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ABSTRACT

On Applications of Simulated Annealing to Cryptology

Wen Ming Liu

Boolean functions are critical building blocks of symmetric-key ciphers. In most cases, the
security of a cipher against a particular kind of attacks can be explained by the existence
of certain properties of its underpinning Boolean functions. Therefore, the design of ap-
propriate functions has received significant attention from researchers for several decades.
Heuristic methods have become very powerful tools for designing such functions.

In this thesis, we apply simulated annealing methods to construct Boolean functions
with particular properties. Our results meet or exceed the best results of available the-
oretical constructions and/or heuristic searches in the literature, including a 10-variable
balanced Boolean function with resiliency degree 2, algebraic degree 7, and nonlinearity
488 for the first time. This construction affirmatively answers the open problem about the
existence of such functions.

This thesis also includes results of cryptanalysis for symmetric ciphers, such as Geffe

cipher and TREYFER cipher.
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Chapter 1

Introduction

1.1 Motivation

Cryptology plays a central role in today’s security mechanisms. The field of cryptology
can be largely divided into cryptography and cryptanalysis [6]. Cryptography is the art
of building cryptosystems and creating secret codes, while cryptanalysis is the study of
finding weaknesses in the cryptosystems and breaking secret codes. The goals of cryp-
tography include confidentiality, data integrity, authentication and nonrepudiation. Mainly
three types of cryptographic primitives are used to achieve these goals: symmetric ciphers,
public ciphers, and hash functions [14].

Boolean functions (f : Z3 — Z;) and s-boxes (f : Z3 — Z3*) are the main building
blocks for stream ciphers and block ciphers. The success of cryptanalytic attacks on these
symmetric primitives and the cryptographic properties of Boolean functions are strongly
connected. In fact, the security of a symmetric cipher against a particular category of at-
tacks can be explained by the existence of certain properties of its building blocks. For
example, the correlation attacks [14] are related to the properties of correlation immu-

nity [46] [53] and resiliency [27]; the algebraic attacks [15] are related to the property of



algebraic immunity [15] [14]; the linear cryptanalysis [33] is related to the property of non-
linearity [44] [35]. Therefore, the strength of its building blocks is a basic requirement of
any secure cryptosystems. Note that, different cryptosystems for different purposes may
have different requirements on their building blocks.

Due to their importance, Boolean functions have been studied for a long time. While
many problems in this area have been solved over time, novel problems constantly arise
due to ongoing developments in cryptanalysis.

To construct certain Boolean functions, we have to determine the value of each element,
either 1 or 0, so that the function will satisfy required criteria. Clearly, this is a combina-
torial optimization problem. Most existing methods for constructing Boolean functions
that can satisfy multiple criteria are related to search techniques for solving problems of
combinatorial optimization. Those methods can be categorized in three classes: exhaustive
search, algebraic constructions, and heuristic techniques.

Theoretically, exhaustive search can always find the optimal functions. However, since
the complexity of constructing Boolean functions is doubly exponential in variable 7, when
n is larger than 5, such method becomes computationally infeasible. For example, if we
assume that a typical computer can search 23? functions per second, then for n = 10
exhaustive search would require about 1.3 x 10%? years.

Algebraic constructions can achieve specific combinatorial properties to some extent.
However, in most cases, they tend to lead to sub-optimal results, especially for the prop-
erties that have not been considered in devising the construction. Furthermore, even when
algebraic constructions can achieve the optima, the inherent algebraic structure in the con-
structed Boolean function may make it comparatively vulnerable to algebraic attack.

Heuristic methods are based on enumerative methods but use extra knowledge to guide
the search. The knowledge is usually derived from the simulation of natural processes and

the understanding of the problem under consideration. Heuristics is commonly known as



Rules of Thumb, educated guesses, intuitive judgments, or just common sense. It is a suit-
able method when the problem is fuzzy, complex, or large. When a problem presents these
characteristics, it is possible to just rely on suitable Rules of Thumb for a solution. The
purpose of heuristic methods is to identify problem solutions where time is more impor-
tant than solution quality or the knowledge of quality. They can produce good results in
reasonable short runs for such problems.

In our cases, firstly, the search space is huge (22"). This is far away from the ability of
brute force. Secondly, the problem itself is uncertain. For example, researchers are trying to
break the famous conjecture given by Dobbertin [16], but the conjecture cannot be proved
or disproved so far. It is uncertain whether the examples for breaking the conjecture exist or
not. In the literature of cryptography, many interesting results have already been obtained
using heuristic methods.

In this thesis, we also address applications of heuristic methods to cryptanalysis of ci-
phers. Although the approaches used to carry out attacks against ciphers can vary consider-
ably in different work, they are often making use of some properties of the cipher’s internal
components. It would be an attractive and revolutionary finding, if there exists a way for
attackers to execute attacks while the corresponding ciphers are treated as black-boxes.
Due to the nature of heuristic methods, it is possible to implement attacks based on such
methods without analyzing, or having minimal analysis on, the internal components of the
ciphers. If such attacks may succeed, it would be unnecessary for attackers to understand

the internal details of ciphers before they can implement attacks on such ciphers.

1.2 Our Contributions

Through our research, we focus on the study of constructing special Boolean functions
through heuristic methods. We also apply heuristic methods to break certain ciphers. More

specifically,



e Based on the understanding of Boolean function and heuristic method, we study dif-
ferent approaches to the construction of Boolean functions. We conduct experiments
with different cost functions, different search domains, and different neighbor poli-
cies to construct examples of Boolean functions with different cryptographic proper-

ties, such as (10, 2, 7,488), (8, 116), (10,492), and (12, 2010) functions .

e We attempt to apply simulated annealing methods and guided search techniques to
break certain ciphers. Our objective is to find methods with which attacker can exe-

cute attacks without analyzing the internal details of ciphers being attacked.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

e In Chapter 2, we introduce mathematic background and necessary definitions of

heuristic methods and Boolean functions.

e In Chapter 3, we apply simulated annealing methods to construct several Boolean

functions with different cryptographic properties (resilient, nonlinearity, balance).

e In Chapter 4, we apply simulated annealing methods and guided search techniques

to attack some symmetric ciphers.

e Finally, in Chapter 5, we conclude the research and give future work.

!"The notations for (n,m,d, NL), (n, N L) Boolean functions are defined in Section 3.1.
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Chapter 2

Preliminaries

In this chapter, we first review heuristic methods and the simulated annealing method in
Section 2.1. We then review the cryptology problems on which we shall apply the simulated

annealing method in Section 2.2.

2.1 Heuristic Methods

Exhaustive search techniques can be used to solve search problems by trying all possible
solutions and verifying the best solutions satisfying the search requirement. However, the
time and space complexity of exhaustive searches are usually prohibitive. Therefore, such
technique has limitations on even medium-sized problems.

In order to solve large-sized combinatorial search problems in reasonable time, there
exist heuristic methods such as simulated annealing, genetic algorithm, tabu search, and
so on. Such methods provide general ways to search for good, but not always optimal,
solutions.

To use heuristic methods, the following four factors must be determined.



1. Formulate the problem as a guided search problem
The problem must be tranformed into a representation of the solution space and cor-
responding cost function in order to measure how good a given solution is, in an

appropriate and easily computable way.

2. Determine search space
Search space refers to all the possible inputs. In some cases, in order to reduce the
search space, a subset of all possible inputs may replace the whole set as the search
space. For example, when we construct (10, 2, 7,488) Boolean functions, we use
rotation symmetric functions (RSBF) [43] instead of all the Boolean functions as our

search space.

3. Construct cost function
Each candidate input has a cost value calculated by cost function. The cost value can
be used to evaluate how well a candidate input matches the desired solution. The
effective cost function must maximize or else minimize the cost value of the desired

solution.

4. Define search strategy
A simple transition mechanism should be defined to move from one candidate solu-
tion to the other by slightly modifying the current solution. Typical transition mech-
anisms for constructing Boolean functions include flipping the output value of one
position, swapping the values of a pair of positions either in the truth table represen-

tation or the Walsh transform representation of the function.

The cooperative association of the above four factors offer an excellent ability to escape
from local optima and finally reach the best solution.
Each of such techniques depends on a simple model of a real-world physical process.

In the remainder of this section, we discuss the simulated annealing method in details and
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briefly introduce genetic algorithm, tabu search, and ant colony.

2.1.1 Simulated Annealing

Simulated annealing is inspired by the physical process of cooling molten materials down
to the solid state. In this process, solid will be fully heated to high temperature and then
slowly cooled down. During heating, the internal particles of solid are changed into states
of disorder and its energy increases; during slowly cooling, particles gradually become or-
derly, and in each temperature achieves a balanced state, and finally, brings the material to
a low-energy, optimal state. According to Metropolis criteria [36], for particles in temper-

—AE/(k) wherein E is the energy

ature ¢, the probability of reaching a balanced state is e
under certain temperature ¢, AE is the energy difference between two temperatures, and k
is a constant.

Through guided transitions generated based on the above probability distribution, the
physics can be simulated to solve combinatorial optimization problems. By simulating En-
ergy F to be the objective function value cost(), and temperature ¢ to be control parameters
T, the simulated annealing algorithm can be derived: Starting from initial possible state .S
and initial control parameter 7', iterate on current state by the process of “generating new
state — calculating the difference of objective function — accepting or abandoning this
new state”, and gradually decay 7" value. This is repeated until the system freezes into a
steady state. At this point, the current state is the approximate optimal solution.

To use simulated annealing, the above four factors must first be determined. Further-
more, similar with physical annealing, simulated annealing process and its quality are con-
trolled by the cooling schedule, which can be regulated by several parameters. These pa-

rameters are problem-sensitive and govern how likely a bad transition is accepted as a

function of time [52]:



1. Initial value of control parameter T
This value starts high enough and is then gradually lowered. Its selection is a key
factor of the method. If it does not start high enough, the ending state will be very
close to the starting state. However, if it starts too high, the search may be trans-
formed into a random search. To compare with physical annealing, in the remainder

of this section, this parameter is regarded as the temperature.

2. The number of iterations L at each temperature 7'
At each temperature, a certain number of iterations L are attempted before lowering
the temperature. One approach is to fix a constant number, and the other way is
to dynamically change the number of iterations at runtime. At lower temperatures,
a larger number of iterations must be done to completely explore the local optima,

while at higher temperatures, the number of iterations can be less.

3. Acceptance criteria
This is used to determine whether a transition from S, to Sy,.;; is accepted. If the
Srexzt State has better cost value than S, has, then a move to that state S,,..; is taken;
if not, then it is accepted with some probability. Similar with physical annealing, the
worse a move is, the less likely it is to be accepted; the lower the temperature 7',
the less likely is a worsening move to be accepted. Initially, the temperature is high
and almost any move is accepted. As the temperature is decreased, it becomes more

difficult to allow worsening moves. Finally, only improving moves are accepted.

4. temperature decrement factor AT
At the end of each inner loop, the temperature is lowered, the typical way of lowering
the temperature is to multiply by a decrement factor AT in the range of (0..1). i.e.
Thert = AT x Ty, wherein 0.0 < AT < 1.0. It is obvious that the temperature is

an exponential decay instead of a linear decay.



Thermodynamic Simulation | Combinatorial Optimization
System States Feasible Solutions

Energy Cost

Change of State Neighboring Solutions
Temperature Control Parameter

Frozen State Heuristic Solution

Table 1: Relationship between Physical Annealing and Simulated Annealing

5. Stopping criteria
The algorithm terminates when the stopping criteria are met. There are many possible
stopping criteria: A fixed number of inner loops have been executed; consecutive
inner loops are executed without a single move being accepted; the cost function
value satisfies certain requirements; the temperature is lowered enough to certain

value; a combination of above conditions.

Table 1 shows how physical annealing can be mapped to simulated annealing.

The basic simulated annealing algorithm is shown in the following pseudo code [20].
The search starts at certain initial state Sp. At each temperature 7,,,, an iteration number
L of transition moves are tried. A candidate state S,.,; is randomly selected from the
neighborhood N(S) of current state S, which is formed based on the search strategy.
The difference of objective function ¢ is calculated. Acceptance criterion is then used to
determine whether to accept this transition or not. At last, the algorithm terminates when
the stopping criteria are met.

Procedure: Pseudo Code for Simulated Annealing Algorithm (Minimization Cases):

1. Seur = So;

2. Tow =To;

3. calculate cost(Secyr);
4. do

5. {



for 1=0;¢ < Lyi+ +)
{

select a random transition from Sy, to Spest, Where Spezr € N(Seur);

© ® N o

§ = cost(Snest) — c08t(Seur);

10.  if(6<0)

11. Scur = Snezt);

12.  elseif (e=%/Tr) > random(0, 1))
13. Seur = Snexts

14. }

15, Ter = Tewr x AT

16. }

17. while (stopping criterion is not met)

18. return (S, );

Simulated annealing has been used for real combinatorial search problems, such as
traveling salesman problem, maximum cut problem, circuit board placement problem,
scheduling problem. It has also been successfully applied to cryptological problems, such
as component designing Boolean functions with desirable properties [20]. There exist
modified versions of simulated annealing. For example, the best state (solution) so far can
be recorded during the search process, so in the end the best state can be chosen from
the recorded states as the output. To make good use of simulated annealing method, the

construction of cost functions and the choice of cooling schedule are the key factors.

2.1.2 Other Methods

1. Genetic Algorithms (GA) - Evolutionary

This technique has been initially developed by Holland (1975). The inspiration of

10



genetic algorithms comes from evolution and natural selection. Genetic algorithms
imitate the evolutionary process of species that sexually reproduce. Thus, genetic
algorithms might be considered as the prototype of a population-based method. New
candidates are generated with a mechanism, namely, crossover(recombination).
The newly created individual, called child, can then apply a random mutation,
which means the elements are somewhat changed. If the new individual inherits good
characteristics from his parents evaluated by the cost function, it will have a higher

probability to survive [19]. The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Genetic Algorithm:
1. generate initial population P of solutions;
. while (stopping criterion is not met) do
{
select P’ C P (mating pool), initialize P" = ¢ (set of children);

fort=1;i < n;i 4+ +)

2

3

4

5

6. |
7 select individuals z, and z; at random from P’;
8 apply crossover to z, and z; to produce Zcpid;
9 randomly mutate produced child z;4;

10. P’ = P"Uzpias

1. }

12.  P=survive(P', P");

13.}

Genetic algorithm is applied to construct Boolean functions for a long time. Recently,
in [5], genetic algorithm combined with hill climbing are used to construct (8, 114),

(10, 480) and (12, 1970) Boolean functions.
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2. Tabu Search (TS) - Guided Local Search
It is inspired by search principles from artificial intelligence or “human” behavior.
This method implements the selection of the neighborhood solution in a way to avoid
cycling, i.e., visiting the same solution more than once. This is achieved by employ-
ing a short term memory, known as the tabu list which contains the solutions that are

most recently visited. The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Tabu Search:
1. generate initial solution: S¢,, = So;
initialize tabu list: 1" = ¢;
while (stopping criterion is not met) do
{
Compute: V = {Snest|Snext € N (Sewr) NI

Scur = Onext andT =TU Scur;

2

3

4

5

6.  select: Spepr = min(V);
7

8 update memory;

9

TS generates a random initial solution as current candidate and mantains a TABU
list. Based on each current solution, TS generates its ordering set of neighbours, the
best of which is chosen as the next candidate provided that it is not already on the
TABU list(7"), whilst the current candidate is appended to the TABU list. If the best
neighbours of current candidate are already present on TABU list 7', then the second
best is chosen as the next candidate, and so on. A simple way to update memory is to
use a queue, which always removes the eldest entry in the list when recording a new
entry. The stopping criterion can be defined as a given number of total iterations or a

given number of consecutive iterations without improvement for the current solution.

