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ABSTRACT 

Antenna Selection and Performance Analysis of MIMO Spatial 

Multiplexing Systems 

Hassan A. Abou Saleh 

Multiple-input multiple-output spatial multiplexing (MIMO-SM) systems offer an es­

sential benefit referred to as spatial multiplexing gain. Two important signal reception 

techniques for MIMO-SM systems are the zero-forcing (ZF) and ordered successive inter­

ference cancellation (OSIC) as, for example, in the case of the decision-feedback detector 

(DFD). This thesis studies the communication and signal processing aspects of MIMO-SM. 

We first investigate the bit error rate (BER) performance of the ZF receiver over transmit 

correlated Ricean flat-fading channels. In particular, for a MIMO channel with M transmit 

and N receive antennas, we derive an approximation for the average BER of each sub-

stream. A closed-form expression for the optimal transmit correlation coefficient, which 

achieves the maximum capacity (i.e., uncorrected case) of two-input two-output spatial 

multiplexing (TITO-SM) systems, is presented. 

We further propose an antenna selection (AS) approach for the DFD over independent 

Rayleigh flat-fading channels. The selected transmit antennas are those that maximize both 

the post-processing signal-to-noise ratio (SNR) at the receiver end, and the system capacity. 

An upper bound on the outage probability for the AS approach is derived. It is shown that 

the AS approach achieves a performance comparable to optimal capacity-based selection 

based on exhaustive search, but at a lower complexity. 
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Finally, we investigate a cross-layer transmit AS approach for the DFD over spatially 

correlated Ricean flat-fading channels. The selected transmit antennas are those that maxi­

mize the link layer throughput of correlated MIMO channels. A closed-form expression for 

the system throughput with perfect channel estimation is first derived. We further analyze 

the system performance with pilot-aided channel estimation. In that, we derive a closed-

form expression for the post-detection signal-to-noise-plus-interference ratio (SNIR) of 

each transmitted substream, conditioned on the estimated channels. The derived SNIR is 

then used to evaluate the overall system throughput. It is observed that the the cross-layer 

AS approach always assigns the transmission to the antenna combination which sees better 

channel conditions, resulting in a substantial improvement over the optimal capacity-based 

AS approach. Considering a training-based channel estimation technique, we compare the 

performance of the proposed cross-layer AS with that of optimal capacity-based AS when 

employed with a training-based channel estimation. Our results show that the latter is more 

robust to imperfect channel estimation. However, in all cases, the cross-layer AS delivers 

higher throughput gains than the capacity-based AS. 
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Chapter 1 

Introduction 

1.1 MIMO Communications 

Communications over multiple-input multiple-output (MIMO) wireless channels have been 

a subject of intense research over the last decade, due to the rapid development of high­

speed broadband wireless communication technologies. The use of multiple-antennas for 

both transmission and reception can drastically improve the wireless link performance 

through capacity and diversity gains, resulting in much more reliable wireless transmis­

sion relative to conventional single-input single-output (SISO) systems [1—3]. Specifically, 

Telatar [3] and Foschini [2] showed that, when the receiver but not the transmitter has 

perfect knowledge of the channel state information (CSI), the capacity of an independent 

Rayleigh distributed flat-fading channel will increase almost linearly with the minimum of 

the number of transmit and receive antennas. With this motivation an emerging MIMO 

signaling technique, referred to as spatial multiplexing, has been introduced in order to 

achieve a significant portion of the aforementioned promised theoretical capacity with rea­

sonable implementation complexity [4]. Spatial multiplexing gain arises from transmitting 

independent data signals (parallel spatial data pipes) from the individual antennas. It is 
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worth highlighting that spatial multiplexing techniques achieve the linear increase in ca­

pacity in rich-scattering channels (uncorrected fading). Keep in mind that MIMO systems 

also provide the traditional diversity gain (e.g., frequency/time/spatial) [5]. Thus MIMO 

signaling offers two different benefits: /) high spectral efficiency (linear increase in capac­

ity), through spatial multiplexing, for no additional power or bandwidth expenditure [6]. 

This is realized by splitting the input data streams into multiple substreams for transmission 

over the different transmit antennas; ii) diversity gain, to combat deep channel fading, by 

transmitting multiple replicas of the same information signal over multiple independently 

fading paths. On the receiver side, this diversity is similar to that provided by the so-called 

RAKE receiver [5]. Also, diversity can be obtained with multiple transmit antennas using 

suitably designed transmit signals. The corresponding technique is referred to as space-

time coding [7-9]. Note that it is possible to exploit these two benefits simultaneously, but 

there is a fundamental tradeoff between how much of each any scheme can get [10]. 

Given perfect channel knowledge at the receiver, various signal reception techniques for 

MIMO spatial multiplexing (MIMO-SM) systems, can be employed: i) optimal maximum-

likelihood (ML) criterion. Note that, although the ML receiver is optimal, its complexity 

grows exponentially with the number of transmit antennas. Thereby, this fact makes the 

ML receiver impractical especially for systems with a large number of transmit antennas; 

//) linear suboptimal criteria such as zero-forcing (ZF) or minimum mean squared-error 

(MMSE). It is well-known that MIMO-SM systems employing linear receivers are prac­

tically important due to their minimal complexity requirements. However, these detec­

tors result in a loss in the diversity gain relative to the optimal ML detector [11]. For 

instance, in independent and identically distributed (i.i.d.) MIMO Rayleigh fading chan­

nels, with M transmit and N receive antennas, the use of ZF receiver achieves a diver­

sity order of N — M + 1 [12], while the more complex ML detector achieves a diversity 
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order of TV [13]; Hi) nonlinear suboptimal criteria such as successive interference can­

cellation (SIC) or ordered SIC (OSIC), which have superior performance than both ZF 

and MMSE. One such receiver that employs SIC/OSIC is the decision-feedback detector 

(DFD) [14], which is also known in the MIMO literature as vertical Bell labs layered space-

time (VBLAST) [15-17]. Specifically, the DFD uses SIC/OSIC to eliminate interference 

from different streams, which improves detection of transmitted symbols. Furthermore, the 

DFD is relatively simple to implement and can achieve a significant portion of the promised 

MIMO capacity. 

1.2 Motivation 

Along with aforementioned gains provided by MIMO systems, comes a price in hardware 

complexity [ 18,19], e.g., multiple analog radio-frequency (RF) chains. The RF chains nor­

mally comprise expensive hardware blocks such as low-noise amplifiers (LNAs), analog-

to-digital converters (ADCs), and mixers at the transmitter and receiver end. This clearly 

presents a hardware challenge in terms of complexity and cost. To this end, antenna se­

lection (AS) has been introduced as a means to mitigate this complexity problem, while 

exploiting the diversity provided by the transmit and receive antennas. The idea behind AS 

is to use only the optimal subset of antennas out of the available ones, thereby reducing 

the number of required RF chains [18,19]. Also, correlation at the transmit and/or receive 

antennas can potentially lead to a reduction in the MIMO system capacity [20]. In [20], the 

authors show that an increase in correlation coefficients results in capacity decrease, and 

when the correlation coefficients equal to unity, no advantage is provided by the MIMO 

channel. Therefore, investigation of such issues is important. Our contribution in this the­

sis is two-fold. First, we investigate the bit error rate (BER) performance of the ZF receiver 

over spatially correlated Ricean flat-fading channels. Second, we propose AS approaches 

for DFD in fading MIMO channels. The reason to focus on these problems is motivated as 
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follows. 

1.2.1 BER Performance of ZF Receivers 

In [12], the authors study the performance of the ZF receiver in Rayleigh fading channels 

with transmit correlation. Based on Wishart matrix analysis, the authors show that the ZF 

detector decomposes the MIMO system into M parallel streams with N — M+l diversity 

order. In [21], the performance of the ZF receiver is investigated over independent Ricean 

fading channels where an approximation for the average BER is given. Therefore, inves­

tigating the BER performance of the ZF receiver in spatially correlated Ricean flat-fading 

channels is an important issue. Moreover, the study of such receiver BER performance 

can be motivated in a number of ways as follows: i) the ZF receiver has low implementa­

tion complexity (simple receiver) which makes it practically important; ii) the independent 

Ricean fading model assumed in [21] is not ideal in practice. The spatial correlated Ricean 

flat-fading MIMO model is known to more accurately model real-world wireless environ­

ments [22]; Hi) the ZF receiver performance approaches that of the MMSE at high signal-

to-noise ratio (SNR) regime. Thus the derived BER expression can be used to model that 

of MMSE at high-SNR; /v) the study of ZF nulling technique provides a deep insight and 

understanding of the DFD, since the latter applies interference nulling and cancellation. 

1.2.2 Transmit Antenna Selection for DFD 

Recently, transmit and receive AS approaches, which maximize the capacity of uncor­

rected Rayleigh flat-fading channels have been proposed in [23, 24]. The transmit AS 

approach presented in [23] makes use of an exhaustive search to find the optimal subset 

of transmit antennas out of the available ones. Therefore, an investigation into computa­

tionally efficient AS approaches is an important issue. Furthermore, the aforementioned 

capacity-based AS scheme is based on a general formula and is not specified to a specific 

4 



receiver. Thus this has motivated us to introduce a new pragmatic transmit AS approach 

for DFD that maximizes both the post-processing SNR at the receiver end, and the system 

capacity in uncorrected Rayleigh flat-fading channels. It is shown that the proposed trans­

mit AS scheme has performance comparable to optimal capacity-based selection based on 

exhaustive search [23], but with lower complexity. 

1.2.3 Cross-Layer Based Transmit Antenna Selection for DFD 

In [23-25], AS is studied from a physical layer point of view (e.g., capacity and error 

probability criteria). However, in practice, link quality is determined by both physical and 

data-link layers. A cross-layer approach that combines AS and adaptive modulation, in 

Rayleigh fading channels, is investigated in [26], where a hybrid automatic-repeat-request 

(H-ARQ) technique is used at the data-link layer to improve the link throughput. However, 

it is important to mention that the authors in [26] relied on assumptions that are too opti­

mistic to be practical: /) uncorrected signal propagation paths; ii) absence of direct-path 

propagation; Hi) CSI perfectly known at the receiver. Only more recently, researchers real­

ized the importance of these issues, where measurement results indicate that channels suffer 

from correlation [27]. The effects of Ricean fading on the capacity of multiple-antenna sys­

tems is examined in [28]. The authors show that Ricean fading can improve the capacity of 

a multiple-antenna system when the transmitter knows the Ricean factor. MIMO systems 

with Bell labs layered space-time (BLAST) [4] and orthogonal training signals have been 

investigated in [29], where it is shown that one generally spends half of the coherence in­

terval training in order to maximize the throughput in a wireless channel. Motivated by the 

above observations, we further investigate the performance of a cross-layer based transmit 

AS for DFD over spatially correlated Ricean fading channels. 
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1.3 Summary of Contributions 

The contribution of this thesis is two-fold. First, we investigate the BER performance of 

the ZF receiver over spatially transmit correlated Ricean flat-fading channels. Then two 

pragmatic AS approaches for the DFD over MIMO fading channels are presented. The 

primary contributions are summarized as follows: 

• The BER performance of the ZF receiver over spatially transmit correlated Ricean 

flat-fading channels is investigated, where an approximation for the average BER of 

each substream is derived. 

• The BER performance in receive correlated Ricean fiat-fading channels is also ad­

dressed. It is observed that the performance, when N = M, is the same as that of 

transmit correlated Ricean flat-fading channels. 

• A closed-form expression for the optimal transmit correlation coefficient, which 

achieves the maximum capacity (i.e., uncorrelated case) of two-input two-output 

spatial multiplexing (TITO-SM) systems, is presented. 

• A transmit AS approach for the DFD over independent Rayleigh flat-fading chan­

nels is presented. The selected transmit antennas are those that maximize both the 

post-processing SNR at the receiver end, and the system capacity. We have found 

that the proposed transmit selection scheme has performance comparable to optimal 

capacity-based selection based on exhaustive search, but with much less complexity. 

• An upper bound on the outage probability for the proposed transmit AS approach is 

also derived. 

• A cross-layer based transmit AS scheme for the DFD over spatially correlated Ricean 

flat-fading MIMO channels is further presented. The selected transmit antennas are 

those that maximize the link layer throughput of correlated MIMO channels. 

