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ABSTRACT 

Signal-Perturbation-Free Semi-Blind Channel Estimation for 

MIMO-OFDM Systems 

Feng Wan, Ph.D. 

Concordia University, 2009 

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-

OFDM) has been considered as a strong candidate for the beyond 3G (B3G) wireless 

communication systems, due to its high data-rate wireless transmission performance. 

It is well known that the advantages promised by MIMO-OFDM systems rely on the 

precise knowledge of the channel state information (CSI). In real wireless environ

ments, however, the channel condition is unknown. Therefore, channel estimation is 

of crucial importance in MIMO-OFDM systems. 

Semi-blind channel estimation as a combination of the training-based or pilot-

assisted method and the pure blind approach is considered to be a feasible solution 

for practical wireless systems due to its better estimation accuracy as well as spec

tral efficiency. In this thesis, we address the semi-blind channel estimation issue of 

MIMO-OFDM systems with an objective to develop very efficient channel estimation 

approaches. 

In the first part of the dissertation, several nulling-based semi-blind approaches 

are presented for the estimation of time-domain MIMO-OFDM channels. By incor

porating a blind constraint that is derived from MIMO linear prediction (LP) into a 
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training-based least-square method, a semi-blind solution for the time-domain chan

nel estimation is first obtained. It is revealed through a perturbation analysis that 

the semi-blind solution is not subject to signal perturbation and therefore is superior 

to pure blind estimation methods. The LP-based semi-blind method is then extended 

for the channel estimation of MIMO-OFDM systems with pulse-shaping. By exploit

ing the pulse-shaping filter in the transmitter and the matched filter in the receiver, 

a very efficient semi-blind approach is developed for the estimation of sampling du

ration based multipath channels. A frequency-domain correlation matrix estimation 

algorithm is also presented to facilitate the computation of time-domain second-order 

statistics required in the LP-based method. The nulling-based semi-blind estimation 

issue of sparse MIMO-OFDM channels is also addressed. By disclosing and using a 

relationship between the positions of the most significant taps (MST) of the sparse 

channel and the lags of nonzero correlation matrices of the received signal, a novel 

estimation approach consisting of the MST detection and the sparse channel estima

tion, both in a semi-blind fashion, is developed. An intensive simulation study of all 

the proposed nulling-based methods with comparison to some existing techniques is 

conducted, showing a significant superiority of the new methodologies. 

The second part of the dissertation is dedicated to the development of two signal-

perturbation-free (SPF) semi-blind channel estimation algorithms based on a novel 

transmit scheme that bears partial information of the second-order statistics of the 

transmitted signal to receiver. It is proved that the new transmit scheme can com

pletely cancel the signal perturbation error in the noise-free case, thereby improving 

largely the estimation accuracy of correlation matrix for channel estimation in noisy 
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conditions. It is also shown that the overhead caused by the transmission of the SPF 

data is negligible as compared to that of regular pilot signals. By using the proposed 

transmit scheme, a whitening rotation (WR)-based algorithm is first developed for 

frequency-domain MIMO-OFDM channel estimation. It is shown through both theo

retical analysis and simulation study that the new WR-based algorithm significantly 

outperforms the conventional WR-based method and the nulling-based semi-blind 

method. By using MIMO linear prediction, the new WR-based algorithm utilizing 

the SPF transmit scheme is then extended for time-domain MIMO-OFDM channel 

estimation. Computer simulations show that the proposed signal-perturbation-free 

LP-based semi-blind solution performs much better than the LP semi-blind method 

without using the proposed transmit scheme, the LS method as well as the nulling-

based semi-blind method in terms of the MSE of the channel estimate. 
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Chapter 1 

