
ATTACK GRAPH COMPRESSION

TAO LONG

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, C A N A D A

M A R C H 2 0 0 9

© TAO LONG, 2 0 0 9

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Bibiiothgque et
Archives Canada

Direction du
Patrimoine de I'ddition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63328-1
Our file Notre reference
ISBN: 978-0-494-63328-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

ABSTRACT

Attack Graph Compression

Tao Long

Attack graph has emerged as a useful tool for defending against multi-step network at-

tacks involving correlated vulnerabilities. However, most current representations of attack

graphs are not scalable [35]. Even the attack graph of a reasonably large network is usually

incomprehensible to the human eyes. For realistic networks with tens of thousands of hosts

and hundreds of vulnerabilities, even computing the attack graph may become infeasible.

On the other hand, an attack graph of a real-world network usually has much redundancy

due to the presence of hosts with similar configurations, such as those in an office or com-

puter lab. To out best knowledge, existing work can at best hide such scalability issues

through visualization techniques but cannot remove the redundant information, which does

not comprise real solutions.

This thesis presents a scalable representation of attack graphs for removing such re-

dundancy. The representation is based on a well known compression technique, namely,

reference encoding. More precisely, we use one host as the reference to other hosts with

similar vulnerabilities and connectivity; details of the latter can then be omitted in the re-

sultant attack graph. We introduce our compression model step by step. We start with

iii

a simple case where hosts have identical connectivity and vulnerabilities. We show that

a one-host model can be used in some cases but it has limitations in representing remote

exploits across different machines. We then introduce a two-node model to address the lim-

itation and show that the one-host model is actually a special case of the two-node model.

Next, we study the more realistic case where hosts may have different connectivity and vul-

nerabilities. We show that in some cases small differences are better hidden in textual rules

while in other cases the differences are better handled by leaving the involved hosts outside

the compression model. To evaluate the proposed compression model, we will describe a

case study on a small network. We will also show experimental results based on random

network topologies generated by existing tools. Both results confirm that our model can

significantly reduce the complexity of attack graphs.

iv

Acknowledgments

I would like to express my appreciation to all the people who have ever helped and in-

structed me for this thesis and in my classes. In particular, I thank Mr. Ji Lou for his help

on the experimental section of this thesis.

I would like to express my sincere thanks to my supervisor, Dr. Lingyu Wang, for his

help, guidance and advice to my study at Concordia University. I must say, his guidance

allows me to experience the joy of research, which will benefit me for the rest of my life.

Finally, I am very grateful to my parents, brother, wife and sister for their constant

supports. Without their inspiration and encouragement, I would not have been able to

tackle this challenging research.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background and Motivation 1

1.2 Summary of Contributions 5

1.3 Organization 8

2 Literature Review 9

2.1 Attack Graph 9

2.2 Other Related Work 14

3 Attack Graph Compression 18

3.1 Basic Concepts 18

3.2 The Complete Case 22

3.2.1 One-Node Model 23

3.2.2 Two-Node Model 25

vi

3.2.3 Implication of Type Graphs 33

3.3 The Incomplete Case 36

3.3.1 Differences through Reference Rules 37

3.3.2 Hybrid Case 41

4 Case Study and Experiments 46

4.1 A Case Study of Analysis with Compression Model 46

4.2 Implementation and Experiments 51

5 Conclusion 61

Bibliography 63

vii

List of Figures

1 An Example of Attack Graph 3

2 An Attack Graph of a 14-Machine Network [43] 4

3 An Overview of Our Approach 7

4 An Example of Attack Graph 20

5 An Example of Type Graph and Configuration Graph 22

6 An Example of the Complete Case 23

7 An Example of the Compression Model for the Complete Case 25

8 An Example of the Complete Case 26

9 An Example of the Compression Model for the Complete Case 29

10 An Algorithm for Assigning Vulnerabilities in the Complete Case 32

11 A Special Case of the Two-Node Compression Model 33

12 Different Cases of Conjunctive Relationships in T^pe Graphs 35

13 An Example of the Incomplete Case 38

14 The Compression Model in the Incomplete Case 39

15 An Example of the Hybrid Case 42

16 The Compression Model in the Hybrid Case 43

viii

17 An Algorithm for Assigning Vulnerabilities in the General Case 45

18 An Example Network 47

19 The Compression Model 48

20 The Compressed Attack Graph 49

21 A Topology Shown in OTTER 57

22 Attack Graph Sizes in the Number of Hosts 58

23 Comparison of the Number of Hosts 59

24 The Number of Hosts in the Number of Clusters 60

ix

List of Tables

1 Attack Sequences 24

2 Attack Sequences (Crosslines Indicate Sequences with Local Exploits) . . . 27

3 Generating Attack Sequences through Reference Encoding (Remote Exploits) 30

4 Generating Attack Sequences through Reference Encoding (Local Exploits) 31

5 Generating Attack Sequences through Reference Encoding 39

6 Attack Sequences Based on the Compression Model 50

7 BRITE's Parameters [7] . 53

x

Chapter 1

Introduction

1.1 Background and Motivation

Today's computer systems play a critical role in almost every sector of society. Such

systems constitute the central component of information technology infrastructures in en-

terprises and in critical infrastructures including power grids, financial data systems, and

emergency communication systems. Protecting these systems against network intrusions

is crucial to the economy and to national security. However, the scale and severity of in-

trusions have continued to grow at an ever-increasing pace despite over twenty years of

research in vulnerability analysis and intrusion detection [2,8].

In the everlasting war against attackers, security researchers and administrators seem to

always fall behind their opponents in technology. Firewalls and access control mechanisms

may thwart intrusion attempts made by amateur attackers, but these same mechanisms can

be easily circumvented by experienced attackers. Intrusion detection systems (IDSs) and

1

vulnerability scanners may help system administrators to identify incidents or threats of

individual attacks, but such systems are usually unaware of the relationships among attacks.

An attacker can gradually elevate his/her privileges through multiple interdependent attacks

on intermediate victims before finally reaching the attack goal. Such a cleverly crafted

multi-step attack creates nightmares to system administrators because it is usually difficult

to manually identify correlated attacks from the large volume of intrusion alerts.

To defend against multi-step attacks, researchers have recently proposed techniques for

correlating isolated alerts and vulnerabilities (Chapter 2 will describe related work in more

details). In particular, a vulnerability-centric approach to the defense against multi-step

intrusions reflects the ancient saying: Know Your Enemy, Know Yourself, Fight A Hundred

Battles, Win A Hundred Battles. Such an approach combines the knowledge about one's

own network with the knowledge about ongoing attacks for hardening a network and for

correlating and predicting attacks.

A popular model of correlated network vulnerabilities is called attack graph. An attack

graph is usually represented as a directed graph with two types of vertices corresponding

to exploits, and the pre and post-conditions of exploits, respectively. Directed edges point

from the pre-conditions to an exploit and from the exploit to its post-conditions. Figure 1

shows a toy example of attack graphs. We assume a simple scenario where a file server

(host 1) offers the File Transfer Protocol (ftp), secure shell (ssh), and remote shell (rsh)

services; a database server (host 2) offers ftp and rsh services. The firewall only allows ftp,

ssh, and rsh traffic from a user workstation (host 0) to both servers. In the attack graph,

exploits of vulnerabilities are depicted as predicates in ovals and conditions as predicates

2

in clear texts. The two numbers inside parentheses denote the source and destination host,

respectively. The attack graph represents three self-explanatory sequences of attacks (attack

paths). For example, the right path is: sshd_bof(0,1) —> ftp_rhosts(1,2) —* rsh(1,2) —>

local Jbof(2).

user(0)

root(2)

Figure 1: An Example of Attack Graph

However, even attack graphs for a reasonably large network could be incomprehensible

to the human eye. The number of vertices in an attack graph is at least quadratic in the

number of hosts multiplied by the number of vulnerabilities, because each exploit involves

a source host, zero or more intermediate hosts, and a target host. Consequently, the size of

3

an attack graph, which is quadratic in the number of its vertices, grows quickly with the

number of hosts and vulnerabilities. For large networks with tens of thousands of hosts

and hundreds of vulnerabilities, even computing the attack graph may become infeasible.

In contrast to the meaningful model depicted in Figure 1, Figure 2 shows an attack graph

model for a subnet of 14 hosts, with less than 10 vulnerabilities on each machine.

Figure 2: An Attack Graph of a 14-Machine Network [43]

On the other hand, the explosion in size of attack graphs is not entirely inevitable,

fact, an attack graph may actually carries a large amount of redundant information.

4

In

In

the scenario depicted by Figure 1, if the hosts 1 and 2 have the same vulnerabilities and

network connectivity, then it follows that whatever happens between host 0 and host 1

can also happen between host 0 and host 2, and vice versa. In practice, it is common

for a network to have a large number of hosts with the same or similar configurations and

connectivity, such as those in offices, computer labs, server farms, etc. Computing an attack

graph for such a network using current representation would introduce much redundant

information into the result. Such redundancy may practically render a meaningful attack

graph incomprehensive and difficult to generate, analyze, and manage.

1.2 Summary of Contributions

This thesis will present a novel scalable representation of attack graphs. The representation

is based on a graph compression technique, namely, reference encoding. This technique has

previously been used in different applications, such as compressing web graphs [1] where

one URL may be used as the reference for another URL with similar external links. This

allows details about the latter to be omitted in the resultant graph. We borrow this intuition

for compressing attack graphs such that redundancy caused by similar configuration and

connectivity can be reduced. However, special requirements in compressing attack graphs

lead to a few subtleties in the current problem that prevent any trivial application of the

reference encoding and many other standard graph compression methods.

First, the compressed attack graph must be meaningful and can reveal similar threats

as in the original version. That is, the main goal of the compression of attack graphs is

5

not to reduce storage requirements. By examining the compressed attack graph, a security

administrator should be able to identify any kinds of attack strategies that he may identify

from the full attack graph, even though some details about how such strategies may be ap-

plied to specific hosts may be missing. For example, reference encoding cannot be applied

to Figure 1 simply by removing hi or h2, because what happens between these two hosts

would no longer be observable in the result. Second, the compression must be lossless in

the sense that it should allow all attack sequences to be recovered, if necessary, as they can

be from the original attack graph. This capability would completely eliminate the need for

generating the original attack graph.

Figures 3 provides a high level overview of our approach. At the upper left corner are

the given inputs, that is, network configuration and domain knowledge about vulnerabili-

ties. The upper right corner depicts an attack graph that is generated from those inputs us-

ing existing methods (keep in mind the attack graph is typically very large in size although

here we only show a small example). The lower left corner denotes our compression model,

which is derived from the given inputs. The lower right corner is desired analysis results,

such as a sequence of attacks leading to a given condition.

