
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Automatic Quality of Service Adaptation for Composite

Web Services

Ming Qiao

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University
Montreal, Quebec, Canada

January 2009

© Ming Qiao, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your We Votre reference
ISBN: 978-0-494-63228-4
Our file Notre reference
ISBN: 978-0-494-63228-4

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Abstract

Automatic Quality of Service Adaptation for Composite Web Services

Ming Qiao

Quality of Services (QoS) management has become an important issue for Web services.

Indeed, QoS is becoming a crucial and a distinguishing criterion among functionally

equivalent Web services. QoS Management consists of two complementary tasks:

monitoring and adaptation. Both are very challenging because of the unpredictable and

dynamic nature of Web service composition. We are motivated to solve the QoS problem

by taking advantage of some characteristics of composite Web services, such as their

similarity to traditional workflows.

In this thesis, we propose a broker based architecture that enables dynamic QoS

monitoring and adaptation for composite Web services. Our approach consists of

dynamically changing the execution paths of composed Web services by instrumenting

the BPEL process. A new construct flexPath is introduced for supporting alternate

execution paths definition in BPEL. We developed a BPEL compiler allowing automatic

instrumentation for BPEL definition files. The BPEL process is deployed using the

instrumented definition files in order to interact with the QoS broker during execution.

The QoS broker is a key component in our architecture and is responsible of monitoring

the QoS and managing the adaptation. We propose a broker that enables runtime

monitoring of QoS, prediction of potential QoS violation, and the selection of the best

execution path of the process in order to improve QoS when needed.

We developed a prototype to evaluate our proposed architecture. A case study is also

presented through an example BPEL process and a number of partner Web services. The

performance of the QoS adaptation has been analyzed and the results showed that the

QoS of the BPEL process has been considerably adapted and improved comparing to the

original one. In addition, we analyzed the major factors that affect the performance of

our prototype tool.

IV

ACKNOWLEDGEMENTS

I wish to express my gratitude and thanks to my supervisors Dr. Ferhat Khendek and Dr.

Rachida Dssouli. Thank you for providing help, support, and assistance all the time,

especially during the last stage of the research when email was the only method of

communications. Dr. Khendek, I have learned a lot from your suggestions, ideas, and

teachings. Your perpetual energy and enthusiasm in research have always motivated me.

Dr. Dssouli, thank you for your guidance and advices. Your understanding and

encouragement helped me go through the difficult times. I also want to thank Dr. Roch

Glitho for your valuable comments during the TSE Lab meetings. You helped me explore

research from a different perspective, which is more industry-oriented.

I would like to take this opportunity to thank Dr. Mohamed Adel Serhani, Joana Sequeira

Torreira da Silva, and everyone in the TSE lab. Thank you for all the fruitful discussions

which inspired me a lot. I appreciate all the help you provided from paper writing to

software tools.

I would also like to acknowledge the financial support from Natural Sciences and

Engineering Research Council of Canada (NSERC), Ericsson Canada Inc. and from

PROMPT Quebec.

This thesis would not have been possible without the immense support I have been

getting from my family. Thank you for believing in me from the beginning to the end

without any doubt. The deepest gratitude goes to my wife and my parents for all your

help, caring and love. To you, I dedicate this work.

Table of Contents

LIST OF FIGURES xi

LIST OF ACRONYMS AND ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1 INTRODUCTION TO THE RESEARCH DOMAIN 1

1.2 PROBLEM STATEMENT 3

1.3 GOALS AND MOTIVATIONS 4

1.4 THESIS CONTRIBUTIONS 5

1.5 ORGANIZATION OF THE THESIS 5

CHAPTER 2: WEB SERVICES: COMPOSITION, ADAPTATION AND QOS 8

2.1 WEB SERVICES 8

2.1.1 Definition and Architecture of Web Services 8

2.1.2 Web Service Technology Stacks 10

2.1.2.1 SOAP: Simple Object Access Protocol 12

2.1.2.2 WSDL: Web Services Description Language 12

2.1.2.3 UDD1: Universal Description, Discovery, and Integration 12

2.1.3 Web Service Composition and BPEL 13

2.2 QoS FOR WEB SERVICES 18

2.2.7 QoS Specifications 19

2.2.2 Managing QoS for Web Services 20

2.2.3 QoS of Composite Web Services 22

2.3 QoS ADAPTATION 24

2.4 SUMMARY 26

vi

CHAPTER 3: STATE-OF-THE-ART IN QOS ADAPTATION FOR WEB
SERVICES 27

3.1 QOS-ADAPTIVE WEB SERVICES 28

3.1.1 Web Service Replication 28

3.1.2 Web Service Relocation 30

3.1.3 Dynamic Web Service Invocation 31

3.2 QOS-ADAPTIVE WORKFLOWS 33

3.3 QoS ADAPTATION FOR COMPOSITE WEB SERVICES 35

3.3.1 Dynamic Partner Web Services Re-selection 35

3.3.2 Dynamic Modification of Composition Schema 38

3.3.3 Automated Planning 40

3.3.4 AOP Method 41

3.4 A BROKER-BASED ARCHITECTURE OF QOS MANAGEMENT FOR WEB SERVICES 42

3.5 SUMMARY 44

CHAPTER 4: AN ARCHITECTURE FOR QOS ADAPTATION FOR
COMPOSITE WEB SERVICES 46

4.1 FLEXPATH: AN EXTENSION FOR BPEL 46

4.2 THE OVERALL ARCHITECTURE FOR QOS-ADAPTIVE COMPOSITE WEB SERVICES 48

4.3 PROCEDURE OF QOS ADAPTATION BASED ON THE PROPOSED ARCHITECTURE 51

4.4 SUMMARY 53

CHAPTER 5: BPEL PROCESS INSTRUMENTATION 54

5.1 AUTOMATIC INSTRUMENTATION USING JDOM 54

5.2 INSTRUMENTATION OF PARTNERLINKTYPE AND PARTNERLINK FOR THE BROKER 56

5.3 INSTRUMENTATION OF PROBES 57

5.4 INSTRUMENTATION OF PATHSELECTOR 59

5.5 SUMMARY ,61

vii

CHAPTER 6: A QOS BROKER FOR AUTOMATIC MONITORING AND
ADAPTATION 62

6.1 TOPOLOGY INTERPRETER 62

6.2 QoS MONITOR 65

6.3 QoS ADAPTOR 66

6.4 SUMMARY 68

CHAPTER 7: A PROTOTYPE TOOL AND CASE STUDY 69

7.1 IMPLEMENTATION OF PROTOTYPE TOOL 69

7.1.1 Implement the BPEL Compiler for Automatic Instrumentation 70

7.1.2 Implement the QoS Broker 70

7.2 A CASE STUDY 74

7.3 SUMMARY 79

CHAPTER 8: CONCLUSION 81

8.1 SUMMARY OF CONTRIBUTIONS 81

8.2 FUTURE WORK 82

REFERENCES 84

viii

List of Figures

Figure 2.1: Web Service Architectural Model 9

Figure 2.2: Web Service Technology Stacks (taken from [W3C 2004]) 11

Figure 2.3: A Sample BPEL Process Developed by Active Endpoints 17

Figure 2.4: Invoking the LoanAssesor Service in the Sample BPEL Process 18

Figure 2.5: Web Service Composition Patterns (taken from [Jaeger 2004]) 23

Figure 3.1: Web Service Replication Using a Gateway 28

Figure 3.2: Web Service Replication without Using a Gateway 29

Figure 3.3: Web Service Relocation 30

Figure 3.4: Dynamic Web Service Invocation 32

Figure 3.5: Dynamic Partner Web service Re-selection 36

Figure 3.6: Dynamic Modification of Composition Schema at Run-time 39

Figure 3.7: Broker-based Architecture for QoS-enabled Web services 43

Figure 4.1: Defining Alternate Execution Path in BPEL 47

Figure 4.2: Overall Architecture for QoS-adaptive Composite Web Services 49

Figure 4.3: Component Interaction of Proposed Architecture 51

Figure 5.1: Architecture of the BPEL compiler 55

Figure 5.2: Example of partnerLink for a QoS Broker 56

Figure 5.3: Example of partnerLinkType for a QoS Broker 57

Figure 5.4: Example of Probe Instrumentation 58

Figure 5.5: Design of the Probe 59

Figure 5.6: Instrumentation of Probes and pathSelectors 60

ix

Figure 5.7: Design of the pathSelector 61

Figure 6.1: Modeling a <sequence> Activity 64

Figure 6.2: Modeling a <flexPath> 65

Figure 6.3: Determine the Probability of Violation of Response Time 67

Figure 7.1: Part of WSDL of the QoS Broker 70

Figure 7.2: Class Definition of Sections in Topology Interpreter 73

Figure 7.3: The Instrumented Example BPEL Process 74

Figure 7.4: Modeling the Example BPEL Process in the Topology Interpreter 75

Figure 7.5: QoS Statistics of the Original BPEL Process 76

Figure 7.6: QoS Statistics of the Original BPEL Process with f = 100% 77

Figure 7.7: QoS Statistics of the QoS- adaptable Process with f = 90% 78

Figure 7.8: QoS Statistics of the QoS- adaptable Process with f = 80% 78

X

List of Acronyms and Abbreviations

AOP:

BPEL:

BPML:

CORBA:

DOM:

DTD:

FTP:

HTTP:

HTN:

HOP:

JMS:

OASIS:

OS:

QOS:

RAM:

RMI:

RPC:

SMTP:

SOA:

SOAP:

UDDI:

Aspect-Oriented Programming

Business Process Execution Language

Business Process Modeling Language

Common Object Requesting Broker Architecture

Document Object Model

Document Type Definition

File Transfer Protocol

Hypertext Transfer Protocol

Hierarchical Task Network

Internet Inter-Orb Protocol

Java Message Service

Organization for the Advancement of Structured Information Standards

Operation System

Quality of Service

Random-access memory

Remote Method Invocation

Remote Procedure Call

Simple Mail Transfer Protocol

Service-Oriented Architecture

Simple Object Access protocol

Universal Description, Discovery, and Integration

W3C: World Wide Web Consortium

WS: Web Service

WSCI: Web Services Choreography Interface

WSDL: Web Services Description Language

WSFL: Web Services Flow Language

WWW: World Wide Web

XML: Extensible Markup Language

Xll

Chapter 1

Introduction

This chapter presents a brief introduction to the domain, the problem statement, the

motivations and the contributions of this thesis.

1.1 Introduction to the Research Domain

The concept of service is now familiar to the computer science community. Thinking in

terms of service offers a new point of view for designing computer applications. A rough

definition of service would be to provide a "black-box" application that can be invoked

by humans and other applications. SOA (Service-Oriented Architecture) defines how

services communicate with each other. OASIS (Organization for the Advancement of

Structured Information Standards) defines SOA as a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different ownership

domains [OASIS 2006]. Based on SOA, a service exposes its functionalities to other

services through interfaces by using defined protocols. The services are loose-coupled

which means the interaction among services is independent to the underlying

technologies used by implementing the services such as the operation systems,

programming languages, etc.

Among many approaches that can implement the service-oriented architecture, for

instance, Jini, CORBA, etc., Web service technology has gained broad academic and

industry acceptance. An application can be defined as a Web service which is accessible

via standard internet protocols. Web service protocols are defined on top of a common

data exchange standard which is XML. These protocols allow the communication among

services to be platform independent. More specifically, how to interact with a Web

service is defined by its messages and operations rather than its implementation details.

This makes achieving the loose-coupling among Web services easier. In recent years,

Web service has become a comprehensive solution for helping enterprises to create

reusable services.

One of the key aspects of Web services is that a service can be composed of other

services. Assembling multiple Web services into a new service is called Web service

composition [Srivastava 2003] [Aalst 2003]. The composition can be defined using Web

service composition languages. Defining a composition includes providing logics of

interactions between the composed service and the Web services that participate in it

[Khalaf 2003]. Some composition languages are workflow-based which makes the task

of composing Web services similar to defining a workflow.

Since Web services wrap applications into services, the QoS of Web services would be

one of the major concerns for service clients. QoS of Web services includes service

quality such as latency, availability, timeliness and reliability [Chen 2003]. Service

providers face challenges to guarantee the end-to-end QoS for their Web services given

the dynamic and the flexible environments of service execution. Therefore, it is critical

for them to have QoS management support to assure the QoS provided to the clients.

1.2 Problem Statement

As mentioned in the previous section, QoS plays an important role for both service

providers and requestors. A Web service should not only be manageable from the

functionality perspective but also from non-functional aspects perspective. However,

QoS for Web services is not managed in a well-structured manner nowadays. There are

several aspects that should be included in a successful QoS management architecture.

QoS specification, measurement, selection, monitoring, verification, negotiation, and

adaptation are among those aspects.

A composite Web service is a special kind of Web service. Besides the issue of having a

well-defined QoS management architecture, it is also facing its own QoS challenges

because of its composite nature. For instance, figuring out the relationship between the

composite QoS and the QoS of participating services is an important question that needs

to be addressed.

