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ABSTRACT 

Multiobjective Optimization of Building Design Using Artificial Neural Network and 

Multiobjective Evolutionary Algorithms 

Laurent Magnier 

Building design is a very complex task, involving many parameters and 

conflicting objectives. In order to maximise the comfort and minimize the environmental 

impact, multiobjective optimization should be used. While some tools such as Genetic 

Algorithms (GA) exist, they are very seldom used in the industry, due to the large 

computational time they require. 

This thesis focuses on a specific approach called GAINN (Genetic Algorithm 

Integrating Neural Network), which combines the rapidity of evaluation of Artificial 

Neural Networks (ANN) with the optimization power of GAs. The thesis concentrates on 

a better handling of multiple objectives, in order to efficiently exploit the methodology 

and increase its accessibility for the non-expert. First, a Multiobjective Evolutionary 

Algorithm (MOEA), NSGA-II, has been selected and programmed in MATLAB. Then, 

two new MOEAs were developed, specifically designed to take advantage of GAINN fast 

evaluations. These two MOEAs have proven to be more efficient than NSGA-II on 

benchmark test functions, for a comparison based on a maximum runtime. 

In a second part of this thesis, developed MOEAs were used inside GAINN 

methodology to optimize the energy consumption and the thermal comfort in a residential 
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building. This optimization was successful, and enabled significant improvements in 

terms of energy consumption and thermal comfort. It also enabled to illustrate very 

clearly the relation between these two objectives. This optimization however highlighted 

two limitations regarding the ANN, the number of training cases and the accuracy in the 

vicinity of optimal solutions. Finally, the developed algorithms were applied on a past 

optimization study, in order to highlight the improvements added to GAINN 

methodology by the use of MOEA. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Global warming is likely to become the most important phenomenon of the 21st century, 

from an environmental as well as economical and social point of view. Most studies agree 

on an average increase of temperature of several Celsius degrees, on flux of millions of 

people, on rise of food prices, and on increase of numbers and frequencies of 

environmental disasters such as storms or floods. According to the great majority of 

experts, this global warming is caused by green house gases (GHG) such as CO2, whose 

emissions are caused to a great extent by human activity (IPCC, 2007). 

In Canada, buildings use 30% of the total energy consumption and are responsible for as 

much as 20% of GHG emissions (NRCan, 2005). The building industry has therefore a 

significant impact on global warming and is a priority in reducing the overall energy 

consumption. Accordingly, new constructions practices are rising to handle the energy 

consumption problems and many energy ratings (the most important being LEED (2007)) 

have been developed to assess the environmental impact of a building. Some 

governmental programs and regulations are also created to incite building owners to 

reduce their environmental print. The effect of these strategies and initiatives is however 

too little to yet have a significant impact on GHG emission. 
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One salient aspect of the fight against global warming is the relative inertia of the 

population, based on the fact that people are generally willing to reduce their 

environmental impact but still want to maintain their habits and comfort. Building 

science is primarily concerned about this aspect since no one would live in a very green 

but very uncomfortable house. Looking in more details at the whole concept of 

sustainable building, we realize that a building which pretends to be sustainable has to be 

at the same time environmental-friendly, comfortable, and affordable. These three aspects 

are essential and none of them can be ignored without compromising the concept of 

sustainability. The combination of these three very conflicting objectives however makes 

building design a highly complex task. A technology, strategy or design concept must be 

studied as a multiobjective problem. On the other hand, it also has to be extremely 

efficient in order to comply with objectives and policies, and justify the time spent on a 

project. 

1.2 Problem Statement 

Modern building design is a complex task, involving many different approaches, 

parameters, and conflictive objectives. This complexity is furthermore combined with a 

growing demand from both users and standards to have low energy consumptions, good 

thermal comfort, indoor air quality, visual comfort, etc. Thermal comfort, particularly, is a 

priority in residential buildings and many studies have proved that it can have a 

significant impact on productivity in working areas (Fanger, 2000). On the regulations 

side, standards are more and more detailed in terms of energy consumption or 
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construction requirements, and some of them involve the use of new technologies such as 

photovoltaic panels or solar water heater (RT2005 in France for instance (2005)). Finally, 

the large amount of money and time spent for new buildings gender very high 

expectations regarding the final building quality. 

Despite all this, most designers continue to use traditional design techniques for building 

design. Practices are generally based on rules of thumb, on simulations of a limited 

number of cases, or sometimes on variable-by-variable parametric runs. Although widely 

used, these methods have many drawbacks. First, a rather limited range of possibilities is 

covered, studied, and finally proposed to the decision maker. The design is also limited 

by engineer assumptions, which is furthermore harmful since most rules of thumb come 

from times when the environmental impact was not an issue, and when green building 

science was not fully developed. More importantly, the designs coming from that kind of 

approach are very unlikely to be optimal. The design process is strongly limited by the 

small number of cases simulated (if any), which cannot handle the complexity of 

interactions between parameters and objectives of modern constructions. The resulting 

design may be relatively good, but has almost no chance to be the best possible one, and 

therefore has little chance to have a significant impact on GHG reductions. 

Indeed, the use of a real optimization tool is the only way to ensure optimal designs. 

Tools such as Genetic Algorithms have proven their efficiency in many academic studies, 

but are almost never used in the industry. This is further regrettable since, when 

simulations are used, the relatively long time spent to create the simulation model is not 

fully exploited. The hours and sometimes days dedicated to create a decent model are 
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wasted by the lack of a true optimization. Meanwhile, some optimization tools already 

exist, and are sometimes readily available for building simulation (GenOpt for instance 

(Wetter, 2001)). 

Many reasons may explain why optimization techniques are so rarely used in the building 

industry. The most likely reason is the very long computational time required by most 

optimization tools. Genetic Algorithms for instance require thousands of evaluations to 

reach optimal solutions. Simulation softwares, in turn, can provide accurate information 

regarding the building behaviour, but require a significant time to run (up to several 

hours). Therefore, a direct combination of GAs and time-expensive simulation tools 

makes optimization a very time-consuming and unattractive process. This issue is an 

extremely limiting aspect of building optimization, which needs to be overcome before 

someone could expect to see optimization tools used regularly in the building industry. 

A last problem encountered in building design is how to handle multiple conflictive 

objectives. As described previously, a building study cannot be limited to one single issue 

but needs to take into account many of them, the most common ones being the cost, the 

energy consumption, and the indoor environment. The management of these different 

issues is generally undertaken by engineers at the design stage, most of the time taking all 

objectives except one as a constraint. Once again, this approach is not likely to find 

optimal trade-offs, and cannot even be called multiobjective handling. Even in rare cases 

where optimization algorithms are used, this problem remains, because the most 

commonly used method to handle different objective is to aggregate them in a weighted-

sum and optimize it as a single objective. Once again, this cannot be called multiobjective 
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optimization, and this method suffers from assuming the importance of each objective a 

priori. The weights used in the weighted-sum, set at the beginning of the study by the 

engineer, give no final choice to building owner but rather assume what he would think 

would be important, and propose him one single solution, argued to be optimal. 

From this discussion, we can draw the following. First, building design is more and more 

complex and plays a significant role in GHG emissions. In order to decrease the 

environmental impact of buildings, while maintaining a good indoor environment, 

multiobjective optimization tools should be used. Tools such as genetic algorithms are 

available and are extremely efficient, but suffer from the high number of 

evaluations/simulations required, which leads to very unattractive time costs in building 

application. There is therefore a need for a multiobjective, rapid, efficient, and accessible 

optimization tool, so optimization can start being used more widely in the building 

industry. This would enable better designs, better handling of multiple objectives and 

constraints, and hopefully energy reductions at a bigger scale than what currently 

happens. 
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1.3 Research Objectives 

The objective of this thesis is to improve the current optimization methodologies, in order 

to make the optimization process more applicable for building design. The work will be 

based on a methodology which combines artificial neural networks and genetic 

algorithms to enable fast and accurate optimization. This methodology will be improved 

by a better handling of multiple objectives, by the use of multiobjective genetic 

algorithms. The developed methodology will then be tested on two case-studies and 

results will be discussed. In details, this thesis will be based on the following steps: 

• Study the optimization techniques currently available through a comprehensive 

literature review, pointing out their respective assets and limitations. (Chapter 2) 

• Focus on GAINN methodology, describe it, and study its assets and its current 

limitations. Based on this study, explain why multiobjective optimization should be 

added through the present thesis. (Chapter 2) 

• Review multiobjective optimization techniques, analyse them, and find which 

algorithm is the best one. Program this algorithm in MATLAB, and test it to verify 

its reliability compared to the original algorithm. (Chapter 3) 

• Create two multiobjective genetic algorithms specifically designed to take 

advantage of GAINN fast evaluations, program them, and compare them with base 

algorithm. (Chapter 4) 
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• Apply the whole methodology and developed algorithms to a first case study, for 

the optimization of thermal comfort and energy consumption in a residential 

building. (Chapter 5) 

• Apply the optimization algorithms to a second case-study, in order to study the 

improvement added to GAINN methodology by the use of multiobjective 

optimization algorithms, comparing the results to the classical weighted-sum 

technique. (Chapter 6) 

• Discuss the limitations of the current work, and propose future work to overcome 

them and/or improve the methodology. (Chapter 7) 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a comprehensive review of the optimization techniques currently 

available. The chapter is divided into two parts. The first part details and discusses the 

optimization concepts and available major algorithms. The second part focuses on a 

specific approach called GAINN (Genetic Algorithm Integrating Neural Network), 

studies its current limitations, and justifies the development chosen for this thesis. 

2.1 Literature Review on Optimization 

2.1.1 Foreword 

From a mathematical standpoint, optimization is the process of maximizing (or 

minimizing) a function f(X), possibly subject to several constraints, for a given number 

and ranges of variables xnGX (Deb, 2001). In more practical terms, optimization refers to 

finding the best possible configuration for a given problem. In building design, it may be 

for instance finding the design that meets the regulations requirements and budget, while 

offering the lowest energy consumption and providing the highest thermal comfort. 

The first use of a real optimization tool in building engineering was investigated in 1968 

by G. Neil Harper (Deb, 2001). Since then, optimization has gained interest and is now 

8 



frequently used, mostly in academic studies. One should however remain careful not to 

confuse the term optimization, with a simple improvement. For instance, a sensitivity 

analysis cannot be considered as an optimization. It may be able to find a better solution 

regarding the objective studied but there is no guarantee and indeed little chance to find 

the best solution. Indeed, the whole concept of best solution is not as straightforward as it 

looks. As long as only one objective is involved, optimization can be defined as a simple 

maximization or minimization. Dealing with multiple objectives at the same time makes 

however the optimization definition much more complex, as will be described in the next 

sections of this thesis. 

A wide variety of optimization algorithms have been created and studied throughout the 

last centuries. The first optimization techniques, like the Gauss steepest descent 

developed in the 18l century, were based on pure mathematics. More complex techniques 

have been later developed, and the first modern technique referred as optimization, 

Dantzig's linear programming, appeared in the 1940's (Dantzig, 1949) and was used at 

that time by the US military. Since then, a rising interest in optimization has led to the 

development of dozens different algorithms used in a wide range of applications. The 

major approaches will be discussed in the next paragraphs. 

2.1.2 Gradient-based and Gradient-free Algorithms 

Optimization algorithms are generally divided into two main categories: conventional 

gradient-based and gradient-free methods (Deb, 2001). Gradient-based approaches 

directly use mathematical tools to find optimal solutions. Some examples of gradient-
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based algorithms are the Sequential Quadratic Programming (SQP) (Fletcher, 1979) and 

the Hookes-Jeeves algorithms (Hooke and Jeeves, 1960). The working principle is that 

from an initial value, the local gradient information is used to establish a direction of 

search at each iteration, until an optimum is reached. This kind of algorithms only work 

with objective functions which are twice differentiable or that can be approximated by 

terminated first order or second order Taylor series expansion around the initial guessed 

value (Deb, 2001). While this type of approach has been used in past studies such as the 

optimization of heating system (House and Smith, 1995), or more recently for the 

optimization of a cooling plant control scheme (Sun and Reddy, 2005), it suffers from 

two major limitations. 

First, gradient-based methods are prone to local extrema. Depending on the starting value, 

they are likely to get trapped in the nearest local optimal value, missing the actual 

optimum. Taking several different initial values could eventually be seen as a solution to 

overcome this problem but it would provide little more guarantees, and may become a 

pure random search (Wang and Jin, 2000). The second major limitation of gradient-based 

approaches is that, as stated above, they only work with differentiable or at least 

relatively smooth functions. As far as building phenomena are concerned, functions are 

very often non-linear problems. Moreover, both discrete and continuous variables are 

involved, which may lead to discontinuous outputs (Wetter and Wright, 2003; Lu et al., 

2005). Gradient-based methods are thus not suitable for most building applications. Since 

Artificial Neural Network (ANN) outputs are generally highly non-linear functions, 

gradient-based methods cannot either be combined with ANN. 
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The second and more modern school of optimization techniques, referred to as gradient-

free, relies on stochastic techniques rather than derivatives to determine the search 

direction. This behavior allows the exploration of the whole search space, focussing only 

on regions of interest. Unlike the techniques previously described, gradient-free 

approaches can easily avoid local extrema and have proven their efficiency on 

optimization problems where classical methods fail (Goldberg, 1989). Several different 

algorithms from this school of optimization have been developed. A review of the 

predominant ones used for building applications is detailed by Wetter and Wright (2004). 

Between all gradient-based techniques, population-based techniques and more precisely 

Genetic Algorithms are predominant and have proven their efficiencies in hundreds of 

cases; they will therefore be discussed in more details. 

2.1.3 Genetic Algorithms 

Genetic Algorithm (GA) is an optimization technique developed by Holland (1975) in the 

1970s and is based on Darwin's theory of evolution. GA's principle is simple, although 

unusual. In a nutshell, each solution is referred as an individual, which may further 

produce children, and on which an evolution mechanism is applied. GA has been used in 

a wide range of studies, from medicine (Lahanas et al., 2003) to transportation 

engineering (Syarif and Gen, 2003). Regarding building applications, GA are frequently 

used, for the optimization of building thermal system design (Wright et al., 2002), the 

optimization of HVAC controls (Huang and Lam, 1997; Lu et al., 2005), and the 

minimization of a chiller energy costs (Chow et al., 2002). 
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The pseudo algorithm of GA is displayed in Figure 1, and can be described with the 

following steps: 

• First, a random population is created, where each individual represents a 

candidate solution. Individuals are modelled as a set of parameters. 

• At each generation, couples of individuals (referred as parents) produce new 

solutions by gene-crossover and mutation (these new individuals are referred as 

offspring) 

• At the end of each generation, the candidate solutions are evaluated using a so-

called evaluation function (or objective function), representative of the objective 

studied. For building applications, this function can typically be the energy 

consumption. 

• The last two steps operate until the termination criterion is reached (generally 

based on the number of generations, or on the stagnancy of population fitness) 

BEGIN 

END 

INITIALIZE population with random 
solutions; 
EVALUATE each 
REPEAT 
DO 

1 
2 
3 
4 
5 

END DO 

UNTIL 

SELECT 

candidate; 
{TERMINATION CONDITION is 

parents; 
RECOMBINE pair of parents; 
MUTATE the resulting offspring; 
EVALUATE new candidates; 
SELECT individuals for the next 

candi 

satisf 

date 

ied) 

generation 

Figure 1: Basic Genetic Algorithm pseudo-code 
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As a gradient-free method, GA is able to deal with nonlinear functions, and to find global 

optima without being trapped in local ones. Furthermore, it can handle real, discrete, or 

even discontinuous variables, and be applied on noisy objective functions (Wright et al., 

2002; Huang and Lam, 1997). Regarding the efficiency, GA is recognized to enable very 

detailed optimization and is capable of finding optimal or near optimal solutions using 

less computational time than other algorithms (Sakamoto et al., 1999, Wetter and Wright 

2003). Another quality of GA is that it can be used for true multiobjective optimization. 

GA has been able to successfully handle multiple objectives, where other evolutionary 

algorithms such as particle swarm optimization have failed (Srinivasan and Seow, 2003). 

One last quality of GA is that it can perform very well when associated with response 

surface approximation methods (Chow et al., 2002; Lu et al., 2005). 

A main drawback of GA is the high number of calls to evaluation function. In building 

applications, these evaluations are generally estimated by an external simulation program 

such as CFD or other simulation softwares. If accurate results are required, each 

evaluation can be time consuming, and thus the complete computational process becomes 

extremely unattractive. For instance, for the two-objective optimization of building floor 

shape, Wang et al. (2006) used an evaluation tool where each evaluation took 24 seconds 

(CPU-time). In that case, the total optimization time, which is mainly due to evaluations, 

was 68 hours. Based on a simple rule of three, one can expect that, using a simulation 

software where each evaluation would take thirty minutes, a similar optimization would 

result in a total optimization time of more than 6 months. Despite all its qualities, the use 
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of genetic algorithm is therefore strongly limited by the high number of evaluations it 

requires. This shortcoming should be overcome before being able to take full advantage 

of this technique. 

2.1.4 Artificial Neural Network 

Artificial Neural Network (ANN) is not an optimization method by itself. However, it is a 

very efficient approximation method that can be used inside an optimization. ANN is a 

Response Surface Approximation (RSA) technique, with an architecture based on the 

human brain. It was first studied in the late 1940s and later developed during the 1980s. 

An ANN is aimed to provide a fast and accurate approximation of a given system, based 

on a set of inputs and outputs. It can be applied to any kind of systems, and is argued to 

be able accurately simulate it, as long as training is sufficient. ANNs have been widely 

and successfully used in a number of engineering studies, including building applications 

(Yang et al., 2005; Pala et al., 2008). 

The ANN architecture is based on the human brain neural network (Figure 2). The input 

information passes through several layers of neurons, in which signal is processed, in 

order to deliver the final output. More precisely, an ANN is composed of a layer of input 

nodes (representing the system variables), a layer of output nodes (approximated results), 

and at least one hidden layer connecting the input and output layers. Each node of a 

hidden layer is connected to those of the previous and following layers, and computes a 

specific output as a reaction of its inputs. 
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HIDDEN LAYERS 

Figure 2: Artificial neural network schematic view 

Each node of an ANN is a processing neuron, as depicted in Figure 3. The neuron 

receives a signal (xt) from each neuron in the previous layers, and applies a specific 

weight (w() on this signal. All signals are then added together and a transfer function is 

applied to the weighted sum to generate the neuron's output (Y). 

Where; 
xt: is the neuron input 
Wt is the weight 
associated with the 
input Xj 
S is the weighted-
sum of inputs 
f. is the transfer 
function 
Y is the neuron 
outnut 

Figure 3: One neuron in ANN 
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There is theoretically no limitation for the numbers of inputs and outputs, nor for the 

number of neurons. In particular, several outputs can be simulated and ANNs are 

therefore suitable for multiobjective purpose. Network complexity and especially the 

number of neurons in hidden layers have a significant influence on the accuracy and 

computational time. According to MATLAB instructions (2006), a two-layer neural 

network using sigmoid transfer functions for the first layer and linear functions for the 

second layer is able to approximate any function having a finite number of discontinuities. 

The underlying concept of ANNs is learning. Once parameters such as the number of 

layers, the number of neurons and activation functions are chosen, the network will learn 

by itself how to approximate a given system by calculating the proper weights. This 

process is called training, and requires a set of data containing inputs and related outputs. 

This set of data has to be precise (often taken from experiments and/or validated 

simulation programs), in sufficient quantity, and representative of the range of parameters 

the ANN is supposed to approximate. Once a neural network is trained, it has to be tested 

with a new set of data, different from the previous one. Data is processed by the ANN and 

the resulting outputs should be as close as possible to the validated outputs. If the 

differences between the ANN outputs and the base program/experiment's outputs are 

lower than 5%, the ANN is validated. 
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Various methods can be used for training, with various efficiencies. The most commonly 

used method is the back propagation method, which can be enhanced by using 

Levenberg-Marquardt and Bayesian algorithms (MATLAB, 2006). The quality of the 

training dataset is also crucial for the ANN's accuracy. Use of Latin Hypercube Sampling 

or orthogonal sampling is generally recommended to generate a small but very 

representative case sample (Lee et al., 2006) 

Although the ANN is very widely used for approximation, it is not the only RSA 

algorithm available. Other major techniques exist such as Kernel Recursive Least Squares 

(Engel et al., 2004), or algorithms based on regression trees (Li et al., 2000). There is no 

general agreement on which RSA technique is the most efficient. While several 

comparison studies have been published (Simpson et al., 1998; Jin, 2005), there are no 

strong conclusions on assets or drawbacks of each method since performances depend on 

problems studied. Nonetheless, Artificial Neural Network appears to be amongst the most 

reliable approximation models, both in term of efficiency and range of problems that can 

be modeled. Moreover, due to its good acceptance in the scientific community, the ANN 

is readily available in several computer programs, like MATLAB for instance. 
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2.1.5 Summary Regarding Building Applications 

In building engineering, the optimization process can be applied either to the design of 

the building (Conraud, 2008), for the settings of the HVAC system (Nassif et al. 2003), or 

for ongoing optimization (Coffey, 2008). In any case, the optimization algorithm should 

be fast, efficient, and reliable. Studying gradient-based algorithms, those display several 

weaknesses, such as being limited to differentiable functions and being prompt to local 

optimum (Deb, 2001). Though gradient-based algorithms are still used in some studies 

(Sun and Reddy, 2005), gradient-free algorithms such as GAs are now often preferred 

(Amirjanov and Sobolev, 2006). GAs have proven to be extremely efficient in terms of 

optimization, and can handle multiple objectives (Wang et al. 2006). The shortcoming of 

GAs is the very high number of evaluations they require, especially for multiobjective 

optimization (Deb, 2001). Therefore, building optimizations using GAs either use very 

small populations and numbers of generation (Caldas and Norford, 2002; Wetter, 2004), 

or are based on very simplified models instead of using a complete simulation software 

(Peippo et al. 1998). In both situations, the optimization can be significantly affected. 

According to Conraud (2008), it is crucial to decrease the computational time associated 

with GAs, in order to see optimizations more widely used by building designers. 
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2.2 GAINN Methodology 

2.2.1 Description of GAINN 

As explained above, GAs are very efficient tools for optimization. They are gradient-free 

(thus having less chance to fall on local extrema), able to deal with non-linear objectives 

functions and provide optimized results. The main drawback of this technique is the 

computational time for reaching optimal solutions. This drawback becomes a serious 

limitation for building applications since computer simulation programs such as 

TRNSYS, ESP-r, or EnergyPlus can be time consuming to operate. Consequently, it is 

necessary to find a way to reduce the evaluation time in order to take full advantage of 

GA capabilities while keeping a reasonable optimization time. 

GAESfN stands for Genetic Algorithm Integrating Neural Network, and is an interesting 

though greatly unexploited approach to reduce optimization time while using GA. The 

main idea of GAINN is to benefit from the rapidity of evaluation provided by the ANN as 

well as the optimization power of the GA. The procedure is to first use an ANN to 

approximate the system studied, and then use this ANN inside the GA as the objective 

function. The outcome is a drastic reduction of the simulation time, while keeping an 

acceptable quality and reliability in solutions. 

The complete workflow of GAINN is illustrated in Figure 4, and is divided in three steps. 

First, a base software or experimental set-up is used to generate a database of cases. Once 

the database is created, it can be used to train and validate the artificial neural network. 

The ANN is then integrated into the genetic algorithm as the evaluation function, so the 
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GA can run with almost instantaneous evaluation of individuals. The GA optimization 

finally provides the optimal solution set, which can further be checked for accuracy using 

the original simulation software. 

Simulation 
software / 
Experi­
ments 

Genetic 
Algorithm Evaluation of individuals 

VL 
Verification 

Artificial Neural 
Network to be 
trained 

1L 
Validated Artificial 
Neural Network 

Figure 4: Workflow of GAINN methodology 

2.2.2 Literature Review on GAINN 

The integration of GA and ANN is not a new idea. Such integration can be found as early 

as 1993, applied for the optimization of plant growth (Morimoto, 1993). GAINN has later 

been applied in various domains such as in chemical engineering (Nandi et al., 2002), or 
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for engine optimization (Kesgin, 2003). Focusing on building applications, GAINN has 

been rarely documented. The first use of GAINN in building engineering was in 2002, for 

the optimization of chillers control (Chow et al. 2002). This study introduced the 

methodology to the building field, and proved its efficiency in terms of accuracy and 

reduction of the total optimization time. Later, GAINN has been successfully applied in 

other studies, such as Zhou (2007), combined with Computational Fluids Dynamics, and 

Conraud (2008), combined with ESP-r. 

According to the previous studies, GAINN methodology can be very efficient for 

building applications. Due to the ANN evaluations inside the GA, a significant amount of 

time can be saved, while keeping the optimization reliable. In Zhou (2007) for instance, 

the total optimization time using GAINN was found 17 times lower than the optimization 

time expected if CFD was directly used for GA evaluations. Regarding the accuracy of 

the method, results can be trusted as long as the ANN is validated correctly. The use of 

Latin Hypercube Sampling is recommended to create a small and representative database 

for ANN training (Lee et al., 2006). Nonetheless, the approximation of some complex 

issues such as visual comfort may be difficult to achieve. Conraud (2008) for instance, 

had to use 25 times more training cases than what is generally recommended by the LHS 

method to accurately train his ANN. Indeed, one main limitation of GAINN is that the 

optimization relies on the ANN accuracy. If the ANN is not 100% accurate in the vicinity 

of the optimal solution, results could be affected, and optimal solutions could be missed. 

