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Abstract 

Spectral Estimates for Schrodinger Operators. 

Alexandra Lemus Rodriguez. 

In quantum mechanics, one of the most studied problems is that of solving the 

Schrodinger equation to find its discrete spectrum. This problem cannot always be 

solved in an exact form, and so comes the need of approximations. This thesis is 

based on the theory of the Schrodinger operators and Sturm-Liouville problems. We 

use the Rayleigh-Ritz variational method (mix-max theory) to find eigenvalues for 

these operators. 

The variational analysis we present in this thesis relies on the sine-basis, which 

we obtain from the solutions of the particle-in-a-box problem. Using this basis we 

approximate the eigenvalues of a variety of potentials using computational implemen

tations. The potentials studied here include problems such as the harmonic oscillator 

in d dimensions, the quartic anharmonic oscillator, the hydrogen atom, a confined 

hydrogenic system, and a highly singular potential. When possible the results are 

compared either with those obtained in exact form or results from the literature. 
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Introduction 

In non-relativistic quantum mechanics, Schrodinger's equation governs the time evo

lution of a particle's wave function, and is given by 

ih—y(x,t) = -—Axy(x,t) + V(x)V(x,t). (1) 

In this equation, h « 6.6255 x 10~27 erg sec is known as Planck's constant, V(x) is 

a potential independent of time, and the operator Ax is the Laplacian corresponding 

to the kinetic energy. 

One of the main problems in Quantum Mechanics is to determine the solutions of 

this equation, in particular, finding the energy levels of a particle. There are many 

different approaches to solve it, one is to find exact solutions and the other is to use 

methods that will give estimates of the solutions that cannot be found in an exact 

manner. The examples in physics that have an exact solution are very few compared 

to the ones that do not. This motivates an approach that allows us to approximate 

solutions. In this thesis we describe an approach using variational analysis. 

In Chapter 1 we review the theory concerning Schrodinger operators. In particular, 

its relation with functional analysis, and we present the variational characterization 

of the discrete spectrum of a Schrodinger operator, related to the min-max principle. 

In Chapter 2 we review the theory of Sturm-Liouville problems. This is of im

portance because we can transform a number of problems in the Schrodinger normal 

form. 
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In Chapter 3 we describe the variational analysis of quantum mechanical problems 

and introduce a special variational basis related to the solutions of the particle-in-a-

box problem. 

In Chapter 4 we describe the implementation of a program to approximate the 

eigenvalues and the eigenfunctions of a problem. This chapter is also devoted to the 

results obtained in the application of the variational method to a variety of explicit 

problems. 
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Chapter 1 

Schrodinger Operators 

1.1 Introduction 

For the problem of finding the solutions to the Schrodinger equation given in (1), we 

can rescale the equation, and given the assumption that ^(x, t) — ip(x)&(t), derive a 

time independent Schrodinger equation which is represented as follows 

-Aif>(x) + V{x)i){x) = Etp(x). (1.1) 

In this chapter we will relate this equation to the famous Schrodinger operator. 

The results from this part are mainly studied by Griffiths [9], Gustafson and Sigal 

[10], Hall et al. [13], Hannabus [14], Kryezig [16], and Reed and Simon [19]. 

1.2 Operator theory 

The theory of Schrodinger operators relies on functional analysis. In the following 

section, we describe various results that are very helpful for the purposes of this work. 

Let Ti.be a Hilbert space, in particular the space of all quantum mechanical states 

of a given system. The main example used in quantum mechanics, and in this thesis 
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is the L2-space defined as follows 

L2(Rd) = U:Rd^C\ ( h/f<ooj. 

ft is endowed with the inner product given by 

(V» ,0 )= / ?</> dx, with x G Kd, (1.2) 

where ^ represents the complex conjugate of ip. The above inner product defines the 

norm 

We recall that an operator A in a Hilbert space ft is a mapping of its domain 

D(A) C ft into ft. 

Definition 1.1. A linear operator A in a Hilbert space ft is an operator such that 

1. the domain D(A) and the range R(A) of A are subsets of ft, 

2. for all ip,<p E D(A) and scalars a, 0 G C, 

J4(OV> + #£) = a ^ + 0A<f>. 

Definition 1.2. An operator 4̂ on D(-A) C ft is bounded if 

| |A | |= sup 1 1 M = S U p | | ^ | | < o o . 
{^6D(A)} IIVII {Ve£»(A) I ||^||=i} 

Lemma 1.1. [10] If an operator A satisfies \\Aip\\ < C\\ip\\ (with C independent of 

if}) for tp in a dense domain D(A) C ft, then it extends to a bounded operator, also 

denoted A on all ft, satisfying the same bound: \\Aijj\\ < C\\tp\\ for tp G ft. 

This result is important because the domain in which an operator is defined can 



be a very complicated set, with this lemma we can find operators that are extended 

to bounded operators and not worry about the domain itself. 

Definition 1.3. Given an operator A on H, an operator B is called the inverse of 

A if D(B) = Ran(A), D(A) = Ran(B), and 

BA = l\Ran(A), AB — l\Ran(B), 

where Ran(A) = {Atp \ tp e D(A)}. The inverse of A is denoted by A'1. 

We note that finding the inverse of an operator is equivalent to solving the equation 

Atp = f for all / € Ran(A). 

Definition 1.4. The operator A is said to be invertible if A has a bounded inverse. 

An operator A is not invertible if it is not bounded below, that is, if there is no 

c > 0 such that \\Aip\\ > c\\ip\\ for all ipefi. 

We assume that all operators A are defined on a dense domain D(A) C H. 

Definition 1.5. The adjoint of an operator A on a, Hilbert space H is the operator 

A* satisfying 

for all $ e D(A), for I/J E D(A*), where 

D(A*) = ty e « | | (tf.ity) | < CVIHI, V <f> e D(A)}. 

Note that the constant C^ is independent of (p. 

Definition 1.6. An operator A is symmetric if 

(A^<t>) = (il>,A<t>) 

5 



foraU^,0eD(j4) . 

Theorem 1.1. (Hellinger-Toeplitz Theorem) [16] Let T be a symmetric linear 

operator on all of a complex Hilbert space H, then T is bounded. 

Definition 1.7. An operator A is self-adjoint if A = A*. 

It follows immediately from this definition that a self-adjoint operator is also 

symmetric, but the opposite is not always true, we have then the following lemma. 

Lemma 1.2. [10] If A is bounded and symmetric, then it is self-adjoint. 

Theorem (1.1) and the above lemma (1.2) suggest that the class of operators that 

we can use is sufficiently wide. 

Definition 1.8. A self-adjoint operator A is called positive, denoted A > 0 if 

(i/), Ail)) > 0 

for all ip € D(A), ip ^ 0. Similarly we may define non-negative, negative and non-

positive operators. 

Theorem 1.2. [10] If A is a self-adjoint operator, then for any z G C with Im(z) ^ 0, 

the operator A — zl has a bounded inverse, and this inverse satisfies 

ip-z/rvii^i/mconwi-

The above theorems are important concerning the domains of linear operators. 
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1.2.1 Variational characterization of the spectrum of an 

operator 

Definition 1.9. The spectrum of an operator A on 7i is the subset of C given by 

a(A) = {A e C | A - A is not invertible}. 

Definition 1.10. The complement of the spectrum of an operator A in C is called 

the resolvent set of A, denoted by 

p(A) = C \ a(A) 

We note that for A G p{A), the operator (A — A) -1, called the resolvent of A, is 

well-defined. 

Definition 1.11. A number A € C is called an eigenvalue of the operator A, if the 

equation (A — A)̂ > = 0 has a non-zero solution ip G D(A). 

Definition 1.12. The discrete spectrum of an operator A is 

o'disc(A) = {A G C I A is an isolated eigenvalue of A with finite multiplicity}, 

isolated meaning that some neighborhood of A is disjoint from the rest of cr(A). 

Definition 1.13. The essential spectrum of an operator is 

Vess(A) = a(A) \ crdisc(A). 

Theorem 1.3. [10] If A - A* then a(A) C K. 

Definition 1.14. The ratio 

7^0"' ( } 



where ip G D(A) is called the Rayleigh quotient. 

Let us note that if ||^>|| = 1, the Rayleigh quotient becomes (ip,Atp). 

Let T be a self-adjoint operator on H as previously defined. We can apply vari

ational techniques to derive a characterization of the spectrum of T, that is, to find 

its eigenvalues. 

Theorem 1.4. [10] Given T as above with spectrum a(T) C [a, oo), then 

(*,*) -

foralli/j£D{T). 

The above theorem states that the Rayleigh quotient is bounded below. 

Theorem 1.5. [10] Let S{tp) = (ip,Tip) for ip G D(T) with \\ip\\ = 1. Then 

inf u(T) = inf S. Moreover, A = infer (T) is an eigenvalue ofT if and only if there is 

a minimizer ip G D(T) for S(ip) such that \\ip\\ — 1. 

The above result leads to the Ritz variational principle, given that for any tp G 

D(T), 

(tp,Ti))> A = infa(T) 

and equality holds if and only if Tijj = \tf), this particular ip is the corresponding 

eigenfunction, for all other ip G H, all values of (rf,Tip) are upper bounds to the 

operator's eigenvalues. 

