
ON APPLICATIONS OF SIMULATED ANNEALING TO 

CRYPTOLOGY 

WEN MING LIU 

A THESIS 

IN 

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING 

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS 

SECURITY 

CONCORDIA UNIVERSITY 

MONTREAL, QUEBEC, CANADA 

DECEMBER 2008 

© WEN MING LIU, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre refinance 
ISBN: 978-0-494-63241-3 
Our file Notre reference 
ISBN: 978-0-494-63241-3 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• + • 

Canada 



ABSTRACT 

On Applications of Simulated Annealing to Cryptology 

Wen Ming Liu 

Boolean functions are critical building blocks of symmetric-key ciphers. In most cases, the 

security of a cipher against a particular kind of attacks can be explained by the existence 

of certain properties of its underpinning Boolean functions. Therefore, the design of ap

propriate functions has received significant attention from researchers for several decades. 

Heuristic methods have become very powerful tools for designing such functions. 

In this thesis, we apply simulated annealing methods to construct Boolean functions 

with particular properties. Our results meet or exceed the best results of available the

oretical constructions and/or heuristic searches in the literature, including a 10-variable 

balanced Boolean function with resiliency degree 2, algebraic degree 7, and nonlinearity 

488 for the first time. This construction affirmatively answers the open problem about the 

existence of such functions. 

This thesis also includes results of cryptanalysis for symmetric ciphers, such as Geffe 

cipher and TREYFER cipher. 
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Chapter 1 

Introduction 

1.1 Motivation 

Cryptology plays a central role in today's security mechanisms. The field of cryptology 

can be largely divided into cryptography and cryptanalysis [6]. Cryptography is the art 

of building cryptosystems and creating secret codes, while cryptanalysis is the study of 

finding weaknesses in the cryptosystems and breaking secret codes. The goals of cryp

tography include confidentiality, data integrity, authentication and nonrepudiation. Mainly 

three types of cryptographic primitives are used to achieve these goals: symmetric ciphers, 

public ciphers, and hash functions [14]. 

Boolean functions (/ : ZV, —» Z2) and s-boxes (/ : Z% —> Z™) are the main building 

blocks for stream ciphers and block ciphers. The success of cryptanalytic attacks on these 

symmetric primitives and the cryptographic properties of Boolean functions are strongly 

connected. In fact, the security of a symmetric cipher against a particular category of at

tacks can be explained by the existence of certain properties of its building blocks. For 

example, the correlation attacks [14] are related to the properties of correlation immu

nity [46] [53] and resiliency [27]; the algebraic attacks [15] are related to the property of 
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algebraic immunity [15] [14]; the linear cryptanalysis [33] is related to the property of non-

linearity [44] [35]. Therefore, the strength of its building blocks is a basic requirement of 

any secure cryptosystems. Note that, different cryptosystems for different purposes may 

have different requirements on their building blocks. 

Due to their importance, Boolean functions have been studied for a long time. While 

many problems in this area have been solved over time, novel problems constantly arise 

due to ongoing developments in cryptanalysis. 

To construct certain Boolean functions, we have to determine the value of each element, 

either 1 or 0, so that the function will satisfy required criteria. Clearly, this is a combina

torial optimization problem. Most existing methods for constructing Boolean functions 

that can satisfy multiple criteria are related to search techniques for solving problems of 

combinatorial optimization. Those methods can be categorized in three classes: exhaustive 

search, algebraic constructions, and heuristic techniques. 

Theoretically, exhaustive search can always find the optimal functions. However, since 

the complexity of constructing Boolean functions is doubly exponential in variable n, when 

n is larger than 5, such method becomes computationally infeasible. For example, if we 

assume that a typical computer can search 232 functions per second, then for n = 10 

exhaustive search would require about 1.3 x 10291 years. 

Algebraic constructions can achieve specific combinatorial properties to some extent. 

However, in most cases, they tend to lead to sub-optimal results, especially for the prop

erties that have not been considered in devising the construction. Furthermore, even when 

algebraic constructions can achieve the optima, the inherent algebraic structure in the con

structed Boolean function may make it comparatively vulnerable to algebraic attack. 

Heuristic methods are based on enumerative methods but use extra knowledge to guide 

the search. The knowledge is usually derived from the simulation of natural processes and 

the understanding of the problem under consideration. Heuristics is commonly known as 
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Rules of Thumb, educated guesses, intuitive judgments, or just common sense. It is a suit

able method when the problem is fuzzy, complex, or large. When a problem presents these 

characteristics, it is possible to just rely on suitable Rules of Thumb for a solution. The 

purpose of heuristic methods is to identify problem solutions where time is more impor

tant than solution quality or the knowledge of quality. They can produce good results in 

reasonable short runs for such problems. 

In our cases, firstly, the search space is huge (22n). This is far away from the ability of 

brute force. Secondly, the problem itself is uncertain. For example, researchers are trying to 

break the famous conjecture given by Dobbertin [16], but the conjecture cannot be proved 

or disproved so far. It is uncertain whether the examples for breaking the conjecture exist or 

not. In the literature of cryptography, many interesting results have already been obtained 

using heuristic methods. 

In this thesis, we also address applications of heuristic methods to cryptanalysis of ci

phers. Although the approaches used to carry out attacks against ciphers can vary consider

ably in different work, they are often making use of some properties of the cipher's internal 

components. It would be an attractive and revolutionary finding, if there exists a way for 

attackers to execute attacks while the corresponding ciphers are treated as black-boxes. 

Due to the nature of heuristic methods, it is possible to implement attacks based on such 

methods without analyzing, or having minimal analysis on, the internal components of the 

ciphers. If such attacks may succeed, it would be unnecessary for attackers to understand 

the internal details of ciphers before they can implement attacks on such ciphers. 

1.2 Our Contributions 

Through our research, we focus on the study of constructing special Boolean functions 

through heuristic methods. We also apply heuristic methods to break certain ciphers. More 

specifically, 
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• Based on the understanding of Boolean function and heuristic method, we study dif

ferent approaches to the construction of Boolean functions. We conduct experiments 

with different cost functions, different search domains, and different neighbor poli

cies to construct examples of Boolean functions with different cryptographic proper

ties, such as (10, 2, 7,488), (8,116), (10,492), and (12, 2010) functions l. 

• We attempt to apply simulated annealing methods and guided search techniques to 

break certain ciphers. Our objective is to find methods with which attacker can exe

cute attacks without analyzing the internal details of ciphers being attacked. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. 

• In Chapter 2, we introduce mathematic background and necessary definitions of 

heuristic methods and Boolean functions. 

• In Chapter 3, we apply simulated annealing methods to construct several Boolean 

functions with different cryptographic properties (resilient, nonlinearity, balance). 

• In Chapter 4, we apply simulated annealing methods and guided search techniques 

to attack some symmetric ciphers. 

• Finally, in Chapter 5, we conclude the research and give future work. 

The notations for (n, m, d, NL), (n, NL) Boolean functions are defined in Section 3.1. 
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Chapter 2 

Preliminaries 

In this chapter, we first review heuristic methods and the simulated annealing method in 

Section 2.1. We then review the cryptology problems on which we shall apply the simulated 

annealing method in Section 2.2. 

2.1 Heuristic Methods 

Exhaustive search techniques can be used to solve search problems by trying all possible 

solutions and verifying the best solutions satisfying the search requirement. However, the 

time and space complexity of exhaustive searches are usually prohibitive. Therefore, such 

technique has limitations on even medium-sized problems. 

In order to solve large-sized combinatorial search problems in reasonable time, there 

exist heuristic methods such as simulated annealing, genetic algorithm, tabu search, and 

so on. Such methods provide general ways to search for good, but not always optimal, 

solutions. 

To use heuristic methods, the following four factors must be determined. 
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1. Formulate the problem as a guided search problem 

The problem must be tranformed into a representation of the solution space and cor

responding cost function in order to measure how good a given solution is, in an 

appropriate and easily computable way. 

2. Determine search space 

Search space refers to all the possible inputs. In some cases, in order to reduce the 

search space, a subset of all possible inputs may replace the whole set as the search 

space. For example, when we construct (10,2,7,488) Boolean functions, we use 

rotation symmetric functions (RSBF) [43] instead of all the Boolean functions as our 

search space. 

3. Construct cost function 

Each candidate input has a cost value calculated by cost function. The cost value can 

be used to evaluate how well a candidate input matches the desired solution. The 

effective cost function must maximize or else minimize the cost value of the desired 

solution. 

4. Define search strategy 

A simple transition mechanism should be defined to move from one candidate solu

tion to the other by slightly modifying the current solution. Typical transition mech

anisms for constructing Boolean functions include flipping the output value of one 

position, swapping the values of a pair of positions either in the truth table represen

tation or the Walsh transform representation of the function. 

The cooperative association of the above four factors offer an excellent ability to escape 

from local optima and finally reach the best solution. 

Each of such techniques depends on a simple model of a real-world physical process. 

In the remainder of this section, we discuss the simulated annealing method in details and 



briefly introduce genetic algorithm, tabu search, and ant colony. 

2.1.1 Simulated Annealing 

Simulated annealing is inspired by the physical process of cooling molten materials down 

to the solid state. In this process, solid will be fully heated to high temperature and then 

slowly cooled down. During heating, the internal particles of solid are changed into states 

of disorder and its energy increases; during slowly cooling, particles gradually become or

derly, and in each temperature achieves a balanced state, and finally, brings the material to 

a low-energy, optimal state. According to Metropolis criteria [36], for particles in temper

ature t, the probability of reaching a balanced state is e~AE^kt\ wherein E is the energy 

under certain temperature t, AE is the energy difference between two temperatures, and k 

is a constant. 

Through guided transitions generated based on the above probability distribution, the 

physics can be simulated to solve combinatorial optimization problems. By simulating En

ergy E to be the objective function value costQ, and temperature t to be control parameters 

T, the simulated annealing algorithm can be derived: Starting from initial possible state S 

and initial control parameter T, iterate on current state by the process of "generating new 

state —> calculating the difference of objective function —> accepting or abandoning this 

new state", and gradually decay T value. This is repeated until the system freezes into a 

steady state. At this point, the current state is the approximate optimal solution. 

To use simulated annealing, the above four factors must first be determined. Further

more, similar with physical annealing, simulated annealing process and its quality are con

trolled by the cooling schedule, which can be regulated by several parameters. These pa

rameters are problem-sensitive and govern how likely a bad transition is accepted as a 

function of time [52]: 
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1. Initial value of control parameter T0 

This value starts high enough and is then gradually lowered. Its selection is a key 

factor of the method. If it does not start high enough, the ending state will be very 

close to the starting state. However, if it starts too high, the search may be trans

formed into a random search. To compare with physical annealing, in the remainder 

of this section, this parameter is regarded as the temperature. 

2. The number of iterations L at each temperature T 

At each temperature, a certain number of iterations L are attempted before lowering 

the temperature. One approach is to fix a constant number, and the other way is 

to dynamically change the number of iterations at runtime. At lower temperatures, 

a larger number of iterations must be done to completely explore the local optima, 

while at higher temperatures, the number of iterations can be less. 

3. Acceptance criteria 

This is used to determine whether a transition from Scur to Snext is accepted. If the 

Snext state has better cost value than Scur has, then a move to that state Snext is taken; 

if not, then it is accepted with some probability. Similar with physical annealing, the 

worse a move is, the less likely it is to be accepted; the lower the temperature T, 

the less likely is a worsening move to be accepted. Initially, the temperature is high 

and almost any move is accepted. As the temperature is decreased, it becomes more 

difficult to allow worsening moves. Finally, only improving moves are accepted. 

4. temperature decrement factor AT 

At the end of each inner loop, the temperature is lowered, the typical way of lowering 

the temperature is to multiply by a decrement factor AT in the range of (0..1). i.e. 

Tnext = AT x Tcur, wherein 0.0 < AT < 1.0. It is obvious that the temperature is 

an exponential decay instead of a linear decay. 

8 



Thermodynamic Simulation 
System States 
Energy 
Change of State 
Temperature 
Frozen State 

Combinatorial Optimization 
Feasible Solutions 
Cost 
Neighboring Solutions 
Control Parameter 
Heuristic Solution 

Table 1: Relationship between Physical Annealing and Simulated Annealing 

5. Stopping criteria 

The algorithm terminates when the stopping criteria are met. There are many possible 

stopping criteria: A fixed number of inner loops have been executed; consecutive 

inner loops are executed without a single move being accepted; the cost function 

value satisfies certain requirements; the temperature is lowered enough to certain 

value; a combination of above conditions. 

Table 1 shows how physical annealing can be mapped to simulated annealing. 

The basic simulated annealing algorithm is shown in the following pseudo code [20]. 

The search starts at certain initial state So. At each temperature Tcur, an iteration number 

L of transition moves are tried. A candidate state Snext is randomly selected from the 

neighborhood N(S) of current state S ^ which is formed based on the search strategy. 

The difference of objective function S is calculated. Acceptance criterion is then used to 

determine whether to accept this transition or not. At last, the algorithm terminates when 

the stopping criteria are met. 

Procedure: Pseudo Code for Simulated Annealing Algorithm (Minimization Cases): 

!• '-'cur ~ &QJ 

^ • J- cur — -* 0 > 

3. calculate cost(Scur); 

4. do 

5. { 
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6. for (z=0; i < L; i + +) 

7- { 

8. select a random transition from Scur to Snext, where Snext 6 N(Scur); 

9. 5 = cost(Snext) - cost(Scur); 

10. if(<5<0) 

1 1- '-'cur — '-'next/j 

12. else if (e(~
5/Tcur"> > random(0,1)) 

14. } 
! - } • 1-cur -^ cur ^ ^A-i » 

16.} 

17. while (stopping criterion is not met) 

18. return (Scur); 

Simulated annealing has been used for real combinatorial search problems, such as 

traveling salesman problem, maximum cut problem, circuit board placement problem, 

scheduling problem. It has also been successfully applied to cryptological problems, such 

as component designing Boolean functions with desirable properties [20]. There exist 

modified versions of simulated annealing. For example, the best state (solution) so far can 

be recorded during the search process, so in the end the best state can be chosen from 

the recorded states as the output. To make good use of simulated annealing method, the 

construction of cost functions and the choice of cooling schedule are the key factors. 

2.1.2 Other Methods 

1. Genetic Algorithms (GA) - Evolutionary 

This technique has been initially developed by Holland (1975). The inspiration of 
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genetic algorithms comes from evolution and natural selection. Genetic algorithms 

imitate the evolutionary process of species that sexually reproduce. Thus, genetic 

algorithms might be considered as the prototype of a population-based method. New 

candidates are generated with a mechanism, namely, crossover (recombination). 

The newly created individual, called child, can then apply a random mutation, 

which means the elements are somewhat changed. If the new individual inherits good 

characteristics from his parents evaluated by the cost function, it will have a higher 

probability to survive [19]. The following pseudo code shows its procedure [18]. 

Procedure: Pseudo Code for Genetic Algorithm: 

1. generate initial population P of solutions; 

2. while (stopping criterion is not met) do 

3. { 

4. select P' C P (mating pool), initialize P" = 0 (set of children); 

5. for (i=l; i < n\ i + +) 

6. { 

7. select individuals xa and Xb at random from P'\ 

8. apply crossover to xa and Xb to produce xchud', 

9. randomly mutate produced child xchud', 

10. P" = P" U xchild; 

11. } 

12. P=survive(P', P"); 

13.} 

Genetic algorithm is applied to construct Boolean functions for a long time. Recently, 

in [5], genetic algorithm combined with hill climbing are used to construct (8,114), 

(10,480) and (12,1970) Boolean functions. 

11 



2. Tabu Search (TS) - Guided Local Search 

It is inspired by search principles from artificial intelligence or "human" behavior. 

This method implements the selection of the neighborhood solution in a way to avoid 

cycling, i.e., visiting the same solution more than once. This is achieved by employ

ing a short term memory, known as the tabu list which contains the solutions that are 

most recently visited. The following pseudo code shows its procedure [18]. 