Another major drawback regarding how GAINN methodology has been applied so far is 

the handling of multiple objectives. In the great majority of previous studies (with the 
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notable exception of Amanifard et al., 2008), multiple objectives were handled by using 

aggregative weighted-sums. This method suffers from many limitations, such as being 

dependent on stated assumptions and on the initial situation. It also provides no guarantee 

to reach optimal solutions from a multiobjective point of view (Jain et al., 2005). 

Finally, very theoretical improvements of GAINN methodology have been studied (Jin, 

2005). These improvements belong to computer engineering and are beyond the scope of 

this thesis; they will thus not be discussed in details. In a nutshell, one promising 

mechanism is to include ANN training inside the optimization, with training data based 

on the GA's current population (Nain and Deb, 2005). Though interesting, such approach 

used for building applications would require a continuous linking between ANN, GA, and 

the base simulation software, which is unpractical. 

2.2.3 Conclusion 

The GAINN methodology is a very promising approach for building optimization, and 

provides equilibrium between accuracy and efficiency. To the author's opinion, the 

methodology nonetheless requires more studies, and has been underexploited. The main 

development to be added to GAINN methodology is a better handling of multiple 

objectives, by the implementation of a true multiobjective genetic algorithm. Regarding 

the efficiency, a true multiobjective optimization would no longer be dependent on stated 

assumptions, nor on the initial situation. Another drawback of optimizations based on 

weighted sum is that each run provides a single so-called "optimal" solution. A true 

multiobjective optimization provides a curve or a surface of solutions, and can therefore 
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enable a better understanding of the problem, and give more flexibility to the decision 

maker. Moreover, since much more solutions are provided, the methodology would more 

efficiently exploit the time spent for training, compared to previous studies where one 

single optimal solution was provided after days of calculation. 

This thesis will therefore focus on the use of multi-objective optimization algorithms 

inside GAINN. This development is expected not only to improve the optimization 

efficiency but also to make the methodology closer to real-world scenarios and 

sustainable issues. Finally, multiobjective optimization algorithms would more efficiently 

exploit the assets of the methodology and therefore give a stronger justification to the 

time spent for training. In a nutshell, it will make the methodology closer to industrial 

needs and more attractive for potential users. 
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CHAPTER 3 

BASE MULTIOBJECTIVE EVOLUTIONARY 

ALGORITHM 

3.1 Multi-Obiective Evolutionary Algorithms 

This chapter reports a comprehensive review of multiobjective optimization. First, the 

notion of Pareto-optimality will be presented. Then, the major multiobjective 

optimization algorithms will be briefly discussed and a suitable base algorithm will be 

chosen for the current study. This algorithm will be programmed and tested to validate its 

efficiency, compared to the original version. 

3.1.1 Pareto Optimalitv 

The concept of Pareto optimality or non-dominance is the basis of multiobjective 

optimization. This notion, originally proposed by F.Y. Edgeworth (1881) and later 

generalized by V. Pareto (1896), can be described as follows: 

For a multiobjective optimization problem of the form: 

Minimize [fi(x), f2(x), ...,fk(x)J 

Where xGF is a vector of decision variables (subject to several constraints), and; 

fi are the objectives functions 
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A vector x is Pareto optimal if there does not exist any other vector y such that 

fi(y)<f;(x) for all i and fj(y)<fj(y) for at least one j . 

In other words, a vector is said to be Pareto optimal, or non-dominated, if there does not 

exist any vector which could decrease some of its objectives, without increasing at the 

same time at least one other objective. 

Figure 5: Example of a Pareto Front (Deb, 2002) 

The notion of dominance is crucial in multiobjective optimization. Two individuals do 

not necessarily dominate each other, and a non-dominated individual should always be 

regarded as the best of its kind. Therefore, Pareto-based optimization cannot lead to a 

single solution but to a set of solution, named Pareto-optimal set, where all solutions are 
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Pareto-optimal. The frontier of the solution set is called Pareto Front. It can typically be 

illustrated as a line for two-objective problems (Figure 5) and a surface for three-

objective ones. 

The quality of a solution set can be assessed using two parameters. The first one is the 

convergence, representing how close each point is to the true Pareto front, i.e. how 

optimized solutions are. The second quality of a solution set is the spreading of solutions 

over the Pareto front. Solutions should be widely spread to cover the whole range of 

possibility. Convergence and spreading are predominant in multiobjective optimization 

study. They are illustrated in Figure 6. 

——Optimal Pareto front 

A Solution front 

^. Convergence 

^ j ^ . Spreading 

Objective 1 

Figure 6: Convergence and spreading of a solution set 
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3.1.2 Multiobiective Evolutionary Algorithms 

The Pareto-based optimization approach was initiated by Goldberg at the end of the 

1980s. Unlike the aggregative/weighted-sum method, or the population-based approach, 

the Pareto-based approach enables a true multiobjective optimization, where all 

objectives are optimized simultaneously. This approach does not require any weights to 

be set (unlike weighted-sum) and is independent of the initial situation. Since all 

objectives are optimized at the same time, any trade-off is considered as a solution. The 

optimization is also generally more efficient. Finally, the solution set provided is 

composed of dozens of solutions, and therefore offers a wide variety of choices to the 

decision maker. 

Algorithms based on the Pareto concept are referred Multiobjective Evolutionary 

Algorithms (MOEAs). These algorithms are in most cases similar to classical GAs, and 

keep the same assets (efficiency, gradient-free, etc.) and drawbacks (number of 

evaluations mostly). The main difference between MOEAs and one-objective GA occurs 

in the selection process. In this selection, the concept of non-dominance is introduced, 

using various methods, to evaluate each candidate solution. 

Many different MOEAs have been developed over the last decades, and have been 

carefully studied by the author. In a nutshell, differences between MOEAs lie in the 

method they use to handle both convergence and spreading. Spatial considerations 

especially are subject to discussion, and may be handled using various techniques, 

generally based on a division of the search space. Another issue carefully studied is how 
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to maintain a sufficient diversity inside the population, in order to avoid local extrema 

and to expand the Pareto front. An important notion called elitism is also introduced in 

"second-generation" MOEAs, to ensure that valuable solutions cannot be lost and that 

fitness of the population can only increase. 

For this thesis, the base MOEA will be the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), developed by Deb et al. (2001). According to most reviewers (Zitzler et al. 

2000, Jain et al. 2005), this algorithm is one of the most efficient MOEA in terms of both 

convergence and spreading of the solution set. It is based on a simple structure and 

requires less calculation time than most MOEAs need. Moreover, NSGA-II requires very 

few parameters to be set, which makes it accessible to non-experts (unlike SPEA2 for 

instance). NSGA-II has been intensively used over the last years in various domains and 

is recognized for its reliability (Majumdar et al. 2005, Fu et al. 2008). It is also relatively 

simple to program and to customize. 
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3.2 NSGA-II 

3.2.1 General Description of NSGA-II and Pseudo-code 

The pseudo-code of NSGA-II is shown in Figure 7. NSGA-II follows the same steps as 

classical GAs. First, it initializes a random population of N individuals, then it produces 

children/offspring by recombination and mutation, evaluates the individuals, and finally 

selects the fittest ones. Several aspects of NSGA-II are however very specific to this 

algorithm: 

• The parental population is chosen through a tournament selection. This selection 

process enables to select a parent based on both convergence and spreading, while 

maintaining a reasonable diversity amongst the population. 

• The genetic operators used inside NSGA-II are generally (although not 

necessarily) the Simulated Binary Crossover, and the Polynomial mutation. These 

operators use a stochastic approach to determine children genes, based on the genes of 

their parents (a more detailed description can be found in Appendix B). They are 

extremely efficient when real variables are used. 

• The selection process is computed at each generation on an intermediate 

population combining both parents and offspring. Therefore, no valuable solution can be 

lost, which makes NSGA-II elitist. 

• For the selection, NSGA-II uses a non-dominated-and-crowding sorting and 

selection. 

29 



BEGIN 

I) INITIALIZE population with random candidate solutions; 

II) EVALUATE each candidate; 

III) REPEAT UNTIL (TERMINATION 

CONDITION is satisfied) DO : 

1 SELECTION of parents by tournament selection; 

2 RECOMBINATION of pair of parents to produce offspring; 

3 MUTATION; 

4 NON-DOMINATED-AND-CROWDING-SORTING of parents and children 

5 SELECTION of individuals for the next generation based first on rank 

and further on crowding distance 

IV) END DO 

END 

Figure 7: Pseudo-code of NSGA-II 

3.2.2 Non-dominated-and-crowding Sorting and Selection 

The non-dominated-and-crowding sorting and selection is the key mechanism from 

which NSGA-II takes its efficiency. This process enables to focus on the convergence of 

the population while maintaining a very good spreading of the population. It is based on 

the two following parameters 

The first parameter used is the rank of an individual. The notion of rank is closely related 

to dominance. In a population, non-dominated individuals have a rank of one, they 
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belong to the first front. Individuals which are dominated only by solutions from the first 

front belong to the second front, and are assigned a rank of two. More generally, all 

individuals having a same rank do not dominate each other, but they dominate individuals 

with a higher rank, and they are dominated by individuals with a lower rank. Therefore, 

the notion of rank enables to compare an individual with the whole population regarding 

convergence. 

The second parameter is the crowding distance of an individual. As its name says, the 

crowding distance represents how crowded the space around the individual is. A small 

crowding distance implies that individuals are close to each other, and thus diversity is 

low. In order to increase diversity and expand the Pareto front, individuals with the 

highest crowding distances should be preferred. In NSGA-II, the crowding distance of an 

individual is calculated as follows. First, the population is sorted in descending order 

regarding a specific objective. Then the crowding distance of extrema are set equal to 

infinite; for all other individuals, the following calculation is computed: 

dist(i,obj) = ™™(i-l,obj)-Valued+ \,obj) 
MaxValue(obj) - Min Value(obj) 

Where: _ i is the individuals studied, and; 

_ (i-1) and (i+1) are the two individuals respectively following and 

preceding / in the sorted population 
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Finally, for each individual, the distances associated with all objectives are summed. The 

result is the total crowding distance of the individual. 

Once crowding distances and ranks are calculated, the selection process can be computed. 

The process is illustrated in Figure 8 and can be described with the following steps. 

Fronts are taken successively according to their ranks, then for each front: 

• If the size of the front plus size of already selected population is inferior to N 

(population size), all individuals of this front are selected. 

• If this size is superior to N, individuals with the highest crowding distance are 

selected, until a size of N is reached. 

1st Front 

2nd Front 

3rd Front 

4th Front 

5th Front 

6th Front 

Generation N 
after reproduction 

Generation N+1 

-
Selected based on rank 

• 

•* -I Selected based on crowding 
L distance 

• Rejected 

Figure 8: Non-dominated-and-crowding selection 
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3.2.3 NSGA-II Programming 

The base calculation program for this thesis is MATLAB. MATLAB was chosen because 

it is a calculation program widely recognized and used in the industry, and because it 

already integrates a very user-friendly Neural Network Toolbox. NSGA-II algorithm was 

not readily available in MATLAB toolboxes but a very basic version of NSGA-II, 

developed by A. Seshadri was available in MATLAB user's community1. 

Based on this rather limited code, the author developed a complete NSGA-II program. 

The developed code is very robust, and user-friendly. All MOEA parameters can be 

changed from a single input file, and both discrete and real variables are supported. A 

special care was taken to make the program as fast and reliable as possible. In particular, 

the complex mechanism used for non-dominated-and crowding-sorting can be computed 

using various methods; the method chosen for this thesis is the fastest one described in 

Deb's book "Multi-objective optimization using evolutionary algorithms" (2001). The 

complete code of the program can be found in Appendix A. 

http://www.mathworks.com/matlabcentral/fileexchange/10429, accessed on March 2007 
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3.3 Validation of the NSGA-II programmed 

3.3.1 Testing Methodology 

NSGA-II is the base-case MOEA with which the algorithms further developed will be 

compared. Therefore, it is crucial to make sure that the programmed version of NSGA-II 

is as efficient as the original. Although the author programmed the algorithm very 

carefully, some tests were performed to ensure that the algorithm is working properly. 

The testing methodology was based on Deb et al. work (Deb, 2002). This paper was 

selected because of the amount of documentation it provides about NSGA-II 

programming, metrics used for tests, and results. For a purpose of comparison, the 

programmed version of NSGA-II was tested on the same test functions and with the same 

parameters as in Deb's study (Table 1). As in the base study, each function was tested 10 

times, and the average results were studied. 

Population 
size 

100 

Crossover 
type 

Simulated 
Binary 
Crossover 

Mutation 
type 

Polynomial 
mutation 

Crossover 
probability 

0.9 

Mutation 
probability 

1/(number of 
variables) 

Termination 
criterion : 

250 
generations 

Table 1: Parameters for NSGA-II tests (Deb, 2002) 

In order to quantify MOEA's efficiency, the two metrics of Deb's study were used: Y and 

A. These metrics base their calculations on a 500 individuals Ideal Pareto Set (referred as 

IPS) where all solutions are optimal and equally spaced. In this thesis, IPS came from 
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either mathematical formulation, from specific MOEA solutions websites , or from 

calculated solution sets. (In the later case, NSGA-II was run with a population of 500 

individuals for at least 1000 generations, which is expected to produce perfect or almost 

perfect solution sets.) The two metric used are the following ones: 

Y metric: The Y metric is used to quantify the convergence of the solution front. It is 

calculated as the average of distances between each solution found and the closet IPS 

solution (Figure 9). The lower Y is, the closer results are from optimal solutions. 

A metric: The A metric quantifies the spreading of the solution front (Figure 10). The 

lower the metric is, the better is the spreading. It is defined as: 

N-l _ 

df + dt +^]U, -d 
A = - ^ = 

df +d, +(N-l)xd 

Where: 

• df and di are the Euclidean distances between the extrema solutions found 

and the extrema solutions of IPS; 

• dj is the Euclidean distance between two consecutives solutions; 

• and d is the average all dj. 

2 http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/ 
35 

http://delta.cs.cinvestav.mx/~ccoello/EMOO/testfuncs/


Figure 9: Illustration of the Y metric (from Deb, 2002) 

Extreme 
£ . I so lu t ion 

Lobta tried 
s o l u t i o n s *-Extreme 

>r so 3 •t> so lu t ion 

Figure 10: Illustration of the A metric (from Deb, 2002) 

3.3.2 Results 

Results are summarized in Table 2 and in Figures 11 and 12. Some solutions sets are 

illustrated in Figures 14a, b, c, and d. Regarding convergence to Pareto front (Figure 11), 

we can see a good agreement between results from programmed version of NSGA-II and 

results from the original program for the first three functions. For latter functions, 
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surprisingly, the programmed NSGA-II performed better than the original one. Except for 

FON function with a 14% error increase, all results were as good as or better than 

original ones. 

Test function 

Y 

mean 

A 

mean 

Current thesis 

Deb (2002) 

% Difference 

Current thesis 

Deb (2002) 

% Difference 

SCH 

0.0034 

0.0034 

0% 

0.282 

0.478 

-41% 

FON 

0.0022 

0.0019 

14% 

0.403 

0.378 

7% 

POL 

0.0134 

0.0156 

-14% 

0.954 

0.452 

111% 

KUR 

0.0123 

0.0290 

-58% 

0.500 

0.412 

2 1 % 

ZDT1 

0.0015 

0.0335 

-96% 

0.410 

0.390 

5% 

ZDT2 

0.0010 

0.0724 

-99% 

0.426 

0.431 

- 1 % 

ZDT3 

0.0045 

0.1145 

-96% 

0.679 

0.739 

-8% 

ZDT4 

0.0039 

0.5131 

-99% 

0.383 

0.703 

-45% 

ZDT6 

0.0008 

0.2966 

-100% 

0.620 

0.668 

-7% 

Table 2: Comparison of convergence and spreading metrics for programmed and original NSGA-II 
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Figure 11: Mean of convergence metric Y for programmed and original NSGA-II 
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Figure 12: Mean of convergence metric Y for programmed and original NSGA-II 

Regarding spreading of solutions (Figure 13), results from programmed version of 

NSGA-II were similar to Deb's results, except for POL and ZDT4 function. The average 

difference between programmed and original NSGA-II was 8.73%. Regarding POL 

function, the A metric was found two times higher than that of the original study. 
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Figure 13: Mean of diversity metric A for the programmed and the original NSGA-II 
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Figure 14: Solutions sets for POL, SCH, ZDT4, and ZDT6 Functions respectively 

3.3.3 Discussion 

Major differences appeared in the Y metric between the programmed and the original 

version of NSGA-II for the ZDT suite. This difference can be caused by several 

calculation parameters, not specified in the original study. In particular, the SBX operator 

used for reproduction exists in two forms (for bounded or for unbounded variable) and 

may use different behaviours when handling multiple variables (50% genes changed, all 

genes changed, etc.). Population sizes used for parental tournament selection may also 

influence the results. Then, the Ideal Pareto Solution sets used in this chapter may be 
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different from the ones used in the original study. This can furthermore gender 

discrepancies. Nonetheless, the results of the programmed version of NSGA-II were in all 

cases (except for the FON function) better or similar to the results of the original study. 

Regarding the A metric, we can generally see a good agreement between results from the 

programmed version of NSGA-II and results from the original version. The high 

discrepancy appearing for the POL function was most likely due to the discontinuity of 

its Pareto front (Figure 14a). The original paper is unclear about how calculation is 

performed for discontinuous front and especially if a different A value should be 

calculated for each continuous part of the front. In the present work, A was only 

calculated one time for the whole front. Regarding ZDT4, a relatively large difference 

appeared (45.47%) but was in favour of the programmed version of NSGA-II. 

As a conclusion, in almost all cases, the convergence of solutions coming from the 

programmed version of NSGA-II was better or similar to the convergence of the results 

of the original study. Meanwhile, the spreading of solutions was similar. In other words, 

the programmed algorithm is as efficient as the original algorithm, and is sometimes even 

more efficient. The process of comparing further developed MOEAs with the 

programmed version of NSGA-II is thus expected to be conservative. Therefore, the 

author decided to validate the programmed version of NSGA-II as a base case for further 

comparison. 
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CHAPTER 4 

DEVELOPEMENT OF MULTIOBJECTIVE GENETIC 

ALGORITHMS 

As discussed in Chapter 2, the number of evaluations is generally a very limiting 

parameter when using a MOEA. Since fitness evaluation may be a time-consuming 

process, the number of evaluations should generally be kept to a minimum. Accordingly, 

the behaviour of many MOEA is to create at each generation a given number of 

individuals, include all of them in an intermediate population, and then apply a sorting 

over this population. Such behaviour emphasizes more on the sorting than on the creation 

of new individuals to improve the overall fitness of the population. The basic assumption 

leading to this is that evaluations may be time consuming, and should therefore be limited. 

In the particular case of GAINN methodology, the situation is radically different. Since 

evaluations are performed by an ANN, the time associated with each evaluation is 

negligible. Sorting of the population, in turn, becomes the time-expensive step. In order 

to take full advantage of GAINN methodology, a specific MOEA should therefore be 

used, with a behaviour that does not take into account the number of evaluations, but on 

the contrary maximizes the use of evaluations before proceeding to the complete sorting 

of the population. In the literature, the great majority of MOEAs, including NSGA-II, 

limit themselves in terms of number of evaluations, and are thus not suitable for the 

current case. Some interesting MOEAs such a SEAMO (Valenzuela 2002) or the Micro 
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Genetic Algorithm (Coello and Pulido, 2001) have been investigated as potential 

solutions. Unfortunately, the efficiency of these MOEAs has only been proven in 

problems with hundred of variables and objectives, very unlikely to appear in real 

situations. 

The author finally decided to develop a new version of NSGA-II, adapted to the current 

methodology. An other and more particular MOEA was also developed, designed 

specifically to take advantage of GAINN fast evaluations. These two MOEAs will be 

presented and tested in this chapter. To the author's knowledge, these two MOEAs are 

original, and cannot be found in the literature. 

4.1 Non-dominated Sorting Genetic Algorithm for 

Integrated Neural Network (NSGAINN) 

4.1.1 General Description and Pseudo-code 

The first algorithm developed is the Non-dominated Sorting Genetic Algorithm for 

Integrated Neural Network (NSGAINN). This algorithm is a variation of NSGA-II based 

on the idea of intelligently maximizing call for objective function before proceeding to 

sorting. The pseudo-code of NSGAINN is described in Figure 15. As can be seen, 

NSGAINN uses the same behaviour than NSGA-II in the first 80% of the run. In the last 

20% of the run, a special procedure is used for reproduction, and a selection process is 

introduced to study which offspring should be included in the current population. 
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BEGIN 

I) INITIALIZE population with N random candidate solutions; 

II) EVALUATE each candidate; 

III) REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 

If time<80%*Maximum time 

NSGA-II behaviour: 

1 SELECTION of parents by tournament selection; 

2 RECOMBINATION of pair of parents to produce a total 
of N offspring; 

3 MUTATION; 

4 NON-DOMINATED-AND-CROWDING-SORTING of parents and 
children; 

5 SELECTION of individuals for the next generation 
based first on rank and further on crowding distance 

(NSGA-II selection); 

If time>80%*Maximum time 

NSGAINN behaviour: 

1 SELECTION of parents by tournament selection; 

While offspring population's size < N 

2 RECOMBINATION of pair of parents to produce 4 
offspring per mate; 

3 MUTATION; 

4 NSGAINN family selection; 

End Loop 

5 NON-DOMINATED-AND-CROWDING-SORTING of parents and 
children; 

6 SELECTION of individuals for the next generation 
based first on rank and further on crowding distance 

(NSGA-II selection); 

End 

IV) END DO 

Figure 15: Pseudo-code of NSGAINN 
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4.1.2 Salient Modifications Compared to NSGA-II 

NSGAINN Family Sortins 

In NSGA-II, all produced children are included in the population, regardless of their 

qualities. In the last 20% of NSGAINN run, a non-dominated sorting is applied over the 

family (meaning parents and all children) after each mating and only fit-enough children 

are kept. In details, two selection processes may occur, depending on advancements of 

the optimization. 

• Family Selection 1 (FS1): Each child is compared with its parents. An offspring is 

included in the population only if it is non-dominated. 

• Family Selection 2 (FS2): Children are compared with the whole family. An 

offspring is included in the population only if it is non-dominated and if it 

dominates at least one parent, or if it improves one objective's minimum so far. 

Probabilities of occurrence are used for each of these selections processes, in order to 

gradually increase fitness pressure. A trial-and-error process has led to the following 

probabilities for each selection process (illustrated in Figure 16): 

p{FS\) = \ 
^ _ current time 
5* = 4 

y Maximum _ time j 

p(FS2) = 
f • \ 0 - 5 

_ j. current time , > 
5* = 4 

^ Maximum _ time j 

44 



——Probability of 
occurence of 
FS2 

«—— Probability of 
occurence of 
FS1 

0.8 0.85 0.9 0.95 1 

Run-time (% achieved) 

Figure 16: Probabilities for family sorting 

Number of Offspring 

The other important change of NSGAINN compared to NSGA-II is that in the last 20% 

of the run, each couple of parents produces 4 children at each mating (instead of 2 

classically). This is made possible by the fact that for the multi-variable Simulated Binary 

Crossover, each variable has a 50% probability to be altered. In NSGAINN, the same 

50% probability is kept, but if a variable is kept unchanged for one brotherhood, SBX is 

applied to the other brotherhood. 
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4.1.3 Discussion 

In the first 80% of the ran of a GA, the non-dominance of all individuals is not required, 

because the main purpose at this phase is to explore decision space, and to test different 

opportunities. Forcing the non-dominance at this phase would actually harm the diversity, 

which is well known to increase risks of getting trapped in local minima and produce 

narrow solution fronts. Also, since NSGAINN is based on the already efficient NSGA-II, 

gain would be unlikely during this phase. 

However, in the last 20% of the ran of a GA, population is expected to be relatively close 

to the Pareto front. The main goal is not to explore the solution space anymore but to 

increase closeness to optimal solutions and spreading of the solution set. Since the parent 

population is already close to optimal solutions, the probability to produce fitter offspring 

is low. If no selection mechanism is used and all offspring are introduced in the 

population, the time-consuming sorting of the whole population is computed to finally 

get a very little improvement in the overall fitness of the population. In NSGAINN, the 

two selection processes introduced ensures that a significant improvement is added to the 

population before proceeding to the sorting of the complete population. 

In details, FS1, which keeps offspring only if they are not dominated by their parents, 

ensures spreading of the solution set, while keeping a moderate fitness pressure. FS2 is 

more aggressive and selects individuals only if they dominate their parents or if they 

extend the solution front. This behaviour forces the convergence of solutions or the 

extension of the solution front. Regarding probabilities of the two selections processes, 

the fitness pressure increases with time, as population is expected to get closer to optimal 
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solutions. At the very end of the run, where solutions are assumed to be almost optimal, 

the probability of FS2 is very high, in order to further force an improvement in the 

results. 