• A closed-form expression for the throughput of MIMO system, performing the cross-

layer based transmit selection, with perfect channel estimation is derived. We further 
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analyze the system performance with pilot-aided channel estimation. In that, we 

derive a closed-form expression of the overall system throughput. It is observed 

that the optimal capacity-based AS approach is more robust to imperfect channel 

estimation. However, in all cases, the cross-layer based transmit selection scheme is 

able to outperform the capacity-based one. 

1.4 Thesis Overview 

The thesis is organized as follows. In Chapter 2, a description of the general uncoded 

MIMO-SM system model is first given. We further review various signal reception tech­

niques for MIMO-SM systems including, linear, successive, and ML decoding which can 

be used to remove the effect of the channel and reassemble the transmitted substreams. 

In Chapter 3, the BER performance of the ZF receiver over spatially transmit correlated 

Ricean flat-fading channels is investigated. In particular, an approximation for the average 

BER of each substream is derived. Furthermore, we investigate the system performance in 

receive correlated Ricean flat-fading channels. It is observed that the performance, when 

N — M, is the same as that of transmit correlated Ricean flat-fading channels. Then a 

closed-form expression for the optimal transmit correlation coefficient, which achieves the 

maximum capacity (i.e., uncorrelated case) of TITO-SM systems, is presented. 

Chapter 4 introduces a transmit selection approach for the DFD over independent Rayleigh 

flat-fading channels. An upper bound on the outage probability for the proposed scheme at 

high-SNR regime is also derived. 

In Chapter 5, we propose a cross-layer based transmit AS scheme for the DFD over 

spatially correlated Ricean flat-fading MIMO channels. We further analyze the system 

performance with pilot-aided channel estimation. 

Finally, in Chapter 6 conclusions and future work are given. 
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Chapter 2 

Receiver Architectures for MIMO 

Spatial Multiplexing Systems 

2.1 Introduction 

The challenges faced by any receiver, designed for spatial multiplexing systems, is to miti­

gate the presence of multi-stream interference (MSI) with reasonable implementation com­

plexity. MSI occurs in spatial multiplexing because the different data streams occupy the 

same resources in time and frequency. To this end, many advanced signal processing recep­

tion techniques have been proposed in order to exploit the high spectral efficiency offered 

by MIMO channels [4,16,30-32]. 

This chapter focuses on receiver structures for spatial multiplexing systems and the 

corresponding performance-complexity tradeoff. An outline of this chapter is as follows. 

In Section 2.2, the general uncoded MIMO-SM system model is presented. Section 2.3 

discusses different receiver architectures, for spatial multiplexing, including the optimal 

ML receiver, suboptimal linear receivers (i.e., ZF and MMSE), and suboptimal nonlin­

ear SIC/OSIC receivers. For the sake of completeness, Section 2.4 offers few important 

remarks. Finally, Section 2.5 concludes this chapter. 
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Figure 2.1: Schematic representation of the general uncoded MIMO-SM communication 
model. 

2.2 General MIMO Spatial Multiplexing Model 

Understanding the general MIMO-SM system model and its different receiver architectures 

are crucial to the analysis of the ZF receiver, and also to the development of appropriate 

AS schemes. In this section, we describe the general uncoded MIMO-SM system model. 

In that, we state the input-output relationship for the aforementioned model. 

Consider a single-user point-to-point MIMO-SM system with M transmit and N (N >M) 

receive antennas as illustrated in Fig. 2.1. The incoming data is fed into a spatial multi­

plexer (serial-to-parallel converter) that converts the input data stream into M independent 

parallel substreams. Next, the substreams are independently mapped to produce the M-

dimensional symbol vector x. In general, it is assumed that the transmitted substreams 

have uniform power. At the receiver end, various signal processing reception techniques 

can be employed such as ML, ZF, MMSE, and SIC/OSIC as, for example, in the case of 

DFD [14]. 

The sampled received baseband signal can be represented as 

y = Hx + n, (2.1) 

where x = [*] ,JC2, • • • ,XM] is the (M x 1) transmitted signal vector with Xj (1 < i < M) 

belonging to a finite constellation set S\. The superscript (•) denotes transpose, y = 
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[>'i;J2! • • • ^N] is the ( W x l ) received signal vector, n = \n\,«2,• • • 5"/v] is the (N x 1) 

received noise vector, and 

H 

/ i l l h]2 ••• /?1M 

/l2i /Z22 ••• tl2M 

hm hN2 hNM 

(2.2) 

is the (N x M) MIMO channel matrix, with h;j representing the complex gain of the chan­

nel between the j\Y\ transmit antenna and the /th receive antenna for 1 < i < N, 1 < j < M. 

The entries of H are i.i.d. and circularly symmetric complex Gaussian random variables 

with mean \i and unit-variance, i.e., hjj ~ CN(/j,\). Depending on y = 0 or fj ^ 0, the 

channel is Rayleigh or Ricean distributed, respectively. Note that in general the channel 

gains may be correlated [20,27]. H is assumed to be known to the receiver to allow co­

herent detection, but not at the transmitter. We assume that the channel is flat-fading and 

quasi-static, where the fading coefficients are constant over the entire frame and vary in­

dependently from one frame to another. Furthermore, perfect synchronization and timing 

at the receiver are assumed. The receiver noise n ~ CN (0,NO1N) consists of independent 

circularly symmetric zero-mean complex Gaussian entries of variance No, where 1^ is an 

identity matrix of size Af. Denote PX = K [xH x\ as the total average energy over a symbol 

period (i.e., total input power), where E [•] stands for expectation, and (•) is the conjugate 

transpose. Thus the input SNR is defined as 

c - No' 
(2.3) 
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2.3 Receivers for Spatial Multiplexing Systems 

The aforementioned MIMO signaling promise spurred researchers to implement suitable 

advanced signal processing reception algorithms that achieve a large portion of the theo­

retical promised potential. Among which is the VBLAST [15-17], a simplified version of 

the diagonal Bell labs layered space-time (DBLAST) [4]. VBLAST can achieve a large 

fraction of the theoretical MIMO capacity with a reasonable implementation complexity. 

Using successive interference nulling and cancellation, VBLAST can eliminate MSI and 

detect the transmitted data at substream basis. The remainder of this section focuses on 

receiver structures for spatial multiplexing and the corresponding performance-complexity 

tradeoff. 

2.3.1 ML Receiver 

The ML receiver is optimal in terms of the BER. Let A be the symbol constellation set 

of size M (e.g.,i^-ary quadrature amplitude modulation (#f-QAM)). Assuming equally 

likely vector symbols x, the ML receiver forms its estimate of x according to 

x = argmin||y — Hx||2, (2.4) 
xexM 

where (•) is the data estimate, and || • || denotes Frobenius norm. Examining (2.4) reveals 

that the ML receiver suffers from complexity issue, in the sense that the minimization 

problem is performed over \Ji\ possible transmitted symbols. This renders the decod­

ing complexity exponential in the number of transmit antennas (i.e.,0 (f^M)) . Thereby, 

the ML detector is impractical to many real-life applications (especially when M is large). 

For instance, if 16-QAM is adopted with M = 6 transmit antennas, the ML detector needs 

to search over 166 — 16,777,216 symbols!. This has motivated the search for practical 

suboptimal receivers which are relatively simple to implement and powerful in terms of 
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BER performance. Among which is the VBLAST which can utilize a layered architecture 

and applies successive interference nulling and cancellation by splitting the channel verti­

cally [15-17]. The details of the algorithm will be presented later. Note that a search tech­

nique with O (M2) complexity, referred to as sphere decoding has been proposed in [33]. 

2.3.2 Linear Receivers 

Linear receivers are the simplest spatial multiplexing receivers since they only require a 

matrix multiplication to separate the substreams. Thus they are practically important espe­

cially for systems which have large number of transmit and receive antennas. As depicted 

in Fig. 2.2, the received signal vector y is linearly transformed by a matrix equalizer G 

which basically eliminates the effects of the channel to get 

r = Gy 

= GHx + Gn. (2.5) 

Then (2.5) is quantized to get an estimate of the transmitted symbol vectorx = C(r), where 

C stands for mapping to the nearest point in the symbol constellation (slicer). Inspection 

of (2.5) reveals that G colors the noise (i.e., noise power is a function of channel). The 

matrix equalizer can be computed according to different criteria such as ZF and MMSE. 

The details of the ZF and MMSE criteria are given below. 

n 

TX 
x , H k f 

*\ 
\ y k-
) * 

G G y , Slicer 

Figure 2.2: Schematic representation of linear receiver front-ends. 
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ZF receiver: For the ZF criterion, the matrix equalizer is given by 

GZF = H \ (2.6) 

where H^ = {\1H H) HH denotes the Moore-Penrose pseudoinverse of the channel ma­

trix H. Substituting (2.6) in (2.5), and using H^H = \M where 1M is an identity matrix of 

size M, the output of the ZF receiver can be expressed as 

r = x + H t n . (2.7) 

It can bee readily seen that the ZF receiver eliminates MSI entirely, however, at the ex­

pense of enhancing the additive noise. Also, the ZF receiver decomposes the MIMO system 

into M parallel streams with additive spatially-colored noise, where each stream achieves 

N — M+ 1 diversity order [12,34]. To conclude, although the ZF criterion has a low im­

plementation complexity, it yields the following two problems: i) It attempts to invert the 

channel, but amplifies the noise in the process; ii) the criterion can encounter singular 

matrices that are not invertible. 

MMSE receiver: The MMSE receiver front-end, GMMSE> balances MSI mitigation (i.e., 

invert channel) with noise enhancement in a MMSE sense, and is given by 

GMMSE = (HH H + y«r' lM) ~J H " , (2.8) 

where yo = t,/M is the average normalized SNR at each receive antenna. Using (2.8) one 

can see that, at low-SNR regime (i.e.,yo <C 1), the MMSE receiver outperforms the ZF 

receiver and approaches the matched-filter one. In this case, GMMSE
 c a n be expressed as 

GMMSE = T b H " . (2-9) 
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Whereas, at high-SNR regime (i.e.,yo 3> 1), GMMSE is given by 

GMMSE = GZF- (2-10) 

Thus, at high-SNR, MMSE and ZF have asymptotically the same post-processing SNR 

with N — M+l diversity order for each stream. To conclude, MMSE receiver minimizes 

the error due to the noise and the interference combined. In addition, although ML receivers 

have superior performance, linear receivers offer a significant computational reduction. 

2.3.3 SIC Receivers 

The nonlinear SIC criterion has been first introduced in the theory of multiuser detection 

(MUD) [35,36]. The key idea in SIC receivers centers around peeling of layers, where the 

input data streams are sequentially detected and stripped layer-by-layer. In what follows, 

we briefly review the nonlinear SIC reception technique. 

Before proceeding further, let us first write H in its column-wise matrix form as H — 

[h],Ii2, • • .,hju], where h,- denotes the z'th (1 < i < M) column of H. Consequently, (2.1) 

can be rewritten as 
M 

y=£h ,x , + n. (2.11) 

Without loss of generality, we assume that the SIC receiver first estimates the signal with 

the spatial structure hj (i.e., JCJ). NOW rewrite (2.11) as 

M 

y = £h,x, + n 

= biJCj + l^h/Xf + nJ , (2.12) 

where the first term is the target signal, and the second is the interference plus noise. 

The signal estimator can be either ZF or MMSE estimator. Suppose that ZF estimator 
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is adopted, then we find a weight vector wj such that 

wfhj=8, (2.13) 

where 5 is Dirac's delta. Now multiply (2.12) by wf, we get the decision statistic for xj 

di=itfy. (2.14) 

Slicing d\, we get an estimate of xj 

Xi = C(di). (2.15) 

Upon detection of x\, its contribution to the received vector y is totally subtracted under the 

assumption that x\ =x\. After subtracting the contribution of x\,... ,x*, we can write the 

updated received vector as 
k 

y W = y - I > * ; . (2.16) 
i=\ 

Thus the received vector after canceling the effect of x\ is 

y( ]) = y - h j f i 

M 

1=2 

= h 2 x 2 + ( £ h ; x , + n ) . (2.17) 

Similarly the algorithm estimates the signal with spatial structure h2 (i.e., JC2). The process 

continues until XM has been detected as depicted in Figs. 2.3(a) and 2.3(b). 