The rest of this thesis will explain the details of the proposed compression model and

how we can compute the model from given inputs. We introduce our model in several

stages. First, we start with a simple case where hosts have identical configuration and con-

nectivity. We then extend the model to more complicated cases where the configuration and

connectivity may slightly vary among different hosts. Finally, we consider the case where

a network is consisted of several densely connected subnets and only limited connectivity

6

Network Configuration and Domain Knowledge Full Attack Graph

hostO

firewall

host 1

\ ftp rsh ssh

user(x)
I

ftp_rhost

user(y)

user(x) I
sshd_bof

I
user

! Compression
i

-

h,v,

HI ashO
HI as h2 (vl)

h2v2

Compression Model

Generation

Analysis

Analysis

Analysis Result

Figure 3: An Overview of Our Approach

exists between different subnets.

As we shall show, the compression model will be significantly smaller in size than

the full attack graph, which enables an administrator to easily identify potential sequences

of attacks leading to the compromise of a network. Moreover, we shall show that the

compression is lossless in that sense that our compression model will indicate exactly the

same sequences of attacks as the full attack graph does. Finally, we shall also discuss

examples of obtaining the same analysis result using our compression model as with the

full attack graph. In particular, we will discuss how our compression model can be used

for finding paths that may be taken by attackers in compromising given victim hosts.

7

1.3 Organization

The rest of the thesis is organized as the follows. Chapter 2 reviews relevant related work.

Chapter 3 devises our compression model and discusses its applications to attack graph

analysis. Chapter 4 presents a case study and describes our implementation and experi-

ments. Chapter 5 concludes the thesis.

8

Chapter 2

Literature Review

In this chapter, we review related works on defending against multi-step attacks, including

attack graph, alert correlation, security metrics. We also review related work on graph

compression techniques. We discuss why existing work are not satisfactory with respect to

the problems addressed in this thesis.

2.1 Attack Graph

Various vulnerability scanners, such as Nessus [18], can find known vulnerabilities in a

network. However, they cannot reveal how such vulnerabilities can be combined in a multi-

step attack to infiltrate a network. To evaluate the security of a network against multi-step

attacks, a security analyst must take into account the effects of interactions between dif-

ferent vulnerabilities and find global security flaws. Traditional vulnerability analysis of a

network typically involves heavy human intervention by the so-called red team. First, they

9

use vulnerability scanners to identify vulnerabilities on individual hosts. Combining such

identified vulnerabilities with other information about the network, such as connectivity be-

tween hosts, the red team produces sequences of attacks, namely, attack paths. Each attack

path leads to an undesirable state, for example, a state where the intruder has administrative

accesses to a critical host. The limitation of the red team approach is that its effectiveness

heavily depends on the skills of the team; the manual process is error-prone, tedious, and

not scalable for large networks.

Many early efforts address the defense against multi-step network attacks [13,20,46,

71]. The general concept of attack tree is mentioned in [59] where trees with logical con-

nectives AND and OR are used as a formal methodology for analyzing the security of

systems. A detailed attack graph model is described in [52] and a tool is proposed to build

an attack graph using forward search in [63]. The inputs of an attack graph include config-

uration files, attacker profiles, and a database of attack templates, which must be manually

created. The nodes of the attack graph are attack templates instantiated with particular users

and machines while edges are labeled by probabilities of success or cost of attacks. The

graphs are analyzed to find the shortest paths between given start and end nodes. The idea

of grouping similar nodes is mentioned although its correctness would critically depend on

identical configuration among such nodes.

A require and provide approach to automatic attack graph generation is mentioned

in [64], which has later been widely adopted in defending against multi-step attacks. Attack

scenarios can be generated by linking subgoals through their preconditions requirements

10

and postconditions capabilities. Each successful attack helps the attacker to gain more ca-

pabilities and move closer to the final goals. JIGSAW, an attack specification language is

described to model attack components. The language requires low level details in terms

of capabilities and requirements of attacks, which in practice may be hard to obtain. This

require and provide approach brings flexibility in discovering potentially new attack sce-

narios.

Model checking is applied to the analysis of multi-step network attacks in [57]. In-

formation such as known vulnerabilities on network hosts, connectivity between hosts, the

initial capabilities of the attacker are described as states, while exploits as transitions be-

tween states that can be executed by attackers. This formal model is given to a model

checker as the input, while the reachability in terms of given goal states is given as a query.

The model checker will produce a counterexample if a sequence of exploits may lead to

the goal states. Such a sequence of exploits indicates a potential attack graph that must be

removed to secure the network. A later work [58] provides more details on how connec-

tivity should be modeled at different layers. The term topological vulnerability analysis is

introduced.

Model checking is used for a different purpose in [30, 60], that is, to enumerate all

attack paths. A modified model checker is applied to the finite-state machine created from

network information. The model checker can provide all counterexamples to a query stating

the safety of goal states, which are essentially the collection of possible attack paths. Other

types of analysis are also discussed, such as finding a cut set in the attack graph, such that

goal conditions can no longer to reached. The problem of finding the minimum attack

11

leading to given goal conditions is shown to be intractable. One apparent limitation of this

approach is its scalability. All attack paths are explicitly enumerated in its result, which

leads to a combinatorial explosion when the number of hosts or vulnerabilities increases.

To address the scalability of model checking-based approaches, a monotonic assump-

tion is proposed in [3], which states that the further exploits will never cause the attacker

to relinquish any obtained privileges. Attack paths can thus be implicitly modeled as paths

in a directed graph that includes exactly one copy of each exploit and its pre- and post con-

ditions, with edges interconnect exploits to these conditions. This assumption thus reduces

the complexity of attack graph representation from exponential in the number of hosts to

polynomial. However, it also renders some attacks that may disable services or invalidate

vulnerabilities impossible to be included in the model. Attack graphs are created through

a two-pass search, which first connects exploits by starting from the attacker's initial state

and then prunes those irrelevant states by searching backward from the goal state. Other

analyses are also discussed, such as finding minimal attacks leading to given goal condi-

tions.

More recently, a logic programming-based approach to the representation of attack

graphs is given in [49]. Datalog is used to encode knowledge about attacks in a network.

MulVAL [48], a security analyzer built from off-the-shelf tools, is used to retrieve informa-

tion regarding existing software on networked hosts and their vulnerabilities. The engine

takes as input network configuration information and outputs attack steps that an attacker

can take to compromise the network. The analysis by MulVAL has polynomial complexity

with respect to the size of the network.

One of the first treatments of the scalability issue of attack graph representation is given

in [43]. A hierarchical approach is taken to build rules at every level of aggregation, which

are integrated through common attribute values of attack graph elements or attack graph

connectivity. In such a hierarchical attack graph, attack subgraphs are recursively collapsed

to single vertices. This means the compression process can be utilized to a given degree.

Moreover, the abstraction of protection domain is particularly effective for complexity re-

duction when groups of machines have complete connectivity. A quadratic complexity is

claimed for the approach. Another effort applied a matrix clustering algorithm to the ad-

jacency matrix of attack graphs in order to construct clustered adjacency matrix, which

indicate the feature of protection domain on the main diagonal [44].

Two improvements to the representation of attack graphs are given in [24]. First, a

directed graph is used to model subnets as nodes and potential inter-subnet attacks as edges.

A dominator tree is then used to determine whether inter-subnet and intra-subnet attacks

are useful based on the domination relationships. Second, an abstraction reduces group

exploits to virtual nodes in order to increase the readability of the attack graph. These two

methods may reduce the complexity of visualized attack graphs and allow human users to

quickly grasp imminent threats. Although those work can hide scalability issues of attack

graphs from users, they do not directly remove redundant information, and are thus not

satisfactory solutions in our understanding.

13

2.2 Other Related Work

A similar and parallel thread of work focus on reconstructing multi-step attack scenarios

from isolated intrusion detection alerts, such as those employ prior knowledge about com-

plete strategies of attacks [12,16,17,19] or the causal relationships between attacks [11,

40,41]. Some techniques aggregate alerts with similar attributes [10,15,61,65] or sta-

tistical patterns [31,53]. Hybrid approaches combine different techniques for better re-

sults [41,54,69]. Attack scenarios broken by missed attacks are reassembled by clustering

alerts with similar attributes [42], and those caused by incomplete knowledge are pieced

together through statistical analyses [53,54].

Alert correlation techniques are also used for other purposes than analyzing multi-step

intrusions, such as to relate alerts to the same thread of attacks [27]. The privacy issue

of alert correlation has recently been investigated [70]. Alert correlation is employed to

deal with insider attacks in [9,56], Efforts in integrating information from different sources

include the formal model M2D2 [38] and the Bayesian network-based approach [72]. Real-

Time detection of isolated alerts is studied in [34,51]. Some products claim to support

real-time analyses of alerts, such as the Tivoli Risk Manager [26]. Designed for a different

purpose, the RUSSEL language is similar to our approach in that the analysis of data only

requires one-pass of processing [23].

Recently, much interest has focused on quantifying the threat of potential multi-step

attacks. General reviews of security metrics are given in [4,29], The NIST's efforts on

14

standardizing security metrics are given in [39] and more recently in [62] and in the Com-

mon Vulnerability Scoring System (CVSS) [37]. Another overview of many aspects of

network security metrics is given in [25]. Dacier et al. gave intuitive properties that should

be satisfied by any security metric [13,14,46]. The difficulty of attacks are measured in

terms of time and efforts spent by attackers. Based on an exponential distribution for an

attacker's success rate over time, they use the Markov model and the MTTF (Mean Time to

Failure) to measure the security of a network. They discussed simple cases of combining

individual measures but did not study the general case.

The work by Balzarotti et al. [5] focuses on computing the minimum efforts required

for executing each exploit. Based the exploitability concept, a qualitative measure of risk

is given in [6]. Another approach measures the relative risk of different configurations

using the weakest attacker model, that is the least conditions under which an attack is

possible [50]. Yet another series of work measures how likely a software is vulnerable to

attacks using a metrics called attack surface [36]. These work allow a partial order to be

established on different network configurations based on their relative security. However,

the treatment of many aspects of security is still qualitative in nature.