Procedure: Pseudo Code for Tabu Search: 

1. generate initial solution: Scur = S0; 

2. initialize tabu list: T = <f>; 

3. while (stopping criterion is not met) do 

4. { 

5. Compute: V = {Snext\Snext e N(Scur)}\T; 

6. select: Snext = min(V); 

I• &cur ~ ^next &fid 1 = 1 U JCur'i 

8. update memory; 

9. } 

TS generates a random initial solution as current candidate and mantains a TABU 

list. Based on each current solution, TS generates its ordering set of neighbours, the 

best of which is chosen as the next candidate provided that it is not already on the 

TABU list(T), whilst the current candidate is appended to the TABU list. If the best 

neighbours of current candidate are already present on TABU list T, then the second 

best is chosen as the next candidate, and so on. A simple way to update memory is to 

use a queue, which always removes the eldest entry in the list when recording a new 

entry. The stopping criterion can be defined as a given number of total iterations or a 

given number of consecutive iterations without improvement for the current solution. 

12 



Tabu Search is usually combined with other heuristic methods to solve combinatorial 

problems due to its nature of local search [23]. 

3. Ant Colony 

This technique is first introduced by Colorni et al. in 1992. The Ant Colony op

timization algorithm is a cooperative heuristic searching algorithm inspired by the 

ethological study on the behavior of ants. It imitates the way that ants search for 

food and find their optimal path between their colony and the food source. This is 

done by an indirect communication known as stigmergy via the chemical substance, 

or pheromone, left by the ants on the paths. The intensity of the pheromone traces 

depends on the quantity and quality of the food available at the source as well as 

from the distance between source and colony. As an ant traverses a path, it reinforces 

that path with its own pheromone. A collective autocatalytic behavior emerges as 

more ants will choose the shortest trails, which in turn creates an even larger amount 

of pheromone on those short trails, which makes those short trails more likely to be 

chosen by future ants. Pheromone trails evaporate and once a source of food is ex

hausted the trails will disappear and the ants will start to search for other sources. 

The following pseudo code shows its procedure [18]. 

Procedure: Pseudo Code for Ant Colony: 

1. initialize pheromone trail; 

2. while (stopping criterion is not met) do 

3. { 

4. for (all ants) 

5. { 

6. while (solution incomplete) 

7. select next elment in solution randomly according to pheromone trail; 

8. evaluate objective function and update best solution; 

13 



9. } 

10. for (all ants) 

11. update pheromone trail (more for better solutions) 

12.} 

Ant Colony has been applied to solve combinatorial problems for a long time. In 

[51], it is used to attack some simple substitution ciphers. 

2.2 Boolean Functions 

2.2.1 Introduction 

Boolean functions form important components in various practical cryptographic applica

tions. A proper choice of a Boolean function may significantly increase the resistance to 

different kind of attacks [34]. In the following subsections, we first describe the representa

tion of Boolean functions, then introduce its fundamental definitions and its cryptographic 

properties, finally end with an overview of its two cryptographic rich sub classes. 

2.2.2 Representation of Boolean Functions 

A Boolean function of n variables / is a mapping {0, l } n —> {0,1}. There are many means 

to represent a Boolean function. Here we introduce five methods related to our research. 

1. Binary Truth Table (TT): 

The binary truth table of Boolean function f(x), where x = (x\, x2,..., xn), Xi e 

{0, l),i = 1 , . . . ,n, is a 2™-element binary sequence, f(x) = [f(0,..., 0 ,0) , / (0 , . . . ,0,1), 

/ ( 0 , . . . , 1,0), . . . , / ( l , . . . , 1,1)]. The truth table contains 2n elements correspond

ing to all possible combinations of the n binary inputs. 
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2. Polarity Truth Table (PT): 

It is defined by f(x) = ( - l ) / ( l ) = 1 - 2/(z), where f(x) € {-1,1} . 

3. Algebraic Normal Form (ANF): 

A Boolean function has a unique representation as a polynomial over field Z2, called 

the algebraic normal form (ANF). This polynomial can be obtained by summing 

up distinct products terms of xi, x2, • • •, xn, which can be written as follows. The 

number of variables in the highest order product term with nonzero coefficient is 

called the algebraic degree and denoted by deg(f). 

n 

f(Xi,...,Xn)=a0@aiXi ( J ) CLijXiXjQ)...Q)a123...nXlX2---Xn, 

i=l l<i<j<n 

where a0, au ..., a123...n e Z2. 

4. Walsh Spectrum (WS): 

Before this representation is described, we give some correlative fundamental defini

tions. 

Affine and Linear Boolean Functions: 

A Boolean function f(x) having algebraic degree at most one is called an affine 

function of ) e {0, l } n . Having selected w e Z 2 " a n d c e {0,1}, its 
ANF representation is denoted by 

LUJ(X) = C © LUX — C © UJiXi © UJ2X2 © . . . © UJnXn 

where WjXj denotes the bitwise AND of the ith. bit of u> and x, and © denotes bit

wise XOR. An affine function with the constant term c = 0 is called linear func

tion [27] [20], which is correspondingly denoted by Aw(x). 
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Hamming Weight: 

The Hamming weight of a Boolean function is the number of ones in its binary truth 

table or equivalently the number of -l 's in the polarity truth table [35], and it is 

denoted by wt(f). 

Hamming Distance. 

The Hamming distance between two Boolean functions / and g is the number of 

position in which their truth tables differ and it is denoted by 

d(f,g) = wt(f ®g) = £ x e Z»(/(a;) e g(x)). 

The Hamming distance to linear functions is an important cryptographic property, 

because ciphers that apply nearly linear Boolean functions are easily attacked by 

various methods. 

Walsh Hadamard Transform (WHT). 

For a Boolean function / , the Walsh Hadamard Transform F(u) is defined by 

F(u) = £ (f(x) x Lu(x)) = J2 {-l)flx)9xM. (1) 

where x.u> denotes the dot product between u and x, i.e. 

n 

x.u! = hfi^i x uj{. 

From this definition, It is clear that the value of F(u>) shows how its corresponding 

Boolean function f(x) is correlated with all linear functions. 

There is also another way to define the Walsh transform F'(u>) of Boolean function 

/ as follows. 

^V) = ^ ( / ( z ) x ( - i n (2) 
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We call F(u) = [F(0, . . . ,0,0), F (0 , . . . ,0,1), F ( 0 , . . . , 1,0), . . . , F ( l , . . . , 1,1)] 

the Walsh Spectrum, or simply the spectrum of f(x). This is one of the most useful 

representations of Boolean function since several important cryptographic properties 

can be directly or easily checked by its corresponding Walsh Spectrum. 

5. Cayley Graph: 

We first present some definitions in terms of graph [24] and its associated Boolean 

functions. 

Definition 1 Cayley Graph and Cayley Set: 

Let T be a group with identity element e. Suppose C is a Cayley subset of G that 

is e ^ C and whenever g G C, then g~l G C. The Cayley graph G = G(T, C) 

ofT with respect to C is the graph whose vertex set is T, with two vertices g and h 

adjacent if gh~x G C. 

(This definition is slightly modified by dropping the condition e ^ C. This general

ization is equivalent to allowing the presence of self-loops in the graph.) 

Definition 2 The Spectrum of G/: 

Given a graph G and its adjacency matrix A , the spectrum of G is the set of the 

eigenvalues of A, which are also called eigenvalues ofG . 

Definition 3 Connected Graph: 

• Path is a list of vertices of a graph where each vertex has an edge from it to the 

next vertex. 

• A graph G in which any two vertices are connected by a path is called a con

nected graph. 
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© 
(a) (b) 

Figure 1: Examples of Connected Graph and Disconnected Graph 

The left graph of Figure 1 is an example of Connected Graph, while the right graph 

is not a connected graph. 

Definition 4 Regular Graph: 

• Two vertices \i and v of a graph G are said to be adjacent if there is an edge 

joining them. The vertices \i and v are then said to be incident to such an edge. 

Degree of a vertex \i of G is the number of edges incident to \x. 

• A graph G in which every vertex has the same degree is called a regular graph, 

if every vertex has degree r , the graph is called regular of degree r . 

Figure 2.2(a) is a 3-regular graph, while Figure 2.2(b) is a 2-regular graph. 

Definition 5 Strongly Regular Graph: 

A regular graph G is strongly regular if there exist nonnegative integers e and d such 

that, for all vertices //, v, the number of vertices adjacent to both /i and u, S(p,, v) is 

given by 

{e, if p, and v are adjacent, 

d, otherwise. 
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(a) (b) 

Figure 2: Examples of Regular Graph and Strongly Regular Graph 

As showed in Figure 2.2(b), node 0 and 1 are adjacent and have 0 common neighbors 

=>• e = 0; node 0 and 2 are not adjacent and have 2 common neighbors => d = 2. 

Definition 6 the Graph Gf Associated to Boolean function f: 

Let f : Z% —> Z2, we can associate f to the Cayley graph Gf = G(Z%, flf) of Z% 

with respect to the set Vtf = {ui G ZV^\f{uS) = 1}. 

• The vertex set V(f) ofGf is equal to Z%. 

• The edge set Ef is defined as: 

Ef = {(fjL,u) e Zl x Z J | / z © i / e f t / } 

• The adjacency matrix Aj of such a graph is defined as {Af)ij = f(b(i) © b(j)) 

where b(i) G Z^ is the binary expansion of the integer i. 

In [9] [10] [50], it was shown that the spectrum of the Cayley Graph Gf coincides 

with the Walsh spectrum F'(u>) of its associated Boolean function / . It was also 
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proved that the Boolean bent functions can be exactly distinguished by a special 

class of strongly regular graphs. However, in the literature, only bent functions are 

identified by special Cayley graph. 

An example of n = 3 Boolean function is showed in different representations as fol

lows. 

binary truth table: f(x) = [ 0 1 1 1 0 0 1 0 ] 
polarity truth table: f(x) = [1 -1 -1 -111-11] 
Algebraic Normal Form: f(xi,x2,x3) = x\ ©x2 © x-[X2 © x\x^ 
Walsh Spectrum 1: F(w) = [ 0 0 4 4 - 4 4 0 0 ] 
Walsh Spectrum 2: F'{u) = [ 4 0 - 2 - 2 2 - 2 0 0 ] 
its Cayley Graph: is shown in Figure 3 

Table 2: An Example for Boolean Function Representations 

Figure 3: An Example of Cayley Graph Representation of Boolean Function 

2.2.3 Cryptographic Properties of Boolean Functions 

When used in cryptographic systems, Boolean functions should satisfy several crypto

graphic properties such as balance, high nonlinearity, resiliency, and high algebraic degree. 
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In this subsection, we introduce those properties. 

Balance When a Boolean function has the same number of zeros and ones in its truth 

table, this function is called balanced. A function is balanced if and only if its Walsh 

transform satisfies F(0) = 0. 

Correlation Immunity (CI) The correlation immunity of a Boolean function is to mea

sure the degree of which its outputs are uncorrelated with some subset of its inputs. 

Specifically, a Boolean function is said to be correlation immune of order m if the 

distribution probability of its output is unaltered when any m bits of its input are fixed 

[46]. A function is m-th order correlation immune if and only if its Walsh transform 

satisfies F{u) = 0; for all u with 1 < wt(u) < m [46] [53]. 

Resiliency A Boolean function is said to be resilient of order m if it is correlation immune 

of order m and it is balanced. Let res(f) denote the resiliency degree of f(x). Then 

res(f) = m •&• F(w) = 0, for 0 < wt(w) < m 

Nonlinearity(NL) The nonlinearity of an n — variable Boolean function f(x) is defined 

as the minimum hamming distance between f(x) and the set of all n — variable 

affine functions [44] [27]. i.e. 

nl(f)= min (d(f,g)), 
ge A(n) 

Complementing the binary truth table of a Boolean function will not change its non-

linearity, so only the 2n number of linear functions instead of 2n + 1 affine functions 

are to be considered. In terms of Walsh spectrum, the nonlinearirty of function / is 

given as follows: 

nl(f) = 2n-1 - - max \F(u)\. 
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Autocorrelation(AC) The autocorrelation transformation of a Boolean function / is given 

by 

rf(s) = ^ fix) f{x ®s) = J2{-l)f{x)(Bf{x9s). 
X X 

where s £ Z%. The maximum absolute value excluding the value at the origin (equal 

to 2n) in the autocorrelation spectra of / is also known as the absolute indicator [54] 

and denoted as 

CAC = max \rf(s)\. 
seZ%As^(0,0,...,0) 

The lower value of CAC> the better. Maximal values are serious weakness called 

the linear structure. Bent functions have the minimal aucorrelation, therefore, they 

optimize this property [38]. 

There are some other cryptographic criteria for Boolean functions, such as Complete

ness, Output Bit Independence Criterion (BIC), Strict Avalanche Criterion (SAC), Higher 

Order SAC, Propagation Criterion (PC), and so on. Since these criteria are not considered 

in our research, their discussions are omitted here. 

Balanced functions, with high nonlinearity, high algebraic degree, high order of cor

relation immunity, and low autocorrelation, are typically preferred in the cryptographic 

literature. However, from the definitions above, some of these properties are in conflict. 

For example, bent functions (will be introduced shortly) achieve the maximum possible 

nonlinearity (such functions minimize the maximum magnitude of Walsh values) but are 

unbalanced. If we require a function to be balanced (F(0) = 0), then some other F(u>) must 

have absolute values greater than 2i based on Parseval's theorem given in Theorem 2. This 

will respectively decrease its nonlinearity. The other example is that increasing order of 

correlation immunity can never result in an increase in achievable nonlinearity. The con

flict means that tradeoffs have to be made when we construct Boolean functions [20]. 
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In the remainder of this subsection, bent functions will be elaborated. Bent function is 

an important class of Boolean functions. It was defined and first analyzed by Rothaus [41]. 

He showed that binary bent functions exist only when the dimension n of the vector space 

Z% is even. Several properties of bent functions were noted by Rothaus and two large 

classes of bent functions were also presented in his paper. Other properties, constructions, 

and equivalence bounds for bent functions can be found in [4,11,21,42]. Kumer, Scholtz 

and Welch [39] defined and studied bent functions over GF(p). Bent functions have been 

the subject of great interest in several areas including cryptography. In fact, the Canadian 

government block cipher standard (CAST [3]) is designed based on these functions. A 

Boolean function / is called bent if all the Walsh transform coefficients have the same 

absolute value, i.e., |-F(w)| is constant for all u> e Z%. Based on Parseval's theorem ( 2), / 

is a bent function if and only if |F(u;)| = 2t for all ui, to satisfy |F(w)| to be an integer, n 

should be even. The bent function holds the following properties. 

• Bent function achieves the maximum possible nonlinearity. The nonlinearity of any 

bent function is given by 

NL = (2n~1 - 2*"1) 

• Bent function is never balanced. However, when n is large enough, it becomes sta

tistically indistinguishable from balanced functions. 

• The order (algebraic degree) of bent function is at least 2 and not more than | . Bent 

functions of higher algebraic degree are preferred for cryptographic purposes. 

• All the bent functions have zero autocorrelation for all non-zero sin Z^. 

Bent function can be constructed in mathematic ways. These include, but are not lim

ited to, Rothaus' construction [41], Maiorana-McFarland's construction [40], Yarlagadda 

and Hershey's construction [42], Dillon's construction [22]. For example, Maiorana-

McFarland constructed bent functions by concatenating affine functions as follows. 
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f(x,y) = x • (p{y) + g{y), 

where x,yeZ$,<l>: z | -> z | , <? : z | - • Z2, 

Then, / is bent «=> 4> is a permutation. 

Even though there are many algebraic ways to construct bent functions, it cannot be ex

hausted so far. There are some constructions based on heuristic methods in the literature. 

In our experiments, 10 — variable bent functions are also successfully constructed by sim

ulated annealing. 

2.2.4 Sub Classes of Boolean Functions 

A variety of desirable criteria for Boolean functions with cryptographic application have 

been identified: balancedness, high nonlinearity, correlation immunity, high algebraic de

gree, and so on. It is difficult to construct an appropriate Boolean function which satisfies 

tradeoff requirement between these criteria from the whole set of possible Boolean func

tions, since the search space is very huge. Thus a natural idea is to decrease the search 

space by considering certain sub classes. Certain sub classes with high density of good 

properties have received a lot of attention in Boolean function literature [12,26,47]. Here 

two such sub classes of functions (RSBF, DSBF) are mentioned. 

