A Collaborative Framework for Knowledge
Acquisition and Management for

Bioinformatics Applications

Keywan Hodaei Esfahani

A Thesis in the

Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montreal, Quebec, Canada

January 2008
© Keywan Hodaei Esfahani, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-42531-2
Our file Notre référence
ISBN: 978-0-494-42531-2

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette théese.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manqguant.

Abstract

A Collaborative Framework for
Knowledge Acquisition and Management for Bioinformatics Applications
Keywan Hodaei Esfahani

We study Software Engineering Organizations (SEOs) in the area of Bioinformatics in
the context of Knowledge Intensive Firms. From this perspective, we characterize the
challenges SEOs may face in this area and show that the situation can be much improved
by following proper knowledge management practices. In response to these challenges
and considering the various software development activities in this area, we propose a
Collaborative Knowledge Management Framework (CKMF). The framework has four
components: data model, knowledge management database, constraints, and management
committee. Data model has three layers and is the central knowledge repository and acts
as knowledge transfer media. Knowledge management database stores and manages
information about concepts and relationships captured in the data model layers. It can
also support version management. Constraints encode the semantic integrity of the
application domain. . Managing committee is an elected body or committee in charge of
defining and enforcing constraints and version management.

Deploying the proposed framework, we can better identify, preserve, and institutionalize
the knowledge possessed by the software developers. This will reduce the impact of
attrition on SEOs, will ease steep learning curves for the Software Engineers new to the
field or organization, will provide a history of knowledge evolution in the organization
that can be used for postmortem analysis, and will greatly facilitate the flow of
knowledge among the experts within and across organizational boundaries.

We develop a prototype knowledge management of the proposed framework, and
demonstrate a mapping between major needs and the framework elements. We also
compare our approach with existing Bioinformatics Software Engineering tools and
facilities. Our attempt in this work has been to offer a means for knowledge management
in SEOs that captures individual creativity and team work, and acknowledges the

importance and values of collective achievements at the same time.

iii

Acknowledgments

This research would not have been possible without the support of many people. I would
like to thank my supervisor, Professor Nematollaah Shiri, who gave me his constant
support, valuable advice, and generous attention during the course of my studies in
Concordia University. His patience and profound knowledge were my most valuable
resources. I would also like to thank Dr. Christopher Baker, who helped me a lot with
biology concepts and applications. Especial thanks to my thesis examination committee
for their valuable comments and feedbacks.

This research was supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada, Genome Quebec, and Concordia University.

Thanks to the faculty members and researchers in the Genome Quebec Project. My
special thanks to Halina Monkiewicz and other staffs in the CSE department for their
support during my studies in the master’s program. .

I am extremely grateful to my wife, Bahareh Amini, who endured this long process with
me, always offering support, love, and technical insight. Her encouragement and energy

was the driving force that kept me going.

v

List of Abbreviations

Abbreviation Phrase
SE Software Engineer
SEO Software Engineering Organization
KIF Knowledge Intensive Firm
KW Knowledge Worker
DM Data Model
KMD Knowledge Management Database
MC Managing Committee
SAN Storage Area Network
NAS Networked Attached Storage
SMIS Storage Management Initiative Specification
CKMF Collaborative Knowledge Management Framework

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

List of Figures

Framework DM SHIUCKUTIEcoevveeiuiiriieirieniecienrentereniteresressacssresseseseesiesssenns 37
Partitions i DMcioueeeiirieriinieeieeiereeiete ettt sre e sae e sae s st see s saee s 44
Basic Service Oriented ArchiteCturecccoveeveeeireenenieninieninneenreseeeseneieens 50
Components of Service Oriented Architectureccceeeevvevveeenececreccrennene 51
High Level Entity-Relationship Diagram of KMDcccocveviivvenveenivenennneneens 54
Relation Class and its relationships, Part 1ccoccevveriininieniniiinnieninnenncnens 55
Relation Class and its relationships, Part 2c.cconvivininininnninininine 56
Relation Layer, relation Partition, and their relationships...........cccocevvininiinnne. 57
Simplified Class Diagram of Core Layer of the Prototypeccccovvevceirennennne 76

Figure 10: Simplified and Partial Class Diagram of Common Layer of the Prototype, Part

.. ; ;

Figure 11: Simplified and Partial Class Diagram of Common Layer of the Prototype, Part

.. ;8

FIGUIE 9) 1ottt csteeneeset st s s re s sbe e st e e be e sae s sb e s sre e bt esesesaseestesneeesneensnenanas 129

vi

List of Tables

Table 1: Relation Classccevciverierierieiieieiseiesies e seeseeresse st sressesseesesssssaessessessessesssennes 58
Table 2: Relation DataTyPececvevecirieneeieininiesiesieteeeesresreeresresveesesesessesse e ssessesanennas 58
Table 3: Relation VEISIONccoceeieviereerierieeiiinienteieseeneeeeeeeressessassessesseessesseseessessesssennas 59
Table 4: Relation DataMemDber..........couevieiiiininieniieienieieeeesieeesreee e e sseeeessessesesesseennes 60
Table 5: Foreign Keys of DataMembETccvieererieviiinieirieieiesreteeseeiensseseeeseesanaens 60
Table 6: Relation Methodc..ccvvviiiieniniiiniiiieceeieeeiese e sa e s s enns 60
Table 7: Foreign Keys of MEethOd.......c..ovvveviiieiieieeceeteeeereere ettt ene e v enen 61
Table 8: Relation Parameter..........cccevverieerinieirieiceseniesinieeesseeeeserssessessessesessessesesseenens 61
Table 9: Foreign Key of Parameter.........ccoovvvevrevieneieeieeeeenrieeeneereereereeseeseeessessesseennenns 61
Table 10: Relation MethodINPUL...........c.cuevevivereieiereeererereeeeeecceeeeesssesesessesaseeans eererenne 62
Table 11: Foreign Keys of MethodInputc.ccoeeeeeiieicinieeneeceecreeeeee e 62
Table 12: Relation TemplateParametercccoccevvereeierienenenenesienensesesesesesnersessasnes 63
Table 13: Foreign Keys of TemplateParameter...........occoveeeieierienenreneenennennensensenseenenns 63
Table 14: Relation LAYETc..cocvveeiieiiiiieiciecee ettt err e te et et seaeeere e eeae s enaee s 63
Table 15: Relation REIEASEc.ivvveeviericinienieieienic sttt sttt saenesse b esvnessenne 64
Table 16: Foreign Keys 0f REICASE......ccccvveviiviiiiirieiieriresieeeetee e e eve e 64
Table 17: Relation SeIVICE.......civvviivierireniiicienieteeeesteseeeete s eebesaesrsesse st esaeesraeeees 65
Table 18: Foreign Keys Of SEIVICE ...covviiiviirinriniiie sttt naesne s ssnenne 65
Table 19: Relation RelationTyPecccvevirierirerieieienecenresestece st ee e 65
Table 20: Relation ClassRelation.........ccoeevevienricieiienierinieneseneneseseeesneeessessessesssnsenes 66
Table 21: Foreign Keys of ClassRelationcoecvevvevveeinienieneneniecrenesieninensensenesessensenns 66
Table 22: Relation ClassHIStOTYccevvcverrerieeienieirenienieieeiesestesesieeesessessnessessessessessasssenes 67
Table 23: Foreign Keys of ClassHiStOTY....cooevieieriiriniesienienenenieseeesseesensessersssseseensenne 67
Table 24: Relation Partition........c.ccciveviervinieniiiieinresieseeeiesresrceeesesesiessesssessesessssessnesnnes 68
Table 25: Foreign Key of Partitioncoccevereinienieneninireeresecee e 68
Table 26: Relation PartitionHIerarchyccccvevveieeienreneninenenineneeeneeenresessesesvennens 69
Table 27: Foreign Keys of PartitionHierarchy..........ccccecuvrevererveierieneniiiieninenieneeeenens 69
Table 28: Relation PartitionMembership.........cccocvecvieeeeeineeiireceeeeecr e ereere e 69
Table 29: Foreign Keys of PartitionMembershipccceevevieieviecienienonienesiesiesresssesesnnens 70
Table 30: Relation APPliCatiON......ccivveerreiereririiieiieenieirieereestesresseseessesisesssesssessesssessesneens 70
Table 31: Relation ApplicationClassUSAZeccceveerrerrerrerienieieireienreneneseenseeeessnenens 71
Table 32: Foreign Keys of ApplicationClassUsage........c.coeerereennenereeneenenenencnennene 71
Table 33: Summary of COMPATISONScevevverieierierireerierenereeeeteeeresae s eseesreesesreeeesaens 88

vii

Table of Content

INTRODUCTION 1
1.1 CURRENT STATUS OF ECONOMY AND SOFTWARE ENGINEERING.........covvvevieereesnrieseesssrsssssoronenne 2
1.2 PROBLEM STATEMENTcooutivirerrerriseseteststes st stessossastseeesesssssesesesesesesesssssssseesesssasssssisssssssssns 4
1.3 CONTRIBUTIONS OF THE THESIS0cvvvviiitreeeceiistesrietieresristessesesessesssesesssonessssssssessesssssssssssssessssnes 5
1.4 THESIS QUTLINEcouitiieriiierieiesresiecesesdoseesesrssrseresesssssssestssessostossseetesseressneseneossssesessessessansessssesenes 6

BACKGROUND AND RELATED WORK 7
2.1 KNOWLEDGE MANAGEMENT BASICSiucciiiniireiriiniesisnssennnsiesieessesessssessssssseesessesessensssssonssnans 7

211 KNOWIEGE............cocoeiiiiiiiiseree ettt ettt 7
2.1.2 Knowledge ManaQementccveveveuvreuisieeieiesereseessseeeeneneesss e ssssesseessesseseesesseseasens 12
22 KNOWLEDGE INTENSIVE FIRMS......ccviitnrireierisrsianieeesesssesessesesese et seseeseresesnesesensssessnsosansesersnessonens 14
2.3 KINOWLEDGE WORKERSccviriiiririerierestisttasssistestoressesseersseessenssssessesssosssssossssssssassessssssessessessens 19
24 SEO ASKIF .ttt e istevest sttt bebesess st eboseststass st ssassesstessssssonessonsanesesensssens 20
2.5 RELATED WORK.......cririiiiereresmesisiereseentstssesssssssssesessesesesessesssassbsseesesestsssssssssssosesesssssonassosesesssons 24
251 FrameWOrk CONCEDLccuvmereveeeieiriireresseeeese st ettt e et sssssss s sese e ev oo ene 26
2.5.2 COllABOTALION. ...ttt s s et et e e st e ea e sen s s s aren 28
2.5.3 Common INfOrmation MOGEL....................c..coocueveciiveeieeeeeeeseieereseeessseieesess s s seeseoresesessnsans 29
254 Version MANAGEMENL............cocueveveiererereesereeeeseereeeseeeess st sss et es st sas e eae e st esasees 31

OUR PROPOSAL 32
3.1 THE GOALSootiiimiiniereeieteretiie et sbes e tess ettt s s ssa b et e se s sese s esess et ebeseasesetensesensotesssssasesanas
32 THE FRAMEWORK ARCHITECTUREeeotetietirieirerisesreniessnseseesasassessstssaeseoseseessssosesssssesssssssseneneens

32,1 DaAtAMOAE] (DM} ...ttt ss e e st n e
3.2.1.1 COTE LAYET ...ttt sttt bbb bbb s bt s et ese et ben s ssrs s
3.2.1.2 COmMMON LAYETcoviiririciririiiiresreeesiestresreeessssssssssesssesesssssene
3213 EXTENSION LAYET ..ottt ettt e ses s s b b

3.2.2 Knowledge Management Database (KMD)

3.2.3 COMSIFAINLS ..ottt ettt r e s e b bbb e se ettt es et sae s et e e et as e eae s

3.2.4 Managing COMMIMIEEccocuvvereireceniaririnsiseseseseesess e e ssssesessetsesesessssasssesssssssaseeessesseenes

325 PAFHHION. ...ttt sttt be st sttt ettt ne bttt ten e enenes

33 KNOWLEDGE ACQUISITION PROCESS AND VERSION MANAGEMENT IN CKMFcocovveevevinnnns 45

3301 CEMEF INMIQIZAON ..o..cevveeeieeiereireeevreceeesee et ststs et n s e sttt st sesete e sae e e e nanans 46

3.3.2 Knowledge ACGUISITION PFOCESS..........c.cc.coveviviireviveirisesiessesisesiesessasssesesessessesoreesesesesassans 47

TECHNICAL DESIGN 49
4.1 DM IMPLEMENTATION MODELc.vvvvtstiviinrieiniesirieeesssssssesssesesesssessssessssssssesessssosessesessosssssnenns 49
4.2 SERVICE PROVIDER ...ouvnveriiiienteteaetrttetesioseseesessssesassssssssesesssssssessssessssesessssssssesessessssessssssnsossns 51
43 SERVICE CLIENTvvevviuveetienieeieitteteoteenresnnessseestestssssesssssessssosessssansseaeessessesssssssssessesesssesseessees 52
4.4 SERVICE REGISTRY ..veveuietveneerintiireeneceeeteearesessssossssessosssssssessesssensssssenssssesessesssssessesssesssessssssssens 53

4.4.1 High Level ERD Of the KMDc.cocoooeeveeieeeiieeeeeeeeseeveeee et s s s s 53

4.4.2 TADBIES Of the KMD........c.ccovviiiiririsiicrerereeees sttt e ensaress s bt ss et s s seeeeee o 57

4.4.2.1 ReltION CIASS ...ttt ettt .38

4.4.2.2 Relation DAtATYPE...........ooveveicreieiieiiess oottt bbbt rser s sene e 58

4.4.2.3 RelQLION VEFSIONoueceivvieiiieiicese sttt e n e se et eae s 59

4.4.2.4 Relation DataMEmMBer..............cccuvveicieiiiieieieeieseees et v eb et 59

4.4.2.5 ReIAHON MEIROG. ...ttt en et et 60

4.4.2.6 RelAtiON PAFAMELEEoovevcveeeriereriereiieieees e esees s e ev ettt 61

4.4.2.7 Relation MethOdINDUEccccocioevriericiiieeiieseresee et 61

4.4.2.8 Relation TemplateParamerercccvourueeriiecreiecniresereseereeteeessesesessesseseesesesessesseae s 62

4.4.2.9 RelUION LAYEF..........covovveeeeisieieiieeeiicieete ettt sttt ettt et en s s 63

4.4.2.10 RelAUION REIEASEcc.vvcveeevvivieeeeceeeisie ettt est v ees e ee et et esasassessesessssesessesssessssenn 63

44211 RelQtion ServiCe............coocoueeeeieerereeeeeeeeeeeeeeer s s sevseresstseseeseessesses e sessesesssessesesessssessen 64
4.4.2.12 Relation RelQHIONTYPE.covvvevcerivieiiiiriieieises s ie ettt ss et 65
4.4.2.13 RelQtiON ClASSREIALION.c..eoeeeeeeereeeeeeeeeeeeeecreeievesssessseessessssseresesseessssesssssssssessseaes 66
4.4.2.14 Relation CIaSSHISIOFYcooevevreivereereeeeereenieesteiesessesssesesetsresee st eseesesesseseensessosseesesssasseans 66
4.4.2.15 RelQUION PAFLIIONcooooveveveeeeeeeeeeeeeeeeeeeeee e e e e e esee e e s ereeseaesseessssessesseesseessssssessseses 67
4.4.2.16 Relation PartitioNHIEFAFCRYc.coceeerecmrieieiivereisiesissssessisstssesiseseesoesesessssesseessesenns 68
4.4.2.17 Relation PartitionMembBershiD...........c.coccoecvieeiveieeiseeeeseeieesieisiesssisssssesesssssssesneneenaons 69
4.4.2.18 Relation APPLICALIONccocoveeeeieeiiieoeeeereeeeeereseeee e et eereesevstesae st sereses e seseesesreeeseas 70
4.4.2.19 Relation ApplicationClaSSUSAZEccccoececiiriviriieriiceieescsssesesessisssssseeseoseseeeneseenes 71
PROTOTYPE 72
5.1 CHOICE OF PROGRAMMING LANGUAGE AND OS.....oooviieiiiiiiriiiiesiessessesisesesesseeeaeeresansaessesaseasns 73
52 CORE SERVICE PROVIDERccviitiviirieitiiitessestiettosstasee st sossesasaeneesesensessesesenssenassessssssensssnsessssessns 75
53 COMMON SERVICE PROVIDERc.vcouieitiieriiieitieteetienteetestseesessesasssassessssaseneessaseesanessssssanaaesssns 77
5.4 KMD AS SERVICE REGISTRYcvuveeeervareeeeseesesseseoseesssesessssesssssesssssssssssssassssssesssessssesssssssssssssons 78
55 SAMPLE APPLICATIONScoviiutiniireeiteeiteeeteeenteseeteestsesesesesssssneessresasessesssasesesseseessessssessesnssssssesses 79
ASSESSMENT OF THE FRAMEWORK 80
6.1 PORTABILITYuvtittiereeetsee et eetectectessenvtsesteeeneesstesanesessesssaesssassesssesasessnsesesesesanesenesesnesesssesassssess 81
6.2 ADAPTABILITY ..ecovvvreenvreeevnreeeeneeneen et eretree et —b—etee e b —rtetera abtsaas s ——resteseetaraaarareessesesaanaanans 83
6.3 UNDERSTANDABILITYccuvritiiitiiieireiseeseiesseensteeesesessesssessessssssssssesssesssesessessassesosssssessesssessssssnsees 83
6.4 RELIABILITY .vvectviivveitieeetereereeireeteisbessssseesseessssesassesstesasesssssesssssssssssaneesnssssesesssssssssesssssnssseesssseeans 85
6.5 IMAINTAINABILITYuieeivieeiiiesieeriesereeesseeeesteistesatsesssesassssasssssessssenesoneesssesnsessssssessssssssesssseesssneens 86
6.6 SUMMARY OF EVALUATIONoocvieviiuiiitveeirienrenresnteesesesessseseessssossesssessessssssessssssnessesesssssesesessssssns 87
CONCLUSIONS AND FUTURE WORK 89
7.1 CONCLUSIONSectvieieitieesireeesresteaisessresessbessttseseesseesssesasessanesssnssssssessesosnssrsnsesessesssnssenosesssssnnsns 90
7.2 FUTURE WORKccctteitiiiiieeiieiiieiesisesctree e et stsessae bt s esbsesatsosstsssabesssatesstessnsennsneesanesassessessenasenens 94
7.2.1 Generalization Of CKMEcccccviieiiiiecseiiseceiesieesteieee e seese v et esa e eteereessnsessssenssnssssans 94

7.2.2 Automatic Code GENEFALIONcoc.oovivvvveeeerieeeeeseeeeaeeereeresersestessreresetssessseeeseresessessssseeas 95

7.2.3 Persistent Object Storage and Request BrOKer.............ccocvcuveeeeeeeeeeereieineieeieeeeseeesereenenens 96

7.2.4 Automatic Populating Of KMDc..cccccovmviiimirecioeeeetieie ettt ev s ...97

7.2.5 Opening MC Structure USING @ Wiki.........ccccovuveevereerieiriieneeceeeeeeteseee e evees s 98
REFERENCES 100
APPENDIX A: ORGANIZATIONAL LEARNING PROCESS OBSTACLES IN SEOSviiviveeeeirveeeeteeeeereseesesines 111
APPENDIX B: KM RELATED CHALLENGES IN SEOSoctuiiiiiiiiiiiiie et eseies 112
APPENDIX C: RELATED SOFTWARE ENGINEERING CONCEPTS ...vecvetiversierrteseeaseersesasssesseressssssesesesseesesees 118
APPENDIX D: PARTICIPANTS OF CIMS AN PROGRAMvoovivnvienriinieerereesiriseseeessessesesssssesssessssssessassssnees 127
APPENDIX E: CORE LAYER OF THE PROTOTYPEuvviiiiiitieitieietiestteevveessessssssstessanessonesanneessareeeseeesanenanes 128

iX

Chapter 1

Introduction

This work reports my research work in the context of the Génome Québec [106] which
supports major genomics and proteomics research initiatives in academic and industry
domains.