Theorem 1.6. (Min-max principle) [10] The operator T has at least n eigenvalues 

(counting multiplicities) less than inf aess(T), if and only if \n < miaess(T) where 

Xn = inf max (ip, Tip). 
{DneD(T) | dim{D„)=n} {^€X | |W>||=1} 

In this case, the n-th eigenvalue is exactly Xn. 
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Theorem 1.7. (The Rayleigh-Ritz theorem) [19] Let T be a semibounded 

self-adjoint operator, let Dn C D{T) be an n-dimensional subspace, and let P be the 

orthogonal projection onto Dn. Let TDn = PTP. Let Al5 A2 , . . . , An be the eigenvalues 

°fTDn \ Dn, ordered by Xi < A2 < . . . < An. Then 

Xi(T)<Xi, i = l,...,n. 

In particular, if T has eigenvalues (counting multiplicity) Ai , . . . , A* at the bottom of 

its spectrum with Ai < . . . < A*, then 

Xi < Xi: i — 1 , . . . , min(A;, n). 

It is important to point out that the min-max principle can be used to find up

per estimates for the eigenvalues of operators, thus having both quantitative and 

qualitative consequences. 

In practice, we simply analyze T in an AT-dimensional linear space 

DN — span{4)\,..., <J>N}, where {0,}^ is an orthonormal basis for DN- The eigen

values of the N x N matrix [(<pi,T<f)j)] then provide upper bounds to the first N 

eigenvalues of T. Very often, as N is increased, these upper approximations steadily 

improve. We shall use this technique in later chapters. 

1.3 Schrodinger operators 

Let H = L2(Rd) with inner product (ip, 4>) as defined in (1.2), at the beginning of this 

chapter. We can write equation (1.1) as a linear operator. 

Definition 1.15. The linear operator H : D(H) C H —> H defined by 

H = -A + V (1.4) 

9 



is called a Schrodinger operator; where —A is the Laplacian in d dimensions, and 

V : M.d —> E a given potential corresponding to a quantum mechanical problem. 

It is important to know for which potentials V, the Schrodinger operator is self-

adjoint. The main purpose is also to characterize the spectrum a(H) of the operator 

H, because that gives information about the nature of the solutions of the main 

Schrodinger equation. 

In the following section we write a series of important results related to this 

operator. 

Theorem 1.8. [10] Let V(x) be a continuous function onM.d satisfying V(x) > 0 and 

V(x) —• oo as \x\ —*• oo, then 

1. H defined as in (1.4) is self-adjoint on H. 

2. a(H) consists of isolated eigenvalues {A*}?^ with Aj —> oo as n —> oo. 

Theorem 1.9. [10] Let V(x) be a continuous function on M.d satisfying V(x) —• 0 as 

\x\ —> oo, then 

1. H defined as in (1.4) is self-adjoint on 7i. 

2. o~ess(H) = [0, oo), which means that H can have only negative isolated eigenval

ues, possibly accumulating at 0. 

Theorem 1.10. [10] Let A be a cube in M.d, and V a continuous function on A. Then 

the Schrodinger operator H = — A + V, acting on the space L2(A) with Dirichlet 

boundary conditions has purely discrete spectrum, accumulating at oo. 

The Dirichlet boundary conditions are given by VidA = 0, which means that 

ip = 0 outside A. We shall refer to such a Sturm-Liouville problem by the term 

"particle-in-a-box". 

10 



The previous results give us very valuable information in the study of the solutions 

of different problems of quantum mechanics corresponding to various potentials. The 

eigenvectors associated with the discrete spectrum of H are called bound states, while 

the points in the discrete spectrum are called bound state energies, or energy levels. 

We can use the variational characterization of the spectrum described in the pre

vious section to analyze a series of problems. 

1.3.1 The dimension d 

The most common quantum mechanical problems are usually posed in dimension 

d = l , 2 , 3 . 

If the dimension is d = 1 the two parts of the Schrodinger operator become 

A = J ^ , and V : R - > R. 

When d > 1 the structure of the Laplacian becomes more complicated. In order 

to work in higher dimensions, we transform the problem from cartesian coordinates 

into a more appropriate system. Let x G M.d be x — (xi,... ,Xd), we can transform 

this vector into another vector p = (r, 6\,... ,#d_i), where r = \\x\\. Then the we 

assume that the wave function is now given by 

^ ) = ^ ( r W y , (1-5) 

with tp(r) being the spherically symmetric factor, and Ye the spherical harmonic 

factor, where £ = 0,1,2, The derivation of this change of variables can be found 

in Sommerfeld [22]. 

The above analysis is particularly suitable for central potentials given as functions 

of r = 11 a; 11 rather than as functions of the individual components of x G Rd. In these 

cases we denote the potential function as V(r). 

Given a spherically symmetric potential V(r) in a d-dimensional space, if we 

11 



change the system of coordinates described above, and remove the spherical harmonic 

factor, as shown in Hall, et al. [13], we get the following radial Schrodinger equation 

d2i) d - l # e(£ + d-2) , „ , . , „ , , , 

dr2 r dr r2 

A correspondence can now be made with a problem on the half line in one dimen

sion, we define the radial wave function 

R(r) = r(d-1>/2V'(r), R(Q) = 0. 

We can then rewrite equation (1.6) as 

d2R 
dr2 

with effective potential 

+ UR = ER, (1.7) 

U{r)-V(T)+W + d-XW + d-*>. (1.8) 

Given the above analysis is now clear how one can work with central potentials in 

dimensions d > 1. We also note that the above equation (1.7) is in the form of a 

Sturm-Liouville problem, but on the semi-infinite interval [0, oo). We shall return to 

this in chapter 2. 

1.3.2 Examples 

Clearly, the family of potentials which have exact analytical solutions is very small 

compared to the family of those that do not. We now exhibit a series of examples that 

have exact solutions. These examples are of utmost importance because they provide 

us with exactly soluble test problems for our variational methods: if the method gives 

12 



good results for these, we can apply it to others with some degree of confidence. 

Harmonic oscillator. The harmonic oscillator is a problem in quantum mechanics 

that is linked to the classical spring, as it can be thought of as a particle having the 

oscillating behaviour of a spring-mass system. 

The one-dimensional harmonic oscillator is defined by the potential V(x) = &X2-

As mentioned before, using a scaling argument we can reduce this problem to a 

family of problems related by a factor to the potential V(x) = x2. We simply use the 

transformation x — sx, a n d substitute it in equation 

d2 

dx 

obtaining the new equation 

d2 

ip + us x tp 1 = Exip, 
dx2 

if we then find s such that OJS4 = 1, we will get the relation 

LU*EXIIJ = Exij) 

Therefore we need only to solve the following differential equation defined by the 

Schrodinger operator 
d2 

$ + x2i> = Eij) (1.9) dx2 

with solutions 

1>n{x) = Hn{x)e-* , (1.10) 

where Hn is the Hermite polynomial of order n. The energy levels are given by 

En = 2n + 1, n = 0,1, 2 , . . . (1.11) 

13 
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Figure 1.1: Harmonic oscillator 

We can also find the solutions for this problem in dimension d = 3, studied in 

Griffiths [9] and Greiner [8], where the symmetric potential is V(r) = r2, and the 

equation needed to solve is the following 

d2R 
dr2 + UR = ER, (1.12) 

with effective potential 

and energy levels 

U(r) = r2 + i{l +1) 

Era = 4n + 2i-l, 

(1.13) 

(1.14) 

where I = 0,1,2, . . . , and n = 1,2,3, — 

Using algebra we can extend to the problem for dimensions d > 2. This is done 

comparing the effective potentials, the one for dimension d = 3 given by (1.13) and 

U(r) = r2 + 2 , {2e + d-i)(2e + d-s) 
4r2 

(1.15) 

for dimension d. 

14 



We set the equation 

in order to solve for £, obtaining 

< = ' + H-
and substituting back into the values of the energy (1.14), thus obtaining 

Enld = 4n + 2£' + d-4, (1.16) 

where £' = 0 ,1 ,2, . . . denotes de angular momentum of the d-dimensional problem. 

Hydrogen-like atoms. The electron in the hydrogen atom is bound by the Coulumb 

potential. The hydrogen atom is modeled as an infinitely heavy and fixed proton with 

an electron revolving around it. The potential that defines this problem is given by 

V(x) = - j £ with r = ||x|| for x € Kd. 

If d = 1 the problem of the hydrogen atom is as interesting as it is troublesome, 

given its nature, the singularity splits the space in two pieces acting as a barrier. 

The solutions to this problem are not trivial and require a thorough analysis of the 

geometry of the problem as studied by [2]. 

Thus, the hydrogen atom is usually studied in 3 dimensions, [9], [8]. The discrete 

spectrum of this problem in d = 3 is given by the energy levels 

e2 

Ene = ~WW2' (1'17) 

where £ = 0,1,2, . . . , and n = 1,2,3, 

We can also scale and extend this problem to the d-dimensional case using the 

15 



' ft 

-1 

-2 

-3 

-* 

. . . ? , . 4 

X 

,?. , , , f . , ,-•-.,¥ 
• 

Figure 1.2: Hydrogen atom 

arguments and algebraic analysis as in the above example. In this case we get the 

following energy levels 

Enid 
4(n + *+f-§) 

again with £ = 0,1,2, . . . , and n — 1,2,3,.... 

