
ON APPLICATIONS OF SIMULATED ANNEALING TO

CRYPTOLOGY

WEN MING LIU

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2008

© WEN MING LIU, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre refinance
ISBN: 978-0-494-63241-3
Our file Notre reference
ISBN: 978-0-494-63241-3

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

On Applications of Simulated Annealing to Cryptology

Wen Ming Liu

Boolean functions are critical building blocks of symmetric-key ciphers. In most cases, the

security of a cipher against a particular kind of attacks can be explained by the existence

of certain properties of its underpinning Boolean functions. Therefore, the design of ap

propriate functions has received significant attention from researchers for several decades.

Heuristic methods have become very powerful tools for designing such functions.

In this thesis, we apply simulated annealing methods to construct Boolean functions

with particular properties. Our results meet or exceed the best results of available the

oretical constructions and/or heuristic searches in the literature, including a 10-variable

balanced Boolean function with resiliency degree 2, algebraic degree 7, and nonlinearity

488 for the first time. This construction affirmatively answers the open problem about the

existence of such functions.

This thesis also includes results of cryptanalysis for symmetric ciphers, such as Geffe

cipher and TREYFER cipher.

Acknowledgments

I would like to appreciate lots of people who provide help for this thesis.

First of all, I would like to express my deepest gratitude to my supervisors, Dr. Amr

Youssef and Dr. Lingyu Wang, for their constant support, heartily guidance and enduring

patience during my graduate study. This thesis would not have been possible without their

help. Their attitude and enthusiasm for scientific and academic research will always be my

role model.

I also wish to express my appreciation to all the faculty and people at Concordia In

stitute for Information Systems Engineering for having such a warm and cosy working

environment. To each of my professors, I owe a great debt of gratitude for their wonderful

teaching, which has helped me in reaching this stage.

I thank my late parents for teaching me valuable lessons of life. I also thank my wife

who always keeps me away from family burdens and allows me to concentrate on my

study. Thanks (or rather apologies) also go to my little daughter who tolerated my frequent

refusals to take her on outings.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation 1

1.2 Our Contributions 3

1.3 Thesis Organization 4

2 Preliminaries 5

2.1 Heuristic Methods 5

2.1.1 Simulated Annealing 7

2.1.2 Other Methods 10

2.2 Boolean Functions 14

2.2.1 Introduction 14

2.2.2 Representation of Boolean Functions 14

2.2.3 Cryptographic Properties of Boolean Functions 20

v

2.2.4 Sub Classes of Boolean Functions 24

3 Construction of Boolean Functions 29

3.1 Motivation 29

3.2 Theorems and Lemmas 30

3.3 Construction of (10,2, 7,488) Boolean Functions 33

3.3.1 Search Algorithm 33

3.3.2 Experimental Results 38

3.4 Construction of (8, —,—, 116) Boolean Functions 39

3.5 Construction of (10, —, —,492) Boolean Functions 40

3.6 Construction of (12,—,—, 2010) Boolean Functions 43

3.6.1 Construction of (12—, — ,2008) Boolean Functions 43

3.6.2 Construction of (12, - , - , 2 0 1 0) Boolean Functions 44

3.7 Open Problem 49

3.7.1 Attempts on Constructing (8,—,—, 118) Boolean Functions 49

3.7.2 Attempts on Constructing (10, —, —,494) Boolean Functions 50

3.7.3 Attempts on Constructing (12—,—, 2012) Boolean Functions 55

3.7.4 Other Attempts on Constructing (12, —, —, 2012) Boolean Functions 58

4 Other Applications: Cryptanalysis of Symmetric Ciphers 63

4.1 Attack on Geffe Cipher 63

4.1.1 Stream Ciphers 64

4.1.2 Algorithm for Attacking on Geffe Cipher 66

vi

4.2 Attack on TREYFER Cipher 67

4.2.1 TREYFER Block Cipher 69

4.2.2 Algorithm for Attacking on TREYFER Cipher 69

4.2.3 Implementation on Attacking TREYFER 71

5 Conclusion and Future Work 76

Bibliography 78

vii

List of Figures

1 Examples of Connected Graph and Disconnected Graph 18

2 Examples of Regular Graph and Strongly Regular Graph 19

3 An Example of Cayley Graph Representation of Boolean Function 20

4 An Example of Linear Feedback Shift Register (LFSR) 65

5 Structure of Geffe Stream Cipher 66

viii

List of Tables

1 Relationship between Physical Annealing and Simulated Annealing 9

2 An Example for Boolean Function Representations 20

3 Classes Information for 4-variable RSBFs 26

4 Classes Size of RSBF 26

5 Classes Size of DSBF 28

6 Classes Information for 6-variable DSBFs 28

7 Upper Bound Nonlinearity of n-variable m-resilient Boolean Function . . . 32

8 Success Rate of Constructing /2 based on fx 37

9 Two Examples for (10,2,7,488) Functions in Hexadecimal Notation 38

10 Two Examples for (8,116) Functions in Hexadecimal Notation 40

11 Two Examples for (10,492) Functions in Hexadecimal Notation 43

12 F\, F2 Example for (12,2010) Functions (Difference Showed in Bold and Underline) 48

13 The Number of (10,492) Boolean Functions Found by 1024-time SAs on
Seed Functions 55

14 Nonlinearity Distribution of Derived Boolean Functions by Flipping Five
(12,2010) Functions 62

15 Efficiency of Attacking on Geffe Cipher 68

IX

16 Distances and Ranks among Key Profiles for 1-round TREYFER(30K Lo
cal Optima Profiled) 74

17 Distances and Ranks among Key Profiles for 2-round TREYFER(30K Lo
cal Optima Profiled) 74

18 Distances and Ranks among Key Profiles for 3-round TREYFER(3 .OM Lo
cal Optima Profiled) 75

x

Chapter 1

Introduction

1.1 Motivation

Cryptology plays a central role in today's security mechanisms. The field of cryptology

can be largely divided into cryptography and cryptanalysis [6]. Cryptography is the art

of building cryptosystems and creating secret codes, while cryptanalysis is the study of

finding weaknesses in the cryptosystems and breaking secret codes. The goals of cryp

tography include confidentiality, data integrity, authentication and nonrepudiation. Mainly

three types of cryptographic primitives are used to achieve these goals: symmetric ciphers,

public ciphers, and hash functions [14].

Boolean functions (/ : ZV, —» Z2) and s-boxes (/ : Z% —> Z™) are the main building

blocks for stream ciphers and block ciphers. The success of cryptanalytic attacks on these

symmetric primitives and the cryptographic properties of Boolean functions are strongly

connected. In fact, the security of a symmetric cipher against a particular category of at

tacks can be explained by the existence of certain properties of its building blocks. For

example, the correlation attacks [14] are related to the properties of correlation immu

nity [46] [53] and resiliency [27]; the algebraic attacks [15] are related to the property of

1

algebraic immunity [15] [14]; the linear cryptanalysis [33] is related to the property of non-

linearity [44] [35]. Therefore, the strength of its building blocks is a basic requirement of

any secure cryptosystems. Note that, different cryptosystems for different purposes may

have different requirements on their building blocks.

Due to their importance, Boolean functions have been studied for a long time. While

many problems in this area have been solved over time, novel problems constantly arise

due to ongoing developments in cryptanalysis.

To construct certain Boolean functions, we have to determine the value of each element,

either 1 or 0, so that the function will satisfy required criteria. Clearly, this is a combina

torial optimization problem. Most existing methods for constructing Boolean functions

that can satisfy multiple criteria are related to search techniques for solving problems of

combinatorial optimization. Those methods can be categorized in three classes: exhaustive

search, algebraic constructions, and heuristic techniques.

Theoretically, exhaustive search can always find the optimal functions. However, since

the complexity of constructing Boolean functions is doubly exponential in variable n, when

n is larger than 5, such method becomes computationally infeasible. For example, if we

assume that a typical computer can search 232 functions per second, then for n = 10

exhaustive search would require about 1.3 x 10291 years.

Algebraic constructions can achieve specific combinatorial properties to some extent.

However, in most cases, they tend to lead to sub-optimal results, especially for the prop

erties that have not been considered in devising the construction. Furthermore, even when

algebraic constructions can achieve the optima, the inherent algebraic structure in the con

structed Boolean function may make it comparatively vulnerable to algebraic attack.

Heuristic methods are based on enumerative methods but use extra knowledge to guide

the search. The knowledge is usually derived from the simulation of natural processes and

the understanding of the problem under consideration. Heuristics is commonly known as

2

Rules of Thumb, educated guesses, intuitive judgments, or just common sense. It is a suit

able method when the problem is fuzzy, complex, or large. When a problem presents these

characteristics, it is possible to just rely on suitable Rules of Thumb for a solution. The

purpose of heuristic methods is to identify problem solutions where time is more impor

tant than solution quality or the knowledge of quality. They can produce good results in

reasonable short runs for such problems.

In our cases, firstly, the search space is huge (22n). This is far away from the ability of

brute force. Secondly, the problem itself is uncertain. For example, researchers are trying to

break the famous conjecture given by Dobbertin [16], but the conjecture cannot be proved

or disproved so far. It is uncertain whether the examples for breaking the conjecture exist or

not. In the literature of cryptography, many interesting results have already been obtained

using heuristic methods.

In this thesis, we also address applications of heuristic methods to cryptanalysis of ci

phers. Although the approaches used to carry out attacks against ciphers can vary consider

ably in different work, they are often making use of some properties of the cipher's internal

components. It would be an attractive and revolutionary finding, if there exists a way for

attackers to execute attacks while the corresponding ciphers are treated as black-boxes.

Due to the nature of heuristic methods, it is possible to implement attacks based on such

methods without analyzing, or having minimal analysis on, the internal components of the

ciphers. If such attacks may succeed, it would be unnecessary for attackers to understand

the internal details of ciphers before they can implement attacks on such ciphers.

1.2 Our Contributions

Through our research, we focus on the study of constructing special Boolean functions

through heuristic methods. We also apply heuristic methods to break certain ciphers. More

specifically,

3

• Based on the understanding of Boolean function and heuristic method, we study dif

ferent approaches to the construction of Boolean functions. We conduct experiments

with different cost functions, different search domains, and different neighbor poli

cies to construct examples of Boolean functions with different cryptographic proper

ties, such as (10, 2, 7,488), (8,116), (10,492), and (12, 2010) functions l.

• We attempt to apply simulated annealing methods and guided search techniques to

break certain ciphers. Our objective is to find methods with which attacker can exe

cute attacks without analyzing the internal details of ciphers being attacked.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we introduce mathematic background and necessary definitions of

heuristic methods and Boolean functions.

• In Chapter 3, we apply simulated annealing methods to construct several Boolean

functions with different cryptographic properties (resilient, nonlinearity, balance).

• In Chapter 4, we apply simulated annealing methods and guided search techniques

to attack some symmetric ciphers.

• Finally, in Chapter 5, we conclude the research and give future work.

The notations for (n, m, d, NL), (n, NL) Boolean functions are defined in Section 3.1.

4

Chapter 2

Preliminaries

In this chapter, we first review heuristic methods and the simulated annealing method in

Section 2.1. We then review the cryptology problems on which we shall apply the simulated

annealing method in Section 2.2.

2.1 Heuristic Methods

Exhaustive search techniques can be used to solve search problems by trying all possible

solutions and verifying the best solutions satisfying the search requirement. However, the

time and space complexity of exhaustive searches are usually prohibitive. Therefore, such

technique has limitations on even medium-sized problems.

In order to solve large-sized combinatorial search problems in reasonable time, there

exist heuristic methods such as simulated annealing, genetic algorithm, tabu search, and

so on. Such methods provide general ways to search for good, but not always optimal,

solutions.

To use heuristic methods, the following four factors must be determined.

5

1. Formulate the problem as a guided search problem

The problem must be tranformed into a representation of the solution space and cor

responding cost function in order to measure how good a given solution is, in an

appropriate and easily computable way.

2. Determine search space

Search space refers to all the possible inputs. In some cases, in order to reduce the

search space, a subset of all possible inputs may replace the whole set as the search

space. For example, when we construct (10,2,7,488) Boolean functions, we use

rotation symmetric functions (RSBF) [43] instead of all the Boolean functions as our

search space.

3. Construct cost function

Each candidate input has a cost value calculated by cost function. The cost value can

be used to evaluate how well a candidate input matches the desired solution. The

effective cost function must maximize or else minimize the cost value of the desired

solution.

4. Define search strategy

A simple transition mechanism should be defined to move from one candidate solu

tion to the other by slightly modifying the current solution. Typical transition mech

anisms for constructing Boolean functions include flipping the output value of one

position, swapping the values of a pair of positions either in the truth table represen

tation or the Walsh transform representation of the function.

The cooperative association of the above four factors offer an excellent ability to escape

from local optima and finally reach the best solution.

Each of such techniques depends on a simple model of a real-world physical process.

In the remainder of this section, we discuss the simulated annealing method in details and

briefly introduce genetic algorithm, tabu search, and ant colony.

2.1.1 Simulated Annealing

Simulated annealing is inspired by the physical process of cooling molten materials down

to the solid state. In this process, solid will be fully heated to high temperature and then

slowly cooled down. During heating, the internal particles of solid are changed into states

of disorder and its energy increases; during slowly cooling, particles gradually become or

derly, and in each temperature achieves a balanced state, and finally, brings the material to

a low-energy, optimal state. According to Metropolis criteria [36], for particles in temper

ature t, the probability of reaching a balanced state is e~AE^kt\ wherein E is the energy

under certain temperature t, AE is the energy difference between two temperatures, and k

is a constant.

Through guided transitions generated based on the above probability distribution, the

physics can be simulated to solve combinatorial optimization problems. By simulating En

ergy E to be the objective function value costQ, and temperature t to be control parameters

T, the simulated annealing algorithm can be derived: Starting from initial possible state S

and initial control parameter T, iterate on current state by the process of "generating new

state —> calculating the difference of objective function —> accepting or abandoning this

new state", and gradually decay T value. This is repeated until the system freezes into a

steady state. At this point, the current state is the approximate optimal solution.

To use simulated annealing, the above four factors must first be determined. Further

more, similar with physical annealing, simulated annealing process and its quality are con

trolled by the cooling schedule, which can be regulated by several parameters. These pa

rameters are problem-sensitive and govern how likely a bad transition is accepted as a

function of time [52]:

7

1. Initial value of control parameter T0

This value starts high enough and is then gradually lowered. Its selection is a key

factor of the method. If it does not start high enough, the ending state will be very

close to the starting state. However, if it starts too high, the search may be trans

formed into a random search. To compare with physical annealing, in the remainder

of this section, this parameter is regarded as the temperature.

2. The number of iterations L at each temperature T

At each temperature, a certain number of iterations L are attempted before lowering

the temperature. One approach is to fix a constant number, and the other way is

to dynamically change the number of iterations at runtime. At lower temperatures,

a larger number of iterations must be done to completely explore the local optima,

while at higher temperatures, the number of iterations can be less.

3. Acceptance criteria

This is used to determine whether a transition from Scur to Snext is accepted. If the

Snext state has better cost value than Scur has, then a move to that state Snext is taken;

if not, then it is accepted with some probability. Similar with physical annealing, the

worse a move is, the less likely it is to be accepted; the lower the temperature T,

the less likely is a worsening move to be accepted. Initially, the temperature is high

and almost any move is accepted. As the temperature is decreased, it becomes more

difficult to allow worsening moves. Finally, only improving moves are accepted.

4. temperature decrement factor AT

At the end of each inner loop, the temperature is lowered, the typical way of lowering

the temperature is to multiply by a decrement factor AT in the range of (0..1). i.e.

Tnext = AT x Tcur, wherein 0.0 < AT < 1.0. It is obvious that the temperature is

an exponential decay instead of a linear decay.