12



Tabu Search is usually combined with other heuristic methods to solve combinatorial

problems due to its nature of local search [23].

. Ant Colony

This technique is first introduced by Colorni ef al. in 1992. The Ant Colony op-
timization algorithm is a cooperative heuristic searching algorithm inspired by the
ethological study on the behavior of ants. It imitates the way that ants search for
food and find their optimal path between their colony and the food source. This is
done by an indirect communication known as stigmergy via the chemical substance,
or pheromone, left by the ants on the paths. The intensity of the pheromone traces
depends on the quantity and quality of the food available at the source as well as
from the distance between source and colony. As an ant traverses a path, it reinforces
that path with its own pheromone. A collective autocatalytic behavior emerges as
more ants will choose the shortest trails, which in turn creates an even larger amount
of pheromone on those short trails, which makes those short trails more likely to be
chosen by future ants. Pheromone trails evaporate and once a source of food is ex-
hausted the trails will disappear and the ants will start to search for other sources.

The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Ant Colony:

1. initialize pheromone trail;

2. while (stopping criterion is not met) do

3. |

4, for (all ants)

S. {

6. while (solution incomplete)

7. select next elment in solution randomly according to pheromone trail;
8. evaluate objective function and update best solution;

13



9. }
10. for (all ants)

11. update pheromone trail (more for better solutions)

12.}

Ant Colony has been applied to solve combinatorial problems for a long time. In

[51}, it is used to attack some simple substitution ciphers.

2.2 Boolean Functions

2.2.1 Introduction

Boolean functions form important components in various practical cryptographic applica-
tions. A proper choice of a Boolean function may significantly increase the resistance to
different kind of attacks [34]. In the following subsections, we first describe the representa-
tion of Boolean functions, then introduce its fundamental definitions and its cryptographic

properties, finally end with an overview of its two cryptographic rich sub classes.

2.2.2 Representation of Boolean Functions

A Boolean function of n variables f is a mapping {0, 1} — {0, 1}. There are many means

to represent a Boolean function. Here we introduce five methods related to our research.

1. Binary Truth Table (TT):

The binary truth table of Boolean function f(z), where z = (z1,z2,...,,), 7; €

{0,1},7=1,...,n,is a2"-element binary sequence, f(z)=[f(0,...,0,0), f(0,...,0,1),

f(0,...,1,0),..., f(1,...,1,1)]. The truth table contains 2" elements correspond-

ing to all possible combinations of the n binary inputs.

14



2. Polarity Truth Table (PT):

It is defined by f(z) = (—1)/® =1 — 2f(z), where f(z) € {-1,1}.

3. Algebraic Normal Form (ANF):

A Boolean function has a unique representation as a polynomial over field Z5, called
the algebraic normal form (ANF). This polynomial can be obtained by summing
up distinct products terms of x;, xs, .. ., z,, Which can be written as follows. The
number of variables in the highest order product term with nonzero coefficient is

called the algebraic degree and denoted by deg( f).
f($17 <o ,mn) = Qo @ ;T @ A5 TiT EB ce @ a123..7L1%3 ... Tp,
i=1 1<i<j<n

where ag, iy . .. ,A123.n € ZQ.

4. Walsh Spectrum (WS):

Before this representation is described, we give some correlative fundamental defini-
tions.

Affine and Linear Boolean Functions:

A Boolean function f(z) having algebraic degree at most one is called an affine
function of z = (z1,...,2,) € {0,1}". Having selected w € Z7 and ¢ € {0, 1}, its

ANF representation is denoted by
Ly(z) =cOwz=cPuwx; DwaTo D ... DwyeT,

where w;x; denotes the bitwise AND of the ¢th bit of w and z, and & denotes bit-
wise XOR. An affine function with the constant term ¢ = 0 is called linear func-

tion [27] [20], which is correspondingly denoted by A, ().

15



Hamming Weight:

The Hamming weight of a Boolean function is the number of ones in its binary truth
table or equivalently the number of -1’s in the polarity truth table [35], and it is

denoted by wit(f).
Hamming Distance.

The Hamming distance between two Boolean functions f and g is the number of

position in which their truth tables differ and it is denoted by

A(f,9) = wt(f ® 9) = Yyer ((2) © g(2)).
The Hamming distance to linear functions is an important cryptographic property,
because ciphers that apply nearly linear Boolean functions are easily attacked by

various methods.
Walsh Hadamard Transform (WHT).

For a Boolean function f, the Walsh Hadamard Transform F'(w) is defined by

~

Fw)= Y (f(&) x Ly(z)) = D _ (-1)f @)=, (1)

r€ZY zeZy

where z.w denotes the dot product between w and z, i.e.

n
T.WwW = @l'i X Wy.
i=1

From this definition, It is clear that the value of F'(w) shows how its corresponding

Boolean function f(x) is correlated with all linear functions.

There is also another way to define the Walsh transform F”(w) of Boolean function

f as follows.

F'w)= ) (f(z) x (-1)™*). 2)



We call F(w) = [F(0,...,0,0), F(0,...,0,1), F(0,...,1,0), ..., F(1,...,1,1)]
the Walsh Spectrum, or simply the spectrum of f(xz). This is one of the most useful
representations of Boolean function since several important cryptographic properties
can be directly or easily checked by its corresponding Walsh Spectrum.

. Cayley Graph:

We first present some definitions in terms of graph [24] and its associated Boolean

functions.

Definition 1 Cayley Graph and Cayley Set:

Let T be a group with identity element e. Suppose C is a Cayley subset of G that
is e ¢ C and whenever g € C, then g~* € C. The Cayley graph G = G(T',C)
of I with respect to C' is the graph whose vertex set is I, with two vertices g and h

adjacent if gh™! € C.

(This definition is slightly modified by dropping the condition e ¢ C. This general-

ization is equivalent to allowing the presence of self-loops in the graph.)

Definition 2 The Spectrum of G:

Given a graph G and its adjacency matrix A , the spectrum of G is the set of the

eigenvalues of A, which are also called eigenvalues of G .

Definition 3 Connected Graph:

o Path is a list of vertices of a graph where each vertex has an edge from it to the

next vertex.

e A graph GG in which any two vertices are connected by a path is called a con-

nected graph.
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Figure 1: Examples of Connected Graph and Disconnected Graph

The left graph of Figure 1 is an example of Connected Graph, while the right graph

is not a connected graph.

Definition 4 Regular Graph:

e Two vertices p and v of a graph G are said to be adjacent if there is an edge
Jjoining them. The vertices p and v are then said to be incident to such an edge.

Degree of a vertex 1 of G is the number of edges incident to .

e A graph G in which every vertex has the same degree is called a regular graph,

if every vertex has degree r , the graph is called regular of degree r .

Figure 2.2(a) is a 3-regular graph, while Figure 2.2(b) is a 2-regular graph.

Definition 5 Strongly Regular Graph:

A regular graph G is strongly regular if there exist nonnegative integers e and d such
that, for all vertices i, v, the number of vertices adjacent to both p and v, §(u,v) is
given by

e, if pand v are adjacent,
6(p,v) =

d, otherwise.
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Figure 2: Examples of Regular Graph and Strongly Regular Graph

As showed in Figure 2.2(b), node 0 and 1 are adjacent and have 0 common neighbors
= e = 0; node 0 and 2 are not adjacent and have 2 common neighbors = d = 2.
Definition 6 the Graph G ¢ Associated to Boolean function f:
Let f : Z% — Zs, we can associate f to the Cayley graph Gy = G(Z3,8s) of Z3
with respect to the set Q0 = {w € Z%|f(w) = 1}.

o The vertex set V(f) of Gy is equal to Z3.

o The edge set Ey is defined as:

Ef ={(u,v) € Z8 x Z¥udv e Q)

={(u,v) € Zy x Z7|f(n®v) =1}

o The adjacency matrix Ay of such a graph is defined as (Ay); ; = f(b(i) ® b(j))

where b(i) € ZI is the binary expansion of the integer i.

In [9] [10] [50], it was shown that the spectrum of the Cayley Graph G coincides

with the Walsh spectrum F'(w) of its associated Boolean function f. It was also
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proved that the Boolean bent functions can be exactly distinguished by a special
class of strongly regular graphs. However, in the literature, only bent functions are

identified by special Cayley graph.

An example of n = 3 Boolean function is showed in different representations as fol-

lows.
binary truth table: f(z) = [01110010]
polarity truth table: f(z) = [1-1-1-111-11]
Algebraic Normal Form:  f(z1,x9,23) = 1 ® 22D 2122 D 2123
Walsh Spectrum 1: F(w) = [0044-4400]
Walsh Spectrum 2: F'(w) = [40-2-22-200]
its Cayley Graph: is shown in Figure 3

Table 2: An Example for Boolean Function Representations

Figure 3: An Example of Cayley Graph Representation of Boolean Function

2.2.3 Cryptographic Properties of Boolean Functions

When used in cryptographic systems, Boolean functions should satisfy several crypto-

graphic properties such as balance, high nonlinearity, resiliency, and high algebraic degree.
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In this subsection, we introduce those properties.

Balance When a Boolean function has the same number of zeros and ones in its truth
table, this function is called balanced. A function is balanced if and only if its Walsh

transform satisfies F(0) = 0.

Correlation Immunity (CI) The correlation immunity of a Boolean function is to mea-
sure the degree of which its outputs are uncorrelated with some subset of its inputs.
Specifically, a Boolean function is said to be correlation immune of order m if the
distribution probability of its output is unaltered when any m bits of its input are fixed
[46]. A function is m-th order correlation immune if and only if its Walsh transform

satisfies F'(w) = 0; for all w with 1 < wt(w) < m [46] [53].

Resiliency A Boolean function is said to be resilient of order m if it is correlation immune

of order m and it is balanced. Let res(f) denote the resiliency degree of f(x). Then

res(f) =m e F(w) =0, for0 < wt(w) <m

Nonlinearity(NL) The nonlinearity of an n — variable Boolean function f(x) is defined
as the minimum hamming distance between f(z) and the set of all n — variable

affine functions [44] [27]. i.e.

nl(f) = min (d(f,9)),

g€ A(n)

Complementing the binary truth table of a Boolean function will not change its non-
linearity, so only the 2" number of linear functions instead of 2"*! affine functions
are to be considered. In terms of Walsh spectrum, the nonlinearirty of function f is

given as follows:



Autocorrelation(AC) The autocorrelation transformation of a Boolean function f is given
by
ri(s) = f@)flz@s) =) (—1)/@2/os),

T

where s € Z7. The maximum absolute value excluding the value at the origin (equal
to 2™) in the autocorrelation spectra of f is also known as the absolute indicator [54]
and denoted as

Cre = .
a0 = e oIl

The lower value of C 4, the better. Maximal values are serious weakness called
the linear structure. Bent functions have the minimal aucorrelation, therefore, they

optimize this property [38].

There are some other cryptographic criteria for Boolean functions, such as Complete-
ness, Output Bit Independence Criterion (BIC), Strict Avalanche Criterion (SAC), Higher
Order SAC, Propagation Criterion (PC), and so on. Since these criteria are not considered
in our research, their discussions are omitted here.

Balanced functions, with high nonlinearity, high algebraic degree, high order of cor-
relation immunity, and low autocorrelation, are typically preferred in the cryptographic
literature. However, from the definitions above, some of these properties are in conflict.
For example, bent functions (will be introduced shortly) achieve the maximum possible
nonlinearity (such functions minimize the maximum magnitude of Walsh values) but are
unbalanced. If we require a function to be balanced (F'(0) = 0), then some other F'(w) must
have absolute values greater than 2% based on Parseval’s theorem given in Theorem 2. This
will respectively decrease its nonlinearity. The other example is that increasing order of
correlation immunity can never result in an increase in achievable nonlinearity. The con-

flict means that tradeoffs have to be made when we construct Boolean functions [20].
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In the remainder of this subsection, bent functions will be elaborated. Bent function is
an important class of Boolean functions. It was defined and first analyzed by Rothaus [41].
He showed that binary bent functions exist only when the dimension 7 of the vector space
Z3 is even. Several properties of bent functions were noted by Rothaus and two large
classes of bent functions were also presented in his paper. Other properties, constructions,
and equivalence bounds for bent functions can be found in [4, 11,21,42]. Kumer, Scholtz
and Welch [39] defined and studied bent functions over GF'(p). Bent functions have been
the subject of great interest in several areas including cryptography. In fact, the Canadian
government block cipher standard (CAST [3]) is designed based on these functions. A
Boolean function f is called bent if all the Walsh transform coefficients have the same
absolute value, i.e., | F(w)] is constant for all w € Z7. Based on Parseval’s theorem ( 2), f
is a bent function if and only if | F(w)| = 2% for all w, to satisfy | F(w)| to be an integer, n

should be even. The bent function holds the following properties.

e Bent function achieves the maximum possible nonlinearity. The nonlinearity of any

bent function is given by

NL= (2" -237)

¢ Bent function is never balanced. However, when n is large enough, it becomes sta-

tistically indistinguishable from balanced functions.

o The order (algebraic degree) of bent function is at least 2 and not more than . Bent

functions of higher algebraic degree are preferred for cryptographic purposes.

e All the bent functions have zero autocorrelation for all non-zero s in Z7.

Bent function can be constructed in mathematic ways. These include, but are not lim-
ited to, Rothaus’ construction [41], Maiorana-McFarland’s construction [40], Yarlagadda
and Hershey’s construction [42], Dillon’s construction [22]. For example, Maiorana-

McFarland constructed bent functions by concatenating affine functions as follows.
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[z, y) =z ¢(y) + 9(y),
where z,y € ZQ%,QS:ZQ% — Zzg,g : 22% — Zo,
Then, f is bent & ¢ is a permutation.

Even though there are many algebraic ways to construct bent functions, it cannot be ex-
hausted so far. There are some constructions based on heuristic methods in the literature.
In our experiments, 10 — variable bent functions are also successfully constructed by sim-

ulated annealing.

