
An Aspect Oriented Approach for Security Hardening:
Semantic Foundations

Nadia Belblidia

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

December 2008

© Nadia Belblidia, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre inference
ISBN: 978-0-494-63356-4
Our file Notre reference
ISBN: 978-0-494-63356-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

An Aspect Oriented Approach for Security Hardening: Semantic
Foundations

Nadia Belblidia , Ph. D.

Concordia University, 2008

Computer security is nowadays a very important field in computer science and se­

curity hardening of applications becomes of paramount importance. Aspect oriented pro­

gramming (AOP) is a relatively new technology that allows separation of concerns such as

security, synchronization, logging, etc. This increases the readability, understandability,

maintainability, and security of software systems. Furthermore, AOP allows automatic

injection of the crosscutting concerns into the application code using a weaving mecha­

nism. This thesis comes to provide theoretical study of using AOP for security hardening

of applications. The main contributions of this thesis are the following. We propose a

comparative study of AOP approaches from a security perspective. We establish a secu­

rity appropriateness analysis of AspectJ and we propose new security constructs for this

language. Since aspects in AspectJ are weaved (combined) with the Java Virtual Machine

Language (JVML) application code, we develop a formal semantics for the JVML. We

propose also a semantics for AspectJ that formalizes the advice weaving. We develop a

new AOP calculus, A._SAOP, based on lambda calculus extended with security pointcuts.

Finally, we implement three new constructs in AspectJ, namely getLocal , se tLocal ,

and df low, for local variable accesses and data flow analysis. In conclusion, this thesis

demonstrates the relevance, importance, and appropriateness of using the AOP program­

ming paradigm in hardening the security of applications.

111

Dedication

To my parents who were my first and best teachers,

To my husband, who supported me patiently,

To my daughter who was always asking me if I had finished my Ph.D.. Now, I can tell

her: "Yes, I have finished."

IV

ACKNOWLEDGEMENTS

The research for this thesis was carried out in the dynamic Computer Security Lab­

oratory (CSL) of Concordia university. It has been a very instructive experience, profes­

sionally as well as personally. Now, the time has finally come to thank all the people

that have contributed to this work. First, I would like to warmly thank my supervisor

Pr. Mourad Debbabi. This work would not have been possible without his guidance,

common-sense, knowledge, and perceptiveness. His suggestions and critical remarks, in

combination with his strong vision and understanding, were very helpful. Thank you also

Mourad for your continual moral support and encouragement. Many thanks also to the

CIISE staff who provided for me an outstanding environment to work. I would like to say

a big thank you to my colleagues: Dima Al-Hadidi, Mourad Azzam, Amine Boukhetouta,

Aiman Hanna, Marc-Andre Laverdiere, Syrine Tlili, and Zherong Yang. Thanks for the

interesting scientific discussions about security analysis and hardening of free and open-

source software. My appreciation also goes to all the friends that I made in the Institute

along these years. Especially, I would like to thank Chamseddine Talhi for his help in

proofreading my thesis to improve the written presentation of the final copy. Finally, and

on a personal note, I wish to thank my parents, my sister, and my brothers for instilling in

me confidence and a drive for returning to study for a Ph.D. after several years of work.

Last but by no means least, I want to thank Fouzi, my husband, and Lylia, my only child

for their patience and love during this long process. This work, and my life, would never

have been the same without them.

v

TABLE OF CONTENTS

FIGURES xi

TABLES xiii

ACRONYMS xiii

1 Introduction 1

1.1 Motivations 1

1.2 Objectives 3

1.3 Research Issues 3

1.3.1 AOP for Security 4

1.3.2 AspectF and Semantic Foundations 4

1.3.3 Security Aspect Calculus 5

1.3.4 Aspect! Extension 5

1.4 Methodology 5

1.4.1 Semantic Foundations of AOP 5

1.4.2 Security Appropriateness of AOP 6

1.4.3 Language for Security Hardening 7

1.4.4 AOP Calculus for Security 7

1.5 Contributions 8

1.6 Thesis Structure 9

2 Aspect Oriented Programming and Security 10

2.1 Software Security 10

2.1.1 High-Level Security 11

2.1.2 Low-Level Security 13

2.1.3 Security Hardening Practices 14

2.2 Aspect Oriented Programming 16

2.2.1 Pointcut-Advice Approach 17

VI

2.2.2 Multi-Dimensional Separation of Concerns 18

2.2.3 Adaptive Programming 23

2.3 AspectJ 24

2.3.1 Dynamic Crosscutting 26

Join Point Model 26

Pointcut Designators 26

Advices 28

2.3.2 Static Crosscutting 31

2.4 Lambda Calculi and Type Systems 33

2.4.1 Type-Free Lambda Calculus 34

Lambda Calculus Reduction 36

Beta-Normal Form 36

2.4.2 Simply Typed Lambda Calculus 37

2.4.3 Polymorphic Type System 38

Type Instantiation 39

Typing Rules 39

Example 39

2.4.4 Effect-Based Type Systems 40

Typing Rules 42

Inference Algorithm 43

2.5 Research Initiatives 48

2.5.1 AOP and Security 49

2.5.2 Formal Semantics for AOP 50

2.5.3 Formal Semantics for JVML 53

2.6 Conclusion . 55

3 Appropriateness Analysis of AOP for Security 56

3.1 AOP approaches and Security 56

3.2 Suggested AspectJ Extensions 57

Vll

3.2.1 Predicted Control Flow Pointcut 58

3.2.2 Dataflow Pointcut 59

3.2.3 Loop Pointcut 61

3.2.4 Pattern Matching Wildcard 62

3.2.5 Type Pattern Modifiers 63

3.2.6 Local Variables 64

3.2.7 Synchronized Block Joinpoint 65

3.3 Conclusion 66

4 JVML Semantics 67

4.1 Why Another JVML Semantics? 67

4.2 JVML Semantic Ingredients 69

4.2.1 JVML Syntax 70

4.2.2 Type Algebra 70

4.2.3 Computable Values 70

4.2.4 Environment 70

4.2.5 Memory Store 74

4.2.6 Frame 77

4.2.7 Configurations 77

4.3 JVML Semantic Rules 80

4.3.1 First Layer 81

4.3.2 Second Layer 117

4.4 Conclusion 118

5 AspectJ Weaving Semantics 120

5.1 Pointcuts, Join Points, and Shadows 121

5.2 Environnement 127

5.3 Matching Process 127

5.4 JVML Codes of Dynamic Tests 131

vin

5.5 Weaving Semantics Rules 136

5.6 Conclusion 142

6 AOP Security Calculus 143

6.1 Syntax 143

6.2 Types and Tags 144

6.3 Type-Based Weaving 155

6.4 Inference Algorithm 162

6.5 Conclusion 164

7 Design and Implementation of AspectJ Extensions 166

7.1 Design of the Proposed Pointcuts 166

7.1.1 Pointcuts: g e t l o c a l and s e t l o c a l 167

7.1.2 Pointcut df low 168

7.2 AspectJ Compiler Architecture 168

7.2.1 Front-End Compiler 171

7.2.2 Back-End Compiler 171

7.3 AspectJ Open Source Software Package Details 174

7.3.1 Runtime packages 174

7.3.2 Weaver packages 176

7.4 Implementation 177

7.4.1 Local Variable Pointcuts Implementation 177

7.4.2 Data Flow Pointcut Implementation 178

7.4.3 Example 183

7.5 Conclusion 184

8 Conclusion 186

Bibliography 188

ix

Appendices 197

Appendix I: JVML Semantics Utility Functions 197

Appendix II: AspectF Semantics Utility Functions 211

Appendix II: X_SAOP Semantics Utility Functions 235

x

FIGURES

2.1 AspectJ Example 1 18

2.2 HyperJ Example: Java Programs Part I 20

2.3 HyperJ Example: Java Programs Part II 21

2.4 HyperJ Example: HyperSpaceFile 21

2.5 HyperJ Example: Concern Mapping . 21

2.6 HyperJ Example: HyperModule 1 21

2.7 HyperJ Example: HyperModule 2 22

2.8 HyperJ Example: HyperModule 3 23

2.9 DJ Example 25

2.10 AspectJ Example2 32

2.11 AspectJ Example3 33

2.12 AspectJ Example4 33

2.13 Lambda Calculus Syntax 34

2.14 Type Syntax 37

2.15 Simply Typed Lambda Calculus Rules 38

2.16 Type and Type Scheme Syntax 39

2.17 Polymorphic Typed Lambda Calculus Rules 40

2.18 Extended A,-Calculus Syntax 41

2.19 Types and Effects in Extended A,-Calculus 42

2.20 Typing Rules with Effects 44

3.1 Figure Classes for Pcflow 59

3.2 Display Updating Aspect with pcflow 59

3.3 Pcflow Pointcut Security Example 59

3.4 Cross Site Scripting Problem 60

3.5 Type Pattern Modifiers 64

XI

3.6 Local Variables Get and Set 65

3.7 Synchronized Block 66

5.1 Shadowing Example 126

6.1 X_SAOP Syntax Part I 145

6.2 X_SAOP Syntax Part II 146

6.3 Types and Tags 147

6.4 Tagging Rules 148

6.5 Tagging Algorithm 152

6.6 Type-Based Weaving Rules 156

6.7 Example of Derivations 162

7.1 AspecO Compiler Architecture 169

7.2 Weaving Process 170

7.3 Back-End Compiler Phases 172

7.4 Pointcut Parsing Example 173

7.5 Method Call Shadow Representation 173

7.6 Important Modules in Aspect! 175

7.7 Data flow Package 180

7.8 Dependencies Class 181

7.9 Visit Method for a l o a d 182

7.10 Visit Method for a s t o r e 182

7.11 Visit Method for i add 183

7.12 Method execute() in MethodtoDependencies.java . . . 184

7.13 Screenshot for Implemented Pointcuts 185

xii

TABLES

2.1 Aspect! Join Points 27

2.2 AspectJ Pointcuts Part I 29

2.3 AspecU Pointcuts Part II 30

4.1 JVML Bytecode Grammar 71

4.2 Java Type Algebra 72

4.3 Runtime Values 72

4.4 Java Environment Part I 75

4.5 Java Environment Part II 76

4.6 Store Structure 76

4.7 Method Frame 78

4.8 Thread Configurations 79

4.9 Multi-Threads Configurations 79

5.1 Pointcuts 122

5.2 Join Points and Shadows 123

5.3 Shadow Syntax 124

5.4 AspectJ Environnement 128

5.5 AspectJ Semantic Configuration 136

xiii

ACRONYMS

AJDT

AJC

AO

AOP

AOSD

AP

ASB

ASOC

CSP

DRDC

EAOP

FTP

IEEE

JAAS

JCE

JDT

JSAL

J2EE

JVM

JVML

A,-Calculus

^-SAOP

MAC

MDSOC

OO

OOP

AspecU Development Team

Aspect! Compiler

Aspect-Oriented

Aspect-Oriented Programming

Aspect-Oriented Software Development

Adaptive Programming

Aspect Sand Box

Advanced Separation of Concerns

Communicating Sequential Processes

Defence Research and Development Canada

Event Aspect Oriented Programming

File Transfer Protocol

Institute of Electrical and Electronics Engineers

Java Authentication and Authorization Service

Java Cryptography Extension

Java Development Toolkit

Java Security Aspect Library

Java 2 Enterprise Edition

Java Virtual Machine

Java Virtual Machine Language

Lambda Calculus

Security Aspect Oriented Lambda Calculus

Message Authentication Code

Multi-Dimensional Separation of Concerns

Object Oriented

Object Oriented Programming

xiv

SOS Structural Operational Semantics

URL Uniform Resource Locator

XSS Cross-Site Scripting

xv

Chapter 1

Introduction

The aim of this thesis is to provide a formal and practical study of using AOP for software

security hardening. This chapter presents the motivations of such a study, the research

issues that we addressed, the objectives of the thesis, the methodology that we followed,

the main contributions that we achieved, and finally the dissertation structure.

1.1 Motivations

Software security becomes increasingly important in this decade because of the growing

connectivity of computers through the Internet. This growing interconnectedness of sys­

tems has increased the number of attacks and the facility with which an attack can be

done. In addition, many applications deal with very sensitive data, such as corporate data,

financial data, personal data, etc. It is then crucial to protect those applications because if

hacked, they may cause significant damage.

Hardening the security of applications includes adding security functionalities as

well as removing or preventing the exploitation of vulnerabilities. A legitimate question

that one could ask is: "What is the most appropriate computation style or programming

paradigm for security hardening?"A natural answer is to resort to an Aspect Oriented

language. This answer is justified by the fact that the Aspect Oriented Programming

1

(AOP) [55] paradigm has been created to deal with the separation of concerns. Aspect

Oriented Programming is a relatively new paradigm that complements the Object Ori­

ented Programming (OOP) paradigm by supporting a better separation of crosscutting

concerns1. Crosscutting concerns such as security are concerns that are tangled and scat­

tered across more than one module.

The primary intent of this thesis is to elaborate a practical framework with the un­

derlying solid semantic foundations for the application security hardening using the AOP

paradigm. This work is motivated by several factors. The first is that application pro­

grammers can focus only on the functional problem they are facing. Using AOP, the base

program does not need to consider security information, which can be put into separate

and independent pieces of code. We can think that OOP also separates concerns by group­

ing them in separate objects; however, it is only appropriate to separate concerns that map

to concrete objects not abstract concerns like security that affects the entire system in a

broad manner. AOP allows security concerns to be specified modularly and applied to the

main program.

Another motivation is that AOP is very interesting for security engineers because

they would like to inject and strengthen security without digging into the logic of the

application/middleware. This is made possible with the separation of concerns offered by

the AOP approach. In addition, the injection of security modules is done in an automatic

way.

This work is also motivated by the fact that correctness verification is much easier

if the code is not scattered across many classes in the application.

For the semantic foundations of the approach, we motivate its usefulness with three

facts. First, it is more suitable to use a formal semantics than an informal semantics to

conduct fruitful discussions since it gives a better understanding of the concept. Second, a

formal model allows to prove properties of the system. Finally, very few contributions re­

lated to the semantic foundations of AOP exist in the literature and our aim is to contribute

1 AOP can be also on top of functional programming or even imperative programming

2

also in this field.

All these facts have motivated us to elaborate a research thesis targeting AOP-based

application security hardening. The main challenge of this research is to assess the ex­

isting AOP approaches from a security point of view, choose one approach, extend it to

better fit the problem of security hardening of applications, and to build the underlying

semantic foundations.

1.2 Objectives

The purpose of this research is to elaborate a practical framework with the underlying

solid semantic foundations for hardening the security of applications. More precisely, our

objectives are:

• Study the practical and the theoretical underpinnings of existent aspect oriented

techniques.

• Evaluate the appropriateness of the existent AOP approaches for security hardening

and choose the most appropriate language for security hardening of Java applica­

tions.

• Design and implement a practical and efficient environment that allows the security

hardening of Java applications.

• Define an AOP calculus for security hardening. Such a calculus will allow us to

focus on AOP and security primitives without the details of a full-fledged language.

1.3 Research Issues

In this section, we present the research issues that we addressed at the practical and theo­

retical levels.

3

1.3.1 AOP for Security

When we started this research in the beginning of 2004, there were only few contribu­

tions in academic and industrial communities about using AOP for security hardening of

applications. Most of these contributions use existing AOP languages to write security

aspects or security libraries; however, they do not assess the AOP language they chose

from a security perspective. Other contributions built safety-dedicated aspect extension

of languages like C; however, these contributions do not define new and needed concepts

in AOP and address local small-sized problems as buffer overflows and data logging. We

found only two contributions [15,66] that analyze new relevant properties that can be used

in AOP systems and identify areas of future work; However, none of them undertakes a

fully-fledged language. This entailed the need to choose an appropriate AOP language

for security hardening and to perform a complete security assessment of this language. In

our case, the selected language is AspectJ.

1.3.2 AspectJ and Semantic Foundations

Establishing the semantic foundations for AspectJ entails the elaboration of a semantics

for its advice weaving. Since the weaving in AspecU is done on the JVML code, the

first step is to define a semantics for JVML and then to define the semantics for the

weaving. The most important issue we faced in the JVML semantics was to define a

semantics for multi-threading. Notice that most of the proposed research contributions so

far consider only one single thread of execution even though multi-threading is a keystone

in Java. For this purpose, the semantics is structured in two layers: The first layer captures

the semantics of sequential JVML programs in isolation, the second layer consists of

judgements that capture the parallel execution of JVML threads.

Once the JVML semantics has been established, we had to develop a semantics for

the weaving itself. For this purpose, we had to dig into the actual AspectJ implementation.

The issue was that the source code of the AspectJ compiler is very huge and there is no

4

design document for it. Understanding the inner workings of the compiler was a hard

task.

1.3.3 Security Aspect Calculus

When developing the aspect oriented calculus for security hardening, we used lambda-

calculus. For this calculus, which we called XJSAOP, we defined a semantics for the

advice weaving during the typing process. We used the notion of effects and regions

to control the type generalization in the presence of mutable data and tags to track data

dependency in lambda expressions. This allows to find the join points that match the

dataflow pointcuts. One of the challenges of this part of the work was to simultaneously

use tags, effects and regions.

1.3.4 AspectJ Extension

A big challenge in this thesis is the extension of the Eclipse AspectJ compiler a j c [79] in

order to handle the new proposed security primitives. In the literature, we did not find any

documentation explaining the design of a j c compiler. Furthermore, the a j c code source,

written in Java, contains more than 6000 Java files. It was challenging to find the most

important files where we must intervene to design and implement the new primitives.

1.4 Methodology

To reach the objectives of the thesis, we followed this methodology:

1.4.1 Semantic Foundations of AOP

We spent time exploring the existent approaches to AOP, which encompasses the study

of the existent mainstream languages: Aspect J, Hyper J, and DJ. To achieve a great

understanding of these languages, our sources were the available informal specifications

5

as well as the existing compilers. In addition, existing research papers on these topics

have been studied in order to gain more understanding and insights into these approaches.

As for the theoretical aspects underlying AOP, we studied the very few published works

on the semantic foundations.

To benefit from the effort invested in studying the state of the art of AOP, we ded­

icated research efforts to compile the know-how of the AOP community into an elegant

semantic framework.

Actually, we noticed that a tremendous work has been done in the related work on

designing and implementing very sophisticated AOP languages. These languages include

very expressive and powerful primitives while their semantics are very complex to grasp.

To fully understand the meaning of these primitives we had to:

• Dig into the actual implementations of the corresponding programming languages.

This task has been very tedious and time consuming since it implies reading thou­

sands of lines of code without necessarily having the design documentation.

• Scrutinize both the source code of programs and the corresponding compiled units

in order to figure out how these primitives have been interpreted by the compiler.

This implies the design of relevant testing programs and the decompilation/dis-

assembling of the compiled units that are the result of the compilation/weaving

process. This has been again a very tedious and time consuming task.

Once understood, we compiled this tremendous knowledge into an elegant, formal,

rigorous and robust semantic framework.

1.4.2 Security Appropriateness of AOP

An important objective was to assess the adequacy of existing AOP approaches to handle

security hardening. To achieve this, we had to:

• Compile and analyze common best practices in security hardening.

6

• Determine if these practices are expressible in terms of the existing AOP primitives.

As we will explain later in this thesis, existing approaches are not expressive enough

to capture security hardening practices; therefore, the aforementioned research task will

lead to the identification of relevant and new AOP security primitives.

1.4.3 Language for Security Hardening

In this phase of our research, we took Aspect! with its compile-time and run-time defi­

nitions and extended it with the main important AOP primitives identified and elaborated

in the previous phases of the research. This entailed the modifications of both the com­

piler (more accurately the parser, semantic analyzer, and code generator) and the weaver.

Notice that these modifications are the result of a joint collaboration with other CSL

(Computer Security Laboratory) members as part of a larger project funded by Defense

Research and Development Canada (DRDC) and Bell Canada under NSERC partnership.

1.4.4 AOP Calculus for Security

To fully understand the semantics of AOP security hardening and in order to establish

theoretical results on this theme, we elaborated the syntactic and semantic definitions

of a calculus for security hardening called A,_SAOP Calculus. Recall that calculi are

compact, expressive, and algebraic languages mat are elaborated for the main purpose of

understanding a computation style and to establish theoretical results.

To elaborate the calculus, we took advantage of the previously described research

results, i.e.:

• The theoretical foundations of AOP languages.

• The identification of AOP security hardening primitives.

7

The syntactic definition encompasses (1) Primitives for the functional and compu­

tational fragments of the calculus and (2) AOP Primitives, i.e., pointcut and advice con­

structs. We used the semantic definitions in order to establish an important result, which

ensures that the advice weaving does not change the types, i.e., the original program and

the weaved program have the same type. This is an important correctness property that

the weaving process should satisfy.

1.5 Contributions

This section describes the different contributions achieved during this thesis. We have

elaborated:

• A security appropriateness analysis of the three important AOP approaches: pointcut-

advice model [56], adaptive programming [76], and multiple separation of con­

cerns [78]. We concluded [2] that die pointcut-advice model was the best for se­

curity hardening. The most popular AOP language that extends Java and based on

the pointcut-advice model is AspectJ. We studied in detail AspectJ and its security

appropriateness. We proposed [1] extensions to AspectJ in order to successfully

address the programming of security concerns.

• A dynamic semantics for the Java Virtual Machine Language because the weaving

in AspectJ is done on the JVML code. The presented semantics [11] is a faithful

and formal transcription of the JVML specification as described in [64]. The se­

mantics is structured in two layers: The first layer is devoted to the semantics of

sequential JVML programs and the second layer captures the parallel execution of

JVML threads.

• A formal semantics of the AspectJ advice weaving [9,10], which compiles the

know-how of the AspectJ community. This semantics covers both static and dy­

namic pointcuts. A static pointcut is a pointcut dealing only with compile time

8

information whereas a dynamic pointcut needs runtime information. In order to

build this semantics, we had to scrutinize both the source code of programs and the

corresponding compiled units in order to determine how the AspectF primitives are

interpreted by the compiler.

• A security aspect calculus A._SAOP [3,4] containing primitives for the functional

and computational fragment of the calculus and AOP primitives. The calculus con­

tains pointcuts that are relevant to security hardening of applications. We develop

a semantics for this calculus and we propose an accommodation to the effect-based

inference algorithm to take the matching and the weaving processes into consider­

ation.

• An extension of the Eclipse AspectF compiler a j c version 1.5. This extension

[5] implements new pointcuts that are relevant from security point of view. The

considered pointcuts are related to local variable accesses, namely g e t L o c a l and

s e t L o c a l , and to data flow information analysis, namely df low.

1.6 Thesis Structure

The rest of this document is organized as follows. Chapter 2 gives an overview of the

background and the related work of the topics discussed in this thesis. Chapter 3 presents

a security appropriateness analysis of the different AOP approaches and more accurately

of AspectF. Chapter 4 presents a semantics for JVML. Chapter 5 provides a semantics for

the advice weaving in AspecU. Chapter 6 presents the security functional AOP calculus

X.-SAOP. Chapter 7 details the implementation of the primitives getLocal , se tLocal ,

and df low in AspectF. Finally, in Chapter 8, we give some conclusions and future work

on this research .

9

Chapter 2

Aspect Oriented Programming and

Security

The intent of this chapter is twofold, firstly to present the background information related

to the topics discussed in this thesis and secondly, to give the most relevant contributions

to the subject of the thesis. Concerning the background, we will first outline the basic prin­

ciples of software security. Next, we will familiarize the reader with the aspect oriented

approaches. Thirdly, we will describe AspectJ specificities. Finally, we will provide an

overview of lambda calculi and type systems. We remind the reader that the security AOP

calculus A._SAOP that we present in Chapter 6 is based on lambda-calculus. Concerning

the related work, first we will cite the contributions where AOP is used for security goals

then the contributions that formalize the semantics of AOP languages followed by those

that describe semantics for JVML.

2.1 Software Security

A software is secure if it resists to unintentional defects, accidents, and failures as well as

intentional attacks. Software security is the ability of software to resist to these kind of

events. Attacks can be initiated either inside or outside the site of an organization and are

10

violation of one or more security properties. In this section, we review the background

about high-level and low-level security properties as well as the security hardening prac­

tices.

2.1.1 High-Level Security

While designing and developing applications, we should take care of different high-level

security properties. Several security properties related to information security are de­

scribed in many documents, standards, and books but there is no standard documentation

listing all these security requirements. Each security property has its own characteristics.

Among the different properties, we can enumerate: confidentiality, integrity, availability,

authentication, authorization, non-repudiation, anonymity, and accountability. A presen­

tation of these security properties is given hereafter:

1. Confidentiality: The confidentiality property specifies that critical information should

not be made available or disclosed to unauthorized individuals, entities, or pro­

cesses. The system enforcing confidentiality shall offer features to ensure that only

authorized users are allowed access sensitive information.

2. Integrity: The integrity property specifies that information should not be modified

or destroyed in an unauthorized manner.

3. Availability: The availability property specifies that unauthorized persons or sys­

tems cannot deny access/use by authorized users.

4. Authentication: The authentication property corroborates that an entity is who it

claims to be. To ensure authentication, the system must offer a way to verify the

identity of a user before allowing her or him access to the system.

5. Authorization: The authorization property (known as access control) is concerned

with restricting access to resources to privileged entities. To enforce authorization,

11

the system shall offer features to not allow a user to access a resource of the system

unless authorized to do so.

6. Non-repudiation: Enforcing the non-repudiation property prevents the denial of

participation in transactions. To enforce non-repudiation, a system must have the

capability of preventing users from denying actions and events of other users acting

as senders or receivers.

7. Anonymity: The anonymity property specifies that the identity of the user partic­

ipating in a certain event is kept secret. This property may be needed in many

situations, like voting, posting messages on forums, etc. Notice that anonymity is

different from confidentiality since confidentiality keeps the content of a message

secret whereas anonymity keeps secret the identity of the originator or that of the

recipient. To ensure anonymity, a system must have the ability to hide identities.

8. Accountability: The accountability property specifies that all the actions of a system

entity (an invoker of a service, an initiator of action) may be traced. To enforce

accountability, a system must have tools to authenticate the users.

Other security objectives exist in the security literature such as auditing, certifica­

tion, and so forth. Several security mechanisms are used to enforce the aforementioned

requirements, such as cryptographic protocols (based on symmetric or asymmetric keys)

for confidentiality and integrity, MAC (Message Authentication Code) and digital signa­

tures for authentication and so forth.

High-level security is very important; however, it is not always sufficient. For in­

stance, problems as buffer overflows are not covered by high-level security properties.

The following section discusses such problems in detail.

12

2.1.2 Low-Level Security

The role of the low-level security (safety) mechanisms is to ensure that a component is

"safe to use". Low-level security is extremely dependent on the programming language

and the platform. In the case of Java, safety issues are minimal because this language

provides concepts such as strong typing, no address arithmetics, array bound-checking,

and exception handling that makes it safe. Most Java related security problems are about

high-level security properties. In the case of the C and C++ languages, the lack of type

safety and the fact that memory management is left to the programmer's discretion are

the major causes of low-level security vulnerabilities. In the sequel, we introduce the

most important safety vulnerabilities that can be introduced in the source code during the

implementation.

1. Buffer Overflow: Buffer overflows are the best known software security vulnerabil­

ities and the tool of choice of attackers. A buffer overflow occurs when data is writ­

ten outside of the boundaries of the memory allocated to a particular data structure.

Buffer overflow vulnerabilities are generally used to overwrite stack pointers and to

change the program flow in order to execute malicious instructions. The impact of

buffer overflow vulnerabilities is big since attacks exploiting these vulnerabilities

can compromise the integrity, confidentiality, availability, and other security factors

of the targeted system.

2. Integer Overflow: Integer overflow is an other kind of memory corruption vulnera­

bilities. Integer overflow issues occur when an application tries to create a numeric

value that is too large for the available storage space. Integer overflow is often

undetected by applications, which may lead to a security breach through a buffer

overflow or other malicious code.

3. Format String: Format string vulnerabilities are also exploited for memory corrup­

tion. A format string is a string that describes how a specific output should be for­

matted. Many languages allow format string but it is a vulnerability in C. Indeed,

13

printing functions in C do not check the number or types of their variable argu­

ments. Hence, an attacker that inserts unexpected %n symbols into user-supplied

input strings can perform unauthorized writes into the memory. He may use also

%s and %x formats to read data from the memory. Format string attacks can be used

to crash a program or to execute harmful code.

4. Temporary file races: The temporary file race vulnerability is the most known

TOCTTOU (Time of Check to Time of Use) binding flaws. The idea is that a

privileged program first probes the state of a file (time to check), and then based on

the results of that check, takes some actions (time to use). This is is vulnerable to

a race because the two actions are not atomic. Hence, an attacker may exploit this

vulnerability by "racing" between the probe and the action to change by making for

example a link to a file he wanted to modify.

5. Memory Management:

Memory management vulnerabilities are due to mistakes in coding memory man­

agement. An inadequate use of the dynamic memory management functions such

as malloc, c a l l o c , and f ree in standard C can lead to vulnerabilities resulting in

writing to freed memory, buffer overflows, and freeing the same memory multiple

times. Thus, memory management functions must be used with precaution in order

to prevent unauthorized access to memory space, memory corruption, etc.

2.1.3 Security Hardening Practices

In information technology, security hardening is the process of protecting a system against

threats. It can be described as adjusting system configuration and software in order to re­

inforce the software security. Software security hardening consists in adding security

functionalities, removing vulnerabilities and preventing their exploitation in the software.

In spite of its importance, software security hardening has not seen as much research or ef­

fort as other areas of information security technologies like firewalls, intrusion detection,

14

etc. We list in the following the most important application security hardening methods:

1. Code-Level Hardening: Code-level hardening consists of changing the source code

in order to prevent vulnerabilities and/or to add high-level security properties. More

precisely the code improvements apply proper coding standards that were not ap­

plied initially.

2. Software Process Hardening: Software build process is the process of translating

source code into binary code, linking the different modules, creating libraries, and

assembling the binary modules into programs. Hence, software process hardening

is the addition of security features via the software build process without changing

the original source code. This is performed using compiler options and including

more secure versions of library linking.

3. Design-Level Hardening: Design-Level hardening consists of re-engineering the

underlying application architecture in order to enhance the application security. The

application design and specification are changed in order to improve existent secu­

rity features or to introduce new ones. Indeed, some flaws are due to weaknesses

in the design and a re-engineering of the application is the only way to fix them

(flaws). Notice that this category of hardening practices is more about high-level

security.

4. Operating Environment Hardening: Operating environment hardening consists in

improving the execution context of the application. It is not related directly to the

software but has an impact on it since it addresses its execution environment. For

example, operating system hardening (via configuration) provides a better protec­

tion against corruption and prevents from bypassing the application security pro­

cedures. Other examples are the protection of the network layer, the use of high-

security dynamically-linked libraries, the use of security-related operating system

extensions, etc.

15

In the scope of this research, we are interested by the code level hardening of Java

applications. As mentioned before, Java security is mostly about high-level security.

2.2 Aspect Oriented Programming

Separation of concerns is a general principle in software engineering, introduced by Di-

jkstra [34] and Parnas [81]. It enables us to break the complexity of a problem into

loosely-coupled subproblems that are easier to solve and afterwards solve the subprob-

lems in isolation and combine the resulting modules into one solution. This has several

advantages: reducing software complexity, improving their comprehensibility, promoting

traceability and facilitating reuse and evolution. Thanks to object oriented programming

(OOP), developers can now produce more modular implementations of complex systems.

However, it is still sometimes difficult or impossible to achieve a good separation of con­

cerns using only OOP.

Aspect Oriented Programming (AOP) [55] is a new programming paradigm that

allows modular implementation of crosscutting concerns. A crosscutting concern is one

which is tangled with others in a way that cannot be easily separated using only OOP

techniques. A typical example of crosscutting concern is the "logging" example that

helps debugging or other purposes by tracing method calls. Assuming that we do logging

at the beginning and the end of each function call, this will result in crosscutting all the

classes where functions are invoked. The AOP approach allows to separate the concern

of "logging" and to structure it into a single unit called an aspect.

Many AOP languages have been developed and the most prominent are AspecLf [56]

and HyperJ [91], which are built on top of the Java programming language. There has

also been work done to provide AOP frameworks for other languages. AspectC [24] is

an extension to C that is used to provide separation of concerns in operating systems.

Similarly, AspectC++ [86] and AspectC# [57] are AOP extensions of the C++ and C#

languages, respectively. For the Smalltalk language, a version of AOP has been presented

16

in [16]. Those languages adopt various approaches of AOP and present significant differ­

ences due to the abstraction mechanisms, modules and language extension, and specific

language constructs they use.

All the AOP approaches are based on the notion of weaving. Weaving is the process

of composing core functionality modules with aspects into one single application. In the

following section, we will present the three most known approaches.

2.2.1 Pointcut-Advice Approach

The pointcut-advice approach is based on the mechanisms of pointcuts and advices. A

pointcut is a set of possible places called join points at which an aspect may specify its be­

havior whereas the advices represent the corresponding behavior. AspectJ [56], an aspect

oriented extension of Java, is probably the most known representative of pointcut lan­

guages and AOP languages in general. Developed by Gregor Kiczales at Xerox's PARC

(Palo Alto Research Center), AspectJ is currently a part of an openly developed Eclipse

project.

Figure 2.1 depicts a very simple example written with AspectJ. It contains two

Java classes: MyClass and Tes t e r and an aspect Logger. In this aspect, the pointcut

callSayMessage represents the set of all join points that correspond to any method

execution. The b e f o r e and a f t e r advices print to the standard output the identification

of the join point before and after the execution of the method. The entire execution of the

example is as follows:

>>Enter to execution (void Tester.main(String[]))

MyClass's Constructor

>>Enter to execution (void MyClass.ml())

Good Morning from ml

>>Out from execution (void MyClass.ml ())

>>Out from execution (void Tester.main(String[]))

17

public
public

class MyClass {
MyClass(){

System.out.println("MyClass's

public void ml() {

Constructor");

System.out.println("Good Morning

}
>

public
public

class Tester {
static void main(String[]

MyClass t = new MyClass(),•
t.ml();

}
}
public aspect Logger {

from ml")

args) {

pointcut callSayMessage(): execution (* *.*(..));

before(): callSayMessage() {
System
}
after()
System

}
}

out.printIn(">>Enter to "

: callSayMessage() {
out.printIn(">>Out from "

+

+

thisJoinPoint) ;

thisJoinPoint);}

Figure 2.1: AspectJ Example 1

AspectC, AspectC++ and AspectC# are also based on the pointcut-advice model.

To have a better understanding of this model and more precisely of AspectJ, we refer the

reader to Section 2.3 where AspectJ is presented in more details.

2.2.2 Multi-Dimensional Separation of Concerns

Multi-dimensional separation of concerns (MDSOC) allows simultaneous separation ac­

cording to multiple, arbitrary kinds (dimensions) of concerns [78]. MDSOC treats all

concerns as first-class and co-equal, including components and aspects, allowing them to

be encapsulated and composed. This is in contrast to most aspect oriented approaches,

which enable aspects to be composed from components but do not support composition

18

of components (or aspects) with one another [92].

One particular approach of MDSOC is called hyperspaces where the software is

modelled as a set of units called hyperslices (concerns). A hyperslice is a set of modules

representing only one single concern and could be composed with other hyperslices using

matching units (e.g. method names).

HyperJ [78, 91] is the support for hyperspaces in Java. Developed at the IBM

Thomas J. Watson Research Center, HyperJ allows developers to decompose and orga­

nize code according to several criteria simultaneously even after the implementation of

the software. HyperJ operates on and generates standard Java class files and uses separate

configuration files for the weaving instructions. When using HyperJ, the developer has to

specify:

• The Java programs.

• A hyperspace file that will enumerate the Java files to consider and that will be

manipulated by HyperJ.

• A concern mapping that identifies for each dimension of concerns the correspond­

ing pieces of code (packages, classes and/or methods).

• An hypermodule file that describes which dimensions of concerns (hyperslices) are

involved and that specifies the composition relationships.

We illustrate the use of HyperJ with the Java programs in Figure 2.2 and Figure 2.3.

The constructor and the method ml of the class MyClass in the package French,

respectively in the package English, simply print specific string in French, respectively

in English, to the standard output. For a first example, we use the hyperspace, the concern

mapping and the hypermodule described in respectively Figure 2.4, Figure 2.5 and Figure

2.6.

The execution of this first example is as follows:

Cons t ruc teu r de MyClass

MyClass Cons t ruc to r

19

package French;
public class MyClass {
public MyClass(){

System.out.printing"Constructeur de MyClass"

}

public void ml() {
System.out.println("Bonjour de ml");

}

}

public class Tester {
public static void main(String[] args) {
MyClass t = new MyClass(),•
t.ml();

}

}

public class Logger {
public void invokeBefore() {

System.out.println("Avant appel de m n) ;

}
public void invokeAfter() {

System.out.printIn("eAprs appel de ml");

}

}

);

Figure 2.2: HyperJ Example: Java Programs Part I

20

package Engl.
public
public

class
Lsh;
MyClass

MyClassO {
System.out

}

public

.println(

void ml() {
System.out

}

}

.println(

{

"My C3

"Good

ass Construcl

Morning from

tor'

ml'

);

);

Figure 2.3: HyperJ Example: Java Programs Part II

hyperspace Hsl
composable
composable

class
class

French.*;
English.*;

Figure 2.4: HyperJ Example: HyperSpaceFile

package French: Feature FrenchStuff
package English: Feature EnglishStuff

Figure 2.5: HyperJ Example: Concern Mapping

hypermodule Samplel
hyperslices:

Feature.FrenchStuff,
Feature.EnglishStuff;

relationships: mergeByName;
end hypermodule;

Figure 2.6: HyperJ Example: HyperModule 1

Bonjour de ml

Good Morning from ml

The relationship mergeByName indicates that units in different hyperslices that

have the same name are to be integrated together into a new unit. The integration is done

in the same order than the appearance of the hyperslices in the hypermodule file. HyperJ

21

allows many other strategies as overrideByName, which indicates that units with the

same name are to correspond, and are to be connected by an override relationship, which

causes the last one to override the others in the composed software.

In a second example, we use the same Java programs and configuration files except

that we will use the hypermodule of Figure 2.7 where we specify an order on the methods

instead of Figure 2.6.

hypermodule Samplel
hyperslices:

Feature.FrenchStuff,
Feature.EnglishStuff;

relationships: mergeByName,
order action Feature.EnglishStuff

action Feature
end hypermodule;

MyCl<
FrenchStuff

ass .ml before
.MyClass.ml;

Figure 2.7: HyperJ Example: HyperModule 2

The execution presented hereafter shows how the weaving is done in this case and

how the order of the merge for the methods ml is different from the first example where

no order was specified.

Cons t ruc teur de MyClass

MyClass Cons t ruc to r

Good Morning from ml

Bonjour de ml

In a last example, we use the hypermodule of Figure 2.8. The bracket relationship indi­

cates that a set of methods should be preceded and/or followed by other specified methods.

Indeed, in the bracket relationship of the example, the method ml of class MyClass will

be bracketed between the methods invokeBef ore and invokeAf t e r .

In this case, the result of the weaving is as follows:

Cons t ruc teur de MyClass

MyClass Cons t ruc to r

Before t he Ca l l of ml

22

hypermodule Samplel
hyperslices:

Feature.FrenchStuff,
Feature.EnglishStuff;

relationships: mergeByName;
bracket "MyClass"."ml" before Feature FrenchStuff

invokeBefore($OperationName, $ClassName),
after Feature.FrenchStuff.Logger.invokeAfter

$ClassName) ;
end hypermodule;

Logger.

($OperationName,

Figure 2.8: HyperJ Example: HyperModule 3

Bonjour de ml

Good Morning from ml

After the Call of ml

For further details on the other strategies of HyperJ, the reader is referred to its

reference manual [91].

2.2.3 Adaptive Programming

Adaptive programming(AP), proposed by Demeter group [28] at Northeastern University

in Boston, has used the ideas of AOP several years before the name Aspect Oriented

Programming was coined. The law of Demeter is a programming style rule for loose

coupling between the structure and behavior concerns. The Demeter law states that any

method M of a class C should use only the immediate part of the object, the parameters of

M, objects that are directly created in M or global objects. Any program can be modified

to conform with the Demeter law, but the drawback of following this law is that it can

result in a large number of small methods scattered throughout the program. This can

make it hard to understand the program's high-level picture. Adaptive programming with

traversal strategies and adaptive visitors avoids this problem while better supporting the

loose coupling of concerns [76]. The Demeter method has three steps [75]:

• Derive a class graph: Starting from the requirements create a set of classes that best

23

captures the structure of the program data

• Derive traversal methods: For each use (program operation), find a traversal path by

specifying the root of the traversal, the target classes, and the constraints in between

to restrict the traversal.

• Derive visitor methods: Attach specific behavior to certain classes that are visited

along each traversal. This is the "meat" of your program.

DJ [77] is a free implementation of adaptive programming for Java that supports this

style of programming. DJ allows to traverse an object graph according to the traversal

strategy and to specify a visitor to be executed before and after each traversed node.

In the example depicted in Figure 2.9, the traversal graph corresponds to the subgraph

starting from the node A to the node C via the node B. The methods b e f o r e and a f t e r

are executed before and after the traversal of a matching object. The execution of this

example is:

En te r ing A

En te r ing B

En te r ing C

Ex i t i ng C

Ex i t i ng B

Ex i t i ng A

2.3 AspectJ

This section is devoted to a detailed description of AspectJ. AspectJ [56] is an AOP lan­

guage that has been released in 1998. It emerged from a research work at Xerox PARC

on the aspect oriented programming paradigm in the 80s and 90s. Now, AspectJ is de­

veloped as part of the Eclipse Project. AspectJ has been designed with the objective of

24

import edu.neu.ccs.demeter.dj.*;
class Main {
public static void main(String[] args) {

ClassGraph eg = new ClassGrapM);
// constructed by reflection from the classes in default

package
A a = new A (new B (new D () , new C O) , new C O) ;
Strategy sg= new Strategy("from A via B to C ") ;
TraversalGraph tg = new TraversalGraph(sg, eg) ;
// Visitor is used in the following
tg.traverse(a,new Visitor(){
public void start() { System.out.println("begin"); }
public void finish() { System.out.println("end"); }
public void before(A o) { System.out.println("Entering A");}
public void after(A o) { System.out,println("Exiting A"); }
public void before(C o) { System.out.println("Entering C");}
public void after(C o) { System.out.println("Exiting C"); }
public void before(D o) { System.out.println("Entering D");>
public void after(D o) { System.out.println("Exiting D"); }
public void before(B o) { System.out.println("Entering B");}
public void after(B o) { System.out.println("Exiting B n) ; }
});

}
}

Figure 2.9: DJ Example

being an easy-to-learn and easy-to-use language. It is a conservative extension to Java:

Every valid Java program is a valid Aspect! program. Furthermore, Aspect! compiles to

normal Java bytecode that can be executed in a standard JVM, not requiring a specialized

runtime environment. Aspect! supports two kinds of crosscutting implementation: the

dynamic crosscutting and the static crosscutting. The first allows us to define additional

behavior to run at join points. The second affects the static type signature of the program

and allows to define new operations on existing types. These crosscutting behaviors are

encapsulated in an Aspect! construct known as an aspect.

25

2.3.1 Dynamic Crosscutting

This section describes AspecU's dynamic crosscutting, which is based on a powerful set

of constructs: Join points, pointcuts, advices, and aspects. Join points are well-defined

points in the execution of the program. Pointcuts describes collections of join points.

Advices define the additional behavior at the join points and are method-like constructs.

Aspects are units composed of pointcuts, advices, and ordinary Java member declarations.

Similar to a Java class, an aspect can contain both fields and methods but it cannot be

explicitly instantiated.

We detail in the following the join point model, the different pointcut designators,

and the different kinds of advices in AspectT.

Join Point Model

AspectJ provides many kinds of join points. Join points are the points where the integra­

tion of crosscutting concerns is done. Among the different join points that a program may

have, AspectJ exposes and defines only the join points described in Table 2.1.

Aspect! provides a special variable called t h i s J o i n P o i n t , which contains the dy­

namic information associated with join points. This variable allows us to get information

on the target object, the executing object, and the method arguments. We can also get

other information using the variable t h i s J o i n P o i n t such as the name of the executing

method using the Java reflection API.

Pointcut Designators

A pointcut is a construct that picks out join points and exposes data from the execu­

tion context of those join points. In a simple way, we can think of pointcut designators

in terms of matching certain join points at runtime. For instance, the pointcut designator

c a l l (void P o i n t . f (i n t)) matches all method call join points where the Java sig­

nature of the called method is vo id P o i n t . f (i n t) . AspectJ supports both named

26

Joinpoint

Method execution
Method call

Constructor execution

Constructor call

Field reference
Field set
Advice execution
Object initialization

Static initializer execution
Object pre-initialization

Exception-handler

Meaning

When the body of code for an actual method executes.
When a method is called, not including super calls of
non-static methods.
When the body of code for an actual constructor executes,
after its this or super constructor call.
When an object is built and that object's initial constructor
is called.
When a non-constant field is referenced.
When a field is assigned to.
When the body of code for a piece of advice executes.
When the object initialization code for a particular class
runs. This encompasses the time between the return of its
parent's constructor and the return of its first called
constructor.
When the static initializer for a class executes.
Before the object initialization code for a particular class
runs. This encompasses the time between the start of its
first called constructor and the start of its parent's
constructor.
Start is found from exception handler table.

Table 2.1: Aspect! Join Points

27

and anonymous pointcuts. Named pointcuts are declared with the keyword p o i n t c u t

and can be used in several places in the aspect.

Pointcuts can be composed with the operators &&, | |, and ! to build other point-

cuts using respectively conjunction, disjunction, and negation of pointcuts. The primitive

pointcuts provided by the language are represented in Tables 2.2 and 2.3 following the

documentation on the Eclipse site [80].