Regarding the number of offspring, producing more than two children for each couple is 

generally not recommended, because it could harm diversity by focusing on a small 

quantity of couples. In NSGAINN however, due to family selection processes, offspring 

have relatively little chances to be included in the population. Over the four individuals 

created by each couple, it is likely that less than two will be kept. On the other hand, 

producing four children per mate enables to explore more widely the opportunity of each 

couple. As far as family selection processes are concerned, it also enables to compare an 

offspring with five individuals (for FS2), instead of three if only two children were 

produced. This thus provides a fairly more representative idea of the non-dominance and 

makes the family sorting more efficient. 

On the whole, NSGAINN is expected to present an improvement compared to NSGA-II 

by applying a stronger fitness pressure in the last part of the run. Thanks to the production 

of four children and to family selection processes, only fit-enough individuals are 

selected for the complete sorting of the population, and no time is wasted sorting 

dominated individuals. The shortcoming of this behaviour is that a lot more evaluations 

are required; this is however not a problem when GAINNN methodology is used. 
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4.2 Polv-obiective Looped Algorithm using Genetics 

and an Uncompleted Extinction (PLAGUE) 

4.2.1 General Description and Pseudo-code 

A second and less classical algorithm, named PLAGUE, has been created for the current 

thesis and is specifically designed to be used with the current optimization methodology. 

PLAGUE stands for Poly-objective Looped Algorithm using Genetics and an 

Uncompleted Extinction. This algorithm takes its roots in many different MOEAs such as 

NSGA-II, SEAMO (Valenzuela 2002), or Micro-GA (Coello and Pulido 2001). PLAGUE 

is founded on the idea of cycles of evolution between geological eons, with progressive 

increases of the size and fitness of the population, followed by sudden drastic reductions 

of the population size. This reduction is here referred as "plague", named as the well-

known disease. 

The general behaviour of PLAGUE can be described with the pseudo-code described in 

Figure 17. It is divided into two phases: the expansion phase, and the «plague » 

selection. 
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BEGIN 

I) INITIALIZE population with N random candidate solutions; 

II) EVALUATE each candidate; 

III) REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 

_ Expansion phase; While population size is inferior to 

five times the initial size (N) 

• Generate offspring by recombination and mutation; 

• Include offspring only if they are not dominated by 

their parents; 

• Remove children-dominated parents from population. 

End Loop 

_ Plague selection: When population size is superior or 

equal to 5 times N, proceed to "Plague" 

• Sort the population based on rank and crowding 

distance, select the 85% »N fittest individuals, and 

include them in the next population (85% for 2 

objectives, or 80%»N for 3 objectives); 

• For each objective, select the 5%»N best individuals 

regarding this specific objective over the entire 

population, no matter its rank, and include them in the 

next population; 

• Take 5%»N individuals, randomly over the entire 

population, regardless of their rank, and include them 

in the next population. 

End loop 

IV) END DO 

Figure 17: Pseudo-code of NSGAINN 
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4.2.2 Main Aspects of PLAGUE Behaviour 

Expansion Phase 

The expansion phase is dedicated to let the population grow until five times its initial 

size. It is important to note that PLAGUE uses an initial population size of 80 

individuals, which is smaller than what most MOEAs use (typically 100 individuals). 

During that phase, the whole population is selected as parents (there is no tournament 

selection) and two offspring are produced at each mate. A family selection is then 

applied, based on the following rules: 

• A child is included in the population only if it is not dominated by any member 

of its family. 

• Any child included in the population can further be used as a parent for 

reproduction. 

• If a parent is dominated by any member of the family, then it is removed from 

the population. 
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Plague 

This second step, called "plague" is dedicated to reduce the population size by 80%. 

Individuals of the next generation are selected in a way that ensures fitness improvement, 

spreading of solutions, and diversity. The selection process produces a new population of 

size N (initial size) and is computed as follows for a two-objective problem : 

• Eighty five percent of next population is selected based on dominance and on 

crowding distance. This selection is based on the same non-dominated-and-

crowding sorting than NSGA-II. 

• For each objective, the 5% x N individuals presenting the lowest values for this 

specific objective are selected, regardless of the dominance or of the crowding 

distance. 

• The last five percent of the population is randomly selected over the entire 

population, regardless of the rank or of the crowding-distance. 

For the very last generation, instead of plague selection, a non-dominated sorting is 

applied over the entire population, and all non-dominated individuals are kept. This 

genders a final solution set of generally greater size than the initial population size, which 

compensates for the small size of PLAGUE's initial population compared to other 

MOEAs. 

For a three-objective problem, the first step selects 0.8xN individuals and the second step genders 0.15xN 
individuals. 
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4.2.3 Discussion 

Although relatively simple, PLAGUE behaviour is expected to be very efficient. The 

family selection process applies a limited yet significant fitness pressure regarding the 

offspring production. The deletion of child-dominated parents, in turn, enables to 

improve efficiency by removing individuals which are close to, but worse than, another. 

This process is similar to the parental replacement used in SEAMO, claimed to be elitist 

(Valenzuela 2002). The population size does not necessarily increase (and may even 

decrease) after reproduction. The purpose is not to expand the population quickly, but to 

let the population improve significantly before proceeding to the next time-consuming 

sorting. The population at the end of the expansion phase may not be composed of only 

non-dominated individuals, but the overall fitness is likely to have improved and several 

search directions have been studied. At this step, the population is assumed to have 

reached a state where major improvements are unlikely, and only then the time-

consuming sorting can be valuable. 

Plague selection process is divided in three parts handling three different issues. The first 

portion is selected to improve the overall population fitness, the second portion is aimed 

at extending the solution front, and the last portion is dedicated to introduce diversity. 

Indeed, this portion of random individuals helps the spreading and the convergence, 

without deteriorating the overall efficiency of the algorithm. In the worst case, these 

random individuals will be worthless, and be very soon deleted by their children. Due to 

PLAGUE working principle, this will waste a minimum amount of time. In the best case, 
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these individuals will create a good diversity and produce individuals which, though 

dominated, will lead to a better convergence by adding new search directions. If there is a 

gap between a local and a global minimum, it is possible for this gap to be filled during 

the expansion phase by successive offspring. At the very end of the generation, only fit-

enough will be selected, while transition-individuals will be discarded. 

Regarding the number of evaluations, it is obvious that PLAGUE requires much more 

evaluations per generation than NSGA-II. Once again, PLAGUE has been created to be 

associated with GAINN methodology where evaluations are fast, and is not expected to 

be efficient in other situations. 

4.3 Comparisons between NSGA-II. NSGAINN, and 

PLAGUE 

4.3.1 Testing Methodology 

Parameters 

The comparison between the two developed algorithms and NSGA-II were based on a 

maximum run-time criterion. While the number of generations is much more frequently 

used as termination criterion, it was not possible to use it in this study, since it would 

have favored too much PLAGUE compared to the two other algorithms. For the purpose 

of comparison only, the maximum time is an acceptable criterion since the three MOEAs 

are based on a mostly similar code, and since all tests will be performed on a same 
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computer. Regarding algorithms parameters, NSGA-II parameters were kept as default 

for the three algorithms studied (except regarding the children-by-mate number in 

NSGAINN, and the population size in PLAGUE). These parameters are summarized in 

Table 3. 

Population size 

Crossover type 

Crossover probability 

Distributions indice for crossover 

Mutation type 

Mutation probability 

Distributions indice for mutation 

Termination criterion 

NSGA-II NSGAINN 

100 

PLAGUE 

80 

Simulated Binary Crossover 

0.9 

20 

Polynomial mutation 

1/(number of variables) 

20 

Maximum time 

Table 3: Parameters used for comparison of NSGA-II, NSGAINN, and PLAGUE 
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Test functions 

Test functions used for comparison are summarized in Table 4. They are taken from the 

two-objective ZDT suite, and the three-objective DTLZ suite. These functions are very 

commonly used in MOEA testing and are specifically designed to challenge MOEAs 

regarding global optimum and spreading of the solution front. The run-time associated 

with each function was designed to be long enough to enable for at least one MOEA to 

reach the Pareto front, while remaining short enough to display differences between 

MOEAs results. Numbers of variables and run-time associated to each function are also 

summarized in Table 4. 

Function 

ZDT1.ZDT2, ZDT3 

ZDT4 

ZDT6 

DTLZ1 to DTLZ7 

Number of variables 

30 

10 

10 

10 

Run-time 

15 seconds 

15 seconds 

30 seconds 

120 seconds 

Table 4: Summary of test functions and variables 

The CPU runtime was calculated by MATLAB, with all tests performed on a same 

computer, in the absence of any other major activity. The computer used was equipped 

with a Genuine Intel(R) CPU T2300 @1.66GHz, 1GB of RAM, and Windows XP (SP2); 

MATLAB version used is 7.0 . Each test was performed five times for each function and 

for each algorithm studied. 
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Metric Used for Comparison 

There is no common agreement regarding the metric(s) to use to assess the quality of a 

solution front. The metric used in this study was the dominated space (Zitzler, 1999), as 

illustrated in Figure 18. The main asset of this metric is that it is able to assess both 

convergence and spreading simultaneously. It is also able to deal with discontinuous 

fronts, and to compare two solutions sets even if their sizes are different. It is important to 

note that this metric is problem dependent, with a maximum reachable value function of 

the Pareto front's shape and of the space chosen to study dominance. 

Figure 18: Illustration of a dominated space 
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In this thesis, the dominated space was calculated statistically, as proposed by Fieldsend 

et al (2003). The calculation can be described as follows: first a square (for two-objective 

problems) or a cube (for three-objective ones) is created, with bounds equal to the true 

Pareto front bounds. Then, a sample of 1 000 000 points is randomly taken inside this 

square (respectively cube), and each of these points is tested to see if it is dominated by 

the solution set. The dominated space is equal to the ratio of dominated individuals in the 

sample. 

This method was tested by the author for reliability by calculating the dominated-space 

50 times for a same population. Tests were done using the solution set of NSGA-II on 

ZDT6 (30 variables, 120 seconds); and the solution set of NSGA-II on DTLZ2 (30 

variables, 240 seconds). The average errors were respectively 0.00123 (0.41%) for the 

two-objective problem and 0.0011 (0.29%) for the three-objective problem; variances 

were respectively l,77E-07 and l,9573E-07. This calculation method can therefore be 

considered as reliable. 
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4.3.2 Results 

Average Dominated Space 

Some solution sets, representative of the situations encountered, are illustrated in Figures 

19 and 20. The average dominated-spaces over the five runs are summarized for each 

algorithm and for each function in Table 5. These results are also illustrated in Figure 21 

(for two objective problems) and Figure 22 (for three-objective problems). Since the 

dominated space is, to some extent, dependent on the size of the solution set, dominated 

space is calculated two times for PLAGUE, once using the complete solution set, and 

then using only the best 100 individuals (noted PLAGUE( 100)). 

Figure 19: Solutions sets for ZDT6 function 
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ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

DTLZ1 

DTLZ2 

NSGA-II 

0,626 

0,000 

0,477 

0,000 

0,219 

0,279 

0,372 

DTLZ3 0,065 

DTLZ4 

DTLZ5 

0,303 

0,092 

DTLZ6 0,195 

DTLZ7 | 0,249 

NSGAINN 

0,615 

0,066 

0,485 

0,135 

0,305 

0,581 

0,376 

0,289 

0,382 

0,093 

0,219 

0,255 

PLAGUE 

0,656 

0,193 

0,511 

0,343 

0,291 

0,775 

0,410 

0,334 

0,418 

0,093 

0,196 

0,327 

PLAGUE (100) 

0,653 

0,192 

0,510 

0,342 

0,290 

0,751 

0,373 

0,310 

0,383 

0,091 

0,193 

0,322 

Table 5: Comparison of average dominated space 

Figure 20: Solution sets for DTLZ1 function 
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Figure 21: Comparison of average dominated space for ZDT functions 
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Figure 22: Comparison of average dominated space for DTLZ functions 
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As can be seen, both PLAGUE and GAINN performed better than NSGA-II for all test 

functions, except NSGAINN for ZDT1 function. The improvement ranged from 2% to 

more than 394% for NSGAINN, and from 0% to 416% for PLAGUE (the improvement 

was virtually infinite in cases NSGA-II dominated space is zero). PLAGUE was 

generally the most efficient algorithm, although NSGAINN got better results than 

PLAGUE for ZDT6 and DTLZ6. Regarding PLAGUE reduced to 100 individuals, it 

performed better than NSGA-II for all functions except for DTLZ4 and DTLZ5 (2% 

decrease). 

Maximum Dominated Space 

The maximum dominated spaces reached over the five runs are summarized for each 

algorithm and for each function in Table 6. Results are also illustrated in Figure 23 (for 

two-objective problems) and Figure 24 (for three-objective problems). 
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B NSGA-II 

B NSGAINN 

D PLAGUE 

D PLAGUE (100) 

ZDT6 

Figure 23: Comparison of maximum dominated space for ZDT series 
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Figure 24: Comparison of maximum dominated space for DTLZ series 

ZDT1 

ZDT2 

ZDT3 

ZDT4 

ZDT6 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

NSGA-II 

0,641 

0,000 

0,500 

0,000 

0,261 

0,685 

0,378 

0,335 

0,384 

0,093 

0,198 

0,354 

NSGAINN 

0,647 

0,174 

0,507 

0,491 

0,311 

0,739 

0,383 

0,363 

0,386 

0,093 

0,220 

0,360 

PLAGUE 

0,660 

0,326 

0,515 

0,663 

0,294 

0,780 

0,420 

0,404 

0,422 

0,094 

0,203 

0,362 

PLAGUE (100) 

0,657 

0,324 

0,513 

0,659 

0,293 

0,755 

0,391 

0,375 

0,390 

0,092 

0,200 

0,358 

Table 6: Maximum dominated space result for the three MOEAs 
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PLAGUE and NSGAINN got better results than NSGA-II for all functions except 

DTLZ2 for NSGAINN. PLAGUE was better than NSGAINN for most functions. 

Improvement in maximal results compared to NGSA-II ranged respectively from 1% to 

19% for NSGAINN, and from 1% to 21% for PLAGUE. Once again, NSGAINN got 

better results than PLAGUE for ZDT6 and DTLZ6. 

Number of Evaluations 

Average numbers of evaluation for each algorithm and for each function are summarized 

in Table 7 (average of 5 runs), and are illustrated in Figure 25 (for two-objective 

functions) and Figure 26 (for three-objective functions). 

NSGA-II 

ZTL1 

ZTL2 

ZTL3 

ZTL4 

ZTL6 

7600 

4406 

7830 

5520 

13175 

DTLZ1 | 58082 

DTLZ2 

DTLZ3 

DTLZ4 

DTLZ5 

DTLZ6 

DTLZ7 

81026 

60935 

71156 

79281 

79737 

71780 

NSGAINN 

6796 

4451 

7222 

6546 

18160 

79344 

105550 

80654 

104120 

103610 

112760 

98702 

PLAGUE 

14870 

27306 

15830 

21097 

35036 

163760 

100640 

172070 

99269 

123590 

107530 

100279 

Table 7: Number of evaluations for the three MOEAs 
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As expected, both PLAGUE and NSGAINN generally required more evaluations than 

NSGA-II. PLAGUE required an average of 143% more evaluations than NSGA-II, and 

up to 520% more for ZDT2. NSGAINN required an average of 25% more, and 

surprisingly sometimes required fewer evaluations than NSGA-II (11% less for ZDT1 

and 8% less for ZDT3). 

4.3.3 Discussion 

The conclusion we can draw from these results is first that both developed algorithms are 

generally more efficient than NSGA-II, regarding both average and maximum results. 

The improvement in result is in most cases significantly greater than the uncertainty of 

the metric and the author is therefore confident in his results. Comparing the two 

developed algorithms, PLAGUE is generally the most efficient, although NSGAINN 

sometimes provides better average and maximum results (for ZDT6 and DTLZ6). 

There is little difference in results between PLAGUE and PLAGUE(IOO) for two-

objective functions. The difference can however become significant for the three-

objective ones (up to 8% difference). PLAGUE solution set was reduced to 100 to be 

compared fairly to other algorithms, but the point is PLAGUE actually provides more 

solutions, which is one of its assets. Therefore, to author's opinion, the dominated space 

of PLAGUE's whole solution set can be considered as representative, when studying the 

overall efficiency of the MOEA. Nevertheless, even reduced to 100 individuals, 

PLAGUE remains more efficient than NSGA-II in almost all cases, and is the best of the 
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three MOEAs for two-objective functions. For three-objective function, considering 

PLAGUE population reduced to 100 individuals, NSGAINN become the most efficient 

algorithm for half of the functions tested. 

The fact that developed algorithms require more evaluations than NGSA-II is both logical 

and expected. For GAINN methodology, due to ANN fast calculations, the number of 

evaluations is not a limiting parameter. If one uses PLAGUE outside of GAINN however, 

directly combined with TRNSYS for instance, the time requirement could double or even 

be multiplied by six compared to NSGA-II. In such cases, PLAGUE could become less 

useful. 

Regarding NSGAINN, there is also an increase in number of evaluation compared to 

NSGA-II, due to the large amount of children evaluated and rejected through family 

sorting. This increase, 25%, is significant, but may be compensated by the better results it 

provides. Even if it was created for GAINN, NSGAINN could therefore be efficient in 

some problems where the computational time associated with evaluation is relatively 

short (milliseconds or lower). 

For ZDT1 and ZDT3 functions, NSGAINN surprisingly requires fewer evaluations than 

NSGA-II. This can be explained by the fact that NSGA-II does not require family sorting 

and therefore runs more generation than NSGAINN. Since NGSAINN finishes with 

fewer generations, fewer evaluations were required. It is interesting to note that in those 

cases, the family sorting was not efficient, and NSGAINN did not provide better results 

than NSGA-II (and was even worse for ZDT1). 
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4.4 Conclusion 

According to the tests performed, both developed MOEAs are more efficient than NSGA-

II, as long as they are used inside GAINN methodology or for problems where the 

evaluation function is extremely fast. In cases where evaluations are time consuming, 

both NSGAINN and PLAGUE are expected to perform relatively bad; for evaluation-

times in the order of milliseconds, NSGAINN may keep a good performance though. As 

long as used inside GAINN, the two developed algorithms are a success, noting the 

following. 

All tests have been performed on a runtime basis. Although to author's opinion it is the 

fairest methodology in this case, this termination criterion is rarely used, and it suffers 

from being greatly influenced by the quality of the programming and by the language 

chosen; maximal generation is often preferred. Actually, in all tests performed, both 

NSGAINN and PLAGUE had fewer generations than NSGA-II. Therefore, the 

improvement shown in this thesis would be even larger if maximal generation was used 

as termination criterion. The methodology chosen is conservative, and improvement does 

not rise from criterion used. 

Another crucial factor, as in any MOEA testing, is the parameters chosen, which greatly 

influences results. Different reproduction parameters especially, including crossover and 

mutation types, probabilities, and distributions indices, would have led to different 

results. As explained before, the author kept the same parameters as in NSGA-II original 
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paper, and expects to be conservative in his results. In that sense, use of other 

reproduction parameters, more specifically chosen for NSGAINN or PLAGUE, could 

lead to an even better improvement compared to NSGA-II. This should be studied in 

future works using developed MOEAs. 

Finally, and more generally, one could wonder how practical the improvement is. Indeed, 

NSGA-II can almost always reach the optimal Pareto front, providing a sufficiently long 

runtime. One could wonder how few seconds can have an impact on the overall 

methodology. Indeed, the impact of the developed MOEAs may be little in cases where 

GAINN is used in combination with building simulation software, since the total 

computation time will be in the order of hours or days. However, if one uses GAINN for 

online optimization (which is a promising yet unexploited application of the 

methodology), improvement can become significant, enabling faster optimizations, and 

therefore faster reactions of the system. 
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CHAPTER 5: 

MAIN CASE STUDY: OPTIMIZATION OF A 

RESIDENTIAL BUILDING 

5.1 Description of the Optimization Problem 

5.1.1 Overview of the Optimization 

As written in the introduction, a sustainable building should have the smallest 

environmental impact, while remaining comfortable for the occupants. The energy 

consumption and thermal comfort should specifically be studied. In many situations, the 

whole problem is to find a trade-off between comfort and energy consumption. In 

residential buildings, this trade-off is very dependent on how much the occupant is 

willing to maintain or lower his thermal comfort in order to save energy. This decision is 

very personal and cannot be predicted or imposed; however, a tool should be provided to 

enable a global view of the range of possibilities. In that sense, a multiobjective 

optimization, optimizing both thermal comfort and the energy consumption, and based on 

no assumption regarding the occupant/building owner environmental awareness, becomes 

a very interesting tool. 
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The optimization undertaken in this study is aimed at exploring the trade-offs between 

thermal comfort and the energy consumption for a typical residential building. The 

optimization will be based on a simulated occupancy schedule, temperature set points and 

heating and cooling schedule throughout the day. While some multiobjective 

optimizations of HVAC set points have already been studied (Wright and Loosemore, 

2002; Nassif et al. 2003), the current study will include additional variables related to 

passive solar design such as windows sizes and thermal mass. 

The base building of this study is one of the two (identical) residential houses of the NRC 

Twin House Project. This building was chosen because of the quality of its simulated 

occupancy, and because of its continuous monitoring of interior as well as exterior 

conditions. The house is a typical 2-storey wood-frame house, with 210 m2 of living area. 

It is built to meet the R-2000 standard with a wall RSI-value of 3.5, and a roof RSI-value 

of 8.6. Windows are composed of low-e Argon filled double glazing units, and air 

tightness of the house has been tested at 1.5 air change per hour at 50 Pa. Regarding the 

HVAC system, the house is equipped with a high efficiency condensing gas furnace (80% 

steady-state efficiency and a rated output of 67,500 Btu/h,), a 12 SEER air-conditioner 

with a 2 ton capacity, and a high efficiency (84%) heat recovery ventilator. Plans of the 

house are shown in Figure 27 and a more detailed description of the house characteristics 

and testing can be found in Swinton (2003). 
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Figure 27: Layouts of the first and second floors of the building studied 

5.1.2 Optimization Methodology 

The optimization involves complex phenomena and complex relations between the 

variables studied. Moreover, the simulation of the thermostat programme requires a very 

small simulation time step. In that situation, the use of GAINN methodology is justified, 

in order to provide an efficient optimization of the building while maintaining a 

reasonable computational time. The methodology is described in the following Figure: 
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Figure 28: Workflow of GAINN methodology 

1. Building simulation 

The building will be simulated using TRNSYS software. TRNSYS is a TRaNsient 

SYstems Simulation program that includes a modular structure, a graphical interface, and 

a large library of components. TRNSYS has been chosen for this study because it is 

recognized as one of the best building simulation software, along with EnergyPlus and 

ESP-r (DOE, 2008). 
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2. Parametric runs 

In order to create a database for ANN training, parametric runs have to be computed. In 

order to automate TRNSYS runs, GenOpt (Wetter, 2001) will be used. When associated 

with TRNSYS, GenOpt can automatically generate building (.bui) and deck (.dck) files 

based on chosen templates, run TRNSYS with those files, save results, and restart again. 

Thanks to GenOpt automation, there is no need to write all deck and building files by 

hand, and therefore a significant amount of time is saved. More importantly, the risk of 

mistakes while writing the files is significantly lowered. 

GenOpt is provided with several parametric and (single-objective) optimization 

algorithms. In this study, TRNSYS parametric simulations are to be run with parameters 

taken from columns of a matrix. Quite surprisingly, this behaviour was not readily 

available in GenOpt algorithms, and had to be programmed. The algorithm used is a 

slightly modified version of GenOpt's "parametric run" algorithm. The complete code of 

this algorithm, written in Java, can be found in Appendix C. 

3. Design of experiment 

In order to reduce the size of the training database while keeping the sample 

representative, Latin Hypercube Sampling (LHS) is used. LHS is one of the most 

common methods used to generate a small and representative sample of a population, for 

a specified number and ranges of variables. Studies have shown that using LHS, a 
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number of cases greater than twice the number of parameters is sufficient to correctly 

sample the search space (Mackay, 1988). 

The principle of LHS is simple and can be illustrated as in Figure 29. For a 2-variable 

problem with a search space conceptualized as a square, the LHS method takes one and 

only one point per each column and per each row. The complete sample is therefore 

relatively little but remains representative of the whole search space. In this study, LHS 

will be computed in MATLAB, using the Model-Based-Calibration Toolbox. 

Variable A 

X 

X 

X 

X 

Figure 29: Illustration of LHS for a 2-variable problem 

4. Artificial Neural Network 

The Artificial Neural Network will be computed using built-in ANN-toolbox of 

MATLAB. It will be trained using a first sample from LHS, and checked for validation 

using a second and smaller sample. 
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5. Multiobjective optimization 

Once trained and validated, the ANN will be used as the evaluation function inside the 

three MOEAs described previously. Details about the optimization process will be 

described in a next section. 

6. Verification of the results 

Finally, once optimization completed, some solutions will be checked using TRNSYS, to 

ensure that the ANN is accurate enough in the vicinity of the optimal solutions. This step, 

sometimes ignored in previous studies (Conraud, 2008), is crucial to assess the overall 

efficiency of the methodology. 