1. Rotation Symmetric Boolean Functions (RSBF) Let Xj G Z2, 1 < i < n. For 

1 < k < n, we define 

xi+k ifi + k<n, 
Pnfa) = \ 

xi+k^n ifi + k>n. 
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The definition of pk
n can be extended to n-tuples as 

Pnfal, X2,"- , %n) = (pn(xl)> Pnfa), ' ' ' > Pn(xn))-

Definition 7 A Boolean function f is called rotation symmetric (RSBF) if for each input 

(aii,--- ,xn) E Z%, f(pfr(xi,x2,--- ,xn)) = f(xu--- ,xn)forl < k < n. 

RSBFs were first introduced in cryptography by Pieprzyk and Qu [37] in the context of 

efficient hash function design. The number of n-bits RSBFs is given by 29n where 

sn = -y>(fc)2*, 
n t—-' 

k\n 

where </>(•) denotes the Euler'sphi — function [48]. It can easily be checked that g 

[47]. Since 29n « 22", the number of n-variable RSBFs is much smaller than the total 

space of Boolean functions. On the other hand, the set of RSBFs proved to be a very rich 

structure full of functions with several interesting cryptographic properties [26,49]. 

Note that for n-variable Boolean functions, there are 2n different possible inputs. From 

the above definition, it is obvious that for RSBFs, the function / has same value for each 

of the classes generated from the rotational symmetry. An orbit is completely determined 

by its representative element AH)i, which is lexicographically the first element belonging 

to the z-th orbit. The rotation-symmetric truth table (RSTT) is defined as the <?n-bit string 

[/(An,o), /(An,i), • • •, /(A„,Sn_i)] [26]. For example, for n = 4, the classes information is 

shown in Table 3. There are 6 different classes which partition the 24 = 16 input patterns. 

So there are 26 RSBFs on 4 variables. 

In [26], it has been shown that many functions in this class are rich in terms of good 

cryptographic properties. Furthermore, the RSBF class is much smaller (gn ~ 2 n ) com

paring to the space of n-variable Boolean functions (22") and, hence search techniques can 

be more efficient. Table 4 shows the RSBF class size for certain ns. n = 9 RSBFs are used 
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class no. inputs 
1 {0,0,0,0}, 
2 {0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}, 
3 {0,0,1,1},{0,1,1,0},{1,1,0,0},{1,0,0,1}, 
4 {0,1,0,1},{1,0,1,0}, 
5 {0,1,1,1},{1,1,1,0},{1,1,0,1},{1,1,0,1}, 
6 {1,1,1,1}. 

Table 3: Classes Information for 4-variable RSBFs 

to concatenate to construct (10,2, 7,488) Boolean functions in our experiments. 

n 
9n 

n 
9n 

1 
2 

2 
3 

11 
188 

3 
4 

4 
6 

12 
352 

5 
8 

6 
14 

13 
632 

7 
20 
14 

1182 

8 
36 

9 
60 

15 
2192 

10 
108 
16 

4116 

Table 4: Classes Size of RSBF 

2. Dihedral Symmetric Boolean Functions (DSBF) Rotational symmetric class con

tains many good functions, but it is infeasible to search if n > 10 due to its space complex

ity. The literature tries to study some other classes with smaller size and denser functions 

with good properties. The class of Dihedral Symmetric Boolean functions(DSBFs) is a 

subclass of RSBFs [25,31]. 

Before addressing DSBFs, some group theory concepts are needed. 

Definition 8 Symmetric group, Rotation (cyclic) group, Dihedral group 

Symmetric group is a group of all permutations and denoted as Sn where n is the number 

of elements. This concept is used to construct Symmetric functions. 

Rotation (cyclic) group is a group of all cyclic shift permutations and denoted as Cn. 

This permutation is elaborated above, and the concept is used to construct RSBFs. 
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Dihedral group is a Group of cyclic shift and reflection permutations and denoted as Dn 

which, besides the cyclic shift Cn, includes a reflection operator rn(xi,X2, • • • ,xn) = 

(xn, • • • , x2>
 xi)- This concept is used to construct DSBFs. 

Obviously, Sn C Dn C Cn. In addition, 

Definition 9 Group action, Boolean function invariant 

Group action The group action of a group G on a set X is a mapping ^ : G x I - » I 

denoted as g.x, which satisfies the following two actions. 

(gti) • x = g • (h • x), for all g,h E G and for all i 6 l . 

e • x = x, for every x € X, e is the identity element of G. 

Boolean function invariant under Group Action Let G acts on X. A Boolean function 

f is said to be invariant under the action ofG, if f(g • x) = f(x), for all g G G and 

for all x £ X. That is, f(x) is same for all x in each class. 

Based on above concepts, correspondingly, Boolean functions invariant under the action 

of Sn is called Symmetric Boolean function; Boolean functions invariant under the action 

of Cn is called Rotational Symmetric Boolean function(RSBF); and Boolean functions 

invariant under the action of Dn is called Dihedral Symmetric Boolean function(DSBF). 

Table 5 shows the DSBF class size for certain ns. N = 10 DSBFs will be the search 

space during constructing (10,492) Boolean functions in our experiments. The larger the 

variable n is, the bigger the difference of the number of classes between RSBF and DSBF 

is. The example in Table 3 also shows the class information of the n = 4 DSBFs, since its 

reflection permutations is a subset of its cyclic shift permutations. Another example, for 

n = 5, the classes information is shown in Table 6. 

There are 13 different classes partitioning the 26 = 64 input patterns, which have 226 = 

264 different functions, so there are 213 DSBFs on 6 variables. Note that, 6 variable RSBFs 
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n 
dn 

n 
dn 

1 
2 

2 
3 

11 
126 

3 
4 

4 
6 

12 
224 

5 
8 

6 
13 

13 
380 

7 
18 

14 
687 

8 
30 

9 
46 

15 
1224 

10 
78 
16 

2250 

Table 5: Classes Size of DSBF 

class no. 

1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 
13 

inputs 
{0,0,0,0,0,0} 
{0,0,0,0,0,1} 
{0,0,0,0,1,1} 
{0,0,0,1,0,1} 

{0,0,0,1,1,1} 
{0,0,1,0,0,1} 
{0,0,1,0,1,1} 

{1,1,0,1,0,0} 
{0,0,1,1,1,1} 
{0,1,0,1,0,1} 
{0,1,0,1,1,1} 

{0,1,1,0,1,1} 
{0,1,1,1,1,1} 

{1,1,1,1,1,1} 

,{0,0,0,0,1,0}, 
,{0,0,0,1,1,0}, 
,{0,0,1,0,1,0}, 
,{0,0,1,1,1,0}, 
,{0,1,0,0,1,0}, 
,{0,1,0,1,1,0}, 
,{0,1,1,0,1,0}, 
,{0,1,1,1,1,0}, 

,{1,0,1,0,1,0}, 
,{1,0,1,1,1,0}, 
,{1,1,0,1,1,0}, 

,{1,1,1,1,1,0}, 

{0,0,0,1,0,0}, {0,0,1,0,0,0}, {0,1,0,0,0,0}, {1,0,0,0,0,0}, 
{0,0,1,1,0,0},{0,1,1,0,0,0},{1,1,0,0,0,0}, {1,0,0,0,0,1}, 
{0,1,0,1,0,0},{1,0,1,0,0,0},{0,1,0,0,0,1},{1,0,0,0,1,0}, 
{0,1,1,1,0,0},{1,1,1,0,0,0},{1,1,0,0,0,1},{1,0,0,0,1,1}, 
{1,0,0,1,0,0}, 
{1,0,1,1,0,0},{0,1,1,0,0,1},{1,1,0,0,1,0},{1,0,0,1,0,1}, 
{0,0,1,1,0,1},{1,0,0,1,1,0},{0,1,0,0,1,1},{1,0,1,0,0,1}, 
{1,1,1,1,0,0},{1,1,1,0,0,1},{1,1,0,0,1,1},{1,0,0,1,1,1}, 

{0,1,1,1,0,1},{1,1,1,0,1,0},{1,1,0,1,0,1},{1,0,1,0,1,1}, 
{1,0,1,1,0,1}, 
{1,1,1,1,0,1},{1,1,1,0,1,1},{1,1,0,1,1,1},{1,0,1,1,1,1}, 

Table 6: Classes Information for 6-variable DSBFs 

have one more class than 6 variable DSBFs. The only difference is that the class 7 in 

DSBFs is split into two classes in RSBFs. In Table 6, first line of class 7 is one class in 

RSBF, while its reflector (second line of class 7) is another class in RSBF. 
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Chapter 3 

Construction of Boolean Functions 

There are mainly two approaches for constructing Boolean functions. Algebraic techniques 

[17,28,32] construct functions based on certain mathematical results. On the other hand, 

heuristic methods search for local optimal solutions within a prespecified search space. In 

this thesis, a combination of the above two techniques is used to reduce the search space 

of heuristic techniques which allow us to achieve some results that have not been achieved 

previously by any of the above techniques when used separately. 

3.1 Motivation 

Boolean functions are among the most important elements of various cryptographic algo

rithms. Many work exist on constructing Boolean functions with special properties. In par

ticular, resilient functions [45] are an important class of Boolean functions. These functions 

play a central role in several cryptographic applications, especially stream cipher design. 

When used in a stream cipher as a combining function for linear feedback shift registers, a 

Boolean function with low-order resiliency is more susceptible to a correlation attack than a 

function with resiliency of high order. Let (n, m, d, NL) denote an n-variable, m-resilient 

Boolean function with algebraic normal form degree d and nonlinearity NL. Further, by 
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[n, m, d, NL], we denote unbalanced n-variable, m-th order correlation immune function 

with algebraic normal form degree d and nonlinearity NL. Any component is replaced by 

'-' if we do not specify it. e.g., (n, —, —, NL) if we do not wish to specify resiliency order 

and the algebraic degree. For simplicity, we use (n, NL) to present the above function 

if no ambiguity is possible. The existence of (10, 2, 7,488) functions had been an open 

problem [45] until this work. 

A basic criterion for the construction of Boolean functions is nonlinearity. The sig

nificance of this criterion has always been emphasized due to the development of linear 

cryptanalysis. Dobbertin conjectured in [16] that the nonlinearity of balanced Boolean 

functions defined on GF(2)n cannot exceed 2 n _ 1 — 2? + Ng, where Ne denotes the maxi

mum achievable nonlinearity of a balanced Boolean function 9 defined on GF(2)%. Based 

on his conjecture, the upper bound nonlinearity of balanced Boolean functions for iV = 

8, TV = 10 and N = 12 are 116,492, and 2010, respectively. Some work exist on 

the constructions of such Boolean functions by arithmetic ways. However, to our best 

knowledge there is no work on constructions by heuristic methods. Furthermore, there 

is no known result on breaking this conjecture. In this thesis, we construct examples of 

(8,116),(10,492),(12, 2010) Boolean functions by heuristic methods. Our onging work 

apply other methods to construct examples of Boolean functions as an attempt to break the 

Dobberin's conjecture. 

3.2 Theorems and Lemmas 

The following theorems and lemmata will be used in our construction. 

Theorem 1 (Walsh Summation [20]) This states that the absolute value of the sum of the 

Walsh-Hadamard Transform (WHT) values is the same constant for every Boolean func

tion: 
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E . G z ? ( ^ ) ) = 2 " x / ( 0 ) = ±2" 

Theorem 2 (Parseval's Theorem [29]) This states that the sum of the squares of the Walsh-

Hadamard Transform (WHT) values is the same constant for every Boolean function: 

From this theorem, we can know that a tradeoff exists in minimizing correlation to 

affine functions. When a Boolean function is altered to reduce its correlation to some affine 

functions, the correlation to some other affine functions will be increased. 

Lemma 1 If n > 3 and m < n — 3, then the Walsh values of an m-th order resilient 

function f(x) on n variables must satisfy [30]: 

res(f) = m => \F(u)\ = 0mod2m+2. 

Using Lemma 1, we can obtain the upper bound nonlinearity of a n-variable, m-resilient 

function represented by the following Theorem 3. 

Theorem 3 (Nonlinearity [30]) Upper bound nonlinearity of n-variable m-resilient Boolean 

function: 

1) Ifn is even andm + \ > \ - l.then NL(n, m) < 2n~l - 2m+1 . 

2) Ifn is even andm + \ < \ - ljhen NL(n, m) < 2n~l - 2? _ 1 - 2m+1 . 

3) Ifn is odd and 2m+1 > 2""1 - 'NL{n),then NL(n, m) < 2n~1 - 2m+l. 

4) Ifn is odd and 2m + 1 < 2""1 - NL(n),then NL(n, m) is the highest multiple of2n"1 

which is < NL{n). 

where, NL(n) is the maximum possible nonlinearity of an n-variable function. 

From Theorem 3, we can get the corresponding upbound nonlinearity as in Table 7. 

By Lemma 1, together with the condition of nonlinearity (see Section 2.2.3), possible 

Walsh values can be determined for resilient functions. For example, the Walsh values for 
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n\m 
5 
6 
7 
8 
9 
10 

0 
12 
26 
56 
118 
244 
494 

1 
12 
24 
56 
116 
244 
492 

2 
8 
24 
56 
112 
240 
488 

3 
0 
16 
48 
112 
240 
480 

4 

0 
32 
96 
224 
480 

5 

0 
64 
192 
448 

6 

0 
128 
384 

7 

0 
256 

8 

0 

Table 7: Upper Bound Nonlinearity of n-variable m-resilient Boolean Function 

(7,2,4,56) must be 0, +16 or —16, since a Walsh value of 32 or above will reduce the 

nonlinearity to 48 = | (2 7 - 32) or less; similarly, the Walsh values for (10, 2, 7,488), if 

such functions exist, must be 0,±16,±32 or ±48. Furthermore, considering Theorem 1, 

when n = 7, the distribution of these Walsh values can be determined. For example, for 

(7,2, 4, 56), the Walsh spectrum must contain 36 many +16s, 28 many —16s and 64 many 

Os or contain 36 many —16s, 28 many +16s and 64 many 0s. Unfortunately, when n is 

larger than 7, the available Walsh spectrum results do not allow us to specify the distribution 

of the Walsh spectrum for function / . 

Lemma 2 Let f : Z^ —> Z2 be the function obtained from, the concatenation of fi and f2, 

fi : Z^"1 —> Z2 and their corresponding Walsh transforms are Fx,F2, i.e., f = [/1I/2]. 

Then the Walsh transform F of f is given by 

F = [Fi + F2\F1 - F2). 

Lemma 3 Let f : ZV^ —» Z2 be the function obtained from the concatenation of fi and f2, 

fi : Zrl - Z2, i.e., f = \h\f2}. Then 

res(f) = m => res(fi) > m — 1, % — 1, 2. 

Note that Lemma 3 is a sufficient condition instead of necessary and sufficient condi

tion. It means that, if res(fi) = m — 1 (i = 1,2) is the only condition we have, we can just 
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ascertain that res(f) > m — 1, but we cannot determine whether res(f) = m. However, 

based on Lemma 2, an additional limitation can be applied on m — 1-resilient functions / i 

and f2 in order to achieve their concatenation to be m-resilient. 

Definition 10 Let f : Z£ —• Z2 be an — variable Boolean function and its corresponding 

Walsh transform is F. Then we denote f = 1 © / , and its Walsh transform is F. Obviously, 

F = -F. 

Definition 11 Since the relationship between nonlinearity and the maximum absolute Walsh 

transform value is fixed, we denote the latter as W Hmax{f) for Boolean function f. 

Lemma 4 Let f : Z2 —» Z2 be the function obtained from the concatenation of f\, f2, f3 

and fa, f : Z%~2 —> Z2 and their corresponding Walsh transforms are F\, F2, F3 and F4, 

i.e., f = [/11/21/3l/i]- Then the Walsh transform F of f is given by 

F=[F1 + F2 + F3 + F4|Fi - F2 + F3 - F4|Fi + F2 - F3 - F4 |F : - F2 - F3 + FA]. 

Lemma 5 Based on [35], small changes to a truth table result in small-magnitude change 

to its Walsh transform values. In particular, each F(u) will be altered by ±2 by flipping a 

single bit in the truth table, while each F(u) will be altered by 4, 0 or —4 by flipping two 

bits in the truth table. 