An AspecU pointcut is either a static pointcut or a dynamic pointcut. A static point-

cut describes join points that can be determined by a static analysis whereas a dynamic

pointcut describes join points that cannot be determined statically. The following Aspect!

pointcut is a static one and describes all the join points that are in the class A and call the

void method logging of class B:

p o i n t c u t callLoggingFromAtoB():

c a l l (void B . l ogg ingO) && wi th in(A) ;

whereas the next pointcut depends on the type of the executing object. A call of a void

method logging in a superclass of A might be a valid join point if the object is an instance

of A.

p o i n t c u t callLoggingFromA():

c a l l (v o i d * . l o g g i n g ()) && t h i s (A) ;

A static pointcut can be directly mapped to code and the matching process knows

at compile time if a join point matches a given pointcut or not. For dynamic pointcuts,

the weaver inserts, when necessary, JVML test instructions to check join point runtime

properties. AspectF supports three kinds of dynamic tests: tests based on the execution

flow, tests evaluating a boolean expression and the ins tanceof tests that check object

types at runtime.

Advices

Advices are used to implement crosscutting behaviors. Indeed, the pointcuts alone can

only pick out join points and do not add any behavior to the base application. Each

28

Pointcut
c a l l (MethodPattern)

execution(MethodPattem)

get(FieldPattern)

s e t {FieldPatterri)

call(ConstructorPatterri)

execution(ConstructorPattern)

i n i t i a l i z a t i o n ConstructorPatterri)

preinitializationCCtfmtfrwcfor/totfera)

staticinitialization(7)>pe.Paftern)

handl er(TypePattern)

adviceexecut ion()

w i t h i n(TypePattern)

wi t h i n e ode(MethodPatterh)

Meaning

Picks out each method call join
point whose signature matches
MethodPattern.
Picks out each method execution join
point whose signature matches
MethodPattern.
Picks out each field reference join point
whose signature matches FieldPattern.
Picks out each field set join point whose
signature matches FieldPattern.
Picks out each constructor call join
point whose signature matches
ConstructorPattern.
Picks out each constructor execution
join point whose signature matches
ConstructorPattern.
Picks out each object initialization
join point whose signature matches
ConstructorPattern.
Picks out each object pre-initialization
join point whose signature matches
ConstructorPattern.
Picks out each static initializer
execution join point whose signature
matches TypePattern.
Picks out each exception handler join
point whose signature matches
TypePattern.
Picks out all advice execution join
points.
Picks out each join point where
the executing code is defined in a
type matched by TypePattern.
Picks out each join point where
the executing code is defined in a
method whose signature matches
MethodPattern.

Table 2.2: AspectJ Pointcuts Part I

29

Pointcut

wi thincode(ConstructorPatterri)

c f 1 ow(Pointcut)

c f 1 owbe 1 ow(Pointcut)

t h i s(Type or Id)

target(Type or Id)

args(Type or Id, ...)

i £(BooleanExpression)

Meaning

Picks out each join point where
the executing code is defined in a
constructor whose signature matches
ConstructorPattern.
Picks out each join point in the control flow of any join
point j picked out by Pointcut, including j itself.
Picks out each join point in the control flow of any join
point j picked out by Pointcut, but not j itself.
Picks out each join point where the currently executing
object is an instance of Type, or of the type of the identifier
Id.
Picks out each join point where the target object is an
instance of Type, or of the type of the identifier Id.
Picks out each join point where the arguments are
instances of the appropriate type.
Picks out each join point where the boolean expression
evaluates to true.

Table 2.3: Aspect! Pointcuts Part II

advice brings together a pointcut and a body of code to run when join points matching the

pointcut are reached. Hence, an advice is a method-like mechanism that is used to declare

certain code that should execute at each of the join points matching its pointcut. Aspect!

supports three kinds of advice before, after, and around advice. A before advice runs

when the join point is reached but before the program proceeds with the join point. After

advice runs after the program proceeds with the join point. For example, after advice on

a method call join point runs after the method body has run. Notice that there are two

special cases of after advice: after returning and after throwing. In fact, Java programs

can leave a join point either normally or by throwing an exception. The plain a f t e r

advice runs after returning or throwing. The b e f o r e advices and a f t e r advices have

only additive capacity whereas around advice can preempt the normal computation of a

join point and has explicit control over whether the program proceeds with the join point

or not. At each join point, the advices are examined in order to see whether they apply to

the join point.

30

Several advices may apply to a same join point and the term used in the AOP com­

munity for such cases is "Aspect Interference". In Aspectf, the programmer can explicitly

define a precedence order between aspects. The precedence relationship is then declared

using the following syntax:

d e c l a r e precedence: TypePatternList;

Hence, if two advices from two aspects in TypePatternList are to be applied on the

same join point, then the precedence of the advice will follow the order in the list. For

example, if we want that aspects with security as part of their names have precedence on

all the other aspects, we will express this by:

declare precedence: *..*Security*, * ;

Since Aspectf 1.1, the advice weaving has been based on bytecode transformation

rather than on source code transformation. It is done statically by inserting the advice

functionality in certain regions, called join point shadows, in the program that correspond

to the join points matched by the advice pointcut. In this case, the Aspect! compiler is

composed of two stages. The first stage (front-end compiler) is implemented as an exten­

sion to the Java compiler and compiles applications and aspects into pure Java bytecode

enriched with additional annotations to handle non pure Java information as advices and

pointcuts. The second stage (back-end compiler) weaves compiled aspects with compiled

applications producing woven class files.

2.3.2 Static Crosscutting

Advice declarations, as seen in the previous section, do not allow changing static type

structure of a class. Indeed, they only change the behavior of classes they crosscut. In

order to allow changing classes static structure, Aspectf offers other tools as inter-type

member declarations and other declare forms. Those forms allow:

• Adding methods to an existing class.

• Adding fields to an existing class.

31

• Extending an existing class with another.

• Implementing an interface in an existing class.

• Converting checked exceptions into unchecked exceptions.

Inter-type member declarations in AspectJ allow introduction of new members or

constructors into classes or interfaces. The example in Figure 2.10 illustrates the introduc­

tion of a new private field named i d e n t i t y , two public methods named g e t i d e n t i t y

and s e t l d e n t i t y and a new constructor to the class Employee.

aspect A {
private void Employee.identity=0;

public Employee.new(int id){
identity=id;

}

public int Employee.getldentD
return identity;

}

public
ident

}

}

-ty(){

void Employee.setldentity(int
.ity=id;

id){

Figure 2.10: AspectJ Example2

AspectJ also allows us to change the inheritance hierarchy of existing classes us­

ing the construct d e c l a r e p a r e n t s . This construct can declare new super-classes or

super-interfaces. The following example illustrated in Figure 2.11 shows that the class

Employee becomes now a sub-class of a class named Person and implements the inter­

face S e r i a l i z a b l e .

32

aspect ModifyEmployee {
declare parents: Employee extends Person;
declare parents: Employee implements Serializable;

}

Figure 2.11: Aspect! Example3

aspect
public

A {
void Play

declare parents:
}

run()

Play

{

implements Runnable;

Figure 2.12: Aspect! Example4

The example in Figure 2.12 combines the inter-member declarations and the class

hierarchy modification. The aspect A makes the class Play runnable. The aspect defines

a void run () method for the class Play and declare it as Runnable.

In this thesis, we focuss only on Aspect! dynamic crosscutting.

2.4 Lambda Calculi and Type Systems

This section presents the background knowledge necessary for the reader to understand

the AOP calculus A,_SAOP that we present in Chapter 6. It is also a state of the art of

the most relevant contributions concerning type systems for lambda calculi. We describe

first the type-free lambda calculus. Second, we present the simply typed lambda calculus.

Finally, we give two different extensions of the simply typed lambda calculus, one with

type schemes and the other with effects.

33

2.4.1 Type-Free Lambda Calculus

The lambda calculus [22] is a core language introduced by Alonzo Church in 1936 .

The most important aspects of lambda calculus are the syntax of terms and the reduction

(rewrite) relation on these terms. The language has a sparse syntax and a simple seman­

tics. Lambda expressions, as shown in Figure 2.13, come in four varieties: Constants,

Variables, Functions applications, and Lambda abstractions(functions definitions).

Exp 3 e ::= c Constant
| x Variable
| £]£2 Application
| "kx.e Abstraction

Const 3 c ::= n | () | t r u e | f a l s e

Figure 2.13: Lambda Calculus Syntax

We present hereafter two examples of lambda expressions:

• (XJCJC) describes the identity function since {(kx.x) E) = E for any lambda expression

E.

• (Kf.(kx-if if *)))) denotes a function with two arguments: a function and a value

that applies the function to the value twice.

The meaning of a lambda expression consists in the lambda expression that results

after all its function applications are computed. The evaluation of a lambda expression is

called reduction and it consists in substituting expressions for free variables. We define

in the following paragraph the concepts of free and bound variable occurrences, free and

- bound variables, and the substitution of expressions for variables.

- Free and Bound Occurrence

An occurrence of a variable v in a lambda expression is bound if and only if it is within

the scope of a X; otherwise it is called free.

34

- Free and Bound Variable

A variable is bound in a lambda expression if any of its occurrences are bound. A variable

is free in a lambda expression if any of its occurrences are free.

A variable can be both bound and free in the same lambda expression. For example,

in the lambda expression((Xx.x) x) the two first occurrences of x are bound whereas the

third one is free.

- Substitution

The substitution of an expression E' for a free variable v in a lambda expression E is

denoted by E[v/E'] and is defined as follows:

1. v[v/E'} = E' for any variable v

2. x[v/E'] = x for any variable x ^ v

3. c[v/E'] = c for any constant c

4. {EE")[v/E'} =(E[v/E'})(E"[v/E'})

5. (Xv.E)[v/E'] = (Xv.E)

6. (Xx.E) [v/E1] = Xx. (E[v/E']) when x^v and x is not free in E'

7. (kx.E)[v/E'j = \.z.(E{x/z\[v/E']) when x^v and x is free in E', where z^v and z is

not free is {EE')

- Example

{-ky.{Xf.{fx))y)[x/{fy)\

= Xz.((Xf.(fx))z)[x/(fy)} using 7

= lz.((Xf.(fx))[x/(fy)]z[x/(fy)}) using 4

= Xz.((Xf.(fx))[x/(fy)]z) using 2

= Xz.((Xg.(gx)[x/(fy)])z) using 7

35

= *z.«\g.g{fy))z) using 4, 2 and 1

Lambda Calculus Reduction

The evaluation of a lambda expression involves the reduction of the expression until no

more reduction rules can be applied. The main rule for simplifying a lambda expression,

is called P-reduction. Another rule called a-reduction is used to rename bound variables

in order to avoid variable capture when substituting free variables in an expression.

- Alpha-Reduction

The alpha-reduction (a-reduction) allows bound variable names to be changed.

Name conflicts can be avoided in alpha-reduction if new variable names are used. For

example, if v and w are variables, E a lambda expression and w does not appear in E,

then:

X.V.E —» Xw.E[v/w]
a

For example, Xx.x can be alpha reduced to Xy.y.

- Beta-Reduction

The beta-reduction (P-reduction) expresses the idea of function application. The

beta reduction of ((Xx.E)E') is simply E[x/E'] and this is denoted as follows:

(hc.E)E' -»E[x/E']

Hence, (Xx.E)E' is P-reduced to E[x/E']. If there are name clashes, alpha conver­

sion may be required first.

Beta-Normal Form

A term M is said to be in beta-normal form (P-nf) if M has no part of the form (Xx.M)N.

Such part is called P-redex.

36

- Example

«Xy.(XMf*))y))(fy) -+ te.((Xg.g(fy))z)

The expression Xz.((Xg.g(fy))z) is in normal form and is the normal form of

((Xy.(Xf.(fx))y))(fy)

2.4.2 Simply Typed Lambda Calculus

Typed lambda calculi are refinements of the untyped lambda calculus. They are foun­

dations of typed functional programming languages such as ML [44] and Haskell [49].

There are two ways in which expressions can be typed: Implicit typing and explicit typing.

The explicit typing, introduced by Church in [23], is based on a language of typed terms.

In contrast, in Curry's type-theory [26] that introduced the implicit typing, the terms are

untyped and formal rules assigned types to terms. In this thesis, we are interested by im­

plicit typing systems and we present hereafter the simply typed lambda calculus in style

of Curry and its different extensions. The readers interested by the area of explicit typing

are invited to read [8,23].

Simply typed lambda calculus contains the types: unit, bool, int, and functional

types. The type unit is the type with only one element () that allows typing functions

without arguments or without return value. Assuming a set of type variables V={a,$,...},

the syntax of types % is given in Figure 2.14. The symbol —• associates to die right: we

will read t i —> T2 - > ^3 as X\ —»(X2 —> T3) where i\, ii and X3 are given types.

T ::= unit \ int | bool \ a | X —• x

Figure 2.14: Type Syntax

The typing inference rules are used to deduce typing statements, which associate

types to lambda expressions. A typing statement that expresses that an expression e has a

type T under some typing environment T is written:

37

r h e : x

A typing environment T is a map from variables to types and describes assumptions

about variable types. It is denoted by [x\ t—> X], ...,x„ H-» x„]. The typing inference rules of

simply typed lambda calculus need also the following notations:

• F(x) denotes the type of x in T, if such type exists.

• Tx describes the map T excluding the associations of the form x i—> _.

• r t[x i—> T] denotes Tx U {x H-» X}

The typing inference rules are given in Figure 2.15. The function TypeOf used in

the typing rule of a constant is given in Appendix III of the thesis and returns the type of

the constant.

r h c:TypeOf(c)

x:x £ T
r h JC:X

rf[xi->Ti] H e:i2

T h Xx.e : 1\ —»%i

r h e\ : X\ —> %2 r h e2 : Xj

T h eie2 : t2

(T-const)

(T-var)

(T-abs)

(T-app)

Figure 2.15: Simply Typed Lambda Calculus Rules

2.4.3 Polymorphic Type System

In this section, we present another type system a la Curry where types are polymorphic.

In the simply typed lambda calculus presented in the previous section, we can deduce, for

any type o, the following typing statement:

38

r h Xx.x : x —> X

The type schemes introduced by Girard [43] and Reynolds [82] allow to express

this fact with a unique notation:

T f- hc.x: Voc.oc —> a

Assuming a set of type variables V={a$...}, the syntax of types x and type schemes

a is given in Figure 2.16.

x ::= unit \ int | boot | a | x —> x
a ::= x | Va.a

Figure 2.16: Type and Type Scheme Syntax

A type scheme Vcci.. .Voc„.x has generic type variables oti,... ,a„ and is denoted

by Voci... a„.x. We present hereafter the type instantiation and the typing rules.

Type Instantiation

A type x has a type instance x/ if there exists a substitution S such that Sx = xf, where S is

a substitution of types for type variables, often written [xj /a\,..., i„/an] or [x,/a,]. S% is

the type obtained by replacing each occurrence of a, in x by x,-.

By contrast, a type scheme a=Voti... am.x has a generic type instance x/ (written as

a >- x/) if there exists a substitution S such that Sx = x/.

Typing Rules

The typing rules in presence of type schemes are described in Figure 2.17.

Example

r h hcy.x: Vpa-> p-»• a

39

TypeOf(c) y x
T h c:x

x: c G r O ^ T

Th x:x

r 1- Xx.e : X\ —• T2

r h ci : Ti -»• T2 T h
r h e\e2 : X2

ei • X]

(T-const)

(T-var)

(T-abs)

(T-app)

Figure 2.17: Polymorphic Typed Lambda Calculus Rules

2.4.4 Effect-Based T>pe Systems

Lambda calculi extended with side effects need more sophisticated type systems and

much investigations have been devoted to this issue [63,94,100]. Among other re­

searchers, Gifford and Lucassen [42,65], and pursued by Talpin and Jouvelot [89,90],

proposed an effect typing discipline to express computational effects within a program.

In an effect-based type system, types describe what expressions compute whereas effects

describe how expressions compute. In this section, we present an effect-based type sys­

tem for an extended version of lambda calculus , where expressions, as shown in Figure

2.18, are:

• Constants

• Variables.

• Function abstraction.

• Function application.

• Let expressions.

• sequencing.

40

• Imperative notations such as referencing. An expression of the form ref (e) allows

the allocation of a new reference that points to the value obtained from the evalua­

tion of e. The unary operator ! is used for dereferencing, and the binary operator

: = is used for assignment.

Exp

Const

3 e

9 c

:- c
X

'kx.e
e\ei
l e t x = e\ i n e2
l e t r e c / x = e\ i n ^2
e\\e2
r e f (e)
! e
e\ :=e2

:= n | () | t r u e | f a l s e

Constant
Variable

Abstraction
Application

Let Expression
Let Rec Expression

Sequencing
Referencing

Dereferencing
Assignment

Figure 2.18: Extended A-Calculus Syntax

Types, effects and regions are used to control the type generalization in the pres­

ence of mutable data. Effects are used to describe the store whereas regions are intended

to abstract memory locations. Types and effects in the extended lambda calculus are de­

fined in Figure 2.19. The domain of regions p is the disjoint union of a countable set of

constants ranged over by r and variables ranged over by y. Basic effects r\ can either be

the constant 0 that represents the absence of effects, effect variable q, init(p,x) that stands

for the allocation of a reference in a region p to a value of type x, read(p,%) that describes

accesses to references in region p, or write(f>,%) that represents the assignments of values

to references in the region p. The sequencing TJ;T|'denotes the sequencing T| and r\\ The

type unit is the type with only one element () and a is a type variable. The term ref Ax)

denotes reference types in a region p to values of type x. The term x —> x' is the type of

functions that take parameters of type x to values of type x' with a latent effect T|. By latent

effect, we mean the effect generated when the corresponding function is evaluated [27].

41

Effect 3 r\ ::= 0 | q | T|;T|" | init(p,x)
read(p,x) \ write(p,x)

Tl

Type 3 x ::= unit \ int | boo/ | a) X —>f | refJx)

Figure 2.19: Types and Effects in Extended X-Calculus

Typing Rules

In the effect-based type system, the typing judgment is written r h e : T,T| and states that

expression e has type T and effect T| under some typing environment T. A type scheme

is of the form Vvj ...D„.T where \),- can be type, region, or effect variable. A type x1 is a

generic type instance of a type scheme a = V\)i ...x>„.% (written asoyx') if there exists a

substitution 5 defined over \)i...t)« such that ST — if. Substitutions in this case map type

variables to types and effect variables to effects.

We need also to define the notion of free variables and the notion of generalization to

handle the typing of let expressions [27]. Type generalization states that a variable cannot

be generalized if it is free in the typing environment T or if it is present in the inferred

effect. This is represented by the following function Gen:

Gen(r,T,r\)=Vf(%)\(F(r)U!F(r\)).T:

where jF(—) denotes the set of free variables as defined in the following:

7 (unit) = { }

5 (a) = {a}

f{xi^x2) = yr(xi)U!F(x2)U9r(n)

<F{refp{x)) = 5 (p) U 5 (x)

42

JT(V\)I...\)„.T)

70?)

n*>)
H$
F(init(p,T))

f(read(p,x))

J(wnYe(p,x))

^(Ti;r|')

Hr)

nt

=

=

=

=

=

=

=

=

=

=

W\{ui,-,

UceDom(r) 7{

{}

U)
f(p)ufW
J(p)U^(t)

J(p)UJ(x)

^(Tl)U^(TlO

{}

(Y)

Typing rules of the effect-based type system are given in Figure 2.20. The rules

(T-const) and (T-var) manipulate type schemes by using the mechanism of generic instan­

tiation. In the abstraction (T-abs), the effect of a lambda abstraction body is put inside the

function while in the application rule (T-app) this embedded effect is extracted from the

function type to be exercised at the point of call. Effects flow from the points where func­

tions are defined to the points where they are used [89]. In the rules (T-seq), (T-Ietrec), and

(T-Iet) sequencing of effects is used. The rule (T-ref) applies an effect for the allocation

of a reference whereas (T-deref) and (T-assign) describe respectively access to a reference

and assignment of a value to a reference.

Inference Algorithm

The type and effect discipline that we adopt in the Chapter 6 is a variant of the one of

Talpin and Jouvelot [89]. For this reason, we give in this section an overview of the

type inference algorithm J of Talpin and Jouvelot. The type inference algorithm J is a

constraint satisfaction problem that computes equalities between types and regions, and

inequalities between effects. The effect-based inference algorithm takes as input a typing

43

TypeOf(c) y x
r h c:x,0

x.a e r ayi
F,s h x: x, 0

rffxH+x,] h e:x2,T|

T h Xx.e-.Ti ^>x2,0

T h e, : t , ^ x 2) T l ' r h e 2 : T i , T l "
T h eie2:X2,((r\;T\'y,T\")

T h ci:xi,T] r h e 2 : t 2 , r | '
r h CI;C2:X2 ,(TI;TI /)

r t [j c ^ x i , / ^ x i ^>x] h <?i :x,T|

r f [/ ^ Gen{T,%x ^ T,T])] h e2 : T2,Tl'
T h l e t rec fx — e\ in e2 : T2, (TI;^')

T h ej :X],TI rt[jt(-s.Gen(r,Xi,T|)] h e2:x2 ,ri /

T h l e t x = ei ine2:x2,(ri;Ti')

r h e:x,rj
r h ref (e): re/p (x), (r|;m/Y(p,x))

T h e:re/p(x) ,r i
T h \e:x,(r\;read(p,x))

r t - e i : re/p (xi),r| r h e2 : Ti,T|'
r h e\t=e2 : unit, ((r\;r\');write(p,X\))

(T-const)

(T-var)

(T-abs)

(T-app)

(T-seq)

(T-Ietrec)

(T-let)

(T-ref)

(T-deref)

(T-assign)

Figure 2.20: Typing Rules with Effects

44

environment V and an expression e. The algorithm either fails or terminates successfully

producing a 4-tuple whose components are: a substitution 0, a type x, an effect r\, and a

set of constraints k. The substitution records those substitutions that take place during the

various recursive calls of the inference algorithm and that range over the free variables

of the environment T. The type produced by the algorithm is the inferred type of the

argument expression. The effect produced by the algorithm corresponds to the minimal

approximation of the effects that may be generated when the expression is evaluated.

The constraint set k consists of inequalities between effect variables and effect sets. The

inequality r\Cq'mk enforces a lower bound Tj for the inferred effect variable <; consistent

with the static semantics. Constraints are built during the processing of lambda and rec

expressions, which is the place where effects are introduced into types.

A substitution k from effect variables to effects is a model of a constraint set k,

if and only if, for each inequality T| C <; e k, fa] C kq. By construction, constraint sets

always admit at least one solution. In the static semantics, type schemes are of the form

Vt>i ...vn.x where each \), can be a type, region, or effect variable. In the algorithm, effects

are represented by variables and are determined by a set of constraints. Consequently,

type schemes will now be of the form V\>i.. .\)„. (x, k) where k is a set of constraints.

The type algorithm applies an algorithm CTypeOf to type a constant expression. A

unification algorithm 11 is also used to solve the equations on types, regions, and effect

variables that are built by the algorithm J. It returns a substitution 0 as the most general

unifier of two terms, or fails. The algorithms U and CTypeOf are described hereafter:

- The Algorithm CTypeOf

CTypeOf (c)= case (c) of

n ^(int,{})

() =>(unit,{})

true => (bool, {})

false =>(bool,{})

45

- The Unification Algorithm 11

11(x^) = case (x,^) of

(a, a')

(a,x) | (x,a)

(T^X/ .T j .X x /)

(refy(x),refi{Tf))

(unit, unit)

(int,int)

(bool,bool)

else

=» [a (-»• a']

^ i f a e J (T)

then/a*'/

else [a H-> T]

=• let Oi = [<; i-» <;']

e2 = i/(ei'cI)e1T;.)
in W(e29iT / , 0291^)9291

=» let 9 = [y •-> y] in Zl(Qx,M)d

=> id

=> *'<i

=> «Y/

=>fail

To define the generalization function employed by the type inference algorithm, we

need the following two auxiliary definitions. First, a set Y of variables is said to respect

a set k of constraints if each constraint of k satisfies that it either only involves variables

of Y or of the complement of Y. Second, a closure of a set X under k is defined by the

formula:

X* = {v„|v0 GX AVi < n : (...v,+i... < v,) e k}

The generalization function is defined then as follows:

Genk(r,T,r\) =Vg(r,k,T,r\)(x,k) where

_g(r,k,x,T\) =\J{V\V C fF(x)*\(J(r) U J (T I)) , V respects k}

46

In the following, we present the inference algorithm J.

J(r,c) =

let toi,..., v„(x, ft) = CTypeOf{c)

in (id,Qx,Q,Qk)

J{r,x) =

if x £ Dom(r) then fail

else

letVx>u...,vn(x,k) = r(x)

«i ^Bnew, 6 = [v i ^ - u ' j , . . . , ^ ^ ^]

in (M, to, 0,9*)

let a, <; new

(6,T,Ti,ft) = ^ (r t [j c^a] , e)

in(9,9a^>T,0,A:U{T|C<;})

J(T,exe2) =

let(ei,Ti,TH,fti)=^(r,e,)

(92,T2,Tl2,ft2)=^(eir,e2)

a,c;new, 93.= 11{QzT\,%2 -^ a)

in (e3e2ei;e3a,e3(e2Tii;Ti2;(;),e3(e2fti u*2))

J{T,\dLx = e\ mez) =

Iet(9i,Ti,Tii,*i) = . ; (I> i)

(92,T2,T|2,ft2) =

47

3 (9i r t [x H-> Genh (9i r , Xj, T| j)], e2)

in(929i,x2,92r|i;ri2,£2)

3(r,rcfe) =

let y new

(e,x,Ti,*) = . y (i »

in (9, refy(x), TI; init(y, x), k)

Ie t (9 , ,T 1 ,T i 1 , ^)= i (r , e)

a,<;new,92 = ft(re/Y(a),xi)

in (026i,92a,T|i;ratt/(92y,92a), 92&i)

J(r,er.=e2) =

Ie t (9 i , t i ,Ti i ,* i)=^(r ,e i)

(92,X2,Tl2,/:2)=^(9ir,e2)

ynew

03 = W(/-e/Y(x2),02Xi)

in (03929i,unit,93(92Tii ;r)2;wnYe(y,x2)),

0 3 (9 2 £ jU£ 2))

Finally, if J(r,e) = (9,x,Tj,£) then£9rh e: fo,h).

2.5 Research Initiatives

In this section, we present the main contributions related to the topic of the thesis. We

will cite the contributions where AOP is used for security goals then the contributions that

formalize the semantics of AOP languages followed by those that describe semantics for

48

JVML.

2.5.1 AOP and Security

AOP is a very promising paradigm for software security. Among the attempts that have

been made to use AOP for security, we can cite the DARPA-Funded project of Cigital

Labs [59,83,96] that applies AOP to enforce secure code practices. The main outcomes

of this project are a security dedicated aspect extension of C called CSAW [59] and a

weaving tool. The operations handled by a CSAW aspect are the same as the other AOP

languages: replace code or insert code before or after the points of interest. In addition to

the standard calls to functions, CSAW defines new points of interests: function definitions,

a line of a code following a label and a block code between two labels. However, CSAW

addresses local, small-sized problems as buffer overflows and data logging.

De Win et al. [29,31,33,95,99] explored the use of AOP to integrate security aspects

within applications. In [32], De Win et al. applied AspectJ to enforce access control and

in his thesis [30], De Win modularized the auditing and access control features of the FTP

server and is then able to run the server with or without security depending on whether

the security aspects are weaved into the system or not. In his thesis, he also criticized the

pointcut-advice model of AspectJ and made the case for dedicated aspect languages for

security. However none of his works presents a new security aspect oriented language.

Another contribution is the security aspect library JSAL [48], which is implemented

in AspectJ and provides security functions. It is based on the Java security packages

JCE [70] and JAAS [60]. The implementation leverages the abstract pointcuts of AspectJ

in order to reuse aspects. This is, however, a very limited library that shows the feasibility

of a framework based on the AOP paradigm for the reuse and integration of pre-built

security aspects.

In [15], Ron Bodkin describes examples of security crosscutting that are frequently

encountered. In this paper, he analyzes the relevant join points and properties that can

be used in AOP systems and identifies areas of future work. However, this contribution

49

targets only Web applications and does not implement any of the proposed ideas in an

AOP language.

There is another kind of contribution in the field of AOP for enriching the expres­

siveness of pointcuts for some goals. In a security perspective, Masuhara and Kawauchi

[53,66] present a new pointcut called dataflow pointcut. They show in their papers, that

some security concerns, such as secrecy and integrity, are sensitive to flow of information

in a program execution. The data flow pointcut identifies join points based on the origins

of values, and can be used with the other kinds of pointcuts in existing AOP languages.

However the prototype implementation is done on a simple,pure object-oriented language

with a pointcut-and-advice mechanism and not on a fully fledged language as Aspect!.

2.5.2 Formal Semantics for AOP

A number of design and implementation efforts have been proposed for aspect oriented

languages. But to date, there are only few contributions that formalize features of aspect

oriented languages and give formal semantics. A criterion by which we can classify the

state of the art on AOP languages semantics is the description style of the semantics: De-

notational, operational or axiomatic [72]. In an operational semantics the meaning of a

program is defined by specifying the behavior of the program's execution, in a denota-

tional semantics, meaning is defined abstractly via elements of a mathematical structure,

called denotations, and in an axiomatic semantics, meaning is defined using some logic

asserting properties. Two popular styles of operational semantics exist: big step seman­

tics and small step semantics. The small step semantics precisely models implementa­

tions as a sequence of simple operations and it can take many steps to fully evaluate a

program whereas the big step semantics is more abstract and does not take into account

intermediate steps. Most formal works are described using small step semantics. Few

contributions express semantics differently: big step [61], denotational [98] and as far as

we have checked there is no axiomatic semantics for AOP.

50

Lammel [61] extends a small Java-like object-oriented language called /J02 to in­

corporate a new construct superimpose, which allows the definition of an advice inter­

cepting a method. He presents a big step operational semantics for this language. The

construct superimpose enables a programmer to attach additional functionality to cer­

tain join points along the execution of specified method calls. Method call interceptors

can be activated at arbitrary points in the control flow of a program. However, the op­

erations that can be intercepted in such a language are only method calls, which is too

restrictive. The focus on method calls only is not sufficient for most aspect languages.

Wand, Kiczales and Dutchyn [98] present a denotational semantics for pointcuts

and advice for a procedural version of the pointcut-advice language of the British Columbia

University project: Aspect Sand Box (ASB) [37]. ASB consists of a Scheme interpreter

for a simple OO language, and several extensions modelling different AOP styles, in­

cluding the pointcut-advice model of AspectJ. The languages used in ASB are simplified

languages and contain features to characterize complex languages as AspectJ, HyperJ and

DJ. The authors [98] have simplified more the ASB pointcut-advice language by remov­

ing types, classes, and objects from the language and by slightly simplifying the join point

model. The semantics models essential characteristics of AspectJ as dynamic join points,

pointcut designators and advices. However, several AspectJ characteristics have been left

out. The mini-language of Wand et al. semantics considers, for example, only three kinds

of join points: method call, method execution, and advice execution, whereas AspectJ

counts eleven join points.

Andrews [7] presents a syntax and an operational semantics of a process algebra

that he proposes as a possible foundation of AOP. The language is based on a subset of

CSP algebra with prefixing, synchronization on a set, and external choice. The proposed

process algebra has the characteristics of aspect oriented languages: A definition of join

points (as points in the program text), a means of designing join points (by procedure

names), and a means of affecting them with advices [7]. However, the language on which

51

is built this semantics is far from AspectF syntax and cannot serve to understand the weav­

ing mechanism in AspectF, which contains different join points and pointcuts.

Jagadeesan, Jeffrey and Riely [52] present an operational semantics for an untyped

base language with multithreading, classes and objects. They then enrich the syntax of

the base language to handle aspects. They also give a translation from the language with

advice to an equivalent language without advice, and show that the translation preserves

the operational semantics. However, in this contribution, the semantics is done for a small

calculus that considers only method call and method execution pointcuts.

Walker, Zdancewic and Ligatti [97] present an operational semantics for a simply-

typed lambda calculus extended with two central new abstractions: explicitly labeled

program points and advices. The labels serve both to trigger advice and to mark con­

tinuations that the advice may return to. The system is not intended to directly model

constructs like AspectF but is a calculus into which source-level AOP constructs can be

translated. It could be considered more general than existing AOP languages but cannot

be considered as a foundations for AspectF semantics.

Douence, Motelet and Sudholt present an operational semantics of an AOP sys­

tem [35]. They describe a domain specific language for the definition of crosscuts and the

system is based on a monitor that observes the behavior of the programs. The monitored

program calls the monitor when an event is emitted and the monitor will then check if

there is any crosscut at this point. In case of crosscutting, the monitor will perform the

respective action by replacing the call to the original method by a call to another one.

Otherwise, it will call the original method. This approach is called EAOP for Event As­

pect oriented Programming. The framework is based on the following simple principles:

join points are modelled as events, pointcuts are specified as patterns of event sequences,

and advices are executed when an execution trace of the program matches their pointcuts.

However, the contribution of Douence et al. is more geared towards a formal understand­

ing and less towards a semantics of a fully fledged language.

52

The following contributions are close to semantics ones. Masuhara and Kicza-

les [67] present a single framework to define the core semantics of four aspect oriented

languages, among them languages based on the pointcut-advice model as in AspectJ, mul­

tiple separation of concerns as in HyperJ and traversal specification as in DJ. A Scheme

implementation for the interpreters represents an operational semantics of the languages;

however, giving a semantics of a language through its interpreter is not appropriate for

formal study.

Masuhara, Kiczales and Dutchyn [68] presented another work based on the ASB

project that formalizes the use of aspects. Based on the operational semantics model

of the language PA, the pointcut-advice language of ASB, and using partial evaluation,

the paper shows how to compile PA into Scheme by partially evaluating the interpreter.

However, this contribution does not define a formal semantics for the language.

In contrast to all this research, our aim is to develop first a formal semantics for

AspectJ and secondly to develop a semantics for a security aspect oriented calculus with

dedicated join points and pointcuts.

2.5.3 Formal Semantics for JVML

The most known AOP language, AspectJ [56], since the version 1.1, has been imple­

mented using bytecode (JVML) weaving, which combines aspects and classes to produce

.class files that run in a Java VM [38]. In order to understand how the weaving is done in

AspectJ, a first step is to understand the semantics of Java and more precisely the seman­

tics of the JVML.

The semantics of Java has been a fruitful area of research. Several proposals have

been advanced. We can structure the related work (state of the art) on Java semantics into

2 categories: Semantics of the Java language and semantics of JVML. Among the most

prominent proposals for Java semantics, we can cite: [6,18,20,21,36,50,51,73,74,74,88]

and among the most prominent proposals on JVML semantics are: [12-14,17,25,39-41,

45,58,62,84,85,87].

53

Another criterion by which we can describe the state of the art on Java semantics is

the description style of the semantics: Denotational, Operational or Axiomatic [72].

The following proposals adopt an operational approach to describe Java language or

JVML semantics [12-14,17,21,36,39-41,45,58,62,73,84,85,87,88] whereas [6,20,51]

present a denotational one. An axiomatic semantics is given in [74] for the Java Langage.

Most of the research initiatives describing the semantics of JVML subsets use a small-step

operational semantics [12-14,39^41,45,58,62,84,85,87]. The main objective of these

proposals is either to purely study the semantics or put focus more on typing constraints.

In his papers [12,13], Bertelsen presents a very detailed semantics but does not

address the semantics of multithreading and synchronization for m o n i t o r e n t e r and

m o n i t o r e x i t instructions. Freund and Mitchell use a type system to investigate the

problem of object initialization and subroutines in [40] and add objects, classes, inter­

faces, arrays, exceptions in [39,41]; however all these papers describe only the semantics

of a single thread of execution and the JVM is then viewed as a single-threaded state ma­

chine. Hagiya and Tozawa in [45] and Klein and Wildmoser in [58] define operational

semantics for simple languages with subroutines, along with a notion of type safety; how­

ever, in these proposals, method invocation, exceptions handling and multithreading are

not taken into account.

In their technical report [14], Bigliardi and Laneve isolate a sublanguage of the

JVM with thread creation and mutual exclusion and define an operational semantics

and a formal verifier that enforces basic properties of threads, lock and unlock opera­

tions. In their work, they did not handle modifiers and did not consider the instructions

invokespec ia l , i n v o k e s t a t i c and invoke in t e r f ace . They give only a simple

semantics for i n v o k e v i r t u a l in case of void methods without arguments. Further­

more, they did not address the subtlety between creation of threads by extending the class

Thread or by implementing the interface Runnable. In fact, they use an instruction

s t a r t (a) as an artifact to the instruction i n v o k e v i r t u a l j a v a / l a n g /

54

T h r e a d / s t a r t () . In another similar paper of Laneve [62], the invoke method instuc-

tions have not been totally taken into account. Siveroni [84,85] presents an operational

semantics for a language that models the Java Card Virtual Machine including exception

handling, array objects and subroutines but missing the multithreading aspect. Stata and

Abadi [87] propose the use of typing rules for bytecode verification focussing more on

subroutines and proved its soundness. They define an operational semantics for a JVML

subset containing only 9 instructions i n c , pop, push, load, s t o r e , i f , j s r ,

r e t and h a l t because the authors were mainly interested in addressing the problems

caused by the subroutines. Borger and Schulte [17] have used operational semantics for­

malism of Abstract State Machines (ASMs) to describe the JVM with the goal of defining

a platform for correct compilation of Java code.

None of the previously proposed operational semantics for JVML handle and de­

scribe in a detailed way method invocation instructions, modifiers, multithreading, and

synchronization.

2.6 Conclusion

In this chapter we presented the basic principles of software security. We also pro­

vided an overview of the most important AOP approaches: Pointcut-advice model, multi­

dimensional separation of concerns, and adaptive Programming. Particularly, we gave a

detailed description of the most popular AOP language: AspecU, which is the AOP lan­

guage used along this thesis. Furthermore, we described the most important notions in

lambda calculi and type systems. For the state of the art, we presented the contributions

related to the use of AOP for security and related to the semantics foundations of AOP.

The next chapter is devoted to a security appropriateness analysis of the AOP approaches

and more precisely to an AspectJ security appropriateness analysis.

55

Chapter 3

Appropriateness Analysis of AOP for

Security

The main objective of this chapter is to present a security appropriateness analysis for the

AOP approaches mentioned in Section 2.2. We will show that the pointcut-advice model

is the most interesting model for software security hardening. Because we are interested in

security hardening of Java applications, we present a security analysis of AspectJ, which

is the most popular AOP extension of Java. We finally cite the shortcomings of AspectJ

and propose some extensions.

3.1 AOP approaches and Security

The fundamental concepts of the AOP approaches presented in Section 2.2 are differ­

ent. The pointcut-advice approach is based on the notions of: join points, pointcuts, and

advices. Multi-dimensional separation of concerns (MDSOC) allows developers to par­

tition overlapping concerns in software along multiple dimensions of composition and

decomposition. This approach is called symmetric because all concerns (base application

and aspects) in the system are equally created and can be combined, as opposed to the

56

pointcut-advice approach where aspects are composed into the base application. Adap­

tive programming uses traversal strategies and adaptive visitors to implement crosscutting

concerns.

From a security point of view, the multi-dimensional separation of concerns has a

serious limitation. It does not allow to add functionality before, after, or around a field

access. Access authentication to a given field in a given class is a simple security example

that we cannot handle with HyperJ, which is a representative for the MDSOC model.

The latter approach works at the method level and consequently cannot operate within a

method body. HyperJ, for example, does not support pulling a part of code within method

bodies. Picking out multiple concerns within method bodies is required in many situations

to enforce security.

The adaptive programming approach is concerned with the loose coupling between

structure and behavior and focuses on certain kinds of concerns. For example, DJ is

unable to change a method by a more secure one.

The pointcut-advice model is the most popular model. It offers a better granularity

than the MDSOC approach and considers more general kinds of concerns than adaptive

programming. Furthermore, the pointcut-advice model adapts extensively the pull ap­

proach. It allows tracking subtle points in the control flow of the application. For exam­

ple points where methods are invoked and fields are set. For these reasons, we adopt the

pointcut-advice model for security hardening of applications. More precisely, we choose

AspectJ as the candidate to enforce security issues in Java applications. In the sequel, we

describe some extensions to AspectJ for security hardening of Java applications.

3.2 Suggested AspectJ Extensions

In this section, we identify the security issues that cannot be handled by AspectJ. Then,

we suggest the extensions that should be added to AspectJ in order to successfully handle

those security issues.

57

3.2.1 Predicted Control Flow Pointcut

Predicted control flow pointcuts identify join points based on the predicted behavior at

the current join point. Hence, a pointcut pcf low (p) matches at a join point if there may

exist a path to another join point where p matches. The idea was originally proposed by

Kiczales [54], however it has never been concretized in Aspect!. Kiczales has discussed

this new pointcut with the example that we describe in Figure 3.1 and Figure 3.2. The

three classes in Figure 3.1 represent figures and the aspect in Figure 3.2 updates a display

whenever a program changes any visual property of a figure. The definition of the class

Disp lay is omitted here. A Disp lay object has a list of figures shown in it and we

should ensure that it is updated when the state of its figure elements changes.

The displayState pointcut represents field gets under the predicted control of the

draw methods. The pointcut set(<displayState()>) in the advice declaration matches

all sets to the fields represented by displayState. The aspect calls Display. update{) to

redraw the modified figure at each time a program modifies a visual property (e.g., x of a

Point object). Hence, the Pcflow pointcut means: (1) predict the control flow of all draw

methods in the subclasses of Fig, (2) retrieve the set of fields that are read and represented

by <displayState()>, and (3) update the display (with the advice) at any join point where

a field contained in <displayState()> is modified.

We learn from this example how to harden the security of applications. In [93],

the authors proposed a technique to detect intruders with visual data analysis. Based on

this idea, we can draw some charts for security parameters such as file activity, registry

activity, or network traffic. These charts can be analyzed to discover if something wrong

happens. By using the same concept in Kiczales's example, any changes in these charts

by setting these parameters in a way or another will not only be reflected in the display

but also some necessary steps could be taken in response to such changes to protect the

system. So Kiczales's example can be rewritten as in Figure 3.3.

58

abstract class Fig {
abstract void draw ();

}

class Point extends Fig {
int x,y;
void draw () {
Display . plotXY(x,y);
}

}

class Line extends Fig {
Point pi ,p2;
void draw () {
Display.line (pl.x , pl.y,
}

}

14 p2.x p2.y);

Figure 3.1: Figure Classes for Pcflow

aspect DisplayUpdating {
pointcut* displayState(): pcflow(execution(void Fig+.draw()))

&& get(* Fig+.*);
after set(<displayState()>)(): {Display.update(); }

}

Figure 3.2: Display Updating Aspect with pcflow

pointcut*

after set

displayState():

<displayState()

pcflow(void SecurityElement+
ScSc

>) ()

get(* SecurityElement+.*)
: {Display.update{) ; }

• drawO))

Figure 3.3: Pcflow Pointcut Security Example

3.2.2 Dataflow Pointcut

Masuhara and Kawauchi [66] have defined a dataflow pointcut for security purposes that is

not implemented yet in AspectF. The pointcut identifies join points based on the origins of

values. Cross-site scripting (XSS) problem in web-applications is an example that shows

the need for such a pointcut. A Web site might be vulnerable to XSS attacks if it reflects

59

input back to the user such as search engines and shopping sites. Attacker crafts a link

containing malicious code and let the victim click on it by different ways. The vicitm's

browser transmits the attacker's code to the Web site as part of the URL. The Web site

reflects the input to the victim's browser. The malicious code runs on the victim's browser

because it thinks the code comes from the vulnerable Web site. We explain this kind of

attacks with the example presented in Figure 3.4.

WebMail-Application

3. returns a
response
with the
script

2. sends a
request

with a script

5. sendsj
secret

information

C
Attacker

/
/

B
Web-Browser

. ' 1. directs B to send
r a request to A.

4. executes the script as if it
is from A

Figure 3.4: Cross Site Scripting Problem

By using the XSS attack on a vulnerable mail site, an attacker can access the e-

mail account of a legitimate user, views the victim's messages and sends messages from

the account. This attack presents privacy and non-repudiation risks. Here is a possible

scenario.

1. C sends to B a document with a link to the login page of A with a script embedded

as a parameter to the ID.

2. B follows the link and goes to the login page of A.

3. A returns a web page as a response to B's request indicating a login failure because

the script is not a valid username. Since A has a cross site scripting problem, the

script is sent in the response.

60

4. B executes the malicious script in the returned page with the privileges of A.

5. The secret information of B that should only be accessed by A is sent to C.

Since scripts contain special characters, the crosscutting problem could have been

avoided if A sanitized the data coming from untrusted sources by removing any special

characters not intended to be there. In [66], the authors shown that with existing kinds of

pointcuts, we can only sanitize all strings to be sent even they did not come from the user's

input. In order to intercept only the strings coming from a return value of getParameter

method, there is a need for a new pointcut based on the origin of the values. For this

purpose, the dataflow pointcut has been introduced.

Here is another example that clarifies the need for the data flow pointcut. Assume

that a program opens a confidential file, reads data from this file, and then sends data

over the net. This is critical from a security point of view. A data flow analysis using a

data flow pointcut can indicate whether the data sent over the net actually depends on the

information read from the confidential file.

3.2.3 Loop Pointcut

Harbulot and Gurd present in [46] a loop join point model that demonstrates the need for

a more complex join point in AspectJ. Their approach to recognize loops is based on a

control-flow analysis at the bytecode level. They restricted their study to loops iterating

over an iterator or a range of integers. This research lacks the analysis of infinite loops

and loops that contain boolean conditions. Through pointcuts that pick out such loops, an

excessive security problems can be solved easily.

An infinite loop is a set of instructions that executed repeatedly. This is a desired

behavior in some situations as in database servers. Database servers loop forever waiting

for a request to process it. However, infinite loop might also be bugs unintentionally

made by programmers. Malicious code writers exploit infinite loops to do their nefarious

61

jobs by launching denial of service attacks. Denial of service attacks consume system

resources until the application or the entire system becomes unusable.

Halting the web browser by running a code that opens a dialog window an infinite

number of times is a denial of service attack. This attack requires rebooting the worksta­

tion. There is no general methods to specify whether a code will ever halt or run forever

but AspectJ must include mechanisms to predict the existence of such infinite loops and

then notify the user if she wants to continue with this work or not. As a suggestion, it is

possible to add a pointcut that is associated with the loop body. Through an after advice

with such a pointcut, we can increment a counter every time this body is executed. If

the counter value becomes more than a threshold specified according to the type of the

application, an alert is popped up giving the user the ability to abort the execution.