8

Thermodynamic Simulation
System States
Energy
Change of State
Temperature
Frozen State

Combinatorial Optimization
Feasible Solutions
Cost
Neighboring Solutions
Control Parameter
Heuristic Solution

Table 1: Relationship between Physical Annealing and Simulated Annealing

5. Stopping criteria

The algorithm terminates when the stopping criteria are met. There are many possible

stopping criteria: A fixed number of inner loops have been executed; consecutive

inner loops are executed without a single move being accepted; the cost function

value satisfies certain requirements; the temperature is lowered enough to certain

value; a combination of above conditions.

Table 1 shows how physical annealing can be mapped to simulated annealing.

The basic simulated annealing algorithm is shown in the following pseudo code [20].

The search starts at certain initial state So. At each temperature Tcur, an iteration number

L of transition moves are tried. A candidate state Snext is randomly selected from the

neighborhood N(S) of current state S ^ which is formed based on the search strategy.

The difference of objective function S is calculated. Acceptance criterion is then used to

determine whether to accept this transition or not. At last, the algorithm terminates when

the stopping criteria are met.

Procedure: Pseudo Code for Simulated Annealing Algorithm (Minimization Cases):

!• '-'cur ~ &QJ

^ • J- cur — -* 0 >

3. calculate cost(Scur);

4. do

5. {

9

6. for (z=0; i < L; i + +)

7- {

8. select a random transition from Scur to Snext, where Snext 6 N(Scur);

9. 5 = cost(Snext) - cost(Scur);

10. if(<5<0)

1 1- '-'cur — '-'next/j

12. else if (e(~
5/Tcur"> > random(0,1))

14. }
! - } • 1-cur -^ cur ^ ^A-i »

16.}

17. while (stopping criterion is not met)

18. return (Scur);

Simulated annealing has been used for real combinatorial search problems, such as

traveling salesman problem, maximum cut problem, circuit board placement problem,

scheduling problem. It has also been successfully applied to cryptological problems, such

as component designing Boolean functions with desirable properties [20]. There exist

modified versions of simulated annealing. For example, the best state (solution) so far can

be recorded during the search process, so in the end the best state can be chosen from

the recorded states as the output. To make good use of simulated annealing method, the

construction of cost functions and the choice of cooling schedule are the key factors.

2.1.2 Other Methods

1. Genetic Algorithms (GA) - Evolutionary

This technique has been initially developed by Holland (1975). The inspiration of

10

genetic algorithms comes from evolution and natural selection. Genetic algorithms

imitate the evolutionary process of species that sexually reproduce. Thus, genetic

algorithms might be considered as the prototype of a population-based method. New

candidates are generated with a mechanism, namely, crossover (recombination).

The newly created individual, called child, can then apply a random mutation,

which means the elements are somewhat changed. If the new individual inherits good

characteristics from his parents evaluated by the cost function, it will have a higher

probability to survive [19]. The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Genetic Algorithm:

1. generate initial population P of solutions;

2. while (stopping criterion is not met) do

3. {

4. select P' C P (mating pool), initialize P" = 0 (set of children);

5. for (i=l; i < n\ i + +)

6. {

7. select individuals xa and Xb at random from P'\

8. apply crossover to xa and Xb to produce xchud',

9. randomly mutate produced child xchud',

10. P" = P" U xchild;

11. }

12. P=survive(P', P");

13.}

Genetic algorithm is applied to construct Boolean functions for a long time. Recently,

in [5], genetic algorithm combined with hill climbing are used to construct (8,114),

(10,480) and (12,1970) Boolean functions.

11

2. Tabu Search (TS) - Guided Local Search

It is inspired by search principles from artificial intelligence or "human" behavior.

This method implements the selection of the neighborhood solution in a way to avoid

cycling, i.e., visiting the same solution more than once. This is achieved by employ

ing a short term memory, known as the tabu list which contains the solutions that are

most recently visited. The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Tabu Search:

1. generate initial solution: Scur = S0;

2. initialize tabu list: T = <f>;

3. while (stopping criterion is not met) do

4. {

5. Compute: V = {Snext\Snext e N(Scur)}\T;

6. select: Snext = min(V);

I• &cur ~ ^next &fid 1 = 1 U JCur'i

8. update memory;

9. }

TS generates a random initial solution as current candidate and mantains a TABU

list. Based on each current solution, TS generates its ordering set of neighbours, the

best of which is chosen as the next candidate provided that it is not already on the

TABU list(T), whilst the current candidate is appended to the TABU list. If the best

neighbours of current candidate are already present on TABU list T, then the second

best is chosen as the next candidate, and so on. A simple way to update memory is to

use a queue, which always removes the eldest entry in the list when recording a new

entry. The stopping criterion can be defined as a given number of total iterations or a

given number of consecutive iterations without improvement for the current solution.

12

Tabu Search is usually combined with other heuristic methods to solve combinatorial

problems due to its nature of local search [23].

3. Ant Colony

This technique is first introduced by Colorni et al. in 1992. The Ant Colony op

timization algorithm is a cooperative heuristic searching algorithm inspired by the

ethological study on the behavior of ants. It imitates the way that ants search for

food and find their optimal path between their colony and the food source. This is

done by an indirect communication known as stigmergy via the chemical substance,

or pheromone, left by the ants on the paths. The intensity of the pheromone traces

depends on the quantity and quality of the food available at the source as well as

from the distance between source and colony. As an ant traverses a path, it reinforces

that path with its own pheromone. A collective autocatalytic behavior emerges as

more ants will choose the shortest trails, which in turn creates an even larger amount

of pheromone on those short trails, which makes those short trails more likely to be

chosen by future ants. Pheromone trails evaporate and once a source of food is ex

hausted the trails will disappear and the ants will start to search for other sources.

The following pseudo code shows its procedure [18].

Procedure: Pseudo Code for Ant Colony:

1. initialize pheromone trail;

2. while (stopping criterion is not met) do

3. {

4. for (all ants)

5. {

6. while (solution incomplete)

7. select next elment in solution randomly according to pheromone trail;

8. evaluate objective function and update best solution;

13

9. }

10. for (all ants)

11. update pheromone trail (more for better solutions)

12.}

Ant Colony has been applied to solve combinatorial problems for a long time. In

[51], it is used to attack some simple substitution ciphers.

2.2 Boolean Functions

2.2.1 Introduction

Boolean functions form important components in various practical cryptographic applica

tions. A proper choice of a Boolean function may significantly increase the resistance to

different kind of attacks [34]. In the following subsections, we first describe the representa

tion of Boolean functions, then introduce its fundamental definitions and its cryptographic

properties, finally end with an overview of its two cryptographic rich sub classes.

2.2.2 Representation of Boolean Functions

A Boolean function of n variables / is a mapping {0, l } n —> {0,1}. There are many means

to represent a Boolean function. Here we introduce five methods related to our research.

1. Binary Truth Table (TT):

The binary truth table of Boolean function f(x), where x = (x\, x2,..., xn), Xi e

{0, l),i = 1 , . . . ,n, is a 2™-element binary sequence, f(x) = [f(0,..., 0 ,0) , / (0 , . . . ,0,1),

/ (0 , . . . , 1,0), . . . , / (l , . . . , 1,1)]. The truth table contains 2n elements correspond

ing to all possible combinations of the n binary inputs.

14

2. Polarity Truth Table (PT):

It is defined by f(x) = (- l) / (l) = 1 - 2/(z), where f(x) € {-1,1} .

3. Algebraic Normal Form (ANF):

A Boolean function has a unique representation as a polynomial over field Z2, called

the algebraic normal form (ANF). This polynomial can be obtained by summing

up distinct products terms of xi, x2, • • •, xn, which can be written as follows. The

number of variables in the highest order product term with nonzero coefficient is

called the algebraic degree and denoted by deg(f).

n

f(Xi,...,Xn)=a0@aiXi (J) CLijXiXjQ)...Q)a123...nXlX2---Xn,

i=l l<i<j<n

where a0, au ..., a123...n e Z2.

4. Walsh Spectrum (WS):

Before this representation is described, we give some correlative fundamental defini

tions.

Affine and Linear Boolean Functions:

A Boolean function f(x) having algebraic degree at most one is called an affine

function of) e {0, l } n . Having selected w e Z 2 " a n d c e {0,1}, its
ANF representation is denoted by

LUJ(X) = C © LUX — C © UJiXi © UJ2X2 © . . . © UJnXn

where WjXj denotes the bitwise AND of the ith. bit of u> and x, and © denotes bit

wise XOR. An affine function with the constant term c = 0 is called linear func

tion [27] [20], which is correspondingly denoted by Aw(x).

15

Hamming Weight:

The Hamming weight of a Boolean function is the number of ones in its binary truth

table or equivalently the number of -l 's in the polarity truth table [35], and it is

denoted by wt(f).

Hamming Distance.

The Hamming distance between two Boolean functions / and g is the number of

position in which their truth tables differ and it is denoted by

d(f,g) = wt(f ®g) = £ x e Z»(/(a;) e g(x)).

The Hamming distance to linear functions is an important cryptographic property,

because ciphers that apply nearly linear Boolean functions are easily attacked by

various methods.

Walsh Hadamard Transform (WHT).

For a Boolean function / , the Walsh Hadamard Transform F(u) is defined by

F(u) = £ (f(x) x Lu(x)) = J2 {-l)flx)9xM. (1)

where x.u> denotes the dot product between u and x, i.e.

n

x.u! = hfi^i x uj{.

From this definition, It is clear that the value of F(u>) shows how its corresponding

Boolean function f(x) is correlated with all linear functions.

There is also another way to define the Walsh transform F'(u>) of Boolean function

/ as follows.

^V) = ^ (/ (z) x (- i n (2)

16

We call F(u) = [F(0, . . . ,0,0), F (0 , . . . ,0,1), F (0 , . . . , 1,0), . . . , F (l , . . . , 1,1)]

the Walsh Spectrum, or simply the spectrum of f(x). This is one of the most useful

representations of Boolean function since several important cryptographic properties

can be directly or easily checked by its corresponding Walsh Spectrum.

5. Cayley Graph:

We first present some definitions in terms of graph [24] and its associated Boolean

functions.

Definition 1 Cayley Graph and Cayley Set:

Let T be a group with identity element e. Suppose C is a Cayley subset of G that

is e ^ C and whenever g G C, then g~l G C. The Cayley graph G = G(T, C)

ofT with respect to C is the graph whose vertex set is T, with two vertices g and h

adjacent if gh~x G C.

(This definition is slightly modified by dropping the condition e ^ C. This general

ization is equivalent to allowing the presence of self-loops in the graph.)

Definition 2 The Spectrum of G/:

Given a graph G and its adjacency matrix A , the spectrum of G is the set of the

eigenvalues of A, which are also called eigenvalues ofG .

Definition 3 Connected Graph:

• Path is a list of vertices of a graph where each vertex has an edge from it to the

next vertex.

• A graph G in which any two vertices are connected by a path is called a con

nected graph.

17

©
(a) (b)

Figure 1: Examples of Connected Graph and Disconnected Graph

The left graph of Figure 1 is an example of Connected Graph, while the right graph

is not a connected graph.

Definition 4 Regular Graph:

• Two vertices \i and v of a graph G are said to be adjacent if there is an edge

joining them. The vertices \i and v are then said to be incident to such an edge.

Degree of a vertex \i of G is the number of edges incident to \x.

• A graph G in which every vertex has the same degree is called a regular graph,

if every vertex has degree r , the graph is called regular of degree r .

Figure 2.2(a) is a 3-regular graph, while Figure 2.2(b) is a 2-regular graph.

Definition 5 Strongly Regular Graph:

A regular graph G is strongly regular if there exist nonnegative integers e and d such

that, for all vertices //, v, the number of vertices adjacent to both /i and u, S(p,, v) is

given by

{e, if p, and v are adjacent,

d, otherwise.

18

(a) (b)

Figure 2: Examples of Regular Graph and Strongly Regular Graph

As showed in Figure 2.2(b), node 0 and 1 are adjacent and have 0 common neighbors

=>• e = 0; node 0 and 2 are not adjacent and have 2 common neighbors => d = 2.

Definition 6 the Graph Gf Associated to Boolean function f:

Let f : Z% —> Z2, we can associate f to the Cayley graph Gf = G(Z%, flf) of Z%

with respect to the set Vtf = {ui G ZV^\f{uS) = 1}.

• The vertex set V(f) ofGf is equal to Z%.

• The edge set Ef is defined as:

Ef = {(fjL,u) e Zl x Z J | / z © i / e f t / }

• The adjacency matrix Aj of such a graph is defined as {Af)ij = f(b(i) © b(j))

where b(i) G Z^ is the binary expansion of the integer i.

In [9] [10] [50], it was shown that the spectrum of the Cayley Graph Gf coincides

with the Walsh spectrum F'(u>) of its associated Boolean function / . It was also

19

proved that the Boolean bent functions can be exactly distinguished by a special

class of strongly regular graphs. However, in the literature, only bent functions are

identified by special Cayley graph.

An example of n = 3 Boolean function is showed in different representations as fol

lows.

binary truth table: f(x) = [0 1 1 1 0 0 1 0]
polarity truth table: f(x) = [1 -1 -1 -111-11]
Algebraic Normal Form: f(xi,x2,x3) = x\ ©x2 © x-[X2 © x\x^
Walsh Spectrum 1: F(w) = [0 0 4 4 - 4 4 0 0]
Walsh Spectrum 2: F'{u) = [4 0 - 2 - 2 2 - 2 0 0]
its Cayley Graph: is shown in Figure 3

Table 2: An Example for Boolean Function Representations

Figure 3: An Example of Cayley Graph Representation of Boolean Function

2.2.3 Cryptographic Properties of Boolean Functions

When used in cryptographic systems, Boolean functions should satisfy several crypto

graphic properties such as balance, high nonlinearity, resiliency, and high algebraic degree.

20

In this subsection, we introduce those properties.

Balance When a Boolean function has the same number of zeros and ones in its truth

table, this function is called balanced. A function is balanced if and only if its Walsh

transform satisfies F(0) = 0.

Correlation Immunity (CI) The correlation immunity of a Boolean function is to mea

sure the degree of which its outputs are uncorrelated with some subset of its inputs.

Specifically, a Boolean function is said to be correlation immune of order m if the

distribution probability of its output is unaltered when any m bits of its input are fixed

[46]. A function is m-th order correlation immune if and only if its Walsh transform

satisfies F{u) = 0; for all u with 1 < wt(u) < m [46] [53].

Resiliency A Boolean function is said to be resilient of order m if it is correlation immune

of order m and it is balanced. Let res(f) denote the resiliency degree of f(x). Then

res(f) = m •&• F(w) = 0, for 0 < wt(w) < m

Nonlinearity(NL) The nonlinearity of an n — variable Boolean function f(x) is defined

as the minimum hamming distance between f(x) and the set of all n — variable

affine functions [44] [27]. i.e.

nl(f)= min (d(f,g)),
ge A(n)

Complementing the binary truth table of a Boolean function will not change its non-

linearity, so only the 2n number of linear functions instead of 2n + 1 affine functions

are to be considered. In terms of Walsh spectrum, the nonlinearirty of function / is

given as follows:

nl(f) = 2n-1 - - max \F(u)\.

21

Autocorrelation(AC) The autocorrelation transformation of a Boolean function / is given

by

rf(s) = ^ fix) f{x ®s) = J2{-l)f{x)(Bf{x9s).
X X

where s £ Z%. The maximum absolute value excluding the value at the origin (equal

to 2n) in the autocorrelation spectra of / is also known as the absolute indicator [54]

and denoted as

CAC = max \rf(s)\.
seZ%As^(0,0,...,0)

The lower value of CAC> the better. Maximal values are serious weakness called

the linear structure. Bent functions have the minimal aucorrelation, therefore, they

optimize this property [38].

There are some other cryptographic criteria for Boolean functions, such as Complete

ness, Output Bit Independence Criterion (BIC), Strict Avalanche Criterion (SAC), Higher

Order SAC, Propagation Criterion (PC), and so on. Since these criteria are not considered

in our research, their discussions are omitted here.