2.2.4 Sub Classes of Boolean Functions

A variety of desirable criteria for Boolean functions with cryptographic application have
been identified: balancedness, high nonlinearity, correlation immunity, high algebraic de-
gree, and so on. It is difficult to construct an appropriate Boolean function which satisfies
tradeoff requirement between these criteria from the whole set of possible Boolean func-
tions, since the search space is very huge. Thus a natural idea is to decrease the search
space by considering certain sub classes. Certain sub classes with high density of good
properties have received a lot of attention in Boolean function literature [12,26,47]. Here

two such sub classes of functions (RSBF, DSBF) are mentioned.

1. Rotation Symmetric Boolean Functions (RSBF) Letz; € Z;, 1 < 7 < n. For

1 < k < n, we define

Titk ifi+k <n,

Tiyken If1+k>n,
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The definition of p¥ can be extended to n-tuples as

Pn(@1, T2, 2n) = (pn(21), Pr(32), -, (@),

Definition 7 A Boolean function f is called rotation symmetric (RSBF) if for each input
(:El)' v )xn) < Z;L’ f(pﬁ(xbx%' T ,xn)) = f(xlv' T 7$n)f0r1 S k S n.

RSBFs were first introduced in cryptography by Pieprzyk and Qu [37] in the context of

efficient hash function design. The number of n-bits RSBFs is given by 29* where

where ¢(-) denotes the Euler’sphi— function [48]. It can easily be checked that g, ~ 2%
[47]. Since 29» << 2%", the number of n-variable RSBFs is much smaller than the total
space of Boolean functions. On the other hand, the set of RSBFs proved to be a very rich
structure full of functions with several interesting cryptographic properties [26,49].

Note that for n-variable Boolean functions, there are 2™ different possible inputs. From
the above definition, it is obvious that for RSBFs, the function f has same value for each
of the classes generated from the rotational symmetry. An orbit is completely determined
by its representative element A, ;, which is lexicographically the first element belonging
to the i-th orbit. The rotation-symmetric truth table (RSTT) is defined as the g,-bit string
[f(Ano), f(An1),. .., f(Ang.—1)] [26]. For example, for n = 4, the classes information is
shown in Table 3. There are 6 different classes which partition the 2! = 16 input patterns.
So there are 2° RSBFs on 4 variables.

In [26], it has been shown that many functions in this class are rich in terms of good
cryptographic properties. Furthermore, the RSBF class is much smaller (g, ~ 2%;) com-
paring to the space of n-variable Boolean functions (22") and, hence search techniques can

be more efficient. Table 4 shows the RSBF class size for certain ns. n = 9 RSBFs are used
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class no. inputs

{0,0,0,0},
{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0},
{0,0,1,1},{0,1,1,0},{1,1,0,0},{1,0,0,1},
{0,1,0,1},{1,0,1,0},
{0,1,1,1},{1,1,1,0},{1,1,0,1},{1,1,0,1},
{1,1,1,1}.

NN R W=

Table 3: Classes Information for 4-variable RSBFs

to concatenate to construct (10, 2, 7, 488) Boolean functions in our experiments.

AN

n 1 21 3 5 6 7 8 9 10
gn| 21 3| 4| 6| 8 14| 20| 36| 60} 108
n 11 12 13 14 15 16
In 188 352 632 1182 2192 4116

Table 4: Classes Size of RSBF

2. Dihedral Symmetric Boolean Functions (DSBF) Rotational symmetric class con-
tains many good functions, but it is infeasible to search if n > 10 due to its space complex-
ity. The literature tries to study some other classes with smaller size and denser functions
with good properties. The class of Dihedral Symmetric Boolean functions(DSBFs) is a
subclass of RSBFs [25,31].

Before addressing DSBFs, some group theory concepts are needed.

Definition 8 Symmetric group, Rotation (cyclic) group, Dihedral group

Symmetric group is a group of all permutations and denoted as S, where n is the number

of elements. This concept is used to construct Symmetric functions.

Rotation (cyclic) group is a group of all cyclic shift permutations and denoted as C,.

This permutation is elaborated above, and the concept is used to construct RSBFs.
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Dihedral group is a Group of cyclic shift and reflection permutations and denoted as D,,
which, besides the cyclic shift C,, includes a reflection operator 7,(xy, T2, ,Tp) =

(Tn, -+, X2, T1). This concept is used to construct DSBFs.
Obviously, S, € D, C C,. In addition,
Definition 9 Group action, Boolean function invariant

Group action The group action of a group G on a set X is a mapping ¢y - G x X — X

denoted as g.x, which satisfies the following two actions.

(gh)-z=g-(h-z),forallg,h € Gandforallz € X.

e-x =z, forevery x € X, e is the identity element of G.

Boolean function invariant under Group Action Let G acts on X. A Boolean function
f is said to be invariant under the action of G, if f(g - ) = f(z), for all g € G and

forall x € X. Thatis, f(z) is same for all x in each class.

Based on above concepts, correspondingly, Boolean functions invariant under the action
of S, is called Symmetric Boolean function; Boolean functions invariant under the action
of C,, is called Rotational Symmetric Boolean function(RSBF); and Boolean functions
invariant under the action of D, is called Dihedral Symmetric Boolean function(DSBF).

Table 5 shows the DSBF class size for certain ns. N = 10 DSBFs will be the search
space during constructing (10,492) Boolean functions in our experiments. The larger the
variable n is, the bigger the difference of the number of classes between RSBF and DSBF
is. The example in Table 3 also shows the class information of the n = 4 DSBFs, since its
reflection permutations is a subset of its cyclic shift permutations. Another example, for
n = 5, the classes information is shown in Table 6.

There are 13 different classes partitioning the 2° = 64 input patterns, which have 22" =

264 different functions, so there are 2'® DSBFs on 6 variables. Note that, 6 variable RSBFs
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n 1 21 3] 4| 5 6 7 8 9 10
dn, 2|1 3, 4| 6| 8 13 18| 30| 46| 78
n 11 12 13 14 15 16
dn 126 224 380 687 1224 2250

Table 5: Classes Size of DSBF

class no. inputs

1 {0,0,0,0,0,0},

2 {0,0,0,0,0,1},{0,0,0,0,1,0},{0,0,0,1,0,0},{0,0,1,0,0,0},{0,1,0,0,0,0},{1,0,0,0,0,0},

3 {0,0,0,0,1,1},{0,0,0,1,1,0},{0,0,1,1,0,0},{0,1,1,0,0,0},{1,1,0,0,0,0},{1,0,0,0,0,1},

4 {0,0,0,1,0,1},{0,0,1,0,1,0},{0,1,0,1,0,0},{1,0,1,0,0,0},{0,1,0,0,0,1},{1,0,0,0,1,0},

5 {0,0,0,1,1,1},{0,0,1,1,1,0},{0,1,1,1,0,0},{1,1,1,0,0,0},{1,1,0,0,0,1},{1,0,0,0,1,1},

6 {0,0,1,0,0,1},{0,1,0,0,1,0},{1,0,0,1,0,0},

7 {0,0,1,0,1,1},{0,1,0,1,1,0},{1,0,1,1,0,0},{0,1,1,0,0,1},{1,1,0,0,1,0},{1,0,0,1,0,1},
{1,1,0,1,0,0},{0,1,1,0,1,0},{0,0,1,1,0,1},{1,0,0,1,1,0},{0,1,0,0,1,1},{1,0,1,0,0,1},

8 {0,0,1,1,1,1},{0,1,1,1,1,0},{1,1,1,1,0,0},{1,1,1,0,0,1},{1,1,0,0,1,1},{1,0,0,1,1,1},

9 {0,1,0,1,0,1},{1,0,1,0,1,0},

10 {0,1,0,1,1,1},{1,0,1,1,1,0},{0,1,1,1,0,1},{1,1,1,0,1,0},{1,1,0,1,0,1},{1,0,1,0,1,1},

11 {0,1,1,0,1,1},{1,1,0,1,1,0},{1,0,1,1,0,1},

12 {0,1,1,1,1,1},{1,1,1,1,1,0},{1,1,1,1,0,1},{1,1,1,0,1,1},{1,1,0,1,1,1},{1,0,1,1,1,1},

13 {1,1,1,1,1,1}.

Table 6: Classes Information for 6-variable DSBFs

have one more class than 6 variable DSBFs. The only difference is that the class 7 in
DSBFs is split into two classes in RSBFs. In Table 6, first line of class 7 is one class in

RSBEF, while its reflector (second line of class 7) is another class in RSBF.
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Chapter 3

Construction of Boolean Functions

There are mainly two approaches for constructing Boolean functions. Algebraic techniques
[17,28, 32] construct functions based on certain mathematical results. On the other hand,
heuristic methods search for local optimal solutions within a prespecified search space. In
this thesis, a combination of the above two techniques is used to reduce the search space
of heuristic techniques which allow us to achieve some results that have not been achieved

previously by any of the above techniques when used separately.

3.1 Motivation

Boolean functions are among the most important elements of various cryptographic algo-
rithms. Many work exist on constructing Boolean functions with special properties. In par-
ticular, resilient functions [45] are an important class of Boolean functions. These functions
play a central role in several cryptographic applications, especially stream cipher design.
When used in a stream cipher as a combining function for linear feedback shift registers, a
Boolean function with low-order resiliency is more susceptible to a correlation attack than a
function with resiliency of high order. Let (n, m,d, N L) denote an n-variable, m-resilient

Boolean function with algebraic normal form degree d and nonlinearity /NL. Further, by
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[, m, d, NL], we denote unbalanced n-variable, m-th order correlation immune function
with algebraic normal form degree d and nonlinearity N L. Any component is replaced by
’-* if we do not specify it. e.g., (n, —, —, NL) if we do not wish to specify resiliency order
and the algebraic degree. For simplicity, we use (n, NL) to present the above function
if no ambiguity is possible. The existence of (10, 2,7,488) functions had been an open
problem [45] until this work.

A basic criterion for the construction of Boolean functions is nonlinearity. The sig-
nificance of this criterion has always been emphasized due to the development of linear
cryptanalysis. Dobbertin conjectured in [16] that the nonlinearity of balanced Boolean
functions defined on G F'(2)™ cannot exceed on=1 _ 2% 4+ N, where N, denotes the maxi-
mum achievable nonlinearity of a balanced Boolean function @ defined on GF(2)%. Based
on his conjecture, the upper bound nonlinearity of balanced Boolean functions for N =
8 N = 10 and N = 12 are 116,492, and 2010, respectively. Some work exist on
the constructions of such Boolean functions by arithmetic ways. However, to our best
knowledge there is no work on constructions by heuristic methods. Furthermore, there
is no known result on breaking this conjecture. In this thesis, we construct examples of
(8,116),(10,492),(12, 2010) Boolean functions by heuristic methods. Our onging work
apply other methods to construct examples of Boolean functions as an attempt to break the

Dobberin’s conjecture.

3.2 Theorems and Lemmas
The following theorems and lemmata will be used in our construction.

Theorem 1 (Walsh Summation [20]) This states that the absolute value of the sum of the
Walsh-Hadamard Transform (WHT) values is the same constant for every Boolean func-

tion:
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Dowezp(Fw)) = 2" x f(0) = &2

Theorem 2 (Parseval’s Theorem [29]) This states that the sum of the squares of the Walsh-

Hadamard Transform (WHT) values is the same constant for every Boolean function:
S ez (Fw))? = 220

From this theorem, we can know that a tradeoff exists in minimizing correlation to
affine functions. When a Boolean function is altered to reduce its correlation to some affine

functions, the correlation to some other affine functions will be increased.

Lemmal Ifn > 3 and m < n — 3, then the Walsh values of an m-th order resilient

function f(z) on n variables must satisfy [30]:
res(f) = m = |F(w)| = 0 mod 2™,

Using Lemma 1, we can obtain the upper bound nonlinearity of a n-variable, m-resilient

function represented by the following Theorem 3.

Theorem 3 (Nonlinearity [30]) Upper bound nonlinearity of n-variable m-resilient Boolean

function:

I)Ifnisevenandm +1> 2% — L,then NL(n,m) < 271 — 2m+1,
2)Ifnisevenandm +1 < % — Lthen NL(n,m) < 277! — 2271 — gm+1,

3) If n is odd and 2™+ > 271 — NL(n),then NL(n,m) < 2"=! — am+1,

4) If n is odd and 2™+ < 2771 — ﬁ(n),then N L(n,m) is the highest multiple of 2"
which is < ]T/E(n)

where, N L(n) is the maximum possible nonlinearity of an n-variable function.

From Theorem 3, we can get the corresponding upbound nonlinearity as in Table 7.
By Lemma 1, together with the condition of nonlinearity (see Section 2.2.3), possible

Walsh values can be determined for resilient functions. For example, the Walsh values for
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0 1 2 4 5 6 7 8
12 |12 |8
26 |24 (24 |16 |0
56 |56 {56 |48 |32 |0
118 | 116 | 112 | 112 196 |64 |0
244 1244 | 240 | 240 | 224 | 192 | 128 | O

0 494 1 492 | 488 | 480 | 480 | 448 | 384 | 256 | O

=
3

O Ww

— | \O| 00| | O\ W\

Table 7: Upper Bound Nonlinearity of n-variable m-resilient Boolean Function

(7,2,4,56) must be 0, +16 or —16, since a Walsh value of 32 or above will reduce the

nonlinearity to 48 = 1(27 — 32) or less; similarly, the Walsh values for (10, 2, 7,488), if

3
such functions exist, must be 0,216,432 or +48. Furthermore, considering Theorem 1,
when n = 7, the distribution of these Walsh values can be determined. For example, for
(7,2,4,56), the Walsh spectrum must contain 36 many +16s, 28 many —16s and 64 many
Os or contain 36 many —16s, 28 many +16s and 64 many Os. Unfortunately, when n is

larger than 7, the available Walsh spectrum results do not allow us to specify the distribution

of the Walsh spectrum for function f.

Lemma 2 Let f : ZT — Z, be the function obtained from the concatenation of f, and fs,
fi : Zi~' — Z, and their corresponding Walsh transforms are F1,Fy, i.e, f = [fi|fa].

Then the Walsh transform F of f is given by

F= [Fl + F2|F1 - Fg]

Lemma3 Let f : ZI — Z, be the function obtained from the concatenation of f, and fs,

fi: Z§t — Zy, e, = [filf2]. Then

res(f)=m=res(fi)>m-—-11i=1,2

Note that Lemma 3 is a sufficient condition instead of necessary and sufficient condi-

tion. It means that, if res(f;) = m — 1 (¢ = 1, 2) is the only condition we have, we can just
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ascertain that res(f) > m — 1, but we cannot determine whether res(f) = m. However,
based on Lemma 2, an additional limitation can be applied on m — 1-resilient functions f;

and f, in order to achieve their concatenation to be m-resilient.

Definition 10 Let f : Z] — Z5 be a n — variable Boolean function and its corresponding
Walsh transform is F. Then we denote f = 1® f, and its Walsh transform is F. Obviously,
F=-F.

Definition 11 Since the relationship between nonlinearity and the maximum absolute Walsh

transform value is fixed, we denote the latter as W H,,q.( f) for Boolean function f.