As in any interdisciplinary project, the major issue faced was effective communication
between biology specialists and scientists, and computer scientists and software engineers
(SE) involved in bioinformatics research and development, mainly due to their different
nature of expertise, background, and vocabulary. Biologists complained that they had to
repeat the same training cycle every time a new SE joins the team. Also, when a SE
leaves the team, the knowledge acquired by him/her would be lost since there was no
systematic, convenient method or infrastructure that could preserve the knowledge.
Almost every time that such project finishes, the “collective” knowledge that was
acquired by SEs became unavailable since that knowledge was not institutionalized in the
first place.

These problems and issues led us towards working on a framework for acquiring domain
knowledgé in the field of Bioinformatics and making that knowledge available for
transfer and distribution.

In the rest of this chapter, we will review the current status of Software Engineering and

how it is affecting the economy as a whole. We will then recall the concepts of Software

Engineering Organizations, Knowledge Intensive Firms, Knowledge Workers, and
describe how they are related to our research. This helps us reemphasize the importance
of “knowledge” in modern economy in general and in our context of software
engineering practices in bioinformatics. We will finally close this chapter by providing a

list of contributions and the organization of this report.

1.1 Current status of Economy and Software
Engineering

Economy is shifting focus as knowledge based industries are becoming the major role
players compared to earlier heavy manufacturing industries. The emerging areas such as
Bioinformatics and reliance on information technologies to achieve its goals are
testaments of this change. Software development which is an essential part of
Bioinformatics is a quickly changing and knowledge intensive discipline involving many
people working in different phases and activities [80]. Computer software as we know it
today has been around for aboﬁt more than half a century, however Software Engineering
is relatively a young discipline [89] and still growing [33]. The young and evolving
software industry is one of the pillars of today’s economy in industrialized as well as in
developing countries. The impact of Software Engineering virtues and misdeeds go far
beyond software industry and affect other industries and economy as a whole.
Bioinformatics is no exception.

In our research we have been dealing with a wide range of entities that could be

categorized as suppliers and/or consumers of knowledge in the field of Bioinformatics.

An entity that is somehow involved in Software Engineering activities could be
categorized as a Software Engineering Organization (SEO). This classification is broad
and covers a wide range of entities from a company that produces commercial software
systems to an IT department in an institution. The idea of this definition is to maximize
the number of entities that might be able to contribute to the knowledge acquisition and
distribution process.

SEO is a special type of Knowledge Intensive Firm (KIF). KIFs are the “skeleton” of
knowledge based economy. They mostly consume existing knowledge and produce new
knowledge in the course of their daily activities. SEOs involved in Bioinformatics
demonstrate a similar behavior: they consume existing knowledge which consists of
domain knowledge (biology) and Software Engineering knowledge and they produce new
knowledge. Knowledge is the primary resource for KIFs. In most businesses, including
bioinformatics, knowledge exists in the minds of Knowledge Workers (KW) in form of
experience and know-how, and it does not exist independently. Bulk of the knowledge
exists in the minds of Bioinformaticiens or it is embedded in the systems, programs, or
pieces of code that have been developed by Bioinformaticiens.

The main asset of a KIF in general and a SEO in particular is its intellectual capital, as it
is often in sectors such as consulting, law, investment banking, and advertising [80]. The
primary concern of a KIF is preserving the knowledge created and accumulated by its
KWs and making that knowledge available for reuse in future by the same or other KWs.
Since Software Engiheering is a knowledge intensive discipline, the main resource for

SEs, who are KWs of a SEO, is their knowledge that they use to perform their duties

(which could be creating a new piece of software or maintaining an exiting software

system).

1.2 Problem Statement

SEOs involved in Bioinformatics face the same challenges as other KIFs. Identifying
these challenges could help us better understand the problems and needs in
Bioinformatics applications. A major concern for SEOs we focus on in this research is
lack of well established knowledge management practices that could help software
developers take advantage of their most valuable asset, namely the knowledge. Our goal
in this work is to support and facilitate software development activities in bioinformatics
domain through CKMF, a framework we propose for knowledge acquisition and
management, which helps identify, preserve, and institutionalize the knowledge
possessed by experts. Unavailability‘ of institutionalized knowledge increases the impact
of attrition on organization’s competency, increases learning time and cost and thus
defers productivity, and hampers the flow of knowledge within and across organizational
boundaries. In this regard, CKMF also reduces the impact of attrition, eases steep
learning curves, provides a history of knowledge evolution, and facilitates the flow of

knowledge within and across organizational boundaries.

1.3 Contributions of the Thesis

We present a framework for knowledge acquisition and management for Bioinformatics
software development environments. The goal is to support and facilitate gathering,
storing, managing, and distributing the domain knowledge which SEs gain in the course
of projects as Wéll as Software Engineering “best practices” in Bioinformatics domain.
The framework serves as a collaboration platform, knowledge repository and transfer
media, which supports rapid development and integration of applications in the target
domain.
Looking at the challenges KIFS and SEOs face, our framework is designed to provide a
basis for capturing SEs skills and know-how while not disrupting their autonomy and
creativity, helping alleviate the communication problems among SEs and SE teams, and
providing information that can be used as input to an objective quality assessment
process. Using CKMF in a Bioinformatics software development environment shall
reduce the impact of attrition, shall ease leaming curves for those new to the
environment, shall help avoid repeating mistakes and will facilitate the knowledge
movement within and across organizational boundaries.
The main contributions of this thesis are as follows:

e Introducing an architecture of the proposed framework

e Describing the components of framework architecture

e Presenting a prototype of CKMF and illustrating its components in

Bioinformatics domain

e Presenting a preliminary evaluation of the proposed framework

1.4 Thesis Outline

The rest of this document is organized as follows. In chapter two we present a
background and review related work. This includes the basics of knowledge management
(including a quick review of KIF and KW characteristics and behavioral patterns) and a
review of related research on software reuse and knowledge preservation techniques. In
chapter three, we will present our proposal, a Collaborative Knowledge Management
Framework for Bioinformatics. We will discuss the requirements of the proposed
framework and describe details of its components and characteristics. In chapter four, we
provide technical details on the design of our framework and illustrate its applications.
Chapter five introduces implementation details of a CKMF prototype system we
developed. In chapter six, we evaluate CKMF using a set of known Software Engineering
metrics and compare it with related existing Software Engineering tools in the field of
Bioinformatics. In the last chapter, we will provide concluding remarks and discuss

possible future research.

Chapter 2

Background and Related Work

This research focuses on the role of knowledge in SEOs and demonstrates importaﬁce of
knowledge management systems in SEOs. In this chapter we introduce the concepts and
terms used in the domain of knowledge management and elaborate on how they are
related to the subject of this research. We also review research in Software Engineering

domain related to our work.

2.1 Knowledge Management Basics

Knowledge management methodologies and systems create value from intangible assets
of an enterprise [19]. The most valuable intangible asset of an organization is the
knowledge it posses. In this section, we recall definitions of “knowledge” and

“knowledge management.”

- 2.1.1 Knowledge

Some authors, most notably in IT literature, define knowledge by differentiating among

knowledge, information, and data [2]. The generally accepted understanding of the

demarcation of data, information, and knowledge is a progression of these elements from
unstructured to structured [23]. The advocates of this view offer the following
definitions: Data is raw strings of numerical and non-numerical characters, which when
processed, becomes information and when authenticated, becomes knowledge [27, 56].
Since the definition of data is simple and clear, it is easy to recognize data in a context.
The same is not true for information and knowledge. Generally, it is not feasible to
distinguish between information and knowledge based on structure, accuracy, or utility of
the supposed information or knowledge. The differentiating factor is the fact that
knowledge exists as processed information in the mind of individuais. In other words,
knowledge is personalized information related to facts, procedures, concepts,
interpretations, ideas, observations, and judgments [2].

There is an alternative way of looking at the hierarchy of data, information, and
knowledge. Tumoi [23] presents a model that explicates the relationship between these
three terms in a new way. This model exposes the need for reconsidering the traditional
hierarchy of data, information, and knowledge if it is going to be used to provide
information system support for knowledge management and organizational memory.
Since our study aims to support knéwledge management in SEOs, we need to consider
the alternative hierarchy that Tuomi introduces.

In the alternative view, the hierarchy of data, information, and knowledge is turned
upside down. Data emerges last, only after knowledge and information are available. No
isolated pieces of simple facts can exist unless someone has created them, with intended

meanings, using his or her knowledge. Only after a meaning structure or semantics is

developed and fixed, data can emerge, because the already created meaning structure or
semantics is required to represent information.

The meaning structure that underlies knowledge for an individual is articulated through
cognitive effort to become focal and structured [23]. When the meaning is expressed
within a linguistic and conceptual context, it can be documented in a verbal and/or textual
form. At that poinf it is typically called information. The next step would be splitting
information into atoms having no meaning that would need to be taken into account in
automatic processing. These atoms are called data. In short the model explicitly
emphasizes that knowledge comes first. When knowledge is articulated, verbalized, and
structured, it becomes information. When information is assigned a fixed representation
and standard interpretation, it becomes data. The model also implies that even the most
elementary piece of data has already been influenced by the knowledge processes that led
to its identification and collection.

Traditional hierarchy and reverse hierarchy share one point in the way they define
knowledge and that pbint is critical to their definitions. The shared point is the fact that
knowledge does not exist outside of an agent (a knower). The fact that a knower is
required for existence of knowledge indicates that knowledge_is the result of some kind
of cognitive processing. In line with this view, it is possible to say that information is
converted to knowledge once it is processed in the mind of individuals. Looking at the
relationship between information and knowledge and following the above mentioned
view, it is also perceived that knowledge becomes information once it is articulated and

presented in the form of text, graphics, words, or other symbolic forms [2].

This view leads to two significant implications. First corollary is that since knowledge is
always shaped by one’s mind and needs as well as one’s initial stock of knowledge [31],
individuals need to share a certain level of background knowledge in order to arrive at the
same interpretation and possibly the same understanding of data or information
presented. Another important insinuation of this view is related to the public perception
of systems designed to support knowledge in organizations. Since the distinction between
information and khoWledge might not be that obvious, the knowledge management
systems may not appear radically different from other types of information systems in the
organization, however knowledge related systems should be geared toward enabling
users to ‘assign meaning to information and to capture some of their knowledge in
information and/or data [2]. |
Knowledge may be viewed from several perspectives [2]:

e A state of mind: Knowledge can be described as “a state or fact of knowing” with
knowing being a condition of “understanding gained through experience or study;
the sum or range of what has been percéived, discovered, or learned” [Schubert et
al. 1998]. In this perspective, the focus is on enabling individuals to expand their
personal knowledge and apply it to the organization’s needs.

e An object: Knowledge may be viewed as an object [Carlsson et al. 1996;
McQueen 1998; Zack 1998a] which can be stored and manipulated.

e A process: Knowledge can be viewed as a process of simultaneously knowing and
acting [Carlsson et al. 1996; McQueen 1998; Zack 1998a]. The focus is on

applying expertise [Zack 1998a].

10

e A condition of having access to information: This perspective could be seen as an
extension of the view of knowledge as an object, with a special emphasis on
accessibility of the knowledge objects. The emphasis is on how knowledge should
be organized to facilitate access and retrieval of content.

e A capability: Knowledge can be viewed as a potential for influencing future
action - [Carlsson et al. 1996]. This view can be extended to suggest that
knowledge is not so much a capability for specific action, but the capacity to use
information. Knowledge can be used decide what information is necessary in
decision making [Watson 1999].

Each one of above perspectives leads to a different perception of knowledge
management. We will discuss the impact of these perspectives when we discuss
knowledge management.

Knowledge is categorized in various ways. A well-known classification which is related
to our field of research divides knowledge into two main types: explicit knowledge and
tacit knowledge. Explicit knowledge, also called codified knowledge, is expressed
knowledge, which can be easily documented and communicated [80]. Examples of
explicit knowledge are organization’s processes, templates, and policies. Tacit knowledge
on the other hand is personal knowledge that is gained through experience [80]. Tacit
knowledge is deeply rooted in action, commitment, and involvement in a specific context
[68]. This type of knowledge is hard to express and is fundamentally influenced by
beliefs, perspectives, and values of the knowledge carrier. Examples of tacit knowledge
are cognitive skills and experience. Each type of knowledge can be found at an

individual, group, organization, multiple organizations, or industry-wide levels. While the

11

two types of knowledge are not entirely disjoint, there is a noticeable distinction between
them. No knowledge is entirely tacit and no knowledge is entirely explicit [5]. Another
way to express this distinction is to consider them as different dimensions or aspects of

knowledge which exist in a symbiotic relationship [5] and complement each other.

2.1.2 Knowledge Management |

In this section, we review the literature related to Knowledge Management (KM) and its
objectives. The aim of KM is to continuously improve an organization’s performance by
improving and sharing of organizational knowledge throughout the organization. The
goal of KM is to provide the right knowledge to the right people at the right time and in
the right format [19]. KM is perceived to capture and integrate crucial elements from
various sources, such as groupware, databases, applications, and most important of all,
experts’ minds, and make them readily available to users in an organized and logical
form [28]. It provides a mechanism to improve both the knowledge and the learning
process by determining the organization’s knowledge needs, current state of
organizational knowledge, and the gaps in knowledge and barriers fo organizational
learning, and then develop, implement, and improve proactive knowledge management
strategies to support organizational learning [49].
Knowledge goes through various phases and transformations in an organization. KM is
defined as a set of proactive activities to support an organization in creating, assimilating,
disseminating, and applying its knowledge [49]:

* Knowledge creation: Members of an organization create knowledge through

learning, problem solving, innovation, creativity, and importing from outside

12

sources [80]. Knowledge creation can be defined as the improvement of or
increasing the certainty of a piece of knowledge, and occurs during a learning
experience [49]. A lesson learned from an experiment is an example of an output
generated by knowledge creation process.

Knowledge assimilation: After knowledge is created, members of an organization
try to capture, refine, and store it. This is done through an iterative process where
in each step the more effective practices receive more attention and support and
the less effective practices receive less attention and support. Elements that
receive more attention and support are used more often and become engraved in
organizational memory and therefore become part of organizational knowledge.
The elements that receive less attention and support are not engraved in
organizational memory and do not become organizational knowledge and
therefore are forgotten over time. When some element of the created knowledge is
absorbed and becomes part of organizational knowledge or vanishes completely
and does not become part of organizational knowledge, assimilation process is
complete. Knowledge assimilation is collecting and refining the created
knowledge and storing it alongside existing knovs)ledge in the organization’s
memory [49]. The concept of organizational memory has been the focus of many
researches and it is difficult to define. One reason for this difficulty is that, while
some researchers have tried to apply the concept of memory in biology and
psychology to organizations, it is unclear whether or not information processing
ideas that are derived primarily from work on biological organisms can be

extended to social and organizational phenomena [5]. A working definition of

13

organizational memory would be that it stores information from organizations
history and experience, and can be used for making decisions. The organizational
memory is contained in organizational members, files, records, culture, processes,
procedures, organizational structure, and physical structure.

* Knowledge dissemination is the process of distribution of the knowledge for use
in another learning experience.

* Knowledge application is the use of past knowledge to help solve the current
problem. In applying the past knowledge, a decision maker must adapt the

knowledge to the current situation [49].

2.2 Knowledge Intensive Firms

KIFs can be defined as organizations that offer the use of fairly sophisticated knowledge
or knowledge based products [5]. According to this definition, since software is a
knowledge product, we may consider SEO as a kind of KIF. All activities in an
organization related to creation of a product from the inception of initial idea until it is
realized as a product and is ready for the market, can be grouped into two phases: (1)
research and development (R&D) and (2) manufacturing. In the R&D phase, the
organization works on a problem (or a need) and tries to provide a solution. In the
manufacturing phase, the solution tailored in the first phase is formulated and becomes a
solid and tangible product or service. The cost of each phase is calculated as the sum of
the costs of machinery, raw material, and workforce used in the process. The products or

services that KIFs offer are characterized by R&D costs that outweigh manufacturing

14

expenditure [5]. In line with this observation, SEOs are characterized by high cost of
R&D compared to low cost of manufacturing.
Acknowledging that the idea of KIFs and related concepts are difficult to substantiate and
any evaluation of knowledge intensiveness is contestable [6], we propose a measure to
act as an indicator of knowledge intensiveness of organizations. It is important for our
discussions to have an idea of how knoWledge intensive an organization is. We have
observed through our experience and this research that visibility and tangibility of KIFs’
characteristics are linked positively to knowledge intensiveness of the organization. In
other words, the more knowledge intensiveness an organization is, its knowledge related
characteristics are more visible and more tangible. The measure we propose is the
proportion of R&D cost and manufacturing cost. This indictor could be close to zero for
organizations that have negligible R&D costs compared to manufacturing costs. The
proposed indicator can also be quite large if the manufacturing cost of the organization is
negligible compared to the R&D cost. Since the value of this indicator for SEOs is very
large, we can conclude that SEOs are among the most knowledge inteﬁsive organization
and therefore their knowledge related characteristics are very visible and tangible. This
degree of visibility and tangibility for knowledge related characteristics makes SEOs very
sensitive to issues related to knowledge management.
In terms of nature of the work and how they are managed and organized, KIFs share a
number of characteristics [5]. Some of these, discussed below, are related to our work in
this research:

e Highly qualified individuals perform knowledge based work, using intellectual

and symbolic skills. In a KIF, the emphasis is not on the knowledge implanted in

15

techniques, rules, or procedures, although they are important. Instead the
organization heavily relies on the knowledge that exists in the cognitive skills of
knowledge workers. They are responsible for analyzing the requirements and
providing solutions. In this process, knowledge is the input as well as the output.
Knowledge means competence for a KIF. The more knowledgeable professionals
are in a KIF, more effective they can be in performing their duties, and this
translates into more competencies for the organization. Any attempt for increasing
the competence level of KIF should be directed at finding ways to record,
preserve, and maintain intellectual and symbolic skills of the individuals.

A fairly high degree of autonomy and downplaying of organizational hierarchy
exists in KIFs. The knowledge workers face unique problems in the course of
their daily work and they need to provide solutions for those problems. The
knowledge used in the process of providing a solution is not related to the ranks
of an organization. To create an effective solution, the knowledge workers need to
get a good understanding of the specifics of the problem, while maintaining a
general view of the problem and its environment. Higher ranks of the organization
might have more general experience but details of a specific and particular
problem are less known to them; Therefore the higher rank managers know less of
what can and should be done to solve a specific problem compared to the
professionals working in the field. Such environment requires knowledge worker
to have considerable discretion. Looking at professional communities involved in
knowledge work, a high degree of self ‘determination and collegial relationships

across hierarchical positions are visible. Any means used to collect knowledge

16

from such autonomous individuals or teams should be as non-intrusive and non-
disruptive as possible to make sure that it has little or no impact on their
performance.

There is clearly a need for extensive communication in KIFs aimed at
coordinatioﬁ and problem solving tasks. Team work and collaboration for creating
a common and shared understanding is common in knowledge based tasks and
projects. Since often a project undertaken by a KIF is somehow unique, the
structure of the team and responsibilities of the members are not well known and
clear in advance. Teams adjust and shape themselves as they become more
involved in the project and acquire more knowledge about the specifics of the
problem. Traditional planning, rules, and methodologies which go into details in
describing how things should be done are not effective enough and suitable in
these settings. The high degree of agility required in the team structure (and the
role each team member plays) plus the need to be in sync and agreement with the
client during entire span of the project, highlights the nveed for extensive
communications among professionals and between the professionals and the
client. Knowledge management systems that might be used in these environments
should not add to the communication burden and preferably should help KWs
with their communication needs.

It is'difﬁcult to objectively and accurately assess the quality of knowledge work.
KIFs often deal with complex and fairly specific types of problems and this
makes it difficult to define a set of rules and criteria for general quality

assessment, which is important for organizations. Organizations require

17

measuring the quality of the final products to make sure that clients are satisfied
and are able to track and manage quality trends in order to improve themselves
(and therefore increase competency of their organizations). Organizations also
need to assess the quality of contributions of the teams and their members. Since
each problem is fairly unique in KIFs’ field of work, using a predefined set of
metrics for quality assessment might not work. On the other hand, defining a set
of metrics for each project is also problematic because it makes it too difficult to
compare the quality of different projects. To assess the quality of team members
and teams in a prpject, considering relative autonomy of the knowledge workers
and their position as the best information source to note what is being done, it is
obvious that the knowledge workers need to be involved in defining the set of
metrics (which will be used in assessing the quality of their contributions) as well
as the assessment process itself. This will reduce objectivity of the output of
process with regards to the quality of contributions of the knowledge workers. A
knowledge management system that keeps track of the knowledge used and
created during the course of a project, could help in the quality assessment and

increase the objectivity of the assessment process.