Introduction 

1.1 Background 

The third-generation (3G) mobile communication technologies, which were pro

posed in the 1990s and are still under development today, provide users with high-

data-rate mobile access. The three major radio interface standards for 3G are wide

band CDMA (WCDMA), time-division CDMA (TD-SCDMA) and CDMA2000. The 

data rate of 3G systems are from 144kb/s for high-mobility traffic up to 2Mb/s for 

very-low-mobility traffic in good conditions. Due to some intrinsic limitations with 

the radio interface of 3G systems, it is very difficult to extend to very high data rate 

such as lOOMb/s. Driven by wide-band multimedia and integrated services, therefore, 

future wireless networks, called B3G (beyond 3G) or 4G are anticipated to provide 

reliable fraudulence of very high data rates ranging from lOOMb/s to lGb/s for high 

to low-mobility applications. This so-called Long-Term Evolution (LTE) is driven by 

the telecommunication operator's desire to increase their profit-to-investment ratio 

as well as the ever increasing demand on new wide-band services. In addition to 
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its much wider bandwidth, B3G networks are expected to be highly intelligent and 

cognitive. In particular, they should provide high Quality of Service (QoS) to dif

ferent grades of users and be robust to any interruptions/interferences, fast changing 

channel conditions and environments, and large fluctuations in traffic load. 

Two key enabling technologies have been identified to meet the goals of B3G 

networks: multi-input multi-output (MIMO) and orthogonal frequency division mul

tiplexing (OFDM) [1-5]. It is now well recognized that the combination of the two 

technologies, namely, MIMO-OFDM, would improve the spectral efficiency as well as 

the system performance in wireless fading channels. With multiple transmit and mul

tiple receive antennas, MIMO systems can achieve either a diversity gain to combat 

signal fading (e.g. space-time block codes) or to obtain a capacity gain called spatial 

multiplexing (e.g. V-BLAST) [3,4]. It means that, both high data rate and supe

rior system performance can be achieved, without increasing the total transmission 

power or bandwidth, by employing MIMO transmissions. Meanwhile, the common 

frequency-selective problem of wireless channels caused by inter-symbol-interference 

(ISI) can be solved by OFDM technique without the need for complex equalization [6]. 

By dividing an ISI channel into a set of sub-carriers, the information symbols can be 

transmitted in parallel over the channel. Since the data rate per subchannel is only a 

small fraction of the system's data throughput, the subchanel becomes frequency-flat. 

Thus, the need for channel equalization can be circumvented. Additionally, OFDM 

offers easy scalability to different bandwidth requirement. The MIMO-OFDM tech

nology will improve the spectral efficiency and capacity of the wireless networks, and 

it has therefore been considered as a strong candidate for B3G systems [7]. 
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1.2 MIMO-OFDM Channel Estimation 

The advantages promised by MIMO-OFDM systems rely on the precise knowledge 

of the channel state information (CSI). The detection of the data and some other 

signal processing tasks in MIMO-OFDM systems, such as data decoding, space-time 

processing, limited feedback pre-coding, source and relay power allocation etc, require 

full or partial knowledge of CSI. It has been proved in [3] that when the channel is 

Rayleigh fading and perfectly known to the receiver, the capacity of MIMO-OFDM 

systems grows linearly with the less of transmit and receive antennas. Therefore, 

channel estimation is of crucial importance in MIMO-OFDM systems. 

Generally speaking, MIMO-OFDM channels can be estimated in either the fre

quency or the time domain [8]. In the frequency-domain channel estimation approach, 

the frequency-domain channel with respect to some pilot subcarriers is first estimated 

individually and then used to estimate the frequency-domain channel with respect to 

other desired subcarriers by using a frequency interpolation technique [9,10]. In 

the time-domain channel estimation approach, the time-domain channel impulse re

sponse is first estimated and then utilized to form a frequency-domain channel via 

an FFT process. Since the frequency-domain channel estimation approach focuses 

on the estimation of frequency-flat MIMO channels, while the time-domain channel 

estimation approach focuses on the frequency-selective MIMO channels, the former 

is much simpler to implement. However, the frequency-domain channel estimation 

approach requires much larger number of OFDM symbols to acquire an accurate 

channel estimate. 
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Since in the frequency-domain channel estimation approach, the MIMO-OFDM 

channel with respect to each subcarrier can be described by a frequency-flat fading 

channel, it is necessary to briefly review some frequency flat MIMO channel esti

mation techniques. Generally speaking, there are three kinds of channel estimation 

approaches for frequency flat MIMO channel estimation. First, the training based 

methods [9-12], such as the least squares (LS), maximum likelihood (ML), maximum 

a posteriori (MAP) and maximum mean square error (MMSE) algorithms, employ 

known training signals to render an accurate channel estimation. In contrast to 

training based methods, blind channel estimation algorithms, such as those proposed 

in [13-16], which exploit the second-order cyclo-stationary statistics, correlative cod

ing and other properties, have a better spectral efficiency. With the idea of both the 

training-based and blind algorithms, semi-blind channel estimation techniques can 

potentially enhance the quality of MIMO channel estimation [17-24]. With a small 

number of training symbols, problems such as ambiguities and mis-convergence of the 

blind methods can be solved. On the other hand, the use of the available data in 

semi-blind techniques can improve the accuracy of channel estimation. 