Now it is essential to mention that the detection of x2 is more reliable than that of x\, and 

so on. The reason is that to estimate x\ the receiver needs to null out M — 1 interferences 
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(a) The process of the nonlinear SIC reception technique. 
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(b) First step of SIC technique. 

Figure 2.3: Nonlinear SIC receiver architecture. 

( M \ with spatial structure vectors h2,1»3 ,hy^ ( i.e., £ h,-x,- J, which consumes M— 1 degrees 
V '=2 / 

of freedom. Whereas to detect X2, the receiver only needs to null out the remaining M — 

2 interferences (see (2.17)). Hence, intuitively the detection of X2 is more reliable than 

that of xi and so on. It is known that in an i.i.d. Rayleigh flat-fading channel, the rth 

detected substream has a diversity order of D, '==^~ M+i: with 1 <i<M[5]. Ignoring the 

propagation of error (i.e., perfect feedback), SIC receivers decouple the MIMO channel into 

a set of M independent, one-dimensional (SISO) parallel virtual subchannels. However, 

error propagation exists and can seriously degrade the overall performance of SIC receivers. 

To conclude, complexity of SIC receivers is high compared to linear receivers, but SIC 

receivers outperform the linear ones. 
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2.3.4 OSIC Receivers 

As already pointed out, detection error of the first substream can seriously influence de­

tection of the subsequent substreams. Thus, the first detected substream is the bottleneck 

which limits the overall performance of SIC receivers. To improve SIC performance the 

streams can be reordered based on SNR at each stage. This ordering is equivalent to the 

global maximization of the minimum substream SNR [15-17]. Such receivers are referred 

to as OSIC receivers (e.g., VBLAST). It is shown in [37] that for an i.i.d. Rayleigh dis­

tributed fading channel with two transmitting antennas (M = 2), the optimal ordering does 

not result in increased diversity but only in a fixed SNR gain. Later, the authors in [38] 

showed that the diversity gain of VBLAST with optimal ordering is N — M + 1. That is 

applying optimal ordering does not help improve the diversity gain of VBLAST [38]. The 

interested reader is referred to [15-17,37-42] for further details on VBLAST algorithm. In 

what follows, we briefly describe its key points. 

At the transmitter, VBLAST demultiplexes the high-rate input data streams into M 

lower-rate independent substreams for transmission over the M available transmit anten­

nas (at the same time and frequency). This horizontal layering eliminates the space time 

wastage, but loses the transmit diversity. At the receiver side, each of the N antennas re­

ceive all transmitted substreams which are mixed and superimposed with thermal noise. 

Using OSIC, VBLAST demultiplexes and detects the transmitted data at substream ba­

sis. The signal estimator can be either ZF or MMSE estimator. VBLAST is shown to be 

able to achieve about 72% of the capacity [16]. The reason is that imposing same rate of 

transmission makes the channel capacity limited by the worst of the M subchannels. As 

pointed out above, at each step, VBLAST detects the component of the transmitted vector 

x which has the largest post-processing SNR (optimal ordering). Without loss of general­

ity, we assume that [k\,k2,..., &M] denote the optimal ordering permutation of [ 1,2,..., M\. 

For notational convenience, we use yj instead of y (defined in (2.1)). Now the VBLAST 
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detection algorithm can be summarized as follows: 

Initialization: 

G , = H + (2.18a) 

i = l (2.18b) 

Recursion: 

kt= argmax ||(G,-);.||
2 (2.18c) 

79{ftl,...,*;-)} 

W*, = (G;)*. (2.18d) 

>X = w .̂y,- (2.18e) 

xki = C(yki) (2.18f) 

y , + 1 = y , - % ( H ) , ; (2.18g) 

G.-+, = H t j / (2.18h) 

I = I + 1 (2.18i) 

where (G,-) - is the yth row of G,, H^. denote the matrix obtained by zeroing the columns 

k\,k2,---,kj of H. (2.18c) determines the optimal ordering by choosing the minimum-

norm row of G,. Nulling and estimation steps are performed in (2.18e) and (2.18f), re­

spectively. Interference cancellation (decision-feedback) is performed in (2.18g). Finally 

(2.18h) computes the new Moore-Penrose pseudoinverse for the next iteration. 

Example: To numerically investigate the performance of VBLAST, we consider a single-

user point-to-point (M = 2,N = 2) MIMO-SM system. We assume that symbols on all 

substreams are derived from the uncoded quaternary phase-shift keying (QPSK) signal 

constellation set A = {1 ± i,±l + / } . The entries of the noise vector n are i.i.d. with 

zero-mean and variance A^ = 0.2512, i.e., n ~CN (0,0.25121^). H is assumed to be inde­

pendent Rayleigh distributed with entries h\j ~ CN(0,1). The propagation channel matrix 
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H is given by 

H 
-0.3059-0.8107/ 0.0886 + 0.8409/ 

-1.1777 + 0.8421/ 0.2034-0.0266/ 

The data and noise vectors are given respectively by 

x = 
l + i 

- l - i 
and n = 

0.1160-0.0662/ 

0.0619 + 0.2572/ 

Using (2.1), the received vector y is 

1.3731-2.1123/ 

-2.1879-0.2552/ 

The Moore-Penrose pseudoinverse H^ can be written as 

HT 
0.1157-0.1570/ -0.6348-0.4928/ 

0.1979-1.3617/ -0.7572-0.3239/ 

Interference nulling step (Ist iteration): Using (2.18a), we get 

G i = H T 
0.1157-0.1570/ -0.6348-0.4928/ 

0.1979-1.3617/ -0.7572-0.3239/ 

Now, we need to find which symbol we have to detect first. According to (2.18c), the 

optimal ordering is to select the minimum-norm row of G, (1 < / < M). Since || (G])j ||2 = 

0.8270 and || (G,)2 ||
2 = 1.6037, therefore we get *, = 2. Using (2.18e), VBLAST first 
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estimates xj (2 subchannel) as 

J2 = 0.1979-1.3617/ -0.7572-0.3239/ 
1.3731 —2.1123/ 

-2.1879-0.2552/ 
= -1.0307-1.3858/. 

Now slicing yi, we get an estimate %2 = - 1 — /. 

Interference cancellation step (\st iteration): Upon detection of xz, its contribution to 

the received vector is subtracted. The modified received vector y2 is then 

V2 = y i - * 2 ( H ) 2 : 
0.6208-1.1828/ 

-1.9579-0.0784/ 

The matrix Hj can be written as 

H, 
-0.3059-0.8107/ 0 

-1.1777 + 0.8421/ 0 

Thus the new Moore-Penrose pseudoinverse for the next epoch is 

G2 = 
-0.1074 + 0.2848/ -0.4137 - 0.2958/ 

0 0 

Interference nulling step (2nd iteration): Directly, we have ki = 1 (last layer to detect). 

Then 

Ji = -0.1074 + 0.2848/ -0.4137 - 0.2958/ 
0.6208-1.1828/ 

-1.9579-0.0784/ 
= 1.0569+0.9154/, 

and the corresponding estimate is x\ = 1 + /. 

20 



Now, the algorithm stops and the estimated transmitted signal vector x is 

l + i 
x = 

It can be readily seen that it is indeed the correct estimate of x. 

2.4 Further Remarks 

For the sake of completeness, in this section we make a few brief remarks. 

Remark 1: A coded architecture namely Turbo-BLAST has been proposed in [31 ]. The 

new transceiver has less computational complexity than the optimal ML decoder. Further­

more, it has a probability of error performance that is order of magnitude smaller than the 

traditional BLAST architecture [31]. 

Remark 2: DBLAST is the most complex algorithm of the BLAST architecture. Then 

probably comes the Turbo-BLAST, and the the simplest one is VBLAST. 

Remark 3: BLAST architecture achieves its best performance in rich-scattering chan­

nels [4]. Thus, spatial correlation limits the performance of BLAST transceivers. 

Remark 4: ZF, MMSE, SIC, and OSIC receivers provide only N—M+l diversity order, 

but have varying SNR loss (see Table. 2.1). Thus, with N = M, the diversity performance 

for linear receivers is exactly the same as that of SISO system! Therefore, the use of 

suboptimal receivers incur a loss in the diversity order. This is in contrast to the more 

complex ML receiver for which the diversity order is always N [13]. However, SIC/OSIC 

receivers have the lowest SNR loss among all suboptimal receivers. 
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Table 2.1: Comparison of spatial multiplexing receivers 
ZF MMSE SIC/OSIC ML 

Diversity order N-M+l N-M+l N-M+l N 
SNR loss High Low Low Zero 

2.5 Conclusions 

In this chapter, we have provided an overview of different receivers for spatial multiplexing 

systems and the corresponding performance-complexity tradeoff. In Section 2.2, we have 

presented the general model of a typical uncoded MIMO-SM system model. In Section 2.3, 

various receiver architectures for spatial multiplexing systems have been introduced. In 

particular, we have demonstrated that the ML detector provides the optimal BER perfor­

mance, but it suffers from exponential complexity issue. This fact makes it impractical 

to many real-life scenarios. Thereby, linear and SIC/OSIC receivers were introduced as a 

tradeoff between performance and computational complexity. In that, we have discussed 

VBLAST algorithm and provided a numerical example for clarification purposes. 
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Chapter 3 

Performance of Zero-Forcing Detectors 

over Spatially Correlated Ricean MIMO 

Channels 

3.1 Introduction 

As pointed out in Chapter 1, MIMO-SM systems have recently received significant atten­

tion due to the extraordinary high spectral efficiency they provide in wireless communica­

tion systems [2,3]- In Chapter 2, we have demonstrated that spatial multiplexing systems 

employing ZF receivers are practically important due to their minimal complexity require­

ments. However, some impairments, such as correlation, at the transmit and/or receive 

antennas may lead to substantial degradation in the system performance [27,43,44]. With 

this motivation, in this chapter, we study the BER performance of the ZF receiver over 

transmit correlated Ricean flat-fading channels. 
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3.1.1 Prior Work 

In [12], the authors study the performance of the ZF receiver in Rayleigh fading channels 

with transmit correlation. Based on Wishart matrix analysis, the authors show that the ZF 

detector decomposes the MIMO system into M parallel streams with N — M + 1 diversity 

order. In [21], the performance of the ZF receiver is investigated over independent Ricean 

fading channels where an approximation for the average BER is given. 

3.1.2 Contributions and Organization 

In this chapter, we investigate the BER performance of the ZF receiver over transmit cor­

related Ricean flat-fading channels. The focus on correlated Ricean channels can be mo­

tivated in a number of ways as follows: i) the authors in [21] assume that the subchan­

nels fade independently. However, in real propagation environments, fading signals are 

not independent where measurement results indicate that the channels suffer from correla­

tion [27,43,44]. Therefore, the independent Ricean fading model assumed in [21] is not 

ideal in practice, especially for systems that have poor scattering conditions and/or insuf­

ficient spacing between adjacent antennas; ii) this channel model is known to be an ap­

propriate model for wireless propagation environments [22]; Hi) the derived average BER 

expression can be used to model the MMSE performance at high-SNR. 

In this chapter the performance of the ZF receiver over transmit correlated Ricean flat-

fading channels is presented. A widely accepted mathematical model for correlated fading 

channels is presented in [45-48]. Their common approach is to model the correlation at the 

receiver and at the transmitter independently, neglecting the statistical interdependence of 

both links. Thus correlation is determined as the product of a receive-side and transmit-side 

components. This allows one to write the channel matrix in a simple format based on two 

constant correlation matrices plus an inner matrix of i.i.d. circularly symmetric complex 

Gaussian random variables. Furthermore, in our work, we constrain our analysis to the 
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Figure 3.1: MIMO-SM system employing ZF receiver. 

exponential correlation model [49]. This model is physically realistic since correlation 

decreases with increasing distances between antennas. In that, we derive an approximation 

for the average BER when QPSK modulation is used with each transmitted substream. 

Moreover, we investigate the system performance in receive correlated Ricean flat-fading 

channels. We further derive a closed-form expression for the optimal correlation coefficient 

that maximizes the capacity (i.e., uncorrelated case) of TITO-SM systems. 

This chapter is organized as follows. System model is introduced in Section 3.2. Per­

formance analysis is presented in Section 3.3. Section 3.4 presents simulation results to 

assess the accuracy of our analytical results. Finally, conclusions are given in Section 3.5. 