2 ' (1.18) 

The above examples are discussed as they will serve as test problems in the following 

chapters. For more insight on the solutions for this problems see literature from 

Greiner [8], Griffiths [9], Gustafson and Sigal [10], and Hannabus [14]. 
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Chapter 2 

Sturm-Liouville Problems 

2.1 Introduction 

Sturm-Liouville systems arise in a large number of physical problems. They are one-

dimensional models of oscillating systems, and therefore we can also relate the notion 

of energy to these particular problems. 

The general form of a classical Sturm-Liouville problem is a second-order real 

differential equation given by 

— ( p{x)-r- ) + q{x)u = Xw(x)u (2.1) 

defined on a finite or infinite interval a < x < b with boundary conditions. 

It is obvious that the functions p, q and w are relevant in the analysis of this 

differential equation. For example, if we assume that p and w are constant, without 

any loss of generality we can use a scaling argument and remove them from equation. 

This is, if we divide (2.1) by p and let t = ^x be the new independent variable, where 

7 = (w/p)1, then we obtain 

d2u 
+ Q(t)u = \u, (2.2) dt2 
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where Q(t) = q(x)/w. In fact, equation (2.2) is known as the Liouville or Schrodinger 

normal form. Even more, by means of the Liouville transformation that we will de

scribe in the section 2.3, the general Sturm-Liouville problem (2.1) can be transformed 

into this normal form. 

From now on we will refer to these kind of problems as Sturm-Liouville problems 

or SLP. 

Definition 2.1. We say that the SLP (2.1) is regular if 

1. a and b are finite. 

2. p, q and w are defined on the closed interval [a, b] and are continuous (maybe 

except for a finite number of discontinuities), with p and w strictly positive. 

3. The regular boundary conditions 

a,iu(a) = a,2p(a)u'(a) 
(2.3) 

biu(b) = b2p(b)u'(b) 

are imposed at the end points of the interval, where a\, a,2, &i and 62 are real 

numbers different from zero. 

Our interest in regular Sturm-Liouville problems will be justified by the application 

we shall use in the following chapters. 

Given equation (2.1), for the rest of this chapter we will assume that the functions 

p, q, w : K —> K defined on the interval [a, b] are piecewise continuous, and that p and 

w are strictly positive. If we take p, q and w to be complex function, then these 

problems will no longer in the Sturm-Liouville form. The results from this chapter 

are mainly studied by Braun [3], Coddington et al. [5], Pryce [18], and Sagan [20]. 
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2.2 Sturm-Liouville theory 

We can rewrite the Sturm-Liouville equation as the homogeneous equation 

- (p(x)u')' + (q(x) - Xw(x)) u = 0. (2.4) 

This is a second-order linear differential equation; it is not always self-evident that 

the solution to this kind of equations is unique or if it even exists. We resort to a 

familiar result from the theory of differential equations. 

Theorem 2.1. [3] 

Given the equation 

g+»W*+M«)» = 0 (2.5) 

with initial conditions 

y(to) = vo, y'(to) = y'0- (2-6) 

Let the functions g(t) and h(t) be continuous functions in the open interval a <t < 0. 

Then, there exists one and only one function y(t) satisfying the differential equation 

(2.5) and the prescribed initial conditions (2.6) on the entire interval a < t < /?. In 

particular, any solution y = y{t) of (2.5) which satisfies y(t0) = 0 and y'(to) — 0 at 

the time t = t0 must be identically zero. 

Although this theorem refers to the homogeneous case only, it can be extended to 

the non-homogeneous case, [3] and [5]. 

From the above theorem if we let p, q and w be as we defined in the previous 

section on the interval [a,b], the Sturm-Liouville equation (2.4) has unique solutions 

satisfying the initial conditions 

u(c) = uc, (pu'(c)) = vc, 
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for c G [a,b]. 

In the case of the Sturm-Liouville problems local solutions will not suffice: we need 

global solutions that satisfy boundary conditions, not only initial solutions. This is 

not a trivial problem, and further analysis is required as the solutions are related to 

the eigenvalues and the eigenfunctions. 

2.2.1 Operator form of SLP 

We can relate the Sturm-Liouville theory to the operator theory from chapter 1. 

Because (2.1) is a linear equation, we can define the differential operator 

on the interval a < x < b. The domain of this operator is contained in the set of 

admissible solutions for the Sturm-Liouville problems, which are the square integrable 

functions with respect to the weight function w 

L2 ([a, b]) = < u : [a, b] -> C | / \u(x)\2w(x)dx < oo I . 

The above space has the weighted inner product denned as 

fb -(w, v) = / uvwdx, (2-8) 
J a 

v, again, representing the complex conjugate of v. 

One of the properties of L is that it is a linear operator, following directly from 

its differential and multiplicative form, and it satisfies 

L(au + (5v) = aLu + (5Lv. 
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Another fundamental property of this operator is that it is self-adjoint and sym

metric with respect to the weight function w(x), implying that with the given inner 

product (2.8) the following equality holds true 

(Lu, v) = (u, Lv). 

Lemma 2.1. (Green's Identity) [18] Letu,v € D(L) be twice differentiable func

tions defined on [0,6], then 

\ (Luv — uLv) wdx = \puv' — pu'v]a , 
J a 

The above lemma is useful to solve this boundary condition problems. In partic

ular, Green's identity relies on the fact that L is self-adjoint, and if u and v satisfy 

the boundary conditions in (2.3), we have that \puv' — pu'v]a — 0. 

There exists a different and equivalent approach to the operator theory of the 

Sturm-Liouville problems using the operator form 

• £=-!Ks)+**>- <2-9> 
and the inner product defined in (1.2), studied by Sagan [20]. 

2.2.2 Eigenvalues and Eigenfunctions of the SLP 

We can now pose equation (2.1) as the eigenvalue problem 

Lu = Xu (2.10) 

where u € D(L) and it satisfies the conditions (2.3). 

We have the following important results. 
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Property 2.1. [18] 

Let u be as above and the functions p, q and w that define the operator L in (2.7) be 

piecewise continuous on [a, b], with p, w > 0, then: 

1. The eigenvalues of the Sturm-Liouville problem (2.10) are real. 

2. The eigenfunctions belonging to distinct eigenvalues are orthogonal with respect 

to the inner product (2.8). 

Theorem 2.2. [5], [18], [20] 

For a regular SLP the following statements hold true: 

1. The eigenvalues Xk are simple, this is, there do not exist two linearly independent 

eigenfunctions with the same value. 

2. The eigenvalues can be ordered in an increasing sequence A0 < Ai < A2 < . . . , 

and with this labeling the eigenfunction u^ corresponding to the eigenvalue Â  

has exactly k zeros on the open interval (a, b). 

3. The set of eigenfunctions {uk} form a complete orthogonal set of functions 

over (a,b) with respect to the inner product (2.8). That is, any function f G 

I? ([a, b]) can be represented on (a,b) by its Fourier series with respect to the 

eigenfunctions 
oo 

f(x) ^y^ckUkjx), 
fc=0 

where cu = ,Uk\. 

2.3 Schrodinger normal form 

If we take p = w = 1 all the above theory is equivalent to the theory for the 

Schrodinger operator in dimension d = 1. We note that the normal Liouville form 
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(2.2) is equivalent to the one-dimensional Schrodinger equation that we studied in 

chapter 1. 

For dimension d = 1 we can rewrite equation (1.1) as 

d2 

^ + V{x)^ = Ef (2.11) dx2 

where tp, V(x) and E represent the wave function, potential, and level of energy of 

the system respectively. 

As mentioned before, there are a number general Sturm-Liouville problems that 

can be transformed into the Liouville normal form; we demonstrate this in the fol

lowing subsection. 

2.3.1 The Liouville transformation 

We can apply several transformations to equation (2.1), with the functions p,q,w 

satisfying the conditions above [18]. 

Independent variable transformation. 

Let x = x(t), this makes (2.1) transform into a new Sturm-Liouville differential 

equation that is of the form 

~Jt ic^Tt) + ^ x ^ x ' u = MAt))x'u, (2.12) 

where we assume that the mapping x(t) : (a, (3) —> (a, b) is onto and that x' has the 

same sign over the interval a < t < j3. 
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Dependent variable transformation. 

Let u = m(x)v, where m(x) is a given function. If we substitute u in (2.1) we get 

d ( d . 
-— p—mv I + qmv = Awmv, 
ax \ dx 

which is not in self-adjoint form, though we can multiply by m both sides of the above 

expression to obtain 

(pmV) ' + ( - (pm') 'm + qm2) v = Xwm2v, (2.13) 

which is now a self adjoint problem. 

Liouville's transformation. 

Using both transformations above we get the transformed equation, 

{pdTt) +Qv = XWv> (214) 
dt \ dt 

with 

pm2 

Q — {~{Pm'Y + qm)mx', 

W = wm2x'. 

The boundary conditions are also transformed to 

AlV(a) = A2(Pv')(a), 

BlV(P) = B2(Pv')(f3). 
(2.15) 
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where 

Ax = (aim2 - a2pm'm)\x=a, A2 = a2, 

J5i = (bxm
2 - b2pm'm)\x=b, B2 = b2. 

Furthermore, if p, q and w are such that w/p and q/w are defined, then the general 

SLP in (2.1) is finally converted to the Liouville normal form or Schrodinger form 

d2v 
+ Iv = Xv, (2.16) dt2 

using Liouville's transformation given by 

=/vfdI' (2.17) 

m = (pw)~*. 

This is an important result: thanks to this transformation it is possible to solve 

the general SLP by first transforming to the Liouville normal form (2.16). 