Wang et al. [67] proposed a framework for using combining functions to determine the

combined effect of vulnerabilities in a network. They proposed the idea of using an analogy

to the resistance of electrical circuits in [68] and address the issue of additional dependency

between exploits although the solution is not entirely satisfactory since cycles in attack

graphs are largely ignored. Wang et al. also proposed a probabilistic network security

metric based on attack graphs [21,22,33]. They propose the use of probability scores for

each vulnerability to represent the likelihood that one attacker will exploit the vulnerability

or the percentage of attackers that successfully exploit the vulnerability. Another work

adopt this same concept but will use it to develop conditional probability tables for each

exploit and then demonstrate how the use of DBNs can be used to determine network

security. The work on minimum-cost network hardening represents an early effort toward

the quantitative study of network security [66]. This work quantifies the cost of removing

vulnerabilities in hardening a network, but it does not consider other hardening options,

such as modifying the connectivity. It also has the limitation of adopting a qualitative view

of damages (that is, all the given critical resources are equally important) and of attack

resistance (that is, attacks on critical resources are either impossible or trivial).

Graph compression techniques have been applied to various applications, such as the

so-called web graphs formed by URLs and links [1]. More specifically, the entire web

at a particular moment forms a graph with pages as nodes and hyperlinks as the directed

edges. The basis of web graph compression is the observation that web pages and links are

dynamically created by finding one or more reference pages and copying links from these

references. The reference encoding technique can thus be applied to conceal the details

in those pages who have copied links from reference pages. This technique is extended

in [55] through a two-level representation of web graphs that partitions the set of pages

in the repository into a set of small directed graphs. Each such directed graph encodes

a densely connected subset of pages. A top level directed graph made up of supernodes

and superedges represents the relatively sparse interconnectivity between different subsets

of pages. We are partly inspired by those work on compressing web graphs to apply the

reference encoding concept to attack graphs. However, as we shall show, the difference

between the two applications render a direct application of existing techniques infeasible.

17

Chapter 3

Attack Graph Compression

In this chapter, we propose a method for compressing attack graphs based on the reference

encoding technique. We introduce the basic concepts in Section 3.1. We then introduce our

methods step by step starting from the simple case of identical connectivity and vulnerabil-

ities in Section 3.2 to the more realistic cases in Section 3.3.

3.1 Basic Concepts

In this section, we introduce the relevant concepts of attack graph, type graph, configura-

tion graph, and the traditional way of generating attack graphs from given type graph and

configuration graph.

By combining the knowledge in type graph and the facts in configuration graph, we can

generate an attack graph as a model of inter-dependent vulnerabilities on networked hosts,

which is formalized in Definition 1.

18

Definition 1 An attack graph G is a directed graph G(E UC^U Ri) where the set of

nodes include E, a set of exploits, and C, a set of conditions, and the set of edges include

two relations Rr C C x E and Ri C E x C.

An attack graph is thus a directed graph whose set of nodes is partitioned into two

classes, namely, exploits and security conditions (or simply conditions). An exploit is

typically a triple (hs, hd, v), where hs and hd represent two connected hosts and v a vulner-

ability on the destination host hd• A security condition is a pair (h, c), indicating the host h

satisfies a condition c relevant to one or more exploits. Notice that hs, ha, and v are abstract

notations that could in practice possess different semantics, for example, hs and hd can be

host names, IP addresses, and so on, and v can be the name of a vulnerability or its ID in a

vulnerability database.

Corresponding to the inter-dependency between exploits and conditions, the two types

of edges in an attack graph have different semantics. First, the require relation Rr is a

directed edge pointing from a condition to an exploit, which means the exploit cannot be

executed unless the condition is satisfied. For example, an exploit (hs, hd, v) requires fol-

lowing two conditions, that is the existence of the vulnerability v on hd and the connectivity

between hs and hd. Second, the imply relation Ri pointing from an exploit to a condition

means executing the exploit will satisfy the condition. Notice that there is no edge directly

connecting two exploits (or two conditions).

Figure 4 shows a simple attack graph example. The attack graph indicates that by

exploiting a buffer overflow vulnerability in the Sadmind service (Nessus ID 11841), an at-

tacker can gain the privilege of using a remote machine.The attack graph shows an attacker

having user privilege on host 3 can exploit the vulnerability on hosts 1 and 2 and obtain

user privilege on the hosts. Notice that after an attacker has obtained user privilege on host

1, he/she can then exploit host 2 from either host 3 or host 1.

Two important semantics of attack graphs are as follows. First, the require relation is

always conjunctive whereas the imply relation is always disjunctive. More specifically, an

exploit cannot be realized until all of its required conditions have been satisfied, whereas

a condition can be satisfied by any one of the realized exploits. Second, the conditions

are further classified as initial conditions (the conditions not implied by any exploit) and

intermediate conditions. An initial condition can be independently disabled to harden a

network, whereas an intermediate condition usually cannot be [45].

To generate an attack graph, two types of inputs are necessary, namely, type graph and

(hi ,sadmind_service) (h3,user_priviledge)

(h2,user_priviledge)

Figure 4: An Example of Attack Graph

20

configuration graph. Type graph represents expert knowledge about the dependency rela-

tionship between vulnerabilities. On the other hand, configuration graph represents hosts

and their connectivity and vulnerability information. We assume the domain knowledge

required for type graph is available from tools like the Topological Vulnerability Analysis

(TVA) system, which covers more than 37,000 vulnerabilities taken from 24 information

sources including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [28]. On the other

hand, we assume the configuration information including vulnerabilities and connectivity

can be obtained using available network scanning tools, such as the Nessus scanner [18].

We define type graph and configuration graph in Definition 2 and 3.

Definition 2 A type graph TG is a directed graph TG(N, E). The node set N is a sub-

set of (CT x HT) U V where CT and V are sets of condition types and vulnerabilities,

respectively, and HT = {source, destination} indicating whether the condition is about

the source or destination host. The edge set E can be partitioned into edges pointing from

CT x HT to V and those from V to CT x HT.

Definition 3 A configuration graph CG(N, E) is a directed graph where N C H x 2V, H

is a set of hosts, V a set of vulnerabilities, and E C N x N.

Figure 5 depicts the configuration graph and type graph required for generating the

attack graph in above example (notice that we shall use lines without arrows for bidirec-

tional connectivity between hosts hereafter). The left-hand side is a configuration graph

showing the connectivity between three hosts where initially hosts 1 and 2 both have the

vulnerability and the attacker has user privilege on host 3. The right-hand side is a type

graph showing that an attacker who possesses user privilege on a source host may exploit

the vulnerability on the destination host and thus obtain the user privilege on the latter.

Configuration Graph <—j—> Type Graph

h3(user_priviledge) ! user_priviledge sadmind_bof on
o : on source host destination host

sadmind_bof
exploit

1
hl(sadmind_bof) h2(sadmind_bof) user_priviledge on

destination host

Figure 5: An Example of Type Graph and Configuration Graph

In this thesis, we shall refer to a simplified attack graph and type graph with condi-

tions omitted, namely, vulnerability-based attack graph and type graph. Notice that in a

vulnerability-based attack graph or type graph, we must annotate the edges to explicitly in-

dicate the relationship between exploits to be either conjunctive or disjunctive, since such

information is no longer available from the intermediate conditions.

By a complete case, we mean all the hosts have exactly the same connectivity and vulner-

abilities. In contrast, next section will consider the incomplete case where the connectivity

or vulnerabilities (or both) may vary from one host to another. Clearly, the complete case

is more straightforward, although unrealistic, and suitable for a starting point of our dis-

cussion.

3.2 The Complete Case

22

3.2.1 One-Node Model

The left-hand side of Figure 6 shows a configuration graph. There are three hosts, hi, h2,

and h3 each of which has exactly the same three vulnerabilities vl, v2, and v3. The three

hosts are all connected to the same host ha which is assumed to be the attacker's host so

no vulnerability is necessary (indicated by the symbol $). We can interpret the graph as

a collection of three independent machines each of which is separately connected to the

external network. An attacker may attack each host from his/her own machine. The right-

hand side of the figure shows a simple vulnerability-based type graph that indicates the

dependency between the three vulnerabilities. Notice again in such a vulnerability-based

type graph (or attack graph), we shall omit conditions.

Configuration Graph

ha($)

h3(vl, v2, v3) hl(vl, v2,v3)

O
h2(vl,v2,v3)

Figure 6: An Example of the Complete Case

Type Graph

vl

1
v2

1
v3

Based on the configuration graph and type graph shown in Figure 6, it is easy to generate

the attack graph. However, instead of studying the attack graph, we shall directly look at

the possible attack sequences represented by such an attack graph, since the main objective

23

of our compression model is to preserve such attack sequences. Notice that an attack graph

and the collection of attack sequences the attack graph represents are equivalent in terms

of revealing potential multi-step attacks. Table 1 lists all the three attack sequences that

can be obtained based on the configuration graph and type graph in Figure 6. Inside each

sequence we use the notation hihjv to indicate an exploit of vulnerability v from source

host hi to destination host hj.

Table 1: Attack Sequences

1 ha$ —• hahlvl -»hlhlv2 -> hlhlv3
2 ha$ —>hah2v\ -» h2h2v2 h2h2v3
3 ha$ —>hahSvl -> h3h3v2 h3h3v3

Clearly, in this simple case, we can use one of the three hosts as the reference of the

others, namely, a one-node compression model. The compression model is shown in Fig-

ure 7. On the left-hand side is the compression model, which includes two components,

namely, the compressed configuration graph and the reference rules. The compressed con-

figuration graph is simply a configuration graph of smaller size. In this case, it has two

hosts, the attacker's machine ha and a victim host hi. The reference rules indicate which

host can act as the reference of which hosts. In this case, we have only one reference rule.

The rule states that the host appearing before the word as can be replaced by any of the

hosts appearing after. In the middle of Figure 7 is the original type graph. The right-hand

side shows an attack graph generated from the type graph and the compressed configuration

graph, namely, the compressed attack graph. Notice that the generation of the compressed

attack graph does not employ the reference rules.

24

Compression Model < — T y p e Graph <—;—> Compressed Attack Graph

hl(vl, v2, v3)

ha($)
O

O

hi as h2,h3

v3

v2

vl

I

Figure 7: An Example of the Compression Model for the Complete Case

The compression model clearly satisfies the two requirements we have described in

previous sections. First, we require the compression model to depict a clear and concise

picture about the threat from potential multi-step attacks. In this case, the compressed

attack graph only includes a single attack sequence, which reveals a path that may be fol-

lowed by attackers in attacking the host hi. If the security administrator only wants to

know what kind of attacks may happen to the network, then the compressed attack graph is

sufficient for this purpose. Notice that although the compressed attack graph looks similar

to the type graph in this special case, they are different concepts and will look very differ-

ent in later cases. Second, we require the compression process to be lossless in the sense

that the compression model should allow exactly the same set of attack sequences to be

generated as in the original attack graph, which can be easily verified in this simple case.

