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ABSTRACT 

REDUCTION OF DISCRETE AND FINITE ELEMENT MODELS USING BOUNDARY 

CHARACTERISTIC ORTHOGONAL VECTORS 

Raghdan Joseph Al Khoury 

Solution of large eigenvalue problems is time consuming. Large eigenvalue problems 

of discrete models can occur in many cases, especially in Finite Element analysis of 

structures with large number of degrees of freedom. Many studies have proposed 

reduction of the size of eigenvalue problems which are quite well known today. 

In the current study a survey of the existing model reduction methods is presented. A 

new proposed method is formulated and compared with the earlier studies, namely, static 

and dynamic condensation methods which are presented in detail. Many case studies are 

presented. 

The proposed model reduction method is based on the boundary characteristic 

orthogonal polynomials in the Rayleigh-Ritz method. This method is extended to discrete 

models and the admissible functions are replaced by vectors. Gram-Schmidt 

orthogonalization was used in the first case study to generate the orthogonal vectors in 

order to reduce a building model. 

Further, a more general method is presented and it is mainly used to reduce FEM 

models. Results have shown many advantages for the new method. 
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Chapter 1 

Introduction 

1.1. General information 

Real structures and systems can be modeled as either continuous or discrete or a 

combination of both. The vibration behavior of such structures is studied by expressing 

the vibratory motion in the form of differential equations that may be solved analytically 

in some cases or using approximate methods in other. In general, discretization of a 

continuous structure is a powerful method to solve the differential equations with 

acceptable accuracy. Two of the well known methods are the Rayleigh-Ritz and the 

Finite Element Method (FEM). 

Briefly, FEM or FEA (finite element analysis) is a numerical method to solve partial 

differential equations by transforming the problem into a set of ordinary differential 

equations that can be solved using different numerical methods. FEM was first proposed 

in 1941 and 1942, in order to solve structural problems. This method has evolved over 

the years with many improvements and it forms now one of the most used methods to 

simulate physical systems. This method can be used for the static and dynamic analysis, 

where a continuous structure is discretized into a finite number of DOFs. Currently, a 

variety of elements are used for the structural analysis such as: rod, beam, plate, shell and 
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solid. Most of these elements can be found in the many software packages available 

today. Many books have been written on this method, such as by Rao [1] and Reddy [2]. 

The Rayleigh-Ritz method was proposed by Walter Ritz. Similar to FEM, this method 

is used as a numerical method to solve partial differential equations by discretizing the 

problem. The Rayleigh-Ritz method uses a set of deflection shapes satisfying at least the 

geometrical boundary conditions and employs them in the energy expressions [3]. Using 

the stationarity conditions of the Rayleigh's quotient by differentiating with respect to all 

the generalized coordinates, results in a set of simultaneous algebric equations that can be 

solved to obtain the approximate results. The accuracy in this method is better when 

larger number of assumed modes are employed. 

1.2. The Rayleigh Ritz method 

The Rayleigh-Ritz method defines the actual deflection shape during vibration as a 

linear combination of assumed deflection shapes, each of which satisfy at least the 

geometrical boundary conditions of the structure. The expression for the deflection as a 

linear combination of the linearly independent assumed deflection shapes {cpj is given as 

W(x) = Ja1(Pl(x) " (1.1) 

The expressions of the energy can then be written in terms of the assumed deflection. 

Assuming that the motion is harmonic in one of the system natural frequencies under free 

vibration conditions, the Rayleigh's quotient will be the ratio of the maximum strain 
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energy over the maximum kinetic energy. Applying the stationary condition to the 

natural frequencies by differentiating it with respect to the arbitrary coefficients a, will 

lead to a (n x n) eigenvalue problem. 

_L_> = ^L___ °^- = 0 (0.2) 

This method is quite suitable to solve partial differential equations, provided a set of 

linearly independent assumed deflection functions can be found. 

1.2. Boundary characteristic orthogonal polynomials 

The Rayleigh-Ritz method has been used to solve different vibration problems. For 

plate problems admissible functions were chosen as a product of the beam characteristic 

functions which are the exact mode shapes of beams with the corresponding boundary 

conditions. This method was used in many studies, mainly to solve for the eigenvalues of 

plates which have no analytical solutions. Rectangular plates have an exact solution only 

when two facing edges are simply supported. Also Kirchhoff [4] presented analytical 

solution of circular plates. Detailed review of plate theory as well as a review of the 

computational method used to solve it is found in Soedel [5]. 

Dickinson and Li [6] presented a procedure to solve rectangular plate problem for 

different boundary conditions by using admissible functions that are based on the 

arbitrary assumption of two simply supported facing edges and solving for the exact 
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mode shapes from the resulting ordinary differential equation using actual boundary 

conditions on the other two edges. This process is repeated to obtain the exact mode 

shapes between the initial two edges by assuming that the latter two opposite edges are 

simply supported. Then the plate deflection is assumed as the product of the two sets of 

exact deflection functions. All the studies listed in [7]-[12] have used either the Rayleigh 

or the Rayeigh-Ritz method for plate problems with admissible functions taken as the 

product of exact beam functions. 

Bhat [13] proposed a method to generate boundary characteristic orthogonal 

polynomials (BCOP) as admissible functions in the Rayleigh-Ritz method. This method 

was used to solve the eigenvalue problem of plates with different boundary conditions. It 

is based on a first polynomial that satisfies all the boundary conditions while the rest of 

the functions are generated using Gram-Schmidt orthogonalization method [14]. Note 

that the functions that form the rest of the set will satisfy only the geometrical boundary 

conditions. 

This BCOPs were used to solve the eigenvalue problem of beams and plates with 

different boundary conditions and geometry. Tapered beams and plates were studied 

using a weight function in the construction of the higher members of the set. Nonclassical 

boundary conditions such as translational springs or spring hinged cases were studied 

using the polynomials of structures with free ends. Plate problems were solved using the 

product of one-dimensional polynomials as admissible functions. Moreover functions in 

polar coordinates were used to study circular and elliptical plate problems. 
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Grossi and Bhat [15] presented a study where tapered beams were solved using 

BCOPs generated by adding a weight function to the orthogonalization algorithm. The 

results were compared with the exact ones given in terms of Bessel functions. Bhat et al 

[16], studied the case of thin plates with non uniform thickness using the BCOP in the 

Rayleigh-Ritz method and compared with many other methods namely, the Rayleigh-Ritz 

method with a tuned parameter, the optimized Kantorovich method [17] and the FEM. 

As for the case of nonclassical boundary conditions, the case of an elastic support 

preventing rotation at one end and an added mass at the second end was studied in [18] 

by Grossi et al. In this study the first assumed deflection shape is chosen to satisfy only 

the geometrical homogeneous boundary conditions, which means only one condition in 

this case. Numerical results were obtained for different cases of linearly tapered beam. 

The flexural vibration of polygonal plates was studied using two dimensional 

polynomials by Bhat [19]. Starting from a function that satisfies the geometrical 

boundary conditions, the rest of the functions were generated using Gram-Schmidt 

method and numerical results for the case of triangular plates were presented. Triangular 

plates also received considerable interest from researchers. The vibration of completely 

free triangular plate was studied by Leissa and Jaber [20]. Also variable thickness 

triangular plates were studied by Singh and Saxena [21], using the Rayleigh-Ritz method 

with boundary characteristic orthogonal polynomials. In this study the polynomials of 

any triangle are mapped into an isoceles right angle triangle. Liew and Wang [22] studied 

the cases of triangular plates with point supports or internal point supports with supported 

edges; in this study the authors used a combination of the Rayleigh-Ritz and Lagrangian 
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multiplier methods. Many cases of triangular plates with different supports and with 

internal point supports have been solved. Liew [23] also used boundary characteristic 

orthogonal polynomials to solve triangular plates with different geometries and boundary 

conditions. Results in this paper covered a wide range of case studies. 

Elliptical and circular plates were studied using a set of functions in polar coordinates. 

Rajalingham and Bhat [24] studied the axisymmetric vibration of elliptical and circular 

plates using boundary characteristic orthogonal functions in radial direction. In [25] the 

same authors used the BCOPs in the radial direction, however, they included the 

circumferential variation using trigonometric functions. The case of nonuniform elliptical 

plate was studied by Singh and Chakraverty [26] taking into consideration different kinds 

of nonuniformity, namely, linear and quadratic either parallel to the major axis or radial 

through the ellipse. 

Bhat [27] used BCOP method as a model reduction technique for the case of a one 

dimensional finite element model of a rotating shaft. The model reduction method was 

extended for reducing discrete and FEM [28] models using boundary characteristic 

vectors. Further, admissible two dimensional functions for plate problems were generated 

using an orthogonalization technique proposed by Staib [29]. 

1.3. Model reduction 

Model reduction is advised for large eigenvalue problems, especially when only the 

first few modes are of interest, which is usually the case. Model reduction is useful to 
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reduce the computational effort, and it can form a very important basis for multi-mode 

control of complex flexible structures. Moreover, FEM often results in a large number of 

degrees of freedom, and model reduction is widely used in all structural modal analysis. 

Basically, the model reduction is used in order to reduce the computational effort needed 

to solve the eigenvalue problem. Mathematically, solution of the eigenvalue problem is 

similar to the finding of the roots of polynomials of an order similar to that of the size of 

the eigenvalue problem. However, simple numerical approaches involving matrix 

operation have been proposed to find the eigenvalues. 

Many methods were based on an iterative process to converge toward the best 

solution, for example, the subspace iteration and the simultaneous iteration. Many model 

reduction techniques were studied and reported in the literature. The method that is 

known by the eigenvalue economization or the static condensation was proposed by 

Guyan [30] and Irons [31]. The method is based on the elimination of slave degrees of 

freedom which are chosen along with the master ones. The correct choice of the master 

degrees of freedom is important in this method since it may cause the loss of few lower 

modes otherwise. The choice of the master DOF is related to the distribution of energy 

within the structure. This method uses the static properties of the structure and hence it 

gives better results for all frequencies close to zero. An improved model reduction 

method was proposed by O'Callahan [32] where a restriction was applied on the choice 

of DOF that are to be eliminated and this method showed better results. This method was 

extended for higher frequencies by Salvini and Vivio [33]. 
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Fig. 1: Master DOF selection in a cantilever beam. 

Fig. 1 shows a valid selection of the DOF for three different vibration modes of a 

cantilever beam. This selection is based on the energy distribution in different modes. As 

mentioned earlier, a different choice of master DOF may result in the loss of some lower 

modes. 

