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Abstract 

Fault Detection, Isolation, and Identification for Nonlinear Systems 
Using a Hybrid Approach 

Ehsan Sobbani-Tehrani 

This thesis presents a novel integrated hybrid approach for fault diagnosis (FD) of 

nonlinear systems; taking advantage of both system's mathematical model and the 

adaptive nonlinear approximation capability of computational intelligence techniques. 

Unlike most FD techniques, the proposed solution simultaneously accomplishes fault 

detection, isolation, and identification (FDII) within a unified diagnostic module. At the 

core of this solution are a bank of adaptive neural parameter estimators (NPE) and a set 

of single-parameterized fault models. The NPEs continuously estimate unknown fault 

parameters (FP) that are indicators of faults in the system. In view of the availability of 

full-state measurements, two NPE structures, namely series-parallel and parallel, are 

developed with their exclusive set of desirable attributes. The parallel scheme is 

extremely robust to measurement noise and possesses a simpler, yet more solid, fault 

isolation logic. On the contrary, the series-parallel scheme displays short FD delays and 

is robust to closed-loop system transients due to changes in control commands. Simple 

neural network architecture and update laws make both schemes suitable for real-time 

implementations. A fault tolerant observer (FTO) is then designed to extend the FDII 

schemes to systems with partial-state measurement. The proposed FTO is a neural state 

estimator that can estimate unmeasured states even in presence of faults. The estimated 

and the measured states then comprise the inputs to the FDII schemes. Simulation results 

for FDII of reaction wheels of a 3-axis stabilized satellite in presence of disturbances and 

noise demonstrate the effectiveness of the proposed FDII solution under both full and 

partial-state measurements. 
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Chapter 1: 

1 Introduction 

There is an increasing demand for man-made dynamical systems to operate 

autonomously in presence of faults and failures in sensors, actuators or components. Fault 

detection and identification are essential components of an autonomous system. Hence, a 

high demand exists for the development of intelligent systems that are able to 

autonomously detect the presence and isolate the location of faults occurring in different 

components of complex dynamical systems. Especially faults in a control loop are of 

particular importance since they may very quickly result in instability of the control 

system. Thus, it is crucial that faults are efficiently and timely detected and isolated while 

the system is in operation. This is essentially the concept of on-line health monitoring 

though, in general, health monitoring may also be performed off-line using stored data in 

a post-processing capacity to determine if the system overhaul is necessary. In general, 

autonomous on-line health monitoring and fault diagnosis is essential for mission-critical 

and safety-critical systems as opposed to fail-operational systems, where off-line health 

monitoring and fault diagnosis is usually sufficient - in order to perform maintenance. In 

this thesis, the main focus is on developing a fault diagnosis methodology that enables 

on-line health monitoring of nonlinear systems; however, the proposed approach can as 

well be applied for off-line monitoring purposes. 

Furthermore, accurate identification of fault severities is an invaluable asset for 

system maintenance as well as development of reliable autonomous recovery procedures. 
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More precisely, accurate estimation of severities in case of incipient faults allows system 

operators and controllers to either very quickly schedule a maintenance service for the 

faulty component, to switch to the redundant component if maintenance is not possible, 

or to intelligently plan and execute preemptive actions in advance, in order to avoid 

catastrophic failures. 

1.1 Statement of the Work 

In this thesis, the problem of fault detection, isolation, and identification (FDII) in 

nonlinear dynamical systems is addressed. A "fault" is considered as an unpredicted or 

unexpected change of system behavior such that it either deteriorates the performance or 

demolishes the normal operation of the system. While the former is usually called an 

incipient fault, the later is usually considered as a total failure. A failure is usually the 

result of the progression of an incipient fault over time, and could lead to hazardous 

situations. Faults in a system are usually classified based on their time behaviour and 

their severity (i.e., their impact on system behaviour). From time behaviour point of view, 

faults can be classified into the following two groups: 

• Intermittent faults: These faults persist for only a bounded period of time after 

their initiation. It should be noted, however, that even upon their termination the 

system may not behave in the same manner as before the fault initiation. 

• Permanent faults: Once occurred, these faults exist forever unless the faulty 

component is replaced by a redundant one or serviced/repaired, if possible. 

As far as fault severity is concerned, the following three types of faults may occur in a 

system depending on the system or the component being monitored: 
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• Mono severity level faults (MSLF): These are the faults that occur only at one 

single state. For example, a stuck-closed fault in a valve can occur only in one 

configuration. Other examples include stuck-open fault in valves, and floating 

fault and hard-over failure (HOF) in electric motors. 

• Finite multi severity level faults (FMSLF): FMSLFs are basically comprised of 

a set of MSLFs. Failures in a valve, which may be a two-state failure, being either 

stuck-open or stuck-closed, is a good example of FMSLFs. Other examples 

include hard-over failure (HOF) and float failure in actuators. 

• Infinite severity level faults (ISLF): This type of faults can actually take place 

over a continuum, infinite level of severities. Examples of ISLFs include loss of 

effectiveness (LOE) and lock-in-place (LIP) in electric motors, and almost all 

types of sensor faults including bias, drift, loss of accuracy (LOA), freezing, and 

sensor calibration error. 

The MSLFs and FMSLFs usually occur abruptly, hence the name abrupt faults. On the 

contrary, ISLFs usually develop (or grow) over time due to wear and tear of system 

components and thus they are often called incipient faults. 

A "fault diagnosis system" is a system that is able to detect the presence of faults, 

determine their locations, and estimate their severities in a system. In other words, a fault 

diagnosis system is capable of performing the three tasks of detection, isolation, and 

identification of faults in a system, which are defined as follows [1]: 

• Fault detection: To make a binary decision whether something has gone wrong 

or that everything is fine. 
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• Fault isolation: To determine the location of the fault, i.e., to identify which 

component, sensor, or actuator has become faulty. 

• Fault identification: To estimate the severity, type or nature of the fault. 

The relative importance of the above three tasks highly depends on the application and 

the system operator's objective of having a fault diagnosis system. However, the 

detection is essential for any practical system, isolation is almost equally important, and 

identification is crucial for fault recovery and reconfiguration as well as health 

monitoring and maintenance purposes. In this thesis, development of an integrated FD1I 

scheme that is able to simultaneously detect the presence, isolate the location, and 

identify the severity of faults in the components of a nonlinear system is investigated. 

Inevitable presence of measurement noise and system disturbances deteriorates the 

performance of an FDII scheme by generating false alarms. This is due to the fact that 

detailed characteristics of noise and disturbances are unknown and thus can not be 

modeled accurately. Reduction of the sensitivity of the FDII system to sensor noise and 

system disturbances does not necessarily fully solve the problem since it may be 

accompanied with insensitivity to faults and consequently too many missed alarms. So, it 

is highly desired to increase the insensitivity to noise and disturbances while keeping the 

FDII subsystem sensitive to faults. In this thesis, the sensitivity of the proposed FDII to 

measurement noise and system disturbances will be investigated and a solution will be 

proposed to increase the robustness of the FDII algorithm to measurement noise. 

Furthermore, like many other existing FDII schemes, our initial FDII algorithm 

development is based on the assumption of full state measurement. However, in many 

practical situations, some of the system states are either not available for measurement or 
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their measurements are costly and highly prone to noise. This drives the need for FDII 

algorithms that are able to operate accurately under partial state measurement. As a 

result, development of a state estimation technique that is robust to the occurrence of 

faults in the system will be investigated. The robust state estimator will provide the FDII 

system with accurate and reliable estimates of unmeasured system states, allowing 

detection, isolation, and identification of faults even in presence of partial state 

measurements. 

Eventually, the applicability of the developed algorithms will be verified for FDII of a 

spacecraft's attitude control system (ACS). The attitude control system (ACS) is 

composed of different components such as sensors (e.g. horizon sensors, sun sensors, 

magnetometers, etc.), and actuators (e.g. momentum wheels, torque rods, etc.). The 

proposed FDII algorithm can be applied for diagnosis of faults in any of the above ACS 

components; however, our focus in this thesis will be on reaction wheel actuators due to 

their vital role in maintaining and controlling the attitude of a 3-axis stabilized satellite. 

1.2 Motivation of the Work 

The consequences of faults can be extremely serious in terms of human fatalities, 

environmental impact, and economic loss. Furthermore, the ever-increasing demand for 

more safe, secure, and reliable operation of safety-critical, business-critical, and mission-

critical systems has essentially made fault tolerance in such systems extremely important. 

In other words, there is a growing need for the so-called autonomous fault tolerant 

systems which are able to operate autonomously and reliably in presence of faults and 

failures in sensors, actuators, and components. Since FDII is an essential component of 

an autonomous fault-tolerant system, a high demand exists for development of intelligent 
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systems that are able to autonomously detect the presence, isolate the location, and 

estimate the severity of faults present and occurring in different components of a complex 

dynamical system while the system is in operation. 

Figure 1-1 depicts the role of FD1I in a fault tolerant control (FTC) system. As shown 

in this figure, once a fault is detected and the corresponding faulty component is located 

within the system, the FD11 subsystem provides the reconfiguration mechanism with 

accurate estimates of the fault severity in order to allow proper reconfiguration or 

restructuring of the control system. If the estimated fault severities indicate a total loss of 

a component, then the (redundant) healthy/non-faulty components are chosen to take role 

in system operation. Otherwise, in case of a partial breakdown of a component (for 

example, loss of effectiveness in an actuator, a bias in a sensor, etc.), either a pre-

calculated controller is switched into the system or some parameters of the controller are 

adjusted based on the fault severities, in order to control the new situation. More 

precisely, the objective of an FTC system is to modify the operation of the system based 

on its determined condition, which essentially establishes a tight coupling between the 

health monitoring or diagnostics algorithms and the controller. 

In an active approach to FTC design, on-line restructuring of the control system or 

reconfiguration of the controller requires information on the location of faults (or faulty 

components), their severities, and their impacts on system operation. The task of FDII 

subsystem is to reliably and accurately acquire this information in order to successfully 

achieve a smooth and reliable autonomous recovery (or fault accommodation). For 

further details on this topic the reader can refer to the work of Yen and Ho [2], where the 

dependence between fault diagnosis (FD) and fault accommodation (FA) has been well 
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described and a model-based technique for on-line fault diagnosis and accommodation 

(FDA) has also been presented. 

Finally, it should mentioned that even though in passive FTC design, detailed 

information about the nature of faults is not essentially required for online 

reconfiguration of the controller, the safety and reliability of these systems can still be 

considerably improved and ensured through deployment of a reliable FD11 subsystem. 

Reconfiguration 
Mechanism 

Health Status & 
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Fault Severities 

Reference 
Command 
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F~T 
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System 
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Figure 1-1. The role of FD1I in an active fault tolerant control (FTC) system. 

On the other hand, accurate identification of fault severities is an invaluable asset for 

system maintenance operations. Accurate estimation of fault severities facilitates the 

early detection of incipient faults and the identification of out-of-spec behaviors. This 

consequently allows system operators and controllers to intelligently plan and execute a 

priori preemptive actions to avoid system breakdown, catastrophic failures, and mission 

abortion. Furthermore, recent interest by aerospace industries in preventive maintenance 

(as opposed to corrective maintenance) systems, has called for a technological shift in 

system monitoring and maintenance operations from traditional scheduled time-based (or 
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distance-based) fixed interval maintenance practices (which tend to reduce system 

lifetime and increase system down-time, resulting in loss of profit) to condition-based 

maintenance (CBM) systems [3], [4]-[7]. 

Maintenance 

Preventive 
Maintenance 

1 
Corrective 

Maintenance 

Condition Based 
Maintenance 

Predetermined 
Maintenance 

Continuous or 
on-demand 

Scheduled Deferred 

Figure 1-2. Overview of the Swedish maintenance terminology standard SSEN-13306 |7]. 

Figure 1-2, for example, depicts an overview of the Swedish maintenance 

terminology standard SS-EN 13306 [7]. According to this standard, maintenance is 

divided into corrective maintenance and preventive maintenance. With the corrective 

approach, maintenance is performed after a breakdown or whenever an obvious fault has 

occurred and detected in the system. Depending on the functionality and criticality of the 

failed component and the severity of the occurred fault, maintenance action must be 

performed immediately; while for others, the maintenance action can be deferred in time. 

On the contrary, maintenance is performed in the preventive approach in order to 

prevent equipment breakdown by repairing, servicing, or exchanging the failed/faulty 

component. It can be seen in Figure 1-2 that in the Swedish standard preventive 
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maintenance has been divided into two categories including CBM and predetermined 

maintenance. The predetermined is scheduled in time based (or distance based) fixed 

intervals, while the CBM can have dynamic or on-demand intervals. 

In CBM systems, maintenance actions are planned based on actual condition 

(objective evidence of need) of a component obtained from in-situ, non-invasive tests, 

and condition/health assessments [4]. In other words, the main idea behind CBM systems 

is to estimate the health status of a component under operation with the objective of 

deciding whether it is in need of maintenance or not, and if so at what time does the 

maintenance actions needs to be executed in order to avoid a breakdown or malfunction. 

The degree of automation in assessing the health condition can vary from human visual 

inspection to fully automated systems with sensors, diagnosis, prognosis, and health 

monitoring modules. 

The pace of development in CBM systems has been increased over the past few 

years. As a result several products, standards, and standardization proposals have been 

developed within the CMB technical community. One of the most important of these 

standards is the open system architecture for condition-based maintenance (OSA-CBM) 

[8], which was originally developed by an organization with the same name but is 

currently managed by the MIMOSA (Machinery Information Management Open Systems 

Alliance) [9] standards body. OSA-CBM has been developed as a de facto standard that 

encompasses all the components essential to a functional CBM system. The OSA-CBM 

standard is modular solution that divides a CBM system into seven different layers 

including: (i) sensor module, (ii) signal processing module, (iii) condition monitoring 
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module, (iv) health assessment module, (v) prognostic module, (vi) decision support 

module, and (vii) presentation module. 

Therefore, diagnosis, prognosis, and health management (DPHM) [3] is a crucial 

component of an autonomous CBM system. Diagnosis is essentially equivalent to FDII 

and is responsible for estimating the current health status of a system through the 

utilization of on-line sensing/measurement devices. Prognosis entails predicting the 

future health status of a system and its components using the system's current health 

state/diagnostics information provided by FDII subsystem, historical failure rate data, and 

appropriate fault evolution models. A reliable prognosis tool enables accurate prediction 

of fault evolution through accurate estimation of time-to-failure (TTF) and remaining 

useful life (RUL) of a component. TTF and RUL constitute the prognostics information 

of a system, which make it feasible to determine the future health status of the system and 

consequently provide indications of failure precursors. This essentially allows in-advance 

planning of optimal maintenance schedules in order to maximize system up-time, 

minimize time to repair (TTR), optimize maintenance costs, and avoid catastrophic 

failures. This can be achieved through development of a maintenance scheduler that can 

generate optimal maintenance schedules based on system prognostics information and 

future usage plans of the system taking into account the maintenance team objectives and 

constraints such as the number of available support crews and the availability of parts and 

resources needed to perform the required maintenance operation [3]. 

Figure 1 -3 depicts an autonomous CBM system including the DPHM module and the 

maintenance scheduler. The figure also demonstrates the role of FDII within the DPHM 

module. As can be seen in the figure and as described above, the FDII system plays an 
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extremely important role in a CBM system. Any inaccuracies involved in estimation of 

system health status by the FDI1 system will simply propagate across the entire CBM 

system, which consequently deteriorates the overall performance of the CBM system 

even in presence of very precise prognosis and maintenance scheduler algorithms. 

Thus, development of a reliable and accurate FD1I system is extremely desirable for 

both FTC and CBM systems. The problem of FD1I for linear systems has received 

considerable attention over the past three decades. Thus, the majority of fault diagnosis 

methods are based on either linear system models or linear approximation of nonlinear 

system models around an operating point. However, almost all practical systems operate 

around a wide dynamic operating range, thus showing nonlinear behavior that can not be 

accurately modeled with linear models. Therefore, it is necessary to design and develop 

FDII techniques that can tackle dynamic nonlinear systems directly. 

Inputs 
System 

Outputs 

Fault Detection 
Isolation & 

Identification 

Fault/Health Status fc 

Information & TrendsT" 
Prediction of Fault 
Evolution/Progress 

! Diagnosis, Prognosis & Health Management (DPHM) 

i Optimal Maintenance 
Schedule 

Maintenance Scheduler 

TTF/RUL 
• < 

I Failure rates 

I Future system usage plans 

I Availability of personnel 

I Availability of parts 

Condition-Based Maintenance (CBM) 

Figure 1-3. The role of FDII in DPHM module of a CBM system. 
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Furthermore, the problems of fault isolation and identification in nonlinear systems 

are even more complex than the detection problem and thus have remained less 

investigated. More specifically, identification of fault severities in nonlinear systems has 

received considerably less attention in the literature. However, with the recent increasing 

demand for FTC and CBM systems, accurate estimation of fault severities (i.e., fault 

identification) has become increasingly important. 

Moreover, there is a lack of integration in the FDII approaches proposed in the 

literature. More precisely, most of the proposed techniques address only the fault 

detection and isolation (FDI) problem and tackle the fault identification issue using a 

separate subsystem, which essentially makes the FD11 system structurally more complex. 

Thus, an integrated FDII solution that can simultaneously perform the three tasks of 

detection, isolation, and identification with minimum interaction among the tasks is 

highly desirable. 

1.3 Objectives of the Research 

The objectives of this thesis is to develop an integrated FDII scheme for nonlinear 

systems that is robust to sensor noise and system disturbances and that is able to operate 

even in presence of partial state measurements. The FDII scheme should not only be able 

to reliably detect the presence and isolate the location of anomalies in nonlinear systems 

but also accurately estimate their severities after their occurrence. Furthermore, the FDII 

system should be robust with respect to system disturbances and measurement noise in 

order to minimize false alarms while the system is under healthy mode of operation. 

Moreover, the FDII system should be able to operate sufficiently accurate even in 

cases where some of the system states are not available for measurement (i.e., partial 
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state measurement). Thus, another objective of the research is to develop a state 

estimation algorithm that can provide accurate estimates of the unmeasured states of the 

system even in presence of faults or anomalies (that is robust to occurrence of faults) and 

can eventually be integrated into the FD1I system. 

Finally, the effectiveness of the developed integrated FD11 scheme in diagnosis of 

faults in a practical engineering system has to be verified. For this purpose, the integrated 

FDII scheme will be applied for detection, isolation, and identification of faults in 

reaction wheel actuators of a satellite's attitude control system in presence of 

measurement noise, satellite and reaction wheel disturbances, and partial measurement of 

the states of the reaction wheel. 

1.4 Literature Review 

In the following, we will provide an overview of the fault diagnosis literature in general, 

and fault detection methodologies in particular. A more formal presentation of the FDII 

problem, further details on the issues involved, and some of the methodologies developed 

for FDII in the literature especially for fault isolation and identification tasks will be 

reviewed in Chapter 2. 

Development of autonomous FDII algorithms and more specifically autonomous FDI 

algorithms has received considerable attention over the past two to three decades. The 

most traditional approach to FDI is primarily based on signal processing techniques as 

applied to system measurements. This is generally achieved using either of the following 

two approaches: 

(i) Time domain limit checking and/or trend analysis by comparing the statistics of 

the measurable states and outputs of the system with nominal operational limits 
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[1]. Dynamic trend analysis, also widely known as qualitative trend analysis 

(QTA), is one of the most common trend analysis techniques for fault diagnosis 

and classification [10]. The QTA technique involves the two steps of extraction of 

the trends/features from the data, and the interpretation of the trends to arrive at 

meaningful conclusions about the state of the process. A large number of methods 

have been developed in the literature for trend extraction and representation 

including, the fundamental work of [11] in developing a formal language for 

representing trends, a neural network-based extraction of primitive trends [12], a 

fuzzified symbolic representation of trends [13], and a wavelet-based method for 

the extraction of qualitative trends [14]. Trend interpretation has also received 

considerable attention over the last two decades and as a result a number of 

methods have been developed for estimation of similarity measures between 

extracted trends [10], also known as trend-matching algorithms. Some of the 

proposed algorithms include the use of hidden Markov models (HMM) for trend 

matching [15], the use of dynamic time warping (DTW) for similarity estimation 

[16], and most recently a fuzzy primitive-similarity-based approach for the 

estimation of trend similarity and consequently a fuzzy inference framework for 

fault diagnosis [17]. 

(ii) Frequency or mixed time-frequency domain analysis of the time-series of system 

states and outputs measured by system sensors. The most popular signal 

processing algorithms that have been widely used for FDI purposes are the 

Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT), 

which extract frequency and time-frequency features from time-series data, 
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respectively. More specifically, DWT has been extensively used over the last 15 

years as a feature extraction tool for fault diagnosis [18], [19] of machinery 

components such as gearbox [20] and bearing [21], [22]. 

The major drawback of such signal processing techniques is that they do not consider 

the dynamic interrelationship between the measured signals of the system. This would 

essentially result in generation of numerous false alarms by the FD11 system. To 

overcome this drawback and reliably detect and isolate faults (i.e., faulty components) in 

a system, some form of redundancy is required. The redundancy is basically employed to 

perform consistency checks between multiple measurements in the system that are 

mutually related. 

Traditionally, redundancy and therefore fault diagnosis is achieved by using extra 

hardware, which is known as hardware (or physical/parallel) redundancy approach to 

fault diagnosis. In this approach, multiple lanes of a critical component such as an 

actuator (or a sensor) is used to control (or measure) a particular variable in the system. 

Typically a voting scheme is then applied to the hardware redundant system to perform 

consistency checks between signal levels and trends of the multiple identical components 

in order to decide if a fault has occurred and determine its location. The hardware 

redundancy is commonly used in mission and safety critical systems such as digital fly-

by-wire flight systems and nuclear reactors. Even though hardware redundancy approach 

provides high performance and is known to be very reliable, it comes at the expense of (i) 

extra equipment and maintenance cost and (ii) extra space required for the extra 

hardware, which can be of significant importance for some applications (e.g., space 

applications). Furthermore, hardware redundancy approach becomes impractical and 
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unreliable in applications where identical duplication of some specific components is 

extremely difficult. 

Consequently, another approach to create redundancy known as analytical 

redundancy was introduced in early 1970's by Beard [23], where instead of using extra 

hardware the redundancy is supplied by an analytical (or a mathematical) model of the 

component or the entire monitored process. Accordingly, fault diagnosis systems that are 

based on analytical redundancy are often called model-based fault diagnosis systems. The 

main advantage of the analytical redundancy-based approach is that no additional 

hardware copies of a component are needed for realizing a fault diagnosis algorithm. 

Figure 1-4 depicts a general structure of the analytical redundancy-based versus the 

hardware redundancy FDI as applied to the monitoring of a control system. In the 

analytical redundancy approach, the mathematical relationship between different 

variables within the system, imposed by the analytical model of the system, serves as a 

reference point for fault diagnosis. More specifically, whenever system measurements are 

violating these relationships, the presence of a fault (or a faulty component) in the system 

is concluded. The violation from analytical relationships after the occurrence of faults is 

reflected in a set of signals known as residuals. Thus, the residual signals should ideally 

(i.e., under no process and measurement noise) be equal to zero when the system is 

healthy, and should deviate from zero when faults occur in the system. However, in 

presence of measurement noise and system disturbances, the residual signal shall remain 

in vicinity of zero under healthy system conditions and diverge from zero neighborhood 

(i.e., exceed a certain threshold band around zero) when faults occur in the system. 

Therefore, analytical redundancy-based fault diagnosis can be defined as the detection 

16 



and identification of faults in a system through evaluation and analysis of residual 

signals. 
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Figure 1-4. Analytical versus hardware redundancy based FDI as applied to the monitoring of a 
control system. 

The analytical model in an analytical redundancy-based FDI system can take a variety 

of forms including ordinary differential equations, intelligent data-driven models, and 

expert system mode l s . Hence , analytical redundancy-based fault diagnosis can b road ly be 

pursued in three distinct frameworks based on the way the a priori knowledge about the 

system is being represented and utilized. The first one is the mathematical model-based 
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framework [1], [24]-[26], where a priori knowledge of the system is represented by the 

system's mathematical model derived using physical principles. The second one is the 

learning-based (or computational intelligence-based) framework [27]-[3] which relies 

heavily on a system's historical data and data-driven models of the system. References 

[28], [29] provide an extensive comparison of the various methods within the above two 

frameworks. Finally, the third framework includes the expert system-based (or fuzzy 

rule-based) approaches to FD1 [30]-[34], which use an expert's knowledge of the system 

operation and its failure modes to obtain a qualitative model of the system. 

As shown in Figure 1-4, the analytical redundancy-based FDI, in general, consists of 

two main stages of residual generation and residual evaluation (or decision making). This 

two-stage structure was first introduced in [35], and currently is widely accepted by the 

fault diagnosis community. The residual generation stage aims at generating residual 

signals using available input/output measurements from the monitored system. As 

mentioned previously, the residual signal should stay close to zero when no fault is 

present in the system, but should distinguishably diverge from the zero neighborhood 

(specified by appropriate thresholds) when a fault occurs. Thus, the residual generation 

stage is essentially a procedure for extracting fault symptoms from the system 

measurements. 

In the residual evaluation stage, on the other hand, the generated residuals are 

inspected for the fault signatures, and their presence is determined by applying a decision 

rule. The decision rule may simply be a threshold test on the instantaneous values or 

moving window averages of the residuals, or it may consists of more complex statistical 
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methods such as generalized likelihood ratio (GLR) testing [36] or sequential probability 

ratio test (SPRT) [37], [38]. 

During the last two to three decades most of the research work in analytical 

redundancy-based fault diagnosis is focused on the residual generation problem due to its 

higher importance in the sense that well designed residuals make residual evaluation 

process fairly simple. As a result, most of the proposed FD1 methods employ simple 

threshold techniques for decision-making based on residuals. Reference [39] provides a 

survey of the most widely used residual evaluation methods. However, there has also 

been some work reported in the literature on developing more advanced residual 

evaluation techniques using fuzzy logic [40], and more recently adaptive thresholds [41], 

[42]. Since in this thesis, we will use a simple, but widely used, threshold testing 

technique for residual evaluation, from now on we will focus on reviewing residual 

generation strategies that have been proposed in the literature. 

Residual signal generation is generally achieved by comparing a measured signal 

with its estimate, where the estimate is obtained through a priori information and 

knowledge of the system being monitored. The a priori knowledge of the system can take 

a variety of forms including mathematical models, historical data saved into databases, 

and a set of rules stored in a rule or knowledge base. Hence, residual generation from 

system inputs and outputs can, in general, be achieved using mathematical model-based, 

learning-based, and knowledge-based methods, which employ physics-based 

mathematical models of the process, historical data of the process measured by sensors, 

and human expert knowledge of the system and its faults, respectively. 
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In general, mathematical model-based residual generation approaches aim at 

generating a set of residuals that reflect the discrepancies between the actual behaviour of 

a system and the expected behaviour given by its model. To enable fault isolation, usually 

a structured set of residuals is required, where each residual is affected only by a specific 

set of faults and remains insensitive or robust to the other faults. Furthermore, to ensure 

the robustness of the FDI system with respect to various sources of uncertainties 

including perturbations/disturbances, measurement noise, modeling inaccuracies, and 

unmodeled dynamics, the structured set of residuals must be designed in a way that 

remains insensitive to these uncertainties. 

In general, three main model-based approaches are used to generate residuals. The 

first is the observer-based (or filter-based, or state estimation-based) methods [24], [43], 

which consist of a model-based reconstruction of the system outputs from sensor 

measurements (or a subset of system measurements), and defining the residuals as the 

difference between the actual measurements and the model-based estimates. The 

observer-based FDI techniques have been equally applied for both linear and nonlinear 

systems. The system outputs are estimated from the measurements by using, for example, 

linear or nonlinear observers [44], sliding-mode observers [45], and high-gain nonlinear 

observers [46] in a deterministic setting, and Kalman filters (including linear Kalman 

filter, Extended Kalman filter (EKF), and Unscented Kalman filter (UKF) [47], [48]) [49] 

or receding horizon estimators (RHE) [50]-[52], [53] in a stochastic setting. While the 

output estimation error is defined as the residual in the deterministic framework, the 

innovation sequence comprises the residual in the stochastic case. 
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The second is the parity space approach [54]-[55], [25], where the residual is 

generated using the so-called parity functions defined over a time window of system 

input and output data. Parity space method is based on simple algebraic projections and 

geometry and the basic idea behind this method is to provide an appropriate check of the 

parity or consistency of the various measurements within the monitored system [25]. 

Reference [55] provides a comprehensive description of the parity space method and 

reference [54] demonstrates its application to fault diagnosis of an operating nuclear 

reactor. Parity space technique has also been successfully applied to fault diagnosis of 

inertial navigation systems [56]. Although parity space method has been primarily 

developed and applied for linear systems, it has been recently applied for fault estimation 

of nonlinear systems [57]. Furthermore, it has been shown in [58] and [59] that the parity 

space approach is equivalent to the high gain observer-based method. However, it should 

be noted that the parity space method is more sensitive to measurement noise and process 

noise (or disturbance) as compared to observer-based methods, which are more robust to 

noise and disturbances due to their closed-loop structure. 

Finally, the third approach to residual generation is parameter estimation [26], [60]. 

This approach is based on the assumption that the faults are reflected in the physical 

parameters of the system. Hence, in order to identify faults, the system parameters are 

estimated on-line using well-known parameter estimation techniques. The residuals in 

this approach are essentially the difference between the on-line estimates of the system 

parameters and their corresponding values under fault-free conditions. The parameter 

estimation approach was initially developed for linear systems due to availability of very 

well-known linear parameter estimation methods. However, recent advances in nonlinear 
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parameter estimation using, for example, UKF and adaptive neural networks, has made it 

possible to use parameter estimation approach for FDII of nonlinear dynamic systems 

[53], [61]. 

An alternative to the model-based residual generation approach is the so-called 

learning-based method, which has the potential to learn the plant model from historical 

input-output data of the system. The learned data-driven model can then be used to serve 

as the analytical model for residual generation. This approach becomes increasingly more 

appealing for situations where high-fidelity mathematical model of the monitored system 

does not exist or is extremely difficult to obtain. The main challenge though is to ensure 

that sufficient amount of data from the healthy operational mode of the system is 

available. References [62]-[64] provide detailed surveys of fault diagnosis using learning-

based methods, which are often also called as computational intelligence-based methods, 

artificial intelligence-based methods, soft-computing approaches, or simply intelligent 

methods. According to the FDI literature, artificial neural networks, fuzzy logic, and 

neuro-fuzzy systems are the most widely used intelligent approaches to fault diagnosis. 

Wherever fuzzy logic is employed, the availability of expert knowledge of the system 

encoded as a set of fuzzy "//^few" rules is implicitly assumed. Whenever expert 

knowledge is not available and the fuzzy rules are obtained using qualitative physics, 

neural networks are profoundly used for learning (or determining) the parameters of those 

rules using historical input-output data of the system, hence the neuro-fuzzy systems. 

As mentioned above, neural networks are among the most widely used intelligent 

techniques for FDII. This is mainly due to their distinguished ability to approximate, to 

an arbitrary level of accuracy, any continuous nonlinear function, given suitable network 
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parameters (or weights), architecture and learning algorithm [65]. Indeed, neural 

networks are able to learn nonlinear functions from examples. They have the ability to 

make intelligent decisions even in cases where system data is corrupted with noise. They 

also have a highly parallel structure, which is expected to achieve a higher degree of 

fault-tolerance than conventional function approximation schemes and, last but not the 

least, they are readily applicable to multivariable systems. Neural networks can also be 

applied for process condition/health monitoring, where the focus is on identification of 

small irreversible changes (i.e., incipient faults) in the process that develop into bigger 

faults. Reference [3] takes a look at the cutting-edge discipline of intelligent and in 

particular neural network-based DPHM technologies for predictive maintenance or CBM 

of engineering systems. Practical case studies of especially DPHM in rotating machinery 

are also provided therein to illustrate the enabling technologies. 

1.5 Proposed Fault Diagnosis Scheme 

The FD1I scheme proposed in this thesis is a nonlinear fault diagnosis method, which 

is based on a synergy of multiple frameworks and approaches to fault diagnosis. This 

synergy takes place at various levels and can be described from different perspectives. 

The first and possibly the most important aspect of this synergy is that the proposed FDII 

technique is a hybrid solution in the sense that it benefits from both mathematical model 

of the system and adaptive nature of intelligent techniques, especially neural networks. In 

essence, the proposed hybrid framework to FDII is an integration of the previously 

introduced model-based and computational intelligence-based approaches to fault 

diagnosis. 
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The mathematical models employed in this hybrid solution involve models of healthy 

as well as faulty operation of the system. More precisely, a multi-parameterized fault 

model is defined and developed, which is basically a parameterized dynamic nonlinear 

model. The parameters of this model are called fault parameters (FPs) and are defined in 

a way that a one-to-one correspondence can be established between their values and the 

health status of the physical system components. Thus, the proposed FDII solution aims 

at an on-line estimation of the fault parameters from system measurements (under full-

state measurement assumption) in order to determine the health state of the system. This 

essentially connects the proposed method to the formerly mentioned parameter estimation 

approach to fault diagnosis that is based on the assumption that system component faults 

are reflected in the physical system parameters. However, a modified version of the 

proposed FDII method is also presented that is applicable to systems with partial state 

measurements. This leads us to the second aspect of the synergy, where not only the fault 

parameters have to be estimated but also the unmeasured states of the system. In essence, 

a combination of online state and parameter estimation (also called dual estimation) is 

developed to achieve FDII under partial state measurement condition. Since state 

estimation is achieved using a special type of adaptive filters, the proposed FDII method 

can also be viewed as an integration of the filter-based and the parameter estimation-

based approaches to fault diagnosis. 

The third aspect of the synergy is the use of multiple models to enable fault isolation. 

Over the last decade the multiple-model (MM) approach has become very popular and 

widely applied for estimation, health monitoring, and control of dynamical systems (see 

references [66], [67], and [68], respectively). The MM approach is based on a set (or a 
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bank) of models that represent possible patterns of system behaviour or system structure. 

The model set (or the bank of models) thus includes models corresponding to healthy as 

well as faulty modes of system operation. Usually one model in the bank is associated to 

the healthy operational mode and the rest of the models correspond to various possible 

fault scenarios in the system. However, multiple models associated to healthy operational 

mode can also co-exist in the bank if the system structure changes during healthy 

operations. Nevertheless, the MM approach enables explicit modeling of changes in the 

system behavior by "switching" from one model to another. Changes in the system 

behavior may involve structural as well as parametric changes, and take place due to 

occurrence of faults and/or changes in the system's operating point. 

The MM approach to fault diagnosis traditionally includes a finite number of 

nonparametric models, which can essentially represent only a finite set of system 

behaviour. Then, a bank of filters or state estimators is designed to operate in parallel at 

each instant of time, where each filter is designed based on a particular model in the 

model set. This works absolutely well for systems with finite number of fault severity 

levels (for example, stuck-closed and stuck-open failures in control valves, and hard-over 

and float faults in motor actuators). However, in many engineering systems, occurrence 

of faults only degrades the performance of a component, actuator, or sensor, and the 

degradation can take place with a continuum, infinite level of severities. Examples of 

these kinds of faults include loss-of-effectiveness (LOE) and lock-in-place (LIP) faults in 

motor actuators, and most types of sensor faults such as bias, drift, loss of accuracy, and 

freezing. Many component faults also fall into this category such as body damage fault in 

an aircraft. Accurate and reliable severity identification of these faults, especially at early 
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stages of their development, is of utmost importance in order to avoid catastrophic 

failures, and also to plan, in advance, maintenance actions and perform them in time. 

Ideally, the traditional MM-based approaches to fault diagnosis would be able to 

accurately identify fault severities only if infinite number of models (or quantization 

levels) coexists in the model bank, which makes them computationally unfeasible and 

thus impractical. The fault diagnosis approach proposed in this thesis resolves this 

practical problem by defining multiple parameterized fault models (PFM), where the 

parameters can take essentially infinite number of values (i.e., the parameter values can 

vary over a continuum). Thus, the PFM set (or bank) is implicitly unbounded. 

Putting all the synergistic aspects together, we can assert that the FDII methodology 

proposed in this thesis is a hybrid, multiple-model, dual (state and parameter) estimation 

based approach to fault diagnosis of nonlinear systems. 

1.6 Contributions of the Thesis 

In this thesis, a novel fault detection, isolation, and identification (FDII) methodology 

for nonlinear systems is proposed that possesses a number of noble features that 

distinguishes it from most of the existing fault diagnosis techniques. First, the proposed 

FDII solution provides an integrated framework to simultaneously detect, isolate, and 

identify (i.e., estimate the severity of) faults in the components of a general nonlinear 

system. More precisely, while most of the standard FDII approaches in the literature 

incorporate either two or three separate subsystems (or subroutines) to accomplish the 

three tasks of detection, isolation, and identification, our integrated solution enables us to 

accomplish the three tasks within a unified, integrated module (or FDII system). For 

example, FDII techniques traditionally consist of three sub-modules including a residual 
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generation module for detection, a residual post-processing module for isolation, and an 

extra identification module for estimating the severity of faults based on system 

measurements and the information provided FD1. Even though some of the more 

advanced FD11 approaches in the literature have merged the detection and isolation sub-

modules into a single subsystem through generation of special types of residual signals 

(for example, directional residuals), they still use a separate module for fault 

identification. 

Second, the proposed novel FDII methodology is a hybrid approach to nonlinear fault 

diagnosis, which efficiently and effectively utilizes both the a priori mathematical model 

information of the system, and adaptive and self-learning capabilities of computational 

intelligent techniques within a unified framework. Even though hybrid diagnostic 

methods are recently being more developed in the literature, but the domain of hybrid 

fault diagnosis still needs to be much further investigated and explored. 

The third innovative aspect of the proposed FDII methodology is in its power of 

accurate and reliable estimation of the severity of incipient faults in nonlinear systems. In 

fact, there are very few fault diagnosis techniques in the literature that address the 

problem of incipient fault identification in nonlinear systems since this domain of 

research, despite its undeniable importance, has received considerably less attention as 

compared to fault detection and isolation. 

The fourth novelty of this thesis is the development of two schemes of the proposed 

hybrid nonlinear FDII technique, namely series-parallel and parallel, which respectively 

enable robustness of fault diagnosis with respect to measurement noise and the closed-

loop system transients due to changes in the control command inputs. More specifically, 
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the proposed series-parallel FDII scheme, though being very sensitive to measurement 

noise, very quickly detects and isolates faults (i.e., with a very short delay) and also 

exhibits robustness to the changes in the control command signal. Therefore, the series-

parallel scheme is very well suited for monitoring of high signal-to-noise ratio (SNR) 

systems with frequent control commanding and stringent, safety- and reliability-related 

requirements on delays in FD1. On the other hand, the parallel scheme is extremely robust 

to measurement noise and it can very reliably perform FDI and very accurately estimate 

fault severities even in presence of large measurement noise. This makes the parallel 

scheme a definitive choice for reliably monitoring systems with low SNR specifications. 

The enhanced reliability of the parallel FDII scheme as compared to its series-parallel 

counterpart is due to its rigorous fault isolation capability as well as the simplicity of its 

fault isolation decision logic. It should be noted that the robust parallel FDII scheme 

proposed in this thesis is an entirely new development in the literature. On the other hand, 

the novel aspects of the series-parallel scheme as compared to other two similar FDI 

methods proposed in the literature (Alessandri [69] and Sobhani-Tehrani [70]) are in (i) 

remarkably simpler neural network architecture and adaptation laws, (ii) more solid fault 

isolation results due to the first-time use of a bank of single-parameter fault models, and 

(iii) fault severity identification capability. 

Both the series-parallel and the robust parallel hybrid nonlinear FDII techniques 

discussed in the above rely on the availability of full state measurements of the system. 

The full-state measurement assumption is, in fact, very popular among most of the 

nonlinear diagnostic methodologies proposed in the literature. However, there are a few 

reasons - provided and discussed in details in Chapter 4 - as why this can be a relatively 
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restrictive assumption, which can eventually render a fault diagnosis system designed as 

per assumption impractical or unreliable. The fifth contribution of this thesis essentially 

addresses this issue by extending the proposed series-parallel and parallel FDII schemes 

to systems with partial state measurement. This is achieved through development and 

deployment of a fault-tolerant observer (FTO) that estimates the states of the system 

using system input and output signals (or measurements) even in presence of faults in 

system components. The estimated states are then employed as inputs to the proposed 

FDII subsystem. If some of the system states are directly measured, then the estimates of 

the unmeasured states - obtained from an essentially a reduced-order FTO — and the 

actual measured states - obtained from sensors - comprise the inputs to the FDII module. 

A fault-tolerant observer (FTO) terminology or notion is proposed in this thesis for 

the first time in the literature, though a very similar concept has been previously proposed 

and extensively investigated in the literature under the terminology of unknown input 

observers (UIO). The UIOs have the capability of estimating the states in presence of 

unknown inputs. Thus, considering faults as unknown inputs to the system, the UIOs may 

be employed to provide state estimates that are decoupled from faults. However, in the 

literature, the UIOs have been mainly developed within the context of robust control and 

robust fault diagnosis, where modeling uncertainties and external disturbances - rather 

than faults - are modeled as unknown inputs. Consequently, the objective in UIO design 

is to make the control system and fault diagnosis subsystem robust with respect to 

modeling errors and external disturbances, which is basically different from the purpose 

of FTO described above. 
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The FTO method developed in this thesis is called the Kalman filter structure 

preserving neural state estimator (NSE). It should be noted, however, that the 

structure/architecture of this NSE is not a novelty of this thesis and has been borrowed 

from the optimal filtering and state estimation literature. Instead, it is the new weight 

update laws of the NSE that comprises another contribution of this thesis. 

Finally, the application of the proposed algorithms to fault diagnosis of reaction 

wheel actuators of spacecraft attitude control system (ACS) comprises the practical - as 

opposed to theoretical - contribution of this thesis. Reaction wheels, although being 

largely deployed on-board numerous modern satellites, are very sensitive devices and are 

susceptible to various anomalies. Hence, there is high demand for fault diagnosis 

algorithms to monitor these devices. As a result, fault detection and isolation (FDI) in 

reaction wheels has been extensively investigated over the last few years. However, they 

have entirely missed addressing incipient fault identification or severity estimation in 

these devices, which thus can essentially be considered as a practical contribution of this 

thesis. 

1.7 Outline of the Thesis 

This thesis is organized as follows. Chapter 2 formally defines the fault diagnosis 

problem in nonlinear systems and presents a comprehensive literature review and 

analysis of different approaches to fault detection, isolation, and identification (FD1I) of 

both linear and nonlinear systems. Both model-based and computational intelligence-

based approaches to fault diagnosis have been extensively reviewed and analyzed, and a 

number of well-known methodologies within each framework are further demonstrated 

and their respective pros and cons are cited. Chapter 3 demonstrates both the series-
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parallel and the robust parallel structures of the hybrid nonlinear FDII methodology under 

full-state measurement assumption, which is the core contribution of this thesis. Chapter 

3 also introduces a specific formulation of the problem of FDII in nonlinear systems as a 

nonlinear parameter estimation problem using the notion of parameterized fault models 

(PFMs). A short survey of various model-based and computational intelligence-based 

nonlinear parameter estimation techniques is also performed in this chapter. In Chapter 4, 

first the theory of state estimation or filtering has been comprehensively reviewed in 

order to design and develop a fault tolerant state estimator that enables FDII under 

partial-state measurement conditions. A specific adaptive neural state estimator (NSE) is 

then designed and its integration with the proposed hybrid FDII schemes are described in 

this chapter. Chapter 5 explains the spacecraft attitude control system and reaction wheel 

actuators to which the proposed fault diagnosis algorithms are applied. Simulation results 

demonstrating the effectiveness and validating the properties (such as robustness) of the 

proposed FDII algorithms have also been proposed in this chapter. Finally concluding 

remarks and future work are included in Chapter 6. 
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Chapter 2: 

2 Fault Detection and Diagnosis 

In this chapter, we start with formal definition and formulation of the fault detection 

and diagnosis problem in nonlinear systems. Then, desired attributes of a fault diagnosis 

system and the rationale behind each attribute are discussed. A comprehensive survey 

and analysis of the literature on model-based and computational intelligence-based 

approaches to fault diagnosis is then presented with individual emphasis on sometimes 

tightly connected tasks of fault detection, isolation and identification. A number of well-

known methodologies within each approach are further demonstrated and their respective 

advantages and disadvantages are highlighted. Finally, the issue of robustness in fault 

diagnosis is introduced and briefly discussed. 

2.1 Problem Formulation 

In this section, the problem of detecting, isolating, and identifying faults in a general 

nonlinear system is formulated. Towards this end, consider a general nonlinear dynamic 

system described by the following nonlinear discrete-time state space representation: 

**+i = / ( * * » « * ) + r ( * * ) w * 

yk=h(xk)+yk 

where xk e 9T is the system state vector, / : 9T x 9T -» 9T, h: 9? " -» 9? m are smooth 

nonlinear vector-valued functions (or vector fields) on their respective domains, uk e Rr 

is the control input vector, yk € R"' is the system output vector, and wk and vk 
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represent system disturbances and measurement noise, respectively. The vector fields 

/ a n d h represent the dynamics and output equation of the nominal model of the system. 

The state-dependent function T(.) essentially represents the channel over which the 

external disturbances are applied to the system. In many systems this function is simply a 

matrix gain. It is assumed that all system states are available for measurement. It is also 

assumed that disturbances and measurement noise are bounded signals, that is 

kNA^IhlNALa, V*eiV (2-2) 

Under full-state measurement assumption, the output equation in (2-1) can be 

redefined as yk = C xt + vk, where C is an nxn identity matrix. 

In this thesis, we are concerned with diagnosis of faults that occur in components of 

the open-loop system. More precisely, even though the performance of the proposed FDII 

technique will be assessed in an operational closed-loop setting, we assume that no faults 

may occur in the system controller. There are two main reasons for this assumption. First, 

modern control systems are computer-controlled and are thus more reliable and less 

prone to errors particularly due to hardware wear and tear. Second, faults/errors that may 

occur in the controller software are usually handled using an entirely different error 

handling and accommodation mechanisms, which are mostly developed by researchers in 

the computer science community. 

As far as the open-loop system is concerned, the system under consideration can be 

decomposed into three parts including sensors, actuators, and system dynamics. Figure 

2-1 shows this decomposition that is also often used in practice. As can be observed from 

this figure, faults may occur in any of the three components of the open-loop system as 

described below. Furthermore, the plant dynamics and the sensor measurements are 
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always affected by external system disturbances (or process noises) and measurement 

noises, respectively. A reliable fault diagnosis system should be able to distinguish faults 

from system disturbances and measurement noise. More precisely, the fault diagnosis 

system must be robust to these uncertainties while remaining sensitive to faults. The 

robustness of an FD11 system to various sources of uncertainties is of utmost importance, 

which will be further discussed in Section 2.5. In the following we will describe the 

various sources of faults in the open-loop system. 

(i) Sensor faults: Sensors are basically the output interface of a system to the external 

world, and convey information about a system's behaviour and internal states. Therefore, 

sensor faults may cause substantial performance degradation of all decision-making 

systems or processes that depend on data integrity for making decisions. Such systems 

include, but not limited to, feedback control systems, safety control systems, quality 

control systems, navigation systems, surveillance and reconnaissance systems, state 

estimation systems, optimization systems, and interestingly health monitoring and fault 

diagnosis systems. For example, in a feedback control system sensors are used either to 

directly measure system states or to generate state estimates for the feedback control law. 

Thus, presence of faults in sensors may deteriorate state estimates and consequently 

result in inefficient and/or inaccurate control. 

/JO ff T M KO 

Control Signal p — * — — ^ A c t u a t i o n Signal __ _ Plant Outputs |—' *—| Measured Outputs 

i j> Actuators 

Figure 2-1. Decomposition of the open-loop system components and possible occurrence of faults in 
them. 
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Common sensor faults/failures include: (a) bias; (b) drift; (c) performance 

degradation (or loss of accuracy); (d) sensor freezing; and (e) calibration error [71]. 

Figure 2-2 depicts the effect of the above faults on system measurements. 
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Figure 2-2. The effect of various sensor faults on system measurements (73). 

Moreover, the mathematical representation of the above sensor faults is as follows [71]: 

»(') = 

'*,.(/) Vf>/0 No failure 

Xi{t) + b, 6,(0 = 0,6,(^,>0 Bias 

Xi{t) + b,{t) |6/(?]| = c , / , 0 < c j « l V / > / „ Drift 

x, (>)+&,(>) |Z>, (f )(<&,, 6, ( 0 e r ° V / > / n Loss of accuracy 
X; (rF/) Vf > tFj Sensor freezing 

ki (t]x, 0 < k}. < kf (t) < 1 W > /f, Calibration error 

(2-3) 
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where tFl denotes the time of fault occurrence on the ;"lh sensor, and bt denotes its 

accuracy coefficient such that b( e[-&,,&.] where bt > 0 . Furthermore, it is seen that 

A, e [&,,l], where ki > 0 denotes the minimum sensor effectiveness. We can represent the 

above cases, except the freezing case, with the following mathematical model: 

y = Kmx + B (2-4) 

where Km is a positive definite diagonal matrix whose elements are slowly varying 

within |&,,l], and elements of vector B slowly vary within [-6,.,6( J. 

(ii) Actuator faults: In many electromechanical or electrochemical systems, control 

signals from the controller (for example, a microprocessor or a microcontroller) cannot 

be directly applied to the system. Actuators are needed to transform control signals to 

proper actuation signals such as torques and forces to drive the system. Actuators are 

thus the control hubs of a system. Therefore, consequences of the occurrence of 

anomalies in a system's actuators or control effectors may vary from higher energy 

consumption (due to an incipient fault) to total loss of control (due to total failure of an 

actuator). 

Actuator faults are usually dependent on the actuator type. However, common types 

of faults have been identified for specific types of actuators. For example, common faults 

in control valve actuators include stuck-open, stuck-closed, and abnormal leakage. 

Another common set of actuator faults especially in servomotors include: (a) lock-in-

place (LIP) or freezing; (b) float; (c) hard-over-failure (HOF); and (d) loss of 

effectiveness (LOE) [72]. 
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Figure 2-3. Common types of actuator faults |73]. 

In the case of LIP faults, the actuator "freezes" at a certain condition and does not 

respond to subsequent commands. HOF is characterized by the actuator moving to the 

upper or lower position limit regardless of the command. The speed of response is limited 

by the actuator rate limit. Float fault occurs when the actuator "floats" with zero moment 

and does not contribute to the control authority. LOE is characterized by lowering the 

actuator gain with respect to its nominal value. Different types of actuator faults can be 

mathematically represented by: 
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<(th 

u'c (t) Absence of Faults/Failures 

*,(>K(>) 0<et<k,{t)<\yt>tFlALOE) 
0 V/>?F , ; (Float) (2-5) 

<(*„) V/>r f | . ;(LIP) 

\ft>tFl; (HOF) 

where M^(/) denotes the actuation signal (or actuator output) from the Ith actuator, w (̂t) is 

the control command signal (or actuator input) to the /'h actuator, tFi denotes the time of 

fault occurrence on the Ith actuator, A^(f)e \s,S\ is the actuator effectiveness coefficient 

of the /* actuator with ei > 0 being the minimum effectiveness, and M;miI1and w/maxare 

the lower and upper limits on the actuation level of the /Ih actuator, respectively. 

We can represent the above cases with the following mathematical model: 

<(') = <^X(0 + (l-£,)», (2-6) 

where 8f = 1, &, = 1 in absence of faults/failures, Si = 1, 0 < kt. < 1 in presence of LOE, 

and 8t = 0 in other types of faults (i.e., float, LIP, and HOF) with uj being the position 

at which the actuator is locked. 

(iii) Components faults: The component faults are usually represented as cases 

where some condition changes in the system rendering the nominal dynamic equation of 

the system invalid. Component faults are also dependent on the system being monitored. 

Some examples include: power source (e.g., battery, solar arrays) failures in satellites; 

leak in a tank in chemical systems or propulsion systems; body damage (e.g., wing 

damage, control surface damage) faults in aerial vehicles; bearing faults in rotational 

equipments (e.g., aircraft engines); friction faults due to lubricant deterioration; and tooth 

breakage and crack in gears of a gearbox system (especially in helicopters). Mathematical 

representation or modeling of these faults is some times very difficult and extensive 
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experimentation may be needed before constructing a model. Yet, in general, components 

faults can be represented by a change in the system's state equation (i.e., a change in the 

nonlinear function / in equation (2-1)), being either a parametric change or a 

structural/functional change. We will further discuss the important issue of fault 

modeling in Section 3.1. 