3.3 Construction of (10,2,7,488) Boolean Functions 

3.3.1 Search Algorithm 

Different optimization heuristics have been used to construct examples for Boolean func

tions with desirable cryptographic properties (e.g., [20,26,43]). 

Before starting the search, one has to decide whether the search is performed in the 

Walsh spectrum domain (frequency domain) using the spectral inversion technique [20,43] 
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or in the truth table domain (time domain). In our case, using spectral inversion does not 

present an attractive option. In particular, while we know that for a (10, 2, 7, 488) function, 

F(w) satisfies 

0 i fwi(w)<2, 

I ^ M I = S < 4 8 ttwt(w)>2, (3) 

0 mod 16 for all cu, 

these constraints do not allow us to specify the possible distributions of F. 

On the other hand, using the truth table domain, for n > 9, direct application of these 

heuristic techniques becomes ineffective because of the super-exponential increase (22n) in 

the search space. Even if the search space is constrained to the set of RSBFs, the search 

space for n = 10 is still relatively large (29w = 2108). Our direct search for (10,2,7,488) 

Boolean function (or RSBF) proved to be not successful because of the huge search space. 

Our main observation is that the search space can be reduced dramatically by noting that 

a (10,2, 7,488) function, / , may be constructed by concatenating two RSBFs / i : Z\ —> Z2 

and f2:Z%—> Z2 that satisfy the following constraints: 

0 if wt(u) < 1, 

| F 4 M I = < < 2 4 if wt(u) = 2, (4) 

< 48 if wt(u)> 2, 

where i = 1,2. The first constraint in Equation 4 follows from Lemma 3 which specifies 

that res(fi) > 1. The second constraint follows from Lemma 2 and the nonlinearity of / . 

The third constraint also follows from the nonlinearity of / . This observation reduced the 

search space roughly from 2910 = 2108 to 2" = 260. It is worth noting that our search with 

the restriction that res(fi) = 2 for i = 1, 2, while theoretically possible, did not yield any 
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useful results. Let (T0,a, MIL) denote the (initial temperature, cooling factor, maximum 

number of internal iterations) parameters of the SA algorithm [20]. Throughout our search 

for (10,2,7,488) Boolean function, we set T0 = 10,000, a = 0.98, and MIL = 1000. The 

SA search terminates when T < 1 or a Boolean function that satisfies certain constraint is 

constructed. The search procedure can be summarized as follows. 

1. Construction of the first half (/i : Z\ —> Z2) 

To construct / i , we represent the Boolean function in Polarity Truth Table (PT), and obtain 

neighbors in the search space by swapping two different RSBF classes and their corre

sponding two groups of bits. We calculate the related cost function of each Boolean func

tion in search space by transforming it to frequency domain, i.e. Walsh Spectrum (WS) and 

penalizing bit by bit. 

Search Space 9-bit RSBF function / i that satisfies the following conditions: 

• It meets the constraints in Equation 4 

• It is balanced, i.e. F\ (0) = 0 

Cost Function During this stage, the following cost function is used: 

cost{h)= Y, lF l^!2 

u;|u>£(w)<l 

+ E \F^\2 

u)\u)t(<J)=2, 
|Fi(w)|g{8,16,24} 

+ max|Fi(w) - 3 2 | 2 , (5) 

where u G Z\. 
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Note that, for the second term of the cost function above, we do not penalize the 

Walsh coefficients that confirm to the divisibility requirements (see Lemma 1). The 

reason we do penalizing in this way is based on the following fact. 

From Lemma 2, we have F = [Fx+F2 \ Fx — F2]. We can thus conclude that if both Fx 

and F2 are m-resilient Boolean functions, then their concatenation BF is m-resilient. 

Furthermore, F(u>) = 0 holds, when 2 n _ 1 < u> < 2" and wt(u>) = m + 1. This 

implies if we force both fx and /2 to be m-resilient, their concatenation / will always 

have some bits satisfying F(UJ) = 0, which is not necessory for achieving / to be 

m-resilient. Based on Theorem 2, this will lead to some other bits with higher WHT 

value, thus decrease the nonlinearity. Hence, we relax the constraint on these bits by 

allowing their WHT values to be ±8, ±16, ±24. Moreover, when constructing /2, we 

limit the WHT value of the corresponding bit to be its opposite. Our experimental 

results show that this strategy performs better than the case where this term of the 

cost function penalizes the Walsh coefficients. In summary, for all elements having 

the hamming-distance equal to 2, the limit for the corresponding Walsh value can be 

relaxed but should satisfy the condition for concatenation in further step. 

Search Strategy In this stage, we limit the initial state to be balanced. Based on the RSBF 

classes information for n = 9, there are totally 60 classes in which two of them 

have one element; two have three elements; the other 56 classes have nine elements. 

For such a distribution, we can easily assign values to each class to keep the corre

sponding Boolean function balanced. Also, during transitions among search space, 

we keep the balanced property of Boolean functions by swapping two classes with 

the same number of elements and with opposite values. In this way, we can further 

reduce the search space from 2 " = 260 to g) x Q x Q « 2548. 

From our experiments, we succeed in constructing such Boolean functions in 4096 

out of 4096 runs of simulated annealing. 
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trial no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

found-at-itt 
259 
120 
1968 
not found 
934 
691 
82,86,306 
not found 
not found 
1784 

Table 8: Success Rate of Constructing f2 based on fi 

2. Construction of the second half (/2 : Z\ —> Z2) 

Once / i is found, we use simulated annealing methods to find another RSBF (N = 9), 

which will satisfy the requirement of Boolean function (10, 2, —, 488) when concatenating 

with the RSBF obtained from the first step. The search space and search strategy remain 

the same as the above. The main difference is to minimize its cost function in the following 

way. 

cost(f2)= ] T |F2(u,)|2 

uj\wt(uj)<l 

+ J2 \Fi(u) + F2{to)\2 

u>\wt(u})=2, 

+ (max(|F1(o»)| + \F2{u)\) - 32)2, (6) 

where w G Z\. 

Note that, for the second term of the cost function above, we only penalize \F\{uS) + 

F2(u>)| and but do not penalize \Fi(u)—F2(u)\. This is because by Lemma 2, F\(u)—F2{u) 

is for the bit whose hamming weight equals to 3. 
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162D 
5DB2 
63E7 
9B16 
125C 
38EB 
4E80 
A0 9F 
68C5 
B893 
8B81 
1168 
EDB3 
C9CE 
B5C6 
7A87 

5CB7 
75B0 
8B1C 
4059 
62A0 
DD73 
E9DF 
5D86 
E023 
875F 
964A 
7EDB 
DA1E 
09D5 
EOBD 
4803 

62E5 
CCF5 
3A22 
EE34 
7C49 
2E62 
B3F3 
9F04 
E914 
077E 
957E 
B762 
F688 
B315 
10C2 
47F2 

8B7A 
0D2C 
9B41 
C8BD 
D955 
816A 
6A1E 
5AE1 
184E 
6E70 
73EF 
3E08 
47F9 
8434 
A227 
DE95 

2D4C 
B102 
F4F4 
568D 
6FA5 
CB2 9 
4 9FD 
07F2 
E993 
067B 
453F 
58ED 
AB2 8 
7921 
9A1F 
C381 

AC2 6 
F4AE 
AF32 
A687 
7587 
B03C 
2818 
72C9 
1774 
D572 
3EAC 
7860 
D084 
1DB8 
5726 
BCE7 

C1CF 
IAD 9 
50E2 
E323 
B6C6 
1D5A 
9146 
3CC9 
1785 
2E64 
2DFC 
CBC8 
642E 
98ED 
D174 
916B 

3A8 9 
D583 
4DF1 
915F 
2376 
6A6 9 
7C89 
6997 
74FD 
BAA2 
2A40 
9849 
AE97 
872B 
4B31 
5 9DE 

Table 9: Two Examples for (10,2,7,488) Functions in Hexadecimal Notation 

Based on ten many fis, we test how often and how many /2s can be constructed. The 

success rate to construct /2 within 4096 rounds of simulated annealing is around 70% (see 

Table 8). From the table, we can know that not all Boolean functions / is have their cor

responding /2s satisfying that the concatenation is m-resilient, and at the same time some 

may have more than one such candidates. 

3. Test if / = [/1I/2] is a (10,2, 7,488) function. This is necessary since it is not guar

anteed that a solution exists for every fx with the above constraints. If the SA search for / 2 

fails for a predetermined number of steps, then we go to step 1 and find another fa. 

3.3.2 Experimental Results 

Table 9 shows, in hexadecimal notation, two examples for (10,2,7,488) functions con

structed by our search. When terminated successfully, the search process required about 1 

hour on a Dell Dimension XPS Gen 4 PC with 3.4 GHz Pentium 4 CPU and 1 GB RAM. 
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3.4 Construction of (8, —, —, 116) Boolean Functions 

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos

sible Walsh values for (8,116) Boolean functions are {0, ±4, ±8, ±12, ±16, ±20}. 

This result does not allow us to specify the distribution of its spectrum. Furthermore, 

the number of classes for TV = 8 RSBFs and DSBFs is respectively 36 and 30. The 

problems in search space with such complexity are easier to solve with exhaustive 

search and mostly likely these have already been addressed in the literature. Hence, 

the search space is relaxed to any TV = 8 Boolean functions in our experiment. We 

also allow the initial state to be any random functions. 

Neighbour policy The neighbor of current state is determined by flipping any two of its 

output bits. The balanced property is ignored during the neighbor selection, and 

instead it is determined by checking whether the solutions have element u with 

F{u) = 0. This allows the non-balanced candidates to be transition state. 

Cost function The following cost function is used: 

cost(f)= Yl ((F(oj))2-20y (7) 
|F(u/)|>24 

where u £ Z\. 

Since the only conditions for (n, TVL) are nonlinearity and balanced, the cost func

tion only penalizes the elements whose Walsh transform values exceed certain value, 

and the balance property is not penalized here. The only additional condition for 

accepting the current local optimization is that the summation of maximum and min

imum absolute Walsh values cannot exceed the target WHmax(f) (here is 24). i.e. 

max^j |F(a;i)| + minW2 |F(u;2)| < 24. The reason is that whenever the above con

dition is satisfied, the local solution can always be transformed to be balanced with 
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EB85 6336 465E B226 3F80 5FA3 E343 40B1 
F35B F7B9 4A96 B661 C92D 44D5 305C 9F57 
CB8F BC20 2628 3DCA 0751 71B4 17A3 2F80 
1224 1DE5 5822 650C 7A55 94B6 AEED 7441 

Table 10: Two Examples for (8,116) Functions in Hexadecimal Notation 

WHmax{f) < 24. 

Related parameters Here we set parameters (T0,a, MIL) of the SA algorithm to be 

(20,000,0.98,8192). 

Experimental results From our experiments, we succeed in constructing (8,116) Boolean 

functions in 1000 out of 1000 runs of simulated annealing. All of them are bal

anced or can be transformed to be balanced by linear transformation. Note that if the 

neighbor were obtained by flipping one of its output bit, many of such Boolean func

tions would also be found, although the success rate would not be 100%. Table 10 

shows, in hexadecimal notation, two examples for (8,116) functions constructed by 

our search. 

3.5 Construction of (10, —, —,492) Boolean Functions 

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos

sible Walsh values for (10,492) Boolean functions have 21 many different choices. 

This result does not allow us to specify the distribution of its spectrum. Furthermore, 

the search space for N = 10 general functions and RSBFs is respectively 21024 and 

2108. Heuristic methods cannot work efficiently on such large size problems. Hence, 

the search space in our experiments is determined to be N — 10 DSBFs. 

Based on the DSBF classes information for n = 10, there are totally 78 classes in 
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which two of them have one element, one have two elements, six have five elements, 

39 have ten elements and the other 30 classes have 20 elements. For such a distribu

tion, we can assign values to each class to keep the corresponding Boolean function 

be balanced. Once there exists F(UJ) = 0 in the Walsh spectrum, we can transform it 

to be balanced by linear transformation. Therefore, to be more generalized, we only 

limit the initial state to be balanced, while we ignore the balance property during 

transition among search space. 

Neighbor policy The neighbor of current state is determined by flipping any one of its 

classes and its corresponding bits. The balanced property is ignored during the 

neighbor selection, and instead it is determined by checking whether the solutions 

have element u with F(u>) = 0. 

Cost function The following cost function is used: 

cost(f)= Yl \\F(u)\-CACU_COST\3 

\F(u)\>TAR_MAX 

+ J2 (AT_LEAST - \F(u)\)2 

0< | (F(LU) \<AT_LEAST 

+ T2, (8) 

where u> G Z\a, and 

0 if (F(u) = 0) A (#{wi|(a;1 < u) A (F(a;1) = 0)} < 32), 

(CACU_COSTf if (F(u) = 0) A (#{w1|(a;1 < u) A (F(wi) = 0)} > 32). 
Ti(w) = 
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and 

o i f#H(FM = o)}>o, 

I 12.0 x {TAR_MAXf if #{u\{F{u) = 0)} = 0. 

The parameters in the cost function have to be tuned for optimization, such as, TAG_-

MAX, AT_LEAST, and CACU_COST . From our experiments, they are set to be 36, 

12, 28 respectively. 

Since the only conditions for (n, NL) are nonlinearity and balanced, theoretically 

the first term and the last term of the cost function may be enough. The first term 

penalizes the elements whose Walsh transform values exceed certain value, while the 

last term checks whether the solution can be transformed to be balanced. However, 

from our experiments, if the cost function is only defined to satisfy these conditions, 

the result will be far away from the solution. So we penalize it for some additional 

states, such as, the number of 0s and the minimum Walsh values. Note that these 

additional penalizations are determined by our observation and experiments; there 

may have other ways to define the cost function. 

Related parameters Here we set parameters of the SA algorithm to be T0 = 20,000, 

a = 0.98, and MIL = 8192. 

Experimental results We succeed in constructing (10,492) Boolean functions in 144 out 

of 1024 runs of simulated annealing. All of them are balanced or can be transferred to 

be balanced by linear transformation. Note that if the neighbor obtained by flipping 

any one of the DSBF classes and its corresponding bits, many of such Boolean func

tions can also be found, although the success rate is far lower than that from flipping 

two classes. Also, the examples constructed in this way always fall into a pattern, 

that is, the locations of F(u>) = 0 are the same no matter how we tune the parame

ters. We find this is because of the extra penalizations in the cost function. Table 11 
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E983 
9B5B 
829F 
2E99 
9148 
0756 
58F8 
CCE5 
ECF4 
FACE 
FF98 
68FD 
AEFB 
F41F 
2D81 
31B6 

904A 
74EB 
339E 
E180 
D7EA 
2E13 
D693 
D509 
FF65 
E394 
A1FD 
9B73 
C281 
58D0 
EFB6 
205F 

D315 
044F 
2E74 
74C5 
5B1E 
5D32 
F913 
63E5 
FAAE 
9682 
B94A 
DAI 9 
DC57 
9004 
868A 
BA8 5 

74CC 
2E39 
A98F 
493D 
C3AD 
8 DAD 
8041 
6717 
6823 
DAF2 
D320 
7E2E 
EFB6 
4385 
3B5F 
74C8 

B34F 
7 AC 8 

1171 

AC82 
5DE9 
2590 
3E25 
ABF1 
FBD8 
6EB5 
C328 
4D43 
CA9 6 
8F5D 
E7CC 
560F 

0376 
4826 
25AE 
5C51 
2B25 
EB97 
F433 
9BB7 
99BD 
B277 
8018 
F84A 
60CC 
C5E2 
4293 
43E8 

7A2 5 
E920 
48F9 
FCBD 
C882 
20ED 
3497 
1D57 
7CD5 
21E3 
B28D 
131E 
A74F 
B9C8 
3FB8 
E398 

E4F1 
EE47 
4ED3 
217F 
90AB 
E71F 
0BB7 
7FFF 
4D1E 
13B9 
EA19 
DA8 6 
1955 
56C2 
58E8 
9469 

Table 11: Two Examples for (10,492) Functions in Hexadecimal Notation 

shows, in hexadecimal notation, two examples for (10,492) functions constructed by 

our search. 