3.2 System Model 

Consider a point-to-point single-user MIMO-SM system that employs M transmit and 

N(N >M) receive antennas, and a 1 : M spatial multiplexer as shown in Fig. 3.1. The 

system works as follows. At one symbol time, M input symbols are multiplexed to produce 

the M-dimensional symbol vector x for transmission over all M antennas. Then the data 

vector x is sent through the channel, which is assumed to be flat-fading and slowly-time 

varying. At the receiver side, the antennas receive the M substreams which are mixed and 

superimposed by noise. Upon reception the ZF receiver is used to detect the transmitted 

data. 
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The corresponding sampled received baseband signal is given by 

y = Hx + n, (3.1) 

where y € CNx] is the received signal, H G CNxM is the spatially correlated Ricean channel 

matrix. We assume that the receiver has a perfect knowledge of the channel matrix H. The 

information vector x 6 CMx' consists of independent and uniform power transmitted sub-

streams. The receiver noise n ~ CN (0,7Vo IN) consists of independent circularly symmetric 

zero-mean complex Gaussian entries of variance NQ. 

For the sake of simplicity, we assume the receiver to be located at a richly-scattered 

propagation environment so that the fading at the receiver is spatially uncorrelated while 

the transmitter is located at a high altitude, and therefore the fading is only transmit corre­

lated. This scenario is typical in the down-link channel in mobile communication systems. 

Accordingly, the elements of each row of the channel matrix H are correlated and for each 

row, we can write 

R, = E [hf hi\, for i = 1,2,... ,W, (3.2) 

where R( and h, are the M x M transmit nonnegative semidefinite (Hermitian) correlation 

matrix, and the /th row of H, respectively. Note that the former can be represented as 

Rf = Rf R, (Cholesky factorization). 

The Ricean channel matrix H is composed of two components; the line-of-sight (LOS) 

component (deterministic and constant), and a component resulting from multipath propa­

gations (randomly varying). Hence, the channel matrix H that, contains transmit antenna 

correlation but no receive correlation, is given by [50] 

H = HLQS + Hw R, , (3.3) 
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where 

HLOS HLOS and Hw = \l rH„ (3.4) 
K + 1 _ i~" ~ """ V K + 1 

The N x M matrix Hw consists of i.i.d. circularly symmetric Gaussian random variables 

with zero-mean and unit-variance ~ CN (0,1). HLOS — E [H] represents the channel mean 

and K defines the Ricean factor, which indicates the strength of the LOS component relative 

to the multipart! component. Following the definition in [51], we can readily see that 

IH 
K = 

LOS I 

E HH-HLOSI 
(3.5) 

Moreover, we assume that the transmitter and receiver are positioned far from each other 

which is always the case in many practical applications [52]. Consequently, the channel 

can be approximated by 

H 
K 

K+1 
ej9yN.M + HH, R, , 

K + 1 
(3.6) 

where SSfpfju denotes the N x M matrix of all ones. It is reasonable to consider 0 = ±Jt/4, 

with e^ = ( -4=̂  J, which indicates an equal power of LOS component per dimension of the 

H entries [52]. Hence, H - CN(M,IA,(g)S) with M = E[H] = J ^ fe) &NM, and 

S = R, IM is the covariance matrix of H, and <g> denotes the Kronecker product of matrices. 

As previously disclosed, we constrain our discussion to the exponential correlation 

model [49]. For this model, the entries of the transmit correlation matrix, R,, are given 

by 

Pj-\ i<j 

[R4;=< , IPI<1, (3-7) 
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where (•)* denotes complex conjugate and p is the complex correlation coefficient of neigh­

boring transmit branches. Based on (3.7), we write R, in its matrix form as 

R, 

l p p2 ... p M - ] 

P 

l ,*M-1 p*2 p* 

(3.8) 

Inspection of (3.8) discloses that the correlation decreases with increasing the distance 

between transmit antennas. 

3.3 Performance Analysis 

In this section we derive an approximation for the average BER performance of the ZF re­

ceiver in transmit correlated Ricean flat-fading channels. Moreover, a closed-form expres­

sion for the optimal transmit correlation coefficient, which achieves the maximum capacity 

(i.e., uncorrected case) of TITO-SM systems, is presented. 

3.3.1 BER of ZF Receiver over Correlated Ricean Channels 

The performance of spatial multiplexing with linear detectors is a function of the effec­

tive SNR, denoted by y*, for each stream with k = l,2,...,M, after linear processing. 

From [25], the post-processing SNR of the fcth stream for the ZF receiver is given by 

Jk 
Yo 

[H"H]^ 
(3.9) 
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where yo = ^/^> is the average normalized received SNR at each receive antenna, and 

[UH H] "^ is the (Jfc, jfc)th element of matrix [HH H] ~'. 

Now if we define 

W = H"H, (3.10) 

then W is always an M x M square matrix. It is known that when H is a complex nor­

mally distributed matrix as described above, the distribution of W is given by the non-

central Wishart distribution [28,53]. Note that here we use the shorthand notation W ~ 

CWM (N, S) to denote a central Wishart distribution, which results when the elements of 

H are zero-mean Gaussian random variables, with N degrees of freedom (sample size) and 

where E is the Hermitian covariance matrix of the columns (assumed to be the same for all 

columns). The subscript M explicitly denotes the sample matrix. Also, the shorthand no­

tation W ~ CWM {N, E, E _ 1 MM") denotes the non-central Wishart distribution with N 

degrees of freedom, which results when the elements of H are Gaussian random variables 

with M = E [H] T̂  0, where 0 denotes a zero matrix. 

Here we approximate the non- central Wishart distribution W ~ CWM (W,E,E_ 1 MM") 

by a central Wishart distribution W ~ CWM (N, E + ^ MffM) as in [21]. This technique 

represents a non-central complex Wishart distribution by normal vectors [54]. Note that 

the first order moment of W ~ CWM (N, E, S _ 1 M M H ) and of the approximation W are 

identical, whereas the second order moment differs by ^M H M. Hence, this justifies the 

approximation. In this case the probability density function (PDF) of the post-processing 

SNR of each stream is given by [21] 

/(»>=V»r(iL,+ .) ((%) P^) • 
with k = 1,2,...,M, r denotes the Gamma function, and [S']^1 is the (k, k)lh element of 

the matrix [E']_1 . 
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From (3.11), one can see that in order to determine all the parameters of the central 

chi-square PDF of y ,̂ we have to determine [S']^ . Now the covariance matrix, denoted 

by £ ' , can be written as 

K + l ' K + l \NJ V J 
* MM- (3.12) 

Using the definition of matrix inversion, we have 

[£'L7 - det(S') ' 
(3.13) 

where det (•) denotes the determinant of matrices and det [E'M] is the minor determinant of 

the matrix £ ' . Inspection of (3.13) reveals that in order to obtain a closed-form expression 

for the BER of each substream, we have to transform the matrix in (3.12) into a lower or 

upper diagonal matrix. To do this, we let ^ = ^ j and then we perform row manipulation 

on the matrix to get 

£ ' : 

(I-Q(l- |p|2)(l-p*) (l-^)( |p|2-l) 0 ...0 

P*(HPI 2 )0 -P* ) ( I ^ ) ( I - I P I 2 ) ( I - P * ) (i-Q(|P|2-i) ...O 
P*2 (HPI2 ) ( I -P*) P*(i-y(i-lpl2)(i-P*) ( I -E.)( I - IPI2)( I -P*) ...(l-sxipp-i) 

p»c-i ) ( i_y+^f P ' ( ' -2 ) ( i -y+^ l p«c-3)(i_4)+^jf ...(1-4)+^'? 

(3.14) 

We noted that one cannot reduce this matrix to lower or upper diagonal. Thus, we let 

[*]« = det(E') a ' 
(3.15) 

where P and a are the minor determinant and the determinant of matrix £ ' introduced 

in (3.14), respectively. It is essential to keep in mind that (3.14) is used to evaluate P and a 

numerically. 

Next we use (3.15) to determine the parameters of the central chi-square distribution 
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given in [12,21] 

/ ( % ) • 

^ e " ( 4 ) ^ ((JL 
VVayo r(N-M+i) 

ik 
N-M 

(3.16) 

with£ = 1,2,...,M. 

The average BER of each substream can then be obtained by averaging the instanta­

neous BER P(Yft) over all SNRs [5], i.e., 

Pk= r~p{ik)f{ik)dik. 
Jo 

(3.17) 

For QPSK modulation, the average BER can be expressed as 

Pk = r(N-M+ 17 C"e ^ ^N'MQ{^} d^ (3-18) 

where £>(•) is the complementary error function. Using [Eq. (Al) in [55]] with a = ( ~- J, 

t — lh b = {N - M + 1), c — 2, the average BER is given by [56] 

N-M 

;=0 v ' 
(3.19) 

Recall that the diversity order of a system is given by [10] 

D=- lim 
logfUYo) 

Yo'-̂ ° log(yo) 
(3.20) 

Using (3.20), and applying L'Hopital's rule, one can show that the diversity gain is D — 

N -M+l. Thus, the diversity gain of the system agrees with the result in [12]. Note that, 

in our analysis, we assume that the channel matrix H contains transmit antenna correlation 
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but no receive antenna correlation. Later, we will investigate the system performance over 

receive correlated Ricean flat-fading channels. With receive antenna correlation (but no 

transmit antenna correlation) the channel matrix H is given by 

H = V^TT^*^4" V^TR'/2Hw' (121) 

where Rr denotes the N x N receive covariance matrix and H„, is an JV x M matrix whose 

elements are i.i.d. complex Gaussian random variables with zero-mean and unit-variance. 

We also consider the exponential correlation model, where the entries of Rr are given by 

M y = 

( . . 
rite'. *^J 

, M < 1 , (3-22) 

[RrlV i>J 

where r^ is the complex correlation coefficient of neighboring receive branches. In this 

case, it will be shown that the performance, when N = M, is the same as that of transmit 

correlated Ricean fiat-fading channels. However, when N >M the performance is no longer 

the same. 

3.3.2 Optimal Transmit Correlation for TITO-SM Systems 

In this section, we derive a closed-form expression for the optimal transmit correlation 

coefficient which achieves the maximum capacity (i.e., uncorrected case) of TITO-SM 

systems over transmit correlated Ricean flat-fading channels. Hence, for any channel real­

ization, we find the optimal Rr that achieves the maximum capacity. It is essential to keep in 

mind the fact that channel correlation, which degrades the system capacity, depends on the 

physical parameters of the MIMO system and the scattering characteristics. These physical 

parameters include the antenna arrangement and spacing, angle spread, and the transmitted 
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signal wavelength [20,48]. 

Given a transmit correlated Ricean channel matrix H, one can derive an expression for 

the optimal transmit correlation matrix R, in terms of the entries of H that maximizes the 

MIMO capacity. Now, the instantaneous capacity expression of a MIMO fading channel is 

given by [2] 

C = log2det 
M 

bits/s/Hz. (3.23) 

For a (M = 2,N — 2) system, using the exponential correlation model we have 

R ,= 
1 P 

P* 1 
(3.24) 

Substituting (3.24) in (3.23), and after differentiation and simplification, the optimal corre­

lation is given by 

"* = E(=^)' <3'25) 
where <j> = (h2_\h*22 + hijh*2), to = (h\.2h\xh2jh22 + h\^h\2h2t2h*2l) 

anda=( | / J 2 i ] |
2 | / J , j | 2 + |/z2!,|

2|/?K2|
2). 

This correlation value will be shown to achieve the optimal Ricean capacity of TITO-SM 

systems (i.e., uncorrected case). It is essential to mention that, based on (3.25) and using a 

feedback information channel to provide the transmitter with full CSI, if practically possi­

ble, one can adjust the physical parameters of TITO-SM systems to achieve the maximum 

capacity (i.e., uncorrected case). This can be tractable due to the slow fading assumption. 

Also one can employ adaptive precoding techniques to adjust the transmit correlation to 

achieve the optimal capacity. As a result, a significant capacity is achieved by exploiting 

the knowledge of the Ricean channel. 
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3.4 Simulation Results 

In this section, we provide simulations to show the accuracy of our analytical results. In 

what follows, unless otherwise stated, the performance is measured in terms of BER versus 

SNR for a frame of 100 vector symbols averaged over 10,000 frames. The channel is 

modeled as a quasi-static fading with fading coefficients fixed for the duration of the frame 

and change independently from one frame to another. 
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- 2x2 ZF-VBLAST (simulation) 
- 2x3 ZF-VBLAST (simulation) 

10 15 20 25 
SNR (dB) 

30 35 40 

Figure 3.2: BER of ZF detector for M = 2 transmit and N = 2,3 receive antennas. QPSK 
constellations, transmit correlation |p| = 0.8 and Ricean factor K = 6 dB. 

