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Abstract

MULTIPLE 3D SCAN DATA REGISTRATION
RAN WANG

A 3D geometric model representing the surface of a 3D object is most often used for
synthesizing highly realistic 3D images. The advent of 3D scanners has made the
acquisition of 3D surface geometry of existing objects relatively simple. In most 3D
scanners, it is difficult, to acquire the complete surface geometry in one operation. For
example, with a single fixed scan head, the object has to be rotated many times to present
different views of the object’s surface to the scan-head, so that the entire surface
geometry is covered. Then, all the scan data sets from different views have to be
combined from their own independent coordinate systems into a single consistent
geometric coordinate space. This operation is called scan data registration. Most existing
techniques mainly focus on registering two point data sets at a time. For scan data in
multiple views, say n views, one has to resort to pair-wise registration, requiring n-1
registration operations. In this research, we study the problem of multiple scan data
registration. In particular, we are interested in efficiency, robustness and accuracy of
registration techniques. Our main contribution is a new registration technique that can
simultaneously register any number of scan data sets as long as there is some overlap
amongst them, thus requiring considerably less than n-1 registration operations. To
demonstrate the performance of our approach, we have developed a registration system
and we have experimented with a number of scan data sets and shown the improvements

resulting from the use of our approach.
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Chapter 1: Introduction

Affordability with good performance has resulted in increased use of 3D scanners in
domains like gaming, cinema, rapid prototyping and heritage documentation. Many of
these scanners, such as the hand-held or desktop versions, can be used to acquire 3D
sample points on the surfaces of complex objects with minimal or no significant set-up
costs. The raw data resulting from the scanning operation consists primarily of range
images from different views of an object [Pulli 1997]. Increasingly these days, with the
availability of appropriate color cameras, these range images are augmented with
corresponding color (texture) images. The number of scans needed in order to completely
cover the surface of the object depends on the 3D object surface complexity, particularly
the extent to which the object occludes parts of itself from a given view point. Typically,
when the scanning is carried out in different passes (different facets of the object’s surface
are presented to the scanner camera head), each range image is in its own independent
coordinate system, and the geometric relationship among these coordinate systems is only
approximately known. The number of different scans needed to acquire the complete 3D
surface data of an object varies from tens to hundreds of views (See Table 1). Hence, the
volume of data is very large [Levoy 2000] and needs to merged to produce a 3D surface
representation readily usable by standard 3D modeling and rendering programs.
Sometimes this process is simplified by capturing data from precisely known camera

locations recorded using appropriately calibrated scanning hardware set-up. But a priori



calibration is not always possible, for example when using a hand-held or a desktop

scanner or when scanning a large building in multiple phases.

Model # of Scans | Source
Stanford

Bunny 10 Repository

Happy 60 Stanford

Buddha Repository
Stanford

Dragon 70 Repository

Amadilo | 114 | tanford
Repository
Stanford

Lucy 47 Repository

Thai Statue 36 Stanfo'r d
Repository

Frog 16 Local 3D Scanner

Rabbit 24 Local 3D Scanner

Table 1: Number of Views for 3D Scanned Objects

One traditional approach to handle this kind of data is to first convert all the datasets into
polygonal meshes and then to register and merge these meshed surface patches in a final
step [Turk 1994]. As the 3D point data acquired in each scan is in its own independent
coordinate system, the process of registration determines the transformation to be
associated with each scan, so as to bring all the scan data points into a single coordinate
space. If the scan-head and object positions for the different scans are known exactly in
some global coordinate system, then registration is simple. Otherwise, registration requires
one to automatically determine the individual transformations to be associated with each
scan, based on the content of the scans. Once the registration process is complete, merging
two or more overlapping meshes mandates the complex geometric operation of

determining the exact interference among polygonal meshes, and also the operation of



combining the disconnected meshes into a single connected mesh. This can require
considerable manual effort. On the other hand, recent advances in point based graphics
enable us to work only with point samples on the surface [Pfister 2004]. They do not
require an explicit surface topology representation in the form of a polygonal mesh or an
algebraic surface representation, say, NURBS. Point based graphics therefore requires one
to only register scans using point samples. Combining point samples from multiple scans is
an operation that is trivial in comparison to merging polygonal meshes.

If an adequate number of features can be exactly matched between two scans, then the
transformation needed to register one scan with the other can be easily determined.
However, in general, scanner resolution, noise, etc. make it difficult to find adequate
number of exactly matching features. Hence most scan registration techniques are iterative
in nature, based on accurately aligning the overlapping geometry among the scans. They
normally use a numerical optimization technique to minimize the geometric alignment
error. As with most of the efficient numerical techniques, the registration techniques used
are local minimization techniques. They require a good initial estimate of the registration
transformation to converge rapidly to the final accurate transformation. Hence the
registration process is considered as a two step process — an initial registration step that
provides an estimate for the starting solution and an accurate registration that minimizes

the alignment error iteratively (See Figure 1).



Get data from the

3D scanner
_ /\
Initial Eigenvalue Based Texture Based
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registered data
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Registration sets
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Get accurately
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Figure 1: Graph of Registration Process

1.1 Initial Registration

Usually, the initial registration step brings the scanned data sets close to their final
position/orientation in the global coordinate system. It can be thought of as a procedure
for roughly registering the scanned data. Since we want to use iterative numerical
optimization approach for doing the accurate registration, we need a good initial estimate

for the alignment of the different scans. The usual approach for doing this initial



registration is to do it interactively. The scan geometries are shown on the screen and
their positions and orientations are interactively manipulated to align them visually.
While this is the standard supported in most commercially available 3D scanning
software, a number of methods have been proposed to carry out this operation
automatically. Usually this is done through some analysis of the geometry and/or other
information available from the scan process. In our case, scan data not only contains
geometric information, but it also comes with texture. Hence in our work, as discussed in
all details in Chapter 3, we use both the texture information and geometric information

for the initial registration.

1.2 Accurate Registration

It is clear that accurate registration of scan data is important for acquiring the correct
geometry. This is particularly so for complex models, which usually require a larger
number of scans for covering the complete surface of the object. Almost all the existing
methods perform accurate registration in a pair-wise manner. That is, one scan data set is
kept fixed and the 3D transformation needed to align the second scan data set to the first
is determined as accurately as possible. Of course, there lies the underlying assumption
that geometries of the two scans have considerable overlap between them. Multiple scan
data sets are aligned as a chain of pair-wise registration and merge operations. In
currently established approaches, pairs which have maximum overlap are chosen in
sequence. The de facto standard algorithm for pair-wise registration is ICP (Iterative

Common Point) [Chen 1991, Simon 1996]. ICP works on the principle of minimizing the



error formulation. The algorithm cycles between two steps, first finding correspondence
between point sets and then applying the transformation to minimize the error.
Computationally, establishing correspondence is a time consuming operation, as for
every point of one set, it involves a search for the best corresponding point in the second
set. Also, the number of iterations required for convergence of ICP and all its many
derivative algorithms depends heavily on initial estimate and the distance metric used

[Rusinkiewicz 2001].

In practice, depending on the field of view of the scanner camera head as well as the total
number of scan views created to cover the complete surface of the object, it can be seen
that there will be overlap not just between pairs of views, but also among larger subsets.
However, in using a pair-wise registration technique, such as ICP, as the core alignment
technique for registering multiple scans (more than 2), we can not easily make use of this
additional overlap information present in the scan data. For this, ideally, we should be
able to simultaneously align all the views that have common overlap among them in a
single registration operation. The ICP error metric is essentially pair-wise, and extending
it to accommodate multiple views is possible in principle, but not straightforward. To the
best of our knowledge, there have been no attempts to develop an algorithm for
simultaneously registering multiple (more than 2) overlapping scan data sets. Apart from
the large number of pair-wise registration operations needed, the chained pair-wise
registration process has another major problem — accumulation error. An iterative
registration technique is terminated once the alignment error reaches below a pre-defined

threshold or when a pre-set maximum number of iterations are completed. Hence there



will always be a residual alignment error between a pair of scans. As we register each
new scan to the previously registered data set, this error can accumulate. It is our belief
that new algorithms that can simultaneously register any number of overlapping scans
need to be developed so as to reduce/eliminate the accumulated error for multiple

scanned point sets registration. This has constituted our main research problem.

1.3 The Multiple 3D Scan data Registration Problem

In this work, we are concerned with directly registering and merging multiple 3D scan
datasets without explicitly meshing them. Merging multiple aligned scan data sets
represented by sampled surface points simply amounts to the union of the sample points
in the different sets. Hence this will not be discussed further. As previously mentioned,
one basic requirement for this process not to fail, is the presence of sufficient overlap
amongst the scans that are considered for registration and merging. So our problem is that
given multiple (overlapping) surface segments of an object’s surface in their own
coordinate space, we have to find the transformations needed to bring these segments into
a common coordinate system. We assume that the required transformations are rigid body
transformations. Most commonly encountered 3D registration problems fall in this

category.