Next we consider another situation of the complete case, left-hand side of Figure 8 shows

a configuration graph. Again, there are three hosts, hi, h2, and h3 each of which has three

3.2.2 Two-Node Model

25

vulnerabilities vl, vl, and v3. Different from the previous case, the three hosts are now

fully connected to each other, and also to another host ha. We can interpret the graph as

a small network of three identical machines connected to a switch and a router with no

firewall, and an attacker may attack this network from his/her own machine ha. The right-

hand side of the figure shows the same vulnerability-based type graph as before. Based on

the configuration graph and type graph shown in Figure 8, the left column of Table 2 lists

all the 27 attack sequences that can be obtained based on the configuration graph and type

graph in Figure 8. We can ignore the crosslines for the time being, which will be explained

shortly.

Configuration Graph

ha($)

h3(vl, v2, v3) hl(vl, v2, v3)

Type Graph

vl

I
v2

1
v3

h2(vl, v2, v3)

Figure 8: An Example of the Complete Case

Clearly, even for this simple network with three victim hosts, the number of attack se-

quences is now significant due to the connectivity between the victim hosts. This number

will certainly increase very fast as the size of network increases. On the other hand, since

the three victim hosts all have the same set of vulnerabilities and connectivity, the 27 attack

26

Table 2: Attack Sequences (Crosslines Indicate Sequences with Local Exploits)
1 hn(K 1
2 ha$ —>hahlvl - > h2h3v3
a hlh^vl
4 ha$ —>hah2v\ -> h2hlv2 hlh3v3
5 hnlR , l-lo, ,] , /,OlO„1 5

7 ha$ —» hahZvl -> hihlv2 - > hlh3v3
8 ha$ —>hahZvl -» h3h2v2 h2h3v3
Q hnf,) hnh^nl > hlhli filhlu?
10 ha$ —• hahlvl — > h3hlv3
11 ha$ —»hahlvl -> hlh2v2 h2hlv3
12 hnlK) M M 71° h\/ill)? 12
13 hnf,) hnh^iA h 1 h 1 13
14 . IjOLO-.O ft0/?!?'? 14
15 ha$ —>hah2vl h2h3v3 h3hlv3
16) h9.h h 1 Mil? 16
17 ha$ —>hah3vl -» h3h2v2 h2hlv3
18 hn§ 18
19 ha$ —• fraftl?;! - > h3h2v3
20) M ft^f0 20
21) ft 1 /i 1 7r° hAh^ift 21
22 ha$ —>hah2vl hlh2v3
23 23
24 ha$ —• hah2vl ->h2h3v3 h3h2v3
25 ha$ —> hahSvl — h3hlv2 hlh2v3
26) fi^hr>ur> 26
27 hn§ h'ih^u'i 27

sequences apparently include much redundancy. We can certainly apply the same one-node

compression model as in the previous case to use h\ as the reference of the other two hosts.

However, recall that a unique requirement-for compressing attack graph is the compressed

result should itself be meaningful, and can reveal the same threat posed by multi-step at-

tacks as the original attack graph does. This requirement makes our task slightly more

complicated.

27

A more careful consideration will reveal the limitation of the one-node compression

model in this case. More specifically, we need to distinguish between local exploits, which

indicate the exploits originates from and ends at the same machine, and remote exploits,

which are launched between different hosts. In Table 2, the cross lined entries represent

attack sequences that involve at least one local exploit, while the others represent attack

sequences involving only remote exploits. Clearly, with hi as the reference to both h2 and

h3, we will not be able to distinguish between those two types of attack sequences.

We thus use a two-node compression model for the complete case, as shown in Fig-

ure 9. On the left-hand side is the compression model, which includes the compressed

configuration graph and the reference rules. The compressed configuration graph is simply

a configuration graph of smaller size. In this case, it has three hosts, the attacker's machine

ha and two victim hosts hi and h2. The vulnerabilities on hi and h2 have been specially

designed to minimize redundancy while preserving possible attack sequences, as we shall

show shortly. The reference rules indicate which host can act as the reference of which

hosts. In this case, we have two reference rules. Each rule states the host appearing before

the word as can be replaced by any of the hosts appearing after. In the middle of Figure 9

is the original type graph. The right-hand side shows an attack graph generated from the

type graph and the compressed configuration graph, that is, the compressed attack graph.

The compression model clearly satisfies the first requirement. In this case, the com-

pressed attack graph only includes a single attack sequence, but it is sufficient to reveal

the difference between remote exploits and local exploits, if such a distinction is neces-

sary. If the security administrator only wants to know what kind of attacks may happen

Compression Model <—j—> Type Graph < — > Compressed Attack Graph

hl (v l , v3)

ha($)
Q

0

hi as h2,h3
h2 as hl,h3

v3

v2

vl

i
i

h2(v2) £

Figure 9: An Example of the Compression Model for the Complete Case

to the network, then the compressed attack graph is sufficient for this purpose. For the

second requirement, the compression model should encode exactly the same information

as the original attack graph. More precisely, both should allow the generation of the same

collection of attack sequences.

We first verify the compression model against this requirement in Table 3 for attack

sequences with only remote exploits. In the right column of each table, we list the reference

rules applied to the generation of that attack sequence. We only list each rule once even if

it is used multiple times. Notice that each application of a reference rule is only effective

to one occurrence of an exploit in a sequence. For example, in Table 3, attack sequences

number 2, 8, and 17 all apply the same reference rule, hi as A3, but sequence 2 applies it

to the last exploit, sequence 8 to the first and last exploits. Also, reference rules are not

transitive. For example, applying two rules, hi as h2 and h2 as h3, does not imply the rule

hi as h3 can be applied.

Table 4 shows the reference encoding for attack sequences containing local exploits.

The reference rules are applied in a similar way. In contrast to using a single victim host,

29

Table 3: Generating Attack Sequences through Reference Encoding (Remote Exploits)
2 ha$ hahlvl — > hlh2v2 h2h3v3 hi as h3
4 ha$ hah2vl h2hlv2 - > hlh3v3 hi as h2, h2 as hi, hi as h3
7 ha$ - > hah3vl — > h3hlv2 hlh3v3 hi as h3, h2 as hi
8 ha$ hahSvl h3h2v2 h2h3v3 hi as h3
10 ha$ hahlvl hlh3v2 h3hlv3 h2 as h3
11 ha$ - > hahlvl - > hlh2v2 h2hlv3
15 ha$ hah2vl h2h3v3 h3hlv3 hi as h2, h2 as h3
17 ha$ - > hah3vl - > h3h2v2 h2hlv3 hi as h3
19 ha$ - > hahlvl hlh3v2 h3h2v3 h2 as h3, hi as h2
22 ha$ - > hah2vl - » h2hlv2 hlh2v3 hi as h2, h2 as hi
24 ha$ hah2vl h2h3v3 — > h3h2v3 hi as h2, h2 as h3
25 ha$ — > hah3vl h3hlv2 hlh2v3 hi as h3, h2 as hi, hi as h2

the advantage of the two-node model is that the compression model can reveal the threat of

a multi-step attack even if we do not consider any local exploit. For example, in Figure 9,

if the vulnerabilities allow any attacker to gain user privilege on a remote host which the

attacker initially has no control, then exploiting such vulnerabilities locally on a already

compromised host will not elevate the attacker's privilege. Although such attacks are pos-

sible, we can safely disregard them. When local exploits need to be disregarded, the above

two-node model does not need to be changed (on the other hand, if we had used a sin-

gle victim host, then the model will collapse). We can make sure no sequence with local

exploits is generated simply by carefully applying the reference rule.

The above compression models can be easily extended to the general case with any

number of hosts or vulnerabilities, as long as all the hosts have the identical connectivity

and vulnerabilities (that is, the complete case). More hosts will only need to be added to

the reference rules. For vulnerabilities, we follow a simple procedure to assign them to

hosts in the compression model, as detailed in Figure 10. The procedure first assigns all

Table 4: Generating Attack Sequences through Reference Encoding (Local Exploits)

1 ha$ - » hahlvl hlhlv2 — > hlhZvZ h2 as hi, hi as hZ
3 ha$ hahlvl hlh3v2 hZhZvZ h2 as hZ, hi as hZ
5 ha$ — > hah2vl h2h2v2 h2hZvZ hi as h2, hi as hZ
6 ha$ - > hah2vl h2hSv3 hZhZvZ hi as h2, h2 as hZ, hi as hZ
9 ha$ hahZvl hZhZv2 hZhZvZ hi as hZ, h2 as hZ
12 ha$ hahlvl hlhlv2 hlhlvZ h2 as hi
13 ha$ - » hah2vl h2hlv2 - » hlhlvZ hi as h2, h2 as hi
14 ha$ - > hah2vl h2h2v2 h2hlvZ hi as h2
16 ha$ — > hahZvl - > h3hlv2 hlhlvZ hi as hZ, h2 as hi
18 ha$ hahZvl hZhZv2 hZhlvZ hi as hZ, h2 as hZ
20 ha$ - > hahlvl — > hlh2v2 h2h2vZ hi as h2
21 ha$ — » hahlvl hlhlv2 - > hlh2vZ h2 as hi, hi as h2
23 ha$ hah2v1 - » h2h2v2 - > h2h2vZ hi as h2
26 ha$ hahZvl hZh2v2 h2h2vZ hi as hZ, hi as h2
27 ha$ hahZvl - > hZhZv2 — > hZh2vZ hi as hZ, h2 as hZ, hi as h2

the vulnerabilities to each host, as in the original configuration graph. It then generates the

compressed attack graph using the type graph and this temporary vulnerability assignment.

This step is to ensure that all attack sequences that may appear in the compressed attack

graph should remain so in the final compression model. Next, the procedure removes those

assignments of vulnerabilities that do not appear in the compressed attack graph to avoid

redundancy. If a reference host does not have any vulnerability, then we also remove that

reference host from the compression model to avoid redundancy.

With the above procedure for assigning hosts, we can now show that the one-node

compression model we described at the beginning of this section is actually a special case

of the two-node model. As shown in the left-hand side of Figure 11, the configuration graph

in Figure 6 can be represented by the two-node compression model with no connectivity

between the two victim hosts. Once the above algorithm generates the compressed attack

31

Input: A configuration graph CG, a type graph TG, and a compressed configuration
graph CCG with no vulnerability assigned to any host

Output: An updated CCG with vulnerabilities assigned using a function / () : H —• V
where H and V are the set of hosts and vulnerabilities in CCG, respectively

Method:
1. For each he H
2. Let f(h) = V
3. Generate the compressed attack graph CAG from TG and CCG
4. For each he H
5. For each v e V
6. If (ft, v) i CAG
7. Let / (f t) = / (f t) - { t , }
8. If / (f t) = 0
9. Let H = H - {ft}
10. Return CCG

Figure 10: An Algorithm for Assigning Vulnerabilities in the Complete Case

graph, it is clear that ft2 will be assigned no vulnerability at all, and thus ft2 itself will be

removed from the compression model. That is, the two-node model reduces to the one-node

model.

