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Abstract 

Automatic Quality of Service Adaptation for Composite Web Services 

Ming Qiao 

Quality of Services (QoS) management has become an important issue for Web services. 

Indeed, QoS is becoming a crucial and a distinguishing criterion among functionally 

equivalent Web services. QoS Management consists of two complementary tasks: 

monitoring and adaptation. Both are very challenging because of the unpredictable and 

dynamic nature of Web service composition. We are motivated to solve the QoS problem 

by taking advantage of some characteristics of composite Web services, such as their 

similarity to traditional workflows. 

In this thesis, we propose a broker based architecture that enables dynamic QoS 

monitoring and adaptation for composite Web services. Our approach consists of 

dynamically changing the execution paths of composed Web services by instrumenting 

the BPEL process. A new construct flexPath is introduced for supporting alternate 

execution paths definition in BPEL. We developed a BPEL compiler allowing automatic 

instrumentation for BPEL definition files. The BPEL process is deployed using the 

instrumented definition files in order to interact with the QoS broker during execution. 

The QoS broker is a key component in our architecture and is responsible of monitoring 

the QoS and managing the adaptation. We propose a broker that enables runtime 

monitoring of QoS, prediction of potential QoS violation, and the selection of the best 

execution path of the process in order to improve QoS when needed. 



We developed a prototype to evaluate our proposed architecture. A case study is also 

presented through an example BPEL process and a number of partner Web services. The 

performance of the QoS adaptation has been analyzed and the results showed that the 

QoS of the BPEL process has been considerably adapted and improved comparing to the 

original one. In addition, we analyzed the major factors that affect the performance of 

our prototype tool. 
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Chapter 1 

Introduction 

This chapter presents a brief introduction to the domain, the problem statement, the 

motivations and the contributions of this thesis. 

1.1 Introduction to the Research Domain 

The concept of service is now familiar to the computer science community. Thinking in 

terms of service offers a new point of view for designing computer applications. A rough 

definition of service would be to provide a "black-box" application that can be invoked 

by humans and other applications. SOA (Service-Oriented Architecture) defines how 

services communicate with each other. OASIS (Organization for the Advancement of 

Structured Information Standards) defines SOA as a paradigm for organizing and 

utilizing distributed capabilities that may be under the control of different ownership 

domains [OASIS 2006]. Based on SOA, a service exposes its functionalities to other 

services through interfaces by using defined protocols. The services are loose-coupled 

which means the interaction among services is independent to the underlying 

technologies used by implementing the services such as the operation systems, 

programming languages, etc. 



Among many approaches that can implement the service-oriented architecture, for 

instance, Jini, CORBA, etc., Web service technology has gained broad academic and 

industry acceptance. An application can be defined as a Web service which is accessible 

via standard internet protocols. Web service protocols are defined on top of a common 

data exchange standard which is XML. These protocols allow the communication among 

services to be platform independent. More specifically, how to interact with a Web 

service is defined by its messages and operations rather than its implementation details. 

This makes achieving the loose-coupling among Web services easier. In recent years, 

Web service has become a comprehensive solution for helping enterprises to create 

reusable services. 

One of the key aspects of Web services is that a service can be composed of other 

services. Assembling multiple Web services into a new service is called Web service 

composition [Srivastava 2003] [Aalst 2003]. The composition can be defined using Web 

service composition languages. Defining a composition includes providing logics of 

interactions between the composed service and the Web services that participate in it 

[Khalaf 2003]. Some composition languages are workflow-based which makes the task 

of composing Web services similar to defining a workflow. 

Since Web services wrap applications into services, the QoS of Web services would be 

one of the major concerns for service clients. QoS of Web services includes service 

quality such as latency, availability, timeliness and reliability [Chen 2003]. Service 

providers face challenges to guarantee the end-to-end QoS for their Web services given 



the dynamic and the flexible environments of service execution. Therefore, it is critical 

for them to have QoS management support to assure the QoS provided to the clients. 

1.2 Problem Statement 

As mentioned in the previous section, QoS plays an important role for both service 

providers and requestors. A Web service should not only be manageable from the 

functionality perspective but also from non-functional aspects perspective. However, 

QoS for Web services is not managed in a well-structured manner nowadays. There are 

several aspects that should be included in a successful QoS management architecture. 

QoS specification, measurement, selection, monitoring, verification, negotiation, and 

adaptation are among those aspects. 

A composite Web service is a special kind of Web service. Besides the issue of having a 

well-defined QoS management architecture, it is also facing its own QoS challenges 

because of its composite nature. For instance, figuring out the relationship between the 

composite QoS and the QoS of participating services is an important question that needs 

to be addressed. 

Among many aspects in the QoS management, QoS adaptation is a topic that has not 

been studied thoroughly. In the Web service domain, this actually means the building of a 

Web service, which is QoS-adaptable. The QoS of a Web service constantly changes 

during run-time due to the dynamic variations of, for example, resource availability, 

traffic, etc. This kind of fluctuation can make the QoS completely unacceptable. 
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Therefore a QoS-adaptable Web service is defined as a service that is able to adapt to the 

QoS variation (e.g. degradation) at run-time. This is exactly the problem we are 

addressing in this thesis: define an architecture that enables automatic QoS adaptation for 

Web services. More specifically, we focus on composite Web services. 

1.3 Goals and Motivations 

Existing Web service standards do not support QoS adaptation. A QoS-adaptive Web 

service is capable of maintaining its QoS at an acceptable level. Without the QoS 

adaptability, QoS contracts would be meaningless to the clients, especially in Web 

services' rapid changing environment. 

There are several goals that we want to achieve in this thesis. First, the adaptation should 

be automatic, which means it should happen without human's intervention. The 

procedure of monitoring QoS, making decision of when to trigger the adaptation, and the 

action of adaptation should all be executed automatically. 

Second, we believe that the QoS adaptation should be triggered as soon as the QoS 

violation is expected to happen at run-time. The point here is the adaptation should not 

wait until the QoS requirement has already been violated. In other words, our goal is to 

build a pro-active adaptation technique. 

The third goal to achieve is that the QoS adaptation should not stop the composite Web 

service execution. This is a drawback of some existing adaptation techniques. For 

example in [Canfora 2005], the service execution has to stop in order to re-plan the 

composition for improving the QoS. We believe that a good adaptation scheme for Web 
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services should be able to dynamically improve the QoS of the current running instance 

without stopping it. 

1.4 Thesis Contributions 

To solve aforementioned issues, we propose an architecture that enables automatic QoS 

monitoring and adaptation by dynamically changing the execution paths of composed 

Web services when necessary. Our main contributions include: 

1. A broker-based architecture supporting QoS-adaptable composite Web service 

2. A QoS broker design which is capable of interpreting the schema of composite Web 

services, monitoring the QoS, predicting the potential QoS violation, and triggering 

QoS adaptation. 

3. A new activity for BPEL called "flexPath" which enables the definition of alternate 

execution path in BPEL. Note that BPEL is a language for defining Web services 

composition that will be introduced in the next chapter. 

4. A mechanism for automatically instrumenting BPEL processes for the purpose of 

adaptation. 

1.5 Organization of the Thesis 

The second chapter gives an overview of Web services, the QoS issue for Web services, 

and the QoS adaptation in particular. We introduce the Web service paradigm in general 

at the beginning. Then, we discuss in detail Web services composition. We discuss the 
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issue of managing QoS for Web services in the second half. Similarly, we discuss the 

issue for Web services in general first before moving to the case of composite Web 

services. Finally, we discuss the problem of QoS adaptation. 

The third chapter studies the related work in the area of QoS adaptation. We discuss a 

broker-based approach to manage QoS for Web services, on which our proposed 

architecture is based. Then, we introduce approaches of creating flexible workflows. We 

introduce and discuss related work on QoS adaptation, including approaches for general 

Web services and composite Web services. We also discuss a broker-based WS-QoS 

management architecture which provides a foundation to our work. A summary of the 

state-of-the-art in this area concludes this chapter. 

The fourth chapter describes our proposed architecture in detail. We introduce the main 

components of the architecture and explain their respective roles. We also describe the 

procedure of the QoS adaptation for a typical composite Web service execution. 

The fifth chapter introduces our proposed approach of BPEL instrumentation. The 

mechanism of automatic instrumentation is described in this chapter as well as how to 

instrument different parts of a BPEL description. 

The sixth chapter describes our proposed QoS broker design. We explain the design of 

the three main modules in the QoS broker: the Topology Interpreter, the QoS Monitor, 

and the QoS Adaptor. For each module: the detailed design of the main features, the 

interface and interaction with other components are introduced and discussed. 



The prototype implementation, a case study, and the analysis are provided in the seventh 

chapter. This chapter discusses the implementation architecture of the prototype tool and 

explains in detail a case study. Details on the test environment, some performance 

measurements and analysis are also provided. 

The last chapter concludes the thesis by summarizing the contributions and pointing out 

possible future work. 
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Chapter 2 

Web Services: Composition, Adaptation and QoS 

This chapter contains three sections. Section 1 discusses the Web service paradigm 

including Web service composition. Section 2 studies the QoS issue for Web services. 

Section 3 extends the discussion into one of the most important QoS aspects, i.e. QoS 

adaptation. 

2.1 Web Services 

Web service technology allows different applications to be exposed as services via the 

network and interact with each other through standardized XML-based techniques. In this 

section, we will answer the following questions: What is Web service? What is the 

architecture of Web services? What are the major standards of Web services and what are 

their roles respectively? 

2.1.1 Definition and Architecture of Web Services 

Based on the definition by W3C [W3C 2004], a Web service is a software system 

designed to support interoperable machine-to-machine interaction over a network. It has 

an interface described in a machine-processable format, for instance WSDL (Web 

Services Description Language). Other systems interact with the Web service in a manner 

prescribed by its description using SOAP (Simple Object Access protocol) messages, 
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typically conveyed using HTTP with an XML serialization in conjunction with other 

Web-related standards. 

The concept of Web service is always being confused with Web applications. The main 

difference between them is: Web services are designed for machine-use, while Web 

applications, such as a JavaScript application which can be accessed from a Web page, 

are mainly designed for human-use. Due to the fact that Web services are platform-

independent and can be requested and invoked directly by other applications, they are 

generally more modular, self-aware, reusable, and manageable than Web applications 

[Papazoglou 2004]. 

Figure 2.1 illustrates the Web service architecture. There are three main components in 

this architecture: service registry which acts as a searchable directory for published 

service interfaces, service provider who creates, implements, and announces the service, 

and service requestor who uses the service. 

Service Registry 
(UDDI) 

\ 

•Bind-

\ 

* Service Provider 

Figure 2.1: Web Service Architectural Model 
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In this architecture, the service providers describe the interfaces and properties of their 

Web services by using WSDL. They then register the services into service registries 

using UDDI (Universal Description, Discovery, and Integration). Service registries act as 

Yellow Pages allowing the service requestors to discover services they want. After 

finding a service, the requestor obtains the necessary information to access the service 

such as the address of the service's WSDL file from the registry. Then, the requestors can 

invoke the services using the SOAP in either asynchronous messaging or RPC (Remote 

Procedure Call) mode. 