1.4 Significant Contributions

The main contributions of this research are the following:



1.4.1 Initial Registration

Eigenvector based Initial Registration using 3D Geometry Data

Eigenvalues and Eigenvectors describe the distribution of points. We build a low depth
Octree for each scan data set, and calculate the Eigenvalues for each Octree node. Since
Eigenvalues are independent of direction and position of the point set, we use it to find
the corresponding parts (with similar point distribution) in the scanned point sets. We
select the pair which has the best matched Eigenvalue as the corresponding part. When
we find the corresponding parts, we also know the Eigenvectors for these parts. We can
simply align these two sets of Eigenvectors to determine the transformation (rotation and
translation) matrix. Since the method fails sometimes, we also developed a texture based
initial registration method. Since this method was found to fail sometimes, we also
developed a texture feature based registration method.

Texture Feature based Registration

In the 3D scanner set-up in our laboratory, texture accompanies with the scanned
geometric data. We use digital image processing techniques to extract the scanned
object’s texture from the background and detect image-based feature point pairs for each
scanned data pair. Selecting the best four matching feature pixel pairs, we look up the
texture map for the matching 3D points. Using these four points, we can calculate the
transformation matrix needed to align the two scans.

Since the initial registration is only a rough registration operation, we carry out the
operation pair-wise to determine the starting transformation matrix for each of the

multiple overlapping scans.



1.4.2 Accurate Registration

For the accurate registration, we have formulated and tested a new distance function
based error metric for multi-scan registration. The distance function is defined within a
3D cube in which the object is embedded. We align the distance functions by choosing a
subset of points close to the sample surface points (usually on a grid) in one of the data
sets, and then transform these 3D space points for each of the other scans to determine
the distance from the surface in each of the other scans. Thus we completely avoid the
need to search and establish point correspondence among scan data sets, a time
consuming operation needed in ICP-like algorithms. We carry out the error minimization
using Levenberg-Marquardt algorithm and demonstrate improvements both in efficiency

and reduced accumulated error when simultaneously registering a large number of scans.

1.5 Outline of Thesis

The rest of the thesis is organized as follows:

In Chapter 2, we provide a review of related work in 3D scan data registration. In Chapter
3, we present two initial registration approaches along with implementation results. In
Chapter 4, we present our most significant contribution, our new approach based on
distance function alignment for simultaneous registration of multiple 3D scan data sets.

In Chapter 5, we conclude our work by summarizing the advantages and the weakness of

our approach, and also indicate potential for future work.



Chapter 2: A Review of Multi-View 3D Scan
Data Registration Techniques

The multi-view registration problem essentially requires one to associate a rigid body
transformation with each 3D scan data set, such that the multiple scan data points
obtained from different views of the object align themselves accurately according to the
surface of the scanned 3D object. Figure 2 illustrates this diagrammatically; each T;
transforms the 3D points obtained from scan view i into a single global coordinate system,
denoted here as the world coordinate system. Figure 3 shows a real case of scans from

different views.

view 2

T

view 3

view ]
\

World coord.
system

view 0 w view n-l

Figure 2: Registration of data from different views (Originally from [Neugebauer 1997])
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Figure 3: Multiple scans of a bunny statue (Originally from [Sharp 2004])

As mentioned in Chapter 1, the best known and most popular algorithm for the
registration process is called ICP which stands for Iterative Closest Point algorithm. ICP
was first introduced by [Besl 1992]. Most of the current registration approaches in use are
derived from this method [Rusinkiewicz 2001]. ICP defines the registration problem as
an iterative minimization process, by defining an error metric in the alignment of the
overlapping geometric parts in the two scans. The basic idea behind this approach is to
find the corresponding points (representing the overlapping subset of points) between two
point data sets and then to minimize sum of the squared distance between those point

pairs. This is explained in the flow chart shown in Figure 4.
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Start of the process

Y

Find corresponding
point pairs

Minimize the distance

between those point pairs

Check if the
distance meets a
certain threshold

End of the process

Figure 4: ICP Process

Since ICP uses at its core a numerical error minimization method to find the minimum of
the distance-based error metric, it is unable to find the global minima. Hence, a good
initial value for the set of alignment parameters is needed so that it can find the desired
solution. Hence it is usual for the two data sets to be first roughly registered before

starting the ICP technique. This requirement breaks the registration process into two

12



Registration which is sometimes refereed to as being a global registration process and

accurate registration which searches locally for an optimum registration.

We have already previously mentioned that ICP has essentially been formulated for
pair-wise registration, and use of it in a chain of pair-wise registration to handle multiple
scan data sets could lead to accumulation error in the final merged geometry data set for a
complex object. We implemented ICP and used a sequence of ICP registrations on a
number of scan data for a number of objects. Accumulated error can be clearly seen in
Figure 5. The scan data for this object consists of 16 scans (see row for Frog in Table 1 in

Chapter 1.)

Accumulated Error

Figure 5: Accumulated Error

Simultaneous registration of multiple scans considering all overlaps during the process of
minimization is one way of reducing/avoiding this accumulation error. For this the error
metric has to be defined over all overlapping scan data sets. Since the ICP error metric is
essentially pair-wise, extending it to accommodate multiple views is possible in principle,

but not straightforward.

The ICP error metric is defined between 2 datasets as follows:

13



E= Z(pi - Ti_lija(t) )’ 2.1)

i
where p,,, gives corresponding point in data set D, for a point p,in data set D, ,
T, denotes the inverse of the current transformation for data set D,and T, denotes the
current transformation for D;. A good choice for corresponding point can be the nearest
pointinD;.
To extend it so as to simultaneously register more than two scans, say, n overlapping
views, we can formulate the error as the sum of "C; pair-wise distance errors. However,
this can quickly become inefficient. Also, our experiments have shown that much too
often, it does not converge in a stable manner. What is needed is a different error metric
formulation for simultaneous registration of multiple scans; one that is fast and converges
to the minimum in a stable manner, which has formed the main goal of our research.

In the rest of this chapter we shall review related work on registering of 3D scan data sets,

with particular emphasis of registering of multiple scans data sets.

2.1 Initial Registration

In the initial registration step, the primary assumption is that there is not even
approximate knowledge of alignment between scan data sets. All the initial (global
registration) techniques that are described in the literature are formulated for pair-wise
registration and do not consider overlap among multiple (more than 2) scan data sets.

This is not a major problem. Since the intent of the initial registration step is only to

14



provide a good starting estimate for the accurate registration step, the estimate provided
by pair-wise registration is sufficient. There are three major approaches.

a) Interactive manual input: In some of the described approaches the goal is to make use
of the scanner position information, assuming that it is available, and input that manually.
For example, [Pulli 1999] simply track and record the movement of the scan head, and
use that information to roughly align the data point set. However, in many low cost 3D
scanning configurations, like desktop or hand-held scanners, there is very less likelihood
of being able to track the scan head movement. Hence there is a need to develop other
approaches for initial registration. It is clear that alignment of two scan data sets will
depend on the detection of the overlapping components in the two scans. Since the
overlapping information needed for estimating the initial alignment is not always easy to
find automatically, interactive specification is a technique that has been widely used.
Most systems require that the human operator visually identify the similarity of two data
point sets, and then provide the initial registration transformation interactively. Many
scanner packages provide good graphical interfaces for positioning and orienting scan
data sets relative to each other. The problem with this approach is that it is not always
obvious as to how closely should the human operator align the scans so that the
subsequent accurate registration step works as desired.

b) Voting algorithms: This method of parameter estimation is also known as
RANSAC-based method [Fischler 1981]. In [Chen 1998] a large number of disjoint
subsets of point clouds are chosen from each scan data set and discrete transformations
are found between corresponding subsets. The transformation which occurs the

maximum number of times is chosen as the optimal transformation. The problem with

15



this type of method is that it needs to randomly try different combination of subsets.
Hence it is not efficient and the processing time will be quite long.

¢) Geometric Feature Matching algorithms: Algorithms like that of [Gelfand 2005, Chua
1997, Stein 1992] keep point signatures with each point. Chua et al compute features
based on neighboring points [Chua 1997]. There is a compromise to be made on feature
size. Very rich feature set takes too long to compute, while small feature size may not
give an acceptable initial alignment. Spin images [Johnson 1997] are a typical example of
feature rich matching where each point is augmented with an image representing the
surface near it. One of the main draw backs of this approach is that it cannot handle the
case that the scans do not have an adequate number of easily detectable matching
geometric features. Especially in the case when noise is present, which is often the case

in raw scanner data, it often does not always yield a usable initial registration.

For our work we have adopted the feature matching approach for initial registration. We
have experimented with two kinds of features — geometric features in the form of

Eigenvalues for subsets of scan data and color features derived from texture data.

2.2 Accurate Registration

In the Accurate Registration step, most of the approaches use different refinements of the
basic ICP algorithm. All these variants of ICP differ mainly in their definition of the error
measure and/or in the method used for correspondence establishment.

