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Abstract

Rewriting Logical Rules as SROZQ Axioms: Theory and Implementation

Francis Gasse

Description Logics (DLs) is a family of very expressive logics. But some forms of knowledge are
much more intuitive to formulate otherwise, say, as rules. Rules in DLs can be dealt with by two
approaches: (i) use rules as they are even though it leads to undecidability. (ii) or make the rules
DL-safe, which will restrict their semantic impact and, e.g., loose the nice “car owners are engine
owners” inference. Here, we offer a third possibility: we rewrite the rule, if it satisfies ccrtain
restrictions, inherited from SROZQ, into a set of axioms which preserves the nice inferences.
This rewriting also has the benefit of being compatible with existing tools and standards, and to
make the most of this, software supporting this approach is provided.

In this thesis, we describe the rewriting technique and prove that it does really preserve the
semantics of the rules and also present the software we developed to support the adoption of the

proposed technique.
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Chapter 1

Introduction

A few decades back, the massive introduction of the computer greatly improved our capacity to
process and stock information. When these computers were networked, it created a platform with
the potential to revolutionize the way information was communicated. However, it was not until
the introduction of the World Wide Web (Web) that this potential was fully realized and that people
outside the corporate and governmental spheres could use it. The Web was successful because it
allows typical users to easily navigate and retrieve the information they needed, it masked the
complexity of the process. The Web is now, by far, the biggest repository of information on Earth.
It contains so much information that it is humanly impossible to efficiently navigate it to harvest
the bits we need. Indeed, the time needed to retrieve the interesting bits of information from the
available data grows with the size of this same data.

We have computers that can process data much faster than we can, so if a computer could
“understand” the information on the Web and identify which parts we need and treat them, it
would be much better. Even though specialized systems doing that type of tasks exist for certain
precise areas, a versatile framework would optimiie the way data can be used and offer endless .
opportunities. That is, in a nutshell, the promise of what the Semantic Web [SBLHO06] aims to do,
make the information on the Web machine understandable. In order to do that, we need a standard

formal representation (in the same way we needed HTML) expressive enough to model any kind



of knowledge and still be understandable by a machine. Researchers in the field of knowledge
representation (KR) designed various logics for that purpose, with varying degree of expressivity
and complexity. The World Wide Web Consortium (W3C), the governing body of the Internet, has
published a recommendation for a language that fulfills these requirements, it is the Web Ontology
Language (OWL) [BVHH*04]. It is based on SHOZN, a logic that is member of a family of
logics, mainly a subset of the first-order logic (FOL), called Description Logics (DLs) [BCM*03]
which we will further introduce in the next section. The main characteristics of this group of
logics are that it is very expressive, it is decidable and it has robust computational properties.
These features have driven its adoption in many fields that need to formalize their knowledge,
most notably in life sciences, to use OWL to build their ontologies. The successor to-be of OWL,
OWL 2, is currently being developed by a working group' mandated by the W3C, and it is based
on another, more expressive, DL called SROZ Q [HKS06].

Even though modern DLs are very expressive, there are still some forms of knowledge that they
cannot represent. So researchers continuously work to add new constructs and relax restrictions
on DLs to maximize their expressive power and retain the logic’s decidability. Function-free Horn
rules are another widely used form of knowledge representation that can roughly be seen as if...
then.... or .... imply.... statements. These two logics are rather expressive and are orthogonal to
each other. There is a consensus in the community that combining rules with DL would be a nice
way to provide the extra expressivity needed for some problemé. The problem is that it has been
shown in [HPS04] that a naive combination of the two is undecidable. This is the essence of the
problem which motivated the research presented in this thesis.

We will now introduce more precisely the two formalisms we are working with so that we can

fully describe the problem and state our objectives.

"http://www.w3.0rg/2007/0WL/wiki/OWL_Working_Group
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Figure 1: Overview of DL constructs.

1.1 Description Logics

Description Logics are a family of logics, closely related to propositional dynamic [Har84] and
modal [HC96] logics, that are designed to represent terminological knowledge and that are meant
to be practically usable in knowledge representation (KR) systems. For that reason, a strong em-
phasis is put on keeping the reasoning problems decidable. It is to be noted that all DLs make the
Open-World assumption, i.e., the failure to derive a fact from a knowledge base does not imply its
opposite.

For now we introduce one of the simplest DL, its syntax and its semantic. We use the DL AL
[SSS91] (AL stands for “attributive language”) for this purpose because the majority of the other

DLs are obtained by augmenting it with other constructs. Each features (or set of features) has a



letter assigned to it (see Figure 1), so a logic is named from the concatenation of the symbols of its
features, for example ALY is AL augmented with concept union.

The base of a description are the atomic concepts and role names, which are mutually disjoint
sets. A description is inductively built from them together with the constructors.

Let us now introduce some conventions for the notation that will be used throughout this docu-
ment. The letters A and B refer to atomic concepts, C and D refer to concept descriptions. Roles
are represented by R. With respect to that notation, the following are also concepts in AL: T, L,
-A,CND,VR.C,3R.T.

Here are some examples of what we can express with these constructors to give some intuition
before we introduce the formal semantics. Let Student and Worker be atomic concepts and has-
Friend be an atomic role. Then the expressions Student 1 Worker and Student M —Worker are
AL concept expressions which respectively describe students that are also workers, and students
that are not workers. Using the role constructs, we can form these concept expressions: Stu-
dent NV hasFriend.Worker and Student 1 3hasFriend. T, which describes students that only
have workers as friends and students that have a friend respectively. Using the bottom concept,
one can also describe a student without any friends with the following expression: Student 1V
hasFriend. L.

The formal definition of AL’s semantics requires the notion of an interpretation T = (A%, 1)
that consists of a non-empty set A%, the domain of Z, and an interpretation function -Z that maps
every atomic concept name A to a subset A7 C A and every role name R to a binary relation
RT C A’ x A”. To interpret concept expressions, they are inductively reduced to a simple form

using the following definitions:



T = Al
17 =0
(“«A)I = AI\AI
(cnbDy} = CctnD?
BRTY? = {ze AT3y.(z,y) € RT}
(VR.C)Y = {x e AT\Vy.(z,y) € R impliesy € C*}

A general concept inclusion axiom (GCI) is an expression of the form C' C D for two concepts
C and D. A TBox 7T is a set of GCIs. An individual assertion is of one of the following forms:
a: C, (a,b) : R, or asb, for a,b individual names, a (possibly inverse) role R and a concept C.
An ABox A is a set of individual assertions.

An interpretation Z is a model of a TBox 7 (written Z }= T ) if CT C D? foreach GCIC C D
in 7. A concept C is called satisfiable if there exists an interpretation Z with C% # (). A concept
D subsumes a concept C (written C C D) if C7 C D7 holds for all models of 7. Two concepts
are equivalent (written C' = D) if they are mutually subsuming each other. The above inference
problems can be defined w.r.t. a TBox 7 by only considering interpretations that are models of 7.
For an interpretation Z, an element x € A is called an instance of a concept C if z € CZ. An
interpretation Z satisfies (is a model of ) an ABox .A (Z = A) if for all individual assertions ¢ € A
we have 7 |= ¢, where

Tka:C if of €CT

Tea#b if o £0F

Ik (ab): R if (af,bF) e RE

T = (a,b): =R if (a?,b?) ¢ R” or, equivalently, (a%,b?) € AT x AT\ R

An ABox A is consistent with respect to a TBox 7 if there is a model Z for 7 such that 7 = A.



1.2 Rules

In the scope of rules and DL integration, a particular fragment of the first-order logic seems to
be a perfect match, i.e. function-free Horn rules. Indeed, Horn clauses’ expressivity can capture
some very common form of knowledge that are not representable in DL and this fragment of
FOL is tractable. For now, we will introduce regular Horn rules and then only specify how each
proposition differs from this common base when we introduce each technique.

Horn rules are in fact Horn clauses rewritten as an implication formula, both forms being
equivalent. A Horn clause is a disjunction of literals containing at most one positive literal, the
general form being -a; V...V =an_1 V a,. The atoms (a,, ..., a,) have different forms depending
with which logic the clause is used. This clause rewritten as an implication becomes a; A ... A
@n-1 — Q. The implication form being much more used and natural in our context, it will be used
in this document. One must keep in mind that the contrapositive of a Horn rule must also hold, i.e.,
given a rule C(z) — D(z), -D(z) — —C(z) must also hold. The part of the rule that is left of
the — is the body of the rule, also called antecedent, and the right part is the head (consequent). In
the context of description logics, there are two possible forms of atoms: the concept atom (C(z;))
and the role atom (R(z1, x2)), for C a concept name, R a role name and x;, T, variables. Variables
in a Horn clause are thought of as universally quantified. In particular, any variables in a clause
body that do not occur in the clause head can be thought of as existentially quantified in the body.
The variable names have to be distinct from the the union of roles and concepts names. In AL, the
terms (z;) can only be variable names but more expressive DLs, like SROTQ that we introduce
in Section 2.1, can also allow other constructs. Given a rule r, we use head(r) = a,, for its head,
body(r) = {a;...a,_1} for its body and Var(r) for the variables it uses.

In our context, we only consider rules with exactly one atom in the head and at least one atom
in the body. Since Horn rules have by definition at most one positive literal, hence one atom in
the head, this only leaves out rules with an empty head and/or empty body. We do not consider
empty-headed rules because they are highly similar to queries, which is out of the scope of this

work, and the empty-bodied rules are facts, so they should be added directly to the KB.

6



1.3 DL and Rule Integration

As we have said, the expressivity and/or the modeling potential we could gain by integrating rules
with DLs is very desirable. In order to make the motivations clear, here are some examples that

even very expressive DLs cannot correctly model.

e Let hasSon and hasChild be two roles such that hasSon T hasChild and Man is an

atomic concept. DLs cannot represent the fact that an hasChild with a Man for object

imply a hasSon relationship, but rules can: hasChild(z,y) A Man(y) — hasSon(z,y).

o Let connectedT'oNode be a role and Node be a concept. We cannot model the notion of a
cycle, say a concept representing N odes that is part of a cycle of length 2. Once again a rule

can, as follows: connectedT'oNode(x,y) A connectedToNode(y, x) — PartO fCycle(z).

These examples show two types of structures commonly encountered in practice that DLs by
themselves cannot deal with and thus illustrate the reasons that drives this research.

In [HPS04], it was shown that determining the consistency of a SHOZN (OWL-DL) KB,
and evidently any KBs of more expressive logics, w.r.t. a set of function-free Horn rules T, i.e.,
KB =T, is an undecidable problem. Obviously, it follows that every other reasoning problem is
also undecidable. In this section, we will show where the undecidability arises to fully grasp the
problem. To achieve that, we will observe some characteristics of the two formalisms and see how
their interaction induces undecidability.

First, consider the following concept expression: Person C 3hasParent.Person. It is trivial
to see that this expression can be expanded into an infinite chain of Person linked by hasParent.
This simple axiom illustrates why we have to be careful with the reasoning process in order to
ensure its termination. Most DLs can guarantee termination and correctness by only considering
certain forms of models, namely models that are either tree or forest-shaped. Models of these
shapes have the particularity that if a model is infinite, there is a way to “collapse” it into a finite

model. Furthermore, the collapsing of such models is also computationally simple.



Horn rules, on the other hand, ensure termination in a totally different way. Indeed, all variables
in these rules are universally quantified. It should be clear that such rules will thus never require
the creation of “new” individuals. It follows that the number of individuals is finite and that alone
ensures the termination of reasoning.

~ So where DLs restricts the shépe of infinite models, Horn rules allow arbitrary but finite models.
That gives some intuition regarding the cause of the undecidability of a logic combining function-
free Horn rules and DLs. Indeed, a rule can break the tree-like shape of the models thus prevent

the blocking of the model’s generation and jeopardize the termination of reasoning.

1.4 Research Objectives

Considering the problem described above, we will investigate different combinations of rules and
description logics in order to discover the combination offering optimal expressivity w.r.t. both
formalisms while still being decidable. This type of work being very common in KR, there already
are excellent results in that area, but they are all either preventing the rules from changing the
terminological knowledge (via DL-safety) or undecidable. For example, let us assume a concept
C, an individual ¢ asserted to be a C (a : C) and the rule C(z) — D(z). In a DL-safe context
we can derive that z is also a D, but we cannot derive that C' C D even though it is obviously the
case. Note that this example can obviously be encoded directly in DL and avoid this problem, but
more complex examples could not, so it does not affect our argument.

This type of inference is highly interesting and no existing combination with an expressive DL
allows it. This is the problem we intend to solve with our research. Our research should cover the
whole area, from the theoretical definition to the implementation of tools so that users can easily
leverage the gained expr;':ssivity for their purpose.

On the theoretical level, we will identify the description logic and form of rules that combines
with optimal expressivity, define the semantics of the combination, prove the correctness of the

formalism and its decidability.



On the practical side, we will develbp the tools required to support the creation of a rule-
enhanced KB and the reasoning over such a KB in a transparent way for the user. We will also
conduct experiments to ensure that reasoning over that logic is sufficiently efficient to be of prac-
tical use. That has to be verified because, even though we only consider decidable combinations,

the combined complexity might render reasoning intractable in some cases.

1.5 Structure of the thesis

Let us now present the structure of this thesis’s content. In Chapter 2 we introduce sorne pre-
liminary notions which are required to understand the thesis. Namely, we will introduce a very
expressive DL, SROZQ, which we use in our rewriting, the proposed Web Ontology Language
(OWL) 2 and the Semantic Web Rule Language (SWRL), two languages used to write ontologies
and rules in the context of the Semantic Web. Both these languages are used by our prototype
implementation.

In Chapter 3, we present some notable work that also integrated rules and DLs to some extent.
First we present CARIN, an approach based on an hybrid reasoning process. Next we introduce
Hybrid Minimum Knowledge Negation-as-Failure (MKNF) knowledge bases which combine DL
and logic programming, yielding many interesting features but also an undecidable formalism.
We then present a summary of many approaches that reduce DL to Disjunctive Datalog, thus
allowing the addition of Datalog rules. Lastly we introduce two other results that are somewhat
less signiﬁ'cantAbut interesting nonetheless, the Fire system which applies rules to completions of
DL KBs using pattern-matching and an approach that extended DL tableau algorithms to handle
rule reasoning. We conclude by analyzing these results to have a complete picture of the current
state of the art. .

In Chapter 4 we present a class of rules applicable in the context of DL and a technique to
rewrite them into DL axioms. We first define these DL rules and provide a graph-based concep-

tualization for them. Using this conceptualization, we define this rewriting. We then prove the



correctness of the rewriting and show how it works by completing a step 'by step example.

In Chapter 5 we introduce the implementation we made of the rewriting in two applications.
First we present the common framework on which both applications are built. Then we present the
command line application, its usage and its output. Next we present the graphical application that
enables the editing of ontologies with rules and its features. We conclude by showing the practical
usability of our approach using experimental results.

In Chapter 6 we conclude this thesis by summarizing our work, showing its contribution and

showing some future research avenues in the field.
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Chapter 2

Preliminaries

21 SROIQ

We now introduce a very expressive description logic called SROZQ that was introduced in
[HKS06]. This DL incorporates some very useful features that have been requested by the Se-
mantic Web community and for which practical and efficient reasoning are available. Most of
these features add expressivity to roles, somehow balancing what we can express about roles w.r.t.
what we can say about concepts. These qualities led to the selection of SROZQ to be the logical
foundation of OWL 2, the upcoming successor of OWL. We will now introduce this DL and define
its syntax and semantics. Since SROZQ is an extension of the DL AL we presented in Section
1.1, everything that holds in AL holds in SROZQ so we will only cover constructs not present in
AL.

Let C be a set of concept names including a subset N of nominals! , R a set of role names
including the universal role U, and I = a, b, c... a set of individual names. The set of roles is
RU{R™|R € R}, where arole R~ is called the inverse role of R.

The notion of an interpretation is extended with nominals, the universal role U and inverse

roles. Let C be a nominal, thus also a concept, the interpretation of C, CZ, is then a singleton. The

! A nominal is an concept interpreted as a singleton

11



universal role U is interpreted as a total relation A7 x AZ, it clearly follows that (U~)% = (U)~.