We formally describe the two-node compression model for the complete case in Defi-

nition 4.

Definition 4 Given a vulnerability-based type graph TG(Nt, Et) and a configuration graph

CG(Nc, Ec) in the complete case and let H be the set of hosts appearing in TG, we define

• the compressed configuration graph as a directed graph CCG{Ncc, Ecc). The node

set is Ncc = {fta($), hi(Vi), hj(V2)} where ha, hi, hj e H, V\ and V2 are vulner-

abilities assigned using the algorithm shown in Figure 10, and the edge set E^ =

{(ha, hi), (hi, ha), (hi, hj), (hj, hi)},

• the reference rule RR = {hi as hx\hx e HAx ^ i}l){hj as hy | hy e HAy ^ j},

32

Compressed Configuration
Graph Model

Compressed
Attack Graph

Compressed Configuration
< ! > Graph Model

hl (v l , v2, v3)

ha($) Q

O
hl(vl , v2, v3)

ha($)
O

O

h2(vl, v2, V3)q '

Figure 11: A Special Case of the Two-Node Compression Model

• the compression model as the pair (CCG, RR).

In the complete case, the above procedure will basically assign vulnerabilities to one of

the two reference hosts in an alternating fashion (in later sections we shall see exceptions

to this observation). For example, in Figure 9, if there are three most vulnerabilities v4,

v5, and v6, then v4 and v6 will be assigned to h2 while v5 to hi. In general, a breadth-

first search (BFS) in the type graph can be used to alternatively assign each encountered

vulnerability to one of those two hosts based on its distance from the first vulnerability.

3.2.3 Implication of Type Graphs

We have so far only considered type graph as a total order. In reality a type graph will

certainly include disjunctive and conjunctive relationships between vulnerabilities, as dis-

cussed in Section 3.1. Such relationships may introduce additional constraints for assigning

vulnerabilities to hosts in our compression model. The BFS used by the compression model

may not satisfy such constraints, and some possible attack sequences may thus be missing

33

in the compressed attack graph. For example, if the type graph in Figure 9 requires vl and

v2 to be exploited on the same host, then the compressed attack graph would have been

empty since the attack sequence shown in the right-hand side of Figure 9 is no longer pos-

sible. However, notice that the compression model is actually still correct since reference

encoding will allow h2 to be replaced by hi and thus enable the generation of that attack

sequence.

Nonetheless, the above situation is not satisfactory since our goal is that the compressed

attack graph can reveal the same threat as the original attack graph does, whereas here an

empty attack graph certainly does not achieve this goal. A security administrator would

have to apply the reference rule before he/she can identify any threat. We thus need to

revise the compression model as follows. First of all, disjunctive relationships between

vulnerabilities does not cause any complication since they do not introduce any constraints

to assigning vulnerabilities to hosts. However, the complication does arise when type graph

includes conjunction between vulnerabilities. Before we discuss the complication, recall in

Section 3.1 we mentioned that in a vulnerability-based type graph the disjunctive conjunc-

tive relationship between vulnerabilities must be explicitly represented due to the lack of

conditions. We shall use a small circle to represent the conjunctive relationships between

vulnerabilities, as depicted in Figure 12. For disjunctive relationships, we simply omit the

small circle and directly connect interdependent vulnerabilities.

The left-hand side of Figure 12 indicates that both vl and v2 must be exploited before

v3 can be exploited, while all three vulnerabilities reside on different hosts. This case has

no impact on the compression model, since there is no special requirement for assigning

\ / \ / \ /
hivl hjv2 hivl hjv2 hivl hiv2

\/ 0

1
V

> '

\/
0

1
hkv3 hjv3 hjv3

Figure 12: Different Cases of Conjunctive Relationships in Type Graphs

those three vulnerabilities to hosts. The three vulnerabilities may reside on the same or

different hosts in the compression model, which makes no difference to the generation of

attack sequences. The middle case indicates that both vl and v2 must be exploited before

v3 can be exploited on the same host as v2 is exploited on. This requirement can be satisfied

by simply assigning v2 and v3 to the same host in the compression model although they

clearly have different heights in the BFS tree.

The right-hand side of Figure 12 indicates that both v 1 and v2 must be exploited on

the same host (denoted by hi) before v3 can be exploited (on the same host or a different

host). An complication arises here since hivl and hiv2 may have different height in the

BFS tree, v 1 and v2 may be assigned to different hosts in the compression model. This will

result in the loss of attack sequences which should be present. Therefore, when the BFS

first reaches one of the two vulnerabilities, it should assign both vulnerabilities to the same

host (one of the vulnerabilities may thus be assigned to more than one host, which is fine).

A similar constraint may also be introduced by cycles in the type graph. By the mono-

tonic assumption [3], an attacker would never need to exploit the same vulnerability more

35

than once. Therefore, any cycle in a type graph can usually be safely ignored. However, in

cases where such cycles are important, a cycle with an odd number of vulnerabilities will

cause a complication to the compression model. For example, suppose in Figure 9 we add

an edge pointing from v3 back to vl, and also suppose we do not consider local exploits.

Clearly, now the edge from t>3 to wl will not lead to an exploit in the compressed attack

graph because both v3 and vl are on the same host hi (while we choose not to consider

local exploits). The solution is to add vl to h2 such that the exploit hlh2vl can be added to

the end of the current compressed graph to reflect the cyclic dependency given in the type

graph.

3.3 The Incomplete Case

The compression model discussed in the previous section only works in the complete case.

For incomplete cases where hosts may have different vulnerabilities and connectivity, the

compression model will introduce attack sequences that do no exist in the original attack

graph. Such non-existent attack sequences should certainly be removed from the compres-

sion model. However, we need to distinguish two cases. First, if the difference between

hosts in terms of connectivity and vulnerabilities is relatively small, then a conservative

assumption can be made that such difference does not significantly reduce the threat of

multi-step attacks. Therefore, we take a negation approach by regarding those hosts as in

the complete case and apply the previous compression model; in addition, we indicate the

36

missing connectivity or vulnerabilities using special notations in the reference rules. Sec-

ond, when the difference between hosts is significant, we simply leave those hosts outside

the compression model.

In many cases, organizational boundaries or external knowledge about the network

topology will provide a natural way for classifying subnets into the above two cases. For

example, in a university network, each department or faculty usually has its own subnet in-

side which hosts are fully connected. Each lab or office usually is equipped with machines

with similar or same configuration. On the other hand, the connectivity between different

academic units and that with the outside world is usually limited by firewalls. An alterna-

tive approach when such information is not readily available is to apply clustering methods

to the configuration and connectivity data such that clusters of machines with similar con-

figuration and connectivity will be identified. The discussion of such clustering methods is

out of the scope of this thesis.

3.3.1 Differences through Reference Rules

Figure 13 shows an example of the incomplete case where hosts have small differences in

terms of connectivity and vulnerabilities. The left-hand side shows a configuration graph

with three victim hosts whose connectivity and vulnerabilities are slightly different. More

specifically, hi and h3 both have three vulnerabilities vl, v2, and v3, while h2 does not

have v2\ the three hosts are fully connected to each other and to the attacker's host ha,

except that there is no connection from h3 to hi (for example, due to a personal firewall

37

software running on hi). The right-hand side of the figure shows the same vulnerability-

based type graph as before.

Configuration Graph

ha($)

h3(vl,v2, v3) hl(vl', v2, v3)

Type Graph

vl

1
v2

I
v3

h2(vl,v3)

Figure 13: An Example of the Incomplete Case

Clearly, if we simply apply the compression model described in the previous section

here, the resulted compressed configuration graph will allow non-existent attack sequences

to be generated. The negation approach we take is to start with such an incorrect config-

uration graph, and fix it through the reference rules. That is, we represent non-existent

connectivity and vulnerabilities in the reference rules. The modified compression model

is shown in the left-hand side of Figure 14. The compressed configuration graph is iden-

tical to the one in Figure 9, because we assume all three hosts have the same connectivity

and vulnerabilities as hi does. The reference rules now include pairs of parentheses inside

which the non-existent vulnerabilities or connectivity are shown.

The above compression model can satisfy both of the aforementioned requirements.

First, the model reveals the same threat from potential multi-step attacks. The right-hand

side of Figure 14 shows exactly the same compressed attack graph as before. A security

38

Compression Mode!

ha($)
O

hl(vl , v3)

h2(v2)

hi as h2(v2),h3(hl)
h2 as hl,h3(hl)

Type Graph <-

vl

I
v2

1
v3

Compressed Attack Graph

Figure 14: The Compression Model in the Incomplete Case

administrator will be able to tell from the compressed attack graph alone that attackers may

exploit the three vulnerabilities in the given order across different hosts in the network.

Second, because the reference rules now exactly capture the actual network configuration,

the compression model will allow exactly the same set of attack sequences to be generated,

as shown in Table 5 (the crosslines indicate sequences with local exploits).

Table 5: Generating Attack Sequences through Reference Encoding
1

2

4_
5_
6

•he$—> hahlvl—> hlhlv2—> hlhlv3
he$—» hahlvl—> hlhlv2—> hlh3v3
he$—> hahlvl—> hlhlv2—> hlh2v3
ha$ -> hahlvl -> hlh3v2 -> h3h2v3

—> hahlvl—> hlh3v2—> h3h3v3
ha$ > hah3vl > h3h3v2 » h3h3v3

h2 as hi
h2 as hi, hi as h3
h2 as hi, hi as h2
h2 as h3, hi as h2
h2 as A3, hi as h3
hi as h3, h2 as h3

One subtlety is that the attack sequence represented by the compressed attack graph

now does not correspond to the original network configuration (while it does in Figure 9).

Indeed, we can observe that only hi is complete in terms of connectivity and vulnerabili-

ties, while h2 and h3 are both incomplete in this sense. Therefore, we cannot find any two

39

hosts to exactly represent the compressed configuration graph in the complete case. How-

ever, we notice that the negation approach represents a conservative approach in which the

worst case represented by the compressed attack graph is the most useful information to a

security administrator. The attack non-existent sequences are secondary details that can be

delayed until examining the reference rules. It is sufficient to advise users of the compres-

sion model that the compressed attack graph only reveals the potential attacking strategy.

Actually attack sequences must be generated using the reference rules, if such generation

is necessary.