The exact dynamic condensation was proposed by Leung [34]. This method requires 

the inverse of the dynamic stiffness matrix at any desired frequency. This method also 

requires the choice of master and slave DOF. When the method was introduced, only 

those nodes where the structure is subjected to external excitation were chosen as master 

DOFs. Myklebust et al [35] have investigated the viability of model reduction methods 
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with nonlinear dynamic problems. Also the same author in [36] compared the static 

condensation method or Guyan reduction with the improved reduction model (IRS) and 

the modal synthesis technique first proposed by Hurty [37] and Craig [38]. Modal 

synthesis technique, also known as component mode substitution, is based on the 

assumption of the continuous system as an assembly of subsystems which are solved 

independently and assembled mathematically [39]. This study has shown a good match 

between the (IRS) modal synthesis techniques, while the static condensation has shown a 

larger error. Lanczos vectors have been also used in the dynamic substructure analysis 

[40]. An iterative method using Lanczos vectors were used to solve eigenvalue problem 

in [41]. 

In the present study the model reduction is performed using a set of boundary 

characteristic orthogonal vectors that satisfy the boundary conditions. These vectors are 

employed in the Rayleigh-Ritz method in order to reduce the model. These vectors are 

generated using two different methods one following Bhat [13] and second using Leger, 

Wilson and Clough [42]. In the latter the generated vectors are load dependent vectors 

that are calculated as static deflections. Another method that involves the frequency in the 

calculation of Ritz vectors can is presented by Xia and Humar [43]. 

In the method by Bhat [13] the procedure was applied to a high-rise building vibration. 

This method showed the ability of reducing the models with acceptable results. However, 

this method showed some problems when applied to FEM due to the presence of the 

dependent degrees of freedom. 
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The second method of condensation is basically designed for finite Element Models. 

In this method a set of boundary characteristic vectors are generated following [42]. The 

importance of this method is that it does not need either modal or physical coordinates in 

order to generate the set of vectors. 

The detailed formulation of static and dynamic condensation is explained in 

subsequent chapters. Moreover, one can find a good review of those methods and 

different computational methods in [44] by Meirovitch and [45] by Leung. 

1.4. Objectives and scope of the research 

The use of boundary characteristic orthogonal polynomialsin the Rayleigh-Ritz 

method is extended to the study of discrete systems. When the structure is continuous the 

employed functions will help in discretizing the system. Mathematically, it is used for 

solving a partial differential equation by transforming it to a set of simultaneous algebric 

equations. However, when the system is discrete by nature then the application of the 

Rayleigh-Ritz method will not be necessary for the solution but it may form the basis of a 

model reduction method depending on the number of employed vectors. 

The aim of this thesis is to extend the application of boundary characteristic 

orthogonal polynomials to discrete systems in which the admissible deflection shape will 

be expressed in terms of orthogonal vectors. To achieve this goal, a method is proposed 

to reduce the discrete models using the Gram-Schmidt technique for orthogonalization. 

Next step is to generalize this method so that it can be applied to all discrete models. The 
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new proposed reduction technique for FEM models was investigated using many 

example structures and compared with previous well known reductions methods. 

1.6. Organization of the thesis 

The thesis contains 6 chapters. These chapters cover the formulation and the examples 

used to demonstrate the proposed model reduction methods. 

The 1st chapter provides an introduction containing a literature review and notions 

about the FEM and Rayleigh-Ritz methods. It also contains a survey of the earlier studies 

of model reduction techniques and the use of boundary characteristic orthogonal 

polynomials in the Rayleigh-Ritz method. 

Chapter 2 and 3 are on the reduction of discrete and FEM models using a set of 

orthogonal vectors that are generated using two different methods. In chapter 2 the 

orthogonal vectors are generated using Gram-Schmidt method and employed in the 

Rayleigh-Ritz method to reduce the model of a building. The original model is made of 6 

DOF and it is then reduced to 2 and 3 DOFs. In chapter 3, a similar method based on the 

generation of orthogonal vectors as static deflections due to different load distributions is 

investigated for some FEM models. Moreover, the formulation of the static condensation 

as well as the exact dynamic condensation are presented. Chapter 3 also includes a 

comparison between the results obtained by the three methods. 

Chapter 4 contains the application of the proposed method on the reduction of 

example structures, namely, a hybrid continuous discrete vehicle model and a coiled pipe 
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meshed in ANSYS. In this chapter, the eigenvalues are computed and the frequency 

response analyses are obtained. 

Chapter 5 includes a proposed method to obtain the natural frequencies of arbitrary 

clamped plates with different shapes. This method is based on employing two 

dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz 

method. The resulting generalized mass and stiffness matrices are reduced using a set of 

independent vectors. 

Chapter 6 includes the conclusions and the recommendation for future work. 
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Chapter 2 

Employing orthogonal vectors of model reduction for 

discrete systems 

The previous chapter briefly reviewed the Rayleigh-Ritz method and FEM, and 

provided a review of the literature on studies that used the BCOP technique for solution 

of continuous structures. Moreover, survey of earlier studies of discrete model reductions 

was presented. The generation of the boundary characteristic orthogonal vectors was 

described using two different methods: Gram-Schmidt and as done in [42]. In this chapter 

the model reduction is performed using Gram Schmidt orthogonalization to generate 

boundary characteristic orthogonal vectors. The method is applied to study a discrete 

model of a building. 

Model reduction of discrete systems becomes necessary when the number of degrees 

of freedom is large and makes the analysis time consuming. The discrete systems can be 

separated into two categories. In the first category are the continuous systems which are 

discretized for analysis purpose such as FEM. In the second are those with springs, 

dampers and lumped masses. Purely discrete systems never occur in nature, and they are 

just a convenient way to model some problems. Between those two categories the 

reduction has been an important issue in the former, while at the same time it can be 

beneficial for some of the latter category if the number of degrees of freedom is quite 
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large. In this section, a high-rise building is modeled as a discrete system on which the 

model reduction is applied. 

In the following, a set of orthogonal vectors is generated following Bhat [13] where 

Gram-Shmidt method is used to generate boundary characteristic orthogonal polynomials 

that are used as admissible functions in the Rayleigh-Ritz method for plate problems. 

Results are generated using the Langrage-Bhat approach where the orthogonal set is 

taken as a transformation to a set of generalized coordinates. 

Many studies have showed that a valid building model should include the damping 

characteristic of the structure in order to study their response to earthquakes. In this 

example the damping is approximated as a set of inter-storey viscous dampers. Energy 

dissipation devices were studied by Soong and Dargush [46]. The optimum condition of a 

first storey viscous damper is investigated by Constantinou and Tadjbakhsh [47], while 

the result of distributing the viscoelastic dampers at different location in a shear building 

was studied by Hahn and Sathiavageeswaran [48]. An optimal design for framed 

structure was built by Lavan and Levy [49]. These studies, among others, have shown 

that base damping is less than all others and they concluded that increasing the base 

damping coefficient will result in better results in case of earthquakes. 
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2.1. Modeling 
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Fig. 2. Multi-storey building model. 

The model of a six storey building is shown in Fig. 2. This building is assumed as a 

six degree of freedom system where each degree of freedom represents a floor. Precisely 

the first degree of freedom represents the basement and the rest are for other floors. The 

kinetic and potential energies and the damping functions are expressed, respectively, as 
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T = 

U = 

D = 

1 n 

z i = l 

1 n 

z i = l 

1 n 

- x i 

~ * i -

- , ) 2 

- ,)2 

(1.1) 

The base excitation is xb(t), which is assumed to be a harmonic excitation as follows: 

xb(t) = Xbsin©t (1.2) 

Eq. (1.1) and (1.2) can be rewritten in a matrix form as shown below: 

T = i{x}T[M]{x} 

U:=i({x-xb}T[K]{x-xb} (1.3) 

D = i{x-xb}T[C]{x-xb} 

where [M], [ K ] and [C] stand for the mass, stiffness and damping matrices, respectively, 

while {x} and {xb(t)} are the displacement and base displacement vectors, respectively, 

shown below: 

« = {x„x2, xn}T (1.4) 

{xb(t)} = {Xb,0,0, ,0}Tsincot (1.5) 

[M], [ K ] and [C]matrices are shown in Eq. (1.6),(1.7) and (1.8), respectively, as 
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[M] = 

vl, 

0 

0 

0 

0 

0 

0 

M2 

0 

0 

0 

0 

0 

0 

M3 

0 

0 

0 

0 

0 

0 

M4 

0 

0 

0 

0 

0 

0 

M5 

0 

0 

0 

0 

0 

0 

M, 

(1.6) 

[K]: 

K,+K2 

-K2 

0 

0 

0 

0 

-K2 

K2+K3 

-K3 

0 

0 

0 

0 

-K3 

K3+K4 

"K4 

0 

0 

0 

0 

-K4 

K4+K5 

-K5 

0 

0 

0 

0 

"K5 

K5+K6 

-K, 

0 

0 

0 

0 

-K 

K, 

(1.7) 

[C] 

c,+c2 

-c2 

0 

0 

0 

0 

-c2 

c2 + c, 
-c 3 

0 

0 

0 

0 

-c3 

c3+c4 

-c 4 

0 

0 

0 

0 

-c 4 

c4+c5 

-c5 

0 

0 

0 

0 

-c5 

c5+c6 

-a 

0 

0 

0 

0 

-c, 
a 

(1.8) 

2.2. Characteristic orthogonal vector set 

In order to generate the set of characteristic orthogonal vectors, a procedure similar 

to that used by Bhat [10] is employed. This procedure demands the choice of a first 
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vector |(f>t]tliat is assumed as the static deflection due to a uniform load as an 

approximation to the first vibration mode. This vector is obtained as follows: 

{*>} = [*]>} (L9) 

In Eq.(l .9) , {s} stands for the uniform load. 

{s} = [Ul, . . . , l ]T (1.10) 

At this stage Gram-Schmidt orthogonalization procedure is used to generate the rest of 

the vectors. Knowing that this method was originally used for continuous functions, some 

modifications are introduced to accommodate the discrete nature of the system. 

The generation of the vectors is accomplished by the following set of equations: 

{<P2} = ([y]-B2){9i}. w h e r e 

_{9,}T[M][y]{(p1} 

{9i+1} = ([y]-Bi+1){9i}-Ci+1{9i-1}, where 

J y . f M M ^ ) _{9-1}
T[M][yI{(f>i} 

1+1 {cpJ^Mjjcp,} ' ,+1 {^}T[MJ{^} 

The matrix [Y] is a matrix that represents the distance of each degree of freedom 

from the ground. 
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m= 

1 0 0 0 0 0 

0 2 0 0 0 0 

0 0 3 0 0 0 

n 

(1.12) 

The orthogonalization is made using a weight function that is taken as the mass matrix. 