Lemmad Let f : ZI — Z, be the function obtained from the concatenation of f1, fa f3
and fy, fi : Z87% — Z, and their corresponding Walsh transforms are F\, Fy, F3 and Iy,

Le, f = [f1|f2|f3|fa]. Then the Walsh transform F of f is given by

FZ[F1+F2+F3+F4IF1~F2—|-F3—F4|F1+FQ—F3—-F4IF1—FQ—F3+F4].

Lemma 5 Based on [35], small changes to a truth table result in small-magnitude change
to its Walsh transform values. In particular, each F(w) will be altered by £2 by flipping a
single bit in the truth table, while each F(w) will be altered by 4, 0 or —4 by flipping two

bits in the truth table.

3.3 Construction of (10, 2,7, 488) Boolean Functions

3.3.1 Search Algorithm

Different optimization heuristics have been used to construct examples for Boolean func-
tions with desirable cryptographic properties (e.g., [20, 26, 43]).
Before starting the search, one has to decide whether the search is performed in the

Walsh spectrum domain (frequency domain) using the spectral inversion technique [20,43]
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or in the truth table domain (time domain). In our case, using spectral inversion does not
present an attractive option. In particular, while we know that for a (10, 2, 7, 488) function,

F(w) satisfies

4

0 if wt(w) < 2,

|[F(w)] = ¢ <48 if wi(w) > 2, 3)

Omod 16 for all w,

\

these constraints do not allow us to specify the possible distributions of F'.

On the other hand, using the truth table domain, for n > 9, direct application of these
heuristic techniques becomes ineffective because of the super-exponential increase (22") in
the search space. Even if the search space is constrained to the set of RSBFs, the search
space for n = 10 is still relatively large (29° = 21%). Qur direct search for (10, 2, 7, 488)
Boolean function (or RSBF) proved to be not successful because of the huge search space.

Our main observation is that the search space can be reduced dramatically by noting that
a (10, 2,7, 488) function, f, may be constructed by concatenating two RSBFs f; : Z§ — Z,

and fy : Z§ — Z, that satisfy the following constraints:

’

0 if wt(w) < 1,

[Fiw)l =4 <24 if wi(w) =2, )

<48  ifwt(w) > 2,

\

where ¢ = 1, 2. The first constraint in Equation 4 follows from Lemma 3 which specifies
that res(f;) > 1. The second constraint follows from Lemma 2 and the nonlinearity of f.
The third constraint also follows from the nonlinearity of f. This observation reduced the
search space roughly from 2910 = 2108 {0 29° = 260 It is worth noting that our search with

the restriction that res(f;) = 2 for ¢ = 1, 2, while theoretically possible, did not yield any
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useful results. Let (7p, o, M 1 L) denote the (initial temperature, cooling factor, maximum
number of internal iterations) parameters of the SA algorithm [20]. Throughout our search
for (10, 2, 7, 488) Boolean function, we set To = 10,000, o = 0.98, and M IL = 1000. The
SA search terminates when 7" < 1 or a Boolean function that satisfies certain constraint is

constructed. The search procedure can be summarized as follows.

1. Construction of the first half (f, : Z) — Z,)

To construct f;, we represent the Boolean function in Polarity Truth Table (PT), and obtain
neighbors in the search space by swapping two different RSBF classes and their corre-
sponding two groups of bits. We calculate the related cost function of each Boolean func-
tion in search space by transforming it to frequency domain, i.e. Walsh Spectrum (WS) and

penalizing bit by bit.
Search Space 9-bit RSBF function f; that satisfies the following conditions:

e It meets the constraints in Equation 4

e It is balanced, i.e. F1(0) =0

Cost Function During this stage, the following cost function is used:

cost(f1) = Z |Fy(w))?

wlwt(w)<1

+ Y RWP

wlwt(w)=2,
| Fy(w)|¢{8,16,24}

+ mgxIFl(w) - 322, (5)

where w € Z3.
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Note that, for the second term of the cost function above, we do not penalize the
Walsh coefficients that confirm to the divisibility requirements (see Lemma 1). The

reason we do penalizing in this way is based on the following fact.

From Lemma 2, we have F' = [F} + F3|F} — F3]. We can thus conclude that if both F}
and F3 are m-resilient Boolean functions, then their concatenation BF is m-resilient.
Furthermore, F(w) = 0 holds, when 2"~ < w < 2" and wt(w) = m + 1. This
implies if we force both f; and f, to be m-resilient, their concatenation f will always
have some bits satisfying F'(w) = 0, which is not necessory for achieving f to be
m-resilient. Based on Theorem 2, this will lead to some other bits with higher WHT
value, thus decrease the nonlinearity. Hence, we relax the constraint on these bits by
allowing their WHT values to be +8, +£16, £24. Moreover, when constructing f,, we
limit the WHT value of the corresponding bit to be its opposite. Our experimental
results show that this strategy performs better than the case where this term of the
cost function penalizes the Walsh coefficients. In summary, for all elements having
the hamming-distance equal to 2, the limit for the corresponding Walsh value can be

relaxed but should satisfy the condition for concatenation in further step.

Search Strategy In this stage, we limit the initial state to be balanced. Based on the RSBF
classes information for n = 9, there are totally 60 classes in which two of them
have one element; two have three elements; the other 56 classes have nine elements.
For such a distribution, we can easily assign values to each class to keep the corre-
sponding Boolean function balanced. Also, during transitions among search space,
we keep the balanced property of Boolean functions by swapping two classes with
the same number of elements and with opposite values. In this way, we can further

reduce the search space from 2% = 2% to (%) x () x (3%) ~ 2548,

From our experiments, we succeed in constructing such Boolean functions in 4096

out of 4096 runs of simulated annealing.
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trial no. | found-at-itt
259

120

1968

not found
934

691
82,86,306
not found
not found
0 1784

= \O| 00 Q] O\ | | W] NI} —

Table 8: Success Rate of Constructing f, based on f;

2. Construction of the second half (f, : Z9 — Z5)

Once f; is found, we use simulated annealing methods to find another RSBF (V. = 9),
which will satisfy the requirement of Boolean function (10, 2, —, 488) when concatenating
with the RSBF obtained from the first step. The search space and search strategy remain
the same as the above. The main difference is to minimize its cost function in the following

way.

cost(f) = Z | Fo(w)?

wiwt(w)<1

+ Y 1AW+ B

w|wt(w)=2,

+ (max(|Fy (w)] + [Fa(w)]) — 32)%, (6)

where w € Z3.
Note that, for the second term of the cost function above, we only penalize | F}(w) +
F>(w)| and but do not penalize | F} (w)— F5(w)|. This is because by Lemma 2, F} (w)—Fy(w)

is for the bit whose hamming weight equals to 3.
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162D 5CB7 62E5 8BT7A 2D4C AC26 CI1CF 3A89
5DB2 75BC CCF5 0D2C B102 F4AE 1AD9 D583
63E7 8B1C 3A22 09B41 F4F4 AF32 b50EZ 4DFl1
9B16 4059 EE34 C8BD 568D A687 E323 915F
125C 62A0 7C49 D955 6FA5 7587 B6C6 2376
38EB DD73 2E62 816A CB29 B03C 1D5A 6A69
4E80 EOSDF B3F3 6AlE 49FD 2818 9146 7C89
AOSF 5D86 09F04 O5AEl 07F2 72C9 3CCY9 6997
68C5 E023 ES14 184E E993 1774 1785 T74FD
B893 875F O077E 6E70 067B D572 2E64 BAA2
8B81 964A 957E 73EF 453F 3EAC 2DFC 2A40
1168 7EDB B762 3E08 O58ED 7860 CBC8 9849
EDB3 DAlE F688 47F9 AB28 D084 642E AE97
CO9CE 09D5 B315 8434 7921 1DB8 98ED 872B
B5C6 EOBD 10C2 A227 ©9AlF 5726 D174 4B31
7A87 4803 47F2 DE95 (C381 BCE7 916B 59DE

Table 9: Two Examples for (10,2,7,488) Functions in Hexadecimal Notation

Based on ten many f;s, we test how often and how many f;s can be constructed. The
success rate to construct f, within 4096 rounds of simulated annealing is around 70% (see
Table 8). From the table, we can know that not all Boolean functions f;s have their cor-
responding f,s satisfying that the concatenation is m-resilient, and at the same time some

may have more than one such candidates.

3. Testif f = [f1] /2] is a (10,2, 7,488) function. This is necessary since it is not guar-
anteed that a solution exists for every f; with the above constraints. If the SA search for f5

fails for a predetermined number of steps, then we go to step 1 and find another f;.

3.3.2 Experimental Results

Table 9 shows, in hexadecimal notation, two examples for (10,2, 7,488) functions con-
structed by our search. When terminated successfully, the search process required about 1

hour on a Dell Dimension XPS Gen 4 PC with 3.4 GHz Pentium 4 CPU and 1 GB RAM.
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3.4 Construction of (8, —, —, 116) Boolean Functions

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos-
sible Walsh values for (8, 116) Boolean functions are {0, +4, £8, +12, +16, +20}.
This result does not allow us to specify the distribution of its spectrum. Furthermore,
the number of classes for NV = 8§ RSBFs and DSBFs is respectively 36 and 30. The
problems in search space with such complexity are easier to solve with exhaustive
search and mostly likely these have already been addressed in the literature. Hence,
the search space is relaxed to any NV = 8 Boolean functions in our experiment. We

also allow the initial state to be any random functions.

Neighbour policy The neighbor of current state is determined by flipping any two of its
output bits. The balanced property is ignored during the neighbor selection, and
instead it is determined by checking whether the solutions have element w with

F(w) = 0. This allows the non-balanced candidates to be transition state.

Cost function The following cost function is used:

cost(f) =) ((Fw))?-20°)° ™

|F(w)|>24

where w € Z8§.

Since the only conditions for (n, N L) are nonlinearity and balanced, the cost func-
tion only penalizes the elements whose Walsh transform values exceed certain value,
and the balance property is not penalized here. The only additional condition for
accepting the current local optimization is that the summation of maximum and min-
imum absolute Walsh values cannot exceed the target W H .. (f) (here is 24). i.e.
max,, |[F(w;)| + min,, |F(w2)| < 24. The reason is that whenever the above con-

dition is satisfied, the local solution can always be transformed to be balanced with
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EB85 6336 465E B226 3F80 5FA3 E343 40Bl1
F35B F7BS 4A96 B661 C92D 44D5 305C 09r57
CB8F BC20 2628 3DCA 0751 71B4 17A3 2F80
1224 1DE5 5822 650C 7A55 94B6 AEED 7441

Table 10: Two Examples for (8,116) Functions in Hexadecimal Notation

W Hpar(f) < 24.

Related parameters Here we set parameters (Ty, oo, ML) of the SA algorithm to be

(20,000, 0.98, 8192).

Experimental results From our experiments, we succeed in constructing (8, 116) Boolean
functions in 1000 out of 1000 runs of simulated annealing. All of them are bal-
anced or can be transformed to be balanced by linear transformation. Note that if the
neighbor were obtained by flipping one of its output bit, many of such Boolean func-
tions would also be found, although the success rate would not be 100%. Table 10

shows, in hexadecimal notation, two examples for (8, 116) functions constructed by

our search.

3.5 Construction of (10,

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos-
sible Walsh values for (10, 492) Boolean functions have 21 many different choices.
This result does not allow us to specify the distribution of its spectrum. Furthermore,
the search space for N = 10 general functions and RSBFs is respectively 21924 and

2198 Heuristic methods cannot work efficiently on such large size problems. Hence,

—, —,492) Boolean Functions

the search space in our experiments is determined to be N = 10 DSBFs.

Based on the DSBF classes information for n = 10, there are totally 78 classes in
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which two of them have one element, one have two elements, six have five elements,
39 have ten elements and the other 30 classes have 20 elements. For such a distribu-
tion, we can assign values to each class to keep the corresponding Boolean function
be balanced. Once there exists F'(w) = 0 in the Walsh spectrum, we can transform it
to be balanced by linear transformation. Therefore, to be more generalized, we only
limit the initial state to be balanced, while we ignore the balance property during

transition among search space.

Neighbor policy The neighbor of current state is determined by flipping any one of its
classes and its corresponding bits. The balanced property is ignored during the
neighbor selection, and instead it is determined by checking whether the solutions

have element w with F'(w) = 0.

Cost function The following cost function is used:

cost(f) = > ||F(w)] — CACU_COST)?

|F(w)|>TAR_MAX

+ ZT1(W)

+ > (AT_LEAST — |F(w)])?
0<|(F(w)|<AT_LEAST
+ 1, ()
where w € Z19, and
0 if (F(w) = 0) A (#{wi|(wr < w) A (F(w1) = 0)} < 32),

T1<LU) =
(CACU_COST)?  if (F(w) = 0) A (#{w1](w1 < w) A (F(w1) = 0)} > 32).
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and

0 if #{w|(F(w) = 0)} >0,
Ty =

12.0 x (TAR_MAX)? if #{w|(F(w) =0)} = 0.
The parameters in the cost function have to be tuned for optimization, such as, TAG_-
MAX, AT_LEAST, and CACU_COST . From our experiments, they are set to be 36,

12, 28 respectively.

Since the only conditions for (n, NL) are nonlinearity and balanced, theoretically
the first term and the last term of the cost function may be enough. The first term
penalizes the elements whose Walsh transform values exceed certain value, while the
last term checks whether the solution can be transformed to be balanced. However,
from our experiments, if the cost function is only defined to satisfy these conditions,
the result will be far away from the solution. So we penalize it for some additional
states, such as, the number of (s and the minimum Walsh values. Note that these
additional penalizations are determined by our observation and experiments; there

may have other ways to define the cost function.

Related parameters Here we set parameters of the SA algorithm to be Ty = 20, 000,

a = 0.98, and ML = 8192.

Experimental results We succeed in constructing (10, 492) Boolean functions in 144 out
of 1024 runs of simulated annealing. All of them are balanced or can be transferred to
be balanced by linear transformation. Note that if the neighbor obtained by flipping
any one of the DSBF classes and its corresponding bits, many of such Boolean func-
tions can also be found, although the success rate is far lower than that from flipping
two classes. Also, the examples constructed in this way always fall into a pattern,
that is, the locations of F'(w) = 0 are the same no matter how we tune the parame-

ters. We find this is because of the extra penalizations in the cost function. Table 11
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E983 904A D315 74CC B34F 0376 7TA25 E4F1
9B5B 74EB 044F 2E39 7TAC8 4826 E9920 EE47
829F 339E 2E74 A98F 1171 25AE 48F9 4ED3
2ESS E180 74C5 493D AC82 5C51 FCBD 217F
9148 D7EA G5B1E C3AD b5DEY9 2B25 C882 90AB
0756 2E13 5D32 8DAD 2590 EB97 20ED ET71F
58F8 D693 FO913 8041 3E25 F433 3497 O0BB7
CCE5 D509 63E5 6717 ABF1 9BB7 1D57 T7TFFE
ECF4 FF65 FAAE 6823 FBD8 ©99BD 7CD5 4DI1E
FACE E394 9682 DAFZ 6EB5 B277 21E3 13B9
FF98 AlFD B94A D320 C328 8018 B28D EAILS
68FD 9B73 DA1l9 7EZ2E 4D43 F84A 131E DAS86
AEFB C281 DC57 EFB6 CA96 60CC AT74F 1955
F41F 58D0 9004 4385 8F5D C5E2 B9C8 56C2
2D81 EFB6 868A 3BL5F E7CC 4293 3FB8 58ES
31B6 205F BA85 74C8 560F 43E8 E398 9469

Table 11: Two Examples for (10,492) Functions in Hexadecimal Notation

shows, in hexadecimal notation, two examples for (10, 492) functions constructed by

our search.