3.6 Construction of (12, —, —, 2010) Boolean Functions 

In this section, we first introduce a special method for constructing (12,2008) Boolean 

functions by concatenating (10,492) Boolean functions. Then, with another concatenation 

method, simulated annealing method is used with a (10,492) function as initial state to 

construct (12, 2010) Boolean function. 

3.6.1 Construction of (12—, —, 2008) Boolean Functions 

As mentioned above, we can construct (10,492) Boolean function in many different ways. 

For N = 10 and NL = 492, we can conclude that the maximum absolute value of Walsh 

transform of such Boolean functions is WHmax(f) = 40. 



Let /io be any one of N = 10 and NL = 492 Boolean functions with Walsh transform 

F10 and ZeroNW number of zeros in its Walsh transform, and let /12 = [/io|/io|/io|/ioj-

Based on Lemma 4, the Walsh transform F i 2 of / i 2 is derived as follows, 

Fi2 = [Fio + î io + Fw + Fio|F10 — Fio + Fw — FW\FW + F10 — Fw — Fiol-Fio — Fio — Fw + Fw] 

= [Fio + Fio + F10 — Fio|F10 — Fio + Fi0 + Fi0 |Fi0 + Fi0 — Fio + Fi0|Fio — Fi0 — Fi0 — Fi0] 

= [2 x F10|2 x F10|2 x Fio| - 2 x F10] 

(9) 

From the above equation, the maximum absolute value of Walsh transform of F i 2 is 

2 x WHmax(f(N10) = 2 x 40 = 80. Furthermore, there are 4 x ZeroNW many zeros in the 

frequency domain of F i 2 . Hence, we know F i 2 can be transformed to a balanced Boolean 

function and has nonlinearity equals to 212_1 — | x 80 = 2008. Similarly, the nonlinearity 

cannot be improved by respectively flipping one, two or three bits from the results. 

3.6.2 Construction of (12, —, —, 2010) Boolean Functions 

Our observation Let / = [/i|/2 | /3 | /33, where / is JV = 12 function, / i is a (10,492) 

Boolean function obtained above, and f3 is any N = 10 bent function. Correspond

ingly, their Walsh transform are denoted as F, Fi, F2, F3 and F3. We have: 
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F = \F\ + F2 + F3 + Fs\Fi — F2 + F3 — F3IF1 + F2 — F3 — F3IF1 — F2 —- F$ + F3J 

= [JPI + F2 + F3 — F3IF1 — F2 + F3 + F3IF1 + F2 — F3 + F3IF1 — F2 — F3 — F3] 

= [Fi + F2|Fi - F2 + 2 x F3 |F! + F 2 |F : - F2 - 2 x F3] 

= [Fi + F2|Fi - F2 ± 64|FX + F2|Fi - F2 T 64] 

(10) 

From the above equation, for such construction, the (12,2010) Boolean function can 

be obtained, if and only if the following conditions are satisfied. 

(Vu G Zf), I Fi (w) + F2 (w) I < 76; 

< (Vu; G Z2
10), |F!(u;) - F2(u;)| < 12; UD 

(3wGZ2
10), F!(a;) + F2(a;) = 0. 

By limiting the /1 to be (10,492), we try to relax the constraint of /2. 

From these conditions, one intuitionistic idea is to obtain /2 by flipping a small num

ber of output bits from f\. To satisfy the second condition and keep flipped bits as 

few as possible, we may limit the number of flipped bits to be less than 6. Unfor

tunately, the search space is still huge by flipping less than six bits. It is equal to 

X^=i(i°24) ~ 1-6 x 1015 « 251. This space still cannot be searched by brute force, 

and heuristic method is more feasible. 

Furthermore, based on the conditions, we can get the following fact, 

F2(w) G [28,36],Vu> G {u\Fi(u) = 40} 
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and 

F2(u) e [-36,-28],Vu; E H F ^ w ) = -40} 

This fact means the Walsh transform values in f2 for all the positions with maxi

mum absolute Walsh transform values in fi should be improved. This has quite low 

possibility. 

Search space The search space is regular 10-bit Boolean function and the initial state is 

limited to be f\. 

Neighbor policy The neighbor of current state is determined by flipping any two bits of 

its output. 

Cost function The following cost function is used: 

cost(f2) = Yl 2-° x H^MI - CACU_COST\3 

\F2{OJ)\>TAR_MAX 

+ Y (AT_LEAST - \F2(u)\)2 

0<\(F2(w)\<AT_LEAST 

+ J2 (\F1(LJ) + F2(U)\-68)2 

\F!(U;)+F2(UJ)\>76 

+ J2 (l^iM-^HI)2 

|F!(u;)-F2(w)|>12 

+ T2, (12) 

where u> e Z2°, and 

0 if (F(u) = 0) A (#{w1|(o;1 < to) A (F2{UJX) = 0)} < 32), 

{CACUjOOSTf if (F(u) = 0) A (#{^x|(u;i < u) A (F2(u;i) = 0)} > 32). 
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and 

0 if #{CJ\(F2(LO) = 0)} > 0, 

I {TAR_MAXf if #{u\{F2(u) = 0)} = 0. 

The parameters in the cost function have to be tuned for optimization, such as, TAG_-

MAX, AT_LEAST , and CACU_COST . From our experiments, they are set to be 

36, 16, 28 respectively. 

From the above function, the constraints from term 1 to 3 and 6 is similiar with the 

cost function for constructing (10,492) Boolean function. The purpose is to force 

f2 to be around (10,492). Although the constraint seems to be unnecessary, our 

experiments show that it helps to obtain the solution. 

The constraint term 4 is related to the condition \FX + F2\ < 76, while the constraint 

term 5 is related to the condition |Fi — F2\ < 12. 

Additionally, WHmax(f) > 44 is checked. The reason we check it is as follows. 

If WHmax(f) > 44 then we can know that no matter what value its corresponding 

F\ is, the combination between Fi and F2 cannot satisfy the first two conditions of 

Equation 11 at the same time. 

Although the only conditions that F2 should satisfy are Conditions 11, from our 

experiments, if the cost function is only defined to satisfy these, the results will be 

far away from the solution. 

Related parameters The parameters of the SA algorithm are set to T0 = 100, a = 0.99, 

and MIL = 4096. 

Experimental results Based on 50 many fis, we test how often and how many /2s can 

be constructed in 32 runs of simulated annealing. From the samples, not all Boolean 

functions / i has its corresponding f2 , while some of them can find as many as 20 
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/i: 

1001001000001001000000011000011001010100010001101100000100111000 
0011011001110000011101010011110111110101010101100001111110000100 
000001100110110001101010000O0U0101111111001100100100101110000011 
1010T1110010001100100111001T100100010110101111101001000011110100 
000000010111100001101100111101010111100U110010000100010001010011 
0010111110101110010110100101100000110101100111101101000100001011 
1000100111111110000011000001111101011001001T11100101111111010 Oil 
010101110011111011001 OHIO 1111011000001000000U010111101101110100 
01000001000100T10T1010101001010001101100111101011111111001110010 
0010101010000001111101001001000100110001001101010111011001001110 
00011100101011111100100010101101001100101110T100 011T011011010 001 
00011110001001111101010011111101111101100001011100000U0111011110 
100101001TJ000110101011T11110110000000001111001010101011111101010 
01100011100000110100101011101101011000T1111011111110011100011110 
01100010001110100001101111T1000010010001100010111001101110110110 
1000010001011100010100010101U11010101110110111100010111000100001 

h-
1001001000001001000000011000011001010100010001101100000100111000 
001101100111000001110101001110011111010101010110 0001111110000100 
000011100110110001101OlOOOOlOUOlOlllllll0 01100100100101110000011 
1010T1110010001100100111001T100100010111101111101001000011110100 
000000010111100001101100111101010111100TT110010000100010001010011 
00101111101011100101101001011000 00110101100011101101000100001011 
1000100111111110000011000001111101011001001T10100101111111010011 
01010111001111001000101110 1111011000001000000T7010111101101110100 
01000001000100T10T1010101001010001101100111101011111111001110010 
0010101010000001111101001001000100110001001111010110011001001110 
00011100101011111100100010101101001100101110T100011T001011010001 
00011110011001111101011011111101111101100001011100000TJ0111011110 
100101001U000110101011T11110110000000011111001010101011111101010 
Oil 00011100000110100101011001101011000T1111011111110011100011110 
Oil 0 0010001110100001101111T1100010 010001100010111001101110110110 
1000010001011100010100010101TJ11010101110110111100010111000100001 

Table 12: F\, F2 Example for (12,2010) Functions (Difference Showed in Bold and Underline) 

candidates. Hence, the selection of /1 is critical to the search procedure. 

Table 12 shows an example constructed in this way, in which F\ is a (10,492) 

Boolean function, and F2 is obtained by simulated annealing with Fj as initial state. 

From this table, the hamming distance between these two functions is 16 instead 

of what we expected, i.e., 6. As mentioned above, these two functions concatenate 

with any N = 10 bent function F3 and F3 will lead to the outcome's nonlinearity 

being 2010. Furthermore, -Pi(O) = F2(0) = 0, which implies the outcome satisfies 

F(0) = 0 which means it is balanced. 
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3.7 Open Problem 

3.7.1 Attempts on Constructing (8, —, —, 118) Boolean Functions 

Our ultimate goal is to construct (8,118) Boolean functions. Some attempts are applied as 

follows. 

Attempt 1: Adjust the parameters in cost function with constructing (8,116) In

spired by the results in Section 3.4, the same idea as in constructing (8,116) Boolean 

functions is applied to construct (8,118). 

Now the cost function is adjusted to be: 

cost(f)= J2 ( (^)) 2 -16 2 ) 3 (13) 
|F(w)|>20 

where u € Z\. The additional condition is also changed to 3cu G Zf, F(u>) = 0 and 

the maximum absolute Walsh value cannot exceed the target WHmax(f) (which is equal 

to 20), that is, max^ |F(w)| < 20. Here, we do not check the summation of maximum and 

minimum, because there is no such result. 

We did not succeed in constructing the Boolean functions with this method. 

Attempt 2: Concatenate two (7,55) Boolean functions It is mathematically proved 

in [44] that, if it is impossible to construct (8,0, 7,118) function by concatenating two 7-

variable, degree 7, nonlinearity 55 functions, then the maximum nonlinearity of balanced 

8-variable functions is 116. 

Based on the above conclusion, concatenating two (7, 55) Boolean functions is at

tempted. The search procedure can be summarized as follows. 
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Obtain first 7-bit function / i with cost function: 

, 0 if WHmax(f) = 18, 
cost(fi) = 

' (WHmax(f) - 18)2 ifWHmax(f) + 18 

Then the algebraic degree and the balance of the local solution is checked. 

• Obtain second 7-bit function /2 with cost function: 

cost(f2)= Yl (IFxMi + i^Hi-ie)2 

|Fi(<o)|+|F2(u;)|>20 

Then the balance of the local solution is checked. We did not succeed in constructing 

the Boolean function with this method. 

3.7.2 Attempts on Constructing (10, - , - , 494) Boolean Functions 

Our ultimate goal is to construct (10,494) Boolean functions as the counter example for 

breaking H.Dobbertin's conjecture. Some attempts are described as follows. 

Attempt 1: Adjust the parameters of cost function in constructing (10,492) Inspired 

by the results in Section 3.5, the same idea as in constructing (10,492) Boolean functions 

is applied to construct (10, 494). The program continues to search for (10,494) functions 

instead of exiting after (10,492) function is found. The parameters in cost functions are 

adjusted to different values. However, after around two months' running, no (10,494) 

function was found. 

Attempt 2: Concatenate two N = 9 Boolean functions In this attempt, two N = 9 

Boolean functions are constructed and then concatenated to yield N = 10s based on a 

similar idea as in Section 3.3. However, this problem is different from the (10,2,7,488) 

50 



problem. In constructing (10, 2, 7,488), there are some guidable, essential constraints, such 

as F(u) = 0 for all wt(u) < 1 and F{u)modA = 0 for all u>. For (9, —) to be concatenated 

with (10,494), the only necessary condition for constructing Fi is as follows, 

( V ^ e Z ^ l F i M l ^ e ; (14) 

and for f2, 

(Vw G Zl), \F2{UJ)\ < 36, 

< (Vw E Z\\ (|Fi(w) + F2(u)\ < 36) A (|Fi(w) - F2(u;)| < 36) (15) 

(3w G Z|) , (F^u) + F2{u) = 0) V (^(w) - F2(u) = 0). 

Experimental results should be analyzed based on the tradeoff in above conditions. For 

example, from Condition 14, when WHmax(fi) is limited to be 36, / i can be easily found. 

However, the weaker the conditions are, the more random the results are. It is possible that 

a large number of / is will never be used to find corresponding /2s. In the mean time, if we 

penalize this by extra constraints, it is possible that such extra constraints may prevent us 

from finding any solution. 

Different extra constraints are tested during the experiments. One of them is drafted as 

follows. 

Search space The search spaces for fi and /2 are limited to TV = 9 RSBFs. 

Neighbor policy Flipping one class and its corresponding bits. 
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Cost function 

cost(h)= Yl l^iM-24|2 

o;|u;>0) 

|Fi(w)|>36 

+ TU (16) 

7\ = 
0 i f ( |F!(0) |<18, 

|^i(0)|2 1^1^(0)1 > 18. 

T2 

cost{h)= J2 \F^)\2 

UJ\U»0, 

\F2{LO)\>36 

+ E a* 
o)|w>0, 

|fiHI+|F2(w)|>36 

+ T2, 

JlFiCO + PbCo)!3 

.(w)| + |F2(o;)|--24)2 

if (1^(0)4-^(0)1^ 

(17) 

1^(0) - F2(0)| - 24)2 if (1^(0) - F2(0)| > 36. 

In this way, we expect the results of two concatenations to be balanced so the extra 

condition would be unecessary. 

Attempt 3: Brute Force - flipping two bits of (10,492) functions Based on Lemma 5, it 

is possible that, after flipping certain two bits of the (10,492) Boolean functions, the Walsh 

value reduce from 40 to 36, and increase from —40 to —36, with some 0's in the derived 

Boolean function. In our experiments, around 200 many (10,492) Boolean functions are 

verified in this way, but none of them falls into this class. 
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Attempt 4: Hill Climbing - SA applied on (10,492) functions Based on the result of 

constructing f2 in Section 3.6.2, if this function exists then the hamming distance between 

the (10,494) function and its closest (10,492) function will not necessary be equal to 2, but 

instead may be a little greater than 2. However, it is impractical to verify all the possibilities 

by flipping more than 2 bits for N = 12, so simulated annealing is used and the details are 

shown in the following. 

Search space The search space is regular 10-bit Boolean function, and the initial state is 

limited to be (10,492) functions which is already found. 

Neighbor policy The neighbor of current state is determined by flipping any two output 

bits. The balanced property is ignored during the neighbor selection, and instead it is 

determined by checking whether the solutions have element u> satisfying F(u) = 0. 

Cost function The following cost function pattern is used: 

cost(f) = J2 2-° x 11^)1 ~ CACU_COST\3 

\F(UJ)\>TAR_MAX 

+ Yl (AT_LEAST - \F(u)\)2 

0<\(F(to)\<AT_LEAST 

+ T2, (18) 

where u G Z^0, and 

0 if (F(w) = 0) A (#{wi|(u;i < u) A (F(wi) = 0)} < 32), 

{CACUjOOSTf if (F(u) = 0) A (#{u>i|(wi < u) A (F(wi) = 0)} > 32). 
TiM = 
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and 

0 i f#M(F(u ; ) = O)}>0, 

I {TAR_MAXf if #{u\{F{u) = 0)} = 0. 

The cost function is similar to the one used in constructing (10,492) functions in 

Section 3.5. The main difference is that here the initial state is one of the (10,492) 

functions obtained in Section 3.5. The main idea is that the hamming distance be

tween (10,494) functions and (10,492) functions is potentially not large. 

Moreover, many other cost functions have been designed and their parameters ad

justed, but no better results are obtained. 

Related parameters Here we set parameters of the SA algorithm to be T0 = 100, a = 

0.99, and MIL = 4096. Note that when T0 is increased to around 1,000, we cannot 

even construct (10,492) functions. 