Inverse roles are interpreted in such a way that for each role R, we have

(R7)" = {{y,2)l(z,y) € R}

To avoid considering roles such as R~ ~, we define a function Inv on roles such that Inv(R) =
R~ if R is a role name, and Inv(R) = S if R = S~. We will have to deal with strings of
roles, so we extend the valuation - and the function Inv to such strings: if w = R,...R,, for
R; roles, then w? = RT o ... o RZ, where o denotes the composition of binary relations, and if
Inv(w) =Inv(R,,)...Inv(R;).

A role box (RBox) is a set of axioms describing roles and the relations between them. An RBox
R consists of two components. First, there is a role hierarchy Ry, which consists of role inclusion
axioms (RIAs). These axioms are of the form w £ R where w is a string of roles restricted to
certain shapes that we will define shortly. The second component, R, is a set of of role assertions
that state certain characteristics of roles. For instance, the assertion Irr( R) states that the role R
must be interpreted as an irreflexive relation.

To define the possible shapes of the role string w in a RIA w & R, we first have to define a
regular ordering over roles. A strict partial order < on a set M is a binary relation over M that is
both irreflexive and transitive. An ordering < on a set of roles, and their inverses, is regular if it

additionally satisfies that S < R implies that S~ < R and reversly for all roles R and S.

Definition 1 ((Regular) Role Inclusion Axioms). An interpretation I satisfies a role inclusion
axiom Sy...S, C R, if ST o ... 0 ST C RZ. An interpretation T is a model of a role hierarchy Ry,
if it satisfies all RIAs in Ry, written T = R;. A RIA w C R is <-regular, for < a regular ordering

over roles and R is a role name, if w is of one of the following forms:
1. w=RR, or
2. w=R",or
3 w=25...5,and S; < R, forall1 <i<n,or
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4. w=RS...S,and S; < R, forall1 <i<n,or
5. w=S5;..S,Rand S; < R, forall1 <i < n.

A role hierarchy Ry, is regular if there exists a regular order < over the roles such that each RIA is

~<-regular w.r.t. that same <.

The restriction to regularity of the role hierarchy ensures that there are no cyclic dependencies
suchas RS C T and T'S C R for instance, since it would imply R < R which would violate the
irreflexivity of <. This restriction is necessary to retain decidability as it was shown in [HS04] that
such dependencies would induce undecidability.

Given a role hierarchy R}, we define the relation & to be the transitive-reflexive closure of C
over the GClIs of the form {R C S and Inv(R) C Inv(S) in Rp}. A role R is a sub-role (resp.
super-role) of role S if R [ S (resp. S & R). Two roles R and S are equivalent (R = S) if R,
implies both R x S and S & R.

We introduce the set Diag, which is interpreted, w.r.t. Z, as {(z, z)|z € AT} and is required for
the definition of the second part of an RBox, the set of role assertions R,. Since the interpretation

of the universal role U is fixed, it cannot be used in axioms that are elements of R,.

Definition 2 (Role Assertions). For roles R, S # U, we call the assertions Ref(R), Irr(R), Sym(R),
Tra(R), and Dis(R, S), role assertions, where, for each interpretation T and all x, y, z € AL, we

have:
I t=Sym(R) if(z,y) € R? implies (y,z) € R%,

Ik Tra(R)  if{z,y) € R and (y,2) € RY imply (z, z) € RZ;
I E=Ref(R)  if Diag* C R%;
T = Irr(R) if RN Diag* = 0
TLDis(R,S) ifRN S%=0.
Roles that are implied by the composition of any roles are called non-simple. We define the set

of simple roles as follows:

¢ arole name is simple if it does not occur on the right hand side of a RIA in Ry, and
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e an inverse role R~ is simple if R is, and

o if R occurs on the right hand side of a RIA in R, then R is simple if, for each w T R € Ry,

w = S for a simple role S.

Definition 3 (RBox). The set 7?, = Ry U R, is a valid SROLZQ RBox if Ry, is a regular role
hierarchy and R, is a finite, simple set of role assertions. We say that an interpretation 1 satisfies
an RBox R, written T =R, if T = Ry, and T = ¢ for all role assertions ¢ € R,. If T satisfies R,
it is called a model of R.

We wish to highlight the fact that the restriction to a regular role hierarchy implies the prohi-
bition of equivalent roles, i.e. R = S or R = S7, since it is impossible to find a strict ordering
over a set containing equivalent elements. This is a purely syntactic restriction since we can just
replace all occurences of one of the roles with the other to eliminate the equivalence and not lose

any information. Let us now define the syntax and semantics of SROZ Q-concepts.

Definition 4 (SROZQ Concepts, TBoxes, and ABoxes). The set of SROZQ-concepts is the

smallest set such that
e every concept name (including nominals) and T, 1 are concepts, and,

e ifC, D are concepts, R is a role (possibly inverse), S is a simple role (possibly inverse), and
n is a non-negative integer, then CN D, CU D, =C, VR.C, 3R.C, 35.Self, (> nS.C), and

(£ nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C T D for wo SROZ Q-
concepts C and D. A TBox T is a finite set of GCIs. An individual assertion is of one of the
following forms: a : C, (a,b) : R, (a,b) : =S, or a # b, for a,b € I (the set of individual
names), a (possibly inverse) role R, a (possibly inverse) simple role S, and a SROZ Q-concept C.
A SROIQ-ABox A is a finite set of individual assertions.
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In order to preserve decidability, only simple roles are allowed in number restrictions, (>
nS.C) and (< nS.C), Self-restrictions, 35.Self, and disjointness and irreflexivity assertions,
Dis(R, S) and Irr(R).

Definition 5 (Semantics). Given an interpretation T = (A%, F), concepts C, D, roles R, S, and
non-negative integers n, the extension of complex concepts is defined inductively by the following
equations, where §M denotes the cardinality of a set M, and concept names, roles, and nominals

are interpreted as usual:

TZ = AZ, 17 =9, (-C)* = AT\ C? (Booleans)
(CnDyY} = CTnDE (CuDY =CctuD* (Booleans)
(3RO = {z|3y.(z,y) € RT and y € C?} (exists restriction)
(3R.Self)T = (2|(z,2) € RT} (3R Self-concepts)
(VR.CY! = {z|Vy.(z,y) € RT impliesy € C*}  (value restriction)
(>nRC)Y = {a|i{y(z,y) € R¥andy € CT} > n} (atleast restriction)
(<nRCY = {a|i{y.(z,y) € R¥andy € CT} < n} (atmost restriction)

2.2 'Web Ontology Language (OWL) 2

As we mentioned in the introduction, the Semantic Web is one of the major motivations that drives
the research in our field. Description Logics alone were not very useful in that context, a language
that could be deployed over the Web was necessary. Hence the XML based languages OWL
and OWL 2, which are both relying on DL for their underlying logic. The rewriting we propose
requires the expressivity of SROIQ, which OWL 2 is based on, so we will use this version.
We do not really use OWL in the theoretical part of this work, since SROZQ itself is more
usable, but we use it throughout our prototype. In that regard, we will now introduce the OWL 2
ontology language. OWL 2 is an extension of OWL that adds many new constructs, some of which

significantly increase expressivity while maintaining backward compatibility with OWL. We will
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now overview these novelties, then introduce the semantics of OWL 2 and we finish by exposing

the non-structural restrictions that OWL 2 must satisfy.

2.2.1 New Features

The new features can be split into three categories: syntactic improvements, expressive power and
datatype support. There are two new syntactic constructs that can simplify writing knowledge.
First, DisjointUnion allows to say in a single axiom that a description is the union of a set
of descriptions that are mutually disjoint. The other new feature is the ability to assert the non-
existence of a property using twb new predicates Negat iveObjectPrépertyAssertion
and NegativeDataPropertyAssertion.

The choice of SROZQ as the underlying logic increased the expressivity by allowing the addi-
tion of these new DL constructs: (i) qualified cardinality restrictions (ex.:ObjectMinCardinality
(2 friendOf hacker)), (i) local reflexivity restrictions for simple properties (ex.:ObjectExist
Self (likes) for narcissists), (iii) reflexive, irreflexive, symmetric, and asymmetric properties for
simple properties (ex.: ReflexiveObjectProperty (knows)), (iv) disjoint properties for sim-
ple properties (eXx.: DisjointObjectProperties(childOf spouseOf)), and (V) property
chain inclusion axioms (€X.: SubObjectPropertyOf (SubObjectPropertyChain (ownspart)
owns) ) if the property inclusions are acyclic.

The support of datatypes is vastly improved by allowing the use of almost all of the XML
Schema Datatypes?. For instance, we can define new datatypes restrictions that can be used in the
ontology, as in SubClassOf (Adult DataSomeValuesFrom(age DatatypeRestriction

(xsd:integerminInclusive "18"""xsd:integer)).

2.2.2 Semantics

We now introduce the semantics of OWL 2, which are closely related to those of SROZ Q. The

semantics of all OWL 2 constructs that are present in SROZQ are a straightforward mapping to

Zsee http://www.w3.0rg/TR/xmlschema-2/ for more information
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the semantics of SROZQ. The constructs of OWL 2 that are not included in SROZQ are all
those related to datatype support. The semantics of these datatype predicates are easily mappable
to those of the equivalent object property, obviously taking into account that the domain of inter-
pration is the data domain instead of the interpretation domain. For instance, the correspondance
between ObjectSomevValuesFrom and DataSomeValuesFrom is as follows: both define
the possible object of their subject property with the difference that Object SomevValuesFrom

accepts concept expressions and Dat aSomeValuesFrom accepts datatype expressions.

2.2.3 Nonstructural Restrictions on Axioms

OWL 2 introduces a set of nonstructural restrictions on axioms. These restrictions are being en-
forced to ensure that OWL 2 is contained within SROZ Q’s expressivity and are equivalent to
SROZQ’s definition of a regular role hierarchy. Given that equivalence, we will not cover these

restrictions but mention that they should nonetheless be observed.

2.3 SWRL

The Semantic Web Rule Language (SWRL) [HPSB*04] is a W3C proposal for a SW oriented rule
language. Being oriented towards the Semantic Web, it was designed to extend OWL with the
expressive power of the rules, not the other way around. The rule component of SWRL is largely
based on RuleML?, another rule language now mainly used for business rules. We can thus define
SWRL as the union of OWL and RuleML which is closely related to Unary/Binary Datalog and
function-free Horn rules. SWRL is not that important for the theoretical part of this work, but it is
used in our implementation and is the de facto standard, much like OWL. SWRL retains the full
expressive power of both OWL and RuleML, but this expressivity comes at a hefty price, the loss

of decidability.

Shttp://www.ruleml.org
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axiom = rule

rule =" Implies('{URIreferencelannotationantecedentconsequent’)’
antecedent ::=" Antecedent('atom’)
consequent ::=' Consequent('atom’)’

Figure 2: Syntax of SWRL rules.

The undecidability of SWRL can be shown by using it to encode a known undecidable prob-
lem. We will use role-value maps [SSS91] for that purpose. Let R, S be role chains (i.e. R; o
.oR,), R C Sand R = S are respectively a containment role-value map and an equality
role-value map. The following examples informally show their semantics, the concept Person M
(hasChildohasFriend C knows) describes the persons knowing all the friends of their children,
and Person M (marriedT o o likesToEat = likesToFEat) describes persons having the same fa-
vorite foods as their spouse. These role-value maps are a well-known undecidable problem and
SWRL rules can be used to simulate them, thus showing SWRL's undecidability.

SWRL extends OWL by adding the rules as a type of axiom in a way defined using the abstract
syntax in Figure 2. It also extends OWL by including a set of built-in functions that allows one
to deal with complex relations and operations over datatypes. The relation functions are mostly
equivalent with data ranges from OWL, but the built-in operations provide interesting functions.
For example, math built-ins offer modulo, string built-ins offer comparison ignoring case and list
built-ins offer evaluation of a list’s length. These allow for rather complex rules to be written.

A rule axiom consists of an antecedent (body) and a consequent (head), each of which consists
of a (possibly empty) set of atoms. A rule axiom can also be assigned a URI reference, which could
serve to identify the rule. Informally, a rule may be read as meaning that if the antecedent holds
(is "true”), then the consequent must also hold. An empty antecedent is treated as trivially holding
(true), and an empty consequent is treated as trivially not holding (false). Rules with an empty
antecedent can thus be used to provide unconditional facts; however such unconditional facts are
better stated in OWL itself, i.e., without the use of the rule construct. Non-empty antecedents and

consequents hold iff all of their constituent atoms hold, i.e., they are treated as conjunctions of their
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atoms. Rules with conjunctive consequents can easily be split up into multiple rules each with an
atomic consequent.

Atoms can be of the form C(z), R(z,y), sameAs(z, y) differentFrom(z, y), or
builtIn(r, z,...) where C is an OWL description or data range, R is an OWL property, r is a built-
in relation, z and y are either variables, OWL individuals or OWL data values, as appropriate.
Informal]y, an atom C(z) holds if x is an instance of the class description or data range C, an atom
R(z,y) holds if z is related to y by property R, an atom sameAs(z, y) holds if z is interpreted
as the same object as y, an atom differentFrom(z, y) holds if = and y are interpreted as different
objects, and builtIn(r,z,...) holds if the built-in relation r holds on the interpretations of the
arguments. Note that sameAs and differentFrom can already be expressed using the combined
power of OWL and rules without explicit (in)equality atoms.

Atoms may refer to individuals, data literals, individual variables or data variables. Variables
are treated as universally quantified, with their scope limited to a given rule. As usual, only vari-
ables that occur in the antecedent of a rule may occur in the consequent (a condition usually
referred to as “’safety”). This safety condition does not, in fact, restrict the expressive power of the
language (because existentials can already be captured using OWL someValuesFrom restric-

tions).

2.3.1 Semantics

The semantics for SWRL is a straightforward extension of the semantics of OWL in which we
define bindings, i.e. mappings from elements of OWL interpretations to variables of the rules. We
say that a rule is satisfied iff every binding that satisfies the antecedent also satisfies the consequent.
The semantic conditions relating to axioms and ontologies are unchanged. In particular, an inter-
pretation satisfies an ontology iff it satisfies every axiom (obviously including rule axioms) and

facts in the ontology, and an ontology is consistent iff it is satisfied by at least one interpretation.
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Chapter 3

Related Work

The expressivity we can gain by combining Description Logics and rules is very interesting and
required for some application, so there have been many efforts in that direction. Among these
efforts, many different paradigms were investigated by different groups with varying degrees of
success. In this chapter we intend to present the most significative paradigms and the results they

obtained, to better understand the challenge we aim to tackle.

3.1 CARIN

CARIN [LR96] is a KR formalism that provides an integration of Datalog with the DL ALCN'R,
and any of its sublogics. It extends the AL-log [DLNS98] language by integrating more expressive
DLs (AL-log is built around the ALC DL) and by admitting more general DL atoms in the rules.
The form of rules is heavily restricted since only ordinary predicates (predicates referring to enti-
tites not part of the DL terminology) are allowed to appear in the head of rules. Unfortunately, this
formalism is undecidable but refutation-complete, i.e. it terminates if there is an answer for a given
query but may not terminate otherwise. A query answering procedure is provided and decidable
subsets are identified in [LR98]. These subsets are obtained by restricting to non-recursive rules
or by restricting the way variables can be used in role atoms. For both these decidable subsets,

a sound and complete reasoning algorithm is provided. These algorithms split the reasoning into
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two steps, the DL reasoning and the rule reasoning. Recursive rules are defined as follows. An
ordinary predicate p depends on an ordinary predicate g if g appears in the antecedant of a rule
which consequent is p. A set of rules is recursive if there is a cycle of dependencies between the
ordinary predicates. Let R(z,y) be a role atom and z, y be variables, this restriction over the vari-
ables requires that either = or ¢ appears in a non-DL body atom in the same fashion as in DL-safe
rules (see 3.4.2 for details).

First in the DL reasoning step, the DL. component of a given knowledge base is used to con-
struct a set of completions, each of which is represented by a finite set of DL atoms and determines
a canonical model of a program. A completion is an interpretation modeling a knowledge base for
which all possible inference is performed. Then the construction of an rule augmented component
occurs. This component is composed of all the rules augmented by the assertions contained in
each completion of the aforementioned canonical model. For the rule reasoning step, a forward-
chaining based reasoning is carried out over the completion included in the canonical model using
the added DL-assertions as new facts. An ordinary predicate atom is entailed by the knowledge

base if and only if it is entailed by all augmented rule components of the canonical model.

