - T LI
5—9&‘
g g
- 8
- E
3 -3
2 3
) B 3 5 R 0
W2 in radfeec wiinrad/sac wA in rad/sec

(d)
Figure 5.7: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with finite gain op-amp for case 1 (varying a,).
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In case 1, the effect of GBT coefficient a; on the filter output characteristics is
studied. In order to study that, the value of a, is varied and other parameter values are set
as given below:

k=constant, k;=k,=constant, b;=b,=1, a)=constant, vary a;.
k=1, k1=0.5, k»=0.5, b1=1, by=1, a,=0.5, vary a,.

Fig. 5.7 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-D
digital bandpass filter obtained by varying the GBT coefficient a; from 0.1 to 0.75. It’s
observed that the outputs in the first and third quadrants and in the second and fourth
quadrant are symmetric. As the value of GBT coefficient a; is increased from 0.1 to 0.75,
magnitude of the 3-D amplitude-frequency response in the first and third quadrants
increases from 0.05 to 0.06 and the magnitude in the second and fourth quadrants
increases from 0.07 to 0.1. The pass bandwidth along the »; and w; axis remains almost

constant.

5.4.2 Case 2

In case 2, the effect of GBT coefficient a; on the filter output characteristics is
examined. In order to study that, value of a; is varied and other parameter values are set
as given below:

k=constant, k;=k,=constant, b;=b,=1, a;=constant, vary a,.
k=1, k;=k,=0.5, a,=0.5, b;=1, b,=1 and vary a,,

Figs. 5.8 (a), (b), (c) and (d) represent the amplitude-frequency response of the 2-

D digital bandpass filter obtained by varying the GBT coefficient a, from 0.1 to 0.75.

The pass band width along both ®; and w, axis remains constant. The magnitude of the



79

amplitude-frequency in the first and third quadrants increases from 0.05 to 0.06 and in the

second and fourth quadrant the magnitude of amplitude-frequency response increases

from 0.07 to 0.12.
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Figure 5.8: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with finite gain op-amp for case 2 (varying a;).
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5.4.3 Case3
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Figure 5.9: 3-D amplitude-frequency response and contour response of the 2-D digital
highpass filter with finite gain op-amp for case 3 (varying k;).
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In case 3, the effect of GBT coefficient k; on the digital filter output
characteristics is analyzed. In order to study the effect of k| parameter, the value of k; is
varied and other GBT coefficients are set as given below:

k=constant, ky=constant, b;=b,=1, a;= a,=constant, vary k;
k=0.5, ko=1.5, b1=b,=1, a;=a,=0.25, vary k.

Fig. 5.9 (a), (b), (c) and (d) represent the amplitude-frequency response of the
bandpass filter obtained by varying the GBT coefficient k;. As the value of k; is
increased from 0.5 to 10 the pass bandwidth along the ®; axis remains constant and along
; axis the pass bandwidth decreases. The magnitude of the amplitude-frequency
response in the first and third quadrants decreases from 0.003 to 3.5¢” and in the second

and fourth quadrant it decreases from 0.005 to 3e”.

5.44 Cased

In case 4, the effect of GBT coefficient k; on the digital filter output is studied. In
order to study the effect of k; parameter, the value of k; is varied and other GBT
coefficient values are set as given below:

k=constant, k;=constant, b;=b,=1, a;=a,, vary k;
k=0.5, k;=0.5, bj=b,=1, a,=a,=0.25, vary k.

Figs. 5.10 (a), (b), (c) and (d) are obtained by varying the GBT coefficient k, and
keeping the other parameters at a constant value as said above. As the value of k; is
increased from 0.5 to 10, the magnitude of the amplitude-frequency response in the first

and third quadrants decreases from 0.015 to 1.4¢” and in the second and fourth quadrant
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magnitude decreases from 0.025 to 1.4e>. As far as the pass bandwidth is considered, it

remains constant along the m, axis and the pass bandwidth along the m; axis decreases.
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Figure 5.10: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with finite gain op-amp for case 4 (varying k).
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5.4.5 Case 5
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Figure 5.11: 3-D amplitude-frequency response and contour response of the 2-D digital
bandpass filter with finite gain op-amp for case 5 (varying k).
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In case 5, the effect of op-amp gain parameter k on the digital filter output
characteristics is studied. In order to study the effect of k parameter, the value of k is
varied and other GBT coefficient values are set as given below:

ki=k,=constant, b;=b,=1, a;=a, vary k.
ki=k,=1.5, a;=a,=0.5, b;=b,=1, vary k.