Assembling vectors {q>} results in a matrix [<p] whose columns are normalized as 

follows: 

M m 
(&}>]{*. 

i = l,2,...,n 5 - ^ 5 * - * ? J (1.13) 

Concatenating the vectors {(pj results in a matrix [cp]. This is used as transformation 

matrix to a set of generalized coordinate vector as follows: 

{x} = [<|>]{q} (1.14) 

Thus the energy expressions and the damping functions can be expressed in terms of the 

generalized coordinates following the Lagrange-Bhat approach [11]. 

T = ^([cp]{q})T[M]([9]{q}) 

U = ^([(p]{q}-xb)T[K]([(p]{q}-xb) (1.15) 

D = -([(p]{q}-xb)T[C]([(p]{q}-xb) 
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The equation of motions in terms of generalized coordinates can be expressed as follows 

using Lagrange equations: 

M{q} + M{q} + [K]{q} = {a}, 

M = MT[M][q>], [K] = [9]
T[K][cp], (1.16) 

[ x M 9 f [ C ] M , {a}=[(P]TK1{xh} + [(P]TC1{xb}, 

where K, and C, are the base stiffness and damping, respectively. Homogeneous form of 

Eq. (1.16) is solved for the eigenvalues and eigenvectors. 

2.3. Results and discussion 

The model shown in Fig.l consists of 6 degrees of freedoms with the following 

structural data [50]: M, =Mbase = 6800kg, M2 =M3 =M4 =M5 =M6 =5879 kg which 

are the mass of each floor. And the following are the values of the stiffness and damping: 

k, = 231.500 kNm1, k2 ^ 33732 kNm ', ki=29093kNm1, k4 =2862l£7Vm;, 

k 5 = 24954 kNrri1, k6 =19059 kNm1 

c, =7A80kNsm', c2 = 67.000 kNsm1, c3 =56.000kNsm1, c4 = 57.000kNsm', 

c5= 50.000kNsm1, c6 = 38.000kNsm' 

The excitation amplitude Xb is taken as 0.01 m. The proposed orthogonal vectors are 

generated from Eq. (1.11) and plotted in Figs. 2-7. Those vectors represent the relative 

displacements of the degrees of freedom. As seen, all plots except Fig. 2 start from 0 

which is the ground level where the displacement is always 0. However, the ground level 

is not shown in Fig. 2 due to the huge difference between the base displacement and 
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those of the floors. This is due to the lower base stiffness in comparison to that existing 

between the floors as shown in the structural data. Those plots show a resemblance with 

the mode shapes of a cantilever beam. 

5.32 
x10" 

5.18 
3 4 

Floors (1 is the basement). 

Fig. 3. Vector # 1 vs. floors. 
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Table 1. Natural frequencies of the structure. 

Mod 

First 
Second 
Third 
Fourth 
Fifth 
Sixth 

cs Damped Natural Frequency 

Exact 
0.3994 
5.4M)X 
10.271 
I4.o55 

18.2748 
21.1266 

(Hz.) 
Approximate* 

0.3994 
5.4008 
10.271 
14.h55 

18.2748 
21.1266 

Table 1 shows the damped natural frequencies which are calculated from the 

complex eigenvalues of the system where the transformation matrix concatenates six 

vectors. As shown the values are the same which is expected since there is no reduction 

of the model order. 
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The transmissibility plots of the generalized coordinates (q) are shown in Fig. 8. 

This plot is obtained due to a harmonic base excitation of 0.0 Ira amplitude. It shows a 

peak for the 1st generalized coordinate in the range of [0 0.5] Hz. Covering the 1st natural 

frequency. However, a smaller peak for the 2n generalized coordinate in the range of [4.9 

5.7] Hz. which covers the 2nd natural frequency, is present. This may be caused by the 

small coupling in [p.], [x] and [K] . Note that if the modal matrix was to be considered as 

the transformation matrix [cp], the resulting transformed matrices [u.], [x] and [K] would 

have been diagonal without any coupling. It should be noted that smaller peaks will show 

for different generalized coordinates for the rest of the natural frequencies, however these 

peaks are small enough to be neglected. 
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Fig. 9.Transmissibility plots of the generalized coordinates, (a) Frequency range 
[0, 0.5]. (b) Frequency range [4.9, 5.75] 1st Generalized coordinate, 

2nd generalized coordinate, 3 rd , 4th, 5th and 6th generalized 
coordinates. 
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2.4. Dynamic reduction 

In this section the reduction is applied on the discrete system with the six degree of 

freedom system. Two cases are considered, first reduction is from 6 to 2 and the second is 

from 6 to 3. The error is computed and compared to the exact value of the complete 

model. The error in computing the natural frequencies is dependent on the number of 

vectors employed for the reduction. For example if 2 vectors are used to reduce the 

system, the error at the second one will be significantly large compared to the case where 

3 vectors are used. 

Table 2. Reduced model natural frequencies. 

Damped Natural Frequency (11/.). Frror 1%) 
Modes. .... " . . . • \ i 

Fxaet Approximated 
I.First 0.3994 0.3994 0 

2.Second 5.4608 5.6301 3.1 

Table 3. Reduced model natural frequencies. 
Damped Natural Frequency (11/.). 

Modes. , - ' • , - Frror. (%) 
l.xael Approximated 

1.first " 0.3994 "~ 0.3994 0 
2.Second 5.460X 5.5466 1.57 
3.Third 10.2" I IH.794S 5.1 

The reduced damped natural frequencies and the corresponding error in comparison 

with the exact ones are shown in Tables 2 and 3. As mentioned earlier, the error in the 

second natural frequency is less when three vectors are employed instead of two. 

Generalizing this fact, it can be said that when a better approximation of the third value is 

desired a higher number of vectors should be used. 
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Fig.9 and Fig. 10 show the transmissibility plots of the reduced systems generalized 

coordinates for 0.01 m amplitude excitation, where two and three vectors were used, 

respectively. Those plots are obtained for frequency ranges covering the two first natural 

frequencies in both cases. The peak in Fig.9(b) occurs at 5.63 Hz. similarly to that 

calculated and showed in Table 2. Similarly Fig. 10(b) shows the peak at 5.54 Hz. which 

is seen in Table 3. 

The next chapter will discuss the model reduction of FEM models using boundary 

characteristic orthogonal vectors. 
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Chapter 3 

Employing orthogonal vectors for model reduction of 

FEM models. 

The reduction was applied to a building model using a set of characteristic orthogonal 

vectors generated using Gram-Schmidt method in the last chapter. In the current chapter 

the method is extended to FEM models. 

Model reduction of Finite Element models is of particular interest in view of the large 

number of degrees of freedom in modeling real structures. Large number of degrees of 

freedom is necessary in FEM modeling in order to obtain satisfactory results. 

Model reductions in FEM were carried out in different ways such as substructuring, 

condensation and eigenvalue economization. An excellent review of the major 

approaches is presented by Leung [45]. In the present chapter a review of the two major 

techniques is presented and a new method is proposed. Among the earlier studies the 

exact dynamic condensation and the static condensation or eigenvalue economization are 

frequently used and are briefly described here. 

3.1. Exact dynamic condensation. 

A Finite Element analysis for structural vibration will yield a system of ordinary 

differential equations. This system results in an eigenvalue problem. 
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[D]{X} = {F} (3.1) 

where [D]is the dynamic stiffness matrix and is obtained by the assumption of a 

harmonic motion in time and separation of variables. The vectors |x}and{F]are the 

displacement vectors and the applied forces or moments, respectively. 

[D] = [K]-©2[M] (3.2) 

In the conventional method the slave and master degrees of freedom are chosen such 

that the slaves are those that are not driven by any forces. Thus equation (3.1) can be 

rewritten as follows: 

D D 
mm ms x"rC (33> 

in which m and s stand for master and slave DOFs, respectively. This system of equations 

can be separated into two parts as follows: 

[ D - D"]fx"} = {F) 
(3.4) 

[ D . D-]jx;[=!o} 

In order to eliminate the slave DOFs, {xs}is written in terms of {xm}, using the 

second part of Equation (3.4), as follows: 

WHD.riDjK} (3.5) 
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Substituting this j x s | in the first part of Equation (3.4), the system of equations can be 

written as follows: 

> m m ] - [D m s ] [D s s r ' [D s m ] ]{x m h{F} (3.6) 

Let F D ] = [Dmn,]-[Dms][Dss] [Dsm], for simplification, and equation (3.6) becomes: 

M K H F } (3-7) 

Richards and Leung [51] proved that the mass matrix is equal to the derivative of the 

dynamic matrix with respect toco2, which can be seen from Equation (3.2). Consequently, 

M = - - 7 ^ r [ D ] (3.8) 

Differentiating |D*1 with respect toco2 will yield the condensed mass matrix as: 

[M , ] = [ M - ] - [ D j [ D j , [ M j - [ M . ] [ D j 1 [ D j 

+ [D
ms][Dssr[Mss][Dss]

1[Dsm] 

where — J [ D ] is obtained by differentiating the identity, [D] [D] = [l] .The reduced 

stiffness matrix can be then obtained using the following relation: 

[K*] = [D*] + CO2[M*] (3.10) 

The reduced eigenvalue problem is then shown as follows: 
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r -co M'] = {F} (3.11) 

This method requires the inverse of the dynamic matrix during the computation of the 

natural frequencies. 

3.2. Static condensation 

The static condensation was first proposed by Guyan [30] and Irons [31]. This method 

was later known as Guyan reduction or eigenvalue economization. The main idea in this 

method is to eliminate the slave degrees of freedom in terms of the master DOFs. This 

choice is mainly related to the distribution of energy. Thus for different modes different 

selection of master and slave DOFs is required. 

Similar to the exact dynamic condensation, the reduced eigenvalue problem will have 

the same form as in Eq. (3.6). However, in this method a major assumption is used by 

taking the inverse of [Dss]in Eq. (3.6) as follows: 

[Dssr-[Kssr-co2[Kssr[Mss][Ksr (3.i2) 

3.3. Boundary characteristic orthogonal vectors in the Rayleigh-Ritz 

analysis 

The Rayleigh-Ritz method was originally introduced as an extension of Rayleigh's 

method and they were mainly used for continuous structures. However this method can 
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be applied to discrete systems also. Thus any discrete system can be reduced to a lower 

number of degrees of freedom. 