Experimental results It took 6 months to apply this method on 30 many (10,492) Boolean 

functions, with 1024 iterations each. The (10,494) functions are not found in this 

way. However, many of other (10,492) functions are constructed under each seed. 

Moreover, some examples do not fall into the same pattern. Table 13 shows the 

number of (10,492) functions found with ten of the seeds. 

Others Other attempts are also made including, but not limited to, 

• Replace the search space from DSBFs to RSBFs; 

• Constraint the neighbor to be balanced; 

• Fix some classes when moving to next state; 

• Use new random function instead of the one in standard C library. 

These attempts, while also theoretically possible, do not yield any better results. 
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seed# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

the number of (10,492) functions found 

851 
698 
631 
602 
575 
609 
549 
527 
688 
709 

Table 13: The Number of (10,492) Boolean Functions Found by 1024-time SAs on Seed 
Functions 

3.7.3 Attempts on Constructing (12—,—,2012) Boolean Functions 

The ultimate goal is to construct (12,2012) Boolean function. Some attempts are made 

through revising methods in Section 3.6.2. 

Attempt 1: Adjust the parameters in the cost function for constructing (12,2010) We 

apply simliar idea as in constructing (12,2010) Boolean functions to construct (12, 2012). 

That is, let / = [/1I/2I/3I/3] in which /1 is a (10,492) Boolean function obtained as in 

Section 3.5, and /3 and / 3 are bent functions. Then simulated annealing method is applied 

to search function f2. 

Now the conditions are adjusted to be: 

(Vw6Z2
10), \F1(UJ) + F2(LO)\<72; 

< (Vu; G Z2
10), |Fi(u;) - F2(u)\ < 8; 09) 

(3ueZ™), F1(uJ) + F2(u) = 0. 
V 

With fi also limited to be (10,492), FX(UJ) = 40 implies F2(cu) must be 32, and 
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Fi(u>) = —40 implies F2{ui) must be —32. 

We did not succeed in constructing the Boolean function using this method after apply

ing it to one fx in 400 iterations (which consumes 18 days). 

Attempt 2: Relax the constraint of f\ to lower nonlinearity The f2 in attempt 1 has 

strict constraint on the elements with Fi(u) = ±40, and f2 must have nonlinearity no 

smaller than that of f\. That is, both / i and f2 are (10,492) Boolean functions. This result 

reaches the upper bound of Dobberin's conjecture, with additional constraints on those 

functions. 

In attempt 2, the nonlinearity of / i and f2 is relaxed to be certain lower values (e.g. 44 

and 48), so that there would be more candidates of f\ and /2 . 

However, when only relaxing / i and / 2 to lower nonlinearity and keeping / 3 and / 3 

unchanged, there is no solution available. For example, suppose Fi{u) — 44, in order 

to satisfy \FX(UJ) + F2(u>)| < 72, F2(ui) must be no greater than 28, which breaks the 

2nd condition \Fi(u) — F2(u)\ < 8. It is easy to prove that if Fi(u>) > 40 under such a 

concatenation, then no matter what value its corresponding F2(UJ) is, the combination of 

F\ and F2 cannot simultaneously satisfy the first two of Conditions 19. 

Attempt 3: Replace f3 with its 1 or 2 bit flipping, and respectively obtaining /3 Based 

on the observation of Lemma 5, after flipping bits of N = 10 bent function, the Walsh 

transform values will belong to: {±30, ±34} after 1-bit flipping, and {±28, ±32, ±36} 

after 2-bit flipping. Therefore, 

F3(LJ) + F3(tu)\ = 0; 

F3(u) - F3{LU)\ G {56,60,64,68,72} 

Now the conditions are adjusted to be: 
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wherein, 

(Vu;eZ2
10), |F!(o;) + F2(u;) |<72; 

(VwGZ2
10), ^(u) - F2(u)\ < 6; 

(3ueZl
2°), F1(w) + F2(w) = 0. 

when flipping one bit, or 

6 = 
12, F3(u) = ±30 

4, F3(w) = ±34 

(20) 

S=< 

16, F3(u) = ±28 

8, F 3 M = ±32 

0, F , M = ±36 

when flipping two bits. 

From Conditions 20, all conditions remain the same except the second condition. The 

difference between Fi(u) and F2(UJ) is changed from only allowing < 8 to having different 

possibility element by element (from 0 to 16). When / i is limited to (10,492) Boolean 

functions, this allows /2 to have lower nonlinearity. For example, for certain u>, F\(UJ) = 

28, F2(u) = 44, F3(CJ) = 28, and FA(u) = F3(o;) = -28 may be acceptable. However, 

this revision only makes possible Walsh transform values to be as high as 44. It does not 

relax the constraints to generate more relaxed candidates. That is, if there is a component 

satisfying Fi(u) = 44, then the Walsh value for the other threes can only be 28, 28 and 

-28 . 
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The procedures used in our experiment are as follows. 

• Construct one N = 10 bent function fbenu 

• Flip fbent 1 or 2 bit(s), get f3 and calculate / 4=/ 3 ; 

• Check whether (10,492)/i satisfies |Fi(w)| + |F3(w)| < 72, and if no, check next fx 

• Use simulated annealing method to search for f2 with / i as the initial state and bit 

complement in truth table as neighbor. 

• Repeat above 4 steps. 

Attempt 4: The 4th component relaxed from / 3 bent function to any bent functions 

By observing the experiment of constructing (12, 2010), we have that although F\ — F2 < 

12, the / 2 is not derived by flipping 6 bits of / i . This implies that there are few possible 

solutions by requiring F\ — F2 < 8. Relaxing 4th component will allow / i and /2 to have 

a large-magnitude difference. 

We adjusted the parameters to a large extent under the same search space, neighbor 

policy, and cost function, but the results could not be improved. 

3.7.4 Other Attempts on Constructing (12, - , - , 2012) Boolean Func

tions 

Attempt 1: Construct through concatenation of (10,494) functions Based on the 

idea described in Section 3.6.1, if (10,494) functions can be constructed, we can obtain 

(12, 2012) function by concatenating them as /12 = [/io|/io|/io|/io]- The maximum abso

lute value of Walsh transform of F12 is 2 x WHmax (/Wio) = 2 x 36 = 72. Furthermore, 

there are 4 x Zero^io many zeros in frequency domain of F12 with F(0) = 0. Hence, we 

know F12 is balanced and has nonlinearity equals to 212_1 — \ x 72 = 2012. Obviously, this 
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problem is equivalent to constructing (10,494) Boolean functions, which is also an open 

problem based on the conjecture made by Dobbertin. 

Attempt 2: Directly apply simulated annealing method to N = 12 DSBFs In this 

way, the best solution we have achieved is to construct (12, —, —, 2000) Boolean functions. 

The detailed procedure is as follows. 

Search space The search space is limited to N = 12 DSBF functions. Based on the class 

information for n = 12, there are totally 224 classes in which two of them have one 

element, one has two elements, two have three elements, three have four elements, 

seven have six elements, 82 have 12 elements and the others (127s) have 24 elements. 

We allow the initial state to be any random DSBF functions. 

Neighbor policy The neighbor of current state is determined by flipping any one of its 

classes and its corresponding bits. 

Cost function The following cost function is used: 

cost(f)= J2 l * V ) ~ 6 8 | 3 + 5 ] r ( u ; ) , (21) 
\F(u)\>96 CJ 

where u E A12,j(i G Z9n), and 

0 if (F(u) < 20) A (#{o;1|(wi < u) A (\F(ui)\ < 20)} < 60), 

2(20-1̂ (̂ )1) i f (F(u) < 20) A (#{w!|(a;i < u) A (\F(u!)\ < 20)} > 60). 

Note that, the only conditions for (n, NL) are nonlinearity and balanced. The cost 

function theoretically can only penalize the elements whose Walsh transform values 

exceed certain value. However, since this condition is too relaxed to guide the SA 
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in finding the solution in the right direction, we also penalize certain low values of 

Walsh transform in the second term of the above cost function. 

Related parameters The parameters of the SA algorithm are set to be T0 = 10,000, a = 

0.96, and MIL = 8192. 

Experimental results 170 out of 185 trials succeed. We adjust the parameters to a large 

extent under the same search space, neighbor policy, and cost function, but results 

cannot be improved. Also, our experiments cannot improve the nonlinearity by re

spectively flipping one, two or three bits from 100 examples of the results. 

Attempt 3: Relax / 3 and f3 to be any Boolean functions instead of bent functions 

Our observation Let / = [/1I/2I/3I/4], where / is N = 12 function. /* (i = 1,2,3,4) 

represents four N = 10 Boolean functions, and their Walsh transform spectrum are 

denoted as F, F\, F2, F3, and F4. Based on Lemma 4, the Walsh transfrom spectrum 

F derived from Fi(i = 1,2,3,4) can be formulated as follows, when ignoring the 

order of concatenation. 

F = [(F + Fj) ± (Fk + Fi)\(Fi - Fj) ± (Ffe - Ft)] (22) 

where tuple (i, j , k, I) can be any permutation of (1,2,3,4). 

From Equation 22, we have that to obtain certain nonlinearity Boolean functions, the 

following conditions must be satisfied. 

\Fi\ + \Fj\ < WHmax(f),((i,j e {1,2,3,4}) A (i ^ j)) (23) 

Condition 23 can be used to define the cost functions for f2, fa and /4. 
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However, such constraint is not sufficient to guide heuristic methods to search for 

the solution in the right direction. There are still many other factors that should 

be considered during the construction, such as the search space, the goal for each 

component, the definition of neighborhood, the practical cost functions, and so on. 

There are other tradeoffs that may be made. For example, if the constraint for search

ing / i is relaxed too much to accept very low nonlinearity, then fx can be easily 

found. However, it is possible that the f\ found will never have remainder compo

nents (/2, /3 and fi) for concatenation. This is similar to randomly picking up any 

one f\. Unfortunately, since the (n,NL) functions are only relevant to two con

ditions, that is, balanced and nonlinearity, we cannot apply further conditions to it. 

We only know that we cannot concatenate two (7, 56) Boolean functions to form 

(8,118) functions. If (8,118) function exists through concatenation, then it should 

be the concatenation of two (7,55) functions. So far there is no known result on what 

kind of fi can or cannot be concatenated to construct (n, NL) Boolean functions. 

We conduct experiments with different combinations, but (12,2012) Boolean func

tions cannot be constructed. 

Search space The search space can be either N = 10 RSBF or DRSBF Boolean functions, 

whose sizes are 2108 or 278, respectively. The regular Boolean functions are not tried 

since the search space size (22 = 21024) is prohibitive. We allow the initial state to 

be any random RSBF or DRSBF functions. 

Neighbor policy The neighbor of current state is determined by flipping any one or two 

class(es) and its corresponding bits. 

Cost function the basic idea of cost function is to satisfy |Fj| 4- \Fj\ < 72 where i,j e 

{1,2,3,4} A i ^ j . 
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Seed 

1 
2 
3 
4 
5 

The number of derived functions 

WHmax(f)=12 
0 
0 
0 
0 
0 

WHmax(f)=16 
44 
28 
16 
12 
28 

WHmax(f)=S0 
2064876 
2064876 
2064876 
2064876 
2064876 

WHmax(f)=84 
31208 
31224 
31236 
31240 
31224 

Table 14: Nonlinearity Distribution of Derived Boolean Functions by Flipping Five 
(12,2010) Functions 

Related parameters The parameters (T0, a, MIL) of the SA algorithm for four compo

nents are respectively set to (10000,0.98,1000), (10000,0.98,2048), (10000,0.98,1024), 

(10000,0.98,4096). 

Attempt 3: Brute Force - flipping two bits of (12, 2010) functions Based on Lemma 5, 

it is possible that, after flipping certain two bits of the (12,2010) Boolean functions, the 

Walsh value reduce from 76 to 72 and increase from —76 to —72, with some 0s kept in 

the derived Boolean function. In our experiments, around 100 many (12,2010) Boolean 

functions are verified in this way, but no one falls into this class. Furthermore, as shown in 

Table 14 (only five examples are listed here), there are only very few derived functions that 

can keep the same nonlinearity while most of them have reduced nonlinearity. 
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Chapter 4 

Other Applications: Cryptanalysis of 

Symmetric Ciphers 

In this chapter, we describe our research on using heuristic methods to attack symmetric 

ciphers. Two example attacks are given in this chapter. We use simulated annealing to 

reconstruct the initial state of the LFSRs for Geffe cipher (stream cipher); in the mean time, 

we use guided search techniques to perform experiments on key distinguishing attack [2] 

on TREYFERR cipher (block cipher). The most attractive aspect of such cryptanalysis 

approach is that the ciphers being attacked can be treated as black-boxes by the attackers. 

If such attack succeeds, it would be unnecessary for attackers to understand internal details 

of the ciphers. 

4.1 Attack on Geffe Cipher 

One of the main objectives in attacking a LFSR-based stream cipher is to reconstruct the 

initial state of all the LFSRs, which are the key components of stream ciphers. In our attack 

on Geffe cipher, we need not to analyze the internal details of the cipher, that is, we regard 

the cipher as a black-box. We feed the cipher with different LFSR register initial states 
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and try to analyze the difference between keystream outputs (generated sequences) under 

different initial states, and output sequences we observe (observed sequences). 

4.1.1 Stream Ciphers 

Stream ciphers are important primitives for ensuring privacy in communication. Stream 

ciphers have good properties, such as being secure, efficient, and small in terms of imple

mentation. Stream cipher algorithms are usually faster than block ciphers, such as DES. 

Stream ciphers are often used in mobile devices, such as A5 in GSM cell phone system. 

Performance benefits may lead to their application to videoconferencing and other multi

media applications [7]. A stream cipher produces a pseudo-random sequence of bits which 

are exclusive-OR'ed with the plaintext to produce the ciphertext. It is sometimes also 

called state cipher since encryption depends on not only the key and plaintext, but also on 

the current state. 

Linear Feedback Shift Registers (LFSR) Many stream ciphers make use of the linear 

feedback shift register (LFSR), since: 

1. LFSR is well-suited for hardware implementation; 

2. LFSR can produce sequences of large period; 

3. LFSR can produce sequences with good statistical properties; 

4. LFSR can be readily analyzed using algebraic techniques because of its structure. 

Figure 4 illustrates a LFSR defined by the primitive polynomial xw © x3 © 1 = 0. 

An LFSR is a finite state machine and consists of L memory cells (stages) r0, n , . . . , r/_i. 

Each cell contains one value from Z2. LFSR has one input and one output, and a clock 

which is used to control the movement of data. At any time t, the content of the register 

is called the state of the LFSR at time t, and denoted as St = (st+i-i,st+i-2, • • •, st). The 
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0 1 2 3 4 ... ... 9 

Figure 4: An Example of Linear Feedback Shift Register (LFSR) 

state at time zero, So, is called the initial state of the LFSR. 

During each unit of time, the following operations are performed. When the control unit of 

the finite state machine is clocked, 

1. The value of the cell r0 goes to the output and forms part of the output sequence; 

2. The remaining cells are shifted as Ti = r i+1, i = 0 , 1 , . . . , I — 2; and 

3. The last cell r/_i is the feedback bit which is loaded with a new value st+i calculated 

through the corresponding primitive polynomial. 

Note that the new value of the last cell can either be the output. 

A periodic LFSR is defined by a (primitive) feedback polynomial of degree L, which 

is the size of the LFSR. When the feedback polynomial is primitive and of degree L, the 

output sequence of a maximum length LFSR is periodic with period m = 2L — 1 and is 

called an m-sequence. Note that m-sequences have good statistical properties but they are 

predictable. If a stream cipher has linear complexity n, we can find its initial state using 

2 x n consecutive bits using Massey-Berlekamp algorithm. Hence, we need to increase 

the linearity complexity, before the sequence can be used. There are several methods for 

achieving this. One is to use several LFSRs and combine the output from each of them like 

in Geffe cipher; the other is to apply nonlinear filter function on one single LFSR like in 

Shrinking Generator. This approach is efficient for building stream ciphers, especially in 

software, because bit-wise shifting LFSR is rather costly operation in software. 
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Geffe Cipher Geffe system is used as a key generator with LFSR's of length (17, 11, and 

13), respectively, with tapping as shown in Figure 5 [8]. It belongs to nonlinear combiner 

generator: F(xi, x2, x3) = xxx2 © x2x3 © x3. 