5.1.3 Metrics used for Objective Evaluations 

Energy consumption 

The energy consumption of the building will be directly assessed by TRNSYS. The total 

energy consumption, Etot is composed of: 

• Heating/furnace consumption Eheat\ 

• Cooling consumption (including dehumidifier consumption) Ecooi', 

• Fan consumption Efan; 
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Energy consumptions for domestic hot water and appliances were not included because 

they are not affected by the parameters studied. Lighting consumption is somewhat 

influenced by windows sizes and could have been included. The author however makes 

the assumption that variations in lighting consumption can be neglected, especially if 

compact fluorescent lamps are used. Finally, the energy consumption for humidifying the 

air was assumed to be negligible. 

Thermal comfort 

The metric used to assess thermal comfort is the Predicted Mean Vote (PMV), based on 

Fanger's model (Fanger, 2000). PMV is representative of what a large population would 

think of a thermal environment, and is used to assess thermal comfort in standards such 

as ASHRAE 55 (ASHRAE, 2004). It ranges from -3 (too cold) to +3 (too warm), and a 

PMV value of zero is expected to provide the lowest Percent of People Dissatisfied (PPD) 

among a population. An absolute PMV value of 0.5 is generally recognized as the limit of 

the comfort zone. 

In order to optimize thermal comfort, two parameters are used in this study: 

• Average absolute PMV \PMVh0USe\mg: averaged over the whole year and 

over all occupied zones. 

• Number of hours with |PMVh0Use| > 0.5 A^«: representing the cumulative 

time with discomfort over the whole year. This metric will be used as a penalty 

term inside optimization. 
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In this study, PMV values are calculated by TRNSYS for each zone, using a constant 

metabolic rate of 1 met, a constant air velocity of 0.1 m/s, and a clothing factor equal to 

0.5 clo in summer, 0.9 clo in winter, and 0.8 during the rest of the year. The PMV values 

will only be taken into account if at least one occupant is present inside the house. For 

night periods in the heating season, thermal comfort is ignored and a constant set point of 

18°C is maintained. In the cooling season, night thermal comfort is also ignored; the night 

cooling set point is however kept equal to the one used during occupancy, which is 

expected to provide an acceptable comfort. Local discomfort such as draft or temperature 

asymmetry are not included in this study, because they are either not expected to appear 

(the house is airtight and well-insulated), or too complicated to assess in a residential 

environment. 

5.1.4 Study Parameters 

The study parameters are the ones expected to most significantly influence both the 

thermal comfort and the energy consumption. Since the base building is already well 

insulated, and since the insulation affects the energy consumption but has little impact on 

thermal comfort, the author decided to exclude insulation from study parameters. 

Regarding window type, the windows installed in the base building (low-e Argon filled 

double glazing) are generally recommended for passive solar design. Windows type has 

thus also been excluded from the present study. Considering the base building and the 

optimization problem studied, only two parameters related to the building envelope have 

been kept to carry out the optimization: windows sizes, and thermal mass. 
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Regarding the HVAC system, the focus has been the program and schedule, with 

variables influencing both the thermal comfort and the energy consumptions. Variables 

are closely related to the occupancy schedule. This schedule, based on the Twin House 

Project occupancy schedule, can be summarized as follows. Apart from the night, the 

house is considered to be occupied between 6:45AM and 8:00AM, and between 5:30PM 

and 11:00PM, 5 days per week (see Figure 30). During the week-end, it is occupied from 

to 6:45AM to 11:00PM. Four parameters have been selected for the HVAC system: the 

temperature set points, the relative humidity set points, the ventilation rates, and the 

system delays. 

Windows sizes 

Sizes of the windows are predominant in passive solar design, since it is the main 

parameter influencing the amount of solar radiation entering the house. Sizes should be 

carefully thought to enable a high amount of incoming solar radiation, but to avoid 

overheating the house in summer and to keep thermal losses to a minimum. Structural, 

privacy and aesthetics issues should also been taken into account. Based on these 

considerations, the window sizes are varied between 20% and 60% of the corresponding 

wall areas. For architectural reasons, only north and south windows is studied, for a total 

of 5 windows. 
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Thermal mass: 

In passive solar design, the thermal mass of a building is a predominant parameter 

because it influences the amount of heat a building can store. In this study, the thermal 

mass of the house is changed by changing the thickness of the concrete slab in the interior 

floors. The thickness of the slab varies from 5 centimetres to 25 centimetres. Structural 

issues are beyond the scope of this study. 

Temperature set points: 

Heating and cooling temperature set points are varied according to ASHRAE guidelines 

(2004). The heating set point temperature is varied between 20°C to 25°C, and the cooling 

set point temperature is varied between 23 °C to 27 °C. It should be noted that at night or 

when the house is not occupied, the heating set point is fixed at 18°C. Also, cooling is 

turned off if no one is present inside the house. 

Relative humidity set points: 

Relative humidity has a significant influence on the thermal comfort. In this study, three 

humidity set points are optimized for respectively the summer, the winter, and the mild 

seasons. The winter season is assumed to be between November 1st and March 1st, the 

summer season between July 1st and September 1st, and the mild season the rest of the 

year. These seasons are based on the outside temperature profile in Ottawa 

(WeatherOffice 2008). Based ASHRAE guidelines, relative humidity set points are varied 

between 30% to 60% (ASHRAE, 2004). 
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Thermostat delays 

A delay takes place between the moment heating is set on, and when the house reaches 

the set point temperature. A delay also exists between the moment heating is turned off 

and when thermal discomfort appears. In order to optimize the energy consumption based 

on the thermal mass of the house, starting and stopping delays are introduced in the 

thermostat schedule, as illustrated in Figure 30. The starting delay is defined as the delay 

between the time the set point is switched from setback to regular set point temperature 

and the time occupants enter the house, before occupancy. It varies between 0 and 30 

minutes. The stopping delay is the delay between the time the set point is switched from 

regular set point to setback temperature and the time occupants leave the house or go to 

bed. It varies between 0 and 60 minutes. Different delays are studied for the three seasons 

previously described. 

T * 

22 *C 

13 "C 

6:45 8:00 17:30 23:00 

Figure 30: Illustration of the HVAC schedule 
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Ventilation rates 

Finally, ventilation rates are studied, conjointly with the delays previously described. The 

amount of outdoor air brought in by the heat recovery ventilator (0.0307 m3/s (65 CFM)) 

remains constant, maintaining an acceptable indoor air quality inside the house. The three 

ventilation rates corresponding to respectively continuous recirculation, heating mode, 

and cooling mode, are varied from 0.118 m3/s to 0.708 m3/s (250 CFM to 1500 CFM). 

These values correspond respectively to a 20%/80% ratio of outdoor/indoor air, and to the 

maximum ventilation rate in the base building. 

In summary, the following table shows the ranges of the optimization variables: 

Variable 

1st Floor north window 

1st Floor south window 

2nd Floor north window 

2nd Floor southwest window 

2nd Floor southeast window 

Thickness of concrete in interior 

Heating set point 

Cooling set point 

RH set point (x3) 

Starting delay (x3) 

Stopping delay (x3) 

Ventilation rate (x3) 

Name 

WF1N 

WF1S 

WF2N 

WF2S2 

WF2S1 

TCK 

HSP 

CSP 

RH* 

SD* 

FD* 

VR** 

Lower 
bound 

4.76 

2.20 

4.06 

1.38 

2.08 

5 

20 

23 

30 

0 

0 

0.118 

Upper 
bound 

14.30 

6.60 

12.18 

4.14 

6.25 

25 

25 

27 

60 

30 

60 

0.0708 

Unit 

[m2] 

[m2] 

[m2] 

[m2] 

[m2] 

[cm] 

[°C] 

[°C] 

[%RH] 

[min] 

[min] 

[m3/s] 
* : S, W, or Mid is added to the name of the variable if it corresponds to respectively summer, winter, 
or middle season. 
** : VRH, VRC, and VRR for the ventilation rates in respectively heating, cooling and recirculation 
modes. 

Table 8: Ranges of variables used for optimization 
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5.2 Building Simulation 

5.2.1 TRNSYS Simulation 

Overview of the model 

The building model was developed in TRNSYS, and special care was taken for wall 

insulations, occupancies and appliances schedules, and HVAC equipment. A schematic 

view of the model is shown in Figure 31; Table 9 presents a list of the components used 

in the model. 

Type 

2 

2 

9 

9 

14 

16 

25 

33 

56 

65 

69 

121 

501 

648 

696b 

760 

Description 

Differential controller 

Differential controller 

Data Reader For Generic Data Files 

Data Reader For Generic Data Files 

Internal gains schedule 

Sun radiation estimator 

Printer to output file 

Psychometrics 

Multi-zone building 

Online graphical plotter 

Sky temperature estimator 

Furnace 

Soil Temperature Profile 

Air Mixing Valve 

Simplified Air Conditioning Device 

Sensible Air to Air Heat Recovery 

Name 

Heating Control 

Cooling Control 

Temperature and humidity 

Irradiance 

Various 

Type 16a 

System printer 

Psychometrics 

Twin House 

Results 

Sky temp 

Furnace 

Ground temperature 

Flow mixer in/out 

Cooling system 

Heat exchanger 
Table 9: List of components used in the TRNSYS model 
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Figure 31: TRNSYS model view 

The type-56 multi-zone building is a reproduction of the reference house (Figure 32). The 

building model is divided into 7 zones: first floor (open space), second floor north, 

second floor master bedroom, second floor south bedroom, garage, basement, and attic 

(Table 10). The first four zones are heated and cooled. The basement is partially heated 

and cooled (simulated with a low ventilation rate), since it is not supposed to be occupied. 

In the actual building, the so-called garage is in reality a control room, with its own 

ventilation system; in TRNSYS simulation, garage is not heated nor cooled, but its 

temperature is artificially set to 21°C all year long. Apart from HVAC continuous 

recirculation, no air change has been simulated between adjacent rooms. 
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Zone 

First floor 

Second floor north 

Second floor master 
bedroom 

Second floor south 
bedroom 

Description 

Living room, kitchen, dining 
room 

Various rooms 

Master bedroom with 
bathroom 

Bedroom 

Basement 1 Non-occupied basement 

Garage Control room, not studied 

Attic Attic 

Floor area 

97.3 

54.3 

43 

18.2 

97.3 

47 

n. a. 

Volume 

269.5 

143.6 

113.7 

48.2 

228.7 

95.2 

40 

Table 10: Description of zones in type 56 
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Figure 32: Screenshot of the type 56 model 
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Finally, a control strategy has been implemented for the venitian blinds, based on the 

following rules: 

o Blinds are always closed at night. 

o If at least one occupant is present inside the house, a blind is closed if the 

solar radiation on the corresponding window is superior to 432kJ/hr.m 

(default value used for blind control in TRNSYS). 

o If no one is present inside the house, blinds are always closed in cooling 

season, and are always open the rest of the year. 

This simple strategy is expected to provide an energy efficient and realistic control of 

blind opening and closing. 

5.2.2 Validation of the Model 

In order to validate the TRNSYS model, simulation results have been compared with 

measured data. The TRNSYS model was run using the base building parameters 

described in Swinton (2001), with a 2 minutes time step, and using exterior measured 

data as an input. The measured data, provided by NRC, included exterior and interior 

temperatures and humidity, solar radiation, and energy consumptions, for the months of 

January and August 2003. 
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Heating consumption 

Figure 33 displays the daily heating consumption for the month of January. As can be 

seen, the simulated results are reasonably close to measured data. The average absolute 

relative error between simulated and measured heating daily consumptions is 12.2%. 

Regarding the monthly total heating consumption for the month of January, the difference 

is 3.4% with respectively 4,329 kWh for measured consumption and 4,172kWh for 

simulated consumption. 

250 

£• 200 

| 

co
ns

um
pt

io
n

 

o
 

en
 

o
 

o
 

>» 
§ 50 

0 

• Measured data 
—•— Simulation 

< % * / " 

f 1 

• 

1 3 5 7 9 11 

•/ 

13 

A i 
(ft*r 

15 17 

Day 

I i V 

19 21 

^ A wy 
• 

* 

23 25 27 29 31 

Figure 33: Simulated and measured daily heating consumption 

Cooling consumption 

Figure 34 displays the daily cooling consumption for the month of August. Due to 

technical problems, no data was measured between day 15 and day 18. These days have 

therefore been ignored. Once again, we can see a relatively good agreement between the 
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simulated and the measured data. Ignoring days where no data was available, the average 

absolute relative error in daily cooling consumption is 30%, which is significant. The 

relative error regarding the monthly cooling consumption is however 3.4%, which is 

acceptable (respectively 407 kWh for them measured consumption and 420 kWh for 

simulated consumption). 

40 

^ 35 

^ 30 

• Measured data 
•Simulation 

Figure 34: Simulated and measured daily cooling consumption 

Fan consumption 

Finally, simulated fan consumptions are in good agreement with the measured data. The 

simulated fan consumption for the month of January was 4.5% lower than the measured 

consumption (315 kWh and 330 kWh respectively). The simulated fan consumption for 

the month of August was 10% lower than the measured consumption (250 kWh and 278 

kWh respectively). 
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5.2.3 Discussion 

There is an acceptable agreement between measured and simulated heating and cooling 

consumptions. Several points should nonetheless be noted. First, the thermostat 

temperature used in the simulation is the average between the temperatures of the first 

floor and second floor North zone. In the actual building, the thermostat is situated in the 

corridor of the north of second floor, but close to the stairway. The temperature at this 

central position is influenced by first floor temperature and possibly by sun radiation, and 

variations are therefore likely to appear. Setting the monitored temperature as the average 

of the two-zones was found to give the best results overall. The second point to be noted 

is the relative uncertainty regarding basement temperature and ventilation distribution 

throughout the house. Air distribution was designed to keep a similar temperature in each 

zone all year long, and a basement temperature of around 18-19 °C in winter. 

Assumptions regarding air distribution were found by trial-and-error. On the whole, the 

TRNSYS simulation can be validated since it shows reasonably small differences 

between measured and simulated energy consumptions. 

5.3 Artificial Neural Network Approximation 

5.3.1 Parametric Runs 

A sample of 450 cases was used for ANN training. This sample was created by Latin 

Hypercube Sampling, based on the variables and ranges previously described (Table 8). 

All the cases have then been simulated with TRNSYS, thanks to GenOpt automation. 

88 



Simulations were performed with a 2-minutes time step, and all simulations were 

preceded by a pre-simulation of 30 days. Due to the very small time step, the total 

simulation time of the 450 cases took around three weeks (using the same computer as 

the one described in Chapter 4). 

5.3.2 Artificial Neural Network Training 

The artificial neural network was composed of one input layer representing the 20 

variables described before, one hidden layer composed of 20 neurons, and one output 

layer composed of the three energy consumptions and the two thermal-comfort variables. 

The number of neurons in the hidden layer was found by trial-and-error (see discussion 

below). Transfer functions used are hyperbolic tangent sigmoid functions in the initial 

and hidden layers, and linear functions in the output layer. The method used for the ANN 

training is the back-propagation, associated with Levenberg-Marquardt and Bayesian 

regularization algorithms. All inputs and outputs were scaled to the [-1, 1] range prior to 

training, as recommended in MATLAB (2006), to enable a better efficiency. 

The ANN was trained with 450 cases. The training was considered to have reached 

convergence if both the sum of squared error (SSE) and the sum of squared weights 

(SSW) stabilized over certain iterations (as shown in Figure 35). The ANN training 

reached this goal after 516 epochs, with a final SSE of 1.16. Regression correlation 

coefficients between the network outputs and the corresponding TRNSYS simulation 

outputs were found very close to 1 for the five outputs studied, demonstrating a very 
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good correlation between outputs and target values. Figure 36 illustrates the regression 

for cooling consumption. 
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Figure 35: Convergence history of ANN training with Bayesian regularization 
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Figure 36: Linear regression of ANN predicted cooling consumption on targets 
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5.3.2 Artificial Neural Network Validation 

A sample of 45 cases, different from the previous ones, was used for ANN validation. 

Figure 37 illustrates the relative error between ANN and TRNSYS outputs for the five 

outputs. These relative errors are summarized in Table 11. As can be seen, the average 

relative errors regarding energy consumption outputs are good, with 0.4% for heating, 

2.6% for cooling, and 0.95% for fan consumptions. This leads to an average relative error 

around 0.5% for the total energy consumption. Regarding the two thermal comfort 

outputs, the average relative errors are a bit higher but still acceptable, with respectively 

3.9% for the average absolute PMV and 5.2% for the cumulative time with discomfort. 

Relative error 

Percentage 
of cases 
when error 
falls into 
the range 

Eheat 

^cool 

Efan 

<1% 

93% 

33% 

58% 
\PMV\ 1 8 % 

Ndis | 13% 

<2.5% 

100% 

60% 

96% 

40% 

38% 

<5% 

100% 

89% 

100% 

78% 

64% 

<10% 

100% 

98% 

100% 

96% 

84% 

<25% 

100% 

100% 

100% 

100% 

100% 

Average 

0.4% 

2.6% 

0.9% 

3.9% 

5.2% 
Table 11: Statistical repartition of relative errors in ANN validation 
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Figure 37b: Linear regression of ANN predicted cooling consumption on targets 

92 



5000 
Best Linear Fit: A = (1) T + (-1.53) 

R = 0.999 
O Data Points 

Best Linear Fit 
A = T 

1000 1500 2000 2500 3000 3500 4000 4500 5000 
Target (Fan consumption) 

Figure 37c: Linear regression of ANN predicted fan consumption on targets 
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Figure 37d: Linear regression of ANN predicted average absolute PMV on targets 
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5.3.3 Discussion 

Reaching an acceptable ANN accuracy was difficult for the current case study. Using 

LHS, the general rule of thumbs states that a number of cases superior to 2.5xN, where N 

is the number of variables, is sufficient for ANN training. In the current case, this rule did 

not apply, and as much as 22.5xN cases were required to enable an acceptable ANN 

accuracy. An even higher number of training cases would have probably led to a better 

accuracy, but would have furthermore increase the computational time. 

The number of neurons to set in the hidden layers was also difficult to determine. In the 

current case, increasing the number of neurons in the hidden layers could on average 
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improve ANN predictions, but it also increased the maximal errors. This result is caused 

by a phenomenon called overfitting, in which the ANN uses a high number of parameters 

to have a very high accuracy regarding the training data, at the cost of great variations 

between each training point. This behaviour is very dangerous in the current study since 

those great variations could lead to false optimum in further optimization. Based on the 

general idea that it is less dangerous for optimization to have small and frequent errors 

rather than rare but important ones, the author decided to keep 20 neurons in the hidden 

layer. 

On the whole, the author considers the ANN accuracy as acceptable, since the relative 

errors for energy consumptions are very low, and since the relative error of 3.9% for 

PMV results in very little variations in the PMV value. The relative error for the 

cumulative time with discomfort is a little bit more problematic, but is still acceptable 

since this output will only be considered as a constraint. 
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5.4 MOEA Optimization 

5.4.1 Optimization Set-up 

The optimization problem was considered as a two-objective problem; the total energy 

consumption and the thermal comfort as objectives. Since thermal discomfort should 

never occur inside the house, the cumulative number of hours with discomfort (NdjS) has 

been handled as a constraint. The optimization problem can be summarized as the 

minimization of: 

< 

Fi = (Eheat + Ecooi + E/an) x (1+PT) 

F2 = \PMV\x(l+PT) 

Where: 

_ Eheat, Ecooi, E/an are the energy consumptions for respectively heating, cooling, 

and fan operation; 

_ |PMV| is the average absolute PMV over the whole year, and; 

_ PT is a penalty term, equal to the annual cumulative time where the |PMV| is 

higher than 0.5 (N<jis), divided by 100. (Dividing Ndis by 100 was found sufficient 

to ensure a good constraint handling, while maintaining an acceptable 

convergence rate). 
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All the parameters used in the evaluation function are calculated by the neural network. 

The code required to implement ANN calculations inside the MOEA is straightforward. 

In order to significantly reduce the evaluation time, the following method should 

however be used. Instead of using the MATLAB default procedure, ANN calculations 

should be reconstructed manually, based on the weights and bias matrices (see Appendix 

D). Doing so, calls to MATLAB complex routines regarding ANN architecture are not 

required, and the evaluation time is significantly reduced. According to tests performed 

by the author, this method enables to perform 10,000 evaluations in 1.44 seconds, while 

MATLAB default calculation takes as much as 38.8 seconds for the same work. The 

former method was thus used in the remaining of the thesis. 

5.4.2 First Optimization 

In the first optimization set-up, the 20 parameters described in section 5.1.4 (Table 8) 

were used as variables. NSGA-II, NSGAINN, and PLAGUE were run with the same 

parameters as in Chapter 4, with a termination criterion set to a maximal runtime of 600 

seconds. The optimization results are illustrated in Figure 38. 
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Figure 38: Results of the first optimization 

Optimal solutions range from an absolute average PMV of 0.064 for an annual energy 

consumption of 18,360 kWh, to an annual energy consumption of 15,380 kWh for an 

absolute average PMV of 0.156. The spreading of solutions between these two extrema 

was good, and drew an almost continuous curve. Also, in all cases, the constraint was 

properly handled with a penalty term - and therefore a cumulative time with discomfort -

equal to zero. 
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The three different MOEAs display similar results, regarding convergence and spreading 

of solutions. PLAGUE appears to provide the best spreading, while NSGAINN and 

NSGA-II provide slightly better results for |PMV| values between 0.09 and 0.13. For the 

purpose of comparison, optimization results were compared with the base case 

configuration, with four manually constructed designs expected to provide good results, 

and with five random designs (see Appendix E). Results are illustrated in Figure 39 (the 

penalty term was not considered for these evaluations). As can be seen, MOEAs solutions 

sets are better than the base and the random cases in terms of both comfort and energy 

consumption. Three of the manually constructed designs enable lower energy 

consumptions than the optimization results. However, these three cases gender more than 

1000 hours per year with an average PMV higher than 0.5, and should therefore be 

rejected. 

x104 
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Figure 39: Optimization results compared to base, random, and manually constructed cases 
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Variables 
Temperature 

Setpoints 

Starting 
Delays 

Stopping 
Delays 

Ventilation 
Rates 

Relative 
Humidity 

Windows 
Sizes 

Thermal 
mass 

HSP 

CSP 

SDHW 

SDMID 

SDS 

FDMID 

FDS 

FDW 

VRR 

VRC 

VRH 

RHW 

RHMID 

RHS 

WF1N 

WF1S 

WF2N 

WF2S2 

WF2S1 

TCK 

Range 

[20,25] 

[23,27] 

[0,30] 

[0,30] 

[0,30] 

[0,60] 

[0,60] 

[0,60] 

[0.118,0.708] 

[0.118,0.708] 

[0.118,0.708] 

[30,60] 

[30,60] 

[30,60] 

[4.76, 14.30] 

[2.20, 6.60] 

[4.06, 12.18] 

[1.38,4.14] 

[2.08, 6.25] 

[0.05,0.25] 

Base case 

21 

21 

Not applicable: 
constant 

temperature 
set points all 

year long 

0.448 

0.680 

0.618 

none 

none 

none 

9.4 

5.29 

3.69 

3.87 

4.02 

0.05 

Optimal solutions 
Lower 
value 

22.3 

24.6 

0 

29.7 

19.7 

16.8 

0.1 

0 

0.118 

0.118 

0.469 

59.9 

30 

59.1 

4.77 

2.41 

4.06 

1.38 

2.79 

0.25 

Upper 
value 

23.5 

24.9 

29.9 

30 

30 

60 

60 

24.8 

0.118 

0.120 

0.708 

60 

60 

60 

14.30 

6.61 

12.19 

3.96 

6.25 

0.25 
Table 12: Variables ranges in optimal and base designs 

Table 12 summarizes the range of values taken by optimal solutions' variables. The most 

salient fact of the optimization is the thickness of concrete in the interiors floors, set to 

the maximal values in all cases. This additional thermal mass enables to store more heat 

from sun radiation, and to smooth the temperature variation, especially in summer. 

Heating and cooling set points vary respectively between 22.3°C and 23.5°C, and 

between 24.6°C and 24.9°C, which is relevant with ASHRAE comfort range. 

Recirculation and heating ventilation rates are always set to the minimal value, in order to 

reduce fan consumption. Finally, relative humidity set points are set to 60% in winter and 

summer to respectively improve comfort and decrease dehumidification consumption. 
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These relative humidity values are high, but are still in accordance with ASHRAE 

comfort zone. It may however cause problems such as condensation or mold growth in 

winter. The other variables such as windows areas or thermostat delays take a wide range 

of values, in order to find all optimal trade-offs between energy consumption and thermal 

comfort. 

In a nutshell, this first optimization was a success. The results provided by the MOEAs 

were significantly better than the base case and the manually constructed designs, 

regarding the two objectives studied. The spreading of the solutions was also very good, 

with an almost continuous curve. Finally, the ranges of variables in the optimal solutions 

appear to be relevant, and most variables effectively vary along the optimal front. 

Nevertheless, the thermal mass in optimal solutions is extremely high for a residential 

building. A second optimization was therefore set-up with a constant thermal mass equal 

to that of the base building. 