As illustrated in Figure 2.1, the operations among the three roles in the Web service 

architecture are defined as publish, find, and bind: 

1. Publish: This operation consists of two parts: defining the service interface through 

WSDL by the service provider, and registering the service into service registry 

through UDDI. 

2. Find: The service requestor uses this operation to find the service. It contains 

discovering the service from UDDI, and finding the location for service invocation. 

3. Bind: The actual run-time service invocation happens on the bind operation. In this 

operation, the service requestor initiates the request to the service provider, reaches an 

agreement with the provider about service running, and invokes the service. 

2.1.2 Web Service Technology Stacks 

Web services involve a lot of technologies. W3C illustrates the Web service technology 

stacks as in Figure 2.2 in its working group note [W3C 2004]. A number of technologies 
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from different layers have become key Web service standards which define how to 

design, deploy, and run Web services. 
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Communications 
HTTP, SMTP, FTP, JMS, HOP, 

Figure 2.2: Web Service Technology Stacks (taken from [W3C 2004]) 

Figure 2.2 provides a bottom-up view for Web service technologies. Starting from the 

bottom layer, many ubiquitous network protocols can be used as the communication 

protocols to carry Web services. This is one of the most important advantages of Web 

services that they are able to be accessed over different networks. From this layer up, a 

few of XML-based standards including SOAP, WSDL, and UDDI define the Web service 

messaging, description, and discovery. They are now well-accepted as core standards of 

Web services. The highest layer consists of standards that define the logics and strategies 

of business processes, such as languages for Web service compositions. In this section, 

we discuss the core standards in detail: SOAP, WSDL, and UDDI. 
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2.1.2.1 SOAP: Simple Object Access Protocol 

W3C defines SOAP as a technology that provides a standard, extensible, composable 

framework for packaging and exchanging XML messages. It also provides a convenient 

mechanism for referencing capabilities (typically by use of headers). [W3C 2004] 

As illustrated in Figure 2.2, SOAP is a communication protocol defined on top of the 

network layer. It defines how to transfer XML-formatted messages by using a 

request/response communication paradigm. A SOAP message usually contains an 

envelope, a header and a body. SOAP messages can be carried by a variety of network 

protocols: such as HTTP, SMTP, FTP, RMI/IIOP, or a proprietary messaging protocol. 

2.1.2.2 WSDL: Web Services Description Language 

WSDL is an XML-based language to describe Web services. It describes a Web service 

as a collection of endpoints/ports operating on messages containing either document-

oriented or procedure-oriented information based on standard messaging protocol such as 

SOAP. An input message and/or an output can be defined for each operation. WSDL 

separate the abstract definitions of operations and messages from their concrete use 

which include the network protocols they bound and message formats. 

2.1.2.3 UDDI: Universal Description, Discovery, and Integration 

UDDI is a specification for Web service discovery. It describes a registry of Web 

services and programmatic interfaces for publishing, retrieving, and managing 

information about services described therein. The specification defines services that 

12 



support the description and discovery of (1) businesses, organizations, and other Web 

services providers, (2) the Web services they make available, and (3) the technical 

interfaces which may be used to access and manage those services. [OASIS 2004] 

2.1.3 Web Service Composition and BPEL 

One of the main advantages of Web services is the possibility of composing them for 

creating new ones. The logic of a composite Web service is implemented by individual 

services which participate in the composition. This is similar to the traditional workflow 

which is defined as an aggregation of activities [Dustdar 2005]. 

Defining Web service composition is still an open research area where a large number of 

approaches have been proposed. Many of composition approaches use programming 

languages to link Web services and define the transition among them. [Milanovic 2004] 

points out that a composition approach should meet several requirements including 

nonfunctional properties, connectivity, correctness, scalability and automaticity: 

1. Nonfunctional properties: Nonfunctional properties such as QoS should be addressed 

in the composition description since the composing services are running in a highly 

dynamic distributed environment. Unfortunately, QoS specifications have not been 

integrated into most of today's approaches. When composing a service, these 

approaches only focus on how to meet the user's functional requirement. 

2. Connectivity: A composition links multiple Web services together. These Web 

services can be running in different platforms or connected through different network 

technologies. Connectivity refers to the messaging and interfacing among the 
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composed service and partner services. A good composition approach should provide 

seamless message exchanging among different parties in the composition. 

3. Correctness: The correctness means the truthfulness of the composed service's 

specifications and properties, such as security or dependability. 

4. Scalability: The composition framework should scale with the number of the 

participating Web services in the composition. 

5. Automaticity: The composition should be done with minimum human intervention. It 

is a complex topic about how to achieve high level of automaticity on service 

composition. Most existing mechanisms such as BPEL are still considered as manual 

composition. 

Existing well-known Web service composition languages include BPEL, WSFL, 

XLANG, WSCI, and BPML. WSFL (Web Service Flow Language) which is proposed by 

IBM and XLANG which is proposed by Microsoft are considered as the first generation 

of the composition languages. They are similar in terms of composition functionality, but 

they are not compatible. Researchers from IBM, Microsoft, BEA Systems, SAP, and 

Siebel Systems then developed the second generation composition language called BPEL 

which stands for Web Services Business Process Execution Language. This language 

combines WSFL, XLANG and BEA Systems' WSCI (Web Services Choreography 

Interface). It is now seen as the de-facto standard of the composition language. 

BPEL is an XML language that specifies Web service based business process behavior. 

Multiple Web services can be composed into a BPEL process which can be deployed as a 

new Web service. The BPEL process is defined to achieve a certain task by interacting 
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with different Web services. These Web services are called partners in BPEL. The 

designer needs to define interactions between the process Web service and each partner 

Web service. In BPEL, this interaction is modeled as partnerLinkTypes. A 

parterLinkType normally defines the roles of two partners and the relationship between 

them. Note that the BPEL process itself is considered as a partner as well. 

BPEL can define two different types of processes: abstract process and executable 

process. An abstract process is only a conceptual definition of a process which is not 

meant to be executed. It is not used much so far. In this thesis, when talking about BPEL 

processes we always refer to executable processes. 

The BPEL process description is defined in an XML file which conforms to the BPEL 

standard. The latest BPEL standard is WS-BPEL 2.0 standardized by OASIS at 2007 

which is defined in [OASIS 2007]. This standard specifies a process schema as a set of 

activities connected by links. BPEL defines two types of activities: structured activities 

and basic activities. 

1. Structured Activities: 

• Flow: defines parallel and control dependencies processing 

• ForEach: defines processing multiple branches 

• If: defines conditional behavior 

• Pick: defines selective event processing 

• RepeatUntil: defines repetitive execution 

• Sequence: defines sequence processing 

• While: defines repetitive execution 
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2. Basic Activities: 

• Assign: updating variables and partner links 

• Empty: doing nothing 

• Exit: immediately ending a process 

• ExtensionActivity: adding new activity types 

• Invoke: invoking Web service operations 

• Receive: providing Web service operations 

• Reply: providing Web service operations 

• Throw: signaling internal faults 

• Rethrow: propagating faults 

• Wait: delayed execution 

A typical BPEL process life cycle consists of three phases: design phase, deployment 

phase and execution phase. The designer defines the process schema in the BPEL 

definition file, the process interface in the WSDL file, and optionally the deployment 

detail in deployment description files at the design phase. These files are then deployed 

on the service provider's Web server. At runtime phase, a process instance is created 

when a user invoke the process. An instance is terminated when the execution is 

completed. 

Let us look at an example of BPEL process now. Figure 2.3 shows a loan approval 

process which is a sample included in ActiveBPEL V3.1 [ActiveBPEL]. This process 

receives a customer's loan request for a certain amount. It returns the result of whether 

the loan is approved to the customer. 
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Figure 2.3: A Sample BPEL Process Developed by Active Endpoints 

In this example, two partner Web services participate in the BPEL process: a 

LoanAssessor service, and a LoanApprover service. The LoanAssessor takes the 

customer's credit information as input, and returns the risk of this customer as output. 

The LoanApprover receives the customer's credit information and reply with the result of 

loan approval. 

The business logic is defined as follows: The process is started by receiving the 

customer's request which includes his credit information. If the requested amount is more 

than or equal to 10,000 dollars, the request is sent to the LoanApprover service. If it is 

less than 10,000 dollars, the request is sent to the LoanAssessor service. In this case, the 



LoanAssessor evaluates the risk of this customer and return the result to the BPEL 

process. If the risk is low, the loan is approved and the final result is sent back to the 

customer. Otherwise, the request is sent further to the LoanApprover. The result of the 

LoanApprover is considered as the final result which is then replied to the customer. 

Figure 2.4 gives a snippet of the BPEL definition of this process. 

<bpel:invoke inputVariable="request" name= 
outputVariable="risk"partnerLink="assessor' 

<bpel:targets> 

"lnvokeLoanAssessor"operation="check" 
portType="lns:riskAssessmentPT"> 

<bpel:target linkName="receive-to-assess"/> 
</bpel:targets> 
<bpel:sources> 

<bpel:source linkName="assess-to-approve"> 
<bpel:transitionCondition>$risk.level! 

</bpel:source> 
= 'low'</bpel:transitionCondition> 

<bpel:source linkName="assess-to-setMessage"> 
<bpel:transitionCondition>$risk. level = 

</bpel:source> 
</bpel:sources> 

</bpel:invoke> 

= 'low'</bpel :transitionCondition> 

Figure 2.4: Invoking the LoanAssesor Service in the Sample BPEL Process 

2.2 QoS for Web Services 

The need for QoS support for Web services is driven by two demands [Tian 2004]: From 

the service requestor's perspective, they expect to experience good service performance, 

such as fast response time, low cost, etc. A service with poor QoS is always unacceptable 

even if it satisfies user's functional requirement. From the service provider's perspective, 

offering QoS-aware Web services is able to attract more customers and therefore gaining 

more profit. It is an important differentiator for providing a better service compared to the 

competitors. For example, they can provide the same service in different quality levels to 
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meet different level of demands from customers. For services which are demanding on 

some QoS dimensions, QoS guarantees can be offered to the customers. For instance, IP 

phone service requires the latency to be less than a certain level. To provide good QoS, 

service provides normally need to find an optimal relation between user satisfaction and 

resource utilization. 

Many researchers tend to believe that the main issue of Web service QoS at this moment 

is the QoS specification and management. QoS specification is the issue of defining the 

QoS parameters for Web services, such as response time, cost, etc. QoS management is a 

generic term which consists of different management functions such as QoS monitoring, 

adaptation, etc. 

2.2.1 QoS Specifications 

QoS can be measured from different dimensions. A QoS parameter is a property of the 

service in a given dimension which is observed by the Web service users [Menasce 2002]. 

Defining the QoS parameters is fundamental for designing QoS-aware Web services. It 

allows the user to specify their QoS requirement, and evaluate the service's QoS 

performance. This section describes a number of important QoS parameters of Web 

services. 