Component faults may have minor to very severe consequences. For example, an 

unexpected failure of the gearbox in a helicopter may cause significant economic as well 

as fatal loss. Nonetheless, these types of faults usually occur due to wear and tear of the 

system components. Thus, it is extremely crucial to diagnose these faults at early stages 

of component degradation in order to avoid catastrophic consequences. Early diagnosis of 

incipient component faults allows performing timely, on-demand maintenance operations 

on the degraded component, which may also involve component replacement. 

Now that we have identified the general sources of faults in a general nonlinear 

system with nominal dynamics given in equation (2-1), we can state the fault diagnosis 

problem as follows: 

Fault diagnosis is the problem of autonomously detecting the presence, isolating the 

location, and identifying the type and severity of any of the three afore-mentioned faults 

in a system. Our objective in this thesis is to simultaneously achieve fault detection, 

isolation and identification (FDII) within a unified framework. In this thesis, we will 

mainly focus on FDII of component faults and actuator faults, since accurate FDII of 

incipient faults in components and actuators of a system is vital for enhancement of the 

reliability and safety of the system as well as fault prognosis and consequently condition-

based maintenance (CBM). In particular, the CBM technology has recently received 
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considerable attention from various industries and OEMs (Original Equipment 

Manufacturers) such as Pratt & Whitney in aircraft engines, production chain of 

automotive industry, etc. Nevertheless, the proposed FDII approach can be easily 

extended to sensor and actuator faults, since they can also be represented by the fault 

models developed in this thesis, which are described in Section 3.1. 

2.2 Desired Attributes of a Fault Diagnosis System 

A fault diagnosis system should ideally meet some expectations. Some of the most 

important desirable attributes of a diagnostic system are explained in the following: 

• Early detection and diagnosis: This refers to the capability of a diagnostic 

system in detecting and isolating incipient faults. Early detection and isolation of 

faults prior to their full manifestation into a failure is of utmost importance for 

fault tolerant control of safety critical systems as well as condition-based 

maintenance practices. While being sensitive to incipient faults, the diagnostic 

system should keep false alarms under healthy operational modes of the system 

minimized, which poses a major challenge in achieving early detection capability. 

• Isolabiliry: This is the capability of a diagnostic system in distinguishing the 

origins of a fault from other potential fault sources or to locate a faulty component 

among various components of a system. While being absolutely necessary for 

CBM, isolation capability is also crucial to obtain fault tolerance, since proper 

counter-measures cannot be taken without knowing the source of an anomaly in 

system. Isolability of a fault does not depend only on the diagnostic system design 

but also on the way the fault affects system outputs (i.e., fault observability). 

Moreover, various sources of uncertainties such as modeling uncertainty/errors 
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and system disturbances pose a serious challenge to achieve a high degree of 

isolability. More precisely, a diagnostic system with a high degree of isolability 

may be so sensitive to these uncertainties. 

• Fault Identifiability: To estimate the severity, type or nature of the fault. While 

being useful for fault accommodation purposes, fault indentifiability is a 

definitive requirement for fault prognosis and eventually CBM. Accurate fault 

identification is usually very difficult to achieve due to presence of measurement 

noise, system disturbances, modeling uncertainties, and last but not the least 

coupling/interactions between potential fault sources in the system being 

monitored. 

• Robustness: Uncertainties are inevitable in practical settings. Therefore, 

robustness to measurements noise, system disturbances, and modeling 

uncertainties is one of the most highly desirable attributes of a diagnostic system 

intended for practical implementations. Robustness essentially augments 

diagnostic system reliability and effectiveness. Due to its utmost importance, in 

Section 2.5 we discuss the issue of robustness of the fault diagnosis system in 

more details. 

• Novelty Identifiability: Although the well-known, industry standard failure 

analysis tools such as FMEA (failure mode and effects analysis) (which was 

formally introduced in the late 1940s, with military purposes, by the US Armed 

Forces) and, its recent extension, FMECA (failure mode, effects, and criticality 

analysis) provide fruitful information on potential failure modes within a system 

and their effects/impacts upon it, as well as charting the probability of failure 
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modes against the severity of their consequences (i.e., criticality analysis), there is 

still a chance of novel anomalies occurring in the system. It is expected from a 

diagnostic system not to wrongly classify novel malfunctions in the system as 

other a priori known type of malfunctions or to treat them as being a healthy 

operational mode. While detection of novel faults is relatively easy to achieve, 

isolation and identification of them is extremely difficult to accomplish, 

especially because these faults cannot be modeled due their unknown nature. 

• Multiple Fault Identifiability: This refers to the ability of a diagnostic system to 

identify and correctly classify multiple faults that may even coexist in a system. 

This is a rather difficult requirement mainly due to nonlinearities and 

coupling/interactions that generally exist between the states and the potential fault 

sources of a dynamical system. Another reason is that some faults in an 

engineering system are extremely difficult to model because of their complexity. 

• Explanation Facility: A diagnostic system should be able to explain where a 

fault originated and how it propagated in the system. 

• Adaptability: The operating conditions of the system change due to disturbances 

and environmental changes. Furthermore, a system's components experience 

performance degradation over time. Hence, a fault diagnosis should intelligently 

adapt to these changes in order to maintain its diagnostic performance. 

* Reasonable storage and computational requirement: Memory and 

computational requirements are the two fundamental characteristics of any 

algorithm intended for on-line, real-time implementation. Diagnostic algorithms, 

especially the ones intended for embedded on-board fault diagnosis, are by no 
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means an exception. Therefore, while designing a fault diagnosis system, it is 

necessary to keep in mind that the computational and memory requirements must 

always meet the specifications of the application, also including power 

consumption specifications. Moreover, depending on the application, a reasonable 

compromise between these two requirements should be made. 

2.3 A Review of Analytical Redundancy-based FDI Approaches 

In Chapter 1, the two fundamentally distinct approaches to the general problem of fault 

detection and isolation, namely the hardware redundancy-based and analytical 

redundancy-based approaches, were discussed and compared in details. Furthermore, a 

general overview of some of the analytical redundancy-based methods was provided. In 

this section, however, we formally investigate the analytical redundancy-based 

approaches and explore some of the well-known FDI techniques proposed in the 

literature within each approach. 

The investigation of various analytical redundancy-based diagnostic approaches starts 

essentially with classifying them into different categories according to the form of system 

information (or process knowledge) utilized within each approach. In view of this, most 

of the existing FDI methodologies can essentially be divided into model-based and 

computational intelligence-based approaches. In the former, the mathematical model of 

the system is being used as an a priori source of information on the system being 

monitored. However, the latter approach utilizes either quantitative historical data of the 

system or qualitative information on the system in the form of if-then rules. 
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In this section, we investigate these two fundamentally and conceptually different 

approaches to FDI and some of the specific FDI methods developed within each 

approach will also be reviewed and analyzed. 

2.3.1 Model-based Approaches to FDI 

Model-based fault diagnosis approaches can, in general, be classified into two 

mathematically distinct categories with respect to the dynamical model and the on-line 

information/data that they use. These two category approaches include: 

• Discrete-event system (DES) based approaches: These methods are pursued 

whenever the behaviour of the system being monitored can be modeled as a 

finite-state machine (FSM) (or described as a discrete-event system), and the 

system can be observed merely as a sequence of events. Techniques under this 

category solve the diagnostics task by comparing the observed event sequence 

with the discrete-event dynamics of the model. DES-based systems and diagnostic 

methods are not of interest in this thesis, however, a very good treatment of the 

subject can be found in [74] and [75]. 

• Differential or difference equation model-based approaches: These methods 

are used whenever the system being monitored can be represented by a 

mathematical model in form of a differential or difference equation and the 

system outputs can be measured numerically. Since these systems are under 

consideration in this thesis, the model-based portion of the proposed hybrid fault 

diagnosis method falls under this category. Hence, in the following we will focus 

on reviewing the literature along this line of research. 
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Before proceeding with the specific and focused literature review, it is worthwhile to 

mention that the above two groups of model-based diagnostic methods differ 

significantly in terms of their mathematical background and their associated diagnostic 

steps. This is due to fundamental differences between the properties of the systems that 

they monitor. For example, fault diagnosis approaches for continuous-variable systems 

are usually decomposed into two steps of residual generation and residual evaluation (see 

also Section 1.4), whereas in discrete-event systems these steps cannot be defined 

(because the notion of a difference between events is not defined [75]). Instead, DES-

based diagnostic approaches check the consistency between the current system behaviour 

and the DES model in a different way [74]. 

A quick review of literature on fault diagnosis reveals that the three tasks of fault 

detection, isolation and identification have not been equally investigated in the literature. 

This is partly due to the different levels of complexity involved in each task. In general, 

fault isolation and especially fault identification are more complicated than fault 

detection. Therefore, we need to separately review the literature corresponding to each 

task. 

2.3.1.1 Model-based Fault Detection 

Fault detection is essentially the first step of fault diagnosis. It basically detects the 

presence of faults, and the detection of incipient faults (or early detection of faults) is 

extremely important for the safety of the system as well as efficient implementation of a 

CBM system. As was mentioned in Chapter 1, model-based fault detection is based on 

residual generation, where the residuals are quantities that represent the inconsistency 

between the actual system behaviour and the mathematical model of the system. 
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Many residual generation methods have been proposed by various researchers in the 

field, some of which were reviewed in Section 1.4. Among them, nonlinear observer-

based residual generation has been the most extensively studied. Observers are dynamical 

systems that estimate the states and consequently the outputs of a process. An observer-

based residual is simply the output estimation error itself or a combination of the output 

estimation errors. Various nonlinear observer design techniques have been used for 

observer-based residual generation, since there does not exist a universal, optimal 

nonlinear observer for all nonlinear systems. The existing nonlinear observers have to be 

designed usually under certain assumptions on system structure, system inputs, and/or the 

degree of the system non linearity. 

In a deterministic framework, Frank et al. [44] provide a survey of the use of 

nonlinear observers for fault detection and isolation. More specifically, Hammouri et al. 

[43], [46] discuss the use of high-gain observers for fault detection of control affine 

nonlinear systems. Besancon and Hammouri [76] studied the observer design problem 

utilizing the solution of Riccati equation for Lipschitz nonlinear systems. Seliger and 

Frank [77] proposed nonlinear unknown input observers (UIO) as an extension of the 

linear UIO to a class of nonlinear systems. Ding and Frank [78], and Yang and Saif [79] 

proposed the use of adaptive nonlinear observers for fault detection. Sreedhar et al. [80] 

designed fault detection for nonlinear systems based on sliding mode observer. 

In a stochastic setting to observer-based fault detection, Alessandri et al. [81] used 

extended Kalman filter (EKF) for detection of actuator faults in unmanned underwater 

vehicles. Caliskan and Hajiyev [82] developed an EKF-based fault detection algorithm 

for surface faults in aircraft. Okatan et al. [83] developed a fault detection algorithm for 
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magnetometers and sun sensors of the attitude determination and control system of Low 

Earth Orbit (LEO) satellites using an approach for checking the statistical characteristics 

of EKF innovation sequence. Tudoroiu et al. [84] used unscented Kalman filter (UKF) 

for fault detection in actuators of satellite attitude control system (ACS). Finally, Li and 

Kadirkamanathan [85] developed a likelihood ratio approach based on particle filters [49] 

for fault diagnosis in nonlinear stochastic systems. 

The second classical method to residual generation for fault detection is the parity 

space approach, which relies on analytical redundancy relations (ARR) that link a subset 

of selected variables of the system under consideration. The ARR relations can be 

automatically obtained from the model equations using various elimination algorithms 

[58]. The ARR relations can be separated into two parts. The first part depends only on 

known (measured) variables, while the second one, namely evaluation part, depends on 

the fault components. Parity residuals are generated by computing on-line the known part 

of these relations. The residual value can be interpreted by the evaluation part of the ARR 

[58]. Christophe et al. [58], [59] have proven that for a class of nonlinear multi input 

single output (MISO) systems a relationship exists between parity residuals and residuals 

generated by high-gain observers. The major drawback of the parity space approach, 

however, is that the residuals are computed using time derivatives of measured variables, 

which makes the approach very sensitive to measurement noise and system disturbances. 

Thus, to make it useful in a noisy environment, extra filtering and pre-processing are 

required. A good survey on the applications of parity space approach to nonlinear system 

fault detection was provided in Section 1.4. 
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2.3.1.2 Model-based Fault Isolation 

Once a fault is detected in a system, it should be followed by fault isolation which will 

distinguish (or isolate) a particular fault from others or locate the faulty component 

within the system. While a single residual signal is sufficient for fault detection, fault 

isolation requires usually a set of residuals (or a residual vector). If a residual vector can 

isolate all faults, it has the required fault isolability property. 

Basically, there are two fundamental frameworks to create a residual set to enable 

fault isolation, including structured residual set and directional residual set. Almost all 

model-based fault isolation methodologies can be classified to belong to either of these 

two frameworks. In the following, we will individually review the overall concept of 

each framework and some of the well-known model-based fault isolation techniques 

associated to each framework will be discussed. 

(A) Structured Residual Set: One approach to fulfill the fault isolation task is to design 

a set of structured residuals, where each residual is designed to be sensitive to a subset of 

faults, whilst remaining insensitive to the remaining faults. The design procedure consists 

of two steps; the first step is to specify the sensitivity and insensitivity relationships 

between residuals and faults according to the assigned isolation task, and second is to 

design a set of residual generators according to the desired sensitivity and insensitivity 

relationships [24]. 

The structured residuals can be designed in two conceptually different ways, namely 

dedicated residual set and generalized residual set. These two schemes are shown in 

Figure 2-4 for an example of isolating three different faults (/p/2,/3/-
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Figure 2-4. Two schemes of structured residual set: (a) dedicated scheme and (b) generalized scheme 

for an example of isolating three faults |24]. 

A-l) Dedicated Scheme of the Structured Residual Set: In the dedicated scheme, the 

following simple threshold logic [24] can be used to make decision about the appearance 

of a specific fault: 

rM)>T, => X(0*0; 'e{l,2,...,l| (2-7) 

where L is the total number of faults ( / ) to be isolated, and Ti(i = \,2,...,L) are 

thresholds corresponding to residuals r, (/ = 1,2,..., L). The dedicated residual set is very 

simple and all faults can be detected simultaneously, however, there is normally no 

design freedom left to achieve other desirable attributes of a fault diagnosis system such 

as robustness to various sources of uncertainties (i.e., measurement noise, system 

disturbances, and modeling errors). As will be seen in Chapter 3 and demonstrated in 

Chapter 5, some of the characteristics of the series-parallel FDII scheme proposed in this 

thesis are similar to that of the dedicated scheme. In particular, a portion of the fault 

isolation decision logic of the series-parallel scheme is analogous to that of the dedicated 

scheme. Furthermore, both methods are equally sensitive (or non-robust) to measurement 

noise. 
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Various fault isolation techniques have been developed in the literature under the 

dedicated scheme. Clark [86], in his pioneering work, designed a dedicated observer 

scheme (DOS) for sensor fault detection, which was actually (and surprisingly) the 

original inspiration for the concept of dedicated residual set (or dedicated scheme). In 

DOS an observer reconstructs all of the system outputs except one (i.e., 

yj(t\j = \,...,m,j * i) using all of the system inputs and the only left-out output, namely 

yi. Then, the difference between the estimate and the measurement indicates the 

possibility of a fault in the /,h sensor. If this technique is applied for all m outputs of the 

system, namely^,,/ = \,...,m, then a bank of m dedicated observers are needed to monitor 

m sensors of the system. Chen and Saif [87] recently extended Clark's DOS to actuator 

fault isolation. Their scheme is able to detect and isolate multiple actuator faults using a 

bank of r observers, where r is the total number of the actuators in the system under 

consideration. 

Another very important group of fault isolation methods that essentially fall under the 

dedicated scheme are the multiple model (MM) approaches. Over the past few decades 

the use of multiple models has become very popular and widely applied across various 

domains of research including estimation, control, target tracking, and fault diagnosis of 

stochastic systems. In the literature, there are mainly two types of MM algorithms, 

namely non-interacting MM and interacting MM (IMM). Non-interacting MM approach 

was originally proposed by Magill [87] for optimal adaptive estimation of sampled linear 

stochastic processes. As mentioned therein, the MM estimator is composed of a set of 

elemental estimators and a corresponding set of weighting coefficients. However, the 

model-based elemental filters independently operate in parallel at all times without any 
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interaction between them. Such an approach is not suitable for fault diagnosis problem 

since it assumes that there are no mutual interactions among the multiple models, 

whereas in general, the system structure or parameters do indeed change as a system 

component (as well as a sensor or an actuator) fails. Nonetheless, the MM approach has 

also been developed for fault diagnosis in different engineering applications but mainly 

for the purpose of detection rather than isolation. For example, see Laparo et al. [88] on 

leak detection in heat exchanger systems, and Manke and Maybeck [89] on 

sensor/actuator failure detection in the Vista F-16 fighter aircraft. Furthermore, 

Alessandri et al. [81 ] used a bank of non-interacting extended Kalman filters (EKF) for 

isolation of faults in actuators of unmanned underwater vehicles. 

The interacting multiple-model (IMM) approach, initially proposed by Blom and Bar-

Shalom [90] for state estimation of stochastic systems, presented a notable advance to 

MM-based estimation (also see the book by Bar-Shalom et al. [91] for more details on 

IMM and its application to tracking and navigation). The IMM approach uses modal 

probabilities to weight the inputs and outputs of a bank of parallel filters at each instant of 

time. Furthermore, the IMM approach overcomes the weakness of the non-interacting 

MM approach by explicitly modeling the abrupt changes of the system by "switching" 

from one model to another in a probabilistic manner. This approach is one of the most 

cost-effective adaptive estimation techniques for systems involving structural as well as 

parametric changes [67]. 

Faults/failures usually create structural and parametric changes in the system. Since 

the IMM approach explicitly models and effectively handles the structural and/or 

parametric changes in the system, it presents a very promising and effective candidate 
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approach for fault detection and isolation. Mehra et ail. [92], and Zhang and Xiao [93] 

independently and almost simultaneously proposed IMM approach for fault detection and 

diagnosis for the first time. The IMM-based nonlinear fault diagnosis assumes that the 

system being monitored can be modeled, at any time, sufficiently accurately by the 

following jump Markov hybrid nonlinear system [67]: 

x(k + ]) = f(kMk + »,x(k)Mk)) + T(kMk + V)MkMk + l)) 

z(k) = g(k,m(k),x(k)Mk)) + v(k,m(k)) 

withx0 ~N(x0,P0); where the mode of the system at time k is selected by a discrete 

process m(k) that is modeled as a discrete-time, Z-state, first-order Markov chain with 

transition probabilities n^ik) given by: 

Ttyik) = P{mj(k + l)\mt(k)}, Vm^rrij eS (2-9) 

where n^k) is the probability of the transition from mode i at time-step k to mode j at 

time-step k+1, and 

0 < ^ ( * ) < 1 , i = \,...,N;j=\,...,N; ]>] ̂  (A) = 1, i = \,...,N (2-10) 

j 

where S = {/w,,m2,...,>«£ } is the set of all possible modes of the system including healthy 

and various faulty modes, and L is the total number of modes in S. 

In IMM-based fault diagnosis, one mathematical model has to be designed per each 

mode in the set S. This is the so-called "model set design" step of the IMM approach. 

This is the initial and a key step in IMM approach because the model set has to be 

designed such that it represents as many system modes as possible. Therefore, the design 

of a proper model set requires a priori knowledge of the potential system faults/failures. 
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Once a model set is designed, a model-based recursive filter has to be designed based 

on each model in the 1MM model set in order to estimate system states. Various 

stochastic filtering techniques can be used for this purpose. The filter that has been 

commonly used for nonlinear systems is the extended Kalman filter (EKF) (see, for 

instance, Zhang and Xiao [67], and Tuduroiu and Khorasani [94]). More recently, 

Tuduroiu et al. [84] developed an interactive bank of unscented Kalman filters for fault 

detection and isolation in actuators of satellite attitude control system. 

Each filter in the IMM bank recursively calculates a model-conditional estimate of 

the system states and then these estimates are combined to obtain an overall estimate, 

also called mixed estimate, of system states. The mixed estimates are calculated using the 

so-called model (or mode) probabilities. It should be noted that the model probabilities 

are different from transition probabilities introduced above. The transition probabilities 

comprise a matrix that is a parameter of the IMM algorithm and is usually set to a fixed 

value; however, the model probabilities comprise a vector (//,,/ = 1,2,...,TV in Figure 2-5) 

that is essentially part of the state vector of the IMM algorithm and is recursively updated 

at each time-step of the algorithm operation. The model probabilities at each instant of 

time represent the probability of each mode currently in effect. Therefore, the largest 

model probability indicates clearly the mode in effect at that instant, hence fault is 

isolated. Furthermore, the value of the largest model probability provides a quantitative 

measure of the confidence level of IMM-based diagnoser in its decision, which is almost 

an exclusive property of IMM-based fault diagnosis. This can definitely be considered as 

an advantage IMM, since the confidence information can be very effectively used for 

information fusion in fault diagnosis systems comprising of more than one diagnoser (or 
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decision-makers). Figure 2-5 depicts the block diagram representation of the IMM-based 

fault diagnosis algorithm. 
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Figure 2-5. Block diagram of IMM-based FD1 approach [93J 

A-2) Generalized Scheme of the Structured Residual Set: The generalized scheme for 

designing the structured residual consists of making each residual sensitive to all but one 

faults, i.e. [24], 

fr1(/)=JR(/2(4...,A(0) 

riif)=R{fXt\...JMf.M-JM (2-11) 

{rL{t)=R{fM-JL-M 
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The above set of residuals is defined as generalized residual set. If a bank of observers 

are used for generation of all residuals in the generalized residual set (i.e., a bank of 

observer-based residual generators), the structure is known as the generalized observer 

scheme (GOS) (see survey paper of Frank [95], and Lunze and Schroder [75] for 

application of GOS to sensor and actuator fault diagnosis of discrete-event systems). The 

isolation in generalized scheme can be performed by using the following logic [24]: 

rJ(t)>Ti Vye{l,.. . ,i-l,i + l,...,L}j J,K ' 
(2-12) 

for i=l,2,...,Z,. 

The GOS-based FDI, depicted in Figure 2-6 for both sensor and actuator fault 

detection and isolation, is more robust than DOS with respect to parameter uncertainties 

and measurements noise. This is mainly due o the fact that in GOS, more than one output 

yt is fed into the observers [95], as can also be seen in Figure 2-6. 
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Figure 2-6. Generalized Observer Scheme (GOS) for (a) Sensor and (b) Actuator FDI 
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It will be seen in Chapter 3 and shown in Chapter 5 that the robust parallel scheme of 

the hybrid nonlinear FD1I approach proposed in this thesis exhibits properties similar to 

the generalized scheme. More precisely, we will see that the fault isolation decision logic 

of the proposed parallel scheme is very similar to that of the generalized scheme, and it is 

extremely robust to measurement noise. 

(B) Directional Residual Set: An alternative approach to fault isolation is to address the 

residual set generation problem within a geometric framework. More precisely, we have 

to define a residual space as the space spanned by the residual vector and then achieve 

fault isolation through designing a directional residual vector, also called detection filters 

(see Beard [96] and Jones [97]). A directional residual set is a vector that lies in a fixed 

and fault-specific direction (or subspace) in the residual space, in response to that 

particular fault [24]. In mathematical notation, we want to have: 

r ( / | / , ( / ) ) = # ( # ; i = W,..,L (2-12) 

where the constant vector /. is the signature direction of the ih fault in the residual space 

and /?. is a scalar that depends on the fault size and dynamics [24]. A fault is then isolated 

by determining the fault signature direction that is the closest to the generated residual 

vector. Therefore, in order to isolate faults reliably (i.e., to reduce both incorrect isolation 

rate) there must be a one-to-one correspondence between fault signatures and potential 

fault sources (i.e., each fault signature must be uniquely associated with one fault). 

Although directional residual set is simpler to implement (not necessarily to design, 

which is more problem dependent) than the structured residual set, and it also provides 

more reliable fault isolation capability under ideal conditions, it is really difficult to make 
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it robust against various sources of uncertainties, especially modeling errors and system 

disturbances. 

A number of fault isolation methods have been proposed in the literature within the 

model-based directional residual generation framework. Fault detection filters proposed 

by Beard [96] and Jones [97] (also known as Beard-Jones fault detection filter) is one of 

the pioneering methods that has actually inspired the directional residual concept. Being 

originally designed for FDI of linear systems, fault detection filter is a Luenberger 

observer-based method, where the observer gain is chosen so that the direction of the 

residual vector in the output residual space can be used to identify the failed component. 

Note that in the Beard-Jones detection filter design faults are viewed as inputs and the 

residuals are viewed as outputs. 

The Beard-Jones detection filter, developed following the directional residual set 

concept, has also inspired the celebrated geometric approach to fault isolation which 

indeed falls indeed under the dedicated residual set category. Massoumnia [98] first 

proposed a geometric formulation of the Beard-Jones fault detection filter problem for 

linear systems using the concept of unobservability subspaces, which is a subspace in the 

residual space that can be made "unobservable" via "output-reduction" and "output-

injection" leading to a quotient (observable) subsystem unaffected by all faults except 

one. This approach is known in the literature as the geometric approach to FDI. Later, 

Massoumnia et al. [99] proved that a basic necessary and sufficient condition for the fault 

isolation problem to be solvable is the existence of an unobservability subspace. The 

unobservability subspace can be determined by means of simple recursive algorithm. 
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Massoumnia et al. [99] also showed that the geometric approach to FDI is the dual 

version of the problem of non-interacting control by means of dynamic feedback. 

De Persis and Isidori [100] extended Massoumnia's geometric approach to nonlinear 

systems by proposing a differential-geometric approach that gives the necessary and 

sufficient conditions for solving the problem of nonlinear FDI. Detailed description of 

their approach requires many background mathematical definitions and concepts, which 

is out of the scope of this thesis but the interested reader can refer to [100] for the details 

and further information. The background mathematical concepts and definitions can also 

be found in Isidori's book [101]. However, to put it in a nutshell, in nonlinear geometric 

approach an unobservability distribution is computed by means of suitable algorithms, 

which results in a coordinate transformation in the state and the output space of the 

system that induces and "observable" quotient subsystem unaffected by all faults but one. 

Then, a fault detection filter (i.e., a nonlinear observer) is designed for the quotient 

subsystem. 

In mathematical notations, in the nonlinear geometric approach it is assumed that the 

nonlinear system can be described by the following model: 

r L 

* = /(*)+ E &(*)"' + X'.-frK + r(*V (2-13) 
y = h{x) 

where w,,/ = \,...,r ; mt,i = \,...,L; and w denote the input channels for control purposes, 

the fault/malfunction signals whose occurrence has to be detected and isolated, and 

system disturbance signals, respectively. The objective is then to find for each fault 

signalWJ,,/ = \,...,L, a quotient subsystem that is affected by the fault signal m} and 

decoupled from other faults mpj = ],..., L;j * / (and, if possible, decoupled from 
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disturbance w to also achieve robustness with respect to disturbance). The algorithm that 

verifies the existence of such a quotient subsystem is a constructive algorithm that 

provides the state coordinate transformation z = O(x) required for fault isolation. Once 

the coordinate transformation function <$>() is found and applied to the system's state 

space equations, the new state space representation of the system in terms of the 

transformed coordinate z is obtained. Then, a nonlinear observer is designed for 

estimating z, with the residual defined as r-z-z, where £ is the estimate from the 

observer. 

The main power of the nonlinear geometric approach is in providing necessary and 

sufficient conditions for the solution of fault isolation problem, supported by 

unprecedented rigorous mathematical proofs. Furthermore, under full-state measurement 

conditions (i.e., the function h(.) in equation (2-13) is simply a unity matrix), finding the 

coordinate transformation <£(.) is fairly simple (though, this is not always the case under 

partial state measurement). However, it also possesses some drawbacks. A major 

drawback is lack of robustness to modeling errors. Since the transformation <I>(.) is 

obtained based on system's nominal equations, any discrepancies between the actual 

system and its nominal model of the system (due to unmodeled dynamics, parameter 

uncertainties, parameter variations, etc.) may render the analytical results invalid. To a 

lesser extent, the measurement noises will also affect the performance of the geometric 

approach. As far as robustness to system disturbances are concerned, sometimes little 

design freedom is left to decouple residuals from disturbances. 
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2.3.1.3 Model-based Fault Identification 

Despite its undeniable importance, model-based fault identification has received less 

attention from the research community as compared to model-based FD1. This is 

especially true for nonlinear systems. Nonetheless, possibly the first formal effort to 

estimate the severity of faults is in the seminal works of Isermann [60], [26]. In his work 

it is assumed that faults are reflected in the physical parameters of the system, hence, 

faults can be identified through on-line estimation of system parameters. However, the 

parameter estimation approach of Isermann was developed for linear systems due to 

availability of very well-known linear parameter estimation methods. More recently, Tan 

and Edwards [102] applied the concept of "equivalent output estimation error injection" -

proposed by Edwards [45] - to reconstruct faults for linear systems using sliding mode 

observers. Once again, however, their approach was developed for linear systems. 

Chen and Saif [87] recently extended the approach proposed by Tan and Edwards 

[102] to actuator fault identification in a class of nonlinear systems. More specifically, 

they modified the approach proposed Tan and Edwards [102] in two ways. First, instead 

of linear systems they consider a specific class of uncertain nonlinear systems. Second, 

instead of reconstructing only faults, they reconstruct the inputs and the faults at the same 

time. They estimate actuator faults using equivalent control method in sliding mode 

observer design. Nevertheless, their approach also has two limitations. First, it has been 

developed specifically for actuators faults and its application to identification of 

component faults in a nonlinear system has not been discussed. Second, it is applicable 

only to a specific class of nonlinear systems rather than a general one. 
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One may also use multiple model (MM) approach for fault identification, where 

multiple models in the model bank correspond to different levels of fault severity. 

However, this will introduce an inevitable quantization error in fault estimation. This 

quantization error can be reduced as more models are used in the bank. But the use of 

more models will increase the computational requirements of the algorithm. In order to 

very precisely identify faults, ideally infinite number of models (or quantization levels) 

should coexist in the model bank, which makes the approach computationally unfeasible 

and thus impractical. The IMM approach, to a lesser extent, has a similar problem, 

though Zhang and Xiao [93] suggest that in the IMM approach, the magnitude (size) of a 

fault can be determined by the probabilistically weighted sum of the fault magnitudes of 

the corresponding partial fault models. However, this idea has not been well elaborated 

and, as was mentioned previously, the fine-tuning of the IMM approach is not easy to 

accomplish especially if precise fault identification is required. Zhang and Jiang [173] 

have also developed a two-stage adaptive Kalman filter (or a dual Kalman filter) for 

simultaneous (or joint) state and fault parameter estimation, which is applicable to 

identification of only actuator (not component) faults. 

2.3.2 Computational Intelligence-based Approaches to FDI 

The model-based approaches to fault diagnosis rely on the analytic mathematical model 

of the process being monitored. This implies that the accuracy of the model has direct 

impact on diagnostic system performance and reliability. More precisely, the more 

accurate the model, the more reliable will be the model-based fault diagnosis scheme. 

However, for complex and uncertain systems, the derivation of high-fidelity 

mathematical models from physical principles can become very complicated, time 

61 



consuming, and even sometimes unfeasible (for instance, some systems cannot be 

represented accurately enough by a lumped parameter system). Moreover, even with the 

possibility of deriving a mathematical model using first principles, obtaining accurate 

model parameter values may become a very tedious job or even practically impossible 

due to proprietary issues regularly imposed by OEMs and/or system integrators. Last but 

not the least, some systems exhibit uncertain behaviors such as higher order dynamics 

and high-frequency oscillations, collectively called unmodeled dynamics, which cannot 

be precisely modeled. 

Mathematical methods in computational intelligence and learning theory - neural 

networks, fuzzy logic, neuro-fuzzy systems, and genetic algorithms - represent a 

promising way of circumventing the above-mentioned modeling precision problems in 

model-based fault diagnosis. Indeed, during the past decade computational intelligence 

(Cl)-based fault diagnosis methods have been extensively developed and successfully 

applied to various engineering systems. A number of survey papers and books in the 

literature review the use of computational intelligence techniques in fault diagnosis. 

Among the pioneers is the survey paper of Patton et al. [27] that outlines some of the 

residual generation methods based upon artificial intelligence techniques, which integrate 

both quantitative and qualitative knowledge of the system in fault diagnosis. More 

recently, Palade et al. [103] published a book consisting of a set of papers reviewing the 

main computational intelligence techniques and their applications to fault diagnosis. They 

have also discussed the main advantages and disadvantages of each methodology and it is 

shown that many times hybrids of Cl-based diagnostic techniques are used in practice to 

utilize their advantages and overcome their disadvantages. Two other recent books, 
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namely Korbics et al. [63] and Vashtsevanos et al. [3] also review intelligent fault 

diagnosis methods. 

Using Cl-based techniques enables one to exploit both quantitative (numerical) and 

qualitative (symbolic) information about the system being monitored. Qualitative 

information is normally expressed in the form of Boolean or fuzzy "if-then" rules. For 

systems represented by Boolean rules, causal reasoning and fault tree analysis methods 

have been historically used especially in aerospace and nuclear industries (see Zampino 

[104] and the pioneering work of Crosetti [105], respectively). On the other hand, fuzzy 

logic is the right tool for fault diagnosis whenever the system behaviour is described by a 

set of fiizzy "if-then" relations derived either by an expert or using qualitative physics. 

More details regarding the use of fuzzy models for fault diagnosis can be found in Dexter 

[106] and Mendonca et al. [107]. The key advantage of the qualitative Cl-based 

approaches is that they can provide valuable information for the system operators to 

identify the root cause of anomalies (i.e., the series of events/anomalies that ended up to a 

failure). 

Though seemingly attractive, qualitative Cl-based fault diagnosis methods also suffer 

from a major drawback. In many engineering applications, deriving Boolean and/or fuzzy 

"if-then " rules is by no means straightforward and requires extensive expert knowledge 

of the system. Instead, the knowledge that describes the system behaviour is contained in 

large quantitative datasets stored in data bases. Neural networks are ideal mathematical 

tools for such situations due to their universal nonlinear function approximation property 

(Cybenko theorem; see Cybenko [108]), and their ability to learn and reproduce system 

behaviour from quantitative system datasets (i.e., historical system input-output data). 
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Neural networks do indeed provide an excellent framework for identification of nonlinear 

systems (see the seminal work of Narendra and Parthasarathy [65]). 

All these properties make neural networks a promising tool for applications as diverse 

as feature extraction, pattern recognition, clustering, classification, information 

integration, and as mentioned above in system identification, which all can effectively be 

applied for fault diagnosis and health monitoring. As a result, neural networks have been 

applied to fault diagnosis in different ways. In the following, we will review three of the 

most commonly used neural network (NN)-based approaches to fault diagnosis. 

I) Neural Network-based Pattern Recognition Approach to Fault Diagnosis: In 

pattern recognition approaches, neural networks are used mainly for feature 

classification. In other words, the neural network is only used as & fault classifier. For 

example, in Li et al. [109] the bearing vibration frequency features and time-domain 

characteristics are applied to a neural network to build an automatic motor bearing fault 

diagnosis machine. In these applications, neural networks are merely used to examine the 

possibility of a fault or abnormal features in system measurements and give a fault 

classification signal to declare the health state of the system. This approach of using only 

system output measurements produces valid fault diagnosis results mainly for static 

systems or steady-state processes. However, this is not usually the case for fault diagnosis 

of dynamic systems (especially nonlinear ones), where a change in system inputs can also 

affect certain features of system outputs. Therefore, the NN-based pattern recognition 

approach to fault diagnosis of nonlinear dynamic systems can generate incorrect fault 

information while only the system inputs have been changed. This problem has been 

resolved by the following second approach to NN-based fault diagnosis. 
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II) Neural Network-based Residual Generation Decision-Making Scheme: This NN-

based diagnostic scheme was initially proposed by Patton et al. [110]. In this scheme, 

depicted in Figure 2-7, neural networks are utilized at two stages: residual generation and 

decision-making (for fault isolation). At residual generation stage, neural networks are 

used as prediction models. An important feature of a neural network-based prediction 

model is that it will automatically "learn" the nonlinear system dynamics during training 

process made over several training cycles, with training data coming from historical 

input-output data of the system. Neural network-based prediction models have potential 

advantages over traditional prediction and estimation methods, including powerful 

nonlinear mapping properties, noise tolerance, self-learning and self-adapting, and 

parallel processing capabilities. 

Various NN-based nonlinear system identification architectures can be used as 

prediction model at residual generation stage. Three widely used architectures include 

nonlinear autoregressive exogenous (NARX) model neural networks, recurrent neural 

networks, and dynamic neural networks, as shown in Figure 2-7. These architectures 

differ in terms of the way dynamics has been introduced into the network architecture. In 

the following, we will briefly review the literature on NN-based identification of 

nonlinear dynamic systems. 

A large body of literature has been dedicated to the identification of nonlinear 

dynamic systems using neural networks. These efforts are justified by the following four 

important features of neural networks, namely (i) their nonlinear characteristics that make 

them suitable for dealing with nonlinear systems, (ii) their parallel and pipeline 

processing characteristics that allow them to perform computations more efficiently, (iii) 
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their self-learning and self-adapting characteristics that are ideal for adapting to different 

environmental conditions, and (iv) their tolerance to noise. 
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Figure 2-7. Two-stage scheme for neural network-based fault detection and isolation. 

One may classify NN-based nonlinear dynamic system identification schemes into 

four main categories. The first category utilizes tapped delay lines (TDL) along with a 

static neural network in its structure. The TDLs are used to introduce dynamics into the 

network by generating delayed inputs and outputs of the system that are then fed to a 

static network as the regressor vector. The network then performs a static nonlinear map 

on this regressor vector so that the desired output is obtained. This model is called 

nonlinear autoregressive exogenous (NARX) model. For further details, refer to Narendra 

and Parthasarathy [65]. 
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The second category is recurrent neural networks. In this approach, a dynamic input-

output representation is constructed using a recurrent structure. This method has been 

investigated in Funahashi andNakamura [111], and Ku and Lee [112]. More specifically, 

Funahashi and Nakamura [111] proved that the proposed recurrent neural network is 

capable of identifying any nonlinear dynamic system provided that the initial states of the 

network are chosen appropriately with respect to the initial conditions of the system. 

The third category is embedded dynamic neural networks. The embedded dynamic 

neural networks are constructed by utilizing dynamic neurons whose model is different 

from that of static neurons. In the former, one or more dynamic elements are utilized to 

obtain a specific dynamical input-output map. Several dynamic neuron structures have 

been reported in the literature. Atiya and Parlos [113] introduced a spatio-temporal 

neuron in which the conventional weight multiplication operation was replaced by a 

linear filtering (an all zero filter) operation. Gamma neuron model was developed by 

Principe and Motter [114] for identification of nonlinear systems. The structure of the 

Gamma model is similar to the tapped delay line structure but instead of using simple 

shift elements in the line, a first order linear filter is utilized to generate a dynamic input-

output map. Yazdizadeh and Khorasani [115] introduced an embedded dynamic neural 

network in which adaptive linear filters are augmented before the NN's hidden-layer 

activation functions in order to generate a dynamic input-output map. In this network, 

learning takes place by adapting both the embedded linear filter parameters and the 

neural network weights. The well-known time delay neural network (TDNN) was first 

introduced by Waibel et al. [116] for phoneme recognition. In TDNN, each weight is 

associated with a delay. The adaptive version of TDNN was introduced by Yazdizadeh 
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[117] for identifying two classes of nonlinear dynamic systems denoted as "the first" and 

"the fourth" class of nonlinear systems by Narendra and Parthasarathy [65]. 

The fourth category of dynamic neural identifiers, which is proposed by Abdollahi et 

al. [118], consists of a feed-forward static neural network architecture cascaded/followed 

by a fixed stable linear filter. During the training/learning process, neural network 

weights comprise the only adaptive parameters of the proposed dynamic neural identifier 

and the parameters of the stable linear filter remain unchanged. 

In the second stage of the NN-based fault diagnosis scheme, namely decision-making 

stage, a neural network-based classifier is used to partition the residual vector to patterns 

corresponding to different system healthy and faulty situations. The NN-based classifier 

is trained to recognize complex features in residuals and then generates fault detection 

and isolation information. The training can take place in both supervised and 

unsupervised modes; however, supervised classifiers are generally more accurate. 

Nonetheless, they have a major disadvantage of requiring data from all possible fault 

situations for classifier training. A supervised NN-based classifier trained using only 

fault-free situations cannot be expected to perform well for faulty situations. 

Ill) Neural Network-based Multiple-Model Residual Generation and Classification: 

This NN-based fault diagnosis scheme, originally proposed by Patton et al. [27], follows 

the idea of multiple model-based FDI scheme described in Section 2.3.1.2, where the 

mathematical models have been replaced by parallel NN-based dynamic identifiers. This 

scheme, depicted in Figure 2-8, also consists of two stages: NN-based multiple-model 

residual generation and isolation decision-making. In the former stage, each fault model 

in the residual generation block is a dynamic neural network that identifies a class of 
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system behavior. The dynamic neural identifiers that were discussed in the previous NN-

based fault diagnosis scheme are equivalently applicable to in here. The major difference 

is that, as opposed to residual generation decision-making scheme, the NN-based 

multiple-model scheme requires data from all healthy and faulty situations at residual 

generation stage in order to be able to learn all classes of system behaviour. This can be 

considered as one of the main drawbacks of the NN-based multiple-model approach. 
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Figure 2-8. A generic neural network-based multiple-model fault detection and isolation scheme. 

In the isolation decision making stage, the main task is to classify the generated 

residuals into a number of distinguishable patterns corresponding to different healthy as 

well as faulty situations. Thus, another neural network is used for this purpose based on 

the classification capability of neural networks. Once again, various NN-based classifier 

architectures and algorithms can be utilized at this stage. These include multi-layer 
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perceptron (MLP) network, radial basis function (RBF) network, support vector machines 

(SVM), probabilistic neural networks (PNN), and fuzzy neural networks for supervised 

classification; and competitive neural networks (e.g., Kohonen network, self-organizing 

maps (SOM)), and adaptive resonance theory (ART) networks (i.e., ART-11, fuzzy-ART) 

for unsupervised classification. 

The above-mentioned Cl-based diagnostic methods use either qualitative or 

quantitative information about a system in order to achieve fault diagnosis. Both 

methodologies have been successfully applied to fault diagnosis of various engineering 

systems; however, integrating both quantitative and qualitative information can greatly 

enhance the diagnostic system performance and robustness. Such diagnostic systems are 

collectively called integrated computational intelligence-based fault diagnosis systems. 

There are basically two main ideas within the integrated Cl-based framework. One is to 

generate residuals using NN-based methods and then allocate the decision-making (or 

isolation decision-making) process to a fuzzy-logic inference engine. This approach 

allows system operators to describe the system behaviour or the fault-symptom 

relationship with simple if-then rules. 

The second integrated Cl-based diagnostic concept, depicted in Figure 2-9 from Chen 

and Patton [24], revolves around using neural networks for two main purposes: (i) 

residual generation using quantitative historical input-output data of the system, and (ii) 

learning (or determining) from quantitative information of the system the parameters of 

the fuzzy model of the system (i.e., the fuzzy "if-then" rules qualitatively describing the 

system behaviour). This integration of quantitative and qualitative knowledge of the 

system is accomplished through a neuro-fuzzy system (or a fuzzy neural network) that 
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makes it feasible to combine the learning ability of neural networks with the explicit 

knowledge representation of fuzzy logic. According to Patton et al. [27], a potential way 

of implementing a neuro-fuzzy system is to use B-Spline neural networks. For further 

information on neurofuzzy modeling, refer to Brown and Harris [119]. 
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Figure 2-9. A conceptual structure of the integrated CI-based fault diagnosis [24]. 

Moreover, a trained neural network can be used to evaluate the reliability of 

information provided by either quantitative or qualitative methods and decide which has 

to be accordingly weighted in the information fusion, as depicted in Figure 2-9. 

2.4 Methodology Developed in This Thesis: Hybrid Approach to FDII 

The approach proposed in this thesis is essentially a hybrid approach to fault diagnosis. 

More precisely, the proposed fault diagnosis methodology simultaneously exploits both 

the a priori mathematical model information of the system and the nonlinear 

approximation and adaptation capability of neural networks. Specifically, mathematical 

model of the system is used as a basis for fault modeling and isolation, and the capability 

of neural networks in adaptive nonlinear function approximation is used as a basis for on

line fault severity identification. 
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Only a few fault diagnosis methodologies exist in the literature, which simultaneously 

take advantage of mathematical model of a system and exclusive capabilities of 

computational intelligence techniques, especially neural networks, in a hybrid 

framework. For example, Alessandri [69] proposed a hybrid approach to fault detection 

in nonlinear systems. In his work, fault detection and isolation is accomplished by means 

of a bank of estimators, which provide estimates of parameters that describe actuator, 

plant, and sensor faults. These estimators, also called finite-memory filters, perform 

according to a receding-horizon strategy and are designed using nominal mathematical 

model of the system and the models of the failures. The problem of designing such 

estimators for general nonlinear systems is solved by searching for optimal estimation 

functions. These functions are approximated by feedforward neural networks and the 

problem is reduced to finding the optimal neural weights, hence the name finite-memory 

neural filters. The learning process of the neural filters is split into two phases: an off-line 

initialization phase using any possible " a priori" knowledge on the statistics of the 

random variables affecting the system states, and an on-line training phase for on-line 

optimization of neural weights. 

In another example of hybrid approach to diagnostics, Xiaodong et al. [120] 

presented a robust fault detection and isolation scheme for abrupt and incipient faults in 

nonlinear uncertain dynamic systems. The diagnostic architecture proposed therein 

consists of a bank of N+J nonlinear adaptive estimators, where N is the number of 

potential faults that may affect the nonlinear system. One of the nonlinear adaptive 

estimators is the fault detection and approximation estimator (FDAE) used to detect 

faults. The remaining ones are fault isolation estimators (FIEs) that are used for isolation 
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purposes only after a fault has been detected. Under normal operating conditions (without 

faults), the FDAE is the only estimator monitoring the system. Once a fault is detected, 

the bank of FIEs is activated and the FDAE adopts the mode of approximating the fault 

function. The nominal mathematical model of the system is explicitly used for designing 

both FDAE and FIEs. Furthermore, a key component of FDAE is an online 

approximator, which, in presence of a fault, provides the adaptive structure for 

approximating online the unknown nonlinear fault function. This is where the extreme 

capability of neural networks in adaptively representing nonlinear multivariable functions 

is employed to implement the online approximator of FDAE. 

Very recently, Talebi and Khorasani [121] presented a hybrid intelligent fault 

detection and isolation scheme for a general nonlinear system using a neural network-

based observer. The proposed NN-based observer employs nominal mathematical model 

of the system in conjunction with two recurrent neural networks, which are used to 

identify general unknown actuator and sensor faults. The distinct advantage of their 

method is that, unlike many previous methods in the literature, it does not rely on the 

availability of full state measurements. 

The above works, however, either have not addressed the important problem of fault 

severity estimation (or fault identification) or have addressed it in a way that is not of use 

to fault prognosis and consequently condition-based maintenance (CBM). More 

precisely, the approach proposed by Alessandri [69] is only a fault detection and isolation 

method, leaving fault identification problem unsolved. On the other hand, the approaches 

proposed by Xiaodong et al. [120], and Talebi and Khorasani [121] estimate/identify the 

fault function that represents the overall impact of faults on system states. Though 
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estimating this overall impact is often sufficient for fault accommodation (and thus 

achieving fault tolerant control) and is also useful for identifying actuator faults 

(especially, static actuators or actuators with negligible dynamics), it is not appropriate 

for fault prognosis and CBM of system components. The reason is that it is either 

impossible or extremely difficult to obtain fault trend information for a specific system 

component from the aforementioned fault function estimate. 

The hybrid fault diagnosis approach presented in this thesis, however, is able to 

detect, isolate, and identify the severity of faults in components of a general nonlinear 

system within a unified, integrated framework. This is achieved through the use of a bank 

of parameterized fault models and a corresponding bank of adaptive neural parameter 

estimators (NPEs) to estimate fault parameter (FP) vector and thus fault severities. The 

nominal mathematical model of the system is used in both PFM bank and NPE design, 

and neural networks are used in NPE design; hence being a hybrid approach to fault 

diagnosis. 

Finally, in order to achieve FDII under partial-state measurement, a separate 

nonlinear observer is designed to continuously estimate system's states from inputs and 

measurements even in presence of faults in system components. We call such an observer 

a fault-tolerant observer (FTO) or a fault tolerant state estimator (FTSE). To the best of 

our knowledge, the FTO terminology proposed in this thesis appears for the first time in 

the literature. A similar concept of fault tolerance in state estimation has been 

investigated in the literature under the unknown input observer (UIO) terminology. 

However, the UIOs have been developed and employed in the literature as a means to 

make fault diagnosis algorithms robust with respect to unknown uncertainties such as 

74 



modeling errors and external disturbances. In other words, instead of faults the modeling 

errors and external disturbances are modeled as unknown inputs and the UIOs are 

designed in order to decouple the state estimates from these uncertainties. 

The FTSE method proposed in this thesis is a Kalman filter structure preserving 

neural state estimator (NSE). It is a hybrid approach to nonlinear filtering, since it utilizes 

both mathematical model of the system and the adaptive nonlinear function 

approximation capability of neural networks. Chapter 4 discusses, in details, the proposed 

NSE and its integration with the proposed FDII method in order to achieve fault 

diagnosis under partial state measurement. 

2.5 Robustness of FDI to Uncertainties 

Model-based fault diagnosis (FD) approaches rely on the key assumption that a perfectly 

accurate and complete mathematical model of the system under supervision is available. 

However, such assumption is usually not valid in practice since it is difficult to obtain the 

necessary modeling accuracy required for construction of reliable analytical redundancy-

based FD architectures. Unavoidable modeling and environmental uncertainties that arise 

due to modeling errors, parameter variations, time variations, unknown external 

disturbances, and measurement noise deteriorate the performance of the FD schemes by 

causing false alarms. This performance deterioration can happen to an extent that makes 

the model-based FD scheme totally useless. This necessitates the development of FD 

algorithms, which have the ability to reliably detect, isolate, as well as identify faults and 

failures in presence various sources of uncertainties. Such algorithms are referred to as 

robust fault diagnosis algorithms. 
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To overcome the difficulties introduced by modeling and environmental uncertainties, 

a model-based FDI1 has to be made robust, i.e. insensitive to uncertainty [24]. However, 

sometimes, merely reducing the sensitivity to uncertainties does not solve the problem 

because such a sensitivity reduction may be undesirably accompanied by a reduction of 

sensitivity to faults. Thus, a more meaningful formulation of the robust FD11 problem is 

to increase the robustness to various sources of uncertainty without losing sensitivity to 

faults. In other words, an FDI1 scheme designed to provide satisfactory sensitivity to 

faults, associated with the necessary robustness with respect to modeling and 

environmental uncertainties, is called a robust FDIscheme. 

The importance of robustness in model-based FDI has been widely recognized by 

both academia and industry. More specifically, robust FDI for linear systems has been 

extensively investigated by many researchers during the last two to three decades. As a 

result, a number of methods have been proposed to tackle the linear robust FDI problem 

[24] such as the UIO method [122], eigen-structure assignment [123], and optimally 

robust parity relation methods [124]. 

Traditionally, the robust FDI problem for nonlinear dynamic systems has been 

approached in two steps. The model is first linearized around an operating point, and then 

robust linear FDI techniques are applied to generate residuals that are insensitive to 

uncertainties but responsive to faults. This method only works well when the 

linearization does not cause a large mismatch between linear and nonlinear models and 

the system operates close to the specified operating point. As another alternative to robust 

nonlinear FDI, one might think of just simply increasing the threshold levels of the 

residuals generated by the nonlinear FDI scheme and thus reducing the number of false 
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alarms. However, the increase in the threshold levels will at the same time decrease the 

fault sensitivity of the FDI scheme. 

This imposes a tradeoff between reducing the number of false alarms and the number 

of missed alarms (i.e., missing to detect the presence of an actually occurred fault). A 

reliable solution to such a trade-off problem is not trivial in practice especially due to the 

nonlinear behavior of the system dynamics and the presence of different sources of 

unknown uncertainties. Therefore, there is a high demand for development of techniques 

that make the nonlinear FDII problem robust to modeling and environmental 

uncertainties to remarkably reduce the number of false alarms when the nonlinear system 

is under healthy mode of operation, whilst reliably diagnosing faults or failures. 