Fig. 5.11 (a), (b), (c) and (d) are obtained by varying the op-amp gain parameter k
from 0.5 to 10, the magnitude of the amplitude-frequency response in the first and third
quadrants increases from 0.0007 to 0.025 and in the second and fourth quadrants it
increases from 0.0002 to 0.035, the pass bandwidth along the m; axis increases with the
increase in the value of k and the pass bandwidth along the w, axis remains constant.

The op-amp gain k mainly affects the amplitude of the 3-D magnitude response in

the 2-D digital bandpass filter output.

5.5 Summary

The transfer function of the 2-D digital bandpass filter was obtained in sec. 5.2 for
infinite gain case and finite gain case. The effect of GBT coefficient on the filter output
was individually examined for both the cases. The effect of gain parameter k was
examined for the 2-D digital bandpass filter with finite gain op-amp. The effect of these
parameters on the filter output for infinite gain op-amp case has been summarized in

Table 4.1 and for the finite gain case has been summarized in Table 5.2.
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GBT Value of Amplitude of Pass band Pass band
coefficient (:?T 3D magnitude width width
coeflicient response along o axis along o, axis
a ) 7 l Constant
a T 7 Constant l
ki ) ! ! Constant
k; T ! Constant l

Table 5.1: Summary of effects of GBT coefficients on infinite gain bandpass filter.

GBT Value of Amplitude of | Pass band width Pass band
coefficient GBT . . width
. 3D magnitude along ©; axis
coefficient .
response along m; axis
aj 1 1 Constant Constant
a T 1 Constant Constant
ki T l l Constant
ks T l Constant l
k ) 1 ) Constant

Table 5.2: Summary of effects of GBT coefficients on finite gain bandpass filter.
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Chapter 6
Application of 2-D digital filter in image processing

6.1 Introduction

An image is defined as a two-dimensional function, f(x,y), where x and y are
spatial coordinates and the amplitude of f at any pair of coordinates (x,y) is called the
intensity or gray level of the image at that point. When x, y and the amplitude values of f
are all finite, discrete quantities, we call the image a digital image. The digital image is
composed of a finite number of elements, each of which has a particular location and
value. These elements are referred to as picture elements, image elements and pixels

[13].

6.2  Basics of filtering in Image Processing [13]

Image processing is done either in spatial domain or frequency domain depending
on the need of the application. Fourier transform of the spatial domain component
provides its equivalent frequency domain component and inverse fourier transform of the
frequency domain component gives its equivalent spatial domain component.

In this work, an image is considered as a 2-D intensity matrix and the designed 2-
D digital filters are applied in the frequency domain for a standard application like image

enhancement.
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The 2-D fourier transformers are effective tools for image processing. The 2-D discrete

Fourier transform pair is

F(w,,0,)= ﬁgj\g f(x,J’)e—jzﬂ(xa%ﬂyw%,) 6.1
&= Flo,o, )eﬂ"(x%wz”) 6.2)
f(x,y) — Image of size MxN.

F (@}, w;) — Equivalent image of size MxN in frequency domain.

The basics of linear filtering in both the spatial and frequency domains is the

convolution theorem, which may be written as

[(x,9)*h(x,y) & H(o,, 0, )F(a,, @,) (6.3)
and conversely

[ y(x,y) e Hoy,0,)* Flo,o,) (6.4)

In eqn. (6.3) and (6.4), the symbol “*’ indicates convolution of the two functions
and the expressions on the sides of the double arrow constitute a Fourier transform pair.
In terms of filtering, we are interested in eqn. (6.3).

Filtering in the frequency domain consists of multiplying the transfer function of
the filter H (01, ®,) with the frequency domain equivalent of the image F(®, ®;). The
size of the image matrix and filter matrix has to be equal to get the best result or else both
of them have to be a square matrix.

Filtering would be done in the frequency domain. To demonstrate the application

of the filter in image restoration, an image is corrupted with Gaussian noise of zero mean
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and specified standard deviation. Then the corrupted image is conditioned with the 2-D

digital filter to reduce the effect of noise. It’s mathematically represented as

fey)= flx,y)+nlx,y) (6.5)
f(x,y) — Input image.
n(x,y) — Gaussian noise with zero mean and standard deviation c.
f.(x,y) — Image + noise i.e. corrupted image.

fx,y)= IDFT{Fc(o,,0,)- H(a,,®,)] (6.6)
f(x,y) — Recovered image which is close to the original image.
Fe(®,0;) — Corrupted image equivalent in frequency domain.
H(w;,®;) — Transfer function of the 2-D active filter.