Among many aspects in the QoS management, QoS adaptation is a topic that has not

been studied thoroughly. In the Web service domain, this actually means the building of a

Web service, which is QoS-adaptable. The QoS of a Web service constantly changes

during run-time due to the dynamic variations of, for example, resource availability,

traffic, etc. This kind of fluctuation can make the QoS completely unacceptable.

3

Therefore a QoS-adaptable Web service is defined as a service that is able to adapt to the

QoS variation (e.g. degradation) at run-time. This is exactly the problem we are

addressing in this thesis: define an architecture that enables automatic QoS adaptation for

Web services. More specifically, we focus on composite Web services.

1.3 Goals and Motivations

Existing Web service standards do not support QoS adaptation. A QoS-adaptive Web

service is capable of maintaining its QoS at an acceptable level. Without the QoS

adaptability, QoS contracts would be meaningless to the clients, especially in Web

services' rapid changing environment.

There are several goals that we want to achieve in this thesis. First, the adaptation should

be automatic, which means it should happen without human's intervention. The

procedure of monitoring QoS, making decision of when to trigger the adaptation, and the

action of adaptation should all be executed automatically.

Second, we believe that the QoS adaptation should be triggered as soon as the QoS

violation is expected to happen at run-time. The point here is the adaptation should not

wait until the QoS requirement has already been violated. In other words, our goal is to

build a pro-active adaptation technique.

The third goal to achieve is that the QoS adaptation should not stop the composite Web

service execution. This is a drawback of some existing adaptation techniques. For

example in [Canfora 2005], the service execution has to stop in order to re-plan the

composition for improving the QoS. We believe that a good adaptation scheme for Web

4

services should be able to dynamically improve the QoS of the current running instance

without stopping it.

1.4 Thesis Contributions

To solve aforementioned issues, we propose an architecture that enables automatic QoS

monitoring and adaptation by dynamically changing the execution paths of composed

Web services when necessary. Our main contributions include:

1. A broker-based architecture supporting QoS-adaptable composite Web service

2. A QoS broker design which is capable of interpreting the schema of composite Web

services, monitoring the QoS, predicting the potential QoS violation, and triggering

QoS adaptation.

3. A new activity for BPEL called "flexPath" which enables the definition of alternate

execution path in BPEL. Note that BPEL is a language for defining Web services

composition that will be introduced in the next chapter.

4. A mechanism for automatically instrumenting BPEL processes for the purpose of

adaptation.

1.5 Organization of the Thesis

The second chapter gives an overview of Web services, the QoS issue for Web services,

and the QoS adaptation in particular. We introduce the Web service paradigm in general

at the beginning. Then, we discuss in detail Web services composition. We discuss the

5

issue of managing QoS for Web services in the second half. Similarly, we discuss the

issue for Web services in general first before moving to the case of composite Web

services. Finally, we discuss the problem of QoS adaptation.

The third chapter studies the related work in the area of QoS adaptation. We discuss a

broker-based approach to manage QoS for Web services, on which our proposed

architecture is based. Then, we introduce approaches of creating flexible workflows. We

introduce and discuss related work on QoS adaptation, including approaches for general

Web services and composite Web services. We also discuss a broker-based WS-QoS

management architecture which provides a foundation to our work. A summary of the

state-of-the-art in this area concludes this chapter.

The fourth chapter describes our proposed architecture in detail. We introduce the main

components of the architecture and explain their respective roles. We also describe the

procedure of the QoS adaptation for a typical composite Web service execution.

The fifth chapter introduces our proposed approach of BPEL instrumentation. The

mechanism of automatic instrumentation is described in this chapter as well as how to

instrument different parts of a BPEL description.

The sixth chapter describes our proposed QoS broker design. We explain the design of

the three main modules in the QoS broker: the Topology Interpreter, the QoS Monitor,

and the QoS Adaptor. For each module: the detailed design of the main features, the

interface and interaction with other components are introduced and discussed.

The prototype implementation, a case study, and the analysis are provided in the seventh

chapter. This chapter discusses the implementation architecture of the prototype tool and

explains in detail a case study. Details on the test environment, some performance

measurements and analysis are also provided.

The last chapter concludes the thesis by summarizing the contributions and pointing out

possible future work.

7

Chapter 2

Web Services: Composition, Adaptation and QoS

This chapter contains three sections. Section 1 discusses the Web service paradigm

including Web service composition. Section 2 studies the QoS issue for Web services.

Section 3 extends the discussion into one of the most important QoS aspects, i.e. QoS

adaptation.

2.1 Web Services

Web service technology allows different applications to be exposed as services via the

network and interact with each other through standardized XML-based techniques. In this

section, we will answer the following questions: What is Web service? What is the

architecture of Web services? What are the major standards of Web services and what are

their roles respectively?

2.1.1 Definition and Architecture of Web Services

Based on the definition by W3C [W3C 2004], a Web service is a software system

designed to support interoperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format, for instance WSDL (Web

Services Description Language). Other systems interact with the Web service in a manner

prescribed by its description using SOAP (Simple Object Access protocol) messages,

8

typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards.

The concept of Web service is always being confused with Web applications. The main

difference between them is: Web services are designed for machine-use, while Web

applications, such as a JavaScript application which can be accessed from a Web page,

are mainly designed for human-use. Due to the fact that Web services are platform-

independent and can be requested and invoked directly by other applications, they are

generally more modular, self-aware, reusable, and manageable than Web applications

[Papazoglou 2004].

Figure 2.1 illustrates the Web service architecture. There are three main components in

this architecture: service registry which acts as a searchable directory for published

service interfaces, service provider who creates, implements, and announces the service,

and service requestor who uses the service.

Service Registry
(UDDI)

\

•Bind-

\

* Service Provider

Figure 2.1: Web Service Architectural Model

9

In this architecture, the service providers describe the interfaces and properties of their

Web services by using WSDL. They then register the services into service registries

using UDDI (Universal Description, Discovery, and Integration). Service registries act as

Yellow Pages allowing the service requestors to discover services they want. After

finding a service, the requestor obtains the necessary information to access the service

such as the address of the service's WSDL file from the registry. Then, the requestors can

invoke the services using the SOAP in either asynchronous messaging or RPC (Remote

Procedure Call) mode.

As illustrated in Figure 2.1, the operations among the three roles in the Web service

architecture are defined as publish, find, and bind:

1. Publish: This operation consists of two parts: defining the service interface through

WSDL by the service provider, and registering the service into service registry

through UDDI.

2. Find: The service requestor uses this operation to find the service. It contains

discovering the service from UDDI, and finding the location for service invocation.

3. Bind: The actual run-time service invocation happens on the bind operation. In this

operation, the service requestor initiates the request to the service provider, reaches an

agreement with the provider about service running, and invokes the service.

2.1.2 Web Service Technology Stacks

Web services involve a lot of technologies. W3C illustrates the Web service technology

stacks as in Figure 2.2 in its working group note [W3C 2004]. A number of technologies

10

from different layers have become key Web service standards which define how to

design, deploy, and run Web services.

s
E
C
u
R

T
Y

OB
CI

- I
<D n
•a
3
o_
o
n

F*

p
in

3 u

Processes
D'SiDvery. Angrerption Choreography

Descriptions
. " I . . - • • I . • * ! • I • 1

Messages

SOAP Extensions
Reliability, Correlation, Transactions.

SOAP

Communications
HTTP, SMTP, FTP, JMS, HOP,

Figure 2.2: Web Service Technology Stacks (taken from [W3C 2004])

Figure 2.2 provides a bottom-up view for Web service technologies. Starting from the

bottom layer, many ubiquitous network protocols can be used as the communication

protocols to carry Web services. This is one of the most important advantages of Web

services that they are able to be accessed over different networks. From this layer up, a

few of XML-based standards including SOAP, WSDL, and UDDI define the Web service

messaging, description, and discovery. They are now well-accepted as core standards of

Web services. The highest layer consists of standards that define the logics and strategies

of business processes, such as languages for Web service compositions. In this section,

we discuss the core standards in detail: SOAP, WSDL, and UDDI.

n

2.1.2.1 SOAP: Simple Object Access Protocol

W3C defines SOAP as a technology that provides a standard, extensible, composable

framework for packaging and exchanging XML messages. It also provides a convenient

mechanism for referencing capabilities (typically by use of headers). [W3C 2004]

As illustrated in Figure 2.2, SOAP is a communication protocol defined on top of the

network layer. It defines how to transfer XML-formatted messages by using a

request/response communication paradigm. A SOAP message usually contains an

envelope, a header and a body. SOAP messages can be carried by a variety of network

protocols: such as HTTP, SMTP, FTP, RMI/IIOP, or a proprietary messaging protocol.

2.1.2.2 WSDL: Web Services Description Language

WSDL is an XML-based language to describe Web services. It describes a Web service

as a collection of endpoints/ports operating on messages containing either document-

oriented or procedure-oriented information based on standard messaging protocol such as

SOAP. An input message and/or an output can be defined for each operation. WSDL

separate the abstract definitions of operations and messages from their concrete use

which include the network protocols they bound and message formats.

2.1.2.3 UDDI: Universal Description, Discovery, and Integration

UDDI is a specification for Web service discovery. It describes a registry of Web

services and programmatic interfaces for publishing, retrieving, and managing

information about services described therein. The specification defines services that

12

support the description and discovery of (1) businesses, organizations, and other Web

services providers, (2) the Web services they make available, and (3) the technical

interfaces which may be used to access and manage those services. [OASIS 2004]

2.1.3 Web Service Composition and BPEL

One of the main advantages of Web services is the possibility of composing them for

creating new ones. The logic of a composite Web service is implemented by individual

services which participate in the composition. This is similar to the traditional workflow

which is defined as an aggregation of activities [Dustdar 2005].

Defining Web service composition is still an open research area where a large number of

approaches have been proposed. Many of composition approaches use programming

languages to link Web services and define the transition among them. [Milanovic 2004]

points out that a composition approach should meet several requirements including

nonfunctional properties, connectivity, correctness, scalability and automaticity:

1. Nonfunctional properties: Nonfunctional properties such as QoS should be addressed

in the composition description since the composing services are running in a highly

dynamic distributed environment. Unfortunately, QoS specifications have not been

integrated into most of today's approaches. When composing a service, these

approaches only focus on how to meet the user's functional requirement.

2. Connectivity: A composition links multiple Web services together. These Web

services can be running in different platforms or connected through different network

technologies. Connectivity refers to the messaging and interfacing among the

13

composed service and partner services. A good composition approach should provide

seamless message exchanging among different parties in the composition.

3. Correctness: The correctness means the truthfulness of the composed service's

specifications and properties, such as security or dependability.

4. Scalability: The composition framework should scale with the number of the

participating Web services in the composition.

5. Automaticity: The composition should be done with minimum human intervention. It

is a complex topic about how to achieve high level of automaticity on service

composition. Most existing mechanisms such as BPEL are still considered as manual

composition.

Existing well-known Web service composition languages include BPEL, WSFL,

XLANG, WSCI, and BPML. WSFL (Web Service Flow Language) which is proposed by

IBM and XLANG which is proposed by Microsoft are considered as the first generation

of the composition languages. They are similar in terms of composition functionality, but

they are not compatible. Researchers from IBM, Microsoft, BEA Systems, SAP, and

Siebel Systems then developed the second generation composition language called BPEL

which stands for Web Services Business Process Execution Language. This language

combines WSFL, XLANG and BEA Systems' WSCI (Web Services Choreography

Interface). It is now seen as the de-facto standard of the composition language.

BPEL is an XML language that specifies Web service based business process behavior.

Multiple Web services can be composed into a BPEL process which can be deployed as a

new Web service. The BPEL process is defined to achieve a certain task by interacting

14

with different Web services. These Web services are called partners in BPEL. The

designer needs to define interactions between the process Web service and each partner

Web service. In BPEL, this interaction is modeled as partnerLinkTypes. A

parterLinkType normally defines the roles of two partners and the relationship between

them. Note that the BPEL process itself is considered as a partner as well.

BPEL can define two different types of processes: abstract process and executable

process. An abstract process is only a conceptual definition of a process which is not

meant to be executed. It is not used much so far. In this thesis, when talking about BPEL

processes we always refer to executable processes.

The BPEL process description is defined in an XML file which conforms to the BPEL

standard. The latest BPEL standard is WS-BPEL 2.0 standardized by OASIS at 2007

which is defined in [OASIS 2007]. This standard specifies a process schema as a set of

activities connected by links. BPEL defines two types of activities: structured activities

and basic activities.

1. Structured Activities:

• Flow: defines parallel and control dependencies processing

• ForEach: defines processing multiple branches

• If: defines conditional behavior

• Pick: defines selective event processing

• RepeatUntil: defines repetitive execution

• Sequence: defines sequence processing

• While: defines repetitive execution

15

2. Basic Activities:

• Assign: updating variables and partner links

• Empty: doing nothing

• Exit: immediately ending a process

• ExtensionActivity: adding new activity types

• Invoke: invoking Web service operations

• Receive: providing Web service operations

• Reply: providing Web service operations

• Throw: signaling internal faults

• Rethrow: propagating faults

• Wait: delayed execution

A typical BPEL process life cycle consists of three phases: design phase, deployment

phase and execution phase. The designer defines the process schema in the BPEL

definition file, the process interface in the WSDL file, and optionally the deployment

detail in deployment description files at the design phase. These files are then deployed

on the service provider's Web server. At runtime phase, a process instance is created

when a user invoke the process. An instance is terminated when the execution is

completed.