However, the problem of robust FDII for nonlinear systems has not been investigated 

as extensively as it linear counterpart. In particular, very few works have been reported in 

the literature on robust fault isolation and severity identification - rather than just 

detection - for nonlinear systems. Some examples of robust fault detection and isolation 

(but not identification) techniques for uncertain nonlinear systems can be found in the 

works of Xiaodong et al. [120], Talebi and Khorasani [121], Chen and Saif [87], and Wu 

andSaif[125]. 

In this thesis, we address the robustness of FDII with respect to external disturbances 

and particularly measurement noise. Robustness of FDII to measurement noise is of 

utmost importance especially in applications with low SNR. Robustness in the analytical 

redundancy-based framework to FDII is, in general, achieved by either making the 

residual generation process or the residual evaluation process insensitive to 

uncertainties. In this thesis, we adopt the former approach by reconfiguring the 
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architecture of the proposed FDI] scheme from series-parallel into parallel. The 

robustness of the parallel FDII scheme will be further explained in Chapter 3 and 

demonstrated in Chapter 5. 

2.6 Conclusions 

In this chapter, the problem of fault detection, isolation, and identification (FDII) in 

nonlinear systems was defined and formulated. Potential sources of faults in an open-loop 

system were also introduced including actuator, sensor, and component faults and some 

common types of faults in them were identified. Simple mathematical models of common 

types of sensor and actuator faults were also presented. 

Based upon the formal definition of the FDII problem, various analytical redundancy-

based fault diagnosis approaches and methodologies in the literature were reviewed. 

Based on the a priori source of information on the system being used for diagnostic 

purposes, these approaches were divided into two categories, namely model-based and 

computational intelligence (Cl)-based. While the model-based approaches exploit the 

mathematical model of the system for FDII design, the Cl-based approaches use 

quantitative data or qualitative information (i.e., if-then) or a combination of both. 

The literature on model-based approaches to fault diagnosis was reviewed separately 

for the three tasks of detection, isolation and identification. The reason for this individual 

investigation was said to be the different levels of complexity associated with each task 

and the varying number of contributions that have been within each domain. Specifically, 

model-based fault isolation methods were very comprehensively reviewed and analyzed 

in terms of the concepts behind each method and some examples of FDI techniques 

developed based upon each concept were also mentioned and analyzed. Even though 
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being less investigated and researched, some recent efforts in model-based fault 

identification or severity estimation were also reviewed. 

For the Cl-based diagnostic approaches, the literature survey was not separated based 

on the specific task in the FD11 problem, since such a distinction can hardly be made 

within the Cl-based fault diagnosis domain. Instead, some extensively used concepts and 

schemes to achieve fault diagnosis without having a mathematical model of the system 

were introduced. More precisely, methods that use quantitative data of the system for 

residual generation based on the learning capability of neural networks were extensively 

reviewed. Diagnostic methodologies that use qualitative information of the system 

(mainly in the form of if-then rules) were also explored, which are mostly based on fuzzy 

logic theory. Furthermore, a general scheme for integrating both quantitative data and 

qualitative information of the system for fault diagnosis purposes was proposed. It was 

shown that this integrated scheme consists of various techniques from computational 

intelligence domain such as neural networks, fuzzy systems, and neuro-fuzzy systems. 

Eventually, the proposed approach to fault diagnosis in this thesis was reviewed, 

which is essentially a hybrid approach to FDII. It is called hybrid in the sense that both a 

priori mathematical model information of the system and the adaptive nonlinear function 

approximation capability of neural networks are simultaneously used to accomplish FDII. 

It was mentioned that the hybrid approach to fault diagnosis is relatively new to the 

research community and actually few works have been reported in the literature 

following this approach (which were also reviewed in this chapter). However, it is 

certainly a very promising approach and sounds to be the inevitable choice of future in 

the fault diagnosis domain. 
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Chapter 3: 

3 Proposed FDII for Nonlinear Systems with Full-State 

Measurement 

In this thesis, a new integrated solution to the problem of FDII for nonlinear systems is 

proposed. The proposed fault diagnosis methodology benefits from both a priori 

mathematical model information of the system, and the nonlinear function approximation 

and adaptation capability of neural networks in a hybrid framework. More specifically, 

mathematical model of the system is used to construct a bank of parameterized fault 

models, which enables fault isolation. 

As mentioned earlier in Chapter 2, the idea of using a bank of 

estimators/observers/models for fault detection and isolation has been previously pursued 

in the literature by many researchers (see, for example, Mehra et al. [92], Zhang and Xiao 

[93], Alessandri [69], Tudoroiu and Khorasani [94], and Tudoroiu et al [84] in 

chronological order). However, they have neither addressed the problem of fault severity 

identification nor performed a comprehensive robustness analysis with respect to 

measurement noise, which considerably affects the performance of FDII algorithms in 

real-world applications. 

Once a bank of PFMs is constructed, a corresponding bank of neural parameter 

estimators (NPE) is designed to estimate fault parameters (FPs) and thus accomplish fault 
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identification. Therefore, even in terms of methodology, the proposed hybrid fault 

diagnosis approach can be viewed as an integration of multiple-model (MM) method and 

parameter estimation method, two well-known fault diagnosis methods that were both 

extensively reviewed in Chapters 1 and 2. 

Furthermore, two NPE structures, namely series-parallel and parallel, are proposed 

with their respective fault isolation policies, where each structure shows an exclusive set 

of desirable properties. For example, the proposed parallel scheme is extremely robust to 

measurement noise, hence making it suitable for low SNR applications. On the other 

hand, the series-parallel scheme displays very fast convergence rates desirable for 

systems requiring short delay in fault diagnosis. Thus, the choice of the appropriate FDI 

structure really depends on the specifications and requirements of the specific problem at 

hand. 

The robust parallel FDII scheme proposed in this thesis is an entirely novel 

development in the literature. On the contrary, Alessandri [69] and Sobhani-Tehrani et al. 

[70], have previously developed FDI techniques similar to the series-parallel scheme. 

However, the series-parallel scheme proposed in this thesis possesses the following three 

novelties: (i) more solid fault isolation results due to the first-time use of a bank of single-

parameter fault models (equation (3-7) in Section 3.1) extracted from the multi

parameter fault model (equation (3-3) Section 3.1) employed by Alessandri [69], (ii) 

remarkably simpler neural network architecture and adaptation laws than those employed 

by Alessandri [69] and Sobhani-Tehrani et al. [70], which makes the proposed 

methodology more suitable for real-time implementation, and (iii) fault identification 
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capability - the simulation results presented in Alessandri [69] do not demonstrate such 

capability. 

The series-parallel and robust parallel FD1I schemes, presented in this chapter, are 

developed based on the availability of full state measurements. Nonetheless, the 

extension of the two FDII schemes to partial-state measurement conditions has also been 

partially achieved through the use of a hybrid fault tolerant state estimator, which is the 

subject of Chapter 4. 

In this thesis, we make the following assumptions regarding the system states and the 

occurrence of faults in the system, which comprise the basis for fault diagnosis design, 

development, and verification: 

Assumption (i). The control input signals and the state vector remain bounded prior to 

and after the occurrence of a fault. 

Assumption (ii). The faults do not occur at the same time; i.e., at each instant of time 

only one fault may occur in the system. This is a very reasonable assumption because the 

chance of two faults taking place at the same time is highly unlikely. Note that this does 

not exclude existence of concurrent faults in the system. More precisely, two faults may 

overlap each other. Since there is always some delay in fault diagnosis, a more practical 

assumption should be as follows: once a fault has occurred in the system, a second fault 

won't occur in a time period equal to the time-delay in FDII after the first fault 

occurrence. Although the probability of such an assumption not being true is not zero but 

is infinitely small due to the very short duration of fault diagnosis delay relative to the life 

time of the system or component being monitored. 
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Assumption (Hi). The time variation of fault severities is "slow" compared to the 

dynamics of the states of the system. The rationale behind this assumption will be 

clarified in Section 3.2. Yet, this is a reasonable assumption for most engineering 

systems. Because for abrupt faults, once they occur it is not likely that their severity 

changes over time and for incipient faults, since they occur due to wear and tear of 

system components, the fault growth rates are often much slower than system dynamics. 

3.1 Fault Modeling and Health Indicator Parameters 

Generally speaking, different models of a faulty system may be constructed. 

Consequently, a number of perspectives and concepts on fault modeling have been 

developed by different researchers in the field. For example, Patton et al. [27] and 

Korbicz et al. [126] developed computational intelligence (Cl)-based, data-driven models 

of faulty system. They used dynamic neural networks to identify full system dynamics 

including nominal and faulty dynamics, under different fault scenarios. The major 

drawback of their fault modeling approach is that data from different fault scenarios is 

required to train the Cl-based models, while such data does not usually exist in practice. 

One way to resolve this problem is to inject faults into a simulation model of the system 

and generate faulty data using simulations. However, this applies only to situations where 

either a high-fidelity simulator of the system is available or is easy and cost-effective to 

develop. 

Mathematical modeling techniques have also been extensively applied to model faults 

and/or faulty systems. In Section 2.1, simple mathematical models of sensor and actuator 

faults/failures were presented in equations (2-3), (2-4), (2-5), and (2-6), respectively. 

However, as discussed in Gertler [127], most practical faults are nonlinear functions of 
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system states and inputs. For example, the magnitude of a thermal system or a chemical 

process is, in general, a nonlinear function of the pressure and the temperature. 

Consequently, more general mathematical formulations of fault models have also been 

proposed in the literature. For example, Xiaodong el al. [120] describe a general 

multivariate nonlinear dynamic system, with full-state measurement, by the following 

differential equation: 

x = f(x, u)+n(x, u, t) + B(t - T0 }/>(x, w) 

y = x 

where jce9?"is the state vector of the system, we9Tis the control input vector, 

/ , 0> :9Tx9r ->9T, and n :9T X 9 T X 9 T -»9t" are smooth vector fields, and 

B(t-T0) is a matrix function representing the time profiles of the faults, where T0 

denotes the unknown fault occurrence time. The vector fields f,n,and ft represent the 

dynamics of the nominal model, the modeling uncertainty (including external 

disturbances as well as modeling errors), and the change in the system dynamics due to a 

fault, respectively. Thus, as can be seen in equation (3-1), faults have been modeled as an 

unknown nonlinear function of the system states and inputs that affects the nominal 

system dynamics. More precisely, from a qualitative viewpoint, the term B(t-T0)<fi(x,u) 

represents the deviation in the system dynamics due to a fault. 

The matrix B(t-T0) characterizes the time profile of a fault that occurs some unknown 

timero, and is defined in Xiaodong et al. [120] as follows: 

B{t-T0)=diag[B1(t~T0\...,Bn{t-T0)] 

where Bf : 9? -> 91 is a function representing the time profile of a fault affecting the i 

state equation, for / = 1,2, ...,n; and modeled as follows: 
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0 Vf < T0 

B,{?-T0) = \ U_ ro) 
{\-e

 n "' V /> r 0 

where the scalar Xt > 0 denotes the unknown fault evolution rate. While small values of 

At characterize slowly developing or incipient faults, large values of Ar make function 

Bt approach a step function and thus model abrupt faults. 

The model in equation (3-1) allows characterization of both additive and 

multiplicative faults as well as more general nonlinear faults. However, it represents only 

the overall impact of faults on system states, which, even though being useful for fault 

accommodation purposes, is of limited use for fault prognosis and CBM of system 

components. The reason is that, in general, it is very difficult to establish a one-to-one 

correspondence between the nonlinear fault function ^ and the health state of the actual 

physical components - excluding actuators - of the system. Indeed, the proposed model is 

useful for fault severity estimation and prognosis of system actuators. For example, the 

model used by De Persis and Isidori [100] (given in equation 2-13), which is very 

suitable for isolation as well as identification of actuator faults, is actually a special case 

of the model in equation (3-1) with Bt being a step function and the nonlinear function ^ 

being a superposition of bilinear terms. 

Talebi and Khorasani [121] have recently generalized the model in equation (3-1) to 

the case of sensor faults and extended it to systems with partial state measurement as 

follows: 

ix = f{x,u)+T]x(x,u,t) + <f>a(x,u,t) 

\y = Cx + T](x,u,t) + 0s(
x>u>t) 
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where nx :9T x9T xSR* —>9T represents the plant unmodeled dynamics and 

disturbances, 77 :9?" x9T x9?+ ->9T" is the sensor modeling uncertainties and noise, 

and <f>a : 9 T x 9 T x 9 T ->9T is the unknown actuator faults, £ :9T x9T x9T ->SRm 

represents the unknown sensor faults. Nonetheless, although being more general, it has 

the same disadvantage of the model in equation (3-1) for fault identification of system 

components (other than sensors and actuators). 

In this thesis, following the pioneering work of Isermann [60] on fault diagnosis of 

linear systems and more recent work of Alessandri [69] on fault detection and isolation of 

nonlinear systems, we have assumed that the system component faults are reflected in the 

physical system parameters. Some examples of these physical parameters include 

friction, torque gain, damper coefficient, etc. Furthermore, we use the notion of fault 

parameters (FP), which was first introduced in Alessandri [69], to parameterize the a 

priori known mathematical model of the system with unknown parameters that actually 

represent faults in system components. 

We assume that the occurrence of faults in the system can be represented by changes 

in the FPs that affect, in one way or the other, the actual physical parameters of the 

mathematical model of the system. In other words, the FPs shall be defined in a way that 

a one-to-one correspondence can be established between their values and the health status 

of the physical system, components. Consequently, the faulty system can be described by 

the following discrete-time parameterized nonlinear fault model, called multi-parameter 

fault model (the discrete-time model of the system is used, since the proposed hybrid 

FDII algorithm is developed in a discrete-time framework): 
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0 f **+i = f(xk>"*,«*)+ r f e )w k 
Q : i , / \ (3-3) 

where the vector fields / : 9 T x9T x9?+ and /i: 9?" —> 5Hm respectively represent the 

nominal system dynamics and output measurement channel; k is the discrete time-

s t ep ;^ e 9? (or ak :9?+ -> SR1) denotes the time-dependent fault parameter (FP) 

vector containing L elements; wt and vk denote external disturbances and measurement 

noise, respectively; and the nonlinear function T{xk) represents the generally state-

dependent channel through which the external disturbances are applied to the system. 

Since we are not investigating the robustness of FDII to modeling errors, we have not 

incorporated a term corresponding to modeling errors in equation (3-3). It should be 

noted that under full-state measurement assumption of this chapter, the nonlinear vector-

valued function h becomes essentially an nxn identity matrix. 

Furthermore, ak = aH implies the absence of faults in the system, i.e., healthy mode 

of operation. The value of CCH depends on the way that the FP vector affects the physical 

system parameters in equation (3-3); usually being either additive or multiplicative. The 

representation adopted in this thesis is the additive form, hence making ctH = [0\Lxi. 

It should be noted that the time-dependent fault parameter vector ak can also, in 

general, be a function of system states and inputs. However, in this thesis, without loss of 

generality we assume that it is only a function of time. Indeed, it can be easily shown that 

the model in equation (3-3) is equivalent to the state- and input-dependent fault function 

models given in equations (3-1) and (3-2). 
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Consider the model in equation (3-3). Let us add and subtract to and from the right-

hand side of the state equation the nominal state dynamics of the system with ak =aH; 

i.e., 

0 \xk+l= f(xk,uk,ak)+T(xk)wk+ f(xk,uk,aH)-f(xk,uk,aH) 

% , = * ( * , ) - , <3"4) 

By re-arranging the terms, we have: 

~ lxk+i=f{xkiuk,aH)+r(xk)wk+f(xk,uk,ak)-f(xk,uk,aH) 
0:U=*W+v, (3"5) 

By replacing the term f(xk,uk,ak)-f(xk,uk,aH) with the function ^(x^w^c^) , we 

have: 

~ lXk+i = f(Xk, Uk >aH ) + T(Xk K + t(Xk >"*>«*) 
Q : 1 , / v (3-6) 

Neglecting the terms corresponding to the modeling errors in equations (3-1) and (3-2), 

one can easily see that they are equivalent to model in equation (3-6), especially that in 

absence of faults in the system (i.e., healthy operational mode of the system) we have: 

0(xk,uk,ak]a^^ =f(xk,uk,aH)-f{xk,uk,aH) = 0 

The fault model in equation (3-3), with output equation as yh —xk+vk due to full-state 

measurement assumption, enables us to state the problem of fault diagnosis for nonlinear 

systems in the form of an on-line nonlinear parameter estimation problem, where the 

unknown fault parameters (FPs) are being estimated using system inputs and 

measurements. If all of the system states were not available for measurement, then the 

fault diagnosis problem shall be stated as an on-line dual estimation (i.e., state and 

parameter estimation) problem. 
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Within the proposed fault diagnosis framework, fault detection can be accomplished 

by simply comparing the estimated FP vector against ocH . However, for fault isolation 

and fault severity estimation purposes, we propose a bank of parameter estimators where 

each estimator is designed based on a single-parameter fault model. 

Consider the multi-parameter fault model of equation (3-3) with L fault parameters. 

We extract L single-parameter fault models, Q,, / = 1,..., L, from model (3-3) as follows: 

^ \xM=f{xk^k,ak) + Y(xk)wk 
Q.rA ;i = \,...,L (3-7) 

A bank of L parameter estimators may then be designed based on each single-parameter 

fault model in equation (3-7), where the i'h parameter estimator will essentially estimate 

the ih fault parameter, namelya'k. It should be noted that the extraction of single-

parameter fault models from the multi-parameter fault model to enable fault isolation is 

unprecedented in the literature. 

3.2 FDII Using Parameter Estimation 

The formulation of the fault diagnosis problem presented in the previous section 

necessitates developing appropriate nonlinear parameter estimation techniques to 

accomplish FDII objectives. The use of parameter estimation approach for fault diagnosis 

has been previously reviewed on numerous occasions in the thesis. So, we focus on the 

nonlinear parameter estimation problem itself and very briefly review some of its 

potential solutions. 

The problem of parameter estimation, in its most general form, is defined as follows 

(with slight modification from Bar-Shalom et al. [91]): 
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The term parameter is used to designate a quantity (scalar or vector-valued) that is 

assumed to be time invariant. If it does change with time, it can be designated (with a 

slight abuse of language) as a 'lime-varying parameter," but its time variation must be 

"slow" compared to the state variables of a system. Then the problem of estimating a 

parameter/) is the following. Given the measurements 

yJ=G(j,uJ,wJ,p) j = h-,k (3-8) 

made in presence of the known exogenous (or control) inputs wy and unknown 

disturbances (noises) w., find a function of the k observations and control inputs 

£ t = P ( * , Z * ) (3-9) 

that estimates the value of p in some sense, where the measurements and observed 

exogenous (or known control) inputs from the current time-step k all the way to the initial 

moment, are denoted compactly as 

Z,*=k>",t, (3-10) 

The function P in equation (3-9) is called the parameter estimator function. The 

value of this function pk is the parameter estimate. The vector-valued function G is the 

observation function, which, in case of a general nonlinear dynamic system (given in 

equation (2-1)) with full-state measurement becomes equivalent to the system's state 

dynamics (i.e., the vector-valued function/in equation (3-3)). It is thus the linearity or 

nonlinearity of the function G with respect to the parameter p (or equivalently, the 

function/in equation (3-3), with full-state measurement, with respect to FP vectorah) 

that determines the linearity or nonlinearity of the parameter estimation problem. 
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The above definition justifies the necessity of the Assumption (Hi) of FDII, stated at 

the beginning of this chapter, for the FP estimation problem to be solvable. Furthermore, 

the above definition suggests that the solution to the problem of estimating the FP vector 

ak - and thus solving the FDII problem - is a parameter estimator function A as a 

function of system observations/measurements, control inputs, and time, whose value at 

each instant of time determines the FP estimate ak; i.e., 

at=Affi,U!,k) (3-11) 

where Yt
k = {yy }*_ and U* = {w; }* are respectively the system measurements and 

control inputs from the initial moment to the current time-step k. The estimator function 

A is called fault parameter function (FPF) throughout this thesis. It should be noted that 

the FPF in equation (3-11) requires the entire past observed data. Such a formulation of 

the parameter estimator function is useful only for finite-horizon problems such as finite-

horizon tracking problem. However, it is impractical and computationally unfeasible for 

infinite-horizon problems such as online monitoring and fault diagnosis, since the 

dimension of the input space of the estimator function increases linearly in time. 

Therefore, we need to limit the memory of the estimator to a fixed, limited number of 

previous measurements and control inputs. Here, at each time-step k, we take the 

measurements and control signals from only the previous time-step k-\. Thus, we have: 

a*=A(y t_„« t_1 ,*) (3-12) 

There are two fundamental approaches one can use for estimating a parameter: 
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(i) Nonparametric (or distribution free) approaches: There is a true 

unknown value p0 for the parameter, which does not obey a specific 

distribution. These are also called the non-Bayesian or Fisher approaches, 

(ii) Parametric random approaches: The parameter is a realization of a 

random variable with an a priori known probability distribution function 

(PDF). These are also called Bayesian approaches. 

However, the FP vector does not have any a priori known PDF because faults in a 

system, in general, do not occur according to a specific distribution (or stochastic model). 

Therefore, the problem of nonlinear FP vector estimation has to be solved using a non-

parametric or non-Bayesian approach. 

3.2.1 Conventional Linear and Nonlinear Parameter Estimation 

In this subsection, we will very briefly mention some of the conventional non-Bayesian 

parameter estimation methods applicable to both linear and nonlinear parameter 

estimation problems. For further details, refer to Bar-Shalom et al. [91] and Haykin [49]. 

These methods include: 

(a) Maximum Likelihood Estimator (MLE): This method maximizes the so-called 

likelihood function (LF) of the parameter, namely A2 (p) = P(z|/?), defined as the PDF of 

the measurements conditioned on the parameter; i.e., 

pML (Z) = arg max Az {p) = arg max p(zjJp) (3-13) 
p P 

where the LF is a measure of how "likely" a parameter value is given the obtained 

observations [91]. The likelihood function serves as a measure of the evidence from the 

data [91]. MLE has been extensively used for linear parameter estimation. The use of 
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MLE for nonlinear parameter estimation essentially entails solving a nonlinear 

optimization (maximization) problem, which cannot often be solved analytically and thus 

should be solved approximately. However, most conventional searching algorithms are 

likely to converge to local maxima. Nevertheless, the genetic algorithm (GA) poses as a 

good candidate for solving the nonlinear MLE problem, since it tends to find the globally 

optimal solution without being trapped at local minima. For example, Abutaleb [128] 

applied GA to MLE of the parameters of a nonlinear system in a noisy environment. For 

pure GA-based nonlinear parameter estimation, refer to Yao and Sethares [129]. 

Singer [130] proposed another approach to solving the nonlinear MLE problem 

through the use of Monte Carlo simulations; hence the name simulated maximum 

likelihood (SML). Nonetheless, both GA-based MLE and SML are computationally 

extensive, which makes them inappropriate for real-time, on-line FP vector estimation 

required to accomplish FDII of nonlinear systems. 

(b) Least Squares Estimator (LSE) [911: In equation (3-8), assume that the unknown 

disturbances (noises) appear in additive form; thus, 

yj=G(j,uJ,p)+wJ 7 = 1,...,* (3-14) 

Then, the LSE method minimizes the cumulative squared of the estimation error as a 

function of the parameter;?; i.e., 

p f . = a rgmin j£ |y , -Gij^pfl (3-15) 

If the function G is linear in p, then one has linear LS problem. Accordingly, a nonlinear 

function G results in the nonlinear LS problem. It should be emphasized that the LSE 
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coincides with the MLE if the measurement/process noises w. are independent and 

identically distributed zero-mean Gaussian random variables; i.e., Wj ~ N\p,a2) [91]. 

Once again, the use of cumulative error over the entire past observed data makes LSE 

inappropriate for infinite-horizon problems such as on-line FD1I. However, a useful 

feature of the LSE is that h can be rewritten in recursive form, which is useful for 

sequential, online processing. Recursive Least Squares (RLS) is commonly used for 

parameter estimation of linear systems (see Houacine [131]). For application of RLS to 

nonlinear systems, see Haupt et al. [132], where the authors have developed an optimal 

iterative algorithm for discrete nonlinear least-squares estimation. 

(c) Kalman Filter-based Estimation: The celebrated Kalman filter (KF) [49], rooted in 

the state-space representation of dynamical systems, provides an optimal (in the sense of 

minimum variance) recursive solution to the problem of parameter estimator under the 

hypotheses of Gaussian measurement and process noises, and the linearity of state and 

measurement equations. The KF is also capable of optimal dual estimation for linear 

systems, in which both the states of the dynamical system and its parameters are 

estimates simultaneously, given only noisy observations. It should be noted that the KF-

based parameter estimators are distribution-free (or non-parametric) only with respect to 

the unknown parameters that need to be estimated, but they all depend on the Gaussian 

distribution assumption of system states as well as process and measurement noise. 

Two extensions of the KF to nonlinear systems include the extended Kalman filter 

(EKF) and the unscented Kalman filter (UKF). For complete mathematical description of 

the EKF and the UKF algorithms, refer to Haykin [49]. The EKF is being extensively 

used as an industry standard technique for recursive parameter estimation, state 
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estimation, and dual estimation of nonlinear systems. However, it suffers from 

suboptimal performance and sometimes divergence due to errors introduced by "first-

order" approximation of the true nonlinear dynamics. Although "second-order' versions 

of the EKF exist, their increased implementation and computational complexity tend to 

prohibit their use. 

The UKF algorithm addresses the "first-order' approximation issue of the EKF 

through the use of unscented transformation (UT). The UT is a method for calculating 

the statistics of a random variable that undergoes a nonlinear transformation (Julier and 

Uhlmann [48]). From Julier et al. [133], it is known that UKF can predict the state 

estimate and error covariance to 4th order accuracy while the EKF only predicts with 

accuracy up to 2nd order for the state estimate and 4th order for the error covariance. 

Another advantage of the UKF is its ease of implementation. In contrast to the EKF, the 

UKF algorithm does not require calculation of the Jacobian matrices that could 

sometimes lead to implementation difficulties. 

Despite its clear advantages over the EKF, the UKF algorithm also possesses a major 

implementation difficulty. It has more number of parameters than the EKF, which makes 

the UKF relatively difficult to tune. This is due to the three extra parameters associated to 

the unscented transform. While some guidelines exist on how to choose these parameters, 

the optimal selection clearly depends on the specifics of the problem at hand, and is not 

fully understood [49]. 

Nevertheless, both the EKF and the UKF algorithms suffer from common limitations. 

Both algorithms make a Gaussian assumption on the probability density of the process 

and measurements noises and the state random variable. Although being often valid, a 
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Gaussian assumption will not suffice for certain problems and applications, and thus the 

UKF and the EKF cannot be applied with confidence. Moreover, the author's numerous 

experiences with both the EKF and the UKF in different state estimation and fault 

diagnosis applications has revealed that it is sometimes very time-consuming and 

difficult to optimally tune the two algorithms. Thus, one needs to resort to algorithms that 

are more powerful in dealing with nonlinearities and non-Gaussian situations, and are 

also easier to tune. It is strongly believed that neural networks provide such an alternative 

strategy that can resolve the above-mentioned limitations of KF-based algorithms. 

3.2.2 Neural Network-based Parameter Estimation 

To overcome the aforementioned limitations and/or shortcomings, we choose multi-layer 

feed-forward (static) neural networks for parameter estimation. The neural networks are 

a promising alternative to the conventional parameter estimation methods due to: (i) their 

universal function approximation property that allows approximating any continuous, 

multivariate nonlinear function to any desired degree of accuracy; (ii) their ability to 

approximate unknown nonlinear functions without any explicit specification of functional 

or distributional assumption (such as the Gaussian distribution assumption of KF-based 

methods) for the underlying model; and (iii) the availability of effective, well-studied, 

and well understood on-line adaptation (or weight optimization) algorithms, which make 

the adaptation algorithm fairly simple to tune. The neural weight adaptation algorithms 

are so well-established that even numerous modifications and enhancements to the basic 

algorithms have also been proposed in the literature. 

Consequently, in this thesis we develop neural parameter estimators (NPE) for 

adaptively estimating the fault parameter function (FPF) and thus to estimate the FP 
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vector. We propose two NPE schemes, namely "series-parallel" and "parallel" that differ 

mainly in their structure. These terminologies are borrowed from the system 

identification literature (see Narendra and Parthasarathy [65]). To accomplish fault 

isolation, we develop a bank of L NPEs, where each NPE in the bank is designed 

according to one of the L single-parameter fault models in equation (3-7). Hence, the ih 

NPE in the bank is responsible for estimating the ih fault parametera'k, for? = ],...,L. It 

should be noted, however, that the idea of developing a bank of NPEs is entirely 

independent from the NPE structure, being "series-parallel" or "parallel". Nonetheless, 

the fault isolation decision logic depends on the NPE structure being used, as will be 

shown in the following sections. 

3.3 FDII Using Series-Parallel Architecture of Neural Parameter 

Estimators 

Figure 3-1 depicts the structure of a bank of series-parallel NPEs designed and developed 

to simultaneously achieve the three objectives of fault detection, isolation, and fault 

severity estimation. As can be seen in this figure, residual signals/-/,/ = l,...,i and the FP 

estimates d'k,i = l,...,L comprise the outputs of the series-parallel scheme and the three 

tasks of FDII are achieved by examining all these quantities. Fault detection and isolation 

(FDI) decision logic of this scheme are presented in Section 3.3.2. 
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Figure 3-1. Series-Parallel scheme of the proposed hybrid FDII approach. 

The series-parallel structure is composed of two major subsystems: 1) the feed

forward (static) neural networks (FFNN) (i.e., the NPEs) utilized to adaptively 

approximate nonlinear FP estimation functions and 2) the nonlinear single-parameter 

fault models given in equation (3-7) utilized for state/output estimation (or prediction) 

based on FP estimates. Accordingly, at each time-step k, the following two set of 

calculations are performed associated with each NPE in the bank: 

1) Calculation of FP estimates: 

aL*=g&>Wi,Vi) ; i = ],...,L (3-16) 

and yk=bk-i uk-iY P-17) 
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where a'k_x k is the estimate of the i fault parameter at time k - 1 calculated at time k, 

W'k, Vk' are respectively the output and the hidden layer weight matrices of the ;,h NPE, 

yk is the input vector of all NPEs, and g is the nonlinear mapping implemented by a 

single hidden layer FFNN with linear activation functions for the neurons at the output 

layer and the nonlinear activation functions for the neurons at the hidden-layer. Thus, 

^KK)=Ko(riyk) 0-18) 

where a(.) is the activation function of the hidden-layer neurons that is usually set to be 

a sigmoidal function: 

< * > & ) = . A r ' - r 1 ( 3 ' 1 9 ) 

J 

where Vk\ is t he / 1 row of V[ and oji^'yk) is the y"lh element of ai^'yk). 

2) State/Output estimation (or prediction) based on FP estimates: In this step, the 

states and consequently the outputs of the system are estimated (or predicted) using the 

known part of the single-parameter fault models in equation (3-7) (i.e., without unknown 

external disturbances wk and measurement noise vk) and based on the FP vector estimate 

from step 1, namely ak_Xk. Hence, 

;i=l,...,L (3-20) 
?k = xk 

where xk_x — yk_i are the measured states of the system. 

99 



3.3.1 Weight Update Laws of the Series-Parallel Scheme 

The weights of NPEs are updated with the objective of minimizing the weighted L2 norm 

of the instantaneous output estimation error vector defined as: 

K=yk-yl ;i = h-,L 0-21) 

Thus, the objective function, at time-step k, of the /lh NPE is the instantaneous output 

error: 

k ^ I H I e =^y* Qy« (3-22) 

where Q e 91 "x" is the estimation error weight matrix. 

The weights of NPEs are updated using the well-known gradient descent (GD) algorithm: 

( r5/' ̂  
W' =W' - » ' ' * 

dWi 
( 

v k+i vk 'lv 

a , , , ; ' - i - , ' (3-23) 

where 7^ , ,^ >0;? = i,...,L are the learning rates. 

In order to precisely derive the weight update laws, let us define fori = \,...,L: 

"<k=Kyk (3-24) 

n<k=Ka{v'kyk) (3-25) 

Thus, the partial derivativesdJ'k/dWk ,dJ'k/dVk can be computed according to the 

following equations: 

a/; a/; dn<k 
— - * (3-26) 8Wk' dnet'Wt dWl 
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dJ'k _ dJ[ dn<k 

dV'k dnefVk dV'k 
(3-27) 

where 

dJ[ dJ[dy'kdy'k dx' dalhk „,.T dx[ ddj]k 

~ -yk Q^r, a • (3-28) 
$nKh tyk dK dx'k

 d(*Uk dnet'», 3d' dnet' 
"k 

dJ[ 8J'k 8y'k dy'k 8x[ da'k_]k ^ 8x'k da 

dnet[k 8y'k dy'k 8x'k dd'k_lk dnet'^ k dd'k_]k dnet^ 

dn<k (vt_\ dn<k _ 
-°Ykyth -^7r=yk (3-30) dW'k

 v ' dV'k 

The partial derivative dx\jdd'k_^ k; i - 1,..., L is calculated using the Ith state 

estimation equation of equation (3-20) as follows: 

dx'k df(xk-i,uk_i,a'k_lJt) 

T T ^ = J^> (3"31> 
dat-u dak-n 

which is essentially the Jacobian of the vector-valued function / with respect to the 

scalar parameter^, t . However, it should be noted that we do not need to calculate the 

Jacobian matrix of the system with respect to the states, which is an advantage from 

implementation point of view. 

Finally, the well-known standard back-propagation (BP) algorithm is used to 

calculate the partial derivativesdd'k_]k/dnet'w , dd'k_lk/dnet'v for /' = l,...,L. Due to 

the linearity of the output layer of the NPEs, we simply have 

dnet'Wk 

1 (3-32) 
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and taking into account the sigmoidal activation functions of the hidden layer of the 

NPEs, we have: 

^rr- = wi(i-\{ylyk)j 0-33) 
dnet 

where A(viyk)=diag\j*M yk)\, 7 = 1,...,S'; and S' is the number of neurons in the 

hidden-layer of the /' NPE and V'k is, once again, t he / row of Vk. 

3.3.2 FDI Decision Logic of the Series-Parallel Scheme 

To formulate the FDI decision logic, we need to define a set of residual vectors as - a 

total of L residual vectors can be defined; one per state estimator in the bank: 

<=yk-y
i
k ;i = h...,L (3-34) 

Given Assumption (ii), the fault detection and isolation (FDI) decision logic for the 

series-parallel scheme is quite straight-forward and can be stated as follows: 

( c ; , 7 > c ) = { ( i , * j ; ) | | r ^ | < ^ A | a ; - a r i | > f f ' } 

l = l,...,L; l^i; j = \,...,n 
(3-35) 

•th where \rk
J\ is the absolute value of they element of the residual vector corresponding to 

the ih NPE in the bank; 5J;j = l,...,n denote the thresholds associated to the output (or 

state) residuals of the NPEs;£"';z = 1,..., L denote the thresholds corresponding to the FP 

estimate of the ih NPE in the bank; Cf specifies at each instant of time (the index of) 

the faulty component(s) (or the health state of the system); Ts is the sampling time of the 

system; a'H is the value of the zth FP under nominal, healthy conditions (which is "zero" 
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for additive FPs and "one" for multiplicative FPs); and T£ represents the detection and 

isolation time of the occurred fault(s). Under healthy conditions, Ck should ideally (i.e., 

under perfect detection) be an empty set (i.e., Ck = 0 ) . On the other hand, in presence of 

only one faulty component in the system, Ck should ideally (i.e., under perfect isolation) 

belong to the set {l , . . . , !}. However, in case of imperfect isolation, Cf would be a subset 

of the set {l,...,Z-}, consisting of more than one elements. 

It should be noted that, as opposed to the thresholds f';/ = 1,..., L, the thresholds 

SJ;j = \,...,n are common (or equal) across all NPEs in the bank. As mentioned at the 

beginning of Section 3.3 and can also be seen from the FDI decision logic in equation (3-

35), both the residual signals and the FP estimates a'k;i = \,...,L are examined in the 

series-parallel scheme to detect the presence and isolate the location of faults in the 

monitored system. Once a fault is detected and the faulty component is isolated, the 

severity of the fault is essentially the value of the corresponding FP estimate, 

namely ac
k[lk. 

Finally, the FDI decision logic of the series-parallel scheme shows resemblance with 

that of the dedicated observer scheme (DOS) presented in Section 2.3.1.2. In particular, 

careful comparison of equations (3-35) and (2-7) clearly reveals partial equivalence 

between the two FDI decision logics; except that the residuals in the FDI decision rule of 

the DOS are replaced by the FP estimates in the last condition of the FDI decision rule of 

the series-parallel scheme. 
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3.3.2.1 Threshold Selection Criteria 

In the series-parallel scheme, fault detection can be ensured if the well-known worst-case 

noise/disturbance analysis is employed for assigning the thresholds SJ; j = ],...,n in 

equation (3-35). However, this does not guarantee that fault isolation will be perfectly 

achieved. More precisely, the t FP estimate a\^ k is not perfectly decoupled from all 

fault sources but the /' one (i.e., the fault sources j - 1,..., / - 1 , / +1,..., L). In fact, there is 

always a weak impact from the fault sources j = l,...,/-l,/' + l,...,I on the /' FP 

estimate a ^ A, as will be demonstrated using simulations in Section 5.5.1. However, this 

weak impact can be resolved by properly setting the thresholds^';/ = 1,..., L. A good rule 

of thumb that augments the reliability of FDII and ensures the safety of the system is to 

select the thresholdsf';/ = ],..., L in a way that the occurrence of the i* fault with a 

severity level below its respective threshold s' does not significantly deteriorate the 

closed-loop system performance. 

3.4 Robust FDII Using Parallel Architecture of NPEs 

The series-parallel scheme developed in the previous section possesses several 

advantages including simple FDI decision logic (as discussed earlier) and fast 

convergence (which will be demonstrated in Section 5.5.1). It should be noted that fast 

convergence essentially results in short delay in FDI. However, as mentioned previously, 

it may incorrectly isolate faults specially when there is a strong coupling between two 

fault sources. Furthermore, as will be illustrated in the simulation results of Section 5.5.2, 

the series-parallel scheme suffers from lack of robustness to measurement noise. Indeed, 
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measurement noise significantly deteriorates, in particular, the fault isolation and 

identification performance of the series-parallel scheme. This is due to the fact that 

measurement noise directly propagates through the network, directly affecting the FP 

estimates as can be observed from Figure 3-1. As mentioned in Section 2.3.1.2, the non-

robustness to measurement noise is also an inherent property of the DOS FDI method. 

This, once again, emphasizes the similarity of the two methods. 
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Figure 3-2. Parallel scheme of the proposed hybrid FDII approach. 

The sensitivity of the series-parallel scheme to measurement noise makes it 

impractical and unreliable for fault diagnosis in low SNR applications. The parallel 
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scheme developed in this section intelligently resolves this issue by feeding back the 

estimated rather than the measured outputs to the NPE input. This slight restructuring of 

the series-parallel scheme makes the measurement noises to be filtered out in the NPE 

weight adaptation process of the parallel FD1I scheme, hence making it extremely robust 

to measurement noise. The extreme insensitivity of the FDH performance of the parallel 

scheme to measurement noise will be demonstrated in Section 5.5.4. The schematic of the 

robust parallel structure of the proposed hybrid FDH methodology is shown in Figure 

3-2. 

Furthermore, using a special formulation of the FDI decision logic, the parallel 

scheme allows fault isolation to be perfectly achieved in contrast to the series-parallel 

scheme. The reason for perfect isolation in the parallel scheme is that, as opposed to the 

series-parallel structure, the only signal common among the inputs of all state estimators 

(or predictors) and the NPEs in the bank is the control input signal. More precisely, each 

NPE and state estimator in the bank utilizes its own state estimate (or prediction), which 

automatically enforces a structural decoupling between the units. Clearly, this 

restructuring also has a disadvantage of slower convergence rate for the state estimators 

and the NPEs of the parallel scheme as compared to its series-parallel counterpart. This 

slower convergence rate causes longer fault diagnosis delays and makes the parallel 

scheme sensitive to transients of the closed-loop system (due to changes in the control 

command). More precisely, while the state estimates from the series-parallel scheme very 

quickly converge to the measured states and thus it is extremely robust to closed-loop 

system transients, the parallel scheme generates false alarms during the transients until 

the closed-loop system stabilizes at the steady state. AH of the above-mentioned 
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characteristics of each FDII scheme are further demonstrated and verified in Chapter 5 

using simulations. 

The NPE calculations and weight adaptation laws of the parallel structure remain 

essentially similar to that of the series-parallel scheme with only slight modifications; 

however, the FDI decision logics of the two are a bit different. These changes and 

differences are reflected in the following. 

Since instead of the actual measurements, the output estimates (or predictions) are fed 

back to the NPEs' and state estimators, 3/^_] in equation (3-17) should be replaced by 

y'kA, and xi_] (equal to yt_t under full-state measurement assumption) in equation (3-

20) must be replaced also by x'k_x both for i = \,...,L . Hence, for the robust parallel FDII 

scheme we have: 

%-»=g(yl>WM) \i = ̂ L (3-36) 

and K=[**-i uk-i\ ,i = h-,L (3-37) 

Moreover, 

Xk = J I Xk-\' Uk-\' ak-\,k J . , r 

;i = l,...,L (3-38) 
yt=

xk 

3.4.1 Weight Update Laws of the Robust Parallel Scheme 

Once the above adjustments are applied to equations (3-20) and (3-17), the weight update 

laws remain practically intact, since they are written in terms of yh in equation (3-17), 

which represents the input vector of the NPEs. The only required adjustment to the 

weight update laws of the series-parallel scheme that may need to be explicitly re-
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emphasized is in equation (3-31). For the robust parallel structure, this equation should be 

reinstated for / = \,...,L as follows: 

- — (3-39) 

3.4.2 Fault Isolation Policy of the Parallel Scheme 

Once again, we need to define a set of L residual vectors - one per state estimator in the 

bank - as follows: 

H=yk-y[; i = U,L (3-40) 

In sequel, the FDI decision strategy can be stated as follows: 

(Cf JF) = {(U*T,)\ \rl-'\< S> A \r>'J\>SJ; I = \,...,L; I * i; j = 1,...,« } (3-41) 

where r'k
J denotes t h e / element of residual vector r'k and SJ;j-\,...,n are the 

thresholds corresponding to the state residuals of the NPEs. It should be noted that the 

thresholds SJ;j = \,...,n are common (or equal) across all NPEs in the bank. The above 

fault isolation policy states that the fault model with residuals within the threshold 

bounds is actually the current active mode of the system. In the parallel scheme, threshold 

values are determined using the worst-case disturbance/noise analysis. Once the fault 

source is isolated, the severity of the fault is essentially the value of the corresponding FP 

estimate. It should be noted that the FDI decision logic of the robust parallel scheme is 

simpler to implement than that of the series-parallel scheme. This can be simply observed 

by comparing equation (3-41) with equation (3-35). As can be seen from those equations, 

the FDI logic of the parallel scheme has only n parameters to be specified corresponding 

to the residual thresholds 8J; j = 1,...,«, with n being the order of the monitored system. 
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On the other hand, in the series-parallel scheme n+L parameters need to be specified, 

where in addition to the residual thresholds, the thresholds associated to FPs e';i = \,...,L 

have to be determined; L being the number of faults modeled in the system. Interestingly, 

the simplicity of the FD1 logic of the robust parallel scheme comes along with solid fault 

isolation capability. This is intrinsic to the parallel scheme, where fault isolation is 

essentially enforced in its structure. This was already discussed in more details on pages 

106 and 107, and is also demonstrated through simulations in Chapter 5. 

3.5 Conclusions 

The hybrid nonlinear fault detection, isolation, and identification (FDII) approach 

proposed in this thesis was presented in this chapter. In order to achieve fault 

identification, faults were modelled through parameterization of the nominal 

mathematical model of the system with a set of fault parameters (FPs), where each FP is 

an indication of a particular fault in the system. It was explained, however, that such a 

multi-parameter fault model does not allow fault isolation. Hence, a set of single-

parameter fault models were extracted from the multi-parameter ones in order to achieve 

fault isolation. Once the set of single-parameter fault models were derived, the problem 

of FDII in nonlinear systems was formulated as an on-line nonlinear parameter estimation 

problem with FPs as the unknown parameters that need to be estimated. Various 

nonlinear parameter estimation methods were then reviewed and a solution based on 

neural networks was then proposed. The universal function approximation capability of 

neural networks and the availability of well-established and well-understood weight 

adaptation laws were the rationales behind choosing neural networks for solving the on

line nonlinear parameter estimation problem. 
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Hence, the core of the proposed hybrid nonlinear FDH solution was a bank of 

adaptive neural parameter estimators (NPE), where each NPE in the bank was designed 

based on a separate single-parameter fault model. At each instant of time, the NPEs 

provide estimates of the unknown fault parameters (FP), which in conjunction with the 

output residuals determine the health state of the system being monitored. The residuals 

were defined as the difference between the actual measurements and the output estimates 

(or predictions) generated by the single-parameter fault models using their respective FP 

estimates from the NPEs. The fault parameter estimation was based on on-line 

minimization of instantaneous output estimation error. 

Under full-state measurement assumption, two NPE structures including the series-

parallel and the parallel were proposed and their respective FDI decision logics and 

weight update laws were derived. Each FD11 scheme was shown to exhibit an exclusive 

set of desirable attributes. More specifically, it was discussed that the FD1I performance 

of the parallel scheme is extremely robust to measurement noise, hence making it 

suitable for health monitoring of systems with even very low SNR values. Furthermore, it 

was discussed that the smaller number of thresholds makes the FDI decision logic of the 

parallel scheme simpler than that of the series-parallel scheme. On the contrary, it was 

discussed that the series-parallel scheme displays fast convergence rates and is very 

robust to the closed-loop system transients, which are due to changes in the control 

command signal. Hence, the series-parallel scheme is desirable for (high SNR) systems 

requiring very short delays in fault diagnosis and/or systems requiring frequent 

commanding. In practice, the choice of the appropriate FDH scheme is imposed by the 

specifications and the requirements of the specific problem at hand. Furthermore, simple 
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neural network architecture and straightforward weight adaptation laws make both 

proposed FD1I schemes suitable for real-time implementation of on-line health 

monitoring systems. It should be noted that the robust parallel FDII scheme is a major 

contribution of this thesis, being proposed for the first time in the literature. Furthermore, 

the novelty aspects of the series-parallel scheme were also mentioned in this chapter. 
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Chapter 4: 

4 Proposed FDII for Nonlinear Systems with Partial State 

Measurement 

Similar to many of the existing fault diagnosis methods, the two FDII schemes developed 

in the previous chapter relied on the availability of full-state measurements. However, 

even with recent advances in sensor and instrumentation technology, all the states of a 

dynamical system may not be directly measurable. This might be due to unavailability of 

operational, accurate, or reliable (on-board) sensors for measurement of some specific 

physical variables. For example, the state of charge (SOC) in batteries - employed almost 

everywhere from portable electronics to hybrid electric vehicles (HEV) - cannot be 

directly measured while the battery is in operation. Some experimental methods certainly 

exist for measuring the SOC but such measurements have to be taken under a controlled 

experimental setup and cannot be achieved while the battery provides power to the 

system (i.e., laptop, HEV, etc.). 

Furthermore, sensors are often prone to permanent or intermittent faults/failures. This 

essentially makes their measurements at least temporarily unavailable. For example, 

sensors regularly require recalibration after certain amount of time/deployment due to 

bias or drift. Until the recalibration is performed, both the control system and the fault 

diagnosis subsystem are expected to continue their operation in order to monitor, ensure, 

and maintain the safety of the entire system. Needless to say that even for systems where 
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complete shutdown is possible, economic loss due to system shutdown is irrefutable. 

Finally, it should also be noted that for some sensors, the amount of measurement noise 

can be relatively high and also the measurement noise and sensor accuracy may well 

depend on the dynamic range of the variable being measured. For example, current 

sensors usually exhibit varying level of accuracy over different ranges of current. 

Therefore, the reliability of measurements from these sensors changes accordingly. In 

conclusion, to augment the reliability of control and health monitoring systems, one 

needs to estimate system estimates that are either intrinsically non-measurable or have 

temporarily or permanently turned out to be non-measurable due to occurrence of sensor 

faults/failures. 

As mentioned previously, both the series-parallel and the parallel FDII schemes 

proposed in Chapter 3 rely on full-state measurements. More precisely, state 

measurements comprise the inputs to the FDII subsystem. Consequently, any 

inaccuracies in state measurements eventually affect diagnostic performance. When some 

of the system states are not directly measurable (or may temporarily become non-

measurable) then their corresponding estimates shall be provided to the FDII unit. 

Therefore, the accuracy of state estimates becomes crucial for successful and reliable 

fault diagnosis just as the accuracy of the measurements in full-state measurements 

conditions. 

Furthermore, the state estimates should not only be accurate during healthy 

operational mode of the system to avoid false alarms, but also during faulty periods. 

Here, "faulty periods" refer to presence of faults in system components and/or actuators 

assuming that sensor faults won't occur. The inaccuracy of state estimates during faulty 
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periods, at its worst possibility, may cause faults to be missed (i.e., misdetection), or 

more likely to be incorrectly isolated and/or inaccurately identified. Thus, it is highly 

desirable that state estimators or observers should accurately estimate unmeasured system 

states using inputs and available sensor measurements even in presence of faults in the 

system. In other words, the state estimator or observer must be fault tolerant. It is 

important to note that, to the best of our knowledge, the terminology of fault tolerant 

observer (FTO) has been introduced in this thesis for the first time in the literature. 

Though, the concept has been previously proposed and fairly well investigated under the 

terminology of unknown input observers (UIO), which will be further discussed in 

Section 4.3. 

In the following, we first assume that an FTO exists that can accurately estimate 

unmeasured system states in both presence and absence of faults. Based on this 

assumption, the extension of the series-parallel and parallel FDII schemes to systems 

with partial state measurements is presented. Then, in the rest of this Chapter, we focus 

on developing a fault tolerant observer that essentially enables this extension. 

4.1 FDII Using the Series-Parallel Scheme under Partial State 

Measurements 

Figure 4-1 depicts a block diagram representing the extension of the series-parallel FDII 

scheme to partial-state measurement conditions. As shown in this figure and described in 

the above, this extension based upon integration of the hybridNPEs of the series-parallel 

FDII scheme with a fault tolerant observer. 
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Figure 4-1. The series-parallel FDII scheme under partial-state measurements using the integration 
of the hybrid NPEs and an FTO. 

Let us first assume that the system states can be divided into measured and 

unmeasured states as follows: 

x = [x m x a"m] = [ 7 xmm] (4-1) 

where x'" denotes the subset of system states directly measured by sensors (i.e., system 

outputs) and x""m represents the subset of unmeasured states of the system. 

Then, as can be seen from Figure 4-1, the measured states x™ = J* are fed directly to 

the series-parallel FDII scheme, while the unmeasured states are first estimated by the 
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FTO using system inputs and output measurements and then these estimates xk are fed 

as inputs to the bank of NPEs of the FDII module. Accordingly, the equations, the NPE 

update laws, and the FD1 decision logic of the series-parallel FD1I scheme have to be 

slightly modified as follows: 

(i) In equation (3-17), yk_} must be replaced by|x™_, icj'™!; hence, 

(ii) In equation (3-20), xk_1 must be replaced by |JC"_, xu
k™ 1; hence, 

Xk = J \\ Xk-} Xk-\ ' Uk-\' ak-\,k I . , T 
VL J ; ;i = l,...,X (4-3) 

yk=
xk 

(iii) The instantaneous output estimation error of the NPEs in equation (3-21) must also 

be redefined as follows: 
~> i m ~imm\ * / . • -t j , . . . 

yk=lxk-i xk-x\-yk ;i = h-,L (4-4) 

Eventually, (iv) the residual vectors corresponding to the L NPEs in the bank given in 

equation (3-21) should be redefined as follows: 

r;=[<_, x;™]-y'k ;i = l,...,I (4-5) 

The rest of the equations for the weight update laws and the FDI decision logic remain 

essentially the same as the ones given in Chapter 3 for the series-parallel FDII scheme. 