1. Response Time: It is the time a Web service takes to react to a given request. From 

the user's perspective, response time can be measured from the moment when the 

service request is sent until the moment when the response is received. Normally, 

faster response time is considered as better. 
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2. Availability: It is the proportion of time that a Web service in usable state. 

Availability is usually measured for a random observation period. It is often 

calculated as the ratio of the up time of a service to the total observation period. 

Higher availability indicates higher degree of operability of a service which is usually 

considered as better. 

3. Throughput: Throughput is the average rate of service requests that are successfully 

handled. Due to the limitation on resources, higher throughput always causes longer 

response time [Kalepu 2003]. It is the service provider's task to balance between 

these two QoS dimensions. 

4. Reliability: Reliability is the probability that a Web service handles its requests as 

required within a maximum period of time [Kalepu 2003]. 

5. Security: Security is to measure the degree of safety that a Web service can provide. 

It could contain many safety-related properties, such as authentication mechanisms, 

confidentiality, data integrity, protection from vicious attacks, etc. [Menasce 2002]. 

6. Cost: It is the price that a user needs to pay for using a Web service. Normally, users 

expect lower cost. However, providing high quality of services always requires higher 

cost from service providers. A good provider should try to offer their services with 

low cost without sacrificing too much on other QoS dimensions. 

2.2.2 Managing QoS for Web Services 

QoS-enabled Web Services provisioning is achieved through a number of phases, each of 

which is an important function of QoS management [Serhani 2004]: 

1. QoS specification: QoS specification defines dimensions of quality that the users are 
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interested for a certain Web service. It is the foundation of QoS management system. 

Normally, the user can pay attention to multiple QoS parameters at the same time. 

Modeling each of them and finding out their relationship should be done prior to 

managing the QoS for a service. The user can specify an overall QoS requirement 

before invoking the service. The QoS management system should be able to break 

down this requirement for each individual QoS parameters. 

2. QoS measurement: QoS measurement defines algorithms and procedures to measure 

a QoS parameter at run-time. Choosing a method to measure a QoS parameter 

depends on its characteristics. It is an important step to be executed when verifying 

or monitoring the QoS. 

3. QoS selection: The service requestor should be able to select the service from 

different candidates based on QoS requirement. In this case, the user's requirement 

needs to be mapped to service provider's QoS model. Then the selection is often 

modeled as a multi-criteria decision task [Serhani 2004]. For a composite Web 

service, QoS selection can be also referred to the task that planning a service 

composition for a certain QoS goal. 

4. QoS negotiation: It is the phase when the service requestor and the service provider 

try to reach a QoS agreement. It could happen before the requestor bind to the service 

or after the agreement is violated during the execution. It is a challenge for both 

parties to be able to negotiate without human's intervention. Normally, the 

negotiation is guided by pre-defined policies. 

5. QoS monitoring: The run-time QoS should be monitored regularly. The service 

provider need to keep track of the actual QoS in order to decide whether the QoS 
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adaptation is required, and record the overall QoS performance after the execution is 

done. For each individual QoS parameter, appropriate method, frequency, and 

locations should be chosen for monitoring. 

6. QoS adaptation: QoS adaptation is to maintain the run-time QoS as guaranteed in 

the agreement. Normally it involves the action to improve a degraded QoS. In some 

cases, the service provider might want to decrease the QoS in order to free some 

resources. QoS adaptation is initiated by comparing the actual QoS with a threshold. 

It will be further discussed later in this chapter. 

2.2.3 QoS of Composite Web Services 

The QoS of a composite Web service can be modeled as an aggregation of QoS of each 

individual partner services [Menasce 2004]. Understanding the relationship between the 

global QoS and QoS of participating services can help to achieve higher degree of 

flexibility when managing the QoS for composite services. For example, the QoS of 

composition might be able to be altered by changing the composition logic. In order to 

study this relationship, we first need to understand service composition patterns. 

[Jaeger 2004] introduces seven patterns for Web service composition based on the 

workflow patterns in the workflow management. Each of these patterns represents a basic 

structural element of composition, such as a sequence, a loop, or a parallel execution. The 

logic of a composition can therefore be modeled as a single or a combination of multiple 

patterns. Figure 2.3 is taken from [Jaeger 2004] to illustrate these seven patterns. 
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Figure 2.5: Web Service Composition Patterns (taken from [Jaeger 2004]) 

CP1 is a simple sequential pattern. CP2 is a loop pattern where the service(s) execution is 

repeated for certain times. CP3 to CP7 are five parallel patterns. CP3 is XOR split 

followed by a XOR join. CP4 is AND split followed by an AND join. CP5 is AND split 

followed by an m-out-of-n join. CP6 is OR split followed by OR join, while CP7 is OR 

split followed by an m-out-of-n join. Understanding composition patterns can help us 

abstract the composition logic, especially when using workflow-based language such as 

BPEL to define the composition. 

Since a composition can always be modeled by these patterns, studying the aggregation 

of QoS of for each pattern allow us to model the QoS of the composition. A number of 

works [Jaeger 2004] [Cardoso 2002] [Menasce 2004] [Yu 2005] have been done to 
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model the aggregation QoS for different QoS parameters, such as response time, 

availability, cost, etc. based on composition patterns. 

2.3 QoS Adaptation 

In a service-oriented environment, a QoS-adaptive service is one which is able to adapt 

itself to the change in QoS. The term QoS-adaptive should not be confused with QoS-

aware. A QoS-aware service is one that can provide different levels of QoS to cope with 

the change in the service execution environment. However, QoS-adaptive means 

maintaining the initial QoS agreement if possible. When the agreement has been violated 

or is to be violated, QoS adaptation is triggered. There are a few crucial aspects required 

to be studied when designing an adaptation scheme: 

1. Who should initiate the QoS adaptation? In most cases, QoS adaptation is triggered 

by the service provider who is responsible for maintaining the service agreement. 

However, the client can trigger the adaptation as well under certain business 

requirements. 

2. What is the level of automation of QoS adaptation? Ideally, the adaptation can be 

triggered and maintained without human's intervention. However, it is a difficult goal 

to achieve when dealing with highly flexible and autonomous Web services. That is 

why a lot of existing adaptation schemes still require partially or fully attention from 

human. 

3. Which QoS parameters are considered for adaptation? When multiple QoS 

parameters are specified for a service, either part of them or all of them can be 

specified as the targets of adaptation. In this case, multiple QoS parameters construct 
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a multi-dimension space which represents the scope of overall QoS. This space can be 

divides as two different areas: accepted QoS, and un-accepted QoS. The goal of 

adaptation is to try to keep the overall QoS in the area of accepted QoS. 

4. What are the conditions to trigger the adaptation? The conditions are normally 

boundary values of QoS. It could be thresholds of minimum values or maximum 

values. Again for multiple QoS parameters, these values that represent the overall 

QoS should be mapped to each individual QoS dimension. 

5. When should the adaptation be triggered? Obviously, if the overall QoS degrades 

below the threshold, the adaptation should be triggered immediately. However, a pro

active scheme can be implemented so that the adaptation can be triggered in advance 

to prevent the QoS become un-acceptable. In this case, the threshold is usually still 

acceptable QoS value. Note that in some cases the QoS adaptation needs to be 

triggered as well when the QoS "outperforms". In this thesis, we call the QoS is 

degraded either it is becoming too bad or too good. 

6. What is the QoS goal to achieve for a given adaptation? A goal should be set as a 

condition to terminate the adaptation in order to minimize the waste of resources. 

Theoretically, the adaptation should not bring the QoS beyond this goal. 

7. What method is used to achieve the adaptation goal? Any mechanism that can alter 

the QoS can be chosen for adaptation. For example, load balancing can be used at a 

server to improve the throughput of a video playback service. 
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2.4 Summary 

In this chapter, we introduced the necessary background knowledge for our research. We 

explained the concept of Web services, the Web service architecture, and the main 

technologies of Web services. We discussed the Web service composition and the 

existing composition languages. We also looked into BPEL in detail. 

Next, we studied the QoS issue of Web services. We discussed a few of most important 

QoS parameters of Web services. Then, we discussed the QoS management for Web 

services, and the involved activities such as QoS monitoring, adaptation, etc. As a special 

case of Web service, QoS for composite Web services was studied at the end of this 

section. We studied different composition patterns and their aggregation QoS. 

In the last section, we discussed QoS adaptation by breaking it down to a number of sub-

tasks. In the next chapter, the related work of QoS adaptation for Web services will be 

reviewed. 
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Chapter 3 

State-of-the-Art in QoS Adaptation for Web Services 

A lot of work has been done for QoS adaptation in networking. Several approaches have 

been proposed for adapting QoS at network or middleware layers [Nahrstedt 2001]. 

Existing solutions include task scheduling, network flow control, resource management, 

etc. Resource management consists of methods, for instance, bandwidth allocation on 

Web servers, power management, etc. There are also other approaches that focus on QoS 

adaptation on certain application domains [Nahrstedt 2001]. For example, adaptive media 

coding and compression schemes can be used to create QoS-adaptive video applications. 

Supporting QoS adaptation at middleware layer has become a hot topic in recent years. In 

such cases, managing QoS requirement and adaptation polices can be easily separated 

from applications' functionality implementation [Mujumdar 2005]. 

Supporting QoS adaptation for Web services is still immature as Web service is a 

relatively new area. In this chapter, we discuss the related work in the area of Web 

services first. Given the similarity between Web service composition and traditional 

workflow management, we discuss how the problem is proposed to be solved for 

workflow before we move on to Web service composition. In the third section, we review 

four approaches proposed for composite Web services. Finally, we look into an important 

work which is a broker-based solution for QoS management for Web services. 



3.1 QoS-adaptive Web services 

There are three types of techniques to support QoS adaptation for Web services in the 

literature: Web service replication, Web service relocation, and dynamic Web service 

invocation. All these approaches are generic solutions for Web services. For example, 

they treat different types of Web services as the same, either is a composite one or a basic 

one. 

3.1.1 Web Service Replication 

The basic idea of Web service replication is generating a number of replicas for a given 

Web service so that the service requestor can choose different replicas to bind according 

to the execution environment change. Existing approaches include [Keidl 2003] [Silva 

2004] [Zegura 2000]. 

Service 
Requestor 

Figure 3.1: Web Service Replication Using a Gateway 

There are two different patterns to deploy the Web service when using service replication. 

Figure 3.1 illustrates the pattern that makes use of a gateway Web service. Instead of bind 
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to the service directly, the service requestor binds to the gateway. The gateway is 

responsible for dispatching the requests to different replicas. 

Client 
Application 

Service 
Selector 

Service Requestor 

Bind 

Web Service 

Replica 1 

Replica N 

Figure 3.2: Web Service Replication without Using a Gateway 

Another deployment pattern is shown in Figure 3.2. Instead of using a gateway service to 

select the replicas, a service selector is implemented at the service invocation layer of the 

client software. It decides which replica to bind based on different policies and directly 

binds to it. [Silva 2004] is an example that utilizes this pattern. 