Let us look at an example of BPEL process now. Figure 2.3 shows a loan approval

process which is a sample included in ActiveBPEL V3.1 [ActiveBPEL]. This process

receives a customer's loan request for a certain amount. It returns the result of whether

the loan is approved to the customer.

16

ReceiveCustomerRequestForLoanAmt

\ j f ; InvokeLoanApprover

\J~

- # ~

i InvokeLoanAssessor

4 p - " j AssignYestoAccept

«...
AcceptMessageToCustomer

Figure 2.3: A Sample BPEL Process Developed by Active Endpoints

In this example, two partner Web services participate in the BPEL process: a

LoanAssessor service, and a LoanApprover service. The LoanAssessor takes the

customer's credit information as input, and returns the risk of this customer as output.

The LoanApprover receives the customer's credit information and reply with the result of

loan approval.

The business logic is defined as follows: The process is started by receiving the

customer's request which includes his credit information. If the requested amount is more

than or equal to 10,000 dollars, the request is sent to the LoanApprover service. If it is

less than 10,000 dollars, the request is sent to the LoanAssessor service. In this case, the

LoanAssessor evaluates the risk of this customer and return the result to the BPEL

process. If the risk is low, the loan is approved and the final result is sent back to the

customer. Otherwise, the request is sent further to the LoanApprover. The result of the

LoanApprover is considered as the final result which is then replied to the customer.

Figure 2.4 gives a snippet of the BPEL definition of this process.

<bpel:invoke inputVariable="request" name=
outputVariable="risk"partnerLink="assessor'

<bpel:targets>

"lnvokeLoanAssessor"operation="check"
portType="lns:riskAssessmentPT">

<bpel:target linkName="receive-to-assess"/>
</bpel:targets>
<bpel:sources>

<bpel:source linkName="assess-to-approve">
<bpel:transitionCondition>$risk.level!

</bpel:source>
= 'low'</bpel:transitionCondition>

<bpel:source linkName="assess-to-setMessage">
<bpel:transitionCondition>$risk. level =

</bpel:source>
</bpel:sources>

</bpel:invoke>

= 'low'</bpel :transitionCondition>

Figure 2.4: Invoking the LoanAssesor Service in the Sample BPEL Process

2.2 QoS for Web Services

The need for QoS support for Web services is driven by two demands [Tian 2004]: From

the service requestor's perspective, they expect to experience good service performance,

such as fast response time, low cost, etc. A service with poor QoS is always unacceptable

even if it satisfies user's functional requirement. From the service provider's perspective,

offering QoS-aware Web services is able to attract more customers and therefore gaining

more profit. It is an important differentiator for providing a better service compared to the

competitors. For example, they can provide the same service in different quality levels to

18

meet different level of demands from customers. For services which are demanding on

some QoS dimensions, QoS guarantees can be offered to the customers. For instance, IP

phone service requires the latency to be less than a certain level. To provide good QoS,

service provides normally need to find an optimal relation between user satisfaction and

resource utilization.

Many researchers tend to believe that the main issue of Web service QoS at this moment

is the QoS specification and management. QoS specification is the issue of defining the

QoS parameters for Web services, such as response time, cost, etc. QoS management is a

generic term which consists of different management functions such as QoS monitoring,

adaptation, etc.

2.2.1 QoS Specifications

QoS can be measured from different dimensions. A QoS parameter is a property of the

service in a given dimension which is observed by the Web service users [Menasce 2002].

Defining the QoS parameters is fundamental for designing QoS-aware Web services. It

allows the user to specify their QoS requirement, and evaluate the service's QoS

performance. This section describes a number of important QoS parameters of Web

services.

1. Response Time: It is the time a Web service takes to react to a given request. From

the user's perspective, response time can be measured from the moment when the

service request is sent until the moment when the response is received. Normally,

faster response time is considered as better.

19

2. Availability: It is the proportion of time that a Web service in usable state.

Availability is usually measured for a random observation period. It is often

calculated as the ratio of the up time of a service to the total observation period.

Higher availability indicates higher degree of operability of a service which is usually

considered as better.

3. Throughput: Throughput is the average rate of service requests that are successfully

handled. Due to the limitation on resources, higher throughput always causes longer

response time [Kalepu 2003]. It is the service provider's task to balance between

these two QoS dimensions.

4. Reliability: Reliability is the probability that a Web service handles its requests as

required within a maximum period of time [Kalepu 2003].

5. Security: Security is to measure the degree of safety that a Web service can provide.

It could contain many safety-related properties, such as authentication mechanisms,

confidentiality, data integrity, protection from vicious attacks, etc. [Menasce 2002].

6. Cost: It is the price that a user needs to pay for using a Web service. Normally, users

expect lower cost. However, providing high quality of services always requires higher

cost from service providers. A good provider should try to offer their services with

low cost without sacrificing too much on other QoS dimensions.

2.2.2 Managing QoS for Web Services

QoS-enabled Web Services provisioning is achieved through a number of phases, each of

which is an important function of QoS management [Serhani 2004]:

1. QoS specification: QoS specification defines dimensions of quality that the users are

20

interested for a certain Web service. It is the foundation of QoS management system.

Normally, the user can pay attention to multiple QoS parameters at the same time.

Modeling each of them and finding out their relationship should be done prior to

managing the QoS for a service. The user can specify an overall QoS requirement

before invoking the service. The QoS management system should be able to break

down this requirement for each individual QoS parameters.

2. QoS measurement: QoS measurement defines algorithms and procedures to measure

a QoS parameter at run-time. Choosing a method to measure a QoS parameter

depends on its characteristics. It is an important step to be executed when verifying

or monitoring the QoS.

3. QoS selection: The service requestor should be able to select the service from

different candidates based on QoS requirement. In this case, the user's requirement

needs to be mapped to service provider's QoS model. Then the selection is often

modeled as a multi-criteria decision task [Serhani 2004]. For a composite Web

service, QoS selection can be also referred to the task that planning a service

composition for a certain QoS goal.

4. QoS negotiation: It is the phase when the service requestor and the service provider

try to reach a QoS agreement. It could happen before the requestor bind to the service

or after the agreement is violated during the execution. It is a challenge for both

parties to be able to negotiate without human's intervention. Normally, the

negotiation is guided by pre-defined policies.

5. QoS monitoring: The run-time QoS should be monitored regularly. The service

provider need to keep track of the actual QoS in order to decide whether the QoS

21

adaptation is required, and record the overall QoS performance after the execution is

done. For each individual QoS parameter, appropriate method, frequency, and

locations should be chosen for monitoring.

6. QoS adaptation: QoS adaptation is to maintain the run-time QoS as guaranteed in

the agreement. Normally it involves the action to improve a degraded QoS. In some

cases, the service provider might want to decrease the QoS in order to free some

resources. QoS adaptation is initiated by comparing the actual QoS with a threshold.

It will be further discussed later in this chapter.

2.2.3 QoS of Composite Web Services

The QoS of a composite Web service can be modeled as an aggregation of QoS of each

individual partner services [Menasce 2004]. Understanding the relationship between the

global QoS and QoS of participating services can help to achieve higher degree of

flexibility when managing the QoS for composite services. For example, the QoS of

composition might be able to be altered by changing the composition logic. In order to

study this relationship, we first need to understand service composition patterns.

[Jaeger 2004] introduces seven patterns for Web service composition based on the

workflow patterns in the workflow management. Each of these patterns represents a basic

structural element of composition, such as a sequence, a loop, or a parallel execution. The

logic of a composition can therefore be modeled as a single or a combination of multiple

patterns. Figure 2.3 is taken from [Jaeger 2004] to illustrate these seven patterns.

22

Figure 2.5: Web Service Composition Patterns (taken from [Jaeger 2004])

CP1 is a simple sequential pattern. CP2 is a loop pattern where the service(s) execution is

repeated for certain times. CP3 to CP7 are five parallel patterns. CP3 is XOR split

followed by a XOR join. CP4 is AND split followed by an AND join. CP5 is AND split

followed by an m-out-of-n join. CP6 is OR split followed by OR join, while CP7 is OR

split followed by an m-out-of-n join. Understanding composition patterns can help us

abstract the composition logic, especially when using workflow-based language such as

BPEL to define the composition.

Since a composition can always be modeled by these patterns, studying the aggregation

of QoS of for each pattern allow us to model the QoS of the composition. A number of

works [Jaeger 2004] [Cardoso 2002] [Menasce 2004] [Yu 2005] have been done to

23

model the aggregation QoS for different QoS parameters, such as response time,

availability, cost, etc. based on composition patterns.

2.3 QoS Adaptation

In a service-oriented environment, a QoS-adaptive service is one which is able to adapt

itself to the change in QoS. The term QoS-adaptive should not be confused with QoS-

aware. A QoS-aware service is one that can provide different levels of QoS to cope with

the change in the service execution environment. However, QoS-adaptive means

maintaining the initial QoS agreement if possible. When the agreement has been violated

or is to be violated, QoS adaptation is triggered. There are a few crucial aspects required

to be studied when designing an adaptation scheme:

1. Who should initiate the QoS adaptation? In most cases, QoS adaptation is triggered

by the service provider who is responsible for maintaining the service agreement.

However, the client can trigger the adaptation as well under certain business

requirements.

2. What is the level of automation of QoS adaptation? Ideally, the adaptation can be

triggered and maintained without human's intervention. However, it is a difficult goal

to achieve when dealing with highly flexible and autonomous Web services. That is

why a lot of existing adaptation schemes still require partially or fully attention from

human.

3. Which QoS parameters are considered for adaptation? When multiple QoS

parameters are specified for a service, either part of them or all of them can be

specified as the targets of adaptation. In this case, multiple QoS parameters construct

24

a multi-dimension space which represents the scope of overall QoS. This space can be

divides as two different areas: accepted QoS, and un-accepted QoS. The goal of

adaptation is to try to keep the overall QoS in the area of accepted QoS.

4. What are the conditions to trigger the adaptation? The conditions are normally

boundary values of QoS. It could be thresholds of minimum values or maximum

values. Again for multiple QoS parameters, these values that represent the overall

QoS should be mapped to each individual QoS dimension.

5. When should the adaptation be triggered? Obviously, if the overall QoS degrades

below the threshold, the adaptation should be triggered immediately. However, a pro

active scheme can be implemented so that the adaptation can be triggered in advance

to prevent the QoS become un-acceptable. In this case, the threshold is usually still

acceptable QoS value. Note that in some cases the QoS adaptation needs to be

triggered as well when the QoS "outperforms". In this thesis, we call the QoS is

degraded either it is becoming too bad or too good.

6. What is the QoS goal to achieve for a given adaptation? A goal should be set as a

condition to terminate the adaptation in order to minimize the waste of resources.

Theoretically, the adaptation should not bring the QoS beyond this goal.

7. What method is used to achieve the adaptation goal? Any mechanism that can alter

the QoS can be chosen for adaptation. For example, load balancing can be used at a

server to improve the throughput of a video playback service.

25

2.4 Summary

In this chapter, we introduced the necessary background knowledge for our research. We

explained the concept of Web services, the Web service architecture, and the main

technologies of Web services. We discussed the Web service composition and the

existing composition languages. We also looked into BPEL in detail.

Next, we studied the QoS issue of Web services. We discussed a few of most important

QoS parameters of Web services. Then, we discussed the QoS management for Web

services, and the involved activities such as QoS monitoring, adaptation, etc. As a special

case of Web service, QoS for composite Web services was studied at the end of this

section. We studied different composition patterns and their aggregation QoS.

In the last section, we discussed QoS adaptation by breaking it down to a number of sub-

tasks. In the next chapter, the related work of QoS adaptation for Web services will be

reviewed.

26

Chapter 3

State-of-the-Art in QoS Adaptation for Web Services

A lot of work has been done for QoS adaptation in networking. Several approaches have

been proposed for adapting QoS at network or middleware layers [Nahrstedt 2001].

Existing solutions include task scheduling, network flow control, resource management,

etc. Resource management consists of methods, for instance, bandwidth allocation on

Web servers, power management, etc. There are also other approaches that focus on QoS

adaptation on certain application domains [Nahrstedt 2001]. For example, adaptive media

coding and compression schemes can be used to create QoS-adaptive video applications.

Supporting QoS adaptation at middleware layer has become a hot topic in recent years. In

such cases, managing QoS requirement and adaptation polices can be easily separated

from applications' functionality implementation [Mujumdar 2005].

Supporting QoS adaptation for Web services is still immature as Web service is a

relatively new area. In this chapter, we discuss the related work in the area of Web

services first. Given the similarity between Web service composition and traditional

workflow management, we discuss how the problem is proposed to be solved for

workflow before we move on to Web service composition. In the third section, we review

four approaches proposed for composite Web services. Finally, we look into an important

work which is a broker-based solution for QoS management for Web services.

3.1 QoS-adaptive Web services

There are three types of techniques to support QoS adaptation for Web services in the

literature: Web service replication, Web service relocation, and dynamic Web service

invocation. All these approaches are generic solutions for Web services. For example,

they treat different types of Web services as the same, either is a composite one or a basic

one.