4.2 FDII Using the Parallel Scheme under Partial State 

Measurements 

FDII using the parallel scheme can be accomplished under partial-state measurements 

using exactly the same principle as the one described for the series-parallel scheme. More 
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specifically, an FTO is integrated with the parallel NPEs to achieve FDII under partial 

availability of system states, as depicted in Figure 4-2. 

FDII with Partial-State Measurement 
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T 
Estimates of 

- . w / i I unmeasured 

' * ' T states 

Robust Parallel 
FDII Scheme 

(Bank of NPEs) 
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I 
n 

I 

II II 

r]ccl 
rkut 

L L 
rk<*k Figure 4-2. The robust parallel FDII scheme under partial-state measurements using the integration 

of the hybrid NPEs and an FTO. 

It is important to note that Figure 4-2 looks exactly the same as Figure 4-1, except for the 

internal structure of the two FDII schemes, which has not been shown in these two 

figures. More precisely, the difference between the two figures is internal to the FDII 

blocks and is in the way the vector x™_x x™_™ is being used within each scheme. The 

equations (4-2) to (4-5) essentially described how the vector[*"_, x™7j affects (or is 

being used in) the equations governing the series-parallel scheme. For the robust parallel 
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scheme, however, the changes (i) and (ii) mentioned for the series-parallel scheme in 

equations (4-2) and (4-3) are not required and the equations (3-36) to (3-38) still remain 

valid even in presence of partial state measurements. Indeed, for the robust parallel 

scheme only the instantaneous output estimation error and the residual vector have to be 

redefined as exactly the same way for the series-parallel scheme shown in equations (4-4) 

and (4-5), respectively. 

The aforementioned FDI1 schemes under partial state measurements (depicted in 

Figure 4-1 and Figure 4-2) consist of two main modules, namely the hybrid NPEs and an 

FTO. The design and development of hybrid NPEs was the subject of Chapter 3 and both 

series-parallel and parallel NPE schemes were thoroughly treated in that chapter. Hence, 

the focus of the rest of this chapter is on the design and development of an FTO, which 

enables FD1I under partial state measurements. 

4.3 Fault Tolerant State Estimation 

To the best of our knowledge, the terminology of fault tolerant observer (FTO) 

introduced in this thesis appears for the first time in the literature. Though, the concept 

has been previously proposed and fairly well investigated under the terminology of 

unknown input observers (UIO). The UIOs have the capability of estimating the states in 

presence of unknown inputs. The unknown inputs may include certain immeasurable 

input signals of the system, uncertainties of certain parameters of the system, modeling 

errors, external/environmental disturbances, and even faults. 

Many researchers have successfully designed and developed a variety of UIOs for 

both linear and nonlinear systems. For example, Darouach et al. [134] presented a full-

order Luenberger observer for linear systems with unknown inputs. Based on a consensus 
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in the UIO literature, one of the first direct extensions of the linear UIO to the non-linear 

case was proposed by Wunnenberg [135]. His approach was referred to as the NUIO 

(nonlinear UIO) and was applicable to a specific class of nonlinear systems, where 

nonlinearity is a function of only inputs and outputs. However, this class of nonlinear 

systems is rather limited and many physical systems cannot be modeled as such. 

Moreover, it is also very difficult to transform a general nonlinear system into this 

required form. 

In other efforts to nonlinear UIO, Koenig and Mammar [136] designed a reduced-

order nonlinear UIO for robust fault detection in a class of nonlinear systems, where both 

linear and nonlinear terms are present. Their approach essentially extends the UlO-based 

robust fault diagnosis in linear systems to nonlinear system. Pertew et al. [137] 

developed an unknown input observer for nonlinear systems using Hoo approach. 

However, they consider modeling errors and system disturbances as unknown inputs, 

hence designing a robust rather than a fault tolerant observer. More recently, Koenig 

[138] developed a nonlinear observer for descriptive type of nonlinear systems with 

unknown inputs based on linear matrix inequality (LMI) approach. Finally, in a very 

recent work, Mondal et al. [139] proposed a full-order Luenberger-like UIO for a class of 

nonlinear systems with both linear and nonlinear terms, whose nonlinear function 

satisfies Lipschitz conditions. Once again, however, their proposed UIO is more like a 

robust observer with potential applications in robust control. 

Considering faults as unknown inputs to the system, the UIOs can be designed to 

provide state estimates that are decoupled from faults. Nonetheless, as implied by the 

short survey in the above, UIOs have been mainly designed within the context of robust 
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control and robust fault diagnosis, in which modeling uncertainties and external 

disturbances - rather than faults - are modeled as unknown inputs. Accordingly, the 

objective had been to make the control and/or fault diagnosis system robust with respect 

to these unknown (uncertain) inputs (i.e., modeling errors and external disturbances). 

This is clearly different from our objective of designing a FTO described at the beginning 

of this chapter. 

In this thesis, we do not use UIOs to design a FTO. In fact, we do not even take a 

deterministic approach to state estimation known as "observer design" in the literature. 

Instead, we follow a stochastic approach to state estimation, better known as "filter 

design" or simply "filtering. More specifically, we take a hybrid approach to FTO 

design by simultaneously exploiting the model-based optimal filtering theory and the 

self-adapting and self-learning capabilities of computational intelligence (CI) techniques 

especially neural networks to achieve fault tolerance in state estimation. 

Hence, we start first by defining the state estimation (or filtering) problem in 

nonlinear dynamical systems. We then review the optimal filtering theory within two 

separate frameworks, namely probabilistic and statistical, and review a few methods 

within each. We will then explore how the exclusive capabilities of CI techniques are 

employed within each framework to nonlinear filtering problem. Eventually, a fault 

tolerant state estimation solution based on the prediction-correction structure of the 

Kalman filter and adaptive learning and nonlinear approximation capability of neural 

networks will be presented. The proposed solution is called the Kalman filter structure 

preserving neural state estimator (NSE). It should be noted, however, that the structure of 

the proposed NSE solution has been taken from the robust optimal filtering literature and 
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is not a contribution of this thesis. Rather, it is the novel recursive weight update laws of 

the NSE that comprises one of the contributions of this thesis. Moreover, the use of this 

NSE as a fault tolerant observer has not also been previously reported in the literature. 

4.4 State Estimation of Nonlinear Dynamical Systems 

The problem of estimating the states of a stochastic dynamical system from noisy 

observations is of central importance in engineering. The optimum estimation has been a 

focus of research in signal processing and control since the pioneering works of Weiner 

[140] and Kolmogorov almost half a century ago [141]. However, our purpose is not to 

give a historical account of the development of the estimation theory. Thus, we will focus 

on the definition of the state estimation problem and demonstrate the two fundamentally 

different mathematical frameworks for solving this problem. We will also show how the 

exclusive nonlinear approximation capability of neural networks can be exploited as a 

tool for nonlinear estimation within each framework. 

Problem Definition [491, [1411: Consider the discrete-time stochastic dynamical system 

described by the stochastic vector difference equation: 

**+i=/(**) + r W w *= F ( x *> w *)» * = <U... (4-6) 

where xk e 91" is the state vector at time-step k, f: 9?" -» 9?" is a vector field 

representing the nominal nonlinear system dynamics, {wk,k = 0,1,...} denotes the process 

noise sequence (or external disturbance from control engineering perspective), T is a 

vector-valued function representing the state-dependent channel through which the 

process noise affects the system states, and F is a vector-valued function representing 

the collective effect of the system dynamics and the process noise on the evolution of 
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system states in time. The distribution of the initial condition x0 is assumed given, and it 

is independent from wk. Let the discrete, noisy, w-vector observations (measurements) 

yk be given by 

yk=h(xk) + vk,k = \X~. (4-7) 

where /*:9T -^9?m denotes the system measurement function and {vt,k = 0,1,...} is the 

w-dimensional measurement noise sequence. For simplicity, process noise wk and 

measurement noise vk are assumed to be independent. Generally, in the optimal filtering 

theory (and development here as well), without loss of generality it is initially assumed 

that there is no control input uk acting on the system. It should be noted that this 

assumption will not alter the generality of the problem and its solution since we always 

have a complete knowledge of the control input. 

Let Y{ = {y],...,yl) be the sequence of observations (or measurements) from system 

sensors. Given a realization of the sequence of observations, the discrete-time estimation 

problem consists of computing an estimate of xk based on observationsY,. If k < / , the 

problem is called the discrete-time smoothing problem; if k = I, it is called the discrete-

time filtering problem; and if k > I, it is called the discrete-time prediction problem. 

Since most of the health monitoring and FDII systems (especially on-board FDII 

systems) aim at on-line monitoring and identification of the present health state of the 

system on the basis of current observations and available data, the state estimation 

problem of interest to FDII is essentially a filtering problem. Hence, in subsequent 

sections we exclusively focus on the filtering problem as a special case of the state 
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estimation problem. Also, we describe the two different mathematical frameworks for 

solving the filtering problem, namely probabilistic and statistical frameworks. 

4.4.1 Probabilistically Inspired Approaches to Nonlinear Filtering 

This framework is adopted whenever the probability density functions of all the random 

variables in the system are exactly known. This knowledge enables one to describe 

completely the uncertainty in the process and measurement noises as well as in the initial 

state of the system. Thus, all filtering methodologies developed within this framework 

assume that the process noise wk and measurement noise vk of equations (4-6) and (4-7) 

are both white Gaussian noise sequences; i.e., wk ~ N(0,Qk) andvt ~ N(0,Rk), where 

Qk,Rk > 0 are positive definite covariance matrices of process and measurement noise, 

respectively. The estimation (or filtering) problem in probabilistic framework is usually 

formulated in terms of some optimality criteria such as maximum likelihood (Bayesian), 

minimum variance or minimum mean square error, etc. 

It is well-known in the estimation literature that the conditional probability density 

function of xk given observation sequence Y* ={y1,...,yk), which is written 

as pi xk | Yt
k J, is the complete optimal solution to the filtering problem. The reason is that 

this conditional density contains all the necessary statistical information about xk that 

exists in the available observations and the initial condition p{x0). 

In the special case of linear filtering problem, where both functions / and h in 

equations (4-6) and (4-7) are linear (i.e.,/ , h are matrices of dimensions [wx/j], [mxn], 

respectively), the proposed conditional probability density is Gaussian. This is due to the 
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fact that linear transformation of a Gaussian random variable is always Gaussian (see 

Papoulis and Pillai [142]). Therefore, the state of the system can be completely 

represented by its mean vector and covariance matrix. Then, the optimal solution to the 

filtering problem would be the Kalman filter which gives the recursive equations of the 

evolution of the conditional mean as the optimal estimate and the covariance matrix as a 

representative of our confidence in the goodness of the estimates. Nonetheless, in the 

general nonlinear case the situation is far more difficult. This is mainly due to the fact 

that the nonlinear transformation of a Gaussian random variable is not necessarily 

Gaussian. Therefore, the conditional density function cannot in general be characterized 

by a finite set of parameters like mean and covariance. In other words, in the linear 

filtering problem the dimension of filter state space (i.e., filter order) is finite and the 

elements of the mean vector and the covariance matrix comprise the states of the filter. 

However, in the nonlinear case the filter order is infinite, that is the whole conditional 

density function needs to be estimated. 

Although the conditional density function provides the complete solution to the 

optimal filtering problem, there still remains this question that what statistics, like the 

mode, the mean or the median, of that density function should be regarded as the state 

estimate. To answer this question we need to define a criterion that will let us compare 

the different possible estimates. Clearly the best criterion would be the estimation error 

defined as 

* * = * * - * * (4-8) 

Now, a good estimate would be the one with a small estimation error itself or a small 

statistical measure of the error. So we need to define a loss or cost function J(xk) in 
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terms of the estimation error. A very well known cost (or loss) function in the literature is 

the quadratic form given as follows: 

J(xk) = xJ
kSxk (4-9) 

where S > 0 is a positive semi-definite matrix. The estimate that minimizes the average 

or expected loss,EU(x k j \ , for a quadratic cost function given in (4-9) is called the 

minimum variance or minimum mean square error estimate. It can be shown (see 

Jazwinski [141]) that the conditional mean of the state vector, namely 2s{jct | ^ , * } , is the 

minimum variance estimate for all filtering problems, regardless of the conditional 

probability density function of the state p (xk | Yf J. Thus the optimal estimate, in the 

sense of minimum error variance is as follows: 

xt=E{xk\Y1
k] (4-10) 

It should be noted that the minimum variance estimate given in the above is an unbiased 

estimate. 

Based on the discussions so far, it can be concluded that in the probabilistic approach 

to filtering, the main objective is to determine the conditional density function of the 

state plxk \Yjkj, based on which the optimal estimate (the mean, the mode, the median, 

etc.) can be calculated for any desired loss function. However, as was mentioned 

previously, determination of the equations of evolution of the probability density 

function, in general, entails the derivation of the update equations of a filter with infinite-

dimensional state space, except for some special cases like filtering of linear systems with 

Gaussian distributions. Thus, in general, it is not computationally feasible to determine 
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the equations of evolution ofpi xk \YX j . As an approximate remedial solution, however, 

one may directly use the conditional mean instead of the conditional density function and 

try to find its equations of evolution to end up with the minimum variance estimate of the 

state. Further details of this approach are out of the scope of this thesis but the interested 

reader may refer to Jazwinski [141] and Haykin et al. [143]. 

In the next section, the statistical approach to the filtering problem and its connection 

with the probabilistic framework will be presented. Also, it will be shown as how the 

statistical framework has inspired the use of neural networks in the nonlinear estimation 

or filtering problem. 

4.4.2 Statistically Inspired Approaches to Nonlinear Filtering 

In the discrete-time filtering problem defined in Section 4.4, the process noise wk and the 

measurement noise vk can be considered simply as errors of unknown nature instead of 

random variables with predefined distributions. Now assuming 3c0 as an a priori estimate 

of the initial statex0, we wish to estimate the state sequence \x0,...,xN} based on the 

observation sequence {y0,—,yN }so that the errors in the state and observations are small. 

Taking the classical least squares approach, we have to minimize the cost function JN 

given in the following with respect to \x0,...,xN;w0,...,wN} 

1 1 N 2 1 N 

JN = 2lk-*ofo + -2>* -K*k\ +i$Jw\ <4-n) 
subject to the constraint 

xM=F(xk>wt)> k = 0,\,~.,N-\ (4-12) 

126 



where F is the vector-valued function in equation (4-6), and P0, Rk, and Qk are some 

positive definite weighting matrices; quantitatively representing our belief in the a priori 

estimate of the initial condition, the measurement equation (i.e., equation (4-7)), and the 

nominal noise-free dynamical system model (i.e., equation (4-6) without the additive 

process noise and with only the function J), respectively. The reason for the last term in 

equation (4-11) being an indication of our belief in the nominal dynamical system model 

is due to the fact that the process noise wk may represent an error in modeling the 

dynamical system via the state equation (4-6). 

It is evident from equation (4-11) that the minimization of the cost JN requires all 

observations up to time N; thus the memory as well as computational requirements of 

solving the least squares minimization is growing linearly with time making it unfeasible 

for real-time implementations. One way to overcome this drawback is to solve the 

minimization of JN in a recursive form, which is called the recursive least squares. In 

this procedure the minimization of Jw+] would be done based on the current observation 

yN+i and the solution to the minimization problem of JN, namely xN. In other words, an 

evolution equation of xk would be derived in the form of a difference equation with the 

current observation yk as a forcing term. As discussed later in Sections 4.6.2 and 4.7, 

this constitutes one of the conceptual inspirations for the structure of the neural state 

estimator (or neural filter) originally proposed by Parisini and Zoppoli [146], and 

enhanced and employed as an FTO in this thesis. 

However, another way of resolving the computational limitation of the original least 

squares is through limiting the filter memory to a window of size N containing only the 
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last TV observations y/_w+1 = {yk-N+1,—,yk}- To the best of our knowledge, this concept of 

limited memory filtering was originally proposed and rigorously derived in the late 

1960's by Jazwinski [147]. However, his main intention was to solve the problem of filter 

divergence in extended Kalman filter (EKF) in presence of modeling uncertainties. 

Nevertheless, the concept of limited (or finite) memory filtering has later been followed 

by many researchers in the field. For example, Houacine [131] proposed regularized fast 

recursive-least squares algorithms for finite memory filtering; Manolakis et al. [144] also 

proposed efficient time-recursive least-squares algorithms for finite-memory adaptive 

filtering; and Niedzwiecki [145] proposed a multiple-model approach to finite memory 

adaptive filtering. 

Before concluding this section, it is necessary to imply the connection between the 

probabilistic and the statistical frameworks. This necessity comes from the fact that 

although statistical approach is conceptually and theoretically simpler than the 

probabilistic one, the meaning and interpretation of its results is more difficult. Hence, 

once a probabilistic interpretation of the statistical methods is made, which is basically 

the connection between the two frameworks, they could be set as formal approaches to 

the estimation problem. This connection was implicitly made by Jazwinski in his book 

[141], where he mentioned that the discrete least squares approach is equivalent to 

maximizing the conditional probability density function 

p{x0,...,xN\yu...,yN) (4-13) 

with respect to {x0,...,xN}, provided that T in equation (4-6) is independent of the state 

vector xk . This is obviously the case for simple additive process noise assumption, which 

is a valid assumption for many practical systems (i.e., in many systems the channel over 

128 



which the disturbance affects the system states can be sufficiently accurately modeled as 

simply a gain). In the probabilistic framework the estimation based on the maximization 

of (4-13) is called joint maximum likelihood (Bayesian) estimation. Furthermore, the 

maximum likelihood (Bayesian) estimate is the same as the minimum variance estimate, 

proposed in Section 4.4.1, provided that the density function of the state is unimodal and 

concentrated near the mode, as in for example, the Gaussian distribution. 

4.5 Model-based State Estimation 

The renowned Kalman filter provides a model-based recursive solution to the linear 

optimal filtering problem. It is, in fact, the minimum mean-square (variance) estimator of 

the states of a linear dynamical system. However, most physical systems are inherently 

nonlinear in nature. In consequence, a number of extensions of the Kalman filter to 

dynamical systems with nonlinear model have been proposed in the literature. The 

extended Kalman filter is basically the most well-known of all, which is, indeed, an 

industry standard technique for nonlinear filtering. The EKF extends the use of Kalman 

filter to nonlinear systems through a linearization procedure. However, unlike its linear 

counterpart, it is not an optimal estimator. In addition, the EKF may quickly diverge if 

the initial state estimation error is relatively large (i.e., the initial estimate of the state is 

very different from the actual initial conditions of the system). More importantly, any 

modeling errors or parameter variations in the system may make the EKF to quickly 

diverge, owing to its linearization procedure. 

Unscented Kalman filter (UKF) is a more recent extension of the Kalman filter to 

nonlinear systems. Instead of linearization, the UKF uses a deterministic sampling 

technique known as the unscented transform to extend the KF to nonlinear dynamical 
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models. Both EKF and UKF algorithms were referred to on various occasions in Chapters 

1 to 3 of the thesis (e.g., state estimation for residual generation in nonlinear systems, 

nonlinear parameter estimation, etc.). Accordingly, their corresponding references in the 

literature were also provided. Nevertheless, Haykin [49] provides the details of the two 

techniques (and also the particle filters as another model-based nonlinear filtering 

method) and very well describes the specific advantages and disadvantages of each. 

The point that must be strongly emphasized is that the model-based filtering methods 

such as the EKF and the UKF, though being very well suited for state estimation, do not 

provide good candidates for implementing a fault tolerant observer. The reason being that 

the filter equations are all based on the nominal mathematical model of the nominal 

system, while faults, in general, render these equations invalid. Therefore, once fault 

occur, the filter equations are no longer valid for the faulty system. Furthermore, there is 

usually no design freedom left in the EKF and the UKF equations to compensate for this 

model mismatch during the faulty periods. In fact, the UKF and especially the EKF are 

not even robust to system parameter variations, let alone faults, and very quickly diverge 

as parameter variations take place. In the next sections, we will observe how the 

exclusive capabilities of computational intelligence techniques and more specifically, 

neural networks can be employed to address the issue of filter robustness to faults (and/or 

parameter variations). 

4.6 Learning and Computational Intelligence-based State Estimation 

So far we have provided the foundations for optimal filtering and the existing 

frameworks to solve it. Our goal in this section is to investigate the possible ways of 

incorporating neural networks as a tool in solution of the optimal filtering problem, in 
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general, and in addressing the robustness issue of filters, in particular. Computational 

intelligence and learning-based techniques such as neural networks deal with 

"approximation" of the nonlinear maps. Equipped with the universal approximation 

theorem, neural networks have been largely and successfully applied to the very similar 

problem of nonlinear system identification, being able to produce excellent results. 

These excellent results may be attributed to the three important features of neural 

networks, namely, (/) their nonlinear characteristics that make them suitable for dealing 

with nonlinear systems, (if) their parallel and pipeline processing characteristics that 

allow them to perform different tasks more efficiently, and, the most important of all to 

our objective of fault tolerance, (Hi) their self-learning and self-adapting capabilities that 

are ideal for adapting to different and possibly unseen environmental conditions (for 

example, occurrence of faults). 

The investigation of the use of neural networks in adaptive filtering is carried out 

separately for the probabilistic and statistical frameworks. Moreover, the inspirations for 

each method together with its advantages and drawbacks will be explained. We will 

finally take the neural state estimation method proposed by Parisini and Zoppoli [146] for 

real-time, on-line implementation of a fault tolerant observer. The supporting arguments 

for selecting this specific method will also be provided. 

4.6.1 Probabilistically Inspired Approaches to Neural Network-based 

Filtering 

Inspired by the probabilistic approach to nonlinear filtering - described in Section 4.4.1 — 

and the universal function approximation capability of artificial neural networks, Lo 

[148] proposed a synthetic approach to optimal filtering problem. As was mentioned in 
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Section 4.4.1, the optimal solution to the filtering problem would be a filter with the 

conditional density function as its state. It was then argued that since, in general, the 

conditional density function can not be parameterized by a finite number of parameters, 

the filter state would be infinite-dimensional and thus computationally unfeasible and 

impractical. Even in case filter parameters are finite, the analytical derivation of filter 

equations is, in general, a difficult problem to solve, except for the Gaussian case with the 

EKF and the UKF as its typical solutions. 

As briefly mentioned in Section 4.4.1, one way to overcome this situation is to 

consider the conditional mean (or any other desired statistics of the conditional density 

function) as the final solution to the filtering problem. Then, the output of the conditional 

mean function is used as a point estimate of the state. However, it is still, in general, 

difficult to derive the analytical filter equations for such an estimator. Hence, 

approximations to the equations of evolution of the conditional mean are required. In 

particular, we seek an estimate p. of the conditional mean ,u() = Er.xA |7/_m+1J that 

enables us to calculate the plug-in estimate of xk as xk =ju\Yk
m), where 

J*-m+i =[.y*-m+i>"-.>'*-i>>*] denotes the last m observations/measurements of the system. 

This is conceptually the main probabilistic point of the method proposed by Lo [148]. 

Note that it has been implicitly assumed that the filter memory is limited because of 

practical considerations. Lo tries to estimate the conditional mean by a recurrent multi

layer perceptron (RMLP) neural network. The two main results of his work can be stated 

as follows [148]: 
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Consider the ^-dimensional random state process xk and /w-dimensional observation 

process j j for A = 0, ... ,T. Then, defining xk as the network's output at time k, we have: 

R.l) Given £ > 0, there exists a sufficiently large RLMP such that 

1 T 

I* xk-E Y t—j i H « i * I i 
x \yk 

I|2 

<s (4-14) 

where 7,* = [y],...,yk]are the network's input in the given order. 

R.2) If the RJvlLP has one hidden layer of fully interconnected neurons and the 

network output is written as xk(N) to indicate its dependency on N, then 

x(N) = mm~fjE ^ ( J V ) - ^ ^ ^ (4-15) 

is monotonically decreasing and it converges to 0 as N approaches to infinity. In equation 

(4-15), Wis the set of parameters (or weights) of the neural filter. 

The above results state that the proposed RJvlLP architecture is sufficiently flexible to 

approximate the desired conditional mean function in mean square sense to an arbitrary 

degree of accuracy over any given finite set of time steps. Also, the neural filter 

converges to the minimum variance estimate (i.e., the conditional meanE\ xk 7,* ), as 

the number of fully interconnected hidden neurons increases. 

The synaptic weights of such a neural filter are determined by training the network 

using the input/output data. In other words, the realizations of xk and yk are utilized to 

synthesize the neural filter. Since these realizations are often collected from actual 

experiments, no specific assumptions about the mathematical models (4-6) and (4-7), or 

about the distribution of the random variables are required. Therefore, a clear advantage 

of this method is that no a priori knowledge of the state and observation equations is 
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required other than having sufficient data to properly train the RMLP network via 

dynamic back-propagation (DBP) (see Werbos [149]). Furthermore, unlike many 

probabilistic approaches, no assumptions such as the states being Markovian or the 

process and measurement noises being Gaussian are anymore required. Lo [148] showed 

that his neural filter is significantly superior to the EKF using two types of nonlinear 

systems as test cases, with one having a chaotic behavior. However, his work also suffers 

from the following drawbacks: 

1. Given a finite training set, there is no guideline for selecting an appropriate size of 

the hidden layer neurons to yield the best generalization performance. 

2. The optimization or training methods used are not well suited for the incremental 

learning required in a non-stationary or time-varying environment (due to, for 

example, occurrence of faults). 

3. The operating time, T, of the filter is not always known beforehand in many 

applications (for example, on-line health monitoring and diagnosis). 

Clearly, the last two drawbacks significantly confine the application of this neural 

filter to FTO design and consequently to on-line FDII under partial-state measurement. 

4.6.2 Statistically Inspired Approaches to Neural Network-based 

Filtering 

In view of the shortcomings of the Lo's work as mentioned above, this section presents 

two statistically inspired neural filters that are more compatible with the requirements and 

specifications of a fault tolerant state estimator. 

First is the so-called finite-memory neural estimator originally proposed by 

Alessandri et al. [150]. This neural filter is basically a least-squares limited memory 

134 



filter. Assuming a nonlinear dynamical system governed by equations (4-6) and (4-7) and 

with known control inputs uk, the filter design starts with considering the non-quadratic 

generalization of the classical least squares loss criterion (or cost function) evaluated over 

the finite length of a sliding window in order to limit the memory of the filter 

\ * n in * 
«^= (̂I**-Ar.*-**-w.*-i|)+ X 9 U-(M\*) + ,?a) + £ ?i(IK*I) + 

(4-16) 
k r A - l v ' 

E V/[|K*-ir(^-u^V1.^M«)|J+ Z Vi(K*I)' k = N,N + \,... 
=k-N+] 

where TV > 1 is the number of measurements made within the sliding window, and x, k, 

W/ k and v, k are the estimates of the states, the process noise, and the measurement noise, 

at time-step k, respectively. The estimates are obtained using the measurements 

Yk
k_N ={yk-N,—,yk}, the control inputs Uk2

]
N ={uk_N,...,uk_}}, and the a priori estimate 

of^_w, (i.e., xk_N k_1). The scalar functions j , <p, <p}, y/, and y/x are increasing 

functions for positive values of their arguments, all equal to zero at zero values of their 

respective arguments; i.e., f̂(O) = cp(0) = <p,(0) = <//(0) = ̂ ( 0 ) = 0. These functions have 

to be regarded as penalty functions by which we express our confidence in the a priori 

estimate xk_N k_}, in the observation model (equation (4-7)), in the state equation model 

(equation (4-6)), and in the magnitudes of the measurement and the process noises, 

respectively. 

Defining the information vector at time-step k - based on which the new estimates 

will be evaluated - as 

lk = co!(xk_NA_],yk_N,...,uk_N,...,uk_]) (4-17) 
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and considering estimation functions of the forms xtk -/uik{Ik
N), wf k = ^ k(J*N), 

\k - Vi.kVk)' Alessandri et al. [150] first state the nonlinear state estimation problem as 

that of finding the optimal estimation functions 

'x°k=tf,k(l
k
N),i = k-N,...,k 

' ^ = ^ ( / * ) , i = * - i V , . . . , * - l (4-18) 

Kk=<k(lk\i = k-N,...,k 

that minimize the cost function in (4-16) for k-N,N + \,.... 

However, they argue that the solution to the above statement of the filtering problem 

entails solving a nonlinear non-quadratic functional optimization problem (see Zoppoli et 

al. [151]), in which the unknowns are the optimal estimation functions. Clearly, such a 

functional optimization problem cannot, in general, be solved analytically. However, the 

universal function approximation capability of neural networks is utilized to resolve this 

issue in an approximate way. More precisely, to make the optimization feasible for on

line applications, they approximate the optimal estimation functions in equation (4-18) 

MLP neural networks thus reducing the functional optimization problem to a nonlinear 

programming problem (i.e., the optimization of the neural weights). They also derived a 

simplified structure of the optimal estimation functions of equation (4-18) in order to 

make them appropriate for the use of nonlinear approximators such as neural networks. 

The simplification was performed using a proposition stated in [150], which was based 

on the global implicit function theorem. Further details of this proposition can be found 

therein. Finally, the finite-memory state estimation problem is reinstated as that of finding 

the following suboptimal neural estimation functions: 
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Xk-N ~ Mk-N \*N ' "k-N ) 

w,=l(x„Yi
k
+],U*-\Wi

2),i = k-N,...,k-\ 

vi=fjl(x„y„Wl
3),i = k-N,...,k 

(4-19) 

where Wf_N, Wt
2,i = k-N,...,k-\, and Wf,i = k-N,...,k are the set of parameters (or 

weights) of the suboptimal neural estimation functions, and Y*+i = {yM,—,yk}- Careful 

comparison of equations (4-18) and (4-19) indicates that the suboptimal estimation 

functions differ from the optimal ones in two ways: (i) due to the aforementioned 

simplification, the dimension of the input spaces of the optimal estimation functions are 

reduced in the suboptimal ones, thus making them simpler to be approximated by neural 

estimators (the curse of dimensionality) and (ii) the suboptimal estimation functions are 

now parameterized, where the optimal parameters, rather than the functions, have to be 

found as a solution to the filtering problem. Figure 4-3 depicts the suboptimal finite-

memory neural state estimator for a sliding window of N = 2 . 

xk_2 Yk-2
uk-i Yk-\Ukkl y*- yk

uk- yk- yk 

> ' >r 

Neural 
Filter 

> r 

^ - 2 W, k-l 'k-2 W; k-\ V k-\ V,, 

Figure 4-3. The block diagram of the finite-memory neural state estimator [150] for sliding window 
of length 7V=2. 
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The weight optimization (or training) of the neural approximating functions in equation 

(4-24) is achieved in two phases: 1) optimization at time stepk = N, which is called off

line initialization (OF1) procedure and 2) optimization at time steps£ = iV + l,Ar + 2,..., 

which is called the on-line adaptation (ONA) procedure. The OFI is used to exploit all a 

priori available information on the statistics of the random variables in the system, like 

the initial state x0 and the process and the measurement noises. During the ONA phase 

the neural weights will be confirmed (in case of a known stationary environment) or 

adapted (in case of a stochastic non-stationary environment such as occurrence of faults). 

Alessandri et al. [150] have also shown through numerous simulations that the finite-

memory neural filter described in the above significantly outperforms the EKF filter, 

especially in presence of variations in nominal system parameters. In other words, the 

finite-memory neural filter is much more robust to model parameter variations than the 

EKF. Hence, it can be considered as a potential solution to the fault tolerant observer 

design problem. Nonetheless, this filtering technique has not been selected for FTO 

implementation in this thesis due to following four reasons: 

1. It is computationally heavy due to a relatively large number of neural filters 

required to implement the filter. This can also be seen from Figure 4-3, where the 

scheme consists of six neural filters for a window length of only N = 2. 

2. The large number of neural filters makes the fine-tuning of the finite-memory 

filter time-consuming and complicated. 

3. The filter optimization involves two phases, where each stage usually requires a 

specific set of parameter values. This even makes the number of algorithm 

parameters bigger and thus tuning the algorithm more difficult. 
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4. Though the window length often considerably affects filter performance, there are 

no rigorous guidelines as how to set its value. 

The above limitations enforce us to resort to another slightly less powerful, yet 

computationally simpler, neural state estimation method proposed by Parisini and 

Zoppoli [146]. They were basically inspired by the solution to the linear quadratic (LQ) 

optimal control or estimation problem in a statistical context. It is well known that under 

the LQ assumptions, the optimal least squares estimate x°k of the states xk of a linear 

dynamical system can be obtained by the following recursive equation, called linear 

recursive least squares (RLS) 

x'k=x-k+Kt(yk-Hkx-k), k = 0,\,...,N-\ 

x0 = h, |x01 

where xk is the one-step state prediction and Kk is a time-varying gain matrix 

determined at each time step by means of a suitable model-based recursive equation. 

Indeed, the optimal linear least squares minimizes the cost function 

2 N 2 N 2 

Jk=Ik - *<> L + X I k - Hkxk it + Z Ik - 4M**~I \\Tk, (4-21) 
i = 0 k=l 

with respect to {x0,...,xN}, where x0 is an a priori estimate of the initial state x0; and 

M, Vk, and 7̂ _, are positive definite symmetric matrices. It should be noted that the cost 

in (4-21) is a special case of the more general cost function given in (4-11) with linear 

dynamical model equations. 

It should also be noted that the optimal linear RLS is actually the statistical 

counterpart of the standard Kalman filter that was originally developed in the 

probabilistic framework to optimal filtering. Indeed, a very interesting relationship exists 
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between the two filters. More specifically, if the matrix M in equation (4-21) is chosen 

as the inverses of the initial covariance matrix; Vk and Tk in equation (4-21) are selected 

as the inverse of the measurement noise covariance and the process noise covariance, 

respectively; and the initial state and the noises are mutually independent and Gaussian, 

the linear RLS estimator and the Kalman filters coincide with each other. 

4.7 Kalman Filter Structure Preserving Neural State Estimator (NSE) 

To solve the filtering problem for nonlinear dynamical systems, Parisini and Zoppoli 

[146] used the so-called concept of "linear-structure preserving principle" (LISP), which 

is designed to imitate the structure of an optimal linear RLS or similarly the standard 

Kalman filter. It can briefly be stated as follows [146]: 

Once the LQ structure has been found, maintain the same linear structure that 

implements the solution to the LQ problem. Then: (a) replace the linear state equation 

and the linear observation channel with the ones appearing in the original non-LQ 

problem, and (b) replace the filter gain matrix with a nonlinear mapping, which becomes 

the unknown of the new non-LQ problem. 

Thus, the linear state prediction (as well as measurement prediction) is replaced by a 

nonlinear one, using the exact nonlinear dynamics of the system. Furthermore, the filter 

gain matrix is replaced by a parameterized nonlinear function that is a function of the 

prediction error. For the parameterized nonlinear function, we use an MLP neural 

network with neural weights as the parameters that are continuously adapted; hence the 

name Kalman filter structure-preserving neural state estimator (NSE). To sum up, the 

recursive state equations of the NSE are as follows: 
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Prediction Step: xk =f{xk_vuk_^) 

[Correction Step: xk = x~ + g (e~k, W°bs, Vk
ohs) 

With the output equation defined as: 

yk=h{xk) = H.xk 

(4-22) 

(4-23) 

where ek =yk-yk -yk-h\xk\ is the prediction error,g(ek,Wk
b\Vk

obs) is a multilayer 

feed-forward neural network with prediction error ek as the input and with sigmoidal 

activation functions for the hidden-layer neurons and linear neurons in the output layer. 

The parameters Wk
obs and V°bs denote the weights of the output and hidden layers of the 

network, respectively. 

obs 

yk-

y k 

y k 

\. 
} 

*k z-' 
Vk-L 

/ 
U k-\ 

Figure 4-4. The Kalman filter structure preserving neural state estimator (NSE) redrawn with 
modifications from 1146]. 
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The recursive equation of the NSE, given in equation (4-22), can also be compactly 

written as follows: 

xk =f{xk_l,uk_i) + g(e-k,Wk
0\V^) (4-24) 

The block diagram representation of the Kalman filter structure preserving NSE is shown 

in Figure 4-4. The only assumption made in this scheme is that the process and 

measurement noise are zero mean, i.i.d., and mutually independent. Parisini and Zoppoli 

[146] applied this neural filter to a subclass of target motion analysis problems. 

Simulation results presented therein revealed that this neural filter outperforms the EKF 

algorithm especially in presence of model uncertainties or model parameter variations. 

The results showed significant performance gains over the EKF filter, especially in 

situations that EKF diverges due to numerical instability of the covariance matrix. The 

other advantage of this recursive scheme is that it does not have the computational 

complexity issues of the Lo's approach [148] when the observation period is too large or 

has essentially no a priori bound as in on-line health monitoring and fault diagnosis 

applications. It is extremely important to note that the structure/architecture of the 

developed NSE is not a novelty of this thesis and has been borrowed from Parisini and 

Zoppoli [146]. However, the development of new weight update laws for the NSE 

comprises another contribution of this thesis, which is the subject of the next section. 

4.7.1 Update Laws for the NSE: Recursive On-line Backpropagation 

Parisini and Zoppoli [146] update the neural filter weights using the standard back-

propagation algorithm. They argued that the neural weight adaptation can be performed 

according to the following procedure. At time-step k+\, a nonlinear optimization is 
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performed on the set of weights W°£, Vk"^, while freezing the set of k previously 

computed weights {W°bs, V°bs}*=]. However, this optimization philosophy may result in 

suboptimal performance or even filter divergence due to presence of feedback in the 

proposed NSE architecture (as can be seen in Figure 4-4, where the neural network 

output is fed back to its input after passing through system dynamics). 

In order to adapt closed-loop discrete-time dynamical systems (for example, closed-

loop nonlinear controllers and nonlinear infinite impulse response (HR) filters) using 

steepest descent, a partial derivative of the associated dynamical system must be 

calculated. Due to presence of feedback in a dynamical system, the calculation of this 

derivative can be quite complex. However, Piche [172] correctly argues that the ordered 

partial derivative, which is a partial derivative whose constant and varying terms are 

defined using ordered set of equations, provides a mathematical tool for easily finding 

derivatives of complex dynamical systems. The ordered partial derivative is further 

explained in Appendix A. 

The neural state estimator depicted in Figure 4-4 is essentially a closed-loop nonlinear 

dynamical system. Hence, instead of the standard back-propagation algorithm, steepest 

descent algorithms based on the ordered partial derivatives have to be employed for 

obtaining the most accurate weight update laws of the NSE. This essentially enhances the 

accuracy, reliability, and robustness of the neural state estimator. 

As demonstrated by Piche [172], two class of steepest descent adaptation (or training) 

algorithms based on ordered partial derivatives can be derived for a general closed-loop 

nonlinear discrete-time dynamical system with standard representation shown in Figure 

4-5. These include: (i) epochwise training algorithms and (ii) on-line training algorithms. 

143 



An epochwise training algorithm is any algorithm in which the adaptation takes place 

after each epoch or after a number of epochs, where an epoch is an iteration to iteration 

cycling of a discrete-time dynamical system from initial to final iteration (i.e., k = kf). 

Figure 4-5. The standard representation of a closed-loop nonlinear dynamical system [172|. 

Epochwise systems are encountered much more frequently in control applications 

than in filtering applications. Furthermore, the error function in epochwise systems is 
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usually defined as the cumulative error between the desired values and the outputs of the 

adaptive dynamical system as follows: 

*/ i T 
E=Y,^(dk-yk) {.dk-yk) (4-25) 

where kf is the terminal time, dk is the desired response and yk is the output of the 

adaptive closed-loop nonlinear dynamical system as depicted in Figure 4-5. 

Utilizing steepest descent, epochwise algorithms update the weights using [172]: 

W(i+\) = W(i)-T]-^- (4-26) 
v ; w dW(i) 

where n is the learning rate, i is the index of the current epoch, and d*EJdW(i) is the 

ordered partial derivative of the error in equation (4-24) with respect to the weight vector 

at the zth epoch. Nonetheless, the epochwise adaptation algorithms are not suitable for 

real-time implementation of adaptive filters. Hence, these algorithms are not of interest 

for derivation of update laws for the neural state estimator required for on-line FDII 

under partial state measurements. 

On the other hand, on-line training algorithms can be used for both adaptive control 

and filtering applications [172]. In adaptive control and filtering applications, on-line 

training allows a controller or a filter to either adapt to unknown plant characteristics or 

track slow changes in plant dynamics. On-line training also enables real-time 

implementation of adaptive controllers and filters. In on-line adaptation algorithms, the 

error is usually defined at each iteration as the instantaneous error between the desired 

response and the output of the adaptive system: 

ek=\{dk-yk)
J(dk-yk) (4-27) 
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where k is the current time step (or iteration) of the discrete-time dynamical system. 

Using the error in equation (4-26), the on-line training algorithms update the weights at 

each time step k. However, calculation of the exact ordered partial derivative of the error 

with respect to the weight vector (i.e., error gradient) is not possible. Instead, an 

approximation of the error gradient must be used to update the weights. Therefore, the 

on-line update rule at time step k is expressed as [172]: 

w^=W*~V^r (4-28) 
dWk 

where d*Ek/dWt is the approximate error gradient. 

According to Piche [172], two versions of on-line training algorithms exist including: 

(i) on-line backsweep algorithm and (ii) on-line recursive algorithm. Among the two, the 

on-line recursive algorithm can be used to adapt the weights of the neural network IIR 

filters and controllers. Using the on-line recursive algorithm for the standard 

representation of a closed-loop nonlinear dynamical system, depicted in Figure 4-5, the 

approximate error gradient in equation (4-27) can be calculated as follows [172]: 

d+E> 
(4-29) 

dwk
 {k yk) dwk 

where the approximate output derivative d*yk/dWk is recursively calculated as: 

^ = - ^ + Y / T ^ - ^ ^ (4-30) 

dwt ewk £ r dyk_m dwk„m 

where 0 < (3 < 1. 

Since recursive learning is well-suited for real-time applications such as on-line 

health monitoring and FD1I, in this thesis the recursive on-line back-propagation 
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algorithm based on equations (4-28) and (4-29) is used to derive the weight update laws 

of the Kalman filter structure preserving NSE. 

First, let's define the observer error as: 

(4-31) obs •* 

where yk denotes the outputs (i.e., the measured states) of the system and yk are the 

output estimates from the FTO (i.e., the NSE). Then, using the observer error in equation 

(4-31) and equation (4-23), the cost function of the NSE is defined as: 

Jts -\Y"S\2 =\\yk-hf =\\y,-h{xkf (4-32) 

Utilizing the on-line training algorithm, given in equation (4-27), the weights of the 

NSE must be updated as follows: 

m»l>s _-nrobs _ obs 
"*+ l ~ rrk 'Iw 

( Q+J0bs\ 

dW, obs 

\ J 

yTobs 17obs ryObs 
Vk+\ ~~ V k "v 

(d\jfs^ 
(4-33) 

Wk 
obs 

where W°hs and V°bs are respectively the output layer and hidden layer weights of the 

NSE, and n°^s and n°bs are the learning rates corresponding to the output layer and 

hidden layer, respectively. 

Using equation (4-32), the approximate gradient of the cost function with respect to 

output layer weights W°bs is as follows: 
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dWf 
-ef.H. 4 - (4-34) 

= -eobiYh " k P ' dWf 

Similarly, the approximate gradient of the cost function with respect to hidden layer 

weights Vk
obs is as follows: 

dV°bs k ' dxk 'dV°bs 

= -<"S-H-^t (4-35) 

j=\ °'k 

Now, utilizing the on-line recursive algorithm in equation (4-30) for the Kalman filter 

structure preserving neural state estimator, depicted in Figure 4-4, we have: 

d+x] _ dxl dxl d*\ 
robs aii/obs ' ^ a » zu/obs + P^T-

dWr dWr dx. , dW" 
L. *"' J^ \j = \,..,n (4-36) 

d+x{ = dx{ | aff a+y, 

where xk e 91" is the estimate of the state vector of the system at time step k, x'k is the 

estimate of theyth state of the system, and, once again, 0 </?< 1. It is important to note 

that M in equation (4-30) is equal to 1 in equation (4-36) of the Kalman filter structure 

preserving NSE. This is due to the fact that in the NSE architecture, only the last state 

estimate generated at the output of the NSE, namely xk_i, is fed back to the NSE input, as 

can also be seen from Figure 4-4. Furthermore, it is very important to note that equation 
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(4-36) is a recursive equation. More precisely, the terms 

on the right-hand side of equation (4-36) are indeed the previously calculated values (i.e., 

calculated at the previous time step k-\) of the approximate ordered partial derivatives 

d+xJdW°bs and d+xJdV°bs on the left-hand side of equation (4-36), respectively. 

The terms dxJ
k/dWk

bs and dx[jdVk
bs are the partial derivatives of the neural network 

output at time step k with respect to its weights used at time step k. Hence, 

dWk
ohs dW°l 

dxl JgM^Wt) 
(4-37) 

dV„ obs dVL 
obs 

These two terms can be easily calculated using the standard back-propagation (BP) 

algorithm as follows: 

i „ hx ;J = U," (4-38) bs T r obs \ 

QV: 

Furthermore, the term dxJ
k/dxk_i in equation (4-36) is defined as follows: 

axt_, 

dxJ
k dxJ

k _ _ dxj 
dxl/'"' ^x'k_i

,"', dx"^ 
; j = \,...,n (4-39) 

where dxljdx^ ; j = l,...,n; i = \,...,n is the (/,/) element of the above matrix. Consider 

the Jacobian matrix of the nonlinear system in equation (4-6) defined as: 
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* ; - .= 
Sf(xk,uk) 

dx, k~l 

3fi (**»"*) 
dxl * - l 

dA{xk,uk) 

dfn(
xk>uk) 

9/„ (**'"*) 
dxl * - i dxl, 

(4-40) 

with the (/',/) element of the Jacobian matrix defined as follows: 

FJI 
dfj{Xk>Uk) 

dxi 
; j = !,.. . ,«; i = !,...,« (4-41) 

Then, the (/,/) element of the matrix in equation (4-39) - and correspondingly in equation 

(4-36) - can be calculated as follows using the definition of the Jacobian matrix in 

euation (4-41) in conjunction with equation (4-24): 

del dxi = /&+»;*.(/-A(F*<)y£ (4-42) 
d*k-i ' v ,dxk-i 

where the term W°bs il - h{v°bs £~k^\ on the right-hand side of equation (4-42) is the 

partial derivative of the neural network output with respect to its input, which is obtained 

using the standard back-propagation algorithm. Furthermore, the partial derivative 

de~kldx'k_x on the right-hand side of equation (4-42) can simply be calculated as follows: 

de r d(y„-h(x;)) dh(x~) ^ 

2*1-1 ®Xk-l Xk VXk-\ 

(4-43) 

where dh(xk )/xk = H, assuming the linearity of the output equation. 
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4.8 Conclusions 

The objective of this chapter was to extend the applicability of the two FDU schemes 

proposed in Chapter 3 under full-state measurement assumptions, to systems with partial 

state measurement. In order to accomplish this goal, we introduced the notion of fault 

tolerant observer (FTO) that enables accurate estimation of unmeasured states of the 

system even in presence of faults or anomalies in the system. It was mentioned that such 

a fault tolerant state estimator allows us to directly use the same FD1I schemes proposed 

in Chapter 3, but this time with the estimated states instead of the actual measurements 

for the unmeasured states of the system. Needless to say, the measured states would 

directly be used as inputs to the FDII scheme. Two FDI1 schemes under partial state 

measurements were proposed, which consist of the integration of the series-parallel and 

the parallel hybridNJ'Es and a fault tolerant observer. The respective modifications in the 

weight update laws of both NPE schemes due to this integration were also highlighted. 

As far as the design of an FTO is concerned, it was noted that in the literature a 

similar concept has been extensively pursued under the notion of unknown input 

observers (UIO). A few of the work in the literature on UIO design for nonlinear systems 

were reviewed. It was argued, however, that the UIOs have been mainly designed within 

the context of robust fault diagnosis, in which modeling uncertainties and external 

disturbances - rather than faults - are modeled as unknown inputs. Consequently, it was 

mentioned that the UIOs have been utilized to make the fault diagnosis system robust 

with respect to these unknown (uncertain) inputs. Hence, instead of UIOs, a stochastic 

approach to state estimation, better known as "filtering", was selected to design an FTO. 

More specifically, a hybrid approach to FTO design was taken, which simultaneously 

151 



exploits the model-based optimal filtering theory and the self-adapting and self-learning 

capabilities of neural networks to ach\e\e fault tolerance in state estimation. 

Firstly, the state estimation (or filtering) problem in nonlinear dynamical systems was 

defined. Then, two distinct frameworks to optimal filtering theory, namely probabilistic 

and statistical, were reviewed and some of the well-known, important methods within 

each framework were mentioned and analyzed. The exclusive capabilities of CI 

techniques as employed within each framework of the nonlinear filtering problem were 

then explored. Eventually, a fault tolerant state estimation solution based on the 

prediction-correction structure of the Kalman filter and adaptive learning and nonlinear 

approximation capability of neural networks, known as the Kalman filter structure 

preserving neural state estimator (NSE), was presented. It was noted that even though the 

use of this NSE as an FTO is a novelty of this thesis, the structure of the NSE solution 

itself has been taken from the robust optimal filtering literature and is not a contribution 

of this thesis. However, instead of the standard back-propagation algorithm, a novel 

recursive weight update law for the NSE was derived based on the on-line recursive 

back-propagation algorithm and the concept of orderedpartial derivatives. It was argued 

that the use of standard back-propagation algorithm to adapt the weights of the NSE 

results in suboptimal performance due to presence of feedback in the NSE architecture. 

More precisely, the newly developed weight update law based on the ordered partial 

derivatives enhances the accuracy and robustness of the neural state estimator. Hence, 

this novel weight adaptation algorithm constitutes one of the contributions of this thesis. 
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Chapter 5: 

5 Application to a Satellite's Attitude Control Subsystem 

Like many other man-made dynamical systems, spacecraft are potentially subjected to 

unexpected anomalies and failures in subsystems and components during their mission 

lifetime. Future generations of spacecraft need to show proper reaction to unexpected 

events such as component/subsystem failures or environmental interactions. Most 

currently used spacecraft controllers react to different situations according to some, often, 

hard-coded routines. This is impractical when the spacecraft is facing an unexpected 

event. On the other hand, the probability of fault occurrence increases with the time 

needed to accomplish the mission. Hence, the development of technologies that enable 

the spacecraft to automatically detect, isolate, identify and eventually respond and 

recover from (unexpected) faults/failures in its components, subsystems or mission goals 

are highly desirable. The main goal of an autonomous operation should be to maintain the 

spacecraft's safety and to perform the critical functions in priority. 

Current methodologies that are utilized in health monitoring of Earth-orbiting 

satellites and space probes rely heavily on the ground support and operations. Spacecraft 

telemetry from the orbiting satellites is regularly down-linked to ground stations at 

appropriate locations and times. At the ground station the trained operators will then 
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evaluate and analyze a significant amount of data in order to determine the current state 

as well as the health status of the satellite. This is clearly a time-consuming, labor-

intensive operation that is significantly prone to various human-initiated errors and 

misjudgements. Therefore, autonomy in satellite diagnostics and health monitoring is 

highly desirable in order to have a more efficient and effective operation for all the 

existing as well as future satellite missions. This autonomy can, in general, be achieved in 

two ways: (i) on-board the satellite using an embedded fault diagnosis system that 

identifies presence of anomalies and reports them to satellite controllers for recovery 

and/or reconfiguration, and (ii) through a decision support system that can provide 

informative advise to the operational people regarding the health of the satellite 

subsystems and components and in them. 

The distance may be the most significant factor that makes the existence of an 

onboard autonomy more demanding. The farther the spacecraft is from the ground, the 

less knowledge is available about its present environment. Also, the distance causes huge 

delays in communication between the ground and the spacecraft, especially for deep 

space probes. Fortunately, recent advances in computer hardware and computational 

techniques have allowed for more tasks to be accomplished onboard the space vehicles. 

Many of the ground activities such as navigation and maneuver planning; command 

planning and sequencing; and fault diagnosis and recovery can, to a large extent, be 

accomplished autonomously onboard spacecraft. More specifically, onboard diagnostics 

enables detection and diagnosis of spacecraft faults in a relatively short period of time, 

which consequently allows the spacecraft to reschedule its mission and re-allocate its 

resources to still maintain as many mission objectives as possible. 
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In conclusion, the advantages of autonomous, especially on-board, health monitoring 

and fault diagnosis and recovery may be summarized as follows: 

• It enables short fault diagnosis delays and consequently faster response times 

under both normal and faulty situations. 