We now give a brief review of another popular approach, namely, the time-domain 

channel estimation approach. Similar to the frequency-domain channel estimation 

approach, the time-domain MIMO-OFDM channel estimation approach can be also 

categorized into three classes, namely, the training-based method, the blind method 

and the semi-blind one as a combination of the first two methods. First, the training-

based methods employ known training signals to render an accurate channel estima

tion [25-28]. One of the most efficient training-based methods is the LS algorithm, for 
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which an optimum pilot design scheme has been given in [25,29,30]. When the full or 

partial information of the channel correlation is known, a better channel estimation 

performance can be achieved via some minimum mean-square-error (MMSE) meth

ods [26]. By using decision feedback symbols, the Takagi-Sugeno-Kang (TSK) fuzzy 

approach proposed in [27] can achieve a performance similar to the MMSE methods 

while with a low complexity. In contrast to training-based methods, blind MIMO-

OFDM channel estimation algorithms, such as those proposed in [31-36], often use 

the second-order stationary statistics, correlative coding, or other properties to at

tain a better spectral efficiency. With a small number of training symbols, semi-blind 

channel estimation algorithms have been proposed to estimate the channel ambiguity 

matrix for space-time coded OFDM systems [37], the uplink of multiuser MIMO-

OFDM systems [38] and MIMO-OFDM systems with non-redundant precoding [33], 

respectively. 

It is worth pointing out that, most of the existing blind and semi-blind MIMO-

OFDM channel estimation methods are based on the second-order statistics of a long 

vector whose size is equal to or larger than the number of subcarriers. To estimate 

the correlation matrix reliably, they need a large number of OFDM symbols, which is 

not suitable for fast time-varying channels. In addition, since the matrices involved 

in these algorithms are of huge size, their computational complexity is extremely 

high. In contrast, linear prediction-based algorithms for the channel estimation of 

MIMO systems are based on the second-order statistics of a short vector with a 

size only slightly larger than the channel length [17,39-46]. Linear prediction has 

been widely used in blind MIMO channel estimation and equalization. The key 
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idea in this technique is to represent the received MIMO signal as a finite-order 

autoregressive (AR) series provided that the transmitted signal is uncorrelated in time 

[39]. Based on the AR series, a linear prediction filter can be obtained and used for 

second-order deconvolution. By combining the linear prediction with a higher-order 

statistics (HOS) or the weighted least-squares method, some blind channel estimation 

algorithms have been derived [39]. However, these algorithms require a large sample-

size and are not robust. Alternatively, a semi-blind algorithm that uses the linear 

prediction as the blind constraint, in combination with some training data, has been 

proposed [17,42,43], yielding a better estimation performance. On the other hand, the 

superiority of the semi-blind method has not been theoretically justified. Moreover, 

the weighting factor employed to trade off the LS and the blind criteria has not been 

appropriately determined. As such, the resulting channel estimation performance, 

though better than that of the LS method, could be further improved. It should also 

be noted that the existing semi-blind method for MIMO channel estimation cannot 

be applied to MIMO-OFDM systems. 

The previously introduced channel estimation algorithms are all based on the 

assumption that the channel is time-invariant. In practice, due to the relative mo

tion between the transmitter and the receiver, or the motion of the scatters, doppler 

spread effect exists, thus always introducing a time-varying channel [47]. In many of 

the earlier works, a quasi-static block-fading channel model is used. The propagation 

channel is assumed to be constant within each time-slot, but it is changed after some 

time-slots. Under the quasi-static assumption, the previously discussed channel esti

mation algorithms can then be used for each time-invariant slot, while Kalman filter 
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or some adaptive algorithms can be employed to track the change of the channel ma

trix for different time slots [48-51]. Moreover, some channel model based algorithms 

have been proposed for the tracking of time-varying MIMO channels [52-58]. One 

approach is to characterize the channel impulse response by delayed paths. Based 

on the time of arrival (TOA) estimation, this approach has been shown to be able 

to improve the estimation of time-varying channels [54,57,58]. In addition, based 

on the beamforming model [59], the estimation performance of time-varying MIMO 

channels can be improved by estimating the delay and the angular modal spaces via 

modal analysis and by filtering the LS channel estimates as projection onto the modal 

spaces [53]. 