In Fig. 3.2 we simulated (M = 2,N = 2,3) MIMO systems employing ZF receiver 

along with the approximated BER in (3.19). Note that the analytical and simulated results 

are in excellent agreement. It can also be seen from Fig. 3.2 that the zero-forcing VBLAST 

(ZF-VBLAST) receiver [15-17], with optimal ordering detection, reduces the effect of 

correlation to some extent, but the diversity order remains the same as the ZF linear receiver. 

Thus (3.19) can serve as an upper bound for the average BER of the ZF-VBLAST receiver 
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in transmit correlated Ricean flat-fading channels. 
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Figure 3.3: BER comparison of ZF detector for M — 2, N — 2 MIMO system in the case 
of transmit correlation |p| and receive correlation |rfa|, respectively. QPSK constellations, 
Ricean factor K = 6 dB. 

In Fig. 3.3, we examine the BER performance of the ZF receiver over transmit and 

receive correlated flat Ricean fading channels. We consider three correlation settings: i) 

|p| = 0.4, \rjtx] = 0.4; if) |p| = 0.8, |r/^| = 0.8; ii) |p| = 0.95, |r to | = 0.95. The results are 

shown for an (M = 2,N — 2) system. It is clear that, when N — M, the BER performance 

is the same in both cases. This is due to the fact that both covariance matrices are equal. 

However it can be shown that when N > M, the BER performance is no longer the same 

which is due to the unequal transmit and receive covariance matrices. 

Fig. 3.4 depicts the performance of a (M = 2,N = 2) system over transmit correlated 

Ricean fiat-fading MIMO channels for Ricean factor K = 6 dB. These performance results 

are reported in terms of the Ricean capacity versus SNR. We use the ergodic capacity as a 

metric for performance evaluation, which is obtained by averaging over 2000 independent 
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Figure 3.4: Comparison of empirical and analytical Ricean capacity for M = 2, N — 2 
MIMO system. QPSK constellations, transmit correlation |p| = 0, optimal, 0.8 and Ricean 
factor K = 6 dB. 
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realizations of the channel matrix H. We consider three correlation settings: /) |p| = 0 (un-

correlated case); ii) |p| = optimal, as defined in (3.25); Hi) |p| = 0.8. It can be noticed that 

the performance of the optimal transmit correlated system (i.e.. |p| = optimal as in (3.25)) 

perfectly agrees with the case of uncorrelated case (|p| — 0). 

30 

5 15, 
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Figure 3.5: Relation between Ricean capacity and Ricean factor K for M = 2, N = 2 MIMO 
system. Transmit correlation |p| = 0, 0.8. 

Fig. 3.5 shows the relationship between the Ricean capacity and the Ricean factor K 

for an (M = 2,N = 2) system. As in Fig. 3.3, we use the ergodic capacity as a metric for 

performance evaluation, which is obtained by averaging over 2000 independent realizations 

of the channel matrix H. It can be concluded that the Ricean capacity decreases as K 

increases. 

Finally in Fig. 3.6, we simulate the BER performance of an (M = 2,N = 2) system in 

transmit correlated flat Ricean fading channels with ZF decoding. We consider the same 

correlation settings as in Fig. 3.4. It is clearly apparent that the BER performance for the 
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Figure 3.6: BER comparison of ZF detector for M = 2, N = 2 MIMO system. QPSK 
constellations, transmit correlation |p| = 0, optimal, 0.8 and Ricean factor K = 6 dB. 

optimal transmit correlation value (|p| = optimal), defined in (3.25), is very close to the 

optimal uncorrelated case (|p| = 0). 

3.5 Conclusions 

In this chapter, we have analyzed the BER performance of the ZF receiver in transmit corre­

lated Ricean flat-fading channels. In particular, we have derived a near exact approximation 

for the average BER. Moreover, we have investigated the system performance in receive 

correlated Ricean flat-fading channels. In that, we have showed that the performance, when 

N = M, is the same as that of transmit correlated Ricean flat-fading channels. In addition, 

we have derived a closed-form expression for the optimal transmit correlation coefficient, 

of Rf, which achieves the maximum capacity (i.e., uncorrelated case) of TITO-SM sys­

tems. As a result, a significant capacity, without the use of any special signal processing 
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algorithm and/or space-time coding at the receiver, is achieved by exploiting the knowledge 

of the Ricean channel. 
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Chapter 4 

Transmit Antenna Selection for DFD in 

Uncorrected Rayleigh MEMO Channels 

4.1 Introduction 

In Chapter 3, we have demonstrated that the DFD outperforms the ZF receiver. We only 

consider DFD in this chapter. However, the performance enhancement of such receiver 

comes at the expense of a higher implementation complexity. To this end, we introduce 

a new pragmatic AS approach that achieves optimal performance with reduced cost of 

hardware requirements. 

4.1.1 Prior Work 

AS in spatial multiplexing systems has been addressed in [11,23-25,57-60]. Based on 

argument that it increases capacity, AS for spatial multiplexing was first presented in [23]. 

More specifically, the authors show that feeding back an optimal subset of transmit an­

tennas often increases system capacity over the case of no feedback. In [24], the authors 

present suboptimal schemes for receive AS that offer a performance comparable to optimal 
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capacity-based selection based on exhaustive search [23], but with lower complexity. In 

that, the authors show that the diversity order achievable through receive AS is the same 

as that of the full system, which motivates the use of receive AS in spatial multiplexing 

systems. It is worth highlighting that in [23, 24,58,60] AS is studied from the capacity 

maximization standpoint. Whereas in [11,25,57,59] AS is investigated from the perspec­

tive of error probability, where the authors propose AS algorithms that aim to minimize the 

BER of linear receivers. For instance, transmit AS for spatial multiplexing when the ZF 

receiver is used, is presented in [25,57,59]. A transmit multimode AS, which improves the 

error rate performance of spatial multiplexing systems with linear receivers, is presented 

in [11]. In the multimode AS, both the number of substreams and the mapping from sub-

streams to antennas are optimally chosen based on the channel. For a review of various 

transmit and receive AS schemes, the interested reader is referred to [18,19]. 

4.1.2 Contributions and Organization 

In this chapter, we investigate the performance of a transmit AS scheme for the DFD over 

independent Rayleigh distributed flat-fading channels. We first present the system model 

in Section 4.2. In Section 4.3, we present a pragmatic AS criterion that maximizes both the 

post-processing SNR at the receiver, and the system capacity. Specifically, we propose a 

reduced complexity scheme that selects the optimal K antennas out of the M available ones. 

Compared to the use of all antennas, this has the advantage that only K(K < M) instead 

of M transmit analog RF chains are required. Note that we still need the full number of 

M antenna elements (patch or dipole), but these are generally cheaper elements. Analysis 

on the outage probability for the AS approach is presented in Section 4.4. Simulation 

results are provided in Section 4.5 to validate and demonstrate the performance. Finally, 

conclusions are given in Section 4.6. 
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Figure 4.1: MIMO-SM system employing DFD and performing transmit AS. 

4.2 System Model 

Consider a point-to-point single-user MIMO-SM system that employs M transmit and 

N(N > M) receive antennas, and a 1 : K(K < M) spatial multiplexer as shown in Fig. 4.1. 

The system works as follows. At one symbol time, K input symbols are multiplexed to pro­

duce the A'-dimensional symbol vector x for transmission over K active transmit antennas 

out of M possible ones. The optimal subset p, which constitutes of the K transmit anten­

nas, is determined by a selection algorithm operating at the receiver. The latter indicates, 

at each fading state, to the transmitter through a low-bandwidth, zero-delay and error-free 

feedback channel, the optimal subset p € P of size K. Note that P is the set of all possible 

subsets of selected transmit antennas given by 

; for a given K (K <M)\. (4.1) 

Then the data vector x is sent through the channel, which is assumed to be fiat-fading and 

slowly-time varying. At the receiver side, antennas receive the K substreams which are 

mixed and superimposed by noise. Now it is the role of the DFD to detect and separate the 

substreams one-by-one. 

Let H denote the TV x M channel matrix, and VLp denote the N x K channel submatrix 
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corresponding to the selected transmit antennas in p. The corresponding sampled received 

baseband signal is given by 

y = H p E p x + n, (4.2) 

where y € CNx' is the received signal, Ep € RKxK is a channel-dependent permutation ma­

trix corresponding to the detection ordering. Hp € CNxK consists of i.i.d. circularly sym­

metric Gaussian random variables with zero-mean and unit-variance, i.e., hjj ~ CN(0,1) 

for I <i<N, 1 < j < K. We assume that the fading coefficients are constant over the entire 

frame and vary independently from one frame to another (quasi-static fading). We assume 

that the receiver has a perfect knowledge of the channel matrix H. The information symbol 

vector x 6 CKxl consists of independent and uniform power transmitted substreams. The 

receiver noise n ~ CN(0,NQIN) consists of independent circularly symmetric zero-mean 

complex Gaussian entries of variance No-

4.3 Proposed Transmit Antenna Selection Approach 

The DFD algorithm [14], which is also known in the M1MO literature as VBLAST [15-17], 

was shown to suppress the interference by either ZF or MMSE criterion. However, here 

we constrain our discussion to the ZF case. The reason is that the ZF nulling criterion has 

low implementation complexity and makes our analysis more tractable than that of MMSE. 

Furthermore, the ZF receiver performance approaches that of MMSE at high-SNR. Since 

no selection is performed yet, in this section we use the full channel matrix H. It is well-

known that the DFD can be concisely represented by the QR decomposition [42,61], i.e., 

H = QR, where Q is an N x M semi-unitary matrix (Q^Q = 1M) with its orfhonormal 

columns being the ZF nulling vectors, and R is an M x M upper triangular matrix with real-

valued positive diagonal entries. Correspondingly, the ordered DFD can be represented by 

applying the QR decomposition to H with its columns permuted, i.e., HE = QR, where 
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E is the full channel-dependent permutation matrix (i.e., function of H). The receiver 

performs a QR factorization of H, and then it implements two operations: nulling and 

cancellation. 

Since no selection is yet performed, we have 

y = Q R x + n. (4.3) 

The transmitted symbols are detected as follows. Multiplying both sides of (4.3) by Q ^ 

yields 

y = R x + n, (4.4) 

where ii = Q ^ n and y = Qwy- It is worth noting that the nulling operation (i.e., Q^y) is a 

coordinate rotation which produces an M-dimensional vector y that constitutes a sufficient 

statistic. The aim of the nulling operation is to render H in upper triangular matrix, but with 

no amplification of the receiver noise (Q is unitary). Therefore, ii is still ~ CN(0,NQIN). 

Now one could multiply by R _ 1 which would be the typical ZF nulling technique, but 

significant improvements can be obtained through SIC. 

