
Multiobjective Optimization of Building Design Using Artificial Neural

Network and Multiobjective Evolutionary Algorithms

Laurent Magnier

A Thesis

in

The Department

of

Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Building Engineering) at

Concordia University

Montreal, Quebec, Canada

February, 2008

© Laurent Magnier, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63229-1
Our file Notre reference
ISBN: 978-0-494-63229-1

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

Multiobjective Optimization of Building Design Using Artificial Neural Network and

Multiobjective Evolutionary Algorithms

Laurent Magnier

Building design is a very complex task, involving many parameters and

conflicting objectives. In order to maximise the comfort and minimize the environmental

impact, multiobjective optimization should be used. While some tools such as Genetic

Algorithms (GA) exist, they are very seldom used in the industry, due to the large

computational time they require.

This thesis focuses on a specific approach called GAINN (Genetic Algorithm

Integrating Neural Network), which combines the rapidity of evaluation of Artificial

Neural Networks (ANN) with the optimization power of GAs. The thesis concentrates on

a better handling of multiple objectives, in order to efficiently exploit the methodology

and increase its accessibility for the non-expert. First, a Multiobjective Evolutionary

Algorithm (MOEA), NSGA-II, has been selected and programmed in MATLAB. Then,

two new MOEAs were developed, specifically designed to take advantage of GAINN fast

evaluations. These two MOEAs have proven to be more efficient than NSGA-II on

benchmark test functions, for a comparison based on a maximum runtime.

In a second part of this thesis, developed MOEAs were used inside GAINN

methodology to optimize the energy consumption and the thermal comfort in a residential

iii

building. This optimization was successful, and enabled significant improvements in

terms of energy consumption and thermal comfort. It also enabled to illustrate very

clearly the relation between these two objectives. This optimization however highlighted

two limitations regarding the ANN, the number of training cases and the accuracy in the

vicinity of optimal solutions. Finally, the developed algorithms were applied on a past

optimization study, in order to highlight the improvements added to GAINN

methodology by the use of MOEA.

IV

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Laurent Magnier

Entitled: Multiobjective optimization of building design using Artificial Neural Network and Multiobjective

Evolutionary Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Building Engineering)

complies with the regulations of the University and meets the accepted standards with respect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Supervisor

Approved by

Chair of Department or Graduate Program Director

20

Dean of Faculty

ACKNOWLEDGEMENTS

The author first wants to acknowledge the constant support of his supervisor, Dr.

Haghighat. Thank you for your guidance, for the research atmosphere you created, and

for the autonomy you gave me, while providing essential advices in very crucial points of

my thesis. You did not only make me do research, you taught me what research is, and

you made me become a researcher. All the research skills I have now come from your

guidance; and without you, this thesis could have never been accomplished.

I also want to thank several persons from Ecole Nationale des Travaux Publics de l'Etat,

who helped me make this Master feasible. Thanks to Dr. Michel and Dr Guarracino for

their scientific advices, and thanks to Mr Royer for his constant and generous help in

solving administrative problems.

I want to acknowledge as well Liang Zhou and Jerome Conraud for their valuable help in

my research. I also want to acknowledge the support of NRC-IRC-Twin House project

research group for the data and information provided. Special thanks to Marianne

Manning whose advices made the building simulation feasible.

Many thanks go to my colleagues and friends in Dr Haghighat's team, and to Alexandre

Hugo and to Sina Mesghali, who made my Master studies a great learning in so many

more aspects than only science. Thanks for your support and for the atmosphere you

created that made my studies a real pleasure. I also want to thank my two families, the

one in France and the one here, for their constant support and help.

Finalement, merci a Gabrielle Bergeron-Brule, sans quije ne serais pas la aujourd'hui.

v

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiv

ACRONYMS xv

NOMENCLATURE xvii

1. INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Research Objectives 6

2. LITERATURE REVIEW 8

2.1 Literature Review on Optimization 8

2.1.1 Foreword 8

2.1.2 Gradient-based and Gradient-free Algorithms 9

2.1.3 Genetic Algorithms 11

2.1.4 Artificial Neural Networks 14

2.1.5 Summary Regarding Building Apllications 18

2.2 GAINN Methodology 19

2.2.1 Description of GAINN 19

2.2.2 Literature Review on GAINN 20

2.2.3 Conclusion 22

vi

3. BASE MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 24

3.1 Multi-Objective Evolutionary Algorithms 24

3.1.1 Pareto Optimality 24

3.1.2 Multiobjective Evolutionary Algorithms 27

3.2NSGA-II 29

3.2.1 General Description of NSGA-II and Pseudo-code 29

3.2.2 Non-dominated-and-crowding Sorting and Selection 30

3.2.3 NSGA-II Programming 33

3.3 Validation of the NSGA-II programmed 34

3.3.1 Testing Methodology 34

3.3.2 Results 36

3.3.3 Discussion 39

4. DEVELOPMENT OF MULTIOBJECTIVE GENETIC

ALGORITHMS 41

4.1 Non-dominated Sorting Genetic Algorithm for Integrated Neural Network

(NSGAINN) 42

4.1.1 General Description and Pseudo-code 42

4.1.2 Salient Modifications Compared to NSGA-II 44

4.1.3 Discussion 46

4.2 Poly-objective Looped Algorithm using Genetics and an Uncompleted Extinction

(PLAGUE) 48

4.2.1 General Description and Pseudo-code 48

vii

4.2.2 Main Aspects of PLAGUE Behaviour 50

4.2.3 Discussion 52

4.3 Comparisons between NSGA-II, NSGAINN, and PLAGUE 53

4.3.1 Testing Methodology 53

4.3.2 Results 58

4.3.3 Discussion 65

4.4 Conclusion 67

5. MAIN CASE STUDY: OPTIMIZATION OF A RESIDENTIAL

BUILDING 69

5.1 Description of the Optimization Problem 69

5.1.1 Overview of the Optimization 69

5.1.2 Optimization Methodology 71

5.1.3 Metrics used for Objective Evaluations 75

5.1.4 Study Parameters 77

5.2 Building Simulation 82

5.2.1 TRNSYS Simulation 852

5.2.2 Validation of the Model 85

5.2.3 Discussion 88

5.3 Artificial Neural Network Approximation 88

5.3.1 Parametric Runs 88

5.3.2 Artificial Neural Network Training 89

5.3.2 Artificial Neural Network Validation 91

viii

5.3.3 Discussion 94

5.4 MOEA Optimization 96

5.4.1 Optimization Set-up 96

5.4.2 First Optimization 97

5.4.3 Second Optimization 101

5.4.4 Verification of Results using TRNSYS 104

5.5 Conclusion 105

6. SECOND CASE-STUDY: THREE-OBJECTIVE OPTIMIZATION OF A

SCHOOL 108

6.1 Description of the Design Problem 108

6.1.1 Presentation of the Building 109

6.1.2 Optimization Objectives 110

6.1.3 Optimization Variables I l l

6.1.4 ANN Training and Validation 112

6.2. Optimization Search 114

6.2.1 Methodology 114

6.2.2 Comparisons between PLAGUE'S Solution Set and Conraud's Solution 116

6.3 Discussion 118

6.3.1 In Terms of Optimization 118

6.3.2 In Terms of Range of Solutions and Understanding of the Problem 119

6.3.3 In Terms of Accessibility 120

6.3.4 In Terms of Reliability 121

ix

6.3.5 In Terms of Attractiveness 122

7. CONCLUSION, LIMITATIONS, AND FUTURE WORK 123

7.1 Concluding Remarks on the Present Work 123

7.2 Limitations and Future Work 125

7.2.1 Regarding the Main Case Study 125

7.2.2 Regarding Developed Algorithms 126

7.2.3 Regarding GAINN Methodology 128

REFERENCES 131

APPENDICES 139

Appendix A: MOEA Codes 139

Appendix B: Simulated Binary Crossover and Polynomial Mutation 176

Appendix C: Code used for GenOpt Runs 178

Appendix D: ANN Manual Reconstruction Code 186

Appendix E: Manually Constructed and Random Designs 188

x

LISTE OF FIGURES

Figure 1: Basic Genetic Algorithm pseudo-code 12

Figure 2: Artificial neural network schematic view 15

Figure 3: One neuron in ANN 15

Figure 4: Workflow of GAINN methodology 20

Figure 5: Example of a Pareto Front (Deb, 2002) 25

Figure 6: Convergence and spreading of a solution set 26

Figure 7: Pseudo-code of NSGA-II 30

Figure 8: Non-dominated-and-crowding selection 32

Figure 9: Illustration of the Y metric (from Deb, 2002) 36

Figure 10: Illustration of the Ametric (from Deb, 2002) 36

Figure 11: Mean of convergence metric Y for programmed and original NSGA-II 37

Figure 12: Mean of convergence metric Y for programmed and original NSGA-II 38

Figure 13: Mean of diversity metric A for the programmed and the original NSGA-II... 38

Figure 14: Solutions sets for POL, SCH, ZDT4, and ZDT6 Functions respectively 39

Figure 15: Pseudo-code of NSGAINN 43

Figure 16: Probabilities for family sorting 45

Figure 17: Pseudo-code of NSGAINN 49

Figure 18: Illustration of a dominated space 56

Figure 19: Solutions sets for ZDT6 function 58

Figure 20: Solution sets for DTLZ1 function 59

Figure 21: Comparison of average dominated space for ZDT functions 60

xi

Figure 22: Comparison of average dominated space for DTLZ functions 60

Figure 23: Comparison of maximum dominated space for ZDT series 61

Figure 24: Comparison of maximum dominated space for DTLZ series 62

Figure 25: Comparison of number of evaluation for ZDT suite 64

Figure 26: Comparison of number of evaluation for DTLZ suite 64

Figure 27: Layouts of the first and second floors of the building studied 71

Figure 28: Workflow of GAINN methodology 72

Figure 29: Illustration of LHS for a 2-variable problem 74

Figure 30: Illustration of the HVAC schedule 80

Figure 31: TRNSYS model view 83

Figure 32: Screenshot of the type 56 model 84

Figure 33: Simulated and measured daily heating consumption 86

Figure 34: Simulated and measured daily cooling consumption 87

Figure 35: Convergence history of ANN training with Bayesian regularization 90

Figure 36: Linear regression of ANN predicted cooling consumption on targets 90

Figure 37a: Linear regression of ANN predicted heating consumption on targets 92

Figure 37b: Linear regression of ANN predictedcooling consumption on targets 92

Figure 37c: Linear regression of ANN predicted fan consumption on targets 92

Figure 37d: Linear regression of ANN predicted average absolute PMV on targets 92

Figure 37e: Linear regression of ANN predicted Ndis on targets 92

Figure 38: Results of the first optimization 98

Figure 39: Optimization results compared to base, random, and manually constructed

cases 99

xii

Figure 40: Results of the second optimization 102

Figure 41: Cross-sectional view of the ventilation system (from Conraud 2008) 109

Figure 42: Bird view of the model (adapted from Conraud 2008) 110

Figure 43: 3-D view of the solution sets 116

Figure 44: Thermal comfort index Vs energy consumption 117

Figure 45: Thermal comfort index Vs daylight factor index 117

Figure 46: Daylight factor index Vs energy consumption 118

xin

LISTE OF TABLES

Table 1: Parameters for NSGA-II tests (Deb, 2002) 34

Table 2: Comparison of convergence and spreading metrics for programmed and original

NSGA-II 37

Table 3: Parameters used for comparison of NSGA-II, NSGAINN, and PLAGUE 54

Table 4: Summary of test functions and variables 55

Table 5: Comparison of average dominated space 59

Table 6: Maximum dominated space result for the three MOEAs 62

Table 7: Number of evaluations for the three MOEAs 63

Table 8: Ranges of variables used for optimization 81

Table 9: List of components used in theTRNSYS model 82

Table 10: Description of zones in type 56 84

Table 11: Statistical repartition of relative errors in ANN validation 91

Table 12: Variables ranges in optimal and base designs 100

Table 13: Variable ranges in optimal solutions 103

Table 14: Study parameters and their upper and lower bounds (from Conraud 2008).... 112

Table 15: Relative errors between building simulations and ANN predictions (Conraud

2008) 113

xiv

ACRONYMS

ANN

CS

CFM

DTLZ

IPS

Artificial Neural Network

Conraud's solution

Cubic Feet by Minute

Series of MOEA test functions (initials of their creators Deb, Thiele,

Laumanns, and Zitzler)

Ideal Pareto Set

FS1 (FS2) Family Sorting 1 (respectively 2)

GA Genetic Algorithm

GAINN Genetic Algorithm Integrating Neural Network

GHG Green House Gas

LEED Leadership in Energy and Environmental Design

LHS Latin Hypercube Sampling

MOEA Multiobjective Evolutionary Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm

NSGAINN Non-dominated Sorting Genetic Algorithm for Integrated Neural Network

PLAGUE Poly-objective Looped Algorithm using Genetics and an Uncompleted

Extinction

xv

PMV Predicted Mean Vote

PPD Percent People Dissatisfied

PSS PLAGUE'S Solution Set

RSA Response Surface Approximation

SSE Sum of Squared Errors

SSW Sum of Squared Weights

TRNSYS Transient Energy System Simulation Tool

ZDT Series of MOEA test functions (initials of their creators Deb, Thiele, and

Zitzler)

xvi

NOMENCLATURE

CSP Cooling set point

Efan Fan energy consumption

ECooi Cooling and dehumidifying energy consumption

Eheat Heating (furnace) energy consumption

HSP Heating set point

FDMID Thermostat delay before end of occupancy in middle season

FDS Thermostat delay before end of occupancy in summer

F D W Thermostat delay before end of occupancy in winter

NDJS Annual cumulative t ime with |PMV|a v g >0.5

|PMV| a v g Annual average of the absolute P M V in the house

R H M I D Relative humidi ty set point in middle season

R H S Relative humidi ty set point in summer

R H W Relative humidity set point in winter

SDMID Thermostat delay before occupancy in middle season

SDS Thermostat delay before occupancy in summer

S D W Thermostat delay before occupancy in winter

T C K Thickness of concrete in interior floors

V R R Ventilation rate in recirculation mode

V R C Ventilation rate in cooling mode

V R H Ventilation rate in heating mode

CQ

(kWh)

(kWh)

(kWh)

CQ

(minutes)

(minutes)

(minutes)

(hours)

(minutes)

(minutes)

(minutes)

(centimeters)

(m/s)

(m3/s)

(m3/s)

xvn

Y Metric used to study the convergence of a solution set

WF1N First floor north window size (m)

WF1S First floor south window size (m)

WF2N Second floor north window size (m)

WF2S2 Second floor south west window size (m2)

WF2S1 Second floor south east window size (m2)

A Metric used to study the spreading of a solution set

xvm

CHAPTER 1

INTRODUCTION

1.1 Background

Global warming is likely to become the most important phenomenon of the 21st century,

from an environmental as well as economical and social point of view. Most studies agree

on an average increase of temperature of several Celsius degrees, on flux of millions of

people, on rise of food prices, and on increase of numbers and frequencies of

environmental disasters such as storms or floods. According to the great majority of

experts, this global warming is caused by green house gases (GHG) such as CO2, whose

emissions are caused to a great extent by human activity (IPCC, 2007).

In Canada, buildings use 30% of the total energy consumption and are responsible for as

much as 20% of GHG emissions (NRCan, 2005). The building industry has therefore a

significant impact on global warming and is a priority in reducing the overall energy

consumption. Accordingly, new constructions practices are rising to handle the energy

consumption problems and many energy ratings (the most important being LEED (2007))

have been developed to assess the environmental impact of a building. Some

governmental programs and regulations are also created to incite building owners to

reduce their environmental print. The effect of these strategies and initiatives is however

too little to yet have a significant impact on GHG emission.

1

One salient aspect of the fight against global warming is the relative inertia of the

population, based on the fact that people are generally willing to reduce their

environmental impact but still want to maintain their habits and comfort. Building

science is primarily concerned about this aspect since no one would live in a very green

but very uncomfortable house. Looking in more details at the whole concept of

sustainable building, we realize that a building which pretends to be sustainable has to be

at the same time environmental-friendly, comfortable, and affordable. These three aspects

are essential and none of them can be ignored without compromising the concept of

sustainability. The combination of these three very conflicting objectives however makes

building design a highly complex task. A technology, strategy or design concept must be

studied as a multiobjective problem. On the other hand, it also has to be extremely

efficient in order to comply with objectives and policies, and justify the time spent on a

project.

1.2 Problem Statement

Modern building design is a complex task, involving many different approaches,

parameters, and conflictive objectives. This complexity is furthermore combined with a

growing demand from both users and standards to have low energy consumptions, good

thermal comfort, indoor air quality, visual comfort, etc. Thermal comfort, particularly, is a

priority in residential buildings and many studies have proved that it can have a

significant impact on productivity in working areas (Fanger, 2000). On the regulations

side, standards are more and more detailed in terms of energy consumption or

2

construction requirements, and some of them involve the use of new technologies such as

photovoltaic panels or solar water heater (RT2005 in France for instance (2005)). Finally,

the large amount of money and time spent for new buildings gender very high

expectations regarding the final building quality.

Despite all this, most designers continue to use traditional design techniques for building

design. Practices are generally based on rules of thumb, on simulations of a limited

number of cases, or sometimes on variable-by-variable parametric runs. Although widely

used, these methods have many drawbacks. First, a rather limited range of possibilities is

covered, studied, and finally proposed to the decision maker. The design is also limited

by engineer assumptions, which is furthermore harmful since most rules of thumb come

from times when the environmental impact was not an issue, and when green building

science was not fully developed. More importantly, the designs coming from that kind of

approach are very unlikely to be optimal. The design process is strongly limited by the

small number of cases simulated (if any), which cannot handle the complexity of

interactions between parameters and objectives of modern constructions. The resulting

design may be relatively good, but has almost no chance to be the best possible one, and

therefore has little chance to have a significant impact on GHG reductions.

Indeed, the use of a real optimization tool is the only way to ensure optimal designs.

Tools such as Genetic Algorithms have proven their efficiency in many academic studies,

but are almost never used in the industry. This is further regrettable since, when

simulations are used, the relatively long time spent to create the simulation model is not

fully exploited. The hours and sometimes days dedicated to create a decent model are

3

wasted by the lack of a true optimization. Meanwhile, some optimization tools already

exist, and are sometimes readily available for building simulation (GenOpt for instance

(Wetter, 2001)).

Many reasons may explain why optimization techniques are so rarely used in the building

industry. The most likely reason is the very long computational time required by most

optimization tools. Genetic Algorithms for instance require thousands of evaluations to

reach optimal solutions. Simulation softwares, in turn, can provide accurate information

regarding the building behaviour, but require a significant time to run (up to several

hours). Therefore, a direct combination of GAs and time-expensive simulation tools

makes optimization a very time-consuming and unattractive process. This issue is an

extremely limiting aspect of building optimization, which needs to be overcome before

someone could expect to see optimization tools used regularly in the building industry.

A last problem encountered in building design is how to handle multiple conflictive

objectives. As described previously, a building study cannot be limited to one single issue

but needs to take into account many of them, the most common ones being the cost, the

energy consumption, and the indoor environment. The management of these different

issues is generally undertaken by engineers at the design stage, most of the time taking all

objectives except one as a constraint. Once again, this approach is not likely to find

optimal trade-offs, and cannot even be called multiobjective handling. Even in rare cases

where optimization algorithms are used, this problem remains, because the most

commonly used method to handle different objective is to aggregate them in a weighted-

sum and optimize it as a single objective. Once again, this cannot be called multiobjective

4

optimization, and this method suffers from assuming the importance of each objective a

priori. The weights used in the weighted-sum, set at the beginning of the study by the

engineer, give no final choice to building owner but rather assume what he would think

would be important, and propose him one single solution, argued to be optimal.

From this discussion, we can draw the following. First, building design is more and more

complex and plays a significant role in GHG emissions. In order to decrease the

environmental impact of buildings, while maintaining a good indoor environment,

multiobjective optimization tools should be used. Tools such as genetic algorithms are

available and are extremely efficient, but suffer from the high number of

evaluations/simulations required, which leads to very unattractive time costs in building

application. There is therefore a need for a multiobjective, rapid, efficient, and accessible

optimization tool, so optimization can start being used more widely in the building

industry. This would enable better designs, better handling of multiple objectives and

constraints, and hopefully energy reductions at a bigger scale than what currently

happens.

5

1.3 Research Objectives

The objective of this thesis is to improve the current optimization methodologies, in order

to make the optimization process more applicable for building design. The work will be

based on a methodology which combines artificial neural networks and genetic

algorithms to enable fast and accurate optimization. This methodology will be improved

by a better handling of multiple objectives, by the use of multiobjective genetic

algorithms. The developed methodology will then be tested on two case-studies and

results will be discussed. In details, this thesis will be based on the following steps:

• Study the optimization techniques currently available through a comprehensive

literature review, pointing out their respective assets and limitations. (Chapter 2)

• Focus on GAINN methodology, describe it, and study its assets and its current

limitations. Based on this study, explain why multiobjective optimization should be

added through the present thesis. (Chapter 2)

• Review multiobjective optimization techniques, analyse them, and find which

algorithm is the best one. Program this algorithm in MATLAB, and test it to verify

its reliability compared to the original algorithm. (Chapter 3)

• Create two multiobjective genetic algorithms specifically designed to take

advantage of GAINN fast evaluations, program them, and compare them with base

algorithm. (Chapter 4)

6

• Apply the whole methodology and developed algorithms to a first case study, for

the optimization of thermal comfort and energy consumption in a residential

building. (Chapter 5)

• Apply the optimization algorithms to a second case-study, in order to study the

improvement added to GAINN methodology by the use of multiobjective

optimization algorithms, comparing the results to the classical weighted-sum

technique. (Chapter 6)

• Discuss the limitations of the current work, and propose future work to overcome

them and/or improve the methodology. (Chapter 7)

7

CHAPTER 2

LITERATURE REVIEW

This chapter presents a comprehensive review of the optimization techniques currently

available. The chapter is divided into two parts. The first part details and discusses the

optimization concepts and available major algorithms. The second part focuses on a

specific approach called GAINN (Genetic Algorithm Integrating Neural Network),

studies its current limitations, and justifies the development chosen for this thesis.

2.1 Literature Review on Optimization

2.1.1 Foreword

From a mathematical standpoint, optimization is the process of maximizing (or

minimizing) a function f(X), possibly subject to several constraints, for a given number

and ranges of variables xnGX (Deb, 2001). In more practical terms, optimization refers to

finding the best possible configuration for a given problem. In building design, it may be

for instance finding the design that meets the regulations requirements and budget, while

offering the lowest energy consumption and providing the highest thermal comfort.

The first use of a real optimization tool in building engineering was investigated in 1968

by G. Neil Harper (Deb, 2001). Since then, optimization has gained interest and is now

8

frequently used, mostly in academic studies. One should however remain careful not to

confuse the term optimization, with a simple improvement. For instance, a sensitivity

analysis cannot be considered as an optimization. It may be able to find a better solution

regarding the objective studied but there is no guarantee and indeed little chance to find

the best solution. Indeed, the whole concept of best solution is not as straightforward as it

looks. As long as only one objective is involved, optimization can be defined as a simple

maximization or minimization. Dealing with multiple objectives at the same time makes

however the optimization definition much more complex, as will be described in the next

sections of this thesis.

A wide variety of optimization algorithms have been created and studied throughout the

last centuries. The first optimization techniques, like the Gauss steepest descent

developed in the 18l century, were based on pure mathematics. More complex techniques

have been later developed, and the first modern technique referred as optimization,

Dantzig's linear programming, appeared in the 1940's (Dantzig, 1949) and was used at

that time by the US military. Since then, a rising interest in optimization has led to the

development of dozens different algorithms used in a wide range of applications. The

major approaches will be discussed in the next paragraphs.

2.1.2 Gradient-based and Gradient-free Algorithms

Optimization algorithms are generally divided into two main categories: conventional

gradient-based and gradient-free methods (Deb, 2001). Gradient-based approaches

directly use mathematical tools to find optimal solutions. Some examples of gradient-

9

based algorithms are the Sequential Quadratic Programming (SQP) (Fletcher, 1979) and

the Hookes-Jeeves algorithms (Hooke and Jeeves, 1960). The working principle is that

from an initial value, the local gradient information is used to establish a direction of

search at each iteration, until an optimum is reached. This kind of algorithms only work

with objective functions which are twice differentiable or that can be approximated by

terminated first order or second order Taylor series expansion around the initial guessed

value (Deb, 2001). While this type of approach has been used in past studies such as the

optimization of heating system (House and Smith, 1995), or more recently for the

optimization of a cooling plant control scheme (Sun and Reddy, 2005), it suffers from

two major limitations.

First, gradient-based methods are prone to local extrema. Depending on the starting value,

they are likely to get trapped in the nearest local optimal value, missing the actual

optimum. Taking several different initial values could eventually be seen as a solution to

overcome this problem but it would provide little more guarantees, and may become a

pure random search (Wang and Jin, 2000). The second major limitation of gradient-based

approaches is that, as stated above, they only work with differentiable or at least

relatively smooth functions. As far as building phenomena are concerned, functions are

very often non-linear problems. Moreover, both discrete and continuous variables are

involved, which may lead to discontinuous outputs (Wetter and Wright, 2003; Lu et al.,

2005). Gradient-based methods are thus not suitable for most building applications. Since

Artificial Neural Network (ANN) outputs are generally highly non-linear functions,

gradient-based methods cannot either be combined with ANN.

10

The second and more modern school of optimization techniques, referred to as gradient-

free, relies on stochastic techniques rather than derivatives to determine the search

direction. This behavior allows the exploration of the whole search space, focussing only

on regions of interest. Unlike the techniques previously described, gradient-free

approaches can easily avoid local extrema and have proven their efficiency on

optimization problems where classical methods fail (Goldberg, 1989). Several different

algorithms from this school of optimization have been developed. A review of the

predominant ones used for building applications is detailed by Wetter and Wright (2004).

Between all gradient-based techniques, population-based techniques and more precisely

Genetic Algorithms are predominant and have proven their efficiencies in hundreds of

cases; they will therefore be discussed in more details.

2.1.3 Genetic Algorithms

Genetic Algorithm (GA) is an optimization technique developed by Holland (1975) in the

1970s and is based on Darwin's theory of evolution. GA's principle is simple, although

unusual. In a nutshell, each solution is referred as an individual, which may further

produce children, and on which an evolution mechanism is applied. GA has been used in

a wide range of studies, from medicine (Lahanas et al., 2003) to transportation

engineering (Syarif and Gen, 2003). Regarding building applications, GA are frequently

used, for the optimization of building thermal system design (Wright et al., 2002), the

optimization of HVAC controls (Huang and Lam, 1997; Lu et al., 2005), and the

minimization of a chiller energy costs (Chow et al., 2002).

11

The pseudo algorithm of GA is displayed in Figure 1, and can be described with the

following steps:

• First, a random population is created, where each individual represents a

candidate solution. Individuals are modelled as a set of parameters.

• At each generation, couples of individuals (referred as parents) produce new

solutions by gene-crossover and mutation (these new individuals are referred as

offspring)

• At the end of each generation, the candidate solutions are evaluated using a so-

called evaluation function (or objective function), representative of the objective

studied. For building applications, this function can typically be the energy

consumption.