1.3 Motivation and Objectives of the Research 

Considering that the channel estimation techniques suggested by the current mo

bile communication standards are all based on the pilot or training sequence, they 

are not suitable for future broadband services due to their poor spectral efficiency 

as well as possible long processing delay in the receiver. On the other hand, the 

blind channel estimation techniques developed thus far by the research community 

are not likely to be used in B3G networks because of their inferior reliability and ac

curacy as well as high computational complexity. Hence, it is imperative to develop 

efficient and completely new channel estimation techniques for future B3G systems. 

Semi-blind channel estimation as a combination of the training-based or pilot-assisted 

method and a pure blind approach is considered to be a feasible solution for practical 
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wireless systems owing to its better estimation accuracy as well as spectral efficiency. 

Therefore, the main objective of this research is to develop new semi-blind channel 

estimation approaches for MIMO-OFDM systems. 

The first objective of the thesis is to develop new semi-blind approaches for the 

time-domain channel estimation of MIMO-OFDM systems. Most of the existing 

blind and semi-blind methods for MIMO-OFDM channel estimation are based on the 

second-order statistics of a long vector, whose size is equal to or larger than the num

ber of subcarriers. As mentioned earlier, in general, these techniques are not suitable 

for fast time-varying channels and moreover they suffer from a high computational 

complexity. In contrast, a linear prediction-based semi-blind algorithm, that is based 

on the second-order statistics of a short vector with a size only slightly larger than 

the channel length, has been found to be much more efficient than the conventional 

LS methods for the estimation of frequency-selective MIMO channels [17,42]. In this 

thesis, we will extend the linear prediction-based semi-blind approach to the chan

nel estimation of MIMO-OFDM systems, leading to a new nulling-based semi-blind 

channel estimation algorithm. 

It is well known that the pulse-shaping filter as well as the matched filter are 

commonly used in digital communication systems. Perhaps for the sake of simplicity, 

however, many existing channel estimation methods did not take into consideration 

either the effect of the pulse-shaping filter in the transmitter or the matched filter in 

the receiver. As such, these methods have actually been developed for the estimation 

of the composite channel including the pulse-shaping and matched filters. Considering 

that both filters are known to the receiver and the only unknown part is the discrete-
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time channel [60], ignoring their existence would lead to less accurate estimation 

results. By utilizing the information of both filters, some improved channel estimation 

algorithms have been obtained for OFDM systems [61,62] and CDMA systems [63,64]. 

Motivated by this observation, in this thesis, we will propose an improved frequency-

domain nulling-based semi-blind channel estimation algorithm as well as an improved 

LS algorithm for pulse-shaped MIMO-OFDM systems. 

In addition, we will investigate new algorithms for sparse channel estimation of 

MIMO-OFDM systems. By exploiting the sparse structure of the channel, some 

sparse channel estimation algorithms have been developed for OFDM systems [65-68] 

and CDMA systems [69,70], Most of them utilize a training sequence and follow two 

steps: (1) detect the position of the most significant taps (MSTs), and (2) obtain 

an improved channel estimate by exploiting the position of the MSTs. The common 

problem of the existing sparse channel estimation methods is that a large number of 

pilots is needed in order to render an accurate MST detection and channel estimation. 

To increase the spectral efficiency, the available information of users data could be 

applied to both the MST detection and the channel estimation. Unfortunately, very 

little work on blind MST detection and blind sparse channel estimation is found in 

the existing literature. In this thesis, we will develop, for MIMO-OFDM systems, an 

efficient semi-blind sparse channel estimation approach, which comprises the MST 

detection and sparse channel estimation both in a semi-blind fashion. 