• Significantly reduces the cost of ground-based operations and support especially 

for long duration missions. 

• Eliminates the long round trip delays due to large distance between the 

spacecraft - especially deep space probes - and the ground. 

• Allows continuous operations even in loss of communication with the ground 

due to the unpredictable events and environment around the space vehicle. 

5.1 Spacecraft Subsystems 

Satellites are complex engineering systems consisting of various electrical, 

electromechanical, mechanical, and thermal components/subsystems that continuously 

interact and cooperate with each other to maintain and successfully accomplish satellite 

mission objectives. 

Monolithic spacecraft are typically divided into seven subsystems including 

command and data handling (C&DH), attitude determination and control (ADCS), orbital 

control, navigation and orbital control, power, telemetry and telecommand (T&TC), 

thermal, and propulsion subsystems. Each subsystem is responsible for performing a 

specific set of functions. Furthermore, many of these subsystems always communicate 

with each other to collectively ensure the execution of satellite commands. A highly 

simplified, yet informative, block diagram of the space segment (counter to ground 

segment) of a satellite mission, including payload instruments and satellite bus with its 
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associated subsystems is shown in Figure 5-1. Extensive details to each subsystem can be 

found in the renowned book of Wertz and Larson [152], known as the Bible of spacecraft 

mission analysis and design, and also in Brown [153]. 

Space Segment 

Mechanisms 

I 
Payload 

Instrumentation 

1 
Spacecraft Bus 

Telemetry & 
Telecommand 

(T&TC) 
Subsystem 

Attitude and 
Orbital Control 

(AOCS) 
Subsystem 

Propulsion 
Subsystem 

Command & 
Data Handling 

(C&DH) 
Subsystem 
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Power 
Subsystem 

(Solar Arrays, 
Battery, PDU) 

Thermal 
Control 

Subsystem 
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(Reaction Wheels, 

Maynctor'iuers. 
M.ignLtometers Gyros, etc) 

OCS 

Figure 5-1. A simplified block diagram of the space segment of a satellite, drawn with a number of 
modifications from Brown [153]. 

Because of the aforementioned complexity of satellite systems, diverse set of diagnostic 

autonomy requirements and specifications are often set for a satellite at different levels of 

abstraction. Hence, to be able to effectively and efficiently address the problem of 

autonomous fault diagnosis and recovery in spacecraft, one may consider the following 

hierarchical decomposition of the problem into three levels: 

(i) Component level: This involves detection and diagnosis of faults and failures in 

sensors, actuators, and internal system components of a satellite; 
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(ii) Subsystem level: This involves dealing with the sequencing of commands and 

events in between the satellite subsystems (such as the attitude control subsystem 

(ACS), propulsion, thermal, GNC, communication, power, etc.) and the impact of 

faults at this level; and 

(iii) Mission level: This involves all the activities that are related to the overall 

mission safety and objectives/goals that lead to re-scheduling and/or re-planning 

of the satellite mission - if needed - due to occurrence of faults/failures. 

Indeed, hierarchical FDIR concept is being currently pursued by most of the world's 

renowned space agencies. For example, European Space Agency has put into place their 

own hierarchical FDIR architecture, consisting of four levels, to support the overall 

spacecraft system autonomy during both normal operations ("nominal autonomy") and 

during off-nominal operations ("failure case autonomy") [154]. More recently, Barua and 

Khorasani [155] developed an intelligent model-based hierarchical fault diagnosis 

technique for satellite formations that essentially extends the hierarchical diagnostic 

concept to formation flying of multiple satellites. 

Going back to the three-level architecture mentioned in the above, the behaviour of a 

satellite at mission level, the highest level of the proposed diagnostic hierarchy, can be 

modeled as a discrete-event system (DES). Thus, DES-based diagnostic methods using 

finite state automata (see for example, [157] and [158]) show great potential for fault 

diagnosis at this level. One of the most important and successful applications of DES-

based autonomous fault diagnosis is in the NASA's Deep Space One mission [159]. 

Numerous fault diagnosis methods are applicable to the lowest level of the hierarchy 

(i.e., the component level). In fact, most of the reviewed (in Chapters 1 and 2) diagnostic 
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techniques in the literature including both model-based and computational intelligence-

based approaches have the potential to be applied for satellite fault diagnosis at the 

component level. Among various existing contributions in the literature, one may refer to 

the works of Talebi and Khorasani [160] on fault detection and isolation of magnetorquer 

type actuators of satellite ACS using an intelligent robust FD1 scheme; Tudoroiu and 

Khorasani [94] on fault detection and diagnosis of satellite ACS using an interactive 

multiple model approach; Tao et al. [161] on fault detection, isolation and recovery of 

satellite orbital control system (OCS) using a parameter estimation-based approach; and 

Wu and Saif [162] on fault diagnosis of a satellite system with flexible appendages using 

a robust observer-based methodology. 

5.2 Satellite Attitude Control Subsystem (ACS) 

In this thesis, our focus is on testing and validating the proposed hybrid FDII 

methodology for fault diagnosis of reaction wheel actuators of the satellite ACS. Attitude 

control deals with the orientation of a spacecraft with respect to a desired reference 

frame. The attitude control task can basically be divided into three subtasks including: (i) 

attitude determination, which is done with the help of attitude sensors such as gyros, star 

trackers, and sun sensors; (ii) attitude correction, which is achieved by torques applied to 

the satellite body and generated by actuators such as reaction wheels, momentum wheels, 

control moment gyros, magnetic torquers, sometimes thrusters; (iii) attitude control, 

which is software-based algorithm that essentially the magnitude and direction of torque 

to be applied to the satellite in response to an attitude command or in compensation of 

attitude disturbances. 
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5.2.1 Fault Diagnosis in Satellite ACS 

Faults in a satellite's attitude control system (ACS) due to malfunctions in components, 

actuators, or sensors, could result in higher energy consumption, loss of control, and 

eventually mission abortion. Faults may, in general, result from unexpected interferences 

or gradual aging of the ACS components, actuators, and/or sensors. In order to increase 

the energy efficiency, ensure the equipment safety, and enhance the reliability and overall 

fault tolerance of any space-based mission it is necessary to develop robust fault 

diagnosis techniques for components, actuators, and sensors of the ACS so that remedial 

actions are taken as soon as possible. 

Faults in actuators require special attention due to their direct impact on and 

determining role in the satellite station-keeping and attitude control. Moreover, long time 

experience with ACS actuators in different satellite missions has revealed that they are 

highly prone to faults and malfunctions. 

Current methods for detecting and correcting anomalies onboard a satellite and on the 

ground are primarily based on simple limit checking and trend analysis techniques, which 

are not reliable and are error-prone. Gn the other hand, anomaly detection based on 

manual telemetry data analysis is very time-consuming and subject to human mistakes. It 

should be noted, however, that satellite monitoring and diagnostics can be automated 

without compromising reliability using advanced decision support systems that utilize 

model-based, rule-based, and intelligent-based methodologies. The development of more 

reliable automatic health monitoring and fault diagnosis tools is even more crucial for 

satellite constellation and formation flying (FF) missions due to the much larger amount 

of telemetry data (because of multiple number of satellites) and due to the stringent 
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constraints that are imposed by the constellation or FF mission requirements. In the past 

few years, a significant number of model-based and computational intelligence-based 

approaches have been proposed by research community for fault diagnosis in satellite 

ACS subsystem, in general, and actuators and sensors, in particular. Some of these were 

already mentioned at the end of Section 5.1. For few other references especially on fault 

diagnosis of reaction wheel actuators of ACS, refer to Talebi and Patel [163] using an 

intelligent detection and recovery scheme, Li et al. [164] for a dynamic neural network-

based method, and Meskin and Khorasani [165] based on the nonlinear geometric 

approach. 

Despite their own contributions, almost all of the above work have three limitations in 

common: (i) they have not addressed the problem of fault severity estimation in reaction 

wheels, which could be very beneficial to avoid catastrophic failures; (ii) none of them 

have performed a comprehensive robustness analysis with respect to measurement noise; 

and (iii) most of them assume full-state measurements. In this chapter, we intend to first 

validate the hybrid FDII methodology proposed in Chapter 3 by applying it to fault 

diagnosis of reaction wheels of ACS. This essentially allows us to also address the first 

two limitations mentioned above. Second, we consider partial state measurements from 

the reaction wheel to test and validate the fault tolerant observer proposed in Chapter 4 

and, at the same time, address the third limitation above of the existing methods. 

5.2.2 Satellite Attitude Dynamics 

Prior to fault diagnosis design and implementation, we need to develop mathematical 

models of ACS with reaction wheels as actuators. These models are needed for two 

purposes: (i) to simulate the satellite ACS and be able to inject and simulate faults and (ii) 
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to use some of the models for fault diagnosis design since the proposed hybrid FDII 

method also utilizes the mathematical model of the system being monitored. Hence, we 

start by developing an ACS simulator by modeling and design of various elements of the 

ACS closed-loop system. It should be noted that the materials corresponding to modeling 

presented in this and/or the subsequent sections are gathered from various references 

from [152] to [166]. In the following, we naturally start with modeling the satellite's 

attitude dynamics. 

The attitude dynamics of a rigid body satellite controlled by reaction wheels and 

thrusters can in general be described by the following nonlinear differential equation: 

(5-1) 

where lm,,ln, denote the inertia of the satellite and the reaction wheels, respectively, 

1 denotes the angular velocity vector of the satellite, and <»w is the 

angular velocity (or speed) of the reaction wheel(s). It should be noted that for the rest of 

this thesis, the wheel speed co^, is represented without its subscript simply as®, not to be 

confused with the satellite's angular velocity that is always represented bynr or any of its 

components, namely m*, my, or mz. The inputs *"„,., rrf/J,, and TThmsler respectively 

represent the torque vectors exerted on the satellite body by reaction wheels, external 

disturbances, and attitude control thrusters. Here, we assume that no thrusters are 

employed for attitude control, hence Tnrusler = 0. 

Moreover, assume that the spacecraft body-fixed frame is aligned with the principal 

axes (for the definition of the spacecraft principal axes reference frame refer to Appendix 
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B), in which case the products of inertia are zero. Three reaction wheels exist in the ACS, 

one per each principal axis (assuming alignment of the spacecraft's body-fixed frame and 

the principal axes); and the components of the reaction wheel Inertia matrix are very 

small compared to that of the satellite Inertia matrix, namely Iw «Isat. We may then 

expand the attitude vector differential equations in (5-1) in discrete-time form as follows: 

< = *„«-,<-,) +?*//C 
ai=k„frU*U) + T>IIZ (5.2) 

**=M<-,<-.) + r/ /C 

where k is the discrete time-step, I"M, Ifat»
 an(^ ^Zt a r e m e diagonal elements of the 

spacecraft's Inertia matrix, and Tk
x ,Tk

y ,Tk
z denote the instantaneous net torques exerted 

on the principal axes of the satellite body (x-axis, 7-axis and z-axis) due to combined 

effect of external disturbances and reaction torques exerted by the wheels; hence 

Tk>=r?»-T? (5-3) 
rpz _ distz _Twz 
l k ~ lk lk 

and the coefficients k^^k ,ka are given by 

jyy _jzz jzz —J3" T** — I301 

sat sat iL sat sat K sat sat /c A\ 
jxx >Kyy~ jyy 'Kzz~ jzr \?-*) 

sat sat sal 

It should be noted that the components of the satellite angular velocity with respect to 

the inertial reference frame 3N (see Appendix B for the definition of this frame), namely 

m*k,m£,t&l are expressed in the spacecraft fixed/body reference frame3B (see Appendix 

B), and are measured by gyroscopes installed in strap-down systems. Also, in order to 
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implement an attitude control law it is more convenient to use an orbital rotating frame 

attached to the orbit, such as the RPY (Roll, Pitch, Yaw) frame, also called orbital frame 

(see Appendix B). It is also very important to note that if spacecraft attitude is 

represented with respect to the non-rotating inertial reference frame 3N, then the attitude 

commands even under no slew-maneuvering (i.e., a maneuver to change the orientation 

of a satellite) should always be nonzero, time-varying signals in order to compensate the 

effect of satellite rotation around the Earth. While representing spacecraft's attitude with 

respect to the rotating orbital reference frame automatically solves this problem and 

makes attitude commands more comprehensible; i.e., under no slew-maneuvering (or 

attitude stabilization) the attitude commands are zero and spacecraft slew-maneuvering 

can be commanded by simply one or a series of step functions. 

In general, the instantaneous attitude of a spacecraft can be described or represented 

in various ways. However, the Euler angles are the most visually comprehensible set of 

attitude parameters and have been commonly used in attitude representation of rigid 

bodies including satellites. The Euler angles {<p,9,if/) consist of three successive rotation 

angles that can describe the orientation of any rotating object, in general, and a satellite, 

in particular. The rotations may occur about any of three orthogonal axes, but there 

cannot be two rotations about the same axis in a row. 

The order of the rotations, however, is very important to the orientation and the most 

commonly used order is the asymmetric 3-2-1 rotations, which correspond to Yaw-Pitch-

Roll rotations also commonly used in the aircraft dynamics. This asymmetric set of Euler 

angles is used since there are no repeated rotations. However, it has singularities 

whenever the pitch angle (0) has a value of ± 90°, which limits the applicability of 
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Euler angles description to only small rotations. It should be noted though that the 

singularity at a specific angle is an inherent property of Euler representation regardless of 

the sequence of rotations. The main advantage of the Euler angles, however, is the ability 

to clearly visualize the orientation of the vehicle as it undergoes a series of rotations. The 

3-2-1 Euler angle rotation sequence is equivalent to the following direction cosine 

matrix: 

[C(<p,0,ir)]-. 

cos#cosy cosdsmi// - s in# 

sih^sintfcosy-cos^siny/ sin^sin#siny+cos^cosy/ sin$>cos# 

cos^sin#cosi^ + sin<psint// cos^sin^sin^-sin^cos^/ cos<pcos# 

(5-5) 

The Euler angles could be obtained from the rotation matrix by using the following set of 

nonlinear inverse transformations: 

<p = atan 
r 
°23 

c„ 
# = -asin(C]3) 

(C \ 

(5-6) 

C>. 
if/ = atan 

To avoid the singularities in the Euler angles {(p,9,y/) the satellite dynamics has to be 

expressed in the quaternion representation. Defining the unit quaternion set as 

0(0 = [?„(') 9,(0 <72(0 ft(0]T=[?o(0 9B (Of (5-7) 

where the first quaternion q0 (t) component represents the scalar component and the last 

three components [qx (t), q2 (t), #3 (0]T represent the quaternion vector q13 . To formally 

define the quaternions, let's denote the unit vector along the Euler axis 

as A. = [^ ^ A^Y, where Xt are the direction cosines of the Euler axis relative to the 
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axes of the inertial reference frame 3 W . Then, the four elements of the quaternion set are 

defined as: 

9o(O = cos(0/2) 

91(/) = A1sin(0/2) 

q2(t) = A2sm(Q/2) 

q,(t) = A, s'm(@/2) 

where 0 represents the principal rotation angle about the Euler axis and given by: 

V ^ * * " I - V ^ T > > * - •j'l J> , 

(5-8) 

0 = acos(- I I ' ^ 2 2 ' ^ 3 3 
") (5-9) 

and 

C -C 
_ *- 23 *- 32 

2 sin 0 
C -C 

k, = 31 H 2 sin 0 
C -C 

_ ^ 1 2 ^ 2 1 
1 2sin0 

(5-10) 

where C is the element on the ilh row and /* column of the direction cosine matrix for 

1,7 = 1,2,3. For the unit quaternion representation, the quaternion parameters are 

constrained to form a hypersphere given by the following equation: 

Due to lack of singularities, the quaternion representation is useful for both small and 

large rotations (i.e., satellite slew-maneuvers). The direction cosine matrix can also be 

obtained from the quaternion parameters as follows: 

[c,] = 

2 2 2 2 

90 + 9] - ? 2 ~?3 

2(9,92 - t fo fc ) 

2(9>93 +?0?2) 

2(9l92 + 9o93) 
2 2 2 

9o ~9 l + 92 •q; 

2(q2q3-q0qi) 

2(9i93-9o92 ) 

2(9293+9o9i) 
2 2 2 2 

9o ~9 i - 9 2
 + ?3 

(5-12) 
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Since direction cosine matrix of a specific rotation is always unique, by comparing 

equations (5-5) and (5-11), one can obtain the static nonlinear transformation from 

quaternion to Euler angles: 

C,, 
<p - atan(——) = atan 

( 2(?2$3+?„?,) ^ 

<Jo - f t ~q2 +? 3 J 

9 = -asin(C!3) = -asin(2(9 l93 -q0q2)) (5-13) 

C 
yy - atan(——) = atan 

^ 1 1 

2 , 2 2 2 

Uo + ft -li "ft? 

The quaternion kinematics differential equations are given by: 

<K0 = 

ft>(0 
ft(0 
ft(0 

.^(0. 

-
~ft>(0 " 

i,3(o. 

or, equivalently 

q(J) = 

~ft,(0~ 
ft(0 
ft(0 

_&(')_ 

= 
_ * 1 3 « _ 

_ 1 
~2 

0 -mx -my -m1 

mx 0 mz -my 

wy -m2 0 mx 

mz xuy -to* 0 

ft, (/)" 

ft(0 
<72(>) 

M0_ 

1 
~2 

ft> - f t "ft- ~ft< 

ft ft) ~ft> #2 

ft> ft ft- "f t 

ft ~02 ft ft) 

" 0 

***(') 

«*"(/) 

cr z(0 

(5-14) 

(5-15) 

The kinematics differential equation in (5-15) essentially connects the spacecraft's 

attitude to its angular velocity vectornr = \tn* my mz\, which is obtained from 

gyroscope measurements. It should be noted that m represents the angular velocity of the 

body-fixed frame with respect to the inertial frame nrB
N. However, the quaternion 

components represent orientation/attitude of the satellite body fixed frame with respect to 

the orbital frame. Thus, we need to calculate the angular velocity of the body-fixed frame 
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with respect to the orbital frame, namely tnB°. Consider the following general equation 

from vector calculus: 

mB = mB +m0 = mB + R,} 

where nc is the orbital frequency of the satellite given by: 

0 

-M. 

«, = 
R 

(5-16) 

(5-17) 

where /i represents the gravitational parameter of the Earth, and Rc is the distance from the 

center of the Earth and the satellite. 

Finally, RQ is the rotation matrix transforming any vector represented in orbital frame to 

a vector in body fixed frame and can be obtained from the quaternion set, which is actually 

the direction cosine matrix corresponding to the quaternion set representing the orientation of 

the body-fixed frame with respect to the orbital frame. Therefore, we have: 

mB 
= «*/ + 

2 2 2 
tfo + 9i - ?2 -

2(?, qj+ioli) 

• % 2(9i92 + ?o*>) 2 ( ^ 3 - q0q2) 

%2 - <1\ + Qi ~ ?3
2 2(£,?3 + qnqx) (5-18) 

Using the above equation and the angular speeds of the satellite measured by all three Gyros 

we can calculate the angular velocity of the body-fixed frame with respect to the orbital 

frame as follows: 

VTB 

m 

+ n„ 

2(9,tf2+9o?3) 

l -2 ( 9 l
2 +f t 2 ) 

2(?293-9o9l) 

(5-19) 
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5.2.2.1 Dynamic Modeling of Reaction Wheel Actuators 

The selection of reaction wheels for attitude control is well justified due to their 

popularity in active satellite attitude control. The ACS can be considered as a MIMO 

control system. A high fidelity nonlinear model of a reaction wheel has been obtained 

from Bialke [167] and has been integrated into the ACS dynamics. This high-fidelity 

model is also required for enhancing the robustness of the FD1I schemes proposed in this 

thesis with respect to modeling errors. A block diagram representation of this high-

fidelity reaction wheel model is shown in Figure 5-2. 

The reaction wheels considered in this thesis are ITHACO 'type A' reaction wheels 

that are currently being manufactured by Goodrich Corporation. The values of model 

parameters for this type of wheel are also obtained from Bialke [167] and are given Table 

5-2. Closed-loop ACS simulation results verified the validity of this parameter selection 

(refer to the torque levels in Figure 5-10 presented in Section 5.4.1, where the torque 

levels are consistent with nominal torque levels of ITHACO 'type A' wheels). 

Each reaction wheel consists of several internal and external loops that have to be 

integrated to yield an accurate overall high-fidelity model of the wheel, which is highly 

nonlinear especially at high speeds of the wheel. The following loops play an important 

role in the dynamics of each reaction wheel (refer to Figure 5-2 and reference [167] for 

further details): 

(i) The negative feedback EMF torque limiting loop rEMF due to low bus voltage 

Vbus condition that may limit the motor torque at high speeds due to increasing 

back-EMF voltage gain ke of the motor. Note the nonlinear relationship between 

Ihus and Vbus (i.e., the current and the voltage of the bus). 
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'bus 

v ^ - 1 ; 
\(Im

2RB +0.04|/m|FfruJ +/>, +a>Imkf) (5-20) 

As can also be observed from equation (5-20), the motor current of the wheel is a 

highly nonlinear function of the bus current Ibus. Consequently, motor current of 

the wheel becomes a highly nonlinear function of the bus voltage Vhm . 

The negative feedback viscous and coulomb frictions generated in bearings. 

Viscous friction is generated due to the bearing lubricant, and it has a strong 

sensitivity to temperature T. The bi-linear dependence between temperature, 

reaction wheel angular speed and the viscous torque is given by: 

rv = (0.0049 -0.00002(T + 30))© (5-21) 

Coulomb friction is caused by friction within bearings, and is independent of the 

wheel speed and temperature, and therefore is primarily of interest as a 

disturbance source. 

The negative feedback speed limiter loop that prevents the flywheel from 

reaching unsafe speeds. 

The motor torque control is included since the motor driver is essentially a 

voltage controlled current source with a gain Gd. The motor has a torque constant 

gain kt, which delivers a torque proportional to the current driver. Thus, to inject 

faults in the motor current to validate and test the FDII algorithms, one may 

simply change the torque constant gain kt. This is basically an alternative way of 

representing unexpected changes in motor current value. 
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(vi) The torque noise disturbance rnojse is a very low frequency torque variation from 

bearings due to lubricant dynamics. The torque noise is modeled as a sine wave 

having a high pass filter frequency wn 

T -J 8 - w2 sin(w /) 
noise w noise n ' " \ " n J 

(5-22) 

where 0mjse represents the torque noise angle. 
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Figure 5-2: A detailed block diagram of a high fidelity reaction wheel model [167] 
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Few remarks on the reaction wheel fRW) model: 

• The speed limiter and the EMF torque limiting loops use three discontinuous 

Heaviside step functions to enable the high-gain negative feedback ks, when the reaction 

wheel exceeds an established speed threshold cos, to eliminate the voltage drop when the 

power is not being drawn from the bus during a deceleration since the energy is being 

removed from the wheel. 

• The EMF torque-limiting loop could be controlled by the voltage feedback gain, kf. 

• The torque command voltage is restricted to be within ±5V. Therefore, a saturation 

block is incorporated into the closed-loop ACS simulator after the controller to limit the 

control signal within these bounds. 

It is important to note that the reaction wheel model depicted in Figure 5-2 consists of 

a few discontinuous functions such as the Heaviside functions, the sign function and the 

absolute value functions that essentially make the entire reaction wheel model 

discontinuous. However, an analytical approximation of the reaction wheel is required 

specifically for designing the fault tolerant observer, which requires calculation of the 

Jacobian matrix of the system. Hence, all discontinuities in the model need to be 

approximated by appropriate analytical functions. For this purpose, one or combinations 

of parameterized sigmoidal functions are employed to approximate the discontinuous 

functions to an arbitrarily level of accuracy. These parameterized sigmoidal functions are 

of the following form: 

sigmoid(x) = — (5-23) 
1 + e 
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where a » l determines the accuracy of the approximation. The larger the value of this 

parameter, the more accurate will be the approximation, however, very large values of a 

may also cause numerical singularities particularly in calculating the Jacobian matrix of 

the system. In this thesis, a value of a = 10 has been selected to achieve a sufficiently 

accurate approximation. In the model shown in Figure 5-2, the Heaviside functions Hh 

and Hf can be approximated as follows: 

US)=. \ n (5-24) 
1 + exp(-a/) 

Hf(V) = - L — (5-25) 
1 1 + exp(oF) 

The sign function and the absolute value function can also be approximated as follows: 

. l-exp(-a<y) 
sign(co) = - (5-26) 

1 + exp(-aa>) 

abs(keco) = V) - ke(o (5-27) 
1 + exp(-akea>) 

It should be noted that the approximation (5-27) of the absolute value function is not in 

fact necessary, since the derivative of the absolute value function can, in general, be 

calculated as: 

— sign(x) = 
ax 

1, ifx>0 

-\,ifx<0 (5-28) 

0, ifx = 0 

where the inherently undefined value of the derivative at x = 0 is intentionally set to 

zero. Eventually, the Heaviside function Hs can be approximated as follows: 

H,(a>) = + (5-29) 
1 + exp(-o(ft> -<»,)) 1 + exp(a(ft) + cos)) 
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In conclusion, the mathematical state-space representation of the analytical model of the 

reaction wheel employed in both FDII and FTO design may now be expressed as follows: 

L=G^AM^J-fs^)h^L+Gd^Vc Comm 

1 r n (5"30) 

*> = Y I/'(6>) + k'r>» \& (») + 0 ~ Tv*> - re/4 (®) + r „ _ J 

in which: 

/,(ft>) = C sin—<y 

/ 2 (o ) = 5sin3Mfi) 

/ 3 (*>» 7
W > V b„s ) = : / . . , r . . ^ ^ ( < » » / » » ^ h . ) 

l + e x p f - a F ^ , / ^ ) ) 

l-exp(-o<y) 

1 + exp(-ofi>) 

Kio-MsfM)) 

V{c»,Im,VbJ = kf 

(5-31) 

1 
• + -

1 

1 + exp(-a(<y -cos)) 1 + exp(ar(ft> + cos)) 

^ - 6 -
1 

l + exp(-a/iK!) l + expt-a^tf/) 

where / , and f2 are functions due to motor disturbances, f3 is derived from the EMF 

torque limiting block, / 4 is a sigmoidal function replacing the discontinuous sign 

function in the Coulomb friction block, fs represents the speed limiter block, and VComm 

is the torque command voltage generated by the attitude controller. As can be seen from 

equations (5-30) and (5-31), the reaction wheel model is a second-order highly nonlinear 

model with motor current and wheel speed as the states and the command torque voltage 

as the input. 

Furthermore, since the proposed FDII algorithm is developed based on a discrete-time 

model of the system being monitored, the analytical nonlinear model of (5-30) was 

discretized using Euler's backward difference method with a sampling time of 
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7̂  = 50msec. This value of the sampling time ensures the validity of the Nyquist-

Shannon sampling theorem for the linearized model of the reaction wheel. More 

precisely, the fastest changing signal within the reaction wheel is the motor current 

corresponding to electrical, as opposed to, mechanical subsystems of the wheel. The 

bandwidth of the motor current is limited by the frequency cod in the transfer function 

between the torque command voltage and the motor current in the linearized model of the 

reaction wheel. This transfer function and its associated frequency, namely^ , can also 

be observed in the "motor torque control" block of the wheel model depicted in Figure 

5-2. The value of a>d is given in Table 5-2 as 9 rad/s, which is equivalent to 

9/2;r = 1.43 Hz. By selecting the sampling frequency to be 14 times of the bandwidth of 

the current signal, the sampling frequency becomes almost equal to 20 Hz, which is 

equivalent to 7̂  = 50wsec. 

It should be emphasized that the analytical approximation model of the reaction 

wheel given in equations (5-30) and (5-31) is utilized only for FDII and FTO design. For 

fault injection and simulation as well as data generation purposes, the original 

continuous-time discontinuous model of the reaction wheel presented in Figure 5-2 is 

used in the closed-loop ACS simulator. 

Validation of the discrete-time analytical model of the reaction wheel: The discrete-

time analytic approximation of the reaction wheel model needs to be validated against the 

original continuous-time discontinuous model prior to its use for FDII and FTO design 

purposes. Hence, the two reaction wheel models are run in parallel with the same torque 

command voltage given in the following: 
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^c„„ro(0
 = 3 s i n ( 0 + 2sin(4/) + v(/) (5-32) 

where v(t) is sampled from a random process with uniform distribution over the interval 

[-0.5,0.5]. Thus, 

-0.5 < v(/) < 0.5, V/ G 9T (5-33) 

The command voltage in equation (5-32) is selected in order to first span the entire 

possible range of the torque command voltage (i.e., ±5V) and second to stimulate (or 

excite) the internal modes of the reaction wheel using a random input signal v(t). 

Furthermore, the frequencies of the sinusoids in equation (5-32) are set to 1 and 4 rad/s, 

which are considerably smaller than the bandwidth of the motor current signal imposed 

by the value of 0)d =9rad/s . 

Furthermore, the model has been validated at both high and low speeds of the wheel, 

especially that the reaction wheel performance and characteristics are highly dependent 

on the speed of the wheel. Figure 5-3 depicts the validation results for the states of the 

reaction wheel (i.e., current and speed) as well as the reaction torque generated by the 

wheel. In theory, comparing the results for current and speed would have been sufficient 

to verify the validity of the discrete-time analytic model (remember that the states of a 

system carry all the information about that system). However, due to the extreme 

importance of the generated reaction torque by the wheel (note that reaction wheel is the 

actuator of ACS), the validation results are also depicted for reactions torque. 
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Figure 5-3. Validation of the discrete-time analytic model of the RW in response to the torque 
command voltage given in equation (5-32) at low speeds of the wheel. 

The results of Figure 5-3 clearly indicate that the discrete-time analytic model of 

equations (5-30) and (5-31) very closely matches the continuous-time discontinuous 

model of Figure 5-2 at low speeds of the wheel. The same conclusion can be drawn from 

Figure 5-4 at high speeds of the wheel. In this figure, the back EMF signal of the two 

models has also been shown and compared due to its importance at high speeds of the 

wheel. 
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Figure 5-4. Validation of the discrete-time analytic model of the RW in response to the torque 
command voltage given in equation (5-32) at high speeds of the wheel. 

5.2.3 Mathematical Modeling of External Attitude Disturbances 

The attitude control subsystem of an Earth-orbiting satellite must tolerate the typical 

external disturbance torques due to the gravity-gradient effects, the Earth's magnetic 

field, aerodynamic torques (dominant in low-altitude orbits) and solar radiation torque. 

Furthermore, the robustness of the FDII subsystem to these external disturbances has to 

be investigated, ensured and verified. Otherwise, the FDH subsystem would generate 

false alarms due to presence of these disturbances. Therefore, all these environmental 

disturbances need to be modeled and properly incorporated into the ACS simulator to be 

able to evaluate the robustness of the proposed FDII algorithms with respect to them. As 
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a result, the following mathematical models of these disturbances are obtained from 

Wertz and Larson [152] and are incorporated into the ACS simulator. 

5.2.3.1 Gravity Gradient Torque 

Gravity gradient torque is primarily influenced by spacecraft inertias and orbit altitude. 

The worst-case gravity gradient torque is estimated as: 

Tg=j^\lZ-IZ\Si»20 (5-34) 

where 6 is the maximum deviation in the local-vertical pointing (in radians), // is the 

Earth's gravity constant in m3/s2, R is the orbit radius in meters, lfat is the moment of 

inertia of the satellite about j-axis in kg.m2, and I™, is the moment of inertia about x-axis 

in kg.m2. 

5.2.3.2 Magnetic Torque 

Magnetic torque is primarily influenced by orbit altitude, residual spacecraft magnetic 

dipole and the orbit inclination. The worst-case magnetic torque is estimated as: 

rm=DrEmf (5-35) 

where Dr is the residual Dipole of the satellite in amp-turn.m2, Emf= —— is the Earth's 

R 

magnetic field in Tesla, M is the magnetic moment of the Earth in Tesla.m , and R is the 

orbit radius or radius from the dipole (Earth) center to the satellite (in meter). 
5.2.3.3 Aerodynamic Torque 

Aerodynamic torque is primarily influenced by orbit altitude, spacecraft geometry and the 

location of the centre of gravity of the spacecraft. The worst-case aerodynamic torque is 

estimated as: 
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ra=Faero{cpa-cg) (5-36) 

where Faer0 = 0.5[pCDAaeroV
2 J is the aerodynamic force, p is the atmospheric density 

in kg/m , CD is the drag coefficient, which is between 2 and 2.5, Aaero is the surface 

area for aerodynamic pressure in m2, V is the satellite velocity, c is the centre of 

aerodynamic pressure, and cg is the centre of gravity. 

5.2.3.4 Solar Radiation Torque 

Solar radiation torque is primarily influenced by spacecraft geometry; spacecraft surface 

reflectivity and the location of the centre of gravity of the spacecraft. The worst-case 

solar radiation torque is estimated as: 

*s=Fso,ar(Cps-Cg) ( 5 " 3 7 ) 

where in the force Fsolar= —^As(l + r)cos/,, Fs is the solar constant, c is the speed of 
c 

light in m/s, As is the surface area for solar radiation in m2, r is the coefficient of 

reflectivity, is is the Sun incidence angle, cps is the location of the centre of solar 

pressure, and cg is the centre of gravity. Coefficient of reflectivity r is a number between 

0 and 1 with usual value of 0.6 for most of the satellites. However, in order to consider 

the worst-case scenario, we selected the maximum possible value of 1 in the simulations. 

The values of the entire set of parameters of the environmental models (i.e., the 

environmental parameters) are provided in Table 5-1. It is important to note that some of 

these parameters are universal constants but some are specific to the LEO satellite that 

has been simulated. 
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Table 5-1. Parameters of the attitude disturbance models used in the ACS simulations. 

Parameter 
P 

A 
aero 

A 

CD 

CP0 

cz 

°ps 

cD 

M 

Dr 

Fs 

r 

e 

K 
T 

grg max 

T 
aero max 

T 
mgnmax 

T 
solar max 

Description 
Atmospheric density 

Contact surface area for 
aerodynamic pressure 

Contact surface area for solar 
radiation 

The drag coefficient 
The center of aerodynamic 

pressure 

The center of gravity 

The center of solar pressure 

The drag coefficient 

Magnetic moment of earth 

Residual Dipole of the satellite 

Solar constant 

Reflectance factor 
Maximum deviation in the 

local-vertical pointing 

Incidence angle 

The maximum gravity gradient 
torque 

Maximum aerodynamic drag 
torque 

Maximum magnetic torque 

Maximum Solar radiation 
torque 

Units 

kg/m 

m2 

2 

m 
-

-

-

-

-

T.m 
Amp-

turn, m 

W/m2 

-

rad 

deg 

Nm 

Nm 

Nm 

Nm 

Value 

1.04xl(TB 

1 

1 

2.2 

0.1 

0 

0.1 

2.2 

7.96 xlO15 

0.8 

1366 

1 

1.74X10"4 

0 

7.4119X10-6 

6.4617xl0 -7 

3.7694 xlO - 5 

9 x l 0 - 7 

5.3 Attitude Control 

Various techniques to control the attitude of a spacecraft including passive methods such 

as spin stabilization and gravity gradient, and active methods such as momentum bias and 

three-axis (3-axis) attitude stabilization. The criteria for choosing a specific attitude 

control technique mainly depend on accuracy requirements and specifications as well as 

the budget of the ACS. The 3-axis active attitude control technique, though being costly, 
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is the most precise technique among the others. It is also the most common attitude 

control technique in modern satellites. Therefore, in this thesis, this control technique is 

employed to stabilize the attitude of the satellite. For further details on each attitude 

control technique refer to Wertz and Larson [152], and Sidi [168]. 

5.3.1 Three-Axis Active Attitude Control Design 

The spacecraft attitude control is achieved using three reaction wheels that generate 

control torques TTO,r . r ^ about the three principal axes of the satellite. The torque 

vector appears explicitly in the attitude dynamics of the satellite given in equation (3-3). 

We have developed and implemented variable structure control (VSC) strategy [169], 

[170], [171] for attitude control, which performs extremely well in presence of an ideal 

reaction wheel model (i.e., a simple gain factor). However, as soon as we inject the 

nonlinear dynamics of the reaction wheel into the attitude control loop, the VSC 

controller fails to stabilize and control the spacecraft slew-manoeuvres. The same 

phenomenon was observed using linear state feedback control strategy designed based on 

the linearized attitude dynamics of the satellite. 

Interestingly, however, we designed and implemented a decentralized PID control 

strategy that performs extremely well for both attitude regulation and tracking even in 

presence of nonlinear reaction wheel dynamics and physical constraints on control signal 

(i.e., control signal saturation). AH of the above-mentioned control strategies were 

designed based on the quaternion representation of satellite attitude (i.e., using 

quaternion-based kinematics differential equations) in order to avoid dynamic singularities 

of the Euler representation. 
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In both VSC and state feedback control strategies, the attitude control error 

ea»-\e\ e2 e3 Y w a s defined based on the quaternions as follows: 

90c 93c -92c "lie 

-Qlc ?0c <7lc - l i e 

<i\c lie q-ic -Q\c 

9\ 

12 

9o<r 

(5-38) 

where qic,qj ;i = 0,1,2,3 are the commanded and current attitude quaternions, 

respectively. The PID control design based on the quaternion error given above, however, 

will require MIMO PID controllers that are not straightforward to design and tune. Thus, 

to simplify the PID parameter tuning, the attitude error in PID control is defined based on 

the Euler angles. Three separate decentralized PID controllers are designed for each 

angle. A quaternion to Euler angle transformation is needed to close the loop. This 

nonlinear transformation is, in fact, given in equation (5-13). This equation allows us to 

obtain the Euler angles from the quaternions. This would not impose singularity problems 

because of the static nature of this transformation. More precisely, the quaternion 

kinematics differential equations are still integrated to obtain the quaternions. Thus, no 

dynamic singularities will occur in the closed-loop attitude control system. 

Furthermore, the above-mentioned definition of control error in the PID control 

strategy design also enables better visualization of the satellite manoeuvre control 

commands. To take the actuator saturation into account, saturation blocks were applied to 

the outputs of the PID controllers. Accuracies in the order of less than of 5 mdeg can be 

achieved for thee axes using this decentralized PID control strategy. Figure 5-5 depicts 

the block diagram representation of the closed-loop ACS subsystem that has been 

developed in this thesis. 
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Figure 5-5. Closed-loop 3-axis stabilized attitude control subsystem (ACS) of the spacecraft. 

5.4 Simulation Results of 3-Axis Stabilized ACS 

In this section, we present attitude stabilization as well as slew-manoeuvring capabilities 

of the ACS under healthy (or nominal) mode of operation and in presence of external 

disturbances, reaction wheel dynamics, and control (or equivalently actuation) signal 

saturation. As mentioned previously, Table 5-2 and Table 5-1 show the model parameter 

values used in ACS simulations for the components of ACS and the environmental 

disturbances, respectively. 

5.4.1 Three-Axis Attitude Stabilization 

We first start with the attitude regulation capability of the ACS, where the asymptotic 

stability of the satellite attitude is shown in response to a non-zero initial attitude, no 

attitude commands, and in presence of environmental disturbances. The evolution of the 

Euler angles under such scenario can be seen in Figure 5-6 and Figure 5-7. More 

specifically, Figure 5-6 shows that the three Euler angles asymptotically approach to zero 

starting from nonzero initial conditions. It can be seen from this figure that the settling 
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time of the closed-loop ACS is about 8.3 minutes. Figure 5-7 depicts the Euler angles at 

steady-state. It can be seen from this figure that the attitude stabilization error is in the 

order of less than 5 mdeg. Figure 5-8 shows the same attitude stability property for the 

quaternions. 

Table 5-2. The closed-loop ACS parameters including parameters of the RW model, the satellite 
attitude dynamics and the controller, used in the simulations. 

Parameter 

J xx 

Jyy 

Jzz 

J* 

Gd 

K 
K 
K 

*/ 

<»s 

Tc 

N 

K 
°><i 

KP 

K> 
KD 

Description 
Satellite inertia about x-axis 

Satellite inertia about y-axis 

Satellite inertia about z-axis 

Wheel inertia 

RW driver gain 

Motor torque constant 

Motor Back-EMF 

Overspeed circuit gain 

Voltage feedback gain 

Overspeed circuit threshold 

Coulomb friction 

Number of motor poles 

Input resistance 

Frequency 

PID proportional coefficient 

PID integral coefficient 

PID derivative coefficient 

Units 

Nms2 

N.mj2 

N.ms2 

N.m.s2 

A/V 

NM/A 

Vlradls 

Vlradls 

VIV 

rad 1 s 

N.m 
-

Q 

rad 1 s 

-

s~x 

s 

Value 
450 

200 

440 

0.0077 

0.19 

0.029 

0.029 

95 

0.5 

690 

0.002 

36 

2 

9 

100 

2 

4000 
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Figure 5-6. Transient of Euler angles (Yaw-Pitch-Roll) for 3-axis attitude stabilization at low speeds 
of reaction wheel actuators 

x 10" 

i 

-5L 
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 

^ 5 
8> ;o. 

£ 0 

x 10" 

& -5 

fy^^^^M^ 
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 

x10"3 

^^ / 1 ' *vy^/Lv A A ^vv V l ^^ 
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 

time (sec) 
Figure 5-7. Euler angles zoomed around the steady state for 3-axis attitude stabilization at low speeds 

of reaction wheel actuators 

185 



1.01 

1 

0.99 

0.98 

0.97 

L 

2000 4000 

0.1 -

0.05 

0 

-0.05 

-0.1 — 
0 2000 4000 

0.15-

0.1 ! 

JT> 0.05 

T 
2000 4000 
time (sec) 

-0.05L 

2000 4000 
time (sec) 

Figure 5-8. Stabilization of quaternions. 

Figure 5-9 and Figure 5-10 show the control signals and the reaction torques generated by 

the reaction wheels, respectively. As can be seen in these figures, even though the control 

signal has got saturated over some time intervals, but the ACS performs very well. 

Furthermore, the magnitude of the reaction torques is consistent with the nominal 

specifications of the ITHACO 'type A' reaction wheels mentioned in spec sheets of this 

wheel. 

186 



0 50 100 150 200 250 300 350 400 450 500 

5 

S o 

-5 
50 100 150 200 250 300 350 400 450 500 

~i r~ 

•5 t i i i i i i i _ 

0 50 100 150 200 250 300 350 400 450 500 
time (sec) 

Figure 5-9. Control signals during transient phase of attitude stabilization 
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Figure 5-10. Reaction torques generated by reaction wheels during transient phase of attitude 
stabilization. 
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Figure 5-11 and Figure 5-12 depicts the spacecraft's body angular rates during the 

transient and steady state, respectively. The variations in satellite angular rates during the 

transient are due to satellite rotations until it reaches a stable attitude. However, it can be 

seen from Figure 5-12 that during steady state, the angular velocity of the satellite around 

the j-axis does not converge to zero and instead it converges to a nonzero value almost 

equal to -l.lxl(TJ(rad/sec). This is, indeed, due to the satellite rotation around the Earth 

and that specific value is actually the speed of that rotation (or orbital frequency of the 

satellite^), which is dependent on satellite altitude in the orbit and is given by equation 

(5-17). This observation is also consistent with equation (5-18), where the term -nc 

appears on the right-hand side of the equation. 
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Figure 5-11. Body angular rates of the satellite in the orbit reference frame during the transient 
phase of attitude stabilization 
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Figure 5-12. Body angular rates of the satellite in the orbit reference frame during the steady state of 
attitude stabilization 

Figure 5-13 and Figure 5-14 depict the angular speeds of the three reaction wheels and 

the motor currents of the three wheels, respectively. Eventually, the cumulative effect (or 

torque) of different external attitude disturbances is depicted in Figure 5-15 for one 

complete orbit of the satellite. 
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Figure 5-13. Reaction wheel speeds during transient phase 
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Figure 5-14. Motor current of the reaction wheels during transient phase 
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Figure 5-15. Environmental attitude disturbances over one orbit of the satellite 

In order to investigate the slew-maneuvering capability of the ACS, the satellite was 

commanded to perform three slew maneuvers within almost half of an orbit period. 

Therefore, the attitude of the satellite was commanded at three different times within this 

period of time. The attitude commands were sent to all the three Euler angles 

simultaneously. Figure 5-16 to Figure 5-18 respectively represent the evolution of yaw, 

pitch and roll angles versus their commanded values. It can be easily seen from these 

figures that all the commanded attitudes have been perfectly achieved by the ACS. The 

response of other major quantities/variables of the ACS, including the quaternions, the 

control signals, the reaction torques generated by the wheel actuators, the spacecraft body 

rates and the speeds and current of the reaction wheels, to the three slew maneuvers are 

depicted in Figure 5-19 to Figure 5-24, respectively. 
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Figure 5-16. Yaw angle evolution in response to three slew-maneuvers 
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Figure 5-17. Pitch angle evolution in response to three slew-maneuvers 
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Figure 5-18. Roll angle evolution in response to three slew-maneuvers 
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Figure 5-19. The evolution of quaternions in response to three slew-maneuvers 
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Figure 5-20. Control signals in response to three slew-maneuvers 
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Figure 5-21. Reaction torques in response to three slew-maneuvers 
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Figure 5-22. Satellite body rates in response to three slew-maneuvers 
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Figure 5-23. The speeds of the three reaction wheels in response to three slew-maneuvers 
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Figure 5-24. The motor current of the three reaction wheels in response to three slew-maneuvers. 

5.4.2 Characterization of Possible Fault Scenarios in Reaction Wheels 

In order to be able to develop the FDI1 algorithms and to inject faults in the ACS, the 

potential sources of anomalies in the reaction wheels have to be identified. Extensive 

experimental experience with reaction wheels on-board different satellite missions has 

revealed that the following potential failures may occur in these attitude actuators: 

(i) Unexpected changes in the bus voltage V ^ (i.e., bus voltage drop), and 

(ii) Unexpected changes in the motor current, which can be represented (or 

modeled) by changes in the motor torque constant kt. 
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5.5 Simulation Results for FDII with Full-State Measurements 

In this section, we present simulation results of FDII in reaction wheel actuators of ACS 

subject to faults in motor current and bus voltage and under the availability of full-state 

measurements. It is very important to note that for FDII purposes, the reaction wheel 

itself, though being an actuator of ACS, is considered as the system being monitored. 

More precisely, the second-order nonlinear model of the reaction wheel acts as the 

system (or plant) under consideration and consequently the wheel's signals, namely 

voltage, current, and speed, comprise the inputs of the FDII subsystem. Therefore, the 

satellite attitude model and controller are used to provide a near-realistic simulation of 

reaction wheel operation in a closed-loop ACS operation and they are not used in FDII 

design. 

As mentioned previously, three identical reaction wheels are used in a 3-axis 

stabilized satellite for attitude control. According to the aforesaid philosophy of 

monitoring the wheels, one FDII modules need to be dedicated to each reaction wheel, 

thus requiring a total of 3 FDII modules for health monitoring of the whole reaction 

wheel assembly of the ACS. Since it is assumed that the reaction wheels are identical 

their corresponding FDII modules would also be essentially identical. Hence, in this 

section we show the results of FDII for only one of the wheels in ACS, corresponding to 

the Pitch axis. The simulation data, however, are obtained from the closed-loop ACS 

simulation of a 3-axis stabilized LEO satellite. The simulations are carried out for 6000 

seconds (or 100 minutes) of ACS operation, which is just slightly larger than the period 

of the simulated LEO satellite (the simulated LEO satellite was in an altitude of 586.91 

km with an orbit period of 96.4144 minutes). 
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Intermittent time-varying faults are injected into two of the reaction wheel 

components, namely motor current and bus voltage. Faults in motor current are modeled 

and injected as variations in motor torque gain kt. Faults in bus voltage are modeled and 

injected as drops in the voltage of the power bus Vbm in equations (5-30) and (5-31). In 

consequence, two fault parameters (FPs) are defined that affect the bus voltage and the 

motor gain in additive form. Therefore, the multi-parameterized fault model is obtained 

by replacing Vbus in equations (5-30) and (5-31) by Vbm +a\ and replacing k, in equation 

(3-30) by k, +a2, where a1 and a2 are unknown fault parameters that indicate possible 

presence of faults in bus voltage and motor current respectively. Due to additive 

formulation of the above fault parameters, the value of a1 and a2 at healthy nominal 

conditions is essentially zero. 

The following intermittent time-varying fault in motor current is injected into the 

reaction wheel on the pitch axis as a sinusoidal variation in the motor torque gain kt of 

that wheel: 

*.(') = 

k"om, KlOOO "7 ' 

kTm - 0.02 sin 
^2;r(f-1000)^ 

3000 

k™m, 4250</<6000 

, 1000 <t< 4250 (5"39) 

where k"om = 0.029 is the nominal value of the motor torque gain. 

Time-varying bus voltage faults are injected and simulated as a sequence of 

instantaneous drops in the voltage of the power bus. Two types of faults are considered 

for the bus voltage including low-severity (or incipient) and high-severity faults that 

basically differ in terms of the severity of the voltage drop. Low severity bus voltage 
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faults include scenarios where the drop in the bus voltage is below 4V. These faults only 

cause higher power consumption in the ACS by making the wheel operate at a higher 

current. The low-severity faults will not make the ACS system unstable or out of control. 

The following sequence of low-severity bus voltage faults are injected over different time 

intervals in the reaction wheels of ACS (it is important to note that since the power bus is 

common to all loads in a satellite such as actuators, sensors, and payload instrumentation, 

bus voltage faults are also essentially common to all the three reaction wheels of the 

ACS): 

n-(0= 

1, 

0</<1000 
1000 <t< 2240 

*Z"-4> 2240 <f< 3100 
*C-3 -5 , 3100<f<4390 
C " - 2 . 5 , 4390 </< 5100 
K J \ 5100 </< 6000 

(5-40) 

where V£™ = 2AV is the value of bus voltage under healthy operational mode. 

The presence of high-severity bus voltage faults (i.e., drops of more than 5V in the 

bus voltage) makes the ACS system unstable and the satellite starts tumbling upon 

occurrence of these faults. The following sequence of high-severity bus voltage faults are 

injected into the ACS subsystem: 

»U')= 

rrnom 
Vbm •> 
•wrnom 
"bus 
jrnom 
Vb«s 
•wrnom 
ybus 

Vbus 

Vbm •> 

-6, 

-9.4, 

-5-3, 

-7.8, 

o<r<iooo 
1000</<2240 

2240<r<3100 

3100 <t< 4390 

4390 <t<5100 

5100<r<6000 

(5-41) 

In the following subsections, we assume that full-state measurements are available 

from reaction wheels. More specifically, we assume that both current and speed of the 
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wheel are measured with appropriate sensors and are available for fault diagnosis. We 

will first test the diagnostic performance of the series-parallel FDII scheme under the 

aforementioned fault scenarios and then analyze its robustness with respect to 

measurements noise. Then, the same procedure is performed for the robust parallel FD11 

scheme. 

All FDII validation results are obtained with Gaussian random noises for the current 

and speed measurements. The nominal levels (or intensities) of measurement noise for 

both state (i.e., current and speed) measurements are given in noise variance and noise 

power (in dB) in Table 5-3, and in terms of signal-to-noise ratio (SNR) in dB in Table 

5-4. The definition of noise variance is clear. The other two indices are defined as 

follows: 

Power of the noise (dB): 

Pv(dB) = 1 0 x l o g 1 0 ^ - | r | K ( 0 | 2 ^ j = 10xIogl0 - X K 

( 1 TIT, 
1 H i I2 (5-42) 

Signal-to-Noise Ratio (dB): 

SNR(dB) = 10xIog10 
signal = 10xlog1( 

(TIT, \ 

TIT, 

ZKI 
V *=o 

(5-43) 

where T is a specific period of time. In this thesis, 7 was set to be the orbit period. 

The "nominal" noise intensity, which is set based on the typical noise levels of 

current and speed sensors available in the market, is a minimal noise level considered for 

the initial performance evaluation of the FDII schemes. However, two larger levels of 

noise - as compared to the nominal one - were also used to perform robustness analysis 

of the FDII schemes with respect to measurement noise. These noise levels are identified 
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in Table 5-3 and Table 5-4 as "medium" noise and "high" noise levels. The three 

aforementioned indices of noise intensity for these two noise levels are also given in 

Table 5-3 and Table 5-4. It is very important to note that the measurement noise power 

and the SNR of the "medium" and "high" noise levels are respectively 100 and 1000 

times larger than that of the "nominal" noise conditions. 