3.2.4 Pattern Matching Wildcard

There is a need for a new wildcard in AspectJ to perform pattern matching. Although

pattern matching can be done by plain AspectJ, it is however better to do it in a declar­

ative manner to simplify the code. We illustrate this point with an example related to

security. Viruses always inject themselves inside executable files. So, it is essential to

control opening and writing files that have an "exe" extension. For example, let us write

a pointcut that picks out all constructor call join points of the form F i l eWr i t e r (x, y)

where the parameter x is a string whose value ends with the word "exe". Using plain

AspectJ, the pointcut will have the following form:

call (FileWriter.new(String,String)) && args(x,*) &&

if (isExeExtension(x));

where isExeExtension is a boolean method that tests if its argument value ends

with the word "exe". Although we are able to write the pointcut using plain AspectJ, this

has been done with an extra method like isExeExtension. We suggest another way

that uses the keyword l i k e and the % character of SQL. This will ease the burden on the

user and simplify the code. The previous pointcut definition can be rewritten according to

62

our suggestion as:

call (FileWriter.new(String like "%exe%", String))

Obviously, using such wildcards states directly the programmer's intent and makes

the program clear.

3.2.5 Type Pattern Modifiers

AspecU uses, as described in Table 2.2 and Table 2.3, four kinds of patterns in the pointcut

syntax: Method pattern, constructor pattern, field pattern, and type pattern. Patterns are

used inside primitive pointcut designators to match signatures and consequently to deter­

mine the required join points. The syntax of these patterns as described in [79] contains

the modifiers option except for the type pattern syntax. This section discusses the need

for adding modifiers in the type pattern syntax.

A Java class declaration may include the following modifier patterns: public, ab­

stract, or final. A public class is a class that can be accessed from other packages. An

abstract class is a class that has at least one abstract method that is not implemented. A

class that is declared as final may not be extended by subclasses. Any class, method,

object, or variable that is not private is a potential entry point for an attack. Hence, using

modifiers in the type pattern syntax should be very useful from a security point of view.

The example in Figure 3.5 describes a case where the public method f () inside the pub­

lic class S e n s i t i v e delivers sensitive information. In this case, it is essential to add a

security mechanism that authenticates the clients of such public classes that are exposed

by the application to the outside world. Hence, we would like to be able to use a p u b l i c

modifier pattern in type pattern syntax to pick out public classes only.

63

public clas
private

s Sensitive
String sensd

public void f(){
//. . .
System

}
}

{
tivelnfo;

.out.println(sensitivelnfo)

Figure 3.5: Type Pattern Modifiers.

3.2.6 Local Variables

AspectJ allows to pick out join points where attributes are referenced or assigned through

ge t and s e t designators but it does not provide similar pointcuts to local variables de­

fined inside methods. New pointcut designators that do such a behavior will increase the

efficiency of AspectJ especially from a security point of view. For example, security de­

buggers may need to track the values of local variables inside methods. With such new

pointcuts, it will be easy to write advices before or after the use of these variables to ex­

pose their values. Confidential data can be protected using these kinds of pointcuts by

preventing them from being used improperly. A promising approach [71] for protecting

privacy and integrity of sensitive data is to statically check information flow within pro­

grams. Instead of doing static analysis, we propose to use AOP to insert checks before

or after getting or setting fields or local variables. The following example in Figure 3.6

clarifies this idea.

The sensitive information stored in the private field s e n s i t i v e i n f o has been ex­

posed by transferring its value to the local variable l o c a l s t r defined inside the method

f () . Then, the value of l o c a l s t r is stored inside the public field p u b l i c l n f o, which

made the information accessible from outside the class. Using pointcuts that track fields

as well as local variables can help us to find such a case and prevent it.

64

class Test {
private String sensitivelnfo;
public String publ:
private void f(){

String localstr;
sensitiveInfo=/*

iclnfo;

Some Calculation*/;
localstr=sensitiveinfo;
//. . .
publicInfo=localj
//.. .

}
}

str;

Figure 3.6: Local Variables Get and Set.

3.2.7 Synchronized Block Joinpoint

The synchronized block has not been treated yet in AspectJ or in any other AOP frame­

work. There are no join points associated with such a block so far. The current imple­

mentation of AspectJ allows picking out calls to synchronized methods but does not allow

picking out synchronized blocks. The importance of the join points for synchronized code

has been already discussed for thread management. Borner has presented a paper [19] on

these issues and has discussed the usefulness of capturing synchronized blocks such as

calculating the time to acquire or to release the lock. In this section, we do care about the

importance of such pointcuts for security issues. Suppose we have a synchronized block

that launches a denial of service attack by containing a code that eats the CPU cycles like

the code that implements Ackerman function in [69]. Ackerman function is a function

of two parameters whose value grows very fast. It is essential to have a join point at the

beginning of the synchronized block. Through this join point, we can write a before ad­

vice that limits the CPU usage or limits the number of instructions that can be run. This

limitation will counter the attack.

Let us take another example that we present in Figure 3.7.

We need to insert advices before synchronized blocks because the same thread can

acquire the lock twice. This behavior can cause a denial of service attack. To clarify more,

65

public class A {
public void f()

// next line
{
is the before advi

assert !Thread.holdsLock(this);
synchronized(this){

/* access
}

}
}

files*/

ce

Figure 3.7: Synchronized Block.

if the thread who owns the lock manipulates files, this will block users from accessing files

to which they have access to. A before advice can use Java assertions to check if the lock

was hold before entering a synchronized block.

3.3 Conclusion

In this chapter, we get two birds in one stone. First, we analyzed the three mostly known

AOP approaches from a security point of view, and we retained the pointcut-advice ap­

proach as the most appropriate one. Second, we have motivated, from a security point of

view, the need for providing new pointcuts in Aspect!. Hence, a description of predicated

control flow pointcut and dataflow pointcut and their usefulness from a security point of

view are presented. Besides, the importance of loop pointcut to prevent malicious attacks

is exposed. A new wildcard for pattern matching is suggested. In addition, we have dis­

cussed the need for using modifier pattern like pub l i c keyword in type pattern syntax.

The need for a pointcut to pick out join points associated with setting and getting local

variables inside local methods is also discussed as well as new join points for synchro­

nized blocks. In this thesis, we have designed and implemented, as described in Chapter

7, the pointcuts for local variables accesses and the pointcut for the data flow analysis.

66

Chapter 4

JVML Semantics

AspectJ weaving combines the JVML representation (bytecode) of the initial program

and the enriched JVML representation of the aspects producing a weaved JVML program

representation. As a first step towards the establishment of a semantics for AspectJ, we

first establish a semantics for the JVML. The primary objective is to grasp the semantics

of Java runtime (Java Virtual Machine Language or JVML) and to compile the underlying

meanings into a formal dynamic semantics. JVML is the language interpreted by the Java

Virtual Machine (JVM), which is the heart of any Java platform. In this chapter, we

will motivate the need for a new JVML semantics, provide die necessary notations and

ingredients for the semantics, and finally give the different semantic rules.

4.1 Why Another JVML Semantics?

There exist some semantics for JVML, so why we need the definition of a new one? The

answer is based on the following arguments:

• In spite of the intensive activities of the research community in formalizing JVML

semantics, it remains that there is no contribution that formally addresses, within the

same framework, the meanings of JVML features such as multi-threading, synchro­

nization, exception handling, the four method invocations and the use of modifiers.

67

• Most of the proposed research contributions so far consider only one single thread

of execution even though multi-threading is a keystone in Java.

• In the very few proposals where multi-threading has been addressed, it has been

done in a way that is not faithful to the official JVML specification. For instance, no

distinction is made between implementing the interface Runnab le or extending

the class Thread.

Besides these arguments, the main motivation that led us to the formalization of

JVML stems from a security investigation of the Java platform. Actually, we needed a

formalization that accounts, at the same time and within the same framework, for all the

aforementioned JVML aspects. Such a requirement was not satisfied by the state of the

art contributions on JVML semantics.

The main traits of the dynamic semantics that we report here are:

• A faithful transcription of the JVML semantics with respect to the official and stan­

dard specification [64].

• Thorough and detailed semantic handling of JVML aspects at the same time and

within the same framework.

• Handling the semantics of the most tricky features of JVML such as multi-threading,

synchronization, exception handling, the four types of method invocation, modi­

fiers, etc.

• A small-step operational style where the evaluation judgements are driven by the

syntactic structure of JVML programs.

• A two-layers dynamic semantics: The first layer consists of judgements that capture

the semantics of sequential JVML programs in isolation. The second layer consists

of judgements that capture the parallel execution of JVML threads.

68

4.2 JVML Semantic Ingredients

In this section, we define the ingredients that we used in the semantic description. Accord­

ingly, we introduce the JVML syntax and we define the notions of data type, computable

value, environment, memory store, frame and configuration. A data type refers to a type

that is used in JVML. A computable value refers to a dynamic value that is the result of

a semantic evaluation of a given JVML expression. An environment is the context that

holds the definitions under which the evaluation is done. It corresponds to the current

constant pool of a class file. The constant pool is a structure used to represent a class

or an interface and JVML instructions refer to the information stored in this structure.

Memory store is an abstraction of both the memory storage and the heap. The proposed

semantics has the form of a small step operational semantics that is based on evolving

configurations. We will use the following notation along this chapter:

• Given two sets A and B, A _̂ B denotes the set of all mappings (maps for short)

from A to B (partial functions from A to B). A map m e A _ B could be defined

by extension as [OQ *-> bo.. .a„-i <-* bn-\] to denote the association of the elements

bi's to a,'s, where a, 6 A et &,• 6 B.

• Given a map m from A to B, the domain of m, A, is written Dom(m).

• Given a partial map / , we write /[xi-»v] to denote the updating operation of / that

yields a map that is equivalent to / except that x is from now on associated with v.

• Given a record space D=(f\ :D\,f-i:Di,...Jn: Dn) and an element e of type D,

the access to the field ft of e is written e.fi and the update of the fields /h , • • •, fik in

e by the values v n , . . . , v,* G Dn,... ,Dik is written e[fn *- v,i,... ,fik «- v,*]. If an

update of a field fij with a value v,y is subjected to a condition C, we will use the

notatione.[...,fij*~ vy/C,...}.

• Given a type x, we write (T) - l i s t to denote the type of lists having elements of

type x.

69

• Given a type x, we write (T) - s e t to denote the type of sets having elements of

type x.

• The space Identifier classifies identifiers whereas NoneType classifies the unique

value None, which indicates that there is no specific type.

4.2.1 JVML Syntax

Table 4.1 presents a concrete syntax in BNF notation for our JVM set of instructions.

4.2.2 Type Algebra

We consider four categories of types: Primitive types, reference types, vo id , and None-

Type. Reference types are either class types or interface types. An object is a dynamically

created class instance and reference values are pointers to these objects, v o i d is used

to describe the return values of void methods and None to describe the return values of

constructors. The JVML type algebra is given in Table 4.2.

4.2.3 Computable Values

The computable values are presented in Table 4.3. Two kinds of values are considered:

Locations and constants. Locations are addresses and constants are values of primitive

types. The particular reference value N u l l refers to no object.

4.2.4 Environment

We define hereafter the runtime environment and we assume that the reader is familiar

with the Java class file format as described in the official specification of JVML [64]. The

Java environment as described in Table 4.4 and Table 4.5 models the different declarations

in the program and is represented as a map that associates a set of classes to a set of

reference types. A class is a record containing a constant pool, a super-class, a set of

70

JVMLInstruction := LocalVariableAccessInstruction
StackManipulationlnstruction
Arithmeticlnstruction
ConditionalBranchlnstruction
UnconditionalBranchlnstruction
Synchronizationlnstruction
Exceptionlnstruction
ObjectAllocationlnstruction
MethodCalllnstruction
MethodReturnlnstruction
FieldAccessInstruction

LocalVariableAccessInstruction aload/
istore i

iloadt | astore/

StackManipulationlnstruction ::= pop push/* dup

A rithmeticlnstruction iadd

ConditionalBranchlnstruction ::= i f e q adr I ifne adr

UnConditionalBranchlnstruction ::= g o t o adr

Synchronizationlnstruction momtorenter monitorexit

Exceptionlnstruction

Object A llocationlnstruction

::= a t h r o w

:= new i

MethodCalllnstruction invokevirtual/
invokespeciali
invokeinterf ace i,n
invokestatic i

MethodReturnlnstruction := return Iireturn I areturn

FieldAccessInstruction getstatic/ | putstatici
getfield/ I putfield/

Table 4.1: JVML Bytecode Grammar

71

ResultType
Type
ReferenceType
ClassType
InterfaceType
NoneType

::=
::=
::=

::=
::=
::=

Type
PrimitiveType
ClassType
Identifier
Identifier
None

vo id
ReferenceType
InterfaceType

NoneType

Table 4.2: Java Type Algebra

Value ::= Location Constant N u l l

Table 4.3: Runtime Values

interfaces, a list of fields, a map that associates values to static fields, a list of methods,

two flags that indicate whether the class is initialized or not and if the class is an interface,

and a monitor. A constant pool is a map that associates a set of integers with a set of

constant pool entries. A constant pool entry can be:

• A class type.

• A pair of a method signature and a supposed class.

• A pair of a field signature and a supposed class.

A class type constant pool entry is created, for example, when the compiler encoun­

ters a Java instruction A a = new B () . The compiler will generate the corresponding

new and i n v o k e s p e c i a l instructions and a class constant pool entry initialized to B.

In the two other cases of constant pool entries, the supposed class represents the class in

which the method or the field is supposed to be found. We exemplify this with the four

following cases where m is a method name and f a field name:

Case 1: Let o be an instance class defined in a program P as follows: A o = new

B () .

When encountering a Java expression o . m () , respectively o . f, in a Java instruction, the

compiler will generate a method constant pool entry, respectively a field constant pool

72

entry, with A as supposed class for those entries.

Case 2: Let C be a given class. When encountering a Java expression C. m () , re­

spectively C. f, in a Java instruction, the compiler will generate a method constant pool

entry, respectively a field constant pool entry, with C as supposed class for those entries.

Case 3: Let C be a given class. When the compiler encounters a Java expression

m () , respectively f, in a Java instruction inside the class C, the compiler will generate a

method constant pool entry, respectively a field constant pool entry, with C as supposed

class for those entries.

Case 4: Let C be a given class that extends a class D. When the compiler encounters

a Java expression s u p e r . m () , respectively s u p e r . f, in a Java instruction, the com­

piler will generate a method constant pool entry, respectively a field constant pool entry,

with D as supposed class for those entries.

The value None for the super class indicates that the class does not have a super

class. The monitor associated with a class is a record of three components: threadOwner,

depth and a waitList. If the class is not locked the monitor is set to the value (None,0, [])

otherwise the monitor contains the thread identifier that locked the class, the number of

times this class has been locked by this same thread and a list of all the threads blocked

waiting for this class. A method consists of a method signature, a class name from where

the method is, a set of modifiers, a bytecode, a list of method variables and an exception

table. A method signature is a record that contains the method's name, the types of ar­

guments, and the result type. The list of the method variables contains the default values

of all local variables defined inside the method. The method's parameters are not consid­

ered in the method variables. An exception table is a list of exception handlers where an

exception handler is defined by:

73

• Two natural numbers, startPc and endPc, that are used to determine the code range

where the exception handler is valid.

• A natural number, handler, that indicates the location that is called upon exception.

• A class type, exceptionType, that indicates the class of the exception.

A constructor is considered as a method named i n i t with a return type equal to

None and the class initializer is considered as a static method named c l i n i t . A field is

represented by a record that contains a field signature, a reference type to which the field

belongs to and a set of modifiers. The signature is a combination of the field's name and

the field's type.

4.2.5 Memory Store

We define, in what follows, a model that captures both the memory storage and the heap

of the Java virtual machine. The store as shown in Table 4.6 is a partial mapping from

locations to Java objects which are class instances. A Java object is a record containing

the class type of the object, a map from the object fields identifiers to run-time values,

a monitor and a supplementary information fromRunnable. If the object is a "Thread"

instance constructed from a class that implements the interface "Runnable", the name

of this class is put in the field fromRunnable otherwise fromRunnable is set to the value

"None". This information is useful when a method " s t a r t " is invoked on an object

that is an instance of "Thread" or one of its subclasses. It allows to know which "run"

method to execute. The lookup of " run" method starts from the dynamic class of the

object if fromRunnable is None othewrise starts from fromRunnable.

An object monitor has the same structure as a class monitor and is set to (None, 0, [])

if the object is not locked.

74

JavaEnvironment

Class

ConstantPool

ConstantPoolEntry
MethodPoolEntry

FieldPoolEntry

RefOrNoneType
Monitor

ThreadOwner

WaitingList

Threadld

Method

::- ReferenceType

::= (constantPool:
superclass:
interfaces:
fields:
staticMap:

methods:
initialized:
interface:
monitorClass:

_ Class
m

ConstantPool,
RefOrNoneType,
(InterfaceType) - s e t ,
[Field)-list,

Field _ Value,
m

[Method) - l i s t ,
Nat,
Nat,
Monitor)

::= Nat _̂ ConstantPoolEntry
m

::= ClassType | MethodPoolEntry \ FieldPoolEntry
::= (methodSignature: MethodSignature,

supposedClass:
::= (fieldSignature:

supposedClass:

ReferenceType)
FieldSignature,
ReferenceType)

::= ReferenceType \ NoneType,
::= (threadOwner:

depth:
waitList:

ThreadOwner,
Nat,
WaitingList)

:= Threadld \ NoneType

:= (Threadld) - l i s

:= Nat

3 t

:= {methodSignature: MethodSignature,
fromClass:
methodModifiers
code:
methodVariables.
exception Table:

ReferenceType,
[MethodModifier) - s e t ,
Code,
MethodVariables,
ExceptionTable)

Table 4.4: Java Environment Part I

75

MethodSignature

MethodModifier

MethodVariables

Code

ProgramCounter

ExceptionTable

Field

FieldSignature

ExceptionHandler

FieldModifier

::= (name: Identifier,
argumentsType: (Type) - 1 i s t ,
resulType: ResultType)

::= publ ic | p r iva t e | s t a t i c | synchronized

::= (Value) - l i s t

::= ProgramCounter

::= Nat

_ JVML Instruction
m

::= (ExceptionHandler) - l i s t

::= (fieldSignature:
fromClass:
fieldModifiers:

::= {name:
type:

FieldSignature,
ReferenceType,
[FieldModifier) - s e t)

Identifier,
Type)

::= (startPc: Nat,
endPc: Nat,
handler: Nat,
exceptionType: ClassType)

::= publ ic | p r iva te | s t a t i c

Table 4.5: Java Environment Part II

Store :

JavaObject :

= Location _^ JavaObject

= {classType:
fieldsMap:

monitor:
fromRunnable:

depth:
waitList:

ClassType,
Field _̂ Value,

m

Monitor
ClassType \ NoneType)

Nat,
WaitingList)

Table 4.6: Store Structure

76

4.2.6 Frame

A frame is a runtime data structure that captures the execution state of a JVML method.

It is defined as a tuple {\m,pc,l,o,z\} where:

• m is the current method.

• pc represents the program counter that contains the address of the instruction to be

executed in the method m.

• I contains the values of the different local variables of m.

• o represents a stack of operand values.

• z is the element locked in case where m is a synchronized method. It is the class

locked in the case where the method is static or the reference to the object locked

in the case where the method is not static. The value is None in case of non-

synchronized methods.

A formal description for the frames is given in Table 4.7.

4.2.7 Configurations

The operational semantics is based on the evolution of configurations that are defined

hereafter. As stated previously, our dynamic semantics uses two layers. The first layer

captures the semantics of sequential programs whereas the second layer is meant to cap­

ture the semantics of multi-threading. Therefore, we need to introduce two categories of

configurations. The domain of configurations that are dedicated to mono-threaded pro­

grams is ThreadConfiguration. The domain of configurations that are dedicated to multi­

threaded programs is MultiThreadConfiguration. These two categories are respectively

defined in Table 4.8 and Table 4.9. A thread configuration will have the following form:

77

MethodFrame

Locals

Operand-Stack

SynchronizedElement

ClassOrLocation

::= {method:
programCounter:
locals:
operandStack:
SynchronizedElement:

::= (Value) - l i s t

::= (Value) - l i s t

::= ClassOrLocation | NoneType

::= Location \ ReferenceType

Method,
ProgramCounter,
Locals,
OperandStack,
SynchronizedElement)

Table 4.7: Method Frame

{yE,S,{\m,pc,l,o,z^ :: !f,L,\yx)

where:

• _7£ represents the environment.

• S is the store.

• {\m,pc,l,o,z\} :: F̂ represents the thread's stack from which method frames are

retrieved. The term {\m,pc,l,o,z\} denotes the frame that is the top element of

frame stack.

• L contains the objects and classes that are locked by the current thread.

• 1 represents the identity of the current thread, i.e. the one executing the method m.

• x indicates if an exception has been detected. Whenever an exception is raised, we

will use the location e to point to the underlying object that is an instance of the

class Throwable . If no exception is thrown None is used instead.

For each thread, we maintain a list of objects and classes that have been locked

by this thread. Exceptions can be thrown explicitly using the a t h row instruction or

78

ThreadConfiguration

Threadlnformation

ThreadStack

LockedElements

Exception

:: = JavaEnvironment x Store

:= (threadStack:
lockedElements:
threadld:
exception:

: = (MethodFrame)- l i s t

:= (ClassOrLocation)-list

:= Location \ NoneType

x Threadlnformation

ThreadStack,
LockedElements
Threadld
Exception)

Table 4.8: Thread Configurations

MultiThreadConfiguration ::= JavaEnvironment x Store xJavaStack
JavaStack

Thread

State ::=

::= Threadld _ Thread

::= (threadlnformation:
state:

ac t ive |b locked

Threadlnformation,
State)

Table 4.9: Multi-Threads Configurations

implicitly by the virtual machine when runtime tests fail as passing a null pointer to a

g e t f i e l d instruction. In case of an exception, e points to the respective exception

object in the store.

The configuration in Table 4.9 is used in presence of multiple threads and is a com­

bination of an environment, a store, and a Java stack. The Java stack contains information

about the current threads and consists of a partial mapping that associates thread infor­

mation and state to the Nat number that identifies the thread. The term b l o c k e d is used

to denote the state of a thread waiting for a resource, owned by another thread, otherwise

the thread is said to be a c t i v e .

79

4.3 JVML Semantic Rules

This section presents the JVML semantics rules. This semantics is structured in two

layers, one for threads in isolation and another for threads running in parallel following

[47]. For processes in isolation, the semantics is defined using a labelled transition system

on thread configurations i.e. (ThreadConfiguration, A, —>) whereas an unlabelled state

transition system (MultiThreadConfiguration, <—») is used for multisets of threads. The

set of labels A is defined as follows:

A 9 f ::= e

| block Block Current Thread

| kill Kill Current Thread

| run(class : ClassType) Fork New Thread

| notify(x : ClassOrLocation).. .Notify Blocked Threads

The labels on the transitions contain the information to send from the first layer to

the second one. The transition label e1 allows to report, in the Java stack, all the modifi­

cations that the current thread has been subjected to during this transition. The transition

label block is used to change the current thread's state from a c t i v e to b l o c k e d . The

kill label refers to the case where the current thread must be killed and thus its correspond­

ing entry in the Java stack should be removed. The label run{class:ClassType) reports to

the second layer that a new thread must be created and that the lookup of its r u n method

must start from the parameter class. The last transition label notify(x:ClassOrLocation)

is used by the second layer in order to change the state of all the threads waiting for the

resource x from b l o c k e d to a c t i v e .

'For the rest of the paper, we adopt the notation C\ —• & instead of C\ —* Ci-

80

4.3.1 First Layer

In the following, we present the different semantic rules when considering solely one

thread.

Local Variable Access

The local variable access instructions rules consist either in loading variables or

addresses from the local variables list of a method to its operand stack or in storing[et

values or addresses from the operand stack into the locals variables list. When one of

those rules processes, it increments the program counter of the current thread and updates

the operand stack by popping or pushing one element. The semantic rules related to the

local variable access instructions are the following:

m.code(pc) = a l o a d i

o' = getLocalVaIue(/, i):: o

WE,S,{\m,pc,l,o,z\} :: ^,X,l,None) —> {J'E,S,{\m,pc+ \,l,o',z\} :: ^ ,Al ,None)

m.code(pc) = i l o a d i

o' = getl_ocalValue(/,t):: o

(yE,S,{\m,pc,l,o,z$:: J,£.,l,None) —• (J'E,S,{\m,pc+ l,l,o',z\] :: ^ , Al.None)

m.code{pc) = a s t o r e /'

hoc = getOneStackElem(o,0)

/' = setLocalValue(/, i,Loc)

o' = popStack(o, 1)

<JE,5,{K/>c,/,o,z|}:: J,£,,i,None) —• {J'E,S,{\m>pc+ l,/',o',z|} :: ^*,X,i,Hone>

81

m.code(pc) = i s t o r e i

v = getOneStackElem(o,0)

I' = set!_ocalValue(/,i',v)

o' = popStack(o, 1)

C7£,5,{|m,/?c,/,o,z|} :: J,£,i ,None) —• (J?£,5,{|m,/7C+ l/ ,</ ,z |} :: J,£,i,None)

Stack Manipulation

The following instructions manipulate the stack of operands by popping an element

from the stack, pushing an element in the stack, or duplicating the top of the stack. After

running one of those rules, the program counter is incremented and the operand stack

updated in the new current thread configuration. The semantic rules related to the stack

manipulation instructions are the following:

m.code(pc) = pop

o' = popStack(o, 1)

(yE,S,{\m,pc,l,o,z\} :: ?",£,, I, None) —• (J'E,S,{h,pc + l,l,o',z\} :: 5,£,l,None)

m.code(pc) = p u s h n

c/ = pushStack(o,n)

WE,S,{\m,pc,l,o,z\} :: J ,Al ,None) —> (J<E,S,{\m,pc+ l,l,o',z\} :: f,L,l,Hone)

m.code(pc) = dup

o' = pushStack(o,head(o))

{yE,S,{\m,pc,l,o,z\} :: J , Ai,None) —»(3'E,S,{\m,pc+ l,l,o',z\] :: J,£,i,None>

Arithmetic Operation

The rule of the bytecode i a d d consists of adding the two values on the top of the

stack, popping them and pushing the result instead. When the rule is fired, the operand

stack and the program counter are updated in the new current thread configuration.

82

m.code(pc) = i a d d

o' = (getOneStackElem(o,0) + getOneStackElem(o, 1)):: popStack(o,2)

(JE,5,{|m,Aw:,/,o,z|}:: J .Ai .Hone) —• (3<E,S,{\m,pc+ l,l,o',z\} :: 5,£,i,None)

Branch Statements

The conditional branch instruction i f eq adr, respectively i f ne adr, tests the two

values on the top of the operand stack and performs a branching to the address adr when

the two values are equal, respectively different. The unconditional branch instruction

g o t o adr changes, without any condition, the program's counter of the current method

to the address specified in the bytecode. When a branch instruction rule is fired, the

program counter in the new thread configuration is set to adr. In the case of a conditional

branch instruction rule, the operand stack is also updated (by popping the two elements

on the top). The semantic rules related to the branch instructions are the following:

m.code(pc) = i f eqadr

getOneStackElem(o,0) = getOneStackElem(o, 1)

o' = popStack(o,2)

(yE,S,{\m,pc,l,o,z\} :: 7,£,i ,None) —»(yE,S,{\m,adr,l,t/,z$:: f,L,i,Hone)

m.code(pc) = i f n e adr

getOneStackElem(o,0) ^ getOneStackElem(o, 1)

o' = popStack(o,2)

yE,S,{h,pc,l,o,z\} :: J ,£ , i ,None) —> WE,S,{\m,adr,l,o',z\} :: 5,£,i,None)

m.code(pc) = g o t o adr

(yE,S,{\m,pc,l,o,z\} :: J ,£ , l ,None) ^— (JE,5,{|m,arfr,/,o,z|} :: J,£,i,None>

Synchronization Statement: m o n i t o r e n t e r

The thread that executes m o n i t o r e n t e r tries to gain ownership of the monitor

associated with the object reference on the top of the stack whereas it exits it when exe­

cuting moni t o r e x i t .

83

The first rule corresponds to the case where the reference on the top of the operand

stack is not N u l l and the referenced object is not owned by another thread. In this case,

the current thread becomes (or stays) the owner of the object and increments the number

of times it has entered the corresponding monitor. When this rule processes, the store,

the program counter, the operand stack, and in some cases the list of elements locked

by the current thread are updated . In fact, the monitor information of the gained object

is updated by the store, the reference of the acquired object is popped from the operand

stack, and the program counter is incremented. If the object acquired was not already

owned by the current thread, it will be added to the list of its locked elements.

m.code(pc) = m o n i t o r e n t e r

hoc = getOneStackElem(o,0)

(-> isLocked(5,hoc) visOwner(5,Loc,i)) NLoc jt Null

S' = S[Loc •-> objectMonitorEntered(5,Loc,i)]

L' = ifThenElse(is0wner(5,£e>c,i), L,LOC :: L)

o' = popStack(o, 1)

C7£,5,{K/?c,/ ,o,z|}:: J ,£, i ,None) —> (J'E,S'J{\m,pc + l,l,o',z\} :: F, L',l,Kone)

The second rule refers to the case where the reference on the top of the operand

stack is not N u l l but the referenced object is owned by another thread. In this case, the

current thread is added to the waiting list of the considered object implying an update

of the store. The transition label block is used to mean that the current thread must be

blocked.

m.code(pc) — monitorenter

hoc = getOneStackElem(o,0)

isLocked(J, hoc) A -> isOwner(5,Loc,i) ALoc ^ Nul l

S' = S[Loc>-+ addToObjectWaitingList(5,Loc,i)]

WE,S,{\m,pc,l,o,z\} :: J ,£, l ,None) ^ {J^S',{\m,pc,l,o,z§ :: J ,£, l ,None)

The third rule depicts the case where the reference on the top of the stack, on which

the m o n i t o r e n t e r is invoked, is N u l l . In this case, a Throwable object is created

84

in the store and its reference is assigned to the thread configuration exception flag.

m.code{pc) = m o n i t o r e n t e r

hoc = getOneStackElem(o,0)

hoc = Null

S' = S[e >-> newObject(^'E,Throwable] ; e £ Dom(S)

{^E,S,{\m,pc,l,o:z\} :: !F,L,i,}ione) —> (yE,S',{\m,pc,l,o,z\} :: 7tL,\,e)

Synchronization Statement: m o n i t o r e x i t

Three rules describe the semantics of m o n i t o r e x i t . The first rule corresponds

to the case where the object reference on the top of the operand stack is not N u l l and the

corresponding object is owned by the current thread. In this case, the thread decrements

the counter indicating the number of times the thread has entered this monitor. This

rule describes the case where after decrementing this counter, it remains greater than 0.

Consequently, the current thread will not release the monitor. When this rule processes,

the monitor information of the considered object is updated by the store, the reference of

the object is popped from the operand stack, and the program counter is incremented.

m.code(pc) = monitorexit

hoc = getOneStackElem(<?,0)

hoc ̂ Null A isOwner(5,Loc,i)

S' = s[Loc i-> objectMonitorExited(5,Loc,i)]

depthLock(5',Loc)^0

o' = popStack(o,l)

(yE,S,{\m,pc,l,o,z\} :: 5,X,i,None) —• (J'E,S',{\m,pc+ l,l,o',z\} :: J ,£, i ,None)

The second rule refers to the same case as the previous rule except that in this case

the thread releases the object. As in the first rule, the thread decrements the counter

indicating the number of times the thread has entered this monitor. The difference here is

that after decrementing this counter, its value will be equal to 0. When this rule processes,

the monitor information of the released object is updated by the store, the reference of the

85

released object is popped from the operand stack, and the program counter is incremented.

Furthermore, the reference of the released object is suppressed from the list of the current

thread locked elements and the transition label notify(Loc) is used to notify after all the

threads waiting for the object referenced by Loc.

m.code(pc) = monitorexit

Loc = getOneStackElem(o,0)

Loc ̂ Nul l A isOwner(S, Loc, i)

S' = S[Loc >-> objectMonitorExited(5, Loc, i)]

depthLock(5',Loc)=0

£j = suppress(Loc, L)

o' = popStack(o, 1)

{yE,S,{\m,pc,l,o,z\}:: J ,£ , i ,None) "0,i^fc) (JT,,S',{\m,pc + \,l,o',z\] :: J ,£ ' , i ,None)

The third rule depicts the case where either the object reference on the top of the

stack, on which the m o n i t o r e x i t is invoked, is N u l l or the monitor is not owned

by the current thread. A Throwab le object is created in the store and its reference is

assigned to the thread configuration exception flag.

m.code(pc) = monitorexit

-i isOwner(5, Loc, i) VLoc = Nul l

S' = S[e t-> newObject(J£,Throwable)] ; e $ Dom(S)

(yE,S,{\m,pc,l,o,z\}:: J ,£ , l ,None) —» {yE,S',{\m,pc,l,Loc :: o,z\} :: f,L,\,e)

Exception Handling

We consider two rules for the a t h r o w instruction depending on whether the ex­

ecution of a t h r o w results in runtime exceptions or not. In the JVM specification [64]

runtime exceptions result in the instruction a t h r o w either when the object reference on

the top of the stack is null or when the method of the current frame is a synchronized

method and the current thread is not the owner of the monitor acquired or reentered on

invocation of this method.

86

The following rule describes the case without runtime exception. The current con­

figuration moves to a configuration where the exception flag is set to the object reference

on the top of the stack.

m.code(pc) = a t h r o w

hoc = getOneStackElem(o,0)

(Loc^Nul l) A (-.isSynchronized(m)VisOwner(5,z,i))

{yE,S,{\m,pc,l,o,z\}:: jF,£,i,None) —> {J-E,S,{\™,pc,l,o,z\} :: T,L,\,Loc)

The second rule describes the case where a runtime exception arises. In the new

thread configuration, a new Throwab le object is added to the store and an exception

flag is set to the reference of this new Throwabl e object.

m.code(pc) = a t h r o w

hoc = getOneStackElem(o,0)

(Loc = Null) v (isSynchronized(m)A-.isOwner(j,z,i))

S' = S\e »-> newObject(i£,Throwable)] ; e (£ Dom(S)

{yE,S,{\m,pc,l,o,z\} :: ^ ,£, i ,None) —* <JE,5',{|m,pc,/,o,z|} :: T,L,i,e)

Three other semantic rules specify how the semantic configurations are handled in

case where the exception flag is different from None. In this case, an exception is thrown

and we must check if the calling method is prepared to catch the exception.

The first rule describes the case where the calling method is prepared to catch the

exception and contains an appropriate handler for the exception referenced by the flag

e (Return value of appropriatePcHandler is different from — 1) . In the new thread

configuration, the program counter of the current method is set to the value indicated by

the handler, the operand stack is cleared, e is pushed back onto the operand stack and the

exception flag is set to None.

type = getDynamicClass(j,e)

pcH = appropriatePcHandler(.7"E,pc,type,m.exceptionTabte)

pcH^-l

{JfE,S,{h,PcJ,o,z\} :: F,L,i,e) —> WE,S,{\m,pcH,l,e,z\} :: J ,£, i ,None)

87

In the second rule, the method on the top of the frame stack does not contain an

appropriate handler. In the new thread configuration, the frame is popped allowing the

search of an appropriate handler from the invoker.

type = getDynamicClass(5, e)

appropriatePcHandler(j7'£,/7c,fype,m.exceptionTa&ie) = - 1

{!fE,S,{h,pc,l,o,z\} :: {\n,pc',l',o',z'\} :: J ,L, i , e) —• {.7£,5,{K/>c ,,/V,z'|} :: f,L,\,e)

The third rule describes the case where the exception flag in the initial thread config­

uration is an exception reference e and where the frame stack contains only one method.

Furthermore, this unique method in the frame stack cannot handle the exception refer­

enced by e. In this case, the information that the current thread must be killed is sent to

the second layer using the transition label kill and nothing is changed in the configuration.

type = getDynamicClass(5,e)

appropriatePcHandler(^£,pc,fype,m.exceptionTaWe) = - 1
kill

(^£,5,{|m,/7c,/,o,z|},Z.,i,e) —> 0'E,S,{\m,pc,l,o,z\},L,i,e)

Object Creation

Four rules describe the semantics of the New instruction, which is used to create

new objects. The first rule refers to the case where the class of the object to create is not

an interface and is initialized. When the rule fires, a new object is then created in the store,

the corresponding reference is pushed onto the operand stack, and the program counter is

incremented.

m.code(pc) = new i

ct = thisConstantPooIEntry(^£,m, /)

-i islnterface(.7£, ct) A islnitialized(^2;, ct)

S' = S[Loc H-> newObject(j7£,cf)]; hoc g Dom{5)

o' = pushStack(o, hoc)

(yE,S,{\m,pc,l,o,z\} :: J,£,v,None) —> (yE,S',{\m,pc+ l,/,o',z|} :: J,£,i,None)

The second rule describes the case where the class of the object to create is not an

interface, is not initialized, and is not locked by another thread. In this case, a frame of

88

its c l i n i t method is pushed onto the frame stack. Then, the class is locked and added

to the locked elements of the thread if it is not there yet. In addition, the monitor of the

considered class is updated to reflect the fact that the current thread has acquired it or

reentred it. This implies the update of the environment.

m.code(pc) = new i

ct = thisConstantPoolEntry(J'E,m,«)

-. islnterface(^£,cf) A-> islnitialized(j?£,c<)

-> isClassLocked(^£,c/) v isClassOwner(j72:,c/,i)

signatureClinit = (c l i n i t , [],void)

clinit = re\r\eveM(signatureClinit,J'E(ct).methods)

clinitFrame = newFrame(c/ira'f,0, clinit. methodVariables, [],ct)

L' = ifThenElse(isClassOwner(.7'£)cf,i),L,ct:: L)

3<E> = y<E[ct H-> classMonitorEntered(j?£,c/,i)]

{^£,5, {\m,pc,l,o,z\} :: !F,L,i,Hone) —> OfE1',S',clinitFrame:: {\m,pc,l,o,z\} " f,L',l,Uone)

The third rule reflects the case where the class of the object to be created is not an

interface, is not initialized but is locked by another thread. In this case, the thread identity

is put in the waiting list of the class implying an update of the environment. Furthermore,

a signal is sent the second layer with the label block in order to block the current thread.

m.code(pc) = new i

ct = thisConstantPoolEntry(^£,m, i)

-i islnterface(.7£,ct) A -> islnitialized(j?2,cf)

isClassLocked(.?£,cf) A -. isClassOwner(j/£,cr,i)

3<E! =3'L\ct >-> addToClassWaitingl_ist(.7'E,tf,i)]

(JCMIm.pc. / .o .zD :: ^ ,£, i ,None) ^ WE',S,{\m,pc,l,o,z\} :: J ,£, i ,Hone)

The fourth rule represents the case where the class of the object to create is an

interface. A Throwab le object is created in the store and its reference is assigned to the

thread configuration exception flag.

2We consider that each class has a c l i n i t method even it is empty.

89

m.code(pc) — new i

ct = thisConstantPoolEntry(j7£,w,/)

islnterface(^£,cf)

S' = S[e »-* newObject(i£,Throwable)] ; e $ Dom(S)

(yE,S,{\m,pc,l,o,z\}:: 7,L,i,Hone) —-> (^£,y,{|w,pc,/,o,z|} :: 7,L,l,e)

Method Invocation: i n v o k e v i r t u a l

The i n v o k e v i r t u a l instruction invokes instance methods and its semantics is

described with the following five rules. According to the specification [64], the method

lookup for the i n v o k e v i r t u a l instruction starts always from the dynamic class of the

reference object on the top of the operand stack.

The first rule corresponds to the case where the invoked method is resolved, found,

not synchronized, and is not the s t a r t method of the class Th read or one of its sub­

classes. The arguments values and the object reference are then popped from the current

operand stack and a new frame is created for the method being invoked. The object refer­

ence and the argument values become the values of local variables of the new frame. We

add to local variables the internal variables of the method taken from the environment.

90

m.code(pc) = invokevirtual i

ms = thisConstantPoolEntryy X, m, i).methodSignature

ct = thisConstantPoolEntry(^£,m,0.supposedC7ass

isMethResolved(^£, ms, ct)

argCount = length (ms.argumentsTypes)

hoc — getOneStackElem(0,argC0Knf)

L o c ^ N u l l

dc = getDynamicClass(5, hoc)

rri = lookupM(.7£, ms,dc)

m' 7̂ None A (m'.name^ s t a x t V->isThread(m'.fronjC7ass))

-i isSynchronized(/n') A accessAllowedM(m,m')A -. isStaticM(w')

/' = m'.methodVariables

I" = getStackElemts(o, argCount)

o' = popStack(o,argCount + 1)

nf = newFrame(m',0,Loc:: /" :: /', [],None)

(J%S,1\m,pc,l,o,z\l:: J ,Ai ,None) —• (j?£,5,n/: : {\m,pc,l,o',z\} :: ^.-t.i.Mone)

The second rule describes the case of i n v o k e v i r t u a l when the invoked method

is resolved and the result of the lookup is the s t a r t method of the class T h r e a d or

one of its subclasses. In this case, an information is sent to the second level using the

label run(class) in order to start running the new thread. The parameter class of the

label represents the class from which the lookup for the method r u n of the new thread

starts. If the object referenced by the top of the operand stack was constructed using a

Rurmable interface then the field fromRunnable of this object is assigned to the variable

class. If the object referenced by the top of the operand stack was not constructed using

a Runnab le interface (i.e. the field fromRunnable is None) then its dynamic class (i.e.

the class T h r e a d or one of its subclasses from which the object has been instantiated) is

assigned to the variable class. When this rule processes, the reference on the top of the

operand stack of the current thread is popped and the current thread program counter is

incremented. The reader is invited to read the first rule of i n v o k e s p e c i a l to better

understand the use of the field fromRunnable of store's objects.

91

m.code(pc) = invokevirtual i

ms = thisConstantPoolEntry(^£,m, i).methodSignature

ct — thisConstantPoolEntry^'E, m,i).supposedClass

isMethResolved(^ £, ms, ct)

argCount = length (ms.argumentsTypes)

hoc = getOneStackElem(o, argCount)

hoc ± Null

dc = getDynamicClass(5,Loc)

m! = lookupM(^£,wi,dc)

m' 7̂ None

m'.name = s tar t A isThread(m'. fromClass)

class = \fThenE\se(S{Loc).fwmRunnable = Uone,dc,S(Loc).fTomRunnable)

o' = popStack(o,l)

0>E,S,{\m,pc,l,o,z\}:: J,£,l,None) ""Jf̂ "* {J<E,S,{\m,pc+ l,l,o',z\} :: 7, £,l,None)

The third case is as the first one except that the method is synchronized and that

the monitor associated with the receiver can be acquired or reentered and is not owned by

another thread. Contrarily to the first rule, the store updates the monitor information of

the gained object and if this latter was not already owned by the current thread, it will be

added to the list of its locked elements. Furthermore, the field synchronizedElement of

the new frame is set to the top of the operand stack of the current method whereas it was

None in the first rule of i n v o k e v i r t u a l .

92

m.code(pc) = invokevirtual i

ms = thisConstantPoolEntry(^£,m,/).me£/iodS/gnarure

ct = thisConstantPoolEntry (yE,m,i).supposedClass

is Meth Resolved (J £, ms, ct)

argCount = \er\gth(ms.argumentsTypes)

hoc •= getOneStackElem(o,argCoMnf)

hoc ^ Null

dc — getDynamicClass(5,Loc)

tri = lookupM(^"E,mj,rfc)

m' 7̂ None

isSynchronized(m') A accessAllowedM(m,m')A -• isStaticM(m')

-• isLocked(5,Loc)visOwner(5,Loc,i)

L' = \TThenE\se(\sOwr)er(S,Loc,i),L,Loc:: L)

S' = 5\Loc i-> objectMonitorEntered(5,jL(3c,i)]

/' = m' .methodVariables

I" = getStackElemts(o, argCount)

o' = popStack(o, argCount + 1)

nf = newFrame(m',0,Loc :: /" :: /', [),Loc)

(J<E,S,{\m,pc,l,o,z\} " J,Al,None> —» WE,S',nf:: {|m,/7C,/,o',z|} :: ^.X'.i.Hone)

The fourth case is similar to the previous one except that the monitor associated to

the receiver is already owned by another thread. The current thread is added to the waiting

list of the receiver (i.e. the object referenced by the top of the current thread's operand

stack) and the store is updated. The transition label block transmits to the second layer

the information that the current thread must be blocked.

93

m.code(pc) = invokevirtual i

ms = thisConstantPoolEntry(j/i;,ffi,i').me£hodSignafure

ct = thisConstantPoolEntry(.7£,m, i).supposedC7ass

isMethResolved(3 £, ms, cr)

argCount = length(wj.argumentsiypes)

Loc = getOneStackElem(o,argCoK/tf)

L o c ^ N u l l

rfc = getDynamicClass(5,Loc)

m' = \ookupM(J T.,ms,dc)

m' jt None

isSynchronized(m') A accessAllowedM(m,m')A -• isStaticM(m')

isLocked(5, Loc) A -• is0wner(5, Loc, i)

5' = J [Loc i-> addToObjectWaitingl_ist(5, Loc, i)]

a£,5,{ |m,pc, / ,o,z |} :: JF,£,i,None} ^£* C7£,y,{[/n,/?c,/,o,z|} :: J ,£, i ,None)

The fifth and last rule corresponds to the case where an exception occurs. This

happens when the method is not resolved or when the lookup fails or when the method

is a static one. It happens also when the access to this invoked method is not allowed

or finally when the receiver on the stack is N u l l . In this case, a Throwable object is

created in the store and its reference is assigned to the thread configuration exception flag.