3.1.1 Web Service Replication

The basic idea of Web service replication is generating a number of replicas for a given

Web service so that the service requestor can choose different replicas to bind according

to the execution environment change. Existing approaches include [Keidl 2003] [Silva

2004] [Zegura 2000].

Service
Requestor

Figure 3.1: Web Service Replication Using a Gateway

There are two different patterns to deploy the Web service when using service replication.

Figure 3.1 illustrates the pattern that makes use of a gateway Web service. Instead of bind

28

Bind Gateway

Load Balancing

Web Service

I 1 Replica 1 j

•

"V->'-.__ ; Replica !
": N j

to the service directly, the service requestor binds to the gateway. The gateway is

responsible for dispatching the requests to different replicas.

Client
Application

Service
Selector

Service Requestor

Bind

Web Service

Replica 1

Replica N

Figure 3.2: Web Service Replication without Using a Gateway

Another deployment pattern is shown in Figure 3.2. Instead of using a gateway service to

select the replicas, a service selector is implemented at the service invocation layer of the

client software. It decides which replica to bind based on different policies and directly

binds to it. [Silva 2004] is an example that utilizes this pattern.

At the execution time, the service requestor can choose more than one replica to bind at

the same time. In this case, load balancing are normally required to distribute the traffic

to multiple replicas.

Replicas can be either offered by the service provider or found through UDDI. If

provided by the service provider, replicas are just service instances which are duplicated

from the original service and distributed to different hosts. Replicas can also be found

through UDDI for a given tModel. At run time, the service user can query a registry to

find out all the service instances (replicas) against a certain tModel.

29

The selection of replicas is another important issue of service replication. It is often

modeled as a selecting the best set of replicas for binding. If QoS of a replica degrades, it

is de-selected and a new set of replicas is re-selected.

Most of the existing approaches of service replication focus on developing algorithms for

replica selection, replica load-balancing mechanisms, etc. They are normally motivated

by improving the fault-tolerant ability of Web services. The adaptation is triggered by

service faults. However, we believe that the adaptation should happen not only in the case

of invocation failure, but also when the QoS will be potentially violated.

3.1.2 Web Service Relocation

Web service relocation is a method to transport a service instance from one host to

another one (location) at run time without the service requestor's awareness. Similar to

the service replication, the purpose of this technique normally is to improve the ability of

fault tolerance of the Web services. The service is relocated as soon as the current host is

detected in fault status which is illustrated by Figure 3.3.

Service
Requestor

Bind
Proxy

„ - -

' • " - - - . _

Web Service

\ Inst
i

^

ar

V

,ce A ; Host 1

7

^ Instance * \ H o s t 2

Figure 3.3: Web Service Relocation

30

Fluid [Pratistha 2004] is a framework supporting Web service relocation. It allows Web

services to be nomadic so that they can transport to different destinations for adapting to

the changes in the surrounding environment. It is implemented by using mobile agent

technology. A proxy is built between the service provider and requestor. The requestor

can retrieve the location information from the proxy. [Pratistha 2004] points out the main

requirements of service relocation: reactivity, transportability, and adaptability.

1. Reactivity: is the ability of a Web service to trigger the relocation automatically

when sensing the need from surrounding changes.

2. Transportability: is the ability that allows a Web service to be relocated to a different

host.

3. Adaptability: allows a service to detect its context such as available resources of the

destination host, and adapt itself by reconfigure its structure to this context.

Both Web service relocation and replication alter the QoS by redeploy different resources

of the service provider for the running services. Some future improvements that

researchers are currently working on include improving the performance, scalability, and

extending to different type of Web services.

3.1.3 Dynamic Web Service Invocation

Based on the existing Web service standards, the selection of services can not be changed

once they are invoked at runtime. Improving QoS by dynamically choosing different

Web services to execute is the goal of this method. It is illustrated in Figure 3.4.

In service relocation or replication, the requestor always binds to the same service. These

techniques improve the QoS by changing the internal implementation of the service.

However, the method of dynamic service invocation moves the binding from one service

to another one. Therefore an important requirement of this method is that the new service

should have the same functional signature as the original one.

UDDI

! Web service A :
-• i

' i

Swappable

- ~ " i

Web service B !
i
i

Figure 3.4: Dynamic Web Service Invocation

[Yu 2004] proposes an architecture which extends Web service architecture to support

dynamic service invocation. They introduce a proxy between the service requestor and

the Web services. The proxy has a few functionalities: it monitors the status of the current

running service. When the status changes, for example, the current service is temporary

unavailable, the proxy retrieves a list of candidate services with the same function from

UDDI. A new service is then chosen from them and the proxy starts to dispatch the traffic

to it.

QoS adaptation can be achieved by dynamically binding to a new service with better QoS

if the current one can not provide an acceptable QoS. One of the main challenges of this

32

Service
Requestor

DlflU

approach is the performance issue. The migration from one service to another should be

fast and reliable. In addition, the service execution can not be stopped during the change.

3.2 QoS-Adaptive Workflows

Since composing Web services is similar to designing a workflow [Aalst 2003], we

discuss some existing approaches to support QoS adaptation for workflow in this section.

In Workflow management, flexibility is a workflow's ability to modify its execution in

order to meet certain goals. If maintaining QoS is the goal, being flexible can be a way to

make the workflow QoS adaptable. In order to understand flexibility, a few concepts

need to be explained first. The business process of a workflow is modeled by its

type/schema [Petra 1999]. It defines the workflow by using workflow specification

language at design phase. At the execution phase, workflow instances are instantiated

from the workflow type.

A summary of the existing strategies for supporting flexible workflow is given in [Petra

1999]. They summarize two ways to achieve flexibility: by selection, or by adaptation:

1. Flexibility by selection: A number of alternate execution paths are defined in the

workflow type. At runtime, the execution path can be altered to one of these pre

defined alternatives. This strategy is called flexibility by selection. It can be further

divided into two methods:

a) Advance Modeling: At design time, every concrete alternate execution path is

defined.

b) Late Modeling: At design time, only abstract "black boxes" are defined for

the alternate execution paths. The concrete paths are defined at runtime.

2. Flexibility by adaption: Instead of defined at design phase, alternate execution paths

are generated on the fly at runtime and inserted into type definition or part of the

instances. Flexibility by adaption contains two methods as well:

a) Type adaption: The change does not affect running instances. Only the type

definition is modified. Therefore, the future instances will use the new workflow

definition.

b) Instance adaption: Opposite to type adaption, instance adaption changes the

running instances immediately. This change is only applied to individual

instance.

We need to point out that type adaption and instance adaption are not black or white.

Some recent researches combine them together to achieve better performance. In these

works, instance changes are monitored at run-time. Those appeared with high frequency

are collected and a type level change is made to reflect them.

If we compare these two strategies, flexibility by selection can be considered as

"anticipated" since the freedom offered to the execution is pre-defined at design time.

However, flexibility by adaption gives unanticipated freedom to the execution which only

response to the runtime variation. Although flexibility by adaption is more flexible, it is

expected to have worse performance due to the overhead introduced at run-time.

As we mentioned at the beginning of this section, flexibility can be used to develop QoS-

adaptable workflows. [Klingemann 2000] proposed a framework to achieve this. At

34

design time, alternate execution paths are inserted into the workflow schema definition.

On the other hand, the QoS goal is specified along with other functional specifications of

the workflow. At runtime, the possibility of successful fulfilling the QoS goal for each

possible execution paths is calculated based on the runtime monitored QoS. The most

optimized one is automatically chosen to meet the goal.

Although this approach is more focused on the QoS specification and the optimization

algorithm of path selection, the idea of improving QoS by changing the execution path at

run-time inspires us to solve the problem in the domain of Web service composition.

3.3 QoS Adaptation for Composite Web services

In this section, we review the state-of-the-art of supporting QoS adaptive composite Web

services. Since it is an evolving area, there are not many approaches that have been

proposed. Plus, none of them provide a comprehensive solution. Based on the strategy

used for QoS adaptation, we divide the existing works into 4 groups: 1) dynamic partner

Web services re-selection, 2) dynamic modification of composition schema, 3) automated

planning, and 4) AOP (Aspect-Oriented Programming) method. These 4 types of

approaches will be studied in this section.

3.3.1 Dynamic Partner Web Services Re-selection

Partner Web services are the basic units that form the composition. Based on the current

standards, the composition schema is developed at the design phase. During this stage,

which partner Web service should be selected for each task has decided. Current way of

composition does not offer any flexibility to change a partner Web service at run-time.

35

However, achieving this kind of flexibility can improve the QoS when, for instance, a

partner service is temporarily unavailable or it cannot offer its advertised QoS at run-time.

This is what motivates the research of dynamic partner service re-selection. We use

Figure 3.5 to show this method.

Composite
Web service

Selection
Proxy

d) (c2) (c 3

Candidate Web services

Partner
Web service

Figure 3.5: Dynamic Partner Web service Re-selection

For each partner Web service, a number of alternate services are selected to be the

candidates who are ready to be chosen during the run-time. Candidate services can be

found at the design phase when developing the composition, or at run-time. Usually, the

candidate service should have the same portType as the original partner service while

potentially providing different level of QoS. Finding the candidate services is normally

done by a proxy service. During the run-time, when a partner service needs to be re-

36

selected, the best candidate service is found and swapped with the current one. This task

can be also fulfilled by the proxy service.

[Karastoyanova 2004] proposes a mechanism called "find and bind" to support partner

service re-selection. They introduce a new activity find_bind for BPEL. Before the

invocation of each partner service, a find_bind is executed. Within this activity, the

UDDI registry is queried and a list of candidate services is retrieved. Then based on

certain policies, the best candidate is chosen and the subsequent invocation activity will

bind to it. This approach can provide an optimized service selection for every task.

However, the overhead introduced by find_bind is not negligible.

Another approach is proposed in [Canfora 2005]. Unlike the previous work, this approach

will not trigger the re-selection unless the overall QoS becomes un-acceptable. When the

re-selection is triggered, the execution stops. Which part of the composition has not been

executed is determined. Then the best candidate service is chosen for each remaining

partner service to maximize the overall QoS. After the re-binding is done, the service

execution is restored. This approach is able to provide good flexibility and the overall

QoS goal is taken into account. However, stopping the execution for the re-selection is

not acceptable in many cases.

[Patel 2003] proposes an architecture called WebQ. Instead of assigning a single partner

service to a task, a set of candidate services is assigned. Load balancing is used to

distribute traffic to different candidates. When a candidate service is detected providing

poor QoS, it will be de-selected and another set of candidates will be chosen to provide

best possible QoS. This work is focused on designing the selection algorithm. It does not

provide enough detail for the adaptation procedure.

A middleware approach is introduced in [Zeng 2004]. Similar to [Canfora2005], they re-

plan the selection of all the partner services which are about to be executed during the

run-time under the consideration of overall QoS. However, they also focus only on

selection algorithm.

The last work we would like to discuss is TRAP/BPEL which is proposed in [Onyeka

2007]. It is a framework which utilizes the transparent shaping programming model to

provide self-healing and self-optimization to BPEL process. They are more interested in

the programming detail of proxy implementation for service re-selection.

3.3.2 Dynamic Modification of Composition Schema

Although changing individual partner services provides flexibility for QoS adaptation,

sometimes we need to change the composition logic to gain bigger impact on the overall

QoS.

38

Composite
Web service

Figure 3.6: Dynamic Modification of Composition Schema at Run-time

The modification of the composition schema can happen at any phase. If it happens at

non-execution phase, all the new instances will use the modified schema. A modification

that happens at execution phase is shown in Figure 3.6. When the QoS is becoming

unacceptable, the modification is triggered. A more optimized schema is designed for the

rest of the composition which is normally the un-executed portion right after the current

execution point. The new schema which might contains new logic or partner Web

services will replace the old one.

[Karastoyanova 2004] introduces a new activity called <evaluate> for BPEL. This

activity is designed for 2 purposes: changing the portType of a partner Web service at

39

run-time, and changing the composition schema at run-time. In order to change the

schema dynamically, the basic idea is to use the <evaluate> activity to wrap the portion

of the schema that is supposed to change. Also, assign a template which is a piece of

reusable code to the substitution schema in the <evaluate> activity. At runtime, the user

has to provide concrete parameters for the template to form a new schema to replace the

wrapped portion of <evaluate> activity. The need of user intervention may interrupt the

service execution which is not expected by the user sometimes. Also their approach

requires extending the current BPEL standards.

[Yu 2005] also proposes an approach. In this work, the designer specifies alternate

execution paths that can replace part of or all the composition. A composition manager

then find out all the possible execution plans based on user's input prior to the execution.

At runtime, when a service encounters problems, the execution engine select the best

backup path from the stored execution plan and switch to it for the rest of the process.

Although this work enables the composite Web service to change its schema on the fly,

the change is triggered only by the error of a partner service.

3.3.3 Automated Planning

Automated planning is a branch of artificial intelligence. The main concern is about

generating action sequence to meet certain goals. Given its similarity with Web service

composition, some researchers have tried to solve the composition issue by using

automated planning tools.