• The last two steps operate until the termination criterion is reached (generally

based on the number of generations, or on the stagnancy of population fitness)

BEGIN

END

INITIALIZE population with random
solutions;
EVALUATE each
REPEAT
DO

1
2
3
4
5

END DO

UNTIL

SELECT

candidate;
{TERMINATION CONDITION is

parents;
RECOMBINE pair of parents;
MUTATE the resulting offspring;
EVALUATE new candidates;
SELECT individuals for the next

candi

satisf

date

ied)

generation

Figure 1: Basic Genetic Algorithm pseudo-code

12

As a gradient-free method, GA is able to deal with nonlinear functions, and to find global

optima without being trapped in local ones. Furthermore, it can handle real, discrete, or

even discontinuous variables, and be applied on noisy objective functions (Wright et al.,

2002; Huang and Lam, 1997). Regarding the efficiency, GA is recognized to enable very

detailed optimization and is capable of finding optimal or near optimal solutions using

less computational time than other algorithms (Sakamoto et al., 1999, Wetter and Wright

2003). Another quality of GA is that it can be used for true multiobjective optimization.

GA has been able to successfully handle multiple objectives, where other evolutionary

algorithms such as particle swarm optimization have failed (Srinivasan and Seow, 2003).

One last quality of GA is that it can perform very well when associated with response

surface approximation methods (Chow et al., 2002; Lu et al., 2005).

A main drawback of GA is the high number of calls to evaluation function. In building

applications, these evaluations are generally estimated by an external simulation program

such as CFD or other simulation softwares. If accurate results are required, each

evaluation can be time consuming, and thus the complete computational process becomes

extremely unattractive. For instance, for the two-objective optimization of building floor

shape, Wang et al. (2006) used an evaluation tool where each evaluation took 24 seconds

(CPU-time). In that case, the total optimization time, which is mainly due to evaluations,

was 68 hours. Based on a simple rule of three, one can expect that, using a simulation

software where each evaluation would take thirty minutes, a similar optimization would

result in a total optimization time of more than 6 months. Despite all its qualities, the use

13

of genetic algorithm is therefore strongly limited by the high number of evaluations it

requires. This shortcoming should be overcome before being able to take full advantage

of this technique.

2.1.4 Artificial Neural Network

Artificial Neural Network (ANN) is not an optimization method by itself. However, it is a

very efficient approximation method that can be used inside an optimization. ANN is a

Response Surface Approximation (RSA) technique, with an architecture based on the

human brain. It was first studied in the late 1940s and later developed during the 1980s.

An ANN is aimed to provide a fast and accurate approximation of a given system, based

on a set of inputs and outputs. It can be applied to any kind of systems, and is argued to

be able accurately simulate it, as long as training is sufficient. ANNs have been widely

and successfully used in a number of engineering studies, including building applications

(Yang et al., 2005; Pala et al., 2008).

The ANN architecture is based on the human brain neural network (Figure 2). The input

information passes through several layers of neurons, in which signal is processed, in

order to deliver the final output. More precisely, an ANN is composed of a layer of input

nodes (representing the system variables), a layer of output nodes (approximated results),

and at least one hidden layer connecting the input and output layers. Each node of a

hidden layer is connected to those of the previous and following layers, and computes a

specific output as a reaction of its inputs.

14

HIDDEN LAYERS

Figure 2: Artificial neural network schematic view

Each node of an ANN is a processing neuron, as depicted in Figure 3. The neuron

receives a signal (xt) from each neuron in the previous layers, and applies a specific

weight (w() on this signal. All signals are then added together and a transfer function is

applied to the weighted sum to generate the neuron's output (Y).

Where;
xt: is the neuron input
Wt is the weight
associated with the
input Xj
S is the weighted-
sum of inputs
f. is the transfer
function
Y is the neuron
outnut

Figure 3: One neuron in ANN

15

There is theoretically no limitation for the numbers of inputs and outputs, nor for the

number of neurons. In particular, several outputs can be simulated and ANNs are

therefore suitable for multiobjective purpose. Network complexity and especially the

number of neurons in hidden layers have a significant influence on the accuracy and

computational time. According to MATLAB instructions (2006), a two-layer neural

network using sigmoid transfer functions for the first layer and linear functions for the

second layer is able to approximate any function having a finite number of discontinuities.

The underlying concept of ANNs is learning. Once parameters such as the number of

layers, the number of neurons and activation functions are chosen, the network will learn

by itself how to approximate a given system by calculating the proper weights. This

process is called training, and requires a set of data containing inputs and related outputs.

This set of data has to be precise (often taken from experiments and/or validated

simulation programs), in sufficient quantity, and representative of the range of parameters

the ANN is supposed to approximate. Once a neural network is trained, it has to be tested

with a new set of data, different from the previous one. Data is processed by the ANN and

the resulting outputs should be as close as possible to the validated outputs. If the

differences between the ANN outputs and the base program/experiment's outputs are

lower than 5%, the ANN is validated.

16

Various methods can be used for training, with various efficiencies. The most commonly

used method is the back propagation method, which can be enhanced by using

Levenberg-Marquardt and Bayesian algorithms (MATLAB, 2006). The quality of the

training dataset is also crucial for the ANN's accuracy. Use of Latin Hypercube Sampling

or orthogonal sampling is generally recommended to generate a small but very

representative case sample (Lee et al., 2006)

Although the ANN is very widely used for approximation, it is not the only RSA

algorithm available. Other major techniques exist such as Kernel Recursive Least Squares

(Engel et al., 2004), or algorithms based on regression trees (Li et al., 2000). There is no

general agreement on which RSA technique is the most efficient. While several

comparison studies have been published (Simpson et al., 1998; Jin, 2005), there are no

strong conclusions on assets or drawbacks of each method since performances depend on

problems studied. Nonetheless, Artificial Neural Network appears to be amongst the most

reliable approximation models, both in term of efficiency and range of problems that can

be modeled. Moreover, due to its good acceptance in the scientific community, the ANN

is readily available in several computer programs, like MATLAB for instance.

17

2.1.5 Summary Regarding Building Applications

In building engineering, the optimization process can be applied either to the design of

the building (Conraud, 2008), for the settings of the HVAC system (Nassif et al. 2003), or

for ongoing optimization (Coffey, 2008). In any case, the optimization algorithm should

be fast, efficient, and reliable. Studying gradient-based algorithms, those display several

weaknesses, such as being limited to differentiable functions and being prompt to local

optimum (Deb, 2001). Though gradient-based algorithms are still used in some studies

(Sun and Reddy, 2005), gradient-free algorithms such as GAs are now often preferred

(Amirjanov and Sobolev, 2006). GAs have proven to be extremely efficient in terms of

optimization, and can handle multiple objectives (Wang et al. 2006). The shortcoming of

GAs is the very high number of evaluations they require, especially for multiobjective

optimization (Deb, 2001). Therefore, building optimizations using GAs either use very

small populations and numbers of generation (Caldas and Norford, 2002; Wetter, 2004),

or are based on very simplified models instead of using a complete simulation software

(Peippo et al. 1998). In both situations, the optimization can be significantly affected.

According to Conraud (2008), it is crucial to decrease the computational time associated

with GAs, in order to see optimizations more widely used by building designers.

18

2.2 GAINN Methodology

2.2.1 Description of GAINN

As explained above, GAs are very efficient tools for optimization. They are gradient-free

(thus having less chance to fall on local extrema), able to deal with non-linear objectives

functions and provide optimized results. The main drawback of this technique is the

computational time for reaching optimal solutions. This drawback becomes a serious

limitation for building applications since computer simulation programs such as

TRNSYS, ESP-r, or EnergyPlus can be time consuming to operate. Consequently, it is

necessary to find a way to reduce the evaluation time in order to take full advantage of

GA capabilities while keeping a reasonable optimization time.

GAESfN stands for Genetic Algorithm Integrating Neural Network, and is an interesting

though greatly unexploited approach to reduce optimization time while using GA. The

main idea of GAINN is to benefit from the rapidity of evaluation provided by the ANN as

well as the optimization power of the GA. The procedure is to first use an ANN to

approximate the system studied, and then use this ANN inside the GA as the objective

function. The outcome is a drastic reduction of the simulation time, while keeping an

acceptable quality and reliability in solutions.

The complete workflow of GAINN is illustrated in Figure 4, and is divided in three steps.

First, a base software or experimental set-up is used to generate a database of cases. Once

the database is created, it can be used to train and validate the artificial neural network.

The ANN is then integrated into the genetic algorithm as the evaluation function, so the

19

GA can run with almost instantaneous evaluation of individuals. The GA optimization

finally provides the optimal solution set, which can further be checked for accuracy using

the original simulation software.

Simulation
software /
Experi­
ments

Genetic
Algorithm Evaluation of individuals

VL
Verification

Artificial Neural
Network to be
trained

1L
Validated Artificial
Neural Network

Figure 4: Workflow of GAINN methodology

2.2.2 Literature Review on GAINN

The integration of GA and ANN is not a new idea. Such integration can be found as early

as 1993, applied for the optimization of plant growth (Morimoto, 1993). GAINN has later

been applied in various domains such as in chemical engineering (Nandi et al., 2002), or

20

for engine optimization (Kesgin, 2003). Focusing on building applications, GAINN has

been rarely documented. The first use of GAINN in building engineering was in 2002, for

the optimization of chillers control (Chow et al. 2002). This study introduced the

methodology to the building field, and proved its efficiency in terms of accuracy and

reduction of the total optimization time. Later, GAINN has been successfully applied in

other studies, such as Zhou (2007), combined with Computational Fluids Dynamics, and

Conraud (2008), combined with ESP-r.

According to the previous studies, GAINN methodology can be very efficient for

building applications. Due to the ANN evaluations inside the GA, a significant amount of

time can be saved, while keeping the optimization reliable. In Zhou (2007) for instance,

the total optimization time using GAINN was found 17 times lower than the optimization

time expected if CFD was directly used for GA evaluations. Regarding the accuracy of

the method, results can be trusted as long as the ANN is validated correctly. The use of

Latin Hypercube Sampling is recommended to create a small and representative database

for ANN training (Lee et al., 2006). Nonetheless, the approximation of some complex

issues such as visual comfort may be difficult to achieve. Conraud (2008) for instance,

had to use 25 times more training cases than what is generally recommended by the LHS

method to accurately train his ANN. Indeed, one main limitation of GAINN is that the

optimization relies on the ANN accuracy. If the ANN is not 100% accurate in the vicinity

of the optimal solution, results could be affected, and optimal solutions could be missed.

Another major drawback regarding how GAINN methodology has been applied so far is

the handling of multiple objectives. In the great majority of previous studies (with the

21

notable exception of Amanifard et al., 2008), multiple objectives were handled by using

aggregative weighted-sums. This method suffers from many limitations, such as being

dependent on stated assumptions and on the initial situation. It also provides no guarantee

to reach optimal solutions from a multiobjective point of view (Jain et al., 2005).

Finally, very theoretical improvements of GAINN methodology have been studied (Jin,

2005). These improvements belong to computer engineering and are beyond the scope of

this thesis; they will thus not be discussed in details. In a nutshell, one promising

mechanism is to include ANN training inside the optimization, with training data based

on the GA's current population (Nain and Deb, 2005). Though interesting, such approach

used for building applications would require a continuous linking between ANN, GA, and

the base simulation software, which is unpractical.

2.2.3 Conclusion

The GAINN methodology is a very promising approach for building optimization, and

provides equilibrium between accuracy and efficiency. To the author's opinion, the

methodology nonetheless requires more studies, and has been underexploited. The main

development to be added to GAINN methodology is a better handling of multiple

objectives, by the implementation of a true multiobjective genetic algorithm. Regarding

the efficiency, a true multiobjective optimization would no longer be dependent on stated

assumptions, nor on the initial situation. Another drawback of optimizations based on

weighted sum is that each run provides a single so-called "optimal" solution. A true

multiobjective optimization provides a curve or a surface of solutions, and can therefore

22

enable a better understanding of the problem, and give more flexibility to the decision

maker. Moreover, since much more solutions are provided, the methodology would more

efficiently exploit the time spent for training, compared to previous studies where one

single optimal solution was provided after days of calculation.

This thesis will therefore focus on the use of multi-objective optimization algorithms

inside GAINN. This development is expected not only to improve the optimization

efficiency but also to make the methodology closer to real-world scenarios and

sustainable issues. Finally, multiobjective optimization algorithms would more efficiently

exploit the assets of the methodology and therefore give a stronger justification to the

time spent for training. In a nutshell, it will make the methodology closer to industrial

needs and more attractive for potential users.

23

CHAPTER 3

BASE MULTIOBJECTIVE EVOLUTIONARY

ALGORITHM

3.1 Multi-Obiective Evolutionary Algorithms

This chapter reports a comprehensive review of multiobjective optimization. First, the

notion of Pareto-optimality will be presented. Then, the major multiobjective

optimization algorithms will be briefly discussed and a suitable base algorithm will be

chosen for the current study. This algorithm will be programmed and tested to validate its

efficiency, compared to the original version.

3.1.1 Pareto Optimalitv

The concept of Pareto optimality or non-dominance is the basis of multiobjective

optimization. This notion, originally proposed by F.Y. Edgeworth (1881) and later

generalized by V. Pareto (1896), can be described as follows:

For a multiobjective optimization problem of the form:

Minimize [fi(x), f2(x), ...,fk(x)J

Where xGF is a vector of decision variables (subject to several constraints), and;

fi are the objectives functions

24

A vector x is Pareto optimal if there does not exist any other vector y such that

fi(y)<f;(x) for all i and fj(y)<fj(y) for at least one j .

In other words, a vector is said to be Pareto optimal, or non-dominated, if there does not

exist any vector which could decrease some of its objectives, without increasing at the

same time at least one other objective.

Figure 5: Example of a Pareto Front (Deb, 2002)

The notion of dominance is crucial in multiobjective optimization. Two individuals do

not necessarily dominate each other, and a non-dominated individual should always be

regarded as the best of its kind. Therefore, Pareto-based optimization cannot lead to a

single solution but to a set of solution, named Pareto-optimal set, where all solutions are

25

Pareto-optimal. The frontier of the solution set is called Pareto Front. It can typically be

illustrated as a line for two-objective problems (Figure 5) and a surface for three-

objective ones.

The quality of a solution set can be assessed using two parameters. The first one is the

convergence, representing how close each point is to the true Pareto front, i.e. how

optimized solutions are. The second quality of a solution set is the spreading of solutions

over the Pareto front. Solutions should be widely spread to cover the whole range of

possibility. Convergence and spreading are predominant in multiobjective optimization

study. They are illustrated in Figure 6.

——Optimal Pareto front

A Solution front

^. Convergence

^ j ^ . Spreading

Objective 1

Figure 6: Convergence and spreading of a solution set

26

3.1.2 Multiobiective Evolutionary Algorithms

The Pareto-based optimization approach was initiated by Goldberg at the end of the

1980s. Unlike the aggregative/weighted-sum method, or the population-based approach,

the Pareto-based approach enables a true multiobjective optimization, where all

objectives are optimized simultaneously. This approach does not require any weights to

be set (unlike weighted-sum) and is independent of the initial situation. Since all

objectives are optimized at the same time, any trade-off is considered as a solution. The

optimization is also generally more efficient. Finally, the solution set provided is

composed of dozens of solutions, and therefore offers a wide variety of choices to the

decision maker.

Algorithms based on the Pareto concept are referred Multiobjective Evolutionary

Algorithms (MOEAs). These algorithms are in most cases similar to classical GAs, and

keep the same assets (efficiency, gradient-free, etc.) and drawbacks (number of

evaluations mostly). The main difference between MOEAs and one-objective GA occurs

in the selection process. In this selection, the concept of non-dominance is introduced,

using various methods, to evaluate each candidate solution.

Many different MOEAs have been developed over the last decades, and have been

carefully studied by the author. In a nutshell, differences between MOEAs lie in the

method they use to handle both convergence and spreading. Spatial considerations

especially are subject to discussion, and may be handled using various techniques,

generally based on a division of the search space. Another issue carefully studied is how

27

to maintain a sufficient diversity inside the population, in order to avoid local extrema

and to expand the Pareto front. An important notion called elitism is also introduced in

"second-generation" MOEAs, to ensure that valuable solutions cannot be lost and that

fitness of the population can only increase.

For this thesis, the base MOEA will be the Non-dominated Sorting Genetic Algorithm II

(NSGA-II), developed by Deb et al. (2001). According to most reviewers (Zitzler et al.

2000, Jain et al. 2005), this algorithm is one of the most efficient MOEA in terms of both

convergence and spreading of the solution set. It is based on a simple structure and

requires less calculation time than most MOEAs need. Moreover, NSGA-II requires very

few parameters to be set, which makes it accessible to non-experts (unlike SPEA2 for

instance). NSGA-II has been intensively used over the last years in various domains and

is recognized for its reliability (Majumdar et al. 2005, Fu et al. 2008). It is also relatively

simple to program and to customize.

28

3.2 NSGA-II

3.2.1 General Description of NSGA-II and Pseudo-code

The pseudo-code of NSGA-II is shown in Figure 7. NSGA-II follows the same steps as

classical GAs. First, it initializes a random population of N individuals, then it produces

children/offspring by recombination and mutation, evaluates the individuals, and finally

selects the fittest ones. Several aspects of NSGA-II are however very specific to this

algorithm:

• The parental population is chosen through a tournament selection. This selection

process enables to select a parent based on both convergence and spreading, while

maintaining a reasonable diversity amongst the population.

• The genetic operators used inside NSGA-II are generally (although not

necessarily) the Simulated Binary Crossover, and the Polynomial mutation. These

operators use a stochastic approach to determine children genes, based on the genes of

their parents (a more detailed description can be found in Appendix B). They are

extremely efficient when real variables are used.

• The selection process is computed at each generation on an intermediate

population combining both parents and offspring. Therefore, no valuable solution can be

lost, which makes NSGA-II elitist.

• For the selection, NSGA-II uses a non-dominated-and-crowding sorting and

selection.

29

BEGIN

I) INITIALIZE population with random candidate solutions;

II) EVALUATE each candidate;

III) REPEAT UNTIL (TERMINATION

CONDITION is satisfied) DO :

1 SELECTION of parents by tournament selection;

2 RECOMBINATION of pair of parents to produce offspring;

3 MUTATION;

4 NON-DOMINATED-AND-CROWDING-SORTING of parents and children

5 SELECTION of individuals for the next generation based first on rank

and further on crowding distance

IV) END DO

END

Figure 7: Pseudo-code of NSGA-II

3.2.2 Non-dominated-and-crowding Sorting and Selection

The non-dominated-and-crowding sorting and selection is the key mechanism from

which NSGA-II takes its efficiency. This process enables to focus on the convergence of

the population while maintaining a very good spreading of the population. It is based on

the two following parameters

The first parameter used is the rank of an individual. The notion of rank is closely related

to dominance. In a population, non-dominated individuals have a rank of one, they

30

belong to the first front. Individuals which are dominated only by solutions from the first

front belong to the second front, and are assigned a rank of two. More generally, all

individuals having a same rank do not dominate each other, but they dominate individuals

with a higher rank, and they are dominated by individuals with a lower rank. Therefore,

the notion of rank enables to compare an individual with the whole population regarding

convergence.

The second parameter is the crowding distance of an individual. As its name says, the

crowding distance represents how crowded the space around the individual is. A small

crowding distance implies that individuals are close to each other, and thus diversity is

low. In order to increase diversity and expand the Pareto front, individuals with the

highest crowding distances should be preferred. In NSGA-II, the crowding distance of an

individual is calculated as follows. First, the population is sorted in descending order

regarding a specific objective. Then the crowding distance of extrema are set equal to

infinite; for all other individuals, the following calculation is computed:

dist(i,obj) = ™™(i-l,obj)-Valued+ \,obj)
MaxValue(obj) - Min Value(obj)

Where: _ i is the individuals studied, and;

_ (i-1) and (i+1) are the two individuals respectively following and

preceding / in the sorted population

31

Finally, for each individual, the distances associated with all objectives are summed. The

result is the total crowding distance of the individual.

Once crowding distances and ranks are calculated, the selection process can be computed.

The process is illustrated in Figure 8 and can be described with the following steps.

Fronts are taken successively according to their ranks, then for each front:

• If the size of the front plus size of already selected population is inferior to N

(population size), all individuals of this front are selected.

• If this size is superior to N, individuals with the highest crowding distance are

selected, until a size of N is reached.

1st Front

2nd Front

3rd Front

4th Front

5th Front

6th Front

Generation N
after reproduction

Generation N+1

-
Selected based on rank

•

•* -I Selected based on crowding
L distance

• Rejected

Figure 8: Non-dominated-and-crowding selection

32

3.2.3 NSGA-II Programming

The base calculation program for this thesis is MATLAB. MATLAB was chosen because

it is a calculation program widely recognized and used in the industry, and because it

already integrates a very user-friendly Neural Network Toolbox. NSGA-II algorithm was

not readily available in MATLAB toolboxes but a very basic version of NSGA-II,

developed by A. Seshadri was available in MATLAB user's community1.

Based on this rather limited code, the author developed a complete NSGA-II program.

The developed code is very robust, and user-friendly. All MOEA parameters can be

changed from a single input file, and both discrete and real variables are supported. A

special care was taken to make the program as fast and reliable as possible. In particular,

the complex mechanism used for non-dominated-and crowding-sorting can be computed

using various methods; the method chosen for this thesis is the fastest one described in

Deb's book "Multi-objective optimization using evolutionary algorithms" (2001). The

complete code of the program can be found in Appendix A.

http://www.mathworks.com/matlabcentral/fileexchange/10429, accessed on March 2007
33

http://www.mathworks.com/matlabcentral/fileexchange/10429

3.3 Validation of the NSGA-II programmed

3.3.1 Testing Methodology

NSGA-II is the base-case MOEA with which the algorithms further developed will be

compared. Therefore, it is crucial to make sure that the programmed version of NSGA-II

is as efficient as the original. Although the author programmed the algorithm very

carefully, some tests were performed to ensure that the algorithm is working properly.

The testing methodology was based on Deb et al. work (Deb, 2002). This paper was

selected because of the amount of documentation it provides about NSGA-II

programming, metrics used for tests, and results. For a purpose of comparison, the

programmed version of NSGA-II was tested on the same test functions and with the same

parameters as in Deb's study (Table 1). As in the base study, each function was tested 10

times, and the average results were studied.

Population
size

100

Crossover
type

Simulated
Binary
Crossover

Mutation
type

Polynomial
mutation

Crossover
probability

0.9

Mutation
probability

1/(number of
variables)

Termination
criterion :

250
generations

Table 1: Parameters for NSGA-II tests (Deb, 2002)

In order to quantify MOEA's efficiency, the two metrics of Deb's study were used: Y and

A. These metrics base their calculations on a 500 individuals Ideal Pareto Set (referred as

IPS) where all solutions are optimal and equally spaced. In this thesis, IPS came from

34

either mathematical formulation, from specific MOEA solutions websites , or from

calculated solution sets. (In the later case, NSGA-II was run with a population of 500

individuals for at least 1000 generations, which is expected to produce perfect or almost

perfect solution sets.) The two metric used are the following ones:

Y metric: The Y metric is used to quantify the convergence of the solution front. It is

calculated as the average of distances between each solution found and the closet IPS

solution (Figure 9). The lower Y is, the closer results are from optimal solutions.

A metric: The A metric quantifies the spreading of the solution front (Figure 10). The

lower the metric is, the better is the spreading. It is defined as:

N-l _

df + dt +^]U, -d
A = - ^ =

df +d, +(N-l)xd

Where:

• df and di are the Euclidean distances between the extrema solutions found

and the extrema solutions of IPS;

• dj is the Euclidean distance between two consecutives solutions;

• and d is the average all dj.

2 http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/
35

http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/

Figure 9: Illustration of the Y metric (from Deb, 2002)

Extreme
£ . I so lu t ion

Lobta tried
s o l u t i o n s *-Extreme

>r so 3 •t> so lu t ion

Figure 10: Illustration of the A metric (from Deb, 2002)

3.3.2 Results

Results are summarized in Table 2 and in Figures 11 and 12. Some solutions sets are

illustrated in Figures 14a, b, c, and d. Regarding convergence to Pareto front (Figure 11),

we can see a good agreement between results from programmed version of NSGA-II and

results from the original program for the first three functions. For latter functions,

36

surprisingly, the programmed NSGA-II performed better than the original one. Except for

FON function with a 14% error increase, all results were as good as or better than

original ones.

Test function

Y

mean

A

mean

Current thesis

Deb (2002)

% Difference

Current thesis

Deb (2002)

% Difference

SCH

0.0034

0.0034

0%

0.282

0.478

-41%

FON

0.0022

0.0019

14%

0.403

0.378

7%

POL

0.0134

0.0156

-14%

0.954

0.452

111%

KUR

0.0123

0.0290

-58%

0.500

0.412

2 1 %

ZDT1

0.0015

0.0335

-96%

0.410

0.390

5%

ZDT2

0.0010

0.0724

-99%

0.426

0.431

- 1 %

ZDT3

0.0045

0.1145

-96%

0.679

0.739

-8%

ZDT4

0.0039

0.5131

-99%

0.383

0.703

-45%

ZDT6

0.0008

0.2966

-100%

0.620

0.668

-7%

Table 2: Comparison of convergence and spreading metrics for programmed and original NSGA-II

0.05
0.045

0.04
0.035

¥ 003
| 0.025

JT 0.02
0.015

0.01

0.005
0

a Current thesis

• Deb (2002)

SCH FON POL KUR

Figure 11: Mean of convergence metric Y for programmed and original NSGA-II

37

0.6

0.5 H

0.4 —

0.3

D Current thesis

• Deb (2002)

0.2

0.1 1
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Figure 12: Mean of convergence metric Y for programmed and original NSGA-II

Regarding spreading of solutions (Figure 13), results from programmed version of

NSGA-II were similar to Deb's results, except for POL and ZDT4 function. The average

difference between programmed and original NSGA-II was 8.73%. Regarding POL

function, the A metric was found two times higher than that of the original study.

1 .z

1 -

le
a
n
)

n
b

£ U.O

1 0.4 -

0.2 -4i
1 1—

tin
1 1 1 r~

O Current thes

• Deb (2002)

s

1 1 -

1 1— 1

SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Figure 13: Mean of diversity metric A for the programmed and the original NSGA-II

38

25

20

rN 15
;t

iv
e

Jr
° 10

5

- * (a)

, ^ * * * * ^ M , * « ^ „ „ ,
0 2 4 6 8 10 12 14 1B IB

Objective 1

, 4 , (C)

12

';

"0B

f 0.6

0.4

0.2

L

\
X

T****-
0 0.1 0 2 0 3 0.4 0.5 0.6 07 0.8 0.9 1

Objective 1

45 (b)

*!
34

3

CN

Vs
i 2
o

15

1

0.5

°t

0.9

08

07

06

I 0 6
g 0 . 4

0.3

02

0.1

0

\
\
\
\
\

' \
• X

05 1 1.5 2 2.5 3 3.5 4
Objeclwe 1

(d)

\
V

+*

\
\

\

\
0.4 0.5 0.6 0.7 0.8 0.9 1

Objective 1

Figure 14: Solutions sets for POL, SCH, ZDT4, and ZDT6 Functions respectively

3.3.3 Discussion

Major differences appeared in the Y metric between the programmed and the original

version of NSGA-II for the ZDT suite. This difference can be caused by several

calculation parameters, not specified in the original study. In particular, the SBX operator

used for reproduction exists in two forms (for bounded or for unbounded variable) and

may use different behaviours when handling multiple variables (50% genes changed, all

genes changed, etc.). Population sizes used for parental tournament selection may also

influence the results. Then, the Ideal Pareto Solution sets used in this chapter may be

39

different from the ones used in the original study. This can furthermore gender

discrepancies. Nonetheless, the results of the programmed version of NSGA-II were in all

cases (except for the FON function) better or similar to the results of the original study.