At the execution time, the service requestor can choose more than one replica to bind at 

the same time. In this case, load balancing are normally required to distribute the traffic 

to multiple replicas. 

Replicas can be either offered by the service provider or found through UDDI. If 

provided by the service provider, replicas are just service instances which are duplicated 

from the original service and distributed to different hosts. Replicas can also be found 

through UDDI for a given tModel. At run time, the service user can query a registry to 

find out all the service instances (replicas) against a certain tModel. 
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The selection of replicas is another important issue of service replication. It is often 

modeled as a selecting the best set of replicas for binding. If QoS of a replica degrades, it 

is de-selected and a new set of replicas is re-selected. 

Most of the existing approaches of service replication focus on developing algorithms for 

replica selection, replica load-balancing mechanisms, etc. They are normally motivated 

by improving the fault-tolerant ability of Web services. The adaptation is triggered by 

service faults. However, we believe that the adaptation should happen not only in the case 

of invocation failure, but also when the QoS will be potentially violated. 

3.1.2 Web Service Relocation 

Web service relocation is a method to transport a service instance from one host to 

another one (location) at run time without the service requestor's awareness. Similar to 

the service replication, the purpose of this technique normally is to improve the ability of 

fault tolerance of the Web services. The service is relocated as soon as the current host is 

detected in fault status which is illustrated by Figure 3.3. 
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Figure 3.3: Web Service Relocation 
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Fluid [Pratistha 2004] is a framework supporting Web service relocation. It allows Web 

services to be nomadic so that they can transport to different destinations for adapting to 

the changes in the surrounding environment. It is implemented by using mobile agent 

technology. A proxy is built between the service provider and requestor. The requestor 

can retrieve the location information from the proxy. [Pratistha 2004] points out the main 

requirements of service relocation: reactivity, transportability, and adaptability. 

1. Reactivity: is the ability of a Web service to trigger the relocation automatically 

when sensing the need from surrounding changes. 

2. Transportability: is the ability that allows a Web service to be relocated to a different 

host. 

3. Adaptability: allows a service to detect its context such as available resources of the 

destination host, and adapt itself by reconfigure its structure to this context. 

Both Web service relocation and replication alter the QoS by redeploy different resources 

of the service provider for the running services. Some future improvements that 

researchers are currently working on include improving the performance, scalability, and 

extending to different type of Web services. 

3.1.3 Dynamic Web Service Invocation 

Based on the existing Web service standards, the selection of services can not be changed 

once they are invoked at runtime. Improving QoS by dynamically choosing different 

Web services to execute is the goal of this method. It is illustrated in Figure 3.4. 



In service relocation or replication, the requestor always binds to the same service. These 

techniques improve the QoS by changing the internal implementation of the service. 

However, the method of dynamic service invocation moves the binding from one service 

to another one. Therefore an important requirement of this method is that the new service 

should have the same functional signature as the original one. 
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Figure 3.4: Dynamic Web Service Invocation 

[Yu 2004] proposes an architecture which extends Web service architecture to support 

dynamic service invocation. They introduce a proxy between the service requestor and 

the Web services. The proxy has a few functionalities: it monitors the status of the current 

running service. When the status changes, for example, the current service is temporary 

unavailable, the proxy retrieves a list of candidate services with the same function from 

UDDI. A new service is then chosen from them and the proxy starts to dispatch the traffic 

to it. 

QoS adaptation can be achieved by dynamically binding to a new service with better QoS 

if the current one can not provide an acceptable QoS. One of the main challenges of this 
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approach is the performance issue. The migration from one service to another should be 

fast and reliable. In addition, the service execution can not be stopped during the change. 

3.2 QoS-Adaptive Workflows 

Since composing Web services is similar to designing a workflow [Aalst 2003], we 

discuss some existing approaches to support QoS adaptation for workflow in this section. 

In Workflow management, flexibility is a workflow's ability to modify its execution in 

order to meet certain goals. If maintaining QoS is the goal, being flexible can be a way to 

make the workflow QoS adaptable. In order to understand flexibility, a few concepts 

need to be explained first. The business process of a workflow is modeled by its 

type/schema [Petra 1999]. It defines the workflow by using workflow specification 

language at design phase. At the execution phase, workflow instances are instantiated 

from the workflow type. 

A summary of the existing strategies for supporting flexible workflow is given in [Petra 

1999]. They summarize two ways to achieve flexibility: by selection, or by adaptation: 

1. Flexibility by selection: A number of alternate execution paths are defined in the 

workflow type. At runtime, the execution path can be altered to one of these pre

defined alternatives. This strategy is called flexibility by selection. It can be further 

divided into two methods: 

a) Advance Modeling: At design time, every concrete alternate execution path is 

defined. 



b) Late Modeling: At design time, only abstract "black boxes" are defined for 

the alternate execution paths. The concrete paths are defined at runtime. 

2. Flexibility by adaption: Instead of defined at design phase, alternate execution paths 

are generated on the fly at runtime and inserted into type definition or part of the 

instances. Flexibility by adaption contains two methods as well: 

a) Type adaption: The change does not affect running instances. Only the type 

definition is modified. Therefore, the future instances will use the new workflow 

definition. 

b) Instance adaption: Opposite to type adaption, instance adaption changes the 

running instances immediately. This change is only applied to individual 

instance. 

We need to point out that type adaption and instance adaption are not black or white. 

Some recent researches combine them together to achieve better performance. In these 

works, instance changes are monitored at run-time. Those appeared with high frequency 

are collected and a type level change is made to reflect them. 

If we compare these two strategies, flexibility by selection can be considered as 

"anticipated" since the freedom offered to the execution is pre-defined at design time. 

However, flexibility by adaption gives unanticipated freedom to the execution which only 

response to the runtime variation. Although flexibility by adaption is more flexible, it is 

expected to have worse performance due to the overhead introduced at run-time. 

As we mentioned at the beginning of this section, flexibility can be used to develop QoS-

adaptable workflows. [Klingemann 2000] proposed a framework to achieve this. At 
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design time, alternate execution paths are inserted into the workflow schema definition. 

On the other hand, the QoS goal is specified along with other functional specifications of 

the workflow. At runtime, the possibility of successful fulfilling the QoS goal for each 

possible execution paths is calculated based on the runtime monitored QoS. The most 

optimized one is automatically chosen to meet the goal. 

Although this approach is more focused on the QoS specification and the optimization 

algorithm of path selection, the idea of improving QoS by changing the execution path at 

run-time inspires us to solve the problem in the domain of Web service composition. 

3.3 QoS Adaptation for Composite Web services 

In this section, we review the state-of-the-art of supporting QoS adaptive composite Web 

services. Since it is an evolving area, there are not many approaches that have been 

proposed. Plus, none of them provide a comprehensive solution. Based on the strategy 

used for QoS adaptation, we divide the existing works into 4 groups: 1) dynamic partner 

Web services re-selection, 2) dynamic modification of composition schema, 3) automated 

planning, and 4) AOP (Aspect-Oriented Programming) method. These 4 types of 

approaches will be studied in this section. 

3.3.1 Dynamic Partner Web Services Re-selection 

Partner Web services are the basic units that form the composition. Based on the current 

standards, the composition schema is developed at the design phase. During this stage, 

which partner Web service should be selected for each task has decided. Current way of 

composition does not offer any flexibility to change a partner Web service at run-time. 
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However, achieving this kind of flexibility can improve the QoS when, for instance, a 

partner service is temporarily unavailable or it cannot offer its advertised QoS at run-time. 

This is what motivates the research of dynamic partner service re-selection. We use 

Figure 3.5 to show this method. 
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Figure 3.5: Dynamic Partner Web service Re-selection 

For each partner Web service, a number of alternate services are selected to be the 

candidates who are ready to be chosen during the run-time. Candidate services can be 

found at the design phase when developing the composition, or at run-time. Usually, the 

candidate service should have the same portType as the original partner service while 

potentially providing different level of QoS. Finding the candidate services is normally 

done by a proxy service. During the run-time, when a partner service needs to be re-
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selected, the best candidate service is found and swapped with the current one. This task 

can be also fulfilled by the proxy service. 

[Karastoyanova 2004] proposes a mechanism called "find and bind" to support partner 

service re-selection. They introduce a new activity find_bind for BPEL. Before the 

invocation of each partner service, a find_bind is executed. Within this activity, the 

UDDI registry is queried and a list of candidate services is retrieved. Then based on 

certain policies, the best candidate is chosen and the subsequent invocation activity will 

bind to it. This approach can provide an optimized service selection for every task. 

However, the overhead introduced by find_bind is not negligible. 

Another approach is proposed in [Canfora 2005]. Unlike the previous work, this approach 

will not trigger the re-selection unless the overall QoS becomes un-acceptable. When the 

re-selection is triggered, the execution stops. Which part of the composition has not been 

executed is determined. Then the best candidate service is chosen for each remaining 

partner service to maximize the overall QoS. After the re-binding is done, the service 

execution is restored. This approach is able to provide good flexibility and the overall 

QoS goal is taken into account. However, stopping the execution for the re-selection is 

not acceptable in many cases. 

[Patel 2003] proposes an architecture called WebQ. Instead of assigning a single partner 

service to a task, a set of candidate services is assigned. Load balancing is used to 

distribute traffic to different candidates. When a candidate service is detected providing 

poor QoS, it will be de-selected and another set of candidates will be chosen to provide 



best possible QoS. This work is focused on designing the selection algorithm. It does not 

provide enough detail for the adaptation procedure. 

A middleware approach is introduced in [Zeng 2004]. Similar to [Canfora2005], they re-

plan the selection of all the partner services which are about to be executed during the 

run-time under the consideration of overall QoS. However, they also focus only on 

selection algorithm. 

The last work we would like to discuss is TRAP/BPEL which is proposed in [Onyeka 

2007]. It is a framework which utilizes the transparent shaping programming model to 

provide self-healing and self-optimization to BPEL process. They are more interested in 

the programming detail of proxy implementation for service re-selection. 

3.3.2 Dynamic Modification of Composition Schema 

Although changing individual partner services provides flexibility for QoS adaptation, 

sometimes we need to change the composition logic to gain bigger impact on the overall 

QoS. 
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Figure 3.6: Dynamic Modification of Composition Schema at Run-time 

The modification of the composition schema can happen at any phase. If it happens at 

non-execution phase, all the new instances will use the modified schema. A modification 

that happens at execution phase is shown in Figure 3.6. When the QoS is becoming 

unacceptable, the modification is triggered. A more optimized schema is designed for the 

rest of the composition which is normally the un-executed portion right after the current 

execution point. The new schema which might contains new logic or partner Web 

services will replace the old one. 