The second objective of the thesis is to perform the analysis of the proposed semi-

blind channel estimation approaches. It is known that the solution of linear prediction 

or subspace-based methods is always perturbed by various sources, such as finite data 
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length and measurement noise [71-74]. Perturbation theory has been successfully 

applied to the analysis of subspace-based methods [72,75-77]. In this thesis, we will 

employ a first-order perturbation theory to analyze the MIMO linear prediction as 

well as the resulting blind constraint in order to justify the superiority of our semi-

blind solution over the blind algorithms. Moreover, to facilitate the calculation of the 

weighting factor for the semi-blind estimation solution of the proposed nulling-based 

semi-blind algorithm, we will derive a closed-form expression for the mean square 

error (MSE) of its blind estimation. 

The third objective of the thesis is to develop novel signal-perturbation-free trans

mit schemes and the associated signal-perturbation-free channel estimation algo

rithms. By conducting the perturbation analysis of the subspace-based and linear 

prediction-based channel estimation methods, it is found that some of the blind and 

semi-blind existing channel estimation methods are subject to a signal perturbation 

error, which is caused by the finite data length in the calculation of the correlation 

matrix of the received signal. Since the signal perturbation error exists even in the 

noise free case, the channel estimation performance of those blind and semi-blind 

channel estimation methods, comparing with that of the training-based methods, 

becomes worse in the moderate to high SNR cases. In this thesis, to improve the 

performance of those methods in the moderate to high SNR cases, we will propose 

two novel transmit schemes, which can cancel the signal perturbation error at the 

receiver in channel estimation. Based on the new transmit schemes, we will develop 

two signal-perturbation-free algorithms for the estimation of the frequency-domain 

and the time-domain channels, respectively. 
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1.4 Organization of the Thesis 

The following is a detailed outline of the remaining chapters of the thesis. 

Chapter 2: Some preliminaries required for the development of new channel 

estimation techniques for MIMO-OFDM systems are introduced. First, the modelling 

of MIMO-OFDM systems including the transceiver, channel model and signal model 

is studied. Then, some of the existing algorithms for estimating the frequency-domain 

and the time-domain channels of MIMO-OFDM systems are briefly reviewed. 

Chapter 3: A nulling-based semi-blind approach that uses a training-based least-

square criterion along with a blind constraint is proposed for MIMO-OFDM channel 

estimation. The blind constraint is derived from the linear prediction of the re

ceived MIMO-OFDM signal and is used with a weighting factor in the semi-blind 

cost function. An appealing scheme for the determination of the weighting factor is 

also presented as a part of the proposed approach. A perturbation analysis of the 

proposed method is conducted to justify the superiority of the new semi-blind so

lution and to obtain a closed-form expression for the MSE of the blind constraint, 

further facilitating the calculation of the weighting factor. The proposed method is 

validated through computer simulation-based experimentations, showing a very high 

estimation accuracy of the proposed semi-blind solution in terms of the MSE of the 

channel estimate. 

Chapter 4: A frequency-domain semi-blind channel estimation approach is pro

posed for the pulse-shaped MIMO-OFDM systems. First, the effect on channel esti

mation of pulse-shaping that is normally used in a practical communication system 

11 



is studied. By utilizing the knowledge of pulse-shaping and matched filtering, an 

improved semi-blind algorithm is developed for estimating sampling duration-based 

channels and an LS algorithm is designed for estimating upsampling duration-based 

channels. Moreover, in the nulling-based semi-blind approach, we propose an effi

cient algorithm for the computation of the time-domain correlation matrix directly 

from the received frequency-domain signal. A number of computer simulation-based 

experiments are conducted, with results confirming the effectiveness of the proposed 

methods. 

Chapter 5: A semi-blind approach is proposed for the estimation of sparse 

MIMO-OFDM channels. An analysis of the second-order statistics of the signal re

ceived through a noise-free sparse channel is first conducted, revealing the sparsity 

and some other properties of the correlation matrices of the received signal. These 

properties lead to a direct relationship between the positions of the most significant 

taps (MST) of the sparse channel and the lags of the nonzero correlation matrices, 

based on which an efficient MST detection algorithm is developed via a pilot-assisted 

least-squares estimation. Then, by using the acquired MST information and imposing 

a blind constraint on the channel vector with respect to the MSTs, a semi-blind ap

proach is presented for the estimation of the sparse channel in the least squares sense. 