2.3.2 A numerical approach to solving the SLP 

For some symmetric problems that can be transformed to the Sturm-Liouville form, 

it is possible to develop what is called a shooting method to calculate its eigenvalues 

and eigenfunctions. 

Given the problem (2.16) we can solve it numerically defining it as an initial value 

problem satisfying the left hand boundary conditions over a specific range, depending 

on the nature of the problem. The differential equation is then solved for a sequence of 

trial values of the eigenvalue A. The eigenvalue is adjusted until the required number 

of zeros is obtained and the right hand boundary conditions are met. We refer to 

Theorem (2.2). 
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Though the process is quite straightforward it is not always easy to implement such 

a numerical program. But it opens the door to have another option to approximate 

the eigenvalues which we can later compare to the original method studied in this 

work, that is the variational technique. For an example see Appendix B. 

2.4 The particle-in-a-box 

The infinite square well potential, also known as the one-dimensional particle-in-a-

box problem, is an important in quantum mechanics. The potential that defines the 

Schrodinger operator is the following: 

V(x) = { 
0, if 0 < x < 6; 

oo, otherwise. 

2i 

-0.5 05 15 

Figure 2.1: Infinite square well potential 

The Schrodinger operator H defines the following equation which is also a regular 

Sturm-Liouville problem, with ip defined on the interval 0 < x < b and boundary 

conditions ip(0) = ip(b) — 0, and with 

dx2 iff = Eil). (2.18) 
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Solving this equation we find that for n = 1,2,... we have the following energy levels 

or eigenvalues 

£ n = ( ^ ) 2 , (2-19) 

with corresponding wave functions or eigenfunctions 

^„(x) = y - s i n ^ — j . (2.20) 

We can verify the importance of theorem (2.2) with this example. The energy 

levels form an increasing sequence, and as these levels go up, each successive wave 

function or state has one more node. The eigenfunctions form a complete orthonor-

mal set: from Fourier analysis we know that each ip G L2([0,6]) can be written 

ip = J2Z=i Cnrtn- We also note that I? {[0,b]) C L2 (E), this basis might be useful 

later on in the analysis of problems in a wider space. 
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Chapter 3 

Variational Analysis for 

Schrodinger Operators 

3.1 Introduction 

When facing a quantum mechanical problem, in order to approximate the values of 

the ground state energy, we can apply the variational principle which characterizes 

the discrete spectrum. There are a number of variational approaches that have been 

widely used since the nineteenth century to solve physical problems, in particular, 

the work of Lord Rayleigh and Walther Ritz opened up the doors to the use of these 

techniques. 

The simplest variational analysis consist in the following: given a particular prob

lem with potential V(x), we define the Schrodinger operator H as in (1.1). By the 

theory studied in chapter 1, the domain of this operator is D(H) C L2(M.d), and H 

is self-adjoint. We then choose a normalized trial function ip e D(H), which may be 

different from ip0: the ground state. Then we know that 

E0<{rl>,H<$), 
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where EQ is the ground-state energy. This means that by finding a suitable trial 

function we can obtain an upper bound of the ground state energy [9]. 

Even more, if we choose ip as a function of x and other parameters, we can 

manipulate these parameters in order to obtain a better approximation, that is to 

say, a lower upper bound. If we know the exact solution of a particular problem we 

can compare results and study the accuracy of the variational estimate. 

3.2 Variational method 

Based on the Rayleigh-Ritz principle and theorem (1.6), we can develop a variational 

method to approximate the energy levels of a problem. 

Given a specific problem with a potential V(x), where the corresponding Schrodinger 

operator H — — A + V is self-adjoint and bounded below, and its domain 

D(H) C H = L2(Ed), we consider of the following steps leading to approximate 

energy levels. 

1. Basis. We choose an orthonormal variational basis B = {(pi, (p2, •..} C TC. The 

functions belonging to the basis are dependent on one or more parameters. The basis 

we use in this thesis is related to the solutions of the particle-in-a-box problem, though 

the use of the basis and the number of free parameters depend on the dimension d of 

the problem, this will be explained in the following sections. 

The variational basis spans a Hilbert space B contained in H and may be finite 

dimensional, say of dimension N. A general element ip e B may be written 

N 

ip = Y^Ci<t>i (3-1) 

where Q = (ip, (pi) with i = 1,2,... are the Fourier coefficients of the series expansion 

of ip. If the variational basis is infinite we can substitute oo for N. 
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2. Optimization. We suppose that tp is the trial wave function solution to the 

problem posed by H, we can then write ip as a series of the variational basis B as in 

(3-1). 

The variational problem now becomes that of minimizing the energies or eigen

values of H with respect to the free parameter or parameters of the above functions. 

This is equivalent to calculating the eigenvalues of the Hamiltonian matrix H and 

minimizing them over the same parameter set. The Hamiltonian matrix is defined as 

H = 

{4>N,H<j)X) (<f>M,H<h) . . . ((j)N,H<j)N) 

(3.2) 

and, as a consequence of the linearity of H, we can separate this matrix into the sum 

of two parts, corresponding to the kinetic and potential energies. Thus 

H = K + P, (3.3) 

with 

K 

( 0 i , - A & ) (0i,-A(/>2) . . . (<fn,-A<j>N) 

(fo,-A&) (<h,-&<h) ... ((f>2,-A(j)N) 

((j)N,-A<j)i) (<j)N,-A(j)2) . . . . (<j>N,-A<f>N) 

(02, Vfa) (<h,V<h) ••• (02, V<f>N) 

(<pN,V<P\) {(f)N, V(j)2) • • • (<t>N,V(f)N) 

(3.4) 
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We note that the kinetic component of the matrix H is the same regardless of the 

potential for any given problem, this is helpful in a numerical application of the 

method. 

By the variational principle, we know that the eigenvalues of H will be upper 

bounds to the eigenvalues of the operator H. That is, if the eigenvalues of H are 

given by £x < £2 < •••) and the energy levels or eigenvalues of H are given by 

Ei < E2 < . •., then the following hold true 

Ei < eu 

E2 < e2, 

Furthermore, if we are able to find the eigenvectors of H, these will be related 

to the eigenfunctions or wave functions that are solutions to H in the sense that if 

vk = (c\, Cg,...) is the eigenvector corresponding to the A;-th eigenvalue of H, with 

k = 1,2,..., then the k-ih approximate eigenfunction ipk can be written as 

N 

1=1 

This means that the components of the eigenvector are the Fourier coefficients of the 

series expansion, [11], [15]. 

3. Computational implementation. We face several obstacles in trying to imple

ment a computational algorithm to calculate the above eigenvalues and eigenfunctions 

numerically. 

First, in order to implement a numerical approach to the above variational method, 

we need to work in a subspace of H, implying that we can only get an approximation 

of the results, not the exact solution, as we cannot work with a suitable infinite 
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basis. Then the dimension of the matrix M is truncated and denoted by the letter 

N. The numerical accuracy of the method depends greatly on how large this value 

is. Secondly, we depend on a computer program to solve the eigenvalue problem for 

H. And last, the optimization over the parameters can be very complicated as well. 

The implementation of this method will be discussed in chapter 4 through an 

example. 

3.3 The basis for the analysis in dimension d = 1 

As stated before, the problems in dimension d = 1 can be defined by any potential 

such that x G E. The basis we will use for the variational analysis is the set of 

solutions that are obtained from the particle-in-a-box problem. By applying a simple 

transformation, we shift the box from the interval [0,6] to a new interval [—L,L], 

where L > 0 is introduced as our variational parameter. 

Rrom the particle-in-a-box problem in chapter 2, let b = 1 without loss of gener

ality. We have that the wave functions given by (2.20) can be written as 

^„(x) = V2sm(nnx), 

if we apply the transformation x = x/2L + 1/2, we obtain the shifted functions 

*n{x) = ^sin (nn (j^ + 0 ) , (3.6) 

where x £ [0,1] and x e [—L, L\. 

Even though we know that the function ipn was normalized, after applying the 

transformation it loses this property, so we have to normalize it once more in order 

for our base to be orthonormal. 
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-rJ 

Figure 3.1: Shifted particle-in-a-box 

<M*) = -^sin((n + 1^(^ + 0 ) (3.7) 

be the functions that define the variational basis B = {4>i, </>2,...}. This basis has 

the following properties that we require: 

1. B is a complete set, in the sense that a function in the same Hilbert space 

L2 ([—L, L]) C L2 (Rd) can be expressed as a linear combination of B. 

2. The members of B are orthonormal, this is 

(4>n, <f>m) 
1, if n = m; 

0, otherwise. 

3. The functions are even or odd with respect to the origin depending the index. 

<f>i is even if i = 0,2, . . . , or it is odd if i = 1,3, 

Then, with the above basis we can implement a program to calculate the eigen

values of the matrix H as in (3.2). In this case, the calculation of the matrices H, K, 

and P depends on the members of B. 

The implementation of such a program, however, can be simpler if we analyze the 

properties of V(x) first. We can have three different choices to build up the matrix 

33 



H thanks to the above basis, for any suitable potential, for even potentials, and for 

polynomial potentials. The cases where the potentials are either even functions or 

polynomials present interesting opportunities when it comes to the implementation 

of a computer algorithm to attack the problem. 

If the potential is even, in order to construct the H matrix, we can split it up in 

two different matrices, the even part and the odd part, this is thanks to the property 

of the functions in the basis B of being alternately even and odd: when we multiply 

by the potential the functions in the basis will retain their even or odd property. 