3.2 Description Logic Programs (DLPs)

In this section we introduce an approach to rule and DL integration that differs from most others
in the way that it focuses on the intersection of the two formalisms and not on some form of union.
More precisely, Description Logic Programs (DLPs) [GHVDO03] correspond to the intersection of
the DL underlying OWL (SHOZN) and the Declarative Logic Programs fragment of FOL, i.e.
Horn clauses. Figure 3 (taken from [GHVDO03]) shows how this formalism relates to other logics.
The main advantage of such a combination is obviously a reduced complexity that ensures that the

reasoning services are efficient and scalable. Such services could be provided by highly effective

logic programming reasoners.

Although DLPs are an intersection of two formalisms, they still provide a significant expressive
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Figure 3: Overview of the relation of DLP with other formalisms.

power. Notably, it includes the expressivity required to state that class D is a Subclass of a class
E, that the Domain of a property P is a class C, that the Range of a property P is a class C, that a
property P is a Subproperty of a property Q, that an individual b is an Instance of a class C and
stating that a pair of individuals (a,b) is an instance of a property P. These constructs are equivalent
to the expressivity of RDF(S). Additionally it allows one to express conjuntion and disjunction in
class descriptions, that a property is transitive, symmetric or the inverse of another.

With this formalism, a bidirectional mapping is provided to and from the two formalisms used
in the intersection for knowledge bases and queries. This translation enables two different views
of the integration, either rules are added to the ontology or the ontology augments the rules. In the
first one, the rules use the vocabulary defined in the ontology, whereas the second one imports the
rules’ vocabulary into the DL.

There are however restrictions imposed implicitly in the expressivity to ensure that the KB
remains in the intersection. The tree model property of DLs, closely related to the correspondance
of DLs to FOL with two variables, is what mostly restricts the way rules can be used. This prevents
the expression of classes where two different paths of properties lead to a given variable. An

example for such a case would be a class “HomeWorker” representing individuals who live and
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work at the same location defined as
work(z,y) A live(z, 2) A loc(y, w) A loc(z, w) — HomeW orker(x)

Also, Horn logic requires all variables to be universally quantified, thus preventing the assertion
of an anonymous individual, i.e. any DL axiom of the form C' C R.T. Also, Horn rules cannot

contain any negated atoms.

3.3 Hybrid MKNF

Since OWL has been widely used for ontology construction, many considered Logic Program-
ming (LP) as the solution to expressive shortcomings that had been identified, such as exceptions,
constraints and, of course, rules. A proposition [MHRSO06] has been made for a technique that
seamlessly integrates OWL (but also expressive DLs, up to SROZ Q) with LP. It is based on the
Minimal Knowledge Negation-as-Failure (MKNF) logic, presented in [Lif03], which can be seen
as a modal logic with default models supplying the non-monotonic features. Contrarily to DLPs’
intersection, here a union of the two paradigms is proposed. However, this logic is known to be
undecidable, a major problem in the DL context.

Having the open-world semantics as a central assumption of DLs, it seemed incompatible with
the closed-world semantics of LP. The problem is settled by way of an epistemic operator (the K
operator) which means, informally, “is known to hold” meaning that it is true in every interpreta-
tion. This operator allows us to switch between open and closed world at will, which is interesting
since even in a DL context it is sometimes desirable to query the world as-is. A negation-as-failure
not operator is added as well to allow to specify that “it is possible for o not to hold”. This approach
has many benefits that enables one to express n-ary predicates, integrity constraints exceptions in
the model and allows for reasoning with the closed-world assumption when desired by using LP
constructs over a DL terminology. Rules can also be formulated using this formalism and they are

defined using the epistemic operators.
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3.4 Datalog-based Approaches

There have been various techniques integrating DL and rules reported that have as a common base
the use of Disjunctive Datalog [EGMY97] as the formalism used for the reasoning tasks. Such
techniques include AL-log [DLNS98], Description Logic Programs {GHVDO03] and Horn-SHIQ
[HMS05]. Since all these approaches are so closely related, we will focus on the most interesting
results using this technique, those of [Ros05]. This work defines a general framework for the
integration of DL ontologies and Datalog™", meaning a Datalog program with negation as failure
and disjunction. This work generalizes the previous results because it proves that any decidable
first-order KB (thus any decidable DL KB) augmented with atomic and DL-safe Datalog™ rules
preserves its decidability. In order to create a Datalog program equivalent to the KB and the rules,
the KB is first translated into Datalog using basic superposition and then the rules are added to
the resulting program (this step is straightforward). This approach is implemented in the KAON2
system. Unfortunately this system is limited to the SHZ Q logic thus limiting its practical usability

since it is less expressive than OWL-DL.

3.4.1 DL+og

[Ros06] introduces DL+log which we consider apart from the other Datalog-based approaches
because it allows a tighter integration of DL and rules, even though currently it is at the expense of
the expressivity of the DL, a problem which should be addressed in future work, by not requiring
the DL-safeness of the rules. Instead, rules must have what the author calls weak safeness. Weak
safeness means that variables are not required to appear in a non-DL atom (usually referred to as
O(z)) if they do not appear in the head of the rule. Decidability of this approach was demon-
strated via the corresponcience between reasoning in DL+log and conjunctive query containment
(checking whether the result of a conjunctive query is a subset of the result of another query for
every TBox) in DLs. As mentioned earlier, there is a price to pay for this benefit: currently, de-

cidability of this approach is only proved in DLR which lacks prominent features of modern DLs
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such as nominals, transitive roles and role inclusion axioms on arbitrary roles. This logic is in fact

equivalent to ALC QT since we can reify the DLR n-ary relations.

3.4.2 DL-Safety

DL-safety [MSS05] is a restriction over the semantics of the rules that some integration techniques
require to retain decidability. It is not to be confused with the classical restriction to safe-rules,
which is a restriction over the syntax of the rules, i.e. that variables referenced in the head of the
rule are required to be referenced in the body.

As we mentionned, this does not restrict the syntax of the rules because any rule can be trans-
formed into a DL-safe one, but the semantics of the rule is affected. First, we will show how to
transform a rule into a DL-safe one and then we will show how and why the semantics are affected.

The method to make a rule DL-safe is rather simple and goes as follows. Let K be a knowledge
base containing rule r, to make r DL-safe we add to it an atom of the form O(z) for every variable
z it references. Afterward, we add an assertion of the form O(z) for every individual « contained
in K. We use O as the non-DL predicate in accordance to a notational convention observed by
previous papers on the subject. The addition of the O(x) atoms and assertions have an obvious
effect, only individuals explicitly introduced in the knowledge base can be bound to variables of
a rule. That prevents individuals introduced by the application of expansion rules, most notably
by existential restrictions, from being bound to variables. This implies that variables can only be
bound to a finite number of individuals, hence ensuring termination. Let us now formally define

what is a DL-safe rule.

Definition 6 (DL-Safe Rules). A rule r is DL-safe if each variable occurring in r also occurs in a

non-DL atom in the body of r.

The restriction to DL-safety implies that such rules have different semantics than regular Horn
rules. The major effect of such a restriction is that the rules won’t have any effect on the TBox,
hence missing inferences like rule induced subsumption. Nonetheless, the gained expressivity is

still quite interesting.
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3.5 Using a FOL Theorem Prover for OWL

Using FOL theorem provers to reason over DLs is a subject that has been investigated numerous
times, notably [HS00]. The most used techniques translated the DL into the guarded fragment of
FOL such that the prover provided sound and complete reasoning. These techniques have yet to
be extended to allow reasoning over the recent DLs that are expressive enough to be interesting in
our context. Another approach is introduced in [TRBHO04], it proposes to directly translate the DL
into FOL using the mappings presented in Figure 4 (taken from [Mot06]). This approach yields a
FO theory for which completeness cannot be guarenteed but that is expressive enough to handle
very expressive DLs.

A FOL theorem prover can, by definition, reason over any logic that is a subset of FOL and
since both OWL 2 and SWRL are such subsets, their union obviously also resides within FOL. This
technique can thus rather easily provide an implementation of a SWRL reasoner. This is exactly
the approach the reasoner Hoolet! implements. The FOL theorem prover used for this is Vampire
[RV01], a very competitive implementation, that has not been optimised specifically for the needs
of description logics reasoning. Hoolet translates the KB and the rules into a FO theory which is
then fed into the Vampire [RVO01] theorem prover where it can be used for reasoning tasks such as
satisfiability checking and instance checking.

Although such a system has some virtues, it inherantly has some major flaws. The non-
completeness of the reasoning implied by FO reasoning being the central one. Decidability is
one of the defining features of DLs, so, compromising on that aspect is not ideal but such a com-
promise has to be done for any technique supporting the whole union of DLs and SWRL. Practical
experiments showed that the computation times for DL reasoning tasks with Hoolet were unsur-
prisingly not competitive at all when compared to those obtained by FaCT++ [THO06]. Also, due
to that incompleteness, it failed to correctly compute some of the practical tests it was submitted
to, especially with tests involving the verification of non-subsumption. This follows from the fact

Vampire is based on refutation. Indeed, a subsumption test between concepts C' and D tests if

Yavailable at http://owl.man.ac.uk/hoolet/
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Mapping Concepts to FOL

T %) = T
(LX) = L

A X) = A(X)

7, (~C.X) = -m,(C, X)
m(CTID,X) = m(C. X) Amy(D. X)
7 (CUD,X) = m(C. X))V 7y(D, X)
7 (VR.C, X) = Vy: R(X.y) — malClp)
my(3RC,X) = Jy: R(X. y) A me(Cly)

"Ty(é nRC.X) = Yy,... s Yn1t /\21:1] [R(“Y:yi) I {0 '.’/i)] hd \/?:11 y:ll.{\.] Yi =Y
(2 nRC,X) = 3yr. .yt N RIX 4) A (Cop)] A NIy s 0 % 45

Mapping Axiows to FOL

#(C L D) = Va: ny(C,n) — my(D, x)
mC =D) = Vo 1,(C,2) & my(D, x)
#(RT S) = Yo,y : Rry) — 8(z,y)
w(Trans(R)) = VY, y. 2 Rlx,y) A Rly.2) — R{x, 2}
7o) = 7y(C.a)
#(R{a.b)) = R{a.b)
7(~S(a,b)) = ~S{a,b)
w{aod) = aob for o € {~, 4%}
Mapping KB to FOL
w(R) = Va,y: R(r,y) « R {y,x)
m(KBRr) = /\aeKBn m{o) A AR&:\’RG 7(R)
w(KB1) = Aoexs, 7(@)

7(KB4) = AaGKEA w(ce)
7(KB) = a(KBr) A w(KB1) A 7n(KBy4)

Notes:
(¢): X is a meta-variable and is substituted by the actual term;
(#): =, is obtained from my by simultaneously substituting in the definition
all y,y with x,y, 7y with m,, and vice versa,

Figure 4: Mapping from DL to FOL.
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C M D is satisfiable, if it is not there is a subsumption. For non-subsumptions, this formula is

satisfiable thus troublesome for a refutation-based reasoner.

3.6 Other Relevant Work

We now present two other pieces of work on rule and DL integration that obtained interesting
results but that are not as significant as the ones previously presented. First we present the Fire
system and then we present a technique that merges the rule reasoning directly into the tableaux

rules.

3.6.1 Fire

The Fire [BhoO05] system couples a DL reasoner (RacerPro) with a rule engine to enable the use
of rules in the OWL ontology. The rules are considered as “trigger rules” as opposed to logical
implication. The envisioned mode of functioning, we say envisioned because the reasoners not yet
implement the required features but they may in a foreseeable future, is as follows. A “cycle” of
reasoning starts by the reasoner computing all the possible completions of the KB and determining
a canonical model of the KB. After that, the rule engine applies the rules, the possible bindings
being found via the RETE pattern matching algorithm, to all these completions and the intersection
of all the inference results are applied to the KB. Such cycles are applied as long as they yield new

inferences.

3.6.2 Integration with Tableaux Rules

As we have seen in the above section, most of the work for integrating rules and DL do not rely
on tableau algorithms for reasoning. Tableaux are a decision and proof procedure that are imple-
mented by most modern DL reasoners such as FaCT++, RacerPro and Pellet. Extending tableaux
to handle rules is thus desirable to enable the use of these highly optimized DL reasoners. Such a

technique was introduced in [KPS06]. This paper describes an extension to the SHOZ Q tableaux
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algorithm that enables it to deal with DL-safe rules directly in the tableaux. It is achieved by
adding a new completion rule to those originally in SHOZ Q, this completion rule has the lowest
priority. This new rule start by generating all the possible bindings (obviously, it only considers
asserted individuals) then it verifies that at least one of the rule atom holds for each binding. If so,
the expansion of the branch continues. This result in itself is interesting but a system using this
new algorithrﬁ was developed to have preliminary results regarding practical usability. For small
ontologies, the system performs well but the branching introduced by the reasoning over the rules

cause the system’s performance to drop rapidly as size increases.

3.7 Overall State of the Art

Each research result we just presented offers a knowledge representation paradigm that has suf-
ficient expressivity to partially model both DL axioms and Horn rules. However they use very
different ways to do so, i.e. they are not related by how they function but by their common objec-
tive, DL and rules integration. Let us now position our research w.r.t. these related works. The
approach we investigate is not linked, does not re;use or build upon any of these technique but
nonetheless shares their objectives. We intend to complete this objective using a novel and unique
approach, so we presented these related works in order to give an overview of what has been done
and the results that we aim to improve.

To clearly identify these results we want to improve, we have to synthetize them, taking into
account their respective strenghts and weaknesses, into an observation reflecting the current state
of affair. Existing rules and DL integration approaches can be, broadly speaking, split in to groups:
undecidable formalisms in which rules can modify the terminology, and decidable ones in which
rules cannot alter the terminology. For some application domains, such as life sciences, neither of
these options is satisfactory. Let us give a concrete example that illustrates the type of inference
that DL-safety disables and that we wish to enable. Let the rule hasChild(z,y) AhasChild(y, z) A
Man(z) — hasGrandSon(z, z) defined w.r.t. the KB shown below.
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JhasGrandSon. T T PersonWithGrandSon
TestSub = FhasChild.3hasChild. Man
jack : (3hasChild.3hasChild. Man)

joe : (3hasChild.3hasChild.billy)

billy : Man

It should be obvious that joe is an instance of T'estSub. Suppose that we have two reasoners,
one that requires DL-safety and one that does not. Both reasoners can infer that joe is an instance
of PersonWithGrandSon since both joe and billy are explicitely introduced individuals. The
DL-unsafe reasoner can infer that jack is an instance of PersonWithGrandSon but the DL-safe
cannot since the “grand-son” of jack is implicitely introduced by the existential restriction. The
DIL.-safe reasoner also fails to infer that TestSub T PersonWithGrandSon but the DL-unsafe
one does. Such limitations severely restricts the use of rules. Hence our objective to bring a third

option, one in which rules can have an effect on the terminology while retaining decidability.
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Chapter 4

DL Rules and their Rewriting

We now enter the core of the theoretical content of this thesis, the rewriting of logical rules into DL
axioms. We will also introduce some accessory concepts required by the rewriting. In this chapter
we will first introduce the notion of DL rules, which is a formalization of logical rules considered
in the context of description logics. We then define a graph conceptualization and notation of
these rules, which provides an elegant and intuitive way to define the procedures composing the
rewriting. Next, we expose the rewriting technique itself and the different steps it requires. The
semantic cbrrectness of the operations used in the rewriting and of the rewriting itself are shown in
the following section. We conclude by showing how the rewriting as a whole works by processing

an example step by step.

4.1 DL Rules

Contrary to the field of logic programming, rules used in a DL context do not have widely ac-
knowledged syntax and semantics. Since we will have to represent rules quite often in this thesis,
we will now introduce DL rules, which is a class of rules satisfying some syntactic restrictions for
which we have well defined semantics and also a representation format. This representation format
is based on a graph-based paradigm. We chose the name DL rules to highlight the fact that this

approach is not bound to DL-safety. Before introducing the representation format, we will present
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the restrictions a logical rule has to satisfy to be a DL rule.