3.6 Construction of (12, —, —, 2010) Boolean Functions

In this section, we first introduce a special method for constructing (12, 2008) Boolean
functions by concatenating (10, 492) Boolean functions. Then, with another concatenation
method, simulated annealing method is used with a (10,492) function as initial state to

construct (12,2010) Boolean function.

3.6.1 Construction of (12—, —, 2008) Boolean Functions

As mentioned above, we can construct (10, 492) Boolean function in many different ways.
For N = 10 and NL = 492, we can conclude that the maximum absolute value of Walsh

transform of such Boolean functions is W H,,,,.(f) = 40.
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Let f1p be any one of N = 10 and N L = 492 Boolean functions with Walsh transform
Fyo and Zeropnio number of zeros in its Walsh transform, and let fi2 = [fiolfi0]fi0lf10]-

Based on Lemma 4, the Walsh transform F}, of fi, is derived as follows,

Fia = [Fio+ Fio + Fio + FTIOlFIO - Fio+ Fio — E0|F10 + Fio — Fio — E0|F10 — Fio— Fyo + Fm]
= [Fio + Fio + Fio — Fiol|Fio — Fio + Fio + Fio|Fio + Fio — Fio + Fio|Fio — Fio — Fio — Fio)
= [2 X F10‘2 X F10|2 X F10| —2 X FlO]

)

From the above equation, the maximum absolute value of Walsh transform of Fi, is
2 X WHmam(f(NIO) = 2 x 40 = 80. Furthermore, there are 4 X Zeroy1o many zeros in the
frequency domain of Fi5. Hence, we know F}, can be transformed to a balanced Boolean
function and has nonlinearity equals to 2!2~1 — 2 x 80 = 2008. Similarly, the nonlinearity

cannot be improved by respectively flipping one, two or three bits from the results.

3.6.2 Construction of (12, —, —, 2010) Boolean Functions

Our observation Let f = [f1|f2|f3]f3], where f is N = 12 function. f; is a (10,492)
Boolean function obtained above, and f5 is any N = 10 bent function. Correspond-

ingly, their Walsh transform are denoted as F, F}, F», F; and F3. We have:
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F=R+Fh+EB+EF-FKh+FB-EBFR+EF-F—FF—-F-F+E
= [F, + Fy+ F3 — F|F| — Fy+ Fs + F3|F) + Fy — F3 + F3|F, — F, — F3 — Fy
= [F,+ B|F\ — F, + 2 x F3|Fy + F|Fy — F, — 2 x F]

— [F\ + Fy|F, — Fy + 64|Fy + F|F, — F, T 64]

(10)

From the above equation, for such construction, the (12, 2010) Boolean function can

be obtained, if and only if the following conditions are satisfied.

4

(Vw € Z19), |Fi(w)+ F(w)| < 76;
(Vw € Z210), [Fl(w) - Fz(w), <12 (11)

(3&) S 2210), Fl(LU) -+ FQ(W) = 0.

\

By limiting the f; to be (10, 492), we try to relax the constraint of f5.

From these conditions, one intuitionistic idea is to obtain f, by flipping a small num-
ber of output bits from f;. To satisfy the second condition and keep flipped bits as
few as possible, we may limit the number of flipped bits to be less than 6. Unfor-
tunately, the search space is still huge by flipping less than six bits. It is equal to
S0, (39%) & 1.6 x 10'5 ~ 251, This space still cannot be searched by brute force,

and heuristic method is more feasible.
Furthermore, based on the conditions, we can get the following fact,

Fy(w) € [28, 36], Vw € {w|F(w) = 40}
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and

Fy(w) € [-36, —28),Vw € {w|F;(w) = —40}

This fact means the Walsh transform values in f, for all the positions with maxi-
mum absolute Walsh transform values in f; should be improved. This has quite low

possibility.

Search space The search space is regular 10-bit Boolean function and the initial state is

limited to be f;.

Neighbor policy The neighbor of current state is determined by flipping any two bits of

its output.

Cost function The following cost function is used:

cost(fy) = > 2.0 x ||Fa(w)| — CACU_COST?

|Fo(w)|>TAR_MAX
-+ Z T1 (w)
w

n S (AT_LEAST — |Fy(w)|)?

0<|(Fa(w)|<AT_LEAST

+ Y. (AW + Fw)-68)

[P (w)+Fa(w)]>76

Y (IBW - B

|Fy (w)—Fa(w)]|>12

+ 1, (12)

where w € Z2°, and

0 if (F(w) = 0) A (#{wi] (w1 <w) A (Fa(wr) = 0)} < 32),
Tl(LU) =

(CACU_COST)?* if (F(w) = 0) A (#{w1|(w1 < w) A (Fy(w1) = 0)} > 32).
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and

0 if #{w|(F2(w) = 0)} > 0,
Ty =

(TAR_MAX)®> if #{w|(Fy(w) = 0)} =0.
The parameters in the cost function have to be tuned for optimization, such as, TAG_-
MAX, AT_LEAST , and CACU_COST . From our experiments, they are set to be

36, 16, 28 respectively.

From the above function, the constraints from term 1 to 3 and 6 is similiar with the
cost function for constructing (10, 492) Boolean function. The purpose is to force
f2 to be around (10,492). Although the constraint seems to be unnecessary, our

experiments show that it helps to obtain the solution.

The constraint term 4 is related to the condition |Fy + F| < 76, while the constraint

term 5 is related to the condition |F} — Fy| < 12.

Additionally, W H,,,0,.(f) > 44 is checked. The reason we check it is as follows.
If W Hpoe(f) > 44 then we can know that no matter what value its corresponding
F} is, the combination between F) and F5 cannot satisfy the first two conditions of

Equation 11 at the same time.

Although the only conditions that F, should satisfy are Conditions 11, from our
experiments, if the cost function is only defined to satisfy these, the results will be

far away from the solution.

Related parameters The parameters of the SA algorithm are set to 7y = 100, o = 0.99,

and M1L = 4096.

Experimental results Based on 50 many f;s, we test how often and how many f5s can
be constructed in 32 runs of simulated annealing. From the samples, not all Boolean

functions f; has its corresponding f» , while some of them can find as many as 20
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Table 12: Fy, F; Example for (12, 2010) Functions (Difference Showed in Bold and Underline)

candidates. Hence, the selection of f; is critical to the search procedure.

Table 12 shows an example constructed in this way, in which F} is a (10,492)

Boolean function, and F; is obtained by simulated annealing with F} as initial state.

From this table, the hamming distance between these two functions is 16 instead

of what we expected, i.e., 6. As mentioned above, these two functions concatenate

with any N = 10 bent function F3 and F3 will lead to the outcome’s nonlinearity

0, which implies the outcome satisfies

F(0)

being 2010. Furthermore, F(0)

F(0)

0 which means it is balanced.
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3.7 Open Problem

3.7.1 Attempts on Constructing (8, —, —, 118) Boolean Functions

Our ultimate goal is to construct (8, 118) Boolean functions. Some attempts are applied as

follows.

Attempt 1: Adjust the parameters in cost function with constructing (8,116) In-
spired by the results in Section 3.4, the same idea as in constructing (8,116) Boolean
functions is applied to construct (8, 118).

Now the cost function is adjusted to be:

cost(f) = Y ((Fw))?—16%? (13)

|F(w)|>20
where w € Z8. The additional condition is also changed to 3w € Z§, F(w) = 0 and
the maximum absolute Walsh value cannot exceed the target W H,,,..(f) (which is equal
to 20), that is, max,, | F/(w)| < 20. Here, we do not check the summation of maximum and
minimum, because there is no such result.

We did not succeed in constructing the Boolean functions with this method.

Attempt 2: Concatenate two (7,55) Boolean functions It is mathematically proved
in [44] that, if it is impossible to construct (8,0, 7, 118) function by concatenating two 7-
variable, degree 7, nonlinearity 55 functions, then the maximum nonlinearity of balanced
8-variable functions is 116.

Based on the above conclusion, concatenating two (7,55) Boolean functions is at-

tempted. The search procedure can be summarized as follows.
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e Obtain first 7-bit function f; with cost function:

0 if W Hpao(f) = 18,
cost(f1) =

(W Hypoo(f) — 18)2  if W Hppou(f) # 18

Then the algebraic degree and the balance of the local solution is checked.

e Obtain second 7-bit function f, with cost function:

cost(f)= Y (IRW)]+|FBW)]-16)

| FL(w)|+H F2(w)]>20

Then the balance of the local solution is checked. We did not succeed in constructing

the Boolean function with this method.

3.7.2 Attempts on Constructing (10, —, —, 494) Boolean Functions

Our ultimate goal is to construct (10,494) Boolean functions as the counter example for

breaking H.Dobbertin’s conjecture. Some attempts are described as follows.

Attempt 1: Adjust the parameters of cost function in constructing (10,492) Inspired
by the results in Section 3.5, the same idea as in constructing (10, 492) Boolean functions
is applied to construct (10, 494). The program continues to search for (10,494) functions
instead of exiting after (10,492) function is found. The parameters in cost functions are
adjusted to different values. However, after around two months’ running, no (10,494)

function was found.

Attempt 2: Concatenate two N = 9 Boolean functions In this attempt, two N = 9
Boolean functions are constructed and then concatenated to yield NV = 10s based on a

similar idea as in Section 3.3. However, this problem is different from the (10, 2,7, 488)

50



problem. In constructing (10, 2, 7, 488), there are some guidable, essential constraints, such
as F(w) = 0 for all wt(w) < 1 and F(w)mod4 = 0 for all w. For (9, —) to be concatenated

with (10, 494), the only necessary condition for constructing F is as follows,

(Vw € Z3),|Fi(w)] < 36; (14)

and for fs,

'4

(Vw € Z3), |Fp(w)] < 36,

J(vw € 20), (IFuw)+ Fa(w)] < 36) A (IFi(w) — F(w) <36) ()

(Fw e Z3), (Fi(w)+ Fa(w) =0)V (Fi(w) — Fy(w) =0).

\

Experimental results should be analyzed based on the tradeoff in above conditions. For
example, from Condition 14, when W H,,,,,.( f1) is limited to be 36, f; can be easily found.
However, the weaker the conditions are, the more random the results are. It is possible that
a large number of f;s will never be used to find corresponding f5s. In the mean time, if we
penalize this by extra constraints, it is possible that such extra constraints may prevent us
from finding any solution.

Different extra constraints are tested during the experiments. One of them is drafted as

follows.

Search space The search spaces for f; and f; are limited to N = 9 RSBFs.

Neighbor policy Flipping one class and its corresponding bits.
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Cost function

cost(fr) = |Fi(w)— 24
w|w>0,
| F1(w)|>36

+ 17, (16)

0 if (|F1(0)] < 18,

[E1(0)]* if (|F1(0)] > 18.

cost(fo) = > |F(w)]
wlw>0,
|Fo(w)|>36

+ Z (|Fy ()| + | Fa(w)| — 24)?
wlw>0,

[F1(W)|+| Fa{w)|>36

+ T, a7

. _Iro+ B if (IF3(0) + F(0)] #0,

(I1F1(0) — F2(0)] — 24)*  if (|F1(0) — F2(0)] > 36.
In this way, we expect the results of two concatenations to be balanced so the extra

condition would be unecessary.

Attempt 3: Brute Force - flipping two bits of (10, 492) functions Based on Lemma 5, it
is possible that, after flipping certain two bits of the (10, 492) Boolean functions, the Walsh
value reduce from 40 to 36, and increase from —40 to —36, with some (’s in the derived
Boolean function. In our experiments, around 200 many (10,492) Boolean functions are

verified in this way, but none of them falls into this class.
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Attempt 4: Hill Climbing - SA applied on (10,492) functions Based on the result of
constructing f> in Section 3.6.2, if this function exists then the hamming distance between
the (10, 494) function and its closest (10, 492) function will not necessary be equal to 2, but
instead may be a little greater than 2. However, it is impractical to verify all the possibilities
by flipping more than 2 bits for N = 12, so simulated annealing is used and the details are

shown in the following.

Search space The search space is regular 10-bit Boolean function, and the initial state is

limited to be (10, 492) functions which is already found.

Neighbor policy The neighbor of current state is determined by flipping any two output
bits. The balanced property is ignored during the neighbor selection, and instead it is

determined by checking whether the solutions have element w satisfying F'(w) = 0.

Cost function The following cost function pattern is used:

cost(f) = > 2.0 x ||F(w)| — CACU_COST?

|F(w)[>TAR_MAX
+ Z Ti(w)
w

n 3 (AT_LEAST — |F(w)])?

0<|(F(w)|<AT_LEAST

+ Ty, (18)

where w € Z19, and

0 if (F(w) = 0) A (#{wr|(w1 < w) A (F(w)) = 0)} < 32),
Tl((U) =

(CACU_COSTY®  if (F(w) = 0) A (#{wi|(wr < w) A (F(w,) = 0)} > 32).
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and

0 if #{w|(F(w) =0)} >0,
T, =

(TAR_MAX)® if #{w|(F(w) = 0)} = 0.

The cost function is similar to the one used in constructing (10,492) functions in
Section 3.5. The main difference is that here the initial state is one of the (10, 492)
functions obtained in Section 3.5. The main idea is that the hamming distance be-

tween (10, 494) functions and (10, 492) functions is potentially not large.
Moreover, many other cost functions have been designed and their parameters ad-

justed, but no better results are obtained.

Related parameters Here we set parameters of the SA algorithm to be Ty = 100, o =
0.99, and ML = 4096. Note that when Tj is increased to around 1, 000, we cannot

even construct (10, 492) functions.

Experimental results It took 6 months to apply this method on 30 many (10, 492) Boolean
functions, with 1024 iterations each. The (10,494) functions are not found in this
way. However, many of other (10,492) functions are constructed under each seed.
Moreover, some examples do not fall into the same pattern. Table 13 shows the

number of (10, 492) functions found with ten of the seeds.