94

m.code(pc) — invokevirtual i

ms = thisConstantPoolEntry(^!E,m, i).methodSignature

ct = thisConstantPoolEntry(^!E,m,j)supposedC/ass

argCount = \ength(ms.argumentsTypes)

hoc = getOneStackElem {o,argCount)

dc = getDynamicClass(5,Loc)

rri = \ookupM{H rE,ms,dc)

C\ = (hoc = N u l l) V (m' = None)

CI v -i accessAllowedM(/?i,Aw') v isStaticM(m') v-iisMethResolved(j7£,m.y,cO

5 ' = s[e H-> newObject(.7£,Throwable)]; e £ Dom{S)

{J<E,S,{\m,pc,l,o,z\} :: ^ ,£, i ,None) —• (^£,5',{|m,pc,/,o,z|} :: 7,L,\,e)

Method Invocation: i n v o k e i n t e r f a c e

The bytecode i n v o k e i n t e r f a c e is used to invoke an interface method and

we use four rules to describe its semantics. These rules are very similar to the first, third,

fourth and fifth rule of i n v o k e v i r t u a l except that the resolution uses the function

isMethlnterfaceResolved instead of isMethResolved and that the method must be a

public method. We have then the four following rules:

95

m.code(pc) = invokeinterf ace i,n

ms = thisConstantPoolEntry(.7,E,m, i).methodSignature

ct = thisConstantPoolEntry(J? "E,m,i).supposedClass

isMethlnterfaceResolved(.7'£,/7w,cO

hoc = getOneStackEiem(o,n)

L o c ^ N u l l

dc = getDynamicClass(S, Loc)

m' = lookupM(_7,'E,ms,dc)

m' ^ None

-i isSynchronized(m') A accessAllowedM(m,m') A -> isStaticM(m') A isPublicM(m')

/' = m1 .methodVariables

I" = getAilStackElemts(o,«)

o' = popStack(<?,« +1)

nf = newFrame(m',0,Loc :: l" :: /', [],None)

(yE,S,{\m,pc,l,o,zft " J ,£, l ,None) —• W£,S,nf :: {\m,pc,l,o',z\} :: J ,£, i ,None)

96

m.code(pc) = i n v o k e i n t e r f a c e i,n

ms = thisConstantPoolEntry(j/'E,m, i).methodSignature

ct = thisConstantPoolEntry(J/£,m, i).supposedCIass

isMethlnterfaceResolved(j/!E,/7ts-,cf)

Loc — getOneStackElem(o,«)

Loc± N u l l

dc = getDynamicClass(5,Loc)

m' = \ookwpM{J'E,ms,dc)

m' =̂ None

isSynchronized(m') A accessAllowedM(m,m')A -. isStaticM(m')AisPublicM(m')

-i isLocked(5,Loc) VisOwner(5,Loc,i)

5' = S[Loc H-» objectMonitorEntered(5,Z^c,i)]

/' = m'.methodVariables

I" = getAIIStackElemts(o,n)

o' = popStack(o,n+ 1)

nf = newFrame(m',0,Loc:: /" :: /', [},Loc)

L' = ifThenElse(is0wner(5,Loc,i),i:,Loc:: L)

(yE,S,{\m,pc,l,o,z\) :: J ,£ , i ,None) —• (JX,S',nf:: {\m,pc,l,o',z\} :: J ,£ ' , i ,None)

97

m.code(pc) = invokeinterf ace i,n

ms = thisConstantPoolEntry(^£,m,i)-methodS/gnafure

ct = thisConstantPoolEntry(^£, m, i).supposedClass

isMethlnterfaceResolved(.72:,wtf,c/)

hoc = getOneStackElem(o,n)

Loc^ N u l l

dc = getDynamicClass(5,Lcc)

rri = lookupM {J £ , ms, dc)

m' ^None

isSynchronized(m') A accessAllowedM(m,m')A -> isStaticM(m') AisPublicM(m')

isLocked(5,Loc) A -. isOwner(5,Loc,i)

5' = S[Loc >-• addToObjectWaitingList(5,Loc,i)]

WE,S,{\m,pc,l,o,z\} :: 7,L,l,H°ne) ^ (J^S',{\m,pc,l,o,z\) :: 7, Al,None)

m.code(pc) = invokeinterf ace i,n

ms — lh\sConsiantPoo\Entry(J'E,m,i).methodSignature

ct = thisConstantPoolEntry(.7£, m,i).supposedClass

hoc = getOneStackElem(o,n)

dc = getDynamicClass(5,Loc)

m' = lookupM(^ •E,ms,dc)

C = [hoc = N u l l V m' = None V -> accessAllowedM(m,m'))

CV isStaticM(m') v -.isPublicM(m'HsMethlnterfaceResolved(j7'E,ms,ct)

S' = S[e >-> newObject(j?£,Throwable)] ; e <£ Dom{S)

(yE,S,{\m,pc,l,o,z\} :: T, Ai,None) —• 0'E,S',{\m,pc,l,o,z\} :: 7 ,L,\,e)

Method Invocation: i n v o k e s t a t i c

Contrarily to i n v o k e v i r t u a l and i n v o k e i n t e r f a ce , i n v o k e s t a t i c is

not used to invoke an instance method but a class method resulting in the absence of an

instance reference in the operand stack of the method. Another difference is that if the

method is synchronized, we must acquire or reenter the monitor associated with the class

where the method is defined (and not the object on which the call is done). As in the

98

cases of i n v o k e v i r t u a l or i n v o k e i n t e r f ace , when the monitor is owned by an­

other thread the current thread is blocked. We have six rules describing the semantics of

i n v o k e s t a t i c , the four first ones are very close to the four rules of i n v o k e i n t e r -

f a c e whereas the last two rules represent the case where the invoked method's class is

not initialized. The fifth rule represents the case where the frame of c l i n i t that initial­

izes the class can be pushed onto the frame stack. The sixth rule refers to the case where

the monitor of the non-initialized class is owned by another thread resulting in blocking

the current thread.

m.code(pc) = invokestatic i

ms = thisConstantPoolEntry(j7£, m,i).methodSignature

argCount = length (ms. arguments types)

ct = thisConstantPoolEntry(.7'E,77i, i).supposedClass

isMethResolved(.7 £, ms, ct)

m' = \ooV.u\M(J •E,ms,ct)

m' 7̂ None

cm = m'.fromClass

-i isSynchronized(m') A accessAllowedM(/n,m')A isStaticM(m')A islnitialized(j?£,cm)

I' = ml.methodVariables

I" = getStackElemts [o,argCount)

o' = popStack(o, argCount)

nf = newFrame(m',(y" :: /', [],None)

(!fE,S,{\m,pc,l,o,z\} :: ̂ ,£,i,None) —• {yE,S,nf:: {\m,pc,l,o',z\} :: jF,Ai,None)

99

m.code(pc) = invokestatic i

ms = thisConstantPoolEntry(^£,m,0-metfcodSignature

argCount = length (ms.argumentsiypes)

ct = Xh\sCons\antPoo\En\ry(Jf "E,m,i).supposedClass

isMeth Resolved (J"E,ms,ct)

m' = lookupM(.?2:, ms,ct)

m! ^ None

cm = m' .fromClass

isSynchronized(m') A accessAllowedM(m,m') A isStaticM(m') A islnitialized(.72;,cm)

-> isClassLocked(j?£,cw) v isClassOwner(^2;,cw,i)

_?£' = j<E\cm f-» classMonitorEntered(^£,cm,i)]

/' = m1.methodVariables

I" = getStackElemts(o, argCount)

o' = popStack(o, argCount)

nf = newFrame(w',0,Z" :: /', [},cm)

L' = ifThenElse(isClassOwner(^2;,cm,i), L, cm:: L)

(yE,S,1\m,pc,l,o,z\l :: F,L,l,Sone) —+ (JT!,S,nf :: {\m,pc,l,o',z\} :: f,L',l,None)

m.code(pc) = invokestatic i

ms = thisConstantPoolEntiy(j?£,m,0-metfiodSignafure

argCount = \er\g\h(ms.argumentsTypes)

ct = thisConstantPoolEntry(j?'E,m) i).supposedClass

isMethResolved(j?E, ms, ct)

m' = lookupM(j?'E,»w,rt)

m' ^ None

cm = m'. fromClass

isSynchronized(w') A accessAllowedM(m,m') A isStaticM(m')A islnitialized(.72;,cm)

isClassLocked(^£,cm)A->isClassOwner(.?£,cm,i)

j<E> = jT,[cm i-> addToClassWaitingList(j?£,cm,i)]

(3<E,S,{\m,pc,l,o,z\} :: F,L,i,Hone) ^ {J<E',S,{\m,pcJ,o,z\} :: J ,£, i ,None)

100

m.code(pc) = i n v o k e s t a t i c i

ms = thisConstantPoolEntry(^£,m, i).methodSignature

ct = thisConstantPoolEntry(J'E, m,i).supposedClass

m! = lookupM(.7'E,ms)rt)

w' = NoneV -. accessAllowedM(m,m') v -i isStaticM(m')v-iisMethResoIved(^'E,ms,ct)

S' = S[e H-» newObject(^£,Tlirowable)]; e <£ Dom(S)

(yE,S,{\m,pc,l,o,z\} :: F,L,i,Hone) —• (yE,S',{\m,pc,l,o,zft :: f,L,\,e)

m.code(pc) = invokestatic J

ms = thisConstantPoolEntry(^ T.,m,i).methodSignature

argCount = \englh(ms.argumentsTypes)

ct = thisConstantPoolEntry(.7 'E,m,i).supposedClass

isMethResolved(^£, ms, ct)

m' = lookupM(^£,/rM,cr)

cm = m'.fromClass

-i islnitialized(^E, cm)

-i isClassLocked(j/£,cm) v isClassOwner(^E, cm,i)

signatureClinit = (c l i n i t , [],void)

c/in/r = re\rieveM(signatureClinit, J"E(cm). methods)

clinitFrame = newFrame (clinit ,0,clinit .methodVariables, [},cm)

£j = ifThenElse(isClassOwner(^£,cm,t),£,cm:: L)

yE' = ifThenElse(isSynchronized(m),^'E[c/n >-> classMonitorEnteredy^c/n.i)],.^)

(JrE,S,{\m,pc,l,o,z\} :: jF,Z,,i,None) —> (J"E',S,clinitFrame:: {\m,pc,l,o,z\} :: jT,Z.,i,None)

101

m.code(pc) = i n v o k e s t a t i c i

ms = thisConstantPoolEntry(^£, m,i).methodSignature

argCount = \ertgVh(ms.argumentsTypes)

ct = thisConstantPoolEntry(j7£, m,i).supposedClass

\sMe\hBeso\ve6{J'E,ms,ct)

m' = lookupM(^£,/7w,cf)

cm = m'.fromClass

-. islnitialized(j?£, cm)

isClassLocked(.7'E,cm) A -> isClassOwner(^!E,cm,i)

OT! = _7£[cm H-> addToClassWaitingl_ist(.7,E, on, i)]

CJ£,.5,{Kpc,/>o,zD » J,X,i,None) ^ (J £ ' , 5 , { K / M : , / , 0 , Z | } :: J,£,i,None>

Method Invocation: i n v o k e s p e c i a l

Five rules describe the semantics of the instruction i n v o k e s p e c i a l . The first

rule corresponds to the case where the method is i n i t and there is no exceptions. In this

case, we retrieve the method inside the current class. Furthermore, if the class where the

method i n i t is supposed to be found is the T h r e a d class and if the first argument of

the method is a class x that implements either Runnab le itself or one of its subclasses,

we must put x in the field fromRunnable of the thread object. This information is needed

in the second rule of i n v o k e v i r t u a l .

102

m.code{pc) — invokespec ia l i

ms = thisConstantPoolEntry (yE,m,i).methodSignature

ct = thisConstantPoolEntry(i£, m,i).supposedClass

isMethResolved(^£,mj,cr)

(ms.name = ini t)

m' = re\r\eveM(ms, J "E(ct).methods)

m' ^ None

argCount = length (ms.argumentsTypes)

hoc = getOneStackElem (o, argCount)

hoc ̂ Null

accessAilowedM(m,w')

/' = m'.methodVariables

I" = getStackElemts (o, argCount)

CI = (ct = ThreadVThread 6 allSuperCIasses(.y£,c?))

C2 = isLocation(head(/") ARunnabie e alIlnterfaces(^£,getDynamicClass(5,head(/'')))

C = C1AC2

S' = S[Loc i-> s(Loc) [fromRunnable *- getDynamicClass(5, head(/"))]]

o' = popStack (o,argCount + 1)

nf = newFrame(m',0,Loc :: /" :: /', [],None)

(yE,S,{\m,pc,l,o,z\} :: 7\£,i,None) —> (yE,S',nf:: {\m,pc,l,o',z\} :: J,£,i,None)

The second rule corresponds to the case where the method is either a private method

or called using super keyword with no exceptions during the execution of the bytecode.

This rule treats the case of non-synchronized methods.

103

m.code(pc) = invokespecial i

ms = thisConstantPoolEntry(j?!E,m, i).methodSignature

ct = thisConstantPoolEntry(J£,m,i). supposedClass

isMethResolved(^£,/7w,cf)

cm = m.fromClass

(ms.name^ i n i t) A ((ct — cm) V (ct = }£(em).superclass))

C=(m' = retrieveM(«w, J'E(ct).methods)) A (rri ^ None) A (isPrivateM(m'))

(ms.name ^ i n i t) A (ct = cw) =$• C

(ms.name^ i n i t) A (ct = JT,(cm).superclass) =s~ \00kupM(JT,(a),ms,ct) Am' ^ None

argCount = length (ms.argumentsTypes)

hoc = getOneStackElem(o, argCount)

hoc ^ Null

-i isSynchronized(m') A accessAllowedM(/n,w')A -JsStaticMtm')

/' = m'. method VariaWes

I" = ge\S\ackE\em\s(o,argCount)

o' = popStack(o,argCotmf + 1)

nf = newFrame(wi',0,hoc •:. I" :: l', [],None)

WE,S,{\m,pc,l,o,z\} :: J ,£ , i ,None) — » (J E . J . n / : : {|m,pc,/,o',z|} :: y,^,i ,None)

The third case is the same as the latter except the fact that the method is synchro­

nized. In this case, we consider that the monitor associated with the receiver can be

acquired or reentered and is not owned by another thread. Contrarily to the previous rule,

the store updates the monitor information of the gained object and if this latter was not

already owned by the current thread, it will be added to the list of its locked elements. Fur­

thermore, the field synchronizedElement of the new frame is set to the top of the operand

stack of the current method.

104

m.code(pc) = i n v o k e s p e c i a l j

ms = thisConstantPoolEntry(^£,m, O-metftodSignature

ct = thisConstantPoolEntry(^£, m,i).supposedClass

isMethResolved(^2:,/rw,cr)

cm = m.fromClass

((ms.name ^ i n i t) A (ct = cm)) V ((ms.name^ i n i t) A (c/ = J"E(cm).superclass))

C = (m' = retrieveM(/7w,^!E(c/). methods)) Am' (/ None) A (isPrivateM(/n'))

(ms.name / i n i t) A (cf = cm) =» C

(wu.name ^ i n i t) A (cf = 3T,(cm).superclass) => lookupM(^£(cf),ms,ct) Am' ^ None

argCount = length(wj.argumentsTypes)

Loc = getOneStackElem(o,argCoimf)

isSynchronized(m') A accessAllowedM(m,m')A ->isStaticM(m') A Loc^ Nul l

-i isLocked(J,Loc) visOwner(5,Loc,i)

S' = S[Loc H-> objectMonitorEntered(5, Loc,v)]

/' = m'.methodVariables

I" = getStackElemts(o,argCoH«f)

o' = popStack(o, argCo««r+ 1)

« / = newFrame(/M',0,Loc:: l" ::1',[],Loc)

£j = ifThenElse(isOwner(5,Loc,i),L,Loc:: £)

a£,5,{ |m,pc,/ ,o,z |} :: J,Z,,i,None) —-• <J7£,5',n/:: {\m,pc,l,o',z\} :: J ,£ ' , i ,None)

The fourth case is like the third one but where the monitor associated to the receiver

is already owned by another thread. The current thread is added to the waiting list of the

receiver (i.e., the object referenced by the top of the current thread's operand stack) thus

updating the store. The transition label block transmits to the second layer the information

that the current thread must be blocked.

105

m.code(pc) = invokespecial i

ms = thisConstantPoolEntry(^2;,»i, i).methodSignature

ct = thisConstantPoolEntry(^2:, m,i).supposedClass

isMethResolved(.7 £, ms, ct)

cm = m.fromClass

((ms.name ^ i n i t) A {ct = cm)) V ((ms.name ^ i n i t) A (ct = J"E(cm).superclass))

C = (m' = re\r\eveM(ms, 3'E(ct). methods)) A (m! ± None) A (isPrivateM(m'))

(ms.name 7̂ i n i t) A (ct = cm) => C

(ms.name jt i n i t) A (ct = J"E(cm).superclass) => \ookupM(3 T.(ct),ms,ct) Am' ^ None

argCount = length (ms. arguments Types)

hoc = getOneStackElem (o,argCount)

isSynchronized(m') A accessAllowedM(m,m')A -iisStaticM(m') A Loc^Nu l l

isLocked(5, hoc) A -. isOwner(5,ioc,t)

S' = s[Loc K-> addToObjectWaitingList(5,Loc,i)]

WE,S,{\m,pc,I,o,z\} :: J ,£ , i ,None) ^ (J<E,S',{\m,adr,l,o,z\} :: iF,£,l,None)

The last following case is when exceptions occur while executing the i n v o k e ­

s p e c i a l bytecode. In this case, a Throwable object is created in the store and its

reference is assigned to the thread configuration exception flag.

m.code(pc) = invokespecial i

ms = thisConstantPoolEntry(^2:, m,i).methodSignature

ct = thisConstantPoolEntry(^!E,/n, i).supposedClass

cm = m.fromClass

CI = (ms.name ^ i n i t) A (ct = cm) A (m! = retrieveM(«u,3"E(ct).methods))

C2 = CIA ((m' = None) V (~-dsPrivateM(/n')))

C3 = (ms.name = i n i t) A (m' = retrieveM(ww, j"E(ct). methods)) A (m' = None)

C4 = (ms.name^ i n i t) A (ct = 3"E(cm).superclass) Am' = Lookup(j?£,ms,ct) Am' = None

C = C2VC3VC4

hoc = getOneStackElem (o,argCount)

CV-i accessAllowedM(w,m') v hoc = N u l l v isStaticM(m') v-iisMethResolved(^£,mj,c/)

J ' = 5[e H-> newObject(J£, Throwable)] ; e £ Dom(S)

(3'E,S,{\m,pc,l,o,z\} :: J .Ai .None) —> (3'E,S',{\m,pc,l,o,z\} :: 7,L,\,e)

106

Method Return: r e t u r n

We present separately the semantics of void return which is reflected by the byte-

code r e t u r n and the return with values which is represented by the i r e t u r n and

a r e t u r n bytecodes. We will present only the rules of the i r e t u r n since the rules

describing the semantics of a r e t u r n are similar. We have split the r e t u r n seman­

tic rules in seven rules. The first one is when the method from which we return is a

non-synchronized method. The six other cases are when the method is synchronized. In

the first rule, the current method frame is popped from die frame stack and the program

counter of its calling method is incremented.

m.code(pc) — r e t u r n

-i isSynchronized(m)

f={\n,pc>,l',o',z'\}

(yE,S,{\m,pc,l,o,z\} :: f:: f ,L,i,None) —» (J<E,S,{\n,p<? + l,/',o',z'|} :: J,£,t,None>

The following rule refers to the case where the method is synchronized but not

static. It considers that the current thread is still the owner of the object blocked when

invoking the method.We remind the reader that the blocked object reference appears in

the field SynchronizedElement of the frame and denoted by the variable z in the following

rule. We decrement the number of times this object has been locked but there is no need to

notify the other threads waiting for the object because we consider here that the monitor's

depth is not null after returning from the method. As for the first rule, the current method

frame is popped from the frame stack and the program counter of its calling method is

incremented.

m.code(pc) = r e t u r n

isSynchronized(m) A -. isStaticM(m) A isOwner(J,z,i)

j?£' = yE[z H-» objectMonitorExited(5,z,i)]

depthl_ock(5',z)^0

f={\n,pc',l',o',z,\}

{JZ,S,{\m,pc,l,o,z\} :: f:: ?,L,i,Uone) —> {JK,S',{\n,pJ + l / .o ' .z ' l} :: J,£,l,None)

107

The next rule describes the same case as the latter except that we notify the other

threads waiting for the object referenced by the variable z. In fact, we consider in this rule

that the object monitor's depth is null after returning from the method.

m.code(pc) = r e t u r n

isSynchronized(m) A -• isStaticM(m) A isOwner(5,z,i)

S' = S{z i-» objectMonitorExited(5,z,i)]

depthl_ock(j',z) = 0

L' = suppress(z, L)

. f={\n,pc',l\o',Zf\}

{yE,S,{\m,pc,l,o,z\}::f:: J ,£ , i ,None) " ^ (J'E,S'A\n.pc'+ l,l',o',z!\} :: J,£',i,None>

The following fourth rule refers to the case where the method is synchronized, not

static but, contrarily to the two last rules, the current thread is not the owner of the object

blocked when invoking the method. An exception is then thrown.

m.code(pc) = r e t u r n

isSynchronized(m) A -. isStaticM(w) A -. isOwner(5,z,i)

5 ' = s[e t-> newObject(j7!E,Throwable)] ; e £ Dom{S)

WE,S,{\m,pc,l,o,z\} :: ^,X,l,None) —> (yE,S',{\m,pc,l,o,z\} :: T,L,\,e)

The three following rules represent the case where the return is done from a syn­

chronized and static method. They are very close to the three last rules where the method

was synchronized but not static.

m.code(pc) = r e t u r n

isSynchronized(m) A isStaticM(m) A isClassOwner(j7*E,z,i)

y<E' = J7z:[z i-> classMonitorExited(.?£,z,i)]

depthClassLock(j?2;',z) ^ 0

f={\n,pc,,ll,o',z!\}

(yE,S,{\m,pc,l,o,zft::f::Jr,L,i,*one) —•+ 0'E,S,{\n,pc'+ l,l',o',z!\} :: J,£,i,None>

108

m.code(pc) = r e t u r n

isSynchronized(m) A isStaticM(w) A isClassOwner(j7,E,z,i)

S' = S[z >-» classMonitorExited(^!E,z,i)]

depthLock(5',z)=0

L' = suppress(z,Z)

f = {\n,pc',l',o',z!\}

W£,S,{\m,pc,l,o,z\} :: f:: T,L,i,none) "°-^lz) (j7£,5',{|m,/7C/ + U 'V.z ' l } :: J ^ ' . i .None)

m.code(pc) = r e t u r n

isSynchronized(w) A isStaticM(zn) A -> isClassOwner(.7£,z,i)

5 ' = S[e >->• newObject(^£,Throwable)] ; e g Dom(S)

(^E,5,{|m,pc,/,o,z|}:: J,£,i,Nono> —• WE,S',{\m,pc,l,o,z\} :: 7,L,\,e)

Method Return: i r e t u r n

The i r e t u r n semantic rules are very similar to the r e t u r n rules. Seven rules

differentiate between the different cases where the method is not synchronized, synchro­

nized and not static or synchronized and static. The only difference compared to the

r e t u r n rules is that there is a value in the operand stack of the current frame which is

popped and pushed onto the operand stack of the frame of the invoker.

m.code(pc) = i r e t u r n

-i isSynchronized(m)

d = pushStack(o', head(o))

f={\n,pc',l',o',z!\}

(^E,J ,{K/H: , / > o > z |} : : / : :5 ,Ai ,None) —•* (J'E,S',{\n,pcJ+ l,l',o',z!\} :: J,Ai,Hone>

109

m.code(pc) = i r e t u r n

isSynchronized(m) A -> isStaticM(m) A is0wner(5,z,i)

5' = S[z >-> objectMonitorExited(5,z,i)]

depthl_ock(5',z)^0

o' = pushStack(o',head(o))

f={\n,pc',l',o',z!\}

(yE,S,{\m,pc,l,o,z\) : : / :: J,£,i,None) —»{J'E,S',{\n,pc'+ \,l',o',z!\} :: 7,£,i,None)

m.code(pc) = i r e t u r n

isSynchronized(m) A -> isStaticM(m) A is0wner(5,z,i)

S' = S[z •-> objectMonitorExited(5,z,i)]

depthLock(5',z)=0

L' = suppress(z, L)

o' = pushStack(o', head(o))

f={\n,pc',l',o',z!\}

(J<E,S,{\m,pc,l,o,z\}::f:: J,£,l,None) "°Hz) (J'E,S',{\n,pc'+ W . z ' l } :: J,Z',l,None)

m.code(pc) = i r e t u r n

isSynchronized(w) A-• isStaticM(m)A-> is0wner(5,z,i)

5' = 5[e t-s- newObject(^£,Throwable)] ; e £ Dom(S)

C7£,5,{|m,pc,Z,o,z|}:: J,Ai,None> —»<J£15',{|m,pc,/,o,z|} :: ?",Ai,e)

m.code(pc) = i r e t u r n

isSynchronized(m) A isStaticM(w) A isClass0wner(.7'£,z,i)

JT,' = 3T\z i-» classMonitorExited(^2;,z,i)]

depthClassLock(^£',z) ^ 0

o' = pushStack(c>',head(o))

/={l»,pcyy,z/i}
(^£,5,{Kpc,/ ,o,z|}::/ : : J,Ai,None) —»(J£,5',{|it,pc' + W ^ f l :: J,X,i,None>

110

m.code(pc) = i r e t u r n

isSynchronized(m) A isStaticM(m) A isClassOwner(j7£,z,i)

31! = 3<E\z H-» objectMonitorExited(5,z,i)]

depthi_ock(5',z)=0

L' = suppress(z, L)

o' = pushStack(o',head(o))

f = {\n,pc',l',o',z'\}

(J^SAl^pcJ^z]} :: f:: T,L,i,Hone) "°^iz) (J'E,S',{\n,pc'+ l,l',o',z!\} :: J ,£ ' , i ,None)

m.code(pc) = i r e t u r n

isSynchronized(/n)AisStaticM(m)A->isClassOwner(j?2;,z,i)

5 ' = s[e i-> newObject(j?'E,Throwable)] ; e £ Dom(S)

{JT,,S,{\m,pc,l,o,z]) :: J ,£ , i ,None) —*• C7£,5',{|/n,/7c,/,0,z|} :: J .Z . l . e)

Field Access Statements

This section describes the semantic rules of g e t f i e l d , p u t f i e l d , g e t s t a t i c

and p u t s t a t i c instructions. The first rule refers to the semantics of the g e t f i e l d

bytecode when no exceptions are signaled. The exceptions can be thrown either when a

reference on the top of the operand stack is null, or when the considered field is not found

or not accessible or static. In absence of exceptions, the following rule is applied and the

object reference on the top of the operand stack is popped and the value of the considered

field in the object referenced is fetched and pushed onto the operand stack.

m.code(pc) = g e t f i e l d i

fs = thisConstantPoolEntry(^£,m,i')./je/dSignafure

c = thisConstantPoolEntry(^£,w, i) .supposedCIass

f = \ookupF{3'E,fs,c)

hoc = getOneStackElem(o,0)

(hoc ^ Null) A (/ ^ None) A (accessAllowedF(/,m)) A (-. isStaticF(/))

o' = S(Loc).fieldMap(f):: popStack(o, 1)

(J£,S,{\m,pc,l,o,zft :: 5,£,l,None> —• C?E,5,{ |m,pc+l , /y ,z |} :: f,L,l,Kone}

111

The following rule refers to the semantics of the g e t f i e l d bytecode in presence

of one of the exceptions cited previously. A new exception is then thrown.

m.code(pc) = g e t f i e l d i

fs = thisConstantPoolEntry(^£, m,i).fieldSignature

c = thisConstantPoolEntry(j72;, m, i).supposedClass

f = lookupF(JE, fs,c)

hoc = getOneStackElem(o,0)

(/ = None) V {hoc = Null) V (-. accessAllowedF(/,w)) v isStaticF(/)

S' = S[e >-> newObject^E.Throwable)] ; e <£ Dom{5)

(JT,,S,{\m,pc,l,o,z\} :: 5,2L,l,None) —•* {yE,S',{\m,pc,l,o',z\} :: T,L,i,e)

The next rule refers to the semantics of the p u t f i e l d bytecode when no excep­

tions are signaled. The exceptions that can be thrown are similar to those of g e t f i e l d .

In this case, two elements are popped from the operand stack: A value and an object

reference. The considered field in the object reference is then set to the popped value.

m.code(pc) = p u t f i e l d i

fs = thisConstantPoolEntry(^£,m,i').fie]dSigiiafure

c = thisConstantPoolEntry(J£, m,i).supposedCIass

f = \ookupF[yE,fs,c)

v = getOneStackElem(o,0)

hoc = getOneStackElem(o,1)

(/ / None) A {hoc ̂ Null) A (accessAllowedF(/,m)) A (-. isStaticF(/))

S' = S[Loc •-> S{Loc)\fieldsMap*- S(Loc).fieldsMap{f H+ v]]]

o' = posStack(o,2)

(yE,S,{\m,pc,l,o,z\} :: J , Ai.Hone) —• (J'E,S',{\m,pc+ l,l,o',z\} :: 7,L,i,Vone)

The following rule refers to the semantics of the p u t f i e l d bytecode in presence

of exceptions and an exception is then thrown.

112

m.code(pc) = p u t f i e l d i

fs = thisConstantPoolEntry(j?£, m,i).fieldSignatwe

c = thisConstantPoolEntry(.7£,m, i).supposedClass

f = \ookupF {J "E,fs,c)

hoc = getOneStackElem(o,1)

(/ = None) v {hoc = Null) v (-. accessAllowedF(/, m)) V isStaticF(/)

S' = S\e H-> newObject(J£,Throwable)] ; e $ Dom(S)

(yE,S,{\m,pc,l,o,z\} :: 5,Ai,None) —* (^E,S',{\m,pc,l,o',z\} :: f,L,i,e)

The four following instructions refer to g e t s t a t i c semantics. The first rule de­

scribes the semantics in the case where the field to read is found, accessible and static.

This rule considers also that the class of the considered field has been initialized. The

value of the class or the interface field is then fetched and pushed onto the operand stack.

m.code{pc) — g e t s t a t i c i

fs = thisConstantPoolEntry(.7£,m, i).fieldSignature

c — thisConstantPoolEntry(^£, m,i).supposedClass

/ = lookupF(j7£,Ac)

cf = f.fromClass

(/ ^ None) A (accessAllowedF(/,m)) A (isStaticF(/)) A (islnitialized(j7£,c/)

o' = JT,(cf).staticMap(f):: o

WE,S,{\m,pc,l,o,z\} :: J ,£ , l ,None) —• {J<E,S,{\m,pc+ l,l,o',z\} :: T, Ai,None)

The next rule describes the semantics in case the field to read is found but its cor­

responding class has not been initialized. In this rule, we consider that the class is not

locked by another thread and a frame of its c l i n i t method is pushed onto the frame

stack. The class is locked and then added to the locked elements of the thread if it is not

there yet.

113

m.code(pc) = g e t s t a t i c i

fs = thisConstantPoolEntiy(^£,m,0-fie/dSig;jafure

c = thisConstantPoolEntry (J'E,m,i).supposedClass

/ = lookupF(j7£,/s,c)

/ ^ None

cf = f.fromClass

-i islnitia!ized(.7£,c/)

-. isClassLocked(j£,c/) v isClass0wner(j7£,c/,i)

signatureClinit = (c l i n i t , [], void)

clink = re\r\eveM(signatureClinit,J'E(cf). methods)

clinitFrame — r\e\NFrame(clinit,0,clinit.methodVariables, [},cf)

U = ifThenElse(isClassOwner(^£,c/,i),£,c/ :: L)

j<E' = J'Elcf i-> classMonitorEntered^^c/.i)]

(yE,S,{\m,pc,l,o,z\} :: jF,£,i,None) —» (J"E',S,clinitFrame:: {\m,pc,l,o,z\} :: jF,£,i,None)

The third rule refers also to the case where the field to read is found and its cor­

responding class has not been initialized yet. The difference from the last rule is that

another thread owns the monitor of this class. The current thread is then blocked waiting

for this monitor.

m.code(pc) = g e t s t a t i c i

fs = thisConstantPoolEntry(^£,m,j')fie/dSignafure

c = thisConstantPoolEntry(^£,m, i).supposedClass

f = \ookupFWE,fs,c)

f ^ None

cf = f.fromClass

-i islnitialized(^£,c/)

isClassLocked(_7£,c/) A-. isClassOwner(^E,c/,i)

JT.' = JT,\cf H-> addToClassWaitingList(j?£,c/,i)]

{yE,S,{\m,pc,l,o,z\} :: J.X.i.None) b-^ (yX',S,{\m,pc,l,o,z\} :: 7,£,l,None)

The last rule for the g e t s t a t i c bytecode refers to the case of exceptions. An

exception is thrown if either the field is not found, or not accessible or not static.

114

m.code(pc) = g e t s t a t i c i

fs = thisConstantPoolEntry(.72:,m, i).fieldSignature

c = thisConstantPoolEntry(^£,m,i).supposedC/ass

/=lookupF(j?£,/ j ,c)

(/ = None) v (-. accessAllowedF(/,m)) v (-> isStaticF(/))

S' = S[e t-> newObject(^E,Throwable)] ; e $ Dom{5)

(yE,S,{\m,pc,l,o,z\} :: jF,Ai,None) —• 0E,S',{\m,pc,l,o,z\} :: F,L,i,e)

The instruction p u t s t a t i c allows in normal cases to pop a value from the operand

stack and to set the considered class field to this value. Four rules describe the semantics

of the p u t s t a t i c instruction and are very close to the g e t s t a t i c ones.

m.code{pc) = p u t s t a t i c i

fs = thisConstantPoolEntry(^E,m, i).fieldSignature

c = thisConstantPoolEntry(7£,m, i).supposedClass

/ = lookupF(^-E,/5,c)

cf = f.fromCIass

(f ^ None) A (accessAIIowedF(/,m)) A (isStaticF(/)) A (islnitialized(j?£,c/)

v = getOneStackElem(o,0)

o' = popStack(o,l)

WE' = JT\ct(->WE(ct)[staticMap *- WE(ct).staticMap[f H-* V]]]

{WE,S,{\m,pc,l,o,z\} :• F,L,i,Kone)—• {WE',S,{\m,pc+ l,l,o',z\} :: J,X,i,None)

115

m.code(pc) = p u t s t a t i c i

fs = thisConstantPoolEntry(^£,m,i)-/jddSignature

c = thisConstantPoolEntry(^2;,OT, i).supposedClass

/ = lookupF^E, fs,c)

f ^ None

cf = f.fromClass

-i islnitialized(.7£,c/)

-. isClassLocked(^'E,c/) V isClassOwner(j?£,c/,i)

signatureClinit = (c l i n i t , [], void)

clinit = retrieveM {signatureClinit J rL{cf). methods)

clinit Frame = newFrame(c/i'mY,0, clinit. method VariaWes, [],cf)

L' = ifThenElse(isClassOwner(^£,c/,i),i:,c/:: L)

3%' = j7*E[c/1-> classMonitorEntered(^£,c/,i)]

(J7£,5,{|W,/7C,Z,O,Z|} :: ^",£,i,None) —»(J"E1,S,clinitFrame:: {\m,pc,l,o,z\} :: 7,L,l,None)

m.code{pc) = p u t s t a t i c i

fs = thisConstantPoolEntry(.7'£, m,i).fieldSignature

c = thisConstantPooIEntry(.7 lE,m,i).supposedClass

/ = lookupF(j?'E,Ac)

/ 7̂ None

cf = f.fromClass

-.islnitialized(j7'E,c/)

isClassLocked(^£, cf) A -> isClassOwner^E, cf,i)

j / £ ' = WE[cf i-» addToClassWaitingList(.7£,c/,i)]

(yE,SA\m,pcJ,o,z\} :: ^,£,i ,Hone) ^>* (JE ' . ^ f lm.pc / . cz l} :: J ,£, i ,None)

116

m.code(pc) = p u t s t a t i c i

fs = thisConstantPoolEntry(J?£,m, i).fieldSignature

c = thisConstantPoolEntry(7£, m,i).supposedClass

f = \ookupF WE, fs,c)

(/ = None) v (-> accessAllowedF(/,m)) v (-> isStaticF(/))

S' = S\e H-> newObject(j?£,Tlirowable)] ; e <£ Dom(S)

WE,5,{\m,pc,l,o,z\} :: J ,Al ,None) —• WE,5',{\m,pc,l,o,z\} :: !F,L,\,e)

4.3.2 Second Layer

We present, in this section, all the rules of the second layer. There are five different

rules, one for each transition label. The first rule illustrates the case when an e-transition

is done in the first layer. In this case, we have only to report in the Java stack the fact

that the current thread has changed its information from T to 1' maintaining its state to

a c t i v e . The new Java stack JS' is identical to the initial Java stack JS except for the

current thread.

(J7£, S, T) —» WE', 5' , T')

T'.exception = None

35' = changeThreads(^5, T, T')

(3-E, S, 35 ><-* WE', 5', 35')

The next rule is executed when the transition in the first layer is done via the label

block. In this case, the Java stack has to change also the state of the current thread from

a c t i v e to b l o c k e d because it asks for a resource that is not available.

WE, S, T) ^ WE1, S', 1')

35' = blockThreads(^,T)

* WE, S, 35) <-+ WE', S', 35')

The following rule defines the configuration transition in the second layer when the

transition in the first layer is done via the label notify. In this case, the current thread has

released an object or a class x and all the threads that are waiting for this resource x must

be now a c t i v e .

117

(J'E, S, T) n°^] (J'E', S', T')

JS' = changeThreads(^5,T,T')

JS" = activateThreads(^y,5 J'E, [x])

(J'E, S, JS) -» (J'E', S', JS")

The next rule presents the configuration transition in the second layer in presence

of a transition in the first layer done with the label kill. In this case, the current thread

throws an exception that is not caught by any method along its method invocation stack.

The thread will then expire but it will first activate all the threads waiting for its locked

objects.

(J'E, S, T) i^» WE', S', T')

JS' = activateThreads(^S,SJ"E,T.lockedElements)

JS" = dieThreadC?S',T.threadId)

WE, S, JS) -»{J'E', S', JS")

Finally, the last rule describes the configuration transition in the second layer when

the transition in the first layer is done via the label run. In this case, a new thread is created

and starts its execution by the adequate run method given by the lookup.

(J'E, S, 1) " " ^ (J'E', S', T)

signatureRun = (run, [], void)

run = \ookupM(J "E,signatureRun,class)

f = newFrarr)e(run,0,run.methodVariabIes, [],None)

JS' = JS\\ i-> newThreadlnformation([/], [] , i) ; i £ Dom(JS)

(J'E, S, JS) ^ (J'E', S', JS')

4.4 Conclusion

In this chapter, we reported a formalization of the dynamic semantics of JVML. The

semantics comes into a small step operational style. In order to ascribe meanings to

threading, the semantics is structured in two layers: The first layer capture the seman­

tics of sequential JVML programs in isolation. The second layer consists of judgements

that capture the parallel execution of JVML threads. A nice feature of the presented

semantics is its faithfulness to the official JVML specification. Besides, the presented

118

semantics provides full account details for the most technical and tricky aspects of JVML

such as multi-threading, synchronization, method invocations, exception handling, object

creation, objectSs fields manipulation, stack manipulation, local variable access, modi­

fiers, etc. The presented semantics is also, to the best of our knowledge, the first dynamic

semantics of JVML that provides semantics for that many features within the same frame­

work.

In the next chapter, we will present the semantics of AspectJ advice weaving, which

is performed on JVML codes.

119

Chapter 5

Aspect J Weaving Semantics

This chapter presents a formal semantics that describes the advice weaving in AspectJ. It

compiles the know-how of the AspectJ community into an elegant semantic framework.

In order to build this semantics, we had to delve into the Eclispe AspectJ compiler code

source (aj c 1.2). This task was tedious and time consuming because it required reading

thousands of lines of code without any design documentation. We had to scrutinize both

the source code of programs and the corresponding compiled units in order to determine

how the AspectJ primitives are interpreted by the compiler. To build the semantics, we

first formalize the pointcuts and the shadows description. Afterwards, we formally define

the AspectJ environment that contains the program declarations. This latter is an ex­

tension of the JVML environment defined in Tables 4.4 and 4.5. Thirdly, we describe the

matching process that allows to decide wether a given join point matches a given pointcut.

The pointcut matching process differs depending on if the pointcut is static or dynamic

Static pointcuts can be directly mapped to code and the matching process knows at com­

pile time if a join point matches a given pointcut or not. Contrary to static pointcuts,

dynamic pointcuts cannot be definitely mapped to places in code and the matching pro­

cess often calculates, for each join point and dynamic pointcut, the tests (called residues)

120

to be executed at runtime in order to check if the join point matches the dynamic proper­

ties of the pointcut. Hence, the output of the pointcut matching process is a set of matched

join points where each matched join point is accompanied with the set of advices that are

going to be inserted at this join point with the corresponding tests, if any. We describe

also the JVML instructions that are generated for these dynamic tests. Finally, we give

the semantic rules of the advice weaving.

5.1 Pointcuts, Join Points, and Shadows

In our contribution, we consider the following base pointcuts: "method call", "constructor

call", "method execution", "constructor execution", "advice execution", "within method

code", "field get", "field set", "static class initialization", "within class", "this", "target",

and "args". These pointcuts can be logically combined, using boolean operations, to

construct more complex ones.

Table 5.1 formally defines these pointcuts. The type ComponentType in this table

represents the Java classes and the aspects. Java classes are described by the type Refer-

enceType and the aspects by the type AspectType. In Chapter 4, the type Type contains

primitive types and reference types. In this chapter, we add also the aspects to the type

Type. The type MethodPattern used in some of the pointcuts is a combination of a set

of method modifiers, a method signature, and a component type where the considered

method occurs. In the same way, the type ContructPattern describes constructors.

The set of join points and shadows where advice weaving may intervene is given

in Table 5.2. As we can notice, a shadow of a method call may be i n v o k e v i r t u a l ,

i n v o k e s t a t i c , i n v o k e s p e c i a l , or i n v o k e i n t e r f a c e instruction. This will

depend on the nature of the method. For example, if the method is static the shadow

must be an i n v o k e s t a t i c instruction. Furthermore, there are two cases of join point

shadows: The case where the shadow is exactly one instruction and the case where the

shadow is an entire method. We can notice also that the pointcuts "within method code",

121

BooleanPcut
execu t ion {Pattern)
args((Type) - l i s t)
s e t (FieldPattem)
wi t h i n (ComponentType)
t a r g e t {ComponentType)

Pcut ::= BasePcut
BasePcut ::= c a l l (Pattern)

| aexecution()
| ge t (FieldPattem)
| s t a t i c i n i t (ComponentType)
| t h i s (ComponentType)
| wi t h i n c o d e (MethodPattern)

:= Pcut o r Pcut | n o t Pcut | Pcut and Pcut
:= MethodPattern \ ConstructPattern
:= (methodModifiers: (MethodModifier) - s e t ,

methodSignature: MethodSignature,
ComponentType: ComponentType)

:= (constructModifiers: (ConstructModifier) - s e t ,
arguments Type: (Type) - l i s t ,
ComponentType: ClassType)

:= publ ic | p r iva t e
:= {fieldModifiers: (FieldModifier) - s e t ,

fieldSignatwe: FieldSignatu re,
ComponentType: ComponentType)

: = PrimitiveType \ ComponentType
:= ReferenceType | AspectType
:= Identifier

BooleanPcut
Pattern
MethodPattern

ConstructPattern

ConstructModifier
FieldPattem

Type
ComponentType
AspectType

Table 5.1: Pointcuts

"within class", "this", "target", and "args" do not by themselves define new shadows.

They use the shadows defined by the other six static pointcuts.

Table 5.3 describes formally shadows with the type Shadow. It is a combination

of the shadow kind, its signature, its modifiers, the class that is going to be involved by

the shadow, two natural numbers that represent the start and the end of the shadow and

a list of shadow mungers. The kind of a shadow is represented by a pair of a name and

a boolean. The boolean indicates if the arguments of this shadow are on the execution

stack or not. Thi is necessary to know if we have to pop the arguments on the stack or

not when injecting the advices and conditional tests. The shadow mungers are an abstract

representation of the advices and the tests to be injected into their associated shadow. The

different possible values of a shadow munger test are the following:

122

JOIN POINT

Method call

Constructor call
Field get

Field set

Method execution

Constructor execution
Advice execution

Static initialization

SHADOW

i n v o k e v i r t u a l i
i n v o k e s p e c i a l i (for private methods)

i n v o k e s t a t i c i
i n v o k e i n t e r f a c e i,n

i n v o k e s p e c i a l i
g e t f i e l d /

g e t s t a t i c i
p u t f i e l d /

p u t s t a t i c /
Entire method code

Entire "ink" code
Entire advice code
Entire "clinit" code

Table 5.2: Join Points and Shadows.

• a l w a y s : The advice is injected without JVML test instructions because the advice

pointcut always matches the shadow.

• n e v e r : The advice is not injected since its pointcut never matches the shadow.

• t a r g e t i n s t a n c e o f (c): JVML instructions that test if the target object is an

instance of c are injected with the advice.

• arg(i) i n s t a n c e o f (c) : JVML instructions that test if the argument i is an in­

stance of c are injected with the advice.

• Not(0: JVML instructions testing iff is not satisfied are injected with the advice.

• And(Yi ,ti): JVML instructions testing if t\ and ti are satisfied are injected with the

advice.

• Or(?i ,t-i): JVML instructions testing if t\ or ti are satisfied are injected with the

advice.