Another issue lies in the choice of hi as the complete host. We can easily imagine a

case where none of the hosts is complete in terms of connectivity and vulnerabilities. That

is, there does not exist any host whose connectivity and set of vulnerabilities are both the

superset of those of other hosts. For example, suppose in Figure 13 we remove v3 from hi,

then apparently no host is complete now. In such a case, the compression model must be

based on virtual hosts which have the complete connectivity and set of vulnerabilities from

the union of such sets of all the hosts. Again, the compressed attack graph generated from

such virtual hosts may not correspond to any actual attack sequence in the original attack

graph, but it reflects the worst case attack scenario, which we believe is the most pertinent

information to a security administrator.

We are now ready to formally define the compression model in this incomplete case in

Definition 5.

Definition 5 Given a vulnerability-based type graph TG(Nt, Et) and a configuration graph

CG(Nc, Ec) in the complete case and let H be the set of hosts appearing in CG, we define

• the compressed configuration graph as a directed graph CCG(Ncc, Ecc). The node

set is Ncc = {ha($),hi(Vi),hj(V2)} where ha,hi,hj € H, V\ and V2 are vulner-

abilities assigned using the algorithm shown in Figure 10, and the edge set E^ —

{(ha, hi), (hi, ha), (hi, hj), (hj, hi)},

• the reference rule RR = {hi as hx(Hx, Vx) | hx e HAx ^ i}U{hj as hy(Hy, Vy) |

hy 6 H Ay ^ j} where Hx and Vx represents the set of hosts that have no connec-

tivity from hx, and the set of vulnerabilities absent in hx, respectively (similar for

Hy and Vy),

• the compression model as the pair (CCG, RR).

3.3.2 Hybrid Case

We now consider the other situation in the incomplete case, that is, when compression is

applied to some hosts but not needed for the others, namely, a hybrid case. Figure 15

shows such an example. All the victim hosts have the same set of vulnerabilities, but they

may differ in terms of connectivity. The two groups of hosts, hi, h2, h3 and h4, h5, hQ,

respectively correspond to the complete case. However, the two groups are only connected

through hi while there is no direct connection between other hosts. Clearly, the difference

between the two groups in terms of connectivity is significant enough such that they should

not be put into the same two-node compression model. Instead, two separate compression

models should be created and then put together through hosts hi, which are not part of the

compression models.

41

Configuration Graph

ha($)
O

<—J—> Type Graph

v l

I
h7(vl, v2, v3, v4) v2

hl(vl, v2, v:
1

h5(vl, v2, v3,v4) v3
h2(vl,v2,v3, v4) h6(vl, v2, v3, v4) 1

v4

Figure 15: An Example of the Hybrid Case

The way of creating compression models for the two groups of hosts is slightly differ-

ent. Since hi is connected to all the three hosts in the first group, that is hi, h2, and hS,

we can simply regard h7 as the attacker's host ha in previous cases. Therefore, we simply

create a two-node compression model for those three hosts as usual. On the other hand, in

the second group, only h4 is connected to the external node hi while the other two are not.

If we create a compression model for those three nodes, then the non-existent connectivity

between h5, h6 and hi will have to be explicitly represented in the reference rules. If the

second group includes more hosts like h5 and h6 (that is, they are not connected to hi),

then more redundancy will be introduced, and the fact that they are not connected to hi

would not be immediately available in the compressed attack graph. A better solution is

not to include h4 in the compression model, but instead treat it the same as hi, that is, as

an external host.

The compression model for this case is shown in the upper left corner of Figure 16.

42

The compression model includes the two-node model of each group together with external

hosts. Notice the way of assigning vulnerabilities inside each two-node model is different

from previous cases. This is due to the fact that the some external hosts, such as hi and M,

are now in between the attacker's host ha and the two-node model. The algorithm shown

in Figure 17 will lead to the current assignment of vulnerabilities, which is minimal in the

sense that each appearance of a vulnerability is necessary for some attack sequences in the

compressed attack graph.

h7(vl, v3)

hl(v2, v4)

h2(v3) £

Compression Model

ha($)

h4(v2,v4)

h6(v4) i

hi as h2,h3
h2 as hl,h3
h5 as h6
h6 as h5

Compressed Attack Graph

Type Graph

vl

I
v2

i
v3

I
v4

Figure 16: The Compression Model in the Hybrid Case

The compression model can satisfy our requirements. Clearly, the model can reveal the

43

threat of potential multi-step attacks. At first glance, the compressed attack graph in Fig-

ure 16 seems to still have many repetitive attack sequences. However, those are necessary

because they show different possible paths the attacker may follow, such as attacking one

host inside a group then either continuing to other hosts inside that group, or moving back

to the external host, or even moving between the two groups. What is being omitted in

the compression model are the possible moves inside each group, such as those involving

h3, which have little additional meaning and are thus hidden in the reference rules. The

compressed attack graph shows to security administrators a complete and yet concise pic-

ture of what may happen to the network. Second, once the reference rules are applied, the

compression model allows generating exactly the same set of attack sequences as in the

original attack graph, although the result will include a large number of attack sequences

and hence is omitted.

The above compression models can be easily extended to the general case with any

number of hosts or vulnerabilities. More groups will only lead to more two-node models.

For vulnerabilities, we follow a similar procedure to assign them to hosts in the compres-

sion model, as detailed in Figure 17. The main difference from the previous procedure for

the complete case is that instead of generating the compressed attack graph for each group

of hosts, the procedure generates a compressed attack graph for whole network using the

type graph and temporary vulnerability assignment of each group. This step is to ensure

that all attack sequences that may appear in the overall compressed attack graph should

remain so in the final compression models.

44

Input: A configuration graph CG, a type graph TG, and compressed configuration
graphs CCGi(i = 1,2,... ,k) with no vulnerability assignment

Output: Updated CCGi(i = 1,2,..., k) with vulnerabilities assigned using /*() : Hi
where Hi and V, are the set of hosts and vulnerabilities in CCGi, respectively

Method:
1. For i = 1 to k
2. For each h G HI
3. Let fi(h) = Vi
4. Generate the compressed attack graph CAG from TG and all the CCGi s
5. For i = 1 to k
6. For each h G HI
I. For each v G Vi
8. If (h, v) £ CAG
9. Let fi(h) = fi(h)-{v}
10. lifi{h) = 4>
II. Let H = H-{h}
12. Return CCGi(i = 1,2,..., k)

Figure 17: An Algorithm for Assigning Vulnerabilities in the General Case

45

Chapter 4

Case Study and Experiments

In this chapter, we first give a case study to demonstrate the application of those methods in

Section 4.1. We then show some experimental results on the performance of our methods

in Section 4.2.

4.1 A Case Study of Analysis with Compression Model

To demonstrate how our compression model works during an analysis of attack graphs,

we study a simple network illustrated in Figure 18. The network includes four densely

connected subnets, Li{i = 1,2, . . . , 5) , Ri(i = 1 , 2 , . . . , 8), Si(i = 1,2, . . . , 9) , and

Di(i = 1 ,2 , . . . , 6), which are interconnected with four routers P I through PA. All hosts

inside each subnet have the same set of vulnerabilities unless it is explicitly indicated oth-

erwise in the figure. The host R5 has a wireless connection to the Internet. The dash line

46

between S9 and 58 indicates there is no connection between them due to personal fire-

walls. Suppose the two hosts in red color, S9 and are compromised, and we suspect

the intrusion origins from one of the mobile hosts Li's that is connected to the network

through a wireless access point.

Assuming a simple type graph that forms a total order vl —> v2 —»• ... v9. Clearly,

the traditional approach to attack graph generation would lead to a very large attack graph

ill this case (indeed, it includes around 500 attack sequences). It is thus desirable to apply

our compression model here. The four subnets naturally map to four separate two-node

compression models, while the four routers are left outside the compression models. In

particular, hosts Li s will reduce to a one-node model since in the infrastructure mode

all the hosts communicate with the access point but there is no direction communication

Di(v5,v6)
i=l,2,...4

Si(v5,v6,v7,v8) S9(v9) S8
i=l,2,...8

Figure 18: An Example Network

47

between those hosts.

For hosts i?i's, a two-node model suffices, except that host R5 will need to be left

out of the compression model since it has a direct connection to the internet which are

absent on other hosts in the subnet. The other two subnets can also be represented by

two-node models, with the small difference in connectivity and vulnerabilities modeled in

reference rules. The only exceptions are host S9 and D6, which are preferable left out of

the compression model due to their special role as victim hosts, and also due to the unique

vulnerability v9 that only they have. Figure 19 shows the complete compression model.

ha($)

R5(vl ,v2) ^ ^ \ L l (v l)

R1 as R2,R3,R4,R6,R7,R8
R2 as R1,R3,R4,R6,R7,R8
51 as S2,S3,S4,S6,S7,S8(S9)
5 2 as 81,83,84,86,57,58(89)
LI as L2,L3,L4,L5
D1 as D2,D3,D4,D5(v6)
D2 as Dl,D3,D4,D5(v6)

Figure 19: The Compression Model

Figure 20 shows the compressed attack graph that can be generated using the above

compression model. This compressed attack graph clearly shows the possible paths that

may be taken by attackers in compromising the two victim hosts S9 and D6. For example,

he/she may start from the mobile host LI and move to P I , PA, P3, and 51 where he/she

Rl(v3,v5)

R2(v4,v6)c |)

Sl(v6,v8)

S2(v7) £ ^ S9(v9)

48

can either continue to compromise 59, or move back to F3, P4, and finally compromise

D6. Some other attack sequences also exist, although they do not directly lead to the

compromise of the two hosts in question.

Figure 20: The Compressed Attack Graph

Once we obtain the analysis result, the two attack sequences in Table 6, we can easily

generate the complete analysis result by applying the reference rules. We shall not show

the result since it would include a large number of attack sequences. However, the result

in Table 6 clearly includes enough information for security administrators to take actions

such as network hardening. Moreover, we never need to first generate the complete attack

49

graph, which would be prohibitive, in order to obtain such information. In summary,

compression model can enable useful analysis with less severe scalability issues.

Table 6: Attack Sequences Based on the Compression Model

1 ha$ •—> haLlvl -> LlPlv2 -> PIPlvZ -» PlP4vA P4P3v5
SlS2v7 -» S2Slv8 -» 5159^9

P3Slv6

1 ha$ —> haLlvl LlPlv2 -» PlPlv3 PlP4v4 P4P3v5
SlP3t>7 P3P4t>8 -> P4DQv9

P351u6 -»

50

4.2 Implementation and Experiments

We have implemented the compression model in Java. Our experiments also employ a

synthetic topology generator, the Boston university Representative Internet Topology gEn-

erator (BRITE) [7], and a general-purpose network visualization tool OTTER [47] by the

Cooperative Association for Internet Data Analysis (CAIDA). We tested the performance

of our proposed compression model on machines equipped with Intel Pentium M 1.80GHz

processor, 1024MB RAM, and Windows XP operating system.