[Pulli 1999] uses pair-wise registration as in the classical ICP method. They extend the

original ICP method in several areas. First, they add several constraints to the point pairs
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selection strategy. For example: the difference of the normal of the corresponding points
should be within 45 degrees; they also discard the points on the boundary to avoid wrong
match; they also use dynamic threshold for measuring the closest distance between points.
Second, they test two different alignment methods: Point to Point method and Point to
Plane method. They find that in most cases for pair-wise registration, using the Point to
Plane instead of using the Point to Point one can make the iteration faster, and also avoid
the wrong corresponding pairs so that this method can improve the alignment result
significantly.

[Turk 1994] uses a modified ICP which discards the point pairs if the points are too far
from each other or the points are in the boundary. There are two main problems of their
approach. First, they need the hardware to have the functionality to record the initial
transformation information which is unavailable in most current 3D scanners. Second,
they have to create the triangle mesh in order to accelerate the modified ICP algorithm.

In [Blais 1995], they use a similar approach as ICP which defines a cost function which is
derived from reversing the rangefinder calibration process to describe the quality of
registration. This function also uses the distance value to measure the quality. They also
use a stochastic search to optimize the minimization of the cost function. This approach is
stable and has an acceptable processing time, but as mentioned by the author, it needs a
very long processing time in the Multi-view registration. Another problem with it is that
it needs the positions of the scanner from different views to be recorded precisely in order
to find the corresponding pairs. It is not practical in most real life scanning situations.

In [Chen 1998], the author proposes a method which is derived from the DARCES

(data-aligned rigidity-constrained exhaustive search) method. Their method can register
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two data point sets without any initial estimation. The special part in their approach is
their method for selection of corresponding points. The point pairs are selected based on
the geometric feature which is searched by using an improved exhaustive search at
several different levels. This method is reliable but only works on the noiseless cases.
Although it is much faster than the regular exhaustive search for very large data set, this
algorithm will still take relatively long time.

In [Dorai 1997], they formulate a minimum variance estimator to compute the
transformation factors which makes the registration calculation to be more accurate. They
give a new error model by analyzing the dependencies between the orientation of a
surface and the accuracy of surface normal estimation. As an improvement of the original
ICP method, their method can handle the noise case very well, but the problem is that
their algorithm is not suitable for registering multiple scanned data point sets
simultaneously. [Dorai 1998] describes a prototype of multi scans registration. They
implement the preprocessing for removing the noise according to certain standards. The
main improvement in their work is that they design a point selection strategy which
dynamically chooses corresponding point pairs through the iteration. The main
disadvantage of their approach is that, as they mentioned in the paper, using the pair-wise
ICP as the basic algorithm for registration will lead to an accumulated error for multiple
scan registration.

[Holt 20017 extends the basic ICP by using color as the weight value to recognize the
corresponding points. [Johnson 1996] goes further with the color ICP approach. They use
the texture value in addition to using the geometrical information for selecting the

corresponding pairs during the iteration. They also use a k-D tree data structure to make
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the ICP more efficient. Since the texture of two different views may have different
lighting conditions, the corresponding points may have different colors, which will make
the final result inaccurate during registration. [Johnson 1997] generates a spin- image for
each view by gathering the information from the whole surface. Then they use the image
processing techniques to recognize the common features between views. This
information is used for the Initial Registration. They also use the scene points which are
generated from the first step as the corresponding points for implementing the ICP. Those
scene points which describe the similar key features of two data point sets are good
candidates of the corresponding points. Points around the scene points will be gradually
selected during the iteration and will contribute to the registration.

[Weik 1997] develop an optical flow approach which makes use of the luminance
information in order to find the corresponding point sets. [Chetverikov 2005] extends the
original ICP by using Least Trimmed Squares approach. This approach increases the
registration speed and robustness significantly. However, it still only works for
registering two sets at a time. [Lomonosov 2004] extends their previous work Trimmed
Iterative Closest Point algorithm (TriICP) by using a modified genetic algorithm to find
the optimal transformation parameters. They also apply some data structure like k-D tree
to speed up the process. But still, same as the previous one, it does not extend to
Multi-view registration. In [Fitzgibbon 2001], the author uses the Levenberg-Marquardt
method for optimizing the error metric which has a better performance than the original
ICP method. [Simon 1996] demonstrates use of a constraint analysis method to select
point sets wisely: only points around the feature are selected. It also shows a method to

estimate the accuracy of registration by calculating the upper bound relation. [Mitra 2004]
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demonstrates an optimization framework based on ICP which can handle the case that
two sets are far away from each other. This overcomes the drawback of ICP which needs
the two sets to be close enough. They use the d2tree (a variance of Octree, see Figure 6)
to increase the processing speed. Furthermore, this optimization method converges much
faster than the original ICP.

The above approaches are mainly focused on optimizing of registration for two data point
sets with ICP technique at the core. But the special requirements of simultaneously

registering multiple scans are rarely addressed well.

Yl
L SER TR

Figure 6: Example of using d2tree data structure to speed up ICP (Originally from [Mitra 2004])

2.3 Accurate Registration for multiple scanned data

There are several different approaches for multiple scanned data registration. Many of
those methods use ICP in the inner loop, as the core alignment technique. That is, they
perform multiple passes of ICP in a chained fashion by registering two 3D data sets at a
time. Some of the methods use graph network to optimize the registration process. The
problem with this type of approach is that the accumulated error will be introduced in the
final registration. For example in [PENNEC 1996] the authors start with registering 2

scans and update a “mean shape”. Then in each subsequent iteration, they register the
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next scan against this “mean shape” and update the “mean shape” with this new dataset.
[Neugebauer 1997] introduces a method for simultaneous registration. They define an
error function and minimize the function by using numerical method with correction
method. Due to the complexity of their error function, the processing time is relatively
long. [Huber 2003]’s approach registers the data point sets pair-wise first. Then they use
a graph structure to detect the globally incorrect, but locally consistent matches. (Figure 7)
There are mainly two steps in their algorithm: In the first step, which they call it “Local
Registration Phase”, small amount of sets are registered, which creates a sub-graph. In
the second step, which is called “Global Registration Phase”, they connect all the subsets
together by using a mix of discrete and continuous optimization algorithm. [Shih 2006]
turns the registration problem into a quadratic programming problem of lie algebra
parameters. They handle the accumulated error by distributing the error to the proper
positions. They establish a graph representation to create a registration network in order
to describe the registration problem. (Figure 8) Each node represents a data set and each
edge represents a pair-wise registration. This graph structure is used for optimizing the
registration process. In [Krishnan 2005]’s work, they present the global registration as an
unconstrained optimization problem on a constrained manifold. They develop a method
based on singular value decompositions which estimate the Initial Registration
parameters. It works well in noise free cases. Then they use an iterative optimization
method to minimize the local error on constrained manifold. [Sharp 2001] [Sharp 2004]
first represent the global registration as a ring topology graph in frame space. Then, they
decompose the graph to describe the neighboring view into several cycles and then

calculate the optimal transformation parameters for each cycle. Then they use an iterative
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method to integrate all the results got from the first set. In this way, they distribute the
error to each cycle. The main contribution of this paper is that they develop a strategy to
distribute the error thus ensuring that the accumulated error is not large for just the last
scan of the registration process. In [Williams 2000], the author formulates the
Multi-View registration into one constrained minimization where the translations are a
function of optimal rotations. They encode the registration problem into a pre-computed
matrix. Then they minimize the formula by using an iterative method.

All these methods are difficult to implement and do not make use of the information
when more than 2 scans have a common overlap among them. The focus is more on how
to optimally sequence the registration process rather than minimize the accumulated error
simultaneously. Table 2 presents a comparison of the different features supported by

these different methods.

Paper Features Remarks

[PENNEC 1996] - Create Mean Shape - Accumulated error is
distributed

[Neugebauer 1997} - Minimize the error - Long processing time

function by using
numerical method

[Shih 2006] - Uses graph to create a - Accumulated error is
registration network distributed

[Huber 2003] - Pair-wise registration as | - Accumulated error is
the core algorithm distributed

- Create hierarchical graph
to describe the registration

problem
[Krishnan 2005] - Manifold optimization - Noise sensitive
approach
[Sharp 2001] [Sharp 2004] | - Use ring topology graph | - Accumulated error is
distributed
[Williams 2000] - Encode the registration - Need large amount of
problem into a pre-computation

pre-computed matrix

Table 2: Comparison of Main features of Different Multi-View Registration Techniques
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Figure 7: Registration Network Example (Originally from [Huber 2003])

Figure 8: Registration Network Example (Originally from [Shih 2006])
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2.4 Overlap in Multi-View Scans

Our research has been driven by the fact that all the above methods do not take full
advantage of the fact that in the process of completely covering a complex object, very
often various parts of the object will be captured by many more than 2 scans. Hence
carrying out multi-view registration by considering more than 2 scans at a time is
important and will help in increasing the accuracy. Detecting the subset of scans which
have common overlap is something that can be done as part of the initial registration. For
Accurate Registration, we have developed a new method which enables simultaneous
registration of any number of overlapping scans by minimizing the variance in distance
function values of a set of overlapping scans. This yields a fast and robust method of
merging a large number of 3D scans into a single 3D model, firstly by eliminating the
complicated point correspondence step, secondly by requiring fewer registration steps
and lastly by using general-purpose nonlinear optimization (the Levenberg-Marquardt
algorithm) for variance minimization, which make the registration converge in fewer
iterations. Our approach is also independent of the sampling resolution and works well in

the presence of noise. Implementation is also simple and straightforward.
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Chapter 3: Initial registration

3.1 Our Development Environment

The environment we have set up for software development and experimentation includes
a 3D scanning facility and the necessary program development framework.
The scanning facility consists of a 3D scanner (MegaCaptutor DK ©) from inSpeck Inc.

with software driver for interactively cropping the 3D object data from the background.