Balanced functions, with high nonlinearity, high algebraic degree, high order of cor

relation immunity, and low autocorrelation, are typically preferred in the cryptographic

literature. However, from the definitions above, some of these properties are in conflict.

For example, bent functions (will be introduced shortly) achieve the maximum possible

nonlinearity (such functions minimize the maximum magnitude of Walsh values) but are

unbalanced. If we require a function to be balanced (F(0) = 0), then some other F(u>) must

have absolute values greater than 2i based on Parseval's theorem given in Theorem 2. This

will respectively decrease its nonlinearity. The other example is that increasing order of

correlation immunity can never result in an increase in achievable nonlinearity. The con

flict means that tradeoffs have to be made when we construct Boolean functions [20].

22

In the remainder of this subsection, bent functions will be elaborated. Bent function is

an important class of Boolean functions. It was defined and first analyzed by Rothaus [41].

He showed that binary bent functions exist only when the dimension n of the vector space

Z% is even. Several properties of bent functions were noted by Rothaus and two large

classes of bent functions were also presented in his paper. Other properties, constructions,

and equivalence bounds for bent functions can be found in [4,11,21,42]. Kumer, Scholtz

and Welch [39] defined and studied bent functions over GF(p). Bent functions have been

the subject of great interest in several areas including cryptography. In fact, the Canadian

government block cipher standard (CAST [3]) is designed based on these functions. A

Boolean function / is called bent if all the Walsh transform coefficients have the same

absolute value, i.e., |-F(w)| is constant for all u> e Z%. Based on Parseval's theorem (2), /

is a bent function if and only if |F(u;)| = 2t for all ui, to satisfy |F(w)| to be an integer, n

should be even. The bent function holds the following properties.

• Bent function achieves the maximum possible nonlinearity. The nonlinearity of any

bent function is given by

NL = (2n~1 - 2*"1)

• Bent function is never balanced. However, when n is large enough, it becomes sta

tistically indistinguishable from balanced functions.

• The order (algebraic degree) of bent function is at least 2 and not more than | . Bent

functions of higher algebraic degree are preferred for cryptographic purposes.

• All the bent functions have zero autocorrelation for all non-zero sin Z^.

Bent function can be constructed in mathematic ways. These include, but are not lim

ited to, Rothaus' construction [41], Maiorana-McFarland's construction [40], Yarlagadda

and Hershey's construction [42], Dillon's construction [22]. For example, Maiorana-

McFarland constructed bent functions by concatenating affine functions as follows.

23

f(x,y) = x • (p{y) + g{y),

where x,yeZ$,<l>: z | -> z | , <? : z | - • Z2,

Then, / is bent «=> 4> is a permutation.

Even though there are many algebraic ways to construct bent functions, it cannot be ex

hausted so far. There are some constructions based on heuristic methods in the literature.

In our experiments, 10 — variable bent functions are also successfully constructed by sim

ulated annealing.

2.2.4 Sub Classes of Boolean Functions

A variety of desirable criteria for Boolean functions with cryptographic application have

been identified: balancedness, high nonlinearity, correlation immunity, high algebraic de

gree, and so on. It is difficult to construct an appropriate Boolean function which satisfies

tradeoff requirement between these criteria from the whole set of possible Boolean func

tions, since the search space is very huge. Thus a natural idea is to decrease the search

space by considering certain sub classes. Certain sub classes with high density of good

properties have received a lot of attention in Boolean function literature [12,26,47]. Here

two such sub classes of functions (RSBF, DSBF) are mentioned.

1. Rotation Symmetric Boolean Functions (RSBF) Let Xj G Z2, 1 < i < n. For

1 < k < n, we define

xi+k ifi + k<n,
Pnfa) = \

xi+k^n ifi + k>n.

24

The definition of pk
n can be extended to n-tuples as

Pnfal, X2,"- , %n) = (pn(xl)> Pnfa), ' ' ' > Pn(xn))-

Definition 7 A Boolean function f is called rotation symmetric (RSBF) if for each input

(aii,--- ,xn) E Z%, f(pfr(xi,x2,--- ,xn)) = f(xu--- ,xn)forl < k < n.

RSBFs were first introduced in cryptography by Pieprzyk and Qu [37] in the context of

efficient hash function design. The number of n-bits RSBFs is given by 29n where

sn = -y>(fc)2*,
n t—-'

k\n

where </>(•) denotes the Euler'sphi — function [48]. It can easily be checked that g

[47]. Since 29n « 22", the number of n-variable RSBFs is much smaller than the total

space of Boolean functions. On the other hand, the set of RSBFs proved to be a very rich

structure full of functions with several interesting cryptographic properties [26,49].

Note that for n-variable Boolean functions, there are 2n different possible inputs. From

the above definition, it is obvious that for RSBFs, the function / has same value for each

of the classes generated from the rotational symmetry. An orbit is completely determined

by its representative element AH)i, which is lexicographically the first element belonging

to the z-th orbit. The rotation-symmetric truth table (RSTT) is defined as the <?n-bit string

[/(An,o), /(An,i), • • •, /(A„,Sn_i)] [26]. For example, for n = 4, the classes information is

shown in Table 3. There are 6 different classes which partition the 24 = 16 input patterns.

So there are 26 RSBFs on 4 variables.

In [26], it has been shown that many functions in this class are rich in terms of good

cryptographic properties. Furthermore, the RSBF class is much smaller (gn ~ 2 n) com

paring to the space of n-variable Boolean functions (22") and, hence search techniques can

be more efficient. Table 4 shows the RSBF class size for certain ns. n = 9 RSBFs are used

25

class no. inputs
1 {0,0,0,0},
2 {0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0},
3 {0,0,1,1},{0,1,1,0},{1,1,0,0},{1,0,0,1},
4 {0,1,0,1},{1,0,1,0},
5 {0,1,1,1},{1,1,1,0},{1,1,0,1},{1,1,0,1},
6 {1,1,1,1}.

Table 3: Classes Information for 4-variable RSBFs

to concatenate to construct (10,2, 7,488) Boolean functions in our experiments.

n
9n

n
9n

1
2

2
3

11
188

3
4

4
6

12
352

5
8

6
14

13
632

7
20
14

1182

8
36

9
60

15
2192

10
108
16

4116

Table 4: Classes Size of RSBF

2. Dihedral Symmetric Boolean Functions (DSBF) Rotational symmetric class con

tains many good functions, but it is infeasible to search if n > 10 due to its space complex

ity. The literature tries to study some other classes with smaller size and denser functions

with good properties. The class of Dihedral Symmetric Boolean functions(DSBFs) is a

subclass of RSBFs [25,31].

Before addressing DSBFs, some group theory concepts are needed.

Definition 8 Symmetric group, Rotation (cyclic) group, Dihedral group

Symmetric group is a group of all permutations and denoted as Sn where n is the number

of elements. This concept is used to construct Symmetric functions.

Rotation (cyclic) group is a group of all cyclic shift permutations and denoted as Cn.

This permutation is elaborated above, and the concept is used to construct RSBFs.

26

Dihedral group is a Group of cyclic shift and reflection permutations and denoted as Dn

which, besides the cyclic shift Cn, includes a reflection operator rn(xi,X2, • • • ,xn) =

(xn, • • • , x2>
 xi)- This concept is used to construct DSBFs.

Obviously, Sn C Dn C Cn. In addition,

Definition 9 Group action, Boolean function invariant

Group action The group action of a group G on a set X is a mapping ^ : G x I - » I

denoted as g.x, which satisfies the following two actions.

(gti) • x = g • (h • x), for all g,h E G and for all i 6 l .

e • x = x, for every x € X, e is the identity element of G.

Boolean function invariant under Group Action Let G acts on X. A Boolean function

f is said to be invariant under the action ofG, if f(g • x) = f(x), for all g G G and

for all x £ X. That is, f(x) is same for all x in each class.

Based on above concepts, correspondingly, Boolean functions invariant under the action

of Sn is called Symmetric Boolean function; Boolean functions invariant under the action

of Cn is called Rotational Symmetric Boolean function(RSBF); and Boolean functions

invariant under the action of Dn is called Dihedral Symmetric Boolean function(DSBF).

Table 5 shows the DSBF class size for certain ns. N = 10 DSBFs will be the search

space during constructing (10,492) Boolean functions in our experiments. The larger the

variable n is, the bigger the difference of the number of classes between RSBF and DSBF

is. The example in Table 3 also shows the class information of the n = 4 DSBFs, since its

reflection permutations is a subset of its cyclic shift permutations. Another example, for

n = 5, the classes information is shown in Table 6.

There are 13 different classes partitioning the 26 = 64 input patterns, which have 226 =

264 different functions, so there are 213 DSBFs on 6 variables. Note that, 6 variable RSBFs

27

n
dn

n
dn

1
2

2
3

11
126

3
4

4
6

12
224

5
8

6
13

13
380

7
18

14
687

8
30

9
46

15
1224

10
78
16

2250

Table 5: Classes Size of DSBF

class no.

1
2
3
4
5
6
7

8
9
10
11
12
13

inputs
{0,0,0,0,0,0}
{0,0,0,0,0,1}
{0,0,0,0,1,1}
{0,0,0,1,0,1}

{0,0,0,1,1,1}
{0,0,1,0,0,1}
{0,0,1,0,1,1}

{1,1,0,1,0,0}
{0,0,1,1,1,1}
{0,1,0,1,0,1}
{0,1,0,1,1,1}

{0,1,1,0,1,1}
{0,1,1,1,1,1}

{1,1,1,1,1,1}

,{0,0,0,0,1,0},
,{0,0,0,1,1,0},
,{0,0,1,0,1,0},
,{0,0,1,1,1,0},
,{0,1,0,0,1,0},
,{0,1,0,1,1,0},
,{0,1,1,0,1,0},
,{0,1,1,1,1,0},

,{1,0,1,0,1,0},
,{1,0,1,1,1,0},
,{1,1,0,1,1,0},

,{1,1,1,1,1,0},

{0,0,0,1,0,0}, {0,0,1,0,0,0}, {0,1,0,0,0,0}, {1,0,0,0,0,0},
{0,0,1,1,0,0},{0,1,1,0,0,0},{1,1,0,0,0,0}, {1,0,0,0,0,1},
{0,1,0,1,0,0},{1,0,1,0,0,0},{0,1,0,0,0,1},{1,0,0,0,1,0},
{0,1,1,1,0,0},{1,1,1,0,0,0},{1,1,0,0,0,1},{1,0,0,0,1,1},
{1,0,0,1,0,0},
{1,0,1,1,0,0},{0,1,1,0,0,1},{1,1,0,0,1,0},{1,0,0,1,0,1},
{0,0,1,1,0,1},{1,0,0,1,1,0},{0,1,0,0,1,1},{1,0,1,0,0,1},
{1,1,1,1,0,0},{1,1,1,0,0,1},{1,1,0,0,1,1},{1,0,0,1,1,1},

{0,1,1,1,0,1},{1,1,1,0,1,0},{1,1,0,1,0,1},{1,0,1,0,1,1},
{1,0,1,1,0,1},
{1,1,1,1,0,1},{1,1,1,0,1,1},{1,1,0,1,1,1},{1,0,1,1,1,1},

Table 6: Classes Information for 6-variable DSBFs

have one more class than 6 variable DSBFs. The only difference is that the class 7 in

DSBFs is split into two classes in RSBFs. In Table 6, first line of class 7 is one class in

RSBF, while its reflector (second line of class 7) is another class in RSBF.

28

Chapter 3

Construction of Boolean Functions

There are mainly two approaches for constructing Boolean functions. Algebraic techniques

[17,28,32] construct functions based on certain mathematical results. On the other hand,

heuristic methods search for local optimal solutions within a prespecified search space. In

this thesis, a combination of the above two techniques is used to reduce the search space

of heuristic techniques which allow us to achieve some results that have not been achieved

previously by any of the above techniques when used separately.

3.1 Motivation

Boolean functions are among the most important elements of various cryptographic algo

rithms. Many work exist on constructing Boolean functions with special properties. In par

ticular, resilient functions [45] are an important class of Boolean functions. These functions

play a central role in several cryptographic applications, especially stream cipher design.

When used in a stream cipher as a combining function for linear feedback shift registers, a

Boolean function with low-order resiliency is more susceptible to a correlation attack than a

function with resiliency of high order. Let (n, m, d, NL) denote an n-variable, m-resilient

Boolean function with algebraic normal form degree d and nonlinearity NL. Further, by

29

[n, m, d, NL], we denote unbalanced n-variable, m-th order correlation immune function

with algebraic normal form degree d and nonlinearity NL. Any component is replaced by

'-' if we do not specify it. e.g., (n, —, —, NL) if we do not wish to specify resiliency order

and the algebraic degree. For simplicity, we use (n, NL) to present the above function

if no ambiguity is possible. The existence of (10, 2, 7,488) functions had been an open

problem [45] until this work.

A basic criterion for the construction of Boolean functions is nonlinearity. The sig

nificance of this criterion has always been emphasized due to the development of linear

cryptanalysis. Dobbertin conjectured in [16] that the nonlinearity of balanced Boolean

functions defined on GF(2)n cannot exceed 2 n _ 1 — 2? + Ng, where Ne denotes the maxi

mum achievable nonlinearity of a balanced Boolean function 9 defined on GF(2)%. Based

on his conjecture, the upper bound nonlinearity of balanced Boolean functions for iV =

8, TV = 10 and N = 12 are 116,492, and 2010, respectively. Some work exist on

the constructions of such Boolean functions by arithmetic ways. However, to our best

knowledge there is no work on constructions by heuristic methods. Furthermore, there

is no known result on breaking this conjecture. In this thesis, we construct examples of

(8,116),(10,492),(12, 2010) Boolean functions by heuristic methods. Our onging work

apply other methods to construct examples of Boolean functions as an attempt to break the

Dobberin's conjecture.

3.2 Theorems and Lemmas

The following theorems and lemmata will be used in our construction.

Theorem 1 (Walsh Summation [20]) This states that the absolute value of the sum of the

Walsh-Hadamard Transform (WHT) values is the same constant for every Boolean func

tion:

30

E . G z ? (^)) = 2 " x / (0) = ±2"

Theorem 2 (Parseval's Theorem [29]) This states that the sum of the squares of the Walsh-

Hadamard Transform (WHT) values is the same constant for every Boolean function:

From this theorem, we can know that a tradeoff exists in minimizing correlation to

affine functions. When a Boolean function is altered to reduce its correlation to some affine

functions, the correlation to some other affine functions will be increased.

Lemma 1 If n > 3 and m < n — 3, then the Walsh values of an m-th order resilient

function f(x) on n variables must satisfy [30]:

res(f) = m => \F(u)\ = 0mod2m+2.

Using Lemma 1, we can obtain the upper bound nonlinearity of a n-variable, m-resilient

function represented by the following Theorem 3.

Theorem 3 (Nonlinearity [30]) Upper bound nonlinearity of n-variable m-resilient Boolean

function:

1) Ifn is even andm + \ > \ - l.then NL(n, m) < 2n~l - 2m+1 .

2) Ifn is even andm + \ < \ - ljhen NL(n, m) < 2n~l - 2? _ 1 - 2m+1 .

3) Ifn is odd and 2m+1 > 2""1 - 'NL{n),then NL(n, m) < 2n~1 - 2m+l.

4) Ifn is odd and 2m + 1 < 2""1 - NL(n),then NL(n, m) is the highest multiple of2n"1

which is < NL{n).

where, NL(n) is the maximum possible nonlinearity of an n-variable function.

From Theorem 3, we can get the corresponding upbound nonlinearity as in Table 7.