We will define the syntactic restrictions required for DL rules by exposing the differences w.r.t.
what is probably the most known class of rules, i.e. Horn rules. The general form of a Horn rule is
defined as a; A ... A @,y — a,, With the atoms (ay, ..., a,,) are either concept atoms, C(z;), or role
atoms, R(z;, z;), for C a concept name, R a role name and z;, z; variables. To be a DL rule, such

a rule must additionally satisfy the following restrictions:

o The variable(s) referenced in the head of the rule have to be referenced in at least one of the
body’s atoms. This is the standard safety condition, which is unrelated to DL-safety, that

ensures a meaningful interpretation since a variable not used in the body but used in the head

could be bound to any entity.

o The set of variable names has to be disjoint from the other names used in the ontology, i.e.

the union of the sets of names of individuals, concepts and roles.

e We also require rules to be connected. A rule r is connected if, for any pair of variables x, y
in r, there exists a sequence i, ..., T, such that (i) z; = z, (il z, = yand (i) for1 <i < n

there is a role R such that either R(z;, z;11) or INV(R)(z;41, z;) is an atom of .

A rule minimally has to be a valid DL rule for it to be eligible to be rewritten. That implies
that rules not satisfying these restrictions are not of any interest in our context. For that reason, we
only consider DL rules for the remaing part of this thesis. Knowing that, we consider that the word
“rule” implicitely means “DL rule” in this context. Let us now define the semantics of a DL rule

w.r.t. an interpretation modelling a DL knowledge base.

Definition 7 (Semantics of DL Rules). Let Z be an interpretation that is a model of a KB K, C
be a concept of K, R be a role in K and 7 be a mapping Var(r) — AZ, i.e. a mapping from the

variables of a rule r to individuals in the domain of the interpretation. We write:
o I =" C(z)ifn(z) € C% and

» IT" R(z,y) if (n(x),7(y)) € R~.
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For a set of atoms A = {Ay, ..., A}, wewrite T =" AifT =" A; forall A;in A. Let t be a rule
of the form A — H, where A is a set of atoms and H is an atom. We say that T satisfies t if, for all

m, I =" A implies that T =" H.

4.2 DL Rules as Graph

The abstract syntax of DL rules adequately represents the rules. However, this syntax is not partic-
ularly suited to be used to describe transformations on the rules as our rewriting requires. Indeed,
when reading the definition of a transformation over this syntax the semantic effect might not be
obvious because it is lost in syntactic considerations. That is because the syntax itself carries little
semantics. To solve this problem, we introduce a graph conceptualization of rules and a new nota-
tion based on that conceptualization which we will use to define the rewriting. We also introduce
a simplification technique for rule graphs, called the skeletonization.

Thinking of rules as graphs has many advantages, it is intuitive, easy to visualise and it allows
a viable notation. For these reasons, we now introduce the notion of a rule graph, that is a graph
conceptualization of DL rules. A rule graph is a directed labeled graph, which models the body of
the rule, augmented with the head of the rule.

A rule graph G is defined by the following expression G = (V, E, £, H) where :
e V is a finite set of vertices, and

e ECV xR x V is a ternary relation describing the edges, and

L is a set of labels, and

H is the head of the rule.

It should be noted that in the definition of E, the symbol R is used to represent the set of roles of
the KB. Also, a label £, of a vertex is a (possibly empty) set of concept expressions that are used

in concept atoms over variable Xx.
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4.2.1 Deriving a Graph from a Rule

We now describe the procedure to derive a rule graph from a rule. Let r be a rule defined as
ay A ... A ap — ap. We start by defining the rule graph G, = (V, E, L, H) as an empty rule graph,

i.e. V = 0 and H = 0, and then for each a; € r, we do the following:
e if a; is of the form C(z) then
~ifz g VthenV =V U{z}
=L, =L, U{C}
o if a;- is of the form R(z, z) then
- ifrgVthenV =V U{z}
- L, =L, U{3R.Self}
o if a; is of the form R(z,y) then
-ifrgVithenV =V U{z}
- ifygVithenV =V U{y}
- E=EU{(z,R,y)}
The final step is to add the head of the rule, ay, to the graph which simply consists of asserting

H=ah.

4.2.2 Notation

The notation we use for rule graphs is very similar to that abstract structure we have just defined,
the difference being that we have to further define functions and relations. The notation of a graph

G is defined as G = (V, E, Ly, H) where

e V is a set of vertices, written {z,y, ...}
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e E is a set of edges, written {R, y, ...}
o Ly is a set of vertices’ labels, written {C,, ...} where C; is the label of vertex =

e H is an assertion, written either z : C or x,y : R.

4.2.3 Skeletonization

We now introduce the skeletonization which is a simplification technique for rule graphs. This
technique aims to simplify the graph by removing edges which can be removed without altering
the satisfiability of the rule’s body. Let us first define the result of this simplification, the skeleton

of the rule graph.

" Definition 8. A graph is a skeleton with respect to a role hierarchy Ry, if there are no edges in E
that are implied by other edges in E. We say that an edge R, in a graph G is implied w.rt. a
role hierarchy R, if, for all interpretations I, models of Ry, we have that T = G\ {R;,} implies
IEG.

Let us now give some intuition for the definition of an implied edge. As usual, we are only
interested in interpretations that model R;, because if 7 # R (hence it is inconsistent) it follows
that 7 ¥ G for any rule graph G. The idea is that if, for all Z, when Z models G \ {R, }, it also
models G, then the edge R, , does not further constrain G, hence it is implied by other edges of G.

We introduce this concept of skeleton because by removing implied edges from G, we maxi-
mize the possibilities that G will satisfy the restrictions and be admissible to the rewriting (see next
section). We now introduce a new relation, €, to simplify the writing of some expressions. The €
relation is an extension of the € relation in such a way that it covers the inverse elements. Let R
be a role and z, y be variables. R,, € E if R;, € E or Inv(R),, € E. Let G be a rule graph,
x,y and z be elements of V; and R and S be roles. A skeleton of G is obtained by applying the

following rules, in that order, to G until none is applicable anymore:

1. Let a RIA of the form Ry o Ry...R, T Rbe in R, if Ry, ,.., Rnznan,, € E and

R;, .., € E, thenremove R, .., from E.
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2. Let R be a transitive role w.r.t. R. If Ry, Ry, and R, € E, then remove R, , from E.
3. Let S be the inverse role of R w.r.t. R. If R, , € Fand S, , € E, then remove R, ,,.

4. Let R be a super-role of Swrt. R. If R,y € E, S, , € E and R # S then remove R,

from E.

In order to ensure the removal of the maximal number of edges, we have to apply the rules in
a way that respects a certain ordering of roles. We have seen in Section 2.1 that SROZ Q requires
the existence of a certain ordering, <, over the set of roles. Let T" be the set of roles ordered using
the inverse of <, i.e. Tj11 < T;, for each T}, starting with 77, we map the role R in each rule with
the role T; and if there exists a mapping for all roles in a rule, this rule is then applied. It is trivial
to see that a graph and its skeleton are equivalent since we only remove the edges from the rule
graph if they are implied by the remaining ones according to the semantics of equivalent, inverse,

transitive roles and RIAs in SROZQ.

RloR2LC S1
S1oR3C 52

e = ;

Figure 5: Graph visualization of a rule and its associated RIAs.

We now present an example that will give some intuition about the ordering of roles for skele-
tonization and also demonstrate its necessity. In Figure 5 we have a graph visualization of the
body of a rule and two RIAs as part of the associated role hierarchy. To skeletonize it, we could
first remove the S; edge (from the R; and R, edges) but then we could not further simplify it and
the graph would still contain a cycle, i.e. it would remain not rewritable. On the other hand, if
we start by removing the Sz edge (which is what the ordering forces us to do), it is still possible

to remove the S; edge afterward. The resulting graph is a skeleton and acyclic, thus rewritable.
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This shows why we skeletonize the rule graphs and why we have to observe a certain order when
skeletonizing.

We assume in the definitions of the next section that rule graphs are skeletonized and that the
vertices’ labels are simplified. The simplification of a label £ = {C}, ..., C,, }, where C; are concept
expressions, w.r.t. a TBox 7 is done by applying the following rules until none is applicable

anymore:

— if TE{[]|C=T} then L=0

Ciel
— if T={CiCTC;}  then L=L\C;

This simplification ensures that labels are expressed in the simplest way possible to avoid un-
necessary reasoning. The first rule clears the label of a node if the conjunction of all its components‘
is equivalent to T, i.e. always true. The second one removes concept expressions that subsume
another expression since the subsumer is implied by the subsumee. We now introduce the nucleus

of a rule graph, which is used in the rewriting technique.

Definition 9. The nucleus is a set of nodes that we define differently for concept and role headed
rules. For concept-headed rule graphs, the nucleus is only the vertex referenced in the head. As for

role-headed rule graphs, it is defined as the path between the two vertices referenced in the head.

Let us illustrate that notion with two examples. The nucleus of the concept-headed rule
R(z,y) A D(y) A R(y,2) — C(z) is defined as {x} and the nucleus of the role-headed rules
R(z,y) A R(y,z) A C(z) A D(y) — T(z, z) has the nucleus {z,y, z}.

4.3 Rewriting Technique

The rewriting technique is composed of two main steps: (i) the folding of the rule graph, in which

vertices not required by the head are folded into another, and (ii) the insertion in which the axioms
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are generated from the folded graph and inserted in the KB. We describe the details of these opera-
tions in the coming sections but we start by defining the criteria a rule must statisfy to be rewritable.
After having defined the rewriting for a single rule, we conclude this section by generalizing the

rewriting for a rule base.

4.3.1 Admissible Rules

It is an assumption of this research that the complete union of description logics and Horn rules re-
sults in an undecidable logic. In our approach, we chose not to semantically restrict the rules so we
obviously have to otherwise restict the combination in order to retain decidability. The restrictions
we impose are thus on the form of the rules. The restrictions follow from the encoding of the rules
into SROZQ axioms and since concept and role headed rules are rewritten into different types of
axioms, they are subject to different admissibility criteria. We now introduce the class of rules that

is admissible to be rewritten, first for concept-headed rules and then for the role-headed rules.

Definition 10. A rule graph G is concept-headed rule admissible if, when it is considered as an

undirected graph, it is a tree, i.e., it does not contain any cycle.

Definition 11. Letr < be an ordering for which the role hierarchy is regular. A rule graph G, with
role R in its head and the list of roles | as the roles between the nucleus’ vertices, is role-headed

rule admissible if:
1. It is a tree when considering it as an undirected graph,
2. lis of one of following forms:

(a) | = RR and both vertices of the nucleus have § as label and all vertices in the rule

graph are also in the nucleus, or
(b) l=R",or

(c)l=51,...,.8, and S; < Rforall1 <i<mn,or
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(d) | = RSy,...,S,and S; < R for all 1 < i < n, there are no concept assertions in the

first vertex of the nucleus and only one edge comes from this vertex, or

(e) L =51,....,5.Rand S; < R forall 1 < i < n and there are no concept assertions in

the last vertex of the nucleus and it has no successor in the rule graph, or

(f) L = S and S is simple.

The restriction for both types of rules to have an acyclic body comes from the fact that SROZ 9,
and most other DLs, cannot model cyclic structures with their terminological constructs. This re-
striction does not imply a loss of generality since cycles can only exist in the ABox, so the appli-
cation of a cyclic rule over the TBox would not yield any inferences. A DL-safe application of
such rules is thus perfectly suited to represent cyclic rules and carry the same semantics. These
definitions of admissible rules are complete, meaning that the rewriting of any rule not satisfying
these restrictions would yield an invalid SROZQ KB and that all rules expressible in SROZQ
satisfy these restrictions. The admissibility restrictions for role-headed rules are directly inherited
from SROZQ’s requirement for <-regular role hierarchy, which is a certain form of acyclicity
in the dependance between roles. This follows from the fact that rules can break this regularity
as with the following example. Let R be a sub-role of .S, rewriting the rule S(z,y) — R(z,y)
would break the aforementioned regularity. Indeed, R C S implies R < S and S(z,y) — R(z,y)

implies S < R so it is easy to see that no ordering can satisfy both these constraints.

4.3.2 Folding a Rule Graph

Before we can generate the axioms from a rule graph, we have to reduce it so that is equal to its
nucleus. We call this operation the folding of the graph, because vertices are “folded” back into a
neighbour. The procedure to fold a graph requires the use of the well known rolling-up technique,

so we first define this technique and then the folding procedure.
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Vertex Roll-up

The rolling-up technique [Tes01] is a widely known technique in DLs that allows the expression
of tree-like structures as concept expressions. Next is the procedure to roll-up a leaf vertex in its
ancestor, which we will generalise to the general case. Let x, y be vertices and R, , be an edge in
a rule graph G = (V, E, Ly, H) in which y is a leaf. To roll-up y into x, we execute these two

operations:

o ifL,#0  then L,=L,U{3R{[] Ci}}

Cieﬂy
else L,=L, U{3R.T}

o V=V\{y}

It is then trivial to show that this can be extended to the rolling-up of any tree-like structure
into a given vertex. Indeed, considering that trees with two or more vertices have at least two leaf
vertices and that rolling-up a vertex removes it from the graph, we are assured to have leaves to

roll-up until the graph has only one vertex left, the desired vertex.

Folding

The goal of the folding of a graph G = (V, E, Ly, H) is to reduce it in such a way that its set of
vertices V is equal to its nucleus /N, which contains one or many vertices depending on whether
the head is a concept or arole. If V = N, we do not have to do anything, G is already folded.
Otherwise, we select a leaf vertex in V that is not an element of NV and roll-it up. This operation is

to be repeated until the graph is folded, i.e. V = N.

4.3.3 Rule Insertion

Now that the rule graph is reducted to the same vertices as its nucleus, we can use it to genererate

the axiom(s) required to rewrite it and insert them into the ontology. For both concept or role
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headed rules, the generation of the axiom(s) is rather straightforward and obviously so is their
insertion. We first define the technique for concept-headed rules and follow with the slightly more

complex technique for role-headed rules.

Insertion of a Concept Headed Rule

The nucleus of a concept headed rule graph being a single vertex, and since the rule graph is folded,
the rule graphs we have to deal with here are of the form G = ({z},0,{L.},z : Cg). In such
cases, the rule graph is rewritten as a single axiom, which generation is rather straightforward and
highly similar to regular DL concept definition. The axiom is obtained by expanding the following

axiom, with respect to the rule graph,

l—l Ci CECy

C'k’EﬁiL‘
For example, a rule graph G = ({z},0, {L, = {C, D}, : H) yields the axiom C M D C H.

The final step is to insert the generated axiom into the ontology.

Insertion of Role Headed Rule

The generation of the axioms to rewrite these rules is not as simple as the concept headed ones. We
usually deal with bigger graphs, of the form G = ({21, ..., Zn}, {Ray .22 -+ Ron1,2n }» L2105 - Lan }s
Z1,Zn : Ry), and we also have to generate and insert more than one axiom.

Before formally defining the technique, we will explain the general idea behind it. Since we
have to rewrite the rule as a RIA, which obviously can only contain roles, we first have to rewrite
the labels of the nodes. To convert a concept expression to a role expression, we simply add an
axiom stating that the label’s concept expression implies the existence of a loop edge (using the
Self-restriction) labelled with a fresh role name. It follows that all instances of that particular
concept expression will have that loop and since we use a fresh role name it also follows that
the existence of such loops implies that the individual the role loops over is an instance of the

corresponding concept. That part of the technique is not very intuitive, but is highly important
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since without this “trick” our rewriting technique could not handle role headed rules, thus making
it totally uninteresting. Next we build and insert the RIA. The left hand side is the path from the
node that is the subject of the head and the node that is the object. The right hand side is the role
of the head. We will show in Section 4.5 that this method, although unintuitive, maintains the
semantics of the rule.

The technique is split into three steps defined as :

1. For each £; € Ly, we generate an axiom of the form H C C JnewRole;.Sel f and insert

ceLl,
it into the ontology.

2. Let w be a string of roles whose content is built using the following formula: w = newRole;U

@ Ry, 2; ® newRole;.

i=2in

3. We just have to insert the axiom, of the form w T Ry, into the ontology.

In the above algorithm, the @ symbol stands for the concatenation operator. Let us now sum-
marize this step and then give some intuition on why it works. First, we rewrite the labels of the
nodes as loop edges of new roles. The graph is then a only a set of edges in which there is a single
path between both nodes used in the head. We build a list of roles by navigating this path and any
loops we encounter and then assert that this chain of roles implies the head role. Rewriting con-
cepts as role loops is vital so let us review the general idea. We simply say that being an instance of
a given concept implies the existence of a loop of a new role over that instance. Intuitively, every
instance has a loop and, since it is a new role, every loop has an instance. The graph is then only
a set of edges in which there is a single path between the nodes used in the head so we traverse
the graph and build a list of roles that will be asserted to imply the existence of the head role. The

upcoming complete example will further illustrate this process.