•e-
10 H 12 13 14 15 

& 

10 

10 11 12 

MgH 

kcyseq 

plaintext 
m. 

&*o 
ciphertext 

c, 

Figure 5: Structure of Geffe Stream Cipher 

4.1.2 Algorithm for Attacking on Geffe Cipher 

Search space The search space includes all possible initial states (IVs) € Zf-, where 41 = 

17 + 11 + 13 is the sum of the length of all three LFSRs. 

Cost function Since Geffe cipher is clocked in regular way, we consider using the ham

ming distance between observed sequence and generated sequence as the cost func

tion. 
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cost(IVi) = d(gen_seqi, obs_seq) 

= wt(gen_seqi © obs_seq) 

= 2_] (gen_seqi(x) (B obs_seq(x)) (24) 
e~ r?observed_size 

where gen_seq is the keystream output sequence generated by current initial state 

IVi, and obs_seq is the keystream output sequence we observed. They are both in 

the size of observed_size. 

Search strategy We start to evaluate by randomly selecting one possible initial state from 

the search space. The neighborhood of the current state is defined by the subset of 

all initial states that are flipped one bit from the current state. 

Experimental results Here we set parameters of the SA algorithm to be T0 = 10,000, 

a = 0.99, and MIL = 1000 for observing 1000 bits and 2000 bits of the keystream 

output, and to be T0 = 15,000, a = 0.99, and MIL = 1500 for observing 3000 bits 

of the keystream output. The SA search terminates when T < 1 or cost = 0. 

From Table 15, we can conclude the following. The longer the observed keystream size 

is, the more efficiently we can reconstruct the initial state of LFSRs and hence to break the 

cipher. However, note that the longer the keystream is, the more time is needed on internal 

calculation. 

4.2 Attack on TREYFER Cipher 

We perform a series of attacking schemes to verify the capability of block ciphers, such 

as TREYFER and AES, against key distinguishability attack. For a cipher algorithm, if 
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tri 
val 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
avg 

keystream size:1000bits 
iterations 
01709068 
10871709 
08049188 
58448768 
23631731 
29110129 
22666798 
34574549 
42006563 
05241524 
08013216 
22211204 

2.20E+12 
1.71E+06 
1.09E+07 
8.05E+06 
5.84E+07 
2.36E+07 
2.91E+07 
2.27E+07 
3.46E+07 
4.20E+07 
5.24E+06 
8.01E+06 
2.22E+07 

241 

20.7 
23.4 
22.9 
25.8 
24.5 
24.8 
24.4 
25.0 
25.3 
22.3 
22.9 
24.4 

keystream size:2000bits 
iterations 
01648735 
23530999 
07990605 
14362750 
05233592 
06105174 
08883927 
03387418 
07152750 
02486573 
04294451 
07734270 

2.20E+12 
1.65E+06 
2.35E+07 
7.99E+06 
1.44E+07 
5.23E+06 
6.11E+06 
8.88E+06 
3.39E+06 
7.15E+06 
2.49E+06 
4.29E+06 
7.73E+06 

2 4 1 

20.7 
24.5 
22.9 
23.8 
22.3 
22.5 
23.1 
21.7 
22.8 
21.2 
22.0 
22.9 

keystream size:3000bits 
iterations 
06640740 
11150336 
14057378 
00991414 
03798894 
02353033 
05175545 
02499694 
05259783 
00891773 
06722778 
05412852 

2.20E+12 
6.64E+06 
1.12E+07 
1.41E+07 
9.91E+05 
3.80E+06 
2.35E+06 
5.18E+06 
2.50E+06 
5.26E+06 
8.92E+05 
6.72E+06 
5.41E+06 

2 4 1 

22.7 
23.4 
23.7 
19.9 
21.9 
21.2 
22.3 
21.3 
22.3 
19.8 
22.7 
22.4 

Table 15: Efficiency of Attacking on Geffe Cipher 

the local optima generated by consecutive searches highly depend on the genuine key and 

form patterns that are equivocally connected with each particular key, then this cipher is key 

distinguished. When a cipher suffers from such a weakness, we can distinguish ciphertexts 

generated by certain key from other keys or random process, with the cipher itself regarded 

as a black-box. In our research, we apply the methods to different block ciphers with 

different rounds, random functions, and s-boxes. 

In our experiments, we firstly apply a simple local optima search strategy to recover the 

key, which is used to generate a set of (plaintexts, ciphertexts) pairs. Then the local optima 

are summed up into profiles. Finally, we attempt to measure the distance between profiles 

to observe the relationship between a large number of local optima and the genuine key. 

This main idea is originally proposed by Clark et al. [2]. From our results, the local optima 

of TREYFER with one round are highly dependent on the corresponding key, those with 

two rounds are to some extent dependent on the key, while there is no apparent trend with 

those of TREYFER with more than two rounds. 
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4.2.1 TREYFER Block Cipher 

TREYFER was designed for environments with limited resources. The procedure of this 

cipher with 8-byte key and 8-byte plaintext under C is given by following pseudo code [55]. 

Procedure: Pseudo Code for TREYFER Implementation: 

1. for (r=0;r < NumRounds; r++) 

2. { 

3. text[8]=text[l]; 

4. for (i=0;i < 8;i++) 

5. text[i+l]=rotate_l_left(text[i+l]+S-box[(key[i]+text[i])%256]); 

6. } 

In our experiments, we use two different S-boxes. One uses the first 256 primes (all 

modulo 256), starting with 2; the other uses the S-box used within the Advanced Encryption 

Standard [13] [1]. 

4.2.2 Algorithm for Attacking on TREYFER Cipher 

In this section, we first describe the local optima search strategy and then propose a method 

to sum up these local optima into profiles. 

Local optima search scheme Based on a set of (plaintexts, ciphertexts) pairs {[p\, cx), (p2, c2) 

. . . (pn, cn)} under certain key kgenuine, an all-bit-zero key /cop4 is initialized, and the corre

sponding cost is calculated using following cost function: 

n 

cost(kcur) = ^2 d(°i' EkcuriPi)) (25) 
1=1 

where d(ci, Cj) is the Hamming distance between the ciphertexts. 

The search examines each bit in the current optimum key fcopt from left to right. At each 
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position bit b, a new candidate kcur is obtained by flipping bit b in kopt. The cost cost(kcur) 

is calculated in the same way. If cost(kcur) < cost(kopt), kopt is replaced by kcur as best 

solution found so far. Otherwise, current bit flipping is resumed and next bit flipping will be 

tried. The search procedure is continued until \the_number_of_key_bits\ — 1 successive 

non-improving bit moves under certain fcopi. The description of this search algorithm is 

shown as follows. 

Procedure: Pseudo Code for Local Optima Search Scheme: 

1. ^ <- 00 . . . 0 
n 

2. costikopt) <- ^2d(ci,Ekcur(pi)) 

3. nim <— 0 

4. 6 ^ 0 

5. while (nim < MAXNIM) 

6. { 

7. k^ <— flipJbitJbJn_kopt; 
n 

8. cost(kcur) +- y^d{Ekcur{pi),Cj); 

9. if (cost (kcur) < cost (kopt)) 

10. { 
11 U 4 U 
i i . ^opt ^cur i 

12. cost(kopt) <— cost(kcur); 

13. ram <— 0; 

14. } 

15. else 

16. nim <— nim + 1; 

17. 6^-(6 + l)%|fcopi|; 

18. } 

19. return kopt; 
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Local optima profile scheme After the above process finishes, for certain key k, a local 

optima set {o 1 ; . . . , oT} for T iterations can be obtained. To profile these local optima, 

correlations between every two bits are considered. The profile is given by a \k\ * |A;| 

matrix: 

T 

P(k) = [*;];*; = £ ( - i r ( 0 e o , W (26) 
t=i 

wherein each element Q,- scales the level of correlation between bit i and j for the set 

of local optima, and ot(i),t = 1 , . . . , T and i = 1 , . . . , \k\ denotes the ith-bit value in the 

local optimum ot. 

Profiles similarity scheme Given two key profiles, the similarity between each profile 

in the first set and any one in the second set can be measured by summing up the absolute 

values between elements. More formally, if P0(k0) = [c^] and Pi(k\) = [c^] are two 

profiles, their distance is given by: 

\k\ \k\ 

dcorr(P0(k0), P^h)) = Y1J2 \CH ~ 4 l ( 2 7 ) 

i = l j=i 

The technique described above has been applied to TREYFER with different number 

of rounds and different s-boxes, and AES with different number of rounds. 

4.2.3 Implementation on Attacking TREYFER 

Implementation details In the case of the local search algorithm, we used a number of 

|A;| — 1 successive non-improving moves (MAXNIM), and the full \k\ bits of the key are 

examined. In order to rate the distinguishing abilities of the proposed techniques on this 

cipher, firstly NK different keys are randomly generated, Next, in each iteration, two sets 

of profiles {P0(&i), — , Po(kNK)} and {Pi(fci), , P\{kNK)} are accumulated. Then, 

71 



distances between any key pairs in two profiles are calculated for every certain number of 

iterations. Finally, based on the distances obtained above, rank(P(ki)) for each key ki are 

calculated, wherein rank(P0(ki)) denotes the number of incorrect profiles in the second 

set are closer to Po(ki) than the correct one P\(ki). 

We give the procedures in pseudo code as follows. 

Procedure: Pseudo Code for Implementation: 

1. randomly selected NK different keys; 

2. for (i=0;i < T;i++) 

3. { 

4. for (profileno=0;pro/i/eno < iVpROi?/L£:;profileno++) 

5. { 

6. select randomly a number Np of plaintexts; 

7. encrypt the plaintexts using each key to obtain NK sets of p/c pairs; 

8. for Q=0;j < NK;j++) 

9. { 

10. search for local optimum Oi (j) for key j ; 

11. accumulate current local optimum contribution to profiles via equation 26; 

12. } 

13. if (need to record the intermediate result) 

14. { 

15. for each key pairs (ki, kj), calculate the dcorr(P0(ki), Px(kj)) based on two the 

profiles attained so far; 

16. for each key fcj in profile 0, calculate rank(P0(ki)); 

17. } 

18. } 

19.} 
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Results for 1,2,3 and more rounds TREYFER Distances obtained in Equation 27 can 

be grouped into a NK x NK matrix, D = [rfy], where d^ measures the distance between 

profiles Po(^i) and P\(kj). One simple way to measure the distinguishability is the follow

ing. Given a profile Po(ki), counting the number of incorrect profiles in the second set are 

closer to Po(ki) than to the correct one, that is, the rank of a profile is given by, 

Rank(P0(kt)) = #{Pi{kj)\(l <j< \NK\) A ( ^ j) A {dtj < du)} (28) 

Generally, it can be deemed that the distinguishability in statistical sense is achieved 

if all the ranks are less than ^f-. From our results, the local optima of TREYFER with 

one round are highly dependent on the corresponding key, those with two rounds are to 

some extent dependent on key, while there is no apparent trend with those of TREYFER 

with more than two rounds. Table 16,17,18 show the results for one, two and three rounds 

TREYFER with two different S_Boxes. Throughout our experiments, we set NK = 10, 

NP = 20, and MAXNIM = 63. 

From our experimentation, only TREYFER with one round apparently suffers from 

the key distinguishable weakness. However, it does not mean that these block ciphers 

are absolutely immune to such kind of attacks. Actually, there exists much potential for 

improvements in our experiments. 

First, by using current local optima search scheme, it is obvious that the probability of 

certain bits in the candidate key being 1 is sharply decreased in the order of being flipped. 

We found in our experimentation that the bit number of 1 's in the local optima is just around 

10, when the key size is 128 bits in AES. The correlation between candidate solution and 

the genuine key is restricted by this property. 

Second, current local optima profile scheme only analyzes the correlations between 
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sboxl 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

sbox2 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

kOO 
594136 

4799872 
5729528 
5199504 
4857816 
5119120 
4394008 
4981748 
5400720 
4578064 

kOO 
563240 
2227036 
2595344 
1781380 
2473220 
2028508 
2257480 
2287332 
2138560 
2416668 

kOl 
4717580 
595596 
3906076 
5158668 
2396636 
3364540 
1701580 
1961080 
2209548 
2471748 

kOl 
2294452 
556272 
1106364 
1349336 
1364288 
1317856 
870228 
818000 
1079500 
1277984 

k02 
5830412 
3836268 
568028 
6988692 
3279532 
2986244 
4248436 
4254144 
3887228 
2202420 

k02 
2479024 
1180028 
640352 
1810684 
1268044 
1737284 
1133904 
1111332 
1304200 
1064980 

k03 
5247780 
5209148 
6938692 
601316 
6085172 
5503780 
5611956 
5596688 
4075564 
6319748 

k03 
1853132 
1320256 
1746188 
611616 
2114888 
1231536 
1382980 
1540760 
1421548 
1850808 

k04 
4764340 
2295060 
3499980 
5956284 
619316 
2714932 
2125388 
2640928 
3068508 
2097684 

k04 
2370504 
1450556 
1390016 
2023452 
598028 
1910428 
1489136 
1411340 
1635616 
1425764 

k05 
4994408 
3453280 
3149736 
5432288 
2879280 
504928 
3563976 
3957980 
2866152 
2673048 

k05 
2069192 
1308588 
1735080 
1250732 
1954380 
573964 
1466352 
1148668 
1396776 
2125964 

k06 
4505260 
1764236 
4328628 
5672964 
2413316 
3518900 
605452 
1860960 
2972380 
2697940 

k06 
1988704 
944252 
1253168 
1346764 
1477740 
1390100 
667576 
1011948 
967712 
1287308 

k07 
5220788 
2096804 
4302580 
5642692 
2804484 
3871372 
1910356 
593720 

2440660 
2624260 

k07 
2164228 
882928 
1100188 
1558544 
1256232 
1243944 
954468 
535512 
1163788 
1342264 

k08 
5478464 
2526000 
3927616 
4198248 
3290200 
2954984 
3015592 
2598732 
489648 
3102904 

k08 
2048156 
1042424 
1242660 
1385456 
1546848 
1316016 
897396 
1080216 
480780 
1273328 

k09 
4649112 
2432912 
2322976 
6280448 
2005744 
2608400 
2656368 
2601100 
3019496 
508352 

k09 
2318232 
1351116 
1143280 
1909828 
1220812 
2070964 
1008776 
1324572 
1242136 
578356 

rank 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

rank 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 16: Distances and Ranks among Key Profiles for 1-round TREYFER(30K Local 
Optima Profiled) 

sboxl 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

sbox2 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

kOO 
455856 
2085500 
2163772 
4386352 
1837092 
2451352 
2238892 
3122928 
3556852 
2078760 

kOO 
378360 
469856 
468800 
443456 
423336 
455984 
474200 
454748 
484332 
456264 

kOl 
2098576 
482700 
2235772 
3378632 
1148468 
2163856 
722308 
1534864 
2215908 
1810560 

kOl 
390224 
548288 
435480 
473344 
430688 
519280 
520528 
467940 
452476 
421584 

k02 
2145876 
2223408 
440056 
3038028 
1511856 
1016172 
2051240 
2339876 
2675064 
948156 

k02 
407492 
524252 
466620 
485852 
437460 
482668 
555620 
506504 
514336 
425076 

k03 
4262064 
3232044 
2925180 
513464 
3317028 
2577560 
3146084 
2358008 
1517356 
2969584 

k03 
410336 
465272 
404560 
435592 
435144 
437920 
526712 
466508 
466428 
376448 

k04 
1783064 
1053396 
1557804 
3383424 
480772 
1469304 
1002036 
1739552 
2437228 
1145240 

k04 
484484 
450668 
353924 
493812 
475948 
544492 
516564 
522632 
498192 
439388 

k05 
2428188 
1987328 
940592 
2642636 
1418896 
448404 
1860152 
1790900 
2152280 
812852 

k05 
378872 
508496 
432800 
460096 
416112 
499368 
507016 
476124 
468500 
439312 

k06 
2166356 
690120 
1897544 
3184332 
985200 
1776580 
453040 
1307980 
2003696 
1489292 

k06 
481632 
462680 
393728 
481816 
456008 
490256 
577032 
450604 
474388 
419640 