Various quality measures are available in the literature, those that correlate well

with visual perception are quite complicated to compute. Most image processing systems
of today are designed to minimize the Mean Square Error (MSE), the quantitative

measure between two images f(x,y), f2(x,y) which is defined as

M-1N- 2

MSE = — INICHRTACE) 6.7)

—

(=]

where MxN is the image dimension and its product gives total number of pixel in the
image. The Peak Signal-to-Noise Ratio (PSNR) in decibels (dB) is more often used as a

quality measure. The PSNR is defined as

2
PSNR = 101ogm[1”\’1";;j (6.8)

where ¥/ max is the peak (maximum) intensity value of the image. For eight bit gray

image, ¥ max=255.
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6.3 Image Restoration [13]

The objective of image restoration is to improve an image in some predefined
sense. Restoration attempts to reconstruct an image that has been degraded by using a
priori knowledge of the degradation phenomenon. The restoration technique is oriented
toward modeling the degradation and applying the inverse process in order to recover the
original image. Image restoration for most part is an objective process.

An image degraded due to noise alone is considered. The noise in digital images
arises during image acquisition and/or transmission. Noise which is independent of
spatial coordinates and uncorrelated with respect to the image itself have been added to
produce a degraded image. The lowpass filter in the spatial domain is equivalent to that
of smoothing filter, as it blocks high frequencies corresponding to sharp intensity
changes.

A 8-bit gray level image has been considered and is corrupted by Gaussian noise
with zero mean and standard deviation of o x 255 gray levels. The corrupted image is
then conditioned with the 2-D digital lowpass filter of both configurations. The results
are obtained individually for infinite gain case and finite gain case.

The original image, corrupted image and the recovered/filtered output image for
infinite gain case and finite gain case are show in figs. 6.1 (a), (b), (c) and (d) for a
Gaussian noise with 6=0.1. The quality of output image is measured in terms of mean
square error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are tabulated in
Table 6.1 for both the cases 2-D active lowpass filter. The results are calculated in

comparison with the original image. From the results it is inferred that the 2-D digital
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active filter with finite gain op-amp provides better performance when compared to

infinite gain case.

Original:image

MSE=4854.029, PSNR=11.4525

(@) ®

Output of low pass fiter with infinite gain Output of low pass filter with finite.gain

MSE=1399:8754, PSNR=16.6705 MSE=1004.9742, PSNR=18.1093
(© (d
Figure 6.1: Image restoration using lowpass filter with (a) Original Image (b) Image with
Gaussian noise (c) Image filtered with infinite gain lowpass filter and (d) Image filtered
with finite gain lowpass filter.
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Filter Type Finite Gain Infinite Gain Filter
Parameter Filter
Mean Square Error (MSE) 4564.029 4564.029
With Noise
Peak Signal to Noise Ratio (PSNR) 11.4525 11.4525
With Noise
Mean Square Error (MSE) 1004.9742 1399.6754
Peak Signal to Noise Ratio (PSNR) 18.1093 16.6705

Table 6.1: Comparison of infinite gain and finite gain lowpass filter.

6.4 Image Enhancement [13]

The purpose of image enhancement is to improve interpretability or perception of
information in images for human viewers or to provide better input for other automated
image processing techniques. Image enhancement techniques can be done either in
spatial domain or frequency domain.

Image enhancement has been done in frequency domain. In image processing the
lowpass filter is expected to blur the image passed through it, as the high frequency
components are lost as the image is passed through the lowpass filter which contributes to
the sharpness of the image.

From Table 6.1 it is inferred that filter with finite gain op-amp provides better
performance, so 2-D digital filter with finite op-amp has been used to show its
application in image enhancement. Fig. 6.2 (a) is the original image which is passed
through the 2-D digital lowpass filter. Fig. 6.2 (b) shows the blurred image obtained as

the output of the 2-D digital lowpass filter.
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Original.Image Cutput after low pass filtering

(@ (b)
Figure 6.2: Image enhancement using lowpass filter (a) Original Image (b) Blurred
image.

Fig. 6.3 (a) is the output obtained from a 2-D highpass filter. Highpass filter zero
out the dc term, thus reduces the average value of an image to 0. The principal edges of
the image is retained which can be seen from the fig. 6.3 (a) and histogram equalization is
applied to the fig. 6.3 (a) in order to expand the gray scale region, by which the principal

edges of the image are clearly visible.

Without histogram equalization

After applying histagram equalization

(@ (®)
Figure 6.3: Image enhancement using highpass filter (a) Output of a highpass filter (b)
Output after adjusting gray level.
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6.5 Summary and Discussion

In image processing the most of the energy of a typical image is located at the low
frequencies. The energy of the noise is often spread across the frequency axes in the case
of a white noise or else in the higher frequency range depending on the distribution
function. The 2-D digital lowpass filter provides a good noise removal property, but the
high frequency component of an image such as edges are affected i.e. sharpness of the
recovered image is lost. The 2-D digital highpass filter provides good edge detection in
image processing.