If the potential is a polynomial function, we have a very interesting result. 

Property 3.1. Let Px and ¥x2 be the matrices corresponding to the potentials 

Vi(x) = x and V2(x) — x2 as defined in (3.4) respectively, then 

1 2 = P 2 (3.8) 

Proof. Given that 

(faxfa) (0i,X02) 

and that 

r2 = 

((/>!, :r2(£l) (</>!, X2(f>2) 

(<fe,a:20i) (</>2,z
2</>2) 

we know that (P2,)^ = Yl^Li {<f>i,x<f>r) (</v,a%), and tha t ( P ^ y = (<j>ux2<f>j) 

Then we need to prove tha t (<fo, x2(/>j) = X^Li (•&> x<$>r) (</v, x<fij)-

As B is a complete basis for I? {[—L, L]) we can write the function x<f>j as the following 
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series 

xfa = ] C fa (fa, x<f>j) (3.9) 
r = l 

for i = 1,2,.... 

If we multiply (3.9) by x we obtain 

x2<j)j = x(x<pj) — x I 2_] fa {faixfa) 
\ r = l 

OO 

r = l 

Then, the inner product 

(<&, a^^j) = ( fa, ^2 xfa (fa> xfa) I ' 

by the linearity of the inner product we get that 

oo 

(<pi, x24>j) = ^2 (fa> xfa (fa' xfa)) 

oo 

= 5 Z (fa> Xfa^ (fa> Xfa^ -

Thus ( P ^ ) y = ( P ^ . . 

r = l 

n. 

It is straightforward to extend the above property to the power n by using an 

induction argument. Thus, in an infinite basis, ¥xn — P£. 

The above result states that these matrices are equal for the infinite case, but if 

we are working in a JV-dimensional subspace, then the equality is not true, we can 

only say that in a numerical analysis P£ is only an approximation for P^n. 
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3.4 The basis for the analysis in dimension d > 2 

We can use a similar analysis from the previous section in the case of higher di

mensions, as we explained in chapter 1, in d > 2, the introduction of a set of d — 1 

coordinate angles, and the used of a suitable radial transformation, allows us to recast 

the residual problem in 1 dimension, namely (1.7) is this one-dimensional problem 

for which we shall use the basis functions that are described below. 

For d > 2, we shall consider central potentials, and for the analysis of this problem, 

we need to work with the effective potential given by (1.8). In fact, the matrix H has 

one more component which corresponds to the effective potential. 

Let Q{£, d) = \ (2£ + d - 2) (2£ + d - 3), and the matrix U defined as follows: 

U 

(0i,^</>i) (<£i, ^ 2 ) 

(02, ^01) (02,^02) 

Then 

W = K + F +Q{£,d)U. (3.10) 

Another challenge is added to any implementation of the variational method be

cause we now have a potential with singular behaviour which needs to be take into 

account. Not only this, as we are working with spherically symmetric potentials, 

these too can be singular. The singularity of this potential becomes a problem when 

we need to calculate HI as the inner product (1.2) might not be defined for certain 

potentials and a given set of variational parameters. 

Non-singular and weakly singular potentials. Examples of these potentials 

were given in section 1.3.2, the harmonic oscillator and the hydrogen atom in dimen

sions d > 2. For this kind of problem we choose the functions in our variational basis 
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B to be exactly the set of solutions from the particle-in-a-box given by 

Mr) = )Jl™(™), (3-11) 

with r € [0, b], and n = 1,2, That is to say, we use variational trial functions in 

L2([0,&])cL2([0,oo)). 

This basis satisfies again the properties mentioned before such as orthonormality 

and completeness for I? ([0, b]). Here the box size 6 is a variational parameter. 

Highly singular potentials. These potentials are functions that have at least one 

term of the form l/rs with s > 2. In these cases we cannot use the above basis 

because the inner product (<f>i,H<f)j) is not defined on [0,6], therefore we will use, in 

addition to 6, a parameter a > 0 so that the variational basis is in L2 ([a, b}). 

As in the case of dimension d = 1 we apply a transformation that shifts the 

interval [0, b] to a new interval [a, b] where a, b > 0 are the variational parameters. 

The transformation is given by \ — jjiî ? a n d w e obtain the shifted functions 

V„(r) = V^sin (nn fe|)) , (3-12) 

where x £ [0> 1] a n d r £ K b]. 

Normalizing (3.12) we obtain the functions 

^(r) = \/SSin(n7r(^))' (313) 

with n = 1, 2 , . . . . 
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Chapter 4 

Results 

4.1 Implementation of the method 

In order to use the variational method to approximate the discrete spectrum of the 

Schrodinger operators studied in chapter 3, we implemented the following analysis, 

using the mathematical software Maple 11. 

We will explain the main idea of the implementation by using the example of the 

harmonic oscillator in dimension d = 1. The implementation for other problems is 

very similar to this, and we shall discuss it at the end of this section. 

Given the basis B = {(f>n}n, with <f)n defined as in (3.7), we need to calculate the 

matrices K and P, corresponding to the problem of the harmonic oscillator with the 

potential V(x) = x2. The components of the matrices are given analytically by the 

expressions: 
in '£ ' 

0, otherwise, 
Ka = i^'-^^') = ^ 

and 

i] vrt) V JYJJ \ 4L2(4(-iy+nj+4ij) 

— v 2 — L , otherwise. •KKP-PY 
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The Hamiltonian matrix is then given by the sum of the above two matrices, as in 

(3.3). 

For a numerical analysis the above matrices need to be finite, so the first thing to 

do is to choose the dimension N, and then i, j = 1,2,..., N. This means that we can 

build numerical matrices of dimension N which depend on a fixed box size L, which 

becomes a variational parameter. For each value of L we can obtain the eigenvalues 

using the built in functions of the mathematical software, in our case Maple 11. The 

problem then arises when we need to find which is the specific L that will give us an 

acceptable approximation of the energy levels, in the sense that each eigenvalue we 

obtain from the variational analysis is the lowest upper bound to the exact solutions. 

In the case of the harmonic oscillator we can compare the results we obtain from this 

numerical program with the exact solutions given by (1.11). 

For the optimization process over L, we take a simple approach, justified by the 

very flat region of a graph of the energy levels against the values of the variational 

parameter L, near the minimum, namely, we calculate the eigenvalues of H for a 

sequence of values of L. We chose an initial value of L — L0 and a step size s, the 

next value of L would be equal to L0+s, and so on, for a certain number of iterations. 

The matrix would depend on the parameter L^ = L0 -t- ks for k = 0 ,1 ,2 , . . . , M, 

where M is the final number of iterations. We can make an educated guess to choose 

a suitable L0 depending on each problem, or choose a large value of s first, to get a 

rough idea of an L that would be close to the minimum. 

As we already know the exact solutions of the harmonic oscillator, we know that 

its wave functions decay swiftly to 0 as a; grows. Thus, we assume that the value of 

an optimal L will not be too large, but this might not be the case for other problems. 

The value of L might also differ from one state to another, that is, the value needed 

to optimize the energy of the ground state might be different from the following state, 

and so on. 
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When we find an acceptable value of L, the one that minimizes the given eigen

value, we can also obtain the corresponding eigenvectors of the matrix, and use this 

to graph the approximate eigenfunction as a linear combination of the basis, as stated 

in (3.5). 

The implementation details for different problems depend on the potential and 

on the dimension. For an example concerning potentials, the harmonic oscillator 

potential is a simple function, and moreover, an even function: in this case the inner 

product (0j, V(x)4>j) has an analytical expression that can be exactly calculated by 

a program like Maple 11. If the potential is such that we need to use numerical 

integration to calculate the inner product, the calculation of the matrix P becomes 

slower and possibly less accurate. 

On the other hand, we do have the approximation given in (3.8) by the relation 

Pxn RS P£, which allows us to calculate the Hamiltonian matrix of a polynomial 

potential such as V(x) = ]Cfclo akxk by the computation of only two matrices, K and 

Px . Thus we have 
m 

H = K + J > f c P * . (4.1) 
fc=0 

We shall refer to this approach as the "polynomial approach" in future. 

When d > 2, we also have to be concerned about the angular momentum, and use 

the effective potential which now contains a singular term, for this we use the bases 

defined in section 3.4, depending whether the potentials are non-singular, weakly-

singular or highly-singular. 
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4.2 Dimension d = 1 

4.2.1 The harmonic oscillator 

We calculated the eigenvalues of the harmonic oscillator in dimension d = 1 described 

in section 1.3.2. using the implementation described in the previous section. Since 

the harmonic oscillator falls into the category of being a polynomial potential, we 

also used the polynomial approach to analyse this problem. We then compared the 

results obtained from both of these calculations to the exact solutions. 

Table (4.1) shows the results obtained in the optimization process for approaches 

using a matrix of dimension N — 50, and a step size s = 0.1. In this table n 

represents the state, where n = 0 is the ground state. E is the exact solution for 

the energy given by (1.11). Ey represents the approximation to the eigenvalue using 

the direct approach described in the previous section, Lv represents the optimal 

variational parameter, Ep is the approximation using the polynomial approach, with 

corresponding optimized variational parameter Lp. 