Regarding the A metric, we can generally see a good agreement between results from the

programmed version of NSGA-II and results from the original version. The high

discrepancy appearing for the POL function was most likely due to the discontinuity of

its Pareto front (Figure 14a). The original paper is unclear about how calculation is

performed for discontinuous front and especially if a different A value should be

calculated for each continuous part of the front. In the present work, A was only

calculated one time for the whole front. Regarding ZDT4, a relatively large difference

appeared (45.47%) but was in favour of the programmed version of NSGA-II.

As a conclusion, in almost all cases, the convergence of solutions coming from the

programmed version of NSGA-II was better or similar to the convergence of the results

of the original study. Meanwhile, the spreading of solutions was similar. In other words,

the programmed algorithm is as efficient as the original algorithm, and is sometimes even

more efficient. The process of comparing further developed MOEAs with the

programmed version of NSGA-II is thus expected to be conservative. Therefore, the

author decided to validate the programmed version of NSGA-II as a base case for further

comparison.

40

CHAPTER 4

DEVELOPEMENT OF MULTIOBJECTIVE GENETIC

ALGORITHMS

As discussed in Chapter 2, the number of evaluations is generally a very limiting

parameter when using a MOEA. Since fitness evaluation may be a time-consuming

process, the number of evaluations should generally be kept to a minimum. Accordingly,

the behaviour of many MOEA is to create at each generation a given number of

individuals, include all of them in an intermediate population, and then apply a sorting

over this population. Such behaviour emphasizes more on the sorting than on the creation

of new individuals to improve the overall fitness of the population. The basic assumption

leading to this is that evaluations may be time consuming, and should therefore be limited.

In the particular case of GAINN methodology, the situation is radically different. Since

evaluations are performed by an ANN, the time associated with each evaluation is

negligible. Sorting of the population, in turn, becomes the time-expensive step. In order

to take full advantage of GAINN methodology, a specific MOEA should therefore be

used, with a behaviour that does not take into account the number of evaluations, but on

the contrary maximizes the use of evaluations before proceeding to the complete sorting

of the population. In the literature, the great majority of MOEAs, including NSGA-II,

limit themselves in terms of number of evaluations, and are thus not suitable for the

current case. Some interesting MOEAs such a SEAMO (Valenzuela 2002) or the Micro

41

Genetic Algorithm (Coello and Pulido, 2001) have been investigated as potential

solutions. Unfortunately, the efficiency of these MOEAs has only been proven in

problems with hundred of variables and objectives, very unlikely to appear in real

situations.

The author finally decided to develop a new version of NSGA-II, adapted to the current

methodology. An other and more particular MOEA was also developed, designed

specifically to take advantage of GAINN fast evaluations. These two MOEAs will be

presented and tested in this chapter. To the author's knowledge, these two MOEAs are

original, and cannot be found in the literature.

4.1 Non-dominated Sorting Genetic Algorithm for

Integrated Neural Network (NSGAINN)

4.1.1 General Description and Pseudo-code

The first algorithm developed is the Non-dominated Sorting Genetic Algorithm for

Integrated Neural Network (NSGAINN). This algorithm is a variation of NSGA-II based

on the idea of intelligently maximizing call for objective function before proceeding to

sorting. The pseudo-code of NSGAINN is described in Figure 15. As can be seen,

NSGAINN uses the same behaviour than NSGA-II in the first 80% of the run. In the last

20% of the run, a special procedure is used for reproduction, and a selection process is

introduced to study which offspring should be included in the current population.

42

BEGIN

I) INITIALIZE population with N random candidate solutions;

II) EVALUATE each candidate;

III) REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

If time<80%*Maximum time

NSGA-II behaviour:

1 SELECTION of parents by tournament selection;

2 RECOMBINATION of pair of parents to produce a total
of N offspring;

3 MUTATION;

4 NON-DOMINATED-AND-CROWDING-SORTING of parents and
children;

5 SELECTION of individuals for the next generation
based first on rank and further on crowding distance

(NSGA-II selection);

If time>80%*Maximum time

NSGAINN behaviour:

1 SELECTION of parents by tournament selection;

While offspring population's size < N

2 RECOMBINATION of pair of parents to produce 4
offspring per mate;

3 MUTATION;

4 NSGAINN family selection;

End Loop

5 NON-DOMINATED-AND-CROWDING-SORTING of parents and
children;

6 SELECTION of individuals for the next generation
based first on rank and further on crowding distance

(NSGA-II selection);

End

IV) END DO

Figure 15: Pseudo-code of NSGAINN

43

4.1.2 Salient Modifications Compared to NSGA-II

NSGAINN Family Sortins

In NSGA-II, all produced children are included in the population, regardless of their

qualities. In the last 20% of NSGAINN run, a non-dominated sorting is applied over the

family (meaning parents and all children) after each mating and only fit-enough children

are kept. In details, two selection processes may occur, depending on advancements of

the optimization.

• Family Selection 1 (FS1): Each child is compared with its parents. An offspring is

included in the population only if it is non-dominated.

• Family Selection 2 (FS2): Children are compared with the whole family. An

offspring is included in the population only if it is non-dominated and if it

dominates at least one parent, or if it improves one objective's minimum so far.

Probabilities of occurrence are used for each of these selections processes, in order to

gradually increase fitness pressure. A trial-and-error process has led to the following

probabilities for each selection process (illustrated in Figure 16):

p{FS\) = \
^ _ current time
5* = 4

y Maximum _ time j

p(FS2) =
f • \ 0 - 5

_ j. current time , >
5* = 4

^ Maximum _ time j

44

——Probability of
occurence of
FS2

«—— Probability of
occurence of
FS1

0.8 0.85 0.9 0.95 1

Run-time (% achieved)

Figure 16: Probabilities for family sorting

Number of Offspring

The other important change of NSGAINN compared to NSGA-II is that in the last 20%

of the run, each couple of parents produces 4 children at each mating (instead of 2

classically). This is made possible by the fact that for the multi-variable Simulated Binary

Crossover, each variable has a 50% probability to be altered. In NSGAINN, the same

50% probability is kept, but if a variable is kept unchanged for one brotherhood, SBX is

applied to the other brotherhood.

45

4.1.3 Discussion

In the first 80% of the ran of a GA, the non-dominance of all individuals is not required,

because the main purpose at this phase is to explore decision space, and to test different

opportunities. Forcing the non-dominance at this phase would actually harm the diversity,

which is well known to increase risks of getting trapped in local minima and produce

narrow solution fronts. Also, since NSGAINN is based on the already efficient NSGA-II,

gain would be unlikely during this phase.

However, in the last 20% of the ran of a GA, population is expected to be relatively close

to the Pareto front. The main goal is not to explore the solution space anymore but to

increase closeness to optimal solutions and spreading of the solution set. Since the parent

population is already close to optimal solutions, the probability to produce fitter offspring

is low. If no selection mechanism is used and all offspring are introduced in the

population, the time-consuming sorting of the whole population is computed to finally

get a very little improvement in the overall fitness of the population. In NSGAINN, the

two selection processes introduced ensures that a significant improvement is added to the

population before proceeding to the sorting of the complete population.

In details, FS1, which keeps offspring only if they are not dominated by their parents,

ensures spreading of the solution set, while keeping a moderate fitness pressure. FS2 is

more aggressive and selects individuals only if they dominate their parents or if they

extend the solution front. This behaviour forces the convergence of solutions or the

extension of the solution front. Regarding probabilities of the two selections processes,

the fitness pressure increases with time, as population is expected to get closer to optimal

46

solutions. At the very end of the run, where solutions are assumed to be almost optimal,

the probability of FS2 is very high, in order to further force an improvement in the

results.

Regarding the number of offspring, producing more than two children for each couple is

generally not recommended, because it could harm diversity by focusing on a small

quantity of couples. In NSGAINN however, due to family selection processes, offspring

have relatively little chances to be included in the population. Over the four individuals

created by each couple, it is likely that less than two will be kept. On the other hand,

producing four children per mate enables to explore more widely the opportunity of each

couple. As far as family selection processes are concerned, it also enables to compare an

offspring with five individuals (for FS2), instead of three if only two children were

produced. This thus provides a fairly more representative idea of the non-dominance and

makes the family sorting more efficient.

On the whole, NSGAINN is expected to present an improvement compared to NSGA-II

by applying a stronger fitness pressure in the last part of the run. Thanks to the production

of four children and to family selection processes, only fit-enough individuals are

selected for the complete sorting of the population, and no time is wasted sorting

dominated individuals. The shortcoming of this behaviour is that a lot more evaluations

are required; this is however not a problem when GAINNN methodology is used.

47

4.2 Polv-obiective Looped Algorithm using Genetics

and an Uncompleted Extinction (PLAGUE)

4.2.1 General Description and Pseudo-code

A second and less classical algorithm, named PLAGUE, has been created for the current

thesis and is specifically designed to be used with the current optimization methodology.

PLAGUE stands for Poly-objective Looped Algorithm using Genetics and an

Uncompleted Extinction. This algorithm takes its roots in many different MOEAs such as

NSGA-II, SEAMO (Valenzuela 2002), or Micro-GA (Coello and Pulido 2001). PLAGUE

is founded on the idea of cycles of evolution between geological eons, with progressive

increases of the size and fitness of the population, followed by sudden drastic reductions

of the population size. This reduction is here referred as "plague", named as the well-

known disease.

The general behaviour of PLAGUE can be described with the pseudo-code described in

Figure 17. It is divided into two phases: the expansion phase, and the «plague »

selection.

48

BEGIN

I) INITIALIZE population with N random candidate solutions;

II) EVALUATE each candidate;

III) REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

_ Expansion phase; While population size is inferior to

five times the initial size (N)

• Generate offspring by recombination and mutation;

• Include offspring only if they are not dominated by

their parents;

• Remove children-dominated parents from population.

End Loop

_ Plague selection: When population size is superior or

equal to 5 times N, proceed to "Plague"

• Sort the population based on rank and crowding

distance, select the 85% »N fittest individuals, and

include them in the next population (85% for 2

objectives, or 80%»N for 3 objectives);

• For each objective, select the 5%»N best individuals

regarding this specific objective over the entire

population, no matter its rank, and include them in the

next population;

• Take 5%»N individuals, randomly over the entire

population, regardless of their rank, and include them

in the next population.

End loop

IV) END DO

Figure 17: Pseudo-code of NSGAINN

49

4.2.2 Main Aspects of PLAGUE Behaviour

Expansion Phase

The expansion phase is dedicated to let the population grow until five times its initial

size. It is important to note that PLAGUE uses an initial population size of 80

individuals, which is smaller than what most MOEAs use (typically 100 individuals).

During that phase, the whole population is selected as parents (there is no tournament

selection) and two offspring are produced at each mate. A family selection is then

applied, based on the following rules:

• A child is included in the population only if it is not dominated by any member

of its family.

• Any child included in the population can further be used as a parent for

reproduction.

• If a parent is dominated by any member of the family, then it is removed from

the population.

50

Plague

This second step, called "plague" is dedicated to reduce the population size by 80%.

Individuals of the next generation are selected in a way that ensures fitness improvement,

spreading of solutions, and diversity. The selection process produces a new population of

size N (initial size) and is computed as follows for a two-objective problem :

• Eighty five percent of next population is selected based on dominance and on

crowding distance. This selection is based on the same non-dominated-and-

crowding sorting than NSGA-II.

• For each objective, the 5% x N individuals presenting the lowest values for this

specific objective are selected, regardless of the dominance or of the crowding

distance.

• The last five percent of the population is randomly selected over the entire

population, regardless of the rank or of the crowding-distance.

For the very last generation, instead of plague selection, a non-dominated sorting is

applied over the entire population, and all non-dominated individuals are kept. This

genders a final solution set of generally greater size than the initial population size, which

compensates for the small size of PLAGUE's initial population compared to other

MOEAs.

For a three-objective problem, the first step selects 0.8xN individuals and the second step genders 0.15xN
individuals.

51

4.2.3 Discussion

Although relatively simple, PLAGUE behaviour is expected to be very efficient. The

family selection process applies a limited yet significant fitness pressure regarding the

offspring production. The deletion of child-dominated parents, in turn, enables to

improve efficiency by removing individuals which are close to, but worse than, another.

This process is similar to the parental replacement used in SEAMO, claimed to be elitist

(Valenzuela 2002). The population size does not necessarily increase (and may even

decrease) after reproduction. The purpose is not to expand the population quickly, but to

let the population improve significantly before proceeding to the next time-consuming

sorting. The population at the end of the expansion phase may not be composed of only

non-dominated individuals, but the overall fitness is likely to have improved and several

search directions have been studied. At this step, the population is assumed to have

reached a state where major improvements are unlikely, and only then the time-

consuming sorting can be valuable.

Plague selection process is divided in three parts handling three different issues. The first

portion is selected to improve the overall population fitness, the second portion is aimed

at extending the solution front, and the last portion is dedicated to introduce diversity.

Indeed, this portion of random individuals helps the spreading and the convergence,

without deteriorating the overall efficiency of the algorithm. In the worst case, these

random individuals will be worthless, and be very soon deleted by their children. Due to

PLAGUE working principle, this will waste a minimum amount of time. In the best case,

52

these individuals will create a good diversity and produce individuals which, though

dominated, will lead to a better convergence by adding new search directions. If there is a

gap between a local and a global minimum, it is possible for this gap to be filled during

the expansion phase by successive offspring. At the very end of the generation, only fit-

enough will be selected, while transition-individuals will be discarded.

Regarding the number of evaluations, it is obvious that PLAGUE requires much more

evaluations per generation than NSGA-II. Once again, PLAGUE has been created to be

associated with GAINN methodology where evaluations are fast, and is not expected to

be efficient in other situations.

4.3 Comparisons between NSGA-II. NSGAINN, and

PLAGUE

4.3.1 Testing Methodology

Parameters

The comparison between the two developed algorithms and NSGA-II were based on a

maximum run-time criterion. While the number of generations is much more frequently

used as termination criterion, it was not possible to use it in this study, since it would

have favored too much PLAGUE compared to the two other algorithms. For the purpose

of comparison only, the maximum time is an acceptable criterion since the three MOEAs

are based on a mostly similar code, and since all tests will be performed on a same
53

computer. Regarding algorithms parameters, NSGA-II parameters were kept as default

for the three algorithms studied (except regarding the children-by-mate number in

NSGAINN, and the population size in PLAGUE). These parameters are summarized in

Table 3.

Population size

Crossover type

Crossover probability

Distributions indice for crossover

Mutation type

Mutation probability

Distributions indice for mutation

Termination criterion

NSGA-II NSGAINN

100

PLAGUE

80

Simulated Binary Crossover

0.9

20

Polynomial mutation

1/(number of variables)

20

Maximum time

Table 3: Parameters used for comparison of NSGA-II, NSGAINN, and PLAGUE

54

Test functions

Test functions used for comparison are summarized in Table 4. They are taken from the

two-objective ZDT suite, and the three-objective DTLZ suite. These functions are very

commonly used in MOEA testing and are specifically designed to challenge MOEAs

regarding global optimum and spreading of the solution front. The run-time associated

with each function was designed to be long enough to enable for at least one MOEA to

reach the Pareto front, while remaining short enough to display differences between

MOEAs results. Numbers of variables and run-time associated to each function are also

summarized in Table 4.

Function

ZDT1.ZDT2, ZDT3

ZDT4

ZDT6

DTLZ1 to DTLZ7

Number of variables

30

10

10

10

Run-time

15 seconds

15 seconds

30 seconds

120 seconds

Table 4: Summary of test functions and variables

The CPU runtime was calculated by MATLAB, with all tests performed on a same

computer, in the absence of any other major activity. The computer used was equipped

with a Genuine Intel(R) CPU T2300 @1.66GHz, 1GB of RAM, and Windows XP (SP2);

MATLAB version used is 7.0 . Each test was performed five times for each function and

for each algorithm studied.

55

Metric Used for Comparison

There is no common agreement regarding the metric(s) to use to assess the quality of a

solution front. The metric used in this study was the dominated space (Zitzler, 1999), as

illustrated in Figure 18. The main asset of this metric is that it is able to assess both

convergence and spreading simultaneously. It is also able to deal with discontinuous

fronts, and to compare two solutions sets even if their sizes are different. It is important to

note that this metric is problem dependent, with a maximum reachable value function of

the Pareto front's shape and of the space chosen to study dominance.

Figure 18: Illustration of a dominated space

56

In this thesis, the dominated space was calculated statistically, as proposed by Fieldsend

et al (2003). The calculation can be described as follows: first a square (for two-objective

problems) or a cube (for three-objective ones) is created, with bounds equal to the true

Pareto front bounds. Then, a sample of 1 000 000 points is randomly taken inside this

square (respectively cube), and each of these points is tested to see if it is dominated by

the solution set. The dominated space is equal to the ratio of dominated individuals in the

sample.

This method was tested by the author for reliability by calculating the dominated-space

50 times for a same population. Tests were done using the solution set of NSGA-II on

ZDT6 (30 variables, 120 seconds); and the solution set of NSGA-II on DTLZ2 (30

variables, 240 seconds). The average errors were respectively 0.00123 (0.41%) for the

two-objective problem and 0.0011 (0.29%) for the three-objective problem; variances

were respectively l,77E-07 and l,9573E-07. This calculation method can therefore be

considered as reliable.

57

4.3.2 Results

Average Dominated Space

Some solution sets, representative of the situations encountered, are illustrated in Figures

19 and 20. The average dominated-spaces over the five runs are summarized for each

algorithm and for each function in Table 5. These results are also illustrated in Figure 21

(for two objective problems) and Figure 22 (for three-objective problems). Since the

dominated space is, to some extent, dependent on the size of the solution set, dominated

space is calculated two times for PLAGUE, once using the complete solution set, and

then using only the best 100 individuals (noted PLAGUE(100)).

Figure 19: Solutions sets for ZDT6 function

58

ZDT1

ZDT2

ZDT3

ZDT4

ZDT6

DTLZ1

DTLZ2

NSGA-II

0,626

0,000

0,477

0,000

0,219

0,279

0,372

DTLZ3 0,065

DTLZ4

DTLZ5

0,303

0,092

DTLZ6 0,195

DTLZ7 | 0,249

NSGAINN

0,615

0,066

0,485

0,135

0,305

0,581

0,376

0,289

0,382

0,093

0,219

0,255

PLAGUE

0,656

0,193

0,511

0,343

0,291

0,775

0,410

0,334

0,418

0,093

0,196

0,327

PLAGUE (100)

0,653

0,192

0,510

0,342

0,290

0,751

0,373

0,310

0,383

0,091

0,193

0,322

Table 5: Comparison of average dominated space

Figure 20: Solution sets for DTLZ1 function

59

£ 0.4

v>
t 0.3 A

J

• NSGA-II

• NSGAINN |

• PLAGUE |

D PLAGUE (100) |
j
i

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Figure 21: Comparison of average dominated space for ZDT functions

• NSGA-II

• NSGAINN

• PLAGUE

• PLAGUE (100)

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Figure 22: Comparison of average dominated space for DTLZ functions

60

As can be seen, both PLAGUE and GAINN performed better than NSGA-II for all test

functions, except NSGAINN for ZDT1 function. The improvement ranged from 2% to

more than 394% for NSGAINN, and from 0% to 416% for PLAGUE (the improvement

was virtually infinite in cases NSGA-II dominated space is zero). PLAGUE was

generally the most efficient algorithm, although NSGAINN got better results than

PLAGUE for ZDT6 and DTLZ6. Regarding PLAGUE reduced to 100 individuals, it

performed better than NSGA-II for all functions except for DTLZ4 and DTLZ5 (2%

decrease).

Maximum Dominated Space

The maximum dominated spaces reached over the five runs are summarized for each

algorithm and for each function in Table 6. Results are also illustrated in Figure 23 (for

two-objective problems) and Figure 24 (for three-objective problems).

0,7

0,6

0,5

•g 0,4

0,2

0,1

0,0 I
ZDT1 ZDT2 ZDT3 ZDT4

B NSGA-II

B NSGAINN

D PLAGUE

D PLAGUE (100)

ZDT6

Figure 23: Comparison of maximum dominated space for ZDT series

61

5 0,5

w

BNSGA-II
• NSGAINN
D PLAGUE
• PLAGUE (100)

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Figure 24: Comparison of maximum dominated space for DTLZ series

ZDT1

ZDT2

ZDT3

ZDT4

ZDT6

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

NSGA-II

0,641

0,000

0,500

0,000

0,261

0,685

0,378

0,335

0,384

0,093

0,198

0,354

NSGAINN

0,647

0,174

0,507

0,491

0,311

0,739

0,383

0,363

0,386

0,093

0,220

0,360

PLAGUE

0,660

0,326

0,515

0,663

0,294

0,780

0,420

0,404

0,422

0,094

0,203

0,362

PLAGUE (100)

0,657

0,324

0,513

0,659

0,293

0,755

0,391

0,375

0,390

0,092

0,200

0,358

Table 6: Maximum dominated space result for the three MOEAs

62

PLAGUE and NSGAINN got better results than NSGA-II for all functions except

DTLZ2 for NSGAINN. PLAGUE was better than NSGAINN for most functions.

Improvement in maximal results compared to NGSA-II ranged respectively from 1% to

19% for NSGAINN, and from 1% to 21% for PLAGUE. Once again, NSGAINN got

better results than PLAGUE for ZDT6 and DTLZ6.

Number of Evaluations

Average numbers of evaluation for each algorithm and for each function are summarized

in Table 7 (average of 5 runs), and are illustrated in Figure 25 (for two-objective

functions) and Figure 26 (for three-objective functions).

NSGA-II

ZTL1

ZTL2

ZTL3

ZTL4

ZTL6

7600

4406

7830

5520

13175

DTLZ1 | 58082

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

81026

60935

71156

79281

79737

71780

NSGAINN

6796

4451

7222

6546

18160

79344

105550

80654

104120

103610

112760

98702

PLAGUE

14870

27306

15830

21097

35036

163760

100640

172070

99269

123590

107530

100279

Table 7: Number of evaluations for the three MOEAs

63

40000

35000

30000

25000

20000

15000 -

10000

5000

0 I r* a
H NSGA-II

• NSGAINN

D PLAGUE

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Figure 25: Comparison of number of evaluation for ZDT suite

200000 -r-

180000 - —

160000 —

13 NSGA-II

• NSGAINN

D PLAGUE

DT1.Z1 DTLZ2 DTLZ3 DTIZ4 DTLZ5 DTLZ6 DTLZ7

Figure 26: Comparison of number of evaluation for DTLZ suite

As expected, both PLAGUE and NSGAINN generally required more evaluations than

NSGA-II. PLAGUE required an average of 143% more evaluations than NSGA-II, and

up to 520% more for ZDT2. NSGAINN required an average of 25% more, and

surprisingly sometimes required fewer evaluations than NSGA-II (11% less for ZDT1

and 8% less for ZDT3).

4.3.3 Discussion

The conclusion we can draw from these results is first that both developed algorithms are

generally more efficient than NSGA-II, regarding both average and maximum results.

The improvement in result is in most cases significantly greater than the uncertainty of

the metric and the author is therefore confident in his results. Comparing the two

developed algorithms, PLAGUE is generally the most efficient, although NSGAINN

sometimes provides better average and maximum results (for ZDT6 and DTLZ6).

There is little difference in results between PLAGUE and PLAGUE(IOO) for two-

objective functions. The difference can however become significant for the three-

objective ones (up to 8% difference). PLAGUE solution set was reduced to 100 to be

compared fairly to other algorithms, but the point is PLAGUE actually provides more

solutions, which is one of its assets. Therefore, to author's opinion, the dominated space

of PLAGUE's whole solution set can be considered as representative, when studying the

overall efficiency of the MOEA. Nevertheless, even reduced to 100 individuals,

PLAGUE remains more efficient than NSGA-II in almost all cases, and is the best of the

65

three MOEAs for two-objective functions. For three-objective function, considering

PLAGUE population reduced to 100 individuals, NSGAINN become the most efficient

algorithm for half of the functions tested.

The fact that developed algorithms require more evaluations than NGSA-II is both logical

and expected. For GAINN methodology, due to ANN fast calculations, the number of

evaluations is not a limiting parameter. If one uses PLAGUE outside of GAINN however,

directly combined with TRNSYS for instance, the time requirement could double or even

be multiplied by six compared to NSGA-II. In such cases, PLAGUE could become less

useful.

Regarding NSGAINN, there is also an increase in number of evaluation compared to

NSGA-II, due to the large amount of children evaluated and rejected through family

sorting. This increase, 25%, is significant, but may be compensated by the better results it

provides. Even if it was created for GAINN, NSGAINN could therefore be efficient in

some problems where the computational time associated with evaluation is relatively

short (milliseconds or lower).

For ZDT1 and ZDT3 functions, NSGAINN surprisingly requires fewer evaluations than

NSGA-II. This can be explained by the fact that NSGA-II does not require family sorting

and therefore runs more generation than NSGAINN. Since NGSAINN finishes with

fewer generations, fewer evaluations were required. It is interesting to note that in those

cases, the family sorting was not efficient, and NSGAINN did not provide better results

than NSGA-II (and was even worse for ZDT1).

66

4.4 Conclusion

According to the tests performed, both developed MOEAs are more efficient than NSGA-

II, as long as they are used inside GAINN methodology or for problems where the

evaluation function is extremely fast. In cases where evaluations are time consuming,

both NSGAINN and PLAGUE are expected to perform relatively bad; for evaluation-

times in the order of milliseconds, NSGAINN may keep a good performance though. As

long as used inside GAINN, the two developed algorithms are a success, noting the

following.

All tests have been performed on a runtime basis. Although to author's opinion it is the

fairest methodology in this case, this termination criterion is rarely used, and it suffers

from being greatly influenced by the quality of the programming and by the language

chosen; maximal generation is often preferred. Actually, in all tests performed, both

NSGAINN and PLAGUE had fewer generations than NSGA-II. Therefore, the

improvement shown in this thesis would be even larger if maximal generation was used

as termination criterion. The methodology chosen is conservative, and improvement does

not rise from criterion used.

Another crucial factor, as in any MOEA testing, is the parameters chosen, which greatly

influences results. Different reproduction parameters especially, including crossover and

mutation types, probabilities, and distributions indices, would have led to different

results. As explained before, the author kept the same parameters as in NSGA-II original

67

paper, and expects to be conservative in his results. In that sense, use of other

reproduction parameters, more specifically chosen for NSGAINN or PLAGUE, could

lead to an even better improvement compared to NSGA-II. This should be studied in

future works using developed MOEAs.

Finally, and more generally, one could wonder how practical the improvement is. Indeed,

NSGA-II can almost always reach the optimal Pareto front, providing a sufficiently long

runtime. One could wonder how few seconds can have an impact on the overall

methodology. Indeed, the impact of the developed MOEAs may be little in cases where

GAINN is used in combination with building simulation software, since the total

computation time will be in the order of hours or days. However, if one uses GAINN for

online optimization (which is a promising yet unexploited application of the

methodology), improvement can become significant, enabling faster optimizations, and

therefore faster reactions of the system.