A more general method than that used in chapter 1 is followed to generate a set of 

orthogonal vectors using the stiffness and mass matrices that satisfy all the requirements 

of the flexibility as well as the boundary conditions of the structure under study, using a 

procedure that was first introduced by Leger, Wilson and Clough [42]. 

3.3.1. Modified Gram-Schmidt method 

The method of generating orthogonal vectors using Gram-Schmidt orthogonalization 

is modified here based on the fact that some DOF may be dependent. The mass and 

stiffness matrices can be rearranged to separate the slope from the deflection degrees of 

freedom. The mass and stiffness matrices can be rewritten as follows: 

[M]: 
[Mdd] [Mds] 
K ] [M„] W = [Kdd] [Kds] 

Ksd] [K„] 
(3.13) 

where the subscript "s" is for slopes and "d" is for deflections. As before, starting from a 

uniform load the first vector is computed as the static deflection as shown in Eq. (1.9) . 

Any other vector in the orthogonal vector set can be written as follows: 

< P i = M (3-14) 

Using Gram-Schmidt orthogonalization the second and the rest of the vectors are 

obtained in the following two equations, respectively. 
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(p2=x(p,-b2(p, (3.15) 

(P1+2=X(P1+1-bi+2(pi+1-c,+2(p, (3.16) 

Taking only the deflection into account in Eq. (3.15) yields the deflection portion of the 

second vector as: 

(Pd.2=X(Pd,l-b2(Pd,l ( 3 - 1 7 ) 

Since the slopes are the derivatives of the deflections, we have 

9s.2 = ~ h ~ = <Pd,i + x(Ps,i - b2(Ps,i ( 3 • 18) 
ox 

Combining the slopes and deflections the vector (p2 can be written as follows: 

-teHtehtei: 
Proceeding similarly, the higher members of the orthogonal set are obtained as 

,M > « _ > - _ bwK. _C| > J ° (3.20) 
K i + 2 J K i + 1 J L<Ps,i+i J K d [<p„,i+ij 

These modifications will help in getting a better admissible vector in the Rayleigh-

analysis resulting in a better convergence to the exact eigenvalues. However, this method 

becomes quite complicated in case of complex structures. 
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3.3.2. Boundary characteristic orthogonal vectors by static deflection 

In this method the calculation of static deflections due to a load distribution that is 

proportional to the previous deflection vector is used. This method is also sensitive to the 

first vector assumption. Knowing that the static deflection corresponds to zero frequency, 

it is taken as the first eigenvector or mode shape which is the closest to zero. The static 

deflections automatically satisfy the geometrical boundary conditions. 

As before, starting from a vector similar to that of Eq. (1.9) the rest of the vectors are 

obtained using the algorithm shown in Fig. 12 and 13. This algorithm consists of three 

major computational steps: 

• Computing the static deflection. 

• Subtracting the contribution of the previous vectors for orthogonalization. 

• Normalization. 

Fig. 12 and Fig. 13 basically show the same information, however, in the later the 

algorithm is shown in a block diagram highlighting the two loops. It should also be noted 

that the stiffness matrix is a constant matrix and hence needs to be inverted once and 

stored for use when needed. This step is shown also in Fig. 13 where the inverse of the 

stiffness matrix i s stored as [ A ] = [ K ] . 
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1. {y,\r = [« ] " ' {»} whore|»|.ji I I .... if 

(W'MW)2 

2. Higher member {$,} (i=2,3,4,..., n=number of desired vector): 

• Orthogonalization (j-l,2,3,...,i-l) 

• Normalization: 

Fig.12: Algorithm for the generation of orthogonal vectors. 
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Static deflection vector: 

where, {s} = {\ I 1 l}' 

w 
Normalization: 

i ) 

(WMM)5 

-•M=MM{4-,} 

" / / = ^ "]M! -SEfch^it) 

M={*} 

Fig.13: Computation scheme for the generation of orthogonal vectors. 
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3.4. Comparison of different model reduction techniques 

A close examination of both the static and the exact dynamic condensations will easily 

show that both methods use a transformation from the complete model to the reduced 

one. This transformation can easily be described in terms of the rearranged matrices using 

slave and master DOFs. However, when both Gram-Schmidt method and the algorithm in 

Fig. 13 are used the transformation lacks an explicit form in terms of the given matrices. It 

should also be noted that extending the condensation methods for substructuring may be 

difficult in some application due to the problem of matrix multiplication size. 

Table 4: Transformation formulae for different methods. 

Method Transformation formulae: 

Static condensation 

I x.iel vl\n;iimc Ciiiulcnsal:on 

Orthogonal vectors in Rayleigh-
Ritz 

x„ 

r — 

[-K„'][K„] 

['] 
•['>..] I ' ' : 

M=[*]M 

k,} 

1 Y ' 
t X in J 

I V J is the matrix of orthogonal vectors 

Using this method of formulation, the computation of the reduced order model 

becomes very simple and it shows that all the listed methods are basically similar. The 

general form of the reduced order model matrices can be written as the following matrix 

product where [Tr] stands for the transformation matrix: 
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M = [T,rM[Tr] M = [Tr]
T[M][Tr] (3.21) 

3.5. Example structures 

A set of example structures were investigated in order to compare different model 

reduction methods. Both methods that use a set of orthogonal vectors are compared 

together and the one using static deflection vectors is compared with both static and exact 

dynamic condensations. 

3.5.1. Cantilever beam 

2 3 4 5 25 

Fig. 14: Model of a cantilever beam. 

A steel cantilever beam meshed into finite elements using one-dimensional beam 

elements is investigated. The current section includes the results for all the listed methods 

with different trials using different choices of master and slave DOFs. Eigenvalues are 

computed and the mode shapes are plotted. The current model shown in Fig. 14 is 
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meshed into 25 elements resulting in 26 nodes and 50 DOFs since two DOFs are 

constrained at the first node. 

Table 5 shows the comparison of the reduced eigenvalues from both methods using 

orthogonal vectors in the Rayleigh-Ritz method. The comparison shows that the modified 

Gram-Schmidt method was capable to deal with the dependant DOFs resulting from the 

slope degrees of freedom in the FEM model. Both methods have given good results for 

up to half of the reduced order model, however, the second method has a better accuracy 

and also gives a better approximation to the higher modes. 

Table 5: Comparison between exact and reduced eigenvalues of both Modified 
Gram-Schmidt and Static load in the Rayleigh-Ritz method. 

Modes 

1 
2 

3 
4 
5 
6 
7 
S 
9 
10 

Modifl 
Scl 

\alues 

4177801~'" 
261.8121 
733.0768 
1436.571 
2375.352 
3595.301 
5123.112 
9040.585 
12773.29 
59986.31 

cd Gram-
imidt 

I-nor 

(%) 
0.0103 
0.0027 
0.0015 
0.0O2 

0.0227 
1.3371 
3.3719 

36.9841 
50.6313 
466.044 

Static dellections in 
the Raylei 

value 

41.7758 
261.8049 

733.0655 
1436.5432 
2374.8139 
3547.8678 
4959.5926 
6791.0651 
11007.8886 
77951.9551 

gh-Rit/. 
Frror 

0 
0 
0 
0 
0 
0 

0.0725 
2.N9i)| 

29.8124 
635.571 

Fxact 

41.7758 
261.8049 

733.0655 
1436.54^2 
2374.8139 
3547.8632 
4956.0014 
6599.733 
8479.8412 
10597.4653 
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Fig. 15. Comparison of the first mode with assumed vectors. Exact 
mode, modified Gram-Schmidt, .static deflection vectors. 

0.2 0.3 0.4 0.5 0.6 0.7 
Global coordinate 

0.8 0.9 

Fig. 16. Comparison of the second mode with assumed vectors. Exact 
mode, modified Gram-Schmidt, _. _ static deflection vectors. 

43 



0.7 

ia
ce

m
en

t 
di

sp
! 

R
el

at
iv

e 

Fig. 17. 
mode, 

0.6: 

0.5: 

0.4! 

0.3 

0.2' 

0.1 

-0.1 

-0.2 

-0.3-
0 ( 

Compar 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Global coordinate 

Comparison of the third mode with assumed vectors. Exact 
modified Gram-Schmidt, static deflection vectors. 
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Fig. 18. Comparison of the fourth mode with assumed vectors. Exact 
mode, modified Gram-Schmidt, static deflection vectors. 
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Fig.19. Comparison of the fifth mode with assumed vectors. Exact 
mode, static deflection vectors, modified Gram-Schmidt. 

Fig. 15 to 19 show the comparison between the exact eigenvectors calculated from 

FEM and the assumed vectors from both methods. The results show that the vectors 

resulting from modified Gram-Schmidt method are closer to the exact vectors than that of 

the deflection due to static load. However, the eigenvalues of the latter are closer to the 

exact ones than the former. This can be justified by the fact that the static deflection 

vectors satisfy the flexibility restriction of the system since the inverse of the stiffness 

matrix is used to calculate all the vectors which will ensure that the vectors satisfy all the 

boundary conditions. It should be noted that the plots of the vectors are based on the 

deflection only. 
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The same cantilever beam is also reduced using static and dynamic condensation 

methods. Different choices of the master degrees of freedom are taken and for every case 

the results are presented and discussed. First, the master DOFs are chosen to be on node 

22 to 26 of the model shown in Fig. 14. This resulted in a reduction to a (10x10) reduced 

order model. Further, the model was reduced by the choice of different master DOF 

where they have been chosen along the span of the beam, namely, nodes 1, 4, 9, 13... 49. 

Table 6 shows a comparison between the reduced order model natural frequencies 

using the three different methods. It should be noted that the selection of the master DOF 

has resulted in the loss of some modes. The numbers in parenthesis gives the equivalent 

mode of the complete structure. As shown, the exact dynamic condensation will give 

always very close results, however, this method is an iterative method that needs to 

converge toward the exact solution at each frequency of interest. Hence it makes the 

process computationally demanding. Moreover it is affected by the choice of the master 

DOFs. The static condensation method shows good results at the first frequency which is 

closer to 0 or the static condition. The use of orthogonal vectors in the Rayleigh-Ritz 

method gives good results without the need to choose either the master or slave DOFs. 