Table 5-3. Specifications of the various measurement noise levels used in the simulations. 
Noise Level/Intensity 

Nominal 

Medium 
(in robustness analysis) 

High 
(in robustness analysis) 

Measured 
Variable 
Current (v,) 

Speed (vj 

Current (v,) 

Speed ( v j 

Current ( vx) 

Speed (vj 

Variance^2 

2x10* 

0.009647 

2X10"6 

0.9647 

2x10_i 

9.6470 

Power Pv (dB) 

-77 

-10.16 

-57 

-0.16 

-47 

9.84 

Table 5-4. Signal-to-noise ration (SNR) corresponding to the various noise intensities in Table 5-3 
and calculated for different fault scenarios. 
Noise Level/Intensity 

Nominal 

Medium 
(in robustness analysis) 

High 
(in robustness analysis) 

Measured 
Variable 

Current (v,) 

Speed (vj 

Current ( v,) 

Speed (vj 

Current (v,) 

Speed (vj 

Fault Scenario 
Motor 

Current Fault 
75.00 dB 

75.00 dB 

55.00 dB 

55.00 dB 

45.00 dB 

45.00 dB 

Low-Severity 
Vbus Fault 
74.57 dB 

74.76 dB 

54.57 dB 

54.76 dB 

44.57 dB 

44.76 dB 

High-Severity 
Vbus Fault 
73.66 dB 

73.72 dB 

53.66 dB 

53.72 dB 

43.66 dB 

43.72 dB 

It is important to note that the SNR index is provided in a separate table from the 

variance and the power. The reason is that as can be seen from the definition of SNR, the 

value of SNR not only depends on the noise intensity but also on the actual signal being 

measured. As a result, the SNR value would be dependent on the specific fault scenario 

being considered. Therefore, the SNR values corresponding to the three noise levels (i.e., 
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nominal, medium, and high) are mentioned in a separate table (i.e., Table 5-4) for each 

fault scenario. 

Indices of fault identification performance evaluation; Once a fault is correctly 

isolated, the FP estimate corresponding to the isolated fault can be taken as the indicator 

of the fault severity for fault identification purposes. In order to quantitatively assess the 

accuracy of fault identification, a number of performance indices have been used in this 

thesis that are based on evaluating the accuracy of FP estimates. These performance 

indices are basically average performance measures of the FP estimation error defined as: 

ea
k=al-d'k (5-44) 

where i is the index of the detected and isolated fault. The performance indices defined 

based on the above error include the root mean square of the error (RMSE), the mean of 

the error (ME), and the standard deviation of the error (STDE). These performance 

indicators are calculated as follows: 

RMSE: rmsa = J — £ [ e * ] (5-45) 

_ 1 N 
ME: ^=T7Z< (5"46> 

STDE: oa = l-L-|;[< -ea J (5-47) 

It should be noted that these performance indices are used for all FDII simulation results 

throughout this chapter. 
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5.5.1 Simulation Results for FDII Using the Series-Parallel Scheme 

The series-parallel FD11 scheme was applied to detect, isolate, and identify the 

aforementioned faults in the reaction wheel of the Pitch axis. Since two faults are 

considered in the reaction wheels, the bank of NPEs essentially consists of two NPEs; 

one NPE for FD11 of Vbus fault and one NPE for FDII of k, fault. Two one-hidden-layer 

feed-forward neural networks with four neurons in the hidden layer and one neuron in the 

output layer are used as NPEs. Sigmoidal activation functions were used for the neurons 

in the hidden layer, while linear neurons were used at the output layer. Neural network 

learning rates were selected as, [TJ\ TJI] = [\ 10"4] and [TJI 77* ̂ [ l O - 4 1(T7] for the 

first and the second NPE in the bank of the series-parallel FDII scheme, respectively. 

5.5.1.1 FDII of Motor Current Faults 

In this section, the results of FDII in presence of the time-varying intermittent fault in the 

motor current over the time period t e [1000 4250] seconds - given in equation (5-39) -

are depicted. The measured speed and current of the reaction wheel and their estimates 

obtained from the two NPEs of the series-parallel FDII scheme are depicted in Figure 

5-25. As can be seen from the figure, the results of the NPE for bus voltage fault are 

depicted on the left column and the results of the NPE for motor current fault are depicted 

on the right column. It is important to note that this convention is used throughout this 

chapter. These figures clearly show an extremely close match between the measured 

states and their corresponding estimates for both NPEs. Note also the effect of the faults 

on the states of the reaction wheel. 

203 



The NPE for V„ Fault 
bus 

0.9 

~ 0.8 
<. j 
| 0 . 7 | 

O 0.6, 
i 

0.5 

0.4 

y i . 

Estimate 

Measured 

2000 4000 6000 

The NPE for K Fault 
1 

0.9 

0.8 

£ 0.7 [ 

O 0.6 

0.5 

0.4 

^ 

fr i 

V 

2000 

Estimate 
Measured 

4000 6000 

7000 r 

6000 

§. 5000 

% 4000 
a. 
W 

3000 

2000 

pr~\ V 

Estimate 
Measured 

7000 

6000 

| 5000 

TO 

8 4000 

3000 

\ 

2000 

' \ i 
\ i 
\ / F Estimate 

Measured 

6000 2000 4000 6000 0 2000 4000 
time (Sec) time (Sec) 

Figure 5-25. The estimated versus measured states using the series-parallel FDII scheme in presence 

of a time-varying fault in motor current over the time period/ € [1000 4250] second. 

Figure 5-26 shows the residuals corresponding to the two NPEs in the bank. It is 

important to note that each NPE consists of two residual signals: (i) current residual and 

(ii) speed residual. These residuals are defined as r) =Ik -1^ and r^ =a)k -co"' for the 

first NPE (i.e., the NPE for the FDII of Vbus faults), and rf =Ik- Jk
2 and rj =<ok-a>k

2 for 

the second NPE (i.e., the NPE for the FDII of AT, faults). 
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Figure 5-26. The residuals of the two NPEs of the series-parallel FDI1 scheme in presence of a time-

varying fault in motor current over the time period / £ [1000 4250] second. 

As was mentioned in Chapter 3, the residual thresholds must be set using the worst-case 

disturbance and noise analysis during the healthy period. Using this method, the residual 

thresholds are set to be almost four times bigger than the maximum effect of system noise 

and disturbances on the residual signal during healthy mode of operation. Accordingly, 

the threshold values were set to S, = 5l = 10"3 (A) for the current residual and 

5a = S2 = 10(rpni) for the speed residual. It should be noted that the residual thresholds 

are the same for all NPEs in the bank. It is also important to note that since the residual 

thresholds are set using the worst-case disturbance and noise analysis during healthy 

operations, the value of these thresholds may be changed if noise intensities are changed 

in the system. This issue will be further clarified in the robustness analysis section. 
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Figure 5-27. The estimated versus actual FPs using the series-parallel FDH scheme in presence of a 

time-varying fault in motor current over the time period t e [ 1000 4250 ] second. 

Figure 5-27 depicts the estimated versus actual values of the fault parameters or1 and 

a2 representing faults in Vbus and kt, respectively. As can be seen in this figure, the fault 

parameters are very well estimated by the NPEs during both healthy and faulty periods. 

The FDI decision logic of the series-parallel scheme requires thresholds to be defined for 

FP estimates, as described in Chapter 3. The criterion for selecting FP thresholds was also 

mentioned in Chapter 3. Using that criterion, we select the thresholds to be s1 = 0.5V for 

or1, and s2 =3xl0"3 for a2 that accounts for almost 10.35% change in motor torque 

gain. It has been verified, through numerous simulations of the closed-loop ACS 

subsystem, that bus voltage faults with severity levels below 0.5V and motor torque gain 

variations in the order of 10% will not considerably degrade the closed-loop ACS 
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performance; hence the reliability and safety of the satellite is ensured and maintained. 

Indeed, the effect of such minor faults on the ACS system is a very slight increase in 

power consumption of the reaction wheels. It is also very important to note that as 

opposed to residual thresholds the FP thresholds always remain unchanged regardless of 

the noise or disturbance levels in the system. Instead, the FP thresholds are determined 

once at the design time and based on the inherent characteristics of the closed-loop 

system and the impact of each specific fault on the closed-loop system performance. In 

conclusion, throughout this thesis the FP thresholds are kept equal to the values 

mentioned above, namely s1 = 0.5 V for a1 and s2 = 3xl(T3 for a2. 

It can be seen from Figure 5-27 that the estimate of the bus voltage FP has been 

incorrectly deviated from zero (though within threshold bounds) in presence of a fault in 

motor current. It is very important to keep in mind that this phenomenon will be observed 

for most of the fault scenarios and using both FDII schemes. Nevertheless, it should be 

noted that the FP estimates are not direct indicators for fault detection and isolation. More 

precisely, first the FDI decision logic of each algorithm is applied to find out the health 

state of the system. Once the health state of the system is determined and in case of 

presence of a fault the faulty component (or the fault source) is isolated, then the estimate 

of FP corresponding to the isolated fault is taken as an indicator of the fault severity. 

Therefore, prior to interpreting the FP estimates, one has to obtain and analyze the 

results from the FDI decision logic for fault detection and isolation and then use the 

appropriate FP estimate for fault identification. The health state of the reaction wheel is 

determined using the FDI decision logic of the series-parallel scheme given in equation 

(3-35). The health state is depicted in Figure 5-28. Because of considering two types of 
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potential faults in the wheels, the health state can basically take three possible values 

including "0 for healthy", "1 for faults in bus voltage" and "2 for faults in motor current". 

However, it is also possible, though very rarely, that the FDI decision logic incorrectly 

indicates simultaneous presence of the two faults (it is said "incorrectly" because in this 

thesis it is assumed that faults do not occur concurrently). Therefore, the health state 

value equal to 3 is reserved for simultaneous presence of two faults. More precisely, 

whenever the health state is determined to be 3, it implies the existence of both faults has 

been determined by the FDII subsystem. 

r i i 

I I I I I I 

0 1000 2000 3000 4000 5000 6000 
time (sec) 

Figure 5-28. The health state of the RW using the series-parallel FDII scheme in presence of a time-

varying fault in the motor current over the time period of t e [1000 4250 ] second. 
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A number of observations can be made from Figure 5-28 as follows: 

• The injected motor current fault has been correctly detected and isolated for the most 

of the faulty period. 

• Only few false alarms are observed during the healthy period, namely prior to fault 

occurrence and after fault removal (or disappearance). It is also very important to note the 

robustness of the series-parallel FDII scheme to the transients of the closed-loop ACS 

system (i.e., the time it takes for the attitude to be stabilized, which is almost around 8 

minutes or 500 seconds). It can be clearly seen from the figure that during the transient 

period (i.e., the first 500 seconds) there are only very few false alarms for a very short 

period of time. Being extremely robust to closed-loop system transients is indeed a 

notable advantage and capability of the serie-paralell FDII scheme. 

• The first detection and isolation of the injected fault has taken place in only 54.3 

seconds after fault occurrence. However, it was not persistent and some few missed 

alarms are observed until /= 1282.3 seconds, where the fault has been persistently 

detected. Therefore, (a pessimistic) value of fault diagnosis delay is 282.3 seconds. 

• A 100 second period of missed alarms over the period /e[2465 2565] is also 

observed. It should be noted that these missed alarm occur around the zero-crossing of 

the fault parameter corresponding to the motor current, as can be seen in the actual FP of 

Figure 5-27. Hence, these missed alarms are, in fact, very reasonable because the fault is 

extremely small in that period and the system actually becomes momentarily healthy 

while the actual FP crosses zero value. 

• Fault removal or disappearance has been persistently detected almost 13 seconds 

ahead of the actual fault removal (i.e., ?=4237 seconds as compared to 4250 sec). 
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Now that the motor current fault has been correctly isolated, the FP estimate 

corresponding to this fault, namely a2 (see Figure 5-27) can be taken to identify the fault 

severity. It should be noted that based on the isolation results, the bus voltage FP 

estimate, namely a1 has to be neglected during the faulty period. The accuracy of motor 

current fault identification has been assessed using the afore-mentioned performance 

indices and the results are shown in Table 5-5. It can be clearly seen from this table that 

the motor current fault parameter (or the motor current fault severity) has been very 

accurately estimated with average errors in the order of less than lO^and standard 

deviations in the order of less than 10~% while the injected fault severity was varying 

between -0.02 to 0.02. 

Table 5-5. The performance indices of motor current fault identification using the series-parallel 
FDII scheme in presence of intermittent motor current fault and with nominal noise levels. 

RMSE 
ME 

STDE 

Pre-fault period 
t e [01000] sec 

6.2663 xlO-4 

-3.4188xl0 - 5 

6.2571 xlO"4 

Faulty period 
*e[l000 4250]sec 

6.3787x10^ 

4.4874x10^ 

6.3786 xlO"4 

Post-fault period 
/ e [4250 6000] sec 

5.9962 xlO"4 

5.2092 xl0~5 

5.9737 xlO-4 

5.5.1.2 FDII of Incipient, Low-Severity Bus Voltage Faults 

In this section, the results of FDII using the series-parallel scheme in presence of the 

sequence of low-severity bus voltage faults over the time period /e [ l000 5100] 

seconds - given in equation (5-40) - are depicted. The measured speed and current of the 

reaction wheel and their estimates obtained from the two NPEs of the series-parallel FDII 

scheme are compared in Figure 5-29. This figure shows a very close match between the 

measured states and their corresponding estimates from "the NPE for Vbus fault". The 
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current estimates from the other NPE do not match the measurements over the faulty 

periods. This is reasonable because the results are obtained in presence of bus voltage 

fault, so only "the NPE for VbUS fault" has generated matching estimates for both of the 

states. Finally, note the effects of the bus voltage fault on the states of the reaction wheel. 

The NPE for Vw Fault 
bus 

The NPE for K, Fault 
1 

0.9 

0.8 

§ 0.7 [ 

O 0.6 j 

0.5' 

O.4' 

h 
I 
' 

i 

J-
j »- — Estimate 

- Measured 

1 j 

s"l|rf-l 
O 0.6 j ! 

0.5 

0.41 

1 

— - • Estimate 

- Measured 

. 

- : 

-

2000 4000 6000 2000 4000 6000 

6000 ,-

5500}r 

Estimate 
Measured 

/h—« 

4500 

Lr—/ 

6000 : 

5500; 

5000 

4500 

Estimate 
Measured 

\k\ 

V. J 

6000 2000 4000 6000 0 2000 4000 
time (Sec) time (Sec) 

Figure 5-29. The estimated versus measured states using the series-parallel FDII scheme in presence 

of a sequence of low-severity bus voltage faults over the time period r e [1000 5 1 0 0 ] second. 

Figure 5-30 shows the residuals of the two NPEs. As expected from the state estimates 

shown in Figure 5-29, only the two residuals of "the NPE for VbUS fault" remain within 

their corresponding thresholds. Since these results were obtained with nominal noise 

levels, the residual thresholds are essentially the same as the ones used for the motor 

current FDII in the previous section. As can be observed from Figure 5-30, both residuals 

of "the NPE for Vbus fault" have remained within their specified threshold bounds, except 

211 



for the current residual, where it has temporarily exceeded its corresponding threshold for 

a few times during the simulation period. These include once at the very beginning of the 

simulations due to closed-loop system transients and five times during the faulty period 

due to transients imposed by bus voltage fault initiation, change in the fault severity, and 

finally the fault removal. 
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Figure 5-30. The residuals of the two NPEs of the series-parallel FDII scheme a sequence of low-

severity bus voltage faults over the time period / e [1000 5100] second. 

As far as the residuals of "the NPE for Kt fault" are concerned, it can be seen from 

Figure 5-30 that the current residual has exceeded its threshold for the entire period of the 

presence of the bus voltage fault in the reaction wheel. Once again, this correctly 
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indicates that the fault model assigned to faults in motor current does not match the 

observations/measurements when a bus voltage fault is present in the system. Figure 5-31 

is shown merely to provide a zoomed view of the current residual of "the NPE for Kt 

fault". 
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Figure 5-31. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period / S [l 000 5100] second; zoomed in 

for the current residual of 'the NPE for K, fault'. 

Figure 5-32 depicts the estimated versus actual values of the fault parameters or1 and 

a2 representing faults in Vhm and k,, respectively. As can be seen in this figure, the fault 

parameters are accurately estimated by the NPEs during both the healthy and faulty 

periods. More specifically, the bust voltage fault has been very precisely identified across 

all injected fault severity levels, including minor incipient faults such as IV drop in the 

bus voltage. 
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Figure 5-32. The estimated versus actual FPs using the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period / S [1000 5100] second. 

It should be noted that even though in this fault scenario both FP estimates are 

accurate (i.e., a2 is also very close to zero in presence of a fault in bus voltage and in 

absence of a fault in motor current), always only one of the FP estimates should be taken 

into account for fault identification, and that is the FP estimate that corresponds to the 

detected and isolated fault. Hence, first the health state of the system has to be 

determined using the FDI decision logic of the series-parallel scheme and then the FP 

estimate corresponding to the isolated fault has to be taken as the fault severity. The same 

logic shall be applied to the parallel FDII scheme. 

Figure 5-33 depicts the health state of the reaction wheel obtained by applying the 

FDI decision logic of equation (3-35) for the series-parallel scheme. 
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Figure 5-33. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period / 6 [1000 5100] second. 

A number of observations can be made from Figure 5-33 as follows: 

• The injected sequence of low-severity (or incipient) bus voltage faults has been 

correctly detected and isolated for almost the entire period of bus voltage fault presence. 

• There are very few false alarms prior to fault occurrence, which last only for 29.3 

seconds after the beginning of simulations. Compared to the settling time of the closed-

loop ACS system (which is equal to almost 500 seconds), this reveals that the series-

parallel FDII scheme is extremely robustness to the transients of the closed-loop ACS. 

Also, note that no false alarms are observed after fault removal. 

• The delay in fault detection and isolation is only 2.1 seconds. 
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• A sequence of intermittent missed alarms is also observed during the faulty period 

with short durations of 21 sec, 13.5 sec, and 12 sec, respectively. It should be noted that 

these missed alarms are indeed due to changes in the severity of the injected bust voltage 

fault. 

• Fault removal or disappearance has been perfectly detected at /=5100.05 seconds, 

practically with no delay. 

Now that the bus voltage fault has been correctly isolated, the FP estimate 

corresponding to this fault, namely a1 (see Figure 5-32) must be taken as a measure of 

fault severity. On the other hand, the motor current FP estimate, namely a2 has to be 

neglected during the faulty period. The accuracy of bus voltage fault identification has 

been assessed using the afore-mentioned performance indices and the results are shown 

in Table 5-6. It should be noted that all tables corresponding to bus voltage fault 

scenarios possess two extra rows as compared to the motor current fault scenarios. One of 

them shows the actual injected bus voltage drop for the healthy as well as different faulty 

periods and the other row shows the mean (or average) of the estimated drop over the 

same periods. The "average of estimated drop" is basically defined as: 

— 1 N 

a2= — Ya2
k (5-48) 

The reason for using these two extra rows in case of bus voltage fault is that, as 

opposed to motor current faults, the bus voltage faults are piecewise constant. So, for 

healthy as well as faulty periods the fault severity can be represented by a single number. 

In consequence, the "average of estimated drop" can directly represent the estimated drop 

over each period by a single number. It should be noted, however, that using the above-

mentioned definition of the "average of estimated drop" and because of the piece-wise 
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constant nature of the injected bus faults, the ME index becomes essentially the 

difference between the "actual Vbiis drop" and the "average of estimated drop"; i.e., 

ME = Actual Vbm drop - Average of estimated drop 

It can be clearly seen from Table 5-6 that the bus voltage fault parameter (or the bus 

voltage fault severity) has been precisely estimated with average errors in the order of 

less than 1(T2 V (or 10 mV) in "pre-fault period", less than 2xl0"3 V (or 2 mV) during 

all faulty periods, and less than 3xl0~3 (or 3 mV) in "post-fault period", while the actual 

injected faults are all in the order of Volts (i.e., 1 to 4 V). Furthermore, standard 

deviations are extremely small and are in the order of less than 4xlO"V (or 400 uY) 

during faulty periods, less than and 1.5 xlO"2 (or 15 mV) in "pre-fault period", and less 

than 3xl0~3 (or 3 mV) in "post-fault period". All these performance indices clearly 

indicate that the series-parallel FDII scheme is extremely capable of accurately 

identifying fault severities, especially under "nominal" noise levels. 

Table 5-6. The performance indices of fault identification using the series-parallel FDII scheme in 
presence of low-severity bus voltage fault and with nominal noise levels. 

Actual 
Vbus d r °P 

Average of 
estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
period 

[0,lOOOJs 

0 

-9.07 xlO-3 

1.49xl0"2 

9.07 xlO"3 

1 . 2 0 x l 0 - 2 

Is' Faulty 
period 

|1000,22401s 

-1 

-1.00 

1.05xl0"3 

1.05xlQ-3 

5.14xl0~5 

2nd Faulty 
period 

[2240,31001s 

-4 

-4.00 

1.12xl0"3 

1.06xlQ-3 

3.72x10" 

Y" Faulty 
period 

|3100,43901s 

-3.5 

-3.50 

1.19xl0"3 

1.18xlQ-3 

1.53x10" 

4 Faulty 
period 

[4390,51001s 

-2.5 

-2.50 

1.12xlQ-3 

l.llxlQ-3 

1.95x10" 

Post-fault 
period 

[5100,60001s 

0 

-2.17xl0~3 

2.91 xlO'3 

2.17xl0"3 

1.94xl0-3 
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5.5.1.3 FDII of High-Severity Bus Voltage Faults 

In this section, the results of FDII in presence of the sequence of high-severity bus 

voltage faults over the time period t e [l 000 5100] seconds - given in equation (5-41)-

are depicted. The measured speed and current of the reaction wheel and their estimates 

obtained from the NPEs of the series-parallel FDII scheme are shown in Figure 5-34. 

"The NPE for VbUS fault" generates state estimates very close to their respective 

measurements. However, the current estimate from "the NPE for Kt fault" does not match 

the measurements over the faulty periods. This is reasonable, since the results are 

obtained in presence of faults in the bus voltage. Finally, note the effect of the high-

severity bus voltage faults on the states of the reaction wheel. 
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Figure 5-34. The estimated versus measured states using the series-parallel FDII scheme in presence 

of a sequence of high-severity bus voltage faults over the time period / 6 [1000 5100] second. 
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Figure 5-35 shows the residuals of the two NPEs. As was expected from the state 

estimates shown in Figure 5-34, only the two residuals of "the NPE for Vbus fault" remain 

within their corresponding thresholds. Since these results were obtained with "nominal" 

noise levels, the residual thresholds are essentially the same as the ones used for motor 

current and low-severity bus voltage FD1I in the previous sections. As can be observed 

from Figure 5-35, both residuals of "the NPE for VbUS fault" have remained within their 

specified threshold bounds, except for the current residual, where it has temporarily 

exceeded its corresponding threshold for a few times during the simulation period. 
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Figure 5-35. The residuals of the two NPEs of the series-parallel FDM scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t S [1000 5100] second; zoomed 

in for the current residual of "the NPE for Kt fault". 
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Similar to the case of low-severity bus voltage faults, these are due to transients caused 

by bus voltage fault initiation, change in the fault severity, and finally the fault removal. 

It should be noted that the current residual of the "the NPE for Kt fault" has been zoomed 

in on the y-axis in Figure 5-35 in order to obtain a better visualization of this residual 

threshold exceeding the threshold. The original figure (without zooming for the current 

residual) is shown in Figure C-l of Appendix C. 
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Figure 5-36. The estimated versus actual FPs using the series-parallel FDII scheme in presence of a 
sequence of high-severity bus voltage faults over the time period t € [1000 51 OOl second. 

Figure 5-36 depicts the estimated versus actual values of the fault parameters ar' and or2. 

As can be seen in this figure, the fault parameters are accurately estimated by the NPEs 

during both healthy and faulty periods. More specifically, the bust voltage fault has been 

very precisely identified across all injected fault severity levels. Figure 5-37 depicts the 
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health state of the reaction wheel obtained by applying the FDI decision logic of equation 

(3-35) for the series-parallel scheme. 
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Figure 5-37. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period / € [1000 5100] second. 

A number of observations can be made from Figure 5-37 as follows: 

• The injected sequence of high-severity bus voltage faults has been very well detected 

and isolated for almost the entire faulty period. 

• There are very few false alarms prior to fault occurrence, which last only for 29.5 

seconds after the beginning of simulations (compare to 29.3 seconds for low-severity bus 

voltage faults). Once again, this reveals that the series-parallel FD11 scheme is extremely 

robustness to the transients of the closed-loop ACS. 
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• The delay in fault detection and isolation has been increased from 2.1 seconds for 

low-severity faults to 25.5 seconds for high-severity faults; however, it is still quite 

tolerable considering the rather slow dynamics of the satellite attitude. 

• A sequence of intermittent missed alarms is also observed during the faulty period 

with short durations of 24 sec, 8 sec, and 16.5 sec, respectively. It should be noted that 

these missed alarms are indeed due to changes in the severity of the injected bust voltage 

faults. 

• As opposed to the low-severity case (where fault removal or disappearance was 

perfectly detected with no delay), in presence of high-severity bus voltage faults, false 

alarms are observed even after fault removal. Indeed, the fault disappearance has been 

first correctly detected for 2 seconds after the actual fault removal time (i.e., 5100 

seconds), but then a steady false alarm is observed for almost 96 seconds. Thereafter, 

fault removal has been persistently detected. 

The accuracy of bus voltage fault identification has been assessed using the afore

mentioned performance indices and the results are shown in Table 5-7. It can be clearly 

seen from this table that the bus voltage fault parameter (or the bus voltage fault severity) 

has been precisely estimated with average errors, once again, in the order of less than 

10"2 V (or 10 mV) in the "pre-fault" period, less than 2xl0~3 V (or 2 mV) during all 

faulty periods, and less than 8x10~2 (or 80 mV) in the "post-fault" period, while the 

actual injected faults are all in the order of a few Volts (i.e., 5.3 to 9.4 V). The mean error 

in the "post-fault" period is clearly larger than in case of low-severity faults, which can 

also be easily observed by comparing the "post-fault" period of Figure 5-32 and Figure 

5-36. Furthermore, the standard deviations are extremely small and are in the order of 
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less than 7x10"* V (or 700 uV) during faulty periods and less than and 1.5xlO"2 (or 15 

mV) in the "pre-fault" period. The considerable increase of the STDE during the "post-

fault" period, from less than 3 mV in case of low-severity faults to more than 280 mV in 

case of high-severity faults is indeed due to the relatively long transient period of bus 

voltage FP estimate, as can be seen in Figure 5-36. All performance indices given in 

Table 5-7 clearly indicate that the series-parallel FDI1 scheme is extremely capable of 

precisely identifying high-severity bus voltage faults, especially under "nominal" noise 

levels. 

Table 5-7. The performance indices of fault identification using the series 
presence of high-severity bus voltage fault subject to nominal noise levels 

Actual 

Kus d r°P 
Average of 
estimated 

drop 
RMSE 

ME 

STDE 

Pre-fault 
period 

[0, lOOOJs 

0 

-9.07xl0~ 3 

1.49xl0"2 

9.07xl0"3 

1.18xl0~2 

T' Faulty 
period 

|1000,2240]s 

- 6 

-6.001 

1.41xl0~3 

].34xl0"3 

4.60X10"4 

2nd Faulty 
period 

|2240,3100]s 

-9.4 

-9.402 

1.78xl0"3 

1.71xl0"3 

5.06x10^ 

3rd Faulty 
period 

[3100,4390]s 

-5.3 

-5.301 

1.52xl0"3 

1.49xl0~3 

3.31X10"4 

-parallel FDI1 scheme in 

4'* Faulty 
period 

|4390,51 OOJs 

-7.8 

-7.801 

1.58xl0"3 

1.43xl0-3 

6.87x10^ 

Post-fault 
period 

[5100,6000]s 

0 

-7 .48xl0~ 2 

2.92x10"' 

7.48 xlO"2 

2.83x10"' 

5.5.2 Robustness Analysis of the Series-Parallel FDII Scheme with 

Respect to Measurement Noise 

In this section, the robustness of the series-parallel FDII scheme with respect to 

measurement noise is extensively analyzed and investigated. Towards this objective, the 

simulations in the previous sections, which were carried out under "nominal" noise level, 

are repeated again with higher levels of noise, namely "medium" and "high" noise levels 

in reaction wheel's current and speed measurements according to Table 5-3 and Table 
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5-4. Then, the robustness of the series-parallel scheme in both FD1 and fault severity 

estimation subject to different noise levels are compared using the health state variable 

Cfand the FP estimation performance indices (i.e., RMSE, ME, and STDE), 

respectively. It should be noted that the robustness analysis is performed separately for 

each fault scenario. It is important to note that the state estimates and the residuals of the 

NPEs are not depicted throughout the robustness analysis section. Instead, they are shown 

in Appendix C. 

5.5.2.1 FDII of Motor Current Faults 

In the following, the robustness of the series-parallel FDII scheme is analyzed in presence 

of the intermittent time-varying motor current fault given in equation (5-39), subject to 

A) medium level of measurement noise (i.e., SNR=55dB for both current and speed), and 

B) high level of measurement noise (i.e., SNR=45dB for both current and speed). 

A) Medium Level/Intensity of Measurement Noise (SNR = 55dB): The state estimates 

and the residuals corresponding to the NPEs for VbUS and Kt faults are shown in Figure C-

2 and Figure C-3 of Appendix C, respectively. As can be seen from Figure C-3, the 

residual thresholds are set to 8, =8l =8x10~3 (A) for the current residual and 

8m=81 - S0(rpm) for the speed residual. This shows eight times increase in both current 

and speed residual thresholds as compared to the case of "nominal" noise level. This is 

due to the fact that the residual thresholds are set using the worst-case disturbance and 

noise analysis during healthy operations. 

Figure 5-38 depicts the FP estimates versus their actual values. As can be observed 

from this figure, the increased level of noise has a considerable impact on the motor 
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current FP estimate, i.e. a1. Indeed, the motor current FP estimate shows very large 

oscillations (or variance) during both healthy and faulty periods. The magnitude of these 

oscillations is so high that the motor current FP estimate frequently exceeds its 

corresponding threshold. 
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Figure 5-38. The estimated versus actual FPs using tbe series-parallel FDII in presence of motor 

current fault over the period / e [1000 4250] sec, subject to medium noise level (SNR=55 dB). 

Figure 5-39 shows the health state of the reaction wheel in presence of the time-

varying intermittent fault in motor current over the time period t E [ 1 0 0 0 4250] and 

subject to medium noise level. As can be clearly seen from this figure, the health state of 

the system frequently oscillates between 0 (i.e., healthy) and 2 (i.e., fault in the motor 

current) during both "pre-fault" and "post-fault" periods, thus creating a large number of 
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false alarms. These frequent oscillations in the health state of the reaction wheel (or 

frequent false alarms) are indeed due to the above mentioned large oscillations in the 

motor current FP estimate, which are in turn due to high level of measurement noise. 

Furthermore, the period of missed alarms has been increased from 100 seconds (i.e., 

t e [2465 2565] in Figure 5-28) in case of "nominal" noise level to almost 600 seconds 

in case of "medium" noise level (i.e., / e [2300 2900] in Figure 5-39). In conclusion, 

the increase in the level of measurement noise considerably deteriorates the detection and 

isolation performance of the series-parallel FDII scheme. 
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Figure 5-39. The health state of the RW using the series-parallel FDII scheme in presence of motor 

current fault over the period t e [l 000 4 2 5 0 ] sec, subject to medium noise level (SNR=55 dB). 
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One way of significantly reducing the false alarms is to apply a simple Moving-Window 

Mean Filter (MWMF) to the motor current FP estimate. The mathematical representation 

of this filtering technique is as follows: 

"jut *=*, (5-49) 

k,=j.Nfilt+\; k2=(j + l).Nfill; j = 0A,... 

where a2/'1' denotes the filtered motor current FP estimate and Nflh denotes the fixed 

window length of the MWMF in terms of the number of time steps. It can be inferred 

from the above formulation of MWMF that the filtered motor current FP estimate, 

namely a2/''1, is piece-wise constant. The use of moving average filtering instead of 

MWMF has also been investigated in this thesis. However, the MWMF outperforms the 

moving average filter even though the latter produces smooth - as opposed to piece-wise 

constant -results for the motor current FP estimate. 

The result of filtering the motor current FP estimate is shown in Figure 5-40. It can be 

clearly seen in this figure that the filtered motor current FP estimate is much smoother 

than the non-filtered one shown in Figure 5-38. Clearly, the use of a window-based filter 

introduces a delay in fault diagnosis. After numerous testing of MWMF with various 

window lengths, the best filtering result was achieved using a window length 

ofTV ,̂, =400 time steps. Therefore, considering the sampling time of Ts = 50msec, the 

additional delay in diagnosis introduced due to filtering is equal to only 

400 x Ts = 20 seconds. This additional delay in fault diagnosis is quite tolerable 

considering that many of the false alarms as well as missed alarms have been removed 

using the filtered FP, as can be seen from Figure 5-41. 
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Figure 5-40. Moving-window filtered version of the estimated motor current FP versus its actual 
value using the series-parallel FD11 scheme in presence of motor current fault over the time 

period/ e [1000 4250] sec, subject to medium noise level (SNR=55 dB). 
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Figure 5-41. The health state of the RW using the series-parallel FD1I scheme in presence of motor 

current fault over the time period / e [1000 4250] sec, subject to medium noise level (SNR=55 dB) 

and with moving-window mean filtering of the motor current FP estimate. 
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B) High Level/Intensify of Measurement Noise (SNR = 45dB): The state estimates and 

the residuals corresponding to the NPEs for Vb„s and K, faults are shown in Figure C-4 

and Figure C-5 of Appendix C, respectively. As can be seen from Figure C-5, the residual 

thresholds are set to 8, =Sl =0.03 (A) for the current residual and Sa =82 = 200 (rpm) 

for the speed residual. This shows almost three times increase in current and speed 

residual thresholds as compared to the case of "nominal" noise level. Once again, this is 

due to the fact that the residual thresholds are set using the worst-case disturbance and 

noise analysis during healthy operations. 

1000 2000 3000 6000 

0.2 

0.1 

Estimate 

Actual 

-0.1 

-0.2 

: t t Y*<j,r 

1000 2000 3000 
time (Sec) 

4000 5000 6000 

Figure 5-42. The estimated versus actual FPs using the series-parallel FDII in presence of motor 

current fault over the time period / e [l 000 4250 ] sec, subject to high noise level (SNR=4S dB). 

229 



Figure 5-42 depicts the FP estimates versus their actual values. As can be observed 

from this figure, the "high" level of measurement noise has a very large impact on the 

motor current FP estimate, i.e. a1. Indeed, the motor current FP estimate shows very 

large oscillations (or variance) during both healthy and faulty periods. Consequently, the 

motor current FP estimate frequently and largely exceeds its corresponding threshold. 

The magnitude of these oscillations is so high that filtering the motor current FP estimate 

using the MWMF cannot reduce the impact of measurement noise on the FDI1 

performance. Furthermore, the bus voltage FP estimate intermittently exceeds its 

corresponding threshold over the time period t e [3100 3400], which is incorrect since 

there is no fault in the bus voltage. Therefore, the series-parallel FDII scheme completely 

fails to diagnose and identify motor current faults in presence of "high" measurement 

noise levels (or low SNR values). 

The three performance indices of fault identification, namely RJV1SE, ME, and STDE 

corresponding to the motor current FP estimate subject to various noise levels are 

compared in Table 5-8, Table 5-9, and Table 5-10, respectively. The performance indices 

are compared over three time periods, namely "Pre-fault period", "Faulty period", and 

"Post-fault period". It can be seen from these tables that across all time periods, the 

increase in the level of measurement noise has created a significant increase in all three 

performance indices. For example, it can be observed from Table 5-8 that a change in 

SNR by a factor of 1000 (i.e., from the "nominal" to the "high" noise level) results in 

changes in the RMSE index by factors of 27, 46, and 89 over the "Pre-fault period", 

"Faulty period", and "Post-fault period", respectively. 
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Table 5-8. Comparison of the RMSE of the motor current FP estimation using the series-parallel 
FPU scheme subject to various noise levels and in presence of intermittent motor current fault. 

Noise 
Level 
(SNR) 
Nominal 
(75 dB) 

Medium 
(55 dB) 
High 
(45 dB) 

Pre-fault period 
/ e [ 0 1000] sec 

6.2663x10^ 

4.6380 xlO"3 

Filt.:(2.1292xl0"3) 

1.7037xl0-2 

Faulty period 
/e [ l000 4250]sec 

6.3787x10^ 

4.6157xl0"3 

Filt.:(2.2368xl0"3) 

2.9358 xl0~2 

Post-fault period 
/e[4250 6000] sec 

5.9962x10^ 

5.8943 xlO"3 

Filt.:(2.]813xl0 -3) 

5.3681 xlO"2 

The sensitivity of the ME index with respect to measurement noise is even worse than 

that of the RMSE index. As can be observed from Table 5-9, a change in SNR by a factor 

of 1000 results in increase of the ME index by factors of 95, 930, and 69 over the "Pre-

fault period", "Faulty period", and "Post-fault period", respectively. 

Table 5-9. Comparison of the ME of the motor current FP estimation using the series-parallel FDII 
scheme subject to various noise levels and in presence of intermittent motor current fault. 

Noise 
Level 
(SNR) 
Nominal 
(74 dB) 

Medium 
(54 dB) 
High 
(44 dB) 

Pre-fault period 
fe [0 1000] sec 

-3.4188xl0_ s 

-1.6480x10^ 
Filt.:(-1.6464 xlO"4) 

-3.2413xl0"3 

Faulty period 
/e [ l000 4250] sec 

4.4874x10"* 

-5.5290x10^ 
Filt.:(-5.6718xl0^) 

- 4.1785 xlO"3 

Post-fault period 
r e [4250 6000] sec 

5.2092 xlO-5 

-3.0165x10^ 
Filt.:(-3.0607 xlO"4) 

- 3.5906 xlO"3 

Finally, as can be observed from Table 5-10, a 1000 times increase in the level of 

measurement noise causes 26, 45, and 90 times increase in the standard deviation of the 

fault identification error over the "Pre-fault period", "Faulty period", and "Post-fault 

period", respectively. 
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Table 5-10. Comparison of the STDE of FP estimation using the series-parallel FDH scheme subject 
to various noise levels and in presence of intermittent motor current fault. 

Noise 
Level 
(SNR) 
Nominal 
(74 dB) 

Medium 
(54 dB) 
High 
(44 dB) 

Pre-fault period 
/ e [ 0 1000] sec 

6.2571 xlO-4 

4.6350 xlO"3 

Filt.:(2.1229xl0"3) 

1.6726xl0~2 

Faulty period 
/ e [ l000 4250]sec 

6.3786x10^ 

4.5825 xl0~3 

Filt.:(2.1637xl0-3) 

2.9060 xlO"2 

Post-fault period 
/e[4250 6000] sec 

5.9737 xlO"4 

5.8866 xlO"4 

Filt.:(2.1597xl0-3) 

5.3561 xlO"2 

5.5.2.2 FDII of Low-Severity Bus Voltage Faults 

In the following, the robustness of the series-parallel FDH scheme is analyzed in presence 

of the intermittent sequence of low-severity bus voltage faults given in equation (5-40), 

subject to A) medium level of measurement noise (i.e., SNR=54.57dB for the motor 

current and SNR=54.76dB for the speed of the wheel), and B) high level of measurement 

noise (i.e., SNR=44.57dB for the motor current and SNR=44.76dB for the speed of the 

wheel). 

A) Medium Level/Intensity of Measurement Noise (Current SNR = 54.57 dB and 

Speed SNR = 54.76 dB): The state estimates and the residuals corresponding to the 

NPEs for Vbus and Kt faults are shown in Figure C-6 and Figure C-7 of Appendix C, 

respectively. Similar to the case of FDII of motor current faults subject to "medium" 

noise level, the residual thresholds are set to 8, =8l =8xl0"3(A) for the current residual 

and Sm=52 = W(rpm) for the speed residual, as can be seen from Figure C-7. 

Figure 5-43 depicts the FP estimates versus their actual values. As can be observed 

from this figure, even though the increased level of noise does not affect the bus voltage 

FP estimate, it has a considerable impact on the motor current FP estimate. Indeed, the 
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motor current FP estimate shows very large oscillations (or variance) during both healthy 

periods and in presence of fault in the bus voltage. The magnitude of these oscillations is 

so high that the motor current FP estimate frequently exceeds its corresponding threshold 

even though no faults exist in the motor current. 
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Figure 5-43. The estimated versus actual FPs using the series-parallel FD1I in presence of a sequence 

of low-severity bus voltage faults over the time period / e l l 000 51001 sec, subject to medium 

noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 

Figure 5-44 shows the health state of the reaction wheel. As can be clearly seen from 

this figure, the health state of the system frequently oscillates between 0 (i.e., healthy) 

and 2 (i.e., fault in the motor current) during both "pre-fault" and "post-fault" periods, 

thus creating a large number of false alarms. These frequent oscillations in the health 

state of the reaction wheel (or frequent false alarms) are indeed due to the above 
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mentioned large oscillations in the motor current FP estimate, which are in turn due to 

high level of measurement noise. 

o 
0) 

1000 2000 3000 

time (sec) 
4000 5000 6000 

Figure 5-44. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period t € [1000 5100] sec, subject to 

medium noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 

Once again, many of these false alarms can be removed by filtering the current FP 

estimate using the MWMF filtering technique. The result of this filtering on the current 

FP estimate can be seen in Figure 5-45. 
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Figure 5-45. Moving-window filtered version of the estimated motor current FP versus its actual 
value using the series-parallel FDII scheme in presence of a sequence of low-severity bus voltage 

faults over the time period t e [l 0 0 0 5100 ] sec, subject to medium noise level (Current 

SNR=54.57 dB and Speed SNR=54.76 dB). 

The identified health state of the reaction wheel using the filtered FP estimate is also 

shown in Figure 5-46. Note that many of the false alarms in both "pre-fault" and "post-

fault" periods have been removed using the filtered FP, as can be seen from Figure 5-46. 
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Figure 5-46. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period/ € [1000 5100] sec, subject to 

medium noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB), and with moving-window 
mean filtering of the motor current FP estimate. 

B) Hish Level/Intensify of Measurement Noise (Current SNR = 44.57 dB and Speed 

SNR = 44.76 dB): The state estimates and the residuals corresponding to the NPEs for 

Vbus and Kt faults are shown in Figure C-8 and Figure C-9 of Appendix C, respectively. 

Note that the values of the residual thresholds essentially remain equal to the values used 

for FDII of the motor current fault subject to "high" noise level (i.e., 8, = 81 = 0.03 (A) 

for the current residual and 8a> = 82 = 200 (rpm) for the speed residual). Indeed, it is very 

important to note that the value of the residual thresholds for the series-parallel FDII 

scheme is dependent only on the measurement noise (as well as disturbance) level and is 

irrelevant to the fault that is injected into the system. 
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Figure 5-47 depicts the FP estimates versus their actual values, where the MWMF 

filter has already been applied to the motor current FP estimate. It can be easily seen from 

this figure that the motor current FP estimate exceeds its corresponding threshold at many 

points during both healthy and faulty periods. 
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Figure 5-47. The estimated versus actual FPs using the series-parallel FD1I in presence of a sequence 

of low-severity bus voltage faults over the time period/ e [1000 5100] sec, subject to high noise 

level (Current SNR=44.57 dB and Speed SNR=44.76 dB). 

The health state of the reaction wheel identified by the series-parallel FDII scheme 

using the filtered FP estimate is shown in Figure 5-48. Note that for most of the "pre-

fault" and "post-fault" periods the health state o f the wheel is incorrectly detected as 

being faulty (i.e., presence of a fault in the motor current). Hence, for most of these two 

periods, the series-parallel FDII scheme generates false alarms. Moreover, a number of 
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misidentifications of the health state of the wheel can also be observed over the time 

period /e [ l000 2000] seconds. More specifically, the health state of the wheel is 

identified as being 3 for a few points within that period, which wrongly indicates 

simultaneous presence of both bus voltage and motor current faults. In conclusion, the 

"high" level of measurement noise has significantly deteriorated the FD1 performance of 

the series-parallel FD1I scheme. 
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Figure 5-48. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of law-severity bus voltage faults over the time period t £ [1000 5100] sec, subject to 

high noise level (Current SNR=44.57 dB and Speed SNR=44.76 dB). 

The three performance indices of fault identification, namely RMSE, ME, and STDE 

corresponding to the bus voltage FP estimate subject to various noise levels are compared 

in Table 5-11, Table 5-12, and Table 5-13, respectively. Due to the piece-wise constant 
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nature of bus voltage faults, the performance indices are compared over six time periods 

including two healthy periods, namely "Pre-fault" and "Post-fault" periods, and four 

faulty periods each corresponding to a specific value of the bus voltage drop (or severity 

of the bus voltage fault). It can be seen from the three tables that across almost all time 

periods, the increase in the level of measurement noise has created a slight increase in all 

performance indices. The only exception is the "post-fault" period, where the ME index 

decreases as the measurement noise level increases, as can be seen from Table 5-12. 

Table 5-11. Comparison of the RMSE of the bus voltage FP estimation using the series-parallel FDII 
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

|0,1000]s 

1.49xl0"2 

1.68xl0"2 

2.80 xlO"2 

T' Faulty 
period 

[1000,2240]s 

I.05xl0"3 

9.41 xlO"3 

2.83 xlO"2 

2nd Faulty 
period 

|2240,3100|s 

1.12xl0"3 

4.01 xlO"3 

1.18xl0"2 

3rd Faulty 
period 

|3100,4390]s 

1.19xl0"3 

4.11xl0"3 

1.41xl0"2 

4'h Faulty 
period 

[4390,5100)s 

1.12xl0~3 

4.34 xlO"3 

9.01 xlO"3 

Post-fault 
period 

|5100,60001s 

2.91 xlO"3 

8.82 xlO"3 

1.15xl0"2 

Table 5-12. Comparison of the ME of the bus voltage FP estimation using the series-parallel FDII 
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

(0,10001s 

9.07 xlO"3 

8.97xl0"3 

7.90xl0"3 

Is' Faulty 
period 

11000,22401s 

1.34xl0~3 

i.29xirr3 

1.62 xlO -3 

2nd Faulty 
period 

[2240,3 lOOJs 

1.71 xlO"3 

1.45 xlO"3 

2.28xl0 - 3 

3rd Faulty 
period 

|3100,4390 ]s 

1.49xl0"3 

1.62xl0"3 

2.48 xlO"3 

4'* Faulty 
period 

|4390,5100]s 

1.43xlO"3 

1.38xl0"3 

1.71xl0~3 

Post-fault 
period 

[5100,6000] s 

7.48xl0"2 

1.45xl0"3 

-9 .17xl0" 5 

Table 5-13. Comparison of the STDE of the bus voltage FP estimation using the series-parallel FDII 
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

|0,10001s 

1.18xl0"2 

1.42xl(T2 

2.68xl(T2 

^'Faulty 
period 

|1000,2240]s 

4.60 xlO"4 

9.32 xlO"3 

2.84xl0~2 

2nd Faulty 
period 

12240,31001s 

5.06 xlO"4 

3.74xl0"3 

1.16xl0"2 

3rd Faulty 
period 

|3100,43901s 

3.31X10"4 

3.78xl0"3 

l.llxlO"2 

4'* Faulty 
period 

|4390,5100]s 

6.87X10"4 

4-llxlO"3 

8.85 xlO"3 

Post-fault 
period 

[5100,60001s 

2.83 xlO"3 

8.71xl0"3 

1.55 xlO"2 

It should be noted that the sensitivity of the bus voltage fault identification to 

measurement noise is much less than that of the motor current fault identification. This is 
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due to the fact that the bus voltage FP estimate is much more robust than the motor 

current FP estimate with respect to measurement noise. Nevertheless, as mentioned 

above, the detection and isolation (or FDI) performance of the series-parallel scheme is 

very sensitive to measurement noise. 

5.5.2.3 FDII of High-Severity Bus Voltage Faults 

In the following, the robustness of the series-parallel FDII scheme is analyzed in presence 

of the intermittent sequence of high-severity bus voltage faults given in equation (5-41), 

subject to A) medium level of measurement noise (i.e., SNR=53.66dB for the motor 

current and SNR=53.72dB for the speed of the wheel), and B) high level of measurement 

noise (i.e., SNR=43.66dB for the motor current and SNR=43.72dB for the speed of the 

wheel). 

A) Medium Level/Intensity of Measurement Noise (Current SNR = 53.66 dB and 

Speed SNR = 53.72 dBV. The state estimates and the residuals corresponding to the 

NPEs for Vbus and Kt faults are shown in Figure C-10 and Figure C-ll of Appendix C, 

respectively. Needless to say, the residual thresholds corresponding to the "medium" 

noise level are Sj =Sl = 8xlO_3(A) for the current residual and 8a =S2 =&0(rpm) for 

the speed residual, as can be seen from Figure C-l 1. 

Figure 5-49 depicts the FP estimates versus their actual values, where the MWMF 

filter has already been applied to the motor current FP estimate. It can be easily seen from 

this figure that the motor current FP estimate exceeds its corresponding threshold at only 

few points during both healthy and faulty periods. 
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Figure 5-49. The estimated versus actual FPs using the series-parallel FD11 in presence of a sequence 

of high-severity bus voltage faults over the time period t S [1000 5100] sec, subject to medium 

noise level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 

Figure 5-50 shows the health state of the reaction wheel in presence of the high-

severity bus voltage faults and subject to "medium" noise level. As compared to the 

result of "nominal" noise level depicted in Figure 5-37, a number of additional false 

alarms are now generated by the series-parallel FDII scheme especially in "pre-fault" and 

"post-fault" periods. These false alarms are due to sensitivity of the series-parallel 

scheme to measurements noise. 
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Figure 5-50. The health state of the RW using the series-parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period / e [1000 5100] sec, subject to 

medium noise level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 

B) High Level/Intensity of Measurement Noise (Current SNR = 43.66 dB and Speed 

SNR = 43.72 dB): The state estimates and the residuals corresponding to the NPEs for 

Vbus and Kt faults are shown in Figure C-12 and Figure C-13 of Appendix C, 

respectively. Note that the values of the residual thresholds corresponding to the "high" 

noise level are Sj = S] = 0.03 (A) for the current residual and Sa = S2 = 200 (rpm) for the 

speed residual, as can be seen from Figure C-13. 

Figure 5-51 depicts the FP estimates versus their actual values, where the MWMF 

filter has already been applied to the motor current FP estimate. It can be easily seen from 

this figure that the motor current FP estimate exceeds its corresponding threshold at many 
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points during both healthy and faulty periods. Furthermore, note that the bus voltage FP 

estimate has wrongly exceeded its corresponding threshold for the entire "post-fault" 

period. 
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Figure 5-51. The estimated versus actual FPs using the series-parallel FD1I in presence of a sequence 

of high-severity bus voltage faults over the time period / 6 [1000 5100] sec, subject to high noise 

level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 

The health state of the reaction wheel identified by the series-parallel FDII scheme 

using the filtered FP estimate is shown in Figure 5-48. Note that for most of the "pre-

fault" and "post-fault" periods the health state of the wheel is incorrectly detected as 

being faulty. More specifically, there are many false alarms in the "pre-fault" period that 

wrongly indicate the presence of fault in the motor current, and the false alarms in the 

"post-fault" period indicate either the presence of motor current fault or simultaneous 
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presence of both motor current and bus voltage faults (i.e., the health state is equal to 3). 

Surprisingly, the FDI performance of the series-parallel scheme during the faulty periods 

(i.e., presence of high-severity bus voltage faults) is practically unchanged as compared 

to Figure 5-37 for the "nominal" noise level. Nonetheless, the FDI performance of the 

series-parallel FD11 scheme has been significantly deteriorated (i.e., generation of many 

false alarms during "pre-fault" and "post-fault" periods) due to the "high" level of 

measurement noise. 
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Figure 5-52. The health state of the RW using the series-parallel FD1I scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t G [1000 5100] sec, subject to 

high noise level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 

The three performance indices of fault identification, namely RMSE, ME, and STDE 

corresponding to the bus voltage FP estimate subject to various noise levels are compared 
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in Table 5-14, Table 5-15, and Table 5-16, respectively. It can be seen from the three 

tables that, other than a few exceptions, the increase in the level of measurement noise 

creates a slight increase in the performance indices. The increase of the performance 

indices is more significant for the STDE index during the faulty periods. Furthermore, it 

should be noted that in the "post-fault" period, the "high" level of noise has created a 

very large increase in all three performance indices. 