(See Figure 9) This scanner provides us 3D range data with associated color texture.

Figure 9: Our 3D Scanning Facility
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For developing the software for the initial registration part, we have used C++ as the

main programming language. Compared to Java and Matlab Script, C++ is more efficient.
For extracting the model texture extract part, we have used Java. Since Java has some
built-in classes for image processing and GUI interface design, it is convenient for the
user to see the image processing result by using a graphic interface.

For the accurate registration part, we have used Matlab, because it has the required
mathematical functions. While it is good for prototyping and testing, one disadvantage of
using Matlab scripts is that even with code optimization, the speed of processing remains
rather slow. Of course, the performance can be considerably improved by writing all the

required mathematical functions in a procedural language such as C or C++.

3.2 Eigenvalue Based Registration

In order to get a good initial registration, we first need to find the overlapping parts
among the scan datasets. The data in the overlapping parts would then be used to
compute a 3D translation and a 3D rotation transformation. Since the data sets are
captured through views of the object that could be freely rotated and translated with
respect to each other, we use Eigenvalue analysis, which provides us with rotation
independent features, to find the initial translation. Let us consider the case for two
scanned 3D point sets. We shall call one of them as “Model Point Set”, which remains
unmoved (static). We call the other one as “Data Point Set”. The basic idea is to use an
octree like spatial data organization to divide the point sets into several groups in both
“Model Point Set” and “Data Point Set”. Each group is a node of the octree. For each

node, if the number of points is larger than a prefixed threshold, we calculate the
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Eigenvalue for this node. The procedure for deciding this threshold is discussed in the
next subsection.

Eigenvalues and Eigenvectors are a kind of statistical measures on data. They describe
the distribution of the points in the data set and it is independent of orientation and
position. We match the Eigenvalues to find the corresponding nodes in two point sets.
The best matching pair is then selected and their mean positions and Eigenvectors are

used to compute the translation and rotation transformations respectively.

3.2.1 Octree Construction

3.2.1.1 Overview of Octree

The first step of Eigenvalue Based Registration is to build an Octree. We build the Octree
using the following steps:
<1> compute an axis aligned bounding box for each data set.

<2> recursively divide the bounding box into 8 parts until a termination condition is met.

There are two ways of deciding on the termination condition.

1. By setting a threshold value for a minimum number of points within a node. This is set
as a percentage of the total number in the data set.

Continue dividing the box until the number of points inside the node is less than the

threshold, say 1% of the total number of points. (See Figure 10)
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Figure 10: Octree with the threshold of 1%

2. By Level
Continue dividing until the leaf nodes of the octree are at given level, with the root

considered as being at level 1. (See Figure 11)

One major advantage of the use of spatial data structure such as an octree is the fact that

an octree structure provides an efficient way of determining spatial neighborhood
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relationships among points. An often needed operation is to get immediate neighbors of a
point or the group of points on a node. Hence being able to efficiently traverse through all
neighbors of a cell is an advantage provided by an octree. It is important to note here that

the neighbors of a cell may not all be at the same level as the node itself.

Figure 11: Octree with the threshold of Level 4
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3.2.2 Registration by using Eigenvalue and Eigenvector

Since it is more difficult to describe the algorithm in 3D, we will discuss it in 2D first,

and extend it to 3D later.

3.2.2.1. Finding Bounding Box

First, we need to build a proper bounding box for the two point sets (Data set and Model
set). We choose the maximum length of the bounding box of each set as the length of our

new bounding box. (See Figure 12)
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Figure 12: Creating bounding box for 2 scanned data point sets

3.2.2.2. Building Quadtree (Octree)

In the second step, we build a Quadtree (Octree). The level of the tree need not be very
deep since we need adequate number of points in a node to determine spatial distribution

information of a group of points using Eigenvalue Analysis.
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3.2.2.3. Finding Matching Node Pairs

In order to find node pairs with matching Eigenvalues, we systematically move one
quadtree (octree) with respect to the other with some nodes overlapping between the two.

This is illustrated in Figure 13 - Figure 17.

Figure 13: Red one is the Quadtree (Octree) of Data set, Green one is the Quadtree (Octree) of
Model set. “*” is used to demonstrate the rotation. Yellow box represents the overlap part
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Figure 14: Two Octrees Fully Overlap

Figure 15: First Dimension Movement

¢

Figure 16: 2D-Rotation



Figure 17: Second Dimension Movement

Through this process, we try all the possible combinations and find the best matched pair

in terms of similar Eigenvalues.

3.2.2.4. Experimental Results

We have experimented with a large number of data sets. We have found that this method
is not always successful in determining the Initial Registration with the required accuracy.
We shall first demonstrate a case where the method is successful. Data of the two point

sets are shown: (See Figure 18)
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Figure 18: Two 3D Scan Views of an object

After Eigenvalue and Eigenvector calculation, the parts within the purple

Octree nodes indicate the corresponding parts. (See Figure 19)

Figure 19: Node pairs which have similar Eigenvalue (purple part) with corresponding parts
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Here is the corresponding part it finds. (Figure 20)

Figure 20: Corresponding part of the object

The second example shows a case where this method fails. (See Figure 21, Figure 22)

Figure 21: Node pairs which have similar Eigenvalue (purple part) but do not represent
corresponding object parts
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In the following we show other examples.

Figure 22: Two other 3D Scan Views of the object

Successful Case: (See Figure 23)
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Figure 23: Node pairs which have similar Eigenvalue (purple part) with corresponding parts

Here is the corresponding part it finds. (See Figure 24)

Figure 24: Experiment2: Corresponding part of the object

Failed Case: (See Figure 25)
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Figure 25: Node pair with similar Eigenvalue (purple part) but not corresponding parts
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3.2.2.5 Conclusion

As shown in the above experiments, the partitioning by the Octree has to be proper, so
that we can find the corresponding part by using Eigenvalue analysis. But if the point sets
are not divided properly, the result will be wrong. Therefore, to improve the Initial

Registration results, we have used Texture Feature based registration.

3.3 Texture Feature Based Registration

The first step for the Texture Feature Based Registration is to extract the model’s texture
from the background, a technique commonly referred to as foreground-background

separation.

3.3.1 Extraction of Model Area from Background

There are two ways to extract the model area from the background. One is to let the user
to select the area manually. This is what is supported by the manufacturer supplied
software in our laboratory. Another way is to detect the area automatically using suitable
image processing algorithms. The disadvantage for the second method is that it depends
highly on the scanning set-up conditions. Lighting, background colors, model colors, etc.
play very important roles in the success rate of these algorithms. In our work, we have
used the following procedure.

First, we take a picture without model, we call it background image: (See Figure 26)
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Figure 26: Background

And then, we take the picture with the model while we are doing the scan. We call it

model image. (See Figure 27)
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Figure 27: Background with scanned object

After that, we compare the two images. For each pixel in model image, if the difference
in RGB value between the pixel in model image and the pixel in background image is
within a certain threshold, it means that this pixel is in background. Otherwise, it is in the

model.

If the lighting set-up of the 3D scan environment is not carefully set-up, shadows will

always be a problem that has to be dealt with. Since the pixel within a shadowed region is
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different from the corresponding pixel in the background image, it also has to be detected

and should not be in model. (Figure 28)

Figure 28: After removing background

We eliminate this problem by comparing V in the HSV (HSB) space for each pixel rather

than comparing the RGB value.
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The HSV (hue, saturation, value) system is also called the HSB (hue, saturation, and
brightness) system. Whereas the RGB system is developed with hardware systems in
mind, the HSB system is more visual perception oriented. It is a cylindrical coordinate
system with hue, saturation, and brightness as the axes.

Hue represents the Color, the attribute that determines why we name a color in a
particular way — say, red, yellow, or blue. Saturation tells how much white is added to
monochromatic light. For instance, red is highly saturated, whereas pink is relatively
unsaturated. Brightness describes how bright a color appears. For pixels inside shadow,
their H, S value remains the same, but the brightness reduces.

Procedure for converting From RGB to HSV:

Let max equal the maximum of the (R, G, B) values, and min equal the minimum of those

values. Following equation is used to convert RGB value into HSV space: (Equation 3.1)

! » *
0 if max = min

60°xﬁ%+0", if max=7randg>b

h=460° x —f=4— 4 360°, if max=randg<b

60° x =T 4+ 120°, if max=g

60° x ——I— +240° if max="b

(3.1)
o 0, it max =10
_ max—min __ 1 __ min -
mar— il =1 - gtherwise
v = max

Then we compare all the pixels in the newly extracted part between the model image and

the background image. If the differences of the corresponding pixels’ H and S value in
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two images are smaller than a certain threshold and the difference of their V value is

larger than a certain value, it is in the shadow which should be the background.