This method will also guarantee the sequence of modes, in other words the resulting 

reduced modes will always be in an ascending sequence due to the nature of this method 

that applies the Rayleigh-Ritz analysis. Moreover, the error in the higher modes can 

easily be reduced by using a larger number of vectors if desired. 
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Table 6: Comparison between the reduced eigenvalues of different reduction 
methods. 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Dynamic condt 

Values (Hz.) 

41.7758 
261.8049 
6599.733 
32278.326 
66693.639 
113667.0506 
165892.2678 
236813.1874 
322578.9028 
444651.1542 

jnsation. 

Error 
(%) 
(1)0 
(2) 0 
(8)0 
(17)0 
(24) 0 
(30) 0 
(35)0 
(40) 0 
(45) 0 
(50)0 

Static condensation. 

Value (Hz.) 

41.8224 
315.3932 
2896.8566 
12255.104 
30907.010 
58863.057 
107700.19 
171984.56 
271107.71 
442445.70 

Krror (%) 

(1) 0.11 
(2) 20.4688 

295.170 
753.0968 
1201.4498 
1559.1129 
2073.1268 
2505.9322 
3097.0848 
4075.0144 

Static load vectors 
in Rayleigh-Ritz. 

Values 
(Hz.) 

41.7758 
261.804 
733.065 
1436.54 
2374.81 
3547.86 
4959.59 
6791.06 
11007.8 
77951.9 

Krror 
(%) 

0 
0 
0 
0 
0 
0 

0.0725 
2.8991 

29.8124 
635.571 

Table 7 shows the natural frequencies of the cantilever beam using a reduced model 

and with a better choice of master DOF. It is clearly shown that the natural frequencies, 

calculated from dynamic condensation, show a better result always with negligible error. 

However, the static condensation gives poor results. This is because this method searches 

for the static deflection state at which the beam has its maximum energy located at the 

master DOFs. 
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Table 7: Comparison between the reduced eigenvalues of different reduction 
methods. 

Dynamic condensation. Static condensation. 
Mode 

Static load vectors 
in Rayleigh-Ritz. 

Values (Hz.) Error 
(%) 

Value (Hz.) Error (%) Values 
(Hz.) 

Error 
(%) 

1 
2 
3 
4 

5 

6 
7 
8 
9 
10 

41.7758 

261.8049 

733.0655 

1436.5432 

2374.8139 

3547.8632 

4956.0014 

6599.733 

8479.8412 

55673.9094 

(1)0 

(2)0 

(3)0 

(4) 0 

(5)0 

(6) 0 

(7)0 

(8)0 

(9)0 

(22) 0 

2508.3685 

6359.0402 

7739.6378 

9349.6256 

13754.140 

16327.307 

20640.528 

22496.269 

24703.337 

31415.925 

(5) 5.6238 

(8) 3.6470 

(9) 8.7290 

(11)6.1753 

(12)4.9846 

(14)3.9215 

(14)4.7167 

(15)0.4837 

(17)2.6718 

41.7758 

261.804 

733.065 

1436.54 

2374.81 

3547.86 

4959.59 

6791.06 

11007.8 

77951.9 

0 
0 
0 
0 

0 

0 
0.0725 

2.8991 

29.8124 

635.571 

3.5.2. Simply supported beam 

The case of a simply supported beam is studied using both the dynamic condensation 

and the orthogonal vectors in the Rayleigh-Ritz method. The results, shown in Table 8, 

highlight the sensitivity of the dynamic condensation on the correct choice of the master 

degrees of freedom. In this case also the same number as well as the same choice of 

degrees of freedom as in the second case in the cantilever beam have been used. This 

choice gave good results in the case of cantilever beams, however, it was not capable to 

do so in the case of simply supported beams. 

Moreover, the error in the sixth natural frequency using the orthogonal vectors came 

to be higher than that of the fifth. This should not happen usually in the Rayleigh-Ritz 

method, however, this might have been due to some poorly scaled vector, which includes 

very large numbers compared to the others. A very good study about the effect of 

48 



assumed mode components on the results of Rayleigh-Ritz analysis was carried out by 

Bhat [52]. 

Table 8: Comparison of natural frequencies of SS beam. 

Mode 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Dynamic condensation. 

Values (Hz.) 

117.2666 
469.0674 
1876.3471 
9508.9999 

108571.4592 
293539.6389 
310537.3321 
326820.6804 
341733.1594 
354516.9925 

Equivalent 
mode 

1 
2 
4 
9 

29 
43 
44 
45 
46 
47 

Static load \ 
Rayleigh 

Values 
(Hz.) 

117.2666 
469.0674 
1055.4135 
1876.3471 
2931.9771 
4222.536 
6131.0667 
76I0.41)35 
13731.573 
184179.71 

'ectors in 
-Ritz. 

Error 
(%) 

0 
0 
0 
0 
0 
0 

6.657 
1.335 

44.4061 
1468.0 

3.5.3. Clamped-clamped beam 

Clamped-clamped beams are also studied using the modified Gram-Schmidt, 

orthogonal vectors generated as static deflection and the dynamic condensation. Fig. 20-

22 show the comparison between the exact mode shapes of the structure with the 

assumed vectors for the Rayleigh-Ritz analysis. Again both methods show good 

resemblance to the exact mode shapes, however, in terms of results, the second method 

has better accuracy. Also it should be noted that the modified Gram-Schmidt method 

would be somewhat difficult in the case of two or three dimensional problems since it 

requires the coordinates of the nodes. 
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Fig. 20. Comparison of the first exact mode with assumed vectors 
Exact mode, modified Gram-Schmidt, static deflection vectors. 
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Fig. 21. Comparison of the third exact mode with assumed vectors. 
Exact mode, modified Gram-Schmidt, static deflection vectors. 
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Table 9: Comparison between the reduced natural frequencies of different 
methods for CC beam. 

Mode 

1 
2 

3 
4 
5 
6 
7 
X 
9 
10 

Dynnmic condi 

Values (11/.) 

'"""205.8303 
732.775X 
1436.5609 

2374.X 141 
3547.X6X 
4956.0166 
6599.7745 
S479.940N 
55734.6248 
167160.9X2X 

jnsaiion. 

Trior 

Co) 
( D O 
(2)0 

(3) 0 
H ) 0 

(5) 0 
((••) 0 

(7)0 
(X) 0 

(21)0 
(34)0 

Modified ( iram-
Sehmidt. 

Value (11/.) 

277.1925 
744.574X 
1449.6511 
23X9.7234 
3565.5399 
49X2.0496 
6964.5501 
91X1.6729 

16933.2757 
22612.2036 

iTrurCn) 

4.2742 
1.6102 
0.9112 
0.627X 
0.49X 1 
0.5253 
5.5271 
X.2752 
59.7X2X 
74.5493 

Sialic loai 
in Raylei: 

Values 

265.8303 
732.775X 

1436.560 
2374.814 
547.X68 
4956.176 
6674.132 
XX27.7I7 
16682.32 
277324.5 

1 \ectors 
yji-Ritz. 

1 irror 

() 
0 
0 
0 
0 
0.0032 
1.1267 
4.1012 
57.4148 
2040.73 
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Table 9 shows the comparison between the eigenvalues computed using different 

reduction methods for the clamped-clamped beam. The exact dynamic condensation will 

not show a significant error, however, it causes a loss of some modes with a poor choice 

of master DOFs. The modified Gram-Schmidt method shows acceptable results, 

however, it is computationally inconvenient in case of complex geometry. Finally the 

orthogonal vectors generated by the static deflection algorithm shows good results with a 

simple procedure. It should also be noted that both the exact dynamic and the static 

condensations require a rearrangement of the FEM matrices. That also may be 

computationally inconvenient. Moreover, the iterative nature of the solution of dynamic 

condensation requires a starting frequency, and may create the problem of repeated 

frequencies. 

In this chapter, Gram Schmidt method was modified to deal with dependent degrees of 

freedom. Moreover, a new method of generation of the vectors is proposed and the 

formulation and the algorithm are presented. Static and dynamic condensation methods 

are presented and discussed. The latter two methods and the newly proposed ones are 

compared using FEM models for different beams. In the next chapter the method that 

employs the vectors generated as static deflections is applied to different case studies. 
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Chapter 4 

Applications of the model reduction using orthogonal 

vectors set in the Rayleigh-Ritz method. 

4.1. Introduction 

In chapter 3, the newly proposed method of model reduction by boundary 

characteristic orthogonal vectors was investigated and the results were compared with 

earlier studies. In this chapter the application of this method on different case studies will 

be carried out. First a model of a vehicle system with components having distributed 

mass and elasticity as well as attached discrete degrees of freedoms will be studied, and 

then a coiled heat exchanger meshed in ANSYS. 

In the first case the main interest is to find the mode shapes of the vehicle model and 

its harmonic response. The vehicle is modeled as a flexible beam with two spring damper 

mass systems attached to it. The vehicle itself is also elastically connected to the ground 

through which it receives some disturbances. It should be noted that the damping 

coefficients for the discrete dampers are taken into account, however, no structural 

damping is considered for the chassis beam. 

The second case is an investigation to obtain the natural frequencies of a coiled heat 

exchanger proposed by Kumar, et al. [56]. This model is meshed into three dimensional 

elements including 6 DOF at each node. The resulting matrices are reduced and the 

53 



eigenvalue results are compared with those of the complete FEM model of the system. 

The mass of the fluid contained in a beam element is simply added to the mass of the 

beam element itself, however, the flow effect of the fluid are not considered. 

4.2. Harmonic analysis of vehicle reduced order model 

In this section, a vehicle hybrid model consisting of a combination of discrete and 

continuous subsystems is analyzed. The discrete subsystems represent the human body 

and the engine as two masses elastically connected to the chassis. The continuous 

subsystem represents the chassis of the vehicle that is modeled as a beam. The FEM 

modeling of this structure is done using a MATLAB program. The constraints applied on 

the system represent the wheel contacts. Fig. 23 shows the model of the vehicle used for 

the study. The two attached masses are constrained to move vertically. 

Fig. 23. Vehicle body model with attached spring mass systems. 
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The finite element model of the system shown in the above figure was constructed 

using one dimensional bending beam elements and lumped masses elastically attached to 

the chassis for the discrete blocks. Hence the attached masses constitute two additional 

nodes. The model is made of a total of 125 nodes where only the last 4 correspond to the 

rear wheel, front wheel, engine and driver, respectively. The resultant FEM model yields 

atotalof246DOFs. 