Table 4.1: Approximation of the energy levels of the harmonic oscillator in dimension d = 1. 

n 
0 
1 
2 
3 
4 
5 
22 
23 
24 
25 
26 
32 
34 
37 
42 

E 
1 
3 
5 
7 
9 
11 
45 
47 
49 
51 
53 
65 
69 
75 
85 

Ey 
1.000000001 

3.000000001 

5.000000001 

7.000000002 

9.000000003 

11.00000000 

45.00000006 

47.00000010 

49.00000120 

51.00000185 
53.00001881 

65.01513530 

69.07941805 

75.36273369 

89.861473970 

Lv 
6.1 
5.6 
5.8 
5.9 
6.3 
6.3 
8.9 
9.0 
8.9 
9.0 
8.9 
8.9 
8.9 
9.0 
8.9 

Ep 
0.999999998 

2.999999998 
4.999999997 

6.999999996 

6.999999996 

10.99999999 

45.00000005 

46.32075646 

49.00000117 

50.32353151 
53.00001868 
62.32028554 

69.07905146 

74.35832785 

98.14418440 

LP 

7.3 
6.5 
6.6 
6.6 
6.6 
8.3 
8.9 
11.7 

8.9 
11.2 

8.9 
10.1 

8.9 
9.3 
8.9 
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For this case we have also plotted the energy levels E versus the parameter L, 

as shown in figure (4.1): we observe that the energy levels as a function of L are 

U-shaped and flat near the minima. Also, the values of L we get as minimizers for 

each of the states are not that different from each other. From the graph we can 

think of choosing only one value of L to obtain a "good" approximation for all the 

eigenvalues considered. If N is large enough, say, bigger than 20, any value of L in 

the range [6,10] gives good approximations to the energy levels. 

Figure 4.1: Energy vs. Parameter L for the harmonic oscillator in dimension d = 1. 

Once the optimal L is determined, the eigenvectors of the first 3 states also ob

tained and graphed with their corresponding eigenfunctions as defined in (3.5). Fig

ures (4.2), (4.3), and (4.4), represent the trial wave functions obtained, each one 

calculated with the values of L stated in table (4.1). 

We note that the approximations obtained by both methods are good. After ex

perimenting with different values of N we can confirm that the larger this value is the 

better the approximations become, that is to say, closer to the exact solution. Also, 

by this same observations we can say that up to N/2 states are good approximations 
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Figure 4.2: Trial wave function for the ground state tpo of the harmonic oscillator in dimension d = 1 with minimizer 
L = 6.1. 

Figure 4.3: Trial wave function for the first excited state tp\ of the harmonic oscillator in dimension d = 1 with 
minimizer L = 5.6. 

in both approaches, the direct and the polynomial one. However, it is interesting to 

note that the polynomial approach, as it involves yet another approximation, from 

proposition (3.8), does not always give upper bounds. This is clear for some of the 

results showed in table (4.1), for example states n = 25,32,37. In contrast we observe 

that the variational approach always gives upper bounds even though N is not very 

large. To overcome the problem of inaccuracy of the polynomial approach we need 

only to increase the value of N to be greater than 100, this will give better results. 
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Figure 4.4: Trial wave function for the second excited state ip2 of the harmonic oscillator in dimension d = 1 with 
minimizer L = 5.8. 

4.2.2 The potential V(x) x 

The function V(x) — \x\ is symmetric and non-differentiable at the origin. This is a 

linear potential that represents the attraction of a small particle to a large plate with 

a hole in it under Newtonian gravity. The exact analytical solutions to this problem 

are given in terms of the zeros of Airy functions and its first derivatives, studied in 

Flugge [7] and shown in Abramowitz et al. [1]. 

Figure 4.5: The potential V(x) = \x\ 

It can be thought of as a non-harmonic oscillator for it represents an oscillating 

behaviour, with the difference that the force has a sudden change of direction at 

x = 0. 
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In table (4.2) we show the results for this problem found by applying the varia

tional method with a matrix of dimension N = 50, and a step size s = 0.25 for the 

optimization process. Again, n represents the state. As there exist suitable expres

sions for the exact solutions to this problem, we compare the results obtained in the 

variational method to these. We can also use a shooting method which is known to 

give good approximations for the energy levels. E and Es denote the exact energy lev

els and those obtained by this shooting method respectively, while Ev represents the 

approximation to the eigenvalue using an implementation of the variational method, 

and L is the minimum value of the variational parameter. 

Table 4.2: Approximation of the energy levels of the potential V(x) = |x|. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

E 
1.01879297 

2.33810741 

3.24819758 

4.08794944 

4.82009921 

5.52055983 

6.16330736 

6.78670809 

7.37217726 

7.94413359 

8.48848673 

9.02265085 

9.53544905 

Es 
1.01879305 

2.33810752 

3.24819770 

4.08794959 

4.82009938 

5.52056000 

6.16330750 

6.78670828 

7.37277509 

7.94413380 

8.48848690 

9.02265108 

9.53544923 

Ey 
1.01879344 

2.33810745 

3.24819827 

4.08794960 

4.82010046 

5.52056026 

6.16330960 

6.78670915 

7.37218128 
7.94413594 

8.48849407 

9.02265603 

9.53546280 

L 
6.25 

8.00 

8.25 

9.25 

9.75 

10.50 

10.75 

11.50 

12.00 

12.50 

12.75 

13.50 

13.75 

Following the theory from chapter 3, and the observations made in the harmonic 

oscillator the energy levels obtained by the variational methods are optimized upper 

bounds to the energy levels. In this case, when we optimize over the variational pa

rameter L, we obtained lower upper bounds, in fact, the goal was to obtain the lowest 

upper bound. Here we show the best lower bound calculated using the optimization 

process. 

For the shooting method, as described in Appendix B, we need to solve an ordinary 

differential equation numerically, which depends strongly on the software we are using 
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where we cannot control the accuracy of the results, therefore, the eigenvalues we 

obtained by the shooting process are just approximations. We cannot claim how 

accurate they are, but this is a matter for further numerical analysis which is not 

the main point in this thesis. Though the approximations obtained by the shooting 

method are very close to the exact solutions, if we face a problem that has no exact 

solutions we can only use this approximations to get an idea about the eigenvalues, 

not as a point of comparison to determine how accurate the results obtained from the 

variational method are. 

4.2.3 Polynomial potential: V(x) = x4 

We considered the potential V{x) = x4 to test the accuracy of the method using 

the polynomial approach, and compared it to the direct approach of the variational 

method and the results obtained from the shooting method as well. 

We used a matrix of dimension N = 50, and a step size of s = 0.5. Again 

the subindexes S,V, and P represent the results obtained with the shooting, the 

variational, and the polynomial methods respectively. 

Table 4.3: Approximation of the energy levels of the potential V(x) = x4. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Es 
1.060361945 

3.799673304 

7.455698365 

11.64474628 

16.26182677 

21.23837423 

26.52847225 

32.09859965 
37.92300243 
43.98116073 

Ey 
1.060362090 

3.799673024 

7.455697938 

11.64474551 
16.26182602 

21.23837292 

26.52847118 
32.09859772 
37.92300103 
43.98115811 

Ly 
3.5 
4.0 
4.0 
4.0 
4.0 
4.0 
4.5 
4.0 
4.0 
4.0 

Ep 
1.060362089 

3.799673027 

7.455697934 

11.64474550 

16.26182601 

21.23837290 

26.52847117 

32.09859769 
37.92300029 
43.98114584 

LP 

7.5 
6.5 
4.5 
5.0 
4.0 
7.5 
4.0 
6.5 
7.5 
7.5 

From this results we note that in some cases, the eigenvalues obtained from the 

variational method are smaller than the ones obtained from the shooting method. 
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This reinforces the notion that the approximations obtained by the shooting method 

cannot be compared to the ones obtained by the variational one. 

We do observe that for the first states, the approximations obtained from the 

variational and polynomial approaches are close. The polynomial approach has the 

advantage that it is fast for an optimization process compared to the variational 

method, therefore if we choose a large N we can get good approximations using it. 

4.2.4 Polynomial potential: V(x) — x2 + x4 

The potential V(x) = x2 4- xA is a special case of the quartic anharmonic oscillator. 

There interest in this problem has a long history. Simon has written an extensive 

review [21]. We consider the case of dimension d = 1, though this problem can also 

be studied in higher dimensions as presented, for example, by Hall [12]. 

Figure 4.6: Quartic anharmonic potential 

Table (4.4) reflects the results after applying the method to a matrix of dimension 

N = 50, and using a step size s = 1 for the optimization process. Again, n represents 

the state, and because this kind of potentials do not have exact solutions, yet again 

we need to make use of a shooting method to approximate the solutions given by 

Es, Ey, as usual, represents the approximation to the eigenvalue using the direct 
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approach, with the respect value Lv of the optimized variational parameter, and 

EP represents the approximation using the polynomial approach, with corresponding 

optimized variational parameter LP. 