k07 
2971232 
1560468 
2310292 
2323872 
1744796 
1768144 
1415732 
420528 
1081300 
1840624 

k07 
437464 
508608 
444000 
489944 
421560 
471232 
517080 
450596 
485828 
469352 

k08 
3645384 
2197204 
2578972 
1494112 
2364508 
2195664 
2199196 
1249824 
554748 
2312360 

k08 
440984 
437640 
423016 
460528 
420200 
472552 
549112 
494764 
442956 
447800 

k09 
2179064 
1882476 
782500 
2710928 
1264948 
702576 
1658940 
1834640 
2230036 
533456 

k09 
464132 
541956 
439316 
508780 
566204 
612668 
560468 
499664 
486688 
475236 

rank 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

rank 
0 
9 
8 
0 
8 
6 
9 
0 
0 
9 

Table 17: Distances and Ranks among Key Profiles for 2-round TREYFER(30K Local 
Optima Profiled) 
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sboxl 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

sbox2 
kOO 
kOl 
k02 
k03 
k04 
k05 
k06 
k07 
k08 
k09 

kOO 
4167576 
3913788 
4613796 
4797116 
4234448 
4290460 
4235664 
4023380 
4388860 
3652192 

kOO 
4684424 
4753796 
4507156 
4254840 
4731732 
4669140 
4658408 
4724612 
4716968 
4702880 

kOl 
5210920 
4338404 
4826524 
5396500 
4214536 
4277692 
4556584 
4556164 
4179060 
4761112 

kOl 
4625368 
5406556 
4928116 
4269920 
4694340 
4766700 
4144280 
4588052 
4459904 
5213288 

k02 
5169812 
4240504 
4031016 
4885048 
4502452 
4495584 
4181684 
3880184 
4076752 
4324476 

k02 
4740476 
4613552 
5000824 
4651004 
4983744 
4782000 
4578132 
4995736 
4866236 
4886708 

k03 
5512496 
4369532 
5240996 
5651316 
5592576 
5138796 
5654520 
4958748 
4926692 
4771440 

k03 
5018168 
4754100 
4190852 
4752392 
4751676 
4757612 
4261576 
4719812 
5011200 
4748184 

k04 
5449888 
4424276 
3852588 
4975252 
4124864 
4352132 
4312640 
3624964 
4292948 
4836768 

k04 
4966564 
4394576 
4863616 
4637548 
4390344 
4603496 
4520012 
4572800 
4702028 
4516292 

k05 
5889280 
4456228 
4747660 
5086540 
4669720 
5380372 
5483968 
4945564 
4576228 
5417424 

k05 
4283620 
3607416 
4987832 
4188556 
4507488 
3778208 
4466740 
4224304 
4139244 
4401076 

k06 
5323720 
3868852 
4620260 
4946292 
4269512 
5290828 
4481024 
3920052 
4643204 
5158624 

k06 
4539668 
4316584 
4579568 
4342668 
4328760 
4440376 
3944292 
4805416 
4849028 
3986228 

k07 
4883940 
3953008 
4494440 
4890960 
4609116 
5023512 
4424516 
4205224 
4589496 
4584188 

k07 
4616684 
3998032 
4826424 
3870748 
4365184 
4532552 
4602172 
4979968 
4155884 
4458932 

k08 
5096752 
5087660 
5234220 
5555436 
4842736 
4220988 
5243840 
4578908 
4590316 
4964904 

k08 
3813752 
4756508 
5644580 
4207848 
4215756 
4773724 
4523976 
4829724 
5056808 
4795488 

k09 
5608548 
4668984 
5051096 
5566264 
4685556 
4954752 
5052164 
4292680 
5200520 
4936772 

k09 
4416132 
4189344 
4455936 
3955876 
4269224 
4365456 
3704772 
4942600 
4396772 
4482436 

rank 
0 
4 
1 
9 
0 
9 
4 
4 
6 
6 

rank 
6 
9 
8 
9 
4 
0 
1 
8 
9 
3 

Table 18: Distances and Ranks among Key Profiles for 3-round TREYFER(3.0M Local 
Optima Profiled) 

each two bits. It is necessary to develop a more sophisticated scheme which can more 

accurately present the correlations between keys. 

Third, current profiles similarity scheme only considers the 1-norm distance measures. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we concentrated on the study of construction of special Boolean functions 

using heuristic methods. In the mean time, we also applied heuristic methods to break 

existing ciphers. Throughout this thesis, 

• We have successfully constructed several examples for (10,2, 7,488) Boolean func

tions. This result affirmatively answered the open problem about the existence of 

such functions. 

• We constructed several examples for (8,116), (10,492), (12,2010) Boolean func

tions by simulated annealing method. These results hit the upper bound of the non-

linearity of balanced Boolean functions based on Dobbertin's conjecture in [16]. Al

though such functions were already constructed in the literature, they are all con

structed in arithmetic ways. 

• We proposed methods for attempting to construct (8,118), (10,494), and (12, 2012) 

Boolean functions, which decreases the complexity of the search procedure. We 

also provided mathematic formula to construct (12, 2012) functions from (10,494) 

function (if exists). 
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• Some attempts were made to break symmetric ciphers including Geffe Cipher, TREYFER 

cipher, and so on. 

Based on the research elaborated in this thesis, further studies can be conducted in the 

following directions. 

• Construction of Boolean functions 

- Apply different heuristic methods to attempt on constructing examples of Boolean 

functions to break Dobbertin's conjecture, for example, (12,2012), (14,8122) 

Boolean functions. 

- Explore more on the mathematic background of Boolean functions. With the 

increase in variable N, using pure heuristic methods to construct becomes more 

and more difficult. Sound mathematic background knowledge will help to de

sign a better cost function. We can also construct Boolean functions first by 

arithmetic construction, and then use it as the initial state of heuristic method to 

achieve better solution. 

- Attempt to design better cost functions. 

- Experiment with larger N, for example, N = 14, N = 16. 

• Attack on ciphers 

Although the methods we applied could not break strong ciphers, we may attempt to 

use different and more sophisticated local optima search scheme, local optima profile 

scheme, and profiles similarity scheme to employ key distinguishability and to refine 

the cost functions for reconstructing the initial state of stream ciphers. 

77 



Bibliography 

[1] Federal Information Processing Standards Publication (FIPS 197). Advanced encryp

tion standard (aes). Nov.26,2001. 

[2] John A.Clark and Juan M.E. Tapiador. Analysis of local optima in block ciphers. 

http.V/eprint. iacr. org/2007/. 

[3] C. Adams. Constructing symmetric ciphers using the cast design procedure. Designs, 

Codes and Cryptography, 12(3):283—316, 1997. 

[4] C. Adams and S. Tavares. Generating and counting binary bent sequences. IEEE 

Transactions on Information Theory, 36(5): 1170-1173, 1999. 

[5] A.Dimovski and D.Gligoroski. Generating highly nonlinear boolean functions using a 

genetic algorithm. Proc. IEEE 6th International Conference on Telecommunications 

in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003, pages 

604-607, 2003. 

[6] Paul C. van Oorschot Alfred J. Menezes and Scott A. Vanstone. Handbook of Applied 

Cryptography. CRC Press, 1996. 

[7] R. J. Anderson. Faster attack on certain stream ciphers. ELECTRONICS LETTERS, 

29(15):1322-1323, 1993. 

78 

http://http.V/eprint


[8] Musbah J. Aqel, Ziad A. Alqadi, and Ibraheim M. El Emary. Analysis of stream ci

pher security algorithm. Journal of Information and Computing Science,England, UK, 

2(4):288-298, 2007. 

[9] Anna Bernasconi and Bruno Codenotti. Spectral analysis of boolean functions as a 

graph eigenvalue problem. IEEE Trans. Computers, 48(3):345-351, 1997. 

[10] Anna Bernasconi and Bruno Codenotti. A characterization of bent functions in thers 

of strongly regular graphs. IEEE Trans. Computers, 50(9):984-985, 1999. 

[11] C. Carlet. A construction of bent functions. Finite Fields and Applications, London 

Mathmatical Society .Lecture Series 233, Cambridge University Press. 

[12] J. Clark, J. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving boolean func

tions satisfying multiple criteria. In INDOCRYPT 2002 in Lecture Notes in Computer 

Science Springer-Verlag, 2551:246-259, 2002. 

[13] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS '98: Pro

ceedings of the The International Conference on Smart Card Research and Applica

tions, pages 277-284. Springer-Verlag, 2000. 

[14] Deepak Dalai. Cryptographic properties of boolean functions and s-boxes. PHD 

thesis , Katholieke Universiteit Leuven (Belgium), 2006. 

[15] Deepak Dalai. On some necessary conditions of boolean functions to resist algebraic 

attacks. PHD thesis , Indian Statistical Institute (Kolkata, India), 2006. 

[16] H. Dobbertin. Construction of bent functions and balanced boolean functions with 

high nonlinearity. In Fast Software Encryption (Workshop on Cryptographic Al

gorithms, Leuven 1994 (1995), no. 1008 in Lecture Notes in Computer Science, 

Springer- Verlag. 

79 



[17] Ali Doganoksoy et al. Constructions of highly nonlinear balanced boolean functions. 

/. Ulusal Kriptoloji Sempozyumu, 2005. 

[18] M. Gilli and P. Winker. Heuristic Optimization Methods in Econometrics. 2007. 

[19] Fred Glover and Gary A. Kochenberger. Handbook ofMetaheuristics. Springer, 2003. 

[20] J.Clark, J.Jacob, S.Maitra, and P.Stanica. Almost boolean functions: The design of 

boolean functions by spectral inversion. Computational Intelligence, 20:450-462, 

2004. 

[21] R.A.Scholtz J.D.Olsen and L.R.Welch. Bent-function sequences. IEEE Transactions 

on Information Theory, IT-28(6). 

[22] J.F.Dillon. Elementary hadamard difference sets. Proceedings of the Sixth South

eastern Conference on Combinatorics, Graph Theory and Computing, F. Hoffman et 

al.(Eds), Utilitas Math. 

[23] Peter Thompson Julian F. Miller. Restricted evaluation genetic algorithms with tabu 

search for optimising boolean functions as multi-level and-exor networks. In Pro

ceedings of Evolutionary Computing, AISB Workshop' 1996, pages 85-101, 1996. 

[24] Robin J.Wilson, introduction to Graph Theory (second Edition). Academic Press, 

1979. 

[25] Seclk Kavut and Melek D. Yucel. Generalized rotation symmetric and dihedral 

symmetric boolean functions - 9 variable boolean functions with nonlinearity 242. 

eprint.iacr.org/2007/308, 2007. 

[26] Selcuk Kavut, Subhamoy Maitra, and Melek D. Yucel. Search for boolean functions 

with excellent profiles in the rotation symmetric class. IEEE Transactions on Infor

mation Theory, 53(5), 2007. 

80 

http://eprint.iacr.org/2007/308


[27] Selcuk Kavut, Melek D. Yucel, and Subhamoy Maitra. Construction of resilient func

tions by the concatenation of boolean functions having nonintersecting walsh spectra. 

BFCA '07, 2007. 

[28] Khoongming KHOO and Guang GONG. New construction for balanced boolean 

functions with very high nonlinearity. IEICE TRANS. FUNDAMENTALS, E90-A:29-

35, 2007. 

[29] F.J. MacWilliams and N.J.A Sloane. The theory of error correcting codes. North-

Holland Publishing Company, Amsterdam, 1978. 

[30] S. Maitra and P. Sarkar. New directions in design of resilient boolean functions. 

Advances in Cryptology - CRYPTOS00. , number 1880 in Lecture Notes in Lecture 

Notes in Computer Science, pages 515-532, 2000. 

[31 ] Subhamoy Maitra, Sumanta Sarkar, and Deepak K. Dalai. On dihedral group invariant 

boolean functions. International Workshop on Boolean Functions: Cryptography and 

Applications, 2007. 

[32] Soumen Maity and Subhamoy Maitra. Minimum distance between bent and 1-

resilient boolean functions. Workshop on Fast Software Encryption, FSE 2004, Lec

ture Notes in Computer Science, Springer, Berlin, 3017:143-160, 2004. 

[33] M. Matsui. Linear cryptanalysis method for des cipher. Advances in Cryptology -

EUROCRYPT'93 of Lecture Notes in Computer Science,Springer-Verlag, 765:386-

397, 1993. 

[34] A. Maximov. Some words on cryptanalysis of stream ciphers. PhD thesis, Lund 

University, Lund, Sweden, 2006. 

[35] W. Millan, A. Clark, and E Dawson. Smart hill climbing finds better boolean func

tions. En Workshop on Selected Areas in Cryptology (SAC97), pages 50-63, 1997. 

81 



[36] M. R. A. H. Teller N. C. Metropolis, A. W. Rosenbluth and E. Teller. Equation of 

state calculation by fast computing machines. /. Chem. Phys., 21:1087-1092, 1953. 

[37] J. Pieprzyk and C. X. Qu. Fast hashing and rotation-symmetric functions. Journal of 

Universal Computer Science, 5(1):20-31, 1999. 

[38] B. Preneel. Analysis and design of cryptographic hash functions. PHD thesis , Uni

versity of Leuven, 1994. 

[39] R.A.Scholtz RV.Kumar and L.R.Welch. Generalized bent functions and their proper

ties. J. Combinatorial theory, 40(A):90-107, 1985. 

[40] R.L.McFarland. A family of difference sets in non-cyclic groups. /. Combinatorial 

Theory, A 15:1-10, 1973. 

[41] O. S . Rothaus. On bent functions. /. Combinatorial theory, 20(A):300-305, 1976. 

[42] R.Yarlagadda and J.E.Hershey. Analysis and synthesis of bent sequences. Computers 

and Digital Techniques, IEE Proceedings E, 136(2): 112-123, 1989. 

[43] Z. Saber, M. F. Uddin, and Amr Youssef. On the existence of (9,3,5, 240) resilient 

functions. IEEE Transactions on Information Theory, 52:2269-2270, 2006. 

[44] R Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient boolean 

functions. Proc. ofCypto 2000, LNCS 1880, Springer-Verlag, pages 516-533, 2000. 

[45] R Sarkar and S Maitra. Construction of nonlinear resilient boolean functions using 

"small" affine functions. IEEE Transactions on Information Theory, 50(9), 2004. 

[46] T. Siegenthaler. Correlation immunity of nonlinear combining functions for cryp

tographic applications. IEEE Transactions on Information Theory, IT-30:776-780, 

1984. 

82 



[47] P. Stanica and S. Maitra. Rotation symmetric boolean functions U count and cryp

tographic properties. R.C. Bose Centenary Symposium on Discrete Mathematics and 

Applications, Electronic Notes in Discrete Mathematics, Elsevier, 15:139-145, 2002. 

[48] P. Stanica and S. Maitra. A constructive count of rotation symmetric functions. Inf. 

Process. Lett., 88:299-304, 2003. 

[49] P. Stanica, S. Maitra, and J. Clark. Results on rotation symmetric bent and correlation 

immune boolean functions, in Proc. Fast Software Encryption Workshop (FSE 2004), 

New Delhi, India (Lecture Notes in Computer Science), 3017:161-177, 2004. 

[50] Pantelimon Stanica. Graph eigenvalues and walsh spectrum of boolean functions. 

Electronic Journal of Combinatorial Number Theory, 7(2), 2007. 

[51] Mohammad Faisal Uddin. Artificial life techniques for cryptology. M.ASc thesis , 

Concordia University, 2006. 

[52] P.J. van Laarhoven and E.H. Aarts. Simulated Annealing: Theory and Applications 

(Mathematics and Its Applications). Springer-Verlag, 1987. 

[53] G. Xiao and J. L. Massey. A spectral characterization of correlation-immune combin

ing functions. IEEE Transactions on Information Theory, IT-34(3):569-571, 1988. 

[54] X.M.Zhang and Y.Zheng. Gac - the criterion for global avalanche characteristics 

of cryptographic functions. Journal of Universal Computer Science, l(5):316-333, 

1995. 

[55] G. Yuval. Reinventing the travois: Encryption/mac in 30 rom bytes. Proc. of the 4th 

International Workshop on Fast Software Encryption (FSE'97), 2(4):288-298:205-

209, 1997. 

83 