68

CHAPTER 5:

MAIN CASE STUDY: OPTIMIZATION OF A

RESIDENTIAL BUILDING

5.1 Description of the Optimization Problem

5.1.1 Overview of the Optimization

As written in the introduction, a sustainable building should have the smallest

environmental impact, while remaining comfortable for the occupants. The energy

consumption and thermal comfort should specifically be studied. In many situations, the

whole problem is to find a trade-off between comfort and energy consumption. In

residential buildings, this trade-off is very dependent on how much the occupant is

willing to maintain or lower his thermal comfort in order to save energy. This decision is

very personal and cannot be predicted or imposed; however, a tool should be provided to

enable a global view of the range of possibilities. In that sense, a multiobjective

optimization, optimizing both thermal comfort and the energy consumption, and based on

no assumption regarding the occupant/building owner environmental awareness, becomes

a very interesting tool.

69

The optimization undertaken in this study is aimed at exploring the trade-offs between

thermal comfort and the energy consumption for a typical residential building. The

optimization will be based on a simulated occupancy schedule, temperature set points and

heating and cooling schedule throughout the day. While some multiobjective

optimizations of HVAC set points have already been studied (Wright and Loosemore,

2002; Nassif et al. 2003), the current study will include additional variables related to

passive solar design such as windows sizes and thermal mass.

The base building of this study is one of the two (identical) residential houses of the NRC

Twin House Project. This building was chosen because of the quality of its simulated

occupancy, and because of its continuous monitoring of interior as well as exterior

conditions. The house is a typical 2-storey wood-frame house, with 210 m2 of living area.

It is built to meet the R-2000 standard with a wall RSI-value of 3.5, and a roof RSI-value

of 8.6. Windows are composed of low-e Argon filled double glazing units, and air

tightness of the house has been tested at 1.5 air change per hour at 50 Pa. Regarding the

HVAC system, the house is equipped with a high efficiency condensing gas furnace (80%

steady-state efficiency and a rated output of 67,500 Btu/h,), a 12 SEER air-conditioner

with a 2 ton capacity, and a high efficiency (84%) heat recovery ventilator. Plans of the

house are shown in Figure 27 and a more detailed description of the house characteristics

and testing can be found in Swinton (2003).

70

Figure 27: Layouts of the first and second floors of the building studied

5.1.2 Optimization Methodology

The optimization involves complex phenomena and complex relations between the

variables studied. Moreover, the simulation of the thermostat programme requires a very

small simulation time step. In that situation, the use of GAINN methodology is justified,

in order to provide an efficient optimization of the building while maintaining a

reasonable computational time. The methodology is described in the following Figure:

71

TRNSYS

simulation GenOpt

MultiObjective
Evolutionary

Algorithm Evaluation of individuals

•A

Verification
using

TRNSYS

1
A

Artificial Neural
Network

to be trained

5Z

Validated Artificial

Neural Network

Figure 28: Workflow of GAINN methodology

1. Building simulation

The building will be simulated using TRNSYS software. TRNSYS is a TRaNsient

SYstems Simulation program that includes a modular structure, a graphical interface, and

a large library of components. TRNSYS has been chosen for this study because it is

recognized as one of the best building simulation software, along with EnergyPlus and

ESP-r (DOE, 2008).

72

2. Parametric runs

In order to create a database for ANN training, parametric runs have to be computed. In

order to automate TRNSYS runs, GenOpt (Wetter, 2001) will be used. When associated

with TRNSYS, GenOpt can automatically generate building (.bui) and deck (.dck) files

based on chosen templates, run TRNSYS with those files, save results, and restart again.

Thanks to GenOpt automation, there is no need to write all deck and building files by

hand, and therefore a significant amount of time is saved. More importantly, the risk of

mistakes while writing the files is significantly lowered.

GenOpt is provided with several parametric and (single-objective) optimization

algorithms. In this study, TRNSYS parametric simulations are to be run with parameters

taken from columns of a matrix. Quite surprisingly, this behaviour was not readily

available in GenOpt algorithms, and had to be programmed. The algorithm used is a

slightly modified version of GenOpt's "parametric run" algorithm. The complete code of

this algorithm, written in Java, can be found in Appendix C.

3. Design of experiment

In order to reduce the size of the training database while keeping the sample

representative, Latin Hypercube Sampling (LHS) is used. LHS is one of the most

common methods used to generate a small and representative sample of a population, for

a specified number and ranges of variables. Studies have shown that using LHS, a

73

number of cases greater than twice the number of parameters is sufficient to correctly

sample the search space (Mackay, 1988).

The principle of LHS is simple and can be illustrated as in Figure 29. For a 2-variable

problem with a search space conceptualized as a square, the LHS method takes one and

only one point per each column and per each row. The complete sample is therefore

relatively little but remains representative of the whole search space. In this study, LHS

will be computed in MATLAB, using the Model-Based-Calibration Toolbox.

Variable A

X

X

X

X

Figure 29: Illustration of LHS for a 2-variable problem

4. Artificial Neural Network

The Artificial Neural Network will be computed using built-in ANN-toolbox of

MATLAB. It will be trained using a first sample from LHS, and checked for validation

using a second and smaller sample.

74

5. Multiobjective optimization

Once trained and validated, the ANN will be used as the evaluation function inside the

three MOEAs described previously. Details about the optimization process will be

described in a next section.

6. Verification of the results

Finally, once optimization completed, some solutions will be checked using TRNSYS, to

ensure that the ANN is accurate enough in the vicinity of the optimal solutions. This step,

sometimes ignored in previous studies (Conraud, 2008), is crucial to assess the overall

efficiency of the methodology.

5.1.3 Metrics used for Objective Evaluations

Energy consumption

The energy consumption of the building will be directly assessed by TRNSYS. The total

energy consumption, Etot is composed of:

• Heating/furnace consumption Eheat\

• Cooling consumption (including dehumidifier consumption) Ecooi',

• Fan consumption Efan;

75

Energy consumptions for domestic hot water and appliances were not included because

they are not affected by the parameters studied. Lighting consumption is somewhat

influenced by windows sizes and could have been included. The author however makes

the assumption that variations in lighting consumption can be neglected, especially if

compact fluorescent lamps are used. Finally, the energy consumption for humidifying the

air was assumed to be negligible.

Thermal comfort

The metric used to assess thermal comfort is the Predicted Mean Vote (PMV), based on

Fanger's model (Fanger, 2000). PMV is representative of what a large population would

think of a thermal environment, and is used to assess thermal comfort in standards such

as ASHRAE 55 (ASHRAE, 2004). It ranges from -3 (too cold) to +3 (too warm), and a

PMV value of zero is expected to provide the lowest Percent of People Dissatisfied (PPD)

among a population. An absolute PMV value of 0.5 is generally recognized as the limit of

the comfort zone.

In order to optimize thermal comfort, two parameters are used in this study:

• Average absolute PMV \PMVh0USe\mg: averaged over the whole year and

over all occupied zones.

• Number of hours with |PMVh0Use| > 0.5 A^«: representing the cumulative

time with discomfort over the whole year. This metric will be used as a penalty

term inside optimization.

76

In this study, PMV values are calculated by TRNSYS for each zone, using a constant

metabolic rate of 1 met, a constant air velocity of 0.1 m/s, and a clothing factor equal to

0.5 clo in summer, 0.9 clo in winter, and 0.8 during the rest of the year. The PMV values

will only be taken into account if at least one occupant is present inside the house. For

night periods in the heating season, thermal comfort is ignored and a constant set point of

18°C is maintained. In the cooling season, night thermal comfort is also ignored; the night

cooling set point is however kept equal to the one used during occupancy, which is

expected to provide an acceptable comfort. Local discomfort such as draft or temperature

asymmetry are not included in this study, because they are either not expected to appear

(the house is airtight and well-insulated), or too complicated to assess in a residential

environment.

5.1.4 Study Parameters

The study parameters are the ones expected to most significantly influence both the

thermal comfort and the energy consumption. Since the base building is already well

insulated, and since the insulation affects the energy consumption but has little impact on

thermal comfort, the author decided to exclude insulation from study parameters.

Regarding window type, the windows installed in the base building (low-e Argon filled

double glazing) are generally recommended for passive solar design. Windows type has

thus also been excluded from the present study. Considering the base building and the

optimization problem studied, only two parameters related to the building envelope have

been kept to carry out the optimization: windows sizes, and thermal mass.

77

Regarding the HVAC system, the focus has been the program and schedule, with

variables influencing both the thermal comfort and the energy consumptions. Variables

are closely related to the occupancy schedule. This schedule, based on the Twin House

Project occupancy schedule, can be summarized as follows. Apart from the night, the

house is considered to be occupied between 6:45AM and 8:00AM, and between 5:30PM

and 11:00PM, 5 days per week (see Figure 30). During the week-end, it is occupied from

to 6:45AM to 11:00PM. Four parameters have been selected for the HVAC system: the

temperature set points, the relative humidity set points, the ventilation rates, and the

system delays.

Windows sizes

Sizes of the windows are predominant in passive solar design, since it is the main

parameter influencing the amount of solar radiation entering the house. Sizes should be

carefully thought to enable a high amount of incoming solar radiation, but to avoid

overheating the house in summer and to keep thermal losses to a minimum. Structural,

privacy and aesthetics issues should also been taken into account. Based on these

considerations, the window sizes are varied between 20% and 60% of the corresponding

wall areas. For architectural reasons, only north and south windows is studied, for a total

of 5 windows.

78

Thermal mass:

In passive solar design, the thermal mass of a building is a predominant parameter

because it influences the amount of heat a building can store. In this study, the thermal

mass of the house is changed by changing the thickness of the concrete slab in the interior

floors. The thickness of the slab varies from 5 centimetres to 25 centimetres. Structural

issues are beyond the scope of this study.

Temperature set points:

Heating and cooling temperature set points are varied according to ASHRAE guidelines

(2004). The heating set point temperature is varied between 20°C to 25°C, and the cooling

set point temperature is varied between 23 °C to 27 °C. It should be noted that at night or

when the house is not occupied, the heating set point is fixed at 18°C. Also, cooling is

turned off if no one is present inside the house.

Relative humidity set points:

Relative humidity has a significant influence on the thermal comfort. In this study, three

humidity set points are optimized for respectively the summer, the winter, and the mild

seasons. The winter season is assumed to be between November 1st and March 1st, the

summer season between July 1st and September 1st, and the mild season the rest of the

year. These seasons are based on the outside temperature profile in Ottawa

(WeatherOffice 2008). Based ASHRAE guidelines, relative humidity set points are varied

between 30% to 60% (ASHRAE, 2004).

79

Thermostat delays

A delay takes place between the moment heating is set on, and when the house reaches

the set point temperature. A delay also exists between the moment heating is turned off

and when thermal discomfort appears. In order to optimize the energy consumption based

on the thermal mass of the house, starting and stopping delays are introduced in the

thermostat schedule, as illustrated in Figure 30. The starting delay is defined as the delay

between the time the set point is switched from setback to regular set point temperature

and the time occupants enter the house, before occupancy. It varies between 0 and 30

minutes. The stopping delay is the delay between the time the set point is switched from

regular set point to setback temperature and the time occupants leave the house or go to

bed. It varies between 0 and 60 minutes. Different delays are studied for the three seasons

previously described.

T *

22 *C

13 "C

6:45 8:00 17:30 23:00

Figure 30: Illustration of the HVAC schedule

80

Ventilation rates

Finally, ventilation rates are studied, conjointly with the delays previously described. The

amount of outdoor air brought in by the heat recovery ventilator (0.0307 m3/s (65 CFM))

remains constant, maintaining an acceptable indoor air quality inside the house. The three

ventilation rates corresponding to respectively continuous recirculation, heating mode,

and cooling mode, are varied from 0.118 m3/s to 0.708 m3/s (250 CFM to 1500 CFM).

These values correspond respectively to a 20%/80% ratio of outdoor/indoor air, and to the

maximum ventilation rate in the base building.

In summary, the following table shows the ranges of the optimization variables:

Variable

1st Floor north window

1st Floor south window

2nd Floor north window

2nd Floor southwest window

2nd Floor southeast window

Thickness of concrete in interior

Heating set point

Cooling set point

RH set point (x3)

Starting delay (x3)

Stopping delay (x3)

Ventilation rate (x3)

Name

WF1N

WF1S

WF2N

WF2S2

WF2S1

TCK

HSP

CSP

RH*

SD*

FD*

VR**

Lower
bound

4.76

2.20

4.06

1.38

2.08

5

20

23

30

0

0

0.118

Upper
bound

14.30

6.60

12.18

4.14

6.25

25

25

27

60

30

60

0.0708

Unit

[m2]

[m2]

[m2]

[m2]

[m2]

[cm]

[°C]

[°C]

[%RH]

[min]

[min]

[m3/s]
* : S, W, or Mid is added to the name of the variable if it corresponds to respectively summer, winter,
or middle season.
** : VRH, VRC, and VRR for the ventilation rates in respectively heating, cooling and recirculation
modes.

Table 8: Ranges of variables used for optimization

81

5.2 Building Simulation

5.2.1 TRNSYS Simulation

Overview of the model

The building model was developed in TRNSYS, and special care was taken for wall

insulations, occupancies and appliances schedules, and HVAC equipment. A schematic

view of the model is shown in Figure 31; Table 9 presents a list of the components used

in the model.

Type

2

2

9

9

14

16

25

33

56

65

69

121

501

648

696b

760

Description

Differential controller

Differential controller

Data Reader For Generic Data Files

Data Reader For Generic Data Files

Internal gains schedule

Sun radiation estimator

Printer to output file

Psychometrics

Multi-zone building

Online graphical plotter

Sky temperature estimator

Furnace

Soil Temperature Profile

Air Mixing Valve

Simplified Air Conditioning Device

Sensible Air to Air Heat Recovery

Name

Heating Control

Cooling Control

Temperature and humidity

Irradiance

Various

Type 16a

System printer

Psychometrics

Twin House

Results

Sky temp

Furnace

Ground temperature

Flow mixer in/out

Cooling system

Heat exchanger
Table 9: List of components used in the TRNSYS model

82

Figure 31: TRNSYS model view

The type-56 multi-zone building is a reproduction of the reference house (Figure 32). The

building model is divided into 7 zones: first floor (open space), second floor north,

second floor master bedroom, second floor south bedroom, garage, basement, and attic

(Table 10). The first four zones are heated and cooled. The basement is partially heated

and cooled (simulated with a low ventilation rate), since it is not supposed to be occupied.

In the actual building, the so-called garage is in reality a control room, with its own

ventilation system; in TRNSYS simulation, garage is not heated nor cooled, but its

temperature is artificially set to 21°C all year long. Apart from HVAC continuous

recirculation, no air change has been simulated between adjacent rooms.

83

Zone

First floor

Second floor north

Second floor master
bedroom

Second floor south
bedroom

Description

Living room, kitchen, dining
room

Various rooms

Master bedroom with
bathroom

Bedroom

Basement 1 Non-occupied basement

Garage Control room, not studied

Attic Attic

Floor area

97.3

54.3

43

18.2

97.3

47

n. a.

Volume

269.5

143.6

113.7

48.2

228.7

95.2

40

Table 10: Description of zones in type 56

Fte visw ZOOM TyRemawgr Seww*" Options Window Help

BM*j»i:if Ai**#.*&Ju%i..iA,i'siaa8E3 >y®&

a* sS3BSSBS!?Si«S5iJ5«"f ~3."i'~ :

1-1.«-' 5js«n;Rswv!issiSBiiagsfl!a'-j'w

• U M pU^EKSSM^Wk.mliHWaiUSiaiKil

l> ^pnnc ii.it-i - -

htt Hut**)) I

MUM: ft*fay,Oeeemtef IZ,ZOOS 1S:18I39

Figure 32: Screenshot of the type 56 model

84

Finally, a control strategy has been implemented for the venitian blinds, based on the

following rules:

o Blinds are always closed at night.

o If at least one occupant is present inside the house, a blind is closed if the

solar radiation on the corresponding window is superior to 432kJ/hr.m

(default value used for blind control in TRNSYS).

o If no one is present inside the house, blinds are always closed in cooling

season, and are always open the rest of the year.

This simple strategy is expected to provide an energy efficient and realistic control of

blind opening and closing.

5.2.2 Validation of the Model

In order to validate the TRNSYS model, simulation results have been compared with

measured data. The TRNSYS model was run using the base building parameters

described in Swinton (2001), with a 2 minutes time step, and using exterior measured

data as an input. The measured data, provided by NRC, included exterior and interior

temperatures and humidity, solar radiation, and energy consumptions, for the months of

January and August 2003.

85

Heating consumption

Figure 33 displays the daily heating consumption for the month of January. As can be

seen, the simulated results are reasonably close to measured data. The average absolute

relative error between simulated and measured heating daily consumptions is 12.2%.

Regarding the monthly total heating consumption for the month of January, the difference

is 3.4% with respectively 4,329 kWh for measured consumption and 4,172kWh for

simulated consumption.

250

£• 200

|

co
ns

um
pt

io
n

o

en

o

o

>»
§ 50

0

• Measured data
—•— Simulation

< % * / "

f 1

•

1 3 5 7 9 11

•/

13

A i
(ft*r

15 17

Day

I i V

19 21

^ A wy
•

*

23 25 27 29 31

Figure 33: Simulated and measured daily heating consumption

Cooling consumption

Figure 34 displays the daily cooling consumption for the month of August. Due to

technical problems, no data was measured between day 15 and day 18. These days have

therefore been ignored. Once again, we can see a relatively good agreement between the

86

simulated and the measured data. Ignoring days where no data was available, the average

absolute relative error in daily cooling consumption is 30%, which is significant. The

relative error regarding the monthly cooling consumption is however 3.4%, which is

acceptable (respectively 407 kWh for them measured consumption and 420 kWh for

simulated consumption).

40

^ 35

^ 30

• Measured data
•Simulation

Figure 34: Simulated and measured daily cooling consumption

Fan consumption

Finally, simulated fan consumptions are in good agreement with the measured data. The

simulated fan consumption for the month of January was 4.5% lower than the measured

consumption (315 kWh and 330 kWh respectively). The simulated fan consumption for

the month of August was 10% lower than the measured consumption (250 kWh and 278

kWh respectively).

87

5.2.3 Discussion

There is an acceptable agreement between measured and simulated heating and cooling

consumptions. Several points should nonetheless be noted. First, the thermostat

temperature used in the simulation is the average between the temperatures of the first

floor and second floor North zone. In the actual building, the thermostat is situated in the

corridor of the north of second floor, but close to the stairway. The temperature at this

central position is influenced by first floor temperature and possibly by sun radiation, and

variations are therefore likely to appear. Setting the monitored temperature as the average

of the two-zones was found to give the best results overall. The second point to be noted

is the relative uncertainty regarding basement temperature and ventilation distribution

throughout the house. Air distribution was designed to keep a similar temperature in each

zone all year long, and a basement temperature of around 18-19 °C in winter.

Assumptions regarding air distribution were found by trial-and-error. On the whole, the

TRNSYS simulation can be validated since it shows reasonably small differences

between measured and simulated energy consumptions.

5.3 Artificial Neural Network Approximation

5.3.1 Parametric Runs

A sample of 450 cases was used for ANN training. This sample was created by Latin

Hypercube Sampling, based on the variables and ranges previously described (Table 8).

All the cases have then been simulated with TRNSYS, thanks to GenOpt automation.

88

Simulations were performed with a 2-minutes time step, and all simulations were

preceded by a pre-simulation of 30 days. Due to the very small time step, the total

simulation time of the 450 cases took around three weeks (using the same computer as

the one described in Chapter 4).

5.3.2 Artificial Neural Network Training

The artificial neural network was composed of one input layer representing the 20

variables described before, one hidden layer composed of 20 neurons, and one output

layer composed of the three energy consumptions and the two thermal-comfort variables.

The number of neurons in the hidden layer was found by trial-and-error (see discussion

below). Transfer functions used are hyperbolic tangent sigmoid functions in the initial

and hidden layers, and linear functions in the output layer. The method used for the ANN

training is the back-propagation, associated with Levenberg-Marquardt and Bayesian

regularization algorithms. All inputs and outputs were scaled to the [-1, 1] range prior to

training, as recommended in MATLAB (2006), to enable a better efficiency.

The ANN was trained with 450 cases. The training was considered to have reached

convergence if both the sum of squared error (SSE) and the sum of squared weights

(SSW) stabilized over certain iterations (as shown in Figure 35). The ANN training

reached this goal after 516 epochs, with a final SSE of 1.16. Regression correlation

coefficients between the network outputs and the corresponding TRNSYS simulation

outputs were found very close to 1 for the five outputs studied, demonstrating a very

89

good correlation between outputs and target values. Figure 36 illustrates the regression

for cooling consumption.

104

a)
=* 2
m 10

i n "
10

10°

600
m
CD

| 400

ar
a

S: 2 0 0

St

c
[Stop Trainini

Training SSE = 1.15965
' * ' * • ' * '

i

V

1

Squared Weights = 87.9382

Effective Number of Parameters = 514.777
i i i i • i • i • i

i
f •

50 100 150 200 250 300 350 400 450 500
8 | 516 Epochs

Figure 35: Convergence history of ANN training with Bayesian regularization

800
Best Linear Fit: A = (0.998) T + (0.533)

R = 0.999
O Data Points

Best Linear Fit
A = T

100 200 300 400 500 600 700 800
Target (cooling consumption)

Figure 36: Linear regression of ANN predicted cooling consumption on targets

90

5.3.2 Artificial Neural Network Validation

A sample of 45 cases, different from the previous ones, was used for ANN validation.

Figure 37 illustrates the relative error between ANN and TRNSYS outputs for the five

outputs. These relative errors are summarized in Table 11. As can be seen, the average

relative errors regarding energy consumption outputs are good, with 0.4% for heating,

2.6% for cooling, and 0.95% for fan consumptions. This leads to an average relative error

around 0.5% for the total energy consumption. Regarding the two thermal comfort

outputs, the average relative errors are a bit higher but still acceptable, with respectively

3.9% for the average absolute PMV and 5.2% for the cumulative time with discomfort.

Relative error

Percentage
of cases
when error
falls into
the range

Eheat

^cool

Efan

<1%

93%

33%

58%
\PMV\ 1 8 %

Ndis | 13%

<2.5%

100%

60%

96%

40%

38%

<5%

100%

89%

100%

78%

64%

<10%

100%

98%

100%

96%

84%

<25%

100%

100%

100%

100%

100%

Average

0.4%

2.6%

0.9%

3.9%

5.2%
Table 11: Statistical repartition of relative errors in ANN validation

91

1.9

1.8

" 1.6

5 1.4h
z

x 1Q4 B e s t L i n e a r F i t : A = (1) T + (-98.2)

1.3

1.2

1 r

R = 0.999
~

-

- 9^

3D

P

1 1 T 1

^

?

X
V

o Data Points
Best Linear Fit

• A = T

1.2 1.3 1. 1.5 1.6 1.7 1.8 1.9
Target (Heating consumption) x 10

Figure 37a: Linear regression of ANN predicted heating consumption on targets

Best Linear Fit: A = (0.998) T + (1.41)
cuu

600
y x
C
O

f 500
S
V)
c
° 400)U

!|O
C

o 300

o 200

I
100

n

R =

-

— i ,

= 0.998

J&
i-

9
/

f
a?

y w
i

o Data Points
Best Linear Fit

• A = T

0 100 200 300 400 500 600 700
Target (Cooling consumption)

Figure 37b: Linear regression of ANN predicted cooling consumption on targets

92

5000
Best Linear Fit: A = (1) T + (-1.53)

R = 0.999
O Data Points

Best Linear Fit
A = T

1000 1500 2000 2500 3000 3500 4000 4500 5000
Target (Fan consumption)

Figure 37c: Linear regression of ANN predicted fan consumption on targets

Best Linear Fit: A = (0.98) T + (D.00795)

0.1

T 1 ——r—

O Data Points
Best Linear Fit

•A=T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Target (Average absolute PMV)

Figure 37d: Linear regression of ANN predicted average absolute PMV on targets

3500

3000

2500

•5
£ 2000
a

° 1500
z
z
<

1000

Best Linear Fit: A = (0.962) T + (35.9)

500

0

R = 0.991

o,

y
^

O/'

o
o

o

•/ °
< o

O Data Points
Best Linear Fit
A = T

0 500 1000 1500 2000 2500 3000 3500
Target (Ndis)

Figure 37e: Linear regression of ANN predicted Ndls on targets

5.3.3 Discussion

Reaching an acceptable ANN accuracy was difficult for the current case study. Using

LHS, the general rule of thumbs states that a number of cases superior to 2.5xN, where N

is the number of variables, is sufficient for ANN training. In the current case, this rule did

not apply, and as much as 22.5xN cases were required to enable an acceptable ANN

accuracy. An even higher number of training cases would have probably led to a better

accuracy, but would have furthermore increase the computational time.

The number of neurons to set in the hidden layers was also difficult to determine. In the

current case, increasing the number of neurons in the hidden layers could on average

94

improve ANN predictions, but it also increased the maximal errors. This result is caused

by a phenomenon called overfitting, in which the ANN uses a high number of parameters

to have a very high accuracy regarding the training data, at the cost of great variations

between each training point. This behaviour is very dangerous in the current study since

those great variations could lead to false optimum in further optimization. Based on the

general idea that it is less dangerous for optimization to have small and frequent errors

rather than rare but important ones, the author decided to keep 20 neurons in the hidden

layer.

On the whole, the author considers the ANN accuracy as acceptable, since the relative

errors for energy consumptions are very low, and since the relative error of 3.9% for

PMV results in very little variations in the PMV value. The relative error for the

cumulative time with discomfort is a little bit more problematic, but is still acceptable

since this output will only be considered as a constraint.

95

5.4 MOEA Optimization

5.4.1 Optimization Set-up

The optimization problem was considered as a two-objective problem; the total energy

consumption and the thermal comfort as objectives. Since thermal discomfort should

never occur inside the house, the cumulative number of hours with discomfort (NdjS) has

been handled as a constraint. The optimization problem can be summarized as the

minimization of:

<

Fi = (Eheat + Ecooi + E/an) x (1+PT)

F2 = \PMV\x(l+PT)

Where:

_ Eheat, Ecooi, E/an are the energy consumptions for respectively heating, cooling,

and fan operation;

_ |PMV| is the average absolute PMV over the whole year, and;

_ PT is a penalty term, equal to the annual cumulative time where the |PMV| is

higher than 0.5 (N<jis), divided by 100. (Dividing Ndis by 100 was found sufficient

to ensure a good constraint handling, while maintaining an acceptable

convergence rate).

96

All the parameters used in the evaluation function are calculated by the neural network.

The code required to implement ANN calculations inside the MOEA is straightforward.

In order to significantly reduce the evaluation time, the following method should

however be used. Instead of using the MATLAB default procedure, ANN calculations

should be reconstructed manually, based on the weights and bias matrices (see Appendix

D). Doing so, calls to MATLAB complex routines regarding ANN architecture are not

required, and the evaluation time is significantly reduced. According to tests performed

by the author, this method enables to perform 10,000 evaluations in 1.44 seconds, while

MATLAB default calculation takes as much as 38.8 seconds for the same work. The

former method was thus used in the remaining of the thesis.

5.4.2 First Optimization

In the first optimization set-up, the 20 parameters described in section 5.1.4 (Table 8)

were used as variables. NSGA-II, NSGAINN, and PLAGUE were run with the same

parameters as in Chapter 4, with a termination criterion set to a maximal runtime of 600

seconds. The optimization results are illustrated in Figure 38.