For testing the functionality of filters, a standard image is corrupted by additive
Gaussian noise with known variance and mean. The 2-D digital lowpass filter derived
from infinite gain op-amp and finite gain op-amp is used to decrease the noise from the
corrupted noise. The performance comparison of these two kinds of filter is done by
comparing MSE and PSNR of the recovered images. MSE and PSNR provide the
quantitative measures of the image restoration. Image enhancement properties of the 2-D

digital lowpass filter and highpass filter are also shown.
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Chapter 7

Conclusions

A new technique is presented for generating a 2-D digital filter. In order to
generate a second order 2-D digital filter, a doubly terminated network constituting a op-
amp, an input impedance and a reactance T network in the feedback path is considered.
Various combinations have been tried out for the input impedance and the reactance T
network which would lead to a stable transfer function. These combinations have been
tried out for two different cases of the op-amp i.e. infinite gain and finite gain. The
stability of the transfer function is checked by ensuing denominator polynomial of the
transfer function is a VSHP.

The impedance value of the transfer function is obtained by continued fraction
expansion of the fourth order 1-D chebhyshev filter with 1-dB ripple in the pass band. A
stable 2-D active filter in the analog domain is obtained. GBT is applied to the analog
transfer function to obtain the equivalent 2-D digital lowpass filter. Subsequently 2-D
digital highpass filter and bandpass filters are obtained by applying suitable
transformation.

The 2-D lowpass filter in digital domain is obtained for both the infinite gain op-
amp and finite gain op-amp cases. The effect of the GBT co-efficient on the amplitude-

frequency response of 2-D digital lowpass filter for infinite gain case and finite case are
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studied, for the finite gain case effect of op-amp gain ‘k’ is also studied and the results
are tabulated. It is observed that the GBT co-efficient k; and k, mainly affects the pass
bandwidth along the ®; and o, axis, co-efficient a; and a, affects the magnitude of the
amplitude-frequency response. For finite gain op-amp case the effect of op-amp gain
parameter k on the filter output is studied. As the gain parameter k is increased the
magnitude of the amplitude-frequency response also increases.

The effect of GBT coefficient on the amplitude-frequency response of a 2-D
highpass digital filter for the infinite gain op-amp and finite gain op-amp case has been
studied and the results are tabulated. It is observed the GBT co-efficient k; and k; affects
the pass bandwidth along the w; and w; axis and the GBT co-efficient a; and a;, affects the
magnitude of amplitude-frequency response.

The 2-D bandpass filter is obtained by cascading the 2-D digital lowpass filter and
2-D digital highpass filter for the infinite gain case and finite gain case. The pass
bandwidth of the bandpass filter is equal to the pass band area overlapped between the
lowpass filter and highpass filter. The effect of GBT co-efficient on the amplitude-
frequency response is studied by varying each parameter individually. It is inferred from
the results that the GBT co-efficient a; and a; affects the magnitude of amplitude-
frequency, the k; and k; affects the pass bandwidth.

At last, the application of 2-D ‘digital lowpass filter in image processing for image
restoration and image enhancement has been shown. Performance comparison has been
done for the lowpass infinite gain and finite gain configuration with the image restoration

application. From the results it is inferred that the 2-D digital filter with finite gain op-
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amp has better performance than the 2-D digital filter with infinite gain op-amp.

Application of 2-D digital highpass filter has been illustrated.

Scope of Future Work

The impedance values for the filter are obtained by comparing with the fourth
order type I chebyshev filter. The impedance values can also be obtained by comparing
with other standard polynomial such as type II chebyshev or butterworth filter or any

other standard filter.

In the design of filter the resistance value has been considered to be equal to

unity, different values can be tried out.

For the T section in the analog circuit, only reactance combination has been tried

out for the impedances. Other combinations can be tried out.

Study has been done based on the amplitude-frequency response of the filter,

phase response of the filter can also be studied.

All pass filter and their combination can also be considered to generate a stable 2-

D digital filters.

Depending upon the application requirement, suitable values for the co-efficient
of the GBT can be determined based upon the properties of the filter like symmetry,

amplitude characteristics and the response in the stop band.
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Appendix

A. MATLAB code to plot the 3-D amplitude-frequency response and the

contour response of the 2-D digital lowpass filter with infinite gain op-
amp.

% Operational amplifier with infinite gain.