4.3.4 Generalization to Rule-bases

So far, we defined the rewriting technique w.r.t. to a single rule, obviously in practice we have to

deal with sets of rules. The rewriting itself is not affected by the number of rules it has to process,
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but we have to review the restrictions for the admissibility of the rules. That follows from the fact
that by considering checking one rule at a time, we might miss the effect it can have over each
other’s regularity and also the effect a combination of rules might have on the regularity of the role
hierarchy. For that reason, we will define the criteria for a set of rules to be admissible.

As we have previously mentioned, SROZQ requires the role hierarchy to be <-regular. The
technique to verify that rewriting a set of rules will not break that regularity is as follows. We
start by building a set of inequalities, M, using the role hierarchy and the role headed rules of
the set. For all RIAs Ry, ..., R, & R in the role hierarchy R, complete the following operation:
M=MuU U {R:; < R}. For all role rules, for all edges R; connecting two vertices of the

i=1,.,n

nucleus, add the inequity R; < Ry to M, where Ry is the role in the head of the rule.
Definition 12. A set of rules S is admissible to be rewritten with respect to a role hierarchy Ry if:
o all rule graphs in S are acyclic.

o There exists a strict partial regular ordering < over the set of inequities M, derived from

Ry and S.

4.4 Walk-through Example

In order to clearly illustrate how the rewriting works, we will now go through every step of the
rewriting of a rule. Since the rewriting of concept-headed rules is rather intuitive, and also really
close to defining a regular concept, we will use a role-headed rule in this demonstration. The
rule we will rewrite is simple yet it is a nice example of the type of rules that could be used
in practical applications and induce changes in the terminological knowledge. This rule is de-
fined as follows: Professor(z) A supervises(z,y) A Student(y) A studiesProgram(y,w) A
GraduateProgram(w) A Article(z) A authorOf(y, z) — approved(z, z). We show the visual
graph of this rule in Figure 6.

Before going through the steps of the rewriting itself, we define the rule graph G for our rule.
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o*o«w*e*w»w»*w}

approved

Figure 6: Graphical view of the example’s rule.

We do not explicitly go through the step where we derive the graph from the rule because it is

rather trivial and it is implicitly shown below.

G = {{=z,y,w,z}, {supervises,,, studiesProgram,,, authorOf, .},

~ {Professorg, Student,, Graduate Program,,, Article,}, z, z : approved)

The nucleus N of G being defined as N = {z,y, z}, it follows that G requires to be folded to
remove the vertex w. Following the technique, we select vertex w, which is a leaf and not part of
the nucleus, to be rolled-up. It is to be rolled-up into its ancestor, the vertex y, and this will augment
the label of y with dstudy Program.Graduate Program. The folding stops there because the the

set of vertices is equal to the nucleus. The rule graph G is now defined as:

G = ({,y, 2}, {supervises, y, authorOf, .},
{Professor,, {Student, Istudies Program.Graduate Program},, Article,},

T,z : approved)

We are now ready to generate the axioms representing the rule and to insert them into the



ontology. There are three steps for the insertion of a role-headed rule graph, for each steps we will

recall the operation to be executed and show its output.

1. Foreach £; € Ly, generate [—l C C dnewRole;.Sel f and insert it.
. Cel;

- Insert Student M IstudyProgram.GraduateProgram T Jroley.Self
- Insert Article © droleg.Self

- Insert Professor C 3role;.Self
2. Build a string of roles w using the formula: w = role; ® @ R;, .« ®role,.
i=2in
- w = role;, supervises, roley, authorOf , roleg

3. Insert an axiom of the form w E Ry into the ontology.

- Insert role; o supervises o roles o authorOf o rolegs C approved

supervises

asusuunpERE R

approved.

rolel

Figure 7: The graph of the rule’s body with the labels removed.

Let us now have a closer look at the first step to better illustrate the way it works, which is not
intuitive. This step rewrites the labels of the nodes as role restrictions so that the graph is only
composed of edges (i.e. roles) which we use to build the RIA. The three axioms we added imply

that each instance of the nodes’ label has a loop of the corresponding role. The rule graph resulting
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Student M dstudy Program. GraduateProgram € 3role;.Self
Article T Jrole,. Self

Professor T 3roleg.Self

role; o supervises o roley o authorOf o roles T approved

Figure 8: Axioms generated by the rewriting and added to the ontology.

from that step is shown in Figure 7 and it allows to easily visualize the chain of roles which will

imply the head of the role. We summarize the result of the rewriting in Figure 8.

4.5 Correctness of the Rewriting

As we have often pointed out, we consider the semantics of the rules very important in our ap-
proach. That is why we will now show the correctness of our rewriting technique, i.e. the preser-
vation of the rules’ semantics. We will do so by first considering the different steps on their own
and then wrap them up altogether into a theorem. But first let us introduce the notion of an exten-
sion of an interpretation which is required to model the KB both before and after a given step since

it might requires the addition of axioms into the KB.
Definition 13. Z’ is an extension of Z if

1. AT = AT

2. fT=KthenT =K', where K C K'

3. CT = C¥ for all concepts C in K

4. RT = R forall roles Rin K

This notion of an interpretation’s extension is required since the rewriting creates axioms,
added to a KB X', so we will be working with two KBs and we need to have two interpreta-

tions that agree on their common part. For the remaining part of this section when we refer to
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7, it is to be a mapping from Var(r) — AZ where r is a rule. We will abstract the fact we are
dealing with rules and consider only the body of the rules. Since we are not modifying the head
and folding the graph around the variables referenced in the head, we can do so w.l.o.g. In order
to prove the correctness of the rewriting, we will show that the steps composing the folding of a

graph are valid and then show that the insertion of a rule maintains its semantics.

Lemma 14 (Rolling-up). Let Z be an interpretation that models K, b be the body of a rule and 7

be a mapping Var(r) — AZ

1. If T =" b, then there is a rolling-up b,,, of b and an interpretation I', extension of I, such

that T' =" by,
2. If T =" by, for a rolling-up b, of b, thenZ =" b.

Given that this technique is widely known and used, we will not give a proof for it here. The
reader may refer to [Tes01] for further information. The correctness of the folding implies that our

folding technique is also correct, which we formalize in the following lemma.
Lemma 15. Let b be the body of a rule. The folding by of b is equivalent to b.

Proof. The operations used in the folding of a rule graph have been shown to yield equivalent
graphs. The composition of any of these operations obviously also yields equivalent output. This
can be shown as follows. Let f be a function that yields a result equivalent to its input, i.e.
f(z) = z. It is trivial to show that f(f(z)) = =z given that we can replace f(z) by z since

they are equivalent. O

The correctness of folding also implies the correctness of our rewriting over concept-headed
rules, consideriing the close correspondance existing between both technique that we have shown
earlier. We thus only have to show that the rewriting of the label of a rule into a self edge is also

semantically correct and then build a theorem upon these intermediate results.
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Lemma 16 (Label removal). We use the term “Label Removal” to identify the step where we
replace concepts in the label with roles in the role-headed rule insertion algorithm. Let T be a

model of K, b be the body of a rule and 7 be a mapping.

1. If T =™ b, then there is a label removal b, of b and an interpretation T', extension of Z, such

that T' =" by,
2. If I =" by, for a label removal by, of b, then T =" b.

In this proof, we will show that the rewriting of labels into self edges is consistent by demon-
strating that any interpretation that satisfies dne of the representations will automatically satify the
other one. That shows that they are equivalent. For the proof, we will define b as C(z). Note that
C could be replaced by any concept expression. Following the label removal we described, K’
would be defined as K U {C C FinstC.Self} and by, as instC(z, z). To define Z’, we extend Z
with (instC)¥ = {(a,a) € AT x AT |a € C%}.

Proof of (1). Since K’ is only augmented by a RIA with a fresh role name on the right hand side and
I' =™ K (by definition of an extension), it is trivial to see that Z' |=" K'. To show that I’ =" b,
we will prove by contradiction, so, we assume that Z’' #7 by, i.e., ' E™ instC(z, x). We know that
T’ =" bso m(z) € C¥'. The axiom added in K’ gives that (7 (z), 7(x)) € instCT . The semantics

of by, being (z, z) € instCT , we just have to consider z = 7(z) to have a contradiction. O

Proof of (2). Since K C K’ and Z |= K, it trivially models K. We will prove by contradiction for
Z =™ b, so let’s assume that Z ™ b, i.e. Z ¥™ C(x). Since Z =™ by, we have (n(z), 7(z)) €
instCZ. Since instC is a fresh role name, it can only be introduced by the RIA which means that

m(x) € C%, which gives us a contradiction. O

Let us now give and prove a theorem that combines these results into a coherent proof showing

the correctness of our approach.

Theorem 17. Let r be a rule of the form b, — h,., where b, is the body and h,. is the head, and a be

the axiom rewriting of this rule of the form a, © aj. We then have an interpretation Z that models
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K and satisfies r iff there exists an interpretation I', extension of I, that models K' and satisfies a.
P

K' is defined as KC augmented with the axioms generated by the folding of b, and a.

The proof we use here is not as technical as the previous ones since it is easier to show the
correctness of a combination of valid techniques than to prove the correctness directly. Once again
we use the bidirectional implication between two constructs to show that they are indeed equivalent

and do so by using an extension of the original KB,

Proof. By Lemma 15, we know that b, is equivalent to a,. It is trivial to see that the heads are
equivalent. For the “if” direction, we have Z = r and since Z' is an extension of Z, it follows that
7' k= r. That means that 7' |= b,, b, being equivalent to a,, we also have Z’ k= aj. Since 7’ |= K,
which contains a, C ap,, we have that 7/ | a.

For the “only if” direction, we have Z' |= a, thus 7’ |= a, and by Lemma 15 Z’ |= b,. By the
definition of an extension and the fact b, only references roles and concepts in K, it follows that
Z [= b,. The same applies to the head so Z = h,. That shows that Z |= b, implies Z = h,, thus
IEr. O

This concludes the presentation of the theoretical work included in this thesis. In this chapter
particularly, we have presented a class of rules that we could rewrite, we have defined the technique
to rewrite and we then proved that the rewritten rules are semantically equivalent to their rewriting,
a central point in our approach. The next chapter presents the prototypes we implemented w.r.t. to

that rewriting.
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Chapter 5

Prototype Implementation

As we previously stated, one of the main advantages of our rule integration approach is that it
is fully compatible with existing tools and standards and thus ready to be deployed in real-life
scenarios. In order to emphasize that fact and to effectively allow end users to use it, we developed
software that fully implements the rewriting technique. It consists of two front-end applications
that are built around a common framework that encapsulates all the tasks required to rewrite a rule
into DL axioms. The first application is a plug-in for the Protégé ! [KFNMO04] ontology editor that
allows to create, modify and remove rules from an ontology. The second one is a command-line
application that takes an OWL ontology as input and rewrites all the admissible SWRL rules it
contains into DL axioms. Both these applications, and the relevant documentation, are available to
download as a single package from http://users.encs.concordia.ca/~f_gasse/.
This chapter will further introduce this software and present some practical results obtained
using it. First, we will describe and explain the architecture and features of the common framework
as well as the syntax of rules. We will also present some instances of issues that we had to solve and
how we solved them. We will then present the two front-ends for this framework, the command-
line program and the Protégé plug-in. Considering the user-oriented nature of these components,
we will focus on matters of interest for the users, namely, the features, the expected input and

output, etc. Finally, we will present the results and conclusions of the tests we conducted to verify

'http://protege.stanford.edu

50



how reasoners fare with rule-augmented ontologies.

5.1 Architecture of the Common Framework

In this section, we will go over the main tasks that the common framework implements and moti-
vate the design decision that shaped the framework. But first, we shall introduce the syntax we use
for rules. This syntax is used as the textual form of rules during processing as well as when editing

rules textually in the plug-in.

5.1.1 Rule Syntax

One might wonder why we defined our own syntax when there are options already existing, and
why we did not build the syntax around the XML format. We already mentioned that we consider
usability as one of the most desirable feature of our approach. From this usability follows the
requirement to be able to coexist with other types of rules, so to avoid confusion and the error-
prone process of full URI usage, we deemed it better to have a syntax to call our own. The reason
why this syntax is not XML based is that the extensibility of XML is not required in this context
and nesting an XML rule format into an OWL ontology could lead to unnecessary complications,
forced “imports” into host ontologies and a syntax much less readable for humans. These consid-
erations led us to opt for a plain text syntax, which we defined in Figure 9 in a EBNF notation.
This syntax is closely related to common human-readable syntax for rules to flatten the learning
curve.

In the above grammar, <className> and <propertyName> refer to classes and properties
present in the ontology. We want to point out that if, for any reason, an XML format would become

necessary, this syntax is easily rewritable into the SWRL format.
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<rule> = <atom> [ , { "@" <atom> } 1 , ">" , <head>;

<atom> <propertyAtom> | <classAtom> ;

<head> = <propertyAtom> | <classAtom>;

<propertyAtom> = <propertyName>,
"(",<variable>,",",<variable>,")";

<classAtom> = <className>, " (", <variable>,")";

<variable> = <letter> [ , { <character> } 1 ;

<character> = <letter> | <digit> ;

<letter> = <capitals> | <regular> ;

<capitals> - “A" l "B“ | "C" l . l "XII ! HY" | "Z" ;

<regular> = "a" l "b" i "C" I .. l “X" l l!y" l "Z" ;

<digit> e "0" [ "1" I "2" I "3" } "4" l "5" l "6“ l
"7" I n 8 " I n 9"

Figure 9: The valid syntax of DL rules in EBNF notation

5.1.2 Persistence

An obviously necessary part of the framework is the input/output package, which has to be able to
insert, modify and remove rules from an OWL ontology. In order to minimize the implementation
effort, all the rules, denoted by the set R, are removed from the ontology when it is loaded and the
(usually modified) set R is inserted back when then ontology is saved. This allows one to handle
modifications of a rule using this same code.

Let r be a rule that has to be inserted into an ontology O. r is rewritten into a set of OWL
axioms A, each axiom A; of A has to be inserted into O. When loading the ontology O, since we
have to remove the rule from O, we have to remove all the axioms A;. That implies that we have
to be able to identify the axioms we had inserted at the time the ontology was saved. We also have
to be able to determine the syntax a rule » had at save time when we load it back so that the user
sees the same rules he saved. Since a set of axioms A can be the result of the rewriting of many
syntactically different rules, that implies we also have to save the syntax of r into O.

In order to fulfill these requirements, we devised a persistence technique which requires the in-
2 .

troduction of two annotation properties in the host ontology. The first one, d1-rule-axiom?, is

Zhttp://users.encs.concordia.ca/~f_gasse/dl-rule-axiom
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used to annotate the axioms related to rules in the ontology, thus identifying them. Since this prop-
erty is used as a flag, its value is not relevant but our implementation puts the value addedAxiom
as default. The second one, d1-rule?, is used as a non-unique ontology annotation property and
its value is the textual form of a rule inserted in that ontology. We will now expose the procedures
that save and load ontologies and rules, or more precisely merge an ontology and a set of rules
before the saving and seperate them after the loading since the actual saving and loading tasks are

handled by the OWL API*.

Saving

For this task, the input is an ontology and a, possibly empty, set of rules. The task is to merge the
set of rules into the ontology, and annotate the relevant axioms so they can be recognized. So for

every rule in the set, we check if it is admissible to be rewritten, and:

o Ifitis, send the rule to the rewriting module and get back a set of axioms. For each axiom,
add it to the ontology and annotate it with the property d1-rule-axiom. Then annotate

the ontology using the property d1-rule and set the value as the textual form of the rule.

¢ If not, convert the rule to a SWRL rule and add the SWRL rule to the ontology.

Loading

The input we have for this task is an ontology that may contain SWRL rules and/or rules rewritten
as axioms. The task is to remove the rules of both type from the ontology and add them to a set of
rules associated to the ontology. Not surprisingly, this is the mirror of the saving task. First, for all
SWRL rules, remove the SWRL axiom from the ontology and add the rule to the set. Second, for
all annotations using the property d1-rule, parse the value of the annotation into a rule, remove

the annotaion and add the rule to the set. Finally, for all axioms annotated with the property

dl-rule-axiom, remove the axiom from the ontology.