Table 4.4: Approximation of the energy levels of the potential V{x) = x2 + x4. 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Es 
1.392351594 

4.648813066 

8.655050433 

13.15680476 

18.05755824 

23.29744288 

28.83533959 

34.64085039 

40.69038755 

46.96501230 

Ey 
1.392351474 

4.648812622 

8.655049869 

13.15680388 

18.05755739 

23.29744128 

28.83533840 

34.64084825 

40.69038606 

46.96500945 

Lv 
6.0 
5.0 
6.0 
4.0 
5.0 
6.0 
6.0 
5.0 
5.0 
6.0 

Ep 
1.392351640 
4.648812702 

8.655049951 

13.15680051 

18.05751328 

23.29743858 

28.83525815 

34.63779703 

40.62769619 

46.96212176 

LP 

5.0 
4.0 
9.0 
10.0 

10.0 

9.0 
9.0 
10.0 

10.0 

9.0 

The results in this table confirm what we mentioned for the problem in the previ

ous section, regarding the accuracy of the three methods used. However, calculating 

these energies using the variational approach is computationally expensive, because 

in order to construct the matrix H of dimension N we need to integrate numerically 

for each component of P for each value of L. This makes us think that the polynomial 

approach might be more useful, as it is faster, we need only to calculate the matrix 

¥x which has an analytical form depending on L, and multiply it by itself according 

to the relation (4.1). 

One of the problems is that after experimenting with L using this approach, 

sometimes we get values for the higher excited states that are lower than the energy 

levels of the problem, we show in figure (4.7) the behaviour of the eigenvalues in 

function of L. 

We can see from this that after L — 10, using the polynomial approach, the 

numerical results might be not so reliable, this can be the explanation that this 

approach has sometimes good results, but some other times goes even lower than 

the shooting or exact results, as seen in previous examples. We also observe that 
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Figure 4.7: Energy vs. L of the quartic anharmonic oscillator in dimension d = 1. 

before this specific value of the variational parameter, the eigenvalues have a smooth 

behaviour, if we choose an L before this critical value and take a large value of JV, 

we then again obtain good results. 

4.3 Higher dimensions 

The analysis of dimensions d > 2 is different from the one in dimension d = 1 in 

the sense that we do not use the shifted solutions for the particle in a box. We now 

consider radial wave functions, which means we need to do the analysis in the interval 

[0, b] or [a, 6], depending on how singular the problem is. 

4.3.1 The harmonic oscillator 

The energy values for the harmonic oscillator in dimensions d = 2,3,4,5 and quantum 

number £ = 0,1,2, 3 are calculated. We used a matrix of dimension TV = 40 and a step 

size of s = 0.25. This problem has known exact solutions (1.16), which can be used 
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for comparisons. Since the expression of each element of the matrices corresponding 

to the kinetic and potential energies is given by an exact analytical function of L, the 

calculations of these eigenvalues are quite fast. 

We present two different tables of results. For all of them £ represents the quantum 

number related to the angular momentum, n is the state (1 plus the number of nodes 

in the radial function for a given £), E is the exact value of the energy levels, and Ev 

the variational approximation with minimal parameter b. 

Table 4.5: Approximation of the energy levels of the harmonic oscillator in dimension d = 2. 

£ 
0 

1 

2 

n 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

E 
2 
6 
10 
14 
4 
8 
12 
16 
6 
10 
14 
18 

E\r 
2.28622395 

6.30816202 

10.32728254 
14.34185985 

4.00073469 
8.00185191 
12.00337390 
16.00524280 

6.00000262 
10.00001068 

14.00002888 
18.00005965 

b 
4.00 
4.00 

4.50 
5.25 

4.25 
4.75 
5.25 
5.50 

5.00 
5.50 
6.00 
6.25 

Table (4.5) shows case of dimension d — 2. It is clear that when £ — 0 we obtain 

results that are not quite accurate. This is due to the behaviour of the effective 

potential, which for this case is given from (1.15) by 

and we can see in Figure (4.8). For this case the singular term makes the potential 

tend to — oo when r is close to 0. This shows that the original oscillating behaviour 

might be lost and the matrix we get from the variational analysis is not as quite 

accurate. This is a hint that we might have problems with singular problems, even 

when they are weakly-singular. Here the difficulty is removed for £ > 0 (or d > 2) 
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since the effective potential U(r), generally given by (1.8), has a positive pole at r = 0 

and the particle is confined in effectively a "soft box" between this pole and the rising 

potential at large r. This point will be discussed further in the conclusion. 

20-

10-

0" 

-10-

-20-

Figure 4.8: Harmonic oscillator in dimension d = 2, and t = 0. 

Table (4.6) shows a small sample of the results for dimensions d = 3,4,5 and 

quantum numbers £ = 0,1,2,4. Most of the results are very accurate, except for 

some values of t. 
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Table 4.6: Approximation of the energy levels of the harmonic oscillator in dimension d = 3 ,4 ,5 . 

d 
3 

4 

5 

e 
0 

I 

2 

3 

0 

1 

2 

3 

0 

1 

2 

3 

n 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 
1 
5 
10 

E 
3 
19 
39 
5 
21 
41 
7 
23 
43 
9 
25 
45 
4 
20 
40 
6 
22 
42 
8 
24 
44 
10 
26 
46 
5 
21 
41 
7 
23 
43 
9 
25 
45 
11 
27 
47 

Ey 

3.00000000 
19.00000001 

39.00000001 

5.00007348 
21.00167944 

41.00907276 

7.00000000 
23.00000001 
43.00000001 
9.00000001 
25.00000076 
45.00002070 

4.00073469 
20.00745550 
40.02454449 
6.00000262 

22.00011370 
42.00094014 

8.00000002 

24.00000248 
44.00004592 

10.00000000 
26.00000008 
46.00000274 

5.00007348 

21.00167944 

41.00907276 
7.00000000 

23.00000001 
43.00000001 
9.00000001 
25.00000076 
45.00002070 
11.00000001 
27.00000000 
47.00000001 

b 
6.00 

7.00 
8.75 

4.50 
6.25 
7.75 

6.00 
7.75 
9.25 
6.00 
7.25 
8.50 

4,25 

6.00 
7.50 

5.00 

6.50 
8.00 

6.00 
7.25 
8.50 
6.00 
7.50 
8.75 

4.50 

6.25 
7.75 
6.00 
7.75 
9.25 
6.00 
7.25 
8.50 

6.00 
8.00 
10.00 

4.3.2 The hydrogen atom 

The hydrogen atom is studied in section 1.3.2. We now show results obtained with 

our method. Here the size of the matrix is N — 25, and the step size used in the 



optimization process is s = 1, the step size is chosen so large because this weakly-

bound system is all together large. The variational method is slow in this case, given 

the singular nature of the problem and because for the matrix P (corresponding to 

the potential energy) we need to integrate numerically for each term. 

Table 4.7: Approximation of the energy levels of the hydrogen atom in dimension d = 3. 

£ 
0 

1 

2 

n 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

E 
-0.2500000000 
-0.06250000000 
-0.02777777778 
-0.01562500000 

-0.06250000000 
-0.02777777778 

-0.01562500000 
-0.01000000000 

-0.02777777778 

-0.01562500000 
-0.01000000000 
-0.006944444444 

Ey 
-0.2494292776 
-0.06173021569 
-0.02682855454 

-0.01457726183 

-0.06231120892 

-0.02747649731 

-0.01526320869 
-0.009656788911 

-0.02777640178 

-0.01561644406 
-0.009970374676 
-0.006872824074 

b 
13 
32 
57 
90 
33 
60 
94 
143 
75 
108 
146 
189 

The results we get are not as accurate as the ones obtained for the harmonic 

oscillator. The hydrogen atom is a complicated problem; its energy levels are all 

negative and they they get closer and closer to each other as n grows. The most 

serious difficulty is posed by the weak binding leading to a spread-out wave function, 

quite unlike a particle in a box. We can see that in the values of the variational 

parameter, each following state needs a larger b, and similarly with each next quantum 

number £. 

4.3.3 Confined hydrogenic atoms 

With our variational approach we can think that we are confining the potential we 

want to study to a box of specific size, and we want to find the optimal size that 

will give us the best approximations to the energy levels. In the case of the hydrogen 

atom mentioned in the previous section, we find that we need bigger boxers for each 
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following state, this is because, as already mentioned, the problem is spread out. 

But this opens up the possibility to study the behaviour of a system that is already 

confined. 

The example of an hydrogen atom confined to a spherical box has been studied by 

Varshni [23] and by Ciffcci, Hall, and Saad [4]. For this sort of problem the Schrodinger 

equation is given by: 

"d^ (r ) + V*1 - 7 J VW = mr), (4-2) 

with boundary conditions ^(0) = t/)(b) = 0, and A > 0. In the latter study [4], exact 

solutions are given for specific radii. We then applied the variational method to this 

problem using the radii suggested by the exact solutions and obtained the following 

results for A = 1. 

Table 4.8: Approximation of the energy levels of a confined hydrogenic atom in dimension d = 3. 

e 
0 
I 
2 
3 
0 

1 

2 

3 

n 
1 
1 
1 
1 
1 
2 
1 
2 
1 
2 
1 
2 

b 
4 
12 
24 
40 

3.803847576 
14.19615242 

11.05572809 
28.94427191 

21.77124344 

48.22875656 

36 
72 

E 
-0.06250000000 

-0.02777777778 

-0.01562500000 

-0.01000000000 

-0.02777777778 
-0.02777777778 

-0.01562500000 
-0.01562500000 

-0.01000000000 
-0.01000000000 

-0.006944444444 

-0.006944444444 

Ey 

-0.06249993558 

-0.02777772347 
-0.01562500004 

-0.01000000002 

-0.02777730093 
-0.02777473502 

-0.01562458222 

-0.01562321913 

-0.009999999956 
-0.009999999937 

-0.006944444423 

-0.006944444436 

iV 
200 
150 
150 
100 
100 
100 
100 
100 
150 
150 
150 
150 

Here I is the quantum number, n is 1 plus the number of nodes of the wave 

function, E the exact solution for the energy, and Ey the variational approximation 

using a matrix of dimension N. In contrast to what happened with the hydrogen 

atom, we find that for the confined atom the approximations are comparable. We 

also show the graphs for the approximations of the confined wave functions for radii 
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b = 4 and 6 = 72 in figures (4.9) and (4.10) respectively. 