97

1.9

1.85

1.8

x 10

| 1^5

1.7
V)
c
o
o
I 1 65
c

LU

& 1.6
e
H

1.55

1.5

+ NSGA-II
* NSGAINN
+ PLAGUE

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
Average absolute PMV

Figure 38: Results of the first optimization

Optimal solutions range from an absolute average PMV of 0.064 for an annual energy

consumption of 18,360 kWh, to an annual energy consumption of 15,380 kWh for an

absolute average PMV of 0.156. The spreading of solutions between these two extrema

was good, and drew an almost continuous curve. Also, in all cases, the constraint was

properly handled with a penalty term - and therefore a cumulative time with discomfort -

equal to zero.

98

The three different MOEAs display similar results, regarding convergence and spreading

of solutions. PLAGUE appears to provide the best spreading, while NSGAINN and

NSGA-II provide slightly better results for |PMV| values between 0.09 and 0.13. For the

purpose of comparison, optimization results were compared with the base case

configuration, with four manually constructed designs expected to provide good results,

and with five random designs (see Appendix E). Results are illustrated in Figure 39 (the

penalty term was not considered for these evaluations). As can be seen, MOEAs solutions

sets are better than the base and the random cases in terms of both comfort and energy

consumption. Three of the manually constructed designs enable lower energy

consumptions than the optimization results. However, these three cases gender more than

1000 hours per year with an average PMV higher than 0.5, and should therefore be

rejected.

x104

T

+ NSGA-II
+ NSGAINN
•*• PLAGUE

Manually
+ constructed

solutions
A. Random

solutions
Base building

i I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Average Absolute PMV

Figure 39: Optimization results compared to base, random, and manually constructed cases

99

2.2

I"
" 1 . 6 1 V

1.4
o

+ +

1.2

Variables
Temperature

Setpoints

Starting
Delays

Stopping
Delays

Ventilation
Rates

Relative
Humidity

Windows
Sizes

Thermal
mass

HSP

CSP

SDHW

SDMID

SDS

FDMID

FDS

FDW

VRR

VRC

VRH

RHW

RHMID

RHS

WF1N

WF1S

WF2N

WF2S2

WF2S1

TCK

Range

[20,25]

[23,27]

[0,30]

[0,30]

[0,30]

[0,60]

[0,60]

[0,60]

[0.118,0.708]

[0.118,0.708]

[0.118,0.708]

[30,60]

[30,60]

[30,60]

[4.76, 14.30]

[2.20, 6.60]

[4.06, 12.18]

[1.38,4.14]

[2.08, 6.25]

[0.05,0.25]

Base case

21

21

Not applicable:
constant

temperature
set points all

year long

0.448

0.680

0.618

none

none

none

9.4

5.29

3.69

3.87

4.02

0.05

Optimal solutions
Lower
value

22.3

24.6

0

29.7

19.7

16.8

0.1

0

0.118

0.118

0.469

59.9

30

59.1

4.77

2.41

4.06

1.38

2.79

0.25

Upper
value

23.5

24.9

29.9

30

30

60

60

24.8

0.118

0.120

0.708

60

60

60

14.30

6.61

12.19

3.96

6.25

0.25
Table 12: Variables ranges in optimal and base designs

Table 12 summarizes the range of values taken by optimal solutions' variables. The most

salient fact of the optimization is the thickness of concrete in the interiors floors, set to

the maximal values in all cases. This additional thermal mass enables to store more heat

from sun radiation, and to smooth the temperature variation, especially in summer.

Heating and cooling set points vary respectively between 22.3°C and 23.5°C, and

between 24.6°C and 24.9°C, which is relevant with ASHRAE comfort range.

Recirculation and heating ventilation rates are always set to the minimal value, in order to

reduce fan consumption. Finally, relative humidity set points are set to 60% in winter and

summer to respectively improve comfort and decrease dehumidification consumption.

100

These relative humidity values are high, but are still in accordance with ASHRAE

comfort zone. It may however cause problems such as condensation or mold growth in

winter. The other variables such as windows areas or thermostat delays take a wide range

of values, in order to find all optimal trade-offs between energy consumption and thermal

comfort.

In a nutshell, this first optimization was a success. The results provided by the MOEAs

were significantly better than the base case and the manually constructed designs,

regarding the two objectives studied. The spreading of the solutions was also very good,

with an almost continuous curve. Finally, the ranges of variables in the optimal solutions

appear to be relevant, and most variables effectively vary along the optimal front.

Nevertheless, the thermal mass in optimal solutions is extremely high for a residential

building. A second optimization was therefore set-up with a constant thermal mass equal

to that of the base building.

5.4.3 Second Optimization

In the first optimization's results, the thermal mass of the building was in all cases set to

the maximal value. Since the thermal mass of the building was very high, some

parameters such as thermostat delays may not have been accurately studied. Therefore, a

second optimization study was performed, letting all the parameters except the thermal

mass vary. In this optimization, 19 variables were hence used, with a constant thickness

of 5 centimetres of concrete. Thanks to GAINN particular approach, this second

optimization did not require any additional TRNSYS simulations. The already trained

101

ANN was directly used and only the MOEA optimization part had to be redone. The three

MOEAs were run with the same parameters as before. Results of optimization are shown

in Figure 40, and variables ranges are summarized in Table 13.

1.9

1.85

£ 1.8

E 1.75
S
M

x 10

1.7
o
o

* 1.65

1.6 -

1.55

x I I » I I I i^

A
1 1

+ NSGA-II
* NSGAINN
+ PLAGUE

1 1 1 1 1 1 1 1 1

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Average Absolute PMV

Figure 40: Results of the second optimization

Once again, the optimization was very efficient in terms of both convergence and

spreading of the solutions, with the optimal front being an almost continuous curve.

Optimal solutions range from an absolute average PMV of 0.073 for an annual energy

consumption of 18,912 kWh, to an annual energy consumption of 15,960 kWh for an

absolute average PMV of 0.159. As expected, the energy consumptions of optimal

102

solutions were higher in this second optimization than in the first optimization. Regarding

the variable changes between the two optimizations, we can see in Table 13 that some

variables such as ventilation rates or relative humidity set points are similar in both

solution sets. The most salient changes between the two optimizations results are the

window sizes and the delays used in the thermostat program. Particularly, in the second

optimization, sizes of south windows are generally set to very low values. This can be

explained by the fact that the thermal mass of the house is smaller, and therefore

overheating is more likely to occur than in the first optimization set-up.

Variab
Temperature

Setpoints

Starting
Delays

Stopping
Delays

Ventilation
Rates

Relative
Humidity

Windows
Sizes

es
HSP
CSP

SDHW
SDMID

SDS
FDMID

FDS
FDW
VRR
VRS
VRH
RHW

RHMID
RHC

WF1N
WF1S
WF2N
WF2S2
WF2S1

Range
[20,25]
[23,27]

[0,30]
[0,30]
[0,30]
[0,60]
[0,60]
[0,60]

[0.118,0.708]
[0.118,0.708]
[0.118,0.708]

[30,60]
[30,60]
[30,60]

[4.76, 14.30]
[2.20, 6.60]

[4.06, 12.18]
[1.38,4.14]
[2.08, 6.25]

Optimal solutions in second
optimization

Lower
value

22.6
24.7

21
26.4
29.8
24.0
59.6

0
0.118
0.118
0.529

60
30
60

4.77
3.87
4.06
1.38
2.08

Upper
value

23.6
25.1

30
30
30
60
60
60

0.118
0.118
0.708

60
60
60

4.80
5.88

12.19
3.70
4.51

Average

23.2
24.9

29
29.5
30.0
52.0
59.9

17
0.118
0.118
0.645

60.0
43

60.0
4.77
4.98
6.60
1.60
2.24

Average in
the first

optimization

23.0
24.8

13
30.0
29.4
38.8
48.1

1
0.118
0.118
0.591

60.0
45

60.0
5.55
5.34
5.70
1.66
4.93

Table 13: Variable ranges in optimal solutions

103

It is interesting to note that the relation between the average PMV and the energy

consumption depicted in Figure 40 is not a straight line. The curve seems to be composed

of two lines of different slopes. In terms of design, we can see that in the first part of the

curve (below |PMV| = 0.11), small decreases of thermal comfort can lead to relatively

large reductions in energy consumption. In the second part of the curve, the inverse

situation occurs, and small increases of energy consumption can lead to significant

increases of thermal comfort. This case highlights the major advantage of a true

multiobjective optimization, which is to provide a complete understanding of the

situation, and to bring to light the potentiality of each investment. In the current case, the

occupants of the house could be easily convinced to lower the average PMV from 0.08 to

0.11, in order to reduce energy consumption by up to 11%.

5.4.4 Verification of Results using TRNSYS

Even if the ANN was properly trained, some differences may appear between ANN

outputs and simulation results. Using GAINN methodology, it is important to check

optimized solutions using the base simulation software, to ensure that the ANN

predictions were correct. Due to the large number of solutions in the current study, only a

small percentage of results were verified. Results may therefore not be representative of

the accuracy of the ANN over the complete solution sets. Nonetheless, according to the

test performed on 8 random optimal solutions, it appears that the ANN is very accurate in

terms of energy consumptions. The average relative errors between ANN predictions and

TRNSYS results were respectively 1%, 2.3%, and 3.3% for heating, cooling, and fan

104

consumptions. This leads to a very good average relative error in the total energy

consumption of approximately 1%. However, regarding the average absolute PMV, some

significant errors appear. The PMV values coming from ANN calculations were

underestimated by an average of 0.02 over the 8 cases studied. In one case, the error in

the PMV value was even as high as 0.05. Such errors mean that, even if the ANN was

properly trained with an acceptable average relative error, it may still be relatively

inaccurate in the vicinity of optimal solutions.

Due to time considerations, the author could not run more simulations to try to make the

ANN more accurate. Moreover, it appears that PMV values are just shifted by 0.02, so we

may assume that optimization results are still reliable, except in that they overestimate the

thermal comfort. The improvement compared to the base design is also notably higher

than ANN errors. Nonetheless, the issue of the accuracy of the ANN in the optimal region

should be more carefully studied in the future.

5.5 Conclusion

GAINN methodology and the developed algorithms were successfully applied to this

case study. Although it required a significant amount of training data, the ANN was able

to accurately approximate the base building simulation software. Thanks to this ANN,

two optimizations were undertaken with a computational time as low as 5 minutes in both

cases. The total computational time associated with the whole optimization (i.e. including

105

ANN training and validation) is approximately three weeks. Based on the number of

evaluations of NSGA-II (around 140,000 for a 5 minutes run), each optimization would

have taken more than 10 years if ANN approximations were not used. In other words, this

optimization would have never been possible without using GAINN methodology.

Regarding the optimization results, the developed algorithms (NSGAINN and PLAGUE)

as well as NSGA-II performed very well in these optimizations, regarding convergence

and spreading. Optimal solutions display significant improvement in terms of both

thermal comfort and energy consumption when compared to the base case, or to manually

constructed cases. Thanks to the multiobjective algorithms, a wide range of solution was

covered, drawing an almost continuous curve. From a design standpoint, it means that the

optimization results are valuable in any situation, no matter the priorities of the decision

maker regarding thermal comfort or energy consumption. Moreover, thanks to the curve

drawn by the optimal front, one can see the impact on thermal comfort of any reduction

or increase in the energy consumption. The final decision can therefore be based on a real

understanding of the situation, and of the impact of energy consumption on thermal

comfort.

The second optimization highlighted a very useful ability of GAINN methodology, which

is to be able to change the optimization set up without requiring any additional simulation.

Once the ANN is trained, any optimization can be performed using a lower number or

smaller ranges of variables, and take only few minutes to compute. This enables to focus

106

on some parameters, or, as in the current thesis, to ignore one variable in order to get

more realistic results.

Finally, one strong limitation was highlighted by the current case study. Even if the ANN

is accurate regarding validation data, some significant errors may appear in the vicinity of

optimal solutions. While this does not invalidate the complete methodology, it could

seriously harm the relevancy of the optimization results. This point need to be more

carefully studied in future work, and some strategies should be developed to ensure the

accuracy of the ANN in the optimal region.

107

CHAPTER 6

SECOND CASE STUDY: THREE-OBJECTIVE

OPTIMIZATION OF A SCHOOL

This last chapter describes a second optimization study, based on the work of Conraud

(2008). Through this study, the developed algorithms will be used with an ANN validated

by Conraud, in order to optimize the energy consumption, and the thermal and visual

comforts of a school. This study has two purposes. First, it will expose the capability of

developed MOEAs on a three-objective problem. Then, it will highlight the improvement

added to GAINN by the use of MOEAs, compared to Conraud's study where weighted-

sum optimization was used. It is well known from the literature that MOEAs generally

display several advantages over classical GAs using weighted-sum. This chapter will

deeply study the differences between each optimization approach, in the particular case

of an association with GAINN methodology.

6.1 Description of the Design Problem

All the work described in this section has been set up, developed, and studied by J.

Conraud for his Master Thesis at Concordia University (2008). The description provided

here is a summary of the optimization problem studied and the reader is referred to the

original thesis for further details.

108

6.1.1 Presentation of the Building

The building studied is a school, located in Grong (Norway), which is specifically

designed to take advantage of natural daylighting and natural ventilation. The school was

built with a concern to reduce the heating and ventilation energy consumption and to

provide good indoor air quality conditions as well as good visual and thermal comforts

for pupils. The main feature of the building is an underground system used to preheat and

precool the air, and distribute it to the classrooms. The air is then collected to an extract

chamber where it can be exhausted (Figure 41). The model used to simulate the building

is based on the ESP-r simulation developed by Wachenfeldt (2003). A bird view of this

model is illustrated in Figure 42.

Figure 41: Cross-sectional view of the ventilation system (from Conraud 2008)

109

Class North-West

W€

f*X -n i l TWp *-•

Class South

North

;.*c" V) V:

Class North-East

Figure 42: Bird view of the model (adapted from Conraud 2008)

6.1.2 Optimization Objectives

Three objectives, divided into 8 outputs, are studied as part of the optimization:

Total energy consumption (2 outputs)

The energy performance of the school is assessed by the annual heating and cooling

loads. These values were calculated using ESP-r.

Thermal comfort (3 outputs)

The thermal comfort is represented by the cumulative frequency of time for which the

Predicted Percent Dissatisfied (PPD) in the classroom is lower than 20%. Clothing levels

were set at 1.0 clo in winter, 0.75 clo in autumn and spring, and 0.5 in summer, and

metabolic rates were 100 W/m2 to account for children's activity.

110

Visual comfort (3 outputs)

The visual comfort is assessed by daylight factors. A daylight factor is defined as the

interior horizontal daylight illuminance expressed as a percentage of the horizontal

daylight illuminance available to an unobstructed site. It was calculated for each

classroom by ESP-r. The overall visual comfort is represented by the average of several

daylight factors estimated at a series of points located halfway through the room from the

windows, and one meter away from the side walls.

6.1.3 Optimization Variables

This case study investigated 24 parameters. Table 14 summarizes these parameters as

well as their lower and upper bounds. They can be divided into four categories:

• Length and width of the windows (for the classrooms and the extract

chamber);

• Thickness of insulation in the classrooms floors;

• Cooling capacity (for the classrooms, the corridor, and the distribution duct),

and ;

• Temperature setpoints (for the classrooms, the corridor, and the distribution

duct).

I l l

Zone

Extract Chamber

Lxlinust "lower

Class Northeast

Class Northwest

Class South

C hiss Northeast
Class Northwest
C I;iss South

Class Northeast

Class Northwest

Class South

Corridor

Distribution Duct

Variables

Window Southwest Height
Window South Height
Heiaht
Window - Length
Window - Heiaht
Window - Length
Window - Height
Window SE - Length
Window SE - Height
Window SW - Length
Window SW- Heiaht
Insulation rhickncss
Insulation Thickness
In-*illation ThLkncis
C ooliiig Capacity
Temperature Setpoint
Cooliiia Opacity
Temperatr.ie setpoint
Cooling Capacity
Temperature Setpoint
Cooling Capacity
Temperature Setpoint
Cooling Capacity
Temperature Setpoint

Upper
Bound
1.7 m
1.7 m
0 111

5 m
1.7 m
17 m
1.7 m
12 2 m
1.7 m
18.78 m
1.7 m
i ? cm
15 cm
15 cm
3,000 kW
J0CC
3.000 kW
30°C
5.000 kW
30°C
1,000 kW
30°C
8.000 kW
30CC

Lower Bound

50% (0.85 ml
50% (0.85 IU)

2 m
50% (2-5 in)
50% (0.S5 m)
50% (8.5 m)
50% (0.85 m)
50% (6.1 m)
50% (0.S5 in)
50% (9.39 m)
50% (0.85 m)
5 cm
5 cm
5 cm
0.0 kW
25CC
0,0 kW
25°C
0.0 kW
25°C
0.0 kW
25°C
0.0 kW
25°C

Conditions

Continuous

{5.10.15}

Continuous

Table 14: Study parameters and their upper and lower bounds (from Conraud 2008)

6.1.4 ANN Training and Validation

A Perl program developed by Conraud was used to automate 1,500 simulations for ANN

training and validation. The neural network was composed of 24 inputs and 8 outputs

previously described, and 15 neurons in the hidden layer, and was programmed in

MATLAB. Once trained, the ANN performed relatively well regarding heating demand,

112

thermal comfort, and daylight factors (except south daylight factor) with an average

relative error below 2% (Table 15). ANN predictions were less accurate regarding

cooling demand and south daylight factors. For these outputs, the relative errors were

respectively below 15% for 90% of the cases, and below 10% in 90% of the cases.

Moreover, the maximal relative error regarding the cooling demand was as high as 82%.

This very high maximal relative error may be extremely dangerous for optimization,

since it may lead to false optimum. Nonetheless, Conraud decided to validate his ANN

for further optimizations. This ANN was therefore also used by the author in the

remaining of this chapter.

Heating Cooling TC TC TC VC VC VC
demand demand NWest NEast South NWest NEast South

Max 0.60% 81.98% 5.06% 1.33% 1.24% 3.61% 8.02% 21.10%
Min 0.00% 0.01% 0.00% 0.00% 0.01% 0.00% 0.00% 0.01%
Average 0.13% 6.45% 0.44% 0.22% 0.29% 0.72% 1.91% 2.50%
Deviation 0.11% 9.40% 0.45% 0.19% 0.22% 0.60% 1.54% 3.18%

Table 15: Relative errors between building simulations and ANN predictions (Conraud 2008)

113

6.2. Optimization Search

6.2.1 Methodology

Original optimization results of Conraud thesis were kept unchanged for the current

comparison. These results are based on an aggregative approach regarding multiple

objectives, using the weighted-sum described below as a global performance metric:

2 - i l / 2

/; (x)-min/.(x)
maxfi(x)-mmfi(x)

Where:

- x is an input vector belonging to the search space;

- fi to f3 are the thermal comfort factors for the classrooms facing northwest,

northeast, and south respectively;

-f4 and/5 are the total heating energy demand and total cooling energy demand;

- fa to fs are the average daylight factors for the classrooms facing northwest,

northeast, and south respectively;

_ Wj are the weights associated with each function.

All objectives were assigned an equal importance by setting an absolute weight of 1 for

each function. (A weight of-1 was used for functions for / / to /? and/gto/^ since these

functions are to be maximized).

minZ 2 (x) = min 2>*
(=1

114

In this study, the design problem was optimized as a three-objective minimization

problem with objectives being respectively thermal comfort, energy consumption, and

visual comfort. Using the same nomenclature as before, the design problem can be

summarized as the minimization of:

Thermal comfort index

Energy consumption

Visual comfort index

F,(x) = - (/ / (x)+^(x)+/ J (x))

^ F2(x) = /,(x)+/5(x)

F3(x) = -(/6(x)+/7(x)+/5(x))

MOEAs were run with the same parameters as in Chapter 4. Since there was no sufficient

information available regarding the runtime of the original optimization, the author

decided to run MOEAs with a time limit set to 60 seconds. This is assumed to be fair

since this time is reasonably short, and since the original optimization was run until it

reached a steady state optimum.

Early tests showed that, with a 60-seconds runtime, all three MOEAs gave very similar

results. In the following, only PLAGUE solution set is kept to illustrate the comparison

between MOEAs and Conraud's results.

115

6.2.2 Comparisons between PLAGUE's Solution Set and

Conraud's Solution

The two solution sets coming respectively from Conraud study and from PLAGUE

optimization are illustrated in Figures 43 to 46. The solution set coming from Conraud

study is indeed limited to one single point, which is the optimal value of the weighted-

sum studied. The solution space is three-dimensional; each solution is associated with

three output values, representing the three objectives studied. Figure 43 shows a 3D view

of the solution sets. Projections of the solution sets in two dimensional spaces are

illustrated in Figure 44 to 46.

•

* •

X

• PLAGUE
• Conraud

Thermal comfort index (%)

Figure 43: 3-D view of the solution sets

116

1.3

1.2

1.1

x 10

o.
E

S 0.9
0)
e
ill

0.8 -

0.7

1 1 1 t

• >

• *: * •
• • •

* • * • • *

• * < * • / •
• • • •

+
• # • • •

• • * •
* •

* «v ^ *
•

•

1 1 i 1

1 1 1— i i

• PLAGUE
• Conraud

~

-
•

* i r
• • •

% • • *
^ v - • • •

• • *
• • • • *

* * s * * * • •
• * » • • • *

* ^ * * ******
J * * • • ***

* • • • 1 * *
• j •

i i i i i

78 76 74 72 70 68 66 64
Thermal Comfort Index (%)

62 60 58

Figure 44: Thermal comfort index Vs energy consumption

0.5

0.6

0.7

S 0.8

- 0.9

re
Q

1

1.1

1.2

1.3

1 r-
+

v • *
• * »

+

• •
• •
• •

» . •

• • •

• • * • •
* •

» •

• •

.
• •

-

• i

1 r I"'"-' T 1

* \ * * ' * * ^ * • •

- 1" T

• PLAGUE
• Conraud _

• * ^

* *
•

• • • •

* V * • *

* * *
+

• • • •

* **
* • * / • • • \ \ J •
• • • •

• • « » * • • •

• * + • • • %

• • • • • •
• * J _ * • • • •

I I i i i t i

78 76 74 72 70 68 66 64 62 60 58
Thermal Comfort Index (%)

Figure 45: Thermal comfort index Vs daylight factor index

117

0.5

0.6

0.7

S 0.8

to
Q

1

1.1

1.2

1.3 L -
0.7

• • •
•

*

• +

/ +
+

• •

*

•

•

•

•
•

4

•
+

• •

PLAGUE
Conraud

•

^ * •

* • * *

» •

« : <* **

• • • • • •

• • • •

0.8 0.9 1 1.1
Energy consumption (kWh)

1.2

x10

1.3
4

Figure 46: Daylight factor index Vs energy consumption

6.3 Discussion

6.3.1 In Terms of Optimization

In Figures 44 to 46, the points the closest to the lower-left corner are the best solutions

regarding this two-objective space. As can be seen in Figure 45, no solution is better than

Conraud's solution in terms of both thermal comfort and daylight factor index. Therefore,

PLAGUE'S Solution Set (PSS) does not dominate Conraud's Solution (CS). Further

calculations showed that PPS is neither dominated by CS. In other words, individual

results from PPS and from CS are equally good from a multiobjective point of view.

118

Consequently, one cannot argue that PLAGUE provides better individuals results than the

aggregative method in that case. The methodology is not improved by the use of MOEA

regarding the quality of each solution. This lack of improvement is probably due to the

efficient non-linear weighted-sum used by Conraud. Even though there is no

improvement from an individual standpoint, there is nonetheless a major improvement

considering the overall population, as will be described in the next sections.

6.3.2 In Terms of Range of Solutions and Understanding of the

Problem

As written previously, a solution set cannot be judged solely based on the convergence of

each solution, but must also be studied in terms of spreading of these solutions. From

Figures 43 to 46, the most striking improvement coming from using MOEAs is the wide

range of solutions provided. Instead of a single point, dozens of Pareto-optimal solutions

are found. The improvement is not actually the quantity of solutions, but the choices and

of the understanding it enables. One hundred solutions mean one hundred suggestions to

propose to a client, and one hundred opportunities for him to choose. In terms of

understanding of the situation, the quantity of solutions enables to bring to light the

relations between the objectives. In Figure 44 for instance, the relation between the

energy consumption and the thermal comfort is obvious.

In addition, in the present case study, the base building was already very efficient in terms

of comfort and energy performance. It was thus very difficult to assume, before

119

optimization, what improvements can be expected and what to focus on. Indeed,

Conraud's final solution resulted in an increase of thermal comfort, but in a decrease of

visual comfort and energy consumption. As can be seen on Figure 44, various other

opportunities of improvement exist. From this figure, one can see that Conraud's solution,

which is very good in terms of visual comfort, is relatively weak in terms of energy

consumption and thermal comfort. Thanks to the quantity of optimal solutions the MOEA

provides, the decision maker can have a global understanding of the potentialities of the

building. Only then he can decide which modifications are the best ones, in his opinion,

for the building.

6.3.3 In Terms of Accessibility

In terms of accessibility of the methodology, an important improvement added by

MOEAs is that there is no longer need to select weights. The selection of weights is a

rather complicated process, where importance of each objective has to be assumed. A bad

set of weights would lead to an irrelevant and useless optimization. Therefore, a person

wanting to use GAINN methodology had to either spend a significant amount of time and

carefully think about the weight selection, or select one specific set of weights and

produce a biased optimization (as in the current case). Thanks to MOEAs, the process of

selecting weights is not longer required, and the methodology is therefore simpler and

more accessible.

120

6.3.4 In Terms of Reliability

A last change in GAINN methodology coming from the use of MOEA relates to the ANN

reliability and degree of precision. Obviously, the optimization algorithm cannot improve

the accuracy of the ANN. However, since a multiobjective optimization provides a large

set of solutions, the impact of little inaccuracy can be reduced. In the current case, ANN

simulations were inaccurate regarding cooling load and south daylight factors in 10% of

the cases. In one case, the relative error in the cooling load was even as high as 82%. As

mentioned previously, this major inaccuracy may lead to false optimum and erroneous

results. In Conraud optimization, since only one solution is provided, and since this

solution was not verified using the base simulation software, there is a 10% probability

that the optimization result is inaccurate. In other words, there is a chance that the only

outcome of the case-study is erroneous.

Using a MOEA, and with a similar ANN inaccuracy in 10% of the cases, erroneous

results may still appear. However, since more than one hundred solutions are provided,

odds are that a significant number of them will be accurate. Even if there is no guarantee

of accuracy for every single solution, a majority of results are still likely to be valuable.

As a conclusion, the use of a MOEA inside GAINN methodology is safer, in that it

compensates the possible inaccuracy of the ANN by providing more solutions, and since

it does not limit the optimization outcome to a single and possibly erroneous point.

121

6.3.5 In Terms of Attractiveness

Finally, looking at the potential use of optimization in the industry, the implementation of

a MOEA improves the attractiveness of GAINN methodology. In Conraud study, after

almost one week of calculation, one single solution was provided. With a similar

computational time, the use of MOEA provided one hundred optimization opportunities,

as well as a better understanding of the design problem. The time invested in the overall

process is therefore more efficiently exploited by MOEAs, and the optimization output is

more attractive. Consequently, thanks to the use of MOEA inside GAINN, building

optimization is more likely to be used in the industry, which could further enable

significant improvements in terms of comfort, energy consumptions, and green house

gases emissions.