By Lemma 1, together with the condition of nonlinearity (see Section 2.2.3), possible

Walsh values can be determined for resilient functions. For example, the Walsh values for

31

n\m
5
6
7
8
9
10

0
12
26
56
118
244
494

1
12
24
56
116
244
492

2
8
24
56
112
240
488

3
0
16
48
112
240
480

4

0
32
96
224
480

5

0
64
192
448

6

0
128
384

7

0
256

8

0

Table 7: Upper Bound Nonlinearity of n-variable m-resilient Boolean Function

(7,2,4,56) must be 0, +16 or —16, since a Walsh value of 32 or above will reduce the

nonlinearity to 48 = | (2 7 - 32) or less; similarly, the Walsh values for (10, 2, 7,488), if

such functions exist, must be 0,±16,±32 or ±48. Furthermore, considering Theorem 1,

when n = 7, the distribution of these Walsh values can be determined. For example, for

(7,2, 4, 56), the Walsh spectrum must contain 36 many +16s, 28 many —16s and 64 many

Os or contain 36 many —16s, 28 many +16s and 64 many 0s. Unfortunately, when n is

larger than 7, the available Walsh spectrum results do not allow us to specify the distribution

of the Walsh spectrum for function / .

Lemma 2 Let f : Z^ —> Z2 be the function obtained from, the concatenation of fi and f2,

fi : Z^"1 —> Z2 and their corresponding Walsh transforms are Fx,F2, i.e., f = [/1I/2].

Then the Walsh transform F of f is given by

F = [Fi + F2\F1 - F2).

Lemma 3 Let f : ZV^ —» Z2 be the function obtained from the concatenation of fi and f2,

fi : Zrl - Z2, i.e., f = \h\f2}. Then

res(f) = m => res(fi) > m — 1, % — 1, 2.

Note that Lemma 3 is a sufficient condition instead of necessary and sufficient condi

tion. It means that, if res(fi) = m — 1 (i = 1,2) is the only condition we have, we can just

32

ascertain that res(f) > m — 1, but we cannot determine whether res(f) = m. However,

based on Lemma 2, an additional limitation can be applied on m — 1-resilient functions / i

and f2 in order to achieve their concatenation to be m-resilient.

Definition 10 Let f : Z£ —• Z2 be an — variable Boolean function and its corresponding

Walsh transform is F. Then we denote f = 1 © / , and its Walsh transform is F. Obviously,

F = -F.

Definition 11 Since the relationship between nonlinearity and the maximum absolute Walsh

transform value is fixed, we denote the latter as W Hmax{f) for Boolean function f.

Lemma 4 Let f : Z2 —» Z2 be the function obtained from the concatenation of f\, f2, f3

and fa, f : Z%~2 —> Z2 and their corresponding Walsh transforms are F\, F2, F3 and F4,

i.e., f = [/11/21/3l/i]- Then the Walsh transform F of f is given by

F=[F1 + F2 + F3 + F4|Fi - F2 + F3 - F4|Fi + F2 - F3 - F4 |F : - F2 - F3 + FA].

Lemma 5 Based on [35], small changes to a truth table result in small-magnitude change

to its Walsh transform values. In particular, each F(u) will be altered by ±2 by flipping a

single bit in the truth table, while each F(u) will be altered by 4, 0 or —4 by flipping two

bits in the truth table.

3.3 Construction of (10,2,7,488) Boolean Functions

3.3.1 Search Algorithm

Different optimization heuristics have been used to construct examples for Boolean func

tions with desirable cryptographic properties (e.g., [20,26,43]).

Before starting the search, one has to decide whether the search is performed in the

Walsh spectrum domain (frequency domain) using the spectral inversion technique [20,43]

33

or in the truth table domain (time domain). In our case, using spectral inversion does not

present an attractive option. In particular, while we know that for a (10, 2, 7, 488) function,

F(w) satisfies

0 i fwi(w)<2,

I ^ M I = S < 4 8 ttwt(w)>2, (3)

0 mod 16 for all cu,

these constraints do not allow us to specify the possible distributions of F.

On the other hand, using the truth table domain, for n > 9, direct application of these

heuristic techniques becomes ineffective because of the super-exponential increase (22n) in

the search space. Even if the search space is constrained to the set of RSBFs, the search

space for n = 10 is still relatively large (29w = 2108). Our direct search for (10,2,7,488)

Boolean function (or RSBF) proved to be not successful because of the huge search space.

Our main observation is that the search space can be reduced dramatically by noting that

a (10,2, 7,488) function, / , may be constructed by concatenating two RSBFs / i : Z\ —> Z2

and f2:Z%—> Z2 that satisfy the following constraints:

0 if wt(u) < 1,

| F 4 M I = < < 2 4 if wt(u) = 2, (4)

< 48 if wt(u)> 2,

where i = 1,2. The first constraint in Equation 4 follows from Lemma 3 which specifies

that res(fi) > 1. The second constraint follows from Lemma 2 and the nonlinearity of / .

The third constraint also follows from the nonlinearity of / . This observation reduced the

search space roughly from 2910 = 2108 to 2" = 260. It is worth noting that our search with

the restriction that res(fi) = 2 for i = 1, 2, while theoretically possible, did not yield any

34

useful results. Let (T0,a, MIL) denote the (initial temperature, cooling factor, maximum

number of internal iterations) parameters of the SA algorithm [20]. Throughout our search

for (10,2,7,488) Boolean function, we set T0 = 10,000, a = 0.98, and MIL = 1000. The

SA search terminates when T < 1 or a Boolean function that satisfies certain constraint is

constructed. The search procedure can be summarized as follows.

1. Construction of the first half (/i : Z\ —> Z2)

To construct / i , we represent the Boolean function in Polarity Truth Table (PT), and obtain

neighbors in the search space by swapping two different RSBF classes and their corre

sponding two groups of bits. We calculate the related cost function of each Boolean func

tion in search space by transforming it to frequency domain, i.e. Walsh Spectrum (WS) and

penalizing bit by bit.

Search Space 9-bit RSBF function / i that satisfies the following conditions:

• It meets the constraints in Equation 4

• It is balanced, i.e. F\ (0) = 0

Cost Function During this stage, the following cost function is used:

cost{h)= Y, lF l^!2

u;|u>£(w)<l

+ E \F^\2

u)\u)t(<J)=2,
|Fi(w)|g{8,16,24}

+ max|Fi(w) - 3 2 | 2 , (5)

where u G Z\.

35

Note that, for the second term of the cost function above, we do not penalize the

Walsh coefficients that confirm to the divisibility requirements (see Lemma 1). The

reason we do penalizing in this way is based on the following fact.

From Lemma 2, we have F = [Fx+F2 \ Fx — F2]. We can thus conclude that if both Fx

and F2 are m-resilient Boolean functions, then their concatenation BF is m-resilient.

Furthermore, F(u>) = 0 holds, when 2 n _ 1 < u> < 2" and wt(u>) = m + 1. This

implies if we force both fx and /2 to be m-resilient, their concatenation / will always

have some bits satisfying F(UJ) = 0, which is not necessory for achieving / to be

m-resilient. Based on Theorem 2, this will lead to some other bits with higher WHT

value, thus decrease the nonlinearity. Hence, we relax the constraint on these bits by

allowing their WHT values to be ±8, ±16, ±24. Moreover, when constructing /2, we

limit the WHT value of the corresponding bit to be its opposite. Our experimental

results show that this strategy performs better than the case where this term of the

cost function penalizes the Walsh coefficients. In summary, for all elements having

the hamming-distance equal to 2, the limit for the corresponding Walsh value can be

relaxed but should satisfy the condition for concatenation in further step.

Search Strategy In this stage, we limit the initial state to be balanced. Based on the RSBF

classes information for n = 9, there are totally 60 classes in which two of them

have one element; two have three elements; the other 56 classes have nine elements.

For such a distribution, we can easily assign values to each class to keep the corre

sponding Boolean function balanced. Also, during transitions among search space,

we keep the balanced property of Boolean functions by swapping two classes with

the same number of elements and with opposite values. In this way, we can further

reduce the search space from 2 " = 260 to g) x Q x Q « 2548.

From our experiments, we succeed in constructing such Boolean functions in 4096

out of 4096 runs of simulated annealing.

36

trial no.
1
2
3
4
5
6
7
8
9
10

found-at-itt
259
120
1968
not found
934
691
82,86,306
not found
not found
1784

Table 8: Success Rate of Constructing f2 based on fi

2. Construction of the second half (/2 : Z\ —> Z2)

Once / i is found, we use simulated annealing methods to find another RSBF (N = 9),

which will satisfy the requirement of Boolean function (10, 2, —, 488) when concatenating

with the RSBF obtained from the first step. The search space and search strategy remain

the same as the above. The main difference is to minimize its cost function in the following

way.

cost(f2)=] T |F2(u,)|2

uj\wt(uj)<l

+ J2 \Fi(u) + F2{to)\2

u>\wt(u})=2,

+ (max(|F1(o»)| + \F2{u)\) - 32)2, (6)

where w G Z\.

Note that, for the second term of the cost function above, we only penalize \F\{uS) +

F2(u>)| and but do not penalize \Fi(u)—F2(u)\. This is because by Lemma 2, F\(u)—F2{u)

is for the bit whose hamming weight equals to 3.

37

162D
5DB2
63E7
9B16
125C
38EB
4E80
A0 9F
68C5
B893
8B81
1168
EDB3
C9CE
B5C6
7A87

5CB7
75B0
8B1C
4059
62A0
DD73
E9DF
5D86
E023
875F
964A
7EDB
DA1E
09D5
EOBD
4803

62E5
CCF5
3A22
EE34
7C49
2E62
B3F3
9F04
E914
077E
957E
B762
F688
B315
10C2
47F2

8B7A
0D2C
9B41
C8BD
D955
816A
6A1E
5AE1
184E
6E70
73EF
3E08
47F9
8434
A227
DE95

2D4C
B102
F4F4
568D
6FA5
CB2 9
4 9FD
07F2
E993
067B
453F
58ED
AB2 8
7921
9A1F
C381

AC2 6
F4AE
AF32
A687
7587
B03C
2818
72C9
1774
D572
3EAC
7860
D084
1DB8
5726
BCE7

C1CF
IAD 9
50E2
E323
B6C6
1D5A
9146
3CC9
1785
2E64
2DFC
CBC8
642E
98ED
D174
916B

3A8 9
D583
4DF1
915F
2376
6A6 9
7C89
6997
74FD
BAA2
2A40
9849
AE97
872B
4B31
5 9DE

Table 9: Two Examples for (10,2,7,488) Functions in Hexadecimal Notation

Based on ten many fis, we test how often and how many /2s can be constructed. The

success rate to construct /2 within 4096 rounds of simulated annealing is around 70% (see

Table 8). From the table, we can know that not all Boolean functions / is have their cor

responding /2s satisfying that the concatenation is m-resilient, and at the same time some

may have more than one such candidates.

3. Test if / = [/1I/2] is a (10,2, 7,488) function. This is necessary since it is not guar

anteed that a solution exists for every fx with the above constraints. If the SA search for / 2

fails for a predetermined number of steps, then we go to step 1 and find another fa.

3.3.2 Experimental Results

Table 9 shows, in hexadecimal notation, two examples for (10,2,7,488) functions con

structed by our search. When terminated successfully, the search process required about 1

hour on a Dell Dimension XPS Gen 4 PC with 3.4 GHz Pentium 4 CPU and 1 GB RAM.

38

3.4 Construction of (8, —, —, 116) Boolean Functions

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos

sible Walsh values for (8,116) Boolean functions are {0, ±4, ±8, ±12, ±16, ±20}.

This result does not allow us to specify the distribution of its spectrum. Furthermore,

the number of classes for TV = 8 RSBFs and DSBFs is respectively 36 and 30. The

problems in search space with such complexity are easier to solve with exhaustive

search and mostly likely these have already been addressed in the literature. Hence,

the search space is relaxed to any TV = 8 Boolean functions in our experiment. We

also allow the initial state to be any random functions.

Neighbour policy The neighbor of current state is determined by flipping any two of its

output bits. The balanced property is ignored during the neighbor selection, and

instead it is determined by checking whether the solutions have element u with

F{u) = 0. This allows the non-balanced candidates to be transition state.

Cost function The following cost function is used:

cost(f)= Yl ((F(oj))2-20y (7)
|F(u/)|>24

where u £ Z\.

Since the only conditions for (n, TVL) are nonlinearity and balanced, the cost func

tion only penalizes the elements whose Walsh transform values exceed certain value,

and the balance property is not penalized here. The only additional condition for

accepting the current local optimization is that the summation of maximum and min

imum absolute Walsh values cannot exceed the target WHmax(f) (here is 24). i.e.

max^j |F(a;i)| + minW2 |F(u;2)| < 24. The reason is that whenever the above con

dition is satisfied, the local solution can always be transformed to be balanced with

39

EB85 6336 465E B226 3F80 5FA3 E343 40B1
F35B F7B9 4A96 B661 C92D 44D5 305C 9F57
CB8F BC20 2628 3DCA 0751 71B4 17A3 2F80
1224 1DE5 5822 650C 7A55 94B6 AEED 7441

Table 10: Two Examples for (8,116) Functions in Hexadecimal Notation

WHmax{f) < 24.

Related parameters Here we set parameters (T0,a, MIL) of the SA algorithm to be

(20,000,0.98,8192).

Experimental results From our experiments, we succeed in constructing (8,116) Boolean

functions in 1000 out of 1000 runs of simulated annealing. All of them are bal

anced or can be transformed to be balanced by linear transformation. Note that if the

neighbor were obtained by flipping one of its output bit, many of such Boolean func

tions would also be found, although the success rate would not be 100%. Table 10

shows, in hexadecimal notation, two examples for (8,116) functions constructed by

our search.

3.5 Construction of (10, —, —,492) Boolean Functions

Search space By lemma 1 together with the condition of nonlinearity (see 2.2.3), the pos

sible Walsh values for (10,492) Boolean functions have 21 many different choices.

This result does not allow us to specify the distribution of its spectrum. Furthermore,

the search space for N = 10 general functions and RSBFs is respectively 21024 and

2108. Heuristic methods cannot work efficiently on such large size problems. Hence,

the search space in our experiments is determined to be N — 10 DSBFs.

Based on the DSBF classes information for n = 10, there are totally 78 classes in

40

which two of them have one element, one have two elements, six have five elements,

39 have ten elements and the other 30 classes have 20 elements. For such a distribu

tion, we can assign values to each class to keep the corresponding Boolean function

be balanced. Once there exists F(UJ) = 0 in the Walsh spectrum, we can transform it

to be balanced by linear transformation. Therefore, to be more generalized, we only

limit the initial state to be balanced, while we ignore the balance property during

transition among search space.

Neighbor policy The neighbor of current state is determined by flipping any one of its

classes and its corresponding bits. The balanced property is ignored during the

neighbor selection, and instead it is determined by checking whether the solutions

have element u with F(u>) = 0.

Cost function The following cost function is used:

cost(f)= Yl \\F(u)\-CACU_COST\3

\F(u)\>TAR_MAX

+ J2 (AT_LEAST - \F(u)\)2

0< | (F(LU) \<AT_LEAST

+ T2, (8)

where u> G Z\a, and

0 if (F(u) = 0) A (#{wi|(a;1 < u) A (F(a;1) = 0)} < 32),

(CACU_COSTf if (F(u) = 0) A (#{w1|(a;1 < u) A (F(wi) = 0)} > 32).
Ti(w) =

41

and

o i f#H(FM = o)}>o,

I 12.0 x {TAR_MAXf if #{u\{F{u) = 0)} = 0.

The parameters in the cost function have to be tuned for optimization, such as, TAG_-

MAX, AT_LEAST, and CACU_COST . From our experiments, they are set to be 36,

12, 28 respectively.