Figure 4.9: Hydrogenic atom in d = 3 confined to a box of size 6 = 4. 

Figure 4.10: Hydrogenic atom in d = 3 confined to a box of size b = 72. 

4.3.4 Highly-singular potentials 

Highly-singular potentials are problems that have been widely studied as it is difficult 

to find exact solutions. There are a special kind of potentials that are called quasi 

exactly solvable, this means that we can find a part of the energy spectrum exactly 

when the potential parameters satisfy specific conditions. For example, Dong et al. 
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[6] studied the potential 

V{r) = ar2 + br~4 + cr~6 

by assuming that the radial equations for the ground state and first excited state were 

given by: 

Re(r) =rK(a + 0r2 + ^r~2) exp - (v^r 2 + ^fcr'2) /2, (4.3) 

with P = 7 = 0, and K = K0 for the ground state. Although there are more 

studies on this matter, where different wave functions are used to calculate the exact 

solutions, and the parameters a, b, and c have to satisfy certain constraints. 

We find the the exact solutions for the ground state energy in the cases where 

a = b = c — 1 and a = 1, b = c = 9 mentioned in Hall et al. [13]. 

For a — b — c=lwe have the potential 

V(r) =r2 + r~4 + r~6 

the ground state energy is given by E0 = 5. Using different implementations of the 

variational approach, with both bases described in Section 3.4, the best result we 

obtained was the approximation Ev = 5.000008414, for a matrix of size N = 50, and 

optimal parameters a — 0.01 and 6 = 5. 

For the case where a = 1 and b = c = 9 we now have the potential 

V(r) = r2 + 9r~4 + 9r~6 

the ground state energy is given by EQ = 7. And our approximation is 

Ey = 7.000019409, where N, a, and b are the same as above. 

56 



Conclusions 

Throughout the history of physics, scientists have studied how to find solutions to all 

sort of mathematical problems posed by physical theories. In this way the explicit 

implications of these theories can be revealed, and verification and falsification of the 

theories become possible. In this thesis we have studied a small portion of this wide 

world of physical problems, namely that related to Schrodinger operators and their 

discrete spectra. 

The variational method we have adopted relies strongly in the use of the sine-basis 

obtained from the solutions of the particle-in-a-box problem, which we have presented 

in section 2.4. One of the questions we wanted to answer was, can this basis be applied 

effectively to construct a variational analysis for unconfined problems? 

Prom the results shown in chapter 4. we conclude that this basis is appropriate 

for the study of problems that have some similar characteristics to the particle-in-a-

box problem. That is why a potential such as the harmonic oscillator, whose wave 

functions vanish very quickly with |x|, as though the particle were already in a box, 

leads to good results. This points out that in theory, even if we are working with 

potentials that are highly singular but strongly U-shaped, then the problem would 

be suitable for a variational analysis in the sine-basis. 

Other kinds of singularities that do not sufficiently confine the particle might 

represent a problem, such as the harmonic oscillator in dimension d — 2 and with 

quantum number £ — 0. An effective use of the sine-basis for this case is still an open 
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issue. 

We also conclude that the sine-basis does not work too well with loosely-bound 

systems such as the hydrogen atom in dimension d = 3. The explanation for this is 

that such problems are not effectively confined, and require large boxes to approximate 

their energy levels; and the resulting computations proved to be slow. 

However, as we found for the hydrogen atom, if the quantum system studied is 

already confined in a box, the approximations for the eigenvalues are highly accurate. 

The study of confined systems has been of great interest in recent years, since the early 

work of Michels [17]. These physical systems are important because of the necessity 

of finding information about atoms or molecules trapped in microscopic cavities, or 

places in high pressure environments. It appears that this sine-basis gives excellent 

results when applied to estimate the spectra of this class of physical problem. 
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Appendix A 

Maple Code for the Variational 

Analysis of the Harmonic 

Oscillator 

>restart:with(LinearAlgebra): with(plots): with(Statistics): 

The basis functions are defined by : 

> Psin:= (x, n, L) -> (l/sqrt(L))*sin(n*Pi*(x/(2*L) + 1/2)); 

The kinetic energy matrix. 

> Ki:= proc (L, n) 

> local i, j, p; 

> p := Matrix(n,n); 

> for i to n do 

> p[i,i3 := evalf(i~2*Pi"2/(4*L~2)); 

> end do; 

> p; 

> end proc; 

The potential energy matrix. 
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> Po:= proc (L, n) 

> local i, j, k, m, p; 

> p := Matrix(n.n); 

> for i to n do 

> p[i,i]:= evalf(L'2*(i-2*Pi"2-6)/i"2/(3*Pi"2)); 

> for j from i+1 to n do 

> p [ i , j ] := eva l f (4*L~2/P i~2 / ( i~4-2* i "2* j~2+j~4)* 

( 4 * ( - l ) ~ ( i + j ) * i * j + 4 * i * j ) ) ; 

> p C j . i ] ••= p [ i , j ] ; 

> end do 

> end do; 

> p ; 

> end p r o c ; 

The Hamil tonian m a t r i x . 

> HM:= proc (L, n) 

> local HM; 

> HM := Ki(L,n)+Po(L,n); 

> end proc; 

This is the optimization process. 

n : = dimension of the Hamiltonian matrix. 

L : = initial value of the variational parameter 

s : = stepsize so the next variational parameter used in the 

process will be L+s 

it : = number of iterations 

dig : = number of digits in the approximation 

flag : = 1 or 2 

If flag : = 1 OPT will give a matrix with the first row being 
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that containing the values of the parameters L, and the next 

rows will be the corresponding eigenvalues of the Hamiltonian 

matrix. 

If flag : = 2 OPT will give a matrix which in the first column 

will obtain the ordered eigenvalues of the Hamiltonian matrix, 

and in the second column we will have their corresponding values 

of the optimum parameter. 

> 0PT:= proc (n, L, s, it,dig,flag) 

> local M, P, T, i, j, 1,E; 

> Digits:=dig; 

> 1 := L; 

> #for i from 1 to n+1 do; 

> # T[i,l]:=i-2; 

> #end do; 

> for j to it do 

> T[l,j]:=l; 

> M := HM(l,n); 

> P := evalf(simplify(LinearAlgebra:-Eigenvalues(M))); 

> for i t o n do 

> P[ i ] := Re(P[i]) 

> end do; 

> P := so r t (P ) ; 

> for i to n do 

> T [ i + l , j ] := P [ i ] ; 

> # p r i n t ( j , l , T [ i , j ] , i - l ) 

> end do; 

> 1 := 1+s; 
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> end do; 

> T:=convert(T,array); 

> for i from 2 to n+1 do 

> E[i-l,l]:=10"10; 

> for j from 1 to it do 

> if T[i,j] < E[i-l,l] then 

> E[i-l,l]:=T[i,j]; 

> E[i-i,2]:=T[l,j]; 

> end if; 

> end do; 

> end do; 

> E:=convert(E,array); 

> if flag=l then 

> T; 

> else 

> E; 

> end if; 

> end proc; 
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Appendix B 

Shooting Method 

Given a Sturm-Liouville problem in the normal form, we can develop a numerical 

shooting method to calculate its eigenvalues and eigenfunctions [18]. 

Roughly speaking, the shooting method consists of choosing a sequence of eigen

values and adjusting them to the conditions given by theorem (2.2), that is, for each 

state n = 0,1,2, . . . , the function has k — 0,1, 2 , . . . nodes or zeros respectively. Then 

solving for each trial eigenvalue the equation (2.16) and choosing the eigenvalue that 

gives the best approximation. 

As we want to focus this method to find solutions for quantum mechanical prob

lems, we know that the solutions have to belong to L2(Rd), that is, they need to 

vanish at infinity. For the numerical analysis we have to choose a suitable range for 

which the function will start vanishing quickly, for some problems it might be bigger 

than expected. 

Another thing to take into account is the initial conditions of each problem; this 

is of utmost importance while solving a differential equation numerically. 

Algorithm. The algorithm we use is a simple refining algorithm, and it is described 

as follows: 

For each state n = 0,1 ,2 , . . . we set up the node goal, that is, the number of zeros 
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that the function corresponding to the particular state to be ng. We then choose 

upper and lower values Au and A( respectively, 

1. Let A be the average (Au + A() /2. This value will be our trial eigenvalue. 

2. Solve the equation 

-^+Q(x)u = \u, (B.l) 

satisfying the initial conditions imposed by the original problem. 

3. Given the numerical solution of the above equation we count its number of roots 

or nodes. If this number is lesser or equal than node goal ng, then the eigenvalue A is 

too small, and we need to update the lower value A[ = A. Else, the number of roots 

is greater than node goal ng, which means that the eigenvalue A is too big, then we 

update the upper value Au = A. 

4. And we return to step 1 unless the stop criteria is met. 

Though the algorithm is straightforward, a computational implementation may 

not be easy as it depends mainly on the numerical solution of a differential equation, 

which is a very complicated topic. 
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