5.4.3 Second Optimization 

In the first optimization's results, the thermal mass of the building was in all cases set to 

the maximal value. Since the thermal mass of the building was very high, some 

parameters such as thermostat delays may not have been accurately studied. Therefore, a 

second optimization study was performed, letting all the parameters except the thermal 

mass vary. In this optimization, 19 variables were hence used, with a constant thickness 

of 5 centimetres of concrete. Thanks to GAINN particular approach, this second 

optimization did not require any additional TRNSYS simulations. The already trained 
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ANN was directly used and only the MOEA optimization part had to be redone. The three 

MOEAs were run with the same parameters as before. Results of optimization are shown 

in Figure 40, and variables ranges are summarized in Table 13. 
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Figure 40: Results of the second optimization 

Once again, the optimization was very efficient in terms of both convergence and 

spreading of the solutions, with the optimal front being an almost continuous curve. 

Optimal solutions range from an absolute average PMV of 0.073 for an annual energy 

consumption of 18,912 kWh, to an annual energy consumption of 15,960 kWh for an 

absolute average PMV of 0.159. As expected, the energy consumptions of optimal 
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solutions were higher in this second optimization than in the first optimization. Regarding 

the variable changes between the two optimizations, we can see in Table 13 that some 

variables such as ventilation rates or relative humidity set points are similar in both 

solution sets. The most salient changes between the two optimizations results are the 

window sizes and the delays used in the thermostat program. Particularly, in the second 

optimization, sizes of south windows are generally set to very low values. This can be 

explained by the fact that the thermal mass of the house is smaller, and therefore 

overheating is more likely to occur than in the first optimization set-up. 

Variab 
Temperature 

Setpoints 

Starting 
Delays 

Stopping 
Delays 

Ventilation 
Rates 

Relative 
Humidity 

Windows 
Sizes 

es 
HSP 
CSP 

SDHW 
SDMID 

SDS 
FDMID 

FDS 
FDW 
VRR 
VRS 
VRH 
RHW 

RHMID 
RHC 

WF1N 
WF1S 
WF2N 
WF2S2 
WF2S1 

Range 
[20,25] 
[23,27] 

[0,30] 
[0,30] 
[0,30] 
[0,60] 
[0,60] 
[0,60] 

[0.118,0.708] 
[0.118,0.708] 
[0.118,0.708] 

[30,60] 
[30,60] 
[30,60] 

[4.76, 14.30] 
[2.20, 6.60] 

[4.06, 12.18] 
[1.38,4.14] 
[2.08, 6.25] 

Optimal solutions in second 
optimization 

Lower 
value 

22.6 
24.7 

21 
26.4 
29.8 
24.0 
59.6 

0 
0.118 
0.118 
0.529 

60 
30 
60 

4.77 
3.87 
4.06 
1.38 
2.08 

Upper 
value 

23.6 
25.1 

30 
30 
30 
60 
60 
60 

0.118 
0.118 
0.708 

60 
60 
60 

4.80 
5.88 

12.19 
3.70 
4.51 

Average 

23.2 
24.9 

29 
29.5 
30.0 
52.0 
59.9 

17 
0.118 
0.118 
0.645 

60.0 
43 

60.0 
4.77 
4.98 
6.60 
1.60 
2.24 

Average in 
the first 

optimization 

23.0 
24.8 

13 
30.0 
29.4 
38.8 
48.1 

1 
0.118 
0.118 
0.591 

60.0 
45 

60.0 
5.55 
5.34 
5.70 
1.66 
4.93 

Table 13: Variable ranges in optimal solutions 
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It is interesting to note that the relation between the average PMV and the energy 

consumption depicted in Figure 40 is not a straight line. The curve seems to be composed 

of two lines of different slopes. In terms of design, we can see that in the first part of the 

curve (below |PMV| = 0.11), small decreases of thermal comfort can lead to relatively 

large reductions in energy consumption. In the second part of the curve, the inverse 

situation occurs, and small increases of energy consumption can lead to significant 

increases of thermal comfort. This case highlights the major advantage of a true 

multiobjective optimization, which is to provide a complete understanding of the 

situation, and to bring to light the potentiality of each investment. In the current case, the 

occupants of the house could be easily convinced to lower the average PMV from 0.08 to 

0.11, in order to reduce energy consumption by up to 11%. 

5.4.4 Verification of Results using TRNSYS 

Even if the ANN was properly trained, some differences may appear between ANN 

outputs and simulation results. Using GAINN methodology, it is important to check 

optimized solutions using the base simulation software, to ensure that the ANN 

predictions were correct. Due to the large number of solutions in the current study, only a 

small percentage of results were verified. Results may therefore not be representative of 

the accuracy of the ANN over the complete solution sets. Nonetheless, according to the 

test performed on 8 random optimal solutions, it appears that the ANN is very accurate in 

terms of energy consumptions. The average relative errors between ANN predictions and 

TRNSYS results were respectively 1%, 2.3%, and 3.3% for heating, cooling, and fan 
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consumptions. This leads to a very good average relative error in the total energy 

consumption of approximately 1%. However, regarding the average absolute PMV, some 

significant errors appear. The PMV values coming from ANN calculations were 

underestimated by an average of 0.02 over the 8 cases studied. In one case, the error in 

the PMV value was even as high as 0.05. Such errors mean that, even if the ANN was 

properly trained with an acceptable average relative error, it may still be relatively 

inaccurate in the vicinity of optimal solutions. 

Due to time considerations, the author could not run more simulations to try to make the 

ANN more accurate. Moreover, it appears that PMV values are just shifted by 0.02, so we 

may assume that optimization results are still reliable, except in that they overestimate the 

thermal comfort. The improvement compared to the base design is also notably higher 

than ANN errors. Nonetheless, the issue of the accuracy of the ANN in the optimal region 

should be more carefully studied in the future. 

5.5 Conclusion 

GAINN methodology and the developed algorithms were successfully applied to this 

case study. Although it required a significant amount of training data, the ANN was able 

to accurately approximate the base building simulation software. Thanks to this ANN, 

two optimizations were undertaken with a computational time as low as 5 minutes in both 

cases. The total computational time associated with the whole optimization (i.e. including 
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ANN training and validation) is approximately three weeks. Based on the number of 

evaluations of NSGA-II (around 140,000 for a 5 minutes run), each optimization would 

have taken more than 10 years if ANN approximations were not used. In other words, this 

optimization would have never been possible without using GAINN methodology. 

Regarding the optimization results, the developed algorithms (NSGAINN and PLAGUE) 

as well as NSGA-II performed very well in these optimizations, regarding convergence 

and spreading. Optimal solutions display significant improvement in terms of both 

thermal comfort and energy consumption when compared to the base case, or to manually 

constructed cases. Thanks to the multiobjective algorithms, a wide range of solution was 

covered, drawing an almost continuous curve. From a design standpoint, it means that the 

optimization results are valuable in any situation, no matter the priorities of the decision 

maker regarding thermal comfort or energy consumption. Moreover, thanks to the curve 

drawn by the optimal front, one can see the impact on thermal comfort of any reduction 

or increase in the energy consumption. The final decision can therefore be based on a real 

understanding of the situation, and of the impact of energy consumption on thermal 

comfort. 

The second optimization highlighted a very useful ability of GAINN methodology, which 

is to be able to change the optimization set up without requiring any additional simulation. 

Once the ANN is trained, any optimization can be performed using a lower number or 

smaller ranges of variables, and take only few minutes to compute. This enables to focus 
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on some parameters, or, as in the current thesis, to ignore one variable in order to get 

more realistic results. 

Finally, one strong limitation was highlighted by the current case study. Even if the ANN 

is accurate regarding validation data, some significant errors may appear in the vicinity of 

optimal solutions. While this does not invalidate the complete methodology, it could 

seriously harm the relevancy of the optimization results. This point need to be more 

carefully studied in future work, and some strategies should be developed to ensure the 

accuracy of the ANN in the optimal region. 
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CHAPTER 6 

SECOND CASE STUDY: THREE-OBJECTIVE 

OPTIMIZATION OF A SCHOOL 

This last chapter describes a second optimization study, based on the work of Conraud 

(2008). Through this study, the developed algorithms will be used with an ANN validated 

by Conraud, in order to optimize the energy consumption, and the thermal and visual 

comforts of a school. This study has two purposes. First, it will expose the capability of 

developed MOEAs on a three-objective problem. Then, it will highlight the improvement 

added to GAINN by the use of MOEAs, compared to Conraud's study where weighted-

sum optimization was used. It is well known from the literature that MOEAs generally 

display several advantages over classical GAs using weighted-sum. This chapter will 

deeply study the differences between each optimization approach, in the particular case 

of an association with GAINN methodology. 

6.1 Description of the Design Problem 

All the work described in this section has been set up, developed, and studied by J. 

Conraud for his Master Thesis at Concordia University (2008). The description provided 

here is a summary of the optimization problem studied and the reader is referred to the 

original thesis for further details. 
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6.1.1 Presentation of the Building 

The building studied is a school, located in Grong (Norway), which is specifically 

designed to take advantage of natural daylighting and natural ventilation. The school was 

built with a concern to reduce the heating and ventilation energy consumption and to 

provide good indoor air quality conditions as well as good visual and thermal comforts 

for pupils. The main feature of the building is an underground system used to preheat and 

precool the air, and distribute it to the classrooms. The air is then collected to an extract 

chamber where it can be exhausted (Figure 41). The model used to simulate the building 

is based on the ESP-r simulation developed by Wachenfeldt (2003). A bird view of this 

model is illustrated in Figure 42. 

Figure 41: Cross-sectional view of the ventilation system (from Conraud 2008) 
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Figure 42: Bird view of the model (adapted from Conraud 2008) 

6.1.2 Optimization Objectives 

Three objectives, divided into 8 outputs, are studied as part of the optimization: 

Total energy consumption (2 outputs) 

The energy performance of the school is assessed by the annual heating and cooling 

loads. These values were calculated using ESP-r. 

Thermal comfort (3 outputs) 

The thermal comfort is represented by the cumulative frequency of time for which the 

Predicted Percent Dissatisfied (PPD) in the classroom is lower than 20%. Clothing levels 

were set at 1.0 clo in winter, 0.75 clo in autumn and spring, and 0.5 in summer, and 

metabolic rates were 100 W/m2 to account for children's activity. 
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Visual comfort (3 outputs) 

The visual comfort is assessed by daylight factors. A daylight factor is defined as the 

interior horizontal daylight illuminance expressed as a percentage of the horizontal 

daylight illuminance available to an unobstructed site. It was calculated for each 

classroom by ESP-r. The overall visual comfort is represented by the average of several 

daylight factors estimated at a series of points located halfway through the room from the 

windows, and one meter away from the side walls. 

6.1.3 Optimization Variables 

This case study investigated 24 parameters. Table 14 summarizes these parameters as 

well as their lower and upper bounds. They can be divided into four categories: 

• Length and width of the windows (for the classrooms and the extract 

chamber); 

• Thickness of insulation in the classrooms floors; 

• Cooling capacity (for the classrooms, the corridor, and the distribution duct), 

and ; 

• Temperature setpoints (for the classrooms, the corridor, and the distribution 

duct). 
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Zone 

Extract Chamber 

Lxlinust "lower 

Class Northeast 

Class Northwest 

Class South 

C hiss Northeast 
Class Northwest 
C I;iss South 

Class Northeast 

Class Northwest 

Class South 

Corridor 

Distribution Duct 

Variables 

Window Southwest Height 
Window South Height 
Heiaht 
Window - Length 
Window - Heiaht 
Window - Length 
Window - Height 
Window SE - Length 
Window SE - Height 
Window SW - Length 
Window SW- Heiaht 
Insulation rhickncss 
Insulation Thickness 
In-*illation ThLkncis 
C ooliiig Capacity 
Temperature Setpoint 
Cooliiia Opacity 
Temperatr.ie setpoint 
Cooling Capacity 
Temperature Setpoint 
Cooling Capacity 
Temperature Setpoint 
Cooling Capacity 
Temperature Setpoint 

Upper 
Bound 
1.7 m 
1.7 m 
0 111 

5 m 
1.7 m 
17 m 
1.7 m 
12 2 m 
1.7 m 
18.78 m 
1.7 m 
i ? cm 
15 cm 
15 cm 
3,000 kW 
J0CC 
3.000 kW 
30°C 
5.000 kW 
30°C 
1,000 kW 
30°C 
8.000 kW 
30CC 

Lower Bound 

50% (0.85 ml 
50% (0.85 IU) 

2 m 
50% (2-5 in) 
50% (0.S5 m) 
50% (8.5 m) 
50% (0.85 m) 
50% (6.1 m) 
50% (0.S5 in) 
50% (9.39 m) 
50% (0.85 m) 
5 cm 
5 cm 
5 cm 
0.0 kW 
25CC 
0,0 kW 
25°C 
0.0 kW 
25°C 
0.0 kW 
25°C 
0.0 kW 
25°C 

Conditions 

Continuous 

{5.10.15} 

Continuous 

Table 14: Study parameters and their upper and lower bounds (from Conraud 2008) 

6.1.4 ANN Training and Validation 

A Perl program developed by Conraud was used to automate 1,500 simulations for ANN 

training and validation. The neural network was composed of 24 inputs and 8 outputs 

previously described, and 15 neurons in the hidden layer, and was programmed in 

MATLAB. Once trained, the ANN performed relatively well regarding heating demand, 
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thermal comfort, and daylight factors (except south daylight factor) with an average 

relative error below 2% (Table 15). ANN predictions were less accurate regarding 

cooling demand and south daylight factors. For these outputs, the relative errors were 

respectively below 15% for 90% of the cases, and below 10% in 90% of the cases. 

Moreover, the maximal relative error regarding the cooling demand was as high as 82%. 

This very high maximal relative error may be extremely dangerous for optimization, 

since it may lead to false optimum. Nonetheless, Conraud decided to validate his ANN 

for further optimizations. This ANN was therefore also used by the author in the 

remaining of this chapter. 

Heating Cooling TC TC TC VC VC VC 
demand demand NWest NEast South NWest NEast South 

Max 0.60% 81.98% 5.06% 1.33% 1.24% 3.61% 8.02% 21.10% 
Min 0.00% 0.01% 0.00% 0.00% 0.01% 0.00% 0.00% 0.01% 
Average 0.13% 6.45% 0.44% 0.22% 0.29% 0.72% 1.91% 2.50% 
Deviation 0.11% 9.40% 0.45% 0.19% 0.22% 0.60% 1.54% 3.18% 

Table 15: Relative errors between building simulations and ANN predictions (Conraud 2008) 
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6.2. Optimization Search 

6.2.1 Methodology 

Original optimization results of Conraud thesis were kept unchanged for the current 

comparison. These results are based on an aggregative approach regarding multiple 

objectives, using the weighted-sum described below as a global performance metric: 

2 - i l / 2 

/; (x)-min/.(x) 
maxfi(x)-mmfi(x) 

Where: 

- x is an input vector belonging to the search space; 

- fi to f3 are the thermal comfort factors for the classrooms facing northwest, 

northeast, and south respectively; 

-f4 and/5 are the total heating energy demand and total cooling energy demand; 

- fa to fs are the average daylight factors for the classrooms facing northwest, 

northeast, and south respectively; 

_ Wj are the weights associated with each function. 

All objectives were assigned an equal importance by setting an absolute weight of 1 for 

each function. (A weight of-1 was used for functions for / / to /? and/gto/^ since these 

functions are to be maximized). 

minZ 2 (x ) = min 2>* 
(=1 
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In this study, the design problem was optimized as a three-objective minimization 

problem with objectives being respectively thermal comfort, energy consumption, and 

visual comfort. Using the same nomenclature as before, the design problem can be 

summarized as the minimization of: 

Thermal comfort index 

Energy consumption 

Visual comfort index 

F,(x) = - ( / / (x)+^(x)+/ J (x) ) 

^ F2(x) = /,(x)+/5(x) 

F3(x) = -( /6(x)+/7(x)+/5(x)) 

MOEAs were run with the same parameters as in Chapter 4. Since there was no sufficient 

information available regarding the runtime of the original optimization, the author 

decided to run MOEAs with a time limit set to 60 seconds. This is assumed to be fair 

since this time is reasonably short, and since the original optimization was run until it 

reached a steady state optimum. 

Early tests showed that, with a 60-seconds runtime, all three MOEAs gave very similar 

results. In the following, only PLAGUE solution set is kept to illustrate the comparison 

between MOEAs and Conraud's results. 
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6.2.2 Comparisons between PLAGUE's Solution Set and 

Conraud's Solution 

The two solution sets coming respectively from Conraud study and from PLAGUE 

optimization are illustrated in Figures 43 to 46. The solution set coming from Conraud 

study is indeed limited to one single point, which is the optimal value of the weighted-

sum studied. The solution space is three-dimensional; each solution is associated with 

three output values, representing the three objectives studied. Figure 43 shows a 3D view 

of the solution sets. Projections of the solution sets in two dimensional spaces are 

illustrated in Figure 44 to 46. 

• 

* • 

X 

• PLAGUE 
• Conraud 

Thermal comfort index (%) 

Figure 43: 3-D view of the solution sets 

116 



1.3 

1.2 

1.1 

x 10 

o. 
E 

S 0.9 
0) 
e 
ill 

0.8 -

0.7 

1 1 1 t 

• > 

*•* *: * • 
• • • 

* • * • • * 

• * < * • / • 
• • • • 

+ 
• # • • • 

• • * • 
* • 

* «v ^ * 
• 

• 

1 1 i 1 

1 1 1— i i 

• PLAGUE 
• Conraud 

~ 

-
• 

* i r 
• • • 

% • • * 
^ v - • • • 

• • * 
• • • • * 

* * s * * * • • 
• * » • • • * 

* ^ * * ****** 
J * * • • *** 

* • • • 1 * * 
• j • 

i i i i i 

78 76 74 72 70 68 66 64 
Thermal Comfort Index (%) 

62 60 58 

Figure 44: Thermal comfort index Vs energy consumption 

0.5 

0.6 

0.7 

S 0.8 

- 0.9 

re 
Q 

1 

1.1 

1.2 

1.3 

1 r-
+ 

v • * 
• * » 

+ 

• • 
• • 
• • 

» . • 

• • • 

• • * • • 
* • 

» • 

• • 

. 
• • 

-

• i 

1 r I"'"-' T 1 

* \ * * ' * * ^ * • • 

- 1" T 

• PLAGUE 
• Conraud _ 

• * ^ 

* * 
• 

• • • • 

* V * • * 

* * * 
+ 

• • • • 

* ** 
* • * / • • • \ \ J • 
• • • • 

• • « » * • • • 

• * + • • • % 

• • • • • • 
• * J _ * • • • • 

I I i i i t i 

78 76 74 72 70 68 66 64 62 60 58 
Thermal Comfort Index (%) 

Figure 45: Thermal comfort index Vs daylight factor index 
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Figure 46: Daylight factor index Vs energy consumption 

6.3 Discussion 

6.3.1 In Terms of Optimization 

In Figures 44 to 46, the points the closest to the lower-left corner are the best solutions 

regarding this two-objective space. As can be seen in Figure 45, no solution is better than 

Conraud's solution in terms of both thermal comfort and daylight factor index. Therefore, 

PLAGUE'S Solution Set (PSS) does not dominate Conraud's Solution (CS). Further 

calculations showed that PPS is neither dominated by CS. In other words, individual 

results from PPS and from CS are equally good from a multiobjective point of view. 
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Consequently, one cannot argue that PLAGUE provides better individuals results than the 

aggregative method in that case. The methodology is not improved by the use of MOEA 

regarding the quality of each solution. This lack of improvement is probably due to the 

efficient non-linear weighted-sum used by Conraud. Even though there is no 

improvement from an individual standpoint, there is nonetheless a major improvement 

considering the overall population, as will be described in the next sections. 

6.3.2 In Terms of Range of Solutions and Understanding of the 

Problem 

As written previously, a solution set cannot be judged solely based on the convergence of 

each solution, but must also be studied in terms of spreading of these solutions. From 

Figures 43 to 46, the most striking improvement coming from using MOEAs is the wide 

range of solutions provided. Instead of a single point, dozens of Pareto-optimal solutions 

are found. The improvement is not actually the quantity of solutions, but the choices and 

of the understanding it enables. One hundred solutions mean one hundred suggestions to 

propose to a client, and one hundred opportunities for him to choose. In terms of 

understanding of the situation, the quantity of solutions enables to bring to light the 

relations between the objectives. In Figure 44 for instance, the relation between the 

energy consumption and the thermal comfort is obvious. 

In addition, in the present case study, the base building was already very efficient in terms 

of comfort and energy performance. It was thus very difficult to assume, before 
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optimization, what improvements can be expected and what to focus on. Indeed, 

Conraud's final solution resulted in an increase of thermal comfort, but in a decrease of 

visual comfort and energy consumption. As can be seen on Figure 44, various other 

opportunities of improvement exist. From this figure, one can see that Conraud's solution, 

which is very good in terms of visual comfort, is relatively weak in terms of energy 

consumption and thermal comfort. Thanks to the quantity of optimal solutions the MOEA 

provides, the decision maker can have a global understanding of the potentialities of the 

building. Only then he can decide which modifications are the best ones, in his opinion, 

for the building. 

6.3.3 In Terms of Accessibility 

In terms of accessibility of the methodology, an important improvement added by 

MOEAs is that there is no longer need to select weights. The selection of weights is a 

rather complicated process, where importance of each objective has to be assumed. A bad 

set of weights would lead to an irrelevant and useless optimization. Therefore, a person 

wanting to use GAINN methodology had to either spend a significant amount of time and 

carefully think about the weight selection, or select one specific set of weights and 

produce a biased optimization (as in the current case). Thanks to MOEAs, the process of 

selecting weights is not longer required, and the methodology is therefore simpler and 

more accessible. 
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6.3.4 In Terms of Reliability 

A last change in GAINN methodology coming from the use of MOEA relates to the ANN 

reliability and degree of precision. Obviously, the optimization algorithm cannot improve 

the accuracy of the ANN. However, since a multiobjective optimization provides a large 

set of solutions, the impact of little inaccuracy can be reduced. In the current case, ANN 

simulations were inaccurate regarding cooling load and south daylight factors in 10% of 

the cases. In one case, the relative error in the cooling load was even as high as 82%. As 

mentioned previously, this major inaccuracy may lead to false optimum and erroneous 

results. In Conraud optimization, since only one solution is provided, and since this 

solution was not verified using the base simulation software, there is a 10% probability 

that the optimization result is inaccurate. In other words, there is a chance that the only 

outcome of the case-study is erroneous. 

Using a MOEA, and with a similar ANN inaccuracy in 10% of the cases, erroneous 

results may still appear. However, since more than one hundred solutions are provided, 

odds are that a significant number of them will be accurate. Even if there is no guarantee 

of accuracy for every single solution, a majority of results are still likely to be valuable. 

As a conclusion, the use of a MOEA inside GAINN methodology is safer, in that it 

compensates the possible inaccuracy of the ANN by providing more solutions, and since 

it does not limit the optimization outcome to a single and possibly erroneous point. 
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6.3.5 In Terms of Attractiveness 

Finally, looking at the potential use of optimization in the industry, the implementation of 

a MOEA improves the attractiveness of GAINN methodology. In Conraud study, after 

almost one week of calculation, one single solution was provided. With a similar 

computational time, the use of MOEA provided one hundred optimization opportunities, 

as well as a better understanding of the design problem. The time invested in the overall 

process is therefore more efficiently exploited by MOEAs, and the optimization output is 

more attractive. Consequently, thanks to the use of MOEA inside GAINN, building 

optimization is more likely to be used in the industry, which could further enable 

significant improvements in terms of comfort, energy consumptions, and green house 

gases emissions. 
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CHAPTER 7 

CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

7.1 Concluding Remarks on the Present Work 

With a growing environmental awareness and demand for a comfortable environment, the 

process of building design should more than ever be optimized. Optimization tools such 

as Genetic Algorithms, or even Multiobjective Evolutionary Algorithms, exist and are 

known to be efficient but they rarely have been used in the industry at the design stage. 

The main reason of this lack of interest is the high number of evaluations and therefore 

the time investment they require. This thesis focused on the development of a new 

optimization approach called GAINN, and used this approach by combining it with 

MOEAs. 

First, a very efficient existing MOEA, called NSGA-II, was chosen for the current study, 

programmed in MATLAB, and validated. Then, the author explored the opportunity of 

creating MOEAs specifically designed to take advantage of GAINN fast calculations. 

Two new MOEAs were developed: NSGAINN, and PLAGUE. These MOEAs both show 

a significant improvement compared to NSGA-II on several benchmark test functions. 

PLAGUE was found to be the most efficient MOEA for two-objective functions and for 

half of the three-objective functions. In the other half of the three-objective functions, 

NSGAINN was the most efficient MOEA. 
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In Chapter 5, the methodology and the developed MOEAs were used for the optimization 

of the energy consumption and the thermal comfort in a residential building. According to 

the validation data, the ANN was able to accurately predict the studied metrics with an 

average relative error of 0.5% for the total energy consumptions and an average relative 

error of less than 4% for the average absolute PMV. The limitations highlighted in 

Conraud (2008) regarding the increased need for training data also applied in this case, 

since a number of cases equal to 25 times the number of parameters was required for 

ANN training. A second important limitation was also highlighted regarding the accuracy 

of the ANN in the vicinity of optimal solutions. Even if the ANN was validated with an 

acceptable accuracy, some significant errors appeared in the final solution set. 