Moreover, a signal perturbation analysis of the proposed approach is conducted, show

ing that the new semi-blind solution is not subject to the signal perturbation error 

when the sparse channel is a decimated version of a full FIR channel. Computer sim

ulation for the estimation of various sparse channels using the proposed semi-blind 

approach are also undertaken. 
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Chapter 6: A signal-perturbation-free whitening-rotation (WR)-based approach 

is proposed for semi-blind estimation of frequency-domain MIMO-OFDM channels. A 

perturbation analysis of two subspace-based methods, namely, the whitening-rotation 

(WR)-based algorithm and the nulling-based algorithm, is first conducted, showing 

that in the noise-free case, the former is subject to a signal perturbation error, while 

the latter is devoid of signal perturbation error due to an ideal nulling constraint 

imposed on the channel matrix. This explains why the WR-based method is efficient 

only in the low SNR case, and concludes that the nulling-based approach is better 

for moderate to high SNRs. A new transmit scheme is then proposed to cancel 

the signal perturbation error at the receiver in order to improve the performance of 

the WR-based method in the case of high SNR. Moreover, a perturbation analysis of 

the new WR-based semi-blind method incorporating the proposed transmit scheme is 

conducted, leading to a novel closed-form expression for the mean square error (MSE) 

of the channel estimate. Computer simulations show that the proposed approach 

significantly outperforms the existing WR-based method as well as the nulling-based 

method for all SNRs. 

Chapter 7: A novel signal-perturbation-free (SPF) linear prediction (LP)-based 

approach is presented for semi-blind estimation of time-domain MIMO-OFDM chan

nels. A very efficient transmit scheme that can completely cancel the signal pertur

bation error at the receiver in the noise-free case is first proposed. Based on the 

new transmit structure, a signal-perturbation-free semi-blind channel estimation ap

proach is then developed by using the MIMO linear prediction along with a whitening 

rotation algorithm in which the ambiguity matrix is estimated via a training-based 
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maximum likelihood method. Computer simulations show that the proposed signal-

perturbation-free LP-based semi-blind solution significantly outperforms the LP semi-

blind method without using the proposed transmit scheme as well as the LS method. 

Chapter 8: This final chapter contains concluding remarks and some possible 

directions for future work to extend this research. 

1.5 Main Contributions 

The work presented in this thesis represents a number of novel contributions to 

the field of MIMO-OFDM channel estimation. The most significant contributions of 

this research are summarized as follows: 

1. A nulling-based semi-blind approach is proposed for MIMO-OFDM channel 

estimation. Unlike most of the existing blind and semi-blind MIMO-OFDM 

channel estimation methods, which require a large number of OFDM symbols, 

the proposed approach is able to achieve a very high channel estimation accuracy 

by using only a few OFDM symbols while the full or partial information of the 

channel correlation is not needed. 

2. A perturbation analysis of linear prediction-based channel estimation algorithms 

is conducted. It proves that the proposed nulling-based semi-blind algorithm is 

not subject to the signal perturbation error, and justifies why the conventional 

LP-based blind algorithms suffer from a poor performance in MIMO-OFDM 

channel estimation even in the high SNR case. Moreover, a closed-form ex

pression is derived for the MSE of the blind constraint in the nulling-based 
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semi-blind channel estimation approach, further facilitating the calculation of 

the weighting factor. 

3. Two channel estimation methods are proposed for pulse-shaped MIMO-OFDM 

systems. By exploiting the pulse-shaping filter available in the transmitter 

and the matched filter in the receiver, a semi-blind estimation algorithm and 

an enhanced LS algorithm are developed for the sampling- and upsampling-

duration-based channels, respectively. 

4. A frequency-domain correlation matrix estimation algorithm is proposed for 

channel estimation of MIMO-OFDM systems. By computing the time-domain 

correlation matrix directly from the received frequency-domain signal, an IFFT 

operation is avoided, that is usually required in time-domain estimation meth

ods to convert a good frequency-domain signal to time domain when a high 

quality time-domain signal is not available. 

5. An efficient semi-blind sparse channel estimation approach, which comprises the 

MST detection and sparse channel estimation both in a semi-blind fashion, is 

proposed for MIMO-OFDM systems. Simulation studies based on various sparse 

channels confirm that the proposed sparse semi-blind approach significantly 

outperforms the sparse LS method as well as the regular LS and semi-blind 

techniques. 