[Karastoyanova 2004] introduces a new activity called <evaluate> for BPEL. This 

activity is designed for 2 purposes: changing the portType of a partner Web service at 

39 



run-time, and changing the composition schema at run-time. In order to change the 

schema dynamically, the basic idea is to use the <evaluate> activity to wrap the portion 

of the schema that is supposed to change. Also, assign a template which is a piece of 

reusable code to the substitution schema in the <evaluate> activity. At runtime, the user 

has to provide concrete parameters for the template to form a new schema to replace the 

wrapped portion of <evaluate> activity. The need of user intervention may interrupt the 

service execution which is not expected by the user sometimes. Also their approach 

requires extending the current BPEL standards. 

[Yu 2005] also proposes an approach. In this work, the designer specifies alternate 

execution paths that can replace part of or all the composition. A composition manager 

then find out all the possible execution plans based on user's input prior to the execution. 

At runtime, when a service encounters problems, the execution engine select the best 

backup path from the stored execution plan and switch to it for the rest of the process. 

Although this work enables the composite Web service to change its schema on the fly, 

the change is triggered only by the error of a partner service. 

3.3.3 Automated Planning 

Automated planning is a branch of artificial intelligence. The main concern is about 

generating action sequence to meet certain goals. Given its similarity with Web service 

composition, some researchers have tried to solve the composition issue by using 

automated planning tools. 



An example is the approach that is proposed in [Vukovic 2004]. They use a planner tool 

called SHOP2 to change the composition logic when the monitored context environment 

changes. SHOP2 is a HTN (Hierarchical Task Network) based planner. Its main feature is 

implementing an abstract task by decomposing it and forming an execution plan. The 

context and composition goal are fed into SHOP2. It generates a SHOP2 plan which is 

then transformed into a BPEL schema. The proposed architecture contains a monitor 

which constantly monitors the context. When the context changes, a new SHOP2 plan 

will be generated and transformed into another BPEL schema. Although their work is not 

designed for adapting QoS change, the core concept of how to solve the adaptation issue 

is similar. 

Changing the composition logic through planner is an interesting idea. However, there 

are still a lot of challenges to be overcome such as how to fully map the Web service 

description to the domain of planning. 

3.3.4 AOP Method 

AOP is a programming paradigm which aims at separating crosscutting concerns with 

other functionalities. There are three key concepts in the AOP model: join point, pointcut 

and advice. They are the basic units to define an aspect. 

1. Join points are points in the execution of a program. For example, join points in 

object-oriented programs can include method calls, constructor calls, field read/write, 

etc. 



2. In order to modularize crosscutting concerns, pointcut is introduced as a set of related 

join points. 

3. An advice specifies certain codes that run at a join point. It can be executed before, 

after, or around a join point. The advice specifies when and what behavior must be 

executed at the selected join points. 

Since an aspect can be virtually anything, a number of existing approaches [Charfi 2004] 

[Courbis 2004] [Verheecke 2004] use AOP to develop QoS-adaptive composite Web 

services. Generally, these approaches define new composition logic as aspects and insert 

them into the composition definition. If the composition schema needs to be modified at 

run-time for adapting QoS change, the execution engine can just activate / de-activate the 

appropriate aspects. The advantage of AOP is that advices can be executed before, after 

or around a given point. It is therefore possible to add, delete, or replace activities in a 

composition dynamically. 

Using AOP to enable the dynamic change of composition logic has become an active 

topic although AOP itself is immature and lack of tool support. These approaches 

normally require modification to the current composition execution engine. 

3.4 A Broker-based Architecture of QoS Management for Web 

Services 

In this section we discuss an approach of Web service QoS management proposed by M. 

A. Serhani et al. [Serhani 2005] [Serhani 2006]. The reason we discuss it in a separate 



section is that their idea of using QoS broker to do the QoS monitoring and adaptation 

has been adopted by our research. Their architecture is illustrated in Figure 3.7. 
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Figure 3.7: Broker-based Architecture for QoS-enabled Web services 

Different from the standard Web service architecture, they introduce a QoS broker and 

replace the traditional UDDI registry with a QoS-enabled registry called UDDIe [Ali 

2003]. UDDIe allows service providers to publish their services with non-functional 

specifications. It enables that a service is selected based on QoS constraints. The key 

component is their architecture is the QoS broker. The broker is responsible for QoS 

provisioning and management for Web services. It is a third-party Web service that can 

be found through UDDI. 

When a service provider publishes its Web service to UDDIe, it needs to receive a 

certification from the QoS broker to prove the authenticity of the service's claimed QoS. 

If a service requestor look up a service through UDDIe, it can use the result of the 

certification to ensure the trustworthy of the service's QoS. When the requestor chooses 
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the service, the QoS broker initiates a QoS negotiation between the requestor and the 

provider. Once both of them reach an agreement of the QoS level, the negotiation is done 

and the agreement is stored into the broker's database. The requestor can then bind to the 

service. During the execution, the broker is responsible for monitoring the run-time QoS. 

If the QoS violates the agreement, a QoS adaptation is initiated by the broker until the 

QoS becomes acceptable again. If the adaptation fails, a re-negotiation will be triggered 

so that a new agreement can be reached. 

This architecture is reported in [Serhani 2005] which inspires us to use a similar broker in 

our architecture to solve QoS issues. Their work has focused on basic Web services, i.e. 

Web services which do not result from a composition. We adapt the concept of QoS 

broker and propose a new design to support composite Web services. Another 

architecture, CompQoS, introduced in [Serhani 2006] supports composite Web services. 

However, it is more focused on QoS management and monitoring, while we focus on 

QoS adaptation. 

3.5 Summary 

In this chapter we reviewed the state-of-the-art of QoS adaptation for Web services. We 

first gave a brief review of the research works on QoS adaptation. Then we studied the 

approaches for supporting QoS-adaptive Web services. Three different types of solutions 

were discussed, which include Web service replication, Web service relocation, and 

dynamic Web service invocation. These solutions are generic for Web services. They do 

not address the specific requirements of composite Web services. 



Since our research focus on composite services, the related works were studied in the 

next section. We summarized these approaches into 4 different methods: dynamic partner 

Web services re-selection, dynamic modification of composition schema, automated 

planning, and AOP method. For each type of method, its advantages and disadvantages 

were studied. 

The last section discussed a broker-based architecture for QoS management. This work 

introduced an idea of solving QoS for Web services by using a third party broker. The 

broker allows QoS negotiation, monitoring and adaptation to be integrated into the Web 

service architecture. Our approach adopts this idea to solve the issue for composite Web 

services. 

We mentioned the requirements of supporting QoS adaptation for composite Web 

services in Chapter 1. Through reviewing the state-of-the-art, we found that none of the 

related work is able to meet all these requirements. From the next chapter, we will 

introduce our proposed approach and explain how it solves these requirements. 
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Chapter 4 

An Architecture for QoS Adaptation for Composite Web 

Services 

Since BPEL is considered as the de-facto standard of composition languages, we focus on 

the Web service composition that is defined by BPEL in our work. The architecture we 

propose enables automatic QoS monitoring and adaptation by dynamically changing the 

execution paths of composed Web service when needed. In order to integrate the 

definition of alternate execution paths into BPEL, we propose a new construct called 

flexPath for BPEL which will be discussed in the first section. In the second section, we 

will introduce the overall architecture and its major components. A typical procedure of 

how QoS monitoring and adaptation works based on our architecture will be shown in the 

third section. 

4.1 flexPath: An Extension for BPEL 

Current BPEL standard only supports one execution path. Once the BPEL process is 

defined at the design phase, there is only one possible path for the process to be executed. 

In order to provide flexibility into the process execution, we introduce the concept of 

alternate execution path into process definition which is shown in Figure 4.1. 

As we can see in Figure 4.1, the original execution path is a sequential execution of 

activity W, X, Y, and Z. Then we add one alternate path for activity Y. It is a sequential 
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execution of activity A and B. In this example, the process now contains 2 possible 

execution paths: WXYZ, or WXABZ. The changeable portion is Y/AB which is wrapped 

by a new construct called flexPath. Therefore, a flexPath defines a segment of process 

where multiple execution paths are defined. Among these paths, one of them is assigned 

as the default path. The other paths are all backups which can be switched to at run-time. 

original execution path 
alternate execution path 

Figure 4.1: Defining Alternate Execution Path in BPEL 

A question might be brought up at this point: current BPEL standard defines construct 

such as <switch> to allow the definition of possible multiple branches that the process 

make take. Is it doing the same job as flexPath? Similar question has been answered in 

the domain of traditional workflow management. Conceptually, <switch> in BPEL 

language represents an or-split/join structure. From the programming perspective, 

flexPath is similar to an or-split/join structure. However, [Klingemann 2000] points out 
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that from the workflow perspective, they are different, only the chosen path in an or-

split/join is considered as a "correct" path and the decision is made based on the 

evaluation of a predicate and cannot be influenced, while the flexPath has the opposite 

characteristics. 

In the rest of the thesis, the term flexPath refers to the segment in the BPEL process that 

is wrapped in a flexPath structure. 

4.2 The Overall Architecture for QoS-adaptive Composite Web 

Services 

Our proposed architecture is based on the usage of a third party QoS broker. This idea is 

brought from the work of Serhani et al. as we mentioned in Chapter 3. The QoS broker is 

responsible for managing the QoS and can be exposed as a Web service. In our 

architecture, however, the broker is specifically designed to monitor the QoS of a 

composed Web service and managing the QoS adaptation for it when needed. Figure 4.2 

illustrates our proposed architecture. 
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Figure 4.2: Overall Architecture for QoS-adaptive Composite Web Services 

The architecture consists of five main components: Service requestor, BPEL process, 

partner Web services, BPEL compiler, and QoS broker: 

1. Service requestor is the customer that invokes the composite Web service. 

2. BPEL process is the composed Web service published by the service provider. 

3. Partner Web services are the basic units that form the composition of the BPEL Web 

service. They can be published by the same service provider who publish the BPEL 

process, or other service providers. 

4. BPEL compiler is a tool for instrumenting the BPEL process. After a BPEL process is 

designed, it needs to be instrumented to make it adaptation-enabled. Without the 

instrumentation, the BPEL process will not be able to be managed by the QoS broker. 
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5. QoS broker is published as a Web service responsible for managing the QoS of BPEL 

processes. It mainly interacts with the BPEL process during the run-time to monitor 

its QoS and change its execution path when the QoS is too poor. It also interacts with 

the service requestor and the partner Web services. As mentioned in [Serhani 2005], 

each service needs to get a certification from the QoS broker to verify their claimed 

QoS before they are published in UDDI. Therefore, for each partner Web service, 

there should be at least 2 pieces of data stored in the broker's database: its claimed 

QoS, and its actual QoS based on its past performance statistics. The broker also 

needs to communicate with the service requestor for tasks like QoS negotiation 

[Serhani 2005]. After a successful negotiation, the QoS agreement is stored in the 

broker's database. It is a key reference for the broker to decide whether the adaptation 

should be initiated at runtime. The main components of the QoS broker include 

topology interpreter, QoS monitor, QoS adapter, and QoS database. They will be 

explained in detail later. 