Nonetheless, the two optimizations undertaken were successful, and provided 

significantly better results than the base case and the manually constructed solutions. 

Regarding the accessibility of the methodology, this case study proved that optimization 

can be performed relatively easy, without requiring strong programming skills. Providing 

sufficient instructions, non-experts could apply the methodology easily, thanks to the 

combination of TRNSYS, GenOpt automation, user-friendly MATLAB toolboxes for 

Latin Hypercube Sampling and ANN, and the programmed MOEAs. 

In a second case study, the methodology was tested on a three-objective problem, and 

MOEA optimization was compared with the classical weighted-sum approach. 

Significant gains were found in terms of spreading of the solutions, accessibility of the 

methodology, and choice given to the decision maker. Moreover, thanks to the use of 

MOEAs, some processes such as the selection of weights for the aggregative sum are no 
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longer required, and the effects of ANN inaccuracy can be somehow lowered. On the 

whole, the use of a MOEA significantly improved GAINN methodology by exploiting 

more efficiently the time spent for training. The methodology became therefore more 

attractive and more likely to be used in the industry. 

7.2 Limitations and Future Work 

7.2.1 Regarding the Main Case Study 

The optimization set-up of the main case study is limited in several aspects. Indeed, the 

purpose of this case study was mainly to propose an application of the methodology and 

of the developed algorithms. Many interesting studies have previously been performed 

regarding thermostat programming, including additional parameters such as set-back 

temperatures or condensation on interior surfaces (Maheshwari et al. 2000; Manning et al. 

2007). The current case study was not designed to be as complete as those studies. 

A major limitation of this case study is that the occupancy is based on a fixed schedule, 

which is very unlikely to be the case in actual situations. An optimal solution of this study 

is likely to produce discomfort if an occupant changes its schedule. One future work 

could be to include some randomness in the occupancy schedule, and study the 

optimization of the system regarding that specific situation. Such approach would make 

the whole study more complex but also more realistic. Another future work would be to 

take advantage of the multi-zonal model. In the current study, only the average of the 
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PMV over the four occupied zone was studied. A future work could exploit the multi-

zonal aspect of the model, and optimize for instance the air distribution inside each zone 

according to thermal comfort. 

Another limitation of the first optimization of this case-study is the influence of thermal 

mass. The TRNSYS model developed for this thesis has not been validated regarding 

thermal mass variations, and the model may not be accurate for cases with high thermal 

masses and solar radiations. Another simulation software could be tested to verify the 

results of optimization. Regarding the thermal mass, adding a 25 centimetres thick 

concrete slab may not be feasible for structural reasons. In this thesis, the concrete slab 

has been used as a convenient way to increase the thermal mass in TRNSYS, but this 

issue should be more carefully studied. 

7.2.2 Regarding Developed Algorithms 

The two MOEAs developed in this thesis are very promising, but may require more study. 

First, other programming languages and codes should be used to confirm the conclusions 

of this thesis. While the author is fairly confident in his conclusions, some programming 

issues could change the time spent on each process and therefore significantly change the 

comparison results (since tests were performed on a maximal runtime basis). Also, some 

constraint handling techniques should be implemented, so developed MOEAs can be 

tested on constrained problems. Finally, the influence of several parameters such as 

reproduction parameters should be studied in more details to enable the best efficiency of 
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each algorithm, based on its specific behaviour. The amount of time where NSGAINN 

behaves as NSGA-II (80% of the run so far) should also be optimized possibly based on 

the evolution of the population's fitness. 

Finally, the two MOEAs developed in this thesis are expected to be efficient only with 

extremely quick evaluations functions such as an ANN function. Further research is 

needed to properly evaluate the performance and usefulness of NSGAINN and PLAGUE 

for other applications. Also, the time improvement added by developed algorithms is 

likely that it will have a very little impact on the overall optimization if GAINN is 

combined with time-expensive simulation softwares. In such cases, the reduction in the 

optimization time would be negligible compared to the time spent for ANN training. In 

order to take full advantage of the developed MOEAs, they should be used in problems 

where the optimization time is very limited, such as for online optimization (discussed 

hereafter). 
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7,2.3 Regarding GAINN Methodology 

The main limitation of GAINN methodology concerns the ANN training and validation. 

In the main case study, the rule of thumbs stating that, using LHS, a number of cases 

greater than twice the number of parameters is sufficient for ANN training did not apply. 

This conclusion is in agreement with Conraud (2008). This additional need for training 

data multiplies the computational time. It should therefore be taken into account in future 

works. While the approach remains valuable in terms of time saving, further studies 

should be performed regarding the number of cases to use for ANN training in order to 

make sure that the ANN would be accurate in all situations. The opportunity of using 

other sampling methods (instead of LHS) and other training method (instead of back 

propagation) should also be studied. 

A more problematic point concerns the accuracy of the ANN in the vicinity of optimal 

solutions. In the main case study of this thesis, even if the ANN displayed an acceptable 

accuracy regarding the validation data, significant errors appeared when optimal 

solutions were tested. Such inaccuracy of the ANN may lead to major optimization errors, 

and should be studied in details before GAINN could be validated as a reliable 

optimization methodology. 

In order to increase ANN accuracy in the optimal region, it would be interesting in future 

studies to include some chosen cases in the training dataset, in addition to the random 

cases. For instance, some manually constructed cases, designed to be efficient, could be 

included for training. Although these cases are not expected to be optimal, they may 
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increase the accuracy of the ANN in the optimal region, and lead to more accurate results. 

The integration of ANN training according to GA's current population, as proposed by 

Nain and Deb (2005), could also be very useful if a tool is developed to link ANN, GA, 

and the simulation software. A simpler solution could also be to use a two-step procedure, 

with a first optimization based on a low-fidelity ANN (trained with a small number of 

cases), and a second optimization based on an ANN trained on cases coming from the 

first optimization. 

Regarding the accessibility of the method, it has been improved by the use of MOEAs, 

due to the fact that weights selection and sensitivity analysis are no longer required. The 

use of GenOpt also enables to run hundred of simulations automatically, without 

requiring any action from the user during the parametric runs. Nonetheless, many aspects 

still affect the accessibility of the method. While the creation, training, and validation of 

the ANN are very easy in MATLAB, the selection of the number of cases for training 

remains difficult. The ANN construction and especially the number of neurons to be 

included in the hidden layer is not obvious either. Number of hidden neurons and number 

of cases for training should be more carefully studied for building applications, and 

guidelines should be proposed. 

Finally, a very promising application of GAINN would be to use it for ongoing 

optimization. Ongoing optimization (also referred as online optimization) is a method in 

which the controls of a system are optimized in real time. This enables to obtain, at each 

moment, the best possible configuration, by adapting controls to weather or occupancy 

changes. The current main limitation of this technique is the difficulty of predicting the 
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building reaction to the changes of controlled variables (Coffey, 2008). The GAINN 

approach could perfectly overcome this drawback by using the ANN to provide fast 

predictions of building behaviour, and then optimize the control variables thanks to the 

GA. The need for training data for the ANN training would not be an issue in this case, 

since online optimization generally involves continuous monitoring of the building. Data 

could therefore be continuously stored, so the ANN training could become more efficient 

each day, making the GAINN methodology more accurate. The application of GAINN 

for ongoing optimization would be a remarkable future work, taking full advantage of the 

methodology to solve the very complex issue of building reactivity. 
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APPENDIX A: 

MOEA CODES 

NSGA ll.m 

clc 
tic 

%% Initialize constants and main parameters 
constants 

CPUTIME=0; 
%% Initialize the population 
population 
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 

%% Sort the initialized population based on rank and crowding distance 
population = non_domination_and_crowding_sort(population,N,M,V); 

CPUTIME=toc; 

%% Start the evolution process 

while (generation<=max_generation)&&(CPUTIME<timeJimit) 
tic 

%% Select the parents (based on tournament selection) 
parent_population = tournament_selection(population,M,V,pool_size); 

%% Generate offspring by crossover and mutation 
offspring_population = 

genetic_operator(parent_population,probability_crossover,probability_mutation,crossover 
_type,mutation_type,UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,time_limi 
t); 

%% Combine current population and offspring in so called intermediate 
%% population 

intermediate_population = [offspring_population(:,1:M+V); population(:,1:M+V)]; 

%% Sort the intermediate population 
sorted_intermediate_population = ... 
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non_domination_and_crowding_sort(intermediate_population,N,M,V); 

%% Selection of individuals for next generation based on rank and 
%% crowding distance 
population = replace_chromosome(sorted_intermediate_population,N,M,V); 

%% Display algorithm progress 

generation=generation+1; 
CPUTIME=CPUTIME+toc; 

Total_time_for_optimization = CPUTIME; 

%% Results 

% Display computation time 
fprintf(Total time for optimization is %g seconds \n',Total_time_for_optimization); 

% Termination reason 

if generation==max_generation+1 
disp('Optimization stopped because maximum generation was reached.'); 
reason=1; 

elseif CPUTIME>=timeJimit 
disp('Optimization stopped because maximum CPU time was reached.'); 
reason=2; 

%% Visualization 

% Elite population plot 

if want_plot 
if M==2 

plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 

elseif M==3 
figure1=plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 
menu('Click here to proceed to next figure','ok'); 
plot(population(:,V + 1),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure','ok'); 



plot(population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 2'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure'.'ok'); 
plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 
zlabel('Objective 3'); 

end 



NSGAINN.m 

close 
clc 
tic 

%% Initialize constants and main parameters 
constants 

%% Initialize the population 
population 
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,maxt,CPUTIME,timeJimit); 

%% Sort the initialized population based on rank and crowding distance 
population = non_domination_and_crowding_sort(population,N,M,V); 

CPUTIME=toc; 

%% Start the evolution process 

while (generation<=max_generation)&&(CPUTIME<time_limit) 
tic 

%% Select the parents (based on tournament selection) 
parent_population = tournament_selection(population,M,V,pool_size); 

%% Generate offspring by crossover and mutation 
if CPUTIME/timeJimit<0.8 

offspring_population = 
genetic_operator(parent_population,probability_crossover,probability_mutation,crossover 
_type,mutation_type,UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,time_limi 
t); 

else 
CPUTIME=CPUTIME+toc; 
crossover_type=7; 
Min_=min(population(:,V+1:V+M)); 
offspring_population = 

genetic_operator2(parent_population,probability_crossover,probability_mutation,crossove 
rJype.mutationJype.UB.LB.Step.N.M.V.mu^um.CPUTIME.timeJimit.Min^flw.slw.bi.mi 
nt.maxt); 

CPUTIME=offspring_population(length(offspring_population(:,1)),1); 
tic 
offspring_population(length(offspring_population(:,1 )),:)=[]; 

end 

%% Combine current population and offspring in so called intermediate 
%% population 
intermediate_population = [population^,1 :M+V);offspring_population(:,1 :M+V)]; 

%% Sort the intermediate population 

intermediate_population = 
non_domination_and_crowding_sort(intermediate_population,N,M,V); 
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%% Selection of individuals for next generation based on rank and 
%% crowding distance 
population = replace_chromosome(intermediate_population,N,M,V); 

%% Display algorithm progress 

generation=generation+1; 
CPUTIME=CPUTIME+toc; 

end 

Total_time_for_optimization = CPUTIME; 

%% Results 

% Display computation time 
fprintf(Total time for optimization is %g seconds \n',Total_time_for_optimization); 

% Termination reason 

if generation==max_generation+1 
disp('Optimization stopped because maximum generation was reached.'); 
reason=1; 

elseif CPUTIME>=time_limit 
disp('Optimization stopped because maximum CPU time was reached.'); 
reason=2; 

end 

%% Visualization 

% Elite population plot 

if want_plot 
if M==2 

plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 

elseif M==3 
figure1=plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 
menu('Click here to proceed to next figure','ok'); 
plot(population(:,V + 1),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure','ok'); 
plot(population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 2'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure','ok'); 



plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1 '); 
ylabel('Objective 2'); 
zlabel('Objective 3'); 

end 
end 
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PLAGUE.m 

tic 
clc 

%% Initialize constants and main parameters 
PLAGUE_constants 
Min_=zeros(M,1); 

%% Initialize the population 
population 
initialize_population(N,M,V,UB>LB,Step,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 

%% Sort the initialized population based on rank and crowding distance 
population = non_domination_and_crowding_sort(population,N,M,V); 

CPUTIME=toc; 

%% Start the evolution process 

while (generation<=max_generation)&&(CPUTIME<time_limit) 
tic 

population=population(:,1 :M+V); 

population=PLAGUE_genetic_operator2(population,probability_crossover,probability_mut 
ation^rossoverJype^utationJype.UB.LB.Step.^N.M.V.mu.mum.CPUTIME.timeJimit.fl 
w,slw,bi,mint,maxt); 

CPUTIME=CPUTIME+toc; 
tic 

%% Sort the intermediate population 
PLAGUENOW 

%% Display algorithm progress 
generation=generation+1; 
CPUTIME=CPUTIME+toc; 

end 

ifCPUTIME>10000 
CPUTIME=CPUTIME-10000; 

end 
Total_time_for_optimization = CPUTIME; 

%% Results 
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% Display computation time 
fprintf('Total time for optimization is %g seconds \n',Total_time_for_optimization); 

% Termination reason 

if generation==max_generation+1 
disp('Optimization stopped because maximum generation was reached.'); 
reason=1; 

elseif CPUTIME>=time_limit-1 
disp('Optimization stopped because maximum CPU time was reached.'); 
reason=2; 

%% Visualization 

% Elite population plot 

if want_plot 
if M==2 

plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 

elseif M==3 
figure1=plot(population(:,V + 1),population(:,V + 2),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1 '); 
ylabel('Objective 2'); 
menu('Click here to proceed to next figure','ok'); 
plot(population(:,V + 1),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure','ok'); 
plot(population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 2'); 
ylabel('Objective 3'); 
menu('Click here to proceed to next figure','ok'); 
plot3(population(:,V + 1),population(:,V + 2),population(:,V + 3),'*'); 
title('Multi-objective optimization: final population'); 
xlabel('Objective 1'); 
ylabel('Objective 2'); 
zlabel('Objective 3'); 

end 
end 



Constants.m 

%% Population parameters 

N = 100; % Population size 
M = 2; % Number of objectives 
V = 20; % Number of decision variables 

%% Variables bounds 
UB=[]; 
LB=rj; 
Step=[]; 
for i=1 :V 
LB=[LB,-1.0]; %Lower bounds 
UB=[UB,1.0]; %Upper bounds 
Step=[Step,0]; 
end 

%% Genetic operation parameters 

crossover_type=1; %Crossover type 
probability_crossover=0.9; %Probability of crossover 
mu = 20; %The distribution indices for crossover operator 

mutation_type=12; %Mutation type 
probability_mutation=1/V; %Probability of mutation 
mum =20; %The distribution indices for mutation operators 

%% Genetic algorithm parameters 

max_generation = 2500; %Maximum generation 
pool_size = round(N); %Pool size for tournament selection 

%% Initialization 

generation=1; 

%% Termination criterion (please be careful changing this part) 

termination_by_generation=0; 
termination_by_cputime=0; 
CPUTIME=0; 
time_limit=60; 

%% Others 
want_plot=0; 

Constants2.m 

%% Initialize the variables 
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%% Population parameters 

N = 100; % Population size 
M = 3; % Number of objectives 
V = 20; % Number of decision variables 

%% Variables bounds 
UB=Q; 
LB=D; 
Step=Q; 
for i=1 :V 
LB=[LB,0]; %Lower bounds 
UB=[UB,1]; %Upper bounds 
Step=[Step,0]; 
end 

%% Genetic operation parameters 

crossover_type=1; %Crossover type 
probability_crossover=0.9; %Probability of crossover 
mu = 20; %The distribution indices for crossover operator 

mutation_type=12; %Mutation type 
probability_mutation=1 A/; %Probability of mutation 
mum =20; %The distribution indices for mutation operators 

%% Genetic algorithm parameters 

max_generation = 250000; %Maximum generation 
pool_size = round(N); %Pool size for tournament selection 

%% Initialization 

generation=1; 

%% Termination criterion (please be careful changing this part) 

termination_by_generation=0; 
termination_by_cputime=1; 
CPUTIME=0; 
time_limit=60); 

%% Others 
want_plot=0; 

crossover.m 

%% Crossover 
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%% Crossover type is chosen giving user choice 

%% One point crossover 

if crossover_type==2 
crossover_point=max(round((rand(1)*V)),1); 
for vars=1 :crossover_point 

child_1 (vars)=parent_1 (vars); 
child_2(vars)=parent_2(vars); 

end 
for vars=crossover_point:V 

child_1 (vars)=parent_2(vars); 
child_2(vars)=parent_1 (vars); 

end 

%% Two points crossover 

elseif crossover_type==3 
crossover_point1 =min(max(round((rand(1,2)*V)),1 )); 
crossover_point2=max(max(round((rand(1,2)*V)),1)); 
for vars=1 :crossover_point1 

child_1 (vars)=parent_1 (vars); 
child__2(vars)=parent_2(vars); 

end 
for vars=crossover_point1 :crossover_point2 

child_1 (vars)=parent_2(vars); 
child_2(vars)=parent_1 (vars); 

end 
for vars=crossover_point2:V 

child_1 (vars)=parent_1 (vars); 
child_2(vars)=parent_2(vars); 

end 

%% Scattered/random crossover 

elseif crossover_type==4 
for vars=1 :V 

ifrand(1)<0.5 
child_1 (vars)=parent_1 (vars); 
child_2(vars)=parent_2(vars); 

else 
child_1 (vars)=parent_2(vars); 
child_2(vars)=parent_1 (vars); 

end 
end 

%% SBX (Simulated Binary Crossover) 

elseif crossover_type==1 
u = rand(1,V); 
random 1=rand(1,V); 
for vars = 1 : V 

if random 1 (vars)<0.5 



diff=abs(parent_1(vars)-parent_2(vars)); 
if diff==0 

alpha=2; 
else 

beta=1+2*min([UB(vars)-parent_1(vars);parent_1(vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff; 

alpha=2-betaA(-mu-1); 
end 
if u(vars) <= (1/alpha) 

bq = (alpha*u(vars))A(1/(mu+1)); 
else 

bq = (1/(2- alpha* u(vars)))A(1/(mu+1)); 
end 
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars))); 
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars))); 
if Step(vars)~=0 

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars)); 
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars)); 

end 
end 

end 
elseif crossover_type==5 

mu=10+round(10*rand(1)); 
u = rand(1,V); 
random 1=rand(1,V); 
for vars = 1 : V 

if randoml (vars)<0.5 
% Generate a random number 
u = rand(1); 
if u <=0.5 

bq = (2*u)A(1/(mu+1)); 
else 

bq = (1/(2*(1 -u)))A(1/(mu+1)); 
end 
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars))); 
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1 (vars)-

parent_2(vars))); 
if Step(vars)~=0 

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars)); 
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars)); 

end 
if child_1(vars) > UB(vars) 

child_1(vars) = UB(vars); 
elseif child_1 (vars) < LB(vars) 

child_1(vars) = LB(vars); 
end 
if child_2(vars) > UB(vars) 

child_2(vars) = UB(vars); 
elseif child_2(vars) < LB(vars) 

child_2(vars) = LB(vars); 
end 
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end 
end 

elseif crossover_type==6 
u = rand(1,V); 
random 1=rand(1,V); 
for vars = 1 : V 

if randoml (vars)<0.5 
% Generate a random number 
u = rand(1); 
if u<=0.5 

bq = (2*u)A(1/(mu+1)); 
else 

bq = (1/(2*(1 -u)))A(1/(mu+1)); 
end 
child_1(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1(vars)-

parent_2(vars))); 
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars))); 
if Step(vars)~=0 

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars)); 
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars)); 

end 
if child_1 (vars) > UB(vars) 

child_1 (vars) = UB(vars); 
elseif child_1 (vars) < LB(vars) 

child_1(vars) = LB(vars); 
end 
if child_2(vars) > UB(vars) 

child_2(vars) = UB(vars); 
elseif child_2(vars) < LB(vars) 

child_2(vars) = LB(vars); 
end 

end 
end 

elseif crossover_type==7 
u = rand(1,V); 
random 1=rand(1,V); 
for vars = 1 : V 

if randoml (vars)<0.5 
% Generate a random number 
u = rand(1,V); 
randoml =rand(1,V); 
for vars = 1 : V 

if random 1(vars)<0.5 
diff=abs(parent_1(vars)-parent_2(vars)); 
if diff==0 

alpha=2; 
else 

beta=1 +2*min([UB(vars)-parent_1 (vars);parent_1 (vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff; 

alpha=2-betaA(-mu-1); 
end 
if u(vars) <= (1/alpha) 

bq = (alpha*u(vars))A(1/(mu+1)); 
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else 
bq = (1/(2- alpha* u(vars)))A(1/(mu+1)); 

end 
chilcM(vars) = 0.5*(parent_1(vars)+parent_2(vars) - bq*abs(parent_1 (vars)-

parent_2(vars))); 
child_2(vars) = 0.5*(parent_1(vars)+parent_2(vars) + bq*abs(parent_1(vars)-

parent_2(vars))); 
if Step(vars)~=0 

child_1 (vars)=Step(vars)*round(child_1 (vars)/Step(vars)); 
child_2(vars)=Step(vars)*round(child_2(vars)/Step(vars)); 

end 
end 

end 
else 

% Generate a random number 
u = rand(1,V); 
random1=rand(1,V); 
for vars = 1 : V 

if random 1(vars)<0.5 
diff=abs(parent_1(vars)-parent_2(vars)); 
if diff==0 

alpha=2; 
else 

beta=1+2*min([UB(vars)-parent_1(vars);parent_1(vars)-
LB(vars);parent_2(vars)-LB(vars);UB(vars)-parent_2(vars)])/diff; 

alpha=2-betaA(-mu-1); 
end 
if u(vars) <= (1/alpha) 

bq = (alpha*u(vars))A(1/(mu+1)); 
else 

bq = (1/(2- alpha* u(vars)))A(1/(mu+1)); 
end 
child_1b(vars) = 0.5*(parent_1(vars)+parent_2(vars) 

bq*abs(parent_1(vars)-parent_2(vars))); 
child_2b(vars) = 0.5*(parent_1(vars)+parent_2(vars) + 

bq*abs(parent_1(vars)-parent_2(vars))); 
if Step(vars)-=0 

child_1 b(vars)=Step(vars)*round(child_1 (vars)/Step(vars)); 
child_2b(vars)=Step(vars)*round(child_2(vars)/Step(vars)); 

end 
end 

end 
end 

end 
child_1b((V+1):(V+M)) 

evaluate_objective(child_1b,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 
child_2b((V+1):(V+M)) 

evaluate_objective(child_2b,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 
end 

child_1((V+1):(V+M)) 
evaluate_objective(child_1,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 
child_2((V+1):(V+M)) 
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evaluate_objective(child_2,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit); 

crossover2.m 

%%Crossover sorting 

if rand2(1 ,pp)<(5*CPUTIME/time_limit-4)A0.5 
crossover2_1; 

else 
crossover2_2; 

end 

crossover2_1 

%%Crossover replacement SEAMO 

infants=[child_1 ;child_2;child_1 b;child_2b]; 
family=[parent_1(1 :M+V);parent_2(1 :M+V);infants]; 
family=non_domination_sort(family,M,V); 

sumO=sum(family(3:6,V+M+1)); 
sumP=(sum(family(1:2,V+M+1))); 
if min(infants(:,V+1 :V+M))>Min_ 

if (sumP>=3) 
iffamily(1,M+V+1)==2 

iffamily(3,M+V+1)==1 
family(1,:)=non_domination_partial_sort(family(1,:),family(3,:),M,V); 
iffamily(1,M+V+1)==2 

successful_crossover(1 )=1; 
end 

end 
iffamily(4,M+V+1)==1 

family(1,:)=non_domination_partial_sort(family(1,:),family(4,:),M,V); 
iffamily(1,M+V+1)==2 

successful_crossover(2)=1; 
end 

end 
iffamily(5,M+V+1)==1 

family(1,:)=non_domination_partial_sort(family(1,:),family(5,:),M,V); 
iffamily(1,M+V+1)==2 

successful_crossover(3)=1; 
end 

end 
iffamily(6,M+V+1)==1 

family(1,:)=non_domination_partial_sort(family(1,:),family(6,:),M,V); 
iffamily(1,M+V+1)==2 

successful_crossover(4)=1 ; 
end 

end 
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end 
iffamily(2,M+V+1)==2 

iffamily(3,M+V+1)==1 
family(2,:)=non_domination_partial_sort(family(2,:),family(3,:),M>V); 
iffamily(2,M+V+1)==2 

successful_crossover(1 )=1; 
end 

end 
iffamily(4,M+V+1)==1 

family(2,:)=non_domination_partial_sort(family(2,:),family(4,:),M,V); 
iffamily(2,M+V+1)==2 

successful_crossover(2)=1; 
end 

end 
iffamily(5,M+V+1)==1 

family(2,:)=non_domination_partial_sort(family(2,:),family(5,:),M,V); 
iffamily(2,M+V+1)==2 

successful_crossover(3)=1; 
end 

end 
iffamily(6,M+V+1)==1 

family(2,:)=non_domination_partial_sort(family(2,:),family(6,:),M,V); 
iffamily(2,M+V+1)==2 

successful_crossover(4)=1; 
end 

end 
end 

end 
else 

if (child_1(V+1 :V+M)<Min_)~=0 
successf ul_crossover( 1 )=1; 
Min_=min([Min_;child_1(V+1:V+M)]); 

end 
if (child_2(V+1 :V+M)<Min_)-=0 

successful_crossover(2)=1; 
Min_=min([Min_;child_2(V+1:V+M)]); 

end 
if (child_1 b(V+1 :V+M)<Min_)~=0 

successful_crossover(3)=1; 
Min_=min([Min_;child_1 b(V+1 :V+M)]); 

end 
if (child_2b(V+1 :V+M)<Min_)-=0 

successful_crossover(4)=1; 
Min_=min([Min_;child_2b(V+1:V+M)]); 

end 
end 

crossover2_2 

%% Crossover2_2 

infants=[child_1 ;child_2;child_1 b;child_2b]; 
family=[parent_1(1 :M+V);parent_2(1 :M+V);infants]; 
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infants=family_sort(family(3:6,:),family(1:2,:),M,V); 

successful_crossover=infants(1:4,M+V+1); 

evaluate_objective.m 

function f = evaluate_objective(x,M,V,flw,slw,bi,mint,maxt,CPUTIME,time_limit) 