Since the only conditions for (n, NL) are nonlinearity and balanced, theoretically

the first term and the last term of the cost function may be enough. The first term

penalizes the elements whose Walsh transform values exceed certain value, while the

last term checks whether the solution can be transformed to be balanced. However,

from our experiments, if the cost function is only defined to satisfy these conditions,

the result will be far away from the solution. So we penalize it for some additional

states, such as, the number of 0s and the minimum Walsh values. Note that these

additional penalizations are determined by our observation and experiments; there

may have other ways to define the cost function.

Related parameters Here we set parameters of the SA algorithm to be T0 = 20,000,

a = 0.98, and MIL = 8192.

Experimental results We succeed in constructing (10,492) Boolean functions in 144 out

of 1024 runs of simulated annealing. All of them are balanced or can be transferred to

be balanced by linear transformation. Note that if the neighbor obtained by flipping

any one of the DSBF classes and its corresponding bits, many of such Boolean func

tions can also be found, although the success rate is far lower than that from flipping

two classes. Also, the examples constructed in this way always fall into a pattern,

that is, the locations of F(u>) = 0 are the same no matter how we tune the parame

ters. We find this is because of the extra penalizations in the cost function. Table 11

42

E983
9B5B
829F
2E99
9148
0756
58F8
CCE5
ECF4
FACE
FF98
68FD
AEFB
F41F
2D81
31B6

904A
74EB
339E
E180
D7EA
2E13
D693
D509
FF65
E394
A1FD
9B73
C281
58D0
EFB6
205F

D315
044F
2E74
74C5
5B1E
5D32
F913
63E5
FAAE
9682
B94A
DAI 9
DC57
9004
868A
BA8 5

74CC
2E39
A98F
493D
C3AD
8 DAD
8041
6717
6823
DAF2
D320
7E2E
EFB6
4385
3B5F
74C8

B34F
7 AC 8

1171

AC82
5DE9
2590
3E25
ABF1
FBD8
6EB5
C328
4D43
CA9 6
8F5D
E7CC
560F

0376
4826
25AE
5C51
2B25
EB97
F433
9BB7
99BD
B277
8018
F84A
60CC
C5E2
4293
43E8

7A2 5
E920
48F9
FCBD
C882
20ED
3497
1D57
7CD5
21E3
B28D
131E
A74F
B9C8
3FB8
E398

E4F1
EE47
4ED3
217F
90AB
E71F
0BB7
7FFF
4D1E
13B9
EA19
DA8 6
1955
56C2
58E8
9469

Table 11: Two Examples for (10,492) Functions in Hexadecimal Notation

shows, in hexadecimal notation, two examples for (10,492) functions constructed by

our search.

3.6 Construction of (12, —, —, 2010) Boolean Functions

In this section, we first introduce a special method for constructing (12,2008) Boolean

functions by concatenating (10,492) Boolean functions. Then, with another concatenation

method, simulated annealing method is used with a (10,492) function as initial state to

construct (12, 2010) Boolean function.

3.6.1 Construction of (12—, —, 2008) Boolean Functions

As mentioned above, we can construct (10,492) Boolean function in many different ways.

For N = 10 and NL = 492, we can conclude that the maximum absolute value of Walsh

transform of such Boolean functions is WHmax(f) = 40.

Let /io be any one of N = 10 and NL = 492 Boolean functions with Walsh transform

F10 and ZeroNW number of zeros in its Walsh transform, and let /12 = [/io|/io|/io|/ioj-

Based on Lemma 4, the Walsh transform F i 2 of / i 2 is derived as follows,

Fi2 = [Fio + î io + Fw + Fio|F10 — Fio + Fw — FW\FW + F10 — Fw — Fiol-Fio — Fio — Fw + Fw]

= [Fio + Fio + F10 — Fio|F10 — Fio + Fi0 + Fi0 |Fi0 + Fi0 — Fio + Fi0|Fio — Fi0 — Fi0 — Fi0]

= [2 x F10|2 x F10|2 x Fio| - 2 x F10]

(9)

From the above equation, the maximum absolute value of Walsh transform of F i 2 is

2 x WHmax(f(N10) = 2 x 40 = 80. Furthermore, there are 4 x ZeroNW many zeros in the

frequency domain of F i 2 . Hence, we know F i 2 can be transformed to a balanced Boolean

function and has nonlinearity equals to 212_1 — | x 80 = 2008. Similarly, the nonlinearity

cannot be improved by respectively flipping one, two or three bits from the results.

3.6.2 Construction of (12, —, —, 2010) Boolean Functions

Our observation Let / = [/i|/2 | /3 | /33, where / is JV = 12 function, / i is a (10,492)

Boolean function obtained above, and f3 is any N = 10 bent function. Correspond

ingly, their Walsh transform are denoted as F, Fi, F2, F3 and F3. We have:

44

F = \F\ + F2 + F3 + Fs\Fi — F2 + F3 — F3IF1 + F2 — F3 — F3IF1 — F2 —- F$ + F3J

= [JPI + F2 + F3 — F3IF1 — F2 + F3 + F3IF1 + F2 — F3 + F3IF1 — F2 — F3 — F3]

= [Fi + F2|Fi - F2 + 2 x F3 |F! + F 2 |F : - F2 - 2 x F3]

= [Fi + F2|Fi - F2 ± 64|FX + F2|Fi - F2 T 64]

(10)

From the above equation, for such construction, the (12,2010) Boolean function can

be obtained, if and only if the following conditions are satisfied.

(Vu G Zf), I Fi (w) + F2 (w) I < 76;

< (Vu; G Z2
10), |F!(u;) - F2(u;)| < 12; UD

(3wGZ2
10), F!(a;) + F2(a;) = 0.

By limiting the /1 to be (10,492), we try to relax the constraint of /2.

From these conditions, one intuitionistic idea is to obtain /2 by flipping a small num

ber of output bits from f\. To satisfy the second condition and keep flipped bits as

few as possible, we may limit the number of flipped bits to be less than 6. Unfor

tunately, the search space is still huge by flipping less than six bits. It is equal to

X^=i(i°24) ~ 1-6 x 1015 « 251. This space still cannot be searched by brute force,

and heuristic method is more feasible.

Furthermore, based on the conditions, we can get the following fact,

F2(w) G [28,36],Vu> G {u\Fi(u) = 40}

45

and

F2(u) e [-36,-28],Vu; E H F ^ w) = -40}

This fact means the Walsh transform values in f2 for all the positions with maxi

mum absolute Walsh transform values in fi should be improved. This has quite low

possibility.

Search space The search space is regular 10-bit Boolean function and the initial state is

limited to be f\.

Neighbor policy The neighbor of current state is determined by flipping any two bits of

its output.

Cost function The following cost function is used:

cost(f2) = Yl 2-° x H^MI - CACU_COST\3

\F2{OJ)\>TAR_MAX

+ Y (AT_LEAST - \F2(u)\)2

0<\(F2(w)\<AT_LEAST

+ J2 (\F1(LJ) + F2(U)\-68)2

\F!(U;)+F2(UJ)\>76

+ J2 (l^iM-^HI)2

|F!(u;)-F2(w)|>12

+ T2, (12)

where u> e Z2°, and

0 if (F(u) = 0) A (#{w1|(o;1 < to) A (F2{UJX) = 0)} < 32),

{CACUjOOSTf if (F(u) = 0) A (#{^x|(u;i < u) A (F2(u;i) = 0)} > 32).

46

T:(w)

and

0 if #{CJ\(F2(LO) = 0)} > 0,

I {TAR_MAXf if #{u\{F2(u) = 0)} = 0.

The parameters in the cost function have to be tuned for optimization, such as, TAG_-

MAX, AT_LEAST , and CACU_COST . From our experiments, they are set to be

36, 16, 28 respectively.

From the above function, the constraints from term 1 to 3 and 6 is similiar with the

cost function for constructing (10,492) Boolean function. The purpose is to force

f2 to be around (10,492). Although the constraint seems to be unnecessary, our

experiments show that it helps to obtain the solution.

The constraint term 4 is related to the condition \FX + F2\ < 76, while the constraint

term 5 is related to the condition |Fi — F2\ < 12.

Additionally, WHmax(f) > 44 is checked. The reason we check it is as follows.

If WHmax(f) > 44 then we can know that no matter what value its corresponding

F\ is, the combination between Fi and F2 cannot satisfy the first two conditions of

Equation 11 at the same time.

Although the only conditions that F2 should satisfy are Conditions 11, from our

experiments, if the cost function is only defined to satisfy these, the results will be

far away from the solution.

Related parameters The parameters of the SA algorithm are set to T0 = 100, a = 0.99,

and MIL = 4096.

Experimental results Based on 50 many fis, we test how often and how many /2s can

be constructed in 32 runs of simulated annealing. From the samples, not all Boolean

functions / i has its corresponding f2 , while some of them can find as many as 20

47

/i:

1001001000001001000000011000011001010100010001101100000100111000
0011011001110000011101010011110111110101010101100001111110000100
000001100110110001101010000O0U0101111111001100100100101110000011
1010T1110010001100100111001T100100010110101111101001000011110100
000000010111100001101100111101010111100U110010000100010001010011
0010111110101110010110100101100000110101100111101101000100001011
1000100111111110000011000001111101011001001T11100101111111010 Oil
010101110011111011001 OHIO 1111011000001000000U010111101101110100
01000001000100T10T1010101001010001101100111101011111111001110010
0010101010000001111101001001000100110001001101010111011001001110
00011100101011111100100010101101001100101110T100 011T011011010 001
00011110001001111101010011111101111101100001011100000U0111011110
100101001TJ000110101011T11110110000000001111001010101011111101010
01100011100000110100101011101101011000T1111011111110011100011110
01100010001110100001101111T1000010010001100010111001101110110110
1000010001011100010100010101U11010101110110111100010111000100001

h-
1001001000001001000000011000011001010100010001101100000100111000
001101100111000001110101001110011111010101010110 0001111110000100
000011100110110001101OlOOOOlOUOlOlllllll0 01100100100101110000011
1010T1110010001100100111001T100100010111101111101001000011110100
000000010111100001101100111101010111100TT110010000100010001010011
00101111101011100101101001011000 00110101100011101101000100001011
1000100111111110000011000001111101011001001T10100101111111010011
01010111001111001000101110 1111011000001000000T7010111101101110100
01000001000100T10T1010101001010001101100111101011111111001110010
0010101010000001111101001001000100110001001111010110011001001110
00011100101011111100100010101101001100101110T100011T001011010001
00011110011001111101011011111101111101100001011100000TJ0111011110
100101001U000110101011T11110110000000011111001010101011111101010
Oil 00011100000110100101011001101011000T1111011111110011100011110
Oil 0 0010001110100001101111T1100010 010001100010111001101110110110
1000010001011100010100010101TJ11010101110110111100010111000100001

Table 12: F\, F2 Example for (12,2010) Functions (Difference Showed in Bold and Underline)

candidates. Hence, the selection of /1 is critical to the search procedure.

Table 12 shows an example constructed in this way, in which F\ is a (10,492)

Boolean function, and F2 is obtained by simulated annealing with Fj as initial state.

From this table, the hamming distance between these two functions is 16 instead

of what we expected, i.e., 6. As mentioned above, these two functions concatenate

with any N = 10 bent function F3 and F3 will lead to the outcome's nonlinearity

being 2010. Furthermore, -Pi(O) = F2(0) = 0, which implies the outcome satisfies

F(0) = 0 which means it is balanced.

48

3.7 Open Problem

3.7.1 Attempts on Constructing (8, —, —, 118) Boolean Functions

Our ultimate goal is to construct (8,118) Boolean functions. Some attempts are applied as

follows.

Attempt 1: Adjust the parameters in cost function with constructing (8,116) In

spired by the results in Section 3.4, the same idea as in constructing (8,116) Boolean

functions is applied to construct (8,118).

Now the cost function is adjusted to be:

cost(f)= J2 ((^)) 2 -16 2) 3 (13)
|F(w)|>20

where u € Z\. The additional condition is also changed to 3cu G Zf, F(u>) = 0 and

the maximum absolute Walsh value cannot exceed the target WHmax(f) (which is equal

to 20), that is, max^ |F(w)| < 20. Here, we do not check the summation of maximum and

minimum, because there is no such result.

We did not succeed in constructing the Boolean functions with this method.

Attempt 2: Concatenate two (7,55) Boolean functions It is mathematically proved

in [44] that, if it is impossible to construct (8,0, 7,118) function by concatenating two 7-

variable, degree 7, nonlinearity 55 functions, then the maximum nonlinearity of balanced

8-variable functions is 116.

Based on the above conclusion, concatenating two (7, 55) Boolean functions is at

tempted. The search procedure can be summarized as follows.

49

Obtain first 7-bit function / i with cost function:

, 0 if WHmax(f) = 18,
cost(fi) =

' (WHmax(f) - 18)2 ifWHmax(f) + 18

Then the algebraic degree and the balance of the local solution is checked.

• Obtain second 7-bit function /2 with cost function:

cost(f2)= Yl (IFxMi + i^Hi-ie)2

|Fi(<o)|+|F2(u;)|>20

Then the balance of the local solution is checked. We did not succeed in constructing

the Boolean function with this method.

3.7.2 Attempts on Constructing (10, - , - , 494) Boolean Functions

Our ultimate goal is to construct (10,494) Boolean functions as the counter example for

breaking H.Dobbertin's conjecture. Some attempts are described as follows.

Attempt 1: Adjust the parameters of cost function in constructing (10,492) Inspired

by the results in Section 3.5, the same idea as in constructing (10,492) Boolean functions

is applied to construct (10, 494). The program continues to search for (10,494) functions

instead of exiting after (10,492) function is found. The parameters in cost functions are

adjusted to different values. However, after around two months' running, no (10,494)

function was found.

Attempt 2: Concatenate two N = 9 Boolean functions In this attempt, two N = 9

Boolean functions are constructed and then concatenated to yield N = 10s based on a

similar idea as in Section 3.3. However, this problem is different from the (10,2,7,488)

50

problem. In constructing (10, 2, 7,488), there are some guidable, essential constraints, such

as F(u) = 0 for all wt(u) < 1 and F{u)modA = 0 for all u>. For (9, —) to be concatenated

with (10,494), the only necessary condition for constructing Fi is as follows,

(V ^ e Z ^ l F i M l ^ e ; (14)

and for f2,

(Vw G Zl), \F2{UJ)\ < 36,

< (Vw E Z\\ (|Fi(w) + F2(u)\ < 36) A (|Fi(w) - F2(u;)| < 36) (15)

(3w G Z|) , (F^u) + F2{u) = 0) V (^(w) - F2(u) = 0).

Experimental results should be analyzed based on the tradeoff in above conditions. For

example, from Condition 14, when WHmax(fi) is limited to be 36, / i can be easily found.

However, the weaker the conditions are, the more random the results are. It is possible that

a large number of / is will never be used to find corresponding /2s. In the mean time, if we

penalize this by extra constraints, it is possible that such extra constraints may prevent us

from finding any solution.

Different extra constraints are tested during the experiments. One of them is drafted as

follows.

Search space The search spaces for fi and /2 are limited to TV = 9 RSBFs.

Neighbor policy Flipping one class and its corresponding bits.

51

Cost function

cost(h)= Yl l^iM-24|2

o;|u;>0)

|Fi(w)|>36

+ TU (16)

7\ =
0 i f (|F!(0) |<18,

|^i(0)|2 1^1^(0)1 > 18.

T2

cost{h)= J2 \F^)\2

UJ\U»0,

\F2{LO)\>36

+ E a*
o)|w>0,

|fiHI+|F2(w)|>36

+ T2,

JlFiCO + PbCo)!3

.(w)| + |F2(o;)|--24)2

if (1^(0)4-^(0)1^

(17)

1^(0) - F2(0)| - 24)2 if (1^(0) - F2(0)| > 36.

In this way, we expect the results of two concatenations to be balanced so the extra

condition would be unecessary.