Once we finish the comparing, we binarize the image by assigning the pixel within model

1, and the ones in background 0. (Figure 29)

Figure 29: After shadow removal and binarization

44



Then, we use a recursive function to find the largest connected region with 1s so that we

can eliminate most of the noise. (See Figure 30)

Figure 30: After removing noise

Since the 3D point values at the boundary/silhouette of the object are less reliable (due to
the surface being tangential to the scanner rays), the next step is to remove some of the
boundary points in each scan from consideration during the registration process. For this,

we use a 3 by 3 filter to first dilate (smoothen out the roughness in the boundary) and
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erode the resulting image with one extra iteration. (See Figure 31) The resulting image

represents the points interior to the scan view and of interest from this view.

Figure 31: After erosion and dilation
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3.3.2 Registration by using Feature Points

Using an image processing based feature detection technique [David 2004] we find the
feature points in each of the two scanned and processed texture images (See Figure 32
and Figure 33). Next, we select the best matching 3 feature points and use them for the
initial registration.

The basic idea of this feature detection algorithm is to calculate the gradient for each
pixel in the texture image, and to continuously scale down the resolution of the image,
and calculate the gradient again. In this way, it sets a feature value for each pixel. Then it
compares the feature values between two images. Finally, it will find the matching
feature point. The disadvantage of this algorithm is, firstly, it is only an image based
algorithm and works only when the image data is available for the 3D point set. Secondly,
it cannot handle the case when the two images are very different. This means it can only
be used to detect the matching feature points between two views that have reasonable

overlap. Specifically for 3D surface data acquisition, this condition is not a problem.

N

Figure 32: Feature Point Pairs 1
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Figure 33: Feature Point Pairs 2

3.3.3 Calculation of Translation and Rotation

Once we have the three feature points, we can calculate the rotation and translation for
the Initial registration.

For translation, we simply get the center of three feature points. Then we move the center
of two scanned data point sets together. (See Figure 34)

We use quaternion to calculate rotation. (See Figure 35, Figure 36, Equations 3.2 - 3.14)

Va Vb

e P3

Figure 34: two vectors calculated from 3 points
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<v,w>= v M- cos @

3.2)
[y = ][] [sin £Cv, w) (3.3)
Quaternion =[x, y, z,w] (34)
All the vectors here are normalized.
Va1l Vb1 Vab
4\ A
V1
= =
\IZ —_
Vb2
Va2 !B
Vb2
Va2
Figure 35: Use quaternion for rotation 1

o = arccos < Val, Vbl > (3.5)
Vrl =ValxVbl (3.6)
(sin(a/ 2))Vrl =[x, y,2] (3.7)
cos(a/2)y=w (3 8)
g =[sin(a/2)* x,sin(a/ 2) * y,sin(a / 2) * z,cos(a / 2)] (3.9)
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Vab1

Va2 )B

Vb2

Figure 36: Use quaternion for rotation 2

[ = arccos < Va2,Vb2 >

Vabl =Va2xVb2

(sin(B/2))Vabl =[x, y, 7]

cos(f/2)=w

q =[sin(f/2)* x,sin(B/2) * y,sin(B/2) * z,cos(S/2)]

(Only a unit quaternion encodes a rotation)
1-2y*-27>  2xy+2wz  2xz-2wy

2xy—2wz 1-2x*-2z*  2yz+2wx
2xz+ 2wy 2yz—2wx 1-2x*-2y°
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(3.11)

(3.12)
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3.3.4 Experimental Results

The following figures demonstrate the results of using the texture feature based initial

registration approach as applied to scan data sets with 16 and 24 views: (See Figure 37,

Figure 38)

Figure 37: Initial Registration with 16 scanned data point sets (frog)
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Figure 38: Initial Registration with 24 scanned data point sets (rabbit)

3.4 Conclusion

Eigen analysis based method is easy to implement, but it is not very stable in some cases.
It depends strongly on the manner in which the initial bounding boxes are created.
Simply using axis aligned bounding boxes does not yield a robust method. The texture
based method is fast and more reliable, but it is sensitive to the lighting of the

environment.
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Chapter 4 Multi-view Registration

We introduce a new error metric based on distance field values which enables us to
simultaneously register multiple overlapping 3D multi-view scan data sets. The first part
of this chapter introduces the distance field based error for registering 2 data sets. The

second part presents its extension to multi-view data sets.

4.1 Distance Function Error for Pair-wise Registration

The basic idea is to define a distance field around both Model point set and Data point set,
and try to minimize the difference in field values between the spatially overlapping parts
of the two fields. A discrete representation of the distance field is used in the form of
distance field values defined on a 3D grid surrounding the point sets. Let us assume that
there exist uniform 3D grids for both Model point set and Data point set within the
bounding box enclosing each of the data sets. For every grid point, we find the nearest
point in the point set, and record this distance as the field value.

Then, we apply the rotation and translation matrix to each Data grid point. To avoid
distortion, we only use the upper left portion of the rotation plus translation vector. We

have used this idea from an image processing algorithm [Richard 1994].

4.1.1 Distance Function

For accurate registration of point data sets, the essential and most important step is to

correctly find the overlapping parts among the point sets. For this, we need to find and
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match orientation independent features. First, we shall briefly try to understand how
matching distance field values satisfy this requirement. Without loss of generality, let us
consider only two scanned data point sets. Even if we store distance values, only at grid
points, the distance field value at any other point inside the 3D bounding box can be
suitably approximated using tri-linear linear interpolation. Hence every data set grid point
also has an interpolated distance value in the model distance field. If the two scanned point
sets are well registered, the distance values inside the “Data Grid Point Set” should be
equal to the distance value inside the “Model Grid Point Set”. Distance field values are

clearly independent of orientation.

Distance Function in 2D

Data Grid Points Model Grid Points
(DistanceD) (DistanceM)
. *
_/ Translation & Rotatuon> . ’-\ .
! . D
. . *
* -
(g

* Data Grid Points )
- - - -4 - DistanceD'

* Model Grid Points i | (Interpolated)

+ Data Grid Points
{After Rotation and
Translation)

Figure 39: Moving from Data space to Model space
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Data Grid point (after translation and rotation) in the model distance field. (See Figure

39)

Given P& YD) e try to find 8 valid bounding grid points surrounding this
transformed point. (See Figure 40) Grid points are considered as valid, if they have been
assigned a weight of 1. Typically, knowing that scanned points which are directly facing
the scanner and more in the central region of a scan are more reliable, we assign weights
of 0 to grid points lying closer to the boundary region of the scan. Similarly, we assign
weight of 0 to grid points that are far from the surface; far is based on a user specified

threshold distance.

_L—{Data Grid Point|

\ /4

Bounding Point in Model Grid Point set

Figure 40: Grid point with its 8 bounding points in Model Space
If any of the 8 bounding grid points in the Model Grid Point Set are not valid (weight =
0), we simply discard the Data Grid Point. If they have valid Distance Value (weight = 1),
we can get the Distance Value in model distance field by tri-linear interpolation using the

distance field values at the 8 bounding grid points.
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X, = x’—|_x'J
e =y-1y]
z, =27 2'] 4.1)

i = Dl )y U2 Ix =-z) + DIL2 Ly U 2 Tix 2,

iy = Dl =} [y} |2 [xU—z) + DI= [y 12 T % 2
h= D[y 2 JxA-z)+ D= ' [z T <2,
Jr= DIV L2 -z + DI 2 1 2 Tixz,

w=i(l-y,)+iy,
w, = jid=y)+ j2y,

D'[x,y',z2']=w(l-x,)+w,x,

4.1.2 Iterative registration

We use Levenberg-Marquardt algorithm to minimize the sum of the squared differences
in distance field values of a sampled set of data grid points. The difference is between the
value in the data distance field and its value in the model distance field. The
Levenberg-Marquardt algorithm is an iterative algorithm. It constantly updates the
variable with a small value until the error reaches a value within a pre-specified

threshold.

4.1.2.1 Rotation and Translation

Our alignment is based on three rotations and three translations.

Rotation and Translation:
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10 0
Rx=|0 cos(A) -—sin(A)
|0 sin(A) cos(A) |
" cos(B) 0 sin(B)]
Ry = 0 1 0

| —sin(B) 0 cos(B) |
[cos(C) —sin(C) 0]
Rz=|sin(C) <cos(C) O
0 0 1

4.2)

Tx
T=\Ty
Tz

’

X;

y, |=Rx*Ry*Rz*V +T

Z; |

V is the vector notation for X, y, z.

A, B, C are the three rotation angles around X axis, Y axis and Z axis respectively.

Tx, Ty, Tz are the three translations along X axis, Y axis and Z axis respectively.