% Function to evaluate the objective functions for the given input vector 
% x. x has the decision variables 
if V==19 
X=x(1:19)'; 
X(20)=-1; 

else 
X=x(1:20)'; 
end 
f = D; 
%% Objective function one 

a(1 )=-1 +2/(1 +exp(-2*(flw(1 ,:)*X+bi(1)))) 
a(2)=-1 +2/(1 +exp(-2*(flw(2,:)*X+bi(2)))) 
a(3)=-1 +2/(1 +exp(-2*(flw(3,:)*X+bi(3)))) 
a(4)=-1 +2/(1 +exp(-2*(flw(4,:)*X+bi(4)))) 
a(5)=-1 +2/( 1 +exp(-2*(flw(5, :)*X+bi(5)))) 
a(6)=-1+2/(1+exp(-2*(flw(6,:)*X+bi(6)))) 
a(7)=-1 +2/(1 +exp(-2*(flw(7,:)*X+bi(7)))) 
a(8)=-1+2/(1+exp(-2*(flw(8,:)*X+bi(8)))) 
a(9)=-1 +2/(1 +exp(-2*(flw(9,:)*X+bi(9)))) 
a(10)=-1+2/(1+exp(-2*(flw(10,:)*X+bi(10)))); 
a(11)=-1+2/(1+exp(-2*(flw(11,:)*X+bi(11)))); 
a(12)=-1 +2/(1 +exp(-2*(flw(12,:)*X+bi(12)))) 
a(13)=-1 +2/(1 +exp(-2*(flw(13,:)*X+bi(13)))) 
a(14)=-1+2/(1+exp(-2*(flw(14,:)*X+bi(14)))) 
a(15)=-1 +2/(1 +exp(-2*(flw(15,:)*X+bi(15)))) 
a(16)=-1+2/(1+exp(-2*(flw(16,:)*X+bi(16)))) 
a(17)=-1 +2/(1 +exp(-2*(flw(17,:)*X+bi(17)))) 
a(18)=-1 +2/(1 +exp(-2*(flw(18,:)*X+bi(18)))) 
a(19)=-1 +2/(1 +exp(-2*(flw(19,:)*X+bi(19)))) 
a(20)=-1+2/(1+exp(-2*(flw(20,:)*X+bi(20)))) 

A(1)=slw(1, 
A(2)=slw(2, 
A(3)=slw(3, 
A(4)=slw(4, 
A(5)=slw(5, 

)*a'+bi(21) 
)*a'+bi(22) 
)*a'+bi(23) 
)*a'+bi(24) 
)*a'+bi(25) 

for i=1:5 
Ascaled(i) = 0.5*(A(i)+1)*(maxt(i)-mint(i)) + mint(i); 

end 

f(1 )=abs(Ascaled(4))*(1 +max(Ascaled(5)/100,0)); 
f(2)=sum(Ascaled(1:3))*(1+max(Ascaled(5)/100,0)); 
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count=getappdata(0, 'count'); 
count=count+1; 
setappdata(0,'count',count); 

family_sort.m 
function f = family_sort(x,y,M,V) 

for i = 1 : 4 
j=1; 
% Number of individuals that dominate this individual 
dominated = 0; 
while (dominated == 0)&(j<=2) 

domjess = 0; 
dom_equal = 0; 
dom_more = 0; 
for k = 1 : M 

if(x(i,V + k)<yG,V + k)) 
domjess = domjess + 1; 

elseif (x(i,V + k) == yQ,V + k)) 
dom_equal = dom_equal + 1; 

else 
dom_more = dom_more + 1; 

end 
end 
if domjess == 0 && dom_equal ~= M 

dominated = 1; 
end 
j=j+1; 

end 
if dominated == 0 

x(i,M + V + 1) = 1; 
else 

x(i,M+V+1)=2; 
end 

end 
f=x(); 

genetic_operator.m 

function f = 
genetic_operator(parent_population,probability_crossover,probability_mutation,crossover 
Jype,mutation Jype.UB,LB,Step,N,M,V,mu,mum,flw,slw,bi,mint,maxt,CPUTIME,timeJimi 
t); 

NP = length(parent_population(:,1)); 

P = 1; 
pp=1; 
randgen=ceil(NP*rand(2,ceil(N/2))); 
while p < N+1 
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num_parent_1 = randgen(1,pp); 
parent_1 = parent_population(num_parent_1,:); 
child_1 =parent_1; 
num_parent_2 = randgen(2,pp); 
while isequal(num_parent_1 ,num_parent_2) 

num_parent_2 = ceil(NP*rand(1)); 
end 
parent_2 = parent_population(num_parent_2,:); 
child_2=parent_2; 
if rand(1) < (probability_crossover) 

crossover 
end 

parent_3=child_1; 
m mutation 
ch i l d j = child_3; 

parent_3=child_2; 
m mutation 
child_2 = child_3; 

child(p,:) = ch i l d j (1:M+V); 
child(p+1,:) = child_2(1 :M+V); 
P = p + 2; 
pp=pp+1; 

end 

f = child; 

genetic_operator_2.m 

function f = 
genetic_operator2(parent_population,probability_crossover,probability_mutation,crossove 
rJype.mutationJype.UB.LB.Step.N.M.V.mu.mum.CPUTIME.timeJimit.Min^flw.slw.bi.mi 
nt.maxt); 

child=[]; 
NP = length(parent_population(:,1)); 
P = 1; 
randgen=ceil(NP*rand(2,2*N)); 
rand2=rand(1,2*N); 
pp=1; 
count=0; 
tic 

while (p < N+1)&&(count<100*N*M)&&(CPUTIME<(time_limit-1)) 
successful_crossover(1:4)=0; 
num_parent_1 = randgen(1,pp); 
parent j = parent_population(num_parent_1,:); 
child_1 =parent_1; 
child_1 b=parent_1; 
num_parent_2 = randgen(2,pp); 
while isequal(num_parent_1 ,num_parent_2) 
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num_parent_2 = ceil(NP*rand(1)); 
end 
parent_2 = parent_population(num_parent_2,:); 
child_2=parent_2; 
child_2b=parent_2; 
if rand(1) < (probability_crossover) 

crossover 
end 

parent_3=child_1; 
mmutation 
childjl = child_3; 

parent_3=child_2; 
mmutation 
child_2 = child_3; 
parent_3=child_1 b; 
mmutation 
child_1b = child_3; 

parent_3=child_2b; 
mmutation 
child_2b = child_3; 

crossover2 
if sum(successful_crossover)>0 

if successful_crossover(1 )==1 
child(p,1 :M+V) = chi ld j l ; 
P=P+1; 

elseif successful_crossover(2)==1; 
child(p,1:M+V) = child _2; 
p=p+1; 

elseif successful_crossover(3)==1; 
child(p,1:M+V) = childjl b; 
P=P+1; 

elseif successful_crossover(4)==1; 
child(p,1:M+V) = child_2b; 
p=p+1; 

end 
end 

pp=pp+1; 
if(mod(pp,2*N)==0) 

CPUTIME=CPUTIME+toc; 
tic; 
randgen(2,:)=ceil(NP*rand(1,2*N)); 
rand2=rand(1,2*N); 
PP=1; 

end 
count=count+1; 

end 

CPUTIME=CPUTIME+toc; 



cputime=ones(1 ,M+V)*CPUTIME; 
f = [child;cputime]; 

initialize_population.m 

function f 
initialize_population(N,M,V,UB,LB,Step,flw,slw,bi,mint,rnaxt,CPUTIME,time_limit) 

%% This function initializes the population with N individuals and each 
%% individual having M decision variables based on the selected problem. 

%% Initialize the decision variables 

RAND=rand(N,V); 
for vars = 1 : V 

f(:,vars) = LB(vars)+(UB(vars)-LB(vars))*RAND(:,vars); 
if Step(vars)~=0 

f(:,vars)=Step(vars)*round(f(:,vars)/Step(vars)); 
end 

end 

%% Evaluate the objective function 
for i = 1 : N 

f(i,(V+1):(V+M)) 
evaluate_objective(f(i,:),M,V,flw,slw,bi,mint,maxt,CPUTIME,timeJimit); 
end 

mmutation.m 

%% Mutation process 

%% Mutation 

if mutation_type==2 
for vars=1 :V 

child_3(vars)=(1+(1-2*rand(1))*mum(vars))*parent_3(vars); 
if Step(vars)~=0 

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars)); 
end 
if child_3(vars) > UB(vars) 

child_3(vars) = UB(vars); 
elseif child_3(vars) < LB(vars) 

child_3(vars) = LB(vars); 
end 

end 

elseif mutation_type==1 
child_3 = parent_3(1 :V); 
random1=rand(1,V); 
for vars = 1 : V 
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if random 1(vars)<probability_mutation 
delta=min([parent_3(vars)-LB(vars);UB(vars)-parent_3(vars)])/(UB(vars)-LB(vars)); 
r = rand(1); 
if r<=0.5 

deltaq = ((2*r)A(1/(mum+1)) - 1)*(parent_3(vars)-LB(vars))/(UB(vars)-LB(vars)); 
else 

deltaq = (1 - (2*(1 - r))A(1/(mum+1)))*(UB(vars)-parent_3(vars))/(UB(vars)-
LB(vars)); 

end 
child_3(vars) = child_3(vars) + (UB(vars)-LB(vars))*deltaq; 
if Step(vars)~=0 

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars)); 
end 

end 
end 

elseif mutation_type==12 
child_3 = parent_3(1 :V); 
random1=rand(1,V); 
for vars = 1 : V 

if random 1(vars)<probability_mutation 
delta=min([parent_3(vars)-LB(vars);UB(vars)-parent_3(vars)])/(UB(vars)-LB(vars)); 
r = rand(1); 
if r<0.5 

deltaq = (2*r+(1 -2*r)*(1 -delta)A(mum+1 ))A(1 /(mum+1)) - 1 ; 
else 

deltaq = 1 -(2*(1 - r)+2*(r-0.5)*(1-delta)A(mum+1))A(1/(mum+1)); 
end 
child_3(vars) = parent_3(vars) + (UB(vars)-LB(vars))*deltaq; 
if child_3(vars) > UB(vars) 

child_3(vars) = UB(vars); 
elseif child_3(vars) < LB(vars) 

child_3(vars) = LB(vars); 
end 
if Step(vars)~=0 

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars)); 
end 

end 
end 

elseif mutation_type==3 
mum=10+round(10*rand(1)); 
child_3 = parent_3(1 :V); 
random 1=rand(1,V); 
for vars = 1 : V 

if random 1 (vars)<probability_mutation 
r=rand(1); 
if r < 0.5 

delta(vars) = (UB(vars)-LB(vars))*((2*r)A(1/(mum+1)) -1); 
else 

delta(vars) = (UB(vars)-LB(vars))*(1 - (2*(1 - r))A(1/(mum+1))); 
end 
child_3(vars) = child_3(vars) + delta(vars); 
if Step(vars)~=0 

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars)); 
end 
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end 
end 

elseif mutation_type==4 
child_3 = parent_3(1:V); 
random1=rand(1,V); 
for vars = 1 : V 

if random 1 (vars)<probability_mutation 
r=rand(1); 
if r < 0.5 

delta(vars) = (UB(vars)-LB(vars))*((2*r)A(1/(mum+1)) -1); 
6lSG 

delta(vars) = (UB(vars)-LB(vars))*(1 - (2*(1 - r))A(1/(mum+1))); 
end 
child_3(vars) = child_3(vars) + delta(vars); 
if Step(vars)~=0 

child_3(vars)=Step(vars)*round(child_3(vars)/Step(vars)); 
end 
if child_3(vars) > UB(vars) 

child_3(vars) = UB(vars); 
elseif child_3(vars) < LB(vars) 

child_3(vars) = LB(vars); 
end 

end 
end 

end 

child_3((V+1):(V+M)) 
evaluate_objective(child_3,M,V,flw,slw,bi,mint,maxt,CPUTIME,timeJimit); 

non_domination_and_crowding_sort.m 

function f = non_domination_and_crowding_sort(x,N,M,V) 

ND = length(x(:,1)); 
x=x(:,1:M+V); 
x(:,M+V+1)=0; 
front = 1; 

F(front).f = []; 
individuall = []; 
for i = 1 : ND 

% Number of individuals that dominate this individual 
individuall(i).dominating = 0; 
% Individuals which this individual dominates 
individuall(i).dominated = []; 
for j = 1 : ND 

Sbetter=0; 
better = 0; 
equal = 0; 
worse = 0; 
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for obj = 1 : M 
if (x(i,V + obj) > x(j,V + obj)) 

worse = worse + 1 ; 
elseif (x(i,V + obj)== xG,V + obj)) 

equal = equal + 1; 
elseif (x(i,V + obj) < x(j,V + obj)) 

better=better+1; 
end 

end 
if better == 0 && equal ~= M 

individuall(i).dominating = individuall(i).dominating + 1; 
elseif worse == 0 && better>0 

individuall(i).dominated = [individuall(i).dominated j]; 
end 

end 
if individuall(i).dominating == 0 

x(i,M + V + 1 ) = 1; 
F(front).f = [F(front).f i]; 

end 
end 

% Find the rank of each individual 
size_=0; 
while (~isempty(F(front).f))&&((size__)<N) 

Q = D; 
for i = 1 : length(F(front).f) 

if ~isempty(individuall(F(front).f(i)).dominated) 
for j = 1 : length(individuall(F(front).f(i)).dominated) 

individuall(individuall(F(front).f(i)).dominated(j)).dominating = ... 
individuall(individuall(F(front).f(i)).dominated(j)).dominating - 1 ; 

if individuall(individuall(F(front).f(i)).dominated(j)).dominating == 0 
x(individuall(F(front).f(i)).dominated(j),M + V + 1)=front + 1; 
Q = [Q individuall(F(front).f(i)).dominated(j)]; 

end 
end 

end 
end 
size_=size_+length(F(front).f); 
front = front + 1; 
F(front).f = Q; 

end 

fori=1:ND 
ifx(i,M+V+1)==0 

x(i,M+V+1)=front; 
end 

end 

last_front=front-1; 

[temp,index_of_fronts] = sort(x(:,M + V + 1)); 



sorted_based_on_front = x(index_of_fronts,:); 

%% Find the crowding distance for each individuall in each front 
currentjndex = 0; 

%For each front up to 5 
for front = 1 : min(last_front,500) 

y = D; 
sorted_based_on_objective = []; 
previous_index = currentjndex; 

%For each individual in this front 
length_front=(length(F(front).f)); 
y = sorted_based_on_front(current_index+1 :current_index+length_front,:); 
currentjndex = currentjndex + lengthjront; 

% Sort each individuall based on the objective 

for obj = 1 : M 
[temp, indexjof_objectives] = sort(y(:,V + obj)); 
sorted Jsasedjonjobjective = y(indexjDfjobjectives,:); 
f_max= sorted_basedjonjobjective(lengthj'ront, V + obj); 
f jn in = sorted_basedjonjobjective(1, V + obj); 
y(indexjDfjDbjectives(lengthjront),M + V + 1 + obj)= Inf; 
y(indexjofj>bjectives(1),M + V + 1 + obj) = Inf; 

for j = 2 : length(indexj)f_objectives) - 1 
nextjabj = sorted_based jon jDbjectiveQ + 1 ,V + obj); 
previousjobj = sorted_based jonjobjective(j -1 ,V + obj); 
if (f jnax - f jn in == 0) 

y(indexjDfjDbjectivesG),M + V + 1 + obj) = Inf; 
else 

y(indexj3fjDbjectives(j),M + V + 1 + obj) = (next_obj - previousj3bj)/(f_max-
fjmin); 

end 
end 

end 
distance= zeros(length_front,1); 
for obj = 1 : M 

distanced) = distance(:) + y(:,M + V + 1 + obj); 
end 
y(:,M + V + 2) = distance; 
y = y(:,1 : M + V + 2); 
z(previous_index+1:current_index,:) = y; 

end 

f = z(); 

nonjdominationjpartialjsort.m 
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function f = non_domination_partial_sort(x,y,M,V) 

NT = length(x(:,1)); 
ND = length(y(:,1)); 

for i = 1 : NT 
j = i ; 
% Number of individuals that dominate this individual 
dominated = 0; 
while (dominated == 0)&(j<=ND) 

domjess = 0; 
dom_equal = 0; 
domjnore = 0; 
for k = 1 : M 

if(x(i,V + k)<y(j,V + k)) 
domjess = domjess + 1; 

elseif (x(i,V + k) == y(j,V + k)) 
dom_equal = dom_equal + 1; 

else 
domjnore = dom_more + 1; 

end 
end 
if domjess == 0 && dom_equal ~= M 

dominated = 1; 
end 
j=j+1; 

end 
if dominated == 0 

x(i,M + V + 1) = 1; 
else 

x(i,M+V+1)=2; 
end 

end 
f=x(); 

non_domination_sort.m 

function f = non_domination_sort(x,M,V) 

ND = length(x(:,1)); 

for i = 1 : ND 
j=1; 
% Number of individuals that dominate this individual 
dominated = 0; 
while (dominated == 0)&(j<=ND) 

domjess = 0; 
dom_equal = 0; 
dom_more = 0; 
for k = 1 : M 

if (x(i,V + k) < x(j,V + k)) 
domjess = domjess + 1; 
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elseif (x(i,V + k) == x(j,V + k)) 
dom_equal = dom_equal + 1; 

else 
dom_more = dom_more + 1; 

end 
end 
if domjess == 0 && dom_equal ~= M 

dominated = 1; 
end 
j=j+1; 

end 
if dominated == 0 

x(i,M + V + 1 ) = 1; 
else 

x(i,M+V+1)=2; 
end 

end 
f=x(); 
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tournament selection.m 

function f = tournament_selection(population,M,V,pool_size) 

NT = length(population(:,1)); 

randtr=ceil(NT*rand(2,pool_size)); 
for i = 1 : pool_size 

%% Generate (tour_size) different individuals 
candidate=randtr(:,i); 
while candidate(2)==candidate(1) 

candidate(2) = ceil(NT*rand(1)); 
end 

c_obj_rank= population(candidate(:),M+V+1); 
c_obj_distance = population(candidate(:),M+V+2); 

%% Find fittest individual 

%Find minimal rank individual(s) 
min_candidate = find(c_obj_rank == min(c_obj_rank)); 

if length(min_candidate) == 1 
% If there is only one minimal rank individual, it is chosen 
f(i,:) = population(candidate(min_candidate(1)),:); 

elseif length(min_candidate) ~= 1 
% If several individuals have minimal rank, the one with highest 
% crowding distance is chosen 
max_candidate = ... 

find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate))); 
if length(max_candidate) ~= 1 

% If again several individuals have same distances, individuals 
% is randomly chosen between those 
max_candidate = max_candidate(max(round(rand(1 )*length(max_candidate)),1)); 

end 
f(i,:) = population(candidate(min_candidate(max_candidate)),:); 

end 
end 

PLAGUE_constants.m 

%% Initialize the variables 

%% Population parameters 

N = 80; % Population size 
M = 2; % Number of objectives 
V = 20; % Number of decision variables 
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%% Variables bounds 
UB=[]; 
LB=[]; 
Step=n; 
for i=1 :V 
LB=[LB,-1.0]; %Lower bounds 
UB=[UB,1.0]; %Upper bounds 
Step=[Step,0]; 
end 

%% Genetic operation parameters 

crossover_type=1; %Crossover type 
probability_crossover=0.9; %Probability of crossover 
mu = 20; %The distribution indices for crossover operator 

mutation_type=12; %Mutation type 
probability_mutation=1 A/; %Probability of mutation 
mum =20; %The distribution indices for mutation operators 

%% Genetic algorithm parameters 

max_generation = 250000; %Maximum generation 
pool_size = round(N); %Pool size for tournament selection 

%% Initialization 

generations; 

%% Termination criterion (please be careful changing this part) 

termination_by_generation=0; 
termination_by_cputime=1; 
CPUTIME=0; 
time_limit=getappdata(0,'time'); 
last_population=[]; 
%% Others 
want_plot=0; 

PLAGUE_family_sorting.m 

%%Crossover replacement 

infants=[child_1 ;child_2]; 
family=[parent_1(1 :M+V);parent_2(1 :M+V);child_1 ;child_2]; 
family=non_domination_sort(family,M,V); 
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if p>0 
iffamily(1,M+V+1)==2 

population(num_parent_1 ,:)=[]; 
p=p-1; 
iffamily(2,M+V+1)==2 

if num_parent_2>num_parent_1 
population(num_parent_2-1 ,:)=[]; 
p=p-1; 

else 
population(num_parent_2, :)=[]; 
p=p-1; 

end 
end 

elseiffamily(2,M+V+1)==2 
population(num_parent_2,:)=Q; 
p=p-1; 

end 
end 
iffamily(3,M+V+1)==1 

population=[population; child_1 ]; 
p=p+1; 

end 
iffamily(4,M+V+1)==1 

population=[population; child_2]; 
p=p+1; 

end 

PLAGUE_genetic_operator2.m 

function f = PLAGUE_genetic_operator2 
(parent_population,probability_crossover,probability_mutation,crossover_type,mutation_t 
ype,UB,LB,Step,wished_size,M,V,mu, mum, CPUTIME,time_limit,flw,slw,bi, mint, maxt); 

NP = length(parent_population(:,1)); 
population=parent_population; 
P = 1; 
randgen=ceil(NP*rand(2,40)); 
pp=1; 

while (p < wished_size+1) 
successful_crossover(1:4)=0; 
num_parent_1 = randgen(1,pp); 
if num_parent_1 >NP 

num_parent_1 = ceil(NP*rand(1)); 
end 
parenM = population(num_parent_1,:); 
child_1 =parent_1; 
num_parent_2 = randgen(2,pp); 
if num_parent_2>NP 

num_parent_2 = ceil(NP*rand(1)); 
end 
while isequal(num_parent_1 ,num_parent_2) 
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num_parent_2 = ceil(NP*rand(1)); 
end 
parent_2 = population(num_parent_2,:); 
child_2=parent_2; 
if rand(1) < (probability_crossover) 

crossover 
end 

parent_3=child_1; 
mmutation 
child_1 = child_3; 

parent_3=child_2; 
mmutation 
child_2 = child_3; 

PLAGUE_family_sorting; 
NP=length(population(:,1)); 
pp=pp+1; 
if (mod(pp,40)==0) 

NP=length(population(:,1)); 
randgen=ceil(NP*rand(2,40)); 
pp=1; 

end 
end 

f = population; 

PLAGUE_non_domination_and_crowding_sort.m 

function f = PLAGUE_non_domination_and_crowding_sort(x,N,M,V) 

ND = length(x(:,1)); 
x=x(:,1:M+V); 
x(:,M+V+1)=0; 
front = 1; 

F(front).f = []; 
individuall = rj; 
for i = 1 : ND 

% Number of individuals that dominate this individual 
individuall(i).dominating = 0; 
% Individuals which this individual dominates 
individuall(i).dominated = []; 
for j = 1 : ND 

Sbetter=0; 
better = 0; 
equal = 0; 
worse = 0; 
for obj = 1 : M 

if (x(i,V + obj) > x(j,V + obj)) 
worse = worse + 1; 
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elseif (x(i,V + obj)== x(j,V + obj)) 
equal = equal + 1; 

elseif (x(i,V + obj) < x(j,V + obj)) 
better=better+1; 

end 
end 
if better == 0 && equal ~= M 

individuall(i).dominating = individuall(i).dominating + 1; 
elseif worse == 0 && better>0 

individuall(i).dominated = [individuall(i).dominated j]; 
end 

end 
if individuall(i).dominating == 0 

x(i,M + V + 1) = 1; 
F(front).f = [F(front).f i]; 

end 
end 

% Find the rank of each individual 
size_=0; 
while (~isempty(F(front).f))&&((size_)<N) 