Attempt 3: Brute Force - flipping two bits of (10,492) functions Based on Lemma 5, it

is possible that, after flipping certain two bits of the (10,492) Boolean functions, the Walsh

value reduce from 40 to 36, and increase from —40 to —36, with some 0's in the derived

Boolean function. In our experiments, around 200 many (10,492) Boolean functions are

verified in this way, but none of them falls into this class.

52

Attempt 4: Hill Climbing - SA applied on (10,492) functions Based on the result of

constructing f2 in Section 3.6.2, if this function exists then the hamming distance between

the (10,494) function and its closest (10,492) function will not necessary be equal to 2, but

instead may be a little greater than 2. However, it is impractical to verify all the possibilities

by flipping more than 2 bits for N = 12, so simulated annealing is used and the details are

shown in the following.

Search space The search space is regular 10-bit Boolean function, and the initial state is

limited to be (10,492) functions which is already found.

Neighbor policy The neighbor of current state is determined by flipping any two output

bits. The balanced property is ignored during the neighbor selection, and instead it is

determined by checking whether the solutions have element u> satisfying F(u) = 0.

Cost function The following cost function pattern is used:

cost(f) = J2 2-° x 11^)1 ~ CACU_COST\3

\F(UJ)\>TAR_MAX

+ Yl (AT_LEAST - \F(u)\)2

0<\(F(to)\<AT_LEAST

+ T2, (18)

where u G Z^0, and

0 if (F(w) = 0) A (#{wi|(u;i < u) A (F(wi) = 0)} < 32),

{CACUjOOSTf if (F(u) = 0) A (#{u>i|(wi < u) A (F(wi) = 0)} > 32).
TiM =

53

and

0 i f#M(F(u ;) = O)}>0,

I {TAR_MAXf if #{u\{F{u) = 0)} = 0.

The cost function is similar to the one used in constructing (10,492) functions in

Section 3.5. The main difference is that here the initial state is one of the (10,492)

functions obtained in Section 3.5. The main idea is that the hamming distance be

tween (10,494) functions and (10,492) functions is potentially not large.

Moreover, many other cost functions have been designed and their parameters ad

justed, but no better results are obtained.

Related parameters Here we set parameters of the SA algorithm to be T0 = 100, a =

0.99, and MIL = 4096. Note that when T0 is increased to around 1,000, we cannot

even construct (10,492) functions.

Experimental results It took 6 months to apply this method on 30 many (10,492) Boolean

functions, with 1024 iterations each. The (10,494) functions are not found in this

way. However, many of other (10,492) functions are constructed under each seed.

Moreover, some examples do not fall into the same pattern. Table 13 shows the

number of (10,492) functions found with ten of the seeds.

Others Other attempts are also made including, but not limited to,

• Replace the search space from DSBFs to RSBFs;

• Constraint the neighbor to be balanced;

• Fix some classes when moving to next state;

• Use new random function instead of the one in standard C library.

These attempts, while also theoretically possible, do not yield any better results.

54

seed#

1
2
3
4
5
6
7
8
9
10

the number of (10,492) functions found

851
698
631
602
575
609
549
527
688
709

Table 13: The Number of (10,492) Boolean Functions Found by 1024-time SAs on Seed
Functions

3.7.3 Attempts on Constructing (12—,—,2012) Boolean Functions

The ultimate goal is to construct (12,2012) Boolean function. Some attempts are made

through revising methods in Section 3.6.2.

Attempt 1: Adjust the parameters in the cost function for constructing (12,2010) We

apply simliar idea as in constructing (12,2010) Boolean functions to construct (12, 2012).

That is, let / = [/1I/2I/3I/3] in which /1 is a (10,492) Boolean function obtained as in

Section 3.5, and /3 and / 3 are bent functions. Then simulated annealing method is applied

to search function f2.

Now the conditions are adjusted to be:

(Vw6Z2
10), \F1(UJ) + F2(LO)\<72;

< (Vu; G Z2
10), |Fi(u;) - F2(u)\ < 8; 09)

(3ueZ™), F1(uJ) + F2(u) = 0.
V

With fi also limited to be (10,492), FX(UJ) = 40 implies F2(cu) must be 32, and

55

Fi(u>) = —40 implies F2{ui) must be —32.

We did not succeed in constructing the Boolean function using this method after apply

ing it to one fx in 400 iterations (which consumes 18 days).

Attempt 2: Relax the constraint of f\ to lower nonlinearity The f2 in attempt 1 has

strict constraint on the elements with Fi(u) = ±40, and f2 must have nonlinearity no

smaller than that of f\. That is, both / i and f2 are (10,492) Boolean functions. This result

reaches the upper bound of Dobberin's conjecture, with additional constraints on those

functions.

In attempt 2, the nonlinearity of / i and f2 is relaxed to be certain lower values (e.g. 44

and 48), so that there would be more candidates of f\ and /2 .

However, when only relaxing / i and / 2 to lower nonlinearity and keeping / 3 and / 3

unchanged, there is no solution available. For example, suppose Fi{u) — 44, in order

to satisfy \FX(UJ) + F2(u>)| < 72, F2(ui) must be no greater than 28, which breaks the

2nd condition \Fi(u) — F2(u)\ < 8. It is easy to prove that if Fi(u>) > 40 under such a

concatenation, then no matter what value its corresponding F2(UJ) is, the combination of

F\ and F2 cannot simultaneously satisfy the first two of Conditions 19.

Attempt 3: Replace f3 with its 1 or 2 bit flipping, and respectively obtaining /3 Based

on the observation of Lemma 5, after flipping bits of N = 10 bent function, the Walsh

transform values will belong to: {±30, ±34} after 1-bit flipping, and {±28, ±32, ±36}

after 2-bit flipping. Therefore,

F3(LJ) + F3(tu)\ = 0;

F3(u) - F3{LU)\ G {56,60,64,68,72}

Now the conditions are adjusted to be:

56

wherein,

(Vu;eZ2
10), |F!(o;) + F2(u;) |<72;

(VwGZ2
10), ^(u) - F2(u)\ < 6;

(3ueZl
2°), F1(w) + F2(w) = 0.

when flipping one bit, or

6 =
12, F3(u) = ±30

4, F3(w) = ±34

(20)

S=<

16, F3(u) = ±28

8, F 3 M = ±32

0, F , M = ±36

when flipping two bits.

From Conditions 20, all conditions remain the same except the second condition. The

difference between Fi(u) and F2(UJ) is changed from only allowing < 8 to having different

possibility element by element (from 0 to 16). When / i is limited to (10,492) Boolean

functions, this allows /2 to have lower nonlinearity. For example, for certain u>, F\(UJ) =

28, F2(u) = 44, F3(CJ) = 28, and FA(u) = F3(o;) = -28 may be acceptable. However,

this revision only makes possible Walsh transform values to be as high as 44. It does not

relax the constraints to generate more relaxed candidates. That is, if there is a component

satisfying Fi(u) = 44, then the Walsh value for the other threes can only be 28, 28 and

-28 .

57

The procedures used in our experiment are as follows.

• Construct one N = 10 bent function fbenu

• Flip fbent 1 or 2 bit(s), get f3 and calculate / 4=/ 3 ;

• Check whether (10,492)/i satisfies |Fi(w)| + |F3(w)| < 72, and if no, check next fx

• Use simulated annealing method to search for f2 with / i as the initial state and bit

complement in truth table as neighbor.

• Repeat above 4 steps.

Attempt 4: The 4th component relaxed from / 3 bent function to any bent functions

By observing the experiment of constructing (12, 2010), we have that although F\ — F2 <

12, the / 2 is not derived by flipping 6 bits of / i . This implies that there are few possible

solutions by requiring F\ — F2 < 8. Relaxing 4th component will allow / i and /2 to have

a large-magnitude difference.

We adjusted the parameters to a large extent under the same search space, neighbor

policy, and cost function, but the results could not be improved.

3.7.4 Other Attempts on Constructing (12, - , - , 2012) Boolean Func

tions

Attempt 1: Construct through concatenation of (10,494) functions Based on the

idea described in Section 3.6.1, if (10,494) functions can be constructed, we can obtain

(12, 2012) function by concatenating them as /12 = [/io|/io|/io|/io]- The maximum abso

lute value of Walsh transform of F12 is 2 x WHmax (/Wio) = 2 x 36 = 72. Furthermore,

there are 4 x Zero^io many zeros in frequency domain of F12 with F(0) = 0. Hence, we

know F12 is balanced and has nonlinearity equals to 212_1 — \ x 72 = 2012. Obviously, this

58

problem is equivalent to constructing (10,494) Boolean functions, which is also an open

problem based on the conjecture made by Dobbertin.

Attempt 2: Directly apply simulated annealing method to N = 12 DSBFs In this

way, the best solution we have achieved is to construct (12, —, —, 2000) Boolean functions.

The detailed procedure is as follows.

Search space The search space is limited to N = 12 DSBF functions. Based on the class

information for n = 12, there are totally 224 classes in which two of them have one

element, one has two elements, two have three elements, three have four elements,

seven have six elements, 82 have 12 elements and the others (127s) have 24 elements.

We allow the initial state to be any random DSBF functions.

Neighbor policy The neighbor of current state is determined by flipping any one of its

classes and its corresponding bits.

Cost function The following cost function is used:

cost(f)= J2 l * V) ~ 6 8 | 3 + 5] r (u ;) , (21)
\F(u)\>96 CJ

where u E A12,j(i G Z9n), and

0 if (F(u) < 20) A (#{o;1|(wi < u) A (\F(ui)\ < 20)} < 60),

2(20-1̂ (̂)1) i f (F(u) < 20) A (#{w!|(a;i < u) A (\F(u!)\ < 20)} > 60).

Note that, the only conditions for (n, NL) are nonlinearity and balanced. The cost

function theoretically can only penalize the elements whose Walsh transform values

exceed certain value. However, since this condition is too relaxed to guide the SA

59

T(u;) =

in finding the solution in the right direction, we also penalize certain low values of

Walsh transform in the second term of the above cost function.

Related parameters The parameters of the SA algorithm are set to be T0 = 10,000, a =

0.96, and MIL = 8192.

Experimental results 170 out of 185 trials succeed. We adjust the parameters to a large

extent under the same search space, neighbor policy, and cost function, but results

cannot be improved. Also, our experiments cannot improve the nonlinearity by re

spectively flipping one, two or three bits from 100 examples of the results.

Attempt 3: Relax / 3 and f3 to be any Boolean functions instead of bent functions

Our observation Let / = [/1I/2I/3I/4], where / is N = 12 function. /* (i = 1,2,3,4)

represents four N = 10 Boolean functions, and their Walsh transform spectrum are

denoted as F, F\, F2, F3, and F4. Based on Lemma 4, the Walsh transfrom spectrum

F derived from Fi(i = 1,2,3,4) can be formulated as follows, when ignoring the

order of concatenation.

F = [(F + Fj) ± (Fk + Fi)\(Fi - Fj) ± (Ffe - Ft)] (22)

where tuple (i, j , k, I) can be any permutation of (1,2,3,4).

From Equation 22, we have that to obtain certain nonlinearity Boolean functions, the

following conditions must be satisfied.

\Fi\ + \Fj\ < WHmax(f),((i,j e {1,2,3,4}) A (i ^ j)) (23)

Condition 23 can be used to define the cost functions for f2, fa and /4.

60

However, such constraint is not sufficient to guide heuristic methods to search for

the solution in the right direction. There are still many other factors that should

be considered during the construction, such as the search space, the goal for each

component, the definition of neighborhood, the practical cost functions, and so on.

There are other tradeoffs that may be made. For example, if the constraint for search

ing / i is relaxed too much to accept very low nonlinearity, then fx can be easily

found. However, it is possible that the f\ found will never have remainder compo

nents (/2, /3 and fi) for concatenation. This is similar to randomly picking up any

one f\. Unfortunately, since the (n,NL) functions are only relevant to two con

ditions, that is, balanced and nonlinearity, we cannot apply further conditions to it.

We only know that we cannot concatenate two (7, 56) Boolean functions to form

(8,118) functions. If (8,118) function exists through concatenation, then it should

be the concatenation of two (7,55) functions. So far there is no known result on what

kind of fi can or cannot be concatenated to construct (n, NL) Boolean functions.

We conduct experiments with different combinations, but (12,2012) Boolean func

tions cannot be constructed.

Search space The search space can be either N = 10 RSBF or DRSBF Boolean functions,

whose sizes are 2108 or 278, respectively. The regular Boolean functions are not tried

since the search space size (22 = 21024) is prohibitive. We allow the initial state to

be any random RSBF or DRSBF functions.

Neighbor policy The neighbor of current state is determined by flipping any one or two

class(es) and its corresponding bits.

Cost function the basic idea of cost function is to satisfy |Fj| 4- \Fj\ < 72 where i,j e

{1,2,3,4} A i ^ j .

61

Seed

1
2
3
4
5

The number of derived functions

WHmax(f)=12
0
0
0
0
0

WHmax(f)=16
44
28
16
12
28

WHmax(f)=S0
2064876
2064876
2064876
2064876
2064876

WHmax(f)=84
31208
31224
31236
31240
31224

Table 14: Nonlinearity Distribution of Derived Boolean Functions by Flipping Five
(12,2010) Functions

Related parameters The parameters (T0, a, MIL) of the SA algorithm for four compo

nents are respectively set to (10000,0.98,1000), (10000,0.98,2048), (10000,0.98,1024),

(10000,0.98,4096).

Attempt 3: Brute Force - flipping two bits of (12, 2010) functions Based on Lemma 5,

it is possible that, after flipping certain two bits of the (12,2010) Boolean functions, the

Walsh value reduce from 76 to 72 and increase from —76 to —72, with some 0s kept in

the derived Boolean function. In our experiments, around 100 many (12,2010) Boolean

functions are verified in this way, but no one falls into this class. Furthermore, as shown in

Table 14 (only five examples are listed here), there are only very few derived functions that

can keep the same nonlinearity while most of them have reduced nonlinearity.

62

Chapter 4

Other Applications: Cryptanalysis of

Symmetric Ciphers

In this chapter, we describe our research on using heuristic methods to attack symmetric

ciphers. Two example attacks are given in this chapter. We use simulated annealing to

reconstruct the initial state of the LFSRs for Geffe cipher (stream cipher); in the mean time,

we use guided search techniques to perform experiments on key distinguishing attack [2]

on TREYFERR cipher (block cipher). The most attractive aspect of such cryptanalysis

approach is that the ciphers being attacked can be treated as black-boxes by the attackers.

If such attack succeeds, it would be unnecessary for attackers to understand internal details

of the ciphers.

4.1 Attack on Geffe Cipher

One of the main objectives in attacking a LFSR-based stream cipher is to reconstruct the

initial state of all the LFSRs, which are the key components of stream ciphers. In our attack

on Geffe cipher, we need not to analyze the internal details of the cipher, that is, we regard

the cipher as a black-box. We feed the cipher with different LFSR register initial states

63

and try to analyze the difference between keystream outputs (generated sequences) under

different initial states, and output sequences we observe (observed sequences).

4.1.1 Stream Ciphers

Stream ciphers are important primitives for ensuring privacy in communication. Stream

ciphers have good properties, such as being secure, efficient, and small in terms of imple

mentation. Stream cipher algorithms are usually faster than block ciphers, such as DES.

Stream ciphers are often used in mobile devices, such as A5 in GSM cell phone system.

Performance benefits may lead to their application to videoconferencing and other multi

media applications [7]. A stream cipher produces a pseudo-random sequence of bits which

are exclusive-OR'ed with the plaintext to produce the ciphertext. It is sometimes also

called state cipher since encryption depends on not only the key and plaintext, but also on

the current state.

Linear Feedback Shift Registers (LFSR) Many stream ciphers make use of the linear

feedback shift register (LFSR), since:

1. LFSR is well-suited for hardware implementation;

2. LFSR can produce sequences of large period;

3. LFSR can produce sequences with good statistical properties;

4. LFSR can be readily analyzed using algebraic techniques because of its structure.

Figure 4 illustrates a LFSR defined by the primitive polynomial xw © x3 © 1 = 0.