Table 5-14. Comparison of the RMSE of the bus voltage FP estimation using the series-parallel FD11 
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage 
faults. 

Noise 
Level 
Nominal 
Medium 

High 

Pre-fault 
period 

[0, lOOOjs 

1.49xl0"2 

1.68xl0~2 

2.80 xl(T2 

1" Faulty 
period 

|1000,2240]s 

i .4 ix i r r 3 

4.2 xlO"3 

1.21xl(T2 

2nd Faulty 
period 

|2240\3100]s 

1.78xl(T3 

4.60 xlO"3 

1.29xl(T2 

3 r J Faulty 
period 

|3100,43901s 

1.52xl0"3 

1.28xl(T2 

1.99xl(T2 

4lh Faulty 
period 

[4390,5100 Js 

1.58xl0"3 

4.53xl0"3 

l . l l x l O " 2 

Post-fault 
period 

|5100,60001s 

2.92x10"' 

2.90x10"' 

2.72 

Table 5-15. Comparison of the ME of the bus voltage FP estimation using the series-parallel FD1I 
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage 
faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

[0,10001s 

9.07 xlO"3 

8.97xl0"3 

7.90 xl(T3 

1" Faulty 
period 

|1000,2240]s 

1.34xl0"3 

1.62xl0"3 

2.19xl0~3 

2nd Faulty 
period 

|2240,31001s 

1.71xl0"3 

2.10xl0"3 

2.89 xlO"3 

y" Faulty 
period 

|3100,43901s 

1.49xl0"3 

1.98xl0"3 

3.45 xlO-3 

4'* Faulty 
period 

14390,5100Js 

1.43xl0"3 

1.69xl0"3 

2.26 xlO"3 

Post-fault 
period 

|5100,6000]s 

7.48x10"2 

7.29 xlO"2 

-2.52 

Table 5-16. Comparison of the STDE of the bus voltage FP estimation using the series-parallel FD1I 
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage 
faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

10,10001s 

1.18xl0"2 

1.42xl0"2 

2.69 xlO"2 

T' Faulty 
period 

|1000,2240]s 

4.60X10"4 

3.88xl0"3 

1.19xl0"2 

2nd Faulty 
period 

|2240,3100]s 

5.06x10^ 

4.90x10"3 

1.25xl0"2 

3rd Faulty 
period 

13100,43901s 

3.31x10^ 

1.27 xlO"2 

1.96xl0"2 

4"1 Faulty 
period 

[4390,51001s 

6.87x10^ 

4.2 xlO"3 

1.09xl0"2 

Post-fault 
period 

|5100,6000|s 

2.83x10"' 

2.81x10"' 

1.03 

In conclusion, the above robustness analysis reveals that the series-parallel FD1I scheme 

is very sensitive to measurement noise, especially in fault detection and isolation. More 
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specifically, subject to high levels of measurement noise, the series-parallel FDII scheme 

generates many false alarms. Furthermore, while the bus voltage fault identification is 

slightly sensitive to the measurement noise level, the motor current fault identification 

performance significantly deteriorates in presence of high noise levels. 
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5.5.3 Simulation Results for FDII Using the Parallel Scheme 

The parallel FDII scheme was applied to detect, isolate, and identify the aforementioned 

motor current and bus voltage faults in the reaction wheel of the Pitch axis. Similar to the 

series-parallel scheme, the bank of NPEs consists of two NPEs; one NPE for FDII of 

Vbm fault and one NPE for FDII of k, fault. Two one-hidden-layer feed-forward neural 

networks with four neurons in the hidden layer and one neuron in the output layer are 

used as NPEs. Sigmoidal activation functions were used for the neurons in the hidden 

layer, while linear neurons were used at the output layer. Neural network learning rates 

were selected as, [TJI T]\ ] = [0.7 0.7] and [TJ2
W rfc ] - [5 x 10~8 5x10"8 ] for the first and 

the second NPE in the bank of the parallel FDII scheme, respectively. 

5.5.3.1 FDII of Motor Current Faults 

In this section, the results of FDII in presence of the time-varying intermittent fault in 

motor current over the time period/ e [1000 4250] seconds - given in equation (5-39) -

are depicted. The measured speed and current of the reaction wheel and their estimates 

obtained from the two NPEs of the parallel FDII scheme are depicted in Figure 

5-53.Figure 5-25. Only "the NPE for k, fault" shows a close match between the 

measured and the estimated values of both states of the reaction wheel during both 

healthy and faulty periods. However, "the NPE for Vbm fault" fails to correctly estimate 

the speed of the wheel during the faulty period. This was expected since the motor 

current fault was injected into the reaction wheel. 
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Figure 5-53. The estimated versus measured states using the parallel FDII scheme in presence of a 

time-varying fault in motor current over the time period t € [1000 4250] second. 

Figure 5-54 shows the residuals corresponding to the two NPEs in the bank. As was 

mentioned in Chapter 3, the residual thresholds must be set using the worst-case 

disturbance and noise analysis during the healthy period. Using this method, the residual 

thresholds are set to be almost four times bigger than the maximum effect of system noise 

and disturbances on the residual signal during healthy mode of operation. Accordingly, 

the threshold values were set to 5, = Sl = 0.025(A) = 25(/wA) for the current residual and 

8a=82 = 200 (rpm) for the speed residual. It should be noted that the residual thresholds 

are the same for all NPEs in the bank. 
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Figure 5-54. The residuals of the two NPEs of the parallel FDH scheme in presence of a time-varying 
fault in motor current over the time period t 6 [1000 4250]second. 

The health state of the reaction wheel is determined using the FDI decision logic of the 

parallel scheme given in equation (3-41). As opposed to the series-parallel scheme, the 

FP estimates are not required for fault detection and isolation in the parallel scheme and 

they are only used for fault identification. The health state is depicted in Figure 5-55. A 

number of observations can be made from this figure as follows: 

• The injected motor current fault has been correctly detected and isolated for the most 

of the faulty period. The only exceptions are the missed alarms over two time periods: 

/ e [2686.5 2741] sec. and / e [4151 4201] sec, which are both less than 60 seconds. 

• As opposed to the series-parallel scheme, the parallel FD1I is very sensitive to closed-

loop system transients. This can be observed from the false alarms prior to fault 

249 

0.6 r-

TheNPEforV,, Fault 
bus 0 . 1 , 

0.05 \ 

•5 0.2-

-0.05 

-0.2 L 

2000 4000 6000 
-0.1 L 

£ 

c\{_3 

-C^nn 



occurrence in the time period / e [0 374] sec. and after fault removal (or disappearance) 

in the time period / e [4250 4499] sec. Hence, the false alarms due to closed-loop 

system transients extend for 374 seconds in the "pre-fault" period and for almost 250 

seconds in the "post-fault" period. Indeed, as was mentioned in Chapter 3, the sensitivity 

to closed-loop system transients is a fundamental disadvantage of the parallel FDI1 

scheme. This lack of robustness to closed-loop system transients is due to the slow 

convergence rate of the parallel FDII scheme, as can be observed from the speed 

estimates of "the NPE for Vhm fault" over the "pre-fault" and "post-fault" periods. 

2 n 

i i : i I 
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Figure 5-55. The health state of the RW using the parallel FDII scheme in presence of a time-varying 

fault in motor current over the time period of t & [1000 4250] second. 
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• The first detection and isolation of the injected fault has persistently taken place at 

t-\ 108.2 sec. Therefore, the value of fault diagnosis delay is 108.2 seconds. Hence, the 

parallel scheme is faster in persistence FDI of the motor current fault than the series-

parallel scheme. Note that the first detection of the motor current fault using the series-

parallel scheme took only 54.3 seconds, however, the persistence detection and isolation 

took place in 282.3 seconds, which is more than twice bigger than the delay of the 

parallel scheme. 
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Figure 5-56. The estimated versus actual FPs using the parallel FDII scheme in presence of a time-

varying fault in motor current over the time period t e [1000 4250] second. 

Once a fault has been detected and isolated, the fault severity can be estimated using the 

FP estimates. Figure 5-56 depicts the estimated versus actual values of the fault 

parameters. It is very important to note that at each instant of time, the value of the fault 
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parameter that corresponds to the isolated fault must be taken as a measure of fault 

severity. If the health state of the system is identified as being healthy, both fault 

parameters must be taken into account. Hence, since the health state of the reaction wheel 

has never been identified as 1 (i.e., fault in the bus voltage) in Figure 5-55, the bus 

voltage FP estimate in Figure 5-56 should always be neglected. Moreover, note the 

transient in the motor current FP estimate at the beginning of the "pre-fault" and "post-

fault" periods, which are due to the afore-mentioned impact of the closed-loop system 

transients on the performance of the parallel FDII scheme. 

The accuracy of motor current fault identification has been assessed using the three 

performance indices and the results are shown in Table 5-17. It can be clearly seen from 

this table that the motor current severity has been very accurately estimated with average 

errors in the order of less than 5xl0~5and standard deviations in the order of less than 

4X10-4, while the injected fault severity was varying between -0.02 to 0.02. It is 

important to note that the parallel scheme is slightly more accurate than the series-parallel 

scheme in identifying the severity of the motor current faults. 

Table 5-17. The performance indices of motor current fault identification using the parallel FDII 
scheme in presence of intermittent motor current fault and subject to nominal noise levels. 

RMSE 
ME 
STDE 

Pre-fault period 
r e [01000] sec 

3.5848x10^ 

1.9183xl0~5 

3.5799x10^ 

Faulty period 
fe[l000 4250]sec 

3.866X10"4 

-3.3165xl0~5 

3.8518x10^ 

Post-fault period 
t e [4250 6000]sec 

3.9839x10"* 

4.9591 xlO"5 

3.9530 xlO"4 

5.5.3.2 FDII of Low-Severity Bus Voltage Faults 

In this section, the results of FDII using the parallel scheme in presence of the sequence 

of low-severity bus voltage faults over the time period / e [l 000 5100] seconds - given 

in equation (5-40) - are depicted. The measured speed and current of the reaction wheel 
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and their estimates obtained from the two NPEs of the parallel FD1I scheme are 

compared in Figure 5-57. This figure shows a very close match between the measured 

values and the estimates of both states from only "the NPE for VbUS fault". More 

specifically, the current estimates from "the NPE for Kt fault" do not match the 

measurements especially over the faulty periods. This is reasonable because the results 

are obtained in presence of bus voltage fault, so only "the NPE for VbUS fault" has 

generated matching estimates for both of the states. Finally, note the transient of the 

speed estimate from "the NPE for VbUS fault" at the beginning of the simulations. 
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Figure 5-57. The estimated versus measured states using the parallel FDII scheme in presence of a 
sequence of low-severity bus voltage faults over the time period t € [1000 5100] second. 

Figure 5-58 shows the residuals of the two NPEs of the parallel scheme. As expected 

from the state estimates shown in Figure 5-57, only the two residuals of "the NPE for 
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Vbus fault" remain within their corresponding thresholds. The residual thresholds are 

essentially the same as the ones used for the motor current FD1I using the parallel scheme 

presented in the previous section. As can be observed from Figure 5-58, both residuals of 

"the NPE for VbUS fault" have remained within their specified threshold bounds, except 

for the current residual, where it has sporadically exceeded its corresponding threshold 

for a few times during the simulation period. These include once at the very beginning of 

the simulations due to closed-loop system transients and five times during the faulty 

period due to transients imposed by bus voltage fault initiation, change in the fault 

severity, and finally the fault removal. Furthermore, as compared to the series-parallel 

scheme, it takes a longer time for the speed residual of the parallel scheme to converge to 

within its threshold bounds after the initiation of the simulation. 
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Figure 5-58. The residuals of the two NPEs of the parallel FD1I scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t £ [1000 5100] second. 

As far as the residuals of "the NPE for Kt fault" are concerned, it can be seen fromFigure 

5-30 that the current residual has exceeded its threshold for the entire period of the 

presence of the bus voltage fault in the reaction wheel. 
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Figure 5-59. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t £ [1000 5100] second. 

Figure 5-59 depicts the health state of the reaction wheel obtained by applying the FDI 

decision logic of equation (3-41) for the parallel scheme. A number of observations can 

be made from this figure as follows: 

• The injected sequence of low-severity (or incipient) bus voltage faults has been 

correctly detected and isolated for almost the entire period of bus voltage fault presence. 

• A number of false alarms exist prior to fault occurrence, which last for 380.1 seconds 

after the start of the simulations. Compared to the settling time of the closed-loop ACS 

system (which is equal to almost 500 seconds), this reveals that the parallel FDII scheme 

is sensitive to the transients of the closed-loop ACS. Moreover, note that two short 

duration false alarms are also observed after fault removal including: (i) a false alarm 
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indicating motor current fault for almost 6 seconds over the period / e [5100.30 5106.9] 

sec. and (ii) a false alarm indicating bus voltage fault for almost 31 seconds over the 

period / e [5115.4 5146] sec. 

• The delay in fault detection and isolation is only 4.2 seconds, which is twice bigger 

than that of the series-parallel scheme. 

• A sequence of intermittent missed alarms is also observed during the faulty period 

with very short durations of 8 sec, 2 sec, and 4.5 sec, respectively. It should be noted 

that these missed alarms are indeed due to changes in the severity of the injected bust 

voltage fault. It is important to note that the durations of the missed alarms of the parallel 

scheme are shorter than those of the series-parallel scheme, namely 21 sec, 13.5 sec, and 

12 sec. 

• Fault removal or disappearance has been perfectly detected at r=5100.05 seconds, 

practically with no delay. However, there are few short duration of false alarms, which 

were mentioned in the above. 

Figure 5-60 depicts the estimated versus actual values of the fault parameters. Now 

that the bus voltage fault has been correctly isolated, the FP estimate corresponding to 

this fault, namely a] (see Figure 5-60) must be taken as a measure of fault severity. As 

can be seen in Figure 5-60, the bust voltage fault has been very precisely identified across 

all injected fault severity levels, including minor incipient faults such as IV. drop in the 

bus voltage. Once again, note the transient of the bust voltage FP estimate at the start of 

the simulation. 
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Figure 5-60. The estimated versus actual FPs using the parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period t £ [1000 5100] second. 

The accuracy of the bus voltage fault identification has been assessed using the afore

mentioned four performance indices and the results are shown in Table 5-18. It can be 

clearly seen from Table 5-18 that the bus voltage fault severity has been accurately 

estimated with average errors in the order of less than 10"1 V (or 100 mV) in "pre-fault 

period", less than 3xl0~2 V (or 30 mV) during all faulty periods, and 30.4 mV in "post-

fault period", while the actual injected faults are all in the order of Volts (i.e., 1 to 4 V). 

Furthermore, the standard deviations are relatively small and are in the order of less than 

4xl0"2 V (or 40 mV) during faulty periods, in the order of 5xl0~2 V (or 50 mV) in "pre-

fault period", and less than 3xl0"~2 (or 30 mV) in "post-fault period". All these 
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performance indices clearly indicate that the parallel FD1I scheme is capable of 

accurately identifying fault severities, especially under "nominal" noise levels. 

Nonetheless, the parallel scheme is less accurate than the series-parallel scheme in 

identifying the low-severity bus voltage faults. 

Table 5-18. The performance indices of fault identification using the parallel FD1I scheme in 
presence of low-severity bus voltage fault and subject to nominal noise levels. 

Actual 
Vbus d r ° P 

Average of 
Estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
10, 1000]s 

0 

0.0885 

0.1024 

-0.0885 

0.0516 

1" Faulty 
period 

11000,22401s 

- 1 

-0.9715 

0.0346 

-0.0285 

0.0196 

2"''Faulty 
period 

|2240,3100Js 

- 4 

-3.9854 

0.0363 

-0.0146 

0.0332 

3 r d Faulty 
period 

|3100,4390)s 

- 3 . 5 

-3.4889 

0.0401 

-0.0111 

0.0385 

4 * Faulty 
period 

|4390,5100]s 

- 2 . 5 

-2.5210 

0.0358 

0.0210 

0.0289 

Post-fault 
|5100,60001s 

0 

-0.0304 

0.0406 

0.0304 

0.0268 

5.5.3.3 FDII of High-Severity Bus Voltage Faults 

In this section, the results of FDII in presence of the sequence of high-severity bus 

voltage faults over the time period / e [1000 5100] seconds - given in equation (5-41) -

are depicted. The measured speed and current of the reaction wheel and their estimates 

obtained from the NPEs of the parallel FDII scheme are shown in Figure 5-61. "The NPE 

for Vbus fault" generates state estimates very close to their respective measurements. 

However, the current estimate from "the NPE for Kt fault" does not match its respective 

measurement over the faulty periods. This is reasonable, since the results are obtained in 

presence of high-severity faults in the bus voltage. 
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Figure 5-61. The estimated versus measured states using the parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period / € [1000 5100] second. 

Figure 5-62 shows the residuals of the two NPEs. As was expected from the state 

estimates shown in Figure 5-61, only the two residuals of "the NPE for VbUS fault" remain 

within their corresponding thresholds except for a few times in the current residual. These 

are due to transients caused by the initiation of the bus voltage fault, the change in the 

fault severity, and finally the fault removal. It should be noted that the arguments 

previously mentioned for the low-severity bus voltage faults are as well applicable to the 

high-severity bus voltage faults. 
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Figure 5-62. The residuals of the two NPEs of the parallel FDII scheme a sequence of high-severity 

bus voltage faults over the time period / € [1000 5100] second. 

Figure 5-63 depicts the health state of the reaction wheel obtained by applying the FDI 

decision logic of the parallel scheme given in equation (3-41). A number of observations 

can be made from this figure as follows: 

• The injected sequence of high-severity bus voltage faults has been correctly detected 

and isolated for almost the entire period of bus voltage fault presence. 

• A number of false alarms exist prior to fault occurrence, which last for 380 seconds 

after the start of the simulations. This, once again, reveals that the parallel FDII scheme is 

sensitive to the transients of the closed-loop ACS. Moreover, some false alarms exist 

after fault removal, which last for almost 225 seconds until /=5325 sec. 
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• The delay in fault detection and isolation is only 8.5 seconds, which is twice bigger 

than the delay of the parallel scheme in detecting and isolating low-severity bus voltage 

faults. 

• A sequence of intermittent missed alarms is also observed during the faulty period 

with very short durations of 8 sec, 8 sec, and 7.5 sec, respectively. It should be noted 

that these missed alarms are indeed due to changes in the severity of the injected bust 

voltage fault. 

1000 2000 3000 
time (sec) 

4000 5000 6000 

Figure 5-63. Tbe health state of the RW using the parallel FDII scheme in presence of a sequence of 

high-severity bus voltage faults over the time period t € [1000 5100] second. 

Figure 5-64 depicts the estimated versus actual values of the fault parameters a1 andor2. 

The accuracy of the parallel scheme in identifying the high-severity bus voltage faults has 

been assessed using the afore-mentioned performance indices and the results are shown 
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in Table 5-19. It can be clearly seen from this table that the bus voltage fault severity has 

been precisely estimated with average errors, once again, in the order of less than 10"1 V 

(or 100 mV) in the "pre-fault" period, less than 6.5 xlO"2 V (or 65 mV) during all faulty 

periods, and in the order of 3.5 xlO-2 (or 35 mV) in the "post-fault" period, while the 

actual injected faults are all in the order of a few Volts (i.e., 5.3 to 9.4 V). 
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Figure 5-64. The estimated versus actual FPs using the parallel FDII scheme in presence of a 
sequence of high-severity bus voltage faults over the time period t e [1000 5100] second. 

All performance indices given in Table 5-19 clearly indicate that the parallel FDII 

scheme is capable of accurately identifying high-severity bus voltage faults, especially 

under "nominal" noise levels. 
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Table 5-19. The performance indices of fault identification using the parallel FDII scheme in 
presence of high-severity bus voltage fault and subject to nominal noise levels. 

Actual 

Average of 
Estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
|0, lOOOJs 

0 

0.0885 

0.1024 

-0.0885 

0.0516 

T' Faulty 
period 

|1000,22401s 

- 6 

-5.9555 

0.0831 

-0.0445 

0.0701 

2nd Faulty 
period 

|2240,3100Js 

-9.4 

-9.3823 

0.0314 

0.0177 

0.0206 

3 r d Faulty 
period 

|3100,4390]s 

-5.3 

-5.2858 

0.0462 

-0.0142 

0.0440 

4'* Faulty 
period 

|4390,51001s 

-7.8 

-7.7389 

0.0639 

-0.0611 

0.0186 

Post-fault 
[5100,6000]s 

0 

-0.0348 

0.0532 

0.0348 

0.0401 

5.5.4 Robustness Analysis of the Parallel FDII Scheme with Respect to 

Measurement Noise 

In this section, the robustness of the parallel FDII scheme with respect to measurement 

noise is extensively analyzed and investigated. Hence, the simulations that were carried 

out for the parallel scheme subject to the "nominal" noise level are repeated again with 

higher levels of noise, namely "medium" and "high" noise levels, according to Table 5-3 

and Table 5-4. Then, the performance of the parallel FDII scheme in terms of FDI and 

fault severity estimation subject to different noise levels are compared using the health 

state variable Cf and the FP estimation performance indices (i.e., RMSE, ME, and 

STDE), respectively. It should be noted that the robustness assessment of the parallel 

FDII scheme is performed separately for each fault scenario. 

5.5.4.1 FDII of Motor Current Faults 

In the following, the robustness of the parallel scheme is analyzed in presence of the 

intermittent time-varying motor current fault given in equation (5-39), subject to A) 
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medium level of measurement noise (i.e., SNR=55dB for both current and speed), and B) 

high level of measurement noise (i.e., SNR=45dB for both current and speed). 

A) Medium Level/Intensity of Measurement Noise (SNR = 55dB): The state estimates 

and the residuals corresponding to the NPEs for Vbus and Kt faults are shown in Figure C-

14 and Figure C-15 of Appendix C, respectively. As can be seen from Figure C-15, the 

residual thresholds are set to S, = S1 = 0.025(A) = 25(/wA) for the current residual and 

Sa = S2 =200 {rpm) for the speed residual. Hence, both current and speed residual 

thresholds are kept equal to their respective values under the "nominal" noise level. It 

should be noted that, as opposed to the series-parallel scheme, the residual thresholds of 

the parallel scheme are much less dependent on the noise level. This is indeed due to the 

fact that the parallel FDII scheme is very robust to measurement noise. 

Figure 5-65 shows the health state of the reaction wheel in presence of the 

intermittent time-varying motor current fault over the time period t e [1000 4250] and 

subject to the "medium" noise level. By comparing Figure 5-65 with Figure 5-55, one can 

easily see that even an increase of SNR with a factor of 100 does not practically 

deteriorate (or only very slightly deteriorates) the FDI performance of the parallel 

scheme. The slight deteriorations in the FDI performance due to the increased level of 

measurement noise include: (i) the duration of the false alarms in the "pre-fault" period 

due to transients of the closed-loop ACS have been extended from 374 seconds (under 

the "nominal" noise level) to 385 seconds and (ii) the false alarms in the "post-fault" 

period have been extended up to f=4520 second as compared to /=4499 second under the 

"nominal" noise level. Nevertheless, the FDI delay has been reduced to 100 seconds as 

compared to 108.2 seconds under the "nominal" noise level. 
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Figure 5-65. The health state of the RW using the parallel FDII scheme in presence of motor current 

fault over the period / e[l000 4250] sec, subject to medium noise level (SNR=55 dB). 

Figure 5-66 depicts the FP estimates versus their actual values. As can be observed from 

this figure, the increased level of noise has a very small impact on the motor current FP 

estimate, i.e. a2. In particular, comparing Figure 5-66 with Figure 5-56 reveals that even 

with the increase of SNR with a factor of 100, the motor current FP estimate remains 

practically unchanged. 
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Figure 5-66. The estimated versus actual FPs using the parallel FDI1 in presence of motor current 
fault over the period / e[l000 4250] sec, subject to medium noise level (SNR=55 dB). 

B) High Level/Intensity of Measurement Noise (SNR = 45dB): The state estimates and 

the residuals corresponding to the NPEs for Vbus and Kt faults are shown in Figure C-16 

and Figure C-17 of Appendix C, respectively. As was mentioned previously, the residual 

thresholds of the parallel scheme remain unchanged due to the robustness of the parallel 

scheme, and are thus equal to S, =S] = 0.025(A) = 25(/wA) for the current residual and 

8a-8
2= 200 (rprri) for the speed residual. 
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Figure 5-67. The health state of the RW using the parallel FDII scheme in presence of motor current 

fault over the period / G [l 000 4 2 5 0 ] sec, subject to high noise level (SNR=45 dB). 

Figure 5-67 shows the health state of the reaction wheel in presence of the intermittent 

time-varying motor current fault over the time period / e [1000 4250] and subject to the 

"high" noise level. Once again, comparing Figure 5-67 with Figure 5-55 reveals that even 

an increase of SNR with a factor of 1000 has a relatively small impact on the FDI 

performance of the parallel scheme. As compared to the case of "nominal" noise level 

depicted in Figure 5-55, the deteriorations in the FDI performance due to the "high" noise 

level include: (i) the duration of the false alarms in the "pre-fault" period due to 

transients of the closed-loop ACS have been extended from 374 seconds (under the 

"nominal" noise level) to 465 seconds and (ii) the false alarms in the "post-fault" period 

have been extended up to f=4600 second as compared to /=4499 second under the 
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"nominal" noise level, and finally (iii) the FDI delay has been increased from 108.2 

seconds under the "nominal" noise level to 120.4 seconds under the "high" noise level. 

Nonetheless, the above-mentioned deteriorations are negligible as compared to those 

observed for the series-parallel scheme. 
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Figure 5-68. The estimated versus actual FPs using the parallel FDII in presence of motor current 
fault over the time period / E [1000 4250] sec , subject to high noise level (SNR=45 dB). 

Figure 5-68 depicts the FP estimates versus their actual values. As can be observed from 

this figure, the increased level of noise has a small impact on the motor current FP 

estimate especially at the steady state of both "pre-fault" and "post-fault" periods. More 

specifically, comparing Figure 5-68 with Figure 5-56 reveals that the motor current FP 

estimate slightly deteriorates even with an increase of SNR with a factor of 1000. 
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The three performance indices of fault identification, namely RMSE, ME, and STDE 

corresponding to the motor current FP estimate subject to various noise levels are 

compared in Table 5-20, Table 5-21, and Table 5-22, respectively. It can be clearly seen 

from the three tables that the order of the performance indices has remained unchanged 

across all time periods even with the increase in the level of measurement noise. For 

instance, the RMSE index in Table 5-20 has remained in the order of 10-4 for all noise 

levels across all time periods. 

Table 5-20. Comparison of the RMSE of the motor current FP estimation using the parallel FDI1 
scheme subject to various noise levels and in presence of intermittent motor current fault 

Noise 
Level 
(SNR) 
Nominal 
(75 dB) 
Medium 
(55 dB) 
High 
(45 dB) 

Pre-fault period 
fe [0 1000] sec 

3.5848 xlO"4 

4.1429 xlO"4 

3.6911x10^ 

Faulty period 
/e [ l000 4250]sec 

3.866x10^* 

3.8274x10^ 

4.2064x10^ 

Post-fault period 
/e[4250 6000] sec 

3.9839X10"4 

3.7182x10^ 

4.1193X10"4 

The only significant exception is the "pre-fault" period of Table 5-21, where the ME 

index has been increased with a factor of almost 3.7 due to the increase of SNR with a 

factor of 100 (i.e., comparing the ME index under the "medium" noise level with that of 

the "nominal" noise level). Moreover, the ME index has been increased with a factor of 

almost 4.27 due to the increase of SNR with a factor of 1000 (i.e., "high" noise level). 

Similar to the RMSE index, the STDE index has also remained in the order of 10"4 for all 

noise levels across all time periods, as can be observed from Table 5-22. 
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Table 5-21. Comparison of the ME of the motor current FP estimation using the parallel FD1I 
scheme subject to various noise levels and in presence of intermittent motor current fault. 

Noise 
Level 
(SNR) 
Nominal 
(75 dB) 
Medium 
(55 dB) 
High 
(45 dB) 

Pre-fault period 
/ e [ 0 1000] sec 

1.9183xl0~5 

- 7.0704 xlO'5 

-8.1501xl0~5 

Faulty period 
*e[l000 4250]sec 

-3.3165x10 5 

-1.2692xl0~5 

-1.9495xl0"5 

Post-fault period 
/e[4250 6000] sec 

4.9591 xlO-5 

5.7889 xlO -5 

-1.0237x10-* 

Table 5-22. Comparison of the STDE of FP estimation using the parallel FD1I scheme subject to 
various noise levels and in presence of intermittent motor current fault. 

Noise 
Level 
(SNR) 
Nominal 
(75 dB) 
Medium 
(55 dB) 
High 
(45 dB) 

Pre-fault period 
/ e [ 0 1000] sec 

3.5799x10^ 

4.0824 xlO-4 

3.6002x10^ 

Faulty period 
/ e [ l000 4250] sec 

3.8518X10"4 

3.8253x10^ 

4.2019X10"4 

Post-fault period 
/ e [4250 6000] sec 

3.9530X10-4 

3.6730 xlO""4 

4.1194X10-4 

In conclusion, the performance of the parallel scheme in detection, isolation and 

identification of motor current faults is very robust to measurement noise. 

5.5.4.2 FDII of Low-Severity Bus Voltage Faults 

In the following, the robustness of the parallel FDII scheme is analyzed in presence of the 

intermittent sequence of low-severity bus voltage faults given in equation (5-40), subject 

to A) medium level of measurement noise (i.e., SNR=54.57dB for the motor current and 

SNR=54.76dB for the speed of the wheel), and B) high level of measurement noise (i.e., 

SNR=44.57dB for the motor current and SNR=44.76dB for the speed of the wheel). 

A) Medium Level/Intensity of Measurement Noise (Current SNR = 54.57 dB and 

Speed SNR = 54.76 dB): The state estimates and the residuals corresponding to the 

NPEs for Vbus arid Kt faults are shown in Figure C-18 and Figure C-19 of Appendix C, 
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respectively. Similar to the case of FD11 of motor current faults subject to "medium" 

noise level, the residual thresholds of the parallel scheme are set to 5, =8l =8xl(T3(A) 

for the current residual and Sm = 82 = 80(rpm) for the speed residual, as can be seen 

from Figure C-19. 
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Figure 5-69. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t 6 [1000 5100] sec, subject to medium noise 

level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 

Figure 5-69 shows the health state of the reaction wheel. As compared to the case of 

"nominal" noise level depicted in Figure 5-59, the deteriorations in the FDI performance 

due to the "medium" noise level are practically negligible and include: (i) the duration of 

the false alarms in the "pre-fault" period due to the transients of the closed-loop ACS 

have been extended from 380.1 seconds (under the "nominal" noise level) to 411 
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seconds; (ii) the FDI delay has been very slightly increased from 4.2 seconds under the 

"nominal" noise level to 4.5 seconds under the "medium" noise level; and (iii) the 

duration of the last missed alarm during the "faulty" period (among the three missed 

alarms in that period) has been very slightly increased from 4.5 seconds under the 

"nominal" noise level to 5 seconds under the "medium" noise level. Furthermore, it 

should be noted that the health state in the "post-fault" period does not show any 

significant change to the increased level of measurement noise. One can clearly observe 

that the above-mentioned deteriorations are negligible as compared to those observed for 

the series-parallel scheme, thus confirming the extreme robustness of the parallel scheme 

to measurement noise. 
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Figure 5-70. The estimated versus actual FPs using the parallel FDI I in presence of a sequence of 

low-severity bus voltage faults over the time period / 6 [1000 5100] sec, subject to medium noise 

level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 
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Figure 5-70 depicts the estimated versus actual values of the fault parameters under the 

"medium" noise level. As can be observed from this figure, the increased level of noise 

has a very small impact on the bus volatge FP estimate, i.e. ax. More specifically, 

comparing Figure 5-70 with Figure 5-60 reveals that even with the increase of SNR with 

a factor of 100, the bus voltage FP estimate remains practically unchanged. 

B) High Level/Intensity of Measurement Noise (Current SNR = 44.57 dB and Speed 

SNR = 44.76 dB): The state estimates and the residuals corresponding to the NPEs for 

Vbus and Kt faults are shown in Figure C-20 and Figure C-21 of Appendix C, 

respectively. As was mentioned previously, the residual thresholds of the parallel scheme 

remain unchanged due to the robustness of the parallel scheme, and are thus equal to 

8, =Sl = 0.025(A) = 25(wA) for the current residual and 8a =82 = 200(rpm) for the 

speed residual. 

Figure 5-71 shows the health state of the reaction wheel in presence of the sequence 

of low-severity bus voltage faults - given in equation (5-40) - and subject to the "high" 

noise level. As compared to the case of "nominal" noise level depicted in Figure 5-59, 

small deteriorations can be observed in the FDI performance due to the "high" noise 

level, including: (i) the duration of the false alarms in the "pre-fault" period due to the 

transients of the closed-loop ACS have been extended from 380.1 seconds (under the 

"nominal" noise level) to 516 seconds; (ii) the health state in the "post-fault" period 

shows false alarms for almost 190 seconds after fault removal as compared to 46 seconds 

under the "nominal" noise level; (iii) the FDI delay has been very slightly increased from 

4.2 seconds under the "nominal" noise level to 5.1 seconds under the "high" noise level; 

and (iv) the duration of the first and the last missed alarm during the "faulty" period 
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(among the three missed alarms in that period) has been very slightly increased from 8 

and 4.5 seconds under the "nominal" noise level to 9.5 and 6 seconds under the "high" 

noise level, respectively. However, considering the increase of SNR with a factor of 

1000, one can easily conclude that the FDI performance of the parallel scheme is very 

slightly sensitive to measurement noise. Moreover, the above-mentioned deteriorations 

are negligible as compared to those observed for the series-parallel scheme, thus 

confirming the robustness of the parallel scheme with respect to measurement noise. 
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Figure 5-71. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t e [1000 5100] sec, subject to high noise level 

(Current SNR=44.57 d*B and Speed SNR=44.76 dB). 

Figure 5-72 depicts the estimated versus actual values of the fault parameters under the 

"high" noise level. As can be observed from this figure, the increased level of noise has a 
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small impact on the bus Doltage FP estimate, i.e. a1. More specifically, comparing 

Figure 5-72 with Figure 5-60 reveals that transient period of the bus voltage FP estimate 

becomes slightly longer due to the increase of SNR with a factor of 1000. 

4, 

2 

3 0 
a. 
u_ 

» -2 

Estimate j 

Actual 1 

i 

1 1 1 

f~ 

I 

1 

1 

-j 

1 

1000 2000 3000 4000 5000 6000 

1000 2000 4000 5000 6000 3000 

time (Sec) 

Figure 5-72. The estimated versus actual FPs using the parallel FD1I in presence of a sequence of 

low-severity bus voltage faults over the time period t e[l000 5100] sec , subject to high noise level 

(Current SNR=44.57 dB and Speed SNR=44.76 dB). 

The three performance indices of fault identification, namely RMSE, ME, and STDE 

corresponding to the bus voltage FP estimate subject to various noise levels are compared 

in Table 5-23, Table 5-24, and Table 5-25, respectively. It can be clearly seen from the 

three tables that no significant increase has occurred in the order of the performance 

indices across all time periods even with the increase of the level of measurement noise 

with factors of 100 and 1000. 
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Table 5-23. Comparison of the RMSE of the bus voltage FP estimation using the parallel FDI1 
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 

High 

Pre-fault 
period 

|0,1000]s 

0.1024 

0.0752 

0.0803 

1*' Faulty 
period 

11000,22401s 

0.0346 

0.0586 

0.0586 

2nd Faulty 
period 

|2240,31001s 

0.0363 

0.0496 

0.0504 

3rd Faulty 
period 

|3100,43901s 
0.0401 

0.0253 

0.0489 

4'h Faulty 
period 

|4390,5100]s 

0.0358 

0.0369 

0.0371 

Post-fault 
period 

|5100,6000)s 

0.0406 

0.0256 

0.0361 

Table 5-24. Comparison of the ME of the bus voltage FP estimation using the parallel FDII scheme 
subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 

High 

Pre-fault 
period 

|0,1000)s 

-0.0885 

-0.0451 

-0.0689 

1" Faulty 
period 

|1000,22401s 

-0.0285 

-0.0435 

-0.0376 

2nd Faulty 
period 

12240,3100]s 

-0.0146 

-0.0062 

3.62 xKT4 

yd Faulty 
period 

|3100,4390]s 
-0.0111 

-0.0156 

-0.0096 

4th Faulty 
period 

[4390,5100]s 

0.0210 

-0.0142 

0.0058 

Post-fault 
period 

|5100,6000Js 

0.0304 

0.0140 

-0.0112 

Table 5-25. Comparison of the STDE of the bus voltage FP estimation using the parallel FDII scheme 
subject to various noise levels and in presence of a sequence of low-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

|0,1000]s 

0.0516 

0.0602 

0.0412 

T'Faulty 
period 

[1000,2240]s 

0.0196 

0.0392 

0.0450 

2nd Faulty 
period 

[2240,3100]s 

0.0332 

0.0492 

0.0504 

yd Faulty 
period 

|3100,43901s 
0.0385 

0.0199 

0.0479 

4'h Faulty 
period 

[4390,5100]s 

0.0289 

0.0340 

0.0367 

Post-fault 
period 

|5100,6000]s 

0.0268 

0.0215 

0.0343 

Hence, it can be concluded that the performance of the parallel scheme in detection, 

isolation and identification of low-severity bus voltage faults is very robust to 

measurement noise. 

5.5.4.3 FDII of High-Severity Bus Voltage Faults 

In the following, the robustness of the parallel FDII scheme is analyzed in presence of the 

intermittent sequence of low-severity bus voltage faults given in equation (5-40), subject 

to A) medium level of measurement noise (i.e., SNR=53.66dB for the motor current and 

277 



SNR=53.72dB for the speed of the wheel), and B) high level of measurement noise (i.e., 

SNR=43.66dB for the motor current and SNR=43.72dB for the speed of the wheel). 

A) Medium Level/Intensify of Measurement Noise (Current SNR = 53.66 dB and 

Speed SNR = 53.72 dB): The state estimates and the residuals corresponding to the 

NPEs for Vbus and K, faults are shown in Figure C-22 and Figure C-23 of Appendix C, 

respectively. Needless to say, the residual thresholds of the parallel scheme remain as 

5, = S1 =8xl(T3(A) for the current residual and 8m - S2 =&0(rpm) for the speed 

residual, as can be seen from Figure C-23. 

Figure 5-73 depicts the health state of the reaction wheel in presence of the sequence 

of high-severity bus voltage faults - given in equation (5-41) - and subject to the 

"medium" noise level. As compared to the case of "nominal" noise level depicted in 

Figure 5-63Figure 5-59, minor deteriorations can be observed in the FDI performance of 

the parallel scheme due to the "medium" noise level, including: (i) the duration of the 

false alarms in the "pre-fault" period due to the transients of the closed-loop ACS have 

been extended from 380 seconds (under the "nominal" noise level) to 411 seconds; (ii) 

the FDI delay has been very slightly increased from 8.5 seconds under the "nominal" 

noise level to 10 seconds under the "medium" noise level; and (iii) the false alarms in the 

"post-fault" period have been extended up to f=5387 second as compared to f=5325 

second under the "nominal" noise level (i.e., 62 seconds extension in the period offalse 

alarms after fault removal). Finally, it should be noted that the durations of the three 

missed alarms during the "faulty" period have remained precisely equal to those under 

the "nominal" noise level. One can clearly observe that the above-mentioned 

deteriorations are negligible as compared to those observed for the series-parallel scheme. 
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Figure 5-73. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

high-severity bus voltage faults over the time period t e[\ 000 5100] sec, subject to medium noise 

level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 

Figure 5-74 depicts the estimated versus actual values of the fault parameters under the 

"medium" noise level. Comparing Figure 5-74 with Figure 5-64 reveals that the bus 

voltage FP estimate remains practically unchanged even with the increase of SNR with a 

factor of 100. 
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Figure 5-74. The estimated versus actual FPs using the parallel FD1I in presence of a sequence of 
high-severity bus voltage faults over the time period t e [l 000 51001 sec, subject to medium noise 

level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 

B) High Level/Intensity of Measurement Noise (Current SNR = 43.66 dB and Speed 

SNR = 43.72 dB): The state estimates and the residuals corresponding to the NPEs for 

Vbus and Kt faults are shown in Figure C-24 and Figure C-25 of Appendix C, 

respectively. As was mentioned many times in the previous sections, the residual 

thresholds of the parallel scheme remain unchanged due to the robustness of the parallel 

scheme, and are thus equal to 5, - S1 - 0.025(A) = 25(mA) for the current residual and 

Se)=S2 = 200{rptri) for the speed residual, as can be observed from Figure C-25. 
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Figure 5-75. The health state of the RW using the parallel FDI1 scheme in presence of a sequence of 

high-severity bus voltage faults over the time period / e [1000 5100] sec, subject to high noise 

level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 

Figure 5-75 depicts the health state of the reaction wheel in presence of the sequence 

of high-severity bus voltage faults - given in equation (5-41) - and subject to the "high" 

noise level. As compared to the case of "nominal" noise level depicted in Figure 

5-63Figure 5-59, minor deteriorations can be observed in the FDI performance of the 

parallel scheme due to the increase of the noise level (or SNR) with a factor of 1000, 

including: (i) the duration of the false alarms in the "pre-fault" period due to the 

transients of the closed-loop ACS have been extended from 380 seconds (under the 

"nominal" noise level) to 455 seconds; (ii) the FDI delay has been slightly increased from 

8.5 seconds under the "nominal" noise level to 12 seconds under the "high" noise level; 

(iii) the false alarms in the "post-fault" period have been extended up to ?=5400 second 
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as compared to r=5325 second under the "nominal" noise level (i.e., 75 seconds 

extension in the period of false alarms after fault removal); and finally (iv) the durations 

of the three missed alarms during the "faulty" period have been slightly increased from 8, 

8, and 7.5 seconds under the "nominal" noise level to 9, 10, and 9.5 seconds under the 

"high" noise level, respectively. One can clearly observe that the above-mentioned 

deteriorations are nsignificant as compared to those observed for the series-parallel 

scheme and considering the increase of the SNR with a factor of 1000. Hence, the FDI 

performance of the parallel scheme is robust with respect to measurement noise. 
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Figure 5-76. The estimated versus actual FPs using the parallel FDII in presence of a sequence of 
high-severity bus voltage faults over the time period t e [1000 5100] sec., subject to high noise 

level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 

Figure 5-76 depicts the estimated versus actual values of the fault parameters under the 

"high" noise level. Comparing Figure 5-76 with Figure 5-64 reveals that the bus voltage 
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FP estimate remains practically unchanged, except for a very small increase of the 

transient period, even with the increase of SNR with a factor of 1000. 

The three performance indices of fault identification, namely RMSE, ME, and STDE 

corresponding to the bus voltage FP estimate subject to various noise levels are compared 

in Table 5-26, Table 5-27, and Table 5-28Table 5-23, respectively. It can be clearly seen 

from the three tables that no significant increase has occurred in the order of the 

performance indices across all time periods even with the increase of the SNR with 

factors of 100 and 1000. 

Table 5-26. Comparison of the RMSE of the bus voltage FP estimation using the parallel FDII 
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage 
faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

[0,1000]s 

0.1024 

0.0752 

0.0803 

Is' Faulty 
period 

11000,22401s 
0.0831 

0.0710 

0.0664 

2nd Faulty 
period 

I2240,3100]s 
0.0314 

0.0292 

0.0267 

3rd Faulty 
period 

|3100,43901s 
0.0462 

0.0573 

0.0459 

4 * Faulty 
period 

|4390,5100]s 
0.0639 

0.0493 

0.0463 

Post-fault 
period 

[5100,6000]s 

0.0532 

0.0757 

0.0528 

Table 5-27. Comparison of the ME of the bus voltage FP estimation using the parallel FDII scheme 
subject to various noise levels and in presence of a sequence of high-severity bus voltage faults. 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

[0,10001s 

-0.0885 

-0.0451 

-0.0689 

1" Faulty 
period 

|1000,2240]s 

-0.0445 

-0.0074 

-0.0280 

2nd Faulty 
period 

|2240,31001s 

0.0177 

0.0114 

-0.0034 

3rd Faulty 
period 

|3100,4390]s 
-0.0142 

0.0179 

0.0244 

4'* Faulty 
period 

|4390,51001s 
-0.0611 

-0.0269 

-0.0093 

Post-fault 
period 

[5100,6000]s 

0.0348 

0.0680 

0.0327 

Table 5-28. Comparison of the STDE of the bus voltage FP estimation using the parallel 
subject to various noise levels and in presence of a sequence of high-severity bus voltage 

Noise 
Level 
Nominal 
Medium 
High 

Pre-fault 
period 

|0,1000]s 

0.0516 

0.0602 

0.0412 

\" Faulty 
period 

|10O0,22401s 
0.0701 

0.0706 

0.0602 

2nd Faulty 
period 

|2240,3100]s 
0.0206 

0.0269 

0.0265 

3rd Faulty 
period 

|3100,43901s 
0.0440 

0.0545 

0.0388 

4'h Faulty 
period 

|4390,5100]s 
0.0186 

0.0413 

0.0454 

FDII scheme 
faults. 

Post-fault 
period 

|5100,6000 Js 

0.0401 

0.0334 

0.0415 
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Therefore, similar to the case of low-severity bus voltage faults, it can be concluded that 

the performance of the parallel scheme in detection, isolation and identification of high-

severity bus voltage faults is robust to measurement noise. 
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5.6 Simulation Results for FDII with Partial-State Measurement 

In this section, the performance of both series-parallel and parallel FDII schemes in 

diagnosing the motor current and bus voltage faults is evaluated under partial-state 

measurements of the reaction wheel. More precisely, it is assumed that only the speed of 

the wheel is measured by an appropriate sensor and the current must be estimated using 

the neural state estimator (NSE) presented in Chapter 4. This is a reasonable assumption, 

since current sensors are often more sensitive than speed sensors. Furthermore, current 

sensors are usually more prone to measurement inaccuracies and faults as compared to 

speed sensors. For instance, most current sensors maintain their specified precision over 

only a certain dynamic range of currents and their accuracy deteriorates beyond that 

range. 

In the following, first the performance of the NSE (depicted in Figure 4-4) in 

estimating the motor current from speed measurements is assessed under healthy 

conditions of the reaction wheel. For the sake of completeness, the performance of the 

NSE under healthy conditions is evaluated at both low and high speeds of the wheel. 

Then, the state estimation performance of the NSE is evaluated in presence of faults in 

the reaction wheel in order to assess the fault tolerance capability of the NSE. The fault 

scenarios considered for this purpose are precisely the same as the motor current fault and 

the low-severity and high-severity bus voltage faults given in equations (5-39), (5-40) 

and (5-41), respectively. It is very important to note that the NSE used in the simulations 

consists of a one-hidden-layer feedforward neural network with one neuron in the input 

layer, four neurons in the hidden layer, and two neurons in the output layer. Sigmoidal 

activation functions are used for the neurons in the hidden layer, while linear neurons are 
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used in output layer. The parameters of the NSE are set to T)"1"1 =rj"bs = 10 3 for the 

learning rates of the output and hidden layer weights, and the parameter /? in equation 

(4-36) is set to 0.1. 

Finally, the performance of the two proposed FD11 schemes, namely the series-

parallel and the parallel, are evaluated in presence of the same fault scenarios utilized 

under full-state measurements but this time using the estimate of the motor current 

(obtained from the NSE) instead of its measurement. In other words, the fault diagnosis 

performance of the integration of the hybrid NPEs and the FTO (i.e., the Kalman filter 

structure preserving NSE) depicted in Figure 4-1 and Figure 4-2 are assessed under 

partial-state measurements of the reaction wheel. The parameter values of the NPEs and 

the NSE used in the simulations are exactly the same as the values mentioned in above. 

5.6.1 State Estimation under Healthy Conditions 

As was mentioned in the above, the state estimation performance of the NSE under 

healthy conditions is evaluated at both low and high speeds of the wheel. 

5.6.1.1 Three Satellite Slew Maneuvers at Low Speeds of the Wheel 

First, the ability of the NSE in estimating the motor current of the reaction wheel using 

only speed measurement is assessed under healthy conditions at low speeds of the wheel 

(i.e., around 40 rpm) and subject to three slew-maneuvers of the satellite. As can be 

observed from Figure 5-77, both current and speed estimates very closely match their 

respective measurements. In particular, the current estimate quickly converges to its 

actual value even with a relatively large initial estimation error. 
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Figure 5-77. The current and speed estimates from the full-order FTO versus their actual values 
using only speed measurements subject to 3 satellite slew-maneuvers at low speeds of the wheel. 

Nevertheless, the initial current estimation error cannot be observed in Figure 5-77 due to 

the scales of the axes. In order to obtain a better view and more details of the situation, 

the graph of current estimate versus its actual value is separately zoomed in on the y-axis 

as well as the time axis (for the first 2 seconds of the simulation), as depicted in Figure 

5-78. In the bottom graph of this figure, one can easily see the fast convergence rate of 

the current estimates even in presence of almost 0.3 (A) initial estimation error. 
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Figure 5-78. The current estimate from the full-order FTO versus its actual value using only speed 
measurements subject to 3 satellite slew-maneuvers at low speeds of the wheel; top figure: zoomed in 

on the y-axis, bottom figure: zoomed in on the time-axis for the first 2 seconds. 

5.6.1.2 One Slew-Maneuver of the Satellite at High Speeds of the Wheel 

In this section, the ability of the NSE in estimating the motor current is assessed under 

healthy conditions of the reaction wheel at high speeds of the wheel (i.e., around 570 

rpm) and subject to one slew-maneuver of the satellite. As can be observed from Figure 

5-79, both current and speed estimates very closely match their respective measurements. 
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Figure 5-79. The current and speed estimates from the full-order FTO versus their actual values 
using only speed measurements subject to 1 slew-maneuver of the satellite at high speeds of the 

wheel. 

In particular, the current estimate quickly converges to its actual value even with a 

relatively large initial estimation error. However, this convergence cannot be observed in 

Figure 5-79. Hence, similar to the previous case, the graph of the current estimate versus 

its actual value is zoomed in on both j-axis and time axis (for the first 3 seconds of the 

simulation), as depicted in Figure 5-80. It can be clearly observed in the bottom graph of 

this figure that the current estimate quickly converges to its actual value even in presence 

of approximately 0.3 (A) initial estimation error. In conclusion, under nominal healthy 

conditions, the Kalman filter structure preserving NSE is capable of precisely estimating 

the motor current of the reaction wheel from only speed measurements at both low and 

high speeds of the wheel. 
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Figure 5-80. The current estimate from the full-order FTO versus its actual value using only speed 
measurements subject to 1 slew-maneuver of the satellite at high speeds of the wheel; top figure: 

zoomed in on the y-axis, bottom figure: zoomed in on the time-axis for the first 3 seconds. 

5.6.2 State Estimation in Presence of Faults 

The objective of this section is to evaluate the fault tolerance capability of the NSE. 

Therefore, the performance of the NSE in estimating the motor current is assessed in 

presence of faults in the motor current as well as the bus voltage of the reaction wheel. 

The fault scenarios considered include the motor current fault in equation (5-39), and the 

low-severity and high-severity bus voltage faults given in equations (5-40) and (5-41), 

respectively. 

5.6.2.1 State Estimation in Presence of Motor Current Fault 

First, the intermittent time-varying motor current fault given in equation (5-39) is injected 

into the reaction wheel and the NSE is used to estimate the motor current based on only 
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the speed measurements. Due to its special importance, only the the current estimate 

versus its actual value is depicted in Figure 5-81. The speed estimate versus its actual 

value is shown in Figure C-26 of Appendix C. It can be observed from Figure 5-81 that 

the current estimate very closely matches its actual value even in presence of the motor 

current fault over the time period / e [1000 4250] second. Hence, the NSE is robust (or 

tolerant) to faults in the motor current. 
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Figure 5-81. The current estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a time-varying fault in motor current over the time period of 

re[1000 4250] second. 

5.6.2.2 State Estimation in Presence of Low-Severity Bus Voltage Faults 

In this section, the intermittent sequence of low-severity bus voltage faults given in 

equation (5-40) is injected into the reaction wheel and the NSE is used to estimate the 
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motor current based on the speed measurements. The speed estimate versus its actual 

value is depicted in Figure C-27 of Appendix C. Moreover, the current estimate versus its 

actual value is shown in Figure 5-82. 
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Figure 5-82. The current estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a sequence of low-severity bus voltage faults over the time 

period / € [l 0 0 0 5100] second. 