Each of the above mentioned characteristics display the complexity of the inner working

of a KIF and is considered a challenge for traditional management and organizational

doctrines. KIFs are looking for tools, systems, or concepts to help them cope with this

level of complexity that has not been dealt with before. We have considered the above

challenges in the design of our framework. The framework has the ability to capture

intellectual and symbolic skills while being least intrusive and least disruptive. The

18

framework management structure is tailored to include and involve KWs giving them
opportunity to preserve their autonomy and creativity. CKMF also facilitates
communication among KW individuals and the teams, and acts as a knowledge transfer
media. The framework structures keep tracks of knowledge used and created in different
projects and the evolution of knowledge over time. This information can be useful as an

input to an assessment process.

2.3 Knowledge Workers

KW refers to those who create knowledge or to those whose use of knowledge is a
dominant ‘aspect of their work [21]. This definition can be expanded to include people
with a high degree of education or expertise involved in creation, distribution, or
application of knowledge. [21]. According to these definitions, Software Engineers (SE)
are considered as KWs.

These definitions characterize a KW as an elite and distinguished element of the
workforce who is required to be creative and make‘ extensive use of knowledge in her
daily work. Cont-rary to the industrial age era when machines and capital were the driving
forces of economic development and prosperity, in today’s knowledge based industries,
KW and the knowledge carried are the main assets. In the past, from an economic
standpoint people were needed but most of them were easily replaceable because they
were mainly using their body and physical strength in general to perform routine tasks.
Today KW is not only needed and can not be replaced easily; organizations try to keep

their KWs as long as possible in order to preserve the knowledge in the organization.

19

Since a KW is supposed to be creative, apply his/her knowledge to solve particular
problems, and create the knowledge in the process, s/he needs a high level of autonomy
and self-ruling in work places and work patterns. On the other hand, organizations need
to have some level of control over their projects and their KWs involved in the projects
for administrative and financial purposes. It is important for organizations to maintain a
balance between control and autonomy to properly manage KW in the work environment
and motivate KW to Shére his/her knowledge with the organization and other KWs.
Through its contribution and management mechanisms, KFM helps individual KWs and
teams of KWs of SEOs maintain their autonomy and have some control over knowledge
management process while enabling the management of SEO to participate in the

knowledge management process and have some say in there as well.

2.4 SEO as KIF

The principle mission of a SEO is producing and maintaining software systems. Each
software‘ system is created to solve a problem or fulfill a requirement in a domain. SEs
need to get acquainted with the target dc;main to be able to work effectively towards
solving problenis in that domain. There are two types of knowledge involved in the work
of SEs: Software Engineering knowledge and target domain knowledge. Our framework
is designed to capture the domain knowledge of SEs as well as Software Engineering best
practices employed by SEs. Both types of knowledge that exist within SEs’ minds in the
form of experience and know-how are important for a SEO and are considered the main

assets and intellectual capital of the organization. Managing the intellectual capital of the

20

organization is emerging as a pivotal task for surviving in today’s competitive
marketplace [24].

Organizational knowledge which is the “sum” of KWs’ experience and know-how in an
organization has been recognized as a key for success and competitive advantage in all
activities [61]. KIFs strive to preserve the organizational knowledge by detaching it from
KWs and institutionalizing it. A variety of perspectives suggest that the ability to marshal
and deploy knowledge dispersed across the organization is as an important source of
organizational advantage [90]. Knowledge is the key factor for an organization’s
competitive advantage, and because of this the producﬁon environment and infrastructure
are playing a diminishing role and intellectual capital and knowledge management a
growing one [38].

Software development is a knowledge intensive and complex process. New software
systems tend to get more complex over time and so does the précess of developing and
maintaining such systems. Organizations cannot afford to increase resources along with
the increasing demands [80] and sometimes increase in resources would not be helpful or
effective at all; therefore, they expect a rise in productivity and performance to manage
the situation. Productivity and performance are functions of the knoWledge being used or
applied in the daily operations and tasks. Knowledge must be continuously maintained
and improved to guarantee organization performance and productivity increase.
Knowledge is improved through the organizational learning process, which creates and
shares knowledge from one part of the organization to another [49]. Knowledge in
Software Engineering is diverse and its proportions immense and steadily growing.

Organizations have problems identifying the content, location, and use of the knowledge.

21

An improved use of this knowledge is the basic motivation and driver for knowledge
management in Software Engineering and deserves further analysis [80]. Some of the
obstacles that SEOs face with regards to the organizational learning process are listed in
Appendix A

Our work yjelds a knowledge management tool for SEOs. It acts as a knowledge
repository and a transfer media which facilitates the flow of knowledge from one part of
‘a SEO to another, and thus improves the organizational learning process. The framework
data model and its accompanying knowledge management database are designed to help
with identifying the content, location, and use of each piece of a SEO knowledge.

Among the challenges SEOs face at the present time, they have to deal with the following
problems that are directly related to knowledge management [80]:

o Loss of knowledge due to attrition. When workforce attrition occurs, the
knowledge which KW used to carry is also lost and should be deducted from the
organization’s intellectual capital. In case of a SEQ, this loss is two fold: loss of
Software Engineering knowledge, and loss of domain expertise. Our framework
helps reduce the impact of attrition through sharing the knowledge of individual
SEs and distributing it in the SEO, thus making it true organizational knowledge.

* Lack of knowledge and an overly long time to acquire it due to steep learning
curves. As computer systems find their ways into more complex domains, it
becomes harder for SEs to absorb the necessary domain knowledge in a
reasonable time. In fact, the more complex target domains get, the learning curve
becomes steeper. Our framework enhances the organizational learning process

through capturing knowledge of SEs and facilitating the distribution of the

22

captured knowledge. This helps ease the curve of learning path and reduces the
time SEs need to acquire enough knowledge to become productive.

People repeat mistakes and perform rework because they forgot what they learned
from previous projects. Postmortem analysis is not common for software projects
and the reason is lack of properly recorded information about the course of the
project, the decisions made, and the reasons for the decisions. CKMF makes it
possible to maintain a history of decisions SEs make during the course of projects
and the results of those decisions are traceable over time and their affects can be
realized as well. This history could be used as an input to an analysis process and
the results could help evaluate past decisions in order to recognize mistakes and
avoid them in future.

Movement of knowledge within and across organizational boundaries, in an
effective and cost-efficient manner in a distributed software development
environment. The general trend in software industry is moving towards more
integration. Software companies design and builds systems that enable users to
consolidate their investments and integrate their systems as much as possible.
Responding to this trend, individual SEOs, even competitors, have to work
together to make their products compatible with other software and hardware
products. In recent years, SEOs have been leaning more and more towards
collaboration frameworks that enable them to share knowledge. CKMF acts as a
collaboration platform that enables different groups share knowledge and
cooperate while maintaining their unique views and their differences. It facilitates

the movement of knowledge within and across organizational boundaries. The

23

fruit of this collaboration over time could be a consensus and a unified
understanding of the target domain, which will be valuable for all participants.
Our work is inspired by our experience in an industry effort of this kind. That
effort is “CIMSAN Initiative”, sponsored by Storage Networking Industry
Association (SNIA). This program allows participants which are software and
hardware companies share knowledge and collaborate in developing and
improving a standard for managing storage area networks (SAN). The goal of
companies that participate in this task is development and implementation of
“SNIA’s Storage Management Initiative (SMI).” The main goals of CIMSAN
initiative, which are indicators of today’ software industry trend, are: (1) Ease the
implementation of the SMIS specification in vendor products (through ongoing
developer symposia and plug-fests), (2) Reduce multi-vendor integration costs,
(3) Build seamless interoperability between products, and (4) Forward the
development of the CIM/WBEM based SMI Specification (SMIS).

A more detailed discussion about the above mentioned challenges can be found in

Appendix B.

2.5 Related Work

The demand for more complex software systems today with many functionalities and for
more varieties of software systems is greater than ever before. In some cases, the time-to-
market window and production cycles have shrunk from several years to few months.

The increasing size of software systems, degree of their complexity, more complex

24

standards, and more sophisticated user demands aggravate the situation. SEOs need to
improve product time-to-market, software quality, and staff productivity simultaneously
to keep up with the growing demands. They also need to reduce costs of development
phase as well as maintenance phase.

Many studies show that the overall cost and time of software development, and the .
quality of the code developed, correlate most closely with the amount of new code
written [67]. Based on this finding, it is clear that less new code should be written to
improve many aspects of the software development process.

The idea of systematic reuse (the planned development and widespread use of software
components) was first proposed in 1968 by Doug Mcllroy [67]. Since then as we go
forward in time and while Software Engineering matures, the importance of reuse is
realized more deeply and the efforts are focused towards applying reusability
characteristics to elements that are more conceptual and more abstract, and thus less
tangible. The trend we observe in the history of Software Engineering is moving from
reuse of simple and tangible pieces like code towards reuse of more abstract and
conceptual elements such as design and architecture. It is now well known that software
evolution and reuse is more likely to receive higher payoff if high-level artifacts, such as
architectures and designs, can be reused and can guide low-level component reuse [54].
The ideal reuse technology provides components that can be easily connected to make a
new system. SE does not have to know the implementation details of the component. The
resulting system will be efficient, easy to maintain, and reliable [45]. Active areas of
research in the past years related to reuse include reuse libraries, domain engineering

methods and tools, design patterns, componentry, and generative reuse [34].

25

Our proposal is offered in the form of a framework. Frameworks share many
characteristics with reuse techniques in general [50], and object-oriented reuse techniques
in particular [45]. A brief review of reuse techniques in Software Engineering can be
found in Appendix C. We review the framework concept and its application in our
research in this chapter.

The other topics of interest related to our research are the collaboration platforms and
methodologies in Software Engineering. In today's global economy, success and survival
of individual firms strongly depend on their belonging to a network of collectively
interacting firms. Because of this rclationship, the knbwledge building process is not
confined to the organization itself, but transcends to the network of organizations to
which the firm belongs [81]. The members of such networks need to collaborate to
eventually create knowledge about what they do. The way collaboration among members
of the network is organized and carried out is an active research topic in software

industry.

2.5.1 Framework Concept

In this research, we are offering our proposal in the form of a “framework”. In this
section, we review the concept of framework and how we are going to take advantage of
this concept in our research.

Framework concept is a cornerstone of modern Software Engineering. Framework
development is popular and widely used because it promotes reuse of design and source
code [58]. A framework can be defined as a reusable design of all or part of a system that

is represented by a set of abstract classes and the way their instances interact [45].

26

Frameworks can probably be best described as the context that defines specific “pattern”
of communication and cooperation among software components [45]. This definition
identifies the product of our research more closely than other definitions.

Application frameworks consist of ready-to-use and semi-finished building blocks. The
overall architecture, i.e. the composition and interaction of building blocks, is predefined
as well. Using the framework to produce specific applications usually requires adjusting
of building blocks to specific needs [74]. Using a framework results in some form of
standardization of applications for the specific domain. Since it is not possible to
anticipate all aspects and features required for development of applications in a domain,
an application framework must have a mechanism to allow some degree of flexibility so
that it can be can easily adapted to specific needs. CKMF is designed to allow different
viewpoints to be accommodated and enables stake holders to extend existing concepts
and build upon them.

Frameworks are tightly coupled to patterns in the way that they could represent the
instantiation of a solution to a problem in a defined context [92]. The result of
instantiation of the proposed framework is a product that can be described and identified
by the definitions mentioned above. We have offered a sample instantiation of our
proposed framework in the context of Bioinformatics in chapter 6. We have to emphasize
that our attempt is more on illustrating the ideas behind the proposed CKMF, its merits,
and advantages. More formal work is required to turn CKMF into a useful practical tool.
Our proposal thrives on reuse techniques in Software Engineering and offers some
features that are very much required in dynamic soﬁware development environments

such as collaboration and version management. The final product is meant to help with

27

capturing, documenting, and transferring knowledge in a software development
environment.

The three major stages of framework development are domain analysis, framework
design, and framework instantiation [58]. In domain analysis stage efforts are aimed at
identifying the domain's requirements and possible future requirements. In our research
we focused on Bioinformatics field and we tried to identify current and possible future
requirements of SEs in the field. The framework design phase defines the framework's
abstractions. For realization of CKMF in the field of Bioinformatics, we used the
requirements that we identified in the first phase and designed the abstractions. To
comply with CKMF requirements, the abstractions had to be categorized into Core and
Common layers. In the instantiation phase, the framework abstractions are implemented,
generating a software system. In our prototype, we implemented some of the abstractions

and generated sample applications.

2.5.2 Collaboration

Over the past decade, design and implementation processes indicate moving away from
individual decision makers and getting close to groups engaged in collaborative work
[22]. Greater competition in the market and globalization of economy has changed the
structure of many organizations and these changes are more evident in SEOs. The new
structures have intensified the demands for higher levels of support in distributed and
collaborative work [10].

Inter-organization and intra-organization collaborations contribute to the emergence of

standards and pseudo-standards. When entities collaborate, they try to help each other

28

achieve their goals. To maximize the benefits of collaboration, the participants need to
agree on a set of rules for their cooperation and the results of their work. The rules
governing the collaboration define how participants work together, and the rules about
the results of cooperation defines how results should be produced and in what form and
shape and under what conditions they should be presented. All participants need to agree
with these rules for collaboration to work. CKMF provides a set of rules that govern
collaboratibn and provides an infrastructure deciding about the results of cooperation, and

how and when those results should be released.

2.5.3 Common Information Model

Common Information Model (CIM) [100, 102] is a conceptual information model for
describing entities in the Internet, enterprise and service provider environments. It
provides a consistent definition and structure of management information using object
oriented techniques. CIM is a standard developed by Distributed Management Task
Force. Its formal purpose is to represent and organize the information in a managed
environment,

Our work in this thesis is inspired by our experience in software industry where we were
involved in a multi corporation effort (refer to appendix D for list of participating
companies), aimed at developing a management standard for Storage Area Networks
(SAN) and Netwofked Attached Storages (NAS) called Storage Management Initiative
Specification (SMIS). The program in which we were involved was called “CIM-SAN”.
The CIM/WBEM managed SAN or CIM-SAN, is the first permanent and open multi

vendor development and demonstration environment for accelerating the implementation

29

of CIM/WBEM technology into products [99]. Among the primary goals of CIM-SAN,
the following are related to our research:

e Facilitate the implementation of the SMIS specification in vendor

products through ongoing collaboration among developers
participating in symposia and plug fests

e Reduce multi vendor application integration costs and time

e Build seamless interoperability among products

e Forward the development of the CIM/WBEM based SMIS software products
CIM-SAN program is based on the highly successful CIM-SAN-1 demonstration at the
Storage Networking World conference in October 2002, where 17 vendors integrated 32
products creating 97 points of interoperability among those products [99]. CIM-SAN has
proved to be a catalyst in accelerating the development and integration of more functional
network storage management products through promoting and facilitating collaboration,
reducing time and cost of application integration, and making them interoperable. All of
these are achieved while various software and hardware companies have been
contributing to the development and evolution of SMIS. -
The ongoing success of CIM-SAN program is a clear sign that SEOs are desperately in
need of collaboration platforms that allow them to cooperate and work together through
sharing knowledge in order to achieve their goals and create mutual benefits. This
program is creating value for all participants, and this explains why they participate in the

program and contribute.

30

2.5.4 Version Management

Version Management is part of Software Configuration Management (SCM). SCM is
defined as the process of control of the evolution of complex systems. More
pragmatically, it is a discipline that enables us to keep evolving software products under
control, and thus contributes to satisfying quality and delay constraints [30].

SCM can be utilized as a management support discipline. In this capacity, SCM is
concerned with functionalities such.as identification of components and their versions,
change control (by establishing strict procedures to be followed when performing a
change), status accounting (recording and reporting the status of components and change
requests), and audit and review (quality assurance functions to preserve
consistency) [17].

Management of change through versions is an integral part of CKMF and is a key notion
for management of the data model. CKMF allows participants to contribute their versatile
points of view. These view points are reviewed in the next iteration of knowledge
refinement, and their commonalities are mined and consolidated into certain artifacts.
These artifacts are introduced in the next‘ version of the framework data model. The
version management process keeps track of changes that happen between releases of the

framework data model and allows users to recognize differences of data model versions.

31

Chapter 3

Our Proposal

We propose a collaborative framework for knowledge acquisition and management
(CKMF) for SEOs in field of Bioinformatics, which serves as a-repo>sit0ry and knowledge
transfer media, and supports rapid development and integration of applications in the
target domain. The framework is designed to facilitate collaboration among parties
working in Bioinformatics with overlapping contexts and help them capture knowledge
and converge their interpretations and understandings over time.

CKMF has four components: data model, knowledge management database, constraints,
and managing committee. The data model has three layers: Core, Common, and
Extension. The Core layer acts as a conceptual foundation for other layers of the data
model and includes basic and general notions applicable to target domain at large. It
supports basic vocabulary for analyzing and describing basic concepts and entities of the
target domain. The Common layer builds upon the Core layer and provides a basis for
development of applications. It captures concepts related to particular areas of a domain,
but independent of a specific technology or implementation. The Extension layer builds
upon the Common layer and models objects that are technology and/or application
specific additions to the Common layer. Any contributor can define Extension schemas
as needed. The purpose of knowledge management database is handling physical and

logical structural information of the data model. This database helps with exploration and

32

management of the data model and the framework itself. Constraints are the semantic
safe guards of the framework and are mostly applicable to the data model. Managing
committee is responsible for maintaining the integrity of the framework and enforcing
constraints. Members of managing committee may include framework contributors and
users.

In this chapter, we present the goals of the framework, its architecture and characteristics.

At the end, we will discuss version management in the framework.

3.1 The Goals

Our main goal in the proposed framework is developing a mechanism for gathering,
storing, managing, and distributing knowledge which software engineers gather in the
course of projects as well as Software Engineering’s best practices in a target domain,
which is Bioinformatics in our research. The framework is meant to serve as a
collaboration platform, knowledge repository, and transfer media. It is aimed to support
rapid development and integration of applications in the target domain.

Knowledge management methodologies and systems create value from intangible assets
of an enterprise [19]. The most valuable intangible asset of an organization is the
knowledge it generates. We deal with two types of knowledge in SEOs: Software
Engineering knowledge and target domain knowledge. CKFM aims to capture the target
domain knowledge of Software Engineers as well as Software Engineering expertise
which is best practices employed by Software Engineers. SEOs highly value both types

of knowledge and consider them as their main assets and intellectual capital. The sum of

33

SEs’ knowledge constitutes the SEO’s knowledge, and when properly captured and
documented, it formally becomes the organizational knowledge. Since organizational
knowledge has been recognized as a key for success and competitive advantage in all
activities [61], SEOs attempt to preserve this knowledge by detaching it from individuals
and institutionalizing it. The first goal of CKMF is to capture and preserve the knowledge
that exists withinvthe Software Engineers’ minds in the form of experience and know-
how.

A variety of perspectives suggest that the ability to marshal and deploy knowledge
dispersed across the organization is as an important source of organizational
advantage [90]. Availability of knowledge is the key factor for an organization’s
competitive advantage. The software development process relies heavily on the two types
of knowledge previously mentioned. Software systems get more complex over time, so
does the process of developing and maintaining such systems. SEOs cannot afford to
increase resources in response to the increasing demands, and sometimes increase in
resources would not be helpful or effective at all. Therefore, they look for a rise in
productivity and performance to manage the situation. Pro‘ductivity and performance are
functions of the knowledge being applied in the organization’s daily operations and tasks.
SEQOs have to continuously maintain and improve their organizational knowledge to
secure an increase in their performance and productivity. For this purpose, they have to
invest in organizational learning process, which creates and shares knowledge from one
part of th‘e organization to another [49].