Others Other attempts are also made including, but not limited to,

o Replace the search space from DSBFs to RSBFs;
e Constraint the neighbor to be balanced;
e Fix some classes when moving to next state;

e Use new random function instead of the one in standard C library.
These attempts, while also theoretically possible, do not yield any better results.
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»
[¢]
o
o
H*+

the number of (10,492) functions found
851
698
631
602
575
609
549
527
688

0 709

= 0O X2 WN B WN =

Table 13: The Number of (10,492) Boolean Functions Found by 1024-time SAs on Seed
Functions

3.7.3 Attempts on Constructing (12—, — 2012) Boolean Functions

The ultimate goal is to construct (12,2012) Boolean function. Some attempts are made

through revising methods in Section 3.6.2.

Attempt 1: Adjust the parameters in the cost function for constructing (12,2010) We
apply simliar idea as in constructing (12,2010) Boolean functions to construct (12, 2012).
That is, let f = [f1|f2|f3|f3] in which f; is a (10,492) Boolean function obtained as in
Section 3.5, and f; and f3 are bent functions. Then simulated annealing method is applied
to search function fs.

Now the conditions are adjusted to be:

;

(w € 2}9), |A(w)+Fw)] < 72
| (Vo € Z19), |Fi(w) - Fyw)| < & (19)

(Jw € 7219, Fi(w)+ F(w) =0.

(
With f; also limited to be (10,492), Fi(w) = 40 implies F3(w) must be 32, and
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Fy{w) = —40 implies F3(w) must be —32.
We did not succeed in constructing the Boolean function using this method after apply-

ing it to one f; in 400 iterations (which consumes 18 days).

Attempt 2: Relax the constraint of f; to lower nonlinearity The f, in attempt 1 has
strict constraint on the elements with Fi(w) = +£40, and f; must have nonlinearity no
smaller than that of f;. That is, both f; and f, are (10,492) Boolean functions. This result
reaches the upper bound of Dobberin’s conjecture, with additional constraints on those
functions.

In attempt 2, the nonlinearity of f; and f; is relaxed to be certain lower values (e.g. 44
and 48), so that there would be more candidates of f; and fs.

However, when only relaxing f, and f, to lower nonlinearity and keeping f3 and f;
unchanged, there is no solution available. For example, suppose Fi(w) = 44, in order
to satisfy |F1(w) + Fo(w)| < 72, Fp(w) must be no greater than 28, which breaks the
2nd condition | F}(w) — Fy(w)| < 8. It is easy to prove that if Fj(w) > 40 under such a
concatenation, then no matter what value its corresponding Fy(w) is, the combination of

Fi and F; cannot simultaneously satisfy the first two of Conditions 19.

Attempt 3: Replace f; with its 1 or 2 bit flipping, and respectively obtaining f; Based
on the observation of Lemma 35, after flipping bits of N = 10 bent function, the Walsh
transform values will belong to: {£30, £34} after 1-bit flipping, and {28, £32, £36}

after 2-bit flipping. Therefore,

|F3(w) + Fy(w)] = 0;

|F3(w) — F3(w)| € {56,60,64,68,72}

Now the conditions are adjusted to be:
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(Vw € Z3°), |Fi(w)+ F(w)| < 72;

Y (Vw € Z19), |Fi(w) — Fy(w)] < 6; 20)

L(Elw € 739, Fi(w)+ FKw)=0.
wherein,
12, F3(w) = +30

4, Fg(w) = +34

when flipping one bit, or

16, Fi(w) = £28

0=148, Fiw)=+32

0, F3(w)==136

when flipping two bits.

From Conditions 20, all conditions remain the same except the second condition. The
difference between F(w) and F3(w) is changed from only allowing < 8 to having different
possibility element by element (from 0 to 16). When f; is limited to (10,492) Boolean
functions, this allows f5 to have lower nonlinearity. For example, for certain w, Fj(w) =
28, Fh(w) = 44, F3(w) = 28, and Fy(w) = F3(w) = —28 may be acceptable. However,
this revision only makes possible Walsh transform values to be as high as 44. It does not
relax the constraints to generate more relaxed candidates. That is, if there is a component

satisfying F;(w) = 44, then the Walsh value for the other threes can only be 28, 28 and
—28.
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The procedures used in our experiment are as follows.

Construct one N = 10 bent function fyepn:;

Flip fien: 1 Or 2 bit(s), get f3 and calculate fy=fs;

Check whether (10, 492) f; satisfies | Fy (w)| + | F3(w)| < 72, and if no, check next f;

Use simulated annealing method to search for f, with f; as the initial state and bit

complement in truth table as neighbor.

Repeat above 4 steps.

Attempt 4: The 4th component relaxed from f; bent function to any bent functions
By observing the experiment of constructing (12, 2010), we have that although F} — F, <
12, the f5 is not derived by flipping 6 bits of f;. This implies that there are few possible
solutions by requiring F; — F» < 8. Relaxing 4th component will allow f; and f5 to have
a large-magnitude difference.

We adjusted the parameters to a large extent under the same search space, neighbor

policy, and cost function, but the results could not be improved.

3.7.4 Other Attempts on Constructing (12, —, —, 2012) Boolean Func-

tions

Attempt 1: Construct through concatenation of (10,494) functions Based on the
idea described in Section 3.6.1, if (10,494) functions can be constructed, we can obtain
(12, 2012) function by concatenating them as fi2 = [f10|fi0|f10]f10]. The maximum abso-
lute value of Walsh transform of Fip is 2 X W H,00(fn10) = 2 X 36 = 72. Furthermore,
there are 4 X Zeroyio many zeros in frequency domain of Fj, with F(0) = 0. Hence, we

know Fi, is balanced and has nonlinearity equals to 2'*~! — 2 x 72 = 2012. Obviously, this
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problem is equivalent to constructing (10,494) Boolean functions, which is also an open

problem based on the conjecture made by Dobbertin.

Attempt 2: Directly apply simulated annealing method to N = 12 DSBFs In this
way, the best solution we have achieved is to construct (12, —, —, 2000) Boolean functions.

The detailed procedure is as follows.

Search space The search space is limited to /N = 12 DSBF functions. Based on the class
information for n = 12, there are totally 224 classes in which two of them have one
element, one has two elements, two have three elements, three have four elements,
seven have six elements, 82 have 12 elements and the others (127s) have 24 elements.

We allow the initial state to be any random DSBF functions.

Neighbor policy The neighbor of current state is determined by flipping any one of its

classes and its corresponding bits.

Cost function The following cost function is used:

cost(f) = > |F(w)—68°+> T(w), Q1

|F(w)|>96

where w € Aj2;(i € Z,,), and

(w) = 0 if (F(w) < 20) A (#H{wi](w1 < w) A ([F(w1)] <20)} < 60),

2Q0-1F@IN  if (F(w) < 20) A (#{wi (w1 < w) A (|Flwy)] < 20)} > 60).

Note that, the only conditions for (n, N L) are nonlinearity and balanced. The cost
function theoretically can only penalize the elements whose Walsh transform values

exceed certain value. However, since this condition is too relaxed to guide the SA
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in finding the solution in the right direction, we also penalize certain low values of

Walsh transform in the second term of the above cost function.

Related parameters The parameters of the SA algorithm are set to be 7, = 10,000, o =
0.96, and MIL = 8192.

Experimental results 170 out of 185 trials succeed. We adjust the parameters to a large
extent under the same search space, neighbor policy, and cost function, but results
cannot be improved. Also, our experiments cannot improve the nonlinearity by re-

spectively flipping one, two or three bits from 100 examples of the results.

Attempt 3: Relax f; and f; to be any Boolean functions instead of bent functions

Our observation Let f = [fi|fs|f3|fs], where f is N = 12 function. f; (i = 1,2,3,4)
represents four N = 10 Boolean functions, and their Walsh transform spectrum are
denoted as F, Fy, F5, F3, and F}. Based on Lemma 4, the Walsh transfrom spectrum
F derived from Fi(i = 1,2,3,4) can be formulated as follows, when ignoring the

order of concatenation.

F = [(F + F) % (F + F)I(F — F}) % (Fi — F}) 22)

where tuple (7, 7, k, 1) can be any permutation of (1,2, 3,4).

From Equation 22, we have that to obtain certain nonlinearity Boolean functions, the

following conditions must be satisfied.

|Fil + | F5] < WHmaa(f), (5,5 € {1,2,3,4}) A (i # 7)) (23)

Condition 23 can be used to define the cost functions for f5, f3 and f.
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However, such constraint is not sufficient to guide heuristic methods to search for
the solution in the right direction. There are still many other factors that should
be considered during the construction, such as the search space, the goal for each

component, the definition of neighborhood, the practical cost functions, and so on.

There are other tradeoffs that may be made. For example, if the constraint for search-
ing f, is relaxed too much to accept very low nonlinearity, then f; can be easily
found. However, it is possible that the f; found will never have remainder compo-
nents (fo, f3 and f4) for concatenation. This is similar to randomly picking up any
one f;. Unfortunately, since the (n, NL) functions are only relevant to two con-
ditions, that is, balanced and nonlinearity, we cannot apply further conditions to it.
We only know that we cannot concatenate two (7, 56) Boolean functions to form
(8,118) functions. If (8,118) function exists through concatenation, then it should
be the concatenation of two (7, 55) functions. So far there is no known result on what

kind of f; can or cannot be concatenated to construct (n, N L) Boolean functions.

We conduct experiments with different combinations, but (12, 2012) Boolean func-

tions cannot be constructed.

Search space The search space can be either N = 10 RSBF or DRSBF Boolean functions,
whose sizes are 2'% or 278, respectively. The regular Boolean functions are not tried
since the search space size (22" = 21924) is prohibitive. We allow the initial state to

be any random RSBF or DRSBF functions.

Neighbor policy The neighbor of current state is determined by flipping any one or two

class(es) and its corresponding bits.

Cost function the basic idea of cost function is to satisfy |F;| 4+ |F;| < 72 where ¢,j €

{1,2,3,4} Ni # .
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The number of derived functions
Seed | W Hpnau(f)=72 | W Hpnao(f)=76 | W Hpngx(f)=80 | W Hypoo(f)=84
1 0 44 2064876 31208
2 0 28 2064876 31224
3 0 16 2064876 31236
4 0 12 2064876 31240
5 0 28 2064876 31224

Table 14: Nonlinearity Distribution of Derived Boolean Functions by Flipping Five

(12,2010) Functions

Related parameters The parameters (15, o, M IL) of the SA algorithm for four compo-
nents are respectively set to (10000, 0.98, 1000), (10000, 0.98,2048), (10000, 0.98, 1024),
(10000, 0.98, 4096).

Attempt 3: Brute Force - flipping two bits of (12, 2010) functions Based on Lemma 5,
it is possible that, after flipping certain two bits of the (12,2010) Boolean functions, the
Walsh value reduce from 76 to 72 and increase from —76 to —72, with some Os kept in
the derived Boolean function. In our experiments, around 100 many (12,2010) Boolean
functions are verified in this way, but no one falls into this class. Furthermore, as shown in
Table 14 (only five examples are listed here), there are only very few derived functions that

can keep the same nonlinearity while most of them have reduced nonlinearity.
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Chapter 4

Other Applications: Cryptanalysis of

Symmetric Ciphers

In this chapter, we describe our research on using heuristic methods to attack symmetric
ciphers. Two example attacks are given in this chapter. We use simulated annealing to
reconstruct the initial state of the LFSRs for Geffe cipher (stream cipher); in the mean time,
we use guided search techniques to perform experiments on key distinguishing attack [2]
on TREYFERR cipher (block cipher). The most attractive aspect of such cryptanalysis
approach is that the ciphers being attacked can be treated as black-boxes by the attackers.
If such attack succeeds, it would be unnecessary for attackers to understand internal details

of the ciphers.

4.1 Attack on Geffe Cipher

One of the main objectives in attacking a LFSR-based stream cipher is to reconstruct the
initial state of all the LFSRs, which are the key components of stream ciphers. In our attack
on Geffe cipher, we need not to analyze the internal details of the cipher, that is, we regard

the cipher as a black-box. We feed the cipher with different LFSR register initial states
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and try to analyze the difference between keystream outputs (generated sequences) under

different initial states, and output sequences we observe (observed sequences).

4.1.1 Stream Ciphers

Stream ciphers are important primitives for ensuring privacy in communication. Stream
ciphers have good properties, such as being secure, efficient, and small in terms of imple-
mentation. Stream cipher algorithms are usually faster than block ciphers, such as DES.
Stream ciphers are often used in mobile devices, such as A5 in GSM cell phone system.
Performance benefits may lead to their application to videoconferencing and other multi-
media applications [7]. A stream cipher produces a pseudo-random sequence of bits which
are exclusive-OR’ed with the plaintext to produce the ciphertext. It is sometimes also
called state cipher since encryption depends on not only the key and plaintext, but also on

the current state.

Linear Feedback Shift Registers (LFSR) Many stream ciphers make use of the linear
feedback shift register (LFSR), since:

1. LFSR is well-suited for hardware implementation;

2. LFSR can produce sequences of large period,

3. LFSR can produce sequences with good statistical properties;

4. LFSR can be readily analyzed using algebraic techniques because of its structure.

Figure 4 illustrates a LFSR defined by the primitive polynomial z'° ® z3 @ 1 = 0.

An LFSR is a finite state machine and consists of L memory cells (stages) 7o, 71, . - ., T1—1.
Each cell contains one value from Z2. LFSR has one input and one output, and a clock
which is used to control the movement of data. At any time ¢, the content of the register

is called the state of the LFSR at time ¢, and denoted as S; = (84471, St+1-2,-- -, St). The
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Figure 4: An Example of Linear Feedback Shift Register (LFSR)

state at time zero, .Sy, is called the initial state of the LFSR.
During each unit of time, the following operations are performed. When the control unit of

the finite state machine is clocked,
1. The value of the cell ry goes to the output and forms part of the output sequence;
2. The remaining cells are shifted as r; = 7;41,7=0,1,...,[ — 2; and

3. The last cell r;_; is the feedback bit which is loaded with a new value s;.; calculated

through the corresponding primitive polynomial.

Note that the new value of the last cell can either be the output.

A periodic LFSR is defined by a (primitive) feedback polynomial of degree L, which
is the size of the LFSR. When the feedback polynomial is primitive and of degree L, the
output sequence of a maximum length LFSR is periodic with period m = 2% — 1 and is
called an m-sequence. Note that m-sequences have good statistical properties but they are
predictable. If a stream cipher has linear complexity n, we can find its initial state using
2 X n consecutive bits using Massey-Berlekamp algorithm. Hence, we need to increase
the linearity complexity, before the sequence can be used. There are several methods for
achieving this. One is to use several LFSRs and combine the output from each of them like
in Geffe cipher; the other is to apply nonlinear filter function on one single LFSR like in
Shrinking Generator. This approach is efficient for building stream ciphers, especially in

software, because bit-wise shifting LFSR is rather costly operation in software.
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Geffe Cipher Geffe system is used as a key generator with LFSR’s of length (17, 11, and
13), respectively, with tapping as shown in Figure 5 [8]. It belongs to nonlinear combiner

generator: F(z1, s, T3) = Z1T9 B T2T3 @ Z3.