An example is the approach that is proposed in [Vukovic 2004]. They use a planner tool

called SHOP2 to change the composition logic when the monitored context environment

changes. SHOP2 is a HTN (Hierarchical Task Network) based planner. Its main feature is

implementing an abstract task by decomposing it and forming an execution plan. The

context and composition goal are fed into SHOP2. It generates a SHOP2 plan which is

then transformed into a BPEL schema. The proposed architecture contains a monitor

which constantly monitors the context. When the context changes, a new SHOP2 plan

will be generated and transformed into another BPEL schema. Although their work is not

designed for adapting QoS change, the core concept of how to solve the adaptation issue

is similar.

Changing the composition logic through planner is an interesting idea. However, there

are still a lot of challenges to be overcome such as how to fully map the Web service

description to the domain of planning.

3.3.4 AOP Method

AOP is a programming paradigm which aims at separating crosscutting concerns with

other functionalities. There are three key concepts in the AOP model: join point, pointcut

and advice. They are the basic units to define an aspect.

1. Join points are points in the execution of a program. For example, join points in

object-oriented programs can include method calls, constructor calls, field read/write,

etc.

2. In order to modularize crosscutting concerns, pointcut is introduced as a set of related

join points.

3. An advice specifies certain codes that run at a join point. It can be executed before,

after, or around a join point. The advice specifies when and what behavior must be

executed at the selected join points.

Since an aspect can be virtually anything, a number of existing approaches [Charfi 2004]

[Courbis 2004] [Verheecke 2004] use AOP to develop QoS-adaptive composite Web

services. Generally, these approaches define new composition logic as aspects and insert

them into the composition definition. If the composition schema needs to be modified at

run-time for adapting QoS change, the execution engine can just activate / de-activate the

appropriate aspects. The advantage of AOP is that advices can be executed before, after

or around a given point. It is therefore possible to add, delete, or replace activities in a

composition dynamically.

Using AOP to enable the dynamic change of composition logic has become an active

topic although AOP itself is immature and lack of tool support. These approaches

normally require modification to the current composition execution engine.

3.4 A Broker-based Architecture of QoS Management for Web

Services

In this section we discuss an approach of Web service QoS management proposed by M.

A. Serhani et al. [Serhani 2005] [Serhani 2006]. The reason we discuss it in a separate

section is that their idea of using QoS broker to do the QoS monitoring and adaptation

has been adopted by our research. Their architecture is illustrated in Figure 3.7.

Find

UDDIe

Publish

Service
Requestor

Bind

.̂ QoS negotiation

Service
Provide

- v V.

'QoS monitoring
and adaptation

Figure 3.7: Broker-based Architecture for QoS-enabled Web services

Different from the standard Web service architecture, they introduce a QoS broker and

replace the traditional UDDI registry with a QoS-enabled registry called UDDIe [Ali

2003]. UDDIe allows service providers to publish their services with non-functional

specifications. It enables that a service is selected based on QoS constraints. The key

component is their architecture is the QoS broker. The broker is responsible for QoS

provisioning and management for Web services. It is a third-party Web service that can

be found through UDDI.

When a service provider publishes its Web service to UDDIe, it needs to receive a

certification from the QoS broker to prove the authenticity of the service's claimed QoS.

If a service requestor look up a service through UDDIe, it can use the result of the

certification to ensure the trustworthy of the service's QoS. When the requestor chooses

43

the service, the QoS broker initiates a QoS negotiation between the requestor and the

provider. Once both of them reach an agreement of the QoS level, the negotiation is done

and the agreement is stored into the broker's database. The requestor can then bind to the

service. During the execution, the broker is responsible for monitoring the run-time QoS.

If the QoS violates the agreement, a QoS adaptation is initiated by the broker until the

QoS becomes acceptable again. If the adaptation fails, a re-negotiation will be triggered

so that a new agreement can be reached.

This architecture is reported in [Serhani 2005] which inspires us to use a similar broker in

our architecture to solve QoS issues. Their work has focused on basic Web services, i.e.

Web services which do not result from a composition. We adapt the concept of QoS

broker and propose a new design to support composite Web services. Another

architecture, CompQoS, introduced in [Serhani 2006] supports composite Web services.

However, it is more focused on QoS management and monitoring, while we focus on

QoS adaptation.

3.5 Summary

In this chapter we reviewed the state-of-the-art of QoS adaptation for Web services. We

first gave a brief review of the research works on QoS adaptation. Then we studied the

approaches for supporting QoS-adaptive Web services. Three different types of solutions

were discussed, which include Web service replication, Web service relocation, and

dynamic Web service invocation. These solutions are generic for Web services. They do

not address the specific requirements of composite Web services.

Since our research focus on composite services, the related works were studied in the

next section. We summarized these approaches into 4 different methods: dynamic partner

Web services re-selection, dynamic modification of composition schema, automated

planning, and AOP method. For each type of method, its advantages and disadvantages

were studied.

The last section discussed a broker-based architecture for QoS management. This work

introduced an idea of solving QoS for Web services by using a third party broker. The

broker allows QoS negotiation, monitoring and adaptation to be integrated into the Web

service architecture. Our approach adopts this idea to solve the issue for composite Web

services.

We mentioned the requirements of supporting QoS adaptation for composite Web

services in Chapter 1. Through reviewing the state-of-the-art, we found that none of the

related work is able to meet all these requirements. From the next chapter, we will

introduce our proposed approach and explain how it solves these requirements.

45

Chapter 4

An Architecture for QoS Adaptation for Composite Web

Services

Since BPEL is considered as the de-facto standard of composition languages, we focus on

the Web service composition that is defined by BPEL in our work. The architecture we

propose enables automatic QoS monitoring and adaptation by dynamically changing the

execution paths of composed Web service when needed. In order to integrate the

definition of alternate execution paths into BPEL, we propose a new construct called

flexPath for BPEL which will be discussed in the first section. In the second section, we

will introduce the overall architecture and its major components. A typical procedure of

how QoS monitoring and adaptation works based on our architecture will be shown in the

third section.

4.1 flexPath: An Extension for BPEL

Current BPEL standard only supports one execution path. Once the BPEL process is

defined at the design phase, there is only one possible path for the process to be executed.

In order to provide flexibility into the process execution, we introduce the concept of

alternate execution path into process definition which is shown in Figure 4.1.

As we can see in Figure 4.1, the original execution path is a sequential execution of

activity W, X, Y, and Z. Then we add one alternate path for activity Y. It is a sequential

46

execution of activity A and B. In this example, the process now contains 2 possible

execution paths: WXYZ, or WXABZ. The changeable portion is Y/AB which is wrapped

by a new construct called flexPath. Therefore, a flexPath defines a segment of process

where multiple execution paths are defined. Among these paths, one of them is assigned

as the default path. The other paths are all backups which can be switched to at run-time.

original execution path
alternate execution path

Figure 4.1: Defining Alternate Execution Path in BPEL

A question might be brought up at this point: current BPEL standard defines construct

such as <switch> to allow the definition of possible multiple branches that the process

make take. Is it doing the same job as flexPath? Similar question has been answered in

the domain of traditional workflow management. Conceptually, <switch> in BPEL

language represents an or-split/join structure. From the programming perspective,

flexPath is similar to an or-split/join structure. However, [Klingemann 2000] points out

47

that from the workflow perspective, they are different, only the chosen path in an or-

split/join is considered as a "correct" path and the decision is made based on the

evaluation of a predicate and cannot be influenced, while the flexPath has the opposite

characteristics.

In the rest of the thesis, the term flexPath refers to the segment in the BPEL process that

is wrapped in a flexPath structure.

4.2 The Overall Architecture for QoS-adaptive Composite Web

Services

Our proposed architecture is based on the usage of a third party QoS broker. This idea is

brought from the work of Serhani et al. as we mentioned in Chapter 3. The QoS broker is

responsible for managing the QoS and can be exposed as a Web service. In our

architecture, however, the broker is specifically designed to monitor the QoS of a

composed Web service and managing the QoS adaptation for it when needed. Figure 4.2

illustrates our proposed architecture.

48

Q o S Broker
Web Service

Topology
interpreter

QoS
Monitor

QoS
Adapter

>S§|is!W&S?

1
V

Service
Requestor

s

,

-

Partner
Web Services

': VVSiv;.

WS21

WS221

WS222

W S 3

1 flexPath

BPEL
Compi ler

Figure 4.2: Overall Architecture for QoS-adaptive Composite Web Services

The architecture consists of five main components: Service requestor, BPEL process,

partner Web services, BPEL compiler, and QoS broker:

1. Service requestor is the customer that invokes the composite Web service.

2. BPEL process is the composed Web service published by the service provider.

3. Partner Web services are the basic units that form the composition of the BPEL Web

service. They can be published by the same service provider who publish the BPEL

process, or other service providers.

4. BPEL compiler is a tool for instrumenting the BPEL process. After a BPEL process is

designed, it needs to be instrumented to make it adaptation-enabled. Without the

instrumentation, the BPEL process will not be able to be managed by the QoS broker.

49

5. QoS broker is published as a Web service responsible for managing the QoS of BPEL

processes. It mainly interacts with the BPEL process during the run-time to monitor

its QoS and change its execution path when the QoS is too poor. It also interacts with

the service requestor and the partner Web services. As mentioned in [Serhani 2005],

each service needs to get a certification from the QoS broker to verify their claimed

QoS before they are published in UDDI. Therefore, for each partner Web service,

there should be at least 2 pieces of data stored in the broker's database: its claimed

QoS, and its actual QoS based on its past performance statistics. The broker also

needs to communicate with the service requestor for tasks like QoS negotiation

[Serhani 2005]. After a successful negotiation, the QoS agreement is stored in the

broker's database. It is a key reference for the broker to decide whether the adaptation

should be initiated at runtime. The main components of the QoS broker include

topology interpreter, QoS monitor, QoS adapter, and QoS database. They will be

explained in detail later.

Note that UDDI registry is not included in our architecture. It is because that we do not

need it to participate into the task of QoS monitoring and adaptation. It is preferable that

the service providers publish their composite Web services into a QoS-enabled registry

such as UDDIe. In that case, the broker can directly get the QoS information of each

service from the registry.

50

4.3 Procedure of QoS Adaptation Based on the Proposed

Architecture

We introduced the overall architecture and its main components in the previous section.

In this section, we describe how the BPEL service adapts to the QoS goal based on this

architecture. Figure 4.3 describes how the components interact with each other.

Service
Requestor

QoS Broker BPEL Process I Partner Web
Services

BPEL Compiler

1: Define the workflow with flexPath

2: Certify its claimed QoS

3: Response with the certification result

, 4: Request for instrumentation

5: Response with adaptation-ready version

6: Initate the QoS negotiation

with the service prqvider

6: Response of negotiation

11: Bind
- ^ T n

* i 12: Initiate the workflow execution

13: Resquest for QoS management

14: QoS monitoring
u >
15: Initiate the QoS adaptation

16: Nbtify with the result of execution

Figure 4.3: Component Interaction of Proposed Architecture

51

1. During the design phase, the BPEL process designer finds all the segments inside the

process that can be replaced by alternate execution paths. He defines a flexPath

wrapping each segment with all the possible alternate execution paths.

2. Before publishing at the UDDI registry, all the services including partner Web

services and the BPEL service itself need to get a certification from the QoS broker.

The QoS broker stores the QoS information of these services.

3. The BPEL process is then sent to the BPEL compiler for instrumentation with new

activities which interact with the broker. The service provider then use the

instrumented BPEL definition files which are considered as adaptation-enabled to

deploy on the server.

4. Before the service requestor binds to the BPEL Web service, the broker starts the

negotiation between them in terms of QoS. Once an agreement is reached, the QoS

contract is stored into the broker's database.

5. The service requestor binds to the BPEL service.

6. At the execution phase, an instance of the BPEL process is instantiated whenever a

request is received from the requestor.

7. As the BPEL process starts to execute, it sends the BPEL definition files to the

broker. The broker abstracts the topology from the definitions, and starts the adapter

and monitor to manage the QoS of the execution.

8. During the execution, the QoS monitor measures the QoS at certain places in the

process. As soon as the QoS is considered as unacceptable, the adapter will trigger

the adaptation. It finds out the next flexPath to be executed, and calculates the best

execution path among all the alternate paths. The result of path selection is sent to

52

the BPEL process. The BPEL process switches to the new path according to the

notification from the broker.

9. After a successful execution, the broker updates the historical QoS data of each

partner Web service by using its QoS results.

4.4 Summary

In this chapter, we discussed our proposed architecture. We introduced our extension to

BPEL which is a construct called flexPath to support alternate execution paths in the

BPEL definition. Our solution is changing the execution path of the BPEL process during

the run-time in order to adapt to QoS degradation.

The overall architecture was discussed in section 2. We use a QoS broker to monitor the

QoS and manage the adaptation for the BPEL process. The process is instrumented by a

BPEL compiler before deployment so that it is able to be managed by the broker. The

main components of the architecture and their roles were studied in this section. In the

next section, we studied the interaction among these components. From the next chapter,

we will discuss the design of each component in our architecture.