3http: //users.encs.concordia.ca/~f_gasse/dl-rule
“http://owlapi.sourceforge.net/
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<owl:Ontology rdf:about="">
<cs:dl-rule> )
GradStudent (X1) @ authorOf (X1,X2) &gt; ProlificAuthor (X1)
</cs:dl-rule>
</owl:Ontology>

<rdf:Description>
<rdf:type rdf:resource="&owlll;Axiom"/>
<rdf:subject>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#GradStudent"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#authorOf"/>
<owl:someValuesFrom rdf:resource="&owl; Thing"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</rdf:subject>
<rdf:predicate rdf:resource="&rdfs;subClassOf"/>
<rdf:object rdf:resource="#ProlificAuthor"/>
<cs:dl-rule-axiom>addedAxiom</cs:dl-rule-axiom>
</rdf:Description>

Figure 10: Example of an inserted rule with its annotations
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We handle the saving and loading operations this way for two reasons: we can modify rules
with no additional code and, more importantly, the end-user is not exposed to the axioms we
generate and add to the ontology to replace rules, thus possibly avoiding confusion. The Figure
10 shows the OWL axioms inserted in an ontology to represent the rule GradStudent (X1) @
authorOf (X1,X2) > ProlificAuthor (X1}, it also clearly shows how both annotation
properties are used.

Note that in this Figure, cs: refers to the http : //users.encs.concordia.ca/ f_gasse/

namespace.

5.1.3 Other Tasks

Since the Common Framework handles all the tasks that are required by both applications, it obvi-
ously implements other tasks than the one we presented so far. Indeed, it also handles, among other
things, the admissiblity checking, the folding and the rewriting. But since the implementation of
these features was nothing else than translating the procedures, we intoduced in Chapter 4, into

Java, we will not disuss their design.

5.2 Command-line Program

‘We provided this program to allow rule users who have OWL ontologies containing SWRL rules
to enjoy the benefits of our approach without having to modify their ontologies themselves. The
program has to be invoked with an OWL file as parameter, which it will search for SWRL rules.
For each rules found, it will check if the rule is rewritable into OWL axioms. If it is, the SWRL
axiom is removed from the ontology and the OWL axioms and required annotations properties are

inserted. Otherwise, the SWRL axiom of that rule is left unchanged.

55



5.2.1 Invocation

The program provides a set of parameters to modify the way it will execute. The syntax to invoke

the program is defined as:
DLRuleApp <source> [-t<target>] [-r<report>] [-p] [-i]

It is to be noted that as usual, the [] notations indicates optional parameters. Let us now describe

the effect and required object of each parameters:

<source> This parameter indicates the file that is to be processed by the program and is the
only required parameter. The value should be the physical path of an OWL file. We strongly
advise the use of an absolute path enclosed in quotation marks to avoid possible problems
with relative paths and spaces in this path. These remarks also apply to the other parameters

that are paths, namely <target> and <report>.

—t<target> This parameter allows the specification of a file to store the processed ontology. If
specified, the ontology will be written to the file <target>, otherwise the original ontology

is overwritten with the processed one.

—r<report> This parameter allows the specification of a file to save the report. If the parameter
is present, the report will be saved in the file <report> additionally to being displayed in

the console, which is the default.

—p This parameter is used to preview the effect of the execution of the program without actually
modifying it. It is to be noted that if this parameter is present, the parameter -t <target>

will be overlooked since no modifications are to be carried on.

—i This parameter is used to include in the report the new knowledge about individuals that a rule

allowed to infer.
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5.2.2 Report

Since the rewriting of a rule modifies its semantics, thus possibly also modifying the architecture of
the ontology by implying new subsumption relations for instance, it is a rather important feature to
provide the user with some feedback regarding what rules were rewritten. Given that, the program
will generate a report giving that very feedback. The report mentions, for every SWRL rules in the
ontology, if the rule is rewritable as OWL axioms and, if it is, additionally includes the following

informations:
¢ the OWL axioms added to model this rule, and
¢ the new subsumption and/or equivalence relations between classes implied by the rule, and
e the new subsumption and/or equivalence relations between properties implied by the rule.

This information will allow the user to ensure that the effects of the rules’ rewriting are desired
and coherent with the content of the ontology. An example of such a report is presented in Figure
11. In order to keep the reports as readable and concise as possible, we use the functional syntax
of OWL, which is arguably the easiest to read and also rather consise, and only show the fragment
part of the URI referencing all the entities. One can also add to the reports all the assertions about
individuals infered by rules by using the parameter —i. We do not include this in the report by
default to avoid generating an endless report, for instance if a rule implies a new subsumption for
a class with a 1000 instances. Another parameter, —p, cause the application to generate a report to
preview the effect it would have while not modifying anything. To avoid confusion, the preview

reports are easily recognizable since each line is prefixed with ! PREVIEW!.

5.3 Protégé plug-in

As we mentioned before, we consider the practical usability of our approach as a very desirable
feature. Nowadays, usability implicitly requires the existence of a graphical user interface, so

the development of such a front-end was a must to support correctly our approach and favor its
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FH4H4 44448 HHHHRHFFHHESES
RuleID: "diplomaToDrDiploma"
Rule: "hasDiploma(x,y) @ DoctoralDegree(y)
> hasDoctoralDiploma (x,y)"
Rewritable : NO
st TSI EES L
RulelD: "o
Rule: "authorOf (x,y)@Article(y)@Conference(z)RacceptedAt (y,z)
>attends(x,z)"
Rewritable: YES
OWL Axioms: SubClassOf (Article ObjectExistsSelf (rolel07))
SubClassOf (Conference ObjectExistsSelf(rolel08))
SubObjectPropertyOf (
SubObjectPropertyChain (authorOf rolel07
rolel08 acceptedAt)
attends)
New Inferences: PublishedAuthor SubClassOf ConferenceAttendee

Figure 11: An example of report generated by the command-line application.

adoption. We chose to provide such a front-end in the form of a plug-in for the Protégé ontology
editing environment. The plug-in, called “DLRule”, offers all the functionalities required to create
and edit rules, save them into an ontology and evaluate their effect on that ontology.

In this section, we will first introduce Protégé and motivate our choice to use this platform.
Next, we will describe the plug-in itself, its interface, its main components and some examples of
its usage. To conclude this section, we will discuss some design problems we encountered and
the solutions we provided as well as a brief overview of how the plug-in compares to other rule

editors.

5.3.1 Protégé

Protégé is a feature-rich graphical tool for ontology editing and other knowledge management
tasks. It is very widely used in the Semantic Web community by both researchers and end-users,
making it a de facto reference in its category. This large user base is a major reason we imple-

mented a plug-in for it since these users are potential testers and adopters for our approach. Other
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reasons that motivated our choice are the facts that Protégé is open-source, implemented in Java
and provides third-party plug-in developers with an API that facilitates development. The final
reason we chose Protégé is that it is developed and supported by academic institutions (Stanford
University and the University of Manchester) which favors its long term maintenance.

Since the rewriting of rules is based on features only introduced in OWL 2, we are obviously
limited to the use of tools supporting the draft version of the upcoming standard. Such support is
only offered in the version 4 of Prbtégé, a total rewriting of the application which is still in devel-
opment and only released as beta. Notwithstanding this beta status, the application is suprisingly
stable and relatively bug-free so using it is not a source of concerns.

In its basic form, Protégé can edit OWL ontologies graphically, browse the class and property
hierarchies, query the ontology, etc. These features can be extended by using the available plug-
ins. The reasoning tasks are handled by third-party reasoners. Two reasoners, FaCT++ [THO06]
and Pellet [SP06], are bundled with Protégé and they both support OWL2 and are thus compatible

with our approach.

5.3.2 Overview of the Interface

The interface of the DLRule plug-in is built within a single panel, which is embedded within a tab
in Protégé, along with other plug-ins. It was designed to offer an adequate rule editing environment
to both experts and beginners, which we ensured by following the Ul design principles presented
in [Mar95]. Additionally, we aimed to offer an interface that would be visually and functionally
coherent with Protégé. Let us now introduce the general architecture of the plug-in’s interface
and then further explain the main components and their functionalities. The description of each
component will implicitly introduce all the functionalities the plug-in provides.

A general outlook of the plug-in is presented in Figure 12, in which the components are labelled
with numbers. We now introduce the name and main function of each component and locate them

in the interface using the labeled number.

Rule List (1) This component contains the list of the rules present in the active ontology, whether
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Figure 12: Overview of the DLRule plug-in.

they are written in SWRL or as axioms. The rule selected in that list is called the “active

k43

rule

Class Hierarchy (2) This component is a standard Protégé widget and displays a tree view of the

concept taxonomy of the active ontology. It also allows to create and delete concepts.

Role Hierarchy (3) This component behaves similarly to the previous one, only it is concerned

with properties.

Rule Pane (4) The Rule Pane is the actual editing component. It is composed of 3 tabs that offers
different visualization and editing modes, either in a textual form, as OWL axioms or as a

graph.

Rule Application Previewer (5) This component offers insight on the effect of the application of
a rule over the ontology. Given the possible cost to compute the information, this view is

computed on demand.
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Figure 13: The Rule List component.

With that high-level introduction completed, we now introduce more thoroughly each compo-
nent, except those provided by Protégé. For each component, we provide a description of all its

functionalities, the way it behaves and we also provide more detailed screenshots for each one.

Rule List

The Rule List displays the list of all existing rules in the ontology, whether they are written as
SWRL rules or rewritten as axioms. The rule that is selected in that lists is “active”, which means
that it will be rendered in the Rule Pane and if the preview action is launched, this rule will be its
subject. The list also serves to show the “status” of each rule by changing the font color in which
the rule is displayed. The status of a rule is one of three possibilities: it is rewritable as axioms
(green font), SWRL rule (orange font) or invalid (red). An invalid rule is one that does not respect
the syntax we introduced.

Below the list are two buttons, labelled “New” and “Delete”, that obviously allow the creation
of new rules and their deletion. The New button adds an empty rule in the list, which is rendered
as “EMPTY”, which can then be selectected and modified in the Rule Pane. The Delete button
deletes the active rule, if there is one, from the ontology. This components also contains the

button, labelled with the magnifier icon, that activates the Previewer with the active rule as subject.
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aduateProgram(X1) @ Article(X2) @ Student(¥3) @ Professor(¥4)
£ supervises(x4 X3} @ studiesProgram{X3 %1) @ authorOf(¥3 %2}

> approved{¥4 ¥2}

Figure 14: The text tab of the Rule Pane.

Rule Pane

The Rule Pane fulfills two main functions, it allows one to visualize the active rule and also to
modify it within different paradigms. It is composed of 3 tabs, named the Text tab, OWL tab and
the Graph tab respectively, each supports a different view of the rule.

The Text tab (shown in Figure 14) renders the rule in the textual syntax we presented in Figure 9.
It allows the rule to be modified and provides some interesting features in that regard, i.e. error
highlighting and drag and drop support. The error highlighting feature shows the user the syntactic
errors in the rules by underlining in red the problematic parts of the rule. The rule is parsed every
second to discover these errors and trigger their highlighting. We also provide a support for drag
and drop operations between the class and role hierachy components and the Text tab. If a concept
C is dragged over the text tab, an atom of the form “C/() @ ” is added to the rule at the location the
drop occured. A similar behavior is implemented with the roles, with the difference that the added
atom is of the form “R(, ) @ ”. The user then only has to put in the desired variables in the atom.

The OWL tab (see Figure 15) is the only of the three that is read-only since it does not display
the rule itself but the OWL axioms resulting from the rule’s rewriting. The OWL axioms are
rendered with the Manchester OWL Syntax> to offer an OWL based yet easily readable notation.
This visualization may not help the editing of the rule per se, but it can be very useful to help users

better understand the inner workings of the rewriting.

Shttp://www.w3.0rg/2007/0WL/wiki/ManchesterSyntax
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- Professor subClassOf role134 some Self

role134 0 supervises o rotel 55 o authorOf o role156 = approved
 Anticle subClassOf rolel 56 soms Self

Student subClessOf role135 some Seif

Figure 15: The OWL tab of the Rule Pane.

Finally, we have the Graph tab (pictured in Figure 16) that offers a graph-based visual repre-
sentation of the rule. The graph is derived from the rule in the way as introduced in Section 4.2,
so that variables are represented as nodes and the roles between these Vaﬁébles are edges. The
head of the rule is represented by appending a string of the form “HEAD <headEntity>", where
“<headEntity>" is the role or concept in the head, to the relevant node or edge depending on the
type of the rule. This graph representation offers an intuitive paradigm to validate the rule as well
as to modify it.

The technique to modify a rule was made as intuitive as possible but we shall still go over the
different use-cases. The creation of a node is simply triggered by a double-click, which will cause
the insertion of a node in the graph and the appearance of a class selection window (see the left
hand side of Figure 17). In this window, there is a class hierarchy component on the left, a list
of concepts on the right with a combo box beneath this list. The hierachy allows one to select
the concept which we want to assert on the node, the list on the right hand side contains concepts
asserted on that variable and the combo box allows to specify the concept used in the head if this
variable is the target. There are two buttons, labelled with left and right arrows, to add or remove
concept assertions.

For the addition of an edge between two nodes, we have to drag the pointer from the subject
of the property to the object while keeping the Control key pressed. This triggers the appearance

of a Property Selection window to select the desired property. This window behaves in the same
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Figure 16: The Graph tab of the Rule Pane.

Figure 17: The Class and Property pop-ups from the Graph tab.
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Figure 18: The Rule Application Previewer component.

way as its class counterpart. To edit an existing entity, node or edge, double-clicking on it causes
the relevant selection window to pop-up. Also, pressing the Delete key causes the selected entity
to be removed from the graph altogether. It should be noted that when a tab loses the focus, it
updates the active rule and the two other tabs with its content. This behavior ensures that all the ‘

representations of a rule are consistent.

Rule Application Previewer

The Rule Application Previewer (Figure 18) offers a functionality that is especially interesting in
our context since our integration approach allows rules to have an impact on the terminological
knowledge of the ontology. The effect of such rules is sometimes not trivial to foresee so the
previewer is a great help to ensure a rule has the desired effect. When the previewer is activated, by
pressing the magnifier button, the effects of the active rule are computed and each new subsumption
and equivalence relations is displayed in a line of the previewer’s table. Let X be a knowledge base
and r be a rule, the subsumption C E D is an effectof r if ¥ C T D and {KUr} = C C D. The
effect on intensional knowledge (ABox) is not shown because the amount of such effects could be

very large and thus obscure the interesting information in that mass of information.
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5.3.3 Opening and Saving Operations

All the input and output operations of our plug-in are embedded into those of Protégé. This means
that loading and saving ontologies containing rules are transparent operations for the user. Protégé,
in coordination with the plug-in, will complete the required operations with respect to the content

of the ontology.

5.3.4 Design Problem

During the plug-in’s implementation, we faced a problem that had vast implicafions on the behavior
of the whole application. The rewriting of a rule may require the introduction of new classes and
properties which would be better not to appear in the hierarchies to avoid to confuse the user with
this information that is irrelevant in its context. Considering that, we opted to isolate Protégé from
the ontology containing rules. To do so, when the application loads a rule-augmented ontology,
the plug-in removes the rules and all the concepts and properties generated by the rewriting and
Protégé then uses this “cleaned” version. The rules and their rewriting are added back into the
ontology by the plug-in when the ontology is saved.

This isolation unfortunately cause another problem. Since Protégé works with a version of
the ontology stripped of the rules, the taxonomy displayed does not take into account the possible
effect of the rules. The effect of this problem is lessened by the fact that the user has access to
the Previewer which gives these possible effects. This solution is not perfect, but it offers the best

combination of clarity and accuracy.

5.3.5 DLRule vs. Other Rule Editors

We would now like to offer a a brief overview of the comparisons that can be made between this
plug-in and other available rule editors (in the ontology context). There are not many such tools,
in fact our plug-in is unique in many respects (to the best of our knowledge): it is the only one

to support OWL 2 (the SROZQ DL), the only one to offer a mechanism to preview the effect
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of the rules, the only one bundled as a Protégé 4 plug-in, and the only one to allow a graphical
rule specification within Protégé. Let us now compare our plug-in with two competititors, the
SWRLTab and OntoStudio.