Na
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Figure 5: Structure of Geffe Stream Cipher

»

4.1.2 Algorithm for Attacking on Geffe Cipher

Search space The search space includes all possible initial states (IVs) € Z3!, where 41 =

17 + 11 + 13 is the sum of the length of all three LFSRs.

Cost function Since Geffe cipher is clocked in regular way, we consider using the ham-
ming distance between observed sequence and generated sequence as the cost func-

tion.
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cost(IV;) = d(gen_seq;, 0bs_seq)
= wt(gen_seq; ® obs_seq)

= ) (gen_seq;(z) ® obs_seq(z)) (24)

xezobserved_size
2

where gen_seq is the keystream output sequence generated by current initial state
1V;, and obs_seq is the keystream output sequence we observed. They are both in

the size of observed_size.

Search strategy We start to evaluate by randomly selecting one possible initial state from
the search space. The neighborhood of the current state is defined by the subset of

all initial states that are flipped one bit from the current state.

Experimental results Here we set parameters of the SA algorithm to be 7, = 10, 000,
a = 0.99, and ML = 1000 for observing 1000 bits and 2000 bits of the keystream
output, and to be Ty = 15,000, a = 0.99, and ML = 1500 for observing 3000 bits

of the keystream output. The SA search terminates when 7' < 1 or cost = 0.

From Table 15, we can conclude the following. The longer the observed keystream size
is, the more efficiently we can reconstruct the initial state of LFSRs and hence to break the
cipher. However, note that the longer the keystream is, the more time is needed on internal

calculation.

4.2 Attack on TREYFER Cipher

We perform a series of attacking schemes to verify the capability of block ciphers, such

as TREYFER and AES, against key distinguishability attack. For a cipher algorithm, if
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tri keystream size: 1000bits

keystream size:2000bits

keystream size:3000bits

val | iterations

2.20E+12

241

iterations

2.20E+12

241

iterations

2.20E+12

241

01709068

1.71E406

20.7

01648735

1.65E+06

20.7

06640740

6.64E+06

22.7

10871709

1.09E+07

23.4

23530999

2.35E+07

24.5

11150336

1.12E+07

234

08049188

8.05E+06

22.9

07990605

7.99E+06

229

14057378

1.41E+07

23.7

58448768

5.84E+07

25.8

14362750

1.44E+07

23.8

00991414

9.91E+05

19.9

23631731

2.36E+07

24.5

05233592

5.23E+06

223

03798894

3.80E+06

21.9

29110129

2.91E+07

248

06105174

6.11E+06

225

02353033

2.35E+06

212

22666798

2.27E4+07

244

08883927

8.88E+06

23.1

05175545

5.18E+06

223

0| | O\ | K| W N —

34574549

3.46E+07

25.0

03387418

3.39E+06

21.7

02499694

2.50E+06

213

el

42006563

4.20E+07

253

07152750

7.15E+06

22.8

05259783

5.26E+06

22.3

—
<o

05241524

5.24E+06

223

02486573

2.49E+06

21.2

00891773

8.92E+05

19.8

—
—

08013216

8.01E+06

22.9

04294451

4.29E+06

22.0

06722778

6.72E+06

227

avg | 22211204

2.22E+07

24.4

07734270

7.73E+06

229

05412852

5.41E+06

224

Table 15: Efficiency of Attacking on Geffe Cipher

the local optima generated by consecutive searches highly depend on the genuine key and
form patterns that are equivocally connected with each particular key, then this cipher is key
distinguished. When a cipher suffers from such a weakness, we can distinguish ciphertexts
generated by certain key from other keys or random process, with the cipher itself regarded
as a black-box. In our research, we apply the methods to different block ciphers with
different rounds, random functions, and s-boxes.

In our experiments, we firstly apply a simple local optima search strategy to recover the
key, which is used to generate a set of (plaintexts, ciphertexts) pairs. Then the local optima
are summed up into profiles. Finally, we attempt to measure the distance between profiles
to observe the relationship between a large number of local optima and the genuine key.
This main idea is originally proposed by Clark et al. [2]. From our results, the local optima
of TREYFER with one round are highly dependent on the corresponding key, those with
two rounds are to some extent dependent on the key, while there is no apparent trend with

those of TREYFER with more than two rounds.
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4.2.1 TREYFER Block Cipher

TREYFER was designed for environments with limited resources. The procedure of this
cipher with 8-byte key and 8-byte plaintext under C is given by following pseudo code [55].
Procedure: Pseudo Code for TREYFER Implementation:

1. for (r=0;r < NumRounds; r++)

2. |

3. text[8]=text[1];

4, for (i=0;i < 8;i++)

5. text[i+1]=rotate_1_left(text[i+1]+S-box[(key[i]+text[i])%256]);
6. }

In our experiments, we use two different S-boxes. One uses the first 256 primes (all
modulo 256), starting with 2; the other uses the S-box used within the Advanced Encryption

Standard [13] [1].

4.2.2 Algorithm for Attacking on TREYFER Cipher

In this section, we first describe the local optima search strategy and then propose a method

to sum up these local optima into profiles.

Local optima search scheme Based on a set of (plaintexts, ciphertexts) pairs { (p1, ¢1),(p2, ¢2)
... (Pn, cn) } under certain key Kgenuine, an all-bit-zero key K, is initialized, and the corre-

sponding cost is calculated using following cost function:

COSt(kcur) = Z d(ci> Ekcur (pl)) (25)
=1

where d(c;, ¢;) is the Hamming distance between the ciphertexts.

The search examines each bit in the current optimum key k,,; from left to right. At each
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position bit b, a new candidate k., is obtained by flipping bit b in k,p;. The cost cost(keyr)
is calculated in the same way. If cost(keur) < c0St(kopt), kop: 18 replaced by k., as best
solution found so far. Otherwise, current bit flipping is resumed and next bit flipping will be
tried. The search procedure is continued until |the_number_of_key_bits| — 1 successive
non-improving bit moves under certain k.. The description of this search algorithm is
shown as follows.

Procedure: Pseudo Code for Local Optima Search Scheme:

I Kope = 00...0.

2. cost(k Zd ¢, Eieur (Pi))

3. im0

4. b0

5. while (nim < MAXNIM)

6. {

7. kew — f lip_bitwb_in_kopt;

8.  cost(keyr) Zd By (Pi), €i)3
9. if (cost(keur) < cost( opt))

10. |

11. Kopt < Keur;

12. cost(kopt) — cost(keyr);

13. nim «— 0;

14. }

15. else

16. nim «— nmim + 1;

17. b~ (b+1)%|k
18. }

19. return k5
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Local optima profile scheme After the above process finishes, for certain key £, a local
optima set {oy,...,or} for T iterations can be obtained. To profile these local optima,
correlations between every two bits are considered. The profile is given by a |k| * |k|

matrix:

1)@ot(j (26)

Mq

P(k) = [cij)icij =

t=1

wherein each element c;; scales the level of correlation between bit ¢ and j for the set
of local optima, and 0,(i),t = 1,...,T and ¢ = 1,..., |k| denotes the ith-bit value in the

local optimum o;.

Profiles similarity scheme Given two key profiles, the similarity between each profile

in the first set and any one in the second set can be measured by summing up the absolute

values between elements. More formally, if Po(ko) = [c;;] and Py(ki) = [c;;] are two
profiles, their distance is given by:
k[ |kl
deorr(Py(ke), Pi(k1)) = > ) ey — ¢ 27)

i=1 j=t
The technique described above has been applied to TREYFER with different number

of rounds and different s-boxes, and AES with different number of rounds.

4.2.3 Implementation on Attacking TREYFER

Implementation details In the case of the local search algorithm, we used a number of
|k| — 1 successive non-improving moves (MAXNIM), and the full |k]| bits of the key are
examined. In order to rate the distinguishing abilities of the proposed techniques on this
cipher, firstly Ny different keys are randomly generated, Next, in each iteration, two sets

of profiles {Py(k1),. ..., Po(kny)} and {Pi(k1),...., Pi(kn, )} are accumulated. Then,
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distances between any key pairs in two profiles are calculated for every certain number of
iterations. Finally, based on the distances obtained above, rank(P(k;)) for each key k; are
calculated, wherein rank(Py(k;)) denotes the number of incorrect profiles in the second
set are closer to Py(k;) than the correct one P;(k;).

We give the procedures in pseudo code as follows.
Procedure: Pseudo Code for Implementation:
1. randomly selected Ny different keys;
2. for (i=0;z < Ti++)

{

4 for (profileno=0;profileno < Nprorrg;profileno++)

5.0

6 select randomly a number Np of plaintexts;

7. encrypt the plaintexts using each key to obtain Vg sets of p/c pairs;

8 for (j=0;7 < Ng;j++)

9 {

10. search for local optimum o;(j) for key j;

11. accumulate current local optimum contribution to profiles via equation 26;
12. }

13. if (need to record the intermediate result)

14. {

15. for each key pairs (k;, k;), calculate the dcorr(FPy(k;), P1(k;)) based on two the

profiles attained so far;

16. for each key £; in profile 0, calculate rank(Py(k;));
17. }

18. '}

19. }
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Results for 1,2,3 and more rounds TREYFER Distances obtained in Equation 27 can
be grouped into a Ng X Ng matrix, D = [di]-], where d;; measures the distance between
profiles Py(k;) and P;(k;). One simple way to measure the distinguishability is the follow-
ing. Given a profile Py(k;), counting the number of incorrect profiles in the second set are

closer to Py(k;) than to the correct one, that is, the rank of a profile is given by,

Rank(FPo(k;)) = #{Pi(k;)|(1 < J < INk)A (@ # 7) A (dij < dii)} (28)

Generally, it can be deemed that the distinguishability in statistical sense is achieved
if all the ranks are less than 1—\’5’1 From our results, the local optima of TREYFER with
one round are highly dependent on the corresponding key, those with two rounds are to
some extent dependent on key, while there is no apparent trend with those of TREYFER
with more than two rounds. Table 16,17,18 show the results for one, two and three rounds
TREYFER with two different S_Boxes. Throughout our experiments, we set N = 10,
Np =20,and MAXNIM = 63.

From our experimentation, only TREYFER with one round apparently suffers from
the key distinguishable weakness. However, it does not mean that these block ciphers
are absolutely immune to such kind of attacks. Actually, there exists much potential for
improvements in our experiments.

First, by using current local optima search scheme, it is obvious that the probability of
certain bits in the candidate key being 1 is sharply decreased in the order of being flipped.
We found in our experimentation that the bit number of 1’s in the local optima is just around
10, when the key size is 128 bits in AES. The correlation between candidate solution and
the genuine key is restricted by this property.

Second, current local optima profile scheme only analyzes the correlations between
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sbox1 K00 K01 k02 K03 k04 k03 k06 K07 k08 K09 | rank
K00 | 594136 4717580 5830412 5247780 4764340 4994408 4505260 5220788 5478464 4649112 | 0
K01 | 4799872 595596 3836268 5209148 2295060 3453280 1764236 2096804 2526000 2432912 | 0O
k02 | 5729528 3906076 568028 6938692 3499980 3149736 4328628 4302580 3927616 2322976 0
k03 | 5199504 5158668 6988692 601316 5956284 5432288 5672064 5642692 4198248 6280448 0
k04 | 4857816 2396636 3279532 6085172 619316 2879280 2413316 2804484 3290200 2005744 | O
k05 | 5119120 3364540 2986244 5503780 2714932 504928 3518900 3871372 2954984 2608400 | 0
k06 | 4394008 1701580 4248436 5611956 2125388 3563976 605452 1910356 3015592 2656368 0
K07 | 4981748 1961080 4254144 5596688 2640928 3957980 1860960 593720 2598732 2601100 | O
K08 | 5400720 2209548 3887228 4075564 3068508 2866152 2972380 2440660 489648 3019496 | 0O
k09 | 4578064 2471748 2202420 6319748 2097684 2673048 2697940 2624260 3102904 508352 0
sbox2 k00 KOT k02 K03 k04 k05 k06 k07 k08 k09 | rank
KO0 | 563240 2294452 2479024 1853132 2370504 2069192 1988704 2164228 2048156 2318232 0
K01 | 2227036 556272 1180028 1320256 1450556 1308588 944252 882928 1042424 1351116 | O
K02 | 2595344 1106364 640352 1746188 1390016 1735080 1253168 1100188 1242660 1143280 | ©
k03 | 1781380 1349336 1810684 611616 2023452 1250732 1346764 1558544 1385456 1909828 0
K04 | 2473220 1364288 1268044 2114888 598028 1954380 1477740 1256232 1546848 1220812 | 0
k05 | 2028508 1317856 1737284 1231536 1910428 573964 1390100 1243944 1316016 2070964 | O
K06 | 2257480 870228 1133904 1382980 1489136 1466352 667576 954468 897396 1008776 0
k07 | 2287332 818000 1111332 1540760 1411340 1148668 1011948 535512 1080216 1324572 0
K08 | 2138560 1079500 1304200 1421548 1635616 1396776 967712 1163788 480780 1242136 | O
k09 | 2416668 1277984 1064980 1850808 1425764 2125964 1287308 1342264 1273328 578356 | O
Table 16: Distances and Ranks among Key Profiles for 1-round TREYFER(30K Local
Optima Profiled)
sbox1 k00 x01 x02 X03 k04 k05 k06 K07 X08 K09 | rank
KO0 | 455856 2098576 2145876 4262064 1783064 2428188 2166356 2971232 3645384 2179064 | 0O
kOl | 2085500 482700 2223408 3232044 1053396 1987328 690120 1560468 2197204 1882476 | O
k02 | 2163772 2235772 440056 2925180 1557804 940592 1897544 2310292 2578972 782500 0
K03 | 4386352 3378632 3038028 513464 3383424 2642636 3184332 2323872 1494112 2710928 0
ko4 | 1837092 1148468 1511856 3317028 480772 1418896 985200 1744796 2364508 1264948 0
K05 | 2451352 2163856 1016172 2577560 1469304 448404 1776580 1768144 2195664 702576 0
k06 | 2238892 722308 2051240 3146084 1002036 1860152 453040 1415732 2199196 1658940 0
K07 | 3122928 1534864 2339876 2358008 1739552 1790900 1307980 420528 1249824 1834640 0
k08 | 3556852 2215908 2675064 1517356 2437228 2152280 2003696 1081300 554748 2230036 0
k09 | 2078760 1810560 948156 2969584 1145240 812852 1489292 1840624 2312360 533456 | 0
sbox2 k00 K01 k02 k03 K04 k05 k06 k07 k08 K09 | rank
K00 | 378360 390224 407492 410336 484484 378872 481632 437464 440084 464132 0
KOl | 469856 548288 524252 465272 450668 508496 462680 508608 437640 541956 9
k02 | 468800 435480 466620 404560 353924 432800 393728 444000 423016 439316 8
K03 | 443456 473344 485852 435592 493812 460096 481816 489944 460528 508780 | O
k04 | 423336 430688 437460 435144 475948 416112 456008 421560 420200 566204 | 8
KOS | 455984 519280 482668 437920 544492 499368 490256 471232 472552 612668 6
k06 | 474200 520528 555620 526712 516564 507016 577032 517080 549112 560468 9
KO7 | 454748 467940  S06504 466508 522632 476124 450604 450596 494764 499664 0
k08 | 484332 452476 514336 466428 498192 468500 474388 485828 442956 486688 0
K09 | 456264 421584 425076 376448 439388 439312 419640 469352 447800 475236 9