An LFSR is a finite state machine and consists of L memory cells (stages) r0, n , . . . , r/_i.

Each cell contains one value from Z2. LFSR has one input and one output, and a clock

which is used to control the movement of data. At any time t, the content of the register

is called the state of the LFSR at time t, and denoted as St = (st+i-i,st+i-2, • • •, st). The

64

0 1 2 3 4 9

Figure 4: An Example of Linear Feedback Shift Register (LFSR)

state at time zero, So, is called the initial state of the LFSR.

During each unit of time, the following operations are performed. When the control unit of

the finite state machine is clocked,

1. The value of the cell r0 goes to the output and forms part of the output sequence;

2. The remaining cells are shifted as Ti = r i+1, i = 0 , 1 , . . . , I — 2; and

3. The last cell r/_i is the feedback bit which is loaded with a new value st+i calculated

through the corresponding primitive polynomial.

Note that the new value of the last cell can either be the output.

A periodic LFSR is defined by a (primitive) feedback polynomial of degree L, which

is the size of the LFSR. When the feedback polynomial is primitive and of degree L, the

output sequence of a maximum length LFSR is periodic with period m = 2L — 1 and is

called an m-sequence. Note that m-sequences have good statistical properties but they are

predictable. If a stream cipher has linear complexity n, we can find its initial state using

2 x n consecutive bits using Massey-Berlekamp algorithm. Hence, we need to increase

the linearity complexity, before the sequence can be used. There are several methods for

achieving this. One is to use several LFSRs and combine the output from each of them like

in Geffe cipher; the other is to apply nonlinear filter function on one single LFSR like in

Shrinking Generator. This approach is efficient for building stream ciphers, especially in

software, because bit-wise shifting LFSR is rather costly operation in software.

65

Geffe Cipher Geffe system is used as a key generator with LFSR's of length (17, 11, and

13), respectively, with tapping as shown in Figure 5 [8]. It belongs to nonlinear combiner

generator: F(xi, x2, x3) = xxx2 © x2x3 © x3.

•e-
10 H 12 13 14 15

&

10

10 11 12

MgH

kcyseq

plaintext
m.

&*o
ciphertext

c,

Figure 5: Structure of Geffe Stream Cipher

4.1.2 Algorithm for Attacking on Geffe Cipher

Search space The search space includes all possible initial states (IVs) € Zf-, where 41 =

17 + 11 + 13 is the sum of the length of all three LFSRs.

Cost function Since Geffe cipher is clocked in regular way, we consider using the ham

ming distance between observed sequence and generated sequence as the cost func

tion.

66

cost(IVi) = d(gen_seqi, obs_seq)

= wt(gen_seqi © obs_seq)

= 2_] (gen_seqi(x) (B obs_seq(x)) (24)
e~ r?observed_size

where gen_seq is the keystream output sequence generated by current initial state

IVi, and obs_seq is the keystream output sequence we observed. They are both in

the size of observed_size.

Search strategy We start to evaluate by randomly selecting one possible initial state from

the search space. The neighborhood of the current state is defined by the subset of

all initial states that are flipped one bit from the current state.

Experimental results Here we set parameters of the SA algorithm to be T0 = 10,000,

a = 0.99, and MIL = 1000 for observing 1000 bits and 2000 bits of the keystream

output, and to be T0 = 15,000, a = 0.99, and MIL = 1500 for observing 3000 bits

of the keystream output. The SA search terminates when T < 1 or cost = 0.

From Table 15, we can conclude the following. The longer the observed keystream size

is, the more efficiently we can reconstruct the initial state of LFSRs and hence to break the

cipher. However, note that the longer the keystream is, the more time is needed on internal

calculation.

4.2 Attack on TREYFER Cipher

We perform a series of attacking schemes to verify the capability of block ciphers, such

as TREYFER and AES, against key distinguishability attack. For a cipher algorithm, if

67

tri
val
1
2
3
4
5
6
7
8
9
10
11
avg

keystream size:1000bits
iterations
01709068
10871709
08049188
58448768
23631731
29110129
22666798
34574549
42006563
05241524
08013216
22211204

2.20E+12
1.71E+06
1.09E+07
8.05E+06
5.84E+07
2.36E+07
2.91E+07
2.27E+07
3.46E+07
4.20E+07
5.24E+06
8.01E+06
2.22E+07

241

20.7
23.4
22.9
25.8
24.5
24.8
24.4
25.0
25.3
22.3
22.9
24.4

keystream size:2000bits
iterations
01648735
23530999
07990605
14362750
05233592
06105174
08883927
03387418
07152750
02486573
04294451
07734270

2.20E+12
1.65E+06
2.35E+07
7.99E+06
1.44E+07
5.23E+06
6.11E+06
8.88E+06
3.39E+06
7.15E+06
2.49E+06
4.29E+06
7.73E+06

2 4 1

20.7
24.5
22.9
23.8
22.3
22.5
23.1
21.7
22.8
21.2
22.0
22.9

keystream size:3000bits
iterations
06640740
11150336
14057378
00991414
03798894
02353033
05175545
02499694
05259783
00891773
06722778
05412852

2.20E+12
6.64E+06
1.12E+07
1.41E+07
9.91E+05
3.80E+06
2.35E+06
5.18E+06
2.50E+06
5.26E+06
8.92E+05
6.72E+06
5.41E+06

2 4 1

22.7
23.4
23.7
19.9
21.9
21.2
22.3
21.3
22.3
19.8
22.7
22.4

Table 15: Efficiency of Attacking on Geffe Cipher

the local optima generated by consecutive searches highly depend on the genuine key and

form patterns that are equivocally connected with each particular key, then this cipher is key

distinguished. When a cipher suffers from such a weakness, we can distinguish ciphertexts

generated by certain key from other keys or random process, with the cipher itself regarded

as a black-box. In our research, we apply the methods to different block ciphers with

different rounds, random functions, and s-boxes.

In our experiments, we firstly apply a simple local optima search strategy to recover the

key, which is used to generate a set of (plaintexts, ciphertexts) pairs. Then the local optima

are summed up into profiles. Finally, we attempt to measure the distance between profiles

to observe the relationship between a large number of local optima and the genuine key.

This main idea is originally proposed by Clark et al. [2]. From our results, the local optima

of TREYFER with one round are highly dependent on the corresponding key, those with

two rounds are to some extent dependent on the key, while there is no apparent trend with

those of TREYFER with more than two rounds.

68

4.2.1 TREYFER Block Cipher

TREYFER was designed for environments with limited resources. The procedure of this

cipher with 8-byte key and 8-byte plaintext under C is given by following pseudo code [55].

Procedure: Pseudo Code for TREYFER Implementation:

1. for (r=0;r < NumRounds; r++)

2. {

3. text[8]=text[l];

4. for (i=0;i < 8;i++)

5. text[i+l]=rotate_l_left(text[i+l]+S-box[(key[i]+text[i])%256]);

6. }

In our experiments, we use two different S-boxes. One uses the first 256 primes (all

modulo 256), starting with 2; the other uses the S-box used within the Advanced Encryption

Standard [13] [1].

4.2.2 Algorithm for Attacking on TREYFER Cipher

In this section, we first describe the local optima search strategy and then propose a method

to sum up these local optima into profiles.

Local optima search scheme Based on a set of (plaintexts, ciphertexts) pairs {[p\, cx), (p2, c2)

. . . (pn, cn)} under certain key kgenuine, an all-bit-zero key /cop4 is initialized, and the corre

sponding cost is calculated using following cost function:

n

cost(kcur) = ^2 d(°i' EkcuriPi)) (25)
1=1

where d(ci, Cj) is the Hamming distance between the ciphertexts.

The search examines each bit in the current optimum key fcopt from left to right. At each

69

position bit b, a new candidate kcur is obtained by flipping bit b in kopt. The cost cost(kcur)

is calculated in the same way. If cost(kcur) < cost(kopt), kopt is replaced by kcur as best

solution found so far. Otherwise, current bit flipping is resumed and next bit flipping will be

tried. The search procedure is continued until \the_number_of_key_bits\ — 1 successive

non-improving bit moves under certain fcopi. The description of this search algorithm is

shown as follows.

Procedure: Pseudo Code for Local Optima Search Scheme:

1. ^ <- 00 . . . 0
n

2. costikopt) <- ^2d(ci,Ekcur(pi))

3. nim <— 0

4. 6 ^ 0

5. while (nim < MAXNIM)

6. {

7. k^ <— flipJbitJbJn_kopt;
n

8. cost(kcur) +- y^d{Ekcur{pi),Cj);

9. if (cost (kcur) < cost (kopt))

10. {
11 U 4 U
i i . ^opt ^cur i

12. cost(kopt) <— cost(kcur);

13. ram <— 0;

14. }

15. else

16. nim <— nim + 1;

17. 6^-(6 + l)%|fcopi|;

18. }

19. return kopt;

70

Local optima profile scheme After the above process finishes, for certain key k, a local

optima set {o 1 ; . . . , oT} for T iterations can be obtained. To profile these local optima,

correlations between every two bits are considered. The profile is given by a \k\ * |A;|

matrix:

T

P(k) = [*;];*; = £ (- i r (0 e o , W (26)
t=i

wherein each element Q,- scales the level of correlation between bit i and j for the set

of local optima, and ot(i),t = 1 , . . . , T and i = 1 , . . . , \k\ denotes the ith-bit value in the

local optimum ot.

Profiles similarity scheme Given two key profiles, the similarity between each profile

in the first set and any one in the second set can be measured by summing up the absolute

values between elements. More formally, if P0(k0) = [c^] and Pi(k\) = [c^] are two

profiles, their distance is given by:

\k\ \k\

dcorr(P0(k0), P^h)) = Y1J2 \CH ~ 4 l (2 7)

i = l j=i

The technique described above has been applied to TREYFER with different number

of rounds and different s-boxes, and AES with different number of rounds.

4.2.3 Implementation on Attacking TREYFER

Implementation details In the case of the local search algorithm, we used a number of

|A;| — 1 successive non-improving moves (MAXNIM), and the full \k\ bits of the key are

examined. In order to rate the distinguishing abilities of the proposed techniques on this

cipher, firstly NK different keys are randomly generated, Next, in each iteration, two sets

of profiles {P0(&i), — , Po(kNK)} and {Pi(fci), , P\{kNK)} are accumulated. Then,

71

distances between any key pairs in two profiles are calculated for every certain number of

iterations. Finally, based on the distances obtained above, rank(P(ki)) for each key ki are

calculated, wherein rank(P0(ki)) denotes the number of incorrect profiles in the second

set are closer to Po(ki) than the correct one P\(ki).

We give the procedures in pseudo code as follows.

Procedure: Pseudo Code for Implementation:

1. randomly selected NK different keys;

2. for (i=0;i < T;i++)

3. {

4. for (profileno=0;pro/i/eno < iVpROi?/L£:;profileno++)

5. {

6. select randomly a number Np of plaintexts;

7. encrypt the plaintexts using each key to obtain NK sets of p/c pairs;

8. for Q=0;j < NK;j++)

9. {

10. search for local optimum Oi (j) for key j ;

11. accumulate current local optimum contribution to profiles via equation 26;

12. }

13. if (need to record the intermediate result)

14. {

15. for each key pairs (ki, kj), calculate the dcorr(P0(ki), Px(kj)) based on two the

profiles attained so far;

16. for each key fcj in profile 0, calculate rank(P0(ki));

17. }

18. }

19.}

72

Results for 1,2,3 and more rounds TREYFER Distances obtained in Equation 27 can

be grouped into a NK x NK matrix, D = [rfy], where d^ measures the distance between

profiles Po(^i) and P\(kj). One simple way to measure the distinguishability is the follow

ing. Given a profile Po(ki), counting the number of incorrect profiles in the second set are

closer to Po(ki) than to the correct one, that is, the rank of a profile is given by,

Rank(P0(kt)) = #{Pi{kj)\(l <j< \NK\) A (^ j) A {dtj < du)} (28)

Generally, it can be deemed that the distinguishability in statistical sense is achieved

if all the ranks are less than ^f-. From our results, the local optima of TREYFER with

one round are highly dependent on the corresponding key, those with two rounds are to

some extent dependent on key, while there is no apparent trend with those of TREYFER

with more than two rounds. Table 16,17,18 show the results for one, two and three rounds

TREYFER with two different S_Boxes. Throughout our experiments, we set NK = 10,

NP = 20, and MAXNIM = 63.

From our experimentation, only TREYFER with one round apparently suffers from

the key distinguishable weakness. However, it does not mean that these block ciphers

are absolutely immune to such kind of attacks. Actually, there exists much potential for

improvements in our experiments.

First, by using current local optima search scheme, it is obvious that the probability of

certain bits in the candidate key being 1 is sharply decreased in the order of being flipped.

We found in our experimentation that the bit number of 1 's in the local optima is just around

10, when the key size is 128 bits in AES. The correlation between candidate solution and

the genuine key is restricted by this property.

Second, current local optima profile scheme only analyzes the correlations between

73

sboxl
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

sbox2
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

kOO
594136

4799872
5729528
5199504
4857816
5119120
4394008
4981748
5400720
4578064

kOO
563240
2227036
2595344
1781380
2473220
2028508
2257480
2287332
2138560
2416668

kOl
4717580
595596
3906076
5158668
2396636
3364540
1701580
1961080
2209548
2471748

kOl
2294452
556272
1106364
1349336
1364288
1317856
870228
818000
1079500
1277984

k02
5830412
3836268
568028
6988692
3279532
2986244
4248436
4254144
3887228
2202420

k02
2479024
1180028
640352
1810684
1268044
1737284
1133904
1111332
1304200
1064980

k03
5247780
5209148
6938692
601316
6085172
5503780
5611956
5596688
4075564
6319748

k03
1853132
1320256
1746188
611616
2114888
1231536
1382980
1540760
1421548
1850808

k04
4764340
2295060
3499980
5956284
619316
2714932
2125388
2640928
3068508
2097684

k04
2370504
1450556
1390016
2023452
598028
1910428
1489136
1411340
1635616
1425764

k05
4994408
3453280
3149736
5432288
2879280
504928
3563976
3957980
2866152
2673048

k05
2069192
1308588
1735080
1250732
1954380
573964
1466352
1148668
1396776
2125964

k06
4505260
1764236
4328628
5672964
2413316
3518900
605452
1860960
2972380
2697940

k06
1988704
944252
1253168
1346764
1477740
1390100
667576
1011948
967712
1287308

k07
5220788
2096804
4302580
5642692
2804484
3871372
1910356
593720

2440660
2624260

k07
2164228
882928
1100188
1558544
1256232
1243944
954468
535512
1163788
1342264

k08
5478464
2526000
3927616
4198248
3290200
2954984
3015592
2598732
489648
3102904

k08
2048156
1042424
1242660
1385456
1546848
1316016
897396
1080216
480780
1273328

k09
4649112
2432912
2322976
6280448
2005744
2608400
2656368
2601100
3019496
508352

k09
2318232
1351116
1143280
1909828
1220812
2070964
1008776
1324572
1242136
578356

rank
0
0
0
0
0
0
0
0
0
0

rank
0
0
0
0
0
0
0
0
0
0

Table 16: Distances and Ranks among Key Profiles for 1-round TREYFER(30K Local
Optima Profiled)

sboxl
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

sbox2
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

kOO
455856
2085500
2163772
4386352
1837092
2451352
2238892
3122928
3556852
2078760

kOO
378360
469856
468800
443456
423336
455984
474200
454748
484332
456264

kOl
2098576
482700
2235772
3378632
1148468
2163856
722308
1534864
2215908
1810560

kOl
390224
548288
435480
473344
430688
519280
520528
467940
452476
421584

k02
2145876
2223408
440056
3038028
1511856
1016172
2051240
2339876
2675064
948156

k02
407492
524252
466620
485852
437460
482668
555620
506504
514336
425076

k03
4262064
3232044
2925180
513464
3317028
2577560
3146084
2358008
1517356
2969584

k03
410336
465272
404560
435592
435144
437920
526712
466508
466428
376448

k04
1783064
1053396
1557804
3383424
480772
1469304
1002036
1739552
2437228
1145240

k04
484484
450668
353924
493812
475948
544492
516564
522632
498192
439388

k05
2428188
1987328
940592
2642636
1418896
448404
1860152
1790900
2152280
812852

k05
378872
508496
432800
460096
416112
499368
507016
476124
468500
439312

k06
2166356
690120
1897544
3184332
985200
1776580
453040
1307980
2003696
1489292

k06
481632
462680
393728
481816
456008
490256
577032
450604
474388
419640

k07
2971232
1560468
2310292
2323872
1744796
1768144
1415732
420528
1081300
1840624

k07
437464
508608
444000
489944
421560
471232
517080
450596
485828
469352

k08
3645384
2197204
2578972
1494112
2364508
2195664
2199196
1249824
554748
2312360

k08
440984
437640
423016
460528
420200
472552
549112
494764
442956
447800

k09
2179064
1882476
782500
2710928
1264948
702576
1658940
1834640
2230036
533456

k09
464132
541956
439316
508780
566204
612668
560468
499664
486688
475236

rank

0
0
0
0
0
0
0
0
0
0

rank
0
9
8
0
8
6
9
0
0
9

Table 17: Distances and Ranks among Key Profiles for 2-round TREYFER(30K Local
Optima Profiled)