6. A very efficient signal-perturbation-free transmit scheme is proposed to cancel 

the signal perturbation error at the receiver to improve the performance of the 
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frequency-domain channel estimation. This novel idea is also extended for the 

estimation of time-domain channels. 

7. A new whitening-rotation (WR)-based semi-blind method using the signal-

perturbation-free transmit scheme is developed for the frequency-domain chan

nel estimation. A thorough study of the new WR-based algorithm via perturba

tion analysis leads to a novel closed-form expression for the mean square error 

(MSE) of the channel estimate. 

8. A signal-perturbation-free linear prediction-based semi-blind approach is pro

posed for MIMO-OFDM systems, which can achieve a significantly improved 

channel estimation performance over some other training-based and semi-blind 

techniques. 
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Chapter 2 

Preliminaries 

This chapter introduces some basic concepts and principles involved in the de

velopment of channel estimation techniques for MIMO and MIMO-OFDM systems. 

Some state of the art literatures relating to the proposed work are also reviewed, 

providing necessary background materials for the development of new approaches in 

later chapters. 

2.1 Modelling of MIMO-OFDM Systems 

2.1.1 Transceiver 

Fig. 2.1 shows a block diagram of a typical transmitter in a MIMO-OFDM system 

with the V-BLAST structure, in which there are NT independent links, each connected 

to a transmit antenna and containing both pilots and information data. The m-th 

OFDM symbol can be written as a vector of the frequency-domain signals, namely, 

XiT (m) = [XiT (m, 0), XiT (m, 1),, • • •, XiT (m, K - \)}T . 
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Figure 2.1: Schematic representation of an MIMO-OFDM transmitter 

where K denotes the number of subcarriers. The output of the IDFT gives the 

time-domain OFDM signal, 

XjT (m) = [xiT (m, 0) , xiT (m, 1), • • •, xiT (m, K - 1)]T , 

After adding a cyclic prefix, each OFDM signal passes through a transmit pulse-

shaping filter and is then sent out by the corresponding antenna. 

Fig. 2.2 shows the block diagram of the MIMO-OFDM receiver including NR 

receive antennas as well as a channel estimation unit. After passing through the 

matched filter and removing cyclic prefix in each link, the received signal at the i^-th 

link can be described as 

YiR (m) = [ViR (m, 0 ) , ViR (™> 1) > • • • > ViR ( ™ > K - ! ) ] T (2.1) 

Then, the received frequency domain signal after the DFT processing is given by 

YiR (m) = [YiR (m, 0) , YiR (m, 1), • • •, YiR (m, K - l))T . 
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Figure 2.2: Schematic representation of MIMO-OFDM receiver 

2.1.2 Channel Model 

Considering that MIMO-OFDM systems are designed for broadband wireless com

munications, the signal bandwidth is always larger than the coherence bandwidth, 

implying that the channel is frequency-selective. Depending on the geometry of the 

antenna array and scatterers, there are two different multipath MIMO channel models 

(or a combination of the two), which are described below [59]: 

1. Beamforming model: In this model, the elements of both the transmit and 

receive antenna arrays are co-located and the scatters can be considered as point 

sources. Each multipath channel is characterized by a direction of departure 

(DOD), direction of arrival (DOA), time of arrival (TOA) and a complex fading 

amplitude. In general, this model fits outdoor channels. For instance, it is 
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adopted as the MIMO model in the 3rd Generation Partnership Project (3GPP) 

TR 25.996. 

2. Diversity model: The elements of the transmit and/or receive antenna arrays 

are not co-located and/or different scatters are modelled as distributed sources. 

This model is generally suitable for an indoor channel. In this model, the 

channel gain from a transmit to a receive antenna is modelled as both a spatially 

and temporally correlated jointly Gaussian random variable with zero mean 

(Rayleigh fading). This model is known to be useful for wireless LAN in IEEE 

P802.ll (IEEE 802.11-03). 

Nevertheless, both of these channel models can be considered as a combination of 

Lc multi-paths, namely, 
L c - l 

Hc(t)=YJTiHt-ti) 
1=0 

where ti is the delay of the l-th. path and T/ is an NR X NT attenuation matrix. 