The second goal of CKMF is serving as a knowledge repository and a knowledge transfer

media to help organizational learning process function effectively so that it can provide

34

availability of organizational knowledge throughout the organization and facilitate flow
of knowledge from one part of organization to another.

The third goal CKMF is to facilitate collaboration among individuals or teams of
Software Engineers within and across organizational boundaries. Considering this goal,
the knowlédge acquisition process is designed to be open and iterative in order to
encourage different teams and/or individuals work together and share knowledge while
keeping their differences. The data model is the main vehicle for capturing and storing
knowledge in the framework. The different layers of the data model support different
levels of agreement among framework contributors. If contributors are allowed to
maintain their unique point of view while they share their common views with others,
they will be more enthusiastic to participate in the collaboration process, and this is a
motivation for our framework to facilitate collaboration. Participants in collaboration
usually aim to expand the extent of their agreement over time and thus share more
common knowledge. The knowledge acquisition of the framework is an iterative process
which facilitates convergence of different points of view over time. At every iteration, a
re-factoring process will review the acquired knowledge and refine it, if necessary. The
idea is to recognizeA the common notions, formalize them, and make them reusable. The
iterations aim at converging different perspectives and views and the final product could
be a basis for developing standards, which are desired in general in evolving fields.

The fourth goal of CKMF is supporting rapid development and integration of applications
in the target domain. This goal is linked to our efforts to increase the level of reuse
among framework participants. Practitioners in many engineering disciplines rely heavily

on well understood technologies and components that have been standardized. They

35

create customized systems economically by reusing the existing components and building
only the parts that are specific to their application. Contemporary software systems have
been simple enough for massive technology reinvention to be economically feasible.
However, as software system complexity increases, technology reinvention becomes
unaffordable [12]. The other factor which affects the development process is time.
Building a system from scratch clearly takes much more time than building a system
from existing components. The more we can reuse existing knowledge and tools, the less
time we need to complete the job. The resulting system will be of higher quality, and thus
more reliable, durable, and maintainable. The proposed framework aims to encourage
reuse of code, design, architecture and in short “knowledge”. This provides a more
effective development environment and process for applications of the target domain.
The similarities in building blocks of these applications make them more compatible

structurally, and hence easier to integrate and interact with.

3.2 The Framework Architecture

As mentioned above, CKMF has the following four main components:
e Data Model: DM is the central knowledge repository and acts as knowledge
transfer media in CKMF.
¢ Knowledge Management Database: KMD manages information about concepts
and relationships captured in the data model layers.
e Constraints: Constraints are used to guarantee the semantic integrity of the

framework components.

36

e Managing Committee: MC is in charge of defining and enforcing constraints and
version management
The framework has also a complementary component:

o Partition: Partition represents a logical grouping of related concepts in the DM.

3.2.1 Data Model (DM)

DM has three layers:
e Core Layer
e Common Layer

e Extension Layer

Extension

Figure 1: Framework DM Structure

The DM component has the following capabilities:

37

Abstraction and classification: To reduce complexity of the problem domain, high
level and fundamental concepts (the objects of the target domain) are defined.
These objects are then grouped into types (classes) by identifying common
characteristics and features (properties), relationships (associations) and behavior
(methods).

Inheritance: Through inheriting fundamental concepts from higher level,
additional details can be provided at lower level concepts. A subclass inherits all
the information (properties, methods, and associations) defined for its higher level
classes. Subclasses are created to put the proper level of details and complexity at
the right level in the data model. This can be visualized as a triangle, where the
top of thé triangle is a fundamental object, and more details and more classes are
defined as one moves closer to the base.

Depiction of dependencies: The DM expresses the semantics of the entities and
their relationships and associations. Further semantics description may be
provided through properties (specifying common characteristics and features) of
the associations and relationships.

Definition of methods: The ability to define standard behavior (methods) for
entities is another form of abstraction. It is useful to define the standard behavior
and bundle it with an entity.

Efficiency and ease of extensibility: Because of the depth and width of the target
domain, it is impractical in general to develop a model that covers every aspect of
the domain. A protocol is defined for future extensions and the DM is designed in

such a way that extensions are considered as part of its natural evolution. Taking

38

advantage of the architecfure and following the protocol, the DM evolves over
time and grows in depth and width. |
e Verification: The taxonomical structure of the DM can be verified, for which
there are different approaches. One of the promising approaches is using an
inferenée engine or a reasoner with existing ontologies in the target domain to
verify th¢ taxonomic architecture of the DM.
As shown in Figure 1, the knowledge is created at the Extension layer, and then flows
towards inner layers. It then goes through review and refinement process. The refined and
consolidated knowledge becomes part of the Commoh layer. The process of review and
refinement process is also applied to the knowledge in the Common layer. This results in

refinement and consolidation of knowledge that moves to the Core layer.

3.2.1.1 Core Layer

Software systems change over time and these changes can be the cause of defects and
malfunctions in the software system or its related systems. Although many of these
changes cannot be avoided, every effort should be made to minimize the number and the
scope of these changes. Currently, when a change is made to a software program, most éf
the time the entire program is reengineered [32]. The reengineering process is time
consuming and costly. The concepts of “enduring business themes” and “business
objects” have been introduced as a way of minimizing the impacts of future changes on
existing software systems. The main idea is to identify aspects of the environment in
which the software will operate that will not change and cater the software to these areas.

This yields a stable core design for the software system [32].

39

The Core layer is an information model that captures notions that are applicable to all
areas of the target domain. It provides a basic vocabulary that consists of most basic and
stable notions in the domain for analyzing and describing concepts and entities in the
target domain. The Core layer is a subset of DM, not specific to any application in the
domain. Its purpose is providing a conceptual framework for the rest of the model. The
Core layer is the main part of the model with regards to verifiability. Every effort should
be made to make sure all the definitions in the Core layer are as accurate and concise as

possible.

3.2.1.2 Common Layer

The Common layer captures notions that are common to particular application areas in
the target domain, but are independent of a particular technology or implementation. The
information model at this level is specific enough to provide a basis for the development

of applications. It provides a basis for extension into application-specific areas.

3.2.1.3 Extension Layer

The Extension layer consists of extension schemas. Each extension schema represents
and models objects that are technology-specific and/or application-specific additions to
the Common layer. Any research group or developer group that needs specific extensions
to the Common layer vcan define extension schemas. Extension schemas allow various
participants in the framework present their point of view using some already agreed upon

concepts found in the Common and Core layers.

40

3.2.2 Knowledge Management Database (KMD)

KMD is a relational database designed to store physical and logical structural information
of the DM in the framework. This database includes information about classes, their data
members, their nﬁethods, relationships between classes in a release, relationships between
classes in two consecutive releases, layers, partitions, applications using the DM, and
relationships between these applications. As the DM grows, the number of components in
each layer increases, making it too complex to handle manually and in an ad hoc fashion.
The purpose of KMD is making the framework manageable, keeping the complexity
under control, and making the knowledge it contains more readily accessible and usable.
Based on our experience in developing a prototype, KMD turned to be important and
required even at a controlled environment of the lab. KMD facilitates the management of
the DM and helps with exploring the DM and its elements. A new user can use KMD to
get easy access to the structural information of the DM and look up the applications that
might be similar to what s/he is about to develop and learn from those applications how

to use the model.

3.2.3 Constraints

Constraints are the semantic safe guards of the framework. While they are mostly
lapplicable to DM design and structure, it is also possible to have constraints that are more

general. In the beginning, we have a set with few constraints, but as the framework

41

matures, constraints may be added or modified by MC. Examples of basic constraints are
as follows:
* A class should take care of its own error and exception handling. In other words, a
class should not propagate any error or exception outside its scope
e A class in DM can be member of one layer only
e A class in DM can only inherit from a class in an immediate inner layer or in the
same layer
e No assumption implying a programming language dependency or operating
system dependency is allowed
Constraints should be defined accurately so that they are not open to interpretations. They
should be designed in such a way that they are either satisfied or violated. There should
be no fuzzy constraints unless the nature and foundation of the target domain is fuzzy.
The point is that the mathematical basis of an application should only interpret the

expressions.

3.2.4 Managing Committee

MC is the governing body of CKMF and is responsible for maintaining its integrity
through defining and enforcing constraints. MC is also in charge of re-factoring process,
and decides about the time and properties of the next version of CKMF DM. Being in
charge of re-factoring process means that MC is the final authority in knowledge refining
task, which considers different view points of participants contributed to extension

schemas and tries to facilitate convergence. MC reviews extension schemas, identifies

42

commonalities, and decides which concepts (presented in extension schemas) are solid
and coherent enough to move to the Common layer in the next version. MC is also
responsible to review the feedbacks received from participants, and look at the usage
patterns and approve or disapprove suggested modifications. For any change in the Core
or Common layers, MC is responsible to analyze the consequences of those changes and
their possible impacts on the applications. Possible types of modifications are: modifying
a concept or a relationship between concepts, moving a concept from the Common layer
to the Core Layer or vice versa, or depreciating a concept or a relationship between
concepts.

MC should include technical and administrative stakeholders of the framework. As
previously mentioned, like other KWs, Software Engineers desire autonomy and avoid
explicit coordination and control to some extent. MC as a means of control and
coordination involves technical staff as well as administrative and managerial personnel
of participating organizations. This involvement in decision making alleviates the
problém of avoiding explicit coordination and control and addresses the desire of
autonomy for technical staff. It also resonates with management because they get to
retain some level of decision making poweré. The composition of MC and its internal
rules should be decided according to the specifics of the target domain and participating

organizations.

3.2.5 Partition

A partition is a logical grouping of related concepts in DM. Partitions can represent

groups of concepts used in specific solutions or related to certain applications. Partition is

43

the closest concept in our framework to the design pattern concept in Software
Engineering. Partitions have four properties: name, problem description, solution
description, and consequences and trade-offs. A concept can belong to more than one

partition. Figure 2 illustrates examples of partitions in DM.

Partition 1 & - Extension

Partition 2

Figure 2: Partitions in DM

Partitions break the complexity of the DM and help users search for what they need and

understand it faster.

44

3.3 Knowledge Acquisition Process and Version

Management in CKMF

The knowledge acquisition process in the framework is designed to be open and iterative.
DM of the framework has a layered structure to encourage higher levels of contribution
from various groups in such a way that their different points of view and diversity are
préserved, Although diversity and different points of view in contribution phase are
allowed and welcomed to encourage maximum input from participants, the ultimate goal
of CKMF is bringing different points of view together and creating a consensus. To
realize this goal, we need to:
e Clearly identify components and their versions in DM
e Control change by establishing strict procedures for performing a change
e Monitor status through recording and reporting the status of components and
change requests
e Audit and review quality assurance functions to preserve integrity and consistency
of the framework
MC is responsible for identifying the objects that should be monitored by the version
management process. MC also has to provide procedures to follow when a change is
being performed. The change requests can be related to the current version or can apply
to future versions. Any request to perform a change in the current version should be a
response to a critical problem affecting integrity and consistency of the various
components of the framework. Any request that is not critical will be considered for

future versions. MC is in charge of receiving, classifying, and processing of change

45

requests. MC is also responsible for defining quality assurance procedures to be applied

to all changes in order to ensure integrity and consistency of CKMF.

3.3.1 CKMF Initialization

CKMF initialization is a prerequisite for knowledge acquisition process in the
framework. The first task of initialization is creation of MC. As previously mentioned in
section 3.2.4., MC should include technical and administrative stakeholders of the
framework. Technical members of MC in form of subcommittees are in charge of domain
analysis which is aimed at identifying the dofnain's requirements and possible future
requirements of SEs in the field. The products of this effort are used to define the first set
of concepts in framework's DM. For each concept, a set of attributes and operations are
identified and defined. Based on CKMF requirements for a layered DM structure, the
concepts are to be categorized into members of Core and Common layers. The concepts
that are more abstract and solid are placed in Core layer and the rest are assigned to
Common layer. KMD is populated with the physical and logical structural information of
these concepts. To complete the initialization of CKMF, MC needs to define details of
management and operational processes that will govern the use and evolution of CKMF.

After initialization, the concepts that are defined in DM constitute version 1 of DM in

CKMF. This version is released to stakeholders and users of CKMF.

46

3.3.2 Knowledge Acquisition Process

Knowledge acquisition process starts every time version x of DM is released. SEs of
participating organizations take advantage of KMD to find concepts that are of interest to
them and use those concepts either “as is” or extend or customize them. Those who
extend or customize concepts are encouraged to define their extended or customized
concepts as part of Extension layer in DM. The physical and logical structural
information of the concepts defined in Extension layer ére recorded in KMD. Information
about applications that use concepts from Core, Common, and Extension layers are also
recorded in KMD. During this period, MC is ready to receive reports of possible
problems in definition of concepts, their attributes, and/or their operations, proposals to
add concepts to Core or Common layers, suggestions about Constraints and etc.

After version x of DM is used by participating organizations for a while, different view
points and contributions of these organizations are mainly recorded in form of concepts
that are defined in Extension layer. One of the main responsibilities of MC is to facilitate
convergence of these versatile viewpoints. For achieving this goal, version x of DM
should go through re-factoring process. As mentioned in section 3.2.4, MC is the entity in
charge of re-factoring process. MC reviews concepts defined in Extension layer,
identifies commonalities, and decides which concepts are solid and coherent enough to
move to the Common layer in the next version of DM. In some cases this review might
trigger a change in an already existing concept in Common or Core layers. If a change is
to happen affecting an existing concept in Core or Common layers, MC analyzes the
consequences of those changes and their possible impacts on the existing applications.

Possible types of modifications affecting existing concepts are:

47

Modifying an exiting concept (in Core or Common layers)

Modifying a relationship between two existing concepts (in Core or Common
layers)

Moving an existing concept from Common layer to Core Layer or vice versa
Depreciating an existing concept (in Core or Common layers)

Eliminating a relationship between existing concepts (in Core or Common layers)

The “sum” of all these changes may result in creation and release of version x+1 of DM.

This new version will be released for use in the field and will go through the same cycle.

Each time this cycle happens, the concepts are refined and re-categorized. The knowledge

that is captured in the design of these concepts becomes more solid and more refined

each time,

48

Chapter 4

Technical Design

In this chapter, we describe details of the technical design of CKMF components. Among
the components, the design of MC is domain specific. The Constraints aré also defined
and enforced by MC according to the target domain requirements. The DM will be
shaped based on the structure and type of the knowledge that will be captured from the
target domain. The KMD manages physical and logical structural information of the DM.
We have developed an implementation model to address the details of how DM could be
transformed into actual executable code in order to fully realize the benefits of
knowledge captured in DM. We have used the Service Oriented Architecture (SOA) to

design our implementation model. We describe our implementation model in this chapter.

4.1 DM Implementation Model

The implementation of DM is recommended to be as portable as possible and
independent of operating system and programming language. We can have such an
implementation of the DM model based on SOA. Simply put, SOA is an architectural
approach in which functionalities and features of a software system or a group of
software systems are constructed and delivered as services to either end-user applications

or other services [52]. Clearly, this is a preliminary system prototype illustrating ideas.

49

More detailed and elaborate work is required for mapping layered conceptual architecture
to a SOA based deployed architecture. This mapping in our prototype is done manually,
for illustrative purposes.

Design of SOA systems involves description of atomic and composite services and
orchestration of those services to form a distributed application [36]. Figure 3

demonstrates a basic SOA.

. Service Request

Service
Provider " e
il : Service Response i > ;

Figure 3: Basic Service Oriented Architecture

There are three main components in a basic SOA architecture: service provider, service
client, and service registry. Service providers publish descriptions in service registries
that are subsequently discovered by service clients. Service clients utilize these
descriptions to invoke the service hosted by the service provider. Figure 4 displays the

components of a basic SOA and their relationships.

50

Service Client

. Gl ——— serviceRequest__

U ——— ""S"éi‘V'l’C’e"Respgn‘s* 8 ‘L

\
\\
\\
\
\

Service Specs
Service Query.

\,
\,

Service Registry

SR M A S W

Service Providers

Figure 4: Components of Service Oriented Architecture

4.2 Service provider

The service i)rovider should Be capable of handling the full life cycle of classes and
objects defined in the DM of the framework. The service provider will receive requests
to:

e Define a Class

e Make a Class obsolete

¢ Instantiate an Object

. Deleté an Object

e Make an Object persistent

e Access an Object data member with respect to the access levels defined in class

definition

51

e Invoke an Object method with respect to the access levels defined in class
definition

The service provider is responsible for processing these requests. All objects created by
the service provider are assigned a unique ID and any subsequent call to that object is
possible through this ID. Messages sent to the service provider and the responses sent
back from the provider can take different shapes. The preferred format of the messages
would be XML.
We have two service providers in the implementation model of the framework. The first
one is the Core Service Provider, used to materialize the classes defined in the Core layer
of DM and their corresponding objects. The second one is the Common Service Provider
that will handle classes defined in the Common layer of DM and their corresponding

objects.

4.3 Service Client

Any entity that uses the services exposed by a service provider is called a service client.
An entity could be a service client as well as a service provider. Common—Service
Provider is also a client of Core Service Provider, and acts as a pass through for requests
sent to Core Service Provider. This feature could be disabled if direct access to classes
defined in the Core layer is not intended for other service clients such as the Extension

layer and external applications.

52

4.4 Service Registry

Service registry is a data repository that manages the data about service providers and the
services they offer. If a service registry has information on a service that matches a
client’s criteria, the registry provides a contract and an endpoint address. Service registry
is a basis for service cataloging and classification and it represents a unified environment
for publishing and discovering services [4].

KMD in CKMF can function as a service registry. We have designed KMD as a

relational database. The design details of KMD are presented in this section.

4.4.1 High Level ERD of the KMD

Figure 5 is the high level entity-relationship diagram (ERD) of the KMD. Figures 6, 7,

and 8 display more details about more important relations in the KMD.

53

Figure 5: High Level Entity-Relationship Diagram of KMD

54

PK vgr§ ionlD

versionName
versionReleaseDate [« ~
A A A PK,FK1 |classID
PK,FK2 |dataTypelD
- y PK,FK3 | versioniD
PK | dataTypelD PK dataMemberName
<
dataTypeName ipti
dataTypeDescription dataMemberDescription
A
PK {classID
>
className
i . > classDescription
PK,FK1 |classID -

PK,FK2 |returnDataTypelD
PK,FK3 | versioniD
PK methodName

numberOfForms

PK,FK1 | classiD
PK,FK2 | parameteriD
PK,FK3 | versioniD

PK' | parameterlD

parameterName
parameterDescription
dataTypelD

PK,FK1 |classID
PK,FK2 |returnDataTypelD
PK,FK4 | versionlD

PK methodName

PK formNumber
PK,FK3 | parameterlD

Figure 6: Relation Class and its relationships, Part 1

55

PK | versionlD

versionName

versionReleaseDate

PK,FK1
PK,FK2
PK,FK3 | versionlD

proividerClassiD
consumerClassiD

PK

classiD

A A 4

description

PK

relationTypelD

Y

PK,FK1

PK FK2
PK FK5

PK,FK4-

className
classDescription

oldClassID

oldVersioniD
newClassID

newVersionlD

AA

FK3

reIationTypelD

relationTypeName

relationTypeDescription |«

crossVersionUsable

PK,FK1
PK FK2
PK FK3

Figure 7: Relation Class and its relationships, Part 2

PK,FK4

firstClasslD
secondClassiD

relationTypelD
versioniD

56

PK

PK,FK1 | classiD
PK,FK2 |layeriD

— PK,FK3 | versionlD

layeriD

layerName
JlayerDescription

PK | layerlD

layerName
layerDescription

4

PK,FK1
PK,FK2

PK,FK3

A 4

classiD

className
classDescription

PK

versionlD

versionName
versionReleaseDate

classiD
layerlD

versionlD

A

PK

artitiontD

FK1

partitionName
partitionDescription
partitionProblem
partitionSolution
partitionConsequences
partitionTradeoffs
versionlD -

PK,FK2
PK,FK1

partitionID
classiD

role

arentPartitioniD
childPartition|D

Figure 8: Relation Layer, relation Partition, and their relationships

4.4.2 Tables of the KMD

The KMD has 19 relations shown in the high level ERD (Figure 5). In this section, we

describe the purpose of each relation and its structure. The relations are introduced in the

order of importance of their role. The attributes that are marked with *“** are part of the

primary key of the relation.