Those DOF are precisely formed of 121 translational and rotational degrees of 

freedom along the beam, and 4 translational degrees of freedom for the four connected 

spring mass systems. The length of the elements is taken to be 0.1 m. Hence the engine is 

connected at the node number 61 and the driver is connected at node 111. Nodes 122 and 

123, corresponding to the wheels, are assumed to keep contact with the ground. This 

assumption is equivalent of replacing the nodes with two pins. The locations of the most 

important nodes are given in Fig. 24. 

Z4(t) 

w(x,t) 

Fig. 24. Node location of FEM model. 
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The parameters used in the study are given in Table 10. These Parameters correspond 

to a city bus and have been taken from [53-55], and those that are not found in [53-55] 

have been estimated. 

Table 10: Numerical parameters. 

Parameter 

L 
X\ 

*2 

*3 

X4 

Kir 

k,/ 
kd 

ke 

Csr 

<-'sf 

Cd 

Ce 

md 

me 

pA 
EI 

Value 

12 
3 
1 
9 
11 

280 
240 

10500 
140 
4 
7 

830 
800 
70 

3600 
1000 

1 

Unit 

in 

m 
in 

m 
m 

kN/m 
kN/m 
N/ra 
kN/m 

kN.s/m 
kN.s/m 
N.s/m 
N.s/m 

kg 
kg 

kg/m 
MNm2 

The reduced model is obtained using ten orthogonal vectors, resulting in (10x10) 

eigenvalue problem. The eigenvalues of the reduced model are calculated and compared 

with the exact ones in Table 11. The computed values show a good agreement with those 

for the complete system model. The eigenvalues for the reduced 10 DOF model agree 

with those of the complete model with an accuracy up to the 4th decimal place until the 6th 
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natural frequency and then slowly start increasing for the higher ones as expected. The 

last two values are far higher than those for the complete model. 

Table 11: Comparison of exact and reduced natural frequencies. 

Mode 

1 
2 
3 
4 
5 
6 
7 
S 
9 
10 

0.18 

0.16 

0.14 

0.12 

o 0.1 
NJ 
• D 
N 0.08 

0.06 

0.04 

0.02 

0 

- '- -

•? 
• 

; 

z 

i 

• 

* ** 
• a 

Natural Frequencies 

Reduced 
0.7075 

Exact 
0.7075 

0.8906 0.8906 
1.1888 1.1888 
1.9039 1.9039 
2.5674 2.5674 
6.9303 6.9303 
13 4438 13.4434 
lUmh 22.098 
46 6682 33.01 11 
127.3379 46.1088 

0.18 

0.16? 

0.14 

; 0.12! 
: i 
m 
m 

* 

m* 
m* 

« • 
• • 

• • 
mm 

• • 
• • 
• • 

o 0.1 
NJ 
T3 
N 0.08 

0.06 

0.04 
• • / 

« • \ g 

.»' : 0.02 [ / 

* 
* • » > • • • • • • 0 

Error 

(%) 

0 
0 
0 
0 
0 
0 

0.003 
0.0027 

41.3715 
176.1685 

' V J 
v^y 

, , : , 

-

1 

\ ~ — -
0 0.5 1 1.5 2 2.5 3 3.5 4 

Frequency (Hz.) 
0 0.5 1 1.5 2 2.5 3 3.5 4 

Frequency (Hz.). 

Fig. 25. Transmissibility plots of the exact and reduced models. 
model, reduced model. 

Exact 
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Fig. 25 and 26 show the transmissibility and phase plots, respectively, of the vehicle 

subjected to a harmonic excitation with an amplitude of 0.1 m at the front wheel. In the 

current study, the focus is on the ability of the proposed model reduction technique to 

predict the natural frequencies and the response behavior. Both figures show that the 

reduction has given very good results. It should be noted that the plots are separated into 

two windows because one overlaps the other when plotted together in the same window. 

Moreover the "clock" command in MATLAB was used to measure the computational 

time. It is found that finding the transmissibility plots using the exact model requires 

118.1870 sec, while generating the orthogonal vectors and reducing the system in order 

to finally obtain the transmissibility plots have only taken 0.5 sec, which proves the 

significant benefit of model reduction. 

E, 

D> 
C 
OJ 

<D 
0) 
ns -1 

-3 

4r 

r. 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 
Frequency (Hz.). Frequency (Hz.). 

Fig. 26. Phase plots of the exact and reduced models. Exact model, 
reduced model. 

58 



3.5 3.5 

2.5 

o 
N 
•5 
N 

1.5 

0.5 0.5 
"0 0.5 1 1.5 2 2.5 3 3.5 4 " 0 0.5 1 1.5 2 2,5.3 3.5 4 

Frequency (Hz.). Frequency (Hz.). 

Fig. 27. Transmissibility plots of exact and reduced models Exact 
model, reduced model. 
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Fig. 28. Transmissibility plots of exact and reduced models. 
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Fig. 27 and 28 show the transmissibility plots due to a harmonic excitation to the rear 

wheel and to both the wheels, respectively. Those plots also show the capability of the 

reduced order model to approximate the response to a harmonic excitation with a great 

saving in the computational effort. 

4.3. Model reduction of a fluid filled pipe 

The proposed model reduction technique is applied on a three dimensional structure of 

a coiled pipe heat exchanger filled with water. The model is used to simulate the 

vibration behavior of the coiled heat exchanger proposed in [56]. The original structure is 

made of 8 identical banks, one of which is shown in Fig. 29. 

Fig. 29. Sketch of one bank of the coiled heat exchanger. 
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4.3.1. Modeling using FEM 

The modeling of the structure is done in two parts. First the structure is plotted in 

MATLAB, and the coordinates are transferred to ANSYS where the model is created and 

meshed. The resulting matrices are taken from ANSYS to MATLAB in order to perform 

necessary matrix operations for the reduction. 

Initially, the coiled heat exchanger is represented by a total of four 3D curves. Those 

curves are made from parametric equations containing two terms as trigonometric 

functions while the last is linear along a direction. The general form of those equations 

are shown below, 

x = axt 

y = a2sm(t) (4.1) 

z = at cos(/) 

The four exact functions used in this case are shown in Table 12. As seen, the 

equations are linear either along x or y which coincides with the axis of the circular coil. 

And the minus sign that multiplies t in some equations is appearing because the structure 

is going backward at the definite bend. 

Fig. 30 shows the representation of the bank shown in Fig. 29, using the parametric 

equations presented in Table 12. 
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Table 12: Parametric equations of the coil. 

Bend Number Equation 

1. Linear with x 

and rotating 

around it. 

x = 0.0032t 

Y = 0.102sin(t) 

z = 0.102cos(t) 

2. Linear with y 
and rotating 

around i l . 

x 0.l02sin(t) 1-0.1N24 

y:-().K)2eos(l) 

/ = 0.00321+ 0.1070 

3. Linear with x 
and rotating 
around it. 

x = -0.0032t +0.0855 

y = -0.102cos(t) 

z = -0.102 sin (t) + 0.2844 

4. Linear with y 
and rotating 

around it. 

[x =0.102 s in( t ) -0.1()20 

> = -0 . l02cos( t ) 

/ =-().0032t-i-0.1X75 
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Fig. 30. The simulation of the coil bank by a 3D curve. 

Fig. 31 shows the simulation of the coil bank using the set of parametric equations 

presented in Table 12. The smoothness of this curve is ensured by taking a small 

increment oft. While in case of Fig. 31, the increment is taken as y. and the resulting 

components of each point are stored since those will form the geometry input to AN SYS. 

As shown in Fig. 31, as well, the chosen increment does not result in the distortion of the 

geometry. The operated mesh in MATLAB has resulted, in a total of 128 elements and 

129 nodes, resulting in 774 DOFs with 6 DOFs at each node. The geometry and 

properties of the coil are shown in Table 13. 

63 



0.15-

0.1 

0.05 

^ ° 
N -0 05 

-0.1 

-0.15 

-0-2. 

8.o 

6.08 „ „ < : . n 1 f i -o.i 

fro* 
6 o e . o - - - ° 0 5 ^ ^ > - . . - V ' ~ 0.05^-1 ° 1 5 

: o , -0-05 

09 -0.2 " 0 / l 5 

X(m). Y (m ) -

Fig. 31. Exact vs. meshed models. 

Table 13: Geometry and parameters of the coil. 
Outer diameter 
Wall thickness 
Radius of curvature of the coil 
Pitch of the coil 
Modulus of elasticity of pipe Material 
Shear modulus of pipe material 
Mass per unit length of the pipe 
Mass per unit length of the fluid 

4.3.2. Reduction of the model 

The model is assumed to be supported at nodes, 65, 73, 81, 89 and 97, where the coil 

is constrained in all directions. The positions of those nodes are shown in Fig. 32. 

12.7 
1.2 
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20 
iy."? 
7S 
0.34SI 
0.0833 

mm 
mm 
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mm 
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kgin 
Kg/m 
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Fig. 32. Support locations. 

Two cases of reduction are performed; one using 10 orthogonal vectors and the second 

using 20 of them. The resulting natural frequencies are compared with the complete 

model solution. 

Table 14: Eigenvalue of reduced (10 natural frequencies) and complete model. 
odes 

I 
-j 

4 
5 
(> 
7 
8 
o 
K) 

Reduced Model 

(Hz.) 
o.oi is 
3.2602 

3.4524 

6.2023 

6.0675 

0.0033 

12.0002 

16.8803 
25.3SOS 

47.8071 

l;LM(ll/.) 

0.01 18 

3.2692 

3.4524 

6.2023 

6.0(>75 

0.0012 

I0.0I5X 
1 1.0080 

16.4053 

10.2100 

l-:rmr(% 

0 
0 
0 
0 
0 

0.021 

20.80 

40.76 

53.87 

148.86 

0.5 

0.4 

0.3 

^ 0.2 

N 0.1 

0 

-0.1 

-0.2 
-0.4 -0.3 -0.2 
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Table 15: Eigenvalue of reduced (20 natural frequencies) and complete model. 
[odes 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
IS 
19 
20 

Reduced Model 
(Hz.) 
0.9118 
3.2692 
3.4524 
6.2023 
6.9675 
9.9012 
10.0158 
11.9989 
16.4953 
19.2100 
20.6708 
22.8776 
24.9467 
27.9811 
30.3406 
37.4754 
43.9935 
56.2358 
82.1543 
437.6680 

F E M (Hz.) 