% = cos(B)*cos(C) * x, -cos(B) *sin(C) * y, +sin(B) * z, + Tx

y, = (sin(A) *sin(B) *cos(C) + cos(A) *sin(C)) * x,
+ (-sin(A) *sin(B) *sin(C) + cos(A) *cos(C)) * y, -sin(A) *cos(B) *z, + Ty

z, = (-cos(A)*sin(B) * cos(C) + sin(A) *sin(C)) * x,
+ (cos(A)*sin(B) *sin(C) +sin(A) * cos(C)) * y, + cos(A) *cos(B) * z, + Tz
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4.1.2.2 Error Function

We minimize the following error function:

E=Y[D(,y,2)-D(x, vl = De’
: : 4.3)

The next step for the algorithm is to calculate the weighted gradient vector and Hessian

Matrix of &,

The weighted gradient vector is given by the equation:

- 2e, ]
dA
de;
dB
de,

b, =—2%*e¢, * Jacobian(e,) = —2*e, * gg

oTx
de,

Ty
de,

The Hessian Matrix is defined by the equation:
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d’e, d’e, d’e, e, d’e. 0%, ]

! 1 i ! 1

0A>  0AdB 0A9C 0AOTx 0AdTy O0AJT:
o, d’e d’e, d’e, d’e, d’e,

1 i 1

0BOA 0B* 0BIC 0BoTx 0BJTy 0BOT:
d%e, d’  d’ d’, d’e, d’e,

11 1 1

JCOA 0CaB oC® oCoTx 9CoTy 0CaTz
d%, d, d’e, d’e, d’e, d’e,

! ! 1

O0Tx0A 0Tx0B 0Txd0C 9dTx*  dTxdTy JTxdTz
d’e, d%e, d%e, d’e, d%e, d’e,

1 ! i

dTydA 0TyoB 0TydC 0TydTx 0OTy® oTyTz
d’e, d’¢, e d’e, d’e, d’e,

1 ! i

| 0Tz0A 0Tz0B 9Tz0C 0TzdTx 0Tz0Ty 977 4.5)

Hessian(e;) =

For simplifying the computation, we only compute an approximate Hessian Matrix A:

de de D Do Do do D Do Do Do D De ]

dA 0A 0A 0B 0A 0C 0A 9Tx 0A Ty 0A OTy
de, de. Oe, de, Oe de. Oe, Ode de, Ode %_%

i ! !l 1 1 i L 3 [ !

OB 0A 0B 0B 0B oC 0B dTx 0B 0Ty 0B 9Ty
de, de; de; de; de, de; de, de,  de, de,  de; e

it — L —L . L —_—i it L

,.|3C 34 9c 9B dc ac 9C aTx AC Ty IC Iy
‘7| de, de, de, de; de, de, e, Je, Je, de;  Oe, Qe

* — — 8 — : ! . l ! !

Tx 3A dTx 0B dTx 9C dTx dTx dTx Ty dIx aTy
de, de, de, de; de, de; Jde, de; de, de,  de, Ode

i i i i [ i, i i, i

0Ty 0A dTy dB 0dTy dC dTy dTx 0Ty dTy dTy dTy
de, de; de, de;, de, de; de, de, de, de,  Oe, O

I ! 14 i P, o, ! i, 1

| 0Tz 0A dTz 0B 0Tz oC 0Tz 0Tx 0Tz dTy 0Tz OTy

(4.6)

Since we cannot calculate the derivative directly, we use following function to calculate

the derivative:

e, =D(x],y!,z])- Di
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OD(x, y,2;) _ D(x]+Ax, yi,27) = D(x — Ax, y;,2)

ox, 2X Ax

0D(x;,y;,27) _ DG,y +Ay,.2)) - D], y; — Ay, 27) @7
dy; 2X Ay

D(x}, y;z) _ D(xi, yi, 2 +82) = D(xi, yi, 7 ~ A2)
¥z, 2% Az

de, _0x; 0D(x,y,,z)  0y; 0D(x,y,,z) 0z 0D(x,¥;,z])

a—A‘ﬁ' ] a_A' ay; a_A 3

oB aB 8x7 BB ay.' aB az,.
de, Ox; aD(x,,y,,z) dy; aD(X,,y,,z)_I_az oD(x{,y;,z})

aC oC ox; " dy; aC 0z,
de, _ 0Ox BD(x,,yt,z) dy; ‘3D(xf,}’f,2f)+ 0z, 9dD(x},¥;,2))
oTx OTx ox; e dy; oTx oz,
de, _ ox aD(x,,y,,z ) + dy; aD(x,,y,,z ) 4 0z, 8D(xl,y,,z )
oTy oTy ox; oTy dy; aTy 0z
de, _ 0x ID(,y,,z) 9y 9D(X,}.z) 9% DX, ;%))
0Tz 0dTz ox; dTz dy; aTz 0z,
ox

i - 0
0A
%}1;—" = (cos(A)*sin(B) *cos(C) - sin(A) *sin(C)) * x,

+ (-cos(A)*sin(B) *sin(C) - sin(A) * cos(C)) * y, -cos(A) *cos(B) * z,

% = (sin(A)*sin(B) *cos(C) + cos(A) *sin(C)) * x,
+ (-sin(A) *sin(B) *sin(C) + cos(A) *cos(C)) * y, -sin(A)*cos(B) * z,

4

% _ in(B)*cos(C)* x +sin(B)*sin(C)* y, +cos(B)*z,

oB
% = sin(A)*cos(B)* cos(C) * x, - sin(A) * cos(B) *sin(C) * y, +sin(A) *sin(B) * z,
32 = -cos(A)*cos(B)*cos(C) * x; +cos(A)*cos(B) *sin(C) * y, - cos(A) *sin(B) * z
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% = -cos(B)*sin(C) *x, -cos(B) *cos(C) * y,

g% = (-sin(A)* sin(B) *sin(C) + cos(A)* cos(C)) * , + (-sin(A) *sin(B) *cos(C) - cos(A) *sin(C)) * ,

SZC: = (cos(A)*sin(B) *sin(C) +sin(A) *cos(C)) * x; + (cos(A) *sin(B) * cos(C) - sin(A) *sin(C)) * y,
ox] _

oTx
oy,
P
dTx
0z,
i~
oTx
s _

oTy
i 4
oTy
0z
% _p
oTy
ox
Tz
dy;
D —¢
Tz
0z,
0Tz

For each Data Grid Point, we calculate® and b , and sum all of them together.
A= Z a;
b=) b

In each iteration, we calculate A7 by solving this equation:

=0

=1

Am=(A+AD7"'b .8)

Aisa time-varying stabilization parameter [Press et al., 1992].
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4.1.2.3 Implementation

In summary, the complete registration algorithm consists of following steps:

1. Start of iteration.

2. For each Data Grid Point at location, compute its corresponding position in the Model
Grid space after translation and rotation.

3. Compute the interpolated Distance d/(x,,y,,z;)

4. Give an initial variable vector m and compute the error E(m)

5. Compute the Jacobian Vector b and Hessian Matrix A.

6. Compute the update value Am

(a) Let “m” be the variable vector: m=[a, 3,7, 1.ty ]

(b) Pick a modest value for#, say4 =0.001

Am=(A+AD7b

(c) Solve the system of equation and update the motion estimate

m, .. =m+Am

trial

(d) Apply ™" 10 equation Em+Am)

If E(m+Am) 2 E(m) , increase by a factor of 10 (or any other substantial factor).

If E(m+Am)<E (m), decrease by a factor of 10, update the trial solution
m® =m® + Am

E(m(t)) .

7. If the number of iterations t is larger than a threshold or is smaller than a

certain threshold, stop the loop. Else go back to step 2.
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4.1.3 Selection of Grid Points

To improve the performance of the algorithm, instead of using the complete set of valid
Data Grid Points, we can select a smaller subset of those points and carry out the
minimization procedure. We experimented with 2 ways of selecting a smaller subset of

points:

4.1.3.1 Select the points around feature points

Let us recall that we already have some matching feature points by image processing the
texture obtained during the process of texture image based Initial registration, and those
feature point pairs are roughly matched. We can select 3D scan points around the feature

points so those point pairs should be roughly correct as illustrated in Figure 41 and Figure

42,
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Figure 41: Selecting points surround feature points

Based on a number of experiments, we have concluded the following. The main
advantage of this method is that the error converges very fast.

A major disadvantage of this method is that sometimes the feature points are too close to
each other. As a result, the subset of points that we select for distance field matching
covers only a small portion of the overlapping parts. This in turn implies that we only
minimize the error of this small region, and in such cases, the resulting registration

transformation is not accurate enough.
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Figure 42: Bad selection of surround feature points

4.1.3.2 Randomly select points

To avoid the above drawback, we use a different strategy. We randomly select a subset of
the Data Grid Point Set in each iteration. The advantage of this method is that we can
eliminate any kind of bias and we also make the process independent of noise since we
use different set of Grid Points in each iteration. And the error still converges very fast.