122

CHAPTER 7

CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

7.1 Concluding Remarks on the Present Work

With a growing environmental awareness and demand for a comfortable environment, the

process of building design should more than ever be optimized. Optimization tools such

as Genetic Algorithms, or even Multiobjective Evolutionary Algorithms, exist and are

known to be efficient but they rarely have been used in the industry at the design stage.

The main reason of this lack of interest is the high number of evaluations and therefore

the time investment they require. This thesis focused on the development of a new

optimization approach called GAINN, and used this approach by combining it with

MOEAs.

First, a very efficient existing MOEA, called NSGA-II, was chosen for the current study,

programmed in MATLAB, and validated. Then, the author explored the opportunity of

creating MOEAs specifically designed to take advantage of GAINN fast calculations.

Two new MOEAs were developed: NSGAINN, and PLAGUE. These MOEAs both show

a significant improvement compared to NSGA-II on several benchmark test functions.

PLAGUE was found to be the most efficient MOEA for two-objective functions and for

half of the three-objective functions. In the other half of the three-objective functions,

NSGAINN was the most efficient MOEA.
123

In Chapter 5, the methodology and the developed MOEAs were used for the optimization

of the energy consumption and the thermal comfort in a residential building. According to

the validation data, the ANN was able to accurately predict the studied metrics with an

average relative error of 0.5% for the total energy consumptions and an average relative

error of less than 4% for the average absolute PMV. The limitations highlighted in

Conraud (2008) regarding the increased need for training data also applied in this case,

since a number of cases equal to 25 times the number of parameters was required for

ANN training. A second important limitation was also highlighted regarding the accuracy

of the ANN in the vicinity of optimal solutions. Even if the ANN was validated with an

acceptable accuracy, some significant errors appeared in the final solution set.

Nonetheless, the two optimizations undertaken were successful, and provided

significantly better results than the base case and the manually constructed solutions.

Regarding the accessibility of the methodology, this case study proved that optimization

can be performed relatively easy, without requiring strong programming skills. Providing

sufficient instructions, non-experts could apply the methodology easily, thanks to the

combination of TRNSYS, GenOpt automation, user-friendly MATLAB toolboxes for

Latin Hypercube Sampling and ANN, and the programmed MOEAs.

In a second case study, the methodology was tested on a three-objective problem, and

MOEA optimization was compared with the classical weighted-sum approach.

Significant gains were found in terms of spreading of the solutions, accessibility of the

methodology, and choice given to the decision maker. Moreover, thanks to the use of

MOEAs, some processes such as the selection of weights for the aggregative sum are no

124

longer required, and the effects of ANN inaccuracy can be somehow lowered. On the

whole, the use of a MOEA significantly improved GAINN methodology by exploiting

more efficiently the time spent for training. The methodology became therefore more

attractive and more likely to be used in the industry.

7.2 Limitations and Future Work

7.2.1 Regarding the Main Case Study

The optimization set-up of the main case study is limited in several aspects. Indeed, the

purpose of this case study was mainly to propose an application of the methodology and

of the developed algorithms. Many interesting studies have previously been performed

regarding thermostat programming, including additional parameters such as set-back

temperatures or condensation on interior surfaces (Maheshwari et al. 2000; Manning et al.

2007). The current case study was not designed to be as complete as those studies.

A major limitation of this case study is that the occupancy is based on a fixed schedule,

which is very unlikely to be the case in actual situations. An optimal solution of this study

is likely to produce discomfort if an occupant changes its schedule. One future work

could be to include some randomness in the occupancy schedule, and study the

optimization of the system regarding that specific situation. Such approach would make

the whole study more complex but also more realistic. Another future work would be to

take advantage of the multi-zonal model. In the current study, only the average of the

125

PMV over the four occupied zone was studied. A future work could exploit the multi-

zonal aspect of the model, and optimize for instance the air distribution inside each zone

according to thermal comfort.

Another limitation of the first optimization of this case-study is the influence of thermal

mass. The TRNSYS model developed for this thesis has not been validated regarding

thermal mass variations, and the model may not be accurate for cases with high thermal

masses and solar radiations. Another simulation software could be tested to verify the

results of optimization. Regarding the thermal mass, adding a 25 centimetres thick

concrete slab may not be feasible for structural reasons. In this thesis, the concrete slab

has been used as a convenient way to increase the thermal mass in TRNSYS, but this

issue should be more carefully studied.

7.2.2 Regarding Developed Algorithms

The two MOEAs developed in this thesis are very promising, but may require more study.

First, other programming languages and codes should be used to confirm the conclusions

of this thesis. While the author is fairly confident in his conclusions, some programming

issues could change the time spent on each process and therefore significantly change the

comparison results (since tests were performed on a maximal runtime basis). Also, some

constraint handling techniques should be implemented, so developed MOEAs can be

tested on constrained problems. Finally, the influence of several parameters such as

reproduction parameters should be studied in more details to enable the best efficiency of
126

each algorithm, based on its specific behaviour. The amount of time where NSGAINN

behaves as NSGA-II (80% of the run so far) should also be optimized possibly based on

the evolution of the population's fitness.

Finally, the two MOEAs developed in this thesis are expected to be efficient only with

extremely quick evaluations functions such as an ANN function. Further research is

needed to properly evaluate the performance and usefulness of NSGAINN and PLAGUE

for other applications. Also, the time improvement added by developed algorithms is

likely that it will have a very little impact on the overall optimization if GAINN is

combined with time-expensive simulation softwares. In such cases, the reduction in the

optimization time would be negligible compared to the time spent for ANN training. In

order to take full advantage of the developed MOEAs, they should be used in problems

where the optimization time is very limited, such as for online optimization (discussed

hereafter).

127

7,2.3 Regarding GAINN Methodology

The main limitation of GAINN methodology concerns the ANN training and validation.

In the main case study, the rule of thumbs stating that, using LHS, a number of cases

greater than twice the number of parameters is sufficient for ANN training did not apply.

This conclusion is in agreement with Conraud (2008). This additional need for training

data multiplies the computational time. It should therefore be taken into account in future

works. While the approach remains valuable in terms of time saving, further studies

should be performed regarding the number of cases to use for ANN training in order to

make sure that the ANN would be accurate in all situations. The opportunity of using

other sampling methods (instead of LHS) and other training method (instead of back

propagation) should also be studied.

A more problematic point concerns the accuracy of the ANN in the vicinity of optimal

solutions. In the main case study of this thesis, even if the ANN displayed an acceptable

accuracy regarding the validation data, significant errors appeared when optimal

solutions were tested. Such inaccuracy of the ANN may lead to major optimization errors,

and should be studied in details before GAINN could be validated as a reliable

optimization methodology.

In order to increase ANN accuracy in the optimal region, it would be interesting in future

studies to include some chosen cases in the training dataset, in addition to the random

cases. For instance, some manually constructed cases, designed to be efficient, could be

included for training. Although these cases are not expected to be optimal, they may

128

increase the accuracy of the ANN in the optimal region, and lead to more accurate results.

The integration of ANN training according to GA's current population, as proposed by

Nain and Deb (2005), could also be very useful if a tool is developed to link ANN, GA,

and the simulation software. A simpler solution could also be to use a two-step procedure,

with a first optimization based on a low-fidelity ANN (trained with a small number of

cases), and a second optimization based on an ANN trained on cases coming from the

first optimization.

Regarding the accessibility of the method, it has been improved by the use of MOEAs,

due to the fact that weights selection and sensitivity analysis are no longer required. The

use of GenOpt also enables to run hundred of simulations automatically, without

requiring any action from the user during the parametric runs. Nonetheless, many aspects

still affect the accessibility of the method. While the creation, training, and validation of

the ANN are very easy in MATLAB, the selection of the number of cases for training

remains difficult. The ANN construction and especially the number of neurons to be

included in the hidden layer is not obvious either. Number of hidden neurons and number

of cases for training should be more carefully studied for building applications, and

guidelines should be proposed.

Finally, a very promising application of GAINN would be to use it for ongoing

optimization. Ongoing optimization (also referred as online optimization) is a method in

which the controls of a system are optimized in real time. This enables to obtain, at each

moment, the best possible configuration, by adapting controls to weather or occupancy

changes. The current main limitation of this technique is the difficulty of predicting the

129

building reaction to the changes of controlled variables (Coffey, 2008). The GAINN

approach could perfectly overcome this drawback by using the ANN to provide fast

predictions of building behaviour, and then optimize the control variables thanks to the

GA. The need for training data for the ANN training would not be an issue in this case,

since online optimization generally involves continuous monitoring of the building. Data

could therefore be continuously stored, so the ANN training could become more efficient

each day, making the GAINN methodology more accurate. The application of GAINN

for ongoing optimization would be a remarkable future work, taking full advantage of the

methodology to solve the very complex issue of building reactivity.

130

References

Amirjanov, A., and Sobolev, K. (2006). Genetic algorithm for cost optimization

of modified multi-component binders. Building and Environment, 41(2), 195-

203.

ASHRAE (2004). ANSI/ASHRAE Standard 55-2004: Thermal Environmental

Conditions for Human Occupancy, Atlanta, Georgia, USA.

Caldas, L. G. and Norford, L. K. (2002). A design optimization tool based on a

genetic algorithm. Automation in Construction, 11(2), 173-184.

Chow, T. T., Zhang, G. Q., Lin, Z., and Song, C. L. (2002). Global optimization

of absorption chiller system by genetic algorithm and neural network. Energy

and Buildings, 34(1) , 103-109.

Coello Coello, C.A. and Toscano Pulido, G. (2001). Multiobjective Optimization

Using A Micro-Genetic Algorithm, Proceedings of the Genetic and Evolutionary

Computation. 274-282.

Coffey, B. (2008). A Development and Testing Framework for Simulation-Based

Supervisory Control With Application to Optimal Zone Temperature Ramping

Demand Response Using a Modified Genetic Algorithm. Master Thesis,

Concordia University (Canada), Canada.

Conraud, J. (2008). A Methodology for the Optimization of Building Energy,

Thermal, and Visual Performance. Master Thesis, Concordia University

(Canada), Canada.

Dantzig, G. B. (1949). Programming in a linear structure. Econometrica, 17,

73-74.

131

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

New York, John Wiley & Sons.

Deb, K. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II,

IEEE Transactions on Evolutionary Computation 6 (2) : 182-197.

Deb, K., Thiele, L, Laumanns, M., and Zitzler, E. (2002). Scalable multi-

objective optimization test problems Proceedings of the Congress on

Evolutionary Computation 1, 825-830.

DOE (2008). Website. U.S. Department of Energy.http://www.eere.energy.gov/

(Last accessed December 5, 2008).

Edgeworth, F.Y. (1881). Mathematical Physics. New York, A.M. Kelley

Publishers. As cited in Jain et al. (2005).

Engel, Y., Mannor, S., and Meir, R. (2004). The kernel recursive least-squares

algorithm. Signal Processing, IEEE Transactions on, 52(8), 2275-2285.

Fanger, P. (2000). Provide Good Air Quality on Air Distribution in Rooms,

Reading, United-Kingdom.

Fieldsend, J.E., Everson, R.M., and Singh, S. (2002). Using unconstrained elite

archives for multi-objective optimisation, IEEE Transactions on Evolutionary

Computation, 7 (3) : 305-323.

Fletcher, R. (1979). Practical methods of optimization, Wiley, Chichester, New

York.

Fu, G., Butler, D., and Khu, S. (2008). Multiple objective optimal control of

integrated urban wastewater systems. Environmental Modelling & Software,

23(2), 225-234.

132

http://www.eere.energy.gov/

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning, Kluwer Academic Publishers, Boston, MA.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems: an

Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence, University of Michigan Press, USA.

Hooke, R., and Jeeves, T. A. (1960). Direct search solution of numerical and

statistical problems, Journal of the Association for Computing Machinery

Journal, 8 212-229.

House, J.M., and Smith, T.P. (1995). A System Approach to Optimal Control for

HVAC and Building System, ASHRAE Transactions, 101(2): 647-660.

Huang, W., and Lam, H. N. (1997). Using genetic algorithms to optimize

controller parameters for HVAC systems. Energy and Buildings, 26(3), 277-

282.

IPCC (2007). Intergovernmental panel on climate change, website.

http://www.ipcc.ch/(Last accessed December 5, 2007).

Jain, L. C , Goldberg, R., and Aji th, A. (2005). Evolutionary multiobjective

optimization: theoretical advances and applications, Springer, New York.

Jin, Y. (2005). A Comprehensive Survey Of Fitness Approximation In

Evolutionary Computation, Soft Computation, 9 (1) 3-12.

Lahanas M., Schreibmann E., Milickovic N., and Baltas D. (2003). Intensity

modulated beam radiation therapy dose optimization with multiobjective

evolutionary algorithms. Proceedings of the Second International Conference

on Evolutionary Mult i -Cri ter ion Optimization (EMO 2003), 648-661.

133

http://www.ipcc

Lee, J.H., Ko, Y.D., Han, K., and Yun, I. (2006). Comparison of Latin Hypercube

Sampling and Simple Random Sampling Applied to Neural Network Modeling of

Hf02 Thin Film Fabrication, Transactions on Electrical and Electronic Materials,

7-4, 210-214.

(The) Leadership in Energy and Environmental Design (LEED) Green Building

Rating System. (2007), Available f rom:

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=222.

Li, K.C., Lue, H.H., and Chen, C.H. (2000). Interactive tree-structured

regression via principal Hessian directions. Journal of the American Statistical

Association 95, 547-560.

Lu, L , Cai, W.J., Xie, L.H., Li, S.J., and Soh, Y.C. (2005). HVAC System

Optimization in Building Section, Energy and Buildings, 37, 11-22.

Maheshwari, G.P, Al-Taqi, H., Al-Murad, R., and Suri, R.K. (2000).

Programmable thermostat for energy saving. Energy and Buildings 33, 667-72.

Majumdar, S., Mitra, K., and Raha, S. (2005). Optimized species growth in

epoxy polymerization with real-coded NSGA-II. Polymer, 46(25), 11858-

11869.

Manning, M., Swinton, M.C., Szadkowski, R, Gusdorf, J., Ruest, K. (2007). The

effects of thermostat setback and setup on seasonal energy consumption,

surface temperatures, and recovery times at the CCHT twin house research

facility. ASHRAE Transactions 113(1), 1-12.

Matlab (2006), Documentation, Version 7 1 , MathWorks Inc.

McKay, M.D. (1988), Sensitivity Arid Uncertainty Analysis Using a Statistical

Sample of Input Values, in Uncertainty Analysis, Y. Ronen, ed., CRC Press, 145-

186.

134

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=222

Morimoto, T., Takeuchi, T., and Hashimoto, Y. (1993). Growth Optimization Of

Plant By Means Of The Hybrid System Of Genetic Algorithm And Neural

Network. Proceedings of 1993 International Joint Conference on Neural

Networks, 2979-2982.

Nain, P. K. S. and Deb, K. (2005). A multi-objective optimization procedure

with successive approximate models. KanGAL Report No. 2005002. Kanpur,

India.

Nandi, S., Mukherjee, P., Tambe, S., Kumar, R., and Kulkarni, B. (2002).

Reaction modeling and optimization using neural networks and genetic

algorithms: Case study involving ts-1-catalyzed hydroxylation of benzene,

Industrial & Engineering Chemistry Research, 41 (9), 2159-2169.

Nassif, N., Kajl, S., and Sabourin, R. (2003) Two-objective online optimization

of supervisory control strategy, Proceedings of the Eighth Building Simulation

Conference (IBPSA'03), 1, 927-934, Eindhoven, Netherlands.

Natural Resources Canada (2005). Energy Use Data Handbook Tables (Canada):

Table 2 & 3, available at http://oee.nrcan.gc.ca/corporate/statistics/neu

d/dpa/handbook_totalsectors_ca.cfm?attr=0, (Last accessed November 4,

2008).

Pala, M., Caglar, N., Elmas, M., Cevik, A., and Saribiyik, M. (2008). Dynamic

soil-structure interaction analysis of buildings by neural networks. Construction

and Building Materials, 22(3) , 330-342.

Pareto, V. (1896). Cours D'economie politique, volume I and I I . Lausanne,

Rouge. As cited in Jain et al. (2005).

Peippo, K., Lund, P. D., and Vartiainen, E. (1999). Multivariate optimization of

design trade-offs for solar low energy buildings. Energy and Buildings, 29(2),

189-205.

135

http://oee.nrcan.gc.ca/corporate/statistics/neu

Reglementation Thermique 2005 (2006). Arrete du 24 mai 2006 relatif aux

caracteristiques thermiques des batiments nouveaux et des parties nouvelles

des batiments. Journal Officiel de la Republique Frangaise no 121 of 25 May

2006 (in French).

Sakamoto, Y., Nagaiwa, A., Kobayasi, S., and Shinozaki, T. (1999), An

Optimization Method of District Heating and Cooling Plant Operation Based on

Genetic Algorithm, ASHRAE Transactions, 105(2): 104-115.

Srinivasan, D., and Seow, T. (2005). Particle Swarm Inspired Evolutionary

Algorithm (PS-EA) for Multi-Criteria Optimization Problems, Evolutionary

Multiobjective Optimization, 147-165.

Sun, J., and Reddy, A. (2005). Optimal control of building HVAC&R systems

using complete simulation-based sequential quadratic programming (CSB-

SQP). Building and Environment, 40(5) , 657-669.

Swinton, M.C., Entchev, E., Szadkowski, F., Marchand, R.G. (2003)

Benchmarking twin houses and assessment of the energy performance of two

gas combo heating systems, Proceedings of the Ninth Canadian Conference on

Building Science and Technology, Vancouver, BC, NRCC-38459, 365-381 .

Syarif, A., and Gen, M. (2003). Solving exclusionary side constrained

transportation problem by using a hybrid spanning tree-based genetic

algorithm. Journal of Intelligent Manufacturing, 14(3/4): 389-399.

Simpson, T , Mauery, T , Korte, J., and Mistree, F. (1998). Comparison of

response surface and Kriging models for multidiscilinary design optimization.

7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, 98-4755.

Valenzuela C. (2002). A Simple Evolutionary Algorithm for Multi-Objective

Optimization (SEAMO), Congress on Evolutionary Computation (CEC'2002),

IEEE press, 1, 727-733

136

Wachenfeldt, B.J. (2003), Natural Ventilation in Buildings. Detailed Prediction

of Energy Performance, Ph.D. Thesis, Norwegian University of Science and

Technology, Trondheim, Norway.

Wang, S.W., and Jin, X.Q. (2000). Model-based Optimal Control of VAV Air-

conditioning System Using Genetic Algorithm, Building and Environment, 35,

471-478.

Wang, W., Rivard, H., and Zmeureanu, R. (2006). Floor shape optimization for

green building design. Advanced Engineering Informatics, 20(4), 363-378.

Weather Office (2008). Website. Environment Canada,.

http://www.weatheroffice.gc.ca/canada_e.html (Last accessed December 5,

2008).

Wetter, M. (2004). Simulation-Based Building Energy Optimization. Ph.D.

dissertation, Berkeley University. California.

Wetter, M. (2001), GenOpt(r) - A Genetic Optimization Program, Proceedings of

the 7th International IBPSA Conference, Rio de Janeiro, Brazil.

Wetter, M. And Wright, J. (2003), Comparison of a Generalized Pattern Search

and a Genetic Algorithm Optimization Method, Proceedings of the 8th

International IBPSA Conference, Eidhoven, the Netherlands.

Wetter, M. and Wright, J. (2004). A Comparison of Deterministic and

Probabilistic Optimization Algorithms for Non-smooth Simulation-based

Optimization, Building and Environment, 39(8), 989-999.

Wright, J. A., Loosemore, H. A., & Farmani, R. (2002). Optimization of building

thermal design and control by multi-criterion genetic algorithm. Energy and

Buildings, 34(9), 959-972.

137

http://www.weatheroffice.gc.ca/canada_e.html

Yang, J., Rivard, H., and Zmeureanu, R. (2005). Building Energy Prediction with

Adaptive Artificial Neural Networks, Proceedings of the 9th International

IBPSA Conference, Montreal, Quebec, Canada.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications, PhD Thesis, Swiss Federal Institute of Technology

(ETH), Zurich, Switzerland.

Zitzler, E., Deb, K., Thieler, L. (2000). Comparison of multiobjective

evolutionary algorithms: empirical results. IEEE Transactions on Evolutionary

Computation 8: 173-195.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach. IEEE Transactions

on Evolutionary Computation, 3(4): 257-271.

Zhou, L. (2007). Optimization of ventilation system design and operation in

office environment. Ph.D. dissertation, Concordia University (Canada), Canada.

138

APPENDIX A:

MOEA CODES

NSGA ll.m

clc
tic

%% Initialize constants and main parameters
constants

CPUTIME=0;
%% Initialize the population
population
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,maxt,CPUTIME,time_limit);

%% Sort the initialized population based on rank and crowding distance
population = non_domination_and_crowding_sort(population,N,M,V);

CPUTIME=toc;

%% Start the evolution process

while (generation<=max_generation)&&(CPUTIME<timeJimit)
tic

%% Select the parents (based on tournament selection)
parent_population = tournament_selection(population,M,V,pool_size);

%% Generate offspring by crossover and mutation
offspring_population =

genetic_operator(parent_population,probability_crossover,probability_mutation,crossover
_type,mutation_type,UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,time_limi
t);

%% Combine current population and offspring in so called intermediate
%% population

intermediate_population = [offspring_population(:,1:M+V); population(:,1:M+V)];

%% Sort the intermediate population
sorted_intermediate_population = ...

139

non_domination_and_crowding_sort(intermediate_population,N,M,V);

%% Selection of individuals for next generation based on rank and
%% crowding distance
population = replace_chromosome(sorted_intermediate_population,N,M,V);

%% Display algorithm progress

generation=generation+1;
CPUTIME=CPUTIME+toc;

Total_time_for_optimization = CPUTIME;

%% Results

% Display computation time
fprintf(Total time for optimization is %g seconds \n',Total_time_for_optimization);

% Termination reason

if generation==max_generation+1
disp('Optimization stopped because maximum generation was reached.');
reason=1;

elseif CPUTIME>=timeJimit
disp('Optimization stopped because maximum CPU time was reached.');
reason=2;

%% Visualization

% Elite population plot

if want_plot
if M==2

plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');

elseif M==3
figure1=plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');
menu('Click here to proceed to next figure','ok');
plot(population(:,V + 1),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 3');
menu('Click here to proceed to next figure','ok');

plot(population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 2');
ylabel('Objective 3');
menu('Click here to proceed to next figure'.'ok');
plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');
zlabel('Objective 3');

end

NSGAINN.m

close
clc
tic

%% Initialize constants and main parameters
constants

%% Initialize the population
population
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,maxt,CPUTIME,timeJimit);

%% Sort the initialized population based on rank and crowding distance
population = non_domination_and_crowding_sort(population,N,M,V);

CPUTIME=toc;

%% Start the evolution process

while (generation<=max_generation)&&(CPUTIME<time_limit)
tic

%% Select the parents (based on tournament selection)
parent_population = tournament_selection(population,M,V,pool_size);

%% Generate offspring by crossover and mutation
if CPUTIME/timeJimit<0.8

offspring_population =
genetic_operator(parent_population,probability_crossover,probability_mutation,crossover
_type,mutation_type,UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,time_limi
t);

else
CPUTIME=CPUTIME+toc;
crossover_type=7;
Min_=min(population(:,V+1:V+M));
offspring_population =

genetic_operator2(parent_population,probability_crossover,probability_mutation,crossove
rJype.mutationJype.UB.LB.Step.N.M.V.mu^um.CPUTIME.timeJimit.Min^flw.slw.bi.mi
nt.maxt);

CPUTIME=offspring_population(length(offspring_population(:,1)),1);
tic
offspring_population(length(offspring_population(:,1)),:)=[];

end

%% Combine current population and offspring in so called intermediate
%% population
intermediate_population = [population^,1 :M+V);offspring_population(:,1 :M+V)];

%% Sort the intermediate population

intermediate_population =
non_domination_and_crowding_sort(intermediate_population,N,M,V);

142

%% Selection of individuals for next generation based on rank and
%% crowding distance
population = replace_chromosome(intermediate_population,N,M,V);

%% Display algorithm progress

generation=generation+1;
CPUTIME=CPUTIME+toc;

end

Total_time_for_optimization = CPUTIME;

%% Results

% Display computation time
fprintf(Total time for optimization is %g seconds \n',Total_time_for_optimization);

% Termination reason

if generation==max_generation+1
disp('Optimization stopped because maximum generation was reached.');
reason=1;

elseif CPUTIME>=time_limit
disp('Optimization stopped because maximum CPU time was reached.');
reason=2;

end

%% Visualization

% Elite population plot

if want_plot
if M==2

plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');

elseif M==3
figure1=plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');
menu('Click here to proceed to next figure','ok');
plot(population(:,V + 1),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 3');
menu('Click here to proceed to next figure','ok');
plot(population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 2');
ylabel('Objective 3');
menu('Click here to proceed to next figure','ok');

plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1 ');
ylabel('Objective 2');
zlabel('Objective 3');

end
end

144

PLAGUE.m

tic
clc

%% Initialize constants and main parameters
PLAGUE_constants
Min_=zeros(M,1);

%% Initialize the population
population
initialize_population(N,M,V,UB>LB,Step,flw,slw,bi,mint,maxt,CPUTIME,time_limit);

%% Sort the initialized population based on rank and crowding distance
population = non_domination_and_crowding_sort(population,N,M,V);

CPUTIME=toc;

%% Start the evolution process

while (generation<=max_generation)&&(CPUTIME<time_limit)
tic

population=population(:,1 :M+V);

population=PLAGUE_genetic_operator2(population,probability_crossover,probability_mut
ation^rossoverJype^utationJype.UB.LB.Step.^N.M.V.mu.mum.CPUTIME.timeJimit.fl
w,slw,bi,mint,maxt);

CPUTIME=CPUTIME+toc;
tic

%% Sort the intermediate population
PLAGUENOW

%% Display algorithm progress
generation=generation+1;
CPUTIME=CPUTIME+toc;

end

ifCPUTIME>10000
CPUTIME=CPUTIME-10000;

end
Total_time_for_optimization = CPUTIME;

%% Results

145

% Display computation time
fprintf('Total time for optimization is %g seconds \n',Total_time_for_optimization);

% Termination reason

if generation==max_generation+1
disp('Optimization stopped because maximum generation was reached.');
reason=1;

elseif CPUTIME>=time_limit-1
disp('Optimization stopped because maximum CPU time was reached.');
reason=2;

%% Visualization

% Elite population plot

if want_plot
if M==2

plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');

elseif M==3
figure1=plot(population(:,V + 1),population(:,V + 2),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1 ');
ylabel('Objective 2');
menu('Click here to proceed to next figure','ok');
plot(population(:,V + 1),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 3');
menu('Click here to proceed to next figure','ok');
plot(population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 2');
ylabel('Objective 3');
menu('Click here to proceed to next figure','ok');
plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*');
title('Multi-objective optimization: final population');
xlabel('Objective 1');
ylabel('Objective 2');
zlabel('Objective 3');

end
end

Constants.m

%% Population parameters

N = 100; % Population size
M = 2; % Number of objectives
V = 20; % Number of decision variables

%% Variables bounds
UB=[];
LB=rj;
Step=[];
for i=1 :V
LB=[LB,-1.0]; %Lower bounds
UB=[UB,1.0]; %Upper bounds
Step=[Step,0];
end