% Lowpass configuration

% Obtained by applying Generalized Bilinear Transformation
clear all; clc

w1=-pi:pi/25:pi; w2=-pi:pi/25:pi;

zl1=exp(-j.*w1); z21=exp(-j.*w2);
[z1,22]=meshgrid(z11,z21);
% Input values for GBT coefficients

al=input('Enter the value of al=");

a2=input('Enter the value of a2=");

k1=input('Enter the value of k1=");

k2=input('Enter the value of k2=");

%HLIG tranfer function of the filter with infinite gain.

a=zl-al; c=z1+1; b=z2-a2; d=z2+1;

=L

d11=(k112).*(a."2).*(3.6749.¥k2"2.*%(b.”2)+2.5771.%k2.*¥b.*d+2.2786.*d."2);
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d12=(k1.*a.*c).*(5.1916.¥k2"2*(b."2)+6.7323.¥k2.*(b.*d)+3.2190.*(d."2));
d13=(c."2).*(3.2256.*¥k2.72.*b."2+3.688.¥k2.*b.*d+d."2);
NR=-(c."2).*(d."2); DR=d11+d12+d13;
% Transfer function
HLIG=abs(NR./DR);
% Magnitude plot
subplot(2,2,jj); contour3(w1,w2 HLIG);
surface(w1,w2 HLIG,'EdgeColor',[.2 .2 .2],'FaceColor','none');
grid on; view(-15,25);
title(['k1=",num2str(k1),' . k2="num2str(k2),',al=",num2str(al),',a2=",num2str(a2),,b1=",nu
m2str(bl),,b2="num2str(b2)]);
xlabel('wl in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response');
% Contour plot
jj=3it+1; subplot(2,2,jj); [C,h]=contour(w1,w2 HLIG);
clabel(C,h); set(h,'linecolor','black’); grid on;
title(['al=",num2str(al),',a2=",;num2str(a2), ,b1=",num2str(b1),',b2="num2str(b2)]);

xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec');

B. MATLAB code to plot the 3-D amplitude-frequency response and the

contour response of the 2-D digital lowpass filter with finite gain op-amp.
% Operational amplifier with finite gain.
% Lowpass configuration

% Obtained by applying Generalized Bilinear Transformation



101

clear all; clc

w1=0:pi/25:pi; w2=0:pi/25:pi;

zl1=exp(-j.*w1l); z21=exp(-j.*w2);

[z1,z2]=meshgrid(z11,z21);
=1

% Input values for GBT coefficients

display('Enter the GBT coefficients values for finite gain filter");
al=input('Enter the value of al="),

a2=input('Enter the value of a2=");

k1=input('Enter the value of k1=");

k2=input('Enter the value of k2=");

% Input value for the gain of operational amplifier

k=input('Enter the value of k=");

%HLFG transfer function of the lowpass filter with finite gain

a=zl-al, c=z1+1; b=z2-a2; d=z2+1;
dl1=(k172).*(a.*2).*(7.3498.%k2"2.*(b."2)+5.1541.*k2.*¥b.*d+4.5571.%(d."2));
dI2=(k1.*a.*c).*(1.6951.*k.*k2"2.*(b.”2)+(7.3718+1.1887*k).*k2.*(b.*d)+(4.3360+1.0
51*k).*(d.*2));
dI3=(c."2).*((1.6128*k+1.16128).*k2.%2.*(b.”2)+(2.168+0.2950*k).*k2.*¥b.*d+k.*d."2);
NR=-k.*(c."2).*(d.”2); DR=dl1+d12+dl3;

% Transfer function
HLFG=abs(NR./DR);

% Magnitude plot
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subplot(2,2,jj); contour3(w1,w2 , HLFG);
surface(w1,w2, HLFG,EdgeColor',[.2 .2 .2],'FaceColor','none');
grid on; view(-15,25);
title(['k=",num2str(k), . k1=",num2str(k1),'.k2="num2str(k2),',al=",num2str(al),',a2=',num2
str(a2),',b1=",num2str(b1),',b2="num2str(b2)]);
xlabel('w1 in rad/sec"); ylabel('w2 in rad/sec'); zlabel('Magnitude response');
% Contour plot
ji=ij+1; subplot(2,2,jj);
[C,h]=contour(w1,w2,HLFG);
clabel(C,h); set(h,'linecolor','black"); grid on;
title(['al=",num2str(al),',a2=",num?2str(a2),',b1=",num2str(b1), ,b2=' num2str(b2)]);

xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec");

C. MATLAB code to plot the 3-D amplitude-frequency response and the
contour response of the 2-D digital highpass filter with infinite gain op-
amp.

% Operational amplifier with infinite gain .