The Protégé SWRL tab allows to add SWRL rules within an OWL ontology. It only supports a
textual form of the rules and is only implemented for Protégé 3.x, thus limiting it to the support of
OWL (SHOZIN(D)). A nice feature of this implementation is the interoperation mechanism with
various rule engines it provides.

OntoStudio® provides a rather usable and intuitive graphical rule editor tool. The tool is how-
ever not very comparable to our tool because it focuses on RDF and F-Logic ontologies and no
reasoning services are provided within the tool. Furthermore, this tool is commercial and only

freely usable under certain conditions.

5.4 Practical Reasoning Results

With SROZQ being a decidable logic and the axioms we insert being valid in SROZQ, it is ob-
vious that reasoning over a rule augmented ontology is a decidable problem. What is less obvious
is how the currently available reasoners fare with such ontologies in practice. Many factors con-
tribute to that uncertainty. For example, since OWL 2 is still in development, no big ontologies are
yet commited to use it so we have little results for large and/or complex ontologies. Also we use
newly introduced features which have been implemented recently by the reasoners, hence reason-
ing over these constructs is probably not optimized as much as other OWL features. Furthermore,
our rewriting technique uses extensively some of these new features and in ways they have not
been used much.

In order to settle these unknowns, we designed a test suite aimed to verify that reasoning over
rule-augmented ontologies was indeed practically usable. Qur test is composed of three series of

16 realizations of ontologies where we augment the ontology with additional data between each

®http://www.ontoprise.de/de/en/home/products/ontostudio.html
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iteration. Each series is characterized by the nature of the additonal data which is added. For the
first series, the added content is the ABox of the original ontology, for the second series, the TBox
(including the rules, if applicable) and for the third, both the TBox and ABox are added. This test
was carried out with two base ontologies, only one containing rules. The data added between each
iteration is 20 times the relevant data the original ontology contained. The ontology we started with
is the University Ontology presented in Appendix A, which contains 10 classes, 13 properties, 5
DL rules and 20 individuals (and their assertions). A quick calculation reveals that the biggest
ontology processed contained 3200 classes, 4160 properties, 1600 rules and 6400 individuals. We
had to stop at 16 executions because the parser is limited to 64000 entities per file and the 17th run
reached that threshold.

The reasoner we used for these experiments is FACT++’ , version 1.1.11. We used FaCT++
because preliminary experiments showed that it performed and scaled much better than Pellet for
reasoning over OWL 2 ontologies. The test were conducted on a computer operating Windows XP

with a Intel Core Duo 2.16GHz CPU and 2 GB of RAM.

Results

The only data we collected during these tests is the time required to realize each ontology since this
is the measure reflecting most accurately the computational cost of an operation in this context.
The results are shown in the chart in Figure 19. The data underlying the graph is the average
computation time of 5 independant runs for iterations of each series.

These data allow us to see the effect of many factors over the computational cost of reasoning,
i.e. growing ABox size, TBox size and both, for ontologies containing, or not, rules. That will
allow us to isolate the effect of rules alone in an ontology and how they might combine with other

factors to affect the cost of reasoning.

"http://code.google.com/p/factplusplus/
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Figure 19: Graph of the realization time of KBs containing rules.
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Figure 20: Graph of the realization time of KBs not containing rules.
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Analysis

Unfortunately, we have to focus our analysis on the trend the results provides, not on the absolute
values, since we lack points of comparison. Indeed, we can hardly compare the results we obtained
with results of implementations of other rule integration technique because the semantics are dif-
ferent. The extra expressivity of SROZ Q and the DL-unsafety of rules enabling them to have an
effect on the taxonomy obvioulsy has a cost. For instance, the computation times of KAON23 over
the same test suite are better by an order of magnitude because it uses a sub-logic of SROZQ and
DL-safe rules.

This performance difference can be seen as a major issue but we consider it otherwise. The
semantics of rules in our approach offer an expressive power that can be of great interest for many
types of applications and experience shows that users are usually more concerned with expressivity
than performance as long as the latter is still practical, which it is in this particular case. We
thus leave to the users to decide if the trade-off between expressivity, of both the rules and the
description logic, and performance is of any interest in their particular field of application.

The results we obtained allow us to come to some conclusions. We can see that the addition
of rules alone into an ontology does not cause major problems since the growth function of the
computation time is, altough higher, of the same order as the one for ontology without rules.
We can also see that the rules combined with a number of individuals/concepts do not cause an
explosion of computation time. These two observations allows us to state that our approach is

practical and also scales rather well, as well as DLs scale at least.

®http://kaon2.semanticweb.org/
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Chapter 6

Conclusion

Before presenting the conclusion of this work, we shall point out that there has been parallel
work which content overlaps with the content of this thesis. The work presented in [KRHOS8] also
describes rules that can be rewritten into DL axioms but offers a different angle to the work. Indeed,
this form of rules is then used to see what rules can be integrated into weaker DLs to maintain their
tractability. Also, this work does not cover the practical considerations that are part of this thesis.
Now, the conclusion is structured as such. First, we will summarize the content of the the-
sis, then we will relate the contribution of this research to the field and finally we present some

interesting ideas we uncovered during this research but were left as future work.

6.1 Summary

Let us now go over the content we presented in this thesis and briefly summarize it as we go along.
We first presented the Semantic Web and its unsatiable thirst for expresivity, to which we think
that combining rules and DL should be part of the solution. We presented these two formalism
and their respective expressivity and which, when combined, result in an undecidable formalism.
Since this field of research had been navigated before, we presented the most relevent results that
were obtained. We then analysed these results and have seen that the current state of affairs let

the users choose between the lesser of two evils when in need for the expressivity of both rules
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and DLs. Either they used the complete union of the languages and had an undecidable logic, or
they restricted the interaction between the rules and the terminology and regained decidability. We
defined our research objective with respect to that dilemma and we intended to provide a third way,
one in which both the semantics of the rules and the decidability of reasoning were to be preserved.

We then presented the core of this thesis, a rewriting technique that enables us to offer that
third way by allowing rules to be rewritten into DL axioms. Since the full union of rules and
DLs is undecidable, we devised a new restriction that let the rules modify the terminology while
maintaining decidability. We identied and presented such a set of syntactic restrictions. We then
introduced the technique used to rewrite rules as axioms. We then showed that rules rewritten in
such a fashion were indeed not semantically restricted and decidability follows from their rewriting
in a decidable logic.

We completed the thesis by presenting the prototypes implementing our technique. The goal
of this part of the project was twofold: first, to show that this approach was usable in real-life
scenarios and expressive enough to be interesting in a variety of contexts, and then also to facilitate
the adoption of that technique by the potential users. The rule editing tool that we developed
allowed us to answer both of these questions. We have shown that reasoning over ontologies
augmented with rules was indeed practical and it allowed us to see that users were really interested
by the potential of this work and also that they considered that the our tool resulted in a valuable

contribution that compared avantageously with other available alternatives.

6.2 Contribution

The goal of any research is obviously to advance the knowledge we have in a certain area. This
work contributed to the field on both the theo.retical and applied level. On the theoretical level,
we identified a combination of rules and DL that evades the restriction to DL-safety and remained
decidable. These characteristics allow the rules in our approach to modify the terminology. Our

integration paradigm is the first to combine these two features. On the application level, we showed
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this combination is: (i) compatible with OWL, (ii) supported by existing reasoners, and (iii) we
provided a set of tools to support the community in their use of this combination. The software
we implemented also yielded a contribution we did not originally aimed for. In our technique,
concept-headed rules are rewritten as concept inclusion axioms, the best way to represent them,
such that a user accustomed to using rules can define a whole ontology in the rule interface and the
rewritten ontology will be identic to an ontology optimally defined using concept inclusion axioms.
This enables the user to choose the paradigm he is more comfortable with. To fully understand the
contribution of this work, we will now present the publications that stemmed from it and also relate

the contribution to the project’s objectives.

6.2.1 Publications

In the world of academic research, publications in peer reviewed publications and conferences
are the prime way to confirm the validity of a research and its results. This considered, we have
to state that the work presented in this thesis has been acknowledged as valid and interesting by
such review committees. Indeed, two articles presenting subsets of the present work have been
published.

The first publication, “DLRule: A Rule Editor plug-in for Protégé” [GHO8] was presented at
the “2008 Workshop on OWL: Experiences and Direcﬁons” conference. This workshop is aimed
at gathering both users and researchers working with OWL. In accordance with this audience, it
presented the basics of the rewriting technique and the features of the Protégé plug-in we devel-
oped. Its contribution was to lay the basis of the rewriting technique and to present a new rule
editing tool dedicated to OWL users. Users showed keen interest in both the rewriting and the
plug-in, proving that it addressed an actual need of the community.

The second article, “Rewriting Rules into SROZQ Axioms” [GSH08] was published at the
“2008 International Workshop on Description Logics™ which is the most prominent conference in
the field of DL. The audience being mostly researchers with extensive knowledge of the field, this

paper extensively presented the theory of the rewriting technique and the related proofs which was
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a relevant contribution to the field.

6.2.2 Contribution versus Objectives

At the beginning of this research project, we investigated the different approaches to rules and DL
integration and identified the shortcomings of these approaches. We then decided on objectives that
we intended to complete with our research, overcoming some of the aforementioned issues among
others. Let us now restate these objectives and analyze how successfully this research addresses

each of them.

Identify the most expressive DL and rule combination

We intended to identify the most expressive combination of DL and rules that did not require
the restriction to DL-safety to retain decidability. We have introduced DL rules, a combination of
SROIQ and arestricted form of rules. SROZ Q being the most expressive DL currently available
and our rules only restricted to respect SROZ Q’s restrictions, we conjecture that DL rules are the

most expressive combination, but we can say for sure that it is a very expressive combination.

Define the semantics and prove the decidability of this combination

The proposed approach rewrites rules as SROZQ axioms. It follows that the semantics of the
rules are the same as SROZ Q’s, also the restrictions over the rules ensure that the rewritten rules
are valid SROZ Q axioms and since SROZQ is a decidable logic, the decidability of the rules is

obvious. This objective has been totally accomplished.

Build tools supporting this combination

The softwares we have presented in Chapter 5 provide the required functionalities to insert, mod-
ify and remove rules from an OWL ontology in graphical mode within a major ontology editor

and also to convert existing SWRL rules into OWL axioms automatically. This software support
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is advantageously comparable with other integration technique, which leads us to consider this

objective as fulfilled.

Prove the practical usability of this combination

In Section 5.4 we have shown that reasoning over rule augmented ontologies was practical and
scalable, so the objective is completed. However, we have to mention that the usability of the
software supporting the approach has not been fully evaluated, although the results and feedback

we got let us believe it is.

Overall Objectives Completion

The four objectives we had set for this research have been completed with a rather high level of
success. Obviously the subjectivity of some of these objectives prevent us to say it is a “total”

success, but we confidently say they are achieved.

6.3 Future Work

While conducting this research, we discovered very interesting ideas to further improve rules and
DL integration, some of which were presented in this thesis. Unfortunately, some of them were
not pursued because they were out of the scope of the presented work. We now introduce the two

most promising ideas that we consider as interesting future work.

63.1 SROIQ*

Rules of the type hasChild(z,y) A Man(y) — hasSon(z,y) cannot be rewritten since naturally
hasSon C hasChild, hence hasSon < hasChild, and the rule implies that hasChild < hasSon
thus violating the <-regularity of roles hierarchy. This type of rules being rather common, it is
desirable to solve this problem. A possible solution was provided by Ulrike Sattler, extending

SROZQ with a new form of role inclusion axioms, similar to the restrictions found in ALB
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[HAO00]. In addition to the SROZQ RIAs, in SROZQ™, an expression of the form Sfc € R or
S9 C R for C'a SROZQ concept and R a possibly inverse role, and S a possibly inverse simple
role! is also a RIA. Intuitively the construct Rz T S means that a R relation toward an instance
of C implies an S relation, and R¢ E S means that a R relation with an instance of C as subject

implies an S relation The semantics are fdrmally defined as follows: an interpretation 7 satisfies

ScCR if {(z,y)eST|yeCr}CRE
S%eCR if {{z,y)eST|zcC*}CRE
This extension was shown to be decidable and the introduced axioms are treated as usual, i.e. in
a non DL-safe way. Since SROZ Q" is a super-set of SROZQ and decidable, we can seamlessly
use it with our rewritten rules thus enabling the aforementioned desirable rule form. We have
identified two possible further extensions to SROZQ that would provide more expressivity and
also possibly retain decidability. The first one is to allow Self-restrictions over complex roles,
which would allow the rewriting of cyclic rules. Number restrictions over complex roles are known
to be undecidable, but since the Self-restriction is weaker, it might be decidable. The second
possible extension is to investigate if we could replace role hierarchies with role conjunction as it
was done for SHZQ in [GHLSO07]. It remains to be seen if this would be decidable and possibly
which res'_trictions are required over the role conjunctions to retain it.
Investigating these possible extensions to SROZQ and then seeing how this may augment the

versatility of our rewriting should be very interesting and may yield some very interesting results.

6.3.2 Cover More Rules with Description Graphs

One may recall that we require a rule to be acyclic in order to be admissible for rewriting. That
follows from the fact that even if the RIAs of SROZQ can be used to define non-tree-shaped
models, which relax the restriction to tree-like models present in previous DLs, we still cannot
represent cyclic rules. A recently published article, “Structured Objects in OWL: Representation

and Reasoning” [MGHSO08], introduces an extension to OWL that allows the modeling of arbitrary

TRecall that a simple role is one which is not implied by role paths; see [HKS06] for details.
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relational structure using description graphs. These are labeled directed graphs that consist of a
set of vertices labeled with atomic concepts and a set of edges labeled with atomic roles. The
semantics of this extension reveals that the description graphs are used to specify a relational
structure around an instance of a certain class. The use of SWRL-like rules is also allowed to
model similar relational structures around an edge of a given role.

A graph-extended DL knowledge basé K is defined as K = {7, G, P, A} where T is a regular
TBox,§ is a description graph, P is a set of SWRL-like rules and A is an ABox. Atomic roleé
are divided into two disjoint sets, Np, and Npg,, where elements of NV R, are called graph roles
and elements of Npg, are tree roles. In order to avoid the undecidability caused by the introduction
of arbitrary structures in DLs, some restrictions have to be enforced. First, the structured objects
represented by the graphs and the SWRL-like rules are required to have a bounded number of com-
ponents. This is not a serious restriction since most practical examples of such arbitrary structures
are naturally composed of a bounded number of components. Additionally, the TBox 7 can only
refer to tree roles, P and G can only refer to graph roles and the ABox .A can refer to both type of
roles. It is to be noted that DL-safety is not required to ensure the formalism’s decidability.