It can be clearly seen from Figure 5-82 that as the severity of the bus voltage faults 

increases, the motor current estimates become less accurate. More specifically, the motor 

current estimates are more deviated from their actual values over the second and the third 

faulty periods (where the bus voltage drops are 4 and 3.5 Volts, respectively) as 

compared to the other two faulty periods (i.e., IV drop in the first faulty period and 2.5V 

drop in the last faulty period) as well as the healthy period. Nevertheless, the current 
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estimates are yet accurate enough to be used as inputs to the FDII schemes without 

causing problems in fault diagnosis, as will be demonstrated later in the text. 

5.6.2.3 Estimation in Presence of High-Severity Bus Voltage Faults 

In this section, the intermittent sequence of high-severity bus voltage faults given in 

equation (5-41) is injected into the reaction wheel and the NSE is used to estimate the 

motor current based on the speed measurements. The speed estimate versus its actual 

value is depicted in Figure C-28 of Appendix C. Furthermore, the current estimate versus 

its actual value is shown in Figure 5-83. 

Q [ I I I I I I 
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Figure 5-83. The current estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a sequence of high-severity bus voltage faults over the time 

period t e [l 000 5100] second. 
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Once again, it can be clearly observed from Figure 5-83 that under high-severity 

levels of the bus voltage fault, the NSE fails to accurately estimate the motor current. 

More specifically, in the second and the last faulty periods (corresponding to 9.4V and 

7.8V drop in bus voltage, respectively), the current estimates are completely biased. 

Hence, it can be concluded that the NSE is robust (or tolerant) with respect to bus voltage 

faults only within a certain bound on the bus voltage fault severity. Based on the 

simulation results presented in above, this bound is within zero to 6V drop in the bus 

voltage. Therefore, presence of bus voltage faults with severity levels beyond 6V make 

the NSE unable to accurately estimate the reaction wheel current using only wheel speed 

measurements. 

5.6.3 FDII Using Estimates of the Current from the NSE 

In this section, the performance of the two proposed FDII schemes, namely the series-

parallel and the parallel, are evaluated in presence of the three fault scenarios metioned in 

above (and given in equations (5-39) to (5-41)) and based on only speed measurements. 

Hence, due to unavailability of current measurements, the estimate of the motor current 

obtained from the NSE is fed as an input to the FDII schemes. In the following, the 

performance of the proposed FDII schemes under partial-state measurements (i.e., only 

speed measurements from the reaction wheel) is evaluated separately in presence of each 

fault scenario. Furthermore, it should be noted that all the simulation results presented in 

the following are obtained under the "nominal" noise level. 
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5.6.3.1 FDII of Motor Current Faults Using the Series-Parallel Scheme 

In this section, the results of FDII using the series-parallel scheme in presence of the 

intermittent time-varying motor current fault - given in equation (5-39) - under the 

partial-state measurements of the reaction wheel are presented. The results are obtained 

utilizing the speed measurements from the sensors and the motor current estimates from 

the NSE. 

The residuals corresponding to the NPEs for VbUS and Kt fault is depicted in Figure C-

29 of Appendix C. These residuals are obtained using equation (4-5) for the case of 

partial state measurements (i.e., the measurement of only the speed of the wheel). The 

residual thresholds are essentially the same as the ones used for the series-parallel scheme 

under the full-state measurement assumption and subject to the "nominal" noise level. 

Figure 5-84 depicts the estimated value of the fault parameters, generated by the 

series-parallel scheme under partial-state measurements, versus their actual values. The 

FP thresholds are also set equal to the values of the FP thresholds utilized for the series-

parallel scheme under the full-state measurement assumption. As compared to the result 

of full-state measurements depicted in Figure 5-27, one can easily observe that the 

performance of the series-parallel scheme in estimating the FPs has remained practically 

unchanged. This is mainly due to the fact that the NSE is robust (or tolerant) with respect 

to faults in the motor current. 
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Figure 5-84. The estimated versus actual FPs using the series-parallel FDII scheme in presence of a 

time-varying fault in motor current over the time period / € [1000 4 2 5 0 ] second under partial-

state measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-85 depicts the health state of the reaction wheel under partial-state 

measurements. As compared to the similar result under full-state measurements depicted 

in Figure 5-28, the following observations can be made: 

(i) The fault diagnosis delay has been increased from 54.3 seconds under full-state 

measurements to 65 seconds under partial-state measurements. 

(ii) The time of persistently detecting the motor current fault removal (or disappearance) 

has been changed from f=4237 second under full-state measurements to /=4245 second 

under partial-state measurements. 
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(iii) The number of missed alarms has been slightly increased under full-state 

measurements. More precisely, a number of new missed alarms can be observed over the 

time periods / e [2408 2580] sec. and / e [3900 4080] sec. 

Nevertheless, the above deteriorations in the FDI performance of the series-parallel 

scheme due to partial-state measurements are insignificant. Therefore, it can be 

concluded that the detection and isolation performance of the series-parallel scheme is 

practically unchaged under partial-state measurements. 
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Figure 5-85. The health state of the RW using the series-parallel FDII scheme in presence of a time-

varying fault in motor current over the time period of t G [1000 4250] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 

Finally, Table 5-29 shows the three performance indices of fault identification, namely 

RMSE, ME, and STDE, corresponding to the severity estimation of the motor current 

fault using the series-parallel scheme under partial-state measurements. As compared to 
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its counterpart under full-state measurements (i.e., Table 5-5), it can be easily concluded 

that the partial availability of the states has not significantly affected the fault 

identification performance of the series-parallel scheme across almost all time periods. 

The only exception includes the ME index over the "pre-fault" period, which has been 

increased by almost a factor of 3.1 under partial-state measurements. 

Table 5-29. The performance indices of motor current fault identification using the series-parallel 
FDI1 scheme in presence of intermittent motor current fault and under partial-state measurements 

(i.e., measured speed and estimated current from the FTP). 

RMSE 
ME 
STDE 

Pre-fault period 
r e [01000] sec 

5.7919x10^ 

1.0531X10"4 

5.6955 xlO-4 

Faulty period 
*e[l000 4250]sec 

5.9243 xlO"4 

9.6095x10^ 

5.9236 xlO"4 

Post-fault period 
/e[4250 6000]sec 

6.2504 xlO-4 

7.8485 xlO-6 

6.2500X10"4 

Nontheless, it can be concluded from the above results that the performance of the series-

parallel scheme in conjunction with the NSE in diagnosing faults in the motor current 

under partial state measurements is very similar to that of the series-paralell scheme alone 

under full-state measurements. It should also be noted that this conclusion is valid for a 

relatively range of fault severities in the motor current. 

5.6.3.2 FDII of Motor Current Faults Using the Parallel Scheme 

In this section, the results of FDII using the parallel scheme in presence of the 

intermittent time-varying motor current fault - given in equation (5-39) - under the 

partial-state measurements of the reaction wheel are presented. The results are obtained 

utilizing the speed measurements from the sensors and the motor current estimates from 

the NSE. 

The residuals corresponding to the NPEs for Vbus and Kt fault is depicted in Figure C-

30 of Appendix C. These residuals are obtained using equation (4-5) for the case of 
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partial state measurements. The residual thresholds are essentially the same as the ones 

used for the parallel scheme under the full-state measurement assumption. 
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Figure 5-86. The health state of the RW using the parallel FDII scheme in presence of a time-varying 

fault in motor current over the time period of t e 11000 4250 ] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 

As was mentioned previously, the health state in the parallel scheme is obtained using 

only the residual signals and the FP estimates are needed only to identify the severity of 

a detected and isolated fault. Hence, the health state is depicted prior to the FP estimates 

in the parallel scheme. Figure 5-86 depicts the health state of the reaction wheel under 

partial-state measurements. As compared to the similar result under full-state 

measurements depicted in Figure 5-55, the following observations can be made: 

(i) Surprisingly, the fault diagnosis delay has been reduced from 108.2 seconds under 

full-state measurements to 105 seconds under partial-state measurements. 
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(ii) The time of persistently detecting the motor current fault removal (or disappearance) 

has been changed from /=4499 second under full-state measurements to /=4507 second 

under partial-state measurements. 

(iii) Surprisingly, the duration of false alarms due to the transients of the closed-loop 

ACS has been reduced from 374 seconds under full-state measurements to 365 seconds 

under partial-state measurements. 

Therefore, it can be clearly seen that the detection and isolation performance of the 

parallel scheme is by no means affected by the partial availability of states. 
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Figure 5-87. The estimated versus actual FPs using the parallel FDII scheme in presence of a time-
vary ing fault in motor c u r r e n t over the t ime period t G [1000 4250] second u n d e r par t ia l -s ta te 

measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-87 depicts the estimated value of the fault parameters, generated by the parallel 

scheme under partial-state measurements, versus their actual values. As compared to the 
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result of full-state measurements depicted in Figure 5-56, one can easily observe that the 

performance of the series-parallel scheme in estimating the FPs has remained practically 

unchanged. This is mainly due to the fact that the NSE is robust (or tolerant) with respect 

to faults in the motor current. 

Table 5-30. The performance indices of motor current fault identification using the parallel FD11 
scheme in presence of intermittent motor current fault and under partial-state measurements (i.e., 

measured speed and estimated current from the FTP). 

RMSE 

ME 

STDE 

Pre-fault period 
t e [01000] sec 

3.8713x10^ 

1.0637xl0-5 

3.8701 xlO-4 

Faulty period 
r e [1000 4250] sec 

4.6638x10^ 

-4.1341xl0 - 5 

4.6455 xlO"4 

Post-fault period 
t e[4250 6000]sec 

3.8081X10"4 

7.6425 xlO'5 

3.7307 x l O " 

Finally, Figure 5-30 shows the three performance indices of fault identification, 

namely RMSE, ME, and STDE, corresponding to the identification of the motor current 

fault using the parallel scheme under partial-state measurements. As compared to its 

counterpart under full-state measurements (i.e., Table 5-17), it can be clearly seen that the 

partial availability of the states has a very small impact on the fault identification 

performance of the parallel scheme across all time periods. 

5.6.3.3 FDII of Low-Severity Bus Voltage Faults Using the Series-

Parallel Scheme 

In this section, the results of FDII using the series-parallel scheme in presence of the 

intermittent sequence of low-severity bus voltage faults - given in equation (5-40) -

under the partial-state measurements of the reaction wheel are presented. The results are 

obtained utilizing the speed measurements from the sensors and the motor current 

estimates from the NSE. The residuals corresponding to the NPEs for VbUS and Kt fault is 
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depicted in Figure C-31 and Figure C-32 of Appendix C. As was mentioned previously, 

these residuals are obtained using equation (4-5). 
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Figure 5-88. The estimated versus actual FPs using the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period t € [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-88 depicts the estimated fault parameters, generated by the series-parallel 

scheme under partial-state measurements, versus their actual values. As compared to the 

result of full-state measurements depicted in Figure 5-32, the performance of the series-

parallel scheme in estimating the FPs is slightly deteriorated especially over the time 

periods with higher severity of the bus voltage fault. This is mainly due to the fact that 

the performance of the NSE in estimating the motor current deteriorates as the severity of 

the bus voltage fault increases. 
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Figure 5-89. The health state of the RW using the series-parallel FDH scheme in presence of a 

sequence of low-severity bus voltage faults over the time period/€ [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-89 depicts the health state of the reaction wheel under partial-state 

measurements. As compared to the similar result under full-state measurements depicted 

in Figure 5-33, it can be clearly concluded that the detection and isolation performance of 

the series-parallel scheme is practically unchanged due to the partial availability of the 

states. The only deterioration in the performance of the series-parallel scheme is in the 

duration of the three missed alarms during the faulty period, which have been slightly 

increased from 21, 13.5, and 12 seconds under full-state measurements to 25, 15, and 15 

seconds under partial-state measurements, respectively. 
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Table 5-31. The performance indices of fault identification using the series-parallel FD1I scheme in 
presence of low-severity bus voltage fault and under partial-state measurements (i.e., measured speed 
and estimated current from the FTP). 

Actual 
Vbus d r °P 

Average of 
estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
period 

|0,lOOOJs 

0 

-0.0018 

0.0020 

0.0018 

7.7438 x 10^* 

V Faulty 
period 

|1000,22401s 

- 1 

-1.0108 

0.0178 

0.0108 

0.0141 

2nd Faulty 
period 

|2240,3100]s 

- 4 

-4.0813 

0.0825 

0.0813 

0.0140 

3 r Faulty 
period 

|3100,4390]s 

- 3 . 5 

-3.5621 

0.0637 

0.0621 

0.0141 

4'* Faulty 
period 

|4390,5100]s 

- 2 . 5 

-2.4623 

0.0403 

-0.0377 

0.0144 

Post-fault 
period 

|5100,6000]s 

0 

-1.3808xl0"4 

1.5463X10-4 

-1 3808xl0"4 

6.9597 xlO"5 

Finally, Table 5-31 shows the three performance indices of fault identification, 

namely RMSE, ME, and STDE, corresponding to the estimation of the bus volatge fault 

severity using the series-parallel scheme under partial-state measurements. As compared 

to its counterpart under full-state measurements (i.e., Table 5-6), it can be clearly seen 

that the partial availability of the states has slightly affected the identification 

performance of the series-parallel scheme across almost all time periods, especially over 

the second, the third, and the fourth faulty periods, where the severity of the bus voltage 

fault is relatively high. It is important to note that over the healthy periods (i.e., the "pre-

fault" and the "post-fault" periods) as well as the first faulty period with low-severity bus 

voltage fault, the identification performance of the series-parallel scheme has not been 

deteriorated. 

In conclusion, while the performance of the series-parallel scheme in detecting and 

isolating the low-severity bus voltage faults has not been practically affected due to 

partial availability of the states, the identification (or fault severity estimation) 

performance has been deteriarted especially over the faulty periods with higher bus 

voltage fault severities. 
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5.6.3.4 FDII of Low-Severity Bus Voltage Faults Using the Parallel 

Scheme 

In this section, the results of FDII using the parallel scheme in presence of the 

intermittent sequence of low-severity bus voltage faults - given in equation (5-40) -

under the partial-state measurements of the reaction wheel are presented. The results are 

obtained utilizing the speed measurements from the sensors and the motor current 

estimates from the NSE. The residuals corresponding to the NPEs for VbUS and Kt fault is 

depicted in Figure C-33 of Appendix C. As was mentioned previously, these residuals are 

obtained using equation (4-5). 
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Figure 5-90. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period/£ [1000 5100] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 
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Figure 5-90 depicts the health state of the reaction wheel under partial-state 

measurements. As compared to the similar result under full-state measurements depicted 

in Figure 5-59, the following observations can be made: 

(i) Surprisingly, the fault diagnosis delay is very slightly decreased from 4.2 seconds 

under full-state measurements to 4 seconds under partial-state measurements, 

(ii) The time of persistently detecting the motor current fault removal (or disappearance) 

has been changed from 7=5146 second under full-state measurements to r=5142.5 second 

under partial-state measurements. 

(iii) The duration of false alarms due to the transients of the closed-loop ACS has been 

reduced from 380.1 seconds under full-state measurements to 357 seconds under partial-

state measurements. 

Therefore, it can be clearly seen that the detection and isolation performance of the 

parallel scheme is even very slightly enhanced using the motor current estimates from the 

NSE rather than the actual measurements of the current. Nevertheless, this is not true for 

the fault identification performance of the parallel scheme, as can be observed from 

Figure 5-91. In this figure, the estimated value of the fault parameters, generated by the 

parallel scheme under partial-state measurements, is depicted versus their actual values. 

As compared to the result of full-state measurements depicted in Figure 5-60, one can 

easily observe that the identification performance of the parallel scheme is deteriorated 

especially over the time periods where the severity of the bus voltage fault is relatively 

high. 
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Figure 5-91. The estimated versus actual FPs using the parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period t G [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 

Table 5-32 shows the three performance indices of fault identification, namely 

RMSE, ME, and STDE, corresponding to the identification of the bus voltage fault 

severity using the parallel scheme under partial-state measurements. As compared to its 

counterpart under full-state measurements (i.e., Table 5-18), it can be clearly seen that the 

partial availability of the states has affected the identification performance of the parallel 

scheme across almost all time periods, especially over the second, the third, and the 

fourth faulty periods, where the severity of the bus voltage fault is relatively high. 

In conclusion, similar to the series-parallel scheme, the performance of the parallel 

scheme in detecting and isolating the low-severity bus voltage faults has not been 

practically affected due to partial availability of the states; however, the identification (or 
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fault severity estimation) performance has been deteriarted especially over the faulty 

periods with higher bus voltage fault severities. For example, the fault severity over the 

second faulty period is estimated as 4.20V, while the actual drop of the bus voltage is 4V. 

It is important to note that the amount of the deterioration in fault identification of the 

parallel scheme is higher than that of the series-parallel scheme. 

Table 5-32. The performance indices of fault identification using the parallel FDII scheme in 
presence of low-severity bus voltage fault and under partial-state measurements (i.e., measured speed 
and estimated current from the FTP). 

Actual 

Km dr°P 
Average of 
estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
period 

[0,10001s 

0 

0.0672 

0.0949 

-0.0672 

0.0670 

V Faulty 
period 

[1000,2240]s 

- 1 

-0.9892 

0.0351 

-0.0181 

0.0334 

2nd Faulty 
period 

12240,3100]s 

- 4 

-4.2020 

0.2117 

0.2020 

0.0635 

3rd Faulty 
period 

|3100,4390|s 

- 3 . 5 

-3.7045 

0.2088 

0.2045 

0.0421 

4 * Faulty 
period 

[4390,5100]s 

- 2 . 5 

-2.4302 

0.0936 

-0.0698 

0.0624 

Post-fault 
period 

|5100,6000]s 

0 

-0.0320 

0.0371 

0.0320 

0.0188 

5.6.3.5 FDII of High-Severity Bus Voltage Faults Using the Series-

Parallel Scheme 

In this section, the results of FDII using the series-parallel scheme in presence of the 

intermittent sequence of high-severity bus voltage faults - given in equation (5-41) -

under the partial-state measurements of the reaction wheel are presented. The results are 

obtained utilizing the speed measurements from the sensors and the motor current 

estimates from the NSE. The residuals corresponding to the NPEs for VbUS and Kt fault is 

depicted in Figure C-34 and Figure C-35 of Appendix C. Needless to say, these residuals 

are obtained using equation (4-5). 
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Figure 5-92. The estimated versus actual FPs using the series-parallel FD1I scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-92 and Figure 5-93 respectively represent the estimated fault parameters and the 

health state of the reaction wheel, generated by the series-parallel scheme under partial-

state measurements. As compared to the results of full-state measurements depicted in • 

Figure 5-36 and Figure 5-37, the performance of the series-parallel scheme in both fault 

isolation and fault parameter estimation has been significantly deteriorated especially 

over the time periods with severities beyond 6V. More specifically, the number of short-

duration missed alarms has been clearly increased especially over the third faulty period. 

Furthermore, even though the presence of the bus voltage fault has been correctly 

detected and isolated over the second faulty period (see Figure 5-93), the fault severity 

has been wrongly estimated as 12.54V while the actual value of the bus voltage drop is 
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9.4V, as can be seen from Table 5-33. This is equivalent to almost 33.5% error in fault 

identification (or severity estimation). Similarly, the bus voltage fault has been correctly 

detected and isolated over the fourth faulty period; however, while the actual value of the 

bus voltage drop is 7.8V the severity of the fault is estimated as 8.75V, which is 

equivalent to almost 12.25% error in fault identification. It is important to note that the 

performance deteriorations in the FDII of the high-severity bus voltage faults are due to 

the fact that the performance of the NSE in estimating the motor current from speed 

measurements significantly deteriorates as the severity of the bus voltage fault exceeds 

beyond 6V. 

o 
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Figure 5-93. The health state of the RW using the series-parallel FDII scheme in presence of a 
sequence of high-severity bus voltage faults over the time period/€ [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 
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Table 5-33. The performance indices of fault identification using the series-parallel FD1I scheme in 
presence of high-severity bus voltage fault and under partial-state measurements (i.e., measured 
speed and estimated current from the FTP). 

Actual 
Vbus d r°P 

Average of 
estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
period 

|0,10001s 

0 

-0.0017 

0.0018 

0.0017 

7.2735 xlO"4 

l1' Faulty 
period 

|1000,2240]s 

-6 

-6.1876 

0.1888 

0.1876 

0.0208 

2nd Faulty 
period 

|2240,3100]s 

-9.4 

-12.5473 

3.1474 

3.1473 

0.0210 

3rd Faulty 
period 

|3100,4390]s 

-5.3 

-5.4336 

0.1355 

0.1336 

0.0222 

4"1 Faulty 
period 

|4390,51001s 

-7.8 

-8.7350 

0.9352 

0.9350 

0.0220 

Post-fault 
period 

|5100,6000]s 

0 

3.0516 

3.2581 

-3.0516 

1.1416 

In conclusion, the performance of the series-parallel scheme in FDI1 of high-severity bus 

voltage faults significantly deteriorates as the severity of the fault increases. It should also 

be noted that the deterioration in the performance is more significant for fault 

identification rather than fault detection and isolation (FDI). 

5.6.3.6 FDII of High-Severity Bus Voltage Faults Using the Parallel 

Scheme 

In this section, the results of FDII using the parallel scheme in presence of the 

intermittent sequence of high-severity bus voltage faults - given in equation (5-41) -

under the partial-state measurements of the reaction wheel are presented. The results are 

obtained utilizing the speed measurements from the sensors and the motor current 

estimates from the NSE. The residuals corresponding to the NPEs for Vbus and Kt fault is 

depicted in Figure C-36 of Appendix C. Once again, the residuals are obtained using 

equation (4-5). 
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Figure 5-94. The health state of the RW using the parallel FDII scheme in presence of a sequence of 

high-severity bus voltage faults over the time period / e [1000 5100] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 

Figure 5-94 and Figure 5-95 respectively represent the health state of the reaction wheel 

and the estimated fault parameters versus their actual values, generated by the parallel 

scheme under partial-state measurements. As compared to the results of full-state 

measurements depicted in Figure 5-63 and Figure 5-64, the performance of the parallel 

scheme in both fault isolation and fault parameter estimation has been clearly deteriorated 

especially over the time periods with severities beyond 6V. More specifically, the 

following deteriorations are observed: 

(i) The duration of the false alarms due to the transients of the closed-loop ACS has been 

slightly increased from 380 seconds under full-state measurements to 390 seconds under 

partial-state measurements. 
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(ii) The fault diagnosis delay has been slightly increased from 8.5 seconds under full-state 

measurements to 12 seconds under partial-state measurements. 
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Figure 5-95. The estimated versus actual FPs using the parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period/ e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 

(iii) As far as the detection and isolation performance of the parallel scheme is concerned, 

the second faulty period is completely missed, as can be observed from Figure 5-94. 

Furthermore, the third faulty period is missed for the first 620 seconds (i.e., over the time 

period re[3100 3720] sec.) but is later correctly detected and isolated. Finally, the 

fourth faulty period is correctly detected and isolated for only the first 75 seconds and is 

then missed until the end of the faulty period (i.e., up to fault removal time). Hence, it can 

be concluded that the parallel scheme is indeed unable to detect and isolate high-severity 

bus voltage faults under partial-state measurements. 
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(iv) Since the high-severity bus voltage faults with severities beyond 6V are not detected 

and isolated, there is no point of discussing the impact of the partial availability of the 

states on the identification performance of the parallel scheme. Nontheless, Table 5-34 

shows the accuracy of fault identification based on the three performance indices, namely 

RMSE, ME, and STDE. It can be clearly observed from this table that over the second 

faulty period, the fault severity has been wrongly estimated as 17.06V while the actual 

value of the bus voltage drop is only 9.4V, which is almost equivalent to 81.5% error in 

fault identification (or severity estimation). Similarly, while the actual value of the bus 

voltage drop over the fourth faulty period is 7.8V, the severity of the fault is estimated as 

10.12V, which is equivalent to almost 30% error in fault identification. 

Table 5-34. The performance indices of fault identification using the parallel FDII scheme in 
presence of high-severity bus voltage fault and under partial-state measurements (i.e., measured 
speed and estimated current from the FTP). 

Actual 
Vbm d r °P 

Average of 
estimated 

drop 

RMSE 

ME 

STDE 

Pre-fault 
period 

|0,10001s 

0 

0.0794 

0.1084 

-0.0794 

0.0738 

T' Faulty 
period 

|1000,2240]s 

- 6 

-6.4739 

0.4915 

0.4739 

0.1304 

2nd Faulty 
period 

|2240,3100]s 

-9.4 

-17.0594 

7.7383 

7.6594 

1.1024 

3rd Faulty 
period 

|3100,43901s 

-5.3 

-5.7759 

0.4864 

0.4759 

0.1007 

4'h Faulty 
period 

[4390,51001s 

-7.8 

-10.1156 

2.3450 

2.3156 

0.3704 

Post-fault 
period 

[5100,60001s 

0 

-0.1469 

0.1583 

0.1469 

0.0591 

In conclusion, the performance of the parallel scheme in FDII of high-severity bus 

voltage faults drastically deteriorates as the severity of the fault increases. It is important 

to note that this deterioration in the FDII of high-severity bus voltage faults under partial 

state measurements is more significant in the parallel scheme than the series-parallel 

scheme. 
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5.7 Conclusions 

In this chapter, the proposed FDII methodology was employed for fault diagnosis of 

reaction wheel actuators of the attitude control subsystem (ACS) of a 3-axis stabilized 

LEO satellite. To be able to properly verify and validate the effectiveness of the proposed 

FDII techniques, first a high-fidelity ACS simulator of a 3-axis stabilized satellite was 

developed. The ACS simulator consisted of the nonlinear model of the spacecraft attitude 

dynamics, a high-fidelity nonlinear model of reaction wheels, and the mathematical 

models of environmental disturbances acting upon the satellite. Furthermore, a 

decentralized PID control strategy was designed to stabilize the spacecraft attitude and 

thus provide the necessary framework for validating the FDII algorithm. 

Following the convergence verification of the ACS for both attitude stabilization and 

slew manoeuvring, faults were characterized and then injected in one of the reaction 

wheels of the ACS - associated to the pitch axis. The faulty ACS system was simulated 

in order to generate faulty data of the closed-loop ACS. It was assumed that the reaction 

wheel actuators are prone to two different types of faults including faults in the bus 

voltage and faults in the motor current. Faults in the motor current were modeled and 

injected intermittently as time-varying variations in the reaction wheel's motor torque 

gain. The fault injection model used for motor current faults enabled us to assess the 

performance of the proposed FDII schemes in presence of a continuum of fault severities 

from very minor, incipient faults (due to, for instance, wear and tear of the motor) to up 

to 70% reduction in the motor torque gain. On the other hand, faults in the bus voltage 

were modeled and injected as a sequence of intermittent drops in the voltage of power 

bus. Both low-severity (or incipient) and high-severity faults were considered for the bus 
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voltage. Low-severity bus voltage faults correspond to drops in the voltage up to 4 Volts. 

The low-severity bus voltage faults do not de-stabilize the ACS system, however, they 

make the wheel operate at higher currents and thus increase power consumption by the 

reaction wheel. On the other hand, the high-severity bus voltage faults make the closed-

loop ACS unstable and thus the satellite starts tumbling between ±90' once the severity 

of the bus voltage fault exceeds beyond 4 Volts. 

Numerous simulation results were presented for evaluating the performance of the 

proposed fault diagnosis schemes in detecting, isolating, and identifying faults in the 

reaction wheels of the ACS and in presence of external disturbances and measurement 

noise. The simulation results demonstrated the effectiveness of the proposed fault 

diagnosis schemes. Numerous qualitative and quantitative observations were made in 

Chapter 5 regarding the performance capabilities of each FDII scheme. Furthermore, a 

comprehensive analysis was performed on the robustness of the two FDII schemes with 

respect to measurement noise. It was observed that the FDII performance of the parallel 

scheme is extremely robust to measurement noise, hence making it suitable for health 

monitoring of systems with even very noisy sensors (i.e., very low SNR). On the 

contrary, the series-parallel scheme was very sensitive to measurement noise. Instead, it 

displayed fast convergence rates and was very robust to closed-loop system transients. 

Hence, the series-parallel scheme is desirable for (high SNR) systems requiring very 

short delays in fault diagnosis and/or systems requiring frequent commanding. In 

practice, the choice of the appropriate FDII scheme is imposed by the specifications and 

the requirements of the specific problem at hand. 
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Finally, the performance of the FDII schemes under partial-state measurements was 

validated using simulations. It was assumed that only the speed of the wheel is measured 

and the motor current was estimated from the speed measurements using the neural state 

estimator (NSE). First, the performance of the NSE was verified under the nominal 

healthy conditions of the reaction wheel. More specifically, it was shown that the motor 

current estimates generated by the NSE very quickly converge to their actual values even 

in presence of a relatively large initial estimation error. Then, faults were injected into the 

reaction wheel and the performance of the NSE was evaluated over the faulty periods in 

order to verify the robustness (or tolerance) of the NSE with respect to faults. It was 

shown that the NSE is completely tolerant with respect to the motor current faults. 

However, the performance of the NSE deteriorates as the severity of the bus voltage 

faults increases. More precisely, it was concluded that the NSE is robust (or tolerant) to 

bus voltage faults with severities below 6V. Beyond that severity level, the motor current 

estimates start to significantly deviate from their actual values. Numerous observations 

and conclusions were made regarding the performance capabilities of the FDII schemes 

under partial-state measurements using the NSE for estimating the unmeasured state of 

the reaction wheel (i.e., the motor current). In summary, it was concluded that the 

performance of both FDII schemes remain practically unchanged in presence of both 

motor current faults (over a wide range of severities) and bus voltage faults with 

severities below 6V. However, the identification (or severity estimation) performance of 

the series-parallel scheme as well as the overall performance (i.e., including detection, 

isolation, and identification performance) of the parallel scheme significantly deteriorates 

as the severity of the bus voltage faults exceeds 6V. 
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Chapter 6: 

6 Conclusions and Future Work 

In this thesis, the problem of fault diagnosis in components and actuators of nonlinear 

systems was considered. A fault diagnosis system at its best must be able to not only 

detect the presence and isolate the location of faults in a system but also identify them 

(i.e., estimate their severities) once they are detected and isolated. Hence, a diagnostic 

system is also equivalently called a fault detection, isolation, and identification (FDII) 

system. While the importance of fault detection and isolation (FDI) is evident for health 

monitoring of engineering systems, the importance of fault identification has not been 

equally recognized in the literature. Consequently, fewer theoretical and practical 

contributions in the domain of fault identification or severity estimation exist in the 

literature, especially for nonlinear systems. However, it was shown in Chapter 1 that 

identification of fault severities is a cornerstone to fault prognosis and subsequently to 

develop a condition-based maintenance (CBM) system. Furthermore, it was shown that 

the accurate fault identification is an invaluable asset for fault tolerant control systems, in 

general, and is a necessity for implementing active fault accommodation and recovery 

procedures, in particular. 

In view of these substantiations, and the ever-increasing demand for both autonomous 

fault tolerant control of safety-critical (and mission-critical) systems and CMB in 

especially mass-producing industries and OEMs, in this thesis a novel integrated hybrid 
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solution to the problem of fault diagnosis for components of nonlinear systems has been 

presented. Unlike most existing fault diagnosis techniques, the proposed solution is able 

to simultaneously detect, isolate, and identify the severity of faults in system components 

within a single unified diagnostic module. The developed FD1I solution takes advantage 

of both a priori mathematical model information of the system and the adaptive nonlinear 

approximation capability of computational intelligence techniques especially neural 

networks. In Chapter 2, a comprehensive survey and analysis of the two major analytical 

redundancy-based approaches to fault diagnosis, namely the model-based and the 

computational intelligence (Cl)-based approaches, was presented, which differ mainly in 

terms of the form of a priori knowledge or information being employed for diagnosis. 

Furthermore, some of the diagnostic methodologies were presented in order to describe 

as to how the three tasks of detection, isolation and identification are achieved within 

each framework. Once again, it should be noted that the FDII methodology that has been 

proposed in this thesis is an integrated hybrid approach that simultaneously exploits the 

benefits of both model-based and Cl-based approaches. 

In order to achieve fault identification, faults were modelled through parameterization 

of the nominal mathematical model of the system with a set of fault parameters (FPs), 

where each FP is an indication of a particular fault in the system. It was discussed, 

however, that such a multi-parameter fault model is not sufficient for fault isolation. 

Hence, to enable fault isolation a set of single-parameter fault models were extracted 

from the multi-parameter ones. Once the Set of single-parameter fault models were 

derived, the problem of FDII in nonlinear systems was formulated as an on-line nonlinear 

parameter estimation problem with FPs as the unknown parameters to be estimated. 
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Various nonlinear parameter estimation methods were then reviewed in Chapter 3 and a 

solution based on neural networks was then proposed. The rationale for choosing neural 

networks for on-line nonlinear parameter estimation has been their universal function 

approximation capability and the availability of well-established and well-understood 

weight adaptation laws. 

Therefore, the core of the proposed hybrid nonlinear FDII solution is a bank of 

adaptive neural parameter estimators (NPE), where each NPE in the bank was designed 

based on a separate single-parameter fault model. At each instant of time, the NPEs 

provide estimates of the unknown fault parameters (FP), which in conjunction with the 

output residuals determine the health state of the system being monitored. The residuals 

were defined as the difference between the actual measurements and the output estimates 

(or predictions) generated by the single-parameter fault models using their respective FP 

estimates from NPEs. It should be noted that the actual FP values are essentially 

unknown, so their estimates have to be used for predictions. The fault parameter 

estimation was based on on-line minimization of instantaneous output estimation error. 

First, subject to the availability of full state measurements, two NPE structures, 

namely series-parallel and parallel, have been proposed and their respective FDI decision 

logics and weight update laws have been provided in Chapter 3. Each FDII scheme was 

shown to exhibit an exclusive set of desirable attributes. Furthermore, simple neural 

network architecture and straightforward weight adaptation laws make both proposed 

FDII schemes suitable for real-time implementation of on-line health monitoring systems. 

It should be noted that the robust parallel FDII scheme is a major contribution of this 
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thesis, being proposed for the first time in the literature. Furthermore, the novelty aspects 

of the series-parallel scheme have also been mentioned in Chapters 1 and 3. 

In Chapter 4, the proposed FD11 schemes were extended to systems with partial state 

measurement. The practical significance and motivations of such an extension were 

discussed in Chapter 4. The notion of fault tolerant observer (FTO) was introduced, 

which enables estimating the unmeasured states of the system even in presence of faults 

in the system. In other words, state estimates from an FTO are robust to faults. In order to 

systematically design an FTO, the literature on optimal filtering and state estimation was 

extensively reviewed and analyzed. Accordingly, a Kalman structure preserving neural 

state estimator (NSE) was designed and developed that adaptively estimates system states 

by constantly minimizing instantaneous observation error. The self-adapting and self-

learning capability of neural networks has been exploited in the proposed NSE in order to 

achieve robustness with respect to faults. Due to presence of output feedback in the 

architecture of the NSE and on-line nature of the proposed FTO, the update laws were 

derived using the on-line recursive back-propagation algorithm. The details of the weight 

update laws have been provided in Chapter 4. 

Finally, the proposed FDII methodology was employed for fault diagnosis of reaction 

wheel actuators of the attitude control subsystem (ACS) of a 3-axis stabilized LEO 

satellite. While taking the extremely important role of stabilizing the attitude of a 

satellite, reaction wheels are sensitive devices that are vulnerable to different sources of 

faults. Therefore, the existence of a reliable fault diagnosis system that constantly 

monitors the health state of these actuators is crucial especially for autonomous satellite 

operations. To be able to properly verify and validate the effectiveness of the proposed 
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FDII techniques, first a high-fidelity ACS simulator of a 3-axis stabilized satellite was 

developed. The ACS simulator consisted of the nonlinear model of the spacecraft attitude 

dynamics, a high-fidelity nonlinear model of reaction wheels, and the mathematical 

models of environmental disturbances acting upon the satellite. Furthermore, a 

decentralized P1D control strategy was designed to stabilize the spacecraft attitude and 

thus provide the necessary framework for validating the FDII algorithm. 

Following the convergence verification of the ACS for both attitude stabilization and 

slew manoeuvring, faults were characterized and then injected in one of the reaction 

wheels of the ACS - associated to the pitch axis. The faulty ACS system was simulated 

in order to generate faulty data of the closed-loop ACS. It was assumed that the reaction 

wheel actuators are prone to two different types of faults including faults in the bus 

voltage and faults in the motor current. Faults in the motor current were modeled and 

injected intermittently as time-varying variations in the reaction wheel's motor torque 

gain. The fault injection model used for motor current faults enabled us to assess the 

performance of the proposed FDII schemes in presence of a continuum of fault severities 

from very minor, incipient faults (due to, for instance, wear and tear of the motor) to up 

to 70% reduction in the motor torque gain. On the other hand, faults in the bus voltage 

were modeled and injected as a sequence of intermittent drops in the voltage of power 

bus. Both low-severity (or incipient) and high-severity faults were considered for the bus 

voltage. 

Numerous simulation results were presented for evaluating the performance of the 

proposed fault diagnosis schemes in detecting, isolating, and identifying faults in the 

reaction wheels of the ACS and in presence of external disturbances and measurement 
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noise. The simulation results demonstrated the effectiveness of the proposed fault 

diagnosis schemes. Numerous qualitative and quantitative observations were made in 

Chapter 5 regarding the performance capabilities of each FDII scheme. Furthermore, a 

comprehensive analysis was performed on the robustness of the two FD11 schemes with 

respect to measurement noise. It was observed that the FDII performance of the parallel 

scheme is extremely robust to measurement noise, hence making it suitable for health 

monitoring of systems with even very noisy sensors (i.e., very low SNR). On the 

contrary, the series-parallel scheme was very sensitive to measurement noise. Instead, it 

displayed fast convergence rates and was very robust to closed-loop system transients. 

Hence, the series-parallel scheme is desirable for (high SNR) systems requiring very 

short delays in fault diagnosis and/or systems requiring frequent commanding. In 

practice, the choice of the appropriate FDII scheme is imposed by the specifications and 

the requirements of the specific problem at hand. 

Finally, the performance of the FDII schemes under partial-state measurements was 

validated using simulations. It was assumed that only the speed of the wheel is measured 

and the motor current was estimated from the speed measurements using the neural state 

estimator (NSE). First, the performance of the NSE was verified under the nominal 

healthy conditions of the reaction wheel. More specifically, it was shown that the motor 

current estimates generated by the NSE very quickly converge to their actual values even 

in presence of a relatively large initial estimation error. Then, faults were injected into the 

reaction wheel and the performance of the NSE was evaluated over the faulty periods in 

order to verify the robustness (or tolerance) of the NSE with respect to faults. It was 

shown that the NSE is completely tolerant with respect to the motor current faults. 
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However, the performance of the NSE deteriorates as the severity of the bus voltage 

faults increases. More precisely, it was concluded that the NSE is robust (or tolerant) to 

bus voltage faults with severities below 6V. Beyond that severity level, the motor current 

estimates start to significantly deviate from their actual values. Numerous observations 

and conclusions were made regarding the performance capabilities of the FD1J schemes 

under partial-state measurements using the NSE for estimating the unmeasured state of 

the reaction wheel (i.e., the motor current). In summary, it was concluded that the 

performance of both FD1I schemes remain practically unchanged in presence of both 

motor current faults (over a wide range of severities) and bus voltage faults with 

severities below 6V. However, the identification (or severity estimation) performance of 

the series-parallel scheme as well as the overall performance (i.e., including detection, 

isolation, and identification performance) of the parallel scheme significantly deteriorates 

as the severity of the bus voltage faults exceeds 6V. 

A large number of potential future works can be envisaged for this thesis due to the 

widespread applicability of fault diagnosis, prognosis, and health management (DPHM) 

technologies across various science and engineering applications, in general, and the 

divers set of mathematical tools and methodologies employed in the design of proposed 

FD1I approach, in particular. Nonetheless, the future research directions can basically be 

classified into two distinct categories: (i) future work with short to medium-term 

objectives and (ii) future work with medium to long-term objectives. In the following, we 

will discuss and investigate each category of future research directions separately: 

(i) Future work with short to medium-term objectives: This future research 

direction aims at further enhancing the capabilities of the FDII methodology proposed in 
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this thesis. These enhancements may take place at various levels and from different 

perspectives. Some examples include: 

• Extending the mathematical merit and rigour of the proposed FDII approach. 

More specifically, derivation of mathematical proofs and isolability conditions for 

the fault isolation decision logic of the two series-parallel and parallel FDII 

schemes. Furthermore, rigorous derivation of convergence proofs for fault 

parameter estimation can be envisaged as a future work, which is compounded 

due to nonlinearity of the problem, black-box nature of neural networks and the 

inherent coupling between estimation and adaptation of neural filters. 

• Derivation of formal and analytical results/proofs for robustness of the parallel 

FDII scheme with respect to measurement noise, 

• Extending the robustness of the proposed FDII to other sources of uncertainties, 

especially modeling errors. 

• Derivation of a concrete mathematical proof for the convergence of the proposed 

FTO under certain severity levels of faults in the system, 

• Enhance the capability of FDII under partial-state measurement. As was observed 

in the simulation results for fault diagnosis in reaction wheels, the proposed fault 

tolerant observer becomes less accurate under bus voltage faults, in general, and 

completely fails to correctly estimate system states in presence of high severity 

levels of bus voltage fault. So, enhancements are required to address these 

shortcomings. This can be accomplished in two ways: (i) by investigating the 

robustness of the proposed FTO to a general set of fault scenarios and to make it 

robust to higher levels of fault severities, and (ii) to collaboratively perform fault 
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tolerant state estimation in concurrence with fault parameter estimation. This idea 

is, in essence, very similar to the dual estimation problem (or joint state and 

parameter estimation problem) in the Kalman filtering literature (see Haykin 

[49]). 

(ii) Future work with medium to long-term objectives: This future research 

direction aims at improving the technological merit of the proposed FDII methodology 

and bringing it to the next level of technological development, with the objective of 

addressing the ever-increasing demands of modern engineering systems. Examples of 

such technological shifts include: 

• Fault prognosis, 

• Condition-based maintenance (CBM), 

• Active fault tolerant control, 

• Fault diagnosis, recovery and accommodation 
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Appendix A 

Ordered Partial Derivatives (From Piche [172]) 

For adapting discrete-time dynamical systems and, in particular, to update the weights 

of a neural network with dynamic elements using steepest descent, a partial derivative of 

the associated dynamical system must be calculated. Because a dynamical system 

contains feedback, the calculation of this derivative can be quite complex. The ordered 

partial derivative, which is a partial derivative whose constant and varying terms are 

defined using ordered set of equations, provides a mathematical tool for easily finding 

derivatives of complex dynamical systems. 

To define the ordered derivative, the concept of an ordered set of equations must first 

be introduced. Let {zl,...,zi,...,zj,...,zn}be a set of n equations. This set of equations is 

defined to be an ordered set of equations if each variable zi is a function only of the 

variables{zx,...,zt_^. Thus, the equation for any variable of an ordered set of equations 

can be written as 

z ^ / C z , , . . . , ^ , ) (A-l) 

Because of the ordered nature of this set of equations, the variables {zx,...,zt_^ must be 

calculated before z( can be computed. As an example, the following three equations from 

an ordered set of equations: 

z , = l 

z2 = 3z, (A-2) 

z 3 =z,+2z 2 

When calculating a partial derivative it is necessary to specify which variables are held 

constant and which are allowed to vary. Typically, if this is not specified, it is assumed 
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that all variables are held constant except those terns appearing in the denominator of the 

partial derivative. This is the convention adopted in this paper; thus, the partial 

derivatives of z3 with respect to z,, — - , is 1. 
dzl 

An ordered partial derivative is a partial derivative whose constant and varying terms 

are determined using an ordered set of equations. The constant terns of the ordered partial 

d+z. 
derivative of z;with respect to z,, which is denoted -in order to distinguish it from 

dz, 

an ordinary partial derivative, are {z,,...,z._j}. The varying terms are 

{z„...,zj,...,zn} .Using mathematical notation, the ordered partial derivative is defined as: 

d+Zj _ dzj -
~a ~ ~a <*I.-.*M> ( A - 3 ) 

dz, dz, ' " 

Using this definition, the following two properties of the ordered derivative can easily be 

shown 

^ ± L = ^ L (A-4) 

dz- dzi 

and 

d+z 
L = 0 if j<i (A-5) 

dz, 

Wheny>/ + 1, the ordered derivative is found using either of the following two chain 

rule expansions: 

dz, dz, k=M dzk dz, 

and 
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i = - ^ + y - ^ ^ i i (A-7) 
dz, dZj k=Mdzk dz. 

As an example, applying either the first (equation (A-6)) or the second (equation (A-7)) 

chain rule expansions to the ordered set of equations given in (A-2), the ordered partial 

d+z, 
derivative of z3 with respect to z,, — - is 7. 

dz, 
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Appendix B 
Attitude Reference System and Coordinate Frames (Wertz [152]) 

In general, to determine a satellite's attitude with respect to another body, a reference 

system must be used. While any reference system will provide valid answers if it is 

applied consistently, it is desirable to choose a convenient reference frame. An 

appropriate reference frame simplifies calculations and reduces the obscuring of physical 

theory by numerous algebraic/geometrical transformations. Throughout this chapter, the 

following four reference frames are utilized. It is important to note that the x, y, and z 

notation that may have been used in each frame of reference is independent of the other 

reference frames. 

1) Spacecraft fixed/body reference frame 3 B : The body frame is a body-fixed frame of 

reference. Its origin is located at the spacecraft center of mass and its orientation is based 

on the spacecraft geometry. For example, as depicted Figure B-l, the x and y axes are 

along the two coordinates of the solar panels on the bottom side of the satellite and the z 

axis is along the height and completes the orthogonal triad. 

Figure B - l . Spacecraft fixed/body reference frame. 
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2) Spacecraft principal axes reference frame: The principal frame is a body-fixed 

frame of reference. Its origin is located at the spacecraft's center of mass and its 

orientation is along the principal directions of the satellite body. Note that the principal 

directions are the eigenvectors of the spacecraft's Inertia matrix and that the dynamic 

equations can be expressed more conveniently in this frame. 

3) Orbital reference frame (RPY frame): The orbital reference frame is shown in 

Figure B-2. As can be seen in this figure, it is the well-known Earth-pointing reference 

system where the x-axis (Roll) is perpendicular to nadir and along the satellite's velocity 

vector (i.e., tangential to the orbit), the z-axis (Yaw) points towards the center of the 

Earth, and the y-axis (Pitch) is perpendicular to the orbit plane with positive direction 

towards south pole completing the orthogonal right-hand triad. It should be noted that the 

RPY frame is a rotating frame with the speed of rotation equal to the satellite's rotation 

speed around the Earth. Representing the attitude of a satellite with respect to the rotating 

orbital frame makes the design and implementation of an attitude control law much more 

convenient. 

•y 
Figure B - 2 . Orbital reference frame or RPY (Roll-Pitch-Yaw) frame. 
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4) Inertia] (Earth-fixed) reference frame: This is the non-rotating Earth-fixed frame 

that has its origin located at the center of the Earth. As shown in Figure B-3, its x-axis 

points through the Greenwich Meridian in the equatorial plane, z-axis is in the same 

direction as the Earth's rotation axis, and its j-axis completes the right-hand triad. 

Equatoi 

Figure B - 3 . Inertia] (or Earth-fixed) reference frame. 
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Appendix C 

Extra Figures of FDII Results 

In this Appendix, the reaction wheel states and their estimates from the hybrid FDII 

schemes under various fault scenarios and noise levels are depicted. 
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sequence of high-severity bus voltage faults over the time period / e [1000 5100] sec, subject to 

medium noise level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 
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Figure C-12. The estimated versus measured states using the series-parallel FDII scheme in presence 

of a sequence of high-severity bus voltage faults over the time period t e [1000 5100] sec, subject 

to high noise level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 
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Figure C-13. The residuals of the two NPEs of the series-parallel FD11 scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t £ [1000 5100] sec, subject to 

high noise level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 
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Figure C-14. The estimated versus measured states using the parallel FD1I scheme in presence of 

motor current fault over the time period / 6 [1000 4250] sec, subject to medium noise level 

(SNR=55 dB). 
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Figure C-15. The residuals of the two NPEs of the parallel FD1I scheme in presence of motor current 

fault over the period t e[!000 4250] sec, subject to medium noise level (SNR=55 dB). 
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Figure C-16. The estimated versus measured states using the parallel FDII scheme in presence of 

motor current fault over the time period / G [1000 4250] sec, subject to high noise level (SNR=45 

dB). 
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Figure C-17. The residuals of the two NPEs of the parallel FDII scheme in presence of motor current 

fault over the time period / € [l 000 4250] sec, subject to high noise level (SNR=45 dB). 
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Figure C-18. The estimated versus measured states using the parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period / € [1000 5100] sec, subject to 

medium noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 
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Figure C-19. The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period / e [1000 5100] seconds, subject to medium 

noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 
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Figure C-20. The estimated versus measured states using the parallel FD1I scheme in presence of a 

sequence of low-severity bus voltage faults over the time period/ 6 [1000 5100] sec, subject to high 

noise level (Current SNR=44.57 dB and Speed SNR=44.76 dB). 
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Figure C-21. The residuals of the two NPEs of the parallel FD11 scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t e[l000 5100] sec, subject to high noise level 

(Current SNR=44.57 dB and Speed SNR=44.76 dB). 
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Figure C-22. The estimated versus measured states using the/><Wu7fe/FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period/ 6 [1000 5100] sec, subject to 

medium noise level (Current SNR=54.57 dB and Speed SNR=54.76 dB). 
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Figure C-23. The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of 

high-severity bus voltage faults over the time period t e [1000 5100] sec, subject to medium noise 

level (Current SNR=53.66 dB and Speed SNR=53.72 dB). 
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Figure C-24. The estimated versus measured states using the parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t e [1000 5100] sec, subject to 

high noise level (Current SNR=44.57 dB and Speed SNR=44.76 dB). 
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Figure C-25. The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of 

high-severity bus voltage faults over the time period t e [1000 5100] sec, subject to high noise 

level (Current SNR=43.66 dB and Speed SNR=43.72 dB). 

359 



700 r 

650 

600 

550 \/ 

500 i-

450 

400 

350 

300 

250 

200 

/ 

/ \ 
\ 

V 

/ 
Estimate ; 

Actual 

\ / 

1000 2000 4000 5000 6000 3000 
time (Sec) 

Figure C-26. Speed estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a time-varying fault in motor current over the time period of 

J e [1000 4250] second. 
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Figure C-27. Speed estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a sequence of low-severity bus voltage faults over the time 

period / e [l 000 5100] second. 
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Figure C-28. Speed estimate from the full-order FTO versus its actual value using only speed 
measurements in presence of a sequence of high-severity bus voltage faults over the time 

period / € [l 000 5100 ] second. 
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Figure C-29. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a time-

varying fault in motor current over the time period / e [1000 4250] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 
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Figure COO. The residuals of the two NPEs of the parallel FDII scheme in presence of a time-varying 

fault in motor current over the time period t 6 [1000 4250] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 

362 



3 

£ 2 

i: 
-3 

15 

The NPE for V„ Fault 
x 10 b u s 

The NPE for Kt Fault 

Ml 

0 

r " • 
i 

• JJJ J 
1 

*•**( 

2000 4000 6000 

i 

-0.05 

u 
6000 

15 

10*-

^ 3 5 

2000 4000 
time (Sec) 

6000 

-10 (• 

-15 
2000 4000 6000 

time (Sec) 

Figure C-31. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period/ e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 
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Figure C-32. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a 

sequence of low-severity bus voltage faults over the time period t e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO); zoomed in 
for the current residual of "the NPE for Kt fault". 
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Figure C-33. The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of 

low-severity bus voltage faults over the time period t € [1000 5100] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 
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Figure C-34. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period / e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO). 
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Figure C-35. The residuals of the two NPEs of the series-parallel FDII scheme in presence of a 

sequence of high-severity bus voltage faults over the time period t e [1000 5100] second under 

partial-state measurements (i.e., measured speed and estimated current from the FTO); zoomed in 
for the current residual of "the NPE for Kt fault". 
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Figure C-36. The residuals of the two NPEs of the parallel FDH scheme in presence of a sequence of 

high-severity bus voltage faults over the time period t e [1000 5100] second under partial-state 

measurements (i.e., measured speed and estimated current from the FTO). 
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