Table 17: Distances and Ranks among Key Profiles for 2-round TREYFER(30K Local

Optima Profiled)
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sbox1 k00 k01 k02 k03 k04 k05 k06 k07 k08 k09 | rank
k00 | 4167576 5210920 5169812 5512496 5449888 5889280 5323720 4883940 5096752 5608548 0
k01 | 3913788 4338404 4240504 4369532 4424276 4456228 3868852 3953008 5087660 4668984 4
k02 | 4613796 4826524 4031016 5240996 3852588 4747660 4620260 4494440 5234220 5051096 1
k03 | 4797116 5396500 4885048 5651316 4975252 5086540 4946292 4890960 5555436 5566264 9
k04 | 4234448 4214536 4502452 5592576 4124864 4669720 4269512 4609116 4842736 4685556 0
kOS5 | 4290460 4277692 4495584 5138796 4352132 5380372 5290828 5023512 4220988 4954752 9
k06 | 4235664 4556584 4181684 5654520 4312640 5483968 4481024 4424516 5243840 5052164 4
k07 | 4023380 4556164 3880184 4958748 3624964 4945564 3920052 4205224 4578908 4292680 4
k08 | 4388860 4179060 4076752 4926692 4292948 4576228 4643204 4589496 4590316 5200520 6
k09 | 3652192 4761112 4324476 4771440 4836768 5417424 5158624 4584188 4964904 4936772 6
sbox2 k00 k01 k02 k03 k04 k05 k06 k07 k08 k09 | rank
kOO | 4684424 4625368 4740476 5018168 4966564 4283620 4539668 4616684 3813752 4416132 6
kO1 | 4753796 5406556 4613552 4754100 4394576 3607416 4316584 3998032 4756508 4189344 9
k02 | 4507156 4928116 5000824 4190852 4863616 4987832 4579568 4826424 5644580 4455936 8
k03 | 4254840 4269920 4651004 4752392 4637548 4188556 4342668 3870748 4207848 3955876 9
k04 | 4731732 4694340 4983744 4751676 4390344 4507488 4328760 4365184 4215756 4269224 4
k05 | 4669140 4766700 4782000 4757612 4603496 3778208 4440376 4532552 4773724 4365456 0
k06 | 4658408 4144280 4578132 4261576 4520012 4466740 3944292 4602172 4523976 3704772 1
k07 | 4724612 4588052 4995736 4719812 4572800 4224304 4805416 4979968 4829724 4942600 8
k08 | 4716968 4459904 4866236 5011200 4702028 4139244 4849028 4155884 5056808 4396772 9
k09 | 4702880 5213288 4886708 4748184 4516292 4401076 3986228 4458932 4795488 4482436 3

Table 18: Distances and Ranks among Key Profiles for 3-round TREYFER(3.0M Local
Optima Profiled)

each two bits. It is necessary to develop a more sophisticated scheme which can more
accurately present the correlations between keys.

Third, current profiles similarity scheme only considers the 1-norm distance measures.
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Chapter 5

Conclusion and Future Work

In this thesis, we concentrated on the study of construction of special Boolean functions
using heuristic methods. In the mean time, we also applied heuristic methods to break

existing ciphers. Throughout this thesis,

e We have successfully constructed several examples for (10, 2, 7, 488) Boolean func-
tions. This result affirmatively answered the open problem about the existence of

such functions.

e We constructed several examples for (8,116), (10,492), (12,2010) Boolean func-
tions by simulated annealing method. These results hit the upper bound of the non-
linearity of balanced Boolean functions based on Dobbertin’s conjecture in [16]. Al-
though such functions were already constructed in the literature, they are all con-

structed in arithmetic ways.

e We proposed methods for attempting to construct (8, 118), (10, 494), and (12,2012)
Boolean functions, which decreases the complexity of the search procedure. We
also provided mathematic formula to construct (12, 2012) functions from (10, 494)

function (if exists).
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e Some attempts were made to break symmetric ciphers including Geffe Cipher, TREYFER

cipher, and so on.

Based on the research elaborated in this thesis, further studies can be conducted in the

following directions.

e Construction of Boolean functions

- Apply different heuristic methods to attempt on constructing examples of Boolean
functions to break Dobbertin’s conjecture, for example, (12,2012), (14, 8122)

Boolean functions.

- Explore more on the mathematic background of Boolean functions. With the
increase in variable /V, using pure heuristic methods to construct becomes more
and more difficult. Sound mathematic background knowledge will help to de-
sign a better cost function. We can also construct Boolean functions first by
arithmetic construction, and then use it as the initial state of heuristic method to

achieve better solution.
- Attempt to design better cost functions.
- Experiment with larger /V, for example, N = 14, N = 16.
e Attack on ciphers
Although the methods we applied could not break strong ciphers, we may attempt to
use different and more sophisticated local optima search scheme, local optima profile

scheme, and profiles similarity scheme to employ key distinguishability and to refine

the cost functions for reconstructing the initial state of stream ciphers.

77



Bibliography

(1]

[2]

[4]

[5]

[6]

(71

Federal Information Processing Standards Publication (FIPS 197). Advanced encryp-
tion standard (aes). Nov.26,2001.

John A.Clark and Juan M.E. Tapiador. Analysis of local optima in block ciphers.
http://eprint.iacr.org/2007/.

C. Adams. Constructing symmetric ciphers using the cast design procedure. Designs,

Codes and Cryptography, 12(3):283-316, 1997.

C. Adams and S. Tavares. Generating and counting binary bent sequences. [EEE

Transactions on Information Theory, 36(5):1170~1173, 1999.

A.Dimovski and D.Gligoroski. Generating highly nonlinear boolean functions using a
genetic algorithm. Proc. IEEE 6th International Conference on Telecommunications
in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003, pages
604-607, 2003.

Paul C. van Oorschot Alfred J. Menezes and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

R. J. Anderson. Faster attack on certain stream ciphers. ELECTRONICS LETTERS,
29(15):1322-1323, 1993.

78


http://http.V/eprint

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Musbah J. Aqel, Ziad A. Algadi, and Ibraheim M. El Emary. Analysis of stream ci-
pher security algorithm. Journal of Information and Computing Science,England, UK,

2(4):288-298, 2007.

Anna Bernasconi and Bruno Codenotti. Spectral analysis of boolean functions as a

graph eigenvalue problem. IEEE Trans. Computers, 48(3):345-351, 1997.

Anna Bernasconi and Bruno Codenotti. A characterization of bent functions in thers

of strongly regular graphs. I[EEE Trans. Computers, 50(9):984-985, 1999.

C. Carlet. A construction of bent functions. Finite Fields and Applications, London

Mathmatical Society ,Lecture Series 233,Cambridge University Press.

J. Clark, J. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving boolean func-
tions satisfying multiple criteria. In INDOCRYPT 2002 in Lecture Notes in Computer
Science Springer-Verlag, 2551:246-259, 2002.

Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS °98: Pro-
ceedings of the The International Conference on Smart Card Research and Applica-

tions, pages 277-284. Springer-Verlag, 2000.

Deepak Dalai. Cryptographic properties of boolean functions and s-boxes. PHD

thesis , Katholieke Universiteit Leuven (Belgium), 2006.

Deepak Dalai. On some necessary conditions of boolean functions to resist algebraic

attacks. PHD thesis , Indian Statistical Institute (Kolkata, India), 2006.

H. Dobbertin. Construction of bent functions and balanced boolean functions with
high nonlinearity. In Fast Software Encryption (Workshop on Cryptographic Al-
gorithms, Leuven 1994 (1995), no. 1008 in Lecture Notes in Computer Science,

Springer-Verlag.

79



[17]

[18]

[19]

[20]

[21]

[23]

[24]

(25]

[26]

Ali Doganoksoy et al. Constructions of highly nonlinear balanced boolean functions.

I. Ulusal Kriptoloji Sempozyumu, 2005.

M. Gilli and P. Winker. Heuristic Optimization Methods in Econometrics. 2007.
Fred Glover and Gary A. Kochenberger. Handbook of Metaheuristics. Springer, 2003.

J.Clark, J.Jacob, S.Maitra, and P.Stanica. Almost boolean functions: The design of
boolean functions by spectral inversion. Computational Intelligence, 20:450-462,

2004.

R.A.Scholtz J.D.Olsen and L.R.Welch. Bent-function sequences. IEEE Transactions

on Information Theory, IT-28(6).

J.EDillon. Elementary hadamard difference sets. Proceedings of the Sixth South-
eastern Conference on Combinatorics , Graph Theory and Computing, F. Hoffman et

al.(Eds), Utilitas Math.

Peter Thompson Julian F. Miller. Restricted evaluation genetic algorithms with tabu
search for optimising boolean functions as multi-level and-exor networks. In Pro-

ceedings of Evolutionary Computing, AISB Workshop’1996, pages 85-101, 1996.

Robin J. Wilson. introduction to Graph Theory (second Edition). Academic Press,

1979.

Seclk Kavut and Melek D. Yucel. Generalized rotation symmetric and dihedral
symmetric boolean functions - 9 variable boolean functions with nonlinearity 242.

eprint.iacr.org/2007/308, 2007.

Selguk Kavut, Subhamoy Maitra, and Melek D. Yucel. Search for boolean functions
with excellent profiles in the rotation symmetric class. IEEE Transactions on Infor-

mation Theory, 53(5), 2007.

80


http://eprint.iacr.org/2007/308

[27]

[28]

(29]

[30]

[32]

[33]

[34]

[35]

Selguk Kavut, Melek D. Yucel, and Subhamoy Maitra. Construction of resilient func-
tions by the concatenation of boolean functions having nonintersecting walsh spectra.

BFCA’07,2007.

Khoongming KHOO and Guang GONG. New construction for balanced boolean
functions with very high nonlinearity. IEICE TRANS. FUNDAMENTALS, E90-A:29—-
35, 2007.

FJ. MacWilliams and N.J.A Sloane. The theory of error correcting codes. North-

Holland Publishing Company, Amsterdam, 1978.

S. Maitra and P. Sarkar. New directions in design of resilient boolean functions.
Advances in Cryptology - CRYPTOS00. , number 1880 in Lecture Notes in Lecture

Notes in Computer Science, pages 515-532, 2000.

Subhamoy Maitra, Sumanta Sarkar, and Deepak K. Dalai. On dihedral group invariant
boolean functions. International Workshop on Boolean Functions: Cryptography and

Applications, 2007.

Soumen Maity and Subhamoy Maitra. Minimum distance between bent and 1-
resilient boolean functions. Workshop on Fast Software Encryption, FSE 2004, Lec-
ture Notes in Computer Science, Springer, Berlin, 3017:143-160, 2004.

M. Matsui. Linear cryptanalysis method for des cipher. Advances in Cryptology -
EUROCRYPT 93 of Lecture Notes in Computer Science,Springer-Verlag, 765:386—
397, 1993.

A. Maximov. Some words on cryptanalysis of stream ciphers. PhD thesis, Lund

University, Lund, Sweden, 2006.

W. Millan, A. Clark, and E Dawson. Smart hill climbing finds better boolean func-
tions. En Workshop on Selected Areas in Cryptology (SAC97), pages 50-63, 1997.

81



[36] M. R. A. H. Teller N. C. Metropolis, A. W. Rosenbluth and E. Teller. Equation of

state calculation by fast computing machines. J. Chem. Phys., 21:1087-1092, 1953.

[37] J. Pieprzyk and C. X. Qu. Fast hashing and rotation-symmetric functions. Journal of

Universal Computer Science, 5(1):20-31, 1999.

[38] B. Preneel. Analysis and design of cryptographic hash functions. PHD thesis , Uni-
versity of Leuven, 1994.

[39] R.A.Scholtz P.V.Kumar and L.R.Welch. Generalized bent functions and their proper-
ties. J. Combinatorial theory, 40(A):90-107, 1985.

[40] R.L.McFarland. A family of difference sets in non-cyclic groups. J. Combinatorial

Theory, A 15:1-10, 1973.
[41] O. S . Rothaus. On bent functions. J. Combinatorial theory, 20(A):300-305, 1976.

[42] R.Yarlagadda and J.E.Hershey. Analysis and synthesis of bent sequences. Computers
and Digital Techniques, IEE Proceedings E, 136(2):112-123, 1989.

[43] Z. Saber, M. F. Uddin, and Amr Youssef. On the existence of (9, 3, 5, 240) resilient
functions. IEEE Transactions on Information Theory, 52:2269-2270, 2006.

[44] P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient boolean

functions. Proc. of Cypto 2000, LNCS 1880, Springer-Verlag, pages 516-533, 2000.

[45] P. Sarkar and S Maitra. Construction of nonlinear resilient boolean functions using

“small” affine functions. IEEE Transactions on Information Theory, 50(9), 2004.

[46] T. Siegenthaler. Correlation immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, 1T-30:776-780,
1984.

82



[47]

[49]

[50]

[51]

[52]

[53]

[54]

P. Stiinici and S. Maitra. Rotation symmetric boolean functions U count and cryp-
tographic properties. R.C. Bose Centenary Symposium on Discrete Mathematics and

Applications, Electronic Notes in Discrete Mathematics, Elsevier, 15:139-145, 2002.

P. Sténicd and S. Maitra. A constructive count of rotation symmetric functions. Inf.

Process. Lett., 88:299-304, 2003.

P. Sténica, S. Maitra, and J. Clark. Results on rotation symmetric bent and correlation
immune boolean functions. in Proc. Fast Software Encryption Workshop (FSE 2004),

New Delhi, India (Lecture Notes in Computer Science), 3017:161-177, 2004.

Pantelimon Stdnicd. Graph eigenvalues and walsh spectrum of boolean functions.

Electronic Journal of Combinatorial Number Theory, 7(2), 2007.

Mohammad Faisal Uddin. Artificial life techniques for cryptology. M.ASc thesis ,
Concordia University, 2006.

P.J. van Laarhoven and E.H. Aarts. Simulated Annealing: Theory and Applications

(Mathematics and Its Applications). Springer-Verlag, 1987.

G. Xiao and J. L. Massey. A spectral characterization of correlation-immune combin-

ing functions. IEEE Transactions on Information Theory, IT-34(3):569-571, 1988.

X.M.Zhang and Y.Zheng. Gac - the criterion for global avalanche characteristics
of cryptographic functions. Journal of Universal Computer Science, 1(5):316-333,
1995.

G. Yuval. Reinventing the travois: Encryption/mac in 30 rom bytes. Proc. of the 4th
International Workshop on Fast Software Encryption (FSE’97), 2(4):288-298:205—
209, 1997.

83