% GBT of Highpass filter

clear all; clc

w1=-pi:pi/25:pi; w2=-pi:pi/25:pi;

zl1=exp(-j.¥*w1); z21=exp(-j.*w2);

[z1,z2]=meshgrid(z11,221);

% Input values for GBT coefficients
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al=input('Enter the value of al='");
a2=input('Enter the value of a2=");
k1=input('Enter the value of k1="),
k2=input('Enter the value of k2="),
%HHIG transfer function of the filter with infinite gain.
e=zl+al; g=z1-1; f=22+a2; h=z2-1;
d11=(k172).*(a."2).%(3.6749.%k2"2.*(b."2)+2.5771 .%k2.*b.*d+2.2786.*d."2);
d12=(k1.*a.*c).*(5.1916.%k2/2*(b.~2)+6.7323.*¥k2.*(b.*d)+3.2190.*(d."2));
d13=(c.”2).*(3.2256.¥k2.72.%b."2+3.688.*k2.*b.*d+d."2);
NR=-(g."2).*(h."2); DR=d11+d12+d13;
% Transfer Function
HHIG=abs(NR./DR);
% Magnitude plot
jj=1; subplot(2,2,jj); contour3(w1,w2,HHIG);
surface(w1,w2,HHIG, EdgeColor',[.2 .2 .2],'FaceColor','none");
grid on; view(-15,25);
title(['k1=",num2str(k 1), k2=",num2str(k2),',al=",;num2str(al),',a2=",num2str(a2),',b1=",nu
m2str(bl),',b2="num2str(b2)]);
xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec'); zlabel('Magnitude response');
% Contour plot
Ji=1i+1; subplot(2,2,jj); [C,h]=contour(w1,w2,HHIG); clabel(C,h);
set(h,'linecolor','black"); grid on;

title(['al=",num2str(al),',a2=",num2str(a2),',b1=",num2str(b1),',b2=" num?2str(b2)]);
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xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec');

D. MATLAB code to plot the 3-D amplitude-frequency response and the

contour response of the 2-D digital highpass filter with finite gain op-amp.

% Operational amplifier with finite gain .

% GBT of Highpass filter

clear all; clc

w1=-pi:pi/25:pi; w2=-pi:pi/25:pi;

z11=exp(-j.*w1); z21=exp(-j.*w2);

[z1,z2]=meshgrid(z11,221);

% Input values for GBT coefficients

al=input('Enter the value of al=");

a2=input('Enter the value of a2=");

k1=input('Enter the value of k1="),

k2=input('Enter the value of k2=");

k=input('Enter the value of k=');

%HHFG tranfer function of the filter with finite gain.

e=zl+al; g=z1-1; f=z2+a2; h=22-1,

dli=(k12).*(e."2).*(7.3498.%k2"2. *(£.~2)+5.1541.%k2.*£.*h+4.5571 .* (h."2));
dI2=(k1.*e.*g).*(1.6951.*k.*k2"2. *(£f.°2)+(7.3718+1.1887*k).*k2.*(f.*h)+(4.3360+1.05
1*k).*(h."2));
d13=(g.*2).*((1.6128*k+1.16128).*k2.%2.*(£./2)+(2.168+0.2950*k).*k2.*f. *h+k.*h."2);

NR=-k.*(g."2).*(h."2); DR=d11+d12+d13;



105

% Transfer Function
HHFG=abs(NR./DR);
% Magnitude plot
=1
subplot(2,2,jj); contour3(w1,w2, HHFG);
surface(w1,w2,HHFG,'EdgeColor',[.2 .2 .2],'FaceColor','none");
grid on; view(-15,25);
title(['k1=",num2str(k1),'k2=",num2str(k2),',.al=",num2str(al),',a2=",num?2str(a2),',b1=",nu
m2str(b1), ,b2=",num2str(b2)]);
xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec’); zlabel('Magnitude response');
% Contour plot
jj=ij+1; subplot(2,2,jj); [C,h]=contour(w1,w2, HHFG);
clabel(C,h); set(h,'linecolor','black’); grid on;
title(['al=",num2str(al),',a2=',num?2str(a2),',b1='",num2str(b1),',b2="num?2str(b2)]);

xlabel('w1 in rad/sec'); ylabel('w2 in rad/sec');

E. MATLAB code to plot the 3-D amplitude-frequency response and the
contour response of the 2-D digital bandpass filter with infinite gain op-
amp.

% Operational amplifier with infinite gain.