74

sboxl
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

sbox2
kOO
kOl
k02
k03
k04
k05
k06
k07
k08
k09

kOO
4167576
3913788
4613796
4797116
4234448
4290460
4235664
4023380
4388860
3652192

kOO
4684424
4753796
4507156
4254840
4731732
4669140
4658408
4724612
4716968
4702880

kOl
5210920
4338404
4826524
5396500
4214536
4277692
4556584
4556164
4179060
4761112

kOl
4625368
5406556
4928116
4269920
4694340
4766700
4144280
4588052
4459904
5213288

k02
5169812
4240504
4031016
4885048
4502452
4495584
4181684
3880184
4076752
4324476

k02
4740476
4613552
5000824
4651004
4983744
4782000
4578132
4995736
4866236
4886708

k03
5512496
4369532
5240996
5651316
5592576
5138796
5654520
4958748
4926692
4771440

k03
5018168
4754100
4190852
4752392
4751676
4757612
4261576
4719812
5011200
4748184

k04
5449888
4424276
3852588
4975252
4124864
4352132
4312640
3624964
4292948
4836768

k04
4966564
4394576
4863616
4637548
4390344
4603496
4520012
4572800
4702028
4516292

k05
5889280
4456228
4747660
5086540
4669720
5380372
5483968
4945564
4576228
5417424

k05
4283620
3607416
4987832
4188556
4507488
3778208
4466740
4224304
4139244
4401076

k06
5323720
3868852
4620260
4946292
4269512
5290828
4481024
3920052
4643204
5158624

k06
4539668
4316584
4579568
4342668
4328760
4440376
3944292
4805416
4849028
3986228

k07
4883940
3953008
4494440
4890960
4609116
5023512
4424516
4205224
4589496
4584188

k07
4616684
3998032
4826424
3870748
4365184
4532552
4602172
4979968
4155884
4458932

k08
5096752
5087660
5234220
5555436
4842736
4220988
5243840
4578908
4590316
4964904

k08
3813752
4756508
5644580
4207848
4215756
4773724
4523976
4829724
5056808
4795488

k09
5608548
4668984
5051096
5566264
4685556
4954752
5052164
4292680
5200520
4936772

k09
4416132
4189344
4455936
3955876
4269224
4365456
3704772
4942600
4396772
4482436

rank
0
4
1
9
0
9
4
4
6
6

rank
6
9
8
9
4
0
1
8
9
3

Table 18: Distances and Ranks among Key Profiles for 3-round TREYFER(3.0M Local
Optima Profiled)

each two bits. It is necessary to develop a more sophisticated scheme which can more

accurately present the correlations between keys.

Third, current profiles similarity scheme only considers the 1-norm distance measures.

75

Chapter 5

Conclusion and Future Work

In this thesis, we concentrated on the study of construction of special Boolean functions

using heuristic methods. In the mean time, we also applied heuristic methods to break

existing ciphers. Throughout this thesis,

• We have successfully constructed several examples for (10,2, 7,488) Boolean func

tions. This result affirmatively answered the open problem about the existence of

such functions.

• We constructed several examples for (8,116), (10,492), (12,2010) Boolean func

tions by simulated annealing method. These results hit the upper bound of the non-

linearity of balanced Boolean functions based on Dobbertin's conjecture in [16]. Al

though such functions were already constructed in the literature, they are all con

structed in arithmetic ways.

• We proposed methods for attempting to construct (8,118), (10,494), and (12, 2012)

Boolean functions, which decreases the complexity of the search procedure. We

also provided mathematic formula to construct (12, 2012) functions from (10,494)

function (if exists).

76

• Some attempts were made to break symmetric ciphers including Geffe Cipher, TREYFER

cipher, and so on.

Based on the research elaborated in this thesis, further studies can be conducted in the

following directions.

• Construction of Boolean functions

- Apply different heuristic methods to attempt on constructing examples of Boolean

functions to break Dobbertin's conjecture, for example, (12,2012), (14,8122)

Boolean functions.

- Explore more on the mathematic background of Boolean functions. With the

increase in variable N, using pure heuristic methods to construct becomes more

and more difficult. Sound mathematic background knowledge will help to de

sign a better cost function. We can also construct Boolean functions first by

arithmetic construction, and then use it as the initial state of heuristic method to

achieve better solution.

- Attempt to design better cost functions.

- Experiment with larger N, for example, N = 14, N = 16.

• Attack on ciphers

Although the methods we applied could not break strong ciphers, we may attempt to

use different and more sophisticated local optima search scheme, local optima profile

scheme, and profiles similarity scheme to employ key distinguishability and to refine

the cost functions for reconstructing the initial state of stream ciphers.

77

Bibliography

[1] Federal Information Processing Standards Publication (FIPS 197). Advanced encryp

tion standard (aes). Nov.26,2001.

[2] John A.Clark and Juan M.E. Tapiador. Analysis of local optima in block ciphers.

http.V/eprint. iacr. org/2007/.

[3] C. Adams. Constructing symmetric ciphers using the cast design procedure. Designs,

Codes and Cryptography, 12(3):283—316, 1997.

[4] C. Adams and S. Tavares. Generating and counting binary bent sequences. IEEE

Transactions on Information Theory, 36(5): 1170-1173, 1999.

[5] A.Dimovski and D.Gligoroski. Generating highly nonlinear boolean functions using a

genetic algorithm. Proc. IEEE 6th International Conference on Telecommunications

in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003, pages

604-607, 2003.

[6] Paul C. van Oorschot Alfred J. Menezes and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[7] R. J. Anderson. Faster attack on certain stream ciphers. ELECTRONICS LETTERS,

29(15):1322-1323, 1993.

78

http://http.V/eprint

[8] Musbah J. Aqel, Ziad A. Alqadi, and Ibraheim M. El Emary. Analysis of stream ci

pher security algorithm. Journal of Information and Computing Science,England, UK,

2(4):288-298, 2007.

[9] Anna Bernasconi and Bruno Codenotti. Spectral analysis of boolean functions as a

graph eigenvalue problem. IEEE Trans. Computers, 48(3):345-351, 1997.

[10] Anna Bernasconi and Bruno Codenotti. A characterization of bent functions in thers

of strongly regular graphs. IEEE Trans. Computers, 50(9):984-985, 1999.

[11] C. Carlet. A construction of bent functions. Finite Fields and Applications, London

Mathmatical Society .Lecture Series 233, Cambridge University Press.

[12] J. Clark, J. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving boolean func

tions satisfying multiple criteria. In INDOCRYPT 2002 in Lecture Notes in Computer

Science Springer-Verlag, 2551:246-259, 2002.

[13] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS '98: Pro

ceedings of the The International Conference on Smart Card Research and Applica

tions, pages 277-284. Springer-Verlag, 2000.

[14] Deepak Dalai. Cryptographic properties of boolean functions and s-boxes. PHD

thesis , Katholieke Universiteit Leuven (Belgium), 2006.

[15] Deepak Dalai. On some necessary conditions of boolean functions to resist algebraic

attacks. PHD thesis , Indian Statistical Institute (Kolkata, India), 2006.

[16] H. Dobbertin. Construction of bent functions and balanced boolean functions with

high nonlinearity. In Fast Software Encryption (Workshop on Cryptographic Al

gorithms, Leuven 1994 (1995), no. 1008 in Lecture Notes in Computer Science,

Springer- Verlag.

79

[17] Ali Doganoksoy et al. Constructions of highly nonlinear balanced boolean functions.

/. Ulusal Kriptoloji Sempozyumu, 2005.

[18] M. Gilli and P. Winker. Heuristic Optimization Methods in Econometrics. 2007.

[19] Fred Glover and Gary A. Kochenberger. Handbook ofMetaheuristics. Springer, 2003.

[20] J.Clark, J.Jacob, S.Maitra, and P.Stanica. Almost boolean functions: The design of

boolean functions by spectral inversion. Computational Intelligence, 20:450-462,

2004.

[21] R.A.Scholtz J.D.Olsen and L.R.Welch. Bent-function sequences. IEEE Transactions

on Information Theory, IT-28(6).

[22] J.F.Dillon. Elementary hadamard difference sets. Proceedings of the Sixth South

eastern Conference on Combinatorics, Graph Theory and Computing, F. Hoffman et

al.(Eds), Utilitas Math.

[23] Peter Thompson Julian F. Miller. Restricted evaluation genetic algorithms with tabu

search for optimising boolean functions as multi-level and-exor networks. In Pro

ceedings of Evolutionary Computing, AISB Workshop' 1996, pages 85-101, 1996.

[24] Robin J.Wilson, introduction to Graph Theory (second Edition). Academic Press,

1979.

[25] Seclk Kavut and Melek D. Yucel. Generalized rotation symmetric and dihedral

symmetric boolean functions - 9 variable boolean functions with nonlinearity 242.

eprint.iacr.org/2007/308, 2007.

[26] Selcuk Kavut, Subhamoy Maitra, and Melek D. Yucel. Search for boolean functions

with excellent profiles in the rotation symmetric class. IEEE Transactions on Infor

mation Theory, 53(5), 2007.

80

http://eprint.iacr.org/2007/308

[27] Selcuk Kavut, Melek D. Yucel, and Subhamoy Maitra. Construction of resilient func

tions by the concatenation of boolean functions having nonintersecting walsh spectra.

BFCA '07, 2007.

[28] Khoongming KHOO and Guang GONG. New construction for balanced boolean

functions with very high nonlinearity. IEICE TRANS. FUNDAMENTALS, E90-A:29-

35, 2007.

[29] F.J. MacWilliams and N.J.A Sloane. The theory of error correcting codes. North-

Holland Publishing Company, Amsterdam, 1978.

[30] S. Maitra and P. Sarkar. New directions in design of resilient boolean functions.

Advances in Cryptology - CRYPTOS00. , number 1880 in Lecture Notes in Lecture

Notes in Computer Science, pages 515-532, 2000.

[31] Subhamoy Maitra, Sumanta Sarkar, and Deepak K. Dalai. On dihedral group invariant

boolean functions. International Workshop on Boolean Functions: Cryptography and

Applications, 2007.

[32] Soumen Maity and Subhamoy Maitra. Minimum distance between bent and 1-

resilient boolean functions. Workshop on Fast Software Encryption, FSE 2004, Lec

ture Notes in Computer Science, Springer, Berlin, 3017:143-160, 2004.

[33] M. Matsui. Linear cryptanalysis method for des cipher. Advances in Cryptology -

EUROCRYPT'93 of Lecture Notes in Computer Science,Springer-Verlag, 765:386-

397, 1993.

[34] A. Maximov. Some words on cryptanalysis of stream ciphers. PhD thesis, Lund

University, Lund, Sweden, 2006.

[35] W. Millan, A. Clark, and E Dawson. Smart hill climbing finds better boolean func

tions. En Workshop on Selected Areas in Cryptology (SAC97), pages 50-63, 1997.

81

[36] M. R. A. H. Teller N. C. Metropolis, A. W. Rosenbluth and E. Teller. Equation of

state calculation by fast computing machines. /. Chem. Phys., 21:1087-1092, 1953.

[37] J. Pieprzyk and C. X. Qu. Fast hashing and rotation-symmetric functions. Journal of

Universal Computer Science, 5(1):20-31, 1999.

[38] B. Preneel. Analysis and design of cryptographic hash functions. PHD thesis , Uni

versity of Leuven, 1994.

[39] R.A.Scholtz RV.Kumar and L.R.Welch. Generalized bent functions and their proper

ties. J. Combinatorial theory, 40(A):90-107, 1985.

[40] R.L.McFarland. A family of difference sets in non-cyclic groups. /. Combinatorial

Theory, A 15:1-10, 1973.

[41] O. S . Rothaus. On bent functions. /. Combinatorial theory, 20(A):300-305, 1976.

[42] R.Yarlagadda and J.E.Hershey. Analysis and synthesis of bent sequences. Computers

and Digital Techniques, IEE Proceedings E, 136(2): 112-123, 1989.

[43] Z. Saber, M. F. Uddin, and Amr Youssef. On the existence of (9,3,5, 240) resilient

functions. IEEE Transactions on Information Theory, 52:2269-2270, 2006.

[44] R Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient boolean

functions. Proc. ofCypto 2000, LNCS 1880, Springer-Verlag, pages 516-533, 2000.

[45] R Sarkar and S Maitra. Construction of nonlinear resilient boolean functions using

"small" affine functions. IEEE Transactions on Information Theory, 50(9), 2004.

[46] T. Siegenthaler. Correlation immunity of nonlinear combining functions for cryp

tographic applications. IEEE Transactions on Information Theory, IT-30:776-780,

1984.

82

[47] P. Stanica and S. Maitra. Rotation symmetric boolean functions U count and cryp

tographic properties. R.C. Bose Centenary Symposium on Discrete Mathematics and

Applications, Electronic Notes in Discrete Mathematics, Elsevier, 15:139-145, 2002.

[48] P. Stanica and S. Maitra. A constructive count of rotation symmetric functions. Inf.

Process. Lett., 88:299-304, 2003.

[49] P. Stanica, S. Maitra, and J. Clark. Results on rotation symmetric bent and correlation

immune boolean functions, in Proc. Fast Software Encryption Workshop (FSE 2004),

New Delhi, India (Lecture Notes in Computer Science), 3017:161-177, 2004.

[50] Pantelimon Stanica. Graph eigenvalues and walsh spectrum of boolean functions.

Electronic Journal of Combinatorial Number Theory, 7(2), 2007.

[51] Mohammad Faisal Uddin. Artificial life techniques for cryptology. M.ASc thesis ,

Concordia University, 2006.

[52] P.J. van Laarhoven and E.H. Aarts. Simulated Annealing: Theory and Applications

(Mathematics and Its Applications). Springer-Verlag, 1987.

[53] G. Xiao and J. L. Massey. A spectral characterization of correlation-immune combin

ing functions. IEEE Transactions on Information Theory, IT-34(3):569-571, 1988.

[54] X.M.Zhang and Y.Zheng. Gac - the criterion for global avalanche characteristics

of cryptographic functions. Journal of Universal Computer Science, l(5):316-333,

1995.

[55] G. Yuval. Reinventing the travois: Encryption/mac in 30 rom bytes. Proc. of the 4th

International Workshop on Fast Software Encryption (FSE'97), 2(4):288-298:205-

209, 1997.

83