The result of the registration process is very good.
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4.1.4 Experimental Results

We choose different point sets to test our algorithm. Those data are from our 3D scanner
and Stanford graphics lab. We scan the model from several different views to get the data
sets. Each set scanned by using our 3D scanner contains around 4000 points. We first
register the data by the Texture Based initial registration method pair-wisely to get the
roughly registered data. Then, we apply our accurate registration method to those data. In
each iteration, we randomly select 70 points to calculate the error metric. The number of
the points might be adjusted. Choosing around 2% of the tofal amount of points in the
scan seems to work in all the cases we have tried. We set the threshold for the iteration to
be 100, but generally the number of iterations is below 10. We set the error threshold to
be 1/10 of the distance between grid points. These values have been chosen through

experimentation, there could be better values to further improve the performance.
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4.1.4.1 Registration of 2 scanned data point sets

Figure 43: Registration of 2 scanned point sets (frog)

To test for noise independence, we introduced noise in the data sets by randomly
selecting points from both Model and Data sets and adding random offset to the selected

points. Figure 44 and Figure 45 show the results in the case of 10% noise.
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4.1.4.2 Register 2 scanned data point sets with 10% noise

Figure 45: registration for 4 scanned point sets with 10% noise (rabbit)
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4.2 Distance Function for multiple point sets registration

4.2.1 Overview

By using the error function above, we can solve the case with two scanned data point sets.
In its present form, which is similar to the ICP it is rather difficult to extend the formula
to multiple point sets registration. Therefore, we introduce a new form of the error
function for multiple point sets registration. Like the previous algorithm, we still make
one grid point set to be static. Again, we call it “Model Grid Point Set”. Other grid point
sets have their own varying transformation matrices. But this time, we take all the valid
grid points inside “Model Grid Point Set” and calculate the interpolated distance value in
other grid point set space. (Valid means it is within all the gird point set spaces and close
to the scanned data point sets.) To get the interpolated distance value, for each iteration of
Levenberg- Marquardt algorithm, we first update the transformation matrix for each data
grid point set. Then we need to apply the reverse transformation of each moving point set
to all the grid points inside the “Model Grid Point Set” so that we can get the interpolate

distance value in different data fields. (See Figure 46)
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grid point in Model Point Set
Calculate the interpolate value
in other moving space

1
!
i
!
H
L

1
I

v

d3 space (moving space)

d2 space {(moving space)
dl space (model space)

Figure 46: Model grid points in other spaces

4.2.2 Reverse Rotation and Translation

Rotation and Translation:

1 0 0

Rx={0 cos(-A) -sin(-A)
|0 sin(-A) cos(-A) J
[ cos(-B) 0 sin(~B) |
Ry = 0 1 0
| —sin(=B) 0 cos(-B) |
[cos(-C) —sin(-C) 0]
Rz =|sin(-C) cos(-C) O
0 0 1

4.9)
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[~ Tx
T=|-Ty
-1z
x|
y, |=Rz*Ry*Rx(V +T)
Z; |

V is the vector of x, y, z.
A, B, C are the three rotation angles around X axis, Y axis and Z axis respectively.

Tx, Ty, Tz are the three translation along X axis, Y axis and Z axis respectively.

4.2.3 Error Function

Now, we are using a new form of the error function for the Levenberg- Marquardt

algorithms as defined below:

E=Y Y, -3) =Yl
i k i

er =(d, —d,)’ (4.10)
>d,
d =%
! k

Accordingly, we need to calculate k Hessian Matrices A and k weighted gradient vectors
b for each grid point.

dey e

— ik ik
Ay = ZZ p) ’ p)
ik xm ‘xn

4.11)

de,
bmk = ZZ gax_k

71



Here x is the vector of variables. In our case, it includes 3k rotations and 3k translations,

where k is the number of data point sets in addition to the model point set.

4.2.4 Implementation

The complete registration algorithm consists of following steps:

1. Start of iteration.

2. Randomly select several grid points in Model Grid Set at location. Compute their
corresponding positions in each Data Grid space after reverse translation and rotation.

3. Compute the interpolated Distance in each space d (x,,y,,z,)

4. Give an initial variable vector m and compute the error
E(m)=3> (d,~d) =3 e}

ik i
5. Compute the Jacobian Vector b and Hessian Matrix A.

6. Compute the update value Am

(a) Let “m” be the variable vector: m=[a, 3.y, tot,st,]

(b) Pick a modest value for’i, say/1 =0.001

Am=(A+A)7'b

(c) Solve the system of equation and update the motion estimate

m,.,=m+Am

trial

(d) Apply ™™ 10 equation E(m+Aam)

If E(m+Am) 2 E(m) , increase by a factor of 10 (or any other substantial factor).
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If E(m+Am)<E (m)’ decrease * by a factor of 10, update the trial solution
m®’ =m® + Am

E(m®)

7. If the number of iteration t is larger than a threshold or is smaller than a

certain threshold, stop the loop. Else go back to step 2.

4.2.5 Extended Error Function

One of the drawbacks of the above error function is that we need to select the points only
from the portion which has overlapping part with all other data point sets. We call these

points “valid points”. (See Figure 47)

Data Point Set 3

Data Point Set 2
Data Point Set 4

Select Points from
this portion

Data Point Set 1

Figure 47: Example of registering 4 scanned data point sets

Our previously defined selection technique randomly selects points from the point set,

and if the point is out of the overlapping portion, we simply discard it. If this overlapping

portion is very small, it will take a large amount of time to find the valid set of points.
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Furthermore, if the selected region of the points is very small, the registration will not be
accurate.
To improve our algorithm, we extend the original error function for multiple scanned data

point sets. We want to make use of other overlapping information for the registration.

(See Figure 48)

Overlapping
Portion

Data Point Set 4

Data Point Set 3 /

o ——— P——
3

Data Point Set 2
Data Point Set 1

Figure 48: Example of registering 4 scanned data point sets with small overlapping portion
We rewrite our error function as follows:

E= zzz(dmki _‘7mi)2 = Ze;ik (4.12)
m ik i

“m” indicates the index of the overlapping portion.
For example, in the upper case, instead of using the points from the overlapping portion

with 4 point sets, we use two sets of points from two overlapping portion: (See Figure 49)
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Data Point Set 4

Data Point Set 3 /
] pm— _—j /

Data Point Set 2°

- Portion Z
Jata Point Set 1
Figure 49: Select points in two portions
Now, the error function is given as below:
E=)>d,~d)+) > (d,~d)’ (4.13)
i m j n

(1342
1

indicates the points in “Portion 17, “m” indicates the index of sets (1, 2, 3).

[ 1344

J”” indicates the points in “Portion 2”, “n” indicates the index of sets (1, 2, 4).

4.2.6 Grouping Registration Approach
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Figure 50: Feature matches among scans based on texture images for group 4 of Figure 3a. Top :
scan#10 — scan#11; Middle: scan#10 — scan#12; Bottom: scan#11 — scan#12.

An important point to note is that in covering the complete surface of an object, only
subsets of views will have common overlap. Hence, it becomes necessary to first
determine the groups of view subsets which have common overlap. Since all the point
data sets in one group will have one overlapping portion they can be registered together.
We use the results from our image processing technique for grouping. (See Figure 50)
Within each group, we apply the previously defined simultaneous registration procedure.
This, we follow with pair-wise registration to create a single complete 3D model from the

multiple scan data sets.  (Figure 51)
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Frog Model

Group 2
| 2 3
Group | 4
i : 5
0
Group 5
14
s Group 4
13 ™ Group 3
10

(a)
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Step2: Register 2, 3, 4, 5 to give partial model m2

Step3: Register 6, 7, 8, 9 to give partial model m3 Step4: Register 10, 11, 12 to give partial model m4

Step5: Register 13, 14, 15 to give partial model m5 Step6: Register m1, m2 to give partial model m12

Step7: Register m3, m4 to give partial model m34 Step8: Register m12, m34 to give partial model m1234

(b)
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(©)

Figure 51: (a) Graph showing overlap cliques; (b) subgroup registration examples; (c) final
registered model consisting of all scan data.

4.2.7 Building the distance field

In order to implement the distance function, we need to build a distance field so that each

grid point has a distance value in its own space. We have two approaches:

4.2.7.1 Building in pre-processing time

We first build the grid for each point set with a higher resolution than the point set. To get

the distance value for each grid point, for each grid point, we calculate the distance value
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value from the grid point to every point in the point set. If the smallest distance value is
larger than a certain threshold, we discard this grid point. Otherwise, we save the smallest
distance as the distance value for this grid point. When we need the distance value of the
Model Grid Point in other spaces, we need to interpolate the distance value of the grid
points in Data Grid Point Set.

The processing will take relatively long time, but after it is done, this distance
information is reusable. The speed of processing distance function for determining error

etc. will be very fast.

4.2.7.2 Building in runtime

Since we do not use every grid point in processing the algorithm, the above approach will
waste large amount of memory and computation time. To avoid this, instead of
pre-processing and obtaining distance field values at all the data grid points, we compute
the distance value for the model grid points in other spaces, as needed. By using this
method, there is no need to interpolate the distance value in other space, because we

calculate the distance value in each space directly.