The received vector y, in matrix form, can be written as 

o ^ ••• r2.M 

S'M\ 0 . . . 0 rMM\ \XM\ \nM 

X2 

+ 
«2 

(4-5) 

The general sequential signal detection, which involves cancellation (decision feedback), 

is given by 

Xi= C 
M 

-[Si- E njxj for i = M,M-l,...,l, (4.6) 
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where /•,•.; and r,-j are the (i, i)th and (/, j)lh entries of R, respectively. Inspection of (4.5) 

reveals that, to estimate XM, the receiver needs to multiply by the inverse of TM.M- Thus ym 

constitutes a virtual subchannel that has no interference from other subchannels. Hence, 

the decision statistic for the Mth received symbol is 

XM = C 

= c 

rM.M 

XM + 

}'M 

m.M 
nM 

(4.7) 

However, y~M-\ is subject to interference from the Mth subchannel through the off-diagonal 

entry TM-\.M- Using (4.6), the decision statistic forxM-i is 

XM-\ — C 

= C 

1 

l"M-i,M-\ 

1 

rM-\M-\ 

yM-\ —l~M-},MXM 

I'M-1M-1XM-1 + "M-1 + m-1 ,M (XM ~ XM) (4.8) 

If the detection of XM is correct, we can get a correct estimate of XM-\ with a high prob­

ability, and so on. Assume that the previous decisions are correct (i.e., no propagation of 

error), the DFD decouples the MIMO channel into a set of M independent, parallel SISO 

virtual subchannels, and the different substreams can be expressed as 

y,- = ruxi + fij, for i=l,2,...,M. (4.9) 

Since E [hhH] = NQIN,
 t n e output SNR of the rth substream is given by 

Yi = ri,ilo, (4.10) 

where yo = tyM is the average normalized received SNR at each receive antenna. Thus, 

the output SNRs of the substreams are determined by the diagonal entries of the matrix R 
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which in turn depend on E. Based on (4.10), a pragmatic AS criterion would be to choose 

the subset of antennas with the highest r,-.,-'s values. Now, it is essential to mention that our 

AS criterion is also applicable to the case where propagation of error exists. In this case, 

one can show that the general sequential decision statistic can be written as 

XM-i = C XM-i + 
\ ( M X 

nM-i+ Y, rM-UAeJ 
t-iM-i \ j=M-i+l ) 

(4.11) 

with 0 < i < M — 1, and Ae; denotes the error term resulting from the hard/soft estimate 

made on the Xj symbol. Hence to minimize the error term, we have to select the largest 

n/s values. The reason is that the error term is inversely proportional to r,.,'s values. 

Now, it is important to mention that the proposed transmit AS criterion maximizes the 

system capacity. Using (4.10), we can see that the channel capacity is now equivalent to the 

capacity of a MIMO-SM system with linear receiver employed, since we have neglected 

the propagation of error. Thereby the channel is now decoupled into M parallel substreams, 

for which the capacity is given by [12] 

M 

C = 2 > g 2 ( l + Y i ) , (4-12) 
1=1 

where y,- is the post-processing SNR for the z'th substream. Now substituting (4.10) in (4.12), 

we have 
M 

C = £log2(l+rf, .Yo). (4.13) 

Clearly, the adopted selection criterion is optimal in the sense that it maximizes both the 

post-processing SNR at the receiver side, and the system capacity. It can be shown that 

when M = N the proposed AS algorithm has a complexity of O (M3), whereas the selection 

algorithm proposed in [23] has a complexity of O (M5). 
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4.4 Outage Probability Analysis 

In this section, we present a comprehensive analysis of the outage probability for the AS 

scheme over independent Rayleigh fading channels. An upper bound on the outage proba­

bility at high-SNR regime is presented. 

Recall that the instantaneous capacity expression of a MIMO fading channel (without 

performing AS) is given by [2] 

C = log2det 
M 

bits/s/Hz. (4.14) 

Now, an outage event occurs when the information transmission rate, denoted by ^ , is 

greater than the instantaneous capacity C. Hence, the outage probability is given by [3] 

Outage = P r ( C < £ ) . (4- J5) 

To derive an upper bound on the outage probability, we have to consider the case of 

single selected transmit antenna. According to our approach, this single selected transmit 

antenna, denoted by v, is determined by 

v = argmax{/f(}. (4.16) 
1 <i<M 

The upper bound on the outage probability for the AS scheme can then be written as 

^outagcAS < Pr | l o g 2 M + r * v ^ J < A 

({2*—\)M\ 
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where J p. (•) is the cumulative distribution function (CDF) of the random variable r^ v. 

Also, using the fact that r% v is the largest order statistic [62], the CDF of r^ v can be written 

as 

,,.,J^)-,J£^K..**_(£^-Y <-> C C C 

Now substituting (4.18) in (4.17), we get 

^outage.AS ^ J A 
( 2 ^ - l ) M N 

x . . . x f j 
( 2 ^ - l ) M N 

(4.19) 

It is important to keep in mind the fact that the entries of R are independent of each 

other. Moreover, with fixed E, the square of the z'th diagonal element of R, r?(, is of 

central chi-square distribution with 2(N — i+ 1) degrees of freedom [53,63], i.e., rft ~ 

%2(N-i+i)- Consequently, Jr
r2_ I ^ — ^ — j with 1 < i < M, is the CDF of a central chi-

square distribution ~ J^,N_i+ly Using this fact, the CDF can be expressed as [64] 

f(x,k) 1 2 '2 
(4.20) 

where P (k,x) denotes a normalized incomplete Gamma function (regularized Gamma func­

tion) defined as [64] 

where k (k > 0) denotes the degrees of freedom. 

Now substituting (4.20) in (4.19), we get 

% outage.AS < \P \N. 
( 2 ^ - l ) M N 

2C , x . . . x \P IN-M+l, 
( 2 ^ - l ) M N 

(4.21) 
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The power series expansion of P(k,x) is given by [64] 

P(k,x) = x Y ( M 

= ***'*Ewr^ >̂ (4-22> 
t0r(k+n+iy 

where 7* (£,x) is the incomplete Gamma function. In order to get 3,
0mage,AS a t high-SNR, 

we substitute (4.22) in (4.21). Now, using the fact that T(z) = (z — 1)!, where z is a positive 

integer, 5P0utage,AS at high-SNR can be written as [65] 

M 

-^outageAS -i J ^ J \ „ M 
Y[£^N-i+\)\ 

M 

-E(w-i+i) 

/ / * \ \ - (MW-I (M 2 -M) ) 
f(2^-\)M\ K 2K " ( 1 

2 y Vn&^-H-i)!, 
^ - ( M N - j ^ - M ^ ( 4 2 3 ) 

It can be readily seen from (4.23) that the diversity order of the outage probability for the 

AS scheme is lower bounded by 

£>AS > MN - - (M2 - M) , (4.24) 

which is less than the MN full complexity diversity order, but much more greater than 

the N diversity order of the (M = 1, N) system. Therefore, (4.24) suggests that in order to 

achieve a diversity order close to the MN full complexity system, it suffices to have N >M 

and keep M small. 
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Figure 4.2: Comparison of different AS schemes over independent Rayleigh flat-fading 
channels, and QPSK transmission. 

4.5 Simulation Results 

In this section, we present both analytical and simulation results for the AS scheme in 

independent Rayleigh flat-fading channels. In the following, a system with M transmit 

and N receive antennas out of which K transmit antennas are chosen, is referred to as an 

(M,N; K) system. 

In Fig. 4.2, we evaluate the performance of the proposed transmit AS approach. The 

performance is measured in terms of the BER for a frame of 100 symbols from QPSK 

complex constellations averaged over 10,000 frames. As shown, Fig. 4.2 depicts the BER 

performance of the (M = 4,JV = 4; K — 2) system employing DFD and performing the 

proposed AS scheme. We plot along, as a benchmark, the performance of the same system 

performing optimal capacity-based AS approach [23]. Also, for reference, we plot along 

the performance of the (M = 2,N — 2; K = 0) system employing ML detector without 
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performing AS. It is clear from the figure that the (M = 2,N = 4; K = 2) performing the 

proposed AS achieves the same performance as the system performing optimal capacity-

based AS. It can be noticed that both approaches outperform the (M = 2,N = 2; K = 

0) system employing ML detector. Note that here all systems have the same bandwidth 

efficiency. 

10 15 
SNR (dB) 

Figure 4.3: Outage probability comparison over independent Rayleigh flat-fading channels. 
0^=2 bits/s/Hz, and QPSK transmission 

Fig. 4.3 displays the outage probability for a (M = 2,N = 2; K — 1) system performing 

the proposed transmit AS. For the same system, we plot along the closed-form expression 

given in (4.23). As a benchmark, we plot along the outage probability curves for the (M = 

2,N = 2; K = 0) and (M — 1,N = 2; K = 0) systems, respectively. The figure clearly shows 

that the curves of the closed-form analytical expression in (4.23) and the simulated one are 

in excellent agreement at high-SNR. As can be observed both curves achieves diversity 

order of three (D = 3), confirming our analytical results. 
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4.6 Conclusions 

In this chapter, we have analyzed the performance of an AS approach for the DFD receiver 

over independent Rayleigh flat-fading channels. We used a pragmatic selection criterion 

that maximizes both the post-processing SNR at the receiver end, and the system capacity. 

We have derived an upper bound expression on the outage probability for the AS at high-

SNR regime. We have also shown that the performance of the proposed AS scheme is 

comparable to the optimal capacity-based selection based on exhaustive search, but with 

much less complexity. 
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Chapter 5 

Cross-Layer Based Transmit Antenna 

Selection for DFD in Correlated Ricean 

MIMO Channels 

5.1 Introduction 

In the previous chapter, we have studied AS from a physical layer perspective (e.g., capacity 

and error probability criteria). In this chapter, we investigate a cross-layer AS approach for 

MIMO-SM employing DFD at the receiver. The focus on a cross-layer AS scheme can be 

motivated as follows. In practice, link quality is determined by both physical and data link 

layers. 

5.1.1 Prior Work 

A cross-layer approach that combines AS and adaptive modulation, in Rayleigh fading 

channels, is investigated in [26], in which a H-ARQ technique is used at the data-link 

layer to improve the link throughput. However, it is important to mention that the authors 
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in [26] relied on assumptions that are too optimistic to be practical: i) uncorrected signal 

propagation paths; ii) absence of direct-path propagation; Hi) CSI perfectly known at the 

receiver. Only more recently, researchers realized the importance of these issues, where 

measurement results indicate that channels suffer from correlation [27]. The effects of 

Ricean fading on the capacity of multiple-antenna systems is examined in [28]. In [28], 

the authors show that Ricean fading can improve the capacity of a multiple-antenna sys­

tem when the transmitter knows the Ricean factor. MIMO systems with BLAST [4] and 

orthogonal training signals have been investigated in [29]. In [29], it is shown that one gen­

erally spends half of the coherence interval training in order to maximize the throughput in 

a wireless channel. 

5.1.2 Contributions and Organization 

In this chapter, we investigate the performance of a cross-layer AS approach. We consider 

a spatially correlated Ricean fading channel model, which is known to more accurately 

model real-world wireless environments [22]. An outline of the chapter is as follows. The 

system model is developed in Section 5.2. The cross-layer AS approach is presented in 

Section 5.3. In that, a closed-form expression for the system throughput, with perfect CSI 

at the receiver, is presented. We further analyze the system performance with pilot-channel 

estimation. Section 5.4 provides a detailed analysis on the extensive simulation results. 

Finally, conclusions are given in Section 5.5. 

5.2 System Model 

Consider a point-to-point single-user MIMO wireless packet switched communication sys­

tem with M transmit and N (N > M) receive antennas as shown in Fig. 5.1. At the link 

level a go-back-n (GBN) protocol [66] is adopted. At the receiver end, we have a DFD to 
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Figure 5.1: MIMO-SM system employing DFD and performing cross-layer based transmit 
AS. 

cancel interference and improve detection of the transmitted packets. 

We assume that transmissions are organized in frames, all of fixed predefined length 

L. For instance, this can be the server information transmitted during client requests. It is 

worth highlighting that each frame contains a variable number of packets, which is equal 

to K active antennas out of the M available ones. At the transmitter, the incoming data is 

fed into a spatial multiplexer that splits the input data streams among the K active antennas 

out of the M possible ones. The subset of K < M transmit antennas is determined by a 

selection algorithm operating at the receiver, which indicates to the transmitter, through a 

low-bandwidth, zero-delay and error-free feedback channel, the optimal subset p G P' of 

size K. Note that P' is the set of all possible subsets of selected transmit antennas given by 

P* = ;forK=\,2,...,M (5.1) 

Let H denote the N x M channel matrix, and Hp denote the N x K channel submatrix 

corresponding to transmit antennas p . Recall that the corresponding sampled received 

baseband signal is given by 

y = HpEpx + n, (5.2) 
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where y e CNx] is the received signal, Ep e IR^7'' is a permutation matrix corresponding 

to the greedy QR detection ordering [67], and Hp G cNxK is the spatially correlated Ricean 

channel matrix. We assume that the fading process is sufficiently slow to consider it con­

stant for the duration of a frame. The information symbol vector x G CKx' consists of inde­

pendent and uniform power transmitted substreams. The receiver noise n ~ CN(0,Nol^) 

consists of independent circularly symmetric zero-mean complex Gaussian entries of vari­

ance NQ. 

The Ricean channel matrix H^, that contains transmit and receive antennas correlation, 

can be written as [45,68,69] 

H„ = HLOs + R,1/2HwR r
1/2, (5.3) 

where 

HLOS = A / — j H L o s and Hw = J — y H w . 