53

Chapter 5

BPEL Process Instrumentation

As we mentioned in the previous chapters, the BPEL process needs to be instrumented in

our architecture. We discuss the procedure of instrumentation in this section. Describing

a BPEL process usually contains a number of files. There should be at least a BPEL

definition file, a WSDL file, and a file to define the deployment details. In our

architecture, we design a BPEL compiler which takes these files as input and

automatically modifies them. The content added to these files is responsible for

communicating with the broker at run-time to fulfill the task of QoS monitoring and

adaptation. Mainly, there are three things that are inserted by the BPEL compiler:

partnerLinkType and partnerLink of the broker, probes, and PathSelectors. The design of

BPEL compiler will be discussed in the first section. The instrumentation of each type of

contents will be discussed in the second section.

5.1 Automatic Instrumentation Using JDOM

The architecture of the BPEL compiler is described in Figure 5.1. All the files that need

to be instrumented are written in XML. These XML files are first parsed by an XML

parser. Then we use JDOM [JDOM] to model it in JAVA. After the instrumentation is

done, new XML files are generated.

nstrumented BPEL

XML Parsing *- JDOM modeling »• Instrumentation

BPEL Compile r

Figure 5.1: Architecture of the BPEL compiler

In order to instrument the new contents, the BEPL compiler needs to know where to put

them. This job is done by using JDOM. JDOM is a JAVA toolkit which maps an XML file

into java "Document Object Model". By using the API provided by JDOM, an XML file

can be easily manipulated in JAVA after it is parsed by an XML parser. In JDOM, each

XML element is an instance of JAVA class: Element. Each XML attribute is an instance

of JAVA class: Attribute. Since the files for instrumentation are all written in XML, all the

BPEL activities, WSDL elements, etc. can be handled as JAVA objects.

The procedures of instrumenting different files are similar. For each element in the file,

its attributes are examined. The BPEL compiler then determine if new content needs to be

inserted prior to or after this element. Since everything is element in JDOM, new contents

are inserted as elements too. If an element contains sub-elements, the same procedure is

repeated.

55

5.2 Instrumentation of partnerLinkType and partnerLink for the

Broker

partnerLinkType and partnerLink are constructs defined in BPEL standards which

describe the relationship between the BPEL process and the partner Web services. A

partnerLinkType defines at most 2 partners who form a relationship. The definition

includes their roles and their WSDL portType. Usually the partnerLinkType is defined in

the WSDL file of the BPEL process. A partnerLink is an instance of a partnerLinkType.

In a BPEL file, each partner service should have a partnerLink defined.

When a BPEL programmer designs a process, he is not aware of the existence of the QoS

broker. From the BPEL process point of view, the QoS broker is just another partner Web

service which can be invoked during the execution. This is why we need to add the

definitions of its partnerLinkType and partnerLink. Normally, the partnerLinkType is

instrumented into the WSDL file, and the partnerLink is instrumented into the BPEL file.

Figure 5.2 and Figure 5.3 give examples of partnerLink and partnerLinkType defined for

a QoS broker.

<partnerl_ink name="QoSBrokerPLT">
<partnerRoleendpointReference="static">

<wsa:EndpointReferencexmlns:s="http://www.openuri.org/">
<wsa:Address>http://localhost:7001/WebProjectQoSBroker/QoSBroker.jws</wsa:Addr

ess>
<wsa:ServiceName

PortName="QoSBrokerSoapPort">s:QoSBroker</wsa:ServiceName>
</wsa:EndpointReference>

</partnerRole>
</partnerLink>

Figure 5.2: Example of partnerLink for a QoS Broker

56

http://www.openuri.org/
http://localhost:7001/WebProjectQoSBroker/QoSBroker.jws%3c/wsa:Addr

<plnk:partnerLinkType name="QoSBrokerPLT">
<plnk:role name="QoSBrokerProvider">

<plnk:portType name="ns1 :QoSBroker" />
</plnk:role>

</plnk:partnerLinkType>

Figure 5.3: Example of partnerLinkType for a QoS Broker

5.3 Instrumentation of Probes

We define a probe as a group of activities with the main task to invoke QoS broker Web

service for the purpose of QoS monitoring. It is instrumented into the BPEL file. During

the run-time, the probes are the locations where the monitor measures the QoS. For

example, each time the execution of a partner service is completed, the QoS should be

measured. Therefore, at least one probe should be inserted prior to and after a partner

service invocation. We also wrap each flexPath with 2 probes so that its QoS can be

monitored as a whole. An example of instrumenting probes into a BPEL file is shown in

Figure 5.4.

57

Receive

Invoke
WS2A

Invoke
WS2B

(Reply)
Original
BPEL

BPEL
Compiler

probe

Invoke
WS2A

Receive

Invoke
WS1:

Invoke
WS2B

Intrumented C Reply J
BPEL

Figure 5.4: Example of Probe Instrumentation

Each probe is a sequence of BPEL activities. The brief design of a probe is shown in

Figure 5.5. Three actions are executed in a probe. At first, a unique probe ID is generated

and assigned to the probe. This ID is used by the QoS broker in order to identify the

probe. The probe then invokes the QoS broker Web service. As soon as the broker is

invoked, it measures the current QoS and decides if the adaptation should be triggered.

This decision is included in the response which is sent back to the probe. It will be used

to update a flag called isAdaptationRequired defined in the BPEL process. It is a variable

that is instrumented into the BPEL file. This flag indicate whether or not the adaptation

should be triggered. Whenever a flexPath is about to be executed, this flag is checked. If

it is TRUE, then the BPEL process knows that a better execution path needs to be

selected within this flexPath.

58

=:sequence>

Assign a probe ID

Invoke QoS monitor

Update isAdaptationRequired

Request to QoS
broker

H|> s ® x

Response from QoS
broker

Figure 5.5: Design of the Probe

Not all the probes are designed in the same way. For example, the first and the last one

have their own tasks. Except doing the aforementioned actions, the first probe in the

process needs to send the BPEL definition as a XML string to the broker. It is for the

broker to understand the schema of the composition at the beginning of the execution.

The last probe needs to collect some extra information such as the statistics of the

performance of the execution.

5.4 Instrumentation of pathSelector

We define a pathSelector as a group of activities that are responsible for selecting the

execution path of a flexPath. It is always inserted right before a flexPath. Figure 5.6

shows the result of instrumenting probes and pathSelectors into the previous example

which is described in Figure 5.4.

59

Receive

Invoke
WS1

. (Reply
Intrumented V

BPEL

Invoke
WS2A

- - J

Invoke
WS2B

Figure 5.6: Instrumentation of Probes and pathSelectors

As same as the probe, a pathSelector is a sequence of BPEL activities. Its design is shown

in Figure 5.7. A unique pathSelector ID is generated and assigned for each pathSelector.

Then it checks the flag isAdaptationRequired. If it is FALSE, the pathSelector will do

nothing and the default execution path will be selected for the following flexPath. If the

flag is TRUE, it will ask the QoS broker which path to choose. Upon receiving the

request from the pathSelector, the broker determines the best execution path based on the

pathSelector's location and the current QoS.

60

<sequence>

Assign a
pathSelector ID

Y
¥

Invoke QoS adapter

Update execution Path ID

isAdaptationRequired = FALSE

Request to QoS
broker

Response from QoS
broker

Figure 5.7: Design of the pathSelector

5.5 Summary

In this chapter, we explained the process of instrumentation which is accomplished by the

BPEL compiler. The design of the compiler was discussed in the first section. The

instrumentation is done by using JDOM toolkit. We then introduced the concept of probe

and pathSelector. They are activities inserted into BPEL file for communicating with QoS

monitor and adapter in the broker. We studied the design of them, and where they should

be instrumented. We also discussed the instrumentation of partnerLink and

partnerLinkType of the broker into BPEL and WSDL files.

61

Chapter 6

A QoS Broker for Automatic Monitoring and Adaptation

We introduced and discussed automatic instrumentation of BPEL processes in the

previous chapter. In this chapter, we will discuss the design of the QoS broker in detail.

As we mentioned in Chapter 4, the broker consists of 4 components: topology interpreter,

QoS monitor, QoS adapter, and QoS database. We will study the design of each

component in this chapter.

6.1 Topology Interpreter

While monitoring a running process, there are two important things that the broker needs

to know: 1) what is the schema of this running instance? 2) Where is the current

execution point, such as the location of the last probe and the next flexPath? This task is

done by the Topology Interpreter.

When the BPEL process starts its execution, the first probe will notify the broker with its

BPEL definition. Similar to the instrumentation process, the Topology Interpreter parses

this BPEL file by using JDOM. However, the JDOM representation is not able to provide

details such as the locations of probes, flexPaths, etc. We therefore designed a tree data

structure on top of the JDOM representation to represent the schema.

Before we explain the topology abstraction, we need to understand different patterns in

Web service composition. We have discussed the composition patterns in Chapter 2. In a

composed Web service, the relationship between basic partner Web services can be

sequential, parallel, conditional, or loop [Yu 2005]. [Cardoso 2002] shows that all these

patterns can be converted into the sequential one. Therefore, this thesis focuses on BPEL

processes containing only sequential composition.

Now let us continue the discussion of designing the data structure that models the BPEL

process. In this tree data structure, each node is called a section. Every section is a BPEL

activity. The root section represents the BPEL process itself. Not all the BPEL activities

are mapped to a section. For example, we ignore the <assign> activity since it is

unrelated to the execution path modeling. In our research, the only changeable units in an

execution path are invocations to partner Web services. Other activities are ignored

during the topology modeling.

There are three types of sections: Partner Web service invocation, sequence, and flexPath.

The section whose type is "partner Web service invocation" represents a <invoke> to a

single partner Web service. The section whose type is "sequence" represents a

<sequence> activity. For structured activities, since we only handle the sequential pattern

of the composition, the only structured activity we need to handle in the topology

interpreter is <sequence>. The section whose type is "flexPath" represents a <flexPath>

activity.

A section can contain sub-sections. Therefore each BPEL activity that is mapped to a

section may belong to other sections. If a section represents a basic BPEL activity such as

63

<invoke>, the section is a "leaf which means it can not contain any sub-sections. The

section that represents a <sequence> may contain sub-sections, each of which represents

an activity in the <sequence>. The sub-sections of a <sequence> are called its sequential

sub-sections. Figure 6.1 shows an example of modeling a <sequence> activity. When the

topology interpreter models a <sequence>, a new sequential sub-section is created for

each segment between two adjacent probes.

<sequence>
<invoke ...>
</invoke ...>
<flexPath ...>
</flexPath ...>
<invoke ...>
</invoke ...>

</sequence>

Type of sections

„

Type of sub-sections

o
@

m

Sequence

Partner WS Invoc.

flexPath

Parallel sub-sections

- Sequential sub-sections

Figure 6.1: Modeling a <sequence> Activity

For modeling <flexPath>, we define another type of sub-section called parallel sub

section. Each parallel sub-section represents an execution path of the <flexPath>. Note

that an execution path can be either a <invoke>, or a <sequence>, or a <flexPath>. Figure

6.2 shows an example of modeling a <flexPath> activity.

64

<flexPath>
<execution path ...>
<invoke ...>
</invoke ...>
<invoke ...>
</invoke ...>

</execution path ...>
<execution path ...>
<invoke ...>
</invoke ...>
<sequence ...>
</sequence ...>

</execution path ...>
</flexPath>

Type of sections

Type of sub-sections

o
@

m

Sequence

Partner WS Invoc.

flexPath

Parallel sub-sections

Sequential sub-sections

Figure 6.2: Modeling a <flexPath>

To answer the second question, we establish ownerships between a probe and its

associated section. Also, the topology interpreter tracks the order of execution among

sections. Therefore as long as the broker knows the ID of a probe, it knows the execution

point of the BPEL process. Locating flexPath is handled in a similar way.

6.2 QoS Monitor

We monitor the QoS of a running process by using the QoS monitor in the broker. Each

time a probe is invoked, it will notify the QoS monitor to calculate the current QoS. The

scheme used by the calculation depends on the QoS parameters. In this thesis we study

one dimensional QoS only and we pick response time as our QoS parameter. The QoS

65

monitor calculates t„ - ti as the response time at probe n, where tj is the time when the

monitor gets the notification from probe i.

Note that the response time we measure at the broker is not the same as the response time

the user experiences. This is the limitation when using a 3rd party monitor to measure

QoS. However we also need to know that setting up a monitor at the client side is

generally unrealistic.

6.3 QoS Adaptor

The QoS Adapter plays a key role in the broker by executing two main tasks: for each

flexPath, it has to decide whether the adaptation needs to be triggered. If the adaptation is

necessary, it must find a better execution path in order to improve the degraded QoS.

In order to decide if adaptation is required, the adapter needs to answer a key question: is

the current QoS too low? If yes, the adaptation will then be triggered. Let us look at an

example: at flexPathm, the adapter retrieves the current response time Tm from the

monitor. If the QoS contract is Tc, then the condition to trigger the adaptation is P(Tm +

Tf > Tc) > x, where 0 < x < 100%. Here x is the probability threshold that is set by the

broker administrator. Tf is the future QoS which is predicted by the broker. This

prediction is based on the historical QoS data of each partner Web service. If the broker

has no QoS data record for a partner Web service, it will use its claimed QoS. Note that

how to predict Tf is another subject, which is out of the scope of this thesis.