4.2.8 Experimental Results

4.2.8.1 Speed Comparison

Compared to the ICP algorithm, our approach is faster and more efficient. The following
shows the test data results: (ICP implementation is downloaded from

http://www.csse.uwa.edu.au/~ajmal/code/icp2.m)
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One benefit of using our algorithm is that in general, we have observed that our method
converges faster than ICP in terms of the number of iterations needed to arrive at
optimum solution. Even in case of pair-wise registration, since we use
Levenberg-Marquardt method which is known to have better convergence properties than
other algorithms, our algorithm requires less number of iterations. We randomly selected
20 pairs of overlapping scans from different models and collected the statistics for
number of iterations. The following graph shows comparison of the number of iterations

required by ICP and the number required by our method. (See Figure 52)

Registration of two sets

—ICP
- Digtance Function

Number of iterations

1 23 456 7 8 91011121314 1516 17 1819 20
Test Pair No.

Figure 52: Graph showing total number of iterations required for pair wise registrations.

We require even fewer iterations when we carry out simultaneous multi-scan registrations
using our method. Again, we randomly selected 10 sets, each with 4 overlapping data sets.
Then we used ICP in a pair-wise chain fashion, 3 registrations per set and counted the

total number of iterations. We also registered each set in a single multi-scan registration
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operation using our method. The following graph shows the results of these tests (See

Figure 53).

Registration of four sets

—ICP
- Digtance Function

Number of iterations

Test Set No.

Figure 53: Graph showing total number of iterations required in case of multiple registrations.

We also compared the final registration accuracy of our results with pair wise ICP
algorithm. For comparison, we used the residual ICP error metric where it is defined as
sum of distance between corresponding points. In all cases, our MSE was less than ICP
(See Table 3). We also compared the time taken to perform full registration. Most of the
times, our method was around 10-20% faster than ICP based pair-wise chain registration,
even for models with dozens of scans. In cases, of hundreds of scans the benefit will be
significantly more, as the total number of registration operations reduces significantly in

comparison to pair-wise registration.
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Mean Time

Testset! (8 sets: | Number of | Square (Second)
31031 points) Registration | Error

ICP 7 0.0028 60.521
Our Algorithm 3 0.0016 49.011

Testset2 (16 sets:

66515 points)
ICP 15 0.0028 117.077
Our Algorithm 7 0.0018 100.025

Testset3 (7  sets:
25063 points)

ICP 6 0.0022 41.385

Qur Algorithm 2 0.0013 25.569

Testsetd (8  sets:
30412 points)

ICP 7 0.0021 52.852

Our Algorithm 3 0.0013 29.126

Testsets (83  sets:

116376 points)
ICP 2 0.000817 | 292.297
Our Algorithm 1 0.000743 | 245.062

Testset6(4sets: 13457

points)
ICP 3 0.0024 21.141
Our Algorithm 1 0.0015 14.586

Testset7(4sets: 15400

points)
ICP 3 0.0031 24.599
Qur Algorithm 1 0.0015 24.479

Testset8(7sets: 24266

points)
ICP 6 0.0021 38.701
Qur Algorithm 2 0.0014 25.594

Table 3: Time comparison

4.2.8.2 Visualized Result

For registering 2 scanned data point sets: (See Figure 54, Figure 55)
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Figure 55: Registration for 2 scanned point sets (bunny)
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Following images are using Distance Function Algorithm to register 3 scanned data point

sets: (See Figure 56, Figure 57 and Figure 58)
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Figure 57: Registration for 3 scanned point sets (frog)
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Figure 58: Registration for 3 scanned point sets (bunny)

Following images are using Distance Function Algorithm for 4 scanned data point sets:

(See Figure 59, Figure 60)
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Figure 59: Registration for 4 scanned point sets (frog)
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Figure 60: Registration for 4 scanned point sets (rabbit)

Following images are using Distance Function Algorithm for 4 scanned data point sets

(Frog Model): (See Figure 61)

Figure 61: registration for 4 scanned point sets (frog)
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Following images are using Distance Function Algorithm for 5 scanned data point sets

(Frog Model): (See Figure 62)

Figure 62: registration for 5 scanned point sets (frog)
Following images are using Distance Function Algorithm for 16 scanned data point sets

(Frog Model): (See Figure 63)
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Figure 63: registration for 16 scanned point sets (frog)

Following images are using Distance Function Algorithm for 24 scanned data point sets

(Rabbit Model): (See Figure 64, Figure 65)
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Before Levenberg-Marquardt Algorithm After Levenberg-Marquardt Algerithm

Figure 64: registration for 24 scanned data point sets (rabbit from side)
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Figure 65: registration for 24 scanned data point sets (rabbit from the bottom)

Following image is using Distance Function Algorithm for 7 scanned data point sets

(Bunny Model): (Figure 66)
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Before Levenberg-Marquardt Algorithm After Levenberg-Margquardt Algorithm
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Figure 66: registration for 7 scanned data point sets (bunny)

4.2.9 Conclusion

In this chapter, we introduced a new method for registering multiple scanned data point
sets simultaneously by aligning common portion of all the overlapped sets. We compared
our approach with the pair-wise approach through a number of experiments which show
the significant performance improvements we have been able to achieve through our

approach. Our method is both more accurate and faster than the ICP approach.
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Chapter 5: Conclusions and Future Work

Rapid creation of geometric models of 3D objects is the need of many different
applications today both in the entertainment and the engineering sectors. The research
reported in this thesis lies primarily in this domain. Low cost, simple to use and high
accuracy 3D scanners are becoming available. These scanners provide a convenient
mechanism to acquire the 3D geometry of existing objects, even with complex surface
geometries. While different scanning technologies are in place, all scanners acquire 3D
data in the format of sample points of the object’s surface “visible” to the scanner head.
Most scanners operate using a single scan head. In order to acquire the 3D geometry of
the complete surface of an object, scanning from multiple views becomes essential. Each
view presents a different portion of the object’s surface to the scan head. Even when
multiple scan head systems are used, complex surfaces would have self-occlusions that
would mandate scanning from different views. Since each view is in its own coordinate
system, the scan data sets from multiple views have to be merged together to create the
3D geometry of the entire surface of the object in a single coordinate system. The most
important problem to be addressed in this task is the accurate registration of all the views
with respect to each other. This has formed the main problem researched by us and
reported in this thesis.

In this thesis, we have proposed a new approach for simultaneously registering multiple
scanned point data sets. Our approach is based on matching overlapping portions of 3D

distance fields defined for each scan data set. Compared to existing methods, our
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approach is faster and more efficient. Since most of the work is done automatically, it
considerably reduces human operator work, and in the process it also reduces mistakes
that could be typically made by the human operator. It is very useful, especially for
registering large number of scanned point sets. The advantages and disadvantages of our

approach are listed below.

5.1 Advantages

5.1.1 Initial Registration

<1> We use both texture based and eigen test based technique for the initial registration.
This reduces human interaction during the first step.

<2> The texture based approach is very useful, when surface color based features are
more prominent than geometric features and the Eigenvalue analysis based technique is
more useful when geometric features are prominent. Combining these techniques yields

better Initial registration results in more cases, then using just one of them.

5.1.2 Accurate Registration for multiple sets

<1> We can simultaneously register all the datasets. This avoids the common problems
of pair-wise registration algorithms: unnecessary work and accumulated errors.

<2> Since conceptually, we embed one signed distance field into another signed distance
field and these are defined everywhere, we completely avoid the need for explicitly
establishing point to point or point to surface correspondence. We can also estimate the

error using much fewer points in the field, thus making the algorithm much faster.
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<3> We match distance fields and not sampled surface points. Since partial differentials
of any order are now available in the field, we can make use of robust and fast
converging numerical techniques to search for the optimal solution. Further, the ability to
randomly select a small number of distance field points for error estimation makes the
algorithm both robust and fast. Note that this is difficult if explicit correspondences are to

be searched in each iteration, as would be the case for point based alignment.
5.2 Disadvantages

5.2.1 Initial Registration

<1> Since the texture based approach uses the captured image of the object, it is very
sensitive to lighting. It may be noted that color captured depends both on inherent object
color and global illumination effects.

<2> We use an image processing approach to extract model texture from the back ground.
This again is very sensitive to shadowing effects. Different lighting conditions need

different thresholds to remove the effects of shadowing.

5.2.2 Accurate Registration

<1> We group the sets manually in our experiment. It can also be attempted
automatically by letting the program try all the combinations and decide how to group the

sets. But it is not guaranteed to find the best combination of groups.
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5.3 Future work

There are still a number of avenues to explore this work further. A few of these are

listed below.

The method of extracting object’s texture from the background highly depends on the
working environment, especially the algorithm to remove the shadow. In the future
work, it is better to find a more general way of extracting the texture from the

background.

During our research, we tried out a specific algorithm for selecting up to 4 matching
feature points. But in some extreme cases, this algorithm fails to find adequate
number of matching feature pints. It is necessary to work out more robust techniques

to select color based feature points.

Grouping strategy is not automatic. We could develop a better approach for grouping

sets.

The algorithm for multiple scanned data point sets registration can only be applied
when at least part of the static scanned data point sets is overlapping with other
scanned data point sets. Ideally, we would like to extend this algorithm to deal with

all the data sets in one single registration operation.
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