The N x N matrix Rr and the K x K matrix R( are the receive and transmit correlation 

matrices, respectively. Both matrices are assumed to be positive definite, and their elements 

represent the correlation between antenna pairs at the receiver and transmitter, respectively. 

In order to focus on the impact of spatial correlation on the cross-layer transmit AS 

approach, we assume the receiver to be located at a richly-scattered propagation environ­

ment while the transmitter is located at a high altitude. Thereby, the fading is only transmit 

correlated. This situation can occur, for instance, in indoor environments. Consequently, in 

this case we have Rr = I/y and R, ^ I#, where I# is an identity matrix of size K. Note that 

a frequently used model for HLOS is HLOS — \ / K / ( K + 1)^NXK where \&/VXA: is an TV x K 

matrix of all ones [70]. Hence, the channel matrix Hp can now be written as 

Hp = <P[-yNxK + \[-^iiw-Rl
}/2- (5-4) 

y V K + i V K+ i 
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As in Chapter 3, we constrain our discussion to the exponential correlation model [49,71]. 

5.3 Adaptive Cross-layer Based Transmit Antenna Selec­

tion Approach 

In this section, we present a detailed analysis on the throughput performance of the cross-

layer AS approach. In that, a closed-form expression of the system throughput is derived 

under the assumption of perfect CSI at the receiver. Next, we obtain a closed-form expres­

sion of the system throughput with imperfect channel estimation. 

In the subsequent analysis we constrain our discussion to H^, which consists of the 

appropriate columns of H as dictated by the optimal subset p. Note that, in [23,25], the 

selected transmit antennas are those that maximize the system capacity according to 

C(Hp) = log2det 
*K + ~KllP Uf bits/s/Hz. (5.5) 

Note that the capacity-based AS approach, in (5.5), is based on a general formula and is not 

specified to a specific receiver. Moreover, this AS approach does not take into consideration 

the high level protocol that is running above the physical layer. However, if one attempt to 

maximize the throughput of the system presented in Fig.5.1, then several key parameters 

such as automatic-repeat-request (ARQ) techniques and DFD properties should be taking 

into consideration as well. 

5.3.1 Performance Analysis with Perfect Channel Estimation 

In this section, we assume that perfect CSI is available at the receiver while performing AS. 

As mentioned in Chapter 4, if the previous decisions are correct, i.e., no propagation of 
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error, the different substreams can be expressed as 

y; — ruXj + n,-, for i— ],2,...,K. (5.6) 

From (5.6), one can see that the resulting channel is now decomposed into K parallel 

virtual subchannels. Hence, the output SNR of the rth substream is given by 

li = rhlo, (5.7) 

where yb = C,/K is the average normalized received SNR at each receive antenna. Thus, 

the output SNRs of the substreams are determined by the diagonal entries of the matrix R, 

which in turn depends on Ep. Using (5.7) and assuming binary phase-shift keying (BPSK) 

transmission, the symbol error rate (SER) of the rth layer, conditioned on having correctly 

detected all previous symbols, is given by 

SER,- = Q ( y ^ . y o ) , for « = 1,2 AT. (5.8) 

In what follows, we are interested in the probability of vector symbol error rate (V-SER), 

that is, the probability of at least one of the transmitted symbols in error. Hence, the condi­

tional V-SER can be written as 

K 

V-SER (Up) = 1 - J ] (1 - SER,). (5.9) 

From the fact that each information packet contains L/K symbols, the packet error proba­

bility (PER) can be written as 

PER(H^) = 1 no-sER.0 
L/K 

(5.10) 
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Substituting (5.8) in (5.10), the PER is now given by 

PER(H„) = 1 n(>-e(^) 
; = i 

L/K 

(5.11) 

As mentioned, the selected transmit antennas are those that maximize the system through­

put according to the GBN protocol [66]. Therefore, having obtained an expression for the 

PER as in (5.11), the throughput of the selected system can now be expressed as 

Tl(Hp) K-

K-

l - P E R ( H p ) 

1 + (W-1)PER(H„) 

l=\ 

L/K 

i + (iv-i) i nO-e(v^)) 
1=1 

1//P 
(5.12) 

where W is the window size of the GBN protocol. Note that (5.12) can be easily extended 

to other modulation schemes. Based on (5.12), the receiver computes the throughput for 

all the subsets in P', defined in (5.1). The receiver then chooses the optimal subset p 6 P', 

which has the maximum throughput value, and conveys the AS commands to the transmitter 

to select the optimal K antennas out of the M available ones for transmission. Keep in mind 

that (5.12) depends on the transmission rate, i.e., K antennas. 

It is instructive now to see the behavior of (5.12) at high SNR asymptote. Thus, for 

SNR —»oo we have 

lim T| 
Y0_oo 

= K. (5.13) 

Inspection of (5.13) reveals that in order to achieve the maximum throughput value M 
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(K <M), the transmitter must select all the M available antennas. We stress that, even with 

high spatial correlation (e.g., > 0.8), the transmitter is expected to select the M antennas. 

A possible interpretation for this is that, as the SNR approaches infinity, only the number 

of channel eigenmodes (eigenvalues of HWH) is the more relative aspect to the system 

performance. It is worth noting that when we transmit a vector x through a MIMO channel, 

we excite the so-called eigenmodes of the channel [72]. The relative strength of these 

channel eigenmodes (parallel virtual subchannels), i.e., each with power gain equal to the 

corresponding eigenvalue, do not affect the high SNR behavior. This implies that spatial 

correlation has no impact on the system performance as SNR —> °°. 

5.3.2 Performance Analysis with Imperfect Channel Estimation 

In the previous section, perfect CSI is assumed at the receiver while performing antenna se­

lection. However, in practice, the receiver has to estimate the channel using pilot symbols. 

The latter are a known set of transmitted training signals. Then, the receiver uses the esti­

mates as though it were correct to detect the transmitted packets. The effect of imperfect 

channel estimation on the system performance is now investigated. 

In what follows, we assume that a time frame is composed of L^ pilot symbols intervals 

and Ld data symbols (payload) intervals. Let S denote an M x Lt training matrix, Y and Z 

denote the N x t , receive and noise vectors, respectively. Thus, during training, we have 

Y = HS + Z. (5.14) 

Following the approach in [29], one can obtain a ML estimate of H as follows: 

H = YS / / (SS / / ) _ 1 

= H + Z S / / ( S S " ) " 1 . (5.15) 
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Note that the existence of (5.15) requires the matrix SS to be invertible. Now, let AH = 

Z S " ( S S " ; r \ t h e n 

H = H + AH, (5.16) 

where AH represents the estimation error matrix of the full channel matrix H. Thus, with 

AS, we have 

Hp = Hp + AHp, (5.17) 

where AHP represents the estimation error matrix corresponding to transmit antennas p. 

Therefore, the corresponding sampled received baseband signal can be written as 

y = Hptpx + n. (5.18) 

After having obtained the ML estimate Hp, the receiver uses Hp for detection. Thus, 

the receiver, first performs a QR factorization of the estimated channel matrix H ,̂ followed 

by nulling and cancelation. The estimated greedy QR ordered DFD can be represented by 

applying the QR decomposition to H^ with its columns permuted, i.e., H^E^ = QR where 

Ep is a permutation matrix. Note that Ep is a function of H ,̂. Now, the transmitted symbols 

are detected at the receiver as follows. Multiplying both sides of (5.18) by QH yields 

y = Q ^ H ^ x + n) 

= QP[{&p-AHp)tipx + n] 

= &* [&ptpx-AHp£px + n] 

= (^"HpEpX^ABpEpX + h 

A M * A A. I F _A 

= Q ^ Q R x - Q ^ A H ^ x + n 

= R x - Q ^ A H ^ x + n. (5.19) 

Let f2 = Q 9 AHpEp denote aK x K matrix. Then the received vector y, in matrix form, 
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can be expressed as 

h 

yn 

n , i - ^ 1 , 1 

-«2 .1 

-Qtf.l . . . rK.K-&K.K *K 

X] 

X2 

XK 

+ 

«J 

" 2 

% 

(5.20) 

Now, if we assume that all previous decisions are correct, the different substreams can be 

expressed as 
K 

Si = n.jXi - Y, Q.jXj + hj, for i = 1,2,..., K, (5.21) 

7=1 

where fi;, is the (i,i)th entry of R. The summation term in (5.21), is analogous to effect 

of intersymbol interference (ISI) and can be interpreted as crosstalk among the nominally 

decoupled K virtual subchannels, due to estimation errors. Therefore, following a common 

practice in equalization analysis, we determine the post-detection SNIR. Assuming no error 

propagation from previous stages, the SNIR for the ith substream is given by 

t" 
ff,X 

7=' 

(5.22) 

where A, = E \xHx\ jK is the average energy per symbol at the transmitter. Now, hav­

ing obtained an expression for the SNIR as in (5.22), the closed-form expression for the 
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throughput with imperfect channel estimation can be expressed as 

M&P) K-
PER(HP) 

\ + {W-\)VER{YLp) 

= K-

2r?:X 

^LU\au\ +No 

L/K 

1 + (W-1) nh-e 
;=i 

^A 
Wj=,|Oyf+JVo 

L/K\ 

) 
(5.23) 

5.4 Simulation Results 

Simulation results are now presented for the cross-layer AS approach in correlated flat 

Ricean fading MIMO channels. Performance results are reported in terms of the throughput 

versus ES/NQ in dB. Note that the link layer throughput is measured as the effective number 

of correctly received bits at the link layer per channel use [66]. In the following, a system 

with M transmit and N receive antenna is referred as an M x N system. Henceforth, we 

consider: i) 4x4 MIMO system; ii) GBN window with W = 4 packets; Hi) frame duration 

of 2 ms; iv) frame length is L — 180 symbols; v) Ricean factor is set to K = 3 dB; vi) 

exponential correlation model. 

5.4.1 Perfect Channel Estimation 

Fig. 5.2 shows the system performance with both cross-layer and capacity-based AS ap­

proaches. We consider two correlation settings: i) |p| = 0 (uncorrected case);-ii) |p| = 0.6. 

We plot along an additional curve, as a benchmark, for the same system without performing 

AS. It can be noticed that the performance of the cross-layer AS is significantly better than 

the capacity-based one. In fact, it can be seen that the throughput gain is large at moderate 
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SNRs. Inspection of Fig. 5.2 reveals that the cross-layer AS is more robust to the effect 

of spatial correlation at low SNRs ([0 — 7] dB). Note that the performance degradation is 

about 2 dB for the cross-layer AS, whereas it is about 3 dB for the capacity-based one. 

Es/N0(dB) 

Figure 5.2: Normalized throughput performance of a 4 x 4 system performing both cross-
layer and optimal capacity-based AS. K = 3 dB, exponential correlation model, BPSK con­
stellations. 

Fig. 5.3 depicts the effects of spatial correlation on the cross-layer AS approach for the 

4 x 4 MIMO system. We consider five correlation settings: i) |p| = 0 (uncorrected case); 

ii) |p| = 0.4; in) |p| = 0.6; iv) |p| = 0.8; v) |p| = 0.9. Conclusions that can be drawn, 

by examining Fig. 5.3, is that spatial correlation reduces the effective SNRs of the data 

substreams and hence lead to a degradation in the performance. 

Fig. 5.4 shows the average SNR loss due to spatial correlation for the 4 x 4 MIMO sys­

tem performing cross-layer AS. Note that the average SNR loss, for a predefined throughput 
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Figure 5.3: Normalized throughput of a 4 x 4 system performing cross-layer AS under 
different exponential correlation settings. K = 3 dB, BPSK constellations. 

r| and correlation values |p|, is defined by 

loss(dB) = SNR(|p| = x) - SNR(|p| = 0). (5.24) 

For instance, the average SNR loss for r| — 0.5 with |p| = 0.4 is about 1 dB. It can be seen 

that the average SNR loss increases with the correlation coefficients |p|, and the loss rate 

reaches 3 dB when |p| increases up to 0.7. Note that the average SNR loss increases steeply 

when correlation exceeds |p| = 0.8. 

In Fig. 5.5, the usage rate of each antenna combination of the cross-layer AS ap­

proach is shown. In these results, we consider the same correlation settings as in Fig. 5.3. 