Although there exist many topology generators, we choose BRITE due to its following

advantages [7].

1. First, BRITE is integrated with CAIDA's visualization tool, Otter, allowing easy vi-

sualization of generated topologies.

2. Second, BRITE exports to simulation software ns, SSFNET, JavaSim, OmNet++,

etc., which allows potential future work based on current results.

3. Third, BRITE is implemented in Java and C++, which can be easily understood and

integrated with our codes.

4. Finally, BRITE provides a GUI and a configuration file for users to easily specify

different topology generation parameters.

The Parameters and values, which are described in the table 7 [7], are instantiated as

the following in our experiments.

public void set_config(int nodeAmount) {

51

s t r C o n f [0] = " B r i t e C o n f i g " ;

s t rConf [1]="BeginModel" ;

strConf[2]="Name = 3 #Router Waxman = 1, ASWaxman = 3";

strConf[3]="N = "+nodeAmount+" #Number of nodes ingraph";

strConf[4]="HS = 100 #Size of main plane (number ofsquares)";

strConf[5]=" LS = 100 #Size of inner planes (number ofsquares)";

strConf[6]=" NodePlacement = 1 #Random = 1, Heavy Tailed= 2";

strConf[7]=" GrowthType = 1 #Incremental = 1, All = 2";

strConf[8]=" m = 2 #Number of neighboring node each new

nodeconnects to";

strConf[9]=" alpha =0.15 tWaxman Parameter";

strConf[10]=" beta = 0.2 #Waxman Parameter";

strConf[ll]="BWDist = 1 #Constant = 1, Uniform =2,

HeavyTailed = 3,Exp =4";

strConf[12]="BWMin = 10.0"; strConf[13]=" BWMax = 1024.0";

strConf[14]="EndModel"; strConf[15]="BeginOutput";

strConf[16]="BRITE = 1 #l/0=enable/disable output in BRITE format";

strConf[17]="OTTER = 1 #l/0=enable/disable visualization in otter";

strConf[18]="DML = 0 #l/0=enable/disable output to SSFNet's

DML format ";

strConf[19]=" NS = 0 #l/0=enable/disable output to NS-2";

strConf[20]=" Javasim = 0 #l/0=enable/disable output to Javasim";

strConf[21]="EndOutput";

52

Table 7: BRITE's Parameters [7]

Parameter Meaning Values
HS Size of one side of the plane int
LS Size of one side of a high-level square int
N Number of nodes int

Model model id int
alpha Waxman-specific exponent
beta Waxman-specific exponent

Node Placement how nodes are placed in the plane 1: Random, 2: HT
m Number of links per new node int

Growth Type how nodes join the topology 1: Incremental,2:Random
BWdist bandwidth assignment to links l:Const, 2: Unif, 3: Exp,4:HT

MaxBW, MinBW min, max link bandwidth values float

}

The way BRITE generates a topology is described as the follows [7].

1. First, place the nodes in the plane.

2. Second, interconnect the nodes.

3. Third, assign attributes to topological components, such as delay and bandwidth for

links, AS id for nodes, etc.

4. Finally, output the topology to a specific format.

We use the command line interface of BRITE to invoke the BRITE generation engine,

since this can be implemented in a script for repetitive experiment runs. The command

line receives as arguments a configuration file, a location for an export file, and a seed

file. BRITE uses pseudo-random numbers at various places of the generation process,

53

such as nodes placed randomly in the plane, nodes interconnected according to certain

probability function, etc. The seed_file parameter contains seeds to initialize the pseudo-

random number generator. More precisely, the command line used in the experiments for

starting BRITE is the following.

$ Java main.brite my_config.conf my_export.odf seed-file.

BRITE's output file includes the information about the topology contained in the file,

such as number of nodes and edges, and the node and edge information. For each node and

edge in the graph, a line in a specific format is included in the output file. The following is

an example of the output format.

g 0 d 1 Node Values

f 0 Degree

g 1 d 1 Node Classification

f 1 Corresponding AS

g 2 d 2 Edge Values

f 2 Bandwidth'Distance

t 3

T 3

N 0 19 17 0

v 0 0 3

v 0 1 -1

N 1 18 38 1

54

v 1 0 4

v 1 1 -1

N 2 31 4 2

v 2 0 4

v 2 1 -1

L 0 1 2

V 0 2 10.0'15.524174696260024

L 1 2 1

V 1 2 10.0'47.20169488482379

L 2 0 1

V 2 2 10.0'19.4164878389476

We inject additional information about node names and vulnerabilities into the output

file of BRITE such that the result can be used as configuration graph of our compression

model. Since the random topology does not include organizational information for forming

the natural clusters of hosts, we use the k-means algorithm [32] to divide all nodes into

clusters. Vulnerabilities are randomly assigned to all hosts. The following is an example of

the processed file after necessary information is injected.

g 0 d 1 Node Values

f 0 Degree

g 1 d 1 Node Classification

f 1 Corresponding AS

g 2 d 2 Edge Values

f 2 Bandwidth'Distance

t 256

T 512

N 0 60 31 H(0,0):(VI, V5, V8, Vll,V18)

v 0 0 5

v 0 1 -1

N 1 82 18 H (0,67) : (Vll,V18,V19)

v 1 0 5

v 1 1 -1

N 2 40 97 H(l,128):(V4,V5,V10)

v 2 0 2

v 2 1 -1

L 271 119 16

V 271 2 10.0'54.405882034941776

L 272 63 212

V 272 2 10.0'73.348483283569

L 273 63 99

V 273 2 10.0'63.12685640834652

L 274 226 95

V 274 2 10.0'15.264337522473747

L 275 226 150

V 275 2 10.0'35.34119409414458

56

To examine the generated topology, we use OTTER [47] to visualize the result. Fig-

ure 21 shows a screenshot of the displayed topology.

Race* System a £ is la

no """•"
j«<>. —

m —

m
—

Wt
SM —

Y1W

s • /

/

/1

- k f ̂

Figure 21: A Topology Shown in OTTER

Finally, we generate attack sequences using both the traditional method and our com-

pression model. In the following we compare the two results to demonstrate the perfor-

mance of our model. We generated around 2800 different topologies using the aforemen-

tioned tools. We vary the number of hosts from 60 to 300 and the number of sub-nets from

2 to 15.

Figure 22 shows the size of the full attack graph and the compressed attack graph,

respectively, in the number of hosts. Clearly, the size of the full attack graph increases

57

almost exponentially, with close to 10000 attack sequences for a network of 300 hosts.

Such a result is certainly incomprehensible to human eyes. On the other hand, the size

of the compressed attack graph increases significantly slower, and the result may still be

meaningful to a security expert for networks with around 300 hosts.

The Number of Hosts

Figure 22: Attack Graph Sizes in the Number of Hosts

Figure 23 compares the number of hosts in the original attack graph and the compressed

version. We can see that for a 300-node network, the compressed attack graph only includes

around 30 hosts. This ten-fold difference clearly demonstrates the effectiveness of our

approach. On the other hand, it is worth noting that the aforementioned reduction in the

number of attack sequences is mainly due to a smaller number of hosts in the compressed

58

attack graph, as evidenced here. This is because the compressed attack graph is similar to

a full attack graph, so the number of attack sequences will still grow quickly in the number

of hosts.

i 1 1 1 1 1 1 r
60 8,0 100 120 140 160 180 200 220 240 260 280 300

The Number of Hosts in Original Attack Graph

Figure 23: Comparison of the Number of Hosts

Figure 24 shows how the number of hosts in the full attack graph and compressed attack

graph, respectively, grow in the number of clusters. Again, the size of the compression

model increases much slower than the full attack graph due to the removal of redundant

hosts in the former. On the other hand, for the compression model, the number of clusters

is the main factor that causes the number of hosts to increase, as we have demonstrated in

previous sections.

59

The Number of Clusters

Figure 24: The Number of Hosts in the Number of Clusters

60

Chapter 5

Conclusion

This thesis tackled the scalability issue of attack graphs. As a useful tool for analyzing

multi-step attacks, attack graph suffers from poor scalability. Even for reasonably large

networks, the attack graphs are typically incomprehensible to human eyes. For large net-

works, even the generation of attack graphs would be prohibitive. Existing solutions can

at best hide the scalability issues through hierarchical visualization of attack graphs, which

does not really remove redundant information from those graphs.

In this thesis, we have adapted the well known compression technique, reference encod-

ing, to the context of attack graphs. We proposed a compression model for attack graphs in

several steps. First, we studied the complete case where hosts with identical connectivity

and vulnerabilities can be represented by a one-host model. Second, we showed that such

a one-host model has limitations in representing remote exploits across different machines.

We then introduced a two-node model to address this limitation. We also showed that the

one-host model is actually a special case of the two-node model.

61

Third, we studied the incomplete case where the connectivity and vulnerabilities may

vary among hosts. We analyzed two cases, one with small variations which can be handled

by reference rules and the other with significant differences that are better handled by leav-

ing hosts outside the compression model. To evaluate the proposed compression model,

we have conducted a case study of a small network compromised through mobile nodes

that are connected to the main network through wireless links. The result shows that our

compression model provides a clear picture about the multi-step attacks.

We have also implemented and tested the compression model on the basis of synthetic

network topologies generated by existing tools. The results also confirm that our model can

significantly reduce the size of attack graphs. Our future work includes the experimental

study of the performance of our methods under real world network topologies and the

integration of the compression model into existing attack graph generation engines.

62

Bibliography

[1] Micah Adler and Michael Mitzenmacher. Towards compressing web graphs. In DCC

'01: Proceedings of the Data Compression Conference (DCC '01), page 203, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[2] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner. State of the

practice of intrusion detection technologies. Technical report, Carnegie Mellon Uni-

versity, 2000.

[3] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vul-

nerability analysis. In Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS'02), 2002.

[4] Applied Computer Security Associates. Workshop on. In Information Security System

Scoring and Ranking, 2001.

[5] D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable com-

ponents. In Proceedings of the 1st Workshop on Quality of Protection, 2005.

63

[6] P. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable com-

ponents. In Proceedings of the 2nd ACM workshop on Quality of protection, 2005.

[7] Boston university representative internet topology generator. Available at

http://www.cs.bu.edu/brite/.

[8] CERT Coordination Center. CERT/CC overview incident and vulnerability trends,

http:// www.cert.org/ present/ cert-overview-trends/, 2003.

[9] R. Chinchani, A. Iyer, H. Ngo, and S. Upadhyay. Towards a theory of insider threat

assessment. In Proceedings of the IEEE International Conference on Dependable

Systems and Networks (DSN'05), 2005.