%% Genetic operation parameters

crossover_type=1; %Crossover type
probability_crossover=0.9; %Probability of crossover
mu = 20; %The distribution indices for crossover operator

mutation_type=12; %Mutation type
probability_mutation=1/V; %Probability of mutation
mum =20; %The distribution indices for mutation operators

%% Genetic algorithm parameters

max_generation = 2500; %Maximum generation
pool_size = round(N); %Pool size for tournament selection

%% Initialization

generation=1;

%% Termination criterion (please be careful changing this part)

termination_by_generation=0;
termination_by_cputime=0;
CPUTIME=0;
time_limit=60;

%% Others
want_plot=0;

Constants2.m

%% Initialize the variables

147

%% Population parameters

N = 100; % Population size
M = 3; % Number of objectives
V = 20; % Number of decision variables

%% Variables bounds
UB=Q;
LB=D;
Step=Q;
for i=1 :V
LB=[LB,0]; %Lower bounds
UB=[UB,1]; %Upper bounds
Step=[Step,0];
end

%% Genetic operation parameters

crossover_type=1; %Crossover type
probability_crossover=0.9; %Probability of crossover
mu = 20; %The distribution indices for crossover operator

mutation_type=12; %Mutation type
probability_mutation=1 A/; %Probability of mutation
mum =20; %The distribution indices for mutation operators

%% Genetic algorithm parameters

max_generation = 250000; %Maximum generation
pool_size = round(N); %Pool size for tournament selection

%% Initialization

generation=1;

%% Termination criterion (please be careful changing this part)

termination_by_generation=0;
termination_by_cputime=1;
CPUTIME=0;
time_limit=60);

%% Others
want_plot=0;

crossover.m

%% Crossover

148

%% Crossover type is chosen giving user choice

%% One point crossover

if crossover_type==2
crossover_point=max(round((rand(1)*V)),1);
for vars=1 :crossover_point

child_1 (vars)=parent_1 (vars);
child_2(vars)=parent_2(vars);

end
for vars=crossover_point:V

child_1 (vars)=parent_2(vars);
child_2(vars)=parent_1 (vars);

end

%% Two points crossover

elseif crossover_type==3
crossover_point1 =min(max(round((rand(1,2)*V)),1));
crossover_point2=max(max(round((rand(1,2)*V)),1));
for vars=1 :crossover_point1

child_1 (vars)=parent_1 (vars);
child__2(vars)=parent_2(vars);

end
for vars=crossover_point1 :crossover_point2

child_1 (vars)=parent_2(vars);
child_2(vars)=parent_1 (vars);

end
for vars=crossover_point2:V

child_1 (vars)=parent_1 (vars);
child_2(vars)=parent_2(vars);

end

%% Scattered/random crossover

elseif crossover_type==4
for vars=1 :V

ifrand(1)<0.5
child_1 (vars)=parent_1 (vars);
child_2(vars)=parent_2(vars);

else
child_1 (vars)=parent_2(vars);
child_2(vars)=parent_1 (vars);

end
end

%% SBX (Simulated Binary Crossover)

elseif crossover_type==1
u = rand(1,V);
random 1=rand(1,V);
for vars = 1 : V

if random 1 (vars)<0.5

diff=abs(parent_1(vars)-parent_2(vars));
if diff==0

alpha=2;
else

beta=1+2*min([UB(vars)-parent_1(vars);parent_1(vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff;

alpha=2-betaA(-mu-1);
end
if u(vars) <= (1/alpha)

bq = (alpha*u(vars))A(1/(mu+1));
else

bq = (1/(2- alpha* u(vars)))A(1/(mu+1));
end
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars)));
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars)));
if Step(vars)~=0

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars));
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars));

end
end

end
elseif crossover_type==5

mu=10+round(10*rand(1));
u = rand(1,V);
random 1=rand(1,V);
for vars = 1 : V

if randoml (vars)<0.5
% Generate a random number
u = rand(1);
if u <=0.5

bq = (2*u)A(1/(mu+1));
else

bq = (1/(2*(1 -u)))A(1/(mu+1));
end
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars)));
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1 (vars)-

parent_2(vars)));
if Step(vars)~=0

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars));
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars));

end
if child_1(vars) > UB(vars)

child_1(vars) = UB(vars);
elseif child_1 (vars) < LB(vars)

child_1(vars) = LB(vars);
end
if child_2(vars) > UB(vars)

child_2(vars) = UB(vars);
elseif child_2(vars) < LB(vars)

child_2(vars) = LB(vars);
end

150

end
end

elseif crossover_type==6
u = rand(1,V);
random 1=rand(1,V);
for vars = 1 : V

if randoml (vars)<0.5
% Generate a random number
u = rand(1);
if u<=0.5

bq = (2*u)A(1/(mu+1));
else

bq = (1/(2*(1 -u)))A(1/(mu+1));
end
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars)));
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars)));
if Step(vars)~=0

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars));
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars));

end
if child_1 (vars) > UB(vars)

child_1 (vars) = UB(vars);
elseif child_1 (vars) < LB(vars)

child_1(vars) = LB(vars);
end
if child_2(vars) > UB(vars)

child_2(vars) = UB(vars);
elseif child_2(vars) < LB(vars)

child_2(vars) = LB(vars);
end

end
end

elseif crossover_type==7
u = rand(1,V);
random 1=rand(1,V);
for vars = 1 : V

if randoml (vars)<0.5
% Generate a random number
u = rand(1,V);
randoml =rand(1,V);
for vars = 1 : V

if random 1(vars)<0.5
diff=abs(parent_1(vars)-parent_2(vars));
if diff==0

alpha=2;
else

beta=1 +2*min([UB(vars)-parent_1 (vars);parent_1 (vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff;

alpha=2-betaA(-mu-1);
end
if u(vars) <= (1/alpha)

bq = (alpha*u(vars))A(1/(mu+1));

151

else
bq = (1/(2- alpha* u(vars)))A(1/(mu+1));

end
chilcM(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1 (vars)-

parent_2(vars)));
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars)));
if Step(vars)~=0

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars));
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars));

end
end

end
else

% Generate a random number
u = rand(1,V);
random1=rand(1,V);
for vars = 1 : V

if random 1(vars)<0.5
diff=abs(parent_1(vars)-parent_2(vars));
if diff==0

alpha=2;
else

beta=1+2*min([UB(vars)-parent_1(vars);parent_1(vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff;

alpha=2-betaA(-mu-1);
end
if u(vars) <= (1/alpha)

bq = (alpha*u(vars))A(1/(mu+1));
else

bq = (1/(2- alpha* u(vars)))A(1/(mu+1));
end
child_1b(vars) = 0.5*(parent_1(vars)+parent_2(vars)

bq*abs(parent_1(vars)-parent_2(vars)));
child_2b(vars) = 0.5*(parent_1(vars)+parent_2(vars) +

bq*abs(parent_1(vars)-parent_2(vars)));
if Step(vars)-=0

child_1 b(vars)=Step(vars)*round(child_1 (vars)/Step(vars));
child_2b(vars)=Step(vars)*round(child_2(vars)/Step(vars));

end
end

end
end

end
child_1b((V+1):(V+M))

evaluate_objective(child_1b,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit);
child_2b((V+1):(V+M))

evaluate_objective(child_2b,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit);
end

child_1((V+1):(V+M))
evaluate_objective(child_1,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit);
child_2((V+1):(V+M))

152

evaluate_objective(child_2,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit);

crossover2.m

%%Crossover sorting

if rand2(1 ,pp)<(5*CPUTIME/time_limit-4)A0.5
crossover2_1;

else
crossover2_2;

end

crossover2_1

%%Crossover replacement SEAMO

infants=[child_1 ;child_2;child_1 b;child_2b];
family=[parent_1(1 :M+V);parent_2(1 :M+V);infants];
family=non_domination_sort(family,M,V);

sumO=sum(family(3:6,V+M+1));
sumP=(sum(family(1:2,V+M+1)));
if min(infants(:,V+1 :V+M))>Min_

if (sumP>=3)
iffamily(1,M+V+1)==2

iffamily(3,M+V+1)==1
family(1,:)=non_domination_partial_sort(family(1,:),family(3,:),M,V);
iffamily(1,M+V+1)==2

successful_crossover(1)=1;
end

end
iffamily(4,M+V+1)==1

family(1,:)=non_domination_partial_sort(family(1,:),family(4,:),M,V);
iffamily(1,M+V+1)==2

successful_crossover(2)=1;
end

end
iffamily(5,M+V+1)==1

family(1,:)=non_domination_partial_sort(family(1,:),family(5,:),M,V);
iffamily(1,M+V+1)==2

successful_crossover(3)=1;
end

end
iffamily(6,M+V+1)==1

family(1,:)=non_domination_partial_sort(family(1,:),family(6,:),M,V);
iffamily(1,M+V+1)==2

successful_crossover(4)=1 ;
end

end

153

end
iffamily(2,M+V+1)==2

iffamily(3,M+V+1)==1
family(2,:)=non_domination_partial_sort(family(2,:),family(3,:),M>V);
iffamily(2,M+V+1)==2

successful_crossover(1)=1;
end

end
iffamily(4,M+V+1)==1

family(2,:)=non_domination_partial_sort(family(2,:),family(4,:),M,V);
iffamily(2,M+V+1)==2

successful_crossover(2)=1;
end

end
iffamily(5,M+V+1)==1

family(2,:)=non_domination_partial_sort(family(2,:),family(5,:),M,V);
iffamily(2,M+V+1)==2

successful_crossover(3)=1;
end

end
iffamily(6,M+V+1)==1

family(2,:)=non_domination_partial_sort(family(2,:),family(6,:),M,V);
iffamily(2,M+V+1)==2

successful_crossover(4)=1;
end

end
end

end
else

if (child_1(V+1 :V+M)<Min_)~=0
successf ul_crossover(1)=1;
Min_=min([Min_;child_1(V+1:V+M)]);

end
if (child_2(V+1 :V+M)<Min_)-=0

successful_crossover(2)=1;
Min_=min([Min_;child_2(V+1:V+M)]);

end
if (child_1 b(V+1 :V+M)<Min_)~=0

successful_crossover(3)=1;
Min_=min([Min_;child_1 b(V+1 :V+M)]);

end
if (child_2b(V+1 :V+M)<Min_)-=0

successful_crossover(4)=1;
Min_=min([Min_;child_2b(V+1:V+M)]);

end
end

crossover2_2

%% Crossover2_2

infants=[child_1 ;child_2;child_1 b;child_2b];
family=[parent_1(1 :M+V);parent_2(1 :M+V);infants];

154

infants=family_sort(family(3:6,:),family(1:2,:),M,V);

successful_crossover=infants(1:4,M+V+1);

evaluate_objective.m

function f = evaluate_objective(x,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit)

% Function to evaluate the objective functions for the given input vector
% x. x has the decision variables
if V==19
X=x(1:19)';
X(20)=-1;

else
X=x(1:20)';
end
f = D;
%% Objective function one

a(1)=-1 +2/(1 +exp(-2*(flw(1 ,:)*X+bi(1))))
a(2)=-1 +2/(1 +exp(-2*(flw(2,:)*X+bi(2))))
a(3)=-1 +2/(1 +exp(-2*(flw(3,:)*X+bi(3))))
a(4)=-1 +2/(1 +exp(-2*(flw(4,:)*X+bi(4))))
a(5)=-1 +2/(1 +exp(-2*(flw(5, :)*X+bi(5))))
a(6)=-1+2/(1+exp(-2*(flw(6,:)*X+bi(6))))
a(7)=-1 +2/(1 +exp(-2*(flw(7,:)*X+bi(7))))
a(8)=-1+2/(1+exp(-2*(flw(8,:)*X+bi(8))))
a(9)=-1 +2/(1 +exp(-2*(flw(9,:)*X+bi(9))))
a(10)=-1+2/(1+exp(-2*(flw(10,:)*X+bi(10))));
a(11)=-1+2/(1+exp(-2*(flw(11,:)*X+bi(11))));
a(12)=-1 +2/(1 +exp(-2*(flw(12,:)*X+bi(12))))
a(13)=-1 +2/(1 +exp(-2*(flw(13,:)*X+bi(13))))
a(14)=-1+2/(1+exp(-2*(flw(14,:)*X+bi(14))))
a(15)=-1 +2/(1 +exp(-2*(flw(15,:)*X+bi(15))))
a(16)=-1+2/(1+exp(-2*(flw(16,:)*X+bi(16))))
a(17)=-1 +2/(1 +exp(-2*(flw(17,:)*X+bi(17))))
a(18)=-1 +2/(1 +exp(-2*(flw(18,:)*X+bi(18))))
a(19)=-1 +2/(1 +exp(-2*(flw(19,:)*X+bi(19))))
a(20)=-1+2/(1+exp(-2*(flw(20,:)*X+bi(20))))

A(1)=slw(1,
A(2)=slw(2,
A(3)=slw(3,
A(4)=slw(4,
A(5)=slw(5,

)*a'+bi(21)
)*a'+bi(22)
)*a'+bi(23)
)*a'+bi(24)
)*a'+bi(25)

for i=1:5
Ascaled(i) = 0.5*(A(i)+1)*(maxt(i)-mint(i)) + mint(i);

end

f(1)=abs(Ascaled(4))*(1 +max(Ascaled(5)/100,0));
f(2)=sum(Ascaled(1:3))*(1+max(Ascaled(5)/100,0));

155

count=getappdata(0, 'count');
count=count+1;
setappdata(0,'count',count);

family_sort.m
function f = family_sort(x,y,M,V)

for i = 1 : 4
j=1;
% Number of individuals that dominate this individual
dominated = 0;
while (dominated == 0)&(j<=2)

domjess = 0;
dom_equal = 0;
dom_more = 0;
for k = 1 : M

if(x(i,V + k)<yG,V + k))
domjess = domjess + 1;

elseif (x(i,V + k) == yQ,V + k))
dom_equal = dom_equal + 1;

else
dom_more = dom_more + 1;

end
end
if domjess == 0 && dom_equal ~= M

dominated = 1;
end
j=j+1;

end
if dominated == 0

x(i,M + V + 1) = 1;
else

x(i,M+V+1)=2;
end

end
f=x();

genetic_operator.m

function f =
genetic_operator(parent_population,probability_crossover,probability_mutation,crossover
Jype,mutation Jype.UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,timeJimi
t);

NP = length(parent_population(:,1));

P = 1;
pp=1;
randgen=ceil(NP*rand(2,ceil(N/2)));
while p < N+1

156

num_parent_1 = randgen(1,pp);
parent_1 = parent_population(num_parent_1,:);
child_1 =parent_1;
num_parent_2 = randgen(2,pp);
while isequal(num_parent_1 ,num_parent_2)

num_parent_2 = ceil(NP*rand(1));
end
parent_2 = parent_population(num_parent_2,:);
child_2=parent_2;
if rand(1) < (probability_crossover)

crossover
end

parent_3=child_1;
m mutation
ch i l d j = child_3;

parent_3=child_2;
m mutation
child_2 = child_3;

child(p,:) = ch i l d j (1:M+V);
child(p+1,:) = child_2(1 :M+V);
P = p + 2;
pp=pp+1;

end

f = child;

genetic_operator_2.m

function f =
genetic_operator2(parent_population,probability_crossover,probability_mutation,crossove
rJype.mutationJype.UB.LB.Step.N.M.V.mu.mum.CPUTIME.timeJimit.Min^flw.slw.bi.mi
nt.maxt);

child=[];
NP = length(parent_population(:,1));
P = 1;
randgen=ceil(NP*rand(2,2*N));
rand2=rand(1,2*N);
pp=1;
count=0;
tic

while (p < N+1)&&(count<100*N*M)&&(CPUTIME<(time_limit-1))
successful_crossover(1:4)=0;
num_parent_1 = randgen(1,pp);
parent j = parent_population(num_parent_1,:);
child_1 =parent_1;
child_1 b=parent_1;
num_parent_2 = randgen(2,pp);
while isequal(num_parent_1 ,num_parent_2)

157

num_parent_2 = ceil(NP*rand(1));
end
parent_2 = parent_population(num_parent_2,:);
child_2=parent_2;
child_2b=parent_2;
if rand(1) < (probability_crossover)

crossover
end

parent_3=child_1;
mmutation
childjl = child_3;

parent_3=child_2;
mmutation
child_2 = child_3;
parent_3=child_1 b;
mmutation
child_1b = child_3;

parent_3=child_2b;
mmutation
child_2b = child_3;

crossover2
if sum(successful_crossover)>0

if successful_crossover(1)==1
child(p,1 :M+V) = chi ld j l ;
P=P+1;

elseif successful_crossover(2)==1;
child(p,1:M+V) = child _2;
p=p+1;

elseif successful_crossover(3)==1;
child(p,1:M+V) = childjl b;
P=P+1;

elseif successful_crossover(4)==1;
child(p,1:M+V) = child_2b;
p=p+1;

end
end

pp=pp+1;
if(mod(pp,2*N)==0)

CPUTIME=CPUTIME+toc;
tic;
randgen(2,:)=ceil(NP*rand(1,2*N));
rand2=rand(1,2*N);
PP=1;

end
count=count+1;

end

CPUTIME=CPUTIME+toc;

cputime=ones(1 ,M+V)*CPUTIME;
f = [child;cputime];

initialize_population.m

function f
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,rnaxt,CPUTIME,time_limit)

%% This function initializes the population with N individuals and each
%% individual having M decision variables based on the selected problem.

%% Initialize the decision variables

RAND=rand(N,V);
for vars = 1 : V

f(:,vars) = LB(vars)+(UB(vars)-LB(vars))*RAND(:,vars);
if Step(vars)~=0

f(:,vars)=Step(vars)*round(f(:,vars)/Step(vars));
end

end

%% Evaluate the objective function
for i = 1 : N

f(i,(V+1):(V+M))
evaluate_objective(f(i,:),M,V,flw,slw,bi,mint,maxt,CPUTIME,timeJimit);
end

mmutation.m

%% Mutation process

%% Mutation

if mutation_type==2
for vars=1 :V

child_3(vars)=(1+(1-2*rand(1))*mum(vars))*parent_3(vars);
if Step(vars)~=0

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars));
end
if child_3(vars) > UB(vars)

child_3(vars) = UB(vars);
elseif child_3(vars) < LB(vars)

child_3(vars) = LB(vars);
end

end

elseif mutation_type==1
child_3 = parent_3(1 :V);
random1=rand(1,V);
for vars = 1 : V

159

if random 1(vars)<probability_mutation
delta=min([parent_3(vars)-LB(vars);UB(vars)-parent_3(vars)])/(UB(vars)-LB(vars));
r = rand(1);
if r<=0.5

deltaq = ((2*r)A(1/(mum+1)) - 1)*(parent_3(vars)-LB(vars))/(UB(vars)-LB(vars));
else

deltaq = (1 - (2*(1 - r))A(1/(mum+1)))*(UB(vars)-parent_3(vars))/(UB(vars)-
LB(vars));

end
child_3(vars) = child_3(vars) + (UB(vars)-LB(vars))*deltaq;
if Step(vars)~=0

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars));
end

end
end

elseif mutation_type==12
child_3 = parent_3(1 :V);
random1=rand(1,V);
for vars = 1 : V

if random 1(vars)<probability_mutation
delta=min([parent_3(vars)-LB(vars);UB(vars)-parent_3(vars)])/(UB(vars)-LB(vars));
r = rand(1);
if r<0.5

deltaq = (2*r+(1 -2*r)*(1 -delta)A(mum+1))A(1 /(mum+1)) - 1 ;
else

deltaq = 1 -(2*(1 - r)+2*(r-0.5)*(1-delta)A(mum+1))A(1/(mum+1));
end
child_3(vars) = parent_3(vars) + (UB(vars)-LB(vars))*deltaq;
if child_3(vars) > UB(vars)

child_3(vars) = UB(vars);
elseif child_3(vars) < LB(vars)

child_3(vars) = LB(vars);
end
if Step(vars)~=0

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars));
end

end
end

elseif mutation_type==3
mum=10+round(10*rand(1));
child_3 = parent_3(1 :V);
random 1=rand(1,V);
for vars = 1 : V

if random 1 (vars)<probability_mutation
r=rand(1);
if r < 0.5

delta(vars) = (UB(vars)-LB(vars))*((2*r)A(1/(mum+1)) -1);
else

delta(vars) = (UB(vars)-LB(vars))*(1 - (2*(1 - r))A(1/(mum+1)));
end
child_3(vars) = child_3(vars) + delta(vars);
if Step(vars)~=0

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars));
end

160

end
end

elseif mutation_type==4
child_3 = parent_3(1:V);
random1=rand(1,V);
for vars = 1 : V

if random 1 (vars)<probability_mutation
r=rand(1);
if r < 0.5

delta(vars) = (UB(vars)-LB(vars))*((2*r)A(1/(mum+1)) -1);
6lSG

delta(vars) = (UB(vars)-LB(vars))*(1 - (2*(1 - r))A(1/(mum+1)));
end
child_3(vars) = child_3(vars) + delta(vars);
if Step(vars)~=0

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars));
end
if child_3(vars) > UB(vars)

child_3(vars) = UB(vars);
elseif child_3(vars) < LB(vars)

child_3(vars) = LB(vars);
end

end
end

end

child_3((V+1):(V+M))
evaluate_objective(child_3,M,V,flw,slw,bi,mint,maxt,CPUTIME,timeJimit);

non_domination_and_crowding_sort.m

function f = non_domination_and_crowding_sort(x,N,M,V)

ND = length(x(:,1));
x=x(:,1:M+V);
x(:,M+V+1)=0;
front = 1;

F(front).f = [];
individuall = [];
for i = 1 : ND

% Number of individuals that dominate this individual
individuall(i).dominating = 0;
% Individuals which this individual dominates
individuall(i).dominated = [];
for j = 1 : ND

Sbetter=0;
better = 0;
equal = 0;
worse = 0;

161

for obj = 1 : M
if (x(i,V + obj) > x(j,V + obj))

worse = worse + 1 ;
elseif (x(i,V + obj)== xG,V + obj))

equal = equal + 1;
elseif (x(i,V + obj) < x(j,V + obj))

better=better+1;
end

end
if better == 0 && equal ~= M

individuall(i).dominating = individuall(i).dominating + 1;
elseif worse == 0 && better>0

individuall(i).dominated = [individuall(i).dominated j];
end

end
if individuall(i).dominating == 0

x(i,M + V + 1) = 1;
F(front).f = [F(front).f i];

end
end

% Find the rank of each individual
size_=0;
while (~isempty(F(front).f))&&((size__)<N)

Q = D;
for i = 1 : length(F(front).f)

if ~isempty(individuall(F(front).f(i)).dominated)
for j = 1 : length(individuall(F(front).f(i)).dominated)

individuall(individuall(F(front).f(i)).dominated(j)).dominating = ...
individuall(individuall(F(front).f(i)).dominated(j)).dominating - 1 ;

if individuall(individuall(F(front).f(i)).dominated(j)).dominating == 0
x(individuall(F(front).f(i)).dominated(j),M + V + 1)=front + 1;
Q = [Q individuall(F(front).f(i)).dominated(j)];

end
end

end
end
size_=size_+length(F(front).f);
front = front + 1;
F(front).f = Q;

end

fori=1:ND
ifx(i,M+V+1)==0

x(i,M+V+1)=front;
end

end

last_front=front-1;

[temp,index_of_fronts] = sort(x(:,M + V + 1));

sorted_based_on_front = x(index_of_fronts,:);

%% Find the crowding distance for each individuall in each front
currentjndex = 0;

%For each front up to 5
for front = 1 : min(last_front,500)

y = D;
sorted_based_on_objective = [];
previous_index = currentjndex;

%For each individual in this front
length_front=(length(F(front).f));
y = sorted_based_on_front(current_index+1 :current_index+length_front,:);
currentjndex = currentjndex + lengthjront;

% Sort each individuall based on the objective

for obj = 1 : M
[temp, indexjof_objectives] = sort(y(:,V + obj));
sorted Jsasedjonjobjective = y(indexjDfjobjectives,:);
f_max= sorted_basedjonjobjective(lengthj'ront, V + obj);
f jn in = sorted_basedjonjobjective(1, V + obj);
y(indexjDfjDbjectives(lengthjront),M + V + 1 + obj)= Inf;
y(indexjofj>bjectives(1),M + V + 1 + obj) = Inf;

for j = 2 : length(indexj)f_objectives) - 1
nextjabj = sorted_based jon jDbjectiveQ + 1 ,V + obj);
previousjobj = sorted_based jonjobjective(j -1 ,V + obj);
if (f jnax - f jn in == 0)

y(indexjDfjDbjectivesG),M + V + 1 + obj) = Inf;
else

y(indexj3fjDbjectives(j),M + V + 1 + obj) = (next_obj - previousj3bj)/(f_max-
fjmin);

end
end

end
distance= zeros(length_front,1);
for obj = 1 : M

distanced) = distance(:) + y(:,M + V + 1 + obj);
end
y(:,M + V + 2) = distance;
y = y(:,1 : M + V + 2);
z(previous_index+1:current_index,:) = y;

end

f = z();

nonjdominationjpartialjsort.m

163

function f = non_domination_partial_sort(x,y,M,V)

NT = length(x(:,1));
ND = length(y(:,1));

for i = 1 : NT
j = i ;
% Number of individuals that dominate this individual
dominated = 0;
while (dominated == 0)&(j<=ND)

domjess = 0;
dom_equal = 0;
domjnore = 0;
for k = 1 : M

if(x(i,V + k)<y(j,V + k))
domjess = domjess + 1;

elseif (x(i,V + k) == y(j,V + k))
dom_equal = dom_equal + 1;

else
domjnore = dom_more + 1;

end
end
if domjess == 0 && dom_equal ~= M

dominated = 1;
end
j=j+1;

end
if dominated == 0

x(i,M + V + 1) = 1;
else

x(i,M+V+1)=2;
end

end
f=x();

non_domination_sort.m

function f = non_domination_sort(x,M,V)

ND = length(x(:,1));

for i = 1 : ND
j=1;
% Number of individuals that dominate this individual
dominated = 0;
while (dominated == 0)&(j<=ND)

domjess = 0;
dom_equal = 0;
dom_more = 0;
for k = 1 : M

if (x(i,V + k) < x(j,V + k))
domjess = domjess + 1;

164

elseif (x(i,V + k) == x(j,V + k))
dom_equal = dom_equal + 1;

else
dom_more = dom_more + 1;

end
end
if domjess == 0 && dom_equal ~= M

dominated = 1;
end
j=j+1;

end
if dominated == 0

x(i,M + V + 1) = 1;
else

x(i,M+V+1)=2;
end

end
f=x();

165

tournament selection.m

function f = tournament_selection(population,M,V,pool_size)

NT = length(population(:,1));

randtr=ceil(NT*rand(2,pool_size));
for i = 1 : pool_size

%% Generate (tour_size) different individuals
candidate=randtr(:,i);
while candidate(2)==candidate(1)

candidate(2) = ceil(NT*rand(1));
end

c_obj_rank= population(candidate(:),M+V+1);
c_obj_distance = population(candidate(:),M+V+2);

%% Find fittest individual

%Find minimal rank individual(s)
min_candidate = find(c_obj_rank == min(c_obj_rank));

if length(min_candidate) == 1
% If there is only one minimal rank individual, it is chosen
f(i,:) = population(candidate(min_candidate(1)),:);

elseif length(min_candidate) ~= 1
% If several individuals have minimal rank, the one with highest
% crowding distance is chosen
max_candidate = ...