An inspection of Fig. 5.5 discloses qualitatively different behaviors at moderate SNRs 

(e.g., [0—12] dB). More precisely, the rate of usage of each antenna combination with 

high spatial correlation of |p| = 0.8,0.9 (this corresponds to a severe lack of angular spread 
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Figure 5.4: Average SNR loss due to spatial correlation for a 4 x 4 system employing 
cross-layer AS. K = 3 dB, exponential correlation model, BPSK constellations. 

or closely spaced antennas) [45] reveals different behavior than that with moderate spatial 

correlation of |p| = 0,0.4,0.6. For instance, at high spatial correlation, the one antenna 

combination is the dominant one where it reaches approximately 100% with |p| = 0.9. A 

primary reason for the difference can be explained intuitively as follows. At high spa­

tial correlation and at moderate SNRs, the cross-layer AS tends to choose the minimum 

number of antennas in an attempt to reduce the effect of spatial correlation as possible 

(e.g., |p| = 0.8,0.9). In other words, under these conditions, it is better to transmit less 

information with higher reliability. At high SNRs (e.g., > 16dB), the usage rate behavior 

is slightly affected by spatial correlation where the four antenna combination is the most 

employed. It is worth noting that this observation conforms with r\oa = K given in (5.13). 

Thus in order to achieve the maximum throughput value M (K < M), the transmitter must 

select all the M available antennas. In other words, as the SNR approaches infinity, only 
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Figure 5.5: Usage rate of transmit antenna combination, active antenna K, of a 4 x 4 system 
performing cross-layer AS. K = 3 dB, exponential correlation model, BPSK constellations. 

the number of channel eigenmodes (eigenvalues of H^H) is the more relative aspect to the 

system performance. It is worth noting that when we transmit a vector x through a MIMO 

channel, we excite the so-called eigenmodes of the channel [72]. The relative strength of 

these channel eigenmodes (parallel virtual subchannels), i.e., each with power gain equal 

to the corresponding eigenvalue, do not affect the high SNR behavior. Therefore, at high 

SNRs, the effective impact of spatial correlation decreases. 

The rate of usage of each antenna combination using the capacity-based AS is depicted 

in Fig. 5.6. For a fair comparison, we use the same correlation settings as in Fig. 5.5. One 

can directly notice that, at low/high SNR, the capacity-based AS exhibits approximately the 

same usage rate behavior with four antenna combination being dominant. It follows that 

the usage rate of each antenna combination, for the capacity-based AS, is slightly affected 

by spatial correlation. It can be seen that the existence of spatial correlation (|p| > 0) 
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Figure 5.6: Usage rate of transmit antenna combination, active antenna K, of a 4 x 4 system 
performing capacity-based AS. K = 3 dB, exponential correlation model, BPSK constella­
tions. 

slightly decreases the usage rate of the four antenna combination at moderate SNRs. This 

ties well with intuition since the presence of spatial correlation can raise the possibility of 

moderately to severely ill-conditioned channel matrix, i.e., rank-deficient channel matrix 

H (rank(H) < mm(N,M)) [45]. Now, keep in mind the fact that the optimal choice of 

K transmit antennas that maximizes the channel capacity results in a channel matrix that 

is full rank (rank(H^) — K) [23]. Thus, this explains the decrease in the usage rate of 

the four antenna combination. Note that in the limit |p| —> 1, we have a rank-one/keyhole 

channel matrix H (this corresponds to the case when signals have to go through windows in 

buildings). Therefore, the best strategy is to select only the antenna with the highest channel 

gain . To summarize, contrary to the cross-layer AS, the capacity-based AS always tends 

to select the maximum number of antenna combination to achieve the maximum possible 

physical data rate. 
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5.4.2 Imperfect Channel Estimation 

In this section, we investigate the impact of imperfect channel estimation on the cross-layer 

AS. To isolate the effects of imperfect channel estimation from that of spatial correlation, 

we consider independent Ricean flat fading channels (i.e., |p| = 0). We stress that in sim­

ulation, training symbols are not counted in the throughput computation. 

Fig. 5.7 depicts the system throughput performance with the cross-layer AS. We con­

sider four training-sequence lengths: /) Lt = 4 symbols; ii) L, = 10 symbols; Hi) Lt = 20 

symbols; iv) Lt — 100 symbols. We plot an additional curve, as a benchmark, for the case 

where the receiver perfectly estimates the channel. It is clear that with a training-sequence 

of length Lt = 100 the performance is very close to that of perfect CSI. Thus a longer 

training-sequence yields a higher throughput. Decreasing the training-sequence length, 

from L, = 100 to L, = 20 symbols, increases the SNR loss to about 3 dB. Also the SNR 

penalty, due to imperfect channel estimation, is about 5 dB and 15 dB with L, = 10 and 4 

symbols, respectively. Note that with L, = 4 symbols, the system performs poorly with an 

asymptotic error floor where the throughput reaches a maximum 0.6 regardless of the SNR. 

This follows from the fact that a short training-sequence length, Lt — 4, is insufficient to 

capture the dynamics of the rapidly fading channel. Therefore, imperfect channel estimates 

lead to propagation of errors in the subsequent nulling and cancelation stages in the DFD, 

and also affect the greedy QR detection ordering, which in turn limits the performance of 

the DFD. 

The impact of imperfect channel estimation on the system performance with capacity-

based AS, for various training-sequence lengths, is displayed in Fig. 5.8. It can be observed 

that, the capacity-based AS with L, = 100 symbols exhibits a very close performance to that 

with perfect CSI. For instance, for r\ = 0.4 with Lt = 100 symbols, SNR penalty of 0.5 dB 

is incurred. Decreasing the training-sequence length to L, = 20,10,4 symbols increases the 

SNR loss to approximately 2 dB, 3 dB, and 15 dB respectively. Similar to the cross-layer 
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Figure 5.7: The impact of imperfect channel estimation on the performance of a 4 x 4 
system performing cross-layer AS. K = 3 dB, uncorrelated case (|p| = 0), BPSK constella­
tions. 
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Figure 5.8: The impact of imperfect channel estimation on the performance of a 4 x 4 
system performing capacity-based AS. K = 3 dB, uncorrected case (|p| = 0), BPSK con­
stellations. 

AS with L, = 4, the performance is limited by an error floor caused by channel estimation 

errors where the throughput reaches a maximum of 0.5. 

Comparison of the throughput performance for the 4 x 4 M1MO system, with training-

sequence length L, — 10, performing cross-layer and capacity-based AS is displayed in 

Fig. 5.9. For a meaningful comparison, we plot along curves for cross-layer and capacity-

based AS, with perfect CSI at the receiver. Examining Fig. 5.9 reveals that capacity-based 

AS is more tolerant/robust to imperfect channel estimation. For instance, for T| = 0.5, the 

SNR penalty loss is about 5 dB and 3 dB for cross-layer and capacity-based AS, respec­

tively. 

The rate of usage of each antenna combination using the cross-layer AS and under 

imperfect channel estimation, is depicted in Fig. 5.10. Note that the rate of usage with 

L, = 100,20,10, exhibits a similar behavior to that with perfect CSI, whereas for L, = 4 
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Figure 5.9: Comparison of the impact of imperfect channel estimation on a 4 x 4 system 
employing both cross-layer and capacity-based AS, with training-sequence length Lt — 10. 
K = 3 dB, uncorrelated case (|p| = 0), BPSK constellations. 

symbols, the three antenna combination is the most employed over the range of SNRs. 

Finally, the usage rate of each antenna combination using the capacity-based AS and 

under imperfect channel estimation is displayed in Fig 5.11. In contrast to the cross-layer 

AS usage rate behavior, the capacity-based AS usage rate is independent of the reliability 

of the channel estimates obtained using different training-sequence lengths and somehow 

similar to that with perfect CSI. Note that the four antenna combination is again the most 

adopted in this approach over all SNRs. Thus, unlike the cross-layer AS approach, the 

antenna usage rate of the capacity-based AS is less affected by the nonideal channel con­

ditions (spatial correlation and imperfect channel estimation). However, in all cases, the 

cross-layer AS approach is still able to achieve a better throughput performance than the 

capacity-based AS. 
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5.5 Conclusions 

We investigated the performance of a cross-layer AS approach for the DFD in MIMO sys­

tems. We have assumed a spatially correlated flat Ricean fading MIMO model, which is 

known more accurately to model real-world wireless environments. A closed-form expres­

sion for the system throughput with perfect channel estimation was derived. We further 

analyzed the system performance with pilot-aided channel estimation. In that, we derived 

a closed-form expression for the post-detection SNIR of each substream. Furthermore, we 

have shown that the cross-layer AS always assigns transmissions to the antenna combina­

tion which sees the better channel conditions, resulting in a substantial improvement over 

the optimal capacity-based AS. It has been shown that the latter is more robust to nonideal 

channel conditions such as spatial correlation and imperfect channel estimation. However, 

in all cases, the cross-layer AS approach is able to outperform the capacity-based AS. 
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Chapter 6 

Conclusions and Future Work 

This chapter summarizes the major contributions in this thesis and presents possible future 

directions which could be extensions of the research work in this thesis. 

6.1 Conclusions 

• Chapter 3 analyzed the probability of bit error of the ZF receiver in transmit corre­

lated Ricean flat-fading channels. Specifically, we have derived a near exact approxi­

mation for the average BER of each substream with QPSK modulation. Furthermore, 

we have derived a closed-form expression for the optimal transmit correlation coef­

ficient which achieves the maximum capacity (i.e., uncorrelated case) of TITO-SM 

systems. Simulation results have showed the accuracy of the given analysis. Also we 

have observed that, in receive correlated Ricean flat-fading channels, the system per­

formance when N = M is the same as that of transmit correlated Ricean flat-fading 

channels. 

• In chapter 4, we have analyzed the performance of an AS approach for the DFD 

receiver over independent Rayleigh flat-fading channels. We used a pragmatic selec­

tion criterion that maximizes both the post-processing SNR at the receiver end, and 
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the system capacity. We have derived an upper bound expression on the outage prob­

ability for the AS at high-SNR regime. We have also shown that the performance of 

the proposed AS scheme is comparable to the optimal selection based on exhaustive 

search, but with much less complexity. 

• In Chapter 5, we have presented a cross-layer AS approach for the DFD in MIMO 

systems. A spatially correlated Ricean flat-fading MIMO model was assumed. A 

closed-form expression for the system throughput with perfect channel estimation 

was derived. Further the system performance with pilot-aided channel estimation is 

analyzed. In that, we derived a closed-form expression for the post-detection SNIR 

of each substream. In addition, we have shown that the cross-layer AS always assigns 

transmissions to the antenna combination which sees the better channel conditions, 

resulting in a substantial improvement over the optimal capacity-based AS. It has 

been shown that the latter is more robust to nonideal channel conditions such as 

spatial correlation and imperfect channel estimation. However, in all cases, the cross-

layer AS approach is able to outperform the capacity-based AS. 

6.2 Future Directions 

Although this thesis has investigated the BER performance of ZF receivers, and proposed 

AS approaches for the DFD, there are several issues that remain to be explored. In this 

section, we discuss several important areas which require further study. 

• An important point that is not addressed in this thesis is the effect of delay and errors 

in the feedback channel in Chapters 4 and 5. This will affect the optimal choice of 

the selected antennas and lead to a degradation of the system performance compared 

with ideal channels. A detailed analysis, along the lines of [74] is a possible avenue 

of future work. 
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• The analysis provided, in chapter 3, was only for independent Rayleigh matrix chan­

nels, which are known to be ideal in practice. Analysis in different environments 

such as correlated Ricean fading channels is an interesting topic for future research. 

• In Chapters 3 and 4, performance analyses were provided under the assumption of 

perfect CSI at the receiver. However, in reality the receiver has to resort to an es­

timate of H. This will lead to a degradation of performance compared with ideal 

channels. Therefore performance analyses under imperfect channel estimation are 

important issues for future research. 

• The Kronecker correlation model, adopted in Chapters 3 and 5 neglects the statistical 

interdependence of both link ends. Recently, a stochastic model for modeling spatial 

correlation in MIMO radio channels has been proposed in [75]. This model takes into 

account the joint correlation properties of both link ends. Therefore, performance 

analyses in this case are possible for future avenue. 

• Performance analyses of the proposed AS schemes under the so-called keyhole or 

pinhole [43] channel model are also important issues for future research. 
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