% Bandpass filter

clear all; clc;

w1=-pi:pi/25:pi; w2=-pi:pi/25:pi;
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z11=exp(-j.*w1); z12=exp(-j.*w2),

[z1,z2]=meshgrid(z11,z12);

% Input values

al=input('Enter the value of al="),

a2=input('Enter the value of a2=");

bl=input('Enter the value of b1=");

b2=input('Enter the value of b2=");

k1=input('Enter the value of k1=");

k2=input('Enter the value of k2=");

=1

% HBPIG transfer function of bandpass filter with infinte gain op-amp.
a=zl-al; c=z1+1; b=z2-a2; d=z2+1,
d11=(k172).*%(a."2).*(3.6749.*k2"2.*(b.”2)+2.5771.*k2.*b.*d+2.2786.*d."2);
d12=(k1.*a.*c).*(5.1916.%k2/2*(b."2)+6.7323.*k2.*(b.*d)+3.2190.*(d."2));
d13=(c."2).*(3.2256.*k2./2.%b."2+3.688.*¥k2.*¥b. *d+d."2);
NR=-(c.*2).*(d."2); DR=d11+d12+d13;

HL=abs(NR./DR);,

e=zl+al; g=z1-1; f=z2+a2; h=z2-1;

dh1=(k1/2).*¥(e./2).*(3.6749.*k2/2 *(£f.A2)+2.5771.*k2.*{. *h+2.2786.*¥h."2);
dh2=(k1.*e.*g).*(5.1916.¥k2"2*(£./2)+6.7323.%k2.*(f. ¥h)+3.2190.*(h."2));
dh3=(g."2).*%(3.2256.¥k2.72.*£.A2+3.688.*k2.*f. *h+h."2);
NRH=-(g."2).*(h.”2); DRH=dh1+dh2+dh3;

HH=abs(NRH./DRH);
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% Transfer function of bandpass filter.
HBPIG=(HL.*HH);
% Magnitude plot
subplot(2,2,jj); contour3(w1,w2,abs(HBPIG));
surface(w1,w2,abs(HBPIG),'EdgeColor',[.2 .2 .2],'FaceColor','none");
grid on; view(-25,25);
title([",k1=",num2str(k1),' k2='"num2str(k2),',al=",num2str(al),’,a2=",num?2str(a2), ,b1=",nu
m2str(b1),',b2="num2str(b2)]);
xlabel('w1 in rad/sec"); ylabel('w2 in rad/sec'); zlabel('Magnitude response');
% Contour plot
jj=ij+1; subplot(2,2,j5); [C,h]=contour(w1,w2,abs(HBPIG));
clabel(C,h); set(h,'linecolor','black’); grid on;
title(['al=',num2str(al),',a2="num?2str(a2), ,b1=",num2str(b1),',b2="num?2str(b2)]);

xlabel('wl in rad/sec'"); ylabel('w2 in rad/sec');

F. MATLAB code to plot the 3-D amplitude-frequency response and the

contour response of the 2-D digital bandpass filter with finite gain op-amp.

% Operational amplifier with finite gain.
% Bandpass filter

clear all; clc;

w1l=-pi:pi/25:pi; w2=-pi:pi/25:pi;
z11=exp(-j.*wl); z12=exp(-j.*w2);

[z1,z2]=meshgrid(z11,z12),
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% Input values
al=input('Enter the value of al=");
a2=input('Enter the value of a2=");
bl=input('Enter the value of b1=");
b2=input('Enter the value of b2="),
k1=input('Enter the value of k1="),
k2=input('Enter the value of k2=");
k=input('Enter the value of k=");

=1

% HBPFG transfer function of bandpass filter with finte gain op-amp.

a=zl-al; c=z1+1; b=z2-a2; d=z2+1;
dl1=(k172).*(a."2).*¥(7.3498.%k2"2.*¥(b."2)+5.1541.*k2.*b.*d+4.5571.*%(d."2));
d12=(k1.*a.*c).*(-1.6951.*k.*k2"2.*¥(b.~2)+(7.3718-1.1887*k).*k2.*(b.*d)+(4.3360-
1.051*k).*(d."2));

d13=(c."2).*((1.6128*k+1.16128).*k2.72 *(b.”2)+(2.168-0.2950*k).*k2.*b.*d-k.*d."2);
NR=-k.*(c.”2).*¥(d."2); DR=d11+d12+dI3;

HL=(NR./DR);

e=zl+al; g=z1-1; f=z2+a2; h=z2-1;

dhl=(k172).*¥(e."2).*¥(7.3498.¥k2"2 . *(£.72)+5.1541.*k2.*{£. *h+4.5571.*(h."2));
dh2=(k1.*e.*g).*(-1.6951.*k.*k2"2 . *(£/2)+(7.3718-1.1887*k).*k2.*(f.*h)+(4.3360-
1.051*k).*(h."2));
dh3=(g."2).*((1.6128*k+1.16128).*k2.72.*(f."2)+(2.168-0.2950*k).*k2.*f. *h-k. *h."2);