123

Shadow ::=

Kind

Signature

(kind: Kind,
signature: Signature,
modifiers: (MethodModifier) - s e t | (FieldModifier) - s e t ,
fromClass: ComponentType,
start: Nat,
end: Nat,
mungers: (ShadowMunger) - l i s t)

::= (methodical 1,true)
| (method_execut,false)
| (f ield_get, true)
| (f ie ld_set , t rue)
| (advice_execut,false)
| (construct_call , t rue)
| (const rue t_execut, false)
| (s t a t i c_ in i t , false)
::= MethodSignature \ FieldSignature

ShadowMunger ::= {advicelnfo: Advicelnfo,

Test
pointcutTest: Test)

::= always | never
| t h i s instanceof (ComponentType)
| t a rge t instanceof (ComponentType)
| arg(Nat) i n s tanceo£(ComponentType)
| Not(Test) | Imd(Test,Test) | Or(Test,Test)

Table 5.3: Shadow Syntax

124

In the same context, we define the following functions makeAnd, makeOr, and

makeNot that build new tests resulting respectively from conjunction, disjunction, and

negation of existing tests. These functions are necessary to generate combined tests when

matching a combined pointcut with a given join point shadow. The formal definitions of

these functions are the following:

makeAnd: TestxTest-^ Test

makeAnd(never,Z?)=never

makeAnd(a,never)=never

makeAnd(a,always)=a

makeAnd(a 1 way s ,b)=b

makeAnd(a,&)=And(a,b) otherwise

makeOr: TestxTest-* Test

makeOr(al way s,b)=al ways

makeOr(a,always)=always

makeOr(a,never)=a

makeOr(never,fe)=&

makeOr(a,&)=Or(a,b) otherwise

makeNot: Test —> Test

makeNot(always)=never

makeNot(never)=always

makeNot(a)=Not(a) otherwise

Two functions named shadowing and preShadowing are presented in Appendix I and

allow us to calculate the different shadows in a method. The function preShadowing

calculates all the execution shadows ("method execution", "constructor execution", "ad­

vice execution", and "static class initialization") and the function shadowing calculates

125

all the non-execution shadows. These functions change the method codes by inserting

impdepl to mark the start and the end of shadows. In the example of Figure 5.1, the

functions shadowing and preShadowing will insert in the JVML code of / four pairs

of impdepl codes to mark the four shadows of the method, which are: The execution of

/ , the call to g, the get field of b and finally the set field of a. The records corresponding

to the four shadows are as following:

Code Java

c l a s s C {
i n t a , b ;
p u b l i c v o i d f () {
i n t c=4;

g () ;
a=b ;

}
p r i v a t e v o i d g () {
}
}

Initial JVML code of/

1: a l o a d _ 0
2: i n v o k e s p e c i a l #2
3: a l o a d _ 0
4: a l o a d _ 0
5: g e t f i e l d #3
6: p u t f i e l d #4
7: r e t u r n

JVML code of/after
shadowing
1: impdepl
2: a l o a d _ 0
3: impdepl
4: i n v o k e v i r t u a l #2
5: impdepl
6: a l o a d _ 0
7: a l o a d _ 0
8: impdepl
9: g e t f i e l d #3
10: impdepl
11: impdepl
12: p u t f i e l d #4
13: impdepl
14: r e t u r n
15: impdepl

Figure 5.1: Shadowing Example

1. (method_execut , (/ , [] ,void) ,{public},C, 1,15,[])

2. (method_call,(g, [], void), {private},C,3,5, [])

3. (field_get,(fr,m'),{},C,8,10,[])

4. (field_set,(a,mf),{},C,ll ,13,[])

126

5.2 Environnement

We describe in Table 5.4 the AspectJ environment. It is represented as a record containing

a Java environment and a set of advices. The Java environment is quite similar to the

environment of Table 4.4 and Table 4.5 and is a map that associates a set of classes to a

set of component types. However, the component type is now considered to be a reference

type (interface or class) or an aspect. We consider that an aspect can be viewed as a class

and its advices are represented by the methods of the class. A new flag is also added to

the class record indicating wether the component is an aspect or not. We also consider

that an instruction may be either a JVML instruction or a code impdepl . Before starting

the pointcut matching process, AspectJ inserts the mnemonic impdepl before and after

all the possible join point shadows. The pointcut matching process will then operate only

on those "marked" regions. An advice is represented by a record containing its kind, its

pointcut, the aspect where the advice has been defined, and its signature. Concerning the

kind of advices, we examine both before advices and after advices. The after advice runs

after the normal completion of a join point.

5.3 Matching Process

AspectJ weaving is essentially based on the matching process that calculates for each

shadow the list of advices that it matches. In this section, we will describe the matching

process in AspectJ with the function: matchpcut. This function takes an environment, a

method, a shadow and a pointcut and returns a test condition under which the shadow sat­

isfies the pointcut. We can notice that the resulting dynamic test from matching a shadow

with a combined pointcut is a combination of the dynamic tests resulting when matching

each basic pointcut with the shadow. We can also remark that in the case of a pointcut

t a rge t (c f) for example, a test of the form: t a r g e t in s t anceof (c t) is generated

127

Environment

JavaEnvironment

Class

Code

Instruction
Advicelnfo

::= {JavaEnvironment: JavaEnvironment,
advices: {Advicelnfo) - l i s t)

::= ComponentType _̂ Class

::= (constantPoohConstantPool,
superclass: ClassType \ NoneType,
interfaces: (ClassType)-set,
fields: (Field) - 1 i s t ,
staticMap: Field _ Value,

tn

methods: {Method) - l i s t ,
initialized: Nat,
interface: Nat,
aspect: Nat)

::= ProgramCounter _̂ Instruction
at

::= JVMLInst | impdepl
::= {akind: {Before, A f t e r } ,

pointcut: Pcut,
fromClass: AspectType,
adviceSignature: MethodSignature)

Table 5.4: Aspect! Environnement

when the shadow has a super class of ct as target. We can also easily check that a point-

cut a r g s never matches with a get field join point. The function match Pcut is defined

formally hereafter.

matchPcut: EnvironmentxMethodxShadowxPointcut-j>Test

ma\chPcu\CE,m,s,pcutl a n d pcut2)=

makeAnd(matchPcut(£,m,5,/?cwfl), matchPcutC£,m,.s,/?cwf2))

ma\chPcu\(fE,m,s,pcutl o r pcut2)=

makeOr(matchPcut(*E,m,5,/?cMfl),matchPcut(£,m,5,pcMf2)

matchPcut(£,m,5,not pcut) =makeNot(ma\chPcutCE,m,s,pcut))

128

matchPcut(!E,m,.s,cal lQ?))=always

p.methodSignature.name ^ i n i t

A %l (s.kind) = method_call

if S A s.signature = p.methodSignature

A s.modifiers D p.methodModifiers

A s.fromClass = p.componentType

matchPcut(£,m,s,call(/?))=always
f

p.methodSignature.name = i n i t

A nl (s.kind) = construct _ca.ll

if { A s.signature = p.methodSignature

A s.modifiers D p.methodModifiers

A s.fromClass = p.componentType

matchPcut(£,m,5,cal l(/?))=never otherwise

matchPcut(E,m,5,execution(p)) =a lways
f

p.methodSignature.name ^ i n i t

A ttl(s.fcifld) =method_execut

if s A s.signature — p.methodSignature

A s.modifiers _\ p.methodModifiers

A s.fromClass = p.componentType

matchPcut(£,m,.s,execution(/?))=always

p.methodSignature.name = i n i t

A 7tl (s.itiiKf) = construct_execut

if \ A s.signature = p.methodSignature

A s.modifiers D p.methodModifiers

A s.fromClass = p.componentType

matchPcut(£,m,s,execution(/?)) =neve r otherwise

129

http://_ca.ll

if <

matchPcutCE,m,5,stat icini t(cO)=always

{ TCl (s.kind) = s t a t i c _ i n i t

A s.fromClass = ct

matchPcut (£ ,m,s , s ta t ic in i t (c f))=never otherwise

matchPcut(£,m,s,aexecution())=always

if Kl(s.kind) = advice_execut

matchPcut(!E,m,5,aexecution())=never otherwise

matchPcut(E,m,5,get(//?))=always

7tl (s.kind) = f ield_get

A s. signature = fp. fieldSignature

A s.modifiers D fp.GeldModitiers

A s.fromClass = fp.componentType

matchPcut(£,w,5,get(//?))=never otherwise

matchPcut(!E,m,s,set(/>))=always

nl (s.kind) = f i e ld_se t

A s.signature = fp.fieldSignature

A s.modifiers D fp.fieldModifiers

A s.fromClass = fp.componentType

matchPcut(£,m,s,set(//?))=never otherwise

matchPcut(E,m,5,within(c?))=always if m.fromClass = ct

matchPcut(£,/7i, s,w± th in(cO)=never otherwise

matchPcut(£,m,5,withincode(/n/?))=always

m.methodModifiers D mp.methodModifiers

if \ A m.methodSignature = mp.methodSignature

. I A m.fromClass = mp.ComponentType

match Pcut(£,m,^,wi thincode(m/?))=never otherwise

if <

130

matchPcut(£,m,5,this(cO)=always

I hasThis(5,m)

A m.fromClass = ct

matchPcut(E,m,5,this(cO)=this i n s t a n c e o f (r t)

{ hasThis(*,m)

A m.fromClass G allSuperclasses(!E, {ct})

matChPcut(£,m,s, t h i s(cf)=never otherwise

matchPcut(£,m,s,target(cO)=always

hasTarget(s,m)

if \ A s t a t i c ^ s.modifiers

A s.fromClass = ct

matchPcut(£,m,5, target(c/))=target i n s t a n c e o f (c O
r

hasTarget(s,m)

if \ A s t a t i c ^ s.modifiers

A s.fromClass e allSupercIasses('E, {ct})

matchPcut(£,m,5,target(cO=never otherwise

matchPcut(£,m,s,args(/))=

argSTest(£, 1 ,s. signature. argumentsTypeJ)

if nl(s.kind) £ { f i e l d _ g e t , f i e l d _ s e t , s t a t i c _ i n i t }

matchPcut('E,m,5,args(/))=argTest(,£,l,j.signature.type,heacl(/))

if %l(s.kind) G { f i e l d _ s e t }

matchPcut(!E,m,5,args(/))=never otherwise

5.4 JVML Codes of Dynamic Tests

In this section, we describe the JVML codes corresponding to the dynamic tests previ­

ously presented. A dynamic test is composed of elements of the form:

131

" t h i s i n s t anceo f (c) " , " t a r g e t i n s t a n c e o f (c)", and "arg(0 i n s t a n c e o f (c)"

In order to generate the JVML code for a dynamic test, we need to know the loca­

tion, in the method local variables, of the objets to test (this, target, and argument). This

is not a problem for the executing object (this) because we know that it is always at posi­

tion 0 in the local variables. Hence an instruction a l o a d _ 0 is enough to load it onto the

operand stack. However, we need to know the location of the target and arguments of the

shadow. The Aspect! compiler stores the arguments and the target (if any) of a shadow in

temporary local variables in the method local variables table. These temporary variables

are loaded onto the operand stack and tested before injecting the advice. Aspect! compiler

differentiates between the case where the current shadow has its arguments and its target

(if any) on the stack and the case where it has not. In the case where they are on the stack,

the compiler stores them in temporary local variables. In the other case, the compiler will

load the arguments and the target (if any) from their initial locations in the method local

variables table and store them in temporary local variables. We formalized this with two

functions, named respectively insertBeforeStore and insertAfterStore presented in Ap­

pendix II. If the shadow has its arguments on the stack then the function returns only store

instructions in order to store the arguments and the target in temporary variables. If the

shadow does not have its arguments on the stack then the function returns load and store

instructions because the arguments should be loaded from their original emplacement in

the local variables table and restore them in temporary variables.

The function getTestlnstructions generates the JVML instructions that correspond

to a given dynamic test. Given an initial environment, a method, a shadow, a dynamic test

and four numbers, it returns JVML instructions and a new environment. The first number

represents the position in the code where to jump to if the test succeeds, which is the

start of the advice. The second number is the position where to jump to if the test fails,

which is the end of the advice. The third number is the number from which the function

getTestlnstructions starts numbering its instructions. The fourth number corresponds to

the current maximum length of the method local variable table. The following notation is

132

used in the definition of getTestlnstructions:

Notation: Given two maps m and m' with Dom(m) D Dom(m')= , we write mfm'

to denote the map where Dom(mtm')= Dom(m) U Dom(m') and (mfm')(a) = m(a) if

a € Dom(m) and m'(a) otherwise.

The function getArgVar, used in getTestlnstructions and described in Appendix

II, allows the compiler to get the argument position in the method local variables table.

Notice that we do not need a function that gets the position of the target because it is

always at the highest position of the method local variables table. The environment may

change because of the function genPool, listed in Appendix II, which may add new en­

tries in the constant pool of the given method class. In fact, this function looks for a class

in the constant pool of the method class. If the class is found, it returns the constant pool

entry number describing this class. If the class is not found, it generates a new entry in

the given constant pool and returns the new constant pool entry number.

The function lenTestCode is also given in Appendix II. It calculates the number of

instructions to be generated for a given test.

Example:

The following example shows the bytecode generated by the instruction

getTestlnstructions(2:,m,5,?,40,42,28) where:

• The dynamic test t is Or(And(this i n s t a n c e o f (A), a rg (l) i n s t a n c e o f (J5)),

t h i s i n s t anceof (C)) .

• The shadow on which we want to apply the test is in a method m of a class X.

• The position of the advice call is 40 which correspond to two consecutive JVML

instructions(invokevirtual and i n v o k e s t a t i c) [9].

• The position of the instruction following the advice call is 42.

• The position of the instruction from which getTestlnstructions starts numbering

133

getTestlnstructions: EnvironmentxMethodxShadowxTestxNatxNatxNat xNat —>
Code x Environment

ge\Tes\\ns\wc\\ons(E,m,s,An<5(t\J2),yes,no,start,maxLocals)=
getTestlnstructions('E)/n,5>?i ,5tort+lenTestCode(?i),no,start,maxLoc) t

getTestlnstructions(E,mvs,r2,)'e.s,"o,.ytort+lenTestCode(fi),maj:Loc)

ge\Jes\\ns\TUC\\onsCE,m,s,Or(t\,t2),yes,no,start,majcLoc)=
getTestlnstructionsCE,m,j,ri ,yesjtart+\enTestCotie(t\),start,maxLoc) t
getTestlnstructions(!E,m,j,r2,3'«^o,jtarf+lenTestCocle(ri),/naxLoc)

ge\Tes\\nstruc\\ons('E,m,s,Not(t),yes,no,start,maxLoc)=
ge\Tes\\r\s\ruct\onsCE,m,s,t,no,yes,start,maxLoc)

getTestlnstructions(£,m,j,this i n s t a n c e o f (ct) ,yes,no,start, maxLoc) - (c, £')
where

(j,'E')=genPoo\('E,m,ct)
c(start)= a l o a d _ 0
c(start+l)= i n s t a n c e o f j
c(start+2)= i f eq no
c(start+3)= g o t o yes

getTestlnstructions(!E,/n,5,target i n s t a n c e o f (ct) ,yes,no,start,maxLoc) = (Cr'E1)
where

0',£')=genPool(£,m,cf)
c(start)= aload_maxLoc
c(start+l)= i n s t a n c e o f j
c(start+2)= i f eq no
c(start+3)= g o t o yes

getTestlnstructions(£,m,j,args (i) i n s t a n c e o f [ct) ,yes, no, start, maxLoc) = (c, £ ')
where

0',£')=genPool(£,m,rt)
c(start)= a 1 oad_getArg \/ar(m,s,maxLoc, i)
c(start+l)= i n s t a n c e o f j
c(start+2)= i f eq no
c(start+3)= g o t o yes

134

the JVML test instructions is 28. Previously, the instructions in m have been renum­

bered in order to let free the positions from 28 to 40.

• A temporary variable has been created at the position 6 by the preparatory phase in

order to contain the value of the first argument.

• The constant pool of X contains at the entry 3 a description of the class A.

• The constant pool of X contains at the entry 10 a description of the class B.

• The constant pool of X doesn't initially contain an entry describing C. A new entry

at position 35 is created in the constant pool for this effect.

The test instructions returned by gefTestlnstructions(£,m,s,f ,40,42,28) are:

28: a l o a d _ 0

29: i n s t a n c e o f #3

30: i f e q 36

31: g o t o 32

32: a l o a d _ 6

33: i n s t a n c e o f #10

34: i f e q 36

35: g o t o 40

36: aloacLO

37: i n s t a n c e o f #35

38: i f e q 42

39: g o t o 40

The code of m is updated to m.code f getTestlnstructions(£,m,5,/,40,42,28). No­

tice that the code generated by getTestlnstructions is not optimized. In fact, Aspect!

optimizes the code by removing all the g o t o instructions that branch to the next instruc­

tion in the code. We easily check the code generated by getTestlnstructions in order to

135

remove non-necessary instructions (31 and 39 in the example).

5.5 Weaving Semantics Rules

This section presents the semantic rules of the advice weaving in AspectJ. We first de­

scribe the semantic configurations in Table 5.5 with the type Configuration.

Configuation ::— Environment x Method x

State ::=

x State x Nat

s t a r t | shadowed |
weav ing | weaved

{Shadow) - l i s t

m a t c h i n g |

x (Shadow) - l i s t

s t a r t W e a v i n g

Table 5.5: AspectJ Semantic Configuration

Configurations use a new type State, which represents the different stages of the ad­

vice weaving process: s t a r t , shadowed, m a t c h i n g , s t a r t W e a v i n g . w e a v i n g ,

and weaved. A semantic configuration has the form: (£,m,j/i ,m^, state, maxLoc)

where £ represents the environment, m the current method, sh the list of shadows in

the method code, rush the list of all shadows in sh that match with one or more point-

cuts present in the advices of the environment, state the stage of the pointcut matching

process and the maxLoc the current maximum length of the method m local variables

table. We remind the reader that we need this value in order to store shadow argu­

ments and target (if any) in temporary variables in the method local variables table in

order to test them in case of advices with dynamic pointcuts. The weaving semantics

starts with the configuration: (£,«i, [J, [], start,maxLoc) and ends with the configura­

tion (£,m,sh, msh, shadowed, maxLoc) which represents the case where all the shadows

contained in the method m have been calculated and put in the list of shadows sh. The

initial value of maxLoc is the length of the metiiod variables table. Once this step done,

the configurations with the state m a t c h i n g will take all the shadows in sh and try to

match them with the pointcuts of all the advices in the environment £ . All the matched

136

shadows are then put in the list msh. In the stage weaving, we inject to each matched

join point its corresponding advices that appear in the list mungers of the shadow. The

state weaved is reached once the complete weaving is done. The stage s t a r t W e a v i n g

is used to start the weaving for a given join point. It allows us to store the arguments and

the target of the join points when one of its applicable advices has a dynamic pointcut.

The entire semantics is specified in thirteen (13) rules, which employ utility functions

described in previous sections or in Appendix II.

Rule 1: In this rule, the starting configuration has the state s t a r t . This rule allows

the calculation of all the shadows in the method m. The utility function preShadowing

allows us to calculate all the execution shadows whereas shadowing calculates the non-

execution shadows. The environment and the method change because of the impdepl

insertions. The mnemonics impdep l delimit the starting and end of all the possible

shadows in the method m. We assume that all the methods have been rearranged to contain

only one return statement:

(£1 ,m\ ,1) = preShadowing(E,w)

{T,2,m2,sh) = shadowing(£i,mi,0,Z)

(£,/n, [] ,[] , s t a r t , length (m.metfiodVariab/es)) —>

{'E2,m2,sh, [], shadowed, \eng\h(m.methodVariables))

Rule 2: This rule starts the pointcut matching process. It takes the first shadow in the shadow list sh

and tries to match it with the pointcuts of the advices in the environment "E. If the result of the pointcut

matching process is not empty, this shadow is added to the matched shadows list msh and the configuration

state moves from shadowed to m a t c h i n g .

shadow = match(!E,m, head(sh), 'E. advices)

msh = \fThenE\se(shadow.mungers^ [], [shadow], [])

(£,m,j/i, [], shadowed,maxLoc) —>

(£ , m, lai\(sh), msh, ma tch ing , maxLoc)

137

Rule 3: The third rule is very close to the second rule and corresponds to the case where there are still

shadows to match against the pointcuts of the advices in £ . It treats the next shadow in the shadow list. The

state is unchanged and remains m a t c h i n g .

shadow = match('E)m,head(i/i), £ . advices)

msh\ = \fThenE\se(shadow.mimgers^ [},msh :: shadow,msh)

{'E,m,sh,msh,iaatching,maxLoc) —>

(£ , m,\a\\(sh), msh\, m a t c h i n g , maxLoc)

Rule 4: This rule corresponds to the case where all the shadows have been considered for the pointcut

matching process but where there is no advice weaving to apply because none of the program shadows

match any of the advice pointcuts. The process of advice weaving is then stopped and the configuration

state changes from m a t c h i n g to weaved.

sh=[]

msh = []

{'E,m,sh,msh,matching,maxLoc} —>

(lE,m,sh, msh, weaved, maxLoc)

Rule 5: This rule depicts the case where all the shadows have been considered for the pointcut matching

process and the set of matched shadows msh is not empty and advice weaving applies. In this case the

configuration state changes from m a t c h i n g to s t a r t W e a v i n g .

sh=[]

msh^ []

{'E,m,sh,msh,ma.tching,maxLoc) —>

{'E,m,sh, msh, s t a r tWeaving, maxLoc)

Rule 6: We consider in this rule the case where one of the current join point's applicable advices has a

dynamic pointcut. In this case, we must inject the instructions that store all the arguments and the target of

the current shadow in temporary variables before starting to inject any advice. We store the arguments and

the target in order to test then when necessary. Notice that we reload the arguments and the target onto the

stack in case where they were already there:

138

msh^[)

head(msh).mungers ̂ []

onelsDynamic(head(ffiy/i).muiigers)

il = storeCode(m,head(wj/i),argumentTypes(head(OT5ft)),maxLoc)

CE\,m\,msh\) = liberateAt(£,m,mj/i,length(i7),head(/nj/i).start)

(£2,w2) = insertStore(£i,mi,/?w/ii,i7)

target = ifThenElse(hasTarget(head(mj/ii),>W2), 1,0)

Hi = ifThenElse(7c2(head(wj/i)./cind) = true,loadCode(*7), [])

maxLoc\ = maxLoc + length(argumentTypes(head(ms/ii))) + target

(<E,m,l},msh,sta.rtWeaving,maxLoc) —»

(£2,m2, [},msh\, weaving, maxLoci)

Rule 7: We consider in this rule the case where none of the current join point's applicable advices has a

dynamic pointcut. In this case, we do not inject the instructions that store all the arguments and the target

of the current shadow in temporary variables before starting to inject the advices. The state changes from

s tar tWeaving to weaving:

msh=f []

heati(msh).mungers^ [}

-ionelsDynamic(head(ffw/i). mungers)

("Ejfn, [},msh, sta.rtWea.ving,maxLoc) —>

(£,An, [},msh, weaving, maxLoc)

Rule 8: In this rule, the list of mungers of the current head of the matched shadows list is not empty yet

and needs to be weaved to the shadow. The head of this list of mungers is a munger with a test equal to

always. In this case, we need only inject the instructions representing the advice call using the utility

function insertAdvice. The environment, the method, and the matched shadows change because of the

insertion of new JVML instructions (representing the advice call) inside the method m. More precisely,

each matched shadow 5 may have to readjust die values of its parts start and end if the shadow is affected

by the advice call insertion. These updates appear clearly in the method liberate, which allows us to free

places in the code in order to inject the new instructions:

139

http://sta.rtWea.ving

msh^ [}

bead(msh).mungers ^ []

head(head(mj/i). mungers).pointcutTest = always

(tE\,nt},mshi) = liberate(£,m,mj/i,2)

("£•2,^12) = insertAdvice(£i,wi,m5/ii)

msfi2 = head(mshi)[mungers <— \a\\(head(mshi).mungers)}:: tail{msh\)

(tE,m,[],msh,vjeaving,maxLoc) —>

('Ei,m2, [},msh2,weaving,maxLoc)

Rule 9: We consider in this rule the case where the advice is a before advice but where its pointcut is

dynamic. In this case, we must inject the instructions corresponding to the dynamic test followed by the

advice call:

msh=£ []

head(msh).mungers ^ []

head(head(wj/i) .mungers) .pointcutTest ^ always

heati(head(msh).mungers).advicelnfo.akind = Before

CE\,mi,mshi) = WberateAt('E,m,msh,2,head(msh).start)

(£2,m2) = insertBeforeAdvice(2;i ,/nj ,msh\)

lenTest = \eoTes\Co6e(hea6(head(msh]).mungers).pointcutTest

(lE3,m3,msli2) = \tberateA\('E2,m2,msh\,lenTest,head(msh). start)

(24,/W4) = insertTestBeforelnstructions('E3,m3,»«/j2,maxLoc)

msh-i = head(ms/i2) [mungers <— tail(head(ww/i2)mungers)]:: tail{msh2)

(£,m, [],msh,weaving,maxLoc) —>

(24,m4, [},msh3,weaving,maxLoc)

Rule 10:

The following rule is similar to the previous rule except that the advice is an after advice. More

precisely, it corresponds to the case where the shadow is not an execution shadow:

140

msh^ []

head(rnsh).mungers ^ []

head(heati(msh).mungers).pointcutTest ^ always

head(head(msh).mimgers).adviceInfo.akind= After

n2(bead(msh).kind) = t rue/ /not execution shadow

{T.],m\,msh\) = liberateAt('E,m,/?wft,2,head(ms/i)- end)

(£2,m2) = insertAfterAdvice(2;i,mi,myAi)

lenTest — lenTestCode(head(head(/?tf/ii).mungers).pointcutTest

(lE3,m3,msti2) = WberaXeAXiTz,m2,msh\,lenTest,beati(msh).end)

(£i,m4) = insertTestAfterlnstructions(i;3,m3,mj/i2,/waxLoc)

mshi — head(msh2)[mungers<—\ai\(head(msh2).mungers)]:: tail(msh2)

(lE,m,[},msh,weaving,maxLoc) —>

(24,m4, [},msh-},weaving,maxLoc)

Rule 11:

This rule also depicts the case where the advice is an after advice except that here the shadow is an

execution shadow. In this case, the advice instructions are injected just before the return instruction of the

method:

msh^ \]

head(msh).mungers / []

head(head(/n.y/i).mungers).pojnfcufTesr ^ always

bead(head(msh). mungers).advicelnfo.akind = After

Ti2(hea6(msh).kind) = f a l s e / /execution shadow

lenTest = lenTestCode(head(head(/?w/ti).mungers).pointcutTest

CE$,m-i,msh2) = WberateA\('E2,m2,msh\JenTest+2,hea6(msh\).end-2)

(Z4,m4) = insertTestAfterlnstructions('E3)m3,/nj/i2,'«a^L<?c)

CE5,/n5) = insertAfterAdvice(f4,»t4,mj/i2)

msh-i = hea6(msh2)[mungeTs<— Xa\\{hea6{msh2).mongers)}:: tail{msh2)

(rE,m, [},msh,weaving,maxLoc) —»

(2>5,m5, [},msh3,storeweaving,maxLoc)

Rule 12: This rule depicts the case where all the possible advices have been already injected to the shadow

141

in the head of the matched shadows list. This latter is then removed from the list and the weaving process

is restarted with the next join point if any:

msh^ {}

head(msh).mungers — []

(£,m, [],msh, weaving , maxLoc) —>

{£, m, [},\a\\(msh), s t a r t W e a v i n g , maxLoc)

Rule 13: This rule corresponds to the case where all the shadows have been considered for the weaving

process. The process of advice weaving is then stopped and the configuration state changes from weav ing

to weaved.

msh = []

{'E,m,sh,msh, s t a r t W e a v i n g , maxLoc) —•

("E,m, [},msh,weaved,maxLoc)

5.6 Conclusion

In this chapter, we reported a formalization of the advice weaving in AspecU. The chapter clarifies and helps

to understand in depth the matching and advice injection processes in AspecU, especially in case of dynamic

pointcuts. We formalized the residues generation in AspecU and we described how the dynamic tests are

generated in the case of dynamic pointcuts. Such a formalization allows us to easily notice, for example,

that a "target" pointcut never matches a constructor call join point or that an "args" pointcut never matches

a field get join point, which may not be obvious for new AspecU users. Hence, the semantics presented in

this chapter can be of considerable help in understanding the inner workings of AspecU compilers.

In the next chapter, we will describe another advice weaving semantics but for an AOP calculus

based on A.-calculus. This is principally motivated by the desire to remove the syntactic dissimilarities

between any related constructs in different AOP languages. Furthermore, this calculus contains the data

flow pointcut that is very useful from security standpoint.

142

Chapter 6

AOP Security Calculus

This chapter presents an aspect oriented calculus for security that is based on ^.-calculus and called X-SAOP.

It is an AOP extension of the extended lambda calculus presented in Section 2.4.4 and contains pointcuts

that are relevant to application security hardening. The main contribution of the chapter is a semantics

for A.-SAOP advice weaving. Section 6.1 describes the syntax of the language. A detailed description of

the types and the tags of X_SAOP is given in Section 6.2. The matching and the weaving processes are

presented in Section 6.3 . Finally, Section 6.4 shows how the type inference algorithm is accommodated to

take the matching and the weaving processes into consideration.

6.1 Syntax

The main specificities of A,_SAOP are:

• ^._SAOP deals the following pointcuts: c a l l , g e t , s e t , and df low. These pointcuts are useful

from security perspective. The c a l l pointcut picks out join points where functions are called. The

s e t and g e t pointcuts pick out join points where variables are set and read respectively. The

df low pointcut identifies join points based on the origins of data. These pointcuts are important to

inject security code at specific points.

• The weaving in X-SAOP is in the spirit of Aspect! where advices are injected before, after, or

around the join points that match their respective pointcuts. We use the sequence construct §;T of

the extended A,-calculus to perform the injection.

143

• In X_SAOP, data dependencies between expressions are statically tracked using data flow tags.

• A._SAOP uses an effect-based type system to infer types.

• The effect-based type inference algorithm is accommodated to take the matching and the weaving

processes into consideration.

A ^._SAOP program, as shown in Figure 6.1 and Figure 6.2, consists of an expression and a sequence

of advices. These expressions represent the extended lambda calculus presented in Section 2.4.4 and can

belong to one of the following categories:

• Constants and variables.

• Functional constructs such as function abstraction, function application, and recursion.

• Let expressions.

• Sequencing.

• Imperative notations such as referencing. An expression of the form ref(e) allows the allocation of

a new reference that points to the value obtained from the evaluation of e. The unary operator " ! "

is used for dereferencing, and the binary operator " := " is used for assignment.

Each advice has a kind (akind) that can be either b e f o r e , a f t e r , or a round . It contains also a pointcut

designator (pcd) that specifies the join points in which it is interested, and a body (exp) representing the

action to be taken at those points. In the case of a r o u n d advice, the body (exp) may contain a special

variable proceed that represents the advice with next precedence, or the computation under the join point if

there is no further advice. AdvSeq is a sequence of advices. Empty sequence is represented by the symbol

e. We consider four kinds of basic pointcuts: c a l l , s e t , g e t , and df low. The pointcut syntax uses type

schemes to specify join point types and tags to discriminate data flow pointcuts. Types and tags are detailed

in the next section. Basic pointcuts can be logically combined to produce more complex ones using boolean

operators. Vname is an infinite set of variable names whereas Fname is an infinite set of function names.

Notice that Fname DVname = 0. An integer value is represented by n.

6.2 Types and Tags
Data flow pointcuts are very interesting pointcuts for application security hardening as mentioned in Section

3.2.2. Masuhara and Kawauchi [66] have defined the data flow pointcut for security purposes using data

144

Prog
Exp

Const

AdvSeq

ExpAr

Pcd

3
3

3

3

3

3

P
e

c

s

e'

P

::= e<s
::= c

X

Xx.e
e\e2

let rec f x = e\ in e2
let x = e\ in ei

rcf e
le

•-.= n | () | t r u e | f a l s e

•:= (akind: b e f o r e | a f t e r ,
pcd: Pcd,
exp: Exp) s
(akind: a round ,
pcd: Pcd,
exp: ExpAr) s | 8

:= c
X

proceed
Xx.e1

exe2

let rec f x = ex in e2

let x = ex vne2
i i

e\>e2
Trie1

le1

e, := e2

:= true \ -<p \ p Ap\cp\ sgp \ dp

(Program)
(Expressions)

(Constants)

(Advices)

(Around Expressions)

(Pointcuts)

Figure 6.1: ^_SAOP Syntax Part I

145

CPcd 3 cp

SGPcd 3 sgp

DPcd 3 dp

::= (pkind: c a l l ,
var: Fname,
typeScheme: FunctionTypeScheme)

::= (pkind: s e t | get ,
var: Vname,
typeScheme: RejTypeScheme)

:: = (pkind: d f 1 ow,
tag: Tag,
pcd\: Pcd,
pcd.2'- Fed)

Figure 6.2: A,_SAOP Syntax Part II

flow tags. However, they have not provided a formal framework for this pointcut and in their approach, data

flow tags are propagated and inspected at run-time. The data flow pointcut df low [x, x '] (p) as defined

by Masuhara and Kawauchi matches if there is a data flow from x ' to x. Variable x should be bound to a

value in the current join point whereas variable x ' should be bound to a value in a past join point matching

to p . Therefore, Masuhara and Kawauchi's data flow pointcut must be used in conjunction with some other

pointcut that binds x to a value in the current join point.

In this thesis, a formal static framework is defined to match and weave data flow pointcuts. Data

flow tags are propagated statically to track data dependencies between expressions during typing. This

reduces the run-time checking overhead considerably. In addition, the defined data flow pointcut can be

used without being conjuncted with some other pointcuts. Hence, it can be used alone and if needed it can

be conjuncted with other pointcuts. This makes it more similar to the other known pointcuts. Figure 6.3

formally presents the types and the tags in A.-SAOP. The considered types are: int, boot, unit, functional

types T - t f (where T and T/ are types too), reference types refp(x), and type variables. We also define type

schemes of the form Vvi...v„.x where v can be a type, a region, or an effect variable. Two special type

schemes are defined: FunctionTypeScheme and RejTypeScheme. FunctionTypeScheme is used with c a l l

pointcut while RejTypeScheme is used with s e t and g e t pointcuts. Tags (Tag) as previously mentioned

are used to discriminate data flow pointcuts and are represented by natural numbers. Effects can be gathered

together with the infix ";" that denotes the union of effects.

The data flow pointcut, as shown in Figure 6.2, has two pointcuts as parts of its syntax and a tag

that discriminates this pointcut from the other defined data flow pointcuts. If an expression matches the

first pointcut of a datflow pointcut, this expression is tagged with the tag of this data flow pointcut. This

146

Region
Effect

Type

TypeScheme

FunctionTypeScheme
RefTypeScheme
Tag

3
3

3

3

3
3
3

P
T)

X

o

4>
<P
i

._.

1

1
;=

:=

:=

:=

r
0

init(p,x)
int

X

X^X
refp{%)

n

Y

read(p,x)
bool

refp(x)
VUG

V\)<j>

V\xp

1 TI;TI
| write(p,x)

unit

1 oc

Figure 6.3: Types and Tags

tag is then propagated to other expressions that are data-dependent on the expression that matches the first

pointcut. Finally, if an expression matches the second pointcut of this data flow pointcut and is tagged with

the tag of this data flow pointcut which means that it depends on the the first expression that matches the

first pointcut, then it matches the corresponding data flow pointcut. On the other hand, if an expression

matches the second pointcut of this data flow pointcut and it is not tagged with the tag of this data flow

pointcut which means that it does not depend on the first expression that matches the first pointcut, it will

not match the corresponding data flow pointcut. The maximum number of tags in a set associated with an

expression is equal to the number of the defined data flow pointcuts.

The set of tags associated with an expression is specified according to the tagging rules specified in

Figure 6.4.

The data flow judgment £ , s, m K/ e: f, m' is used to specify that an expression e is associated with a

set of tags t in the presence of a sequence of defined advices s where a tagging environment "E maps variables

to tag sets. The concept of a tagging environment £ is similar to the concept of a typing environment T and

at the same time the domains of both environments are equal. A mapping m stores mappings from regions

to tag sets. The mapping m' reflects a modified version of m after tagging the expression e. We assume that

expressions are oc-converted. The function M, presented in Appendix III, checks if the type is a reference

type in region p and if p is associated with the tag set t in the mapping m. If so it returns t. Otherwise, it

returns an empty set. Comparing types depends on pattern matching and not on type unification because

the later changes both types so they become equal while in this case all what we need is to check if the type

is a reference type or not. The functions searchTagCall, searchTagGet, and searchTagSet work on a

sequence of advices and return a set of tags. The tags returned from the first one discriminate the data flow

pointcuts that their first pointcuts match a specific application expression, the tags returned from the second

one discriminate the data flow pointcuts that their first pointcuts match a specific dereferencing expression,

147

£,5,m \-d c : { },m

x:t e £ r H x:x,r\
!E,5,m \-d * : M(x,m)LU,m

£rf[xi-> {}),,?,m hrf e : f y
tE,s,m \~d Tix.e : t,m'

"E,s,m \~d e\ :t\,m' tE,s,rrl \~d e2 .t2,m" T t- e\ : X,T|

"E,s,m \-d eie2:M(T/,m")uriUf2usearchTagCall(ei,x,r2,^),wi"

£,s,m \-d e\ :t\,m' "E,s,m' \-d e2:t2,rri'
<E,s,m Y-d e\\e2 : t2,m"

Etj-tl*'->•{},/'-> {}],s,m \~d ex :t\,m' T.ff[f^ti],s,m' \-d e2:t2,m"
X,s,m \-d let rec f x = e\ in e2 : fa,'""

"E,s,m hd ex :tum' tEx-\[x^>t\],s,nt \-d e2:t2,m"
'£,s,m \-d let x = e\ ine2: t2,m"

£,J,m hrf e: t,m'
fE,s,m \-d rcf (e) :t,m'

rE,s,m \-d e:t,m' F h e:x,r\ T h l e : ^ , ^ '
Ej^ml-rf !e : M(x^m^urusearchTagGet(e,v,.s),m'

£,5,m hrf ej :t\,m' 'E,s,m' \-d e2 :t2,m" r h ej :re/p(x),r|

where t = f i U t2 U searchTagSet(e i, re/p (x), f2, s)

(Const)

(Var)

(Abs)

(App)

(Seq)

(Letrec)

(Let)

(Ref)

(Deref)

(Assign)

Figure 6.4: Tagging Rules

148

and the tags returned from the third one discriminate the data flow pointcuts that their first pointcuts match

a specific assignment expression.

We refer the reader to Appendix III to understand the formal definitions of the utility functions that

are used in this chapter.

An expression e matches the df low pointcut (pkind:d£low,tag:n.,pcd]:p\,pcd2'.p2) if e matches pi, e

is data-dependent on a previous expression e', and e' matches p\. To track data dependencies between

expressions, all the expressions that match p\, e' is one of them, will be tagged with the tag of the data

flow pointcut n and n will then be transmitted according to the defined tagging rules to other expressions,

e is one of them, because that are data-dependent on e! . Accordingly, if e is an application expression, e

matches the df low pointcut {pkind.df lovj,tag:n,pcd]:pi,pcd2'.p2) if it matches p2 and its argument is

tagged with n. If e is an assignment expression, it matches the pointcut if it matches pz and the right-hand

side of the assignment operator is tagged with n. If e is a dereferencing expression, it matches the pointcut

if it matches p2 and the dereferencing argument is tagged with n. This means that these expressions are

data-dependent on a previous expression that matches the first pointcut p\ of this data flow pointcut. The

following example demonstrates the basic ideas related to the data flow pointcut:

let;t = ref 3

in let y =ref 4

in let / = Xx.x

inx:=ly;f(x)

The df low pointcut {pkind:dflovi,tag:k,pcd\:pupcd2:p2) is matched by the expression f(x) where the

pointcut p\ picks out join points where we dereference a variable y of type Vccp.re/p (a) and the pointcut p2

picks out join points where we call a function / o f type Var). a —+ a. This is justified by the following:

• The expression !y satisfies the pointcut p\ and consequently !y is tagged with the tag k of the data

flow pointcut according to (Deref) tagging rule.

• The assignment expression x:=\y is then tagged with k according to the (Assign) tagging rule.

• x depends on dereferencing y. Accordingly; the region p of x is associated with the tag k and stored

in the mapping m as indicated in the (Assign) tagging rule. Afterward, the tag associated with the

region p of x will be retrieved from the mapping m wherever x appears using the function M. Hence,

x in f(x) will be tagged with k according to the (Var) tagging rule.

• Finally, we conclude that f(x) matches the defined pointcut because it satisfies the pointcut P2 and

x is tagged with k.

149

Now let us turn to the explanation of the tagging rules of Figure 6.4. Constants are associated with empty

sets of tags. The tagging of variables is dictated by the tagging environment. Besides, we must take into

consideration if the variable has a reference type using the function M. The tags associated with a function

abstraction depend on the tags that are associated with its subexpression. For an application expression, its

tag set contains the tags associated with the function expression and the tags associated with the argument.

Besides, we must take into consideration wether the application expression has a reference type using the

function M. Moreover, it contains the tags of the data flow pointcuts that are retrieved using the function

(SearchTagCall). The first pointcuts of these data flow pointcuts match the corresponding application

expression. The tags associated with a sequence expression depend on the tags that are associated with its

second subexpression. For a recursive let expression, the tags associated with it depend on the tags that are

associated with its second subexpression provided that we extend the tagging environment with variable

assumption for the function name. The tags associated with the function name are set to the tags that

are associated with the first subexpression provided that we extend the tagging environment with variable

assumptions. A similar explanation applies to the tagging of let expression where the tags associated with

it depend on the tags that are associated with its second subexpression provided that we extend the tagging

environment with variable assumption. The tags associated with a reference expression depend on the tags

of its subexpression. For a dereferencing expression, its tag set contains the tags that are associated with

its subexpression. Besides, we must take into consideration if the dereferencing expression has a reference

type using the function M. Moreover, it contains the tags of the data flow pointcuts that are retrieved using

the function (searchTagGet). The first pointcuts of these data flow pointcuts match the corresponding

dereferencing expression. For an assignment expression, its tag set contains the tags that are associated

with its first subexpression and the tags that are associated with its second subexpression. Moreover, it

contains the tags of the data flow pointcuts that are retrieved using the function (SearchTagSet). The

first pointcuts of these data flow pointcuts match the corresponding assignment expression. After tagging

the assignment expression, to keep the fact that the subexpression on the left-hand side of the assignment

operator depends on the subexpression on the right-hand side of the assignment operator, the mapping m is

changed to reflect that the region of the subexpression on the left-hand side of the assignment operator is

associated with the tag set of the subexpression on the right-hand side of the assignment operator. This is

done to use the resulting set with this subexpression if it is used elsewhere and consequently to maintain

the data-dependency between expressions.

The tagging algorithm Tg regarding the tagging rules is detailed in Figure 6.5. It takes a tagging

environment "E, a typing environment T, a sequence of defined advices s, a mapping m, and an expression

e. It returns a set of tags that tags the expression e and a modified version of m after tagging the expression

e. The algorithm M checks if the type is a reference type in a region variable y and if y is associated with

150

the tag set t in m. If so it returns t. Otherwise, it returns an empty set. Checking if the variable is a reference

type depends on pattern matching.

The algorithm M is given hereafter.

fM(x,m)=casexof

refy{T?) =*• m(y)

else =>{}

In the following, we state and prove a result that establishes the soundness of the tagging algorithm

given of Figure 6.5. This proof is needed to prove the soundness of the inference algorithm for the type-

based weaving rules as we will see next.

Theorem: Soundness

Given a tagging environment "E, a typing environment T, a sequence of denned advices s, a mapping

m, and an expression e. If T ^ (£ , r , j , m , e) = (t,m') then T,,s,m\-de:t,m'.

Proof

The proof is done by structural induction on the expression:

• Caseof(Var)

Whenever (t,m) = T ^ (£ , r , s , w , x) then by the definition of the algorithm

[x H-> f'] G £ where t' C t.

(0 , T , T U) = 7(r,x)

By the soundness proof of the effect-based inference algorithm I [89]:

iter h x: kx,h\

By the definition of the rule (Var):

£ , j ,m \~d x: M(kx,m)Ut',m

• Caseof(Abs)

By the definition of the algorithm: T£(£,r,.y,m,Ajc.e) = (Tg{'Ex^\x^ {}],r,s,m,e)

Assume that {t,m') = T giTzflx h-> {}],r,s,m,e)

By induction hypothesis on e:

%ct{x>->{}},s,m \-d e:t,m'

By the definition of the rule (Abs):

151

Tg('E,r,s,m,e) =
c
X

Xx.e

e\e2

let x = e\ in e2

ref e

le

e\ :=e2

- case e of
=> (0.«)
=> if x <£ Dom(£) then fail

else
let (6,x,Ti,t) = I(T,x)
in

{<E{x)U?M(ia,m),m)

^ <TgCEt1[x» {}},r,s,m,e)

=*• let (ti,rri) = TgCE,r,s,m,ei)
(t2,m") = <igCE,r,s,m',e2)

(ei,Ti,Tn,*i) = /(r,e1)
(02,X2,Tl2,*2) = / (r ,Cie2)

in
(tiUt2l)M(k2i2,m")UsearchTagCa)\(e\,l\Xi,t2,s),

=> let (r i X) = TgCE,r,s,m,ei)
(t2,m") = Tg('Ext\x^t1},r,s,m',e2)

in
(t2,m")

^TgCE,r,s,m,e)

=> let (t,m') = T^('E,r,5,w,e)
(ej,Ti,Tn,*i) = /(r,e)
(e2,T2,Tl2,*3)=/(r , !«)

in
(f u 5Vf(Jfe2t2,m') u searchTagGet(e,£iT] ,t,s), m')

=> let (fi,m') = T£(£ , I> ,m,* i)
(f2)m") = ,rg(2;,r,^m ,,e2)
(e,T,Ti,*) = / (r ,e ,)

in
if kx = refy(Tf) then
(fiUf2UsearchTagSet(ei,ifcV2,j),»4't[Y'-->f2])
else /ai7

m")

Figure 6.5: Tagging Algorithm

152

"E,s,m hrf Xx.e:t,m'

• Case of (App)

By the definition of the algorithm:

(tl,m') = rg('E,r,s,m,ei)

(<2 ,m")r£e£ , I>X,e2)

(6i,Xi,Tli,*i) = / (r , e i)

(92,T2,r|2.*2) = /(r,eie2)

By induction hypothesis one\,e2'.