57

4.4.2.1

Relation Class

Class represents a class of objects in the target domain. Class is the template or blueprint

for a set of objects in the target domain that share similar properties and behavior.

Attribute Name Attribute Data Type Attribute Size
classID* Long 4
className Text 255
classDescription Memo -

Table 1: Relation Class

44.2.2 Relation DataType

DataType represents a data type in the target domain. Since we do not know what kind of

data in the target domain we will be dealing with, we intentionally want to avoid defining

a set of data types and thus restricting ourselves. This relation enables the users of the

framework to define proper data types based on the specifications of the target domain.

Attribute Name Attribute Data Type Attribute Size
dataTypelD* Long 4
dataTypeName Text 255
dataTypeDescription Memo -

Table 2: Relation DataType

58

4.4.2.3 Relation Version

Version models the concept of version required for management of DM evolution. An

instance of version has a name and a release date. The MC decides when a new version is

needed and what it should be named.

Attribute Name Attribute Data Type Attribute Size
versionID* Long 4
versionName Text 255
versionReleaseDate Time 8

Table 3: Relation Version

4.4.2.4 Relation DataMember

DataMember represents data members or properties of classes in the target domain. Each

class has a number of properties or data members. A data member belongs to a class in a

specific version of DM and has a data type, a name, a description. In other words, classes

can have different data members in different versions of DM.

Attribute Name Attribute Data Type Attribute Size
classID* Long 4
dataTypelD* Long 4
versionID* Long 4
_dataMemberName* Text 255
dataMemberDescription Memo -

59

Table 4: Relation DataMember

Attribute Name Reference Table
classID Class
dataTypelD DataType
Versioned Version

Table 5: Foreign Keys of DataMember

4.4.2.5 Relation Method

Methods model the behavioral aspects of a class in the target domain. A Method has a
name, a return data type, one or more than one form (for polymorphic methods), and
belongs to a class in a specific version of DM. In other words, classes can have different

methods in different versions of DM.

Attribute Name Attribute Data Type Attribute Size

classID* Long ' 4

returnDataTypelD* Long 4

version]D* Long 4

methodName* Text 255

numberOfForms Integer 2

Table 6: Relation Method
Attribute Name Reference Table

classID Class

60

returnDataTypelD

DataType

Versioned

Version

Table 7: Foreign Keys of Method

4.4.2.6 Relation Parameter

Parameter models a place holder, which has a name, a description, and a data type.

Parameters are used in any operation or transaction that there is a need for a placeholder.

Attribute Name Attribute Data Type Attribute Size

parameter[D* Long 4

parameterName Text 255
parameterDescription Memo -

dataTypelD Long 4

Table 8: Relation Parameter
Attribute Name Reference Table

dataTypelD DataType

4.4.2.7 Relation MethodInput

Table 9: Foreign Key of Parameter

A method can have more than one shape. Each shape of a method has a number of input

parameters. MethodInput models input parameters of specific shape of a method.

Attribute Name

Attribute Data Type

Attribute Size

61

classID* Long 4
returnDataTypelD* Long 4
versionID* Long 4
methodName* Text 255
formNumber* Integer 2
parameterID* Long 4
Table 10: RelationvMethodInput
Attribute Name Reference Table
classID Class
dataTypelD DataType
versioned Version
parameterID Parameter

Table 11: Foreign Keys of MethodInput

4.4.2.8 Relation TemplateParameter

Some classes could be better defined using parameters. These kinds of classes are
template classes. A template class needs some values for its parameters to actually

become a fully functional class.

Attribute Name Attribute Data Type Attribute Size
classID* Long 4
parameterID* Long 4

62

versionID*

Long

Table 12: Relation TemplateParameter

Attribute Name Reference Table
classID Class
parameterID Parameter
Versioned Version

4.4.2.9 Relation Layer

Table 13: Foreign Keys of TemplateParameter

Layer models a layer in the DM of the framework. A layer is a grouping of classes in

DM. By default, thére are three layers: the Core, the Common, and the Extension in DM.

A class can only belong to one layer in each version of DM.

Attribute Name Attribute Data Type Attribute Size
layerID* Long 4
layerName Text 255
layerDescription Memo -

Table 14: Relation Layer

4.4.2.10 Relation Release

Release represents the relationship among classes, layers, and versions. In other words,

release specifies which classes have been member of which layers in a version. If a class

63

is not member of any layers

in a version, that class is not present in the DM of that

version.
Attribute Name Attribute Data Type Attribute Size
classID* Long 4
layerelD* Long 4
versionlD* Long 4
Table 15: Relation Release
Attribute Name Reference Table
classID Class
layered Layer
versioned Version

Table 16: Foreign Keys of Release

4.4.2.11 Relation Service

Service models the provider/consumer relationship among classes in a version of DM.

Classes rely on other classes to provide some type of service. The class that provides the

service is the provider and the class that receives the service is the consumer. Keeping

track of these dependencies is necessary for change and maintenance purposes.

Attribute Name Attribute Data Type Attribute Size
providerClassID* Long 4
consumerClassID* Long 4

64

versionID* Long 4
Description Memo -
Table 17: Relation Service
Attribute Name Reference Table
providerClassID Class
consumerClassID Cléss
Versioned Version

Table 18: Foreign Keys of Service

4.4.2.12 Relation RelationType

RelationType lists the possible types of relations two classes can have. A relation type

has a name, a description, and a switch that indicates that relation type is applicable

across versions of DM.

Attribute Name Attribute Data Type Attribute Size
relationTypelD* Long 4
relationTypeName Text 255
relationTypeDescription Memo -
crossVersionUsable Boolean 1

Table 19: Relation RelationType

65

4.4.2.13 Relation ClassRelation

ClassRelation models the relationship between classes in each version of DM. A record

in ClassRelation includes the ids of two related classes, the relationship type, and the

version of DM in which this relation exists. The type of the relationship should be

selected from those types that are applicable to the same version of DM. In other words,

the cross version relationship types are not usable in this table.

Attribute Name Attribute Data Type Attribute Size
firstClassID* Long
secondClassID* Long
relationTypelD* Long
versionID* Long
Table 20: Relation ClassRelation
Attribute Name Reference Table
firstClassID Class
secondClassID Class
relationTypelD RelationType
versioned Version

Table 21: Foreign Keys of ClassRelation

4.4.2.14 Relation ClassHistory

ClassHistory models the relationship between classes in consecutive versions of DM. A

record in ClassHistory includes the ids of two related classes, the relationship type, and

66

the versions of DM in which this relation exists. The type of the relationship should be
selected from those types that are applicable to different versions of DM. In other words,

only the cross version relationship types are usable in this table.

Attribute Name Attribute Data Type Attribute Size
oldClassID* Long
oldVersionID* Long
newClassID* Long
newVersionID* Long
relationTypelD* Long
Table 22: Relation ClassHistory
Attribute Name Reference Table
oldClassID Class
oldVersionID Version
newClassID Class
newVersionID Version
relationTypelD RelationType

Table 23: Foreign Keys of ClassHistory

4.4.2.15 Relation Partition

Partition represents a logical grouping a concepts and their relationships in a specific
version of DM. A partition has a name, a description, is related to a problem, and

introduces a solution which implies some consequences and trade-offs. Partitions are

67

defined within confines of a version of DM. Partition is similar to the concept of design

patterns in Software Engineering.

Attribute Name Attribute Data Type Attribute Size
partitionID* Long 4
partitionName Text 255
partitionDescription Memo -
partitionProblem Memo -
partitionSolution Memo -
partitionConsequences Memo -
partitionTradeoffs Memo -
Versioned Long 4

Table 24: Relation Partition

Attribute Name Reference Table

Verstoned Version

Table 25: Foreign Key of Partition

4.4.2.16 Relation PartitionHierarchy

PartitionHierarchy models the parent/child relationship that might exits among partitions.
A partition could contain other partitions and this relationship is modeled in
PartitionHierarchy tabie. Partition hierarchy is close to the concept of design pattern
language in Software Engineering. The parent/child relationship can only exist between

partitions that are defined in the same version of DM.

68

Attribute Name Attribute Data Type Attribute Size
parentPartitionID* Long 4
childPartitionID* Long 4
Table 26: Relation PartitionHierarchy
Attribute Name Reference Table
parentPartitionID Partition
childPartitionID Partition

4.4.2.17 Relation PartitionMembership

Table 27: Foreign Keys of PartitionHierarchy

PartitionMerhbership represents which classes are part of which partitions. Each record in

PartitionMemebrship has ids of the partition and the class which is a member of that

partition, and a description of the role the class in the partition. Since the partitions are

defined in the confines of a version of DM, the classes that are member of a partition,

should also be part of that version. In other words, a class should have been released in a

version of DM to be eligible for membership of partitions defined in that version.

Attribute Name Attribute Data Type Attribute Size
partitionID* Long 4
classID* Long 4
Role Memo -

Table 28: Relation PartitionMembership

69

Attribute Name

Reference Table

Partitioned

Partition

classID

Class

4.4.2.18 Relation Application

Table 29: Foreign Keys of PartitionMembership

Application represents the applications that use DM of CKMF. Each application is

introduced by a name, a description, a list of authors, a deployment date, contact

information, and a URL.

Attribute Name Attribute Data Type Attribute Size
applicationID * Long 4
applicationName Text 255
applicationDescription Memo -
applicationAuthors Memo -
deploymentDate Date/Time 8
contactInfo Memo -
URL Text 255

Table 30: Relation Application

70

4.4.2.19 Relation ApplicationClassUsage

ApplicationClassUsage shows which application is using which class in what version of
DM. This table is a useful in helping new users find sample applications and also is

useful for MC in assessing the impact of any changes in DM.

Attribute Name Attribute Data Type Attribute Size
applicationID * Long 4
classID * Long | 4
versionID * Long 4

Table 31: Relation ApplicationClassUsage

Attribute Name Reference Table
applicationID Application
classID Class
Versioned Version

Table 32: Foreign Keys of Ap‘plicationClassUsage

71

Chapter 5

Prototype

To illustrate how CKMF works and to show how it facilitates development of
applications in a target domain, we built a prototype in the domain of Bioinforﬁmatics. We
started by looking at various bio-applications and tools used to develop such applications‘
Examples of systems and tools we looked at include: GenBank® and DNA Data Bank of
Japan, both from the International Nucleotide Sequence Databases [INSD], the Basic
Local Alignment Search Tool (BLAST), UniProt Knowledgebase, created by merging the
data in Swiss-Prot, TTEMBL and PIR-PSD, BioPerl, and NCBI C++ Toolkit. This
activity helped us select a set of concepts as initial candidates to develop Core and
Common layers of the DM component in our CKMF. We should emphasize that these
concepts were chosen as initial candidates for the implementation of the prototype and by
no means are considered finalized or optimal or even suitable choices for an instantiation
of the framework in an industrial application. The candidate concepts in our prototype
were implemented as classes in standard C++ to make sure we can provide and guarantee
the OS portabili_ty feature of the DM, as part of a portable CKMF. Next we developed the
KMD component. Even with a limited set of concepts and very limited number of
contributors, we had to deal with huge amounts of information and high levels of

complexity. We were not able to manage this complexity without the KMD of CKMF.

72

Because of KMD’s essential role, it was important for us to work with KMD efficiently
and easily. To this end, we developed a user-friendly front end for KMD.

After we built DM and KMD, we developed three sample applications that used the
concepts captured in the DM to perform simple tasks. Although very simple in nature,
these applications were chosen in a way to represent the building blocks of more complex
real life applicatioﬁs. We used standard C++ to develop these applications. The
development of sample applications helped refine our understanding of biological
concepts and make them more usable in CKMF.

In this exercise we did not have a formal MC. The MC component of CKMF will be

needed in any instantiation of the framework.

5.1 Choi.ce of Programming Language and OS

According to the implementation model, service providers in the framework
implementation do not have any specific programming language or OS requirements or
restrictions. Considering the framework characteristics, service providers should be
implemented in a way that the}—/ are programming language and OS portable as much as
possible.

To satisfy pbrtability requirement, we considered C++ and Java programming languages
for prototype implementation. Both of these languages are considered to be portable, and
hence suitable for implementing the prototype considering the functionality expected of

service providers.

73

There are many studies that compare C++ and Java programming languages from
different perspectives [59, 72, 77]. In most cases, Java is considered superior, for the
following reasons [72]:

e A C++ program will have three times as many bugs as a comparable Java
program.

e C++ has two to three times as many bugs per hour, noting that Java and C++ are
similar syntactically.

e The time it takes to fix a bug in C++ is twice it takes in Java. Combined with the
(almost) triple bug rate, debugging a C++ application takes approximately six
times it takes to debug a Java application.

The above factors are not the only deciding factors. There is a long and ongoing debate
[98, 84, 62, 41, 82] about the need for multiple inheritance support in an object-oriented
programming language. The availability of multiple inheritance is important for
expressing relationships among classes that belong to complex and rich classification
hierarchies. There are two situations that call for multiple inheritance specifically. They
are “multiple classification” and “dynamic classification” [82]. Multiple classification
corresponds to cases where an abstraction is a specialization of more than one other
abstraction. Dynamic classification is needed when an abstraction participates in different
specialization relationships at different phases of its lifetime.

Since C++ supports multiple inheritance, a class can inherit from more than one class.
Java does not support multiple inheritance and therefore a class can inherit from one class
only but can implement more than one interface. An interface within an object-oriented

programming language is a type, just as a class is a type. Like a class, an interface defines

74

methods. Unlike a class, an interface cannot have data members and never implements its
methods; instead, classes that implement an interface, implement the methods defined by
the interface [36].

We chose to implement Core service provider and Common service provider in standard
C++ programming language on Windows OS. The choice of C++ programming language

was made because of its expressive power for supporting multiple inheritance.

5.2 Core Service Provider

In our prototype, Core service provider is implemented as a dynamic link library (DLL)
on Windows platform. Figure 9 displays a simplified class diagram of the Core layer in

the prototype:

75

SourceType
name
description
URL
CommandLine
Nucleotide oath
name output
ReferenceTable
SourceTvpe <7 referenceTableName
yp Object keyList
name : valueList
description —L{> isdtrmg Q‘J—__
URL charValue
intValue
longValue
rl> boolValue -
Sequence stringValue <)_|_ Annotation
sequence valueType name
lastError value
SubSequence AminoAcid
endPosition oneletterCode AnnotationNumeric
startPosition threeLetterCode[3]
parentSequence name

Figure 9: Simplified Class Diagram of Core Layer of the Prototype

For a more detailed diagram and definition of classes mentioned in Figure 9 please refer

to Appendix E.

76

5.3 Common Service Provider

Common service provider is implemented as a DLL on Windows platform. Common
service provider relies on Core service provider DLL and uses the services it offers to
implement its functionality. Figures 10 and 11 display simplified and partial class

diagrams of the Common layer of the prototype. The classes that are marked as

“external”, are the ones that are defined in the Core layer.

AminoAcidOneCharCodeTable

AminoAcidOneCharCodeTable()
~AminoAcidOneCharCodeTable() $

External Classes::ReferenceTable

>

JAN

AminoAcidThreeCharsCodeTable

AminoAcidThreeCharsCodeTable()
~AminoAcidThreeCharsCodeTable()

DNANucleotideTable
value2List

DNANucleotideTable()
~DNANucleotideTable()
AddEntry2()
FindEntry2()

F—

RNANucleotideTable

value2List

RNANucleotideTable()
~RNANucleotideTable()
AddENtry2()
FindEntry2()

GeneticCodeTable

GeneticCodeTable()
~GeneticCodeTable()

Figure 10: Simplified and Partial Class Diagram of Common Layer of the Prototype, Part 1

77

NucleotideTriplet

- RNA
nucleotide1
nucleotide2 referenceTable

nucleotide3 RNA()

NucleotideTriplet() ~RNA()
NucleotideTriplet() Load()

NucleotideTriplet() DNA
~NucleotideTriplet()
Load() DNAQ)

operator ==() -
operator ==() DNAO

ll> Externai Classes::Sequence

i

Protein
referenceTable

Protein()
~Protein()
Load()

Figure 11: Simplified and Partial Class Diagram of Common Layer of the Prototype, Part 2

5.4 KMD as Service Registry

We developed the KMD component of CKMF as a service registry. Even with the limited
set of concepts and limited number of contributors involved in the prototype, we had to
deal with too much information and a high level of complexity. Without KMD, it was
impossible for us to manage this complexity. Considering the fact that this
implementation was just a prototype with just a few contributors, the role of KMD
became more apparent in our experience in building the running prototype. We found that
KMD should be one of mai.n focus points of any instantiation of the framework. Because
of its essential role, it was important for us to work with KMD efficiently and easily. To
this end, we developed an application as a user-friendly front end for KMD. This

application was developed using VB.NET in .NET environment.

78

5.5 Sample Applications

The first sample application purpose was loading a sequence (which could be a protein or
a gene) from a file and converting it into internal representation, and then writing the
internal represenfation to a file. The purpose of the second application was to do a simple
sequence alignment and develop a match score. The third application was designed to a

do a BLAST query.

79

Chapter 6

Assessment of the Framework

To illustrate the applicability of the proposed ideas, we consider bioinformatics as the
target domain, and describe a CKMF in this context. We will then evaluate the
framework and compare it with existing software tools and techniques in bioinformatics.
As evaluation metrics, we consider portability, adaptability, understandability, reliability,
and maintainability, to evaluate and compare CKMF. While the tools, libraries, and
programming languages considered in this evaluation and comparison are not of the same
type, they are important and widely used in the development of bioinformatics
applications. We use them in our comparison because we believe they are suitable
indicators of tools available to Software Engineers in this target domain and represent the
behavior and characteristics of these tools and techniques.
Existing Software Engineering tools, libraries, and programming languages specifically
designed or customized for development of bioinformatics applications we will use in our
evaluation are as follows:
¢ BioPerl is a set of Perl modules providing a specialized bioinformatics toolkit for
format conversion, data manipulation, sequence analysis, and etc. [86, 104]. This
tool is an extension of Perl and is managed as an open source project.
e NCBI C++ Toolkit provides a set of free, portable, public domain libraries with

no use restrictions [107]. This toolkit offers various functionalities such as

80

networking and interprocess communication, multithreading, sequence alignment,
and BLAST query and communication.

e BioJava is an open-source project aimed at providing a Java framework for
processing biological data [103]. It provides support for sequence manipulation,
file parsing, and access to BioSQL and Ensembl database.

e BioPython is a set of freely available Python tools for computational molecular
biology [105], which is a collaborative and distributed project to develop Python
libraries for bioinformatics applications.

e OBDA/BioSQL is a module for accessing sequence data in a database. OBDA
stands for Open Biological Database Access and has been implemented in

BioJava, BioPerl, BioPython, and BioRuby [108].

6.1 Portability

Portability is defined as the ease with which software can be transferred from one
computer system or environment to another [15]. Portability can also be defined as the
ability of a software unit to be ported (to a given environment). A program is portable if
the cost of porting is less than the cost of redevelopment [63]. Some factors that affect
portability are: language dependency, operating system dependency, and environmental
assumptions.

The life of a software unit can be affected by some initial assumptions. If a system
analyst or designer is looking at a specific problem and s/he has some assumptions about

the available implementation tools and environment, this might affect the way s/he looks

81

at the problem, analyzes it, and provides a solution. Making assumptions at the analysis
phase and the design time is inevitable. The assumptions made by a system
designer/developer provide the foundation of his/her understanding and affects every step
s/he takes. To make sure a piece of software is portable, the number of assumptions also
matters. At the analysis phase, it is important to have fewer assumptions. This leads to
fewer restrictions at the design time. At the design phase, it is important to avoid any
language or operating system dependencies. If the product of the design phase is
independent of the language and operating system of the implementation platform, that
product can be ported more easily to various environments and platforms.

CKMF has been designed with the explicit goal of language and operating system
independence. We have made no assumptions that lead to a specific programming
language or an operating system dependency. This is one of the principles of the
framework. In other words, making such assumptions in the design and/or extension of
the framework is not allowed at any time.