0.9118 
3.2692 
3.4524 
6.2023 
6.9675 
9.9012 
10.0158 
11.9989 
16.4953 
19.2100 
20.6704 
22.5287 
22.9538 
25.2499 
28.8345 
30.0403 
31.6851 
32.7026 
35.3791 
37.6601 

Error (%) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.0018 
1.5487 
8.6819 
10.8164 
5.2234 
24.7504 
38.8461 
71.961 
132.2116 
1062.1524 

Table 14 and Table 15 show the reduced natural frequencies and their comparison 

with those from the complete FEM model. It is shown in both cases that this method is 

capable of approximating around half of the reduced order model results with negligible 

error. 
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Fig. 33. Convergence history of 10th, 11th, 12th, and 13th modes. 

Fig. 33 shows the convergence history of 10th to 13th modes versus the number of 

employed vectors. As seen before in Table 14 and Table 15, the higher order of the 

reduced model eigenvalues have poor values with large errors. This convergence history 

t i l 

plot shows that the 13 natural frequency converges toward that of the complete model 

when a total of 22 vectors are employed. Hence the number of employed vectors should 

be larger than the number of desired modes to secure a better convergence at the higher 

modes of the reduced model. 
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Fig. 34. Convergence history of 1st, 2nd, 3rd and 4th modes. 

Fig. 34 shows the convergence history of the 1st to 4th modes. When only one vector is 

used, one bar can be noticed which represents the error at the 1st natural frequency. On 

the other hand when two vectors are used, it should be noted that two bars corresponding 

to the error at the 1st and the 2nd natural frequencies must be represented. However only 

the latter is shown since the former have already converged to zero. When the number of 

used vectors reaches 4 the number of bars will remain 4 afterward, since the convergence 

of only the firt four natural frequencies is studied. Note that when 7 vectors are used in 

the study the error is almost zero in all the 4 modes. 
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In this chapter the proposed model reduction method is applied on two models of a 

vehicle and a coiled pipe, respectively. The orthogonal vectors are the physical static 

deflection due to a load distibution. However, a set of vectors that are calculated in a 

similar manner can be used to solve any system of equations. In these cases, the vectors 

will be a generalized coordinate vector. In the coming chapter, the Rayleigh-Ritz method 

with orthogonal polynomial functions in two dimensions are used to solve problem of an 

elliptical plate. The resulting generalized stiffness and mass matrices are reduced using 

the newly proposed algorithm. 
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Chapter 5 

Using independent vectors for the reduction of 

generalized eigenvalue problem 

The boundary characteristic orthogonal vectors were calculated in previous chapters as 

the static defflections due to loads proportional to the preceding assumed deflection 

shapes. In this chapter the coeficients of the assumed functions are considered as 

generalized coordinates and the reduction is done on the number of the new generalized 

coordinates used in the reduced model. The case of an elliptical plate is studied using two 

dimensional orthogonal polynomials in the Rayleigh-Ritz method. 

A systematic method of generating the admissible functions of arbitrary clamped 

plates with different shapes is presented. The method of orthogonalization is similar to 

that proposed by Staib [29]. 

5.1. The Rayleigh-Ritz method for plate vibrations 

As mentioned earlier the Rayleigh-Ritz method requires the expressions of the energy. 

For the plate case the kinetic and strain energy expressions are shown in Eq. (5.1) and 

(5.2), respectively. Note that, w(x, y)is replaced byw and a, b and h are the dimensions 

of the plate in x, y and z directions, respectively, and D - &" / , , \ is the flexural 

F / l 2 ( l - v 2 ) 

rigidity. The boundaries of the integrals are defined by the geometry of the plate. 
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^max =-ph®2\\w2dxdy (5.1) 

U„ Mi d2w 
+ <r 

1 fwY 

v W J 
+ 

2v 
fd2w^ 

ydx J 
'dV 

By 
+ 2 ( l - v ) 

( d2w V 

\uy J 
ydxdy j 

(5.2) 

dxdy 

The deflection is expressed as a sum of assumed mode shapes cpm (x, y) as shown below: 

w (-^j ;)=E^(x^)^ (5.3) 

Introducing the non dimensional parameters, a = —, £ = — , tj = — in Eq. (5.3): 
b a b 

w(£?)=£>«(£?)** (5.4) 

Substituting Eq.(5.4) in Eqs. (5.1) and (5.2) results in the following two equations, 

respectively: 

T^^phabm'Ww'dtdT] (5.5) 

U = i / ) 4 f (I 
2 a" 

'aV2 

^ 
+ tf 

^82w^ 

\drr , + 

Iva1 

K^2 j 
+ 2 ( l - v / ) a 2 

Kd£drj j 

(5.6) 

d<^drj 
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Using the stationarity condition of the Rayleigh's quotient results in the following 

eigenvalue problem: 

d'U dT 
™x__ ^ 2 _=»><_ = () forn = ^2,...,N. (5.7) 

where, N is the number of assumed mode shapes and X1 = 
7 2 4 

phco a 

D 

is the non-

dimensional eigenvalue. Eq. (5.7) can be rewritten as a matrix eigenvalue problem as 

follows: 

EI][X-*2<k=° (5.8) 

where, 

*.=h d^di] + a4 j a>, d£,drj 

+ 2va2\\ 

V v ^ 2 y v 5>7 2
y 
+ 

d <Pj 
2 d? 

2 „ \ 5 > , 

d?;2 

+ 2(l-vK fjf-^ 

d^drj 

d^di], 

Mn^\\(Pi(Pjd^drl 

Eq. (5.8) can also be written in (NxN)generalized matrix form, f in -/I2 |M 1 = 0. This 

form is that which will be reduced using the orthogonal vectors matrix transformation. 
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5.2. Assumed deflection shapes 

The conditions at a clamped support are that the deflection and slope are zero. The 

first deflection shape is assumed as the simplest function that satisfies the geometrical 

boundary conditions. These conditions at an arbitrary support F(^,rj) are shown below: 

<P\ F{£,V) 
d<P\ 

d% 
= 0, 8<P\ 

n?*) drj 
= 0 

nz>*) (5.9) 

F i ( x . h ) 

F 2 (x ,h) 

x 
Fig. 35. General plot of a rectangular plate with line supports. 

A function that can satisfy the conditions of Eq. (5.9) can be found as: 

<p1(i7,t) = F2(t,Tj) (5.10) 
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The fact that this shape function satisfies the listed condition can easily be proved by 

differentiating in both directions. In case of multiple supports as in Fig. 35 the first shape 

function can be taken in the following form: 

?,(*,£) = F,2 ( £ ? ) / ? ( £ 7 ) (5.11) 

The orthogonality condition used for the orthogonalization procedure can be defined 

in view of the nature of the problem. For example the case of nonhomogonous structures 

can be studied using a weight function in orthogonalization. In the present case the plate 

is uniform and the orthogonality condition is taken as follows: 

\\<pi<pjdZdr, = 0 (5.12) 

In order generate the rest of the functions, a linear independent basis O of a vector 

space V is created by multiplying the first functions by<^rr/s, following the sequence 

shown in Fig. 36. 
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Fig. 36. Scheme of generating the linear independent basis. 

The inner product in the space V is defined as follows: 

(<PPPJ ) = \ j<Pi<Pj d^dt] (5.13) 

The boundaries of the integration are defined by the plate in study. The inner product 

matrix representation of the basis <1> is obtained as follows: 

2̂  = J J W . ^ 7 7 (5-14) 

where (p. and ^.are, respectively, the z'Aand j"' element of^>, and 2 .̂ are the elements of 

[/?]. It can be easily seen that [#]is symmetric. Eq. (5.3) can be rewritten in the 

following form: 

^ = ! > , < * = K k 4 (5-15) 
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where qx „, is the Ocoordinate representation of Wx. Thus, W2 can be written as follows: 

^=KV*} (5.16) 

Using the two previous equations, the inner product of two arbitrary shape functions 

can be obtained as follows: 

b b . r<l • Y " A 

. i=l J \ i=l J 

(5.17) 

Rearranging Eq. (5.17) yields: 

fbb \ 

w = S I i Um i = I I 4 ( ^ ) i (5-18) 
'=1 >1 V a a J 1=1 7=1 

It is easy to see that Eq. (5.18) can be written as follows: 

{Wx\W2) = [q^[B}[q2^~\ (5.19) 

Knowing that any space may have many ordered basis, the goal is to find another 

orthogonal ordered basis /3. Let qx p and q2 fi be the representative /? of the any deflection 

function. Defining the relation between the coordinate representation of <E>and/? to be as 

follows: 

4a> = [^f qp (5.20) 

Thus, 
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v=M\/? (5-21) 

42,* = [A]'hf (5-22) 

Using Eq. (5.21) and Eq. (5.22), Eq. (5.19) can be written as follows: 

{W]W2) = ([Af qUi J [B]([A]T q2tfi) = q[p {[A][B][A^)q\_p = q{p ([D])qT
2J (5.23) 

From the previous equation we can say that if the matrix [D] is diagonal, then the basis 

/?is an orthogonal basis. From linear algebra, the change of basis matrix is equal to the 

inverse of the transpose of the change of coordinate matrix. Thus, knowing that the 

transformation matrix in this case is [Af as shown in equation (5.20), the two ordered 

basis are related by the following equation: 

(D: (14)' P (5.24) 

hence, 

P = [A]Q> (5.25) 

A process, similar to that of finding the inverse of a matrix, is used in order to find [.4] 

matrix. The Identity matrix is augmented to B matrix. The matrix B is transformed to an 

upper triangular matrix by a set of row operations, while the added identity matrix will be 
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converted to a lower triangular matrix. The proof that matrix [A] satisfies the desired 

conditions is found in appendix-A. 

5.3. Numerical result for elliptical plate 

The case of elliptical plate is studied and the resulting stiffness and mass matrices are 

reduced using the newly proposed method in chapter 4. In this case a total of 25 functions 

were used and the generalized stiffness and mass matrices are of the size (27x27). These 

matrices are reduced to a (10x10) different generalized matrices. 

Fig. 37 shows the assumed mode shapes obtained from the process explained in 

previous section. As shown, those plots can be arranged in four different groups: 

• Symmetric about x-axis and y-axis (SS): 1, 4, 6, 11, 13, 15... 

• Symmetric about x-axis and anti-symmetric about y-axis (SA): 3, 8, 10... 

• Anti-symmetric about x-axis and symmetric about y-axis (AS): 2, 7, 9, 16... 

• Anti-symmetric about x-axis and y-axis (AA): 5, 12, 14... 
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0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 

Fig. 37. Assumed mode shapes for elliptical and circular plates. 