"E,s,m \~d e\ : t\,m'

T.,s,m' hj e2 :t2,m"

By the soundness proof of the effect-based inference algorithm: / [89]

k\Q\T h e\ :^iti,^iT|i

^292r h e\er\h\iM^i

By the definition of the rule (App):

"E,s,m \-d eie2:M(^2X2,w")uriUf2UsearchTagCall(ei,itiTi,f2,j),w"

• Case of (Let)

By the definition of the algorithm:

(ti,m') = Tg('E,r,s,m,e1)

(t2,m") = TgCEx-flx^ h),T,s,tr! ,e2)

By induction hypothesis on e\ ,e%:

T.,s,m \-<i e\ :t\,m'

^[x^t]}^,^ hd e2:t2,m"

By the definition of the rule (Let):

"E,j,m 1-̂ letjc = ei ine2:t2,m"

• Caseof(Ref)

By the definition of the algorithm:

153

T £ (£ , r > , m , r e f e) = T £ (£ , r > , m , e)

Assume that (t,m') = T£(£,r , .s , ra,e)

By induction hypothesis on e:

"E^fin hd e :t,m'

By the definition of the rule (Ref):

T.,s,m \-d ref (e) :t,m'

• Case of (Derel)

By the definition of the algorithm:

(t,m') = TgCE,T,s,m,e)

(ei,xi,Tii,*i) = /(r,e)
(e2,X2,Tl2,*2) = /(r,!<f)

By induction hypothesis on e:

"E,s,m \~d e :t,m'

By the soundness proof of the effect-based inference algorithm / [89]:

k\Q\T I- e: jfcixj,*iT|i

hfyT h \e:k2x2MT\i

By the definition of the rule (Deref):

rE,s,m\-d \e : M(*2X2,m')unjsearchTagGet(e,*iTi,r,i-),m"

• Case of (Assign)

By the definition of the algorithm:

(tum') = rg('E,r,s,m,ei)

(t2,m") = TgCE,r,s,m',e2)

(Q,x,X],k) = I(r,e})

By induction hypothesis on e\ ,e2:

"E,s,m \-d e\ :t\,m'

T.,s,m' \-d e2 :'2,»i"

154

Ifkx = refyft) then by the soundness proof of the effect-based inference algorithm / [89]:

*er h e\ : refy(-t!),lcf\

By the definition of the rule (Assign):

'E,s,m \-d e]:=e2:t,m^Jf[y>-^t2}

where

t = t\ Uf2UsearchTagSe^ei.re/y^),^,^)

6.3 Type-Based Weaving

In this section, we use the effect-based type inference system to handle the weaving process as it appears in

Figure 6.6. For this purpose, we define a new judgment as follows:

T,s\- e:%,T\ ~~»e'

This new judgment states that the expression e has type x and effect r\ under some typing environment T and

it is translated to e'. The translated expression e' is the weaving outcome that results when the applicable

advices of the sequence s are weaved into the expression e. An advice in s is said to be applicable to e if its

pointcut matches e.

In the rules (T-const) and (T-var), the translation makes no changes because there are no applicable

advices to weave. In the rules (T-abs), (T-seq), (T-letrec), (T-Iet), (T-ref), and (T-if) there are also

no applicable advices however these rules keep the fact that sub-expressions may have been translated at

previous steps. The rules (T-app), (T-deref), and (T-assign) are crucial because we want to pick out join

points where we call a function, get a variable, or set a variable. Besides, these join points may match the

defined data flow pointcuts. It is essential at these rules to check if any pointcut matches those join points.

In case of matching, the applicable advices are injected according to their kinds. We assume that the advices

are sorted in the sequence s according to their precedence. The functions \app in the rule (T-app) picks

out all the applicable advices that their pointcuts match an application expression. These pointcuts are call

pointcuts, data flow pointcuts, or a logical combination between them using boolean operators. Matching

a call pointcut depends on the name of a function and its type whereas matching a data flow pointcut in

this case depends whether the application expression matches its second pointcut and whether the argument

of the application expression is tagged with its tag. The functions W « / in the rule (T-deref) picks out

155

TypeOf(c) >- x
r , s h c:x,Q~*c

x: a G r a >- x
r , s \- x: x, 0 ~»x

r»t[jc'-»' t j] ,^ h <? : X2,T| -^ e' T f- A*.e': Tf,1\'

r,s h Xjr.erX] —»X2,0~-» Ax.e'

T,5 h ei : Xj •!• X2,T|' ~-» e', T,5 1- e2: ti.Tl" ~* 4

£,s ,w Hrf e2 :f J = faw>(ei,X] ->x2 , / , i)

r ,5 H eie2:T2,((Ti;ii/);Tl") —e*

T,^ h ej : XI,TJ ~» e', T , J h e2 : X2,T\' ~> 4 r h e',;^ : X/,T|"

I > 1- ei;e2:T2,(Ti;T] ,)-»ci;4

rx,/t[-^ •-> Xi,/ H-> xi -> x],s h ei : X,TI ~* ^

e2:x2 ,Ti'-*e2

ef = let rec / x = e', ine2 T h e':X3,Ti"
r , 5 h Ietrec/x = ei in e2 : X2,(r|;r|') ~> e'

T,s \- ei :X\,r\~~e\ IVf|Jc»-» Gen{T,x},x\)],s h e2 :x2,r|' ~* e'2

T 1- Ietjc = e/
1 ine2:x,T|"

T,^ 1- let x = g| in e2
 : ^2, Cn;Tl') ~~> let * = e', in e2

r , s h e:x,r | ~* e'
T,5 h ref (e) : refp (x),(r);init(p,x)) ~» ref (e1)

r,s h e: refp (x),T) -we' E, J,m hrf e : t / = Ueref{ejefp (x),t,s)
< ! e V) ^ (e , , £) r h e j r x , , ! ! '
r , s h !e : x, (r|;rearf(p,x)) -w ei

T,5 h ei : re/p (xi),r| ~* <?', I > h e2 : T\,r\' ~> 4
£,s,m \-d e2:t s' = fassign(ei,refp (X\),t,s)

T h e ' : x.rf
r > h ei:=e2 : M«#,((TKTr);wnMP>'i;i)) ~» e'

(T-const)

(T-var)

(T-abs)

(T-app)

(T-seq)

(T-letrec)

(T-Iet)

(T-ref)

(T-deref)

(T-assign)

Figure 6.6: Type-Based Weaving Rules

156

all the applicable advices that their pointcuts match a dereferncing expression. These pointcuts are get

pointcuts, data flow pointcuts, or a logical combination between them using boolean operators. Matching a

get pointcut depends on the name of a variable and its type whereas matching a data flow pointcut in this

case depends on whether the dereferncing expression matches its second pointcut and whether the argument

of the dereferncing expression is tagged with its tag. The functions \assign in the rule (T-assign) picks out

all the applicable advices that their pointcuts match an assignment expression. These pointcuts are set

pointcuts, data flow pointcuts, or a logical combination between them using boolean operators. Matching

a set pointcut depends on the name of a variable and its type whereas matching a data flow pointcut in this

case depends on whether the assignment expression matches its second pointcut and whether the right-hand

side of the assignment expression is tagged with its tag.

In Figure 6.6, the weaving configuration is represented by (Exp,AdvSeq). Hence, the rule

(e,s) •—»(e',e) means that e' is the result of weaving all the advices in s into e. Notice that •—• is transitive.

Hereafter, we give the weaving rules:

• Rule 1: Before advice weaving

s = asr a.kind = b e f o r e

(e,s) <-» (a.exp;^, /)

• Rule 2: After advice weaving

s = as* a.kind = a f t e r

(e,s)<—• (let tmp = e in a.exp;tmp,sf)

• Rule 3: Around advice weaving without proceed

s = aJ a.kind = a r o u n d T h e : T,T)

r h a.exp:i!,v[eT = 9r/ 9TI C 0rj'

containProceed(a.exp) = false

(e,s) '—> (a.exp,^)

• Rule 4: Around advice weaving with proceed

157

file:///assign

s = as? a.kind = a r o u n d

(e,^) <-* (eJ,e) r h e:x,T|

r h a.exp j/jroceerf i—> e.\: T?,T\'

er = ex' en c en'
containProceed(a.exp) = true

(e,s) -̂> {a.exp \proceed i—> e'],£)

The weaving process is in the spirit of AspecU. The sequence construct ",-" of the extended /.-calculus

is introduced to perform the injection. The before-advice is inserted before the expressions that match its

pointcut. Similarly, the after-advice is inserted after the expressions that match its pointcut. Actually, the

value of the matched expression should be returned after executing the matched expression inside the advice

body. The around-advice bypasses the computation of a join point. The around-advice with proceed allows

to run the advice with next precedence, or the computation under the join point if there is no further advice.

Besides, the type of the around-advice must be the same or an instance of the type of the expression that

matches its pointcut. In the following, we state and prove a result that establishes the preservation of the

weaving process.

Theorem: Preservation

If rTe:T,T| and (e,s) •-* (e',e) then T h e ' :x',r[' where there exists a substitution 0 such that 0r = 0r/ and

eiicen/.
Proof

The proof is done by induction over the length ofs. Assume that \s\ = k.

1. Induction basis (k = 0).

r h e : x,r\ and (e,e) <—> (e',e). By the weaving rules, e = e'. Consequently, the implication is satis­

fied by taking 0 = id.

2. Induction hypothesis (0 < k < n).

rhe :x ,T i) , , ,
V-»rhe , :T / ,T) '

(e,s) <-* (e',e) J

where there exists a substitution 0 such that 0x = 0x' and 0r) C 0n/.

3. Induction step (k = n + 1).

let's assume / = as where |ay| = n + 1 , we have to prove that

158

file:///proceed

T h e : t,r)

{e,as)^> (e',e)

where there exists a substitution 9 such that Or = Ox' and Qr\ C Or)'.

• Case (a is a before-advice)

By the first rule of the weaving rules

(e,as) «—• (a.exp;e,s)

Then

(a.exp\e,s) •—> (^e)

By assumption

r h e : T , r i

By the typing rule of the sequence construct

T I- a.exp;e : x,rr" where r\ C rj"

By hypothesis

r\-a.exp-,e:x,t\" 1
>—> T h e ' :T,Ty

(a.exp;e,j) <̂ » (e'.e) J

where there exists a substitution 0 such that 0x = Ox' and Orj" C 0rj'.

Since r\ C r|" and 0r|" C Or)' then 0r| C er|' and finally Ox = Ox7 and On, C Or)'.

• Case (a is an after-advice)

By the second rule of the weaving rules

(e,as) t-> (let tmp = e in a.exp;tmp,s)

Then

(let rmp = e in a.exp;tmp,s) <—* (e1 ,z)

By assumption

r (- e : x , r j

By the typing rule of the sequence construct

159

n-e ' :T \ r | '

r t- let tmp = e in a.exp;tmp: T,T|" where Tl C T|" and tmp is not free in a.exp

By hypothesis

r h let tmp = e in a.exp; f mp: x, r\" I
> - » r h e / : t ' , r i '

(let tmp = e in a.exp;tmp,s)<—> (e'jE) I

where there exists a substitution 0 such that 9r = 0T/ and 0r|" C 0r|'.

Since r| C TJ" and 0r|" C ©if then 0r| C ©if and finally 0r = ©f and 0r| C 0rr\

• Case (a is an around-advice without proceed)

By the third rule of the weaving rules

(e,as) '-> {a.exp,s)

Then

(a.exp,s) <-> (e',e)

By assumption

n-e:x,Tl

By the third rule of the weaving rules

T \- a.exp: T",T|" where 0]T = 0 IT" and 0iri C 0IT|".

By hypothesis

T \- a.exp : t",r |"

(a.exp,s) <-» (e',e)

where there exists a substitution 02 such that 02T" = 02t/ and 02T|" C 02r('.

Since 0jT = 0it" and 02T" = Q\T!, then there is a substitution 0= 020i such that QT1 = 0x.

Similarly, since 0iTi C 0!^" and 02ti" C 02Ti' then 0r] C 0r)'.

• Case (a is around-advice with proceed)

By the fourth rule of the weaving rules

(e,as) <—> (a.exp \proceed^> e"],e)

160

rF-e /:T /,Tl'

Where

(ej) <- (e",e)

Then

{a.exp \proceed »-> e"],e) <-» (e',e)

By assumption

T h e.T,T|

By the fourth rule of the weaving rules

T h a.exp \pwceed y-* e"}: T",TV" where Qx = 6T" and Qj] C On."

By the weaving rules

e' = a.exp \proceed v-* e"\

Consequently, if we have V h a.exp proceed H-> e"]: t",ri" and T h e ' : i/.r)' then T/ is equal

to T" and rj' is equal to T)". Consequently, 0T = Ox7 and 0T| C &n/ .

Example

We present in Figure 6.7 the derivation according to the type-based weaving rules for the following

expression, advice, and pointcut:

Expression:

e = (let recfx = x in /2)

Advices:

a\:.= {akind: before ,pcd:p\ , exp:e\)

Pointcuts:

p\::= (pkind: c a l l , van/ typeScheme: Va.a —• a)

Derivation: The rules (T-const), (T-var), (T-app), and (T-letrec) are used in the derivation. The

matching and the weaving of the advice a\ happen during typing the expression / 2 .

161

file:///proceed
file:///pwceed
file:///proceed

x : int € Tx^\x >—> int] int X to
F,a\ h x: to,0~»* (1)

/ : int —> to e T/ff/ H-» to —•to] int —» to X to —»to
TypeOf(2) >- to

r , a i h / : int —» to,0 ~» f

r , a i h 2 : t o , 0 — » 2 £,ai,mhrf 2 : { } s! =a\
(/2,ai) ^ (ei;/2,e) T h e i ; /2 : to,8

r , a i h f2:int,d~*e\;f2 (2)

rXi/t[-^ •-» int,fi-> int —> i/if],<3] h *: to ,0 ~~» x (from 1,2)
r > t [/ ^ int -+ mrj.ai I- / 2 : to,0 ~» ei ; /2 (from 2)

r h let rec f x — x in ej ; /2 : to,0
r ,a j h letrec/;c = ;c i n / 2 : to,0 ~*letrec/jc = ;c ine i ; /2

Figure 6.7: Example of Derivations

6.4 Inference Algorithm

The present section is dedicated to the algorithm IW of the type-based weaving rules presented in Figure

6.6. The algorithm IW presented next proceeds by case analysis on the structure of expressions. It takes

as input a 5-tuple made of a static environment T, a tagging environment £ , a sequence of defined advices

s, a store that maps regions to tag sets m, and an expression e. The algorithm either fails or terminates

successfully producing a 5-tuple whose components are: a substitution 9, a type x, an effect r|, a set of

constraints k, and the weaved expression e'. It applies the algorithm / of Talpin and Jouvelot presented in

Section 2.4.4. The algorithm is written for the basic expressions but the rest of the cases are straightforward.

The algorithm is defined as follows:

I'tf(r,'E,s,m,c) =

let Voi,..., V».(T,*) = CTypeOf(c)

t / p . - X n e w , 6=[\)i t->v,,...,'UBi-»^]

in (id, ex,0,9A:,c)

IcW(T,'E,s,m,x) =

if* <£. Dom(T) then fail

else

tetVoi,...,i)B.(Tl*) = r(x)

162

•o\, ...,v'n new, 9 = [v\ i-> v\, ...,x>n >-+ v'n}

lW(r,tE,s,m,7uc.e) =

let a, q new

(9i,Ti,T|,,*i,e') = /,H^(rit[jC"-»a],!E,s,m)e)

(e2,T2,Tl2,*2) = / (r , U e ')

in(ei,eia-^Xi,0,*iU{Tii C i ; } , ^)

lW{r,'E,s,m,e\e2) =

let (ei.ti.Ti,,*,,*',) = / ^ (r . E . j . m . e i)

(92,t2,Tl2,te,4) = / '^ (©lr .E. j .m.ez)

a,q new, 63 = 1/(62X1 ,t2 -^ a)

•*' = 1app(e\ ,Xi , T £ (£ , r,s,m,e2),s)

e'= wvir^y^s')
(e4,x4,Ti4,*4) = / (r y)

in (e3e2e,,e3a,e3(e2Tii;Ti2;<;),e3(82*i u * 2) y)

/ ^ (r , £,s,m,let * = ei in 62) =

let (ei.Ti.Tii,*!,^) = / ^ (r , £ , j , m , e i)

(&2, X2) 112,^2,4) =

lW(Qirj[x^Genkl(dir,TUT)1)},'E,s,m,e2)

(03.X3.Ti3, A3) = I(r,letx = e'1 in e2)

in (8281,X2,82Tli;Ti2,02*1 U&2,let-* = e'] in 4)

lW{r,'E,s,m,tefe) =

let y new

(e,x,Ti,ft,«') = /'M/(r,E>s,m,e)

in(0,re/r(x),r|;iw"/(y,x),A,refe')

/'W(r,!E,j)OT,!e) =

Iet(ei,Ti,Tii,*i,e') = /'H>(r,£,.s,in,e)

a,<; new, 02 = U{refy(a),i\)

J = Ueref(e,i\,T(?('E,r,s,m,e),s)

163

http://03.X3.Ti3

e, = W (r , ! e ' , /)

(03,X3,Tl3,A3) = / (r ,C|)

in (6281,02<x,rii;reo<i(92Y,02Cx),82*1,ei)

/'M/(r,2;,5,/M,e1:=e2) =

let(9i,Ti,Tij,*i,e',) = /'W(r,£,j,m,<?i)

(62,12,112^2,4) = / ^ (©i r .E . j .m .ez)

ynew

Q3 = 'U(refy{x2),e2x])

s' = iamgn(ei,X],TgCE,r,s,m,e2),s)

e,= WV{r,e'l:=e'2,s')

(e4,T4,,n4,^4) = /(r,e /)
in (839261,unit,63(82111 ;TJ2;write(y,x2)),

63(62*1 U ^) , ^)

Theorem: Soundness

Given a typing environment I \ a tagging environment £ , a sequence of defined advices s, a store

that maps regions to tag sets m, and an expression e. If I"W(r, X,s,m,e) = (Q,x,r\,k,e'), then kOT,s \- e:

kx,kr\ ~+e'.

Proof

The proof is standard and can be found in the contribution of Talpin and Jouvelot [89].

You can notice that we do not extend the effect typing system. We type an expression according to the

original algorithm / , search for all the applicable advices for this expression and weave them with it, and

then type the weaved expression that result from the weaving process according to the original algorithm / .

Accordingly, the soundness proof of the previous contributions [89] are applicable here. What we need to

add is the soundness proof for the tagging algorithm T§ and that what we did in Section 6.2.

6.5 Conclusion

In this chapter, we have presented a security aspect oriented calculus: A,_SAOP based on the well-known

X_calculus together with the semantic foundations. This will be a very useful and precious contribution to

the users/researchers in the field of Aspect Oriented Programming and those who are interested in solving

security problems. The calculus contains useful pointcuts from a security perspective such as c a l l , g e t ,

164

s e t , and df low pointcuts. The advice weaving in X_SAOP is in the spirit of AspectJ, a prominent Aspect

Oriented Programming language. The weaving is done during the typing process and uses tags to match

data flow pointcuts.

This contribution is the first step towards a complete security aspect core based on the extended X,-calculus

together with the semantic foundations.

165

Chapter 7

Design and Implementation of Aspect J

Extensions

In this chapter, the extension of the Eclipse AspecO compiler a j c version 1.5 is described. This extension

consists of designing and implementing new pointcuts that are relevant from a security point of view. The

considered pointcuts are related to local variable accesses, namely g e t L o c a l and s e t L o c a l , and to data

flow information analysis, namely df low. The appropriateness of these pointcuts for software security

hardening has been discussed in Chapter 3. Section 7.1 presents the implemented pointcuts. Section 7.2

gives an overview of Eclipse AspectT compiler a j c architecture. Section 7.3 describes a j c software

package details. Finally Section 7.4 presents the implementation.

7.1 Design of the Proposed Pointcuts

Basic pointcuts in AspectT fall into three classes:

• Kinded pointcuts: This class of pointcuts corresponds to join points that match directly a granular

by tecode instruction or a set of by tecode instructions. For example, a call pointcut matches an invoke

bytecode instruction whereas an execution pointcut matches all the bytecode instructions bound to

a method or a constructor execution.

166

• Scope matching pointcuts: This class of pointcuts designators targets a set of join points within

a certain scope in the program. We distinguish two kinds of scopes, a static scope and a dynamic

scope. A static scope is a syntactic location in a program, as a class, or a package. A dynamic scope

is a program runtime location, as a control flow of a method call or execution. The aim of such

pointcuts is to limit join points location lookup inside a program.

• Context matching pointcuts: This class of pointcuts designators focuses on providing contextual

information such runtime object values. Such pointcuts are generally used in conjunction with

kinded pointcuts.

In this section we give an overview of the new pointcuts: g e t L o c a l , s e t L o c a l , and df low. We

present the syntax and the informal semantics of each pointcut.

7.1.1 Pointcuts: g e t l o c a l and s e t l o c a l

Aspect! does not allow tracking the variables of local variables inside methods. We have shown in Chapter

3 that these pointcuts are relevant for security because they allow to follow the information flow and to

intervene in case of sensitive information disclosure. Furthermore, these pointcuts are extremely important

for a complete design and implementation of the data flow pointcut. In fact, the data flow pointcut allows

to perform data flow analysis, which would be uncomplete if we do not consider the pointcuts g e t L o c a l

and s e t L o c a l .

The syntax that we choose for each of the pointcuts is as follows:

• g e t l o c a l (MethodPattern, LocalVariablePatternList)

• s e t l o c a l {MethodPattem,LocalVariablePatternLisi)

The pattern MethodPattern already exists in Aspect! and allows to describe the targeted methods

in the pointcut. In our case, the MethodPattern will describe the methods containing the local variables

that we want to set or to read. The new pattern LocalVariablePattemList is introduced to identify specific

local variables in the methods specified by MethodPattern. It contains the list of local variables that we

want to read/set where each local variable is identified by its name preceded by its type. We can also use the

wildcard "*" of AspecU, which denotes arbitrary strings. Hence, in a local variable pattern list, the wildcard

"*" can appear at most twice either in the type part or/and in the name part of the local variable syntax. We

present hereafter some examples of local variables pointcuts:

• The pointcut g e t l o c a l (* * . f (. .) , i n t *) will match any join point in any method f

where an int local variable is read.

167

• The pointcut s e t l o c a l (* * . f (. .) , * *) will match any join point in any method f where a

local variable is set.

• The pointcut s e t l o c a l (* * . f (. .) , i n t a , f l o a t b) will match the join points in any

method f where an int local variable a or a float local variable b is set.

We classify the pointcuts g e t L o c a l and s e t L o c a l as kinded pointcuts. The join point shadows

for the local variable pointcuts are specific bytecode instructions. The g e t l o c a l pointcut matches the

following bytecode instructions: { a l o a d , a l o a d _ < n > , d l o a d , d l o a d _ < n > , f l o a d , f l o a d _ < n > ,

i l o a d , i l o a d _ < n > , l l o a d , l l o a d _ < n > } whereas the s e t l o c a l pointcut matches the bytecode

instructions: { a s t o r e , a s t o r e _ < n > , d s t o r e , d s t o r e _ < n > , f s t o r e , f s t o r e _ < n > , i s t o r e ,

i s t o r e _ < n > , I s t o r e , l s t o r e _ < n > }.

7.1.2 Pointcut df low

We classify the df 1 ow pointcut as a scope matching pointcut like the pointcut c f 1 ow. Because of c f 1 ow

implementation is done in AspecU, we choose for the data flow pointcut a syntax close to the syntax of the

control flow pointcut. The data flow pointcut has then the following syntax:

df low (Pointcut)

The rule that relates together a join point with a data flow pointcut is the following:

A join point j matches a dataflow pointcut df low (p) if and only if j is in the dataflow of another join

point / , which matches p.

Section 7.4 will describe how the data flow dependencies are handled through the data flow pointcut

implementation.

7.2 AspecU Compiler Architecture

The a j c compiler is the original compiler of AspecU and the reference implementation of the language.

The main modules of the ajc compiler are illustrated in Figure 7.1.

The front-end compiler is an extended version of Eclipse's JDT compiler. It takes as input AspecU

source codes and returns standard Java class files enriched with extra attributes that handle non-pure Java

information as advices and pointcuts. It also generates special names for advice bodies and other methods

implementing special AspecU constructs.

168

Figure 7.1: AspectJ Compiler Architecture

The back-end-compiler provides the bytecode weaving functionality and weaves compiled aspects

with compiled applications producing woven class files.

The runtime is a module that contains classes used by generated code during runtime. These classes

need to be redistributed with a system built using AspectJ. It contains, for example, classes that are necessary

for the implementation of control flow pointcuts.

We can see, through the example of Figure 7.2, how the weaving modifies the JVML (Java Virtual

Machine) code of the function f.

The aspect A has one before advice that prints "aspect" when its pointcut is matched. The pointcut

is matched when the join point is either a method execution or a set field join point. In the method f, we

have two join points that are matched: the execution of f and the update of the field a, represented by the

JVML instruction: p u t f i e l d #2. Hence, AspectJ weaver injects the advice at the beginning of f and

before the instruction p u t f i e l d #2. The instructions i n v o k e s t a t i c #26 and i n v o k e v i r t u a l

#29 are injected. The instruction i n v o k e s t a t i c #26 calls a static method named aspec tOf , which

is automatically generated by the front-end compiler once the aspect is compiled. It allows obtaining an

169

public class C
{

int a;
public void f ()
{

a=8; / / a i s a f i e l d
}

}

aspect A
{

beforeO: execution^ *.*())
&A setC* *.*)

{
Sys tem.ou t .p r i n t l n (" a s p e c t ") ;

}
>

"-. Front-end
Compter

Front-end
Compiler"

p u b l i c vo id f () :
Code:
0 : aload_0
1 : b ipush 8
3: p u t f i e l d #2
6 : r e t u r n

Aspect A
JVML code

and
Extra Annotations

p u b l i c v o i d f () :
Code:
0 :
3:
6 :
7:
9:
12
15
18

""•̂ S^H 1^-

i n v o k s t a t i c #26; / /Method Aspec t . aspec to f : Q Laspect ;
i n v o k e v i r t u a l
alaod_0
bipush 8

#29; / /Method Aspect

i n v o k s t a t i c #26; / /Method A s p e c t . a ;
i n v o k e v i r t u a l
p u t f i e l d #18;
r e t u r n

a jc$before$Aspectlab25177a:

p e c t O f Q : Laspect ;
#29; / /MethodAspect .a jc$before$AspeetSlSab2S177a:
/ / F i e l d a : l

()V

OV

Figure 7.2: Weaving Process

170

instance of the aspect, which will serve as a receiver for the advice call. In the case of this example, the

instance serves as a receiver for the instruction i n v o k e v i r t u a l #29 that corresponds to the advice

method call.

7.2.1 Front-End Compiler

The principal task of the front-end compiler is to perform a shallow parse on all source files and to build

abstract syntax trees for the different declarations and designators provided by Aspect! syntax. An advice

declaration is compiled into a standard Java method and the parameters of the new method are the parame­

ters of the advices. Notice that the method is annotated with an additional attribute that indicates that this

corresponds to an advice declaration. Furthermore, this attribute allows also to store the pointcut referred

to the advice, and to store additional information relevant to the matching and weaving processes. For

example, in case of around advice the front-end compiler transmits through this attribute to the back-end

compiler the information that the advice body contains or not a call to p r o c e e d . This attribute is encoded

as a standard Java bytecode attribute in order to be compatible with all the JVMs.

7.2.2 Back-End Compiler

The main phases of the back-end compiler, as illustrated in Figure 7.3, are: Parsing Pointcut, making

shadows, creating shadow mungers, matching, and weaving. We detail in the following each of these

phases.

Pointcut Parsing

The pointcut parsing phase captures pointcut designator patterns and creates objects that correspond

to these pointcuts. A pattern is a syntactic representation that holds information about types, fields, methods,

pointcuts, advices and aspects. Figure 7.4 provides a parsing example.

The pattern parser captures the designator c a l l (* T e s t . t e s t (. .)) and extracts informa­

tion that is necessary to create a kinded pointcut object that points to the declared pointcut.

The kind is a method call and the signature is considered as a fingerprint that designates a method or

a set of methods. In the above example, the signature can match any method that has any return type, a by

default public modifier, T e s t class as a declared type, t e s t as a method name, any parameters type and

can throw any exception.

171

Pointcut
Parsing

Making
Shadows

Creating
Shadow
Mungers

Matching

Weaving

Figure 7.3: Back-End Compiler Phases

Making Shadows

This phase defines all the possible static shadows in the program and injects markers in the code in

order to wrap these static shadows. In AspecU implementation, a joinpoint is represented by a bytecode

shadow enriched with a kind to distinguish it from other shadows and a member signature such as a method

or a field. In other terms, a shadow is a wrapper that surrounds a bytecode instruction or a set of bytecode

instructions that symbolizes a dynamic joinpoint. In Figure 7.5, we illustrate how the static shadow of a

method-call join point is represented:

The i n v o k e v i r t u a l bytecode instruction is wrapped by the "method-call" shadow enriched with

the method signature v o i d T e s t . t e s t () .

Creating Shadow Mungers

This phase allows representing advice entities by-shadow munger objects. Each shadow munger

transforms the join point shadows that match its pointcut. During the weaving phase, each join point in

the program being processed is compared against each shadow munger pointcut. Because the join points in

AspectJ are defined as dynamic points in the call graph of the program, the matching process might need

runtime information and might not be completely statically resolved. In the case where the shodow munger

pointcut depends on the dynamic state at the join point, this is resolved by adding a dynamic test, called

172

Pointcut Designator Node:

calK* Tes t . t e s t (. .))

C Pattern Passing J)

Result: KindedPointcut (Kind, Signature)
Kind: Method-call Joinpoint
Signature:

Member: Method
Modifiers: 0
Return Type: Any
Declaring Type: Test
Name: test
Parameters Type: ellipsis
Exceptions: Any
Annotations: Any

Figure 7.4: Pointcut Parsing Example

Method-call(void Test, test())
I INVOKEVIRTUAL Test.test() V
Method-call(void Test.test())

Figure 7.5: Method Call Shadow Representation

residue of the match that describes the dynamic part of the matching.

Matching

This phase tries to match each join point shadow against the shadow mungers. There are three pos­

sible results for each shadow: never matches, always matches, and sometimes matches. In the first case,

nothing will be added to the shadow. In the second case, the advice will be woven into the join point shadow.

In the third case the advice is woven into the shadow with the dynamic tests to determine if the joinpoint in

the running program matches the advice.

173

Weaving

This phase allows to inject advices inside matched join point shadows and the dynamic tests, called

residues, if any. The residues falls into three kinds:

• Residue i n s t a n c e o f : This kind of residue is generated when the pointcuts a r g s , t h i s or

t a r g e t pointcuts are used and the matching result is "sometimes matches". This residue allows to

check whether an object is an instance of the type defined in the pointcut.

• Residue I f : This residue holds when the i f pointcut designator is used to provide a boolean result

regarding evaluation of an expression at matched joinpoints.

• Control flow Residue: This residue is computed if the c f low pointcut designator is used inside an

advice declaration. This test is based on a thread local stack or a counter to keep track of the control

flow. The counter is used, for optimization, if the cf low entry pointcut does not bind any values.

7.3 AspectJ Open Source Software Package Details

This section presents some details of the most important a j c packages. Figure 7.6 represents the packages

corresponding to the different phases of the compiler architecture. We can mention three important modules:

1) The module org.aspect].ajdt.core, which is the front-end compiler and extends the eclipse Java compiler,

2) The runtime module that provides classes that are used by the generated code at runtime, and 3) The

weaver module, which offers the weaving functionality.

We will describe the packages contained in the modules runtime and weaver. We will not present

the module org.aspectj.ajdt.core since it is just an extension of the JDT Core org.eclipse-.jdt.core, which is

the plug-in that defines the core Java elements and API.

7.3.1 Runtime packages

We describe in the following the different packages in the module runtime:

• Package org.aspectj.lang: Provides a set of classes for interacting with join points. More precisely,

this package focuses on making information about matched join points that are available within the

advice body through the special variables such as t h i s J o i n P o i n t . It is similar to the familiar

java.lang package, which contains the most important constructs for the Java language.

174

—rrrr~' r r
^. ^ <=«a

3 ^ X3rg.aspectj.afrft.core [dev.ec%«e.org]

B j . ^ >src

* 35 >orB.aspectj.aj*.aic

t? 95 X>rg.aspectf.ajdt,camp8er

'• 95 Xwg.aspectj.ajdt.core

•*- £B x»g.«spect).aJdtxore.d«B

i* {ft >orfl.aspectj.a)dt.W:erna!.comptof
T 35 >orrj.aspect).ajdt*it«r>alcon>|3ter.ast

~f- \t\ X3rg.aspeaj.ajdt.interrvaUwnpfer.loofaijp

± Si >org.aspectj.a#Jr*emat.cwnp*ar.parser

S>. JJ3 >oi^.aspecti.afr*.ir*en>al,cornpfcr.probteflt

S JJ5 X)T5.aspectj.aj*.t*emal,core.buMer

'* i f i >org,aspectt.ccg.edfcse.jclt.care.dor<>

* I f i org.aspecti.toob.ajc

B ' IJJ >rur*wie (dev.ectpse.orgj

K Jjft xxg.«spexX)Mrt9
* £B X*g.aspectJ.lang.reflect

* 65 org.aspectj.runtii»e
A 18 x*^.aspectj.runrjrne .internal

£ .85 >org.aspect^rur*^,intemal.cfiowstdck
s i B x*g.aspectj,runtime.rerlect

I+J [^ >testwc

?" £ JREJLB-C:\Program Rte$Uava\Jwi.6,0_02Wrt.jar

« ."$ mnt.jar-Ki/jur* I.? (Binary)

jfrj >bu»d.xmi 1.5 (ASCH-kkv)

w j > r u r « r e j r f . M 1.4 (ASCII-tto)

"%" \ r | >weaver [dev.ectpse.arg]

fS j | } >org.4spectj.weavef

S 8 } >org.aspect}.weaver.ast

15 J J X3rg.aspecty.weaver.bcei

S JJ | xjrg.aspectj.weaver.Wemal.toob

* $ xrg.aspecti.«««aver.loaiStne

S Jt§ org,aspectf.weaver Jtw

® 1 8 X»g.aspectj.weaver .patterns

FB-.IS Xjrg.aspectj.weaver .reflect

® i 9 X3rg.aspectj.weaver.toob

y j

}ProWerrffj:>avadoc|Oadaratfon|a^^ U

Figure 7.6: Important Modules in AspectJ

175

http://X3rg.aspectj.afrft.core
file://C:/Program
http://dev.ectpse.arg
http://X3rg.aspecty.weaver.bcei
http://X3rg.aspectj.weaver.toob

• Package org.aspectj.lang.reflect: Contains types that provide additional information about each pos­

sible join point signature.

• Packages org.aspectj.runtimeorg.aspectj.runtime.intemal, and org.aspectj. runtime.cflowstack: Al­

low to handle the control flow pointcut characteristics and to define all the corresponding objects

such as the counter and the stack, which allow the implementation of the control flow pointcut. Fur­

thermore, org.aspectj. runtime.internal contains a class named AroundClosure.java, which stores the

states of join pointcuts when the control flow pointcut instruction p r o c e e d is executed.

• Package org.aspectj.runtime.reflect: Contains classes that implement the different interfaces of the

package org.aspectj.lang.reflect.

7.3.2 Weaver packages

We present hereafter the different packages in the module weaver.

• Package org.aspectj.weaver. Is the most important package in the a j c compiler implementation.

It provides classes that represent AO objects like: Advice.java, Shadow.java, ShadowMunger.java,

JoinPointSignature.java, etc., and other classes that allow the weaving.

• Package org.aspectj.weaver.ast: Contains classes that visit different AST pointcut nodes in order to

find the residues when matching join points.

• Package org.aspectj.weaver.bcel: Provides classes that implement the bytecode injection during

advice weaving on the different bytecodes.

• Package org.aspectj. weaver, internal, tools: Provides classes that implement from org.aspect-j. weaver.tools

interfaces.

• Packages org.aspectj.weaver.loadtime and org.aspectj.weaver.ltw: Contain classes that replace stan­

dard loading mechanism by a different implementation that takes into account the weaving context.

• Package org.aspectj. weaver.patterns: Allows to construct objects from patterns. For example, the

classe PointcutParser in this package creates objects for pointcut patterns as exemplified in Figure

7.4.

• Package org.aspectj.weaver.reflect: Is a reflection API that contains classes that are used for pur­

poses of resolution based on the class path Java. long, reflect.

• Package org.aspectj.weaver.tools: Provides a set of interfaces for third-parties wishing to integrate

AspecU weaving capabilities into their environments [79].

176

7.4 Implementation
This section presents the AspecU extension that we implemented to handle the new pointcuts: g e t L o c a l ,

s e t L o c a l , and df low. We will first present what we added to the a j c compiler to take into account the

local variables pointcuts. In a second step, we will describe the new package, org.aspectJ.weaver.datqflow,

that we implemented for the data flow pointcut and finally, we will give a summarizing example.

7.4.1 Local Variable Pointcuts Implementation

In order to incorporate the new pointcuts: g e t L o c a l and s e t L o c a l in the a j c implementation, we

considered the different parts of the back-end compiler. We present hereafter the modifications that we did

on each part.

• Parsing:

In this part, we had to:

- Add methods to the class PatternParser.java in the package org.aspectj.weaver.patterns to

recognize the new pattern LocalVariablePatternList that represents the list of targeted local

variables.

- Add in the same package org.aspectj.weaver.patterns a new class called LVSignaturePat-

ternjava, which allows saving information about the method and local variable signature

patterns.

- Define a new constructor in the class KindedPointcut.java in the package org.aspectj.we­

aver.patterns that defines the getLocal and setLocal pointcuts.

- Enrich the class Member.java in the package org.aspectj.weaver with two new member kinds

setLocalField and getLocalField

• Creating Shadow Mungers:

We did not change this part since the process of shadow munger creation remains the same.

• Making Shadows:

Concerning this phase, we worked essentially in the package org.aspectj.weaver.bcel. This pack­

age contains classes that handle bytecode instructions. We enriched the class BcelWorld.java,

BcelShadow.java and BcelClassWeaver.java to allow setting the correspondence between the two

new join points and the related bytecode instructions.

177

• Matching:

For this part, we enriched the class BcelClassWeaver.java with two new methods matchSetLocal

and matchGetLocal that allow matching get and set local variables join points against the existing

shadow mungers.

• Weaving:

The last part of the back-end compiler remains unchanged since Aspect! defines a weaving process,

which suits our implementation.

7.4.2 Data Flow Pointcut Implementation

The implementation of the df low pointcut is inspired from the well-known def-use chains mechanism

in data flow analysis. In this section, first we present the design behind the implementation and then we

discuss the implementation details.

Design

A data flow analysis on the bytecode needs to follow all the read/write operations performed on the

operand stack, the local variables table, or the constant pool. We have envisaged first to perform a dynamic

analysis. In this case, the idea was to store the history of all the read/write operations done on these

different structures. This would imply to inject bytecode instructions before each bytecode instruction that

manipulates the operand stack, the local variables table, or the constant pool. Afterwards, we preferred a

static analysis because of the costly overhead induced by a dynamic analysis. In fact, the initial program

would become very heavy with a dynamic analysis and we would have a significant impact on the running

time.

In the proposed implementation, we statically set dependencies between the different bytecode in­

structions in a method. A bytecode b depends on another bytecode b' if and only if b is using a value that

has been defined by b'. We will use the notation "Depth) to represent the set of bytecode instructions on

which depends b. The relation T>ep defined between two bytecode instructions b and b' is transitive. Hence,

we can reformulate the rule that joins together a join point with a data flow pointcut as a relation between

bytecode instructions as follows:

A bytecode b matches a dataflow pointcut d f 1 ow (p) if and only if it exists another bytecode b' that

matches p and b' € (Dep(b).

Notice that the current implementation of the df low pointcut performs an intra-procedural analysis

and considers only the case where the joinpoints are single bytecodes.

178

Implementation

We describe in the following the extension that we implemented in the a j c compiler in order

to handle the df low pointcut. First, we added a new class called DFlowPointcut.java to the package

org.aspectj.weaver.pattems that defines data flow pointcuts.

In the "Parsing", part we enriched the class PatternParser.java to represent a data flow pointcut as

an instance of the class DflowPointcut.

The part "Creating Shadow Mungers" is unchanged in this case as for the case of the local variables

pointcuts since the process of creating shadow mungers remains the same.

For the other parts of the back-end compiler, we created a new package in the weaver module called

org.aspectJ.weaver.dataflow and we extended also the class BcelClassWeaver.java.

The new package, as described in Figure 7.7, contains four classes: Dependencies.java, Execution-

Visitor.java, InstructionTag.java, and MethodToDependencies.java. In the following, we summarize the

aim of each of theses classes and present the extensions performed on the class BcelClassWeaver.java.

InstructionTag.java

In order to differentiate between different occurrences of a same bytecode, the class Instruction­

Tag.java represents a bytecode instruction as a combination of the bytecode itself and its line number.

Dependancies.java

This class allows to represent the dependencies of an instruction bytecode. It associates for a given

instruction the list of instructions on which it depends. The class Dependancies.java is shown in Figure 7.8.

ExecutionVisitor.java

This class implements the interface Visitor defined in the package org.aspectj.apache.bce-l.generic

of ajc. This interface implements the visitor pattern programming style. The class ExecutionVisitor.java

that implements this interface can handle all types of instructions with the properly methods just by calling

the acceptf) method.

In ExecutionVisitor.java, we use a stack of instruction tags called lastDefininglnstructions, which

contains all the instruction tags that have pushed values in the operand stack. The instruction tags are

popped from the stack lastDefininglnstructions when the values that they push on the operand stack are

popped by another visited instruction.

For a better understanding, we describe the visit methods in the case of a l o a d , a s t o r e , and i a d d

instructions.

- Instruction a l o a d : The method in ExecutionVisitor.java that visits the a l o a d instruction is shown

in Figure 7.9. When visiting an a l o a d instruction, the instruction is pushed onto the stack lastDefiningln­

structions because this instruction puts a value onto the operand stack. The dependencies of the current

179

^ it* ; * - * " o»& -
• !

5 "S|} >testing-drivers [dev.ecfipse.org]

S~ f i r 'testing-utS [dev.ecRpse.org]

©~<Sl > t e s t s [dev.eclipse.org]

1?-asBf " t ' l [dev.ectipse.org]

S & 3 >weaver [dev.eclipse.org]

! ^gf>src
S ffl >org.aspectj,weaver

i © 9j | >org.aspectj.weaver.ast

! S ; S >0rg.aspectj.we3ver.bcel

9""<§f? * ofg-3spectj.weaver,d3taflow

I © - K * Dependencies Java (ASCII-kkv)

! £} | S »ExecutionVtsitor.java (ASCB-kkv)

i (j i - jg >lnstructionTagjava (ASCII-kkv)

I ffl-'ES >MethodToDependencie$.java (ASCH-kkv)

ffi-JSl >org.asp*ctj.vweaver.irvteJriat.toofs

S3"-{ll org.3spec^.weaver.Joadtime

S3""Jfil org.aspectj.weaver.ttw

• & A >org-aspectj,weaver.p3tterrts

ES'JH >brg.aspecttAve3vef.reflect

i j - J U >org.aspectj,weaver.tdots

S C | testinputdsta

j H bceHssues.txt 1 1 (ASCD-ko}

1 J g buitd.xmf 1.5 (ASCH-kkv)

j - • j j features.txt 13 (ASCI -Ico)

< | | weaver.mf.txt 1.1 (ASCII-kkv}

•+• J»r» i weaver? rdev.ectiDse.oral
< ! . ,.- ,!M....... ! •

Figure 7.7: Data flow Package

a l o a d instruction are either empty or contains a branch instruction. The flag branchFlag indicates if the

a l o a d instruction number line was the target of a branch instruction.

- Instruction a s t o r e : The method in ExecutionVisitor.java that visits the a s t o r e instruction is

shown in Figure 7.10. The current a s t o r e instruction depends on the last instruction i that has been pushed

onto the stack lastDefininglnstructions because it will pop from the operand stack the value pushed by i.

Furthermore, if the current instruction line number is target of a branch instruction, this branch instructions

is added to the a s t o r e instruction dependencies.

- Instruction i add : The method in ExecutionVisitor.java that visits the i a d d instruction is shown

in Figure 7.11. Contrarily to the a l o a d and a s t o r e , the i a d d pops and pushes values from the operand

stack. Indeed, the i a d d instruction pops two values from the operand stack, performs the addition of the

180

http://dev.ecfipse.org
http://dev.ecRpse.org
http://dev.eclipse.org
http://dev.ectipse.org
http://dev.eclipse.org
http://0rg.aspectj.we3ver.bcel
http://rdev.ectiDse.oral

package org.aspectj.weaver.dataflow;

import java.util.List;

import org.aspectj .apache.bcel. generic. MethodGen,-

public class Dependencies{

private MethodGen method;

private InstructionTag instruction;
private List<InstructionTag> list;
public Dependencies(MethodGen method,InstructionTag instruction, List<InstructionTag>

list){
this.method = method;
this.instruction = instruction;
this.list = list;

}

public MethodGen getMethod (){
return method,-

}

public InstructionTag getlnstructionf){

return instruction;
}

public List<InstructionTag> getDependanciesList(){

return list;
}

public String toString(){
return "("+method. toStringf) + " "+instruction. toStringO+" : °+list. toStringf)+")",-

}
}

Figure 7.8: Dependencies Class

two values and then pushes the result of the addition onto the operand stack. For this reason, when an

i a d d instruction is visited, its dependencies are set to the two last instructions pushed onto the stack last-

Defininglnstructions. If the i a d d instruction line number is the target of a branch instruction, this branch

instructions is added also to the dependencies. Besides, the stack lastDefininglnstructions is updated. In

fact, the two last instructions that have been pushed are popped and the current instruction i a d d is pushed.

MethodToDependenciesjava

This class allows to build the dependencies between the different bytecode instructions. A method

called execute(), shown in Figure 7.12, will initiate visitors for the bytecode instructions that will build the

dependencies for each bytecode instruction.