After deciding the triggering of adaptation, the next step is to find the best alternate

execution path. Let us continue with the aforementioned example. We need to divide Tf

66

into two parts: Tf.fpath and Tf-resH where Tf.fpath is the predicted future response time of the

current flexPath, and Tf.rest is the predicted future response time of the rest of the process.

Assume there are N different execution paths in this flexPath, and the adapter measures

their predicted response time to be Tf.fpathi, ..., Tf.fpathN. Let Pn = P(Tm + Tf.fpathn + Tf.rest >

Tc), where n = 1 ... N. Then path k will be selected as the best path if Pk <= x, and Pk is

the greatest among all Pn which satisfies this condition. If there is more than one path

with the same predicted response time, we randomly chose one. If no alternate path is

able to meet the requirement, the path with the shortest predicted response time will be

selected. The whole procedure is illustrated in Figure 6.3.

Receive

tf-fPath1

BPEL
Process

Reply J-

tm (executed)

tf-fPalh
tf-fPathn

tf-rest

Figure 6.3: Determine the Probability of Violation of Response Time

67

Again, we only consider Response time in our research. When multiple QoS parameters

are involved, the best execution path should have the best overall QoS. A path with the

best QoS in one dimension is not necessary the overall best. For example, a faster

response time is normally associated with a higher price.

6.4 Summary

In this chapter, we studied the design of the QoS broker which has 4 major components:

topology interpreter, QoS monitor, QoS adapter, and QoS database. We first explained

how the topology interpreter extracts the schema of a BPEL process by modeling its

BPEL definition as a tree data structure. We explained how the topology interpreter tracks

the current execution point by using the tree data structure.

We then studied the QoS monitor and QoS adapter. In our research, they are designed to

handle one QoS parameter only: response time. QoS monitor measures the date and time

at every probe to calculate the latest response time. QoS adapter uses the current

measured response time, the predicted future response time of the un-executed segment

of the process, and the QoS contract to determine if the adaptation needs to be initiated. If

so, it also determines which execution path is the best on the next flexPath.

We pointed out that the algorithm used in the QoS broker depends highly on the QoS

parameters that need to be handled. On the next chapter, we will discuss the

implementation of the prototype tool and use a case to study our architecture.

68

Chapter 7

A Prototype Tool and Case Study

We implemented a prototype tool that includes a BPEL compiler and a QoS broker based

on our architecture. We also built a few example BPEL processes and a number of

dummy partner Web services to evaluate our proposed architecture. In this chapter we

discuss the implementation of the prototype tool. We then use an example to do a case

study, and analyze the result of the QoS adaptation.

7.1 Implementation of Prototype Tool

In our prototype tool, the BPEL compiler is written in Java. The broker and dummy Web

services are designed and deployed through BEA WebLogic 9.2 [WebLogic]. The BPEL

process is designed and deployed by using ActiveBPEL 3.1 [ActiveBPEL]. All the

components run on a stand-alone computer which has Intel Pentium 4 3.0GHz CPU, 1GB

RAM with Microsoft Windows XP SP2 as operating system.

When designing BPEL processes, we use <switch> activity to simulate flexPath given the

similarity between the <switch> activity and the flexPath construct. The <switch> will

choose the execution path based on the information retrieved from the corresponding

pathSelector.

69

7.1.1 Implement the BPEL Compiler for Automatic Instrumentation

Three files are required by ActiveBPEL to deploy a BPEL process: a (.bpel) file, a (.wsdl)

file, and a (.pdd) file which is a deployment descriptor. The BPEL compiler needs to

instrument all these three files. During the instrumentation, we insert the probes,

pathSelectors, and broker partnerLinks definition to the (.bpel) file. The partnerLinkType

definition for the broker and the importing of the broker WSDL are instrumented in the

(.wsdl) file. The endpoint reference for the broker partnerLink and the reference to the

broker WSDL are instrumented in the (.pdd) file.

7.1.2 Implement the QoS Broker

In the broker, we implemented the three components and the database. The QoS broker is

published as a Web service.

<sO:portType name="QoSBroker">
<sO:operation name="handleRegularProbe" parameterOrder="parameters">

<sO:input message="s1 :regularProbeRequest"/>
<sO:output message="s1 :regularProbeResponse"/>

</sO:operation>
<sO:operation name="executionPathChoosing" parameterOrder="parameters">

<sO:input message="s1 :executionPathChoosingRequest"/>
<sO:output message="s1 :executionPathChoosingResponse"/>

</sO:operation>
<sO:operation name="handleLastProbe" parameterOrder="parameters">

<sO:input message="s1 :lastProbeRequest"/>
<sO:output message="s1 :lastProbeResponse'7>

</sO:operation>
<sO:operation name="handleFirstProbe" parameterOrder="parameters">

<sO:input message="s1 :firstProbeRequest"/>
<sO:output message="s1 :firstProbeResponse"/>

</sO:operation>
</sO:portType>

Figure 7.1: Part of WSDL of the QoS Broker

70

The portType of the QoS broker Web service is defined as in Figure 7.1. In this prototype

tool we define 4 operations for the QoS broker:

1. handleFirstProbe: this operation handles the invocation from the first probe of a

BPEL process.

a) Input message:

i. bpelDefinition (type = xs:string)

ii. probelD (type = xs:int)

b) Output message:

i. none

c) Description: The QoS broker does a few things in this operation. It asks the

topology interpreter to model the schema of the process by analyze the BPEL

definition which is included in the input message. It also initiates the QoS

monitor and adapter to start managing the running instance.

2. handleRegularProbe: this operation handles the invocation from a probe which is

neither the first nor the last one of a BPEL process.

a) Input message:

i. probelD (type = xs:int)

b) Output message:

i. currentResponseTimelnSec (type = xs:float)

ii. adaptationFlag (type = xs:boolean)

c) Description: In this operation, the QoS monitor measures the current QoS

(response time) and send it back through the output message. The QoS adapter

asks the topology interpreter for the current execution point by passing the probe

71

ID from the input message. After knowing which part of the process has been

executed and which has not, the adapter determines if the current QoS becomes

unacceptable by using the measured QoS from the monitor and the QoS contract

stored in the broker's database. If the answer is yes, the adaptation flag in the

output message will be set to TRUE. Otherwise it remains FALSE.

3. handleLastProbe: this operation handles the invocation from the last probe of a

BPEL process.

a) Input message:

i. probelD (type = xs:int)

b) Output message:

i. finalResponseTimelnSec (type = xs:float)

c) Description: Upon receiving the invocation from the last probe, the QoS monitor

and adapter are notified to stop managing the QoS for the running instance. The

final measured QoS (response time) is retrieved from the QoS monitor and sent

through the output message.

4. executionPathChoosing: this operation handles the invocation from a pathSelector

of a BPEL process.

a) Input message:

i. pathSelectorlD (type = xs:int)

b) Output message:

i. suggestedExecutionPath (type = xs:int)

c) Description: In this operation, the QoS adapter first uses the pathSelectorlD to

determine the current execution point through topology interpreter. It then

72

predicts the future QoS for each execution path in this flexPath and determines

which one is the best to suite the QoS requirement. The result is sent back

through the output message.

After describing the operations that is published by the QoS broker, let us discuss the

internal implementation. We have explained how the topology interpreter models a BPEL

process by using a tree data structure in Chapter 6. The basic unit of this model is called a

section which represents a basic BPEL activity that forms the execution path. Figure 7.2

shows the definition of sections in our prototype tool.

public class Section {
public enum Property { PUREWS, FLEXPATH, OTHER, UNKNOWN };
public Property property;
public int sectionld;
public int depth;
public float historicalExeTime;

// sequentialParent is only valid when containing more than 1
public Section sequential ParentSection;
public int noOfSequentialSubSections;
public Section sequential PreviousSection;
public Section sequentialNextSection;

// The following are data for flexPath
public Section parallelParentSection;
public List<Section> parallelChildSections;
// A flexPath is always structured as "probe + pathSelector +
// the probeld is the probe at the beginning of a section.
public int probeld;
public int flexPathld;
public int parallelPathld;

sequential children

flexPath + ...",

Figure 7.2: Class Definition of Sections in Topology Interpreter

To simplify the QoS prediction in the adapter, we always use the historical QoS data as

the future QoS for the partner Web services. Based on the analysis in the previous section,

73

we also simplify the condition for triggering the adaptation as: Tm + Tf_fpath + Tf_rest > Tc *

f, where f is a prediction factor with value from 0 to 100%. The reason of introducing this

factor is to compensate the system overhead. We will show the impact of the factor in the

next section. As for the QoS contract, we do not want to make it too tight or too loose

which is rare in reality. Thus, we choose the QoS contract to be equal to the overall

historical response time of the BPEL process.

7.2 A Case Study

Invoke:
VVS21

I

Instrumented
BPEL

Invoke
WS231

Invoke
WS22

(Si
TiexPath 2

Invoke
WS2321

Invoke
WS 2322

Invoke
WS 233

[Q Reply ~)

m
Q

probe

pathSelector

default
execution path

Figure 7.3: The Instrumented Example BPEL Process

In order to evaluate out prototype tool, we design a BPEL process which invokes a

74

number of dummy partner Web services. This process contains a flexPath which defines 3

different execution paths. One of the paths contains another flexPath. The default

execution path is "invoking Web service 1 -> invoking Web service 21".

Before deploying the BPEL process, we pass its definition files to the BPEL compiler

and the instrumented files are generated. Figure 7.3 shows the instrumented (.bpel) file.

Since we are focusing on response time, the dummy Web services in this example are

designed to consume a random period of time during execution. The length of the period

follows a Gaussian distribution with a random mean.

In the QoS broker, the topology interpreter models the BPEL process as shown in Figure

7.4. This interpretation allows the QoS broker to understand the schema of the process

and all the possible execution paths.

root process

WS1

Type of sections

Type of sub-sections

o
m
m

Sequence

Partner WS Invoc.

flexPath

Parallel sub-sections

- Sequential sub-sections

WS 2321 > WS 2322

Figure 7.4: Modeling the Example BPEL Process in the Topology Interpreter

75

After deployed the BPEL process, we did a set of tests to evaluate the performance of

QoS adaptation. A reasonable QoS contract was chosen for the whole test. Since the

condition to determine the needs of adaptation is Tm + Tf.fpath + Tf.rest > Tc * f, where f is a

prediction factor with value from 0 to 100%. In each round of testing, we chose a

different value for f (f = 100%, 90%, 80% ...) and invoked the BPEL process for a

number of times. At the end of each execution, the total response time is calculated by

reading the measured value from the last probe. The value is compared with the QoS

contract. If it is not greater than the contract, the QoS is well-maintained for this running

instance. Otherwise, the QoS is considered as violated during the execution.

Figure 7.5 shows the result of testing the original BPEL process. We can see that without

adaptation, the QoS violated the contract frequently.

30 , - _ _ _ - ^ .

QoS Contract

—•— Original
Process

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Trials

Figure 7.5: QoS Statistics of the Original BPEL Process

We then instrument the process and test it again with the prediction factor in the broker

set to 100%. The result is shown in Figure 7.6. The global QoS improved a bit compared

to the original process. However, the contract violation still happens quite frequently.

•QoS Contract]

-•—With Adapt.
f=100%

0 &
1 4 7 10 13 16 19 22 25 28 3134 37 40 43 46 49

Trials

Figure 7.6: QoS Statistics of the QoS- adaptable BPEL Process with f = 100%

When we set the prediction factor to 90%, the result is shown in Figure 7.7. The global

QoS improved more, and so does the possibility of QoS violation. Still, there are about

30% of instances had un-acceptable QoS at the end.

77

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Trials

-QoS Contract

-•—With Adapt.
f=90%

Figure 7.7: QoS Statistics of the QoS- adaptable Process with f = 90%

25

to
T3
C
o
o 0)

co.
0)

E
f-
d)
u>
c
o
Q_
to
CD
DC

20

15

10

5

-QoS Contract

• With Adapt.
f=80%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Trials

Figure 7.8: QoS Statistics of the QoS- adaptable Process with f = 80%

Figure 7.8 is the result after we set the prediction factor to 80%. Finally, we can now

hardly see QoS contract violations.

78

By comparing the results above, we can see that our proposed adaptation architecture

works as expected when an appropriate prediction factor is chosen. If the factor is too

high, the prediction result will be sometimes inaccurate due to the overhead of the

instrumentation.

We can conclude from the test that it is critical to use an appropriate algorithm to

determine the threshold for adaptation. The algorithm should accurately predict the QoS

for non-executed part of the BPEL process. Also it needs to reflect the correct amount of

overhead that the QoS broker introduced.

The test also revealed some limitations of our architecture. The QoS is improved by

changing the execution path, and the execution paths use different partner Web services

and different composition logic to differentiate from each other. When deploying the

process, if the partner Web services that can be found for a given task all have similar

QoS performance, it is possible that none of the alternate execution paths can offer

enough improvement on QoS. On the other hand, the same result might be seen even if

the most optimized composition logic is used in alternate execution paths.