Q = D; 
for i = 1 : length(F(front).f) 

if Hsempty(individuall(F(front).f(i)).dominated) 
for j = 1 : length(individuall(F(front).f(i)).dominated) 

individuall(individuall(F(front).f(i)).dominated(j)).dominating = ... 
individuall(individuall(F(front).f(i)).dominated(j)).dominating - 1 ; 

if individuall(individuall(F(front).f(i)).dominatedG)).dominating == 0 
x(individuall(F(front).f(i)).dominated(j),M + V + 1)=front + 1; 
Q = [Q individuall(F(front).f(i)).dominated(j)]; 

end 
end 

end 
end 
size_=size_+length(F(front).f); 
front = front + 1; 
F(front).f = Q; 

end 

fori=1:ND 
ifx(i,M+V+1)==0 

x(i,M+V+1)=front; 
end 

end 

last_front=front-1; 

[temp,index_of_fronts] = sort(x(:,M + V + 1)); 
sorted_based_on_front = x(index_of_fronts,:); 



%% Find the crowding distance for each individuall in each front 
currentjndex = 0; 

%For each front up to 5 
for front = 1 : min(last_front,5) 

y = D; 
sorted_based_on_objective = rj; 
previous_index = currentjndex; 

%For each individual in this front 
length_front=(length(F(front).f)); 
y = sorted_based_on_front(current_index+1 :current_index+length_front,:); 
current_index = currentjndex + length_front; 

% Sort each individuall based on the objective 

for obj = 1 : M 
[temp, index_of_objectives] = sort(y(:,V + obj)); 
sorted_based_on_objective = y(index_of_objectives,:); 
f_max= sorted_based_on_objective(length_front, V + obj); 
f_min = sorted_based_on_objective(1, V + obj); 
y(index_of_objectives(length_front),M + V + 1 + obj)= Inf; 
y(index_of_objectives(1),M + V + 1 + obj) = Inf; 

for j = 2 : length(index_of_objectives) -1 
next_obj = sorted_based_on_objective(j + 1,V + obj); 
previous_obj = sorted_based_on_objective(j -1 ,V + obj); 
if (f_max - f_min == 0) 

y(index_pf_objectives(j),M + V + 1 + obj) = Inf; 
else 

y(index_of_objectives(j),M + V + 1 + obj) = (next_obj - previous_obj)/(f_ 
f_min); 

end 
end 

end 
distance= zeros(length_front,1); 
for obj = 1 : M 

distance(:) = distance(:) + y(:,M + V + 1 + obj); 
end 
y(:,M + V + 2) = distance; 
y = y(:,1 : M + V + 2); 
z(previous_index+1:current_index,:) = y; 

end 

%For front higher than 5 
if last_front>5 

y = D; 
sorted_based_on_objective = []; 
previous_index = currentjndex; 

%For each individual in this front 
length_front=ND-current_index; 



y = sorted_based_on_front(current_jndex+1 :current_index+length_front,:); 
current_index = currentjndex + length_front; 

% Sort each individuall based on the objective 

for obj = 1 : M 
[temp, index_of_objectives] = sort(y(:,V + obj)); 
sorted_based_on_objective = y(index_of_objectives,:); 
f_max= sorted_based_on_objective(length_front, V + obj); 
f_min = sorted_based_on_objective(1, V + obj); 
y(index_of_objectives(length_front),M + V + 1 + obj)= Inf; 
y(index_of_objectives(1),M + V + 1 + obj) = Inf; 

for j = 2 : length(index_of_objectives) -1 
next_obj = sorted_based_on_objective(j + 1 ,V + obj); 
previous_obj = sorted_based_on_objective(j -1 ,V + obj); 
if ( f jnax - f_min == 0) 

y(index_of_objectives(j),M + V + 1 + obj) = Inf; 
else 

y(index_of_objectives(j),M + V + 1 + obj) = (next_obj - previous_obj)/(f_max-
f_min); 

end 
end 

end 
distance= zeros(length_front,1); 
for obj = 1 : M 

distance(:) = distanced) + y(:,M + V + 1 + obj); 
end 
y(:,M + V + 2) = distance; 
y = y(:,1 : M + V + 2); 
z(previous_index+1:current_index,:) = y; 

end 
f = z(); 

PLAGUENOW.m 

%%PLAGUE 

if CPUTIME<time_limit-1.5 
last_population=unique(population,'rows'); 

%% Main population 

sorted_population=PLAGUE_non_domination_and_crowding_sort(last_population,ceil(0. 
85*N),M,V); 

main_population= replace_chromosome(sorted_population,ceil((1-0.05*M)*N),M,V); 

%% Specialist population 
survivors=[]; 
for obj=1:M 

[temp,index_of_fronts] = sort(sorted_population(:,V+obj)); 
sorted_based_on_objective = sorted_population(index_of_fronts(:),:); 
survivors=[survivors;sorted_based_on_objective(1:round(0.05*N),:)]; 
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end 

%% Diversity population 
h=ceil(length(population(:,1 ))*rand(1 ,round(N/20))); 
Hazard=population(h,:); 

population=[survivors(:,1:M+V);main_population(:,1:M+V);Hazard]; 
CPUTIME=CPUTIME+toc; 
tic 

end 
ifCPUTIME>time_limit-1.5 

if isempty(last_population) 
last_population=population; 

end 

sorted_population=non_domination_and_crowding_sort(last_population,length(last_popu 
lation(:,1)),M,V); 

population=[]; 
for indv=1 :length(sorted_population(:,1)) 

if sorted_population(indv,M+V+1 )==1 
population=[population;sorted_population(indv,:)]; 

end 
end 
CPUTIME=CPUTIME+10000; 

End 

replace_chromosome.m 

function f = replace_chromosome(intermediate_population,N,M,V) 

NR=length(intermediate_population(:,1)); 
f=D; 
%% Get the index for the population sort based on the rank 
[temp,index] = sort(intermediate_population(:,M + V + 1)); 

%% Now sort the individuals based on the index 
sorted_population = intermediate_population(index,:); 

%% Find the maximum rank in the current population 
maxrank = sorted_population(NR,M+V+1); 

%% Start adding each front based on rank and crowing distance until the 
%% whole population is filled. 

previous_index = 0; 
for i = 1 : max_rank 

currentjndex = find(sorted_population(:,M + V + 1) == i,1 ,'lasf); 
if currentjndex < N 

% All individuals of current rank are taken 
f(previous_index + 1 : currentjndex, :) = ... 

sorted_population(previous_index + 1 : currentjndex, :); 
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elseif current_index==N 
% Same as before, but whole new population is filled so loop ends 
f(previous_index + 1 : current_index, :) = ... 

sorted_population(previous_index + 1 : currentjndex,:); 
return 

elseif currentjndex > N 
% Individuals of current rank are chosen based on theri crowding 
% distance 

remaining = N - previousj'ndex; 
temp_pop= sorted_population(previous_index + 1 : currentjndex, :); 
[temp,temp_sort_index]=sort(temp_pop(:, M + V + 2),'descend'); 
f(previous_index + 1:previous_index+remaining,:) 

temp_pop(temp_sort_index(1 remaining),:); 
return 

end 
previous_index = currentjndex; 

end 

tournament selection.m 

function f = tournament_selection(population,M,V,pool_size) 

NT = length(population(:,1)); 

randtr=ceil(NT*rand(2,pool_size)); 
for i = 1 : pool_size 

%% Generate (tour_size) different individuals 
candidate=randtr(:,i); 
while candidate(2)==candidate(1) 

candidate(2) = ceil(NT*rand(1)); 
end 

cjDbj_rank= population(candidate(:),M+V+1); 
cjobjjdistance = population(candidate(:),M+V+2); 

%% Find fittest individual 

%Find minimal rank individual(s) 
min_candidate = find(c_obj_rank == min(cjDbj_rank)); 

if length(min_candidate) == 1 
% If there is only one minimal rank individual, it is chosen 
f(i,:) = population(candidate(min_candidate(1)),:); 

elseif length(min_candidate) ~= 1 
% If several individuals have minimal rank, the one with highest 
% crowding distance is chosen 
max_candidate = ... 

find(cjDbjjdistance(min_candidate) == max(cjobjjdistance(min_candidate))); 
if length(max_candidate) ~= 1 
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% If again several individuals have same distances, individuals 
% is randomly chosen between those 
max_candidate = max_candidate(max(round(rand(1 )*length(max_candidate)),1)); 

end 
f(i,:) = population(candidate(min_candidate(max_candidate)),:); 

end 
end 
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APPENDIX B: 

SIMULATED BINARY CROSSOVER AND POLYNOMIAL MUTATION 

Possible genetic operators are numerous, such as single-point or two-point 

crossovers, or mutation based on a probability distribution. For building 

applications though, the use of real parameters is recommended; in that case, the 

most efficient genetic operators are the Simulated Binary Crossover and the 

Polynomial mutation. The main asset of these genetics operators is that offspring 

chromosomes can take any value between parents' variables, according on a 

distribution probability. They are often associated with NSGA-II and are one 

reason of its efficiency. They re computed as follows: 

Simulated Binary Crossover (SBX) 

Generate a random number u 6 [0,1] 

P = 

(2M) 

f 

nc+i 

1 > 
n, i 

2x( l -w) 

I f u < 0 . 5 

d = 0 . 5x ( (Pi + P2) - P | Px + P2 | ) 

c2= 0 . 5x ( (Pi + P2) + p | px + p2 | ) 
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Polynomial crossover 

Generate a random number r G [0,1] 

5 

I f r < 0 . 5 

(2uym+l - l 

l -
( ! V 

2x(l-w)y 

Ci= Pi + 5 x ( V m a x - V m i n ) 

where q and Pj are respectively offspring and parents variables, 

r)c and qm are respectively crossover and mutation distribution indices, and 

Vmax and Vmin are variable upper and lower bounds. 

For multiple variables problems, SBX is applied on each variable with a 

probability of 0.5, and Polynomial mutation is applied on each variable according 

to mutation probability. Closeness between parents and offspring is controlled by 

distribution indices r|c and rim, with a low number giving a high probability to 

create far children. Different distribution indices values can be found in the 

literature; in this thesis, both crossover and mutation distribution indices have been 

chosen as 20, as in the Deb (2000), which produces offspring relatively close to 

their parents. 
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APPENDIX C: 

CODE USED FOR GENOPT RUNS 

package genopt.algorithm; 

import genopt.GenOpt; 

import genopt.io.lnputFormatException; 

import genopt.lang.OptimizerException; 

import genopt.algorithm.util.math.Point; 

import genopt.algorithm.util.math.Fun; 

import genopt.simulation.SimulationlnputException; 

import java.io.lOException; 

import java.util.TreeMap; 

/** Class for doing a parametric run where one parameter 

* is perturbed at a time while the others are fixed. 

* Linear and logarithmic spacing can be selected for each 

* parameter independently.<BR> 
* 

* <p><|>This project was carried out at:</l> 

* <UL><LI><A HREF="http://www.lbl.gov"> 

* Lawrence Berkeley National Laboratory (LBNL)</A>, 

* <A HREF="http://simulationresearch.lbl.gov"> 

* Simulation Research Group</A>,</UL></LI> 

* <l>and supported by</l><UL> 

* <LI>the <A HREF="http://www.energy.gov"> 

* U.S. Department of Energy (DOE)</A>, 

* <LI>the <A HREF="http://www.satw.ch"> 

* Swiss Academy of Engineering Sciences (SATW)</A>, 

* <LI>the Swiss National Energy Fund (NEFF), and 

* <LI>the <A HREF="http://www.snf.ch"> 

* Swiss National Science Foundation (SNSF)</A></UL></LI><P> 
* 

* Copyright (c) 1998-2003 The Regents of the University of California 

* (through Lawrence Berkeley National Laboratory), 

http://www.lbl.gov
http://simulationresearch.lbl.gov
http://www.energy.gov
http://www.satw.ch
http://www.snf.ch


* subject to receipt of any required approvals from U.S. Department of Energy. 
* 

* ©author <A HREF="mailto:MWetter@lbl.gov">Michael Wetter</A> 
* 

* ©version GenOpt(R) 2.0.0 (Jan. 5, 2004)<P> 

*/ 

/* Redistribution not allowed. 

Product and company names mentioned herein may be the trademarks of their 

respective owners. Any rights not expressly granted herein are reserved. 

NOTICE: The Government is granted for itself and others acting on its 

behalf a paid-up, nonexclusive, irrevocable, worldwide license in this 

data to reproduce, prepare derivative works, and perform publicly and 

display publicly. Beginning five (5) years after the date permission 

to assert copyright is obtained from the U.S. Department of Energy, 

and subject to any subsequent five (5) year renewals, the Government is 

granted for itself and others acting on its behalf a paid-up, nonexclusive, 

irrevocable, worldwide license in this data to reproduce, prepare 

derivative works, distribute copies to the public, perform publicly 

and display publicly, and to permit others to do so. 

NEITHER THE UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, 

NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, 

OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, 

COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, 

OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE 

PRIVATELY OWNED RIGHTS 
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public class Parametric extends Optimizer 

{ 

/** Constructor 

* @param genOptData a reference to the GenOpt object.<BR> 

* <B>Note:</B> the object is used as a reference. 

* Hence, the datas of GenOpt are modified 

* by this Class. 

mailto:MWetter@lbl.gov%22%3eMichael


* ©exception OptimizerException 

*@exception lOException if an I/O exception occurs 

* ©exception Exception 

* ©exception InputFormatException 

*/ 

public Parametric(GenOpt genOptData) 

throws OptimizerException, lOException, Exception, InputFormatException 

{ 

super(genOptData, 0); 

dimCon = getDimensionContinuous(); 

dimDis = getDimensionDiscrete(); 

dimF = getDimensionF(); 

String em =""; 

// get additional input 

stopAtError = getlnputValueBoolean("StopAtError"); 

// check input for errors 

// check whether all lower and upper bounds are set 

for (int i = 0; i < dimCon; i++){ 

if (getKindOfConstraint(i) != 3) 

em += "Parameter'" + getVariableNameContinuous(i) + 

"' does not have lower and upper bounds specified."; 

} 

if (em.lengthO > 0) 

throw new OptimizerException(em); 

for (int i = 0; i < dimCon; i++){ 

// check that all values are positive if 

// logarithmic spacing is required 

if (getDx(i) < 0){ // have logarithmic scale 

if(getL(i) <= 0) 

em += "Parameter'" + getVariableNameContinuous(i) + 

'" has logarithmic scale and lower bound '" + getL(i) + '"." + LS; 

if(getU(i) <= 0) 



em += "Parameter'" + getVariableNameContinuous(i) + 

'" has logarithmic scale and upper bound '" + getU(i) + '"." + LS; 

} 

// check that I != u if step != 0 

if (getDx(i) != 0 && getL(i) == getU(i)) 

em += "Parameter'" + getVariableNameContinuous(i) + 

"' has step size unequal 0 but its lower bound equal to its upper bound." + LS; 

// check that step is an integer value 

if ( Math.rint(getDx(i)) != getDx(i)) 

em += "Parameter'" + getVariableNameContinuous(i) + 

'" has a step size equal to '" + getDx(i) + '". Require an integer value." + LS; 

} 

if (em.length()>0) 

throw new OptimizerException(em); 

// all input is OK 

// initialize list with evaluated points 

evaPoi = new TreeMap(); 

} 

/** Runs the evaluation 

* ©return <CODE>+4</CODE> the only possible return value 

* ©exception Exception 

* ©exception OptimizerException 

*/ 

public int run() throws OptimizerException, Exception { 

Point poi = new Point(dimCon, dimDis, dimF); 

// initialize points with current settings 

poi.setXlndex( getX(), getlndex()); 

poi.setStepNumber(O); 

final Point defPoi = (Point)poi.clone(); 

// vary continuous parameters 

for(int iC = 0; iC < dimCon; iC++){ 

// reset point to default values, so all coordinates are at their inital values 

181 



poi = (Point)defPoi.clone(); 

int nStep = Math.round( (float)getDx(iC)); 

i f (nStep!=0){ 

// set up spacing 

double[] xSp; 

xSp = null; 

xSp = Fun.getSpacing(nStep, getL(iC), getU(iC)); 

for(int iS = 0; iS < xSp.length; iS++){ 

poi.setX(iC, xSp[iS]); 

this.getF(poi); 

} 

} 

} 

// vary discrete parameters 

int len = getLengthDiscrete(l); 

if (len != 1 ){ 

for (int ind = 0; ind < len; ind++){ 

poi = (Point)defPoi.clone(); 

for(int iD = 0; iD < dimDis; iD++){ 

// reset point to default values, so all coordinates are at their initial values 

poi.setlndex(iD, ind); 

} 

this.getF(poi); 

} 

} 

return 4; 

} 

/** Evaluates a simulation and reports result 

*@param pt point to be evaluated 

*@return a clone of the point with the new function values stored 

*@exception OptimizerException if an OptimizerException occurs or 



* if the user required to stop GenOpt 

*@exception SimulationlnputException if an error in writing the 

* simulation input file occurs 

*@exception Exception if an I/O error in the simulation input file occurs 

*/ 

public Point getF(final Point pt) 

throws SimulationlnputException, OptimizerException, Exception 

{ 

Point r = roundCoordinates( pt); 

r.setStepNumber(1); 

if(evaPoi.containsKey(r)){ // point already evaluated 

printlnfPoint already evaluated. Take function value from database."); 

Doublet] fD = (Double[])(evaPoi.get(r)); 

doubled f = new doubleffD.length]; 

for (int i = 0; i < fD.length; i++) 

f[i] = fD[i].doubleValue(); 

r.setF(f); 

r.setComment("Point already evaluated."); 

} 

else{ // point not yet evaluated 

try{ 

r = super.getF(r); 

r.setComment("Function evaluation successful."); 

} 

catch(SimulationlnputException e){ 

// must throw such an exception 

// since input is wrong 

throw e; 

} 

catch(Exception e){ 

if(stopAtError || mustStopOptimization()) 

throw e; 

else{ 

String em = "Exception in evaluating x = ("; 



for (int i=0; i < dimCon-1; i++) 

em += r.getX(i) + ", "; 

if (dimDis == 0) 

em += r.getX(dimCon-1) + ")." + LS; 

else{ 

em += r.getX(dimCon-1) + ";"; 

for (int i=0; i < dimDis-1; i++) 

em += r.getlndex(i) + ","; 

em += r.getlndex(dimDis-l) + ")." + LS; 

} 

setWarning( em + e.getMessage()); 

double[] f = new double[dimF]; 

for(int i=0; i<dimF; i++) 

f[i] = 0; 

r.setF(f); 

r.setComment("Error during function evaluation. See log file."); 

} 

// proceed as usual 

} 

Doublet] fD = new Double[r.getDimensionF()]; 

for (int i = 0; i < fD.length; i++) 

fD[i] = new Double(r.getF(i)); 

// we must clone the object that we put into the TreeMap 

// Otherwise, it's coordinates get changed since the map 

// contains only a reference to the instance. 

evaPoi.put(r.clone(), fD); 

} 

report(r, SUBITERATION); 

report(r, MAINITERATION); 

return r; 

} 

/** number of independent continuous variables */ 

protected int dimCon; 

/** number of independent discrete variables 7 



protected int dimDis; 

/** number of function values */ 

protected int dimF; 

/** flag whether run should stop or proceed if a simulation error occurs */ 

protected boolean stopAtError; 

/** list with evaluated points and its function values */ 

protected TreeMap evaPoi; 

} 
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APPENDIX D: 

ANN MANUAL RECONSTRUCTION CODE 

function f = evaluate_objective(x>M,V,flw,slw,bi,mint,maxt) 

% Function to evaluate the objective functions for the given input vector 

% x. x has the decision variables 

%variable x 

X=x(1:20)'; 

%flw = first layer weights 

%slw = second layer weights 

%bi = bias 

f = D; 

%Hidden neurons outputs 

a(1 )=-1 +2/(1 +exp(-2*(flw(1 ,:)*X+bi(1)))) 

a(2)=-1 +2/(1 +exp(-2*(flw(2,:)*X+bi(2)))) 

a(3)=-1 +2/(1 +exp(-2*(flw(3,:)*X+bi(3)))); 

a(4)=-1+2/(1+exp(-2*(flw(4,:)*X+bi(4)))) 

a(5)=-1+2/(1+exp(-2*(flw(5,:)*X+bi(5)))) 

a(6)=-1+2/(1+exp(-2*(flw(6,:)*X+bi(6)))) 

a(7)=-1+2/(1+exp(-2*(flw(7,:)*X+bi(7)))) 

a(8)=-1+2/(1+exp(-2*(flw(8,:)*X+bi(8)))) 

a(9)=-1 +2/(1 +exp(-2*(flw(9,:)*X+bi(9)))) 

a(10)=-1+2/(1+exp(-2*(flw(10,:)*X+bi(10)))); 

a(11)=-1+2/(1+exp(-2*(flw(11,:)*X+bi(11)))); 

a(12)=-1 +2/(1 +exp(-2*(flw(12, 

a(13)=-1 +2/(1 +exp(-2*(flw(13, 

a( 14)=-1 +2/( 1 +exp(-2*(f lw( 14, 

a(15)=-1 +2/(1 +exp(-2*(flw(15, 

a( 16)=-1 +2/( 1 +exp(-2*(flw( 16, 

a(17)=-1 +2/(1 +exp(-2*(flw(17, 

)*X+bi(12)))) 

)*X+bi(13)))) 

)*X+bi(14)))) 

)*X+bi(15)))) 

)*X+bi(16)))) 

)*X+bi(17)))) 



a(18)=-1+2/(1+exp(-2*(flw(18, 

a(19)=-1+2/(1+exp(-2*(flw(19, 

a(20)=-1 +2/(1 +exp(-2*(flw(20, 

Final output 

A(1)=slw(1," • 

A(2)=slw(2, 

A(3)=slw(3, 

A(4)=slw(4, 

A(5)=slw(5, 

%Rescaling 

for i=1:5 

Ascaled(i) = 0.5*(A(i)+1)*(maxt(i)-mint(i)) + mint(i); 

end 

f( 1 )=abs(Ascaled(4))*( 1 +max(Ascaled(5)/100,0)); 

f(2)=sum(Ascaled(1:3))*(1+max(Ascaled(5)/100,0)); 

)*X+bi(19)))) 

rX+bi(20)W 

; a I - D I ^ i ; 

)*a'+bi(22) 

)*a'+bi(23) 

)*a'+bi(24); 

ra'+bi(25Y 



APPENDIX E: 

MANUALLY CONSTRUCTED AND RANDOM DESIGNS 

Varia­

bles 

HSP 

CSP 

SDHW 

SDMID 

SDC 

FDMID 

FDC 

FDW 

VRR 

VRC 

VRH 

RHW 

RHMID 

RHC 

WF1N 

WF1S 

WF2N 

WF2S2 

WF2S1 

TCK 

Range 

[20,25] 

[23,27] 

[0,30] 

[0,30] 

[0,30] 

[0,60] 

[0,601 

[0,60] 

[0.118,0.708] 

[0.118,0.708] 

[0.118,0.708] 

[30,60] 

[30,60] 

[30,60] 

[4.76, 14.30] 

[2.20, 6.60] 

[4.06, 12.18] 

[1.38,4.14] 

[2.08, 6.25] 

[0.05,0.25] 

Manually constructed 

solutions 

22 

24.5 

30 

30 

30 

60 

60 

60 

0.118 

0.472 

0.472 

50 

50 

50 

4.7 

6.6 

4.06 

4.14 

6.25 

0.1 

22 

26 

30 

30 

30 

60 

60 

60 

0.118 

0.472 

0.472 

50 

50 

50 

4.7 

6.6 

4.06 

2 

4 

0.1 

20.5 

26.5 

5 

5 

5 

60 

60 

60 

0.118 

0.118 

0.118 

60 

60 

60 

4.7 

6.6 

4.06 

2 

4 

0.05 

23 

25 

30 

30 

30 

0 

0 

0 

0.708 

0.708 

0.236 

60 

40 

30 

4.7 

6.6 

4.06 

1.38 

2.084 

0.25 

Random solutions 

22.2 

26.7 

4 

13 

9 

23 

12 

38 

0.541 

0.185 

0.330 

43 

52 

41 

11.2 

6.2 

10.7 

4.0 

2.9 

0.10 

20.6 

26.9 

10 

14 

12 

51 

56 

22 

0.698 

0.515 

0.531 

48 

56 

57 

5.6 

5.9 

5.4 

4.0 

3.4 

0.12 

20.2 

25.7 

5 

12 

6 

22 

20 

26 

0.594 

0.707 

0.686 

38 

40 

53 

7.4 

6.4 

10.8 

3.1 

4.6 

0.13 

22.3 

26.5 

5 

27 

19 

37 

39 

36 

0.533 

0.685 

0.561 

56 

50 

54 

8.7 

4.8 

10.9 

2.1 

2.8 

0.11 

24.3 

23.0 

6 

0 

22 

44 

24 

34 

0.404 

0.153 

0.555 

45 

32 

54 

9.3 

2.3 

7.7 

2.4 

4.7 

0.13 