NRh=-k.*(g.”2).*(h."2);
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DRh=dh1+dh2+dh3;
HH=(NRh./DRh);
% Transfer function of bandpass filter.
HBPFG=abs(HL.*HH),
% Magnitude plot
subplot(2,2,jj); contour3(w1,w2,abs(HBPFG));
surface(w1,w2,abs(HBPFG),'EdgeColor',[.2 .2 .2],'FaceColor','none');
grid on; view(-25,25);
title(['k='",num2str(k)," k1=",num2str(k1)," k2=",num2str(k2),',al=",num2str(al),',a2=",num?2
str(a2),',b1=";num2str(b1),',b2=" num2str(b2)]);
xlabel('w1 in rad/sec"); ylabel('w2 in rad/sec'); zlabel("Magnitude response');
% Contour plot
jj=ij+1; subplot(2,2,jj); [C,h]=contour(w1,w2,abs(HBPFG));
clabel(C,h); set(h,linecolor','black’); grid on;
title(['al=',num2str(al),',a2=",num?2str(a2),’,b1=",num2str(b1),',b2=",num2str(b2)]);

xlabel('w1 in rad/sec"); ylabel('w2 in rad/sec');

G. MATLAB code for performance comparison of lowpass filter with
infinite gain and finite gain op-amp configuration.

% Filter Application to image processing.

clear all; clc;

% Generation of fiilter transfer function.

HLIG1=lfg();



original image=imread('G:\My Documents\lena2.jpg");

% Data format of the image is changed.

image d=mat2gray(original image);

figure, imshow(image d); title('Original Image');

% Gaussian noise added to the image.

deg image= imnoise(image d,'gaussian',0,.1); image d freq=fft2(deg_image);

HLIG1=fftshift(HLIG1);

fil image freq=HLIG1.*image d freq; % Filtered image in frequency domain.

% Filtered image in spatial domain.

fil image spa=real(ifft2(fil_image freq));

% Image data reformat

display(' The min value before reformatting’); min(fil_image spa(:));
fil image spa rf=fil image spatabs(min(fil image spa(:)));
display('The min value after reformatting');

min(fil_image spa_rf(:));

fil image spa rf=fil image spa rf./max(fil image spa_ rf(:));
display('The max value after reformatting');
max(fil image spa rf(:)); MN=size(original image);
M=MN(1,1); N=MN(1,2);

display('MSE and PSNR of the image with noise")

sum=20;

for i=1:M

for j=1:N
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sum=sum-+(deg_image(i,j)*255-image d(i,j)*255)"2;
end
end
figure;
imshow(deg_image, []);
title('Image + Noise(with SD=0.1, Mean=0)");
MSE=sum*(1/(M*N)); PSNR=10*log10(255"2/MSE);
xlabel(['MSE=",num2str(MSE),', PSNR=',num2str(PSNR)]);
display('MSE and PSNR of the image after LPF');
sum=0;
for i=1:M
for j=1:N
sum=sum+(fil image spa rf(i,j)*255-image d(i,j)*255)"2;
end
end
MSE=sum*(1/(M*N)); PSNR=10*log10(255"2/MSE);
figure, imshow(fil_image spa rf);
title("Output of lowpass filter with infinite gain');

xlabel(['MSE=",num2str(MSE),', PSNR=",num2str(PSNR)]);

H. MATLAB code to exhibit the performance of lowpass filter with finite
gain op-amp configuration.

% Filter application for subjective processing.
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% Filter Application to image processing.
% Lowpass filter
clear all; clc;
HLIG1=1fg();
original_image=imread('G:\My Documents\lena2.jpg);
figure; imshow(original image);
original image=mat2gray(original_image);
original_freq=fft2(original _image);
HLIG1=fftshift(HLIG1);
fil image freq=HLIG1.*original_freq;
fil image=real(ifft2(fil_image freq));

figure; imshow(fil_image, []);

I. MATLAB code to exhibit the performance of highpass filter with finite
gain op-amp configuration.

% Filter application for subjective processing.

% Filter Application to image processing.

% Highpass filter with finite gain.

clear all; clc;

HLIG1=hfg();

original_image=imread('G:\My Documents\lena2.jpg');

figure; imshow(original image); title('Original Image');

original_image=mat2gray(original image);
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original freq=fft2(original image);
HLIG1=fftshift(HLIG1);

fil image freq=HLIG1.*original freq;

fil image=real(ifft2(fil image freq));

figure; imshow(fil_image, []);

title("Without any hisequalization');

figure; imshow(histeg(gscale(fil image),256),(1);
title("After applying histogram equalization');

display('Good Bye!!!");
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