BioPerl provides some d‘egree of operating system independence but its existence is
based on Perl. This means any system using BioPerl will be dependent on Perl. Such a
system will be bound by strengths and weaknesses of Perl. The same problem holds for
BioJava, BioPython, and NCBI C++ Toolkit. ODBA/BioSQL is different. There are at
least three different implementations of ODBA/BioSQL, hence providing options and
some degree of freedom. The other strength for OBDA/BioSQL, from the portability
point of view, is the possibility of implementing it in other languages since its

specification is independent from programming languages and operating systems.

82

6.2 Adaptability

The rapid changes in technology, environment and user requirements make adaptability
an important factor for survival and success of a software system. This is more of an
issue in domains of dynamic nature and changing technology. A piece of software is
adaptable to the extent that it can effectively be changed in order to meet changing
requirements stemming from changes in its working environment [9]. Adaptability of a
software product can be defined as ability of adapting it for different specified
environments without applying actions or means other than those provided for this
purpose for the software considered [101]. CKMF has been designed with adaptability as
a core requirement. That is made possible through mechanisms such as layers, partitions,
and controlled versioning. According to the above definition of adaptability, unlike oth‘er.
Software Engineering tools mentioned above, CKMF is adaptable by design because it
provides actions and means to adapt its elements for different environments and

applications.

6.3 Understandability

Understandability is the ability of comprehension. CBSE technology promotes software
reuse and speeds up new software development. Before using an existing piece, e.g. a
design or an actual code snippet, that piece should be fully understood. Software
understandability or comprehension is defined as a characteristic of software quality [14],
an indicator of ease of understanding of software systemﬁ. In fact, the difficulty of

understanding an existing system limits its reuse [16]. The difficulty of understanding is a

83

direct consequence of raw complexity. Software systems tend to be among the most
complex man made systems in the world. As they evolve and grow, they become more
complex. There are various mechanisms to manage and control complexity. These
mechanisms do not reduce complexity, but rather manage it so that those dealing with the
system can cope with its complexity. If a software system does not have such
mechanisms from the start, it can easily get too complex in an unmanaged way, making
its understanding very difficult if not impossible.

Looking at the structures and facilities of BioPerl, BioJava, BioPython, NCBI C++
Toolkit, and ODBA/BioSQL, we note while they are powerful, they are limited in
managing complexity. They are mostly flat environments or have concepts with limited
capability for managing complexity of entities and the relationships among entities.

One purpose of layers in DM of CKMF is categorizing concepts so that a user does not
have to face all the concepts simultaneously. The Core includes the most fundamental
concepts. The Common layer is built upon the Core layer concepts and includes more
application-oriented concepts. The External layer includes the most specific concepts.
Another concept in CKMF is partition, which helps managing complexity and therefore
increases understandability. Recall that a partition is a logical grouping of related
concepts in the DM. Various partitions help users find faster what they need and

comprehend it better.

84

6.4 Reliability

Software reliability is defined as probability of execution without failure for some
specified interval, called the mission time [65]. This definition is similar to the hardware
reliability definition. We are mostly concerned with reliability of the tools and models
used by a user to build his/her own software. In other words, our primary concern is not
the reliability of the system that builds upon the foundation we provide, but rather the
reliability of the foundation. There are three principal reliability strategies: fault
prevention, fault removal, and fault tolerance [64]. Fault prevention starts at system
requirements analysis phase and continues to design and implementation phases. The
goal of fault prevention process is to reduce the number of faults introduced in the first
place. Fault removal uses design review, code inspection, and development testing to
identify and remove faults in the code. Fault tolerance defines the threshold fault a
system can tolerate without causing failures.

In CKMF, all three strategies are in place. Fault management is part of the system
requirements document, which contains instructions and standards for fault prevention,
fault removal, and fault tolerance.

BioPerl, BioJava, and BioPython offer fault tolerance capability. The user can use
different options for fault removal mainly using debuggers and similar tools. NCBI C++
Toolkit and ODBA/BioSQL do not offer any specific option for fault management,
however, they offer fault tolerance and fault removal dptions that are specific to the

language used for their implementations.

85

6.5 Maintainability

Traditionally, software maintenance phase begins when a software System is completed
and delivered to the user. This is not really the case in today’s Software Engineering.
Maintenance should begin as early as possible. Maintainability should be a factor in
system architecture design. Software maintainability can be defined as prediction of the
ease with which a system can evolve from its current state to its future desired state [1].
Software maintenance activities can be classified into four categories: corrective,
adaptive, perfective, and preventive. Corrective maintenance refers to fixing problems.
We discussed this subject in reliability section. Adaptive maintenance refers to
modifications that adapt to changes in the environment, including but not limited ‘to
changes in user and system requirements, changes in the hardware or software
components of the environment. Perfective maintenance refers to enhancements, which
make the product better in some way, by attempting to prevent malfunctions or improve
maintainability. We also discussed preventive maintenance earlier in the reliability
section.

The dynamic environments and ever-changing requirements make maintainability a
strong quality requirement for software systems. Software maintenance accounts for
more than sixty percent of the costs in the software life cycle [66]. This huge cost is a
reminder of the importance of maintainability. Looking at different domains, we observe
environments that are more dynamic, and demand a greater degree of maintainability. In
many high tech domains, almost everything is new; new and changing requirements are
emerging all the time. Such domains pose a challenge for maintenance, in particular

adaptive and perfective categories.

86

CKMF has a different approach to maintainability. It allows users to have a say in what
should be done next and how to manage changes. This is part of the MC responsibilities
in which every contributor has a voice. The MC and its supporting structures are
representatives of the collective conscience of all stakeholders. This combination
guarantees that the framework adapts to changes in the environment and to future trends
in a timely fashion. This may be done in BioPerl, BioJava, BioPython, NCBI C++
Toolkit, and/or ODBA/BioSQL by users suggesting or proposing changes or reporting
bugs, however there is no guarantee that the next version of the tool will incorporate the
proposed change.

Another benefit of the management structure in CKMF is making sure that every version
is backwards compatible as much as possible. This ensures smooth and seamless
transition of applications that rely on the framework with minimum possible disruption.
This is very similar to the approaches of BioPerl, BioJava, BioPython, NCBI C++

Toolkit, and ODBA/BioSQL for version management.

6.6 Summary of Evaluation

The following table summarizes our comparison of different tools using the metrics
introduced. The rows in the table include the tools with which we compare CKMF, and
the columns include the metrics of the comparison. Each entry in the table indicates our
ranking of the particular tool in terms of the metric heading. A dash in a cell means that

the metrics cannot be used to rank the item.

87

Tools Portability Adaptabil | Understand | Reliabilit | Maintain
0S PL ity ability y ability
BioPerl Good - Poor Fair Good Fair
NCBI C++ Good - Poor Fair Fair Fair
Toolkit
BioJava Good - Poor Fair Good Fair
BioPython Good - Poor Fair Good Fair
OBDA/BioSQL | Good | Good - Fair Fair Fair
CKMF Good | Good Good Good Good Good

Table 33: Summary of Comparisons

88

Chapter 7

Conclusions and Future Work

Lack of a generally accepted knowledge management system in SEOs is source of many
problems in knowledge acquisition, transfer, and application, system development,
information integration, and developing data modeling and system development
expertise. We have proposed a framework with four elements (layered data model,
managing committee, constraints, and management database) and an incremental
approach for knowledge acquisition. The layered data model and other elements make the
framework flexible enough to handle variations and extensions and the incremental
approach makes it possible to develop a common understanding gradually while
knowledge is gathered, refined, and experts contribute. Through the development of a
running prototype, we studied feasibility of the framework instantiation and illustrated its
ability to acquire and refine knowledge. We also demonstrated in a limited way the effect
of the framework on software development.

What remains to be done is reengineering some existing bio-applications using the
framework to demonstrate its usefulness in facilitating software development process in
bioinformatics. We need usability tests, which require engaging some research groups in
bioinformatics to use and contribute to the framework to further enrich the knowledge

contents of the framework.

89

7.1 Conclusions

In our work, we studied the true nature of SEOs and viewed them as knowledge intensive
organizations. SEOs share certain characteristics with other KIFs, explained as follows:
e Software Engineers are highly qualified individuals that perform knowledge-
based tasks using their intellectual and symbolic skills.
e Software Engineers desire a high degree of autonomy and their importance and
autonomy downplays the traditional organizational hierarchy.
e There is a need for extensive communication for coordination and problem-
solving in SEOs. |
e [t is very difficult if not impossible to perform a subjective and accurate quality
assessment of the work done by Software Engineers.
In our assessment of the framework and in our experience in developing the prototype,
we attempted to stress and address the challenges presented by the above mentioned
characteristics of SEOs. Our goal was to capture the knowledge Software Engineers use
and/or create in their routine work in a non-intrusive way and with minimal impact on the
performance of Software Engineers. The process of knowledge management in the
framework works in a way that gives Software Engineers a high degree of freedom and
autonomy, and at the same time involves them in the management process so that they
can be creative and productive while they are ready to make compromises needed in an
organization. CKMF provides a basis for collaboration and communication in and across
organizational boundaries and keeps tracks of knowledge used and created in projects
related to specific domains, and the evolution of knowledge over time. CKMF helps

different viewpoints converge over time. These viewpoints are valuable assets in an

90

environment that depends on team work and collaboration for creating a common and

shared understanding in a domain. Since quality assessment and evaluation is part of

CKMF management activities, and Software Engineers are involved in the management

and decision making process, they will be engaged in the evaluation of the work done;

This in turn improves the quality of assessment and evaluation.

Our work touched upon the issues (mentioned in chapter 1) that cause software

development to be viewed as mostly an individual creative activity rather than an

engineering discipline and a team effort:

The framework management process alleviates the problem of SEs avoiding
explicit and direct control and coordination. The management structure involves
Software Engineers as well as administrative body of the organization and since |
Software Engineers are part of decision making process, they are less concerned
about the control and coordination process.

The knowledge acquisition process of the framework is designed to merge with
and absorb in the routine daily work processes. This process captures and records
the knowledge of users of CKMF while they use it in fheir daily work. This
applies to everybody who uses (and in fact contributes to) the framework,
including even those who possess key domain knowledge and may not be willing
to share it with others.

The dominant culture in SEOs rewards and appreciates individual creativity and
achievements more than team efforts. This is a cause for concern because it
promotes individualism rather than team work. This bias encourages individuals,

teams, or individual organizations spend most of their energy and resources into

91

individual achievements, which hampers sharing the achievements; Helping
others make progress will not be among primary concerns in such environments.
This focus on individuals can seriously affect and hamper the process of
collective achievement and hurt the organization in a long run. On the other hand,
if the cost of promoting team work is losing individual creativity, it also hurts the
organization because valuable individual contributions to the collective process
will be affected. Our work in this research was an attempt to offer a balanced
approach. This approach acknowledges the importance of individual creativity. It
gives individuals room to think freely and improvise. In this settings, creativity
flourishes and results in achievements. These achievements are then shared
“properly” with others so that the organization as a whole benefits from the
individual creativity. The framework enables individuals, teams of individuals, or
organizations as a whole to be creative and create knowledge using shared
common knowledge. The knowledge that is created by each contributor can be
refined in future iterations and become a part of common knowledge. This is how
framework promotes individual creativity and team work together. The team work
part is divided into two phases. Phase one is encouraging the use of common
knowledge that is already gathered and documented. In this phase there is no
explicit push to create harmony or agreement, so individuals get to be creative and
dynamic and they can improvise freely. The results of this phase are captured in
the framework DM and KMD. In phase two, different viewpoints contributed by
various individuals and individual teams are closely examined and common

elements are recognized. MC that represents contributors will then decide what

92

elements are solid and mature enough to move into common layer and become
part of common ‘and shared knowledge. This‘ process guarantees individual
achievements are encouraged and those achievements are shared with others over
time.
e In SEOs sometimes there exist some non-technical concerns among individual
SEs and managers that might affect the willingness of SEs to share knowledge.
The process of knowledge acquisition and knowledge transfer in the framework
and the management structure of the framework can help in alleviating these
concerns. In CKMF, SEs are involved in knowledge creation and its distribution
process. They are not merely simple knowledge workers that create knowledge
that have no control over their products. They are part of management mechanism
and this composition helps ease possible tensions among SEs and managers.
The ultimate purpose of our framework is solving some of the problems SEOs face today
in the context of knowledge management. Based on our previous experience in desiging
the framework and developing of the running prototype, we can list the following
benefits SEOs can expect from using the framework in their development environment:
e The amount of knowledge lost due to attrition is reduced
o The [steep] learning curves are smoothed and this results in faster learning and
hence acquiring knowledge more rapidly
e The history of knowledge creation and evolution is recorded and this helps in
remembering the mistakes and poor decisions, thus avoiding repeating past

mistakes. All this results in less corrective actions and rework

93

e Movement of knowledge within and across organizational boundaries is
facilitated. The knowledge moves around in an effective and cost-efficient

manner

7.2 Future Work

Based on our study in this research and our experience in SEOs, we identify several
possible directions of this work. The most important extension of current research could
be application of CKMF in SEOs that are active in domains similar to Bioinformatics,
which we refer to as “generalization of CKMF”. Other future extensions might include
automatic code generation for DM, creating a persistent object storage and request
broker, automatic populating of KMD, and opening MC structure using a wiki. We

briefly describe these future directions.

7.2.1 Generalization of CKMF

When we take a closer look at CKMF, we notice that there is nothing in the architecture
or design of CKMF that is specific to Bioinformatics as an application domain. In other
words, CKMF is not specific to Bioinformatics. Based on our industry experience, we see
the potential of generalizing CKMF so that it can be used in SEOs active in domains that
are similar to Bioinformatics. The possible candidate domains should be similar to
Bioinformatics in areas such as “rapid changes in technology”, “lack of widely used or

established standards”, and “need for integration and collaboration”. We need to

formalize prerequisites and preconditions of CKMF application and come up with a

94

suitability function to decide if CKMF is appropriate for application in a specific domain.
We would also need to formalize the framework instantiation process, which is the third

major stage of framework development [58].

7.2.2 Automatic Code Generation

We would like to develop a code generator that can generate code from the specification
stored in KMD. For this, we need to use a formal specification language to describe the
concepts and the relationships among concepts in KMD. For each concept, we should
describe the properties (i.e. data members) and the behavior (i.e. methods). These
descriptions stored in KMD should be processed to generate the code for concepts and
their dependencies. The code generator can be designed to have three main modules. A
module is responsible for interfacing with- KMD and retrieving the specification of
selected concepts and their relationships. The second module is in charge of translating
specification of eaéh concept to an intermediate language. The third module is
responsible for translating the specification of the concepts in the intermediate language
into the target programming language. This module should have the ability to accept
plug-ins, which should also be provided for each target programming language. In
general, a plug-in should provide transformations from intermediate language structures
to the target language structures. The plug-ins are developed according to the

specification. More details of functionalities of plug-in should be provided.

95

7.2.3 Persistent Object Storage and Request Broker

To facilitate use of the framework and support integration of applications, we can create
and add a service to CKMF. This service should provide a storage service for objects of
concepts in DM. Applications that use these concepts will have the option to make their
objects persistent. This service greatly expands where and when CKMF can be used. It
helps the applications using the framework to maintain their objects when they are not
needed for a period of time or between various runs of the application. The storage
service will reduce the complexity of the architecture of applications because it
eliminates the need to handle storage and retrieval of objects. The second functionality
that this service will provide is object request broker. Object request broker is a piece of
software that handles the communication of messages from the requesting program
(client) to the object as well as the values returned from the object back to the caller.
When we enable programs to make their objects persistent, one can go one step further
and let different applications share their objects. There are many strategies and
architectures we can use for this purpose. One possible solution is using an OBR. In this
solution, we will have a service that takes care of object instantiation, persistence, and
sharing of objects. When an appl-ication needs an instance of a class in the framework
DM, it will use the service to instantiate an object of that class. The object will be
instantiated in the central repository that is managed by the service. After the object is
created, the application will be able to use it through the service, i.e. the application can
access the properties of the object or invoke its methods. Since objects are maintained in
the repository, they can be easily shared between applications. Sharing policies and

restrictions have to be clearly defined in advance.

96

7.2.4 Automatic Populating of KMD

At present, we populate KMD tables manually. This is feasible because we are dealing
with a fairly small amount of data. When the framework is used in a development
environment and the number of contributors grows, we will face two issues if we do this
manually. The first issue is the volume of data that should be inserted into KMD. The
more CKMF is used and the more contributors contribute, the amount of data that should
be entered into KMD or updated grows. This means more time and resources for keeping
the framework DM and KMD in sync. As this task gets more demanding, we get farther
from one of our original goals, namely the desire that the framework processes be non-
disruptive to the primary functions of contributors. Keeping KMD up-to-date is not a
primary function of a contributor and if it becomes a drag on time and resources of
contributors,‘ it prohibits framework acceptance. The second issue is reliability of the
manual process. When humans are involved in the process, it increases the risk of making
mistakes. Human can misread a specification or interpret them improperly. It is very
difficult if not impossible to guarantee correctness of all data entered or updated in the
manual process. When the volume of data being processed increases, this task becomes
even more difficult.

To avoid the above mentioned issues, we need to have a process in place that
automatically populates KMD tables and updates them when relevant changes happen.
This automatic process should also perform some checks to make sure the data that is
being processed is correct and free of errors. To have such an automatic process, we need

to start from specification. We define a set of tests (syntactic and semantic) to perform to

97

ensure a specification is done correctly and properly. Based on these tests, we select a
formal specification language which is capable of satisfying the requirements, and we
adapt this language for describing the DM elements. This means that all elements of the
DM should be specified using this language. Contributors will also use this language to
specify their Extension schemas. After specifications are expressed using the language
adapted, we develop an application that reads these specifications and populates or

updates KMD.

7.2.5 Opening MC Structure Using a wiki

We mentioned the importance of management process in the framework. One of the tasks
of MC was managing the input from contributors about the changes. MC structure is
designed to include SEs that have field experience as well as administrative staff of the
organization. It is obvious we can not include every single individual in MC. What we
can do instead is opening up MC structure into the contributors. If discussions of MC and
process of decision making in MC are transparent and open to input from all contributors,
we will be closer to our goal of involving all contributors. The more we involve
contributors in MC processes, we are more confident that every change made to the
framework DM reflects the needs more realistically and in the best possible way since we
had the maximum input to make the decision about each change.

To provide such a degree of openness and transparency, we need to look into new
technologies. One candidate that is not so new is wiki. In the pést few years, wikis have
become popular tools in environments that need effective collaboration and knowledge

sharing. Wikis are also used in areas such as defect tracking, requirements management,

98

test case management, and project portals. We can adapt a wiki as our formal
documentation system. All documents describing elements of the framework should be
written in the wiki. MC will decide which documents may be edited and by whom. There
will be a section in wiki site dedicated to discussions about current version of the DM and
suggestions about changes for next version. All meetings of MC should be documented
and the minutes should be available on the wiki site. Contributors should be able to

discuss the notes and provide feedbacks.

99

References

[1] V. S. Alagar, Qiaoyun Li and O. S. Ormandjieva, "Assessment of maintainability in
object-oriented software", in Proceedings of 39th International Conference and
Exhibition on Technology of Object-Oriented Languages and Systems, pp. 194-205,
2001.

[2] M. Alavi and D. E. Leidner, "Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues", MIS Quarterly, vol.
25, pp. 107, March 2001.

[3] C. Alexander, “A Pattern Language: Towns, Buildings, Construction”, New York:
Oxford University Press, 1977.

[4] E. Al-Masri and Q. H. Mahmoud, "Interoperability among Service Registry
Standards", IEEE Internet Computing, vol. 11, pp. 74-77, 2007.

[5] M. Alvesson, "Knowledge Work and Knowledge-Intensive Firms", Oxford; New
York: Oxford University Press, pp. 271, 2004.

[6] M. Alvesson, "Knowledge work: Ambiguity, image and identity", Human Relations,
vol. 54, pp. 863, July 2001.

[7] A. Aurum, P. Parkin and K. Cox, "Knowledge management in software engineering
education", in Proceedings of IEEE International Conference on Advanced Learning
Technologies, pp. 370-374, 2004.