[10] F. Cuppens. Managing alerts in a multi-intrusion detection environment. In Proceed-

ings of the 17th Annual Computer Security Applications Conference (ACSAC'01),

2001.

[11] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection

framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy

(S&P'02), pages 187-200, 2002.

[12] F. Cuppens and R. Ortalo. LAMBDA: A language to model a database for detection

of attacks. In Proceedings of the 3rd International Symposium on Recent Advances in

Intrusion Detection (RAID'01), pages 197-216, 2001.

[13] M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis, Insti-

tut National Polytechnique de Toulouse, 1994.

64

http://www.cs.bu.edu/brite/
http://www.cert.org/

[14] M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of operational

security: Models and tools. Technical Report 96493, 1996.

[15] O. Dain and R.K. Cunningham. Building scenarios from a heterogeneous alert sys-

tem. In Proceedings of the 2001 IEEE Workshop on Information Assurance and Se-

curity, 2001.

[16] O. Dain and R.K. Cunningham. Fusing a heterogeneous alert stream into scenarios. In

Proceedings of the ACM Workshop on Data Mining for Security Applications, pages

1-13, 2001.

[17] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts.

In Proceedings of the 3rd International Symposium on Recent Advances in Intrusion

Detection (RAID '01), pages 85-103, 2001.

[18] R. Deraison. Nessus scanner, 1999. Available at http://www.nessus.org.

[19] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An attack language for state-

based intrusion detection. Journal of Computer Security, 10(1/2):71—104, 2002.

[20] D. Farmer and E.H. Spafford. The COPS security checker system. In USENIX Sum-

mer, pages 165-170, 1990.

[21] M. Frigault and L. Wang. Measuring network security using bayesian network-based

attack graphs. In Proceedings of The 3rd IEEE International Workshop on Security,

Trust, and Privacy for Software Applications (STPSA '08), 2008.

65

http://www.nessus.org

[22] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using

dynamic bayesian network. In Proceedings ofQoP (QoP'08), 2008.

[23] N. Habra, Charlier B.L., A. Mounji, and I. Mathieu. ASAX: software architech-

ture and rule-based language for universal audit trail analysis. In Proceedings of the

2nd European Symposium on Research in Computer Security (ESORICS1992), pages

430-450, 2004.

[24] J. Homer, A. Varikuti, X. Ou, and M.A. Mcqueen. Improving attack graph visual-

ization through data reduction and attack grouping. In Proceedings of the 5th inter-

national workshop on Visualization for Computer Security (VizSec'08), pages 68-79,

2008.

[25] K.S. Hoo. Metrics of network security. White Paper, 2004.

[26] IBM. IBM tivoli risk manager. Available at http://www.ibm.com/software/tivoIi/

products/risk-mgr/.

[27] SRI International. Event monitoring enabling responses to anomalous live distur-

bances (EMERALD). Available at http:// www.sdl.sri.com/projects/emerald/.

[28] S. Jajodia, S. Noel, and B. O'Berry. Topological analysis of network attack vulnera-

bility. In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats:

Issues, Approaches and Challenges. Kluwer Academic Publisher, 2003.

[29] A. Jaquith. Security Merics: Replacing Fear Uncertainty and Doubt. Addison Wes-

ley, 2007.

66

http://www.ibm.com/software/tivoIi/
http://www.sdl.sri.com/projects/emerald/

[30] S. Jha, O. Sheyner, and J.M. Wing. Two formal analysis of attack graph. In Proceed-

ings of the 15th Computer Security Foundation Workshop (CSFW'02), 2002.

[31] Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for actionable

knowledge. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 366-375, 2002.

[32] Available at http://www.rob.cs.tu-bs.de/teaching/interactive/.

[33] S. Jajodia L. Wang T. Islam T. Long A. Singhal. An attack graph-based probabilistic

security metric. In IFIP WG 11.3 Conference on Data and Application Security, 2008.

[34] W. Lee, J.B.D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang. Perfor-

mance adaptation in real-time intrusion detection systems. In Proceedings of The 5th

International Symposium on Recent Advances in Intrusion Detection (RAID 2002),

2002.

[35] R. Lippmann and K. Ingols. An annotated review of past papers on attack graphs.

Technical Report PR-IA-1, 2005.

[36] K. Manadhata, J.M. Wing, M.A. Flynn, and M.A. McQueen. Measuring the attack

surfaces of two ftp daemons. In Quality of Protection Workshop, 2006.

[37] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.

IEEE Security & Privacy Magazine, 4(6):85-89, 2006.

67

http://www.rob.cs.tu-bs.de/teaching/interactive/

[38] B. Morin, L. Me, H. Debar, and M. Ducasse. M2D2: A formal data model for IDS

alert correlation. In Proceedings of the 5th International Symposium on Recent Ad-

vances in Intrusion Detection (RAID'02), pages 115-137, 2002.

[39] National Institute of Standards and Technology. Technology assessment: Methods for

measuring the level of computer security. NIST Special Publication 500-133, 1985.

[40] P. Ning, Y. Cui, and D.S. Reeves. Constructing attack scenarios through correlation

of intrusion alerts. In Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS'02), pages 245-254, 2002.

[41] P. Ning and D. Xu. Learning attack strategies from intrusion alerts. In Proceedings

of the 10th ACM Conference on Computer and Communications Security (CCS'03),

2003.

[42] P. Ning, D. Xu, C.G. Healey, and R.S. Amant. Building attack scenarios through

integration of complementary alert correlation methods. In Proceedings of the 11th

Annual Network and Distributed System Security Symposium (NDSS'04), pages 97-

111,2004.

[43] S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchi-

cal aggregation. In CCS Workshop on Visualization and Data Mining for Computer

Security (VizSEC/DMSEC'04), 2004.

68

[44] S. Noel and S. Jajodia. Understanding complex network attack graphs through clus-

tered adjacency matrices. In Proceedings of the 21st Annual Computer Security Ap-

plications Conference, 2005.

[45] S. Noel, S. Jajodia, B. O'Berry, and M. Jacobs. Efficient minimum-cost network hard-

ening via exploit dependency grpahs. In Proceedings of the 19th Annual Computer

Security Applications Conference (ACSAC'03), 2003.

[46] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative evaluation

tools for monitoring operational security. IEEE Trans. Software Eng., 25(5):633-650,

1999.

[47] Available at http://www.caida.org/tools/visualization/otter/paper/.

[48] X. Ou, W. F. Govindavajhala, and A.W. Appel. Mulval: A logic-based network secu-

rity analyzer. In 14th USENIX Security Symposium, 2005.

[49] X. Ou, W. F. Govindavajhala, and M.A. McQueen. A scalable approach to attack

graph generation. In 13th ACM Conference on Computer and Communications Secu-

rity (CCS), 2006.

[50] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security

metric for network configuration security analysis. In Proceedings of the 2nd ACM

workshop on Quality of protection, pages 31-38, New York, NY, USA, 2006. ACM

Press.

69

http://www.caida.org/tools/visualization/otter/paper/

[51] V. Paxson. Bro: A system for detecting network intruders in real-time. Computer

Networks, 31(23-24):2435-2463, 12 1999.

[52] C. Phillips and L. Swiler. A graph-based system for network-vulnerability analysis.

In Proceedings of the New Security Paradigms Workshop (NSPW'98), 1998.

[53] X. Qin and W. Lee. Statistical causality analysis of INFOSEC alert data. In Proceed-

ings of the 6th International Symposium on Recent Advances in Intrusion Detection

(RAID 2003), pages 591-627, 2003.

[54] X. Qin and W. Lee. Discovering novel attack strategies from INFOSEC alerts. In

Proceedings of the 9th European Symposium on Research in Computer Security (ES-

ORICS 2004), pages 439^56, 2004.

[55] S. Raghavan and H. Garcia-Molina. Representing web graphs. In Proceedings of

ICDE, 2003.

[56] I. Ray and N. Poolsappasit. Using attack trees to identify malicious attacks from

authorized insiders. In Proceedings of the 10th European Symposium on Research in

Computer Security (ESORICS'OS), 2005.

[57] R. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities.

In Proceedings of the 2000 IEEE Symposium on Research on Security and Privacy

(S&P'OO), pages 156-165, 2000.

70

[58] R. Ritchey, B. O'Berry, and S. Noel. Representing TCP/IP connectivity for topo-

logical analysis of network security. In Proceedings of the 18th Annual Computer

Security Applications Conference (ACSAC'02), page 25, 2002.

[59] B. Schneier. Attack trees. Dr. Dobbs Journal, 24(12):21-29, 1999.

[60] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated generation

and analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Secu-

rity and Privacy (S&P'02), 2002.

[61] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of

stealthy portscans. Journal of Computer Security, 10(1/2): 105-136, 2002.

[62] M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for

information technology systems. NIST Special Publication 800-55, 2003.

[63] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer attack graph generation

tool. In Proceedings of the DARPA Information Survivability Conference & Exposi-

tion II (DISCEX'01), 2001.

[64] S. Templeton and K. Levitt. A requires/provides model for computer attacks. In

Proceedings of the 2000 New Security Paradigms Workshop (NSPW'00), pages 31-

38, 2000.

[65] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings of the 4th

International Symposium on Recent Advances in Intrusion Detection, pages 54-68,

2001.

71

[66] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack

graphs. Computer Communications, 29(18):3812-3824, 11 2006.

[67] L. Wang, A. Singhal, and S. Jajodia. Measuring network security using attack graphs.

In Proceedings of the 3rd ACM workshop on Quality of protection (QoP'07), New

York, NY, USA, 2007. ACM Press.

[68] L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security of network con-

figurations using attack graphs. In Proceedings of 21th IFIP WG 11.3 Working Con-

ference on Data and Applications Security (DBSec 2007), 2007.

[69] D. Xu and P. Ning. Alert correlation through triggering events and common resources.

In Proceedings of the 20th Annual Computer Security Applications Conference (AC-

SAC'04), pages 360-369, 2004.

[70] D. Xu and P. Ning. Privacy-preserving alert correlation: A concept hierarchy based

approach. In Proceedings of the 21st Annual Computer Security Applications Con-

ference (ACSAC'05), 2005.

[71] D. Zerkle and K. Levitt. Netkuang - a multi-host configuration vulnerability checker.

In Proceedings of the 6th USENIX Unix Security Symposium (USENIX'96), 1996.

[72] Y. Zhai, P. Ning, P. Iyer, and D. Reeves. Reasoning about complementary intrusion

evidence. In Proceedings of the 20th Annual Computer Security Applications Confer-

ence (ACSAC'04), pages 39-48, 2004.

72