It seems a natural fit to use these description graphs, and the associated SWRL-like rules, to
model arbitrary rules. This could yet extend the scope of rules usable without DL-safety and
yet retain decidability. This is a preliminary idea and the expressivity and usability of such an

extension remains to be investigated.
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Appendix A
The University Ontology

We included this ontology as an appendix for many reasons, first since all the examples of rules
are are excerpts from this ontology, it is sometimes useful two be able to see the bigger picture.
Also, we used this ontology as the base when generating all the larger ontologies used in our
experiments and it is always relevant to see the test data first-hand. We chose to render it using
the OWL/XML notation because it is the middle ground between a human-centered notation, the

Manchester Syntax, and the very machinesque RDF,
<?xml version="1.0"?>

<!DOCTYPE Ontology [
<!ENTITY cs "http://cs.concordia.ca/" >
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<!ENTITY owl2 "http://www.w3.0rg/2006/12/0owl24" >
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >

Class count 11
Object property count 23
Expressivity ALERT
SubClasses axioms count 20

GCI count 1

Inverse Object properties axioms count 2

Class assertions axioms count 110

Object property assertion axioms count 139

Figure 21: Statistics of the University Ontology.
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<!ENTITY owl2xml "http://www.w3.0rg/2006/12/0wl2-xml#" >

<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.0rg/1999/02/22~rdf-syntax-ns#" >

<!ENTITY baseOnto "http://users.encs.concordia.ca/ f_gasse/baseOnto#">

<!ENTITY baseOnto2 "http://users.encs.concordia.ca/"f_gasse/baseOnto/">
1>

<Ontology xmlns="http://www.w3.0rg/2006/12/0owl2-xml$"
xml:base="http://www.w3.0rg/2006/12/0wl2-xml#"
xmlns:baseOnto="http://users.encs.concordia.ca/ f_gasse/baseOnto#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl2xml="http://www.w3.0rg/2006/12/0wl2-xm1#"
xmlns:owl="http://www.w3.0rg/2002/07/owl$"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:baseOnto2="http://users.encs.concordia.ca/ f_gasse/baseOnto/"
xmlns:owl2="http://www.w3.0rg/2006/12/0wl24#"
xmlns:cs="http://cs.concordia.ca/"
URI="http://users.encs.concordia.ca/ f_gasse/baseOnto">

<Annotation annotationURI="&cs;dl-rule">
<Constant>
Professor (x) @ headOf(x,y) @ Department(y) @ AcceptedThesis(z)
@ submittedAt(z,y) &gt;reviewed(x, z)
</Constant>
</Annotation>
<Annotation annotationURI="&cs;dl-rule">
<Constant>
Student (x) @ authorOf(x,y) @ Article(y) @ Conference(z)
@ acceptedAt(y,z) &gtj;attends(x, z)
</Constant>
</Annotation>
<Annotation annotationURI="&cs;dl-rule">
<Constant>
Student (x) @ studiesProgram(x,y)@ GraduateProgram(y)
&gt; GraduateStudent (x)
</Constant>
</Annotation>
<Annotation annotationURI="&cs;dl-rule">
<Constant>
Grant (x) @ fundes(x,y) @ ResearchProject(y) @ GraduateStudent (z)
@ worksOn(z,y) &gt;fundedBy(z,x)
</Constant>
</Annotation>
<Annotation annotationURI="&cs;dl-rule">
<Constant>
Professor(x) @ supervises({x,y) @ Student(y) @
_ studiesProgram(y,w) @ GraduateProgram(w) @
Article(z) @ authorOf(y,z) &gt;approved(x,z)
</Constant>
</Annotation>
<SubClassOf>
<OWLClass URI="g¢baseOnto;AcceptedThesis"/>
<OWLClass URI="&owl;Thing"/>
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</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;AcceptedThesis"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolelll"/>
</ObjectExistsSelf>
</SubClassOf>
<Declaration>

<OWLClass URI="&baseOnto;AcceptedThesis"/>
</Declaration>
<SubClassOf>
<OWLClass URI="g&baseOnto;Article"/>
<OWLClass URI="gowl;Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="g&baseOnto;Article"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolel02"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Article"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolel07"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<OWLClass URI="&baseOnto;Conference"/>
<OWLClass URI="&owl;Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Conference"/>
<ObjectExistsSelf>
<ObjectProperty URI="g¢baseOnto2;rolell8"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<OWLClass URI="&baseOnto;Department"/>
<OWLClass URI="g&owl; Thing"/>

</SubClassOf>

<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
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<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Department"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolell0"/>
</ObjectExistsSelf>
</SubClassOf>
<Declaration>

<OWLClass URI="&baseOnto;Department"/>
</Declaration>
<SubClassOf>
<OWLClass URI="&baseOnto;GraduateProgram"/>
<OWLClass URI="&owl;Thing"/>
</SubClassOf>
<SubClassOf> .
<OWLClass URI="&baseOnto;GraduateStudent"/>
<OWLClass URI="g&baseOnto; Student"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;GraduateStudent"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolell3"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<OWLClass URI="g&baseOnto;Grant"/>
<OWLClass URI="&owl;Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Grant"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolel05"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<OWLClass URI="g&baseOnto;Professor"/>
<OWLClass URI="&owl;Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="g&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<OWLClass URI="gbaseOnto;Professor"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolelQ0"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>
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<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Professor"/>
<ObjectExistsSelf>
<ObjectProperty URI="g&baseOnto2;rolel09"/>
</ObjectExistsSelf>
</SubClassOf>
<Declaration>

<OWLClass URI="&baseOnto;Professor"/>
</Declaration>
<SubClassOf>
<OWLClass URI="&baseOnto;ResearchProject"/>
<OWLClass URI="&owl; Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="g&baseOnto;ResearchProject"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolel04"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<0OWLClass URI="g&baseOnto;Student"/>
<OWLClass URI="&owl;Thing"/>
</SubClassOf>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto; Student"/>
<ObjectExistsSelf>
<ObjectProperty URI="gbaseOnto2;rolel0l"/>
</ObjectExistsSelf>
</SubClassOf>
<SubClassOf>

<Annotation annotationURI="&cs;dl-rule~axiom">
<Constant>addedAxiom</Constant>

</Annotation>
<OWLClass URI="&baseOnto;Student"/>
<ObjectExistsSelf>
<ObjectProperty URI="&baseOnto2;rolell6"/>
</ObjectExistsSelf>
</SubClassOf>
<Declaration>

<ObjectProperty URI="&baseOnto;acceptedaAt"/>
</Declaration>
<SubObjectPropertyOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<SubObjectPropertyChain>

82



<ObjectProperty URI="gbaseOnto2;rolel00"/>
<ObjectProperty URI="&baseOnto;supervises"/>
<ObjectProperty URI="gbaseOnto2;rolel0l1"/>
<ObjectProperty URI="&baseOnto;authorOf"/>
<ObjectProperty URI="&baseOnto2;rolel02"/>
</SubObjectPropertyChain>
<ObjectProperty URI="g&baseOnto; approved"/>
</SubObjectPropertyQf>
<Declaration>
<ObjectProperty URI="&baseOnto; approved"/>
</Declaration>
<SubObjectPropertyOf>
<Annotation annotationURI="g&csj;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<SubObjectPropertyChain>
<ObjectProperty URI="g&baseOnto2;rolel06"/>
<ObjectProperty URI="&baseOnto;authorof"/>
<ObjectProperty URI="gbaseOnto2;rolel07"/>
<ObjectProperty URI="&baseOnto;acceptedAt"/>
<ObjectProperty URI="&baseOnto2;rolel08"/>
</SubObjectPropertyChain>
<ObjectProperty URI="g&baseOnto;attends"/>
</SubObjectProperty0Of>
<Declaration>
<ObjectProperty URI="&baseOnto;attends"/>
</Declaration>
<Declaration>
<ObjectProperty URI="&baseOnto;authorOf"/>
</Declaration>
<SubObjectPropertyOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<SubObjectPropertyChain>
<ObjectProperty URI="&baseOnto2;rolel03"/>
<ObjectProperty URI="&¢baseOnto;worksOn"/>
<ObjectProperty URI="&baseOnto2;rolel04"/>
.<ObjectProperty URI="gbaseOnto; fundesinv"/>
<ObjectProperty URI="gbaseOnto2;rolel05"/>
</SubObjectPropertyChain>
<ObjectProperty URI="&baseOnto; fundedBy"/>
</SubObjectPropertyOf>
<Declaration>
<ObjectProperty URI="&baseOnto; fundedBy"/>
</Declaration>
<InverseObjectProperties>
<ObjectProperty URI="&baseOnto; fundes"/>
<ObjectProperty URI="&baseOnto; fundesinv"/>
</InverseObjectProperties>
<Declaration> '
<ObjectProperty URI="&baseOnto; fundes"/>
</Declaration>
<Declaration>
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<ObjectProperty URI="g&baseOnto;headOf"/>
</Declaration>
<SubObjectPropertyOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<SubObijectPropertyChain>
<ObjectProperty URI="&baseOnto2;rolel09"/>
<ObjectProperty URI="&baseOnto;headOf"/>
<ObjectProperty URI="&baseOnto2;rolell0"/>
<ObjectProperty URI="&baseOnto;submittedAtinv"/>
<ObjectProperty URI="g&baseOnto2;rolelll"/>
</SubObjectPropertyChain>
<ObjectProperty URI="g¢baseOnto;reviewed"/>
</SubObjectPropertyOf>
<Declaration>
<ObjectProperty URI="&baseOnto;reviewed"/>
</Declaration>
<Declaration>
<ObjectProperty URI="gbaseOnto;studiesProgram"/>
</Declaration>
<Declaration>
<ObjectProperty URI="gbaseOnto;submittedAt"/>
</Declaration>
<InverseObjectProperties>
<ObjectProperty URI="&baseOnto;submittedAtinv"/>
<ObjectProperty URI="&baseOnto;submittedAt"/>
</InverseObjectProperties>
<Declaration>
<ObjectProperty URI="&baseOnto;supervises"/>
</Declaration> .
<Declaration>
<ObjectProperty URI="&baseOnto;worksoOn"/>
</Declaration>
<SubClassOf>
<Annotation annotationURI="&cs;dl-rule-axiom">
<Constant>addedAxiom</Constant>
</Annotation>
<ObjectIntersectionOf>
<OWLClass URI="gbaseOnto; Student"/>
<ObjectSomeValuesFrom>
<ObjectProperty URI="&baseOnto;studiesProgram"/>
<OWLClass URI="&baseOnto;GraduateProgram"/>
</ObjectSomeValuesFrom>
</ObjectIntersectionOf>
<OWLClass URI="&baseOnto;GraduateStudent"/>
</SubClassOf>
</Ontology>

84



Bibliography

[BCM*03]

[BhoO5]

[BVHH*04}]

[DLNS98]

[EGM97]

[GHO8]

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F,
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, 2003.

Kruthi Bhoopalam. Fire — A Description Logic Based Rule Engine for OWL Ontolo-
gies with SWRL-like Rules. M. Sc. thesis, Concordia University, September 2005.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontol-
ogy Language reference. W3C Recommendation, 10 February 2004. Available at

http://www.w3.0rg/TR/owl-ref/.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-
log: Integrating Datalog and Description Logics. Journal of Intelligent Information

Systems, 10(3):227-252, 1998.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans-
actions on Database Systems (TODS), 22(3):364-418, sep 1997.

Francis Gasse and Volker Haarslev. DLRule: A Rule Editor Plug-in for Protégé. In

Proceedings of the 4th International Workshop: OWL Experiences and Directions

(OWLEd 2008), Washington DC, USA, April 1-2, 2008, 2008.

85



[GHLS07]

[GHVDO03]

[GSHO8]

[HAO0O]

[Har84]

[HC96]

[HKS06]

Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive Query An-
swering for the Description Logic SHZ Q. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI 2007), pages 399-404, 2007.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. In Proceedings
of the Twelfth International World Wide Web Conference (WWW 2003), pages 48-57.
ACM, 2003.

Francis Gasse, Ulrike Sattler, and Volker Haarslev. Rewriting rules into SROZQ
axioms. In Proceedings of the 2008 International Workshop on Description Logics
(DL2008), Dresden, Germany, May 13 - 16, 2008, CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

Ullrich Hustadt and Renate A.Schmidt. Issues of Decidability for Description Logics
in the Framework of Resolution. In R. Caferra and G. Salzer, editors, Automated
Deduction in Classical and Non-Classical Logics, volume 1761 of LNAI, pages 191~
205. Springer Verlag, 2000.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of Philo-
sophical Logic Volume II — Extensions of Classical Logic, pages 497-604. D. Reidel
Publishing Company: Dordrecht, The Netherlands, 1984.

G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,
September 1996.

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROZ Q.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceed-
ings, Tenth International Conference on Principles of Knowledge Representation and
Reasoning, Lake District of the United Kingdom, June 2-5, 2006, pages 57-67. AAAI
Press, 2006.

86



[HMSO05]

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data Complexity of Reasoning in
Very Expressive Description Logics. In Leslie Pack Kaelbling and Alessandro Saf-
fiotti, editors, Proc. of the 19th Int. Joint Conference on Artificial Intelligence (IJCAI

2005), pages 466—471, Edinburgh, UK, July 30-August 5 2005. Morgan Kaufmann

* Publishers.

[HPS04]

[HPSB*04]

[HS00]

[HS04]

{KFNMO04]

[KPS06]

lan Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules language.
In Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
pages 723-731. ACM, 2004.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, 21 May 2004. Available at http://www.

w3.org/Submission/SWRL/.

Ullrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by translation
and first-order resolution. In Analytic Tableaux and Related Methods, pages 67-71,
2000.

Tan Horrocks and Ulrike Sattler. Decidability of SHZ Q with complex role inclusion

axioms. Artificial Intelligence, 160(1):79-104, 2004.

Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen.
The Protégé OWL plugin: An Open Development Environment for Semantic Web
Applications. In Sheila A. Mcllraith, Dimitris Plexousakis, and Frank van Harmelen,
editors, International Semantic Web Conference, volume 3298 of Lecture Notes in

Computer Science, pages 229-243. Springer, 2004.

Vladimir Kolovski, Bijan Parsia, and Evren Sirin. Extending the SHOZQ(d)
Tableaux with DL-safe Rules: First Results. In Parsia et al. [PSTO06].

87



[KRHO8]

[Lif03]

[LR96]

[LRI8]
[Mar95]

[MGHSO08]

[MHRSO06]

Markus Krétzsch, Sebastian Rudolph, and Pascal Hitzler. Expressive tractable de-
scription logics based on SROZ Q rules. Technical report, Institut AIFB, Universitit

Karlsruhe (TH), 2008.

V. Lifschitz. Nonmonotonic databases and epistemic queries. In Proceedings of

1JCAI 91, Sydney, Australia, pages 381-386, 2003.

Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language com-
bining horn rules and description logics. In Wolfgang Wabhlster, editor, 12th Euro-
pean Conference on Artificial Intelligence, Budapest, Hungary, August 11-16, 1996,
Proceedings, pages 323-327. John Wiley and Sons, Chichester, 1996.

Alon Y. Levy and Marie-Christine Rousset. Combining Horn Rules and Description

Logics in CARIN. Artificial Intelligence, 104(1-2):165-209, 1998.

Aaron Marcus. Principles of effective visual communication for graphical user inter-

Jface design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulirke Sattler. Representing
Structured Objects using Description Graphs. In Proc. of the 11th Int. Joint Conf.
on Principles of Knowledge Representation and Reasoning (KR 2008), Sydney, Aus-
tralia, August 16—19 2008. AAAI Press. To appear.

Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL and logic
programming live together happily ever after? In Isabel F. Cruz, Stefan Decker,
Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and
Lora Aroyo, editors, The Semantic Web - ISWC 2006, 5th International Semantic
Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings,

volume 4273 of Lecture Notes in Computer Science. Springer, 2006.

88



{Mot06]

[MSS05]

[PSTO6]

[Ros05]

[Ros06]

[RVO1]

[SBLHO6]

[SPO6]

Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitit Karlsruhe (TH), Karlsruhe, Germany, January
2006.

Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with
Rules. Journal of Web Semantics: Science, Services and Agents on the World Wide

Web, 3(1):41-60, JUL 2005.

Bijan Parsia, Ulrike Sattler, and David Toman, editors. Proceedings of the 2006
International Workshop on Description Logics (DL2006), Windermere, Lake District,
UK, May 30 - June 1, 2006, volume 189 of CEUR Workshop Proceedings. CEUR-
WS.org, 2006.

Riccardo Rosati. On the decidability and complexity of integrating ontologies and

rules. Web Semantics Journal, 3(1):41-60, 2005.

Riccardo Rosati. DL+log: Tight Integration of Description Logics and Disjunctive
Datalog. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors,
Proceedings, Tenth International Conference on Principles of Knowledge Represen-
tation and Reasoning, Lake District of the United Kingdom, June 2-5, 20006, pages
68-78. AAAI Press, 2006.

Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (system description). In
IJCAR ’01: Proceedings of the First International Joint Conference on Automated

Reasoning, pages 376-380, London, UK, 2001. Springer-Verlag.

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96-101, 2006.

Evren Sirin and Bijan Parsia. Pellet system description. In Parsia et al. [PSTO06].

89



[SSS91]
[TesO1]

[THO6]

[TRBHO04]

Manfred Schmidt-Schau$ and Gert Smolka. Attributive concept descriptions with

complements,. Artificial Intelligence, 48:1-26, 1991.

Sergio Tessaris. Questions and answers: reasoning and querying in Description

Logic. PhD thesis, University of Manchester, 2001.

Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Ulrich Furbach and Natarajan Shankar, editors, Proceedings of the
International Joint Conference on Automated Reasoning(IJCAR 2006), volume 4130

of Lecture Notes in Artificial Intelligence, pages 292-297. Springer, 2006.

Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using
Vampire to reason with OWL. In Sheila A. Mcllraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, Proc. of the 3rd International Semantic Web Conference
(ISWC 2004), number 3298 in Lecture Notes in Computer Science, pages 471-485.
Springer, 2004.

90