[8] Y. Awazu, "Knowledge management in distributed environments: Roles of informal
network players", in Proceedings of The 37th Hawaii International Conference on
System Sciences, 2004.

[9] L. Baekgaard, "Designing adaptable software--parameterization of volatile
properties", in Proceedings of the 1990 Conference on Sofiware Maintenance, pp. 335-
342, 1990.

[10] C. Barnatt, “Challenging Reality : In Search of the Future Organization”,
Chichester, England ; New York: Wiley, 1997.

100

[11] V. R. Basili, L. C. Briand, W. M. Thomas and Maryland Univ., College Park, MD.
Dept. of Computer Science., "Domain analysis for the reuse of software development
experiences", in NASA. Goddard Space Flight Center, Proceedings of the 19th Annual
Software Engineering Workshop, pp. 11-34, 1994,

[12] D. Batory and S. O'Malley, "The design and implementation of hierarchical software
systems with reusable components", ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 1, pp. 355-398, 1992.

[13]J. Bih, "Service oriented architecture (SOA) a new paradigm to implement dynamic
e-business solutions", Ubiquity, vol. 7, pp. 1, Aug. 8 2006-Aug. 14. 2006.

[14] B. W. Boehm, “Characteristics of Software Quality”, Amsterdam New York: North-
Holland Pub. Co., American Elsevier, 1978.

[15] G. Cardino, F. Baruchelli and A. Valerio, "The evaluation of framework reusability",
ACM SIGAPP Applied Computing Review, vol. 5, pp. 21-27, 1997.

[16] G. Cardino and V. R. Basili, "The qualification of reusable software components", in
Software Reusability W. Schéfer, R. Prieto-Diaz and M. Matsumoto, Eds. Ellis Horwood,
pp. 117-119, 1994.

[17] R. Conradi and B. Westfechtel, "Version Models for Software Configuration
Management", ACM Computing Surveys, vol. 30, pp. 232-282, 1998.

[18] L. Crnkovic, "Component-based software engineering: Building systems from
software components," in Proceedings of the 26th Annual International Computer
Software and Applications Conference, pp. 816-817, 2002.

[19] A. Cuzzocrea and C. Mastroianni, "A reference architecture for knowledge
management-based web systems", in Proceedings of The Fourth International
Conference on Web Information Systems Engineering, pp. 347-351, 2003.

[20] T. H. Davenport, "Can You Boost Knowledge Work's Impact on the Bottom Line?",
Harvard Management Update, vol. 7, pp. 10-11, 2002.

[21] T. H. Davenport and L. Prusak, "Working Knowledge: How Organizations Manage
what they Know”, Harvard Business School Press, pp. 199, 2000.

101

[22] J. G. Davis, E. Subrahmanian, S. Konda, H. Granger, M. Collins and A. W.
Westerberg, "Creating Shared Information Spaces to Support Collaborative Design
Work", Information Systems Frontiers, vol. 3, pp. 377, September 2001.

[23] C. Derby, "Knowledge management for engineers", in Proceedings of International
Conference on Integration of Knowledge Intensive Multi-Agent Systems, pp. 760-765,
2003.

[24] K. C. Desouza, "Barriers to Effective Use of Knowledge Management Systems in
Software Engineering", Communications of the ACM, vol. 46, pp. 99-101, January 2003.

[25] K. C. Desouza, Y. Awazu and P. Baloh, "Managing Knowledge in Global Software
Development Efforts: Issues and Practices", IEEE SOFTWARE, vol. 23, pp. 30-37,
September-October 2006.

[26] K. C. Desouza and J. R. Evaristo, "Managing knowledge in distributed projects”,
Communications of the ACM, vol. 47, pp. 87-91, April 2004.

[27] F. L. Dretske, "Knowledge and the Flow of Information", Cambridge, Mass.; The
MIT Press-Bradford Books, 1981.

[28] A. N. Dwivedi, R. K. Bali, R. N. G. Naguib and N. S. Nassar, "The knowledge
management landscape: Implications for clinical knowledge management and practice",
in Proceedings of 26th Annual International Conference of the Engineering in Medicine
and Biology Society, pp. 3171-3174, 2004.

[29] E. Eide, A. Reid, J. Regehr and J. Lepreau, "Static and dynamic structure in design
patterns", in Proceedings of the 24rd International Conference on Software Engineering,
pp. 208-218, 2002.

[30] J. Estublier, "Software configuration management: A roadmap", in Proceedings of
the Conference on the Future of Software Engineering, pp. 279-289, 2000.

[31] L. Fahey and L. Prusak, "The eleven deadliest sins of knowledge management",
California Management Review, vol. 40, pp. 265, Spring 1998.

[32] M. E. Fayad and A. Altman, "Thinking objectively: an introduction to software
stability", Commun ACM, vol. 44, pp. 95, 2001.

102

[33] G. Ford and N. Gibbs, "A mature profession of software engineering (final report)",
Tech. Rep. AD-A307889; CMU/SEI-96-TR-004; ESC-TR-96-004; NIPS-96-74173,
1996.

[34] W. B. Frakes and Kyo Kang, "Software reuse research: status and future", IEEE
Transactions on Software Engineering, vol. 31, pp. 529-536, 2005.

[35] E. Gamma, “Design Patterns : Elements of Reusable Object-Oriented Software”,
Reading, Mass.: Addison-Wesley, 1995.

[36] G. C. Gannod, J. E. Burge and S. D. Urban, "Issues in the design of flexible and _
dynamic service-oriented systems", in ICSEW '07: Proceedings of the 29th International
Conference on Software Engineering Workshops, 2007, pp. 118.

[37] M. L. Griss, "Software reuse: From library to factory", IBM Systems Journal, vol.
32, pp. 548-566, 1993.

[38] B. H. Hansen and K. Kautz, "Knowledge Mapping: A Technique for Identifying
Knowledge Flows in Software Organisations", Lecture Notes in Computer Science, vol.
3281, pp. 126-137, 2004.

[39] S. Henninger, "An evolutionary approach to constructing effective software reuse
repositories", ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 6, pp. 111-140, 1997.

[40] E. Horowitz, A. Kemper and B. Narasimhan, "Application generators: Ideas for
programming language extensions", in Proceedings of the 1984 Annual Conference of the
ACM on the Fifth Generation Challenge, pp. 94-101, 1984,

[41] C. Hu, "When to use an interface?", SIGCSE Bull, vol. 38, pp. 86-90, 2006.

[42] C. Huang and W. Y. Liang, "Explication and Sharing of Design Knowledge Through
a Novel Product Design Approach", I[EEE Transactions on Systems, Man, and
Cybernetics-Part C: Applications and Reviews, vol. 36, pp. 426-438, May 2006.

[43] G. P. Huber, "Organizational Learning: The Contributing Processes and the
Literatures", Organization Science, vol. 2, pp. 115, 1991.

[44] Y. Hung and S. T. Chou, "On constructing a knowledge management pyramid
model", in Proceedings of Intl. Conf. on Information Reuse and Integration, pp. 1-6,
2005.

103

[45] R. E. Johnson, "Frameworks = (components + patterns)", Commun ACM, vol. 40,
pp. 39-42, 1997.

[46] R. E. Johnson, "Documenting frameworks using patterns", in OOPSLA '92:
Conference Proceedings on Object-Oriented Programming Systems, Languages, and
Applications, pp. 63-76, 1992.

[47] C. Jones, "Economics of Software Reuse", Computer, vol. 27, pp. 106-107, July
1994,

[48] J. Keys, "Software Engineering Handbook", Auerbach, pp. 874, 2003.

[49] T. Kotnour, C. Orr, J. Spaulding and J. Guidi, "Determining the benefit of
knowledge management activities", in Proceedings of International Conference on
Systems, Man, and Cybernetics, pp. 94-99, 1997.

[50] C. W. Krueger, "Software reuse", ACM Computing Surveys, vol. 24, pp. 131-183,
1992. ’

[51] C. W. Lillie, "Distributed network of reuse libraries offers the best approach to
successful software reuse", in Proceedings of Third International Conference on
Software Reuse: Advances in Software Reusability, pp. 207-208, 1994.

[52] Y. Liu and I. Traore, "Complexity measures for secure service-oriented software
architectures", in ICSEW '07: Proceedings of the 29th International Conference on
Software Engineering Workshops, 2007, pp. 78.

[53] P. Louridas, "Using wikis in software development", IEEE Software, vol. 23, pp. 88-
91, 2006.

[54] C. Lung, S. Bot, K. Kalaichelvan and R. Kazman, "An approach to software
architecture analysis for evolution and reusability", in CASCON '97: Proceedings of the
1997 Conference of the Centre for Advanced Studies on Collaborative Research, pp. 15,
1997.

[55] R. R. Macala, L. D. J. Stuckey and D. C. Gross, "Managing domain-specific,
product-line development", IEEE Software, vol. 13, pp. 57-67, 1996.

[56] F. Machlup, "Knowledge, its Creation, Distribution, and Economic Significance",
Princeton, N.J.: Princeton University Press, 1980.

104

[57] O. Marjanovic, "Sharing and reusing learning experiences — the knowledge
Management Perspective", in Proceedings of The Fifth IEEE International Conference
on Advanced Learning Technologies, 2005.

[58] M. E. Markiewicz and C. J. P. d. Lucena, "Object oriented framework development",
Crossroads, vol. 7, pp. 3-9, 2001.

[59]J. Mayrand, J. Patenaude, E. Merlo, M. Dagenais and B. Lague, "Software
assessment using metrics: A comparison across large C++ and Java systems", Ann. Softw.
Eng., vol. 9, pp. 117-141, 2000.

[60] R. J. McQueen, "Four views of knowledge and knowledge management", in
Proceedings of Americas Conference on information Systems, 1998.

[61] J. Mesaric, "Knowledge management - necessity and chalenge in small and medium
enterprises", in Proceedings of 26th Int. Conf. Information Technology Interfaces, pp.
481-485, 2004.

[62] M. Mohnen, "Interfaces with default implementations in java", in PPPJ '02/IRE '02:
Proceedings of the Inaugural Conference on the Principles and Practice of
Programming, 2002 and Proceedings of the Second Workshop on Intermediate
Representation Engineering for Virtual Machines, pp. 35-40, 2002.

[63]J. D. Mooney, "Portability and reusability: Common issues and differences", in
Proceedings of the 1995 ACM 23rd Annual Conference on Computer Science, pp. 150-
156, 1995.

[64] J. D. Musa, "Introduction to software reliability engineering and testing", in
Proceedings of the Eighth International Symposium on Software Reliability Engineering -
Case Studies, pp. 3-12, 1997.

[65]J. D. Musa, A. Iannino and K. Okumoto, “Software Reliability : Measurement,
Prediction, Application”, New York: McGraw-Hill, 1990.

[66] S. Muthanna, K. Kontogiannis, K. Ponnambalam and B. Stacey, "A maintainability
model for industrial software systems using design level metrics", in Proceedings of the
Seventh Working Conference on Reverse Engineering, pp. 248-256, 2000.

- 105

[67] P. Naur, B. Randell and J. N. Buxton, “Software Engineering: Concepts and
Techniques : Proceedings of the NATO Conferences”, New York: Petrocelli-Charter,
1976.

[68] I. Nonaka, "A Dynamic Theory of Organizational Knowledge Creation",
Organization Science, vol. 5, pp. 37, February 1994,

[69] C. E. Oancea and S. M. Watt, "Parametric polymorphism for software component
architectures”, in OOPSLA '05: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and Applications,
pp. 147-166, 2005.

[70] Y. Ouyang and D. L. Carver, "Enhancing design reusability by clustering
specifications", in Proceedings of the 1996 ACM Symposium on Applied Computing, pp.
493-499, 1996.

[71] T. Peachey and D. Hall, "Knowledge management and the leading IS journals: An
analysis of trends and gaps in published research", in Proceedings of The 38th Hawaii
International Conference on System Sciences, 2005.

[72] G. Phipps, "Comparing observed bug and productivity rates for Java and C++",
Software Pract Exper, vol. 29, pp. 345-358, 1999.

[73] G. Pour, "Towards component-based software engineering," in Proceedings of the
1998 IEEE 22nd Annual International Computer Software & Applications Conference,
pp. 599, 1998.

[74] W. Pree, "Meta patterns - A means for capturing the essentials of reusable object-
oriented design", in ECOOP '94: Proceedings of the 8th European Conference on
Object-Oriented Programming, pp. 150-162, 1994.

[75] R. Prieto-Diaz and G. Arango, “Domain Analysis and Software Systems Modeling”,
Los Alamitos, CA, USA: IEEE Computer Society Press, 1991.

[76] K. J. Ransom and C. D. Marlin, "Supporting software reuse within an integrated
software development environment", in Proceedings of the ACM SIGSOFT Symposium
on Software Reusability, pp. 233-237, 1995.

[77] K. Reinholtz, "Java will be faster than C++", SIGPLAN Not., vol. 35, pp. 25-28,
2000.

106

[78] Robert S. Hanmer,Kristin F.Kocan, "Documenting architectures with patterns", Bell
Labs Technical Journal, vol. 9, pp. 143-163, 2004,

[79] O. M. Rodriguez, A. I. Martinez, A. Vizcaino, J. Favela and M. Piattini, "Identifying
knowledge management needs in software maintenance groups: A qualitative approach",

in Proceedings of The Fifth Mexican International Conference in Computer Science, pp.
72-79, 2004.

[80] . Rus and M. Lindvall, "Knowledge Management in Software Engineering", IEEE
Software, pp. 26-38, May-June 2002.

[81] W. Selen, "Learning in the new business school setting: A collaborative model", The
Learning Organization, vol. 8, pp. 106, 2001.

[82] Y. Shan, T. Cargill, B. Cox, W. Cook, M. Loomis and A. Snyder, "Is multiple
inheritance essential to OOP? (panel)", SIGPLAN Not., vol. 28, pp. 360-363, 1993,

[83] K. Sherif and A. Vinze, "Domain engineering for developing software repositories:
A case study", Decision Support Systems, vol. 33, pp. 55-69, 2002.

[84] G. B. Singh, "Single versus multiple inheritance in object oriented programming",
SIGPLAN OOPS Mess., vol. 6, pp. 30-39, 1995.

[85] H. Siy and A. Mockus, "Measuring domain engineering effects on software change
cost", in Proceedings of International Software Metrics Symposium, pp. 304-312, 1999.

[86] J. Stajich and E. Birney, "The Bioperl project: motivation and usage", SIGBIO News,
vol. 20, pp. 13-14, 2000.

[87] D. Stenmark and R. Lindgren, "Integrating knowledge management systems with
everyday work: Design principles leveraging user practice", in Proceedings of The 37th
Hawaii International Conference on System Sciences, 2004.

[88] M. E. Stropky and D. Laforme, "An automated mechanism for effectively applying
domain engineering in reuse activities", in TRI-Ada '95: Proceedings of the Conference
on TRI-Ada '95, pp. 332-340, 1995.

[89] K. Surendran and F. H. Young, "Teaching software engineering in a practical way",
in Proceedings of the 14th Annual Conference of the National Advisory Committee on
Computing Qualifications, pp. 75-80, 2000.

107

[90] D. J. Teece, "Capturing Value from Knowledge Assets: The New Economy, Markets
for Know-How, and Intangible Assets", California Management Review, vol. 40, pp. 55,
Spring 1998.

[91] I. Tuomi, "Data is more than knowledge: Implications of the reversed knowledge
hierarchy for knowledge management and organizational memory", in Proceedings of the
32nd Annual Hawaii International Conference on System Sciences, pp. 12, 1999.

[92] A. Valerio, G. Succi and M. Fenaroli, "Domain analysis and framework-based
software development", SIGAPP Appl. Comput. Rev., vol. 5, pp. 4-15, 1997.

[93] P. Vitharana, "Risks and challenges of component-based software development,"
Communications of the ACM, vol. 46, pp. 67-72, 2003.

[94] A. Vizcaino, M. Piattini, M. Martinez and G. Aranda, "Evaluating collaborative
applications from a knowledge management approach", in Proceedings of the 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise, pp. 221-225, 2005.

[95] Y. Wang and M. Chen, "A collaborative knowledge production model for
knowledge management in complex engineering domains", in Proceedings of IEEE
International Conference on Systems, Man and Cybernetics, pp. 5050-5055, 2004.

[96] Y. Wang, J. Wang and S. Zhang, "Collaborative knowledge management by
integrating knowledge modeling and workflow modeling", in Proceedings of Intl. Conf.
on Information Reuse and Integration, pp. 13-18, 2005.

[97]]J. Ward and A. Aurum, "Knowledge management in software engineering —
describing the process", in Proceedings of The 2004 Australian Software Engineering
Conference, pp. 137-146, 2004.

[98] C. P. Willis, "Analysis of inheritance and multiple inheritance", Software
Engineering Journal, vol. 11, pp. 215-224, 1996.

[99] CIM-SAN. Available: http://www.snia.org/smi/tech_activities/ CIMSAN/, 2007.

[100] “CIM Concepts White Paper, CIM Versions 2.4+, Distributed Management Task
Force, 2003.

108

[101] “ISO/IEC 9126-1:2001 Software engineering — Product quality — Part
1:Quality model", International Organization for Standardization and International
Electrotechnical Commission , 2001.

[102] “The Common Information Model, CIM Version 2.7”, Distributed Management
Task Force, Technical Committee, 2003.