The plots shown in Fig. 37 are used for all elliptical plates since in the current 

formulation due to the introduction of the non-dimensional parameters all the ellipses are 

mapped on a circle. The ellipse is defined by the ratio of the major to minor axis, a = —. 
b 

Fig. 38 shows the mode shapes of circular plates, fora = l. It is also seen that the 

resulting modes can be distinguished by the same criteria used to group the assumed 

ones. However, in the present case the (SA) and (AS) modes are merged to form one 

group. This is justified by the rotation of the axis of symmetry in those modes. Thus, if 

the plots are rotated to align the axis it can be seen that they are the same. 
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0 0.5 1 0 0.5 1 

of circular plates a = 1. 
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As shown in Fig. 39 the elliptical plates are grouped into the four categories as well, 

however, the rotation of the axis does not occur in this case since the plots are for 

elliptical plates and, unlike the circular case, the axis length varies with the angle. 

Table 16: Comparison of the eigenvalues of reduced and full models of circular 
plates a = 1. 

Modes 

1 
2 

4 
5 
6 
7 
8 
9 
10 

Eigenvalues 
Reduced 
40.8633 
85.0419 
139.5849 
140.6128 
159.4812 
204.8935 
272,418 

319.0803 
444.9232 
649.3014 

Complete 
40.8633 
85.0419 
139.5107 
139.6302 
159.2964 
204.8364 
204.8364 
245.6296 
280.2286 
282.6517 

Error (%) 

0 
0 

0.0532 
0.7037 
0.116 

0.0279 
32.993 
29.903 
58.7715 
129.7179 

Table 17: Comparison of the eigenvalues of reduced and full model of elliptical 
plates a = 2. 

Modes 

1 
2 
3 
4 
5 
6 
7 
S 
9 
10 

Eigcnvii 
Reduced 
109.5105 
I57.9W>I 
2"> 5 ">799 
27<U526 
312.1816 
353.0022 
460.3869 
574.055 

850.1429 
1544.98 

lues 
Complete 
109.5105 
I57.99(>1 
225.2799 
279.4498 

312.08 
352.'194l 
446.1932 
497.592 
529.8696 
556.711 

L-rnir(%) 

0 
0 

o 
0.001 

0.0326 
0.201 

3.1811 
15.3660 
60.4438 
177.5192 

Table 16 and Table 17 show the comparison between the eigenvlaue, 

the reduced model and the complete model of circular and elliptical plates, respectively. 
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As shown, the reduction method succeded to aproximate half the number of the natural 

frequencies of the reduced model with negligible error. Table 16 shows that this method 

has not shown the repeated eigenvalues of the (SA) and (AS) modes, while it has shown 

that of (AA) and (SS), are also repeated. Both are obtained by the calculation of the 

complete model. This is because the (SA) and (AS) modes are similar and thus the 

transformation deals with them as if they are one entity. 

In conclusion, this chapter includes the reduction of generalized matrices where the 

DOFs do not form a physical coordinate system. A general method in terms of the 

generalized coordinates is used to obtain the natural frequencies of plates with arbitrary 

clamped supports. The reduction method showed its ability to approximate half of the 

reduced order model natural frequencies. Moreover this method is capable of eliminating 

duplicate modes while keeping repeated eigenvalues of different modes. 
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Chapter 6 

Conclusions and recommendations for future work 

6.1. Thesis summary 

This thesis proposes a novel method for the model reduction of large discrete and 

continuous systems. To summarize the work covered in this study, the content of each 

chapter is briefly described. 

Chapter 1 contains a brief historical review about FEM and Rayleigh-Ritz method. 

The basic formulation of the latter is explained. The use of BCOP as admissible functions 

was highlighted and a literature review of this technique for the solution of continuous 

structures is presented. Moreover Chapter 1 contains review of the model reduction 

methods presented in literature. The goal of extending the BCOP technique to reduce 

discrete models is mentioned. 

In Chapter 2 the orthogonal vectors used for the model reduction are generated using 

Gram-Schmidt orthogonalization. This technique is applied on a discrete model of a 

building. This method has shown that it can approximate the eigenvalues of the complete 

model. However, this technique is cumbersome due the requirement of supplying the 

physical coordinates in order to generate the vectors. 

Chapter 3 presents the formulation of static and exact dynamic condensation. The 

modified Gram-Schmidt and the static deflection methods to generate the boundary 
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characteristic orthogonal vectors are also proposed. The comparison between all the listed 

methods is done for the case of beams. It is shown that dynamic condensation will have 

zero error at all frequencies, however, the choice of slave and master DOFs may lead to 

the loss of some lower modes. Static condensation is poor for higher frequencies. The 

orthogonal vectors as static deflections has given good results with negligible error for 

more than half of the modes of the reduced order model. This method also obtains all the 

modes in proper sequence. Modified Gram-Schmidt method has shown the ability of 

overcoming the problem of dependent eigenvalues, however, it is cumbersome for use in 

complex structures. 

Chapter 4 covers two case studies on which the newly proposed model reduction is 

applied. The first model consists of a hybrid continuous and discrete model of a city bus. 

The second model is a fluid filled coiled pipe heat exchanger. Both models are reduced 

and show good results. The frequency response analysis of the first model was done 

using different harmonic excitations to the exact and reduced models. The comparison 

shows negligible error but a large reduction in time. The second 3D model of the coiled 

pipe is reduced and the new method is successful in estimating the half of the reduced 

order model natural frequencies with negligible error. 

Chapter 5 consists of the reduction of a generalized eigenvalue problem. The case of 

an elliptical plate is studied using the Rayleigh-Ritz method and two dimensional 

boundary characteristic orthogonal polynomials. The resulting generalized coordinate 

eigenvalue problem is reduced using a set of independent vectors. 
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6.2. Contributions 

In this work a new reduction method, based on the use of boundary characteristic 

orthogonal polynomials in the Rayleigh-Ritz method on, is proposed. This method is 

mainly an extension of the BCOP method to discrete systems where it can be used as a 

reduction method. The major contributions are: 

1. The generation of the boundary characteristic orthogonal vectors prevents any 

loss of modes. 

2. The model reduction does not involve iterative steps without compromising 

the accuracy of the results. 

3. The reduction procedure does not need neither the selection of master and 

slave degrees of freedom nor rearrangement of the matrices, and hence, the 

reduction procedure can be carried out even by beginners. 

4. Time needed for harmonic analysis is reduced by orders of magnitude. 

6.3. Major conclusions 

Throughout this work a reduction method for multi degree of freedom systems is 

proposed. This method is based on the transformation of coordinates using a set of 

boundary characteristic orthogonal vectors as the transformation matrix. The advantages 

of this method can be summarized as: 

1. Reduce the computation time required for obtaining the harmonic analysis. 
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The reduced order model is used to approximate the response due to harmonic 

excitation which has shown a good reduction in computation time. The economization in 

time is caused by the reduction of the size of the dynamic matrix that is required to obtain 

the response at each frequency. This enables us to reduce the step size of the frequency to 

get smother curves and better accuracy. 

2. Elimination of recurrence procedure to compute the eigenvalues. 

Unlike the exact dynamic condensation which is a recurrence method in which the 

frequency of interest is chosen and the calculated ones converge to the closest natural 

frequency, this method is not a recurrence method. The large error at the higher modes of 

the reduced order model, may be easily solved by increasing the number of employed 

vectors. Note that all the examples in this thesis have shown that secure results are 

obtained by employing the number of vectors to be double that of the desired number of 

frequencies. 

3. No loss of lower modes and sequence is maintained. 

Moreover, the sequence in the proposed method is exact. Resulting modes will appear 

in ascending sequence. This is an advantage because in other methods the sequence of 

modes may be destroyed because of an improper choice of master DOFS. Further, the 

duplicated modes are not shown in the reduced order model, however, the repeated 

modes are present. This is shown in Chapter 5 for the elliptical plates. 

4. No need for the choice of master and slave degrees of freedom. 
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This method does not require the choice of master and slave DOFs, since the 

generalized coordinate are only the coefficients of the sum of the assumed deflection 

functions. In many different methods, complex analysis should be carried out in order to 

figure out the correct choice of master DOFs. Moreover, since no DOF are classified the 

FEM matrices do not need to be rearranged which also reduce the computational steps. 

5. Does not require the coordinates in order to generate the transformation matrix. 

One more advantage highlighted in this work is that the generation of the boundary 

characteristic orthogonal vectors as static deflections require neither modal nor physical 

coordinates as required in Gram-Schmidt orthogonalization. 

6.4. Future work 

This work presents a good method that combines simplicity and accuracy. More 

structures could be analyzed using this method in order to establish the suitability of the 

method for different types of structures. This method should be extended to 

substructuring for the case of repeated structure. Moreover, it has the potential to be used 

as a reduction method for different parts that would be assembled as reduced models. 

Also different method of accounting for the fluid mass can be used in order to study the 

effect of energy transferred from the fluid to the structure. 
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Appendix-A 

Consider the system of equation shown in the following equation: 

where, [/] is the identity matrix. Performing a set of row operation on both sides of the 

equation (A.l) results in the following where A is the desired matrix: 

[T]{X}=[A]{y} (A.2) 

Multiplying equation (A.2) by[r]_l to obtain the following: 

WW = M"'M{>} (A.3) 

In the same time from equations (A.l) it is easily seen that: 

[/]{*} = [*]-' {>} (A.4) 

Combining equations (A.3) and (A.4) results in the following equation: 

[TTVhM1 (A-5) 

Multiplying the previous equation by [B] and rearranging it to obtain: 

[TT1[A][B] = [I] (A.6) 

Then we can write that: 
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The next task is to use equation (A.7) in order to prove that the matrix [A] holds the 

desired properties and that [D] = [A][B][A]T is diagonal. To achieve that, we will prove that 

D is both symmetric and an upper triangular matrix in the same time. 

First, the goal is to show that [^][£][^f is symmetric, knowing that [B]is also 

symmetric. 

[D] = [Df (A.8) 

To prove equation (A.8) we will find what is [Df equal to 

[Df =([A)[B)[A]T)T (A.9) 

or, 

[*>f =U][*f 14 (A10> 

Since [s]is symmetric, equation (A. 10) can be written as follows: 

[Of =U][B][Af =[D] (A.11) 

At this level it is proven that [D] is symmetric. The second step is to prove that [D] is 

an upper triangular matrix. 

Substituting equation (A.7) in equation (A.l 1) yields: 
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W=Wl*M =FM (AA 2) 

Since, [r]and [^ifare upper triangular matrices, [z>]is also upper triangular. Being 

proved that [D] is also symmetric then it is clear that this matrix is diagonal. 
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