Note that UDDI registry is not included in our architecture. It is because that we do not 

need it to participate into the task of QoS monitoring and adaptation. It is preferable that 

the service providers publish their composite Web services into a QoS-enabled registry 

such as UDDIe. In that case, the broker can directly get the QoS information of each 

service from the registry. 
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4.3 Procedure of QoS Adaptation Based on the Proposed 

Architecture 

We introduced the overall architecture and its main components in the previous section. 

In this section, we describe how the BPEL service adapts to the QoS goal based on this 

architecture. Figure 4.3 describes how the components interact with each other. 

Service 
Requestor 

QoS Broker BPEL Process I Partner Web 
Services 

BPEL Compiler 

1: Define the workflow with flexPath 

2: Certify its claimed QoS 

3: Response with the certification result 

, 4: Request for instrumentation 

5: Response with adaptation-ready version 

6: Initate the QoS negotiation 

with the service prqvider 

6: Response of negotiation 

11: Bind 
- ^ T n 

* i 12: Initiate the workflow execution 

13: Resquest for QoS management 

14: QoS monitoring 
u > 
15: Initiate the QoS adaptation 

16: Nbtify with the result of execution 

Figure 4.3: Component Interaction of Proposed Architecture 
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1. During the design phase, the BPEL process designer finds all the segments inside the 

process that can be replaced by alternate execution paths. He defines a flexPath 

wrapping each segment with all the possible alternate execution paths. 

2. Before publishing at the UDDI registry, all the services including partner Web 

services and the BPEL service itself need to get a certification from the QoS broker. 

The QoS broker stores the QoS information of these services. 

3. The BPEL process is then sent to the BPEL compiler for instrumentation with new 

activities which interact with the broker. The service provider then use the 

instrumented BPEL definition files which are considered as adaptation-enabled to 

deploy on the server. 

4. Before the service requestor binds to the BPEL Web service, the broker starts the 

negotiation between them in terms of QoS. Once an agreement is reached, the QoS 

contract is stored into the broker's database. 

5. The service requestor binds to the BPEL service. 

6. At the execution phase, an instance of the BPEL process is instantiated whenever a 

request is received from the requestor. 

7. As the BPEL process starts to execute, it sends the BPEL definition files to the 

broker. The broker abstracts the topology from the definitions, and starts the adapter 

and monitor to manage the QoS of the execution. 

8. During the execution, the QoS monitor measures the QoS at certain places in the 

process. As soon as the QoS is considered as unacceptable, the adapter will trigger 

the adaptation. It finds out the next flexPath to be executed, and calculates the best 

execution path among all the alternate paths. The result of path selection is sent to 
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the BPEL process. The BPEL process switches to the new path according to the 

notification from the broker. 

9. After a successful execution, the broker updates the historical QoS data of each 

partner Web service by using its QoS results. 

4.4 Summary 

In this chapter, we discussed our proposed architecture. We introduced our extension to 

BPEL which is a construct called flexPath to support alternate execution paths in the 

BPEL definition. Our solution is changing the execution path of the BPEL process during 

the run-time in order to adapt to QoS degradation. 

The overall architecture was discussed in section 2. We use a QoS broker to monitor the 

QoS and manage the adaptation for the BPEL process. The process is instrumented by a 

BPEL compiler before deployment so that it is able to be managed by the broker. The 

main components of the architecture and their roles were studied in this section. In the 

next section, we studied the interaction among these components. From the next chapter, 

we will discuss the design of each component in our architecture. 
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Chapter 5 

BPEL Process Instrumentation 

As we mentioned in the previous chapters, the BPEL process needs to be instrumented in 

our architecture. We discuss the procedure of instrumentation in this section. Describing 

a BPEL process usually contains a number of files. There should be at least a BPEL 

definition file, a WSDL file, and a file to define the deployment details. In our 

architecture, we design a BPEL compiler which takes these files as input and 

automatically modifies them. The content added to these files is responsible for 

communicating with the broker at run-time to fulfill the task of QoS monitoring and 

adaptation. Mainly, there are three things that are inserted by the BPEL compiler: 

partnerLinkType and partnerLink of the broker, probes, and PathSelectors. The design of 

BPEL compiler will be discussed in the first section. The instrumentation of each type of 

contents will be discussed in the second section. 

5.1 Automatic Instrumentation Using JDOM 

The architecture of the BPEL compiler is described in Figure 5.1. All the files that need 

to be instrumented are written in XML. These XML files are first parsed by an XML 

parser. Then we use JDOM [JDOM] to model it in JAVA. After the instrumentation is 

done, new XML files are generated. 



nstrumented BPEL 

XML Parsing *- JDOM modeling »• Instrumentation 

BPEL Compile r 

Figure 5.1: Architecture of the BPEL compiler 

In order to instrument the new contents, the BEPL compiler needs to know where to put 

them. This job is done by using JDOM. JDOM is a JAVA toolkit which maps an XML file 

into java "Document Object Model". By using the API provided by JDOM, an XML file 

can be easily manipulated in JAVA after it is parsed by an XML parser. In JDOM, each 

XML element is an instance of JAVA class: Element. Each XML attribute is an instance 

of JAVA class: Attribute. Since the files for instrumentation are all written in XML, all the 

BPEL activities, WSDL elements, etc. can be handled as JAVA objects. 

The procedures of instrumenting different files are similar. For each element in the file, 

its attributes are examined. The BPEL compiler then determine if new content needs to be 

inserted prior to or after this element. Since everything is element in JDOM, new contents 

are inserted as elements too. If an element contains sub-elements, the same procedure is 

repeated. 
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5.2 Instrumentation of partnerLinkType and partnerLink for the 

Broker 

partnerLinkType and partnerLink are constructs defined in BPEL standards which 

describe the relationship between the BPEL process and the partner Web services. A 

partnerLinkType defines at most 2 partners who form a relationship. The definition 

includes their roles and their WSDL portType. Usually the partnerLinkType is defined in 

the WSDL file of the BPEL process. A partnerLink is an instance of a partnerLinkType. 

In a BPEL file, each partner service should have a partnerLink defined. 

When a BPEL programmer designs a process, he is not aware of the existence of the QoS 

broker. From the BPEL process point of view, the QoS broker is just another partner Web 

service which can be invoked during the execution. This is why we need to add the 

definitions of its partnerLinkType and partnerLink. Normally, the partnerLinkType is 

instrumented into the WSDL file, and the partnerLink is instrumented into the BPEL file. 

Figure 5.2 and Figure 5.3 give examples of partnerLink and partnerLinkType defined for 

a QoS broker. 

<partnerl_ink name="QoSBrokerPLT"> 
<partnerRoleendpointReference="static"> 

<wsa:EndpointReferencexmlns:s="http://www.openuri.org/"> 
<wsa:Address>http://localhost:7001/WebProjectQoSBroker/QoSBroker.jws</wsa:Addr 

ess> 
<wsa:ServiceName 

PortName="QoSBrokerSoapPort">s:QoSBroker</wsa:ServiceName> 
</wsa:EndpointReference> 

</partnerRole> 
</partnerLink> 

Figure 5.2: Example of partnerLink for a QoS Broker 
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<plnk:partnerLinkType name="QoSBrokerPLT"> 
<plnk:role name="QoSBrokerProvider"> 

<plnk:portType name="ns1 :QoSBroker" /> 
</plnk:role> 

</plnk:partnerLinkType> 

Figure 5.3: Example of partnerLinkType for a QoS Broker 

5.3 Instrumentation of Probes 

We define a probe as a group of activities with the main task to invoke QoS broker Web 

service for the purpose of QoS monitoring. It is instrumented into the BPEL file. During 

the run-time, the probes are the locations where the monitor measures the QoS. For 

example, each time the execution of a partner service is completed, the QoS should be 

measured. Therefore, at least one probe should be inserted prior to and after a partner 

service invocation. We also wrap each flexPath with 2 probes so that its QoS can be 

monitored as a whole. An example of instrumenting probes into a BPEL file is shown in 

Figure 5.4. 
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Figure 5.4: Example of Probe Instrumentation 

Each probe is a sequence of BPEL activities. The brief design of a probe is shown in 

Figure 5.5. Three actions are executed in a probe. At first, a unique probe ID is generated 

and assigned to the probe. This ID is used by the QoS broker in order to identify the 

probe. The probe then invokes the QoS broker Web service. As soon as the broker is 

invoked, it measures the current QoS and decides if the adaptation should be triggered. 

This decision is included in the response which is sent back to the probe. It will be used 

to update a flag called isAdaptationRequired defined in the BPEL process. It is a variable 

that is instrumented into the BPEL file. This flag indicate whether or not the adaptation 

should be triggered. Whenever a flexPath is about to be executed, this flag is checked. If 

it is TRUE, then the BPEL process knows that a better execution path needs to be 

selected within this flexPath. 
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Figure 5.5: Design of the Probe 

Not all the probes are designed in the same way. For example, the first and the last one 

have their own tasks. Except doing the aforementioned actions, the first probe in the 

process needs to send the BPEL definition as a XML string to the broker. It is for the 

broker to understand the schema of the composition at the beginning of the execution. 

The last probe needs to collect some extra information such as the statistics of the 

performance of the execution. 

5.4 Instrumentation of pathSelector 

We define a pathSelector as a group of activities that are responsible for selecting the 

execution path of a flexPath. It is always inserted right before a flexPath. Figure 5.6 

shows the result of instrumenting probes and pathSelectors into the previous example 

which is described in Figure 5.4. 
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Figure 5.6: Instrumentation of Probes and pathSelectors 

As same as the probe, a pathSelector is a sequence of BPEL activities. Its design is shown 

in Figure 5.7. A unique pathSelector ID is generated and assigned for each pathSelector. 

Then it checks the flag isAdaptationRequired. If it is FALSE, the pathSelector will do 

nothing and the default execution path will be selected for the following flexPath. If the 

flag is TRUE, it will ask the QoS broker which path to choose. Upon receiving the 

request from the pathSelector, the broker determines the best execution path based on the 

pathSelector's location and the current QoS. 
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Figure 5.7: Design of the pathSelector 

5.5 Summary 

In this chapter, we explained the process of instrumentation which is accomplished by the 

BPEL compiler. The design of the compiler was discussed in the first section. The 

instrumentation is done by using JDOM toolkit. We then introduced the concept of probe 

and pathSelector. They are activities inserted into BPEL file for communicating with QoS 

monitor and adapter in the broker. We studied the design of them, and where they should 

be instrumented. We also discussed the instrumentation of partnerLink and 

partnerLinkType of the broker into BPEL and WSDL files. 
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Chapter 6 

A QoS Broker for Automatic Monitoring and Adaptation 

We introduced and discussed automatic instrumentation of BPEL processes in the 

previous chapter. In this chapter, we will discuss the design of the QoS broker in detail. 

As we mentioned in Chapter 4, the broker consists of 4 components: topology interpreter, 

QoS monitor, QoS adapter, and QoS database. We will study the design of each 

component in this chapter. 

6.1 Topology Interpreter 

While monitoring a running process, there are two important things that the broker needs 

to know: 1) what is the schema of this running instance? 2) Where is the current 

execution point, such as the location of the last probe and the next flexPath? This task is 

done by the Topology Interpreter. 