find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
if length(max_candidate) ~= 1

% If again several individuals have same distances, individuals
% is randomly chosen between those
max_candidate = max_candidate(max(round(rand(1)*length(max_candidate)),1));

end
f(i,:) = population(candidate(min_candidate(max_candidate)),:);

end
end

PLAGUE_constants.m

%% Initialize the variables

%% Population parameters

N = 80; % Population size
M = 2; % Number of objectives
V = 20; % Number of decision variables

166

%% Variables bounds
UB=[];
LB=[];
Step=n;
for i=1 :V
LB=[LB,-1.0]; %Lower bounds
UB=[UB,1.0]; %Upper bounds
Step=[Step,0];
end

%% Genetic operation parameters

crossover_type=1; %Crossover type
probability_crossover=0.9; %Probability of crossover
mu = 20; %The distribution indices for crossover operator

mutation_type=12; %Mutation type
probability_mutation=1 A/; %Probability of mutation
mum =20; %The distribution indices for mutation operators

%% Genetic algorithm parameters

max_generation = 250000; %Maximum generation
pool_size = round(N); %Pool size for tournament selection

%% Initialization

generations;

%% Termination criterion (please be careful changing this part)

termination_by_generation=0;
termination_by_cputime=1;
CPUTIME=0;
time_limit=getappdata(0,'time');
last_population=[];
%% Others
want_plot=0;

PLAGUE_family_sorting.m

%%Crossover replacement

infants=[child_1 ;child_2];
family=[parent_1(1 :M+V);parent_2(1 :M+V);child_1 ;child_2];
family=non_domination_sort(family,M,V);

167

if p>0
iffamily(1,M+V+1)==2

population(num_parent_1 ,:)=[];
p=p-1;
iffamily(2,M+V+1)==2

if num_parent_2>num_parent_1
population(num_parent_2-1 ,:)=[];
p=p-1;

else
population(num_parent_2, :)=[];
p=p-1;

end
end

elseiffamily(2,M+V+1)==2
population(num_parent_2,:)=Q;
p=p-1;

end
end
iffamily(3,M+V+1)==1

population=[population; child_1];
p=p+1;

end
iffamily(4,M+V+1)==1

population=[population; child_2];
p=p+1;

end

PLAGUE_genetic_operator2.m

function f = PLAGUE_genetic_operator2
(parent_population,probability_crossover,probability_mutation,crossover_type,mutation_t
ype,UB,LB,Step,wished_size,M,V,mu, mum, CPUTIME,time_limit,flw,slw,bi, mint, maxt);

NP = length(parent_population(:,1));
population=parent_population;
P = 1;
randgen=ceil(NP*rand(2,40));
pp=1;

while (p < wished_size+1)
successful_crossover(1:4)=0;
num_parent_1 = randgen(1,pp);
if num_parent_1 >NP

num_parent_1 = ceil(NP*rand(1));
end
parenM = population(num_parent_1,:);
child_1 =parent_1;
num_parent_2 = randgen(2,pp);
if num_parent_2>NP

num_parent_2 = ceil(NP*rand(1));
end
while isequal(num_parent_1 ,num_parent_2)

168

num_parent_2 = ceil(NP*rand(1));
end
parent_2 = population(num_parent_2,:);
child_2=parent_2;
if rand(1) < (probability_crossover)

crossover
end

parent_3=child_1;
mmutation
child_1 = child_3;

parent_3=child_2;
mmutation
child_2 = child_3;

PLAGUE_family_sorting;
NP=length(population(:,1));
pp=pp+1;
if (mod(pp,40)==0)

NP=length(population(:,1));
randgen=ceil(NP*rand(2,40));
pp=1;

end
end

f = population;

PLAGUE_non_domination_and_crowding_sort.m

function f = PLAGUE_non_domination_and_crowding_sort(x,N,M,V)

ND = length(x(:,1));
x=x(:,1:M+V);
x(:,M+V+1)=0;
front = 1;

F(front).f = [];
individuall = rj;
for i = 1 : ND

% Number of individuals that dominate this individual
individuall(i).dominating = 0;
% Individuals which this individual dominates
individuall(i).dominated = [];
for j = 1 : ND

Sbetter=0;
better = 0;
equal = 0;
worse = 0;
for obj = 1 : M

if (x(i,V + obj) > x(j,V + obj))
worse = worse + 1;

169

elseif (x(i,V + obj)== x(j,V + obj))
equal = equal + 1;

elseif (x(i,V + obj) < x(j,V + obj))
better=better+1;

end
end
if better == 0 && equal ~= M

individuall(i).dominating = individuall(i).dominating + 1;
elseif worse == 0 && better>0

individuall(i).dominated = [individuall(i).dominated j];
end

end
if individuall(i).dominating == 0

x(i,M + V + 1) = 1;
F(front).f = [F(front).f i];

end
end

% Find the rank of each individual
size_=0;
while (~isempty(F(front).f))&&((size_)<N)

Q = D;
for i = 1 : length(F(front).f)

if Hsempty(individuall(F(front).f(i)).dominated)
for j = 1 : length(individuall(F(front).f(i)).dominated)

individuall(individuall(F(front).f(i)).dominated(j)).dominating = ...
individuall(individuall(F(front).f(i)).dominated(j)).dominating - 1 ;

if individuall(individuall(F(front).f(i)).dominatedG)).dominating == 0
x(individuall(F(front).f(i)).dominated(j),M + V + 1)=front + 1;
Q = [Q individuall(F(front).f(i)).dominated(j)];

end
end

end
end
size_=size_+length(F(front).f);
front = front + 1;
F(front).f = Q;

end

fori=1:ND
ifx(i,M+V+1)==0

x(i,M+V+1)=front;
end

end

last_front=front-1;

[temp,index_of_fronts] = sort(x(:,M + V + 1));
sorted_based_on_front = x(index_of_fronts,:);

%% Find the crowding distance for each individuall in each front
currentjndex = 0;

%For each front up to 5
for front = 1 : min(last_front,5)

y = D;
sorted_based_on_objective = rj;
previous_index = currentjndex;

%For each individual in this front
length_front=(length(F(front).f));
y = sorted_based_on_front(current_index+1 :current_index+length_front,:);
current_index = currentjndex + length_front;

% Sort each individuall based on the objective

for obj = 1 : M
[temp, index_of_objectives] = sort(y(:,V + obj));
sorted_based_on_objective = y(index_of_objectives,:);
f_max= sorted_based_on_objective(length_front, V + obj);
f_min = sorted_based_on_objective(1, V + obj);
y(index_of_objectives(length_front),M + V + 1 + obj)= Inf;
y(index_of_objectives(1),M + V + 1 + obj) = Inf;

for j = 2 : length(index_of_objectives) -1
next_obj = sorted_based_on_objective(j + 1,V + obj);
previous_obj = sorted_based_on_objective(j -1 ,V + obj);
if (f_max - f_min == 0)

y(index_pf_objectives(j),M + V + 1 + obj) = Inf;
else

y(index_of_objectives(j),M + V + 1 + obj) = (next_obj - previous_obj)/(f_
f_min);

end
end

end
distance= zeros(length_front,1);
for obj = 1 : M

distance(:) = distance(:) + y(:,M + V + 1 + obj);
end
y(:,M + V + 2) = distance;
y = y(:,1 : M + V + 2);
z(previous_index+1:current_index,:) = y;

end

%For front higher than 5
if last_front>5

y = D;
sorted_based_on_objective = [];
previous_index = currentjndex;

%For each individual in this front
length_front=ND-current_index;

y = sorted_based_on_front(current_jndex+1 :current_index+length_front,:);
current_index = currentjndex + length_front;

% Sort each individuall based on the objective

for obj = 1 : M
[temp, index_of_objectives] = sort(y(:,V + obj));
sorted_based_on_objective = y(index_of_objectives,:);
f_max= sorted_based_on_objective(length_front, V + obj);
f_min = sorted_based_on_objective(1, V + obj);
y(index_of_objectives(length_front),M + V + 1 + obj)= Inf;
y(index_of_objectives(1),M + V + 1 + obj) = Inf;

for j = 2 : length(index_of_objectives) -1
next_obj = sorted_based_on_objective(j + 1 ,V + obj);
previous_obj = sorted_based_on_objective(j -1 ,V + obj);
if (f jnax - f_min == 0)

y(index_of_objectives(j),M + V + 1 + obj) = Inf;
else

y(index_of_objectives(j),M + V + 1 + obj) = (next_obj - previous_obj)/(f_max-
f_min);

end
end

end
distance= zeros(length_front,1);
for obj = 1 : M

distance(:) = distanced) + y(:,M + V + 1 + obj);
end
y(:,M + V + 2) = distance;
y = y(:,1 : M + V + 2);
z(previous_index+1:current_index,:) = y;

end
f = z();

PLAGUENOW.m

%%PLAGUE

if CPUTIME<time_limit-1.5
last_population=unique(population,'rows');

%% Main population

sorted_population=PLAGUE_non_domination_and_crowding_sort(last_population,ceil(0.
85*N),M,V);

main_population= replace_chromosome(sorted_population,ceil((1-0.05*M)*N),M,V);

%% Specialist population
survivors=[];
for obj=1:M

[temp,index_of_fronts] = sort(sorted_population(:,V+obj));
sorted_based_on_objective = sorted_population(index_of_fronts(:),:);
survivors=[survivors;sorted_based_on_objective(1:round(0.05*N),:)];

172

end

%% Diversity population
h=ceil(length(population(:,1))*rand(1 ,round(N/20)));
Hazard=population(h,:);

population=[survivors(:,1:M+V);main_population(:,1:M+V);Hazard];
CPUTIME=CPUTIME+toc;
tic

end
ifCPUTIME>time_limit-1.5

if isempty(last_population)
last_population=population;

end

sorted_population=non_domination_and_crowding_sort(last_population,length(last_popu
lation(:,1)),M,V);

population=[];
for indv=1 :length(sorted_population(:,1))

if sorted_population(indv,M+V+1)==1
population=[population;sorted_population(indv,:)];

end
end
CPUTIME=CPUTIME+10000;

End

replace_chromosome.m

function f = replace_chromosome(intermediate_population,N,M,V)

NR=length(intermediate_population(:,1));
f=D;
%% Get the index for the population sort based on the rank
[temp,index] = sort(intermediate_population(:,M + V + 1));

%% Now sort the individuals based on the index
sorted_population = intermediate_population(index,:);

%% Find the maximum rank in the current population
maxrank = sorted_population(NR,M+V+1);

%% Start adding each front based on rank and crowing distance until the
%% whole population is filled.

previous_index = 0;
for i = 1 : max_rank

currentjndex = find(sorted_population(:,M + V + 1) == i,1 ,'lasf);
if currentjndex < N

% All individuals of current rank are taken
f(previous_index + 1 : currentjndex, :) = ...

sorted_population(previous_index + 1 : currentjndex, :);

173

elseif current_index==N
% Same as before, but whole new population is filled so loop ends
f(previous_index + 1 : current_index, :) = ...

sorted_population(previous_index + 1 : currentjndex,:);
return

elseif currentjndex > N
% Individuals of current rank are chosen based on theri crowding
% distance

remaining = N - previousj'ndex;
temp_pop= sorted_population(previous_index + 1 : currentjndex, :);
[temp,temp_sort_index]=sort(temp_pop(:, M + V + 2),'descend');
f(previous_index + 1:previous_index+remaining,:)

temp_pop(temp_sort_index(1 remaining),:);
return

end
previous_index = currentjndex;

end

tournament selection.m

function f = tournament_selection(population,M,V,pool_size)

NT = length(population(:,1));

randtr=ceil(NT*rand(2,pool_size));
for i = 1 : pool_size

%% Generate (tour_size) different individuals
candidate=randtr(:,i);
while candidate(2)==candidate(1)

candidate(2) = ceil(NT*rand(1));
end

cjDbj_rank= population(candidate(:),M+V+1);
cjobjjdistance = population(candidate(:),M+V+2);

%% Find fittest individual

%Find minimal rank individual(s)
min_candidate = find(c_obj_rank == min(cjDbj_rank));

if length(min_candidate) == 1
% If there is only one minimal rank individual, it is chosen
f(i,:) = population(candidate(min_candidate(1)),:);

elseif length(min_candidate) ~= 1
% If several individuals have minimal rank, the one with highest
% crowding distance is chosen
max_candidate = ...

find(cjDbjjdistance(min_candidate) == max(cjobjjdistance(min_candidate)));
if length(max_candidate) ~= 1

174

% If again several individuals have same distances, individuals
% is randomly chosen between those
max_candidate = max_candidate(max(round(rand(1)*length(max_candidate)),1));

end
f(i,:) = population(candidate(min_candidate(max_candidate)),:);

end
end

175

APPENDIX B:

SIMULATED BINARY CROSSOVER AND POLYNOMIAL MUTATION

Possible genetic operators are numerous, such as single-point or two-point

crossovers, or mutation based on a probability distribution. For building

applications though, the use of real parameters is recommended; in that case, the

most efficient genetic operators are the Simulated Binary Crossover and the

Polynomial mutation. The main asset of these genetics operators is that offspring

chromosomes can take any value between parents' variables, according on a

distribution probability. They are often associated with NSGA-II and are one

reason of its efficiency. They re computed as follows:

Simulated Binary Crossover (SBX)

Generate a random number u 6 [0,1]

P =

(2M)

f

nc+i

1 >
n, i

2x(l -w)

I f u < 0 . 5

d = 0 . 5x ((Pi + P2) - P | Px + P2 |)

c2= 0 . 5x ((Pi + P2) + p | px + p2 |)

176

Polynomial crossover

Generate a random number r G [0,1]

5

I f r < 0 . 5

(2uym+l - l

l -
(! V

2x(l-w)y

Ci= Pi + 5 x (V m a x - V m i n)

where q and Pj are respectively offspring and parents variables,

r)c and qm are respectively crossover and mutation distribution indices, and

Vmax and Vmin are variable upper and lower bounds.

For multiple variables problems, SBX is applied on each variable with a

probability of 0.5, and Polynomial mutation is applied on each variable according

to mutation probability. Closeness between parents and offspring is controlled by

distribution indices r|c and rim, with a low number giving a high probability to

create far children. Different distribution indices values can be found in the

literature; in this thesis, both crossover and mutation distribution indices have been

chosen as 20, as in the Deb (2000), which produces offspring relatively close to

their parents.

177

APPENDIX C:

CODE USED FOR GENOPT RUNS

package genopt.algorithm;

import genopt.GenOpt;

import genopt.io.lnputFormatException;

import genopt.lang.OptimizerException;

import genopt.algorithm.util.math.Point;

import genopt.algorithm.util.math.Fun;

import genopt.simulation.SimulationlnputException;

import java.io.lOException;

import java.util.TreeMap;

/** Class for doing a parametric run where one parameter

* is perturbed at a time while the others are fixed.

* Linear and logarithmic spacing can be selected for each

* parameter independently.

*

* <p><|>This project was carried out at:</l>

*

* Lawrence Berkeley National Laboratory (LBNL),

*

* Simulation Research Group,

* <l>and supported by</l>

* the

* U.S. Department of Energy (DOE),

* the

* Swiss Academy of Engineering Sciences (SATW),

* the Swiss National Energy Fund (NEFF), and

* the

* Swiss National Science Foundation (SNSF)<P>
*

* Copyright (c) 1998-2003 The Regents of the University of California

* (through Lawrence Berkeley National Laboratory),

http://www.lbl.gov
http://simulationresearch.lbl.gov
http://www.energy.gov
http://www.satw.ch
http://www.snf.ch

* subject to receipt of any required approvals from U.S. Department of Energy.
*

* ©author Michael Wetter
*

* ©version GenOpt(R) 2.0.0 (Jan. 5, 2004)<P>

*/

/* Redistribution not allowed.

Product and company names mentioned herein may be the trademarks of their

respective owners. Any rights not expressly granted herein are reserved.

NOTICE: The Government is granted for itself and others acting on its

behalf a paid-up, nonexclusive, irrevocable, worldwide license in this

data to reproduce, prepare derivative works, and perform publicly and

display publicly. Beginning five (5) years after the date permission

to assert copyright is obtained from the U.S. Department of Energy,

and subject to any subsequent five (5) year renewals, the Government is

granted for itself and others acting on its behalf a paid-up, nonexclusive,

irrevocable, worldwide license in this data to reproduce, prepare

derivative works, distribute copies to the public, perform publicly

and display publicly, and to permit others to do so.

NEITHER THE UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY,

NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED,

OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,

COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,

OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE

PRIVATELY OWNED RIGHTS

7

public class Parametric extends Optimizer

{

/** Constructor

* @param genOptData a reference to the GenOpt object.

* Note: the object is used as a reference.

* Hence, the datas of GenOpt are modified

* by this Class.

mailto:MWetter@lbl.gov%22%3eMichael

* ©exception OptimizerException

*@exception lOException if an I/O exception occurs

* ©exception Exception

* ©exception InputFormatException

*/

public Parametric(GenOpt genOptData)

throws OptimizerException, lOException, Exception, InputFormatException

{

super(genOptData, 0);

dimCon = getDimensionContinuous();

dimDis = getDimensionDiscrete();

dimF = getDimensionF();

String em ="";

// get additional input

stopAtError = getlnputValueBoolean("StopAtError");

// check input for errors

// check whether all lower and upper bounds are set

for (int i = 0; i < dimCon; i++){

if (getKindOfConstraint(i) != 3)

em += "Parameter'" + getVariableNameContinuous(i) +

"' does not have lower and upper bounds specified.";

}

if (em.lengthO > 0)

throw new OptimizerException(em);

for (int i = 0; i < dimCon; i++){

// check that all values are positive if

// logarithmic spacing is required

if (getDx(i) < 0){ // have logarithmic scale

if(getL(i) <= 0)

em += "Parameter'" + getVariableNameContinuous(i) +

'" has logarithmic scale and lower bound '" + getL(i) + '"." + LS;

if(getU(i) <= 0)

em += "Parameter'" + getVariableNameContinuous(i) +

'" has logarithmic scale and upper bound '" + getU(i) + '"." + LS;

}

// check that I != u if step != 0

if (getDx(i) != 0 && getL(i) == getU(i))

em += "Parameter'" + getVariableNameContinuous(i) +

"' has step size unequal 0 but its lower bound equal to its upper bound." + LS;

// check that step is an integer value

if (Math.rint(getDx(i)) != getDx(i))

em += "Parameter'" + getVariableNameContinuous(i) +

'" has a step size equal to '" + getDx(i) + '". Require an integer value." + LS;

}

if (em.length()>0)

throw new OptimizerException(em);

// all input is OK

// initialize list with evaluated points

evaPoi = new TreeMap();

}

/** Runs the evaluation

* ©return <CODE>+4</CODE> the only possible return value

* ©exception Exception

* ©exception OptimizerException

*/

public int run() throws OptimizerException, Exception {

Point poi = new Point(dimCon, dimDis, dimF);

// initialize points with current settings

poi.setXlndex(getX(), getlndex());

poi.setStepNumber(O);

final Point defPoi = (Point)poi.clone();

// vary continuous parameters

for(int iC = 0; iC < dimCon; iC++){

// reset point to default values, so all coordinates are at their inital values

181

poi = (Point)defPoi.clone();

int nStep = Math.round((float)getDx(iC));

i f (nStep!=0){

// set up spacing

double[] xSp;

xSp = null;

xSp = Fun.getSpacing(nStep, getL(iC), getU(iC));

for(int iS = 0; iS < xSp.length; iS++){

poi.setX(iC, xSp[iS]);

this.getF(poi);

}

}

}

// vary discrete parameters

int len = getLengthDiscrete(l);

if (len != 1){

for (int ind = 0; ind < len; ind++){

poi = (Point)defPoi.clone();

for(int iD = 0; iD < dimDis; iD++){

// reset point to default values, so all coordinates are at their initial values

poi.setlndex(iD, ind);

}

this.getF(poi);

}

}

return 4;

}

/** Evaluates a simulation and reports result

*@param pt point to be evaluated

*@return a clone of the point with the new function values stored

*@exception OptimizerException if an OptimizerException occurs or

* if the user required to stop GenOpt

*@exception SimulationlnputException if an error in writing the

* simulation input file occurs

*@exception Exception if an I/O error in the simulation input file occurs

*/

public Point getF(final Point pt)

throws SimulationlnputException, OptimizerException, Exception

{

Point r = roundCoordinates(pt);

r.setStepNumber(1);

if(evaPoi.containsKey(r)){ // point already evaluated

printlnfPoint already evaluated. Take function value from database.");

Doublet] fD = (Double[])(evaPoi.get(r));

doubled f = new doubleffD.length];

for (int i = 0; i < fD.length; i++)

f[i] = fD[i].doubleValue();

r.setF(f);

r.setComment("Point already evaluated.");

}

else{ // point not yet evaluated

try{

r = super.getF(r);

r.setComment("Function evaluation successful.");

}

catch(SimulationlnputException e){

// must throw such an exception

// since input is wrong

throw e;

}

catch(Exception e){

if(stopAtError || mustStopOptimization())

throw e;

else{

String em = "Exception in evaluating x = (";

for (int i=0; i < dimCon-1; i++)

em += r.getX(i) + ", ";

if (dimDis == 0)

em += r.getX(dimCon-1) + ")." + LS;

else{

em += r.getX(dimCon-1) + ";";

for (int i=0; i < dimDis-1; i++)

em += r.getlndex(i) + ",";

em += r.getlndex(dimDis-l) + ")." + LS;

}

setWarning(em + e.getMessage());

double[] f = new double[dimF];

for(int i=0; i<dimF; i++)

f[i] = 0;

r.setF(f);

r.setComment("Error during function evaluation. See log file.");

}

// proceed as usual

}

Doublet] fD = new Double[r.getDimensionF()];

for (int i = 0; i < fD.length; i++)

fD[i] = new Double(r.getF(i));

// we must clone the object that we put into the TreeMap

// Otherwise, it's coordinates get changed since the map

// contains only a reference to the instance.

evaPoi.put(r.clone(), fD);

}

report(r, SUBITERATION);

report(r, MAINITERATION);

return r;

}

/** number of independent continuous variables */

protected int dimCon;

/** number of independent discrete variables 7

protected int dimDis;

/** number of function values */

protected int dimF;

/** flag whether run should stop or proceed if a simulation error occurs */

protected boolean stopAtError;

/** list with evaluated points and its function values */

protected TreeMap evaPoi;

}

185

APPENDIX D:

ANN MANUAL RECONSTRUCTION CODE

function f = evaluate_objective(x>M,V,flw,slw,bi,mint,maxt)

% Function to evaluate the objective functions for the given input vector

% x. x has the decision variables

%variable x

X=x(1:20)';

%flw = first layer weights

%slw = second layer weights

%bi = bias

f = D;

%Hidden neurons outputs

a(1)=-1 +2/(1 +exp(-2*(flw(1 ,:)*X+bi(1))))

a(2)=-1 +2/(1 +exp(-2*(flw(2,:)*X+bi(2))))

a(3)=-1 +2/(1 +exp(-2*(flw(3,:)*X+bi(3))));

a(4)=-1+2/(1+exp(-2*(flw(4,:)*X+bi(4))))

a(5)=-1+2/(1+exp(-2*(flw(5,:)*X+bi(5))))

a(6)=-1+2/(1+exp(-2*(flw(6,:)*X+bi(6))))

a(7)=-1+2/(1+exp(-2*(flw(7,:)*X+bi(7))))

a(8)=-1+2/(1+exp(-2*(flw(8,:)*X+bi(8))))

a(9)=-1 +2/(1 +exp(-2*(flw(9,:)*X+bi(9))))

a(10)=-1+2/(1+exp(-2*(flw(10,:)*X+bi(10))));

a(11)=-1+2/(1+exp(-2*(flw(11,:)*X+bi(11))));

a(12)=-1 +2/(1 +exp(-2*(flw(12,

a(13)=-1 +2/(1 +exp(-2*(flw(13,

a(14)=-1 +2/(1 +exp(-2*(f lw(14,

a(15)=-1 +2/(1 +exp(-2*(flw(15,

a(16)=-1 +2/(1 +exp(-2*(flw(16,

a(17)=-1 +2/(1 +exp(-2*(flw(17,

)*X+bi(12))))

)*X+bi(13))))

)*X+bi(14))))

)*X+bi(15))))

)*X+bi(16))))

)*X+bi(17))))

a(18)=-1+2/(1+exp(-2*(flw(18,

a(19)=-1+2/(1+exp(-2*(flw(19,

a(20)=-1 +2/(1 +exp(-2*(flw(20,

Final output

A(1)=slw(1," •

A(2)=slw(2,

A(3)=slw(3,

A(4)=slw(4,

A(5)=slw(5,

%Rescaling

for i=1:5

Ascaled(i) = 0.5*(A(i)+1)*(maxt(i)-mint(i)) + mint(i);

end

f(1)=abs(Ascaled(4))*(1 +max(Ascaled(5)/100,0));

f(2)=sum(Ascaled(1:3))*(1+max(Ascaled(5)/100,0));

)*X+bi(19))))

rX+bi(20)W

; a I - D I ^ i ;

)*a'+bi(22)

)*a'+bi(23)

)*a'+bi(24);

ra'+bi(25Y

APPENDIX E:

MANUALLY CONSTRUCTED AND RANDOM DESIGNS

Varia­

bles

HSP

CSP

SDHW

SDMID

SDC

FDMID

FDC

FDW

VRR

VRC

VRH

RHW

RHMID

RHC

WF1N

WF1S

WF2N

WF2S2

WF2S1

TCK

Range

[20,25]

[23,27]

[0,30]

[0,30]

[0,30]

[0,60]

[0,601

[0,60]

[0.118,0.708]

[0.118,0.708]

[0.118,0.708]

[30,60]

[30,60]

[30,60]

[4.76, 14.30]

[2.20, 6.60]

[4.06, 12.18]

[1.38,4.14]

[2.08, 6.25]

[0.05,0.25]

Manually constructed

solutions

22

24.5

30

30

30

60

60

60

0.118

0.472

0.472

50

50

50

4.7

6.6

4.06

4.14

6.25

0.1

22

26

30

30

30

60

60

60

0.118

0.472

0.472

50

50

50

4.7

6.6

4.06

2

4

0.1

20.5

26.5

5

5

5

60

60

60

0.118

0.118

0.118

60

60

60

4.7

6.6

4.06

2

4

0.05

23

25

30

30

30

0

0

0

0.708

0.708

0.236

60

40

30

4.7

6.6

4.06

1.38

2.084

0.25

Random solutions

22.2

26.7

4

13

9

23

12

38

0.541

0.185

0.330

43

52

41

11.2

6.2

10.7

4.0

2.9

0.10

20.6

26.9

10

14

12

51

56

22

0.698

0.515

0.531

48

56

57

5.6

5.9

5.4

4.0

3.4

0.12

20.2

25.7

5

12

6

22

20

26

0.594

0.707

0.686

38

40

53

7.4

6.4

10.8

3.1

4.6

0.13

22.3

26.5

5

27

19

37

39

36

0.533

0.685

0.561

56

50

54

8.7

4.8

10.9

2.1

2.8

0.11

24.3

23.0

6

0

22

44

24

34

0.404

0.153

0.555

45

32

54

9.3

2.3

7.7

2.4

4.7

0.13