[103] www.biojava.org

[104] www .bioperl.org

[105] www.biopython.org

[106] www.genomequebec.com

[107] www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC

[108] www.open-bio.org

109

Appendices

110

Appendix A: Organizational Learning Process

Obstacles in SEOs

There are certain elements in the Software Engineering environments and SEs’ work

habits and patterns that make it difficult for organizational learning process to be

effective and therefore disrupt the smooth flow of knowledge in a SEO. In spite of all

efforts aimed at making software development an engineering discipline and a team

effort, it is still mostly an individual creative activity. The main reasons are as follows

[48]:

SEs desire autonomy ‘and escape explicit coordination and control [to some
degree] as it is expected of KWs

Often certain KWs possess key target domain knowledge that are not willing to
share with fellow KWs

The dominant culture in SEOs usually values individual achievements more than
team efforts

There are political concerns among individual KWs and managers that affect the

willingness of KWs to share knowledge

111

Appendix B: KM Related Challenges in SEOs

Among the challenges SEOs face at the present time, they have to deal with the following

problems that are directly related to knowledge management [40]:
e Attrition Problem

Economies of industrialized countries as well as developing countries continue to
depend more on KIFs every day. This degree of attention shift to KIFs increases the
demand for KWs. When demand is high, KWs tend to become mobile and move from
organization to organization. Unlike in the industrialized era economy where people
were needed but replaceable, KWs cannot be easily replaced. In KIFs today, KWs are
the main assets carrying the intellectual capital of the organization. When workforce
attrition occurs, the knowledge which KW used to carry (which is sum of his/her
experience and know-how) is also lost and should be deducted from the
organization’s intellectual capital. In case of a SEO, it should be noted that this loss is
two fold: loss of Software Engineering experience and know-how, and loss of domain
experience and know-how. Most SEOs suffer from lack of a mechanism for retaining
the acquired knowledge crucial for the business and managing it. Our framework
helps reduce the impact of attrition through sharing the knowledge of individual SEs

and distributing it in SEO, thus making it true organizational knowledge .

e Steep Learning Curves

KW accumulates knowledge over the course of his/her tenure with KIF. In a SEO,
KW acquires Software Engineering experience over the course of projects s/he is

involved in but s/he also needs to gain knowledge about the target domain of each

112

project. Comparing average lifespan of projects to average length of SE career, it is
clear that to be an effective player, KWs in a SEO have to absorb a great deal of
domain knowledge in a relatively short time. The amount of time KW needs to absorb
this knowledge depends on many factors such as prior knowledge of the domain or
similar domains, degree of acquaintance with prerequisites, pace of learning, and
available training materials and resources and their quality. Among KIFs, the
situation of KWs in SEOs is fairly unique. As previously mentioned, KWs are
expected to face unique problems and are supposed to come up with solutions using
their knowledge. SEs often face problems in domains in which they have no or little
prior knowledge. SEs first have to educate themselves about the domain in order to be
able to address the problem. Only after this phase, SEs can go forward and use their
Software Engineering skills in combination with the knowledge they have acquired
about the domain to provide a solution. Every time a new project in a new domain
begins, the cycle of knowledge acquisition has to be repeated. As we go forward,
computer systems find their ways into more complex domains, and this makes it
harder for SEs to absorb the necessary domain knowledge in a reasonable time. In
other words, the more complex target domains get, the learning curve becomes
steeper. The framework enhances the organizational learning process and this helps to
ease the curve of learning path. In absence of established systems for maintaining and
managing the acquired knowledge, KWs who have already acquired domain
knowledge become even more important and more valuable because what they have
gained (in form of experience and know-how) is vital for the success and sometimes

survival of the organization. SEOs become more and more dependent on individual

113

KWs or team of KWs. This inevitably leads to imbalance in organization structure
and disrupts its ability to manage and use its intellectual capital. SEO can not afford
to lose key KWs- and if they do, they lose their ability to fulfill their duties in certain
areas because the new KWs need time to learn what was learnt before. Steep learning
curves for complex domain have lead to emergence of new hybrid disciplines which
focus on training a new breed of SEs that specialize in a éertain complex domain.
This approach has it own shortfalls and setbacks and is not necessary at all if SEOs

are able to manage their knowledge and use that.

e Repeating Mistakes

In every discipline it is very common to make mistakes in executing tasks. What is
considered not acceptable is making the same mistakes more than once. It is not
difficult to spot KWs in SEOs making the same mistakes over and over. In many
cases, there could be confusion about the nature of the 'mistake and KWs might
debate whether something is a mistake or not. SEs or teams of SEs easily forget about
their mistakes in a project and are prone to make the same mistakes again in some
future projects. It is also very common in a SEO to spot teams that make the same
mistake in different projects. In many well-established disciplines there is a great
emphasis on postmortem analysis of projects. Special attention is paid to problems
and mistakes in a project, which are carefully analyzed to find out what caused the
mistakes and what could have been done to avoid them. The lessons learnt from this
analysis are documented so that they can be used later in future projects. This makes

occurrence of the same mistakes less probable. Such a postmortem analysis is not

114

common for software projects for various reasons. The most important reason is lack
of properly recorded information about the course of the project, the decisions that
were made, and the reasons for the decisions made. KWs in SEOs do not generally
document all aspects of their work, and even if they try to do that, the documentation
methods do not capture many important aspects of the SEs’work. It is well known
that SEs are constantly under lots of pressure to meet deadlines and produce results
‘and this makes it harder for them to think of benefits of creating knowledge for future
use. There are SEOs that have mandatory documentation standards and force their
SEs to document their every move. The burden of such methods clearly affects
productivity of SEs and reduces the overall output of the SEO. Every time there is a
conflict between documentation standards and delivery deadlines, managers give
priority to delivery at the cost of poor or no documentation. It is very likely for SEOs
to make the same mistakes because they lack a generally accepted mechanism of
tracking decisions made during projects, analyzing these decisions, storing the results
of analysis, and finally making the results available to be used in future projects. The
framework makes it possible to maintain a history of decisions SEs make during the
course of projects and the results of those decisions are traceable over time and their
affects can be realized as well. This history could be used as an input to an analysis
process and the results could help evaluate past decisions in order to recognize

mistakes and avoid them in future.

115

e Knowledge Movement Within and Across Organizational

Boundaries

Software systems are not like isolated islands anymore. In a knowledge based
industry, many software systems interoperate with other software systems to create
tangible benefits for their users. The general trend in software industry is moving
towards more integration. The whole software industry is moving towards a service-
oriented architecture and moving away from a product-based architecture. The
customers look at software as a service. They may need certain features from one
system and certain features from another system and they like to see these two
systems work together to provide the functionality they have in mind. To satisfy these
requirements, individual SEOs, even competitors, have to work together to make their
products compatible with other software and hardware products. The need for
cooperation and compatibility forces individual SEOs to come together and share
knowledge in order to reach a common understanding. The ideal outcome in this
situation is all SEOs share their knowledge and come up with a standard. In reality,
this does not happen that often because in most cases the target domains are like
uncharted territory for SEOs and they do not have enough knowledge to come up
with a standard in the beginning. At the same time SEOs can not afford to spend
enough time to acquire a deep understanding of the target domain and have to create
products based on the knowledge at hand or they will lose their customers and their
market share. This often leads to creation of various premature de facto standards.
SEOs will be divided among these competing camps and they will start a war of

standards which hurts all the advocates as well as users of the competing systems. In

116

the past few years, SEOs have realized the disadvantages of this approach and they
are leaning more and more towards collaboration frameworks that enable them to
share knowledge and incrementally come to an agreement over time.
The framework is designed to act as a collaboration platform. This characteristic
enables several SEOs work together and cooperate while they maintain their unique
views and their differences. The fruit of this collaboration over time could be a
consensus and a unified understanding of the target domain. One of the main
motivators of this work is our experience in an industry effort of this kind. That effort
is “CIMSAN Initiative”, sponsored by Storage Networking Industry Association
(SNIA). This program allows participants which are software and hardware
companies share knowledge and collaborate towards developing and improving a
standard Ifo.r managing storage area networks (SAN). The goal of companies that
participate in this effort is development and implementation of “SNIA’s Storage
Management Initiative (SMI).” The main goals of CIMSAN initiative, which are
indicators of today’ software industry trend, are:

a) Ease the implementation of tﬁe SMIS specification in vendor products

(through ongoing developer symposia and plug-fests)

b) Reduce multi-vendor integration costs

c) Build seamless interoperability between products.

d) Forward the development of the CIM/WBEM based SMI Specification

(SMIS).

117

Appendix C: Related Software Engineering Concepts

e Reuse Libraries

In early years, software reuse was mainly done through personal and organizational
information preserving structures. Formalizing the processes of preservation and
location facilitates reuse and makes it more attractive for a wider range of people and
activities. The reuse library is the proper center of activity for these formalized
processes and the proper access point for sharing assets.

Reuse libraries consist of repositories for storing reusable assets, a search interface
that allows users to search for assets in the repository, a representation method for the
assets, and facilities for change management and quality assessment [34]. Software
reuse libraries offer services that include classification and cataloging, certification,
storage, searph; extraction, and maintenance. All these functions are required to
exploit the potential of software reuse [51]

There are many types of software reuse libraries: domain specific, general purpose,
private, commercial, government, nonprofit, and public domain libraries.

Libraries of randomly collected code often address a small number of typical
developers’ needs. Developers are reluctant to look for components in the library and
prefer to write their own [37]. To increase reuse level as well as level of contribution
to the library, incentives need to be focused. One common mistake is to offer a
“reward” for contributing to a library but not for using the library, which can easily

increase library size without increasing its reuse level.

118

¢ Domain Engineering

Domain Engineering (DE) is one of many approaches for implementing systematic
reuse.

DE is a structured method of developing prefabricated building blocks to advance the
development of software systems [75, 11, 88, 55]. DE approaches the problem by
defining and facilitating the development of software product lines (or software
families) rather than individual software products. This is accomplished by
considering all of the products together as one set, analyzing their characteristics, and
building an environment to support their production [85].

The building blocks in DE can take different shapes. The most common form of
building blocks is code. In recent years, there has been an emphasis on the reuse of
more abstract and more conceptual artifacts of the software development process such
as design, architecture and results of requirement analysis process. However, for any
of these to be reusable, they have to be designed with reuse in mind [83].

DE vconsists of three main phases: domain analysis, domain design and domain
implementation. During the domain analysis, the scope is defined and functionality
and composition of the doma;in are determined. In the next phase which is domain
design, architecture for the domain is provided, and a family of general solutions for
recurring problems in the domain is designed. During domain implementation,

reusable assets including code, test cases, and documentation are developed [83].

119

e Design Patterns

Patterns as an architectural concept were introduced by Christopher Alexander in
1977. Design patterns are valuable because they highlight common structure, capture
design expertise, and facilitate restructuring of software systems [29]. Alexander
states that each pattern describes a problem which occurs over and over again in the
environment, and then describes the core of the solution to that problem, in such a
way that one can use this solution a million times over, without ever doing it the same
way twice [3].
In a software development context, a design pattern is an artifact which names,
abstracts, and identifies the key aspects of a common design structure that make it
useful for creating a reusable object-oriented design. The design pattern identifies the
participating classes and instances, their roles and collaborations, and the distribution
of responsibilities. It describes when it applies, whether it can be applied in view of
other design constraints, and the cons‘equences and trade-offs of its use [35]. Point of
view is a crucial factor in deciding what could be considered a design pattern. In
general, design patters are not about primitive entities such linked lists or hash files.
They are not about complex and domain specific models that span an entire system
either.
Considering the above definition, four essential elements in design patters can be
identified [35]:

o Name: Pattern name is a handle that can be used to refer to a design

problem, its solutions, and consequences.

120

o Problem: The problem is when and where the pattern should be applied. It
explains the problem and its context.

o Solution: The solution describes the essentials of the design, how they are
related and how they collaborate. This element doesn't provide a detailed
design or implementation of a solution. Instead, it offers an abstraction of
a design problem and describes a template like solution.

o Consequences: The consequences describe the results of applying the
pattern and trade-offs of this application. They also help the pattern users

understand costs and benefits of applying the pattern.

e Componentry

One of the essential characteristics of engineering disciplines is building a product by
assembling pre-made, standard components [73]. Component Based Software
Engineering (CBSE) has emerged in software development industry where reusability
is receiving a lot of attention. CBSE is concerned with the development of software
systems from reusable parts (components), the development of components, and
system maintenance and improvement by means of component replacement or
customization [18]. Constructing system from components and producing reusable
components for different systems require specific technologies developed for this
very purpose. The great interest in CBSE in recent years has resulted in emergence of
several component development, integration and deployment technologies. The most
common and widely used examples are Object Management Group (OMG)’s

Common Object Request Broker Architecture (CORBA) Component Model (CCM),

121

Sun’s Enterprise JavaBeans (EJB), and Microsoft’s Distributed Component Object
Model (DCOM) [34].

CORBA CCM, EJB, and DCOM are similar in providing a platform for developing,
integrating, and deploying distributed components. All of these technologies try to
provide a degree of relief for software developers from concerns such as component
location, programming language used to create the component, operating system on
which component works, communication protocol used to contact component, or
hardware platform component works on.

In CBSD, component developers encounter certain risks and challenges in developing
components, managing component development projects, and subsequently
marketing the components. Application assemblers’ risks and challenges primarily
concern the assembly of components in applications, the management of component
based application assembly projects, and the uncertainties of the component market.
Customers of component based systems face both risks and challenges in using
component based applications to meet their enterprise requirements, as well as in
managing their component based and legacy application systems and in achieving and

sustaining strategic competitive advantage over their rivals. [93]

¢ Generative Reuse

The concept of generative reuse is tightly coupled to the domain engineering process.
Generative reuse is done by encoding domain knowledge and relevant system
building knowledge into a domain specific application generator [34]. To build a new

system in the target domain, developers begin by specifying a very limited prototype

122

of the desired application using a domain specific specification language. The
specification is then translated into code by the generator. In an iterative process,
developers incrementally extend and modify the prototype until it meets all of the
requirements [34, 40]. The processes of specification translation and code generation
can be entirely automated, or may require manual intervention.

Generative reuse has some distinct characteristics compared to more conventional
software development methodologies:

o No explicit coding phase: The software specification is literally turned into
executable code using the domain knowledge that is already gathered.
This is done by the application generator so developers are not involved in
writing executable code.

o Simplified testing and maintenance: The system specification is expressed
using a [formal] specification language; therefore it is at a level of
abstraction much higher than a program written in a conventional
programming language. Since developers are dealing with a higher level
of abstraction, testing and maintenance processes are easier to manage..

o Better documentation: Documentation is aided by the fact that the product
of developers, which in this case is system specification, is semantically
rich and easily readable. Using formal specification in the process
increases the level of understandability and may provide the option of

generating some documents automatically.

123

o More direct programming by end users: The high level nature of the
specification language may make it possible for less sophisticated end
users to contribute directly to programming.

Application generators are appropriate in domains where many similar software
systems are written, one software system is modified or rewritten many times during
its lifetime, or many prototypes of a system are necessary to converge on a usable
product [50]. An important part of making domain engineering repeatable is a clear
mapping between the outputs of domain analysis and the inputs required to build
application generators [34]. Using the output of domain analysis, the commonalities
in the domain are identified and they are implemented once when the application
generator is built and then reused each time a software system is built using the

application generator.

e Collaboration

Over the past decade, designing and implementing processes have been witnessing a
distinct move away from individual decision makers and towards groups engaged in
collaborative work [22]. Greater competition in the market and globalization of
economy has changed the structure of many organizations and these changes are more
evident in SEOs. The new structures have intensified the demands for higher levels of
support of distributed and collaborative work [10].

Inter-organization and intra-organization collaborations encourage the emergencé of
standards and pseudo-standards. When entities collaborate, they try to help each other

achieve their goals. To maximize the benefits of collaboration, the participants need

124

to agree on a set of rules for their cooperation and the results of their work. The rules
governing the collaboration defines how participants work together and the rules
about the results of cooperation defines how results should be produced and in what
form and shape and under what conditions they should be presented. All participants
need to agree with these rules for collaboration to work. If this agreement is done in a
formal fashion, the result can be called a standard. If the agreement among parties is
not formal, the results can be looked at as a pseudo-stanidard. The fact that standards -
play an important role is well known in many industries and the same is also true for

software engineering industry.

e Version Management

Version Management is part of Software Configuration Management (SCM). SCM is
defined as the control of the evolution of complex systems. More pragmatically, it is
the discipline that enables us to keep evolving software products under control, and
thus contributes to satisfying quality and delay constraints [30].

SCM can be utilized as a management support discipline. In this capacity, SCM is
concerned with functionalities such as identification of components and their
versions, change control (by establishing strict procedures to be followed when
performing a change), status accounting (recording and reporting the status of
components and change requests), and audit and review (quality assurance functions
to preserve consistency) [17]. Each SCM method relies on a version model. A Versién
model defines the objects to be versioned, version identification and organization, as

well as operations for retrieving existing versions and constructing new versions [17].

125

Objects that are monitored by version management process and their relationships
constitute the product space. The version of these object make up the version space. A
specific version model is characterized by the way the version space is structured, by
the decision of which objects are versioned, by the relationships among version
spaces, and by the way reconstruction of old and constfuction of new versions are
supported {17].'

Management of change through versions is an integral part of our framework and is a

very important feature of the management of the framework data model.

126

Appendix D: Participants of CIMSAN Program

* Appiq

e BMC Software

e Brocade

e Computer Associates
e Crossroads

e EMC

e Hewlett-Packard

e Hitachi Data Systems

e IBM (Tivoli)

e Inrange
e InterSAN
e [SILogic
e McData

e Network Appliance

e Prisa Networks (now EMC)
e Qlogic

e Quantum

o StorageTek

e SUN Microsystems

e Veritas

127

Appendix E: Core Layer of the Prototype

In this appendix, we present a more detailed version of class diagram presented in Figure
9. We also present the interfaces of the following classes of Core Layer:

e Object

e AminoAcid

e Nucleotide

e Sequence

e ReferenceTable

128

SourceType
name
description
URL
SourceType()
SourceType()
SourceType()
SourceType()
Nucleotide ~G-S<t3h1rceType() CommandLine
LetterCod eamel) path
SubSequence oneletierLode SetName() application
endPosition name . GetDescription() output
startPosition Nucleotide() SetDescription() CommandLine()
parentSequence Nucleotide() GetURL() C° a oy e
SobSeciencel Nucleotide() SetURL() CommandLine0
SubSequenceo ~Nucleotide() éTT:an el
SubSequence() GetOneletterCode() % setAa I'O i
~Sungquence() GetName() Z:tPthhl(c)a on
GetEndPosition() ;/:2?;5(1:() Object getapplication()
GetStartPosition() —_ string getOutput()
GetParentSequence() operator ==() id executeApplication()
charValue
SourceType intValue
longValue
name
description — boolValue K——
URL stringValue
SourceType() valueType
Source Type() 821:38 ReferenceTable
ggﬁ::%ﬁ:g Object(} refergnceTableName
Sequence ~SourceType() Object() kelyLlls-t' ‘
GetName() Object() Mkl
sequence ——>~object K————{ReferenceTabi
SetName() ject() eferenceTable()
lastError €
- GetDescription() GetiD() ~ReferenceTable()
Validate() SetDescripti Validate() AddEntry()
Sequence() GZtUeRSLC(r)'p fon) operator ==() RemoveEntry()
Sequence() SetURL() operator ==() FindEntry()
Sequence() operator =()
[Seqxé?)nce() operator =()
engt ~ operator =()
Load() {> operator =() Annotation
GetSequence() operator =() name
GetlLastError() GetCharValue() value
GetIntVaiue() :
AminoAcid GetLongValue() o)
oneletterCode GetBoolValue() GetName()
threeletterCode[3] GetStringValue() GetValue()
name SetAnnotaion()
AmfnoAc!d() IsNumeric()
AmmoAqu IsAlpha()
AminoAcid()
~AminoAcid()
GetOneletterCode() AnnotationNumeric
GetThreelLetterCode()
GetName() -
operator ==() IsNumeric()
o IsAlpha(}
operator ==() \ .
Validate() AnnotationNumeric()
~AnnotationNumeric()

Figure 12: Simplified Class Diagram of Core Layer of the Prototype (detailed version of Figure 9)

e C++ declaration of “Object” Class
class Object

{
public:

129

Object (void) ;

Object (char);

Object (int);

Object (long);

Object (bool) ;

Object (string) ;

virtual ~Object (void);

long GetID() {return id;}

virtual bool Validate () {return true;}
virtual bool operator==(Object& a);
virtual bool operator==(const Objects& a);
virtual char operator=(char a);
virtual int operator=(int a);
virtual long operator=(long a);
virtual bool operator=(bool a);
virtual string operator=(string a);
virtual char GetCharValue():;
virtual int GetIntValue();

virtual long GetLongValue():;
virtual bool GetBoolValue();
virtual string GetStringValue();

private:

static long id;

char charValue;

int intValue;

long longValue;

bool boolValue;
string stringValue;
VALUETYPE valueType;

}i

e C++ declaration of “AminoAcid” Class
class AminoAcid: public Object
{
public:
AminoAcid (char oneletterCodeP, char threeleterCodeP([],
string& nameP);
AminoAcid(const AminoAcid& a);
AminoAcid{char onelLetterCodeP);
virtual ~AminoAcid();
char GetOneletterCode() const;
const char* GetThreeletterCode () const;

const stringé& GetName () const;
virtual bool operator==(AminoAcidg& a);
virtual bool operator==(const AminocAcid& a);

virtual bool Validate();
protected:

char oneletterCode;

char threeletterCode[3];

string name;

}i

e (C++ declaration of “Nucleotide” Class

130

class Nucleotide: public Object

{

public:
Nucleotide (char, stringé&);
Nucleotide (char);
Nucleotide (Nucleotide&) ;
virtual ~Nucleotide();
char GetOneletterCode() const:

const stringé& GetName () const;
virtual bool Validate();
bool operator==(Nucleotide& a) ;

bool operator==(const Nucleotideé& a);

protected:
char oneletterCode;
string name;

}i

C++ declaration of “Sequence” Class

class Sequence: public Object

{

public:
Sequence () ;
Sequence (Sequence& seguenceP);
Sequence (1list<Object>& sequenceP);
virtual ~Sequence();

long Length();

virtual bool Load(string URL, SourceType sourceType);
list<Cbject>& GetSequence();

stringé& GetLastError ();

virtual bool Validate():;

protected:
list<Object> sequence;
string lastError;

}s

C-++ declaration of “ReferenceTable” Class
class ReferenceTable: public Object
{
public:
ReferenceTable (string name);
virtual ~ReferenceTable();

virtual bool AddEntry(Object& key, Objecté& value);
virtual bool RemoveEntry(Objecté& key);
virtual Object* FindEntry(Objecté& key);

protected:
string referenceTableName;
list<Object> keylList;
list<Object> valuelList;

bi

131