7.3 Summary

In this chapter, we looked into a specific case study to evaluate our architecture. We build

a test bed that contains a QoS broker, a BPEL compiler, and a BPEL process which

invokes a number of dummy partner Web services. We presented the implementation of

the QoS broker and the BPEL compiler. We choose response time as a QoS parameter to

be handled.

79

The test has been performed in different configurations of QoS broker. We modified the

condition for deciding the adaptation threshold in each configuration. The result shows

that the relationship between the adaptation algorithms used in the broker and the

performance of the adaptation. We can achieve a very satisfactory result by tuning the

configuration of the QoS broker.

80

Chapter 8

Conclusion

This chapter gives a summary of the research contributions reported in this thesis.

Potential future work is also pointed out.

8.1 Summary of Contributions

In this paper we proposed an architecture for enabling dynamic QoS adaptation for

composite Web services. Our architecture uses a broker-based scheme where a QoS

broker manages the QoS monitoring and adaptation for BPEL processes. Our main

contributions are:

1. We introduced a method of generating adaptation-enabled BPEL processes through

instrumentation. The instrumentation is done using a BPEL compiler. When the user

provides the BPEL definition files to the BPEL compiler, it analyzes the XML

schema of these files, and instruments the files. The new contents allow for the

BPEL process to communicate with the QoS broker at run-time. The instrumented

contents include: partnerLinkType and partnerLink of the broker, probes, and

pathSelectors. We implemented a prototype of the BPEL compiler which is able to

automatically instrument the BPEL files designed by ActiveBPEL.

2. We proposed a new construct called flexPath for BPEL. This allows the designer to

define multiple alternate execution paths in a BPEL process.

81

3. We built QoS broker's functionalities that are lacking in the related work. The broker

in our architecture supports QoS monitoring and adaptation for BPEL process. Our

broker consists of three main components:

a) Topology Interpreter that is responsible for analyzing the schema of the process;

b) QoS Monitor that monitors the runtime QoS;

c) QoS Adapter that initiates the adaptation according to the QoS status. The QoS

adaptation is achieved by changing the execution path of the BPEL process. The

adapter is able to figure out the best execution path for a given portion of the

process. Another functionality of the adapter is to determine the current QoS

status. It predicts the QoS for the portion of the process that has not been

executed yet. The predicted QoS is then used to decide if the possibility of the

QoS violation is high enough to trigger the adaptation.

4. We also studied the factors that might impact adaptation performance. In order to

evaluate the architecture, we implemented the prototypes of the BPEL compiler and

the QoS broker. An example of BPEL process has been used to test the prototypes.

8.2 Future Work

As future work, a few possible directions can be taken to extend our architecture to

achieve more comprehensive functionalities and better performance:

1. We can extend the architecture to accommodate multiple QoS parameters handling.

This might require mostly the changes on the mechanisms for QoS monitoring,

algorithms to measure the QoS, algorithms to predict the QoS, and algorithms to

calculate potential QoS violations.

82

2. A thorough and complete evaluation and analysis of the architecture can be

undertaken.

3. We can also consider instrumenting the alternate execution paths on-the-fly by

selecting partner Web services dynamically. One of the limitations of our

architecture is that the alternate execution paths are defined statically at the design

phase. The invocation of the partner Web services which form these paths are

therefore defined statically as well. Dynamically binding to partner Web services and

using them to form new execution path may be an approach to increase the flexibility

of the adaptation.

83

References

[Aalst 2003] W.M.P. van der Aalst, "Don't go with the flow: Web services composition
standards exposed", IEEE Intelligent Systems, Jan/Feb 2003, vol. 18, pp. 72-76.

[ActiveBPEL] ActiveBPEL open source engine, http://www.activevos.com

[Ali 2003] Ali Shaikhl Ali, Omer F. Rana, Rashid Al-Ali, David W. Walker, "UDDIe:
An Extended Registry for Web Services", Workshop on Service Oriented Computing:
Models, Architectures and Applications, IEEE Computer Society Press, Florida, USA,
January 2003.

[Canfora 2005] G. Canfora, M.D. Penta, R. Esposito, M.L. Villani, "QoS-aware
replanning of composite Web services", In the Proceedings of the IEEE International
Conference on Web Services (ICWS 2005), pp. 121-129, Florida, USA, July 2005.

[Cardoso 2002] J. Cardoso et al., "Modeling quality of service for workflows and web
service composition", Technical Report, University of Georgia, 2002.

[Charfi 2004] A. Charfi, M. Mezini, "Aspect-Oriented Web Service Composition with
A04BPEL", ECOWS, Erfurt, Germany, 2004.

[Chen 2003] H. Chen, T. Yu, K. J. Lin, "QCWS: an implementation of QoS-capable
multimedia Web services", In the Proceedings of Fifth International Symposium on
Multimedia Software Engineering, pp. 38-45, Taichung, Taiwan, 2003.

[Courbis 2004] C. Courbis, A. Finkelstein, "Towards an Aspect Weaving BPEL engine",
Third AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS, a workshop associated with AOSD'04), Lancaster, UK, 2004.

[Dustdar 2005] S. Dustdar, W. Schreiner, "A survey on web services composition",
International Journal of Web and Grid Services, vol. 1, No. 1, pp. 1-30, 2005.

[Jaeger 2004] M.C. Jaeger, G. Rojec-Goldmann, G. Muhl, "QoS aggregation for Web
service composition using workflow patterns", In the Proceedings of Eighth IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2004), pp.
149-159, California, USA, September 2004.

[JDOM] JDOM, http://www.jdom.org/

[Kalepu 2003] S. Kalepu, S. Krishnaswamy, S.W. Loke, "Verity: a QoS metric for
selecting Web services and providers", In the Proceedings of Fourth International
Conference on Web Information Systems Engineering Workshops (WISE 2003), pp. 131-
139, Rome, Italy, December 2003.

84

http://www.activevos.com
http://www.jdom.org/

[Karastoyanova 2004] D. Karastoyanova, A. Buchmann, "Extending Web Service Flow
Models to Provide for Adaptability", OOPSLA'04, Vancouver, Canada, 2004.

[Keidl 2003] M. Keidl, S. Seltzsam, A. Kemper, "Reliable Web Service Execution and
Deployment in Dynamic Environments", Technologies for E-Services, Springer Berlin /
Heidelberg, vol. 2819/2003, pp. 104-118, 2003.

[Khalaf 2003] R. Khalaf, N. Mukhi, S. Weerawarana, "Service-Oriented Composition in
BPEL4WS", In the Proceedings of the 12th International World Wide Web Conference
(WWW 2003) Alternate Track Papers and Posters, Budapest, Hungary, May 2003.

[Klingemann 2000] J. Klingemann, "Controlled Flexibility in Workflow Management",
In the Proceedings of the 12th International Conference on Advanced Information
Systems Engineering (CAiSE), pp. 126-141, Stockholm, Sweden, 2000.

[Menasce 2002] D.A. Menasce, "QoS issues in Web services", IEEE Internet Computing,
vol. 6, no. 6, pp. 72-75, Nov/Dec 2002.

[Menasce 2004] D.A. Menasce, "Composing Web Services: A QoS View", IEEE Internet
Computing, vol. 8, no. 6, pp. 88-90, Nov/Dec 2004.

[Milanovic 2004] N. Milanovic, M. Malek, "Current solutions for Web service
composition", IEEE Internet Computing, vol. 8, no. 6, pp. 51-59, Nov/Dec 2004.

[Mujumdar 2005] S. Mujumdar, "Model-Based Framework To Design QoS Adaptive
DREApplications", Vanderbilt University, 2005.

[Nahrstedt 2001] K. Nahrstedt, D. Xu, D. Wichadakul, B. Li, "QoS-aware middleware
for ubiquitous and heterogeneous environments", IEEE Communications Magazine, vol.
39, no. 11, pp. 140-148, Nov 2001.

[OASIS 2004] "Introduction to UDDI: Important Features and Functional Concepts",
http://www.uddi.org/pubs/uddi-tech-wp.pdf, OASIS, 2004.

[OASIS 2006] "Reference Model for Service Oriented Architecture", www.oasis-
open.org/committees/download.php/16587/wd-soa-rm-cd 1 ED.pdf, OASIS, 2006.

[OASIS 2007]: "Web Services Business Process Execution Language Version 2.0",
http://docs.oasis-open.Org/wsbpel/2.0/wsbpel-v2.0.pdf, OASIS, 2007.

[Onyeka 2007] O. Ezenwoye, S.M. Sadjadi, "TRAP/BPEL: A Framework for Dynamic
Adaptation of Composite Services", In Proceedings of the International Conference on
Web Information Systems and Technologies (WEBIST-2007), Barcelona, Spain, March
2007.

85

http://www.uddi.org/pubs/uddi-tech-wp.pdf
http://www.oasis-
http://open.org/committees/download.php/16587/wd-soa-rm-cd
http://docs.oasis-open.Org/wsbpel/2.0/wsbpel-v2.0.pdf

[Papazoglou 2004] Michael P. Papazoglou, Jean-jacques Dubray, "A Survey of Web
Service Technologies", Technical Report DIT-04-058, Informatica e Telecomunicazioni,
University of Trento, 2004.

[Patel 2003] C. Patel et al., "A QoS Oriented Framework for Adaptive Management of
Web Service based Workflows", LNCS Vol. 2736, Springe, pp. 826-835, 2003.

[Petra 1999] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, M. Teschke, "A
comprehensive approach to flexibility in workflow management systems", ACM
SIGSOFT Software Engineering Notes, vol. 24 , Issue 2, pp. 79-88, March 1999.

[Pratistha 2004] I. Pratistha, A. Zaslavsky, "Fluid: supporting a transportable and
adaptive web service", In the Proceedings of the 2004 ACM symposium on Applied
computing, pp. 1600 -1606, Nicosia, Cyprus, 2004.

[Serhani 2004] M.A. Serhani, "Web Services: Development & QoS Management",
Concordia University, 2004.

[Serhani 2005] M.A. Serhani, R. Dssouli, A. Hafid, H. Sahraoui, "A QoS broker based
architecture for efficient web services selection", In the Proceedings of 2005 IEEE
International Conference on Web Services (ICWS2005), pp. 113-120, Florida, USA,
2005.

[Serhani 2006] M. A. Serhani et al., "CompQoS: Towards an Architecture for QoS
composition and monitoring (validation) of composite web services", In the Proceedings
of the International Conference on Web Technologies, Application, and Services
(WTAS), Calgary, Canada, 2006.

[Silva 2004] JAF da Silva, N das Chagas Mendonca, "Dynamic Invocation of Replicated
Web Services", In the Proceedings of the WebMedia & LA-Web 2004 Joint Conference
10th Brazilian Symposium on Multimedia and the Web 2nd Latin American Web
Congress (LA-Webmedia'04), pp. 22-28, Ribeirao Preto, Brazil, October 2004.

[Srivastava 2003] B. Srivastava, J. Koehler, "Web service composition: Current solutions
and open problems ", In the Proceedings of ICAPS 2003 Workshop on Planning for Web
Services, Trento, Italy, June 2003.

[Tian 2004] M. Tian, A. Gramm, H. Ritter, J. Schiller, R. Winter, "A Survey of current
Approaches towards Specification and Management of Quality of Service for Web
Services", Praxis der Informationsverarbeitung und Kommunikation. Volume 27, Issue 3,
pp. 132-139, July/August 2004.

[Verheecke 2004] B. Verheecke, M.A. Cibran, V. Jonckers, "Aspect-Oriented
Programming for Dynamic Web Service Monitoring and Selection", Web services,
Springer Berlin / Heidelberg, vol. 3250/2004, pp. 15-29, 2004.

86

[Vukovic 2004] M. Vukovic, P. Robinson, "Adaptive, planning based, web service
composition for context awareness", International Conference on Pervasive Computing,
Vienna, Austria, April 2004.

[W3C 2004] W3C, "Web Service Architecture", http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/, W3C Working Group Note 11, February 2004.

[WebLogic] BEA Weblogic platform, http://www.bea.com

[Yu 2004] J. Yu, G. Zhou, "Dynamic Web Service Invocation Based on UDDI", In the
Proceedings of the IEEE International Conference on E-Commerce Technology for
Dynamic E-Business (CEC-East'04), pp. 154-157, Beijing, China, September 2004.

[Yu 2005] T. Yu and K. Lin, "A Broker-Based Framework for QoS-Aware Web Service
Composition ", In the Proceedings of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE'05) on e-Technology, e-Commerce and e-
Service, pp. 22-29, Hong Kong, China, March 2005.

[Zegura 2000] E.W. Zegura, M. H. Ammar, Z. Fei, S. Bhattacharjee, "Application-Layer
Anycasting A Server Selection Architecture and Use in a Replicated Web Service",
IEEE/ACM Transactions on Networking, Volume 8, Issue 4, pp.455-466, Aug 2000.

[Zeng 2004] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Duma, J. Kalagnanam, H. Chang,
"QoS-Aware Middleware for Web Services Composition", IEEE Transactions on
Software Engineering, vol. 30, Issue 5, pp. 311-327, May 2004.

87

http://www.w3.org/TR/2004/NOTE-ws-
http://www.bea.com