Besides, the method executef) sets the value of the branch flag that is needed during the execution of

181

public void visitALOAD(ALOAD o) {
int linenumber = getLineNumber (passage) ,-
passage++;
InstructionTag it = new InstructionTag(linenumber,o) ;
if(branchFlag){
List<InstructionTag> 1 = new ArrayList<InstructionTag>();
InstructionTag tag = target.get(actualposition).getlnitiallnstructionl);
l.add(0,tag);
Dependencies dep = new Dependencies(currentmethod, it, 1) ;
dependencies.put(counter,dep);
counter++;
branchflag = false;

}

int size = lastdefininginstructions.size();
lastdefininginstructions.add(size,it) ;

Figure 7.9: Visit Method for a l o a d

public void visitASTORE(ASTORE o){
int linenumber = getLineNumber(passage);
InstructionTag it = new InstructionTag(linenumber,o);
passage++;
List<InstructionTag> 1 = new ArrayList<InstructionTag> () ,-
int size = lastdefininginstructions.size();
1.add(0,lastdefininginstructions.get(size-l)) ;
if(branchFlag){

InstructionTag tag = target .get (actualposition) .getlnitiallnstructionl) ,-
1. add (1, tag) ,-
branchFlag = false;

}
Dependencies dep = new Dependencies(currentmethod, it, 1);
dependencies.put(counter,dep);
lastdefininginstructions.remove(size-l);
counter++;

Figure 7.10: Visit Method for a s t o r e

each visit method as shown in Figure 7.9, Figure 7.10, and Figure 7.11. Such a flag allows to add a branch

instruction tag to the visited bytecode instruction dependencies in case where this latter is the target of the

branch instruction. All the calculated dependencies are stored in a table defined in the class ExecutionVisi-

tor.java.

Extension of BcelClassWeaver.java

The mechanism of matching bytecode instructions against pointcuts is handled in the class Bcel­

ClassWeaver.java in a method called match. In order to implement data flow pointcuts matching, we first

182

public void visitIADD(IADD o){
int linenumber = getLineNumber(passage) ,-
InstructionTag it = new InstructionTagdinenumber, o) ;
passage++;
List<InstructionTag> 1 = new ArrayList<InstructionTag>();
int size = lastdefininginstructions.size();
l.add(0, lastdefininginstructions.get (size-2)) ,-
1.add(1,1astdefininginstructions.get(size-1));
if(branchFlag){

InstructionTag tag = target.get(actualposition).getlnitiallnstructionf);
1.add(2,tag);
branchFlag = false;

}
Dependencies dep = new Dependencies(currentmethod, it, 1) ;
dependencies.put(counter,dep);
lastdefininginstructions.remove(size-1);
lastdefininginstructions. remove (size-2) ,-
lastdefininginstructions.add(size-2, it) ;
counter++;

Figure 7.11: Visit Method for i a d d

added methods to the class BcelClassWeaver.java that propagate die data flow dependencies for each byte-

code instruction. Secondly we extended the match method of BcelClassWeaver.java to perform the match­

ing upon the built dependencies. Notice that the most important phase in the implementation is to collect

the data flow dependencies of each by tecode instruction.

7.4.3 Example

We present in Figure 7.13 a snapshot of an AspecU example containing the new pointcuts that we have

implemented. In the example, the aspect contains a before advice that logs all the join points that set a

public field, which is in the data flow of a private field. We can remark that one join point has been matched

by the pointcut. Indeed, the instruction "publicInfo=localstr" is an instruction in which the public field

publiclnfo is set to a value that originates from the private field sensitivelnfo.

183

package org.aspectj.weaver.dataflow;

public class MethodToDependencies{
private MethodGen mg;
private InstructionHandle[] ihs;
private ConstantPoolGen cpg,-
private Frame frame;
private List<Target> target = new ArrayList<Target>();
private List<Integer> linenumbers = new ArrayList<Integer>() ,-

public void execute(){
ExecutionVisitor ev = new ExecutionVisitor();
ev.setConstantPoolGen(cpg) ,-
ev.setFrame(frame);
ev.setLineNumbers(linenumbers);
ev.setTargets(target) ;
£or(int i = 0; i < ihs.length;i++){

//check whether current instruction handle is a branch instruction target or not
int cpt = 0;
for(Iterator j = target.iterator();j.hasNext();){
Target t = (Target)j.next();
InstructionTag tartag = t.getTarget();
Instruction tarins = tartag.getlnstructionl) ,-
int pos = tartag.getLineNumber();
if(ihs[i).getlnstructionl).equals(tarins)

&& ihs[i].getPosition()== pos){
ExecutionVisitor.setBranchFlag(true);
Execution Visit or. set ActualTarget Posit ion (cpt) ,-

>
cpt++;

}

i h s [i] .accept (ev) ,-
}

}

}

Figure 7.12: Method execute() in MethodtoDependencies.jova

7.5 Conclusion

This chapter presents the extension implemented on the a j c compiler version 1.5. This extension allows to

handle interesting pointcuts from security pointcuts, namely se tLocal , getLocal , and df low. These

new pointcuts allow to perform data flow analysis and to avoid sensitive data disclosure. Hence, an analysis

of the dependency relationships has been implemented to track data dependencies between instructions.

This analysis takes into consideration transitivity relationships and branch instructions.

184

£ Java - testjava - Eclipse Platform - ' -•>*' „ : - , , I tn |tiB p g | j j
± r_ ' - '-,%:. : v > . i.

! Ftte Edit Source Refactor Navigate Search Project Ron Window Help

| r%" a ffi I s. v f* is " ̂ ' Q ' 9, - % ' & 2* m & - s^ffW)
i I \&&oC --j" Q) . & d 4 , - 6 " < > <P - * S^TeamSynchr...

ilfBcefAttribute.javB [/j Siqnatu! ShewSource of Selected Element Orly \ f$$&£!^S8st <*,"** " B]

public class test {
private String seasitivelnfo; |
public String publiclnfo; J

*? private void test () J

String localstr; S
sensitivetcfo — "identifier"; 1
localstr = sensitivelnfo;
publiclnfo — localstr; J

5 5 1

?-» public static void ream (String args{]) j";

< \ i
test a = new test(>; i •<
a.test(); j J

-> i J
}

aspect k i
before!) :! within (A) &S df low (get (private • *.*>)&£ set (public *
i

System.out.println("se?i3itive information in public field");
>>

[Problems j Javadoc! Declaration | S Console 23 \ Call Hierarchy! Synchronize) W> H ^t\ Ok fil j 2? © • T j ' ^ O]

I <termmated> tests2 {Java Application] C:\Prograrn Rles\Java\(reliJJ.13\bin\J3vaw,e(e (2°-Apr-081:37:09 PM)

(S e n s i t i v e i n f o r m a t i o n i s s e t t o a p u b l i c i n f o r m a t i o n
jPASS Su i t e .Spec (C: \U3ers \ adBt in \Des ! r top \ iB t J l e sEen ta t ion \TF<>SS\AWS200 .2Vte3 t s) 1 t e s t s (1 pa!_

I- u* S j Writable i SmartIrisert J <%,
~*.3f ^ ^ - s ^ * . , . ;* . . * - - ^ -.><- * _ ' ~.~«y*-

Figure 7.13: Screenshot for Implemented Pointcuts

185

file://C:/Prograrn

Chapter 8

Conclusion

Computers have become an integral part of everyday life and the last decade has seen a rapid grow of

computation and communication in critical infrastructures such as financial, telecommunication, energy,

and transportation. As fast as the computing infrastructure is growing, computer security attacks at all levels

are growing faster implying an acute need to develop tools that better prevent attacks. As a consequence,

application security hardening becomes a priority in the IT market today. Aspect Oriented Programming

is considered as a good candidate for application security hardening as it automates the weaving process.

This research provides practical and theoretical solutions for security hardening of Java applications using

AspecU. We restate in this chapter the key technical contributions of our work and present the possible

extensions. These contributions fall in two main categories:

• At the practical level: We provided [5] the design and the implementation of new AspecU pointcuts:

g e t L o c a l , s e t L o c a l , and df low. The pointcuts g e t L o c a l and s e t L o c a l target program

locations where local variables are respectively read or set whereas the pointcut df low is related

to information flow. We have shown, through Aspect! security assessment, the usefulness of those

pointcuts. The extension that we developed has been implemented on the open source AspecU

compiler a j c version 1.5 that is available on the Eclipse site. Our extension to AspecU is the first

extension that integrates pointcuts targeting local variable accesses and data flow information flow.

Previous contributions have shown the usefulness of the data flow pointcut, but none of them has

implemented it.

• At the theoretical side: Our contribution is three-fold: First, we have provided a dynamic semantics

for the JVML [11] because the weaving in AspecU combines the JVML representation of the initial

186

program and the enriched JVML representation of the aspects producing a woven JVML program.

Accordingly, we explored the completeness of the most prominent proposals advanced in the lit­

erature and we proposed [1,2] an operational semantics that includes features that have not been

addressed in previous contributions. Hence, the presented semantics is, to our best knowledge, the

first semantics that deals with multi-threading, synchronization, method exception, method invo­

cation, exception handling, object creation, object's fields manipulation, stack manipulation, local

variable access, modifiers, etc. Second, after studying the informal official specification of AspectJ

as published by Eclipse, we have proposed a small step dynamic operational semantics that covers

a large subset of AspectJ [9,10]. We formalized AspectJ features such as the residue generation and

we described how the dynamic tests are generated in the case of dynamic pointcuts. Hence, this

semantics compiles the know-how of the AspectJ community into an elegant framework. It is also,

to our best knowledge, the first formal semantics for AspectJ. Third, after a security assessment of

AspectJ, we elaborated a security aspect-oriented calculus called A._SAOP based on the well-known

A,_calculus together with its semantic foundations [3,4]. We have extended and accommodated the

effect-based inference algorithm to take matching and weaving processes into consideration. In ad­

dition, we established the required soundness and preservation proofs. This contribution is useful to

the users/researchers in the field of Aspect Oriented Programming and those who are interested in

solving security problems.

Future Work

We present now the future work regarding the different aspects of the research presented in this

thesis. The following continuations can be considered:

• Design and implementation of an interprocedural data flow analysis. The resulting interprocedural

data flow analysis will be compatible with the current intraprocedural data flow implementation and

handle a whole program analysis whereas the current data flow analysis is a per function analysis.

• Extension of the AspectJ semantics presented in Chapter 5 with features that we have not handle.

For instance, adding the around advice semantics and the cflow semantics.

• Implementation in AspectJ of other useful features enumerated in Chapter 3. This will ensure a

better security hardening of applications. For instance, implementing a loop pointcut will prevent

some denial of service attacks.

• Investigation for more case studies related to security problems.

Finally, the future work will pave the way for a fully-fledged framework for aspect oriented security

hardening.

187

Bibliography

[1] D. Alhadidi, N. Belblidia, and M. Debbabi. AspecU and Security. In PST '06: Proceeding of the

International Conference on Privacy, Security and Trust, Ontario, Canada, October 2006.

[2] D. Alhadidi, N. Belblidia, and M. Debbabi. AspecU Assessment from a Security Perspective. In

PTITS'2006: Proceedings of the Workshop on Practice and Theory of IT Security, Ontario, Canada,

May 2006.

[3] D. Alhadidi, N. Belblidia, M. Debbabi, and P. Bhattacharya. An AOP Extended Lambda-Calculus.

In SEFM'07, 5th IEEE International Conference on Software Engineering and Formal Methods,

London, UK, pages 183-194. IEEE Computer Society, 2007.

[4] D. Alhadidi, N. Belblidia, M. Debbabi, and P. Bhattacharya. A,_SAOP: A Security AOP Calculus.

To Appear in Computer Journal, 2008.

[5] D. Alhadidi, A. Boukhetouta, N. Belblidia, M. Debbabi, and P. Bhattacharya. The Data Flow Point-

cut - A Formal and Practical Framework. In AOSD'09, 8th International Conference on Aspect-

Oriented Software Development, Charlottesville, Virginia, USA, (to appear). ACM, 2009.

[6] J. Alves-Foss and F.S. Lam. Dynamic Denotational Semantics of Java. In Formal Syntax and Se­

mantics of Java, pages 201-240,1999.

[7] J. H. Andrews. Process Algebraic Foundations of Aspect Oriented Programming. In Reflection,

pages 187-209,2001.

[8] H. Barendregt and K. Hemerik. Types in Lambda Calculi and Programming Languages. In ESOP '90,

3rd European Symposium on Programming, Copenhagen, Denmark, pages 1-35,1990.

[9] N. Belblidia and M. Debbabi. Formalizing AspecU Weaving for Static Pointcuts. In SEFM '06: Pro­

ceedings of the Fourth IEEE International Conference on Software Engineering and Formal Meth­

ods, Pune, India, pages 50-59. IEEE Computer Society, 2006.

188

[10] N. Belblidia and M. Debbabi. Towards a Formal Semantics for AspecU Weaving. In Modular Pro­

gramming Languages, 7th Joint Modular Languages Conference, JMLC 2008, Oxford, UK, volume

4228/2006 of Lecture Notes in Computer Science,, pages 155-171. Springer Berlin / Heidelberg,

2006.

[11] N. Belblidia and M. Debbabi. A Dynamic Operational Semantics for JVML. In Journal of Object

Technology, volume 6, pages 71-100.2007.

[12] P. Bertelsen. Semantics of Java Bytecode. Technical report, Department of Mathematics and Physics,

Royal Veterinary and Agricultural University, Copenhagen, Denmark, 1997.

[13] P. Bertelsen. Dynamic Semantics of Java Bytecode. Future Genration Computer systems, 16(7):841-

850,2000.

[14] G. Bigliardi and C. Laneve. A Type System for JVM Threads. Technical Report UBLCS-2000-06,

Department of Computer Science, University of Bologna, 2000.

[15] R. Bodkin. Enterprize Security Aspects. In AOSD'04 Workshop: International Conference on

Aspect-Oriented Software Development.

[16] K. Bollert. On Weaving Aspects. In ECOOP'99, the 13th European Conference on Object-Oriented

Programming, Lisbon, Portugal, 1999.

[17] E. Borger and W. Schulte. Defining the Java Virtual Machine as Platform for Provably Correct Java

Compilation. In Mathematical Foundations of Computer Science, pages 17-35,1998.

[18] E. Borger and W. Schulte. A Programmer Friendly Modular Definition of the Semantics of Java.

In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, pages 353-404. LNCS Springer,

1999.

[19] J. Borner. Semantics for a Synchronized Block Join Point.

http://jonasboner.eom/2005/07/l 8/semantics-for-a-synchronized-block-join-point/, July 2005.

Last Visited: November 2008.

[20] P. Cenciarelli. Towards a Modular Denotational Semantics of Java. In Proceedings of the Workshop

on Object-Oriented Technology, page 105, London, UK, 1999. Springer-Verlag.

[21] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An Event-Based Operational Semantics of

Multi-Threaded Java. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, pages 157—

200. LNCS Springer, 1999.

[22] A. Church. An Unsolvable Problem of Elementary Number Theory. American Journal of Mathe­

matics, pages 345-363,1936.

189

http://jonasboner.eom/2005/07/l

[23] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5:56-68,

1940.

[24] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to Improve the Modularity of

Path-Specific Customization in Operating System Code. In Proceedings of Foundations of software

Engineering, Vienne, Austria, 2001.

[25] R. M. Cohen. The Defensive Java Virtual Machine Specification. Technical report, Electronic Data

Systems Corp, Austin Technical Services Center, 98 San Jacinto Blvd, Suite 500, Austin, TX 78701,

1997.

[26] H. Curry. Functionality in combinatory logic. In "Proceedings of Natural Academy of Sciences

U.S.A., USA", volume 20, pages584-590,1934.

[27] M. Debbabi, Z. Aidoud, and A. Faour. On the Inference of Structured Recursive Effects with Sub-

typing. Journal of Functional and Logic Programming, 1997(5), 1997.

[28] Demeter Group. Demeter: Aspect-Oriented Software Development. Available at h t t p : / / w w w .

c c s . n e u . e d u / r e s e a r c h / d e m e t e r / . Last Visited: November 2008.

[29] B. DeWin. AOSD is an Enabler for Good Enough Security. Available at h t t p : / / c i t e s e e r .

i s t . p s u . e d u / 7 2 8 7 8 6 . h t m l , 2 0 0 3 . Last Visited: November 2008.

[30] B. DeWin. Engineering Application Level Security through Aspect Oriented Software Develop­

ment. Available at h t t p : / /www. c s . k u l e u v e n . a c . b e / c w i s / r e s e a r c h / d i s t r i n e t /

r e s o u r c e s / p u b l i c a t i o n s / 4 1 1 4 0 . p d f , 2 0 0 4 . Last Visited: November 2008.

[31] B. DeWin, F. Piessens, W. Joosen, and T. Verhanneman. On the Importance of the Separation-of-

Concerns Principle in Secure Software Engineering. Workshop on the Application of Engineering

Principles to System Security Design, Boston, MA, USA, November 6-8, 2002, Applied Computer

Security Associates (ACSA) available at h t t p : / /www. a c s a c . o r g / w a e p s s d / i n d e x . h tml ,

2002.

[32] B. DeWin, B. Vanhaute, and B. De Decker. Security Through Aspect-Oriented Programming. In

B. De Decker, F. Piessens, J. Smits, and Van Herreweghen, editors, Advances in Network and Dis­

tributed Systems Security, pages 125-138,2001.

[33] B. DeWin, B. Vanhaute, and B. De Decker. How Aspect-Oriented Programming Can Help to Build

Secure Software. Informatica, 26(2): 141-149,2002.

[34] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

190

http://www
http://ccs.neu.edu/research/demeter/
http://ist.psu.edu/728786

[35] R. Douence, O. Motelet, and M. Siidholt. A Formal Definition of Crosscuts. Lecture Notes in

Computer Science, 2192:170-184,2001.

[36] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java Type Soundness Revisited. Technical

report, Imperial College London, 2000. Available at c i t e s e e r . i s t . p s u . e d u / a r t i c l e /

d r o s s o p o u l o u 0 0 j a v a . h t m l .

[37] C. Dutchyn, G. Kiczales, and H. Masuhara. Aspect Sand Box Project. Available at h t t p : / /www.

c s . u b c . c a / l a b s / s p l / p r o j e c t s / a s b . h tml , 2002. Last Visited: November 2008.

[38] Eclipse. The Eclipse Aspect! Implementation. Available at h t t p : //www. e e l i p s e , o r g /

a s p e c t j . Last Visited: November 2008.

[39] S. N. Freund and J. C. Mitchell. A Formal Framework for the Java Bytecode Language and Verifier.

In Proc. 14th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &

Applications, volume 34(10). ACM Press, 1999.

[40] S. N. Freund and J. C. Mitchell. The Type System for Object Initialization in the Java Bytecode

Language. ACM Transactions on Programming Languages and Systems, 21 (6): 1196-1250,1999.

[41] S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language and Verifier.

Journal of Automated Reasoning, page 271U321, December 2003.

[42] D.K. Gifford and J.M. Lucassen. Integrating functional and imperative programming. In LISP and

Functional Programming, pages 28-38,1986.

[43] J.Y. GIRARD. Interpretation fonctionnelle et elimination des coupures de I'arithmetique d'ordre

superieur. PhD thesis, Universite Paris 7,1972.

[44] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A Metalanguage for Interactive

Proof in LCF. pages 119-130, Tucson, Arizona, January 1978.

[45] M. Hagiya and A. Tozawa. On a New Method for Dataflow Analysis of Java Virtual Machine

Subroutines. In SIG-Notes, PRO-17-3, pages 13-18. Information Processing Society of Japan, 1998.

[46] B. Harbulot and J. R. Gurd. A Join Point for Loops in AspecU. In Proceedings of the 4th workshop

on Foundations of Aspect-Oriented Languages (FOAL 2005), March 2005.

[47] K. Havelund and K. G. Larsen. The Fork Calculus. In ICALP'93, Automata, Languages and Pro­

gramming, 20nd International Colloquium, Lund, Sweden, pages 544—557,1993.

[48] M. Huang, C. Wang, and L. Zhang. Toward a Reusable and Generic Security Aspect Library. In

AOSDSEC'04: AOSD Technology for Application-level Security, Lancaster, London, March 2004.

191

http://psu.edu/article/

[49] P. Hudak and P. Wadler. Report on the Functional Programming Language Haskell. Technical Report

YALEU/DCS/RR777, Yale University, 1991.

[50] B. Jacobs. A Formalization of Java's Exception Mecahnism. In David Sands, editor, Programming

languages and systems, pages 284-301. LNCS Springer-Verlag, 2001.

[51] B. Jacobs and E. Poll. Java Program Verification at Nijmegen: Developments and Perspective.

Technical Report NIII-R0318, Nijmegen Institute of Computing and Information Sciences, 2003.

[52] R. Jagadeesan, A. Jeffrey, and J. Riely. A Calculus of Untyped Aspect-Oriented Programs. In

ECOOP'03, pages 54-73, Darmstadt, ALLEMAGNE, 2003.

[53] K. Kawauchi and H. Masuhara. Dataflow Pointcut for Integrity Concerns. AOSD Technology for

Application-level Security Workshop, March 23, Lancaster, UK, 2004.

[54] G. Kiczales. The Fun has Just Begun. AOSD'03 Keynote, available from h t t p : w w w . c s . u b c .

c a / ~ g r e g o r , 2003.

[55] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J.Irwin. Aspect-

oriented programming. In Mehmet Akgit and Satoshi Matsuoka, editors, Proceedings European Con­

ference on Object-Oriented Programming, volume 1241, pages 220-242. Springer-Verlag, Berlin,

Heidelberg, and New York, 1997.

[56] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold.

An overview of AspecU. Lecture Notes in Computer Science, 2072:327-355,2001.

[57] H. Kim. AspectC#: An AOSD Implementation for C#. Technical Report TCD -CS2002-55, Depart­

ment of Computer Science, Trinity College, Dublin, 2002.

[58] G. Klein and M. Wildmoser. Verified Bytecode Subroutines. Journal of Automated Reasoning,

30(3-4):363-398,2003.

[59] Cigital Labs. An Aspect-Oriented Security Assurance Solution. Technical Report AFRL-BF-RS-TR-

2003-254, Cigital Labs, Dulles, Virginia, USA, 2003.

[60] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User Authentication and Authorization

in the Java Platform. In J5th Annual Computer Security Applications Conference, pages 285-290.

IEEE Computer Society Press, 1999.

[61] R. Lammel. A Semantical Approach to Method-Call Interception. In Proc. of the 1st International

Conference on Aspect-Oriented Software Development (AOSD 2002), pages 41-55, Twente, The

Netherlands, 2002. ACM Press.

192

http:www.cs.ubc

[62] C. Laneve. A Type System for Jvm Threads. Theoretical Computer Science, 290((1)):741 - 778,

2003.

[63] X. Leroy and P. Weis. Polymorphic Type Inference and Assignment. In Conference Record of the

Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando, Florida,

pages 291-302. ACM Press, 1991.

[64] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. Addison Wesley,

1999.

[65] J.M Lucassen. Types and Effects Towards the Integration of Functional and Imperative Program­

ming. PhD thesis, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER

SCIENCE, 1987.

[66] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented Programming. In APLAS,

pages 105-121, 2003.

[67] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In ECOOP

2003,2003.

[68] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation Semantics of Aspect-Oriented Programs. In

Gary T. Leavens and Ron Cytron, editors, FOAL 2002 Proceedings: Foundations of Aspect-Oriented

Langauges Workshop at AOSD 2002, number 02-06 in Technical Report, pages 17-26. Department

of Computer Science, Iowa State University, 2002.

[69] G. McGraw and E.Felten. Securing Java Getting Down to Business with Mobile Code. John Wiley

&Sons, 1999.

[70] Sun Microsystems. Java cryptography extension. Available at url-

http://java.sun.com/products/jce/index.html. Last Visited: November 2008.

[71] A.C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Symposium on Principles

of Programming Languages, pages 228-241,1999.

[72] H. R. Nielson and F. Nielson. Semantics with Applications: a Formal Introduction. John Wiley &

Sons, Inc., 1992.

[73] T Nipkov and D. V. Oheimb. Machine Checking the Java Specification: Proving Type-Safety. In Jim

Alves-Foss, editor, Formal Syntax and Semantics of Java, pages 119-156. LNCS Springer, 1999.

[74] D.V. Oheimb. Axiomatic Semantics for Java '̂*'" in Isabelle/HOL. In S. Drossopoulou, S. Eisenbach,

B. Jacobs, G. T. Leavens, P. Miiller, and A. Poetzsch-Heffter, editors, Formal Techniques for Java

Programs. Technical Report 269,5/2000, Fernuniversitat Hagen, Fernuniversitat Hagen, 2000.

193

http://java.sun.com/products/jce/index.html

[75] D. Orleans and K. Lieberherr. Adaptive Programming with Traversals and Visitors. Available

at h t t p : /www. c c s . n e u . e d u / r e s e a r c h / d e m e t e r / p o s t e r s / i n t r o D e m e t e r J ava ,

1997. Last Visited: November 2008.

[76] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive Programming in Java. Tech Report NU-CCS-

2001-02, Northeastern University, Boston, MA 02115, USA, 2001.

[77] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive Programming in Java. Technical Report

NU-CCS-2001-02, Northeastern University, Boston, MA 02115, USA, 2002.

[78] H. Ossher and P. Tarr. Multi-Dimensional Separation of Concerns and the Hyperspace Approach. In

Proceedings of the Symposium on Software Architectures and Component Technology: The State of

the Art in Software Development. Kluwer, 2000.

[79] Palo Alto Research Center. The Aspectj Programming Guide. Available at h t t p :

/ / d e v . e e l i p s e . o r g / v i e w c v s / i n d e x t e c h . c g i / ~ c h e c k o u t ~ / a s p e c t j - h o m e /

d o c / p r o g g u i d e / i n d e x . h t m l . Last Visited: November 2008.

[80] Palo Alto Research Center. The Aspectj Programming Guide: AspectJ Langage Seman­

tics: Join Points. Available at h t t p : / / w w w . e c l i p s e . o r g / a s p e c t j / d o c / r e l e a s e d /

p r o g g u i d e / s e m a n t i c s . h t m l . Last Visited: November 2008.

[81] D. L Parnas. On the criteria to be used in decomposing systems into modules. Commun. ACM,

15(12):1053-1058,1972.

[82] J. C. Reynolds. Towards a Theory of Type Structure. In Programming Symposium, Proceedings,

Colloque sur la Programmation, Paris.

[83] V. Shah and F. Hill. Using Aspect-Oriented Programming for Addressing Security Concerns. In

ISSRE2002, pages 115-119,2002.

[84] I. Siveroni. Operational Semantics of the Java Card Virtual Machine, 2004. J. Logic and Automated

Reasoning, 2004. To appear.

[85] I. Siveroni and C. Hankin. A Proposal for the JC-VMLe Operational Semantics. cite-

seer.ist.psu.edu/siveroni01proposal.html, 2001. Last Visited: November 2008.

[86] O. Spinczyk, A. Gal, and W. chrbder Preikschat. AspectC++: An Aspect-Oriented Extension to C++.

In Proceedings of the 40th International Conference on Technology of Object-Oriented Languages

and Systems, Sydney, Australia, 2002.

194

http://neu.edu/research/demeter/posters/introDemeter
http://ipse.org/viewcvs/indextech.cgi/~checkout~/aspectj
http://www.eclipse.org/aspectj/doc/released/
http://seer.ist.psu.edu/siveroni01proposal.html

[87] R. Stata and M. Abadi. A Type System for Java Bytecode Subroutines. In Conference Record

ofPOPL 98: The 25TH ACM SIGPLAN-SICACT Symposium on Principles of Programming Lan­

guages, San Diego, California, pages 149-160, New York, NY, 1998.

[88] D. Syme. Proving Java Type Soundness. In Jim Al ves-Foss, editor, Formal Syntax and Semantics of

Java, pages 83-118. LNCS Springer, 1999.

[89] J.P. Talpin and P. Jouvelot. Polymorphic Type Region and Effect Inference. Journal of Functional

Programming, 2(3):245-27'1,1992.

[90] J.P. Talpin and P. Jouvelot. The Type and Effect Discipline. In Seventh Annual IEEE Symposium on

Logic in Computer Science, Santa Cruz, California, pages 162-173, Los Alamitos, California, 1992.

IEEE Computer Society Press.

[91] P. Tarr and H. Ossher. Hyper/J User and Installation Manual. IBM T. J. Watson Research Center,

Yorktown Heights, NY, USA, 2000.

[92] P. Tarr, H. Ossher, and S. M. Sutton. Hyper/j: Multi-dimensional separation of concerns for

Java. Available at h t t p : / / t r e s e . c s . u t w e n t e . n l / a o s d 2 0 0 2 / i n d e x . p h p ? c o n t e n t =

h y p e r j ", 2002. Last Visited: November 2008.

[93] S.T Teoh, T.J. Jankun-Kelly, K.L Ma, and F.S. Wu. Visual data analysis for detecting flaws and

intruders in computer network systems. IEEE Computer Graphics and Applications, special issue

on visual Analytics, 2004.

[94] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Department of

Computer Science, Edinburgh University, Mayfield Rd., EH9 3JZ Edinburgh, UK, May 1988.

[95] B. Vanhaute and B. DeWin. AOP, Security and Genericity. 1st Belgian AOSD Workshop, Vrije

Universiteit Brussel, Brussels, Belgium, November 8, 2001,2001.

[96] J. Viega, J. T. Bloch, and C. Pravir. Applying Aspect-Oriented Programming to Security. Cutter IT

Journal, 14(2):31-39,2001.

[97] D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. In the eighth ACM SIGPLAN inter­

national conference on Functional programming, pages 127-139,2003.

[98] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic Join Points in Aspect-

Oriented Programming. ACM Trans. Program. Lang. Syst., 26(5):89O-910,2004.

[99] Bart De Win, Bart De Win, Bart De Decker, Bart De Decker, Bart Vanhaute, Bart Vanhaute, Bart

Vanhaute, Bart De, Win Bart, and De Decker. Building frameworks in aspectj. In Workshop on

Advanced Separation of Concerns (ECOOP 2001, pages 1-6,2001.

195

http://utwente.nl/aosd2

[100] A. K. Wright. Typing References by Effect Inference. In Bernd Krieg-Bruckner, editor, ESOP '92,

4th European Symposium on Programming, Rennes, France, February 1992, Proceedings, volume

582, pages A13-A91. Springer-Verlag, New York, N.Y., 1992.

196

Appendices

Appendix I: JVML Semantics Utility Functions

1. The function accessAllowedF returns true if a given field is visible from a given method:

accessAllowedF : Metfwdx Field —• Boolean

accessAllowedF(w,/) = (-> isPrivateF(/) V (f.fromClass=m.fromClass))

2. The function accessAllowedM returns true if a given method is visible from another given method:

accessAllowedM : Methodx Method -* Boolean

accessAllowedM(m,m') = (-> isPrivateM(w') V im'.fwmClass-m.fromClass))

3. The function activateThreads returns a new Java stack where all the threads waiting for objects or

classes in a given list are activated:

activateThreads : JavaStackxStore*environmentx (ClassOrLocation) - l i s t —> JavaStack

activateThreads(j?5, SJ£, /) = JS' if

jS'(i) = JS(i),Vi e Dom(JS)Ai i waitingThreads(5,.7£,/)
<

3S'(i) = active(j?j,j'),Vt e Dom(3S)M e waitingThreads(5'j,E,/)

4. The function active returns the thread information of a given entry / in a given Java stack with a

state equal to a c t i v e :

active : JavaStackx Nat —> Threadlnformationx State

active(^5,0 = (J S(i).threadInformation, active)

197

5. The function addToClassWaitingList adds a given thread in the waiting list of a given class:

addToCIassWaitingList: EnviwnmentxClassTypexThreadld —> Class

addToClassWaitingList(^£,rt,W) = yE(ct)[monitorCIass.waitList <— id::j7£(cf).monj'torCiass.waitList]

6. The function addToObjectWaitingList adds a given thread in the waiting list of a given object:

addToObjectWaitingList: StorexLocationxThreadld —> JavaObject

addToObjectWaitingList(5,Loc,i'rf) =S(Loc)[monitor.waitList <- id::S(/oc).monifor. wa/tLi'st]

7. The function alllnterfaces gives all the interfaces of a given set of classes.

alllnterfaces : Environmentx(RefOrNoneType)-set —> (ReferenceType)-set

alllnterfaces^'E,) =

alllnterfaces(.7'E,{Ob j e c t })=

alllnterfaces(.7!E,{None})=

alllnterfaces^ T,,{ct}) = J T,(.ct).interfaces u alllnterfacesyEJj? !E(c0.superC/ass})

U allSuperClasses(.7T,J'E{ct).interfaces) if cf ^ O b j e c t A cf / None

alllnterfaces^£,{cr} u ctSet) = alllnterfacesC?*E,{cf}) u alllnterfaces(.72;,cf.SeO if ctSet ^

8. The function alllnstanceFields returns the set of all the instance fields, included the inherited fields,

of a given class. Static fields are not returned by this function:

alllnstanceFields : EnvimnementxReferenceType —> (Field)-sei

alllnstanceFields(.7£, "Ob j ect") = 0

alllnstanceFieldsC/E, ct) = setOf(J£(cf). fields) U alllnstanceFields(^£(cO-superC/ass)

i f r t / "Ob jec t "

9. The function allSuperClasses gives all the super classes of a given set of classes.

198

allSuperClasses : Environmentx(RefOrNoneType)-set—> (ReferenceType)-set

allSuperClasses(^,E,)=

allSuperClasses(.7£,{object}) =

allSuperClasses(^£,{None}) =

allSuperClasses(j7 £,{cf}) = j"E(ct). superclass u allSuperClasses(j?£,{j7'E(c0.superC/ass})

if ct / Ob j ec t Act ^ None

allSuperClassescyEJcr) u ctSet) = allSuperClasses(.7£,{c?}) u allSuperClasses(.7£,cfSeO

if ctSet ^

10. The function appropriatePcHandler returns the start address indicated by the first appropriate ex­

ception handler found given an environment, a program counter, an exception class type to catch

and a list of exception handlers. If there is no appropriate exception handler in the list, the function

return — 1:

appropriatePcHandler: EnvimnmentxNatxReferenceType*.ExceptionTable^> i n t

appropriatePcHandler(^£,pc,cr, []) = - 1

appropriatePcHandler(^!E,pc,cr,/) - head(7). handler

if isAppropriateHandlerC? £, pc, ct, head(/))

appropriatePcHandler(^2;,pc,c/,0 =appropriatePcHandler(^E,/7c,cr,tail(/))

if-iisAppropriateHandler(^£,/7c,c/,head(/))

11. The function blockThreads sets the state of a thread to b l o c k e d in the Java stack:

blockThreads : JavaStackxThreadlnformation —»JavaStack

T.threadld=id

JS'(i) = .75(0, VJ G Dom{yS) A i ^ id

JS'{id).state = blocked

JS'(id).threadInformation= T

12. The function changeShadows takes a list of shadows, a program counter, and a natural number

blockThreadsC75, T) = JS' if -

199

changeThreads(.75, T, T') = JS' if <

and returns a new list of shadows. The returned list of shadows is similar to the given one except

that the parts start and end of the shadows may be changed. In fact, if the part start or end of a

shadow is greater than the given program counter, it is incremented with the given natural number:

changeShadows: {Shadow)-WsXxNatxNat —» {Shadow) -list

changeShadows([],pc,0 = []

changeShadows(ms/i,pc,0 = head(ftu/i)[start<— start+i/start > pc, end*-end+i/end > pc]::

changeShadows(tail(m^/z),pc,0

13. The function changeThreads allows to change a given thread information to another given thread

information in a given Java stack and maintaining the state to a c t i v e :

ChangeThreads: JavaStackxThreadJnformationxThreadlnformation—* JavaStack

T.threadld=id

JS'(i) = .75(0,Vi G Dom{!)S) A i ^ id

JS'(id).state = JS{id).state

JS'(id).threadInformation= T'

14. The function classMonitorEntered returns the same class than the given class identifier but con­

taining the information that the class's monitor has been entered by a given thread:

classMonitorEntered: EnvironmentxReferenceTypexThreadId^> Class

c]assMor\\torEn\ereti(J'£,ct,id)=J'E(ct)[monitorClass.waitList<--

suppress(_7 X(ct).monitorCIass. waitList,id);

monitorClass.threadOwner <— id;monitorClass.depth «— J'E(ct).monitorClass.depth+l]

15. The function classMonitorExited returns the same class than the given class identifier but contain­

ing the information that the class's monitor has been exited by a given thread:

ClassMonitorExited : EnvironmentxReferenceTypexThreadld—* Class

classMonitorExited(j?£,cr,w/)=^E(cf)

[monitorClass.threadOwner«— "None"/ H"E(,ct).monitorClass.depth=\;

monitorClass.depth «— S(Loc).monitorClass.depth-l]

200

16. The function default returns the default value of a given field:

default: Field -» Value

default(/) = 0 if typeOfField(/)= PrimitiveType

default(/) = Nul 1 if typeOfField(/)= ReferenceType

17. The function defaultFieldMap returns, given a list of fields, a map between those fields and their

respective default values:

defaultFieldMap : (Field)-set -> (Field _^ Value)

m

defaultFieldMap(Z) = g if Dom(g)=/ and g(f)=default(f), V f e /

18. The function depthClassLock returns the number of times a given class in a given environment has

been reentered. If the object is not owned by any thread, the value returned is zero:

depthClassLock : Environmentx ReferenceType —> Nat

depthClassLockC? <E,loc) = (J'E(loc).monitorClass).depth

19. The function depthLock returns the number of times an object in a given Location and a given store

has been reentered. If the object is not owned by any thread, the value returned is zero:

depthLock : StorexLocation —> Nat

depthLock(5,/oc) = (S(loc). monitor), depth

20. The function dieThread returns a Java stack constructed by removing a given thread from a given

Java stack:

dieThread : JavaStackxThreadld —» JavaStack

dieThread(.75, id) = IS' if <
Domes') = Dom(JS) - {id}

Vi G Dom{JS');JS'{i) = JS(i)

21. The function getDynam icClass returns the dynamic class of an object at a given location in a given

store:

getDynam icClass : StorexLocation-* ReferenceType

getDynam icClass(5,/oc) = S(loc).classType

22. The function getLocalValue returns an element at a given position in a given list:

201

getLocalValue (x) -list xNat->i

getLocalValue(/,0) = head(/)

getLocalvalue(/,0 = getLocalValue(tail(0,«-1), V i > 0

23. The function getOneStackElem is identical to getLocalValue. It has been introduced only to let

the comprehension of the semantic rules easier:

getOneStackElem : (x) -list xNat —> x

getOneStackElem(/,0 = getl_ocalValue(/,0

24. The function getStackElemtS returns a sublist of a given list with a length equal to a given natural

number:

getStackElemts (x)-listxMjf-> (x)-list

getStackElemts(/,0) = []

getStackElemts(/,/) = head(l)::getStackElemts(tail(/),M),Vj > 0

25. The function head returns the first element in a given list:

head (x)-list—>x

head(v::/) = v, V (v,/) exx (x)-list

26. The function ifThenEIse returns, depending on the value of a given boolean value, the second or

the third given argument:

ifThenEIse: floo/eawxxxx—> x

ifThenElse(true,a,£0 = a

ifThenElse(f alse,a,b) = b

27. The function isAppropriateHandler returns true if a given exception handler is appropriate for a

given program counter and a thrown exception in a specific environment otherwise the function

returns false:

isAppropriateHand ler: Environment x Nat x ReferenceType x ExceptionHandler —> Boolean

202

isAppropriateHandler(j?!E,/7c,rt,/i) = T r u e if

/2.startPc<=/?c

< /i.endPc > = pc

/i.exceptionType e allSuperClasses(^'E,cf)

isAppropriateHandler(.7£,/?c,cf,/0 = f a l s e otherwise.

28. The function isClassOwner returns true if in a given environment, a given thread Id is owner of a

given class otherwise the function returns false:

isClassOwner: EnvironmentxReferenceTypexThreadId—> Boolean

isClassOwner(.7£,c,K0 = (WE(c).monitorClass).threadOwner= id)

29. The function islnitialized returns true if in a given environment, a given class is initialized otherwise

the function returns false:

islnitialized : Environment x ReferenceType —> Boolean

islnitializedyCc) = WE(c).initialized=l)

30. The function islnterface returns true if in a given environment, a given class is an interface otherwise

the function returns false

islnterface : Environment x ReferenceType —* Boolean

islnterface(^£,c) = WE(c). interfaced)

31. The function isLocked returns true if in a given store, a given location is locked otherwise the

function returns false:

isLocked : StorexLocation —» Boolean

isLocked(S,,/oc) = (S(loc). monitor). threadOwner ^ "None")

32. The function isMethodOf returns true if a class with an identifier belonging to a given list of class

identifiers contains a method with the same signature than the given method signature otherwise the

function returns false:

isMethodOf: EnvironmentxMethodSignaturex(ReferenceType)-set —> Boolean

203

isMethodOf (J/£,//«,) = false

isMethodOfC7£,ms,{c*}) = true if ms e methodSignatures(j?!E(cr).me£hods)

isMethodOfC? £,ms,{cf}) = false if ms g methodSignatures(j/£(c0.mef/iods)

isMethodOfC7£,»w,{cf} U ctSet) = isMethodOf(J7£,»w,{cf}) V isMethodOf (J? £,wu,cf to)

33. The function isMethlnterfaceResolved returns true if a given interface method signature is re­

solved for a given interface in a given environment otherwise the function returns f a l s e : 1

isMethlnterfaceResolved: EnvironmentxMethodSignaturey.ReferenceType-^> Boolean

isMethlnterfaceResolved^T„ms,ci) = false if -.islnterface(^E,cO

islnterface(j?E,cr)

isMethlnterfaceResolved(j?£,/7w,cr) = false if{ dosses = alllnterfaces(^£, {ct}) u {c?,"0bject"}

-•isMethodOf {JT,, ms, classes)

isMethlnterfaceResolvedy,E,/?u,cO =true if <

islnterface(j?'E,c?)

classes = alllnterfaces(.7'E, {ct}) u {ct, "Object"}

isMethodOf (3 "E, ms, classes)

34. The function isMethResolved returns true if a given method signature is resolved for a given class

in a given environment otherwise the function returns f a l s e : 2

'An interface method m is resolved [64] for a given class c if c is an interface and c or the class
"Ob j e c t " or one of the interfaces of C declares m

2 A method m is resolved for a class c [64] if c is not an interface and c , or one of the super classes of c
or any of the superinterfaces of c declares m.