When the BPEL process starts its execution, the first probe will notify the broker with its 

BPEL definition. Similar to the instrumentation process, the Topology Interpreter parses 

this BPEL file by using JDOM. However, the JDOM representation is not able to provide 

details such as the locations of probes, flexPaths, etc. We therefore designed a tree data 

structure on top of the JDOM representation to represent the schema. 



Before we explain the topology abstraction, we need to understand different patterns in 

Web service composition. We have discussed the composition patterns in Chapter 2. In a 

composed Web service, the relationship between basic partner Web services can be 

sequential, parallel, conditional, or loop [Yu 2005]. [Cardoso 2002] shows that all these 

patterns can be converted into the sequential one. Therefore, this thesis focuses on BPEL 

processes containing only sequential composition. 

Now let us continue the discussion of designing the data structure that models the BPEL 

process. In this tree data structure, each node is called a section. Every section is a BPEL 

activity. The root section represents the BPEL process itself. Not all the BPEL activities 

are mapped to a section. For example, we ignore the <assign> activity since it is 

unrelated to the execution path modeling. In our research, the only changeable units in an 

execution path are invocations to partner Web services. Other activities are ignored 

during the topology modeling. 

There are three types of sections: Partner Web service invocation, sequence, and flexPath. 

The section whose type is "partner Web service invocation" represents a <invoke> to a 

single partner Web service. The section whose type is "sequence" represents a 

<sequence> activity. For structured activities, since we only handle the sequential pattern 

of the composition, the only structured activity we need to handle in the topology 

interpreter is <sequence>. The section whose type is "flexPath" represents a <flexPath> 

activity. 

A section can contain sub-sections. Therefore each BPEL activity that is mapped to a 

section may belong to other sections. If a section represents a basic BPEL activity such as 
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<invoke>, the section is a "leaf which means it can not contain any sub-sections. The 

section that represents a <sequence> may contain sub-sections, each of which represents 

an activity in the <sequence>. The sub-sections of a <sequence> are called its sequential 

sub-sections. Figure 6.1 shows an example of modeling a <sequence> activity. When the 

topology interpreter models a <sequence>, a new sequential sub-section is created for 

each segment between two adjacent probes. 

<sequence> 
<invoke ...> 
</invoke ...> 
<flexPath ...> 
</flexPath ...> 
<invoke ...> 
</invoke ...> 

</sequence> 

Type of sections 

„ 

Type of sub-sections 

o 
@ 

m 

Sequence 

Partner WS Invoc. 

flexPath 

Parallel sub-sections 

- Sequential sub-sections 

Figure 6.1: Modeling a <sequence> Activity 

For modeling <flexPath>, we define another type of sub-section called parallel sub

section. Each parallel sub-section represents an execution path of the <flexPath>. Note 

that an execution path can be either a <invoke>, or a <sequence>, or a <flexPath>. Figure 

6.2 shows an example of modeling a <flexPath> activity. 
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<flexPath> 
<execution path ...> 
<invoke ...> 
</invoke ...> 
<invoke ...> 
</invoke ...> 

</execution path ...> 
<execution path ...> 
<invoke ...> 
</invoke ...> 
<sequence ...> 
</sequence ...> 

</execution path ...> 
</flexPath> 

Type of sections 

Type of sub-sections 

o 
@ 

m 

Sequence 

Partner WS Invoc. 

flexPath 

Parallel sub-sections 

Sequential sub-sections 

Figure 6.2: Modeling a <flexPath> 

To answer the second question, we establish ownerships between a probe and its 

associated section. Also, the topology interpreter tracks the order of execution among 

sections. Therefore as long as the broker knows the ID of a probe, it knows the execution 

point of the BPEL process. Locating flexPath is handled in a similar way. 

6.2 QoS Monitor 

We monitor the QoS of a running process by using the QoS monitor in the broker. Each 

time a probe is invoked, it will notify the QoS monitor to calculate the current QoS. The 

scheme used by the calculation depends on the QoS parameters. In this thesis we study 

one dimensional QoS only and we pick response time as our QoS parameter. The QoS 
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monitor calculates t„ - ti as the response time at probe n, where tj is the time when the 

monitor gets the notification from probe i. 

Note that the response time we measure at the broker is not the same as the response time 

the user experiences. This is the limitation when using a 3rd party monitor to measure 

QoS. However we also need to know that setting up a monitor at the client side is 

generally unrealistic. 

6.3 QoS Adaptor 

The QoS Adapter plays a key role in the broker by executing two main tasks: for each 

flexPath, it has to decide whether the adaptation needs to be triggered. If the adaptation is 

necessary, it must find a better execution path in order to improve the degraded QoS. 

In order to decide if adaptation is required, the adapter needs to answer a key question: is 

the current QoS too low? If yes, the adaptation will then be triggered. Let us look at an 

example: at flexPathm, the adapter retrieves the current response time Tm from the 

monitor. If the QoS contract is Tc, then the condition to trigger the adaptation is P(Tm + 

Tf > Tc) > x, where 0 < x < 100%. Here x is the probability threshold that is set by the 

broker administrator. Tf is the future QoS which is predicted by the broker. This 

prediction is based on the historical QoS data of each partner Web service. If the broker 

has no QoS data record for a partner Web service, it will use its claimed QoS. Note that 

how to predict Tf is another subject, which is out of the scope of this thesis. 

After deciding the triggering of adaptation, the next step is to find the best alternate 

execution path. Let us continue with the aforementioned example. We need to divide Tf 
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into two parts: Tf.fpath and Tf-resH where Tf.fpath is the predicted future response time of the 

current flexPath, and Tf.rest is the predicted future response time of the rest of the process. 

Assume there are N different execution paths in this flexPath, and the adapter measures 

their predicted response time to be Tf.fpathi, ..., Tf.fpathN. Let Pn = P(Tm + Tf.fpathn + Tf.rest > 

Tc), where n = 1 ... N. Then path k will be selected as the best path if Pk <= x, and Pk is 

the greatest among all Pn which satisfies this condition. If there is more than one path 

with the same predicted response time, we randomly chose one. If no alternate path is 

able to meet the requirement, the path with the shortest predicted response time will be 

selected. The whole procedure is illustrated in Figure 6.3. 

Receive 

tf-fPath1 

BPEL 
Process 

Reply J-

tm (executed) 

tf-fPalh 
tf-fPathn 

tf-rest 

Figure 6.3: Determine the Probability of Violation of Response Time 
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Again, we only consider Response time in our research. When multiple QoS parameters 

are involved, the best execution path should have the best overall QoS. A path with the 

best QoS in one dimension is not necessary the overall best. For example, a faster 

response time is normally associated with a higher price. 

6.4 Summary 

In this chapter, we studied the design of the QoS broker which has 4 major components: 

topology interpreter, QoS monitor, QoS adapter, and QoS database. We first explained 

how the topology interpreter extracts the schema of a BPEL process by modeling its 

BPEL definition as a tree data structure. We explained how the topology interpreter tracks 

the current execution point by using the tree data structure. 

We then studied the QoS monitor and QoS adapter. In our research, they are designed to 

handle one QoS parameter only: response time. QoS monitor measures the date and time 

at every probe to calculate the latest response time. QoS adapter uses the current 

measured response time, the predicted future response time of the un-executed segment 

of the process, and the QoS contract to determine if the adaptation needs to be initiated. If 

so, it also determines which execution path is the best on the next flexPath. 

We pointed out that the algorithm used in the QoS broker depends highly on the QoS 

parameters that need to be handled. On the next chapter, we will discuss the 

implementation of the prototype tool and use a case to study our architecture. 
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Chapter 7 

A Prototype Tool and Case Study 

We implemented a prototype tool that includes a BPEL compiler and a QoS broker based 

on our architecture. We also built a few example BPEL processes and a number of 

dummy partner Web services to evaluate our proposed architecture. In this chapter we 

discuss the implementation of the prototype tool. We then use an example to do a case 

study, and analyze the result of the QoS adaptation. 

7.1 Implementation of Prototype Tool 

In our prototype tool, the BPEL compiler is written in Java. The broker and dummy Web 

services are designed and deployed through BEA WebLogic 9.2 [WebLogic]. The BPEL 

process is designed and deployed by using ActiveBPEL 3.1 [ActiveBPEL]. All the 

components run on a stand-alone computer which has Intel Pentium 4 3.0GHz CPU, 1GB 

RAM with Microsoft Windows XP SP2 as operating system. 

When designing BPEL processes, we use <switch> activity to simulate flexPath given the 

similarity between the <switch> activity and the flexPath construct. The <switch> will 

choose the execution path based on the information retrieved from the corresponding 

pathSelector. 
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7.1.1 Implement the BPEL Compiler for Automatic Instrumentation 

Three files are required by ActiveBPEL to deploy a BPEL process: a (.bpel) file, a (.wsdl) 

file, and a (.pdd) file which is a deployment descriptor. The BPEL compiler needs to 

instrument all these three files. During the instrumentation, we insert the probes, 

pathSelectors, and broker partnerLinks definition to the (.bpel) file. The partnerLinkType 

definition for the broker and the importing of the broker WSDL are instrumented in the 

(.wsdl) file. The endpoint reference for the broker partnerLink and the reference to the 

broker WSDL are instrumented in the (.pdd) file. 

7.1.2 Implement the QoS Broker 

In the broker, we implemented the three components and the database. The QoS broker is 

published as a Web service. 

<sO:portType name="QoSBroker"> 
<sO:operation name="handleRegularProbe" parameterOrder="parameters"> 

<sO:input message="s1 :regularProbeRequest"/> 
<sO:output message="s1 :regularProbeResponse"/> 

</sO:operation> 
<sO:operation name="executionPathChoosing" parameterOrder="parameters"> 

<sO:input message="s1 :executionPathChoosingRequest"/> 
<sO:output message="s1 :executionPathChoosingResponse"/> 

</sO:operation> 
<sO:operation name="handleLastProbe" parameterOrder="parameters"> 

<sO:input message="s1 :lastProbeRequest"/> 
<sO:output message="s1 :lastProbeResponse'7> 

</sO:operation> 
<sO:operation name="handleFirstProbe" parameterOrder="parameters"> 

<sO:input message="s1 :firstProbeRequest"/> 
<sO:output message="s1 :firstProbeResponse"/> 

</sO:operation> 
</sO:portType> 

Figure 7.1: Part of WSDL of the QoS Broker 
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The portType of the QoS broker Web service is defined as in Figure 7.1. In this prototype 

tool we define 4 operations for the QoS broker: 

1. handleFirstProbe: this operation handles the invocation from the first probe of a 

BPEL process. 

a) Input message: 

i. bpelDefinition (type = xs:string) 

ii. probelD (type = xs:int) 

b) Output message: 

i. none 

c) Description: The QoS broker does a few things in this operation. It asks the 

topology interpreter to model the schema of the process by analyze the BPEL 

definition which is included in the input message. It also initiates the QoS 

monitor and adapter to start managing the running instance. 