204

isMethResolved : EnvimnmentxMethodSignaturexReferenceType—> Boolean

isMethResolved(j?t,ms,ct) = false if islnterface(j7£,cr)

-.islnterface(.7£,rf)

isMethResolved(ii;,w5,cr) = false if <
classesl = {ct} UallSuperClasses(.72;, {ct})

classes=classesl U alllnterfaces(^£, {ct})

-^isMe\hodOi(yE,ms,classes)

isMethResolved(i'E,/7w,c/) = true if <

-.islnterface(^£,c?)

classesl = {rt}uallSuperClasses(^£,{cf})

classes=classesl Ualllnterfaces(j/'E, {ct})

isMethodOf(j?£,mj, classes)

35. The function isOwner returns true if an object in a given store and pointed by a given Location is

acquired by a thread with a given Id otherwise the function returns false:

isOwner : StorexLocationxThreadld —> Boolean

\sOviner(S,loc,id) = ((S(loc). monitor). threadOwner= id)

36. The function isClassLocked returns true if a class with a given class identifier is locked in a given

environment otherwise the function returns false:

isClassLocked : EnvimnmentxReferenceType —> Boolean

isClassLocked(.72:,c) = (yE(c).monitorCIass.threadOwner ^ "None")

37. The function isPrivateF returns true if a given field is private otherwise the function returns false:

isPrivateF : Field —> Boolean

isPrivateF(/) = (private e f.fieldModifiers)

38. The function isPublicF returns true if a given field is public otherwise the function returns false:

isPublicF : Field —> Boolean

isPublicF(/) = (public e f.fieldmMdifiers)

39. The function isPrivateM returns true if a given method is private otherwise the function returns

false:

205

isPrivateM : Method —» Boolean

isPrivateM(m) = (private e m.methodModifiers)

40. The function isPublicM returns true if a given method is public otherwise the function returns false:

isPublicM : Method —» Boolean

isPublicM(w) = (public e m.methodModifiers)

41. The function isStaticF returns true if a given field is static otherwise the function returns false:

isStaticF : Field —> Boolean

isStaticF(/) = (static e f.fieidModifiers)

42. The function isStaticM returns true if a given method is static otherwise the function returns false:

isStaticM : Method —• Boolean

isStaticM(m) = (static e m.methodmMdifiers)

43. The function isSynchronized returns true if a given method is synchronized otherwise the function

returns false:

isSynchronized : Method —» Boolean

isSynchronized(m) = (synchronized e m.methodModifiers)

44. The function isThread returns true if a given class type is the class Th read or one of its subclasses

otherwise the function returns false:

isThread : Environment x ReferenceType —» Boolean

isThreadC7£, ct) = (c?=Thread) v (Thread e allSuperClassesC7£,c0)

45. The function length returns the length of a given list:

length : (x) -list —>Nat

length([]) = 0

length(v::Z) = 1 + length (/), V (v, /) e xx (T) -list

46. The function lookupF returns the first field with a given signature found in the superclass hierarchy

of a given class in a given environment. If the field is not found the value None is returned. Notice

that the symbol © stands for the disjoint union of domains:

206

if <

if <

lookupF: EnvirvnmentxFieldSignaturexReferenceType —> Field © NoneType

lookupF(^2;,/j,c) = / if retrieveF(/j J£(c).fieids)=/ A / ^ "None"

lookupF(^£,/j,c) = \ookupFV'E,fsJ'E(c).superClass)

c^"Object"

retrieveF(fs J£(c).fie/ds) = "None"

lookupFC? £,/i,c) = "None"

c="Object"

retrieveF(fs,7'E(c). fields) = "None"

47. The function lookupM returns the first method with a given signature found in the superclass hierar­

chy of a given class in a given environment. If the method is not found the value None is returned:

lookupM : EnvirvnmentxMethodSignaturexReferenceType —> Method © NoneType

lookupM(3T,jns,c) = m if retrieveM(»uJ£(c).methods)=m A m / "None"

lookupM(.7,E,ww,c) = lookupM(ms J E(c).superOass)

{ c^"Object"

retrieveM(ms,.72:(c).metfjods) = "None"

lookupM^ E,mi,c) = "None"

c="Object"

retrieveM(ms,^2:(c). methods) = "None"

48. The function methodSignatures returns a set of method signatures of all methods in a given list of

methods:

methodSignatures : (Method)-list —• (MethodSignature)-set

methodSignatures([]) =

methodSignatures(m/) = {headOiOmetnodSigijanjre} U methodSignatures(tail(/n/)) if ml ^ []

49. The function newFrame returns a new frame constructed from a given method, a given program

counter, a given list of local variable values a given operand stack and a given synchronized element:

newFrameMethodxProgramCounterxLocalsxOperandStackxSynchmnizedElement-^Frame

if <

207

newFrame(w,/7c,/,o, z) = frame if <

newObject(^£,c/) = o if <

frame.method =m

frame. programCounter =pc

frame.locals =1

frame. operandStack =o

frame.synchronizedElement=z

50. The function newObject returns a new object of a given class in a given environment:

newObject: EnvimnementxReferenceType —» JavaObject

o.classType= ct

o.fieldsMap = defaultFieldMap(alllnstanceFields(j7'£,ct))

o.monitor= ("None",0, [])

o.fromRunnable=" None"

51. The function newThreadlnformation returns a new thread structure given a thread stack, a list of

locked elements and a thread Id:

newThreadlnformation:77!rearf5?ac*:x (LockedElement) -HstxThreadld-* Threadlnformation

newThreadlnformation(5,/,jJ) = t

t.threadStack=s

•f \ t.lockedElements =1

t.threadld =id

52. The function objectMonitorEntered returns the same object than the given location in the given

store but containing the information that the object's monitor has been entered by a given thread:

ObjectMonitorEntered : Store-xLocationxThreadld —> JavaObject

objectMonitorEntered(5^Loc,iJ) = S(Loc)[monitor.waitList <- suppress(S(Loc).moniror.waitLisf,id);

monitor.threadOwner <— id;monitor.depth <— S(loc).monitor.depth+l]

53. The function objectMonitorExited returns the same object than the given location in the given store

but containing the information that the object's monitor has been exited by a given thread:

208

objectMonitorExited : StorexLocationxThreadld-> JavaObject

objectMonitorExited(S,Loc,id) = S(Loc)[monitor.threadOwner <— "None"/ S(Loc).monitor.depth=\;

monitor.depth <— S(Loc).monitor.depth-l]

54. The function posStack returns a list obtained from a given list by popping a given number of

elements:

posStack: (x)-list xNat—> (T)-list

posStack(/,0) = /

popStack(/,0 = popStack(tail(/),i-l)), V i > 0

55. The function pushStack returns a list obtained by appending a given value to a given list:

pushStack: (x)-listxx-> (x)-list

pushStack(/,v) = v::l, V (v, /) e xx (x) -list

56. The function retrieveF searches for a field with a given signature in a given list of fields and returns

the field if the field is found otherwise returns the value None:

retrieveF : FieldSignaturexFields —> Field © NoneType

retrieveF(/i,[]) = "None"

retrieveF(/j,Z) = head(/) if head(/).r/e/dSignafure = fs

retrieveF(fsJ) = retrieveF(/j,tail(/)) if head(/).r7e/dS/gnature ^ fs

57. The function retrieveM searches for a method with a given signature in a given list of methods and

returns the method if the method has been found otherwise returns the value None:

retrieveM : MethodSignaturexMethods —> Method ® NoneType

retrieveM(»u,[]) = "None"

retrieveM(»w,/) = head(/) if head(/).me£nodSignafure = ms

retrieveM(»iy,Z) = retrieveM(mj,tail(/)) if head(/).metnodSjgnarure ^ ms

58. The function suppress returns a list constructed from a given list by suppressing all the occurrences

of a given value :

209

suppress: xx (x) -list —> (x) -set

suppress(v,[]) = []

suppress(v,l) = suppress(v,tail(l)); if head(l)=v

suppress(v,l) = head(l)::suppress(v,tail(l)); if head(l) ^ v

59. The function tail returns the tail of a given list:

tai l: (x)-list —̂ (x)-list

tail([]) = []

tail(v::/) = /,V (v,0 € xx (x) -list

60. The function setOf returns a set of elements of a given list:

setOf: (x) -list —> (x)-set

setOf([]) =

setOf(v::l)={v}UsetOf(l)

61. The function thisConstantPoolEntry returns a constant pool entry given an environment, a method

and an index for the entry:

thisConstantPoolEntry : EnvironmentxMethodxNat —» ConstantPoolEntry

thisConstantPoolEntry(j7!E>m,0 = yE(m.fromClass).constantPool(i)

62. The function typeOf Field returns the type of a field:

typeOfField : Field -»• Type

typeOfField(/) = f.fieldSignatwe.type

63. The function waitingThreads returns a set of thread Ids waiting for a list of objects or classes de­

scribed in a given list of locations or class identifiers:

waitingThreads : StorexEnvirvnmentx (ClassOrLocation) - l i s t —> [Threadld) - s e t

waitingThreads(5, .7 £ , []) = 0

waitingThreads(S, jfE, x::l) = setOf(S(x). waitList) u waitingThreads(5, JT,, tail(l)) if x e Dom(S)

waitingThreads(5, ̂ £ , x::l) = setOf(.yE(x).momtor.waitList) U waitingThreads(5, jr£, tail(l)) if x G J"E(S)

210

Appendix II: AspectJ Semantics Utility Functions

1. The function argSTest takes an environment, a natural number(the current argument position), a

first type list (types of the arguments), a second type list (types to match) and returns the type

matching test. The function argTest generates the test for one argument whereas argSTest gener­

ates the test for a list of arguments. These functions are used in the pointcut matching process when

the pointcut is an "args" pointcut:

argSTest: EnvironmentxNatx (Type) - l i s t x (Type) -list-*Test

argSTest(£,j",[],[])=always

argSTest(£,*',/i , /2)=never if length(/i) ^ length(/2)

argSTest(£,i,/i,/2) = makeAnd(argTest(!E,/,head(/1),head(/2)),argSTest(£,j+l,tail(;i),tail(Z2)))

iflength(/1) = length(Z2)

argTest: EnvirvnmentxNatxTypexType—>Test

argTest(£,j,fi,f2)=never iff! ^ t2 andr2 $ allSuperClasses(2:,{fi})

argTest(£,«, t\, r2)=aiways if t\ = t2

argTestCE,i,/i,r2)=arg(0 i n s t a n c e o f (t2) if/i e allSuperClasses('E,{r2})

2. The function argumentTypes takes a shadow as argument and returns the list of the types of its

arguments:

argumentsTypes : Shadow-^ (Type) - l i s t

argumentTypes(s)=j.signarure.argumentsTypeif s.kind ^ f i e l d _ g e t A s.kind ^ f i e l d _ s e t

argumentTypes(s)=[j.signature.fype] if s.kind = f i e l d _ g e t V s.kind = f i e l d _ s e t

3. The function branch Ins takes a JVML instruction and returns a boolean that indicates if the WML

instruction is a branching instruction or not:

211

branchlns : JVMLInst—*Boolean

branchlns(wu)= true if ins=goto adr V ins=± f eq adr V ins=if ne adr

branchlns(ins)= false otherwise

4. The function changeMethods changes a given method contained in a given list by another given

method:

changeMethods: (Method) -list x Methodx Method -> (Method) -list

changeMethods(/,w,m') =head(/)::changeMethods(tail(/),m,m') if head(0.s/gnafure ^ m.signature

changeMethods(/,/n,m') =wi'::tail(/) if head(/).signature=m.signature

5. The function enclosingShadow returns the first Shadow of a given method:

enclosingShadow : Method —> Shadow

enclosingShadow(m) = ((construct_execut,false),m.mefAodSignature,m.modiriers,m.fromC/ass,0,

m.lastNumlnst(/n.code)+2),[]) if m.mefhodS/gnafure.name="init"

enclosingShadow(m) = ((s t a t i c _ i n i t , f alse),m.methodSignature,m.modifiers,mfromClass,0,

m.lastNumlnst(w.code)+2),[]) if m.methodSignarure.name="clinit"

enclosingShadow(m) = ((advice_execut,false),/n.rnet/iodSigiiature,»i.modifiers)m.fromCiass,0,

m.lastNumlnst(»i.code)+2),[]) if m.fromClass.aspect=l

enclosingShadow(m) = ((method_execut , f a.lse),m.methodSignatwe,m.modifiers,m.fromClass,0,

w.lastNumlnst(m.code)+2),[]) otherwise.

6. The function freelnstructions takes a code and two natural numbers i and pc and returns a new

code. The new code is exactly identical to the given one except that the instructions are numbered

differently. We add the value i to all the instruction numbers that are greater than pc:

freelnstructions: CodexNatxNat -*Code

freelnstructions(c,/,/>c)=c/ if

J(k) = c{k) V* G Dom{c) / k <= pc
<

d{k + i) = c{k) V* 6 Dom(c) / k> pc

212

7. The function gen Pool takes an environment, a method and a component type. If the class repre­

sented by the component type is found in the class constant pool of the given method, the function

will return the respective entry number and the given environment without changing it. If the class

represented by the component type is not found in the class constant pool of the given method,

genPool generates a new entry in the class constant pool of the given method and returns the new

constant pool entry number with the environment changed:

genPooV.EnvironmentxMethodx ComponentType —> NatxEnvironment

genPool(!E,/H,c?)=(#.£) if 'E.javaEnvironment(m.fromClass).constantPool(k)=ct

where k G DomCE.javaEnvironment(m.fromClass).constantPool)

genPool (rEjn,ct)=(k,'E[javaEnvkonment <— "E.javaEnvironmentlm.fromClass >-*

^javaEnvironment(mJromClass)[constantPool<~T.javaEnvtonment(m.firomClass).constantPool.[k>~^ ct]]]])

where k £ DomCE.javaEnvironment(m.fromClass).constantPool)

8. . The function getArgVar takes a method, a shadow, two natural numbers as arguments and re­

turns a position in the method local variable. The first given number corresponds to the max-

imun length of the method local variable and the second number indicates the argument. Hence

ge\ArgVar(m,s,maxLocals,Q will return the emplacement where the argument number i of the

shadow 5 has been stored in the method local variable table of m:

getArgVar: MethodxShadowxNatxNat —• Nat

g&\Axg\lax(m,sjnaxLocals,i)=maxLocals-{i-\) if-i hasTarget(j^i)

getArg Var(m,s,maxLocals,i)=(maxLocals-1)-(/-1) if hasTarget(.s,m)

9. The function hasTarget takes a shadow and a method and returns true if the given shadow has a

"target" object:

hasTarget: Shadow x Method -> Boolean

hasTarget(j^i)=(-. neverHasTarget(s) A hasThis(s,m)) if isTargetSameAsThis(s)

hasTarget(.y,m)=(-i neverHasTarget(s) A s t a t i c ^ s.modifiers) if -. (isTargetSameAsThis(s))

10. The function hasThis takes a shadow and a method and returns true if the shadow in this method

213

has a "this" object:

hasThis: Shadowy.Method —> Boolean

hasThis(j,/n) =(-> neverHasThis(.s) A s t a t i c 0 m.modifiers)

11. The function neverHasThis takes a shadow and returns true if the shadow has never a "this" object:

neverHasThis: Shadow —» Boolean

neverHasThisO) =(jti (,s . /e ind)=stat ic_ini t)

12. The function insertAdvice takes an environment, a method, and a list of shadows and returns a new

environment and a new method (where the advice has been injected):

insertAdvice : EnvironmentxMethodx {Shadow) -list-^Environment*Method

insertAdvice(£,/n,,mjft)=insertAfterAdvice('£,m,/w.y/0

ifhead(heati(msh).mungers).adviceInfo.akind=After

insertAdvice(£,m,,mj/z)=insertBeforeAdvice(!E,m,mj/j)

if head(head(»u/i).muiigers).advjceInfo.alcind=Before

13. The function insertAfterAdvice takes an environment, a method, and a list of shadows and returns

a new environment and a new mettiod (where the advice has been injected). It injects the advice

in the method by injecting two JVML instructions: The call to the static "aspec tOf" method of

the advice aspect, and the advice call itself. This corresponds to the injection of two bytecodes:

i n v o k e s t a t i c i and i n v o k e v i r t u a l j where i and,/ are added as new entries to the constant

pool of the method class. It is necessary to call the static "aspec tOf" method of the aspect to ob­

tain an instance for use as the receiver of the advice call. The "a spec tOf" method is automatically

generated when compiling the aspect into a class:

214

insertAfterAdvice : Environment* Method*. (Shadow) -list-^Environment*Method

insertAfterAdvice(£,m^wA)=(2;',/n') if

7t2(head(msh)./rincf) = t r u e //not execution shadow

A JT, = 'E.javaEnvironment

A c = J"E(m.fromClass)

A cpool = c.constantPool //Getting the Constant pool of the class of m.

A ad = head(head(msh).mungers).adviceJiifo

A mi- = signatureAspectOf(ad)

A cpooll = cpool]} i—> newPoolEntry(/7is,ad.fromClass)], i fi Dom(cpool)
<

A cpooll = cpooll [j i-» n&NPoo\En\ry(ad.adviceSignature,ad.fTowClass)]j £ Dom(cpooll)

A pc = head(msh). end

A codel = mergelnstructions(m.code, [invokesta t ic i, invokevirtual./],pc + 1)

A m' = m[code <— codel] //Setting the code of m with the updates.

A cl = c[constantPool <— cpooll, methods *— changeMethods(cl.met/iods,m,m')]

A yEl = JfE\m.fromClass *—> cl] //Updating the class where m is defined.

A T.' = "EljavaEnvironment <— 3T.I]

215

insertAfterAdvice(£,m,tfw/i) ={rE,^n') if
*

7t2(head(msh)./cind) = f a l s e / / execution shadow

A HT. = 'E.javaEnvironment

A c = J^m.fromClass)

A cpool = c.constantPool

A m5 = signatureAspectOf(ad)

A cpooll = cpool[i H-> newPoolEntry(ms, ad.fromClass)] i fi Dom(cpool)

A ad = head(head(msh). mungers).advicelnfo
<

A cpooll = cpooll [j H-> newPoolEntry(ad.adviceSignature,ad.fromClass)]j $ Dom{cpool\)

A /?c = head (msh). end

A codel = mergelnstructions(m.code,[invokestatici,invokevirtualy'],pc —3)

A m' = m [code <— code 1]

A c\= c[constantPool <— cpool2, methods <— changeMethods(cl. methods,/n,m')]

A J?£l = yE[m.fromClass >-> cl]

A £ ' = *E [/a vaEn v/ronmenf *— yEl]

14. The function insertAfterStore takes an environment, a method, a list of shadows, and a list of JVML

instructions and returns a new environment and a new method (where the JVML instructions have

been injected). It injects the given instructions in the method, updates the environment and readjusts

the values of the start and end in the shadows:

216

insertAfterStore : EnvironmentxMethodx [Shadow) -listx [Instruction) - l i s t

—»Environment x Method

insertAfterStore(£,m>/7w/i,j/)=(!E,,m')if

7t2(head(msh).kind) = t r u e //not execution shadow

A J"E = 'E.javaEnvironment

A c = yE(m.fromClass)

A pc = head (msh). end

* A code 1 = mergelnstructions (m. code, il,pc+ 1)

A m' = m[code *— code 1] //Setting the code of m with the updates.

A cl = c[/nefhods«- changeMethods(cl .mediods,/H,m')]

A JT. 1 = yE[m.fromClass >-> cl] //Updating the class where m is defined.

A £ ' = "E [/a vaEnvironment <— .7 £ 1]

insertAfterStoreCE,w,mi/i) =(£',m\»w/i') if

7i2(head(msh).icijid) = f a l s e / / execution shadow

A .?£ = "E.javaEnvironment

A c = yE(m.fromClass)

A pc = head (msh). end

A codcl = mergelnstructions(m.code,#,/>c- 1 — length(«7))

A m' = w[code <— code2]

A cl = cfco/isfantPoo/ <— cpootZ, methods <— changeMethods(cl .methods, m,m')}

A yE\=yE[m.fromClass>-*c\)

A WJ/I' = changeShadows(mi/i,pc, 2)

A 2/ = "E[javaEnvironment <— _7£1]

217

15. The function insertBeforeAdvice takes an environment, a method, a program counter, and an ad­

vice as arguments and returns a new environment and a new method. It works as the insertAfterAd-

vice except that the injection is done before the shadow:

insertBeforeAdvice : EnvironmentxMethodx {Shadow) -Hst—>EnvironmentxMethod

\nser\BetoreAdv\ceCEym,msh) =(£ ' , m') if

J<E = 'E.javaEnvironment

A c = J"E(m.fromClass)

A cpool = c.constantPool

A ms = signatureAspectOf(ad)

A cpooll = cpool{i H-> newPoolEntry(ms,ad.fromClass)} i £ Dom(cpoot)

A ad — head(head(msh). mungers).advicelnfo

' A cpooll = cpooll [j H-> ne\NPoo\En\ry(ad.adviceSignature,ad.fromClass)]j £ Dom(cpool\)

A pc = head(msh).sfart

A code! = mergelnstructions(/n.code, [invokesta t ic i, invokevirtualy'],pc+ 1)

A m' = m\code *— codel]

A c 1 = c[constantPool *— cpooll, methods <— changeMethods (c 1 .methods,m, m'))

A JT.\= J'E{m.fromClass <->• cl)

A £ ' = "EljavaEnvkonment <— J'El]

16. The function insertlmpdepl takes an environment, a method and a program counter and returns the

environment and the method but with inserting two instructions impdepl before the instruction at

the given program counter:

218

insertlmpdepl : Environment*. Methodx ProgramCounter—> EnvironmentxMethod

insertlmpdep1(£,m,/7c) =(E\m') if

m'{i) = m{i),\/i € Dom(m)/0 <= i < pc

A m'(pc) = impdepl

A m'(pc+ 1) = m{pc)

A m'(pc + 2) = impdepl

A m'(i + 2) = m(i),V/ G Dom{m)/i >=pc+l
<

A J"E = "EJavaEnvironment

A c = J'E(m.fromClass)

A c\— c[methods <— changeMethods(c.metJiods,m,m')]

A J'El = 3'E\m.fromC\ass >-* cl]

A T! — E [javaEnvironment <— JE1]

17. The function insertStore takes an environment, a method, a list of shadows, and a list of WML

instructions and returns a new environment and a new method (where the JVML instructions have

been injected). It injects the given instructions in the method, updates the environment and readjusts

the values of the start and end in the shadows:

219

insertStore : EnvironmentxMethodx {Shadow) -listx {Instruction) - l i s t

—• Environment x Method

\nsenStoreCE,m,msh,il)=C£\m')if

3T, — "E.javaEnvironment

A c = yE(m.fromClass)

A pc = head (msh). start

A codel = mergelnstructions(m.code,i7,/?c+l)
<

A m' — m\code«— codel) //Setting the code of m with the updates.

A c\ = c[methods *— changeMethods(cl .methods,m, m')]

A J'El = 3<E[m.fTomClass \—> cl] //Updating the class where m is defined.

A TJ = "ElJavaEnvironment <— J"E\}

18. The function insertTestAfterlnstructions takes an environment, a method, and a list of shadows,

and returns a new environment and a new method (where the JVML instructions for the dynamic

test have been injected):

220

insertTestAfterlnstructions : EnvironmentxMethodx {Shadow) -listx Nat -^EnvironmentxMethod

insertTestAfterlnstructions(£,m,/7w/i,maxLoca/5)=(£'.»i')if

ir2(head(mj/i).Jt/nd) = t r u e //not execution shadow

A yE = 'E.javaEnvironment

A c = JT.(m.fromClass)

A s = bead(msh)

A test = head(head(msh).mungers).pointcutTest

A / = lenTestCode(fetf)

A yes = head (msh). end +1+1

* A no = head(msh).end+l + 3

A start = head (msh).end + 1

A code] = getTes\\r)S\r\JCi\or\sCE,m,s,test,yes, no, start, maxLocals)

A code2 = m.codet code j

A m' — m[code <— codej\ //Setting the code of m with the updates.

A c\ — c[methods *- changeMethods(cl .tnethods,m,m')\

A JfEl = yE[m.fromClass H-> cl] //Updating the class where m is defined.

A £ ' = £[/avaEnvironmenf <— J7£l]

221

insertTestAfter!nstructions(!E^n,msh,maxL£>ca/j)=(!E'^w')if

7t2(head(ffw/i)./cind) = f a l s e / / execution shadow

J<E = "EjavaEnvironment

A c = J'E(m.froinClass)

A s = bead(msh)

A test = heati(bea6(msh).mungers).pointcutTest

A / = lenTestCode(fe^)

A yes — heati(msh).end — 3

< A no = head(msh). end — 1

A start = head (msh). end — 2 — 1

A code\ = getTestlnstructions(£, m,s, test, yes, no, start, maxLocals)

A code2 = /n.codet code\

A m' = m[code <— co<ie2] //Setting the code of m with the updates.

A c\ = cfmetnods«- changeMethods(cl .methods, m,m')\

A _7£1 = yE[m.fromClass >—> cl] //Updating the class where m is defined.

A T! = % [javaEnvironment <— ^ £ 1]

19. The function insertTestBeforelnstructions takes an environment, a method, and a list of shadows,

and returns a new environment and a new method (where the JVML instructions for the dynamic

test have been injected):

222

insertTestBeforelnstructions : EnvironmentxMethodx (Shadow) -listx Nat -*

Environment x Method

\nser\Tes\Betore\ns\ruc\\ons(T,,m,msh,maxLocals)=('E'jn,)if

yE = 'E.javaEnvironment

A c = JfE(m.fromClass)

A s — he<l6(msh)

A test = head(bea<i(msh).mungers).pointcutTest

A / = lenTestCode(fe^f)

A yes = head(msh). start +1

A no = head(msh).start+ /+2
«

A start = head(msh). start + 1

A code] =getTestlnstructions(£,m,j, test, yes, no, start, maxLocals)

A code2 = m. code t code \

A m' = m[code <— code^\ //Setting the code of m with the updates.

A c\ = c[methods <— changeMethods(cl .methods, m,m')}

A _7£1 = yE[m.fromClass i—> cl] //Updating the class where m is defined.

A £ ' = £[/avafijvironmenf <— ^£1]
20. The function islnstShadow returns true if the given instruction corresponds to a shadow otherwise

it returns false:

islnstShadow -.EnvironmentxMethodxInstruction —* Boolean

islnstShadow(£,»i,ins)=(kindOfShadow(£,m,ins)^None)

21. The function isTargetSameAsThis takes a shadow and returns true if the "this" object is the same

that the "target" object for this shadow:

223

if <

isTargetSameAsThis: Shadow -* Boolean

isTargetSameAsThis(j)=((rci (.r.Ajjid)=method_execut)

V(%\ (i .A:ind)=construct_execut)

V(K\ (s J c i n d) = s t a t i c _ i n i t)

V(7ti (j . /cind)=advice_execut))

22. The function kindOfShadow returns the kind of the instruction shadow in case where the instruction

is a shadow otherwise it returns None:

kindOfShadow : Instruction*Signature -» Kind © NoneType

kindOfShadow(i/w,5)=(method_call,true)

ins = i n v o k e v i r t u a l i

V(ins = i n v o k e s p e c i a l iAs.name^ i n i t

Vins = i n v o k e s t a t i c i

Vins = i n v o k e i n t e r f a c e i,n

kindOfShadow(jrts,.y)=(field_get,true)

f ins = g e t f i e l d i

Vins = g e t s t a t x c i

kindOfShadow(i>i.s,.y)=(field_set,true)

{ ins = p u t f i e l d i

Vins = p u t s t a t i c i

kindOfShadow(/« j , j)=(cons t ruc t_ca l l , t rue)

ins — i n v o k e s p e c i a l i

As.name = i n i t

kindOfShadowO'nw) =None otherwise.

23. The function lastNumlnst returns the program counter of the last instruction in a given code:

lastNumlnst: Code -> Nat

lastNumlnst(c) =maximum(Dom(c))

224

if <

24. The function lenTestCode takes a test and returns the number of instructions relative to this test.

Notice that for each basic dynamic test, four instructions are needed: {a load, i n s t a n c e o f ,

i f e q , g o t o } :

lenTestCode : Test —> Nat

lenTestCode(And(f i ,f2))=lenTestCode(/1)+lenTestCode(/2)

lenTestCode(Or(fi ,?2))=lenTestCode(f 1 HlenTestCodefo)

lenTestCode(Not(r i)=lenTestCode(/i))

lenTestCode(0=4 if

t = t h i s instanceof (ct)

' Wt = t a r g e t instanceof (ct)

Vt = args(/) instanceof (ct)

25. The function liberate takes an environment, a method, a list of shadows, and a number indicating

the number of instructions that we want to let free after or before the current shadow of the method:

liberate : EnvironmentxMethodx {Shadow) -HstxNat

—*EnvimnmentxMethodx (Shadow) -list

liberate(2:/n,mj/i,0=liberateAt(£,m,/rwft,/,head(msh).sfart)if

S head(head(»u/i).murigers).adviceInfo.aJcirjd = Before

liberateCE,m,»w/i,i)=liberateAt(2;,m,OTi/i,/,head(msh).end)if

head(head(msA).mungers).adviceInfo.aJrifld = After

AJt2(head(ms/i) .kind) — f a l s e / /not execution shadow

liberate(£^n,TOj/?,/)=liberateAt(2;^M^Mj/i,t,head(msh).ejid-2)if

head(head(mj/i). mungers).advicelnfo.akind= After

Ait2(head(mj/i).fcind) = t r u e / /execution shadow

26. The function liberateAt takes an environment, a method, a list of shadows, a number indicating the

number of instructions that we want to let free, and another number that indicates the position from

225

which we want to free the instructions:

liberateAt: EnviwnmentxMethod* (Shadow) -UstxNatxNat

—>EnvironmentxMethodx {Shadow) -list

WberateA{(E,m,msh,i,pc)=(E\m\msh')if

JE = E.javaEnvironment

Ac = JE(m.fromClass)

Acodel = translate(freelnstructions(m.code,j',/7c), i,pc)

Am' = m[code <— codel] //Setting the code of m with the updates.
<

Acl = c\methods <— changeMethods(cl. methods,m,m')}

Ay "El = JE[m.fromChss i—• c\] / /Updating the class where m is defined.

AE' = E[javaEnvironment <— JE\]

Amsh' = changeShadows(mj/i,/7c,j)

27. The following function loadCode takes a list of store instructions and returns a list of load instruc­

tions that allow to reload the stored variables onto the stack:

loadCode: (Instruction) - 1 i s t—* (Instruction) -1 i s t

loadCode(/::astore_0=aload_J::loadCode(0

loadCode(/: : istore_0=iload_/:: loadCode(/)

28. The function match takes an environment, a method, a shadow, a list of advices and returns the

same shadow except that the part mungers of the shadow reflects all the shadow mungers that match

with it:

226

match : EnvironmentxMethodxShadowx (Advicelnfo) -list-•*Shadow

ma\ch('£,m,s,l)=s' if

y.kind = s.kind

A s'.signature=s.signature

A s'.start = s.start

A s'.end^s.end

A s'.mungers = I'/l1 = matched('E,m,5, /)

29. The function matched takes an environment, a method, a shadow, a list of advices and returns a list

of shadow mungers that matches with the shadow:

matched : Environment*Method*Shadow*. (Advicelnfo) -list—* (ShadowMunger) -list

matchedCE,m,5,[])=[]

matched(£,w,j,a::/)=matchedCE,/w,i,/)

if matchPcutCE^«,5,a.pointcut)=never

matched('E,m,j,a::/)=a/::matched(2;,m,j,/)

matchPcut(£,m,s,a.pointcut) ^ never

'M A a'.advicelnfo = a

A a'.pointcutTest — matchPcut(£,m,.s,a.pointcur)

30. The function mergelnstructions takes a code, a list of JVML instructions, and a natural number

representing a position and returns a new code. The new code is the result of inserting the list of

JVML instructions to the given code at the given position:

227

mergelnstructions : Codex (Instruction) -listxNat —>Code

mergelnstructions(c,[],«)=c

mergelnstructions(c,«'::(7)n)=mergelnstructions(mergeOnelnstruction(c,j,«),i7,«+l)

31. The function mergeOnelnstruction takes a code, a JVML instruction, and a natural number rep­

resenting a position and returns a new code. The new code is the result of inserting the JVML

instruction to the given code at the given position:

mergeOnelnstruction : CodexInstructionxNat-^Code

mergeOnelnstruction(c,j»=c' if

(/(k) = c(k) V* £ Dom(c) J k < n

* c'{n) = i

c'{k) = c{k) Vk G Dom(c) / k>n

32. The function neverHasThis takes a shadow and returns true if the shadow has never a "this" object:

neverHasThis: Shadow —> Boolean

neverHasThisC?) =(TII (.y./tind)=static_init)

33. The function newPoolEntry returns a constant pool entry for a method given the signature of the

method and its class:

newPoolEntry : MethodSignaturex Class —> ConstantPoolEntry

newPoolEntryO«,cO = c if

c.methodSignature = ms

Ac.supposedClass = ct

34. The function newShadow returns a shadow given an environment, a method, a shadow instruction,

starting and ending positions :

228

newShadow : EnvirvnmentxMethodxShadlnstxnatxnatx

(ShadowMunger) -list—^Shadow

ne\NShadowCE,m,ins,b,e,l)=s if

(ins — i nvokev i r tua l j Vins = invokespecial i\/

ins= invokes t a t i c i Vins= invoke in te r face in)

A_7£ = 'E.javaEnvironment

Ac = yE(m.ftomClass)

Ac pool = c.constantPool

Acpoolentry = cpool(i)

Am = re\rieveM(cpoolentry.supposedClass.methods, cpoolentry.methodSignature)

As.signature = m.signature

As.kind = kindOfShadow((>u, s.signature)

As.modifiers = m. modifiers

As.fromCIass = m.fromClass

As.start = b

As.end = e

As.mungers = I

229

newShadowCE,/7i,irt5,fe,^,/)=5 if

(ins = getf i e l d iVins = putf i l e d iVins = get s t a t i c iVins = put s t a t i c i)

AJT. = "E.javaEnvkonment

Ac = yE(m.fromClass)

Acpool = c.constantPool

Acpoolentry = cpool(i)

A/ = retrieveF (cpoolentry.supposedCIass. fields, cpoolentry.fieldSignature)

< As.signature = /.signature

As.kind = kmdOiShatiow (ins, s.signature)

As.modifiers = /.modifiers

As.fromClass = /.fromClass

As.start = b

As.end = e

As.mungers = I

35. The function onelsDynamic returns true if one of the given mungers has a pointcut test different of

a l w a y s :

onelsDynamic : (ShadowMunger) - l i s t —> Boolean

onelsDynamic([])= f a l s e

onelsDynamic(/)= t r u e if head(l).pointcutTest ^ a l w a y s

onelsDynamic(/)= onelsDynamic(tail(/)) if head(l).pointcutTest = a l w a y s

36. The function preShadowing takes an environment and a method and returns the given environment

and method but with the execution shadow wrapped by impdepl mnemonics and a list containing

this shadow:

230

preShadowing : Environment*.Method--> EnvironmentxMethodx {Shadow) -list

preShadowing(£,m) =(£',m',l) if

k = lastNum lnst(m. code)

Am'.code(i+ 1) = m.code(i),Vi e Dom(m.code)

Am'.code(O) = impdepl

Am'.code(k + 2) = impdepl

A/ = [enclosingShadow(m)]
<

AJ"E = 'E.javaEnvironment

Ac = JT,(m.fromClass)

Acl = c[methods<— ChangeMethods(c.met/iods,m,ra')]

AJT.I = yE[m.fromClassH-> cl]

A£' = £[/avafjnvironment<— _7£1]

37. The function shadowing takes an environment, a method, a program counter and a list of shadows

and returns the environment and the method with all the shadows (except the execution shadows

that are taken into account by the preShadowing function) wrapped by impdepl mnemonics and

enrich the given shadows list by those new shadows. The function islnstShadow used returns true if

the given instruction corresponds to a shadow. The wrapping starts from the given program counter:

sbadomng-.EnvironmentxMethod*.ProgramCounter x [Shadow) -list—* EnvironmentxMethodx {Shadow) -list

shadowing(£,m,/>c,/) =shadowing(£,m,/?c+l,/)

if -iislnstShadow(£,m,m.code(/;c)) Apc^ lastNumlnst(m.code)

shadowing(T,,m,pc,l) =shadowing(£',w',pc+3, l::newShadow(£,w,m.code(pc)),pc,pc+2,[]))

if islnstShadow(£,w,/n.code(pc)) A pc ^ lastNumlnst(m.codeOc))A insertlmpdep1(£,»t,/?c)=(2:',m')

shadowing(£,m,/>c,/) =(£,w,/)if -JslnstShadoweE,m,m.codeO?c))A pc=lastNumlnst(m.code(pc))

shadowing(£,/n,pc,/)=(£',/«',l::newShadow(infoOf('E,w,m.code(/7c)),pc,pc+2.[]))

if islnstShadow(£,m,w.code(pc)) A /?c=lastNumlnst(m.code(/?c))A insertlmpdep1CE^n,pc)=(£',w')
38. The function signatureAspectOf returns the signature of the method "aspec tOf" of the advice

231

aspect:

signatureAspectOf: Advicelnfo -* MethodSignature

signatureAspectOf(ad) = ms if

ms.name = "aspectOf ",

* Ams. argumentsType= [],

Ams.resultiype =ad. fromClass

39. The following function storeCode takes a shadow, a method, a list of types (initially argument

types of the shadow) and a natural number that represents the current maximum length of the method

local variables and returns a list of instructions. This maximum is needed in order to generate store

instructions in order to put the shadow arguments amd its target on free places in the method local

variables. If the shadow has its arguments on the stack (n2(s.kind) = fa lse) , the function returns

only store instructions in order to store the arguments and the target in temporary variables. If the

shadow doesn't have its arguments on the stack, the function returns load and store instructions

because we need to load the arguments from their original emplacement in the local variables table

and restore them in temporary variables.

StoreCode: MethodxShadowx {Type) - l i s t x Nat—> [Instruction) - l i s t

storeCode(/n,j,[]snaxLocals)=as tore_maxLocals

%2(s.kind) = t r u e

AhasTarget(s,m)

StoreCode(m,j,[],maxLocals)=aload_0::as tore_ntaxLocals

n2(s.kind) = f a l s e

AhasTarget(s,m)

storeCode(w,j,[]jnaxLocals)=[] if-> hasTarget(j,m)

if <

if <

232

if <

StoreCode(m j,l::tjnaxLocals)= i s tore_maxLocals::S{oreCode(m,s,l,nuuKLocals+l)

isPrimitive(f)
if {

Ait2(s.kind) = t r u e

S\oreCode(m j J::tjnaxLocals)=astore_mcuLocals::S\oreCode(mj J jruixLocals+l)

{ -.isPrimitive(f)

An2(s.kind) = t r u e

storeCode(m,j,/::r,maxLoca/5)=iload_(length(/)+l)::

i s t o r e_maxLocals: :storeCotie(m,sJ,maxLocals+1)

isPrimitive(f)

AJI2 (s.kind) = f a l s e

AhasTarget(j,m)

storeCode(m,j,/::f,/naxL£»ca/i)=iload_(length(/))::

i s tore_maxLocals::S\oreCo6e(m,s,l,nuvcLocals+1)
t

isPrimitive(f)

/\Tt2(s.kind) = f a l s e

A->hasTarget(s,m)

storeCode(OT,j,/::i,maxL£>ca/j)=aload_(length(/)+l)::

astore_nuvcLocals::S\oreCo(ie(in,s,lsnaxLocals+l)

-iisPrimitive(f)

An2(s.kind) = f a l s e

AhasTarget(j,w)

if <

if <

233

if <

StoreCode(m,j,/: :t ,maxLocals)=a 1 oad_(length(O)::

a s t o r e_maxLocals: :StoreCodie(m,s,l,maxLocals+1)

-iisPrimitive(f)

An2(s.kind) = f a l s e

A->hasTarget(j,/n)

40. The function trans takes a branching JVML instruction, a natural number indicating the translation

path in the the branching instruction in the code , and another number that indicates from which

address, the translation begins:

t rans: JVMLInstxNatxNat-^JVMLInst

\rar\S(ins,i,pc)=goto adr1 if

ins = goto adr

A({adr < = pc) A {adr' = adr)) V {{adr > pc) A {adr1 = adr+i))

\rar\S(ins,i,pc)=if eqadr1 if
f

ins= i f eq adr

A{{adr <= pc) A {adr1 = adr)) V {{adr > pc) A {adr1 = adr + i))

trans(inj,(,pc)=i f n e adr1 if

ins = i f ne adr

A{{adr <= pc) A {adr1 = adr)) V {{adr > pc) A {adr1 = adr+i))

41. The function translate takes a code, a natural number indicating the translation path in the the

branching instructions in the code , and another number that indicates from which address, the

translation begins:

translate : Codex Natx Nat-* Code

translateCc/.pc)^ if

c'(k)=c(k) V k e Dom(c) A -. branch lns(c(*))

c'(fc)=trans(c(A:),;,/>c) V k e Dom(c) A branchlns(c(/t))

234

APPENDIX III: AJSAOP Semantics Utility Functions

1. The function containProceed takes around expression and returns true if this expression contains

proceed. Otherwise, it returns false.

containProceed : ExpAr -> Boolean

containProceed(e')=

false ife' = c V e1=x;

true if e1 = proceed;

containProceed(e',) v containProceed(e2) if e' = e\ e'2;

containProceed(e',) v containProceed(e'2) if e7 = e\;e'2;

containProceed(e',) v containProceed(e'2) if e' = let rec f x = e\ in e2,

* containProceed^vcontainProceed^) if e'= let x = e, ine'2;

containProceed(e',) v contain Proceed(e2) v containProceed(e'3)

if e' = if e\ then e'2 else e'3;

contain Proceed(e',) if e' = ref e\;

containProceed(e',) if e1 =! e\;

containProceed(e',) v containProceed(e2) if e' = e\ := e2 .

2. The function \app takes an expression (the function name of an application expression), a type, a set

of tags, and a sequence of defined advices and returns a sequence of applicable advices:

lapp '• Exp x Type x TagSet x AdvSeq —•* AdvSeq

'app\^i t j t, S)=

e if s = e;

' fappfoV'5') if (J = as>)A -•matchJpCall(e,v,a.pcd);

fapp(e,T,r,/) if (s = as1) A matchJpCall(e,T,f,a.pcd).

3. The function ^assign takes an expression (the left hand side of an assignment operator), a type, a set

235

of tags, and a sequence of defined advices and returns a sequence of applicable advices:

^assign '• Exp x Type x TagSet x AdvSeq —> AdvSeq

'assigrSfii T j ' i s)=

e ifj = e;

(1anign(e,T,t,s') if (s = as1) A -imatchJpSet(e,v,a.pcd);

iassign{e,l,t,s?) if (s = as1) A matchJpSet(e,T,r,a.pcd).

4. The function f</ere/ takes an expression (the argument of a dereferencing operator), a type, a set of

tags, and a sequence of defined advices and returns a sequence of applicable advices:

^deref '• Exp x Type x TagSet x AdvSeq —»AdvSeq

Ueref(e,X,t,s)=

e ifj = e;

* Uenf(e,x,t,tf) if (5 = a /) A ->matchJpGet(e,T,r,a.pcd) ;

Ueref{e,l,t,s') if (J = as1) A matchJpGet(e,T,/,a.pcd).

5. The function M takes a type and a mapping from region to a set of tags and returns a set of tags: M

: Type x (Region—^TagSet) —» TagSet
m

M(t,m)=

m(p) if x = re/p(T,)Ap€Dom(m);
<

{} o t h e r w i s e .

6. The function matchJpCall takes an expression (the function name of an application expression),

a type, a set of tags, and a pointcut and returns true if the pointcut attributes match the join point

represented by the expression. Otherwise, it returns false:

matchJpCall: Exp x Type x TagSet x Pcd —> Boolean

236

matchJpCall(e, x, t, p)=

matchJpCall(e,v,/>l) A matchJpCall(e,x,f,/>2) if p = />iAp2;

matchJpCall(e,x,?,pi) V matchJpCall(e,x,f,p2) ifp = P\Vpi\

-.matchJpCall(e,T,f,/7i) \ip = ^pw
<

true if p.pkind = c a l l A p.var = e A p.typeScheme >~ x;

true if p.pkind = df low A matchJpCall(e,T,r,p.pcd2) A p.taget;

false o t h e r w i s e .

7. The function matchJpGet takes an expression (the argument of a dereferencing operator), a type, a

set of tags, and a pointcut and returns true if the pointcut attributes match the join point represented

by the expression. Otherwise, it returns false:

matchJpGet: Exp x Type x TagSet x Pcd —> Boolean

match JpGet(e, x, t, /?)=

matchJpGet(e,v,/?i) A matchJpGet(e,x,f,/72) ttp = p\^pr,

matchJpGet(e,x,r,pi) v matchJpGet(e,x,r,p2) i fp = piV/?2;

-imatchJpGet(e,x,r,pi) ifp = ->p\',

* true if p.pkind = g e t A p.var = e A p.typeScheme >- x;

true if p.pkind = df low A matchJpGet(e,x,/, p.pcd2) A

ptag € f,

false o the rwi se .

8. The function matchJpSet takes an expression (the left hand side of an assignment operator), a type,

a set of tags, and a pointcut and returns true if the pointcut attributes match the join point represented

by the expression. Otherwise, it returns false:

matchJpSet: Exp x Type x TagSet x Pcd —> Boolean

match JpSet(e, x, t, p)=

237

matchJpSet(e,T,r,/?i) A matchJpSet(e,v,p2) if p = p\Apr,

matchJpSet(e,T,r,/?i) v matchJpSet(e,v,p2) if p = p\Vpr,

-.matchJpSet(e,t,f,pi) if p = ->py,

* true if p.pkind = se t A p. var = e A p.typeScheme y x;

true if p.pkind = d f low A matchJpSet(e,T,/, p.pcd2)

p-tag 6 t;

false o t h e r w i s e .

9. The function searchTagCall takes an expression (the function name of an application expression),

a type, a set of tags, and a sequence of defined advices and returns a set of tags:

searchTagCall: Exp x Type x TagSet x AdvSeq —> TagSet

searchTagCall(e, x, /, s)=

\ {} ifs = e;

I searchTagCallPcd(e,x,r,a.pcd)usearchTagCall(e,x,ry) if (s = as')-

10. The function searchTagCallPcd takes an expression (the function name of an application expres­

sion), a type, a set of tags, and a pointcut and returns a set of tags:

searchTagCallPcd : Exp x Type x TagSet xPcd -» TagSef

searchTagCallPcd(e, x, t, p)=

238

searchTagCallPcd(e,T,f,/>i) U searchTagCallPcd(e,x,r,p2) i fp = p\f\pi\

searchTagCallPcd(e,T,f,pi) u searchTagCallPcd(e,x,?,/?2) if p = p\Vp2\

searchTagCallPcd(e,t,<,pi) i fp = —.pi;

{} ifp.Jc/ndodflow;

<

{p.tag} if p.kind = d f low A matchJpCall(e,x,r ,p.pcd,) A

ppcdt.kind<> d f low;

{p.tag} usearchTagCallPcd(e, v,/?.pcd,) if p.kind = d f low A matchJpCall(e,x,f ,p.pcd,) A

p.pcdi .kind= df low.

11. The function searchTagGet takes an expression (the argument of a dereferencing operator), a type,

a set of tags, and a sequence of defined advices and returns a set of tags:

searchTagGet: Exp x Type x TagSet x AdvSeq —• TagSet

searchTagGet(e, x, t, s)=

{} i fs = e;
<

searchTagGetPcd(e,T,r,a.pcd)usearchTagGet(e,x,f,5/) if (s = as').

12. The function searchTagGetPcd takes an expression (the argument of a dereferencing operator), a

type, a set of tags, and a pointcut and returns a set of tags:

searchTagGetPcd : Exp x Type x TagSet xPcd -> TagSet

searchTagGetPcd(e, x, t, p)=

239

searchTagGetPcd(e,T,f,pi) u searchTagGetPcd(e,x,f,p2) if p = p\^pr,

searchTagGetPcd(e,T,/,/7i) u searchTagGetPcd(e,x,f,/>2) tfp = P\Vpi\

searchTagGetPcd(e,-c,?,pi) i fp = -> p\;

{} if p.kindo dflovi;
<

{p.tag} i f p.kind= d f l o w A matchJpGet(e,x,?,/7.pcd]) A

p.pcdi .kindo d f low;

{p.tag} u searchTagGetPcd(e, x,t,p.pcdx) i f p.kind= d f low A matchJpGet(e,x,f ,p.pcd,) A

p.pcdl .kind= df low.

13. The function searchTagSet takes an expression (the left hand side of an assignment operator), a

type, a set of tags, and a sequence of denned advices and returns a set of tags:

searchTagSet: Exp x Type x TagSet x AdvSeq —> TagSet

searchTagSet(e, x, /, s)=

{} ifs = e;
<

searchTagSetPcd(e,x,f ,a.pcd) u searchTagSet(e,x,f,/) if (s = as')-

14. The function searchTagSetPcd takes an expression (the left hand side of an assignment operator),

a type, a set of tags, and a pointcut and returns a set of tags:

SearchTagSetPcd : Exp x Type x TagSet xPcd—> 7agSef

searchTagSetPcd(e, x, r, p)=

240

searchTagSetPcd(e,v,/?i) u searchTagSetPcd(e,x,f,p2) if p = p\^pi\

searchTagSetPcd(e,t,/,/?i) U searchTagSetPcd(e,v,/?2) \fp = p\Vpi;

searchTagSetPcd(e,T,f,/>i) i fp = ->p\;

{} if p.kindo df low ;
<

{ptag} if p.kind= df low A matchJpSet(e,v ,p pcd}) A

p.pcdx .kind <> df low;

{p.tag}usearchTagSetPcd(e,x,r,p-pcdx) if p.kind = d£low A matchJpSet(e,v,ppcdx) A

p.pcdx .kind = df low.
i.

15. The function TypeOf takes a constant and returns its type scheme:

TypeOf: Const —> TypeScheme

TypeOf(c)=mr if c = n

TypeOf(c)=wm7 if c = ()

TypeOf(c)=bool if c = true V c = f a l s e

241