2. handleRegularProbe: this operation handles the invocation from a probe which is 

neither the first nor the last one of a BPEL process. 

a) Input message: 

i. probelD (type = xs:int) 

b) Output message: 

i. currentResponseTimelnSec (type = xs:float) 

ii. adaptationFlag (type = xs:boolean) 

c) Description: In this operation, the QoS monitor measures the current QoS 

(response time) and send it back through the output message. The QoS adapter 

asks the topology interpreter for the current execution point by passing the probe 
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ID from the input message. After knowing which part of the process has been 

executed and which has not, the adapter determines if the current QoS becomes 

unacceptable by using the measured QoS from the monitor and the QoS contract 

stored in the broker's database. If the answer is yes, the adaptation flag in the 

output message will be set to TRUE. Otherwise it remains FALSE. 

3. handleLastProbe: this operation handles the invocation from the last probe of a 

BPEL process. 

a) Input message: 

i. probelD (type = xs:int) 

b) Output message: 

i. finalResponseTimelnSec (type = xs:float) 

c) Description: Upon receiving the invocation from the last probe, the QoS monitor 

and adapter are notified to stop managing the QoS for the running instance. The 

final measured QoS (response time) is retrieved from the QoS monitor and sent 

through the output message. 

4. executionPathChoosing: this operation handles the invocation from a pathSelector 

of a BPEL process. 

a) Input message: 

i. pathSelectorlD (type = xs:int) 

b) Output message: 

i. suggestedExecutionPath (type = xs:int) 

c) Description: In this operation, the QoS adapter first uses the pathSelectorlD to 

determine the current execution point through topology interpreter. It then 
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predicts the future QoS for each execution path in this flexPath and determines 

which one is the best to suite the QoS requirement. The result is sent back 

through the output message. 

After describing the operations that is published by the QoS broker, let us discuss the 

internal implementation. We have explained how the topology interpreter models a BPEL 

process by using a tree data structure in Chapter 6. The basic unit of this model is called a 

section which represents a basic BPEL activity that forms the execution path. Figure 7.2 

shows the definition of sections in our prototype tool. 

public class Section { 
public enum Property { PUREWS, FLEXPATH, OTHER, UNKNOWN }; 
public Property property; 
public int sectionld; 
public int depth; 
public float historicalExeTime; 

// sequentialParent is only valid when containing more than 1 
public Section sequential ParentSection; 
public int noOfSequentialSubSections; 
public Section sequential PreviousSection; 
public Section sequentialNextSection; 

// The following are data for flexPath 
public Section parallelParentSection; 
public List<Section> parallelChildSections; 
// A flexPath is always structured as "probe + pathSelector + 
// the probeld is the probe at the beginning of a section. 
public int probeld; 
public int flexPathld; 
public int parallelPathld; 

sequential children 

flexPath + ...", 

Figure 7.2: Class Definition of Sections in Topology Interpreter 

To simplify the QoS prediction in the adapter, we always use the historical QoS data as 

the future QoS for the partner Web services. Based on the analysis in the previous section, 
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we also simplify the condition for triggering the adaptation as: Tm + Tf_fpath + Tf_rest > Tc * 

f, where f is a prediction factor with value from 0 to 100%. The reason of introducing this 

factor is to compensate the system overhead. We will show the impact of the factor in the 

next section. As for the QoS contract, we do not want to make it too tight or too loose 

which is rare in reality. Thus, we choose the QoS contract to be equal to the overall 

historical response time of the BPEL process. 

7.2 A Case Study 
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Figure 7.3: The Instrumented Example BPEL Process 

In order to evaluate out prototype tool, we design a BPEL process which invokes a 
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number of dummy partner Web services. This process contains a flexPath which defines 3 

different execution paths. One of the paths contains another flexPath. The default 

execution path is "invoking Web service 1 -> invoking Web service 21". 

Before deploying the BPEL process, we pass its definition files to the BPEL compiler 

and the instrumented files are generated. Figure 7.3 shows the instrumented (.bpel) file. 

Since we are focusing on response time, the dummy Web services in this example are 

designed to consume a random period of time during execution. The length of the period 

follows a Gaussian distribution with a random mean. 

In the QoS broker, the topology interpreter models the BPEL process as shown in Figure 

7.4. This interpretation allows the QoS broker to understand the schema of the process 

and all the possible execution paths. 

root process 

WS1 

Type of sections 

Type of sub-sections 

o 
m 
m 

Sequence 

Partner WS Invoc. 

flexPath 

Parallel sub-sections 

- Sequential sub-sections 

WS 2321 > WS 2322 

Figure 7.4: Modeling the Example BPEL Process in the Topology Interpreter 
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After deployed the BPEL process, we did a set of tests to evaluate the performance of 

QoS adaptation. A reasonable QoS contract was chosen for the whole test. Since the 

condition to determine the needs of adaptation is Tm + Tf.fpath + Tf.rest > Tc * f, where f is a 

prediction factor with value from 0 to 100%. In each round of testing, we chose a 

different value for f (f = 100%, 90%, 80% ...) and invoked the BPEL process for a 

number of times. At the end of each execution, the total response time is calculated by 

reading the measured value from the last probe. The value is compared with the QoS 

contract. If it is not greater than the contract, the QoS is well-maintained for this running 

instance. Otherwise, the QoS is considered as violated during the execution. 

Figure 7.5 shows the result of testing the original BPEL process. We can see that without 

adaptation, the QoS violated the contract frequently. 

30 , - _ _ _ - ^ . 

QoS Contract 

—•— Original 
Process 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 

Trials 

Figure 7.5: QoS Statistics of the Original BPEL Process 



We then instrument the process and test it again with the prediction factor in the broker 

set to 100%. The result is shown in Figure 7.6. The global QoS improved a bit compared 

to the original process. However, the contract violation still happens quite frequently. 

•QoS Contract] 

-•—With Adapt. 
f=100% 

0 & 
1 4 7 10 13 16 19 22 25 28 3134 37 40 43 46 49 

Trials 

Figure 7.6: QoS Statistics of the QoS- adaptable BPEL Process with f = 100% 

When we set the prediction factor to 90%, the result is shown in Figure 7.7. The global 

QoS improved more, and so does the possibility of QoS violation. Still, there are about 

30% of instances had un-acceptable QoS at the end. 
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Figure 7.7: QoS Statistics of the QoS- adaptable Process with f = 90% 
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Figure 7.8: QoS Statistics of the QoS- adaptable Process with f = 80% 

Figure 7.8 is the result after we set the prediction factor to 80%. Finally, we can now 

hardly see QoS contract violations. 
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By comparing the results above, we can see that our proposed adaptation architecture 

works as expected when an appropriate prediction factor is chosen. If the factor is too 

high, the prediction result will be sometimes inaccurate due to the overhead of the 

instrumentation. 

We can conclude from the test that it is critical to use an appropriate algorithm to 

determine the threshold for adaptation. The algorithm should accurately predict the QoS 

for non-executed part of the BPEL process. Also it needs to reflect the correct amount of 

overhead that the QoS broker introduced. 

The test also revealed some limitations of our architecture. The QoS is improved by 

changing the execution path, and the execution paths use different partner Web services 

and different composition logic to differentiate from each other. When deploying the 

process, if the partner Web services that can be found for a given task all have similar 

QoS performance, it is possible that none of the alternate execution paths can offer 

enough improvement on QoS. On the other hand, the same result might be seen even if 

the most optimized composition logic is used in alternate execution paths. 

7.3 Summary 

In this chapter, we looked into a specific case study to evaluate our architecture. We build 

a test bed that contains a QoS broker, a BPEL compiler, and a BPEL process which 

invokes a number of dummy partner Web services. We presented the implementation of 

the QoS broker and the BPEL compiler. We choose response time as a QoS parameter to 

be handled. 
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The test has been performed in different configurations of QoS broker. We modified the 

condition for deciding the adaptation threshold in each configuration. The result shows 

that the relationship between the adaptation algorithms used in the broker and the 

performance of the adaptation. We can achieve a very satisfactory result by tuning the 

configuration of the QoS broker. 
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Chapter 8 

Conclusion 

This chapter gives a summary of the research contributions reported in this thesis. 

Potential future work is also pointed out. 

8.1 Summary of Contributions 

In this paper we proposed an architecture for enabling dynamic QoS adaptation for 

composite Web services. Our architecture uses a broker-based scheme where a QoS 

broker manages the QoS monitoring and adaptation for BPEL processes. Our main 

contributions are: 

1. We introduced a method of generating adaptation-enabled BPEL processes through 

instrumentation. The instrumentation is done using a BPEL compiler. When the user 

provides the BPEL definition files to the BPEL compiler, it analyzes the XML 

schema of these files, and instruments the files. The new contents allow for the 

BPEL process to communicate with the QoS broker at run-time. The instrumented 

contents include: partnerLinkType and partnerLink of the broker, probes, and 

pathSelectors. We implemented a prototype of the BPEL compiler which is able to 

automatically instrument the BPEL files designed by ActiveBPEL. 

2. We proposed a new construct called flexPath for BPEL. This allows the designer to 

define multiple alternate execution paths in a BPEL process. 
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3. We built QoS broker's functionalities that are lacking in the related work. The broker 

in our architecture supports QoS monitoring and adaptation for BPEL process. Our 

broker consists of three main components: 

a) Topology Interpreter that is responsible for analyzing the schema of the process; 

b) QoS Monitor that monitors the runtime QoS; 

c) QoS Adapter that initiates the adaptation according to the QoS status. The QoS 

adaptation is achieved by changing the execution path of the BPEL process. The 

adapter is able to figure out the best execution path for a given portion of the 

process. Another functionality of the adapter is to determine the current QoS 

status. It predicts the QoS for the portion of the process that has not been 

executed yet. The predicted QoS is then used to decide if the possibility of the 

QoS violation is high enough to trigger the adaptation. 

4. We also studied the factors that might impact adaptation performance. In order to 

evaluate the architecture, we implemented the prototypes of the BPEL compiler and 

the QoS broker. An example of BPEL process has been used to test the prototypes. 

8.2 Future Work 

As future work, a few possible directions can be taken to extend our architecture to 

achieve more comprehensive functionalities and better performance: 

1. We can extend the architecture to accommodate multiple QoS parameters handling. 

This might require mostly the changes on the mechanisms for QoS monitoring, 

algorithms to measure the QoS, algorithms to predict the QoS, and algorithms to 

calculate potential QoS violations. 
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2. A thorough and complete evaluation and analysis of the architecture can be 

undertaken. 

3. We can also consider instrumenting the alternate execution paths on-the-fly by 

selecting partner Web services dynamically. One of the limitations of our 

architecture is that the alternate execution paths are defined statically at the design 

phase. The invocation of the partner Web services which form these paths are 

therefore defined statically as well. Dynamically binding to partner Web services and 

using them to form new execution path may be an approach to increase the flexibility 

of the adaptation. 
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