Considering the pulse-shaping filter gt (t) in the transmitter and the matched filter 

gr (t) in the receiver, the composite channel can be represented by an NR X NT matrix 

H(i), with its (z#,ir)-th element as 

(t) * gt (t) * gr (t) (2.2) 

where hiR^TtC(t) is the (iR,iT)-th element of Hc(£). Most of the existing channel 

estimation methods focus on the composite discrete-time channel, i.e., the sampled 

version of the continuous-time channel response [78]. Thus, each element of the 

discrete-time MIMO-FIR channel is an L-tap FIR filter. Moreover, the channel is 
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considered constant during one OFDM symbol, even though it may change over dif

ferent symbols. Therefore, for the l-th. tap, the channel matrix is given by 

H(m,Z) 

hhi(m,l) hh2(m,l) ... hhNT(m,l) 

h-2,i{m,l) /i2,2(ra,/) ... h2:NT(mJ) 
e/7 NRXNT 

hNR,i(m,l) hNRt2(m,l) ... hNRtNj,(m,l) 

where hiRjiT (m,l), (0 < I < L — 1) represents the composite channel response be

tween the iR-th. receive antenna and i^-th transmit antenna for the Z-th tap for the 

m-th OFDM symbol. 

2.1.3 Signal Model 

We first consider the signal model in the time domain. For notational simplicity, 

the index m of OFDM symbols can be dropped without loss of clarity. Thus, H (m, /), 

xiT (m, n) and yiR (m, n) are reduced to H (I), xiT (n) and yiR (n), respectively. If the 

length of the cyclic prefix is not less than the channel length L, the time-domain 

signal model for the frequency-selective fading channel can be written as 

NT 

yiR (m, n) = ^ hiRiiT (n) ® xiT (m, n) + viR (m, n), m E {0, • • •, g - 1} (2.3) 

where g is the number of OFDM symbols within which the channel remains un

changed, and viR (m, n) EJCNRX1 is a spatio-temporally uncorrelated noise with zero-

mean and variance o\. 

Now we will address the signal model in the frequency domain [25]. Define 

n*R,*T — [̂ *K,*T (0) ) ' " " ) hiR,iT (L — 1)] . 
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After the cyclic prefix is removed, the received signal vector at the iR-th receive 

antenna, which is defined in (2.1), can be rewritten as 

y^H (m) = ^ HiR,iTF$XiT (m) + vifi (m) ,m e {0, • • - , g - 1} (2.5) 
if=l 

where ~H.iR,iT is a circulant matrix with first column given by [h^iT,0ix(/<-_£,)] , the 

vector viR (m) is the noise vector, and F0 is the K x K unitary DFT matrix. It can 

be easily found that the eigenvalue decomposition of H;HijT leads to: 

HiR,iT = F^diag {x/tfFo [hfRiiT, 0 l x ( / f _ L ) f } F0. 

Taking the DFT on both sides of (2.5), the signal model in the frequency domain can 

be derived as: 

NT 

Yifl (m) = ] T diag {N/^F0[hf f l i iT,0 lx (K_L)]
T} X iT (m)+kR (m) ,m 6 {0, • • • ,g - 1} 

(2.6) 

where £iR (m) = F0viR (m). 

2.2 Estimation of Frequency-Domain Channel of MIMO-OFDM 

Systems 

With the OFDM modulation, the MIMO channel with respect to the fc-th sub-

carrier can be described as 

L - l 
-j2ir(kn/K) 

n=0 

Due to some constraints such as the low complexity requirement for channel es

timation and only a few number of subcarriers being used for the data transmis-
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Figure 2.3: Estimation of frequency-domain channel of MIMO-OFDM systems 

sion of a mobile user in OFDM A systems, the channel estimation is often imple

mented in the frequency-domain as shown in Fig. 2.3. In the frequency-domain 

approach, instead of estimating the time-domain channel H (Z), (I = 0,1, • • •, L — 1), 

the frequency-domain channel H F (k) with respect to certain subcarriers are first esti

mated individually, which are in turn used to estimate the frequency-domain channel 

with respect to other desired subcarriers by using an interpolation technique. In this 

case, for each specific subcarrier, the MIMO channel can be simply denoted as H by 

dropping the index k without loss of clarity. Thus, the received signal vector y (n) 

can be written as 

y(n) = Hx(n) + v(n) . (2.7) 

In the following, both training-based and semi-blind algorithms are introduced for 

the estimation of the frequency-flat fading MIMO channel. 
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2.2.1 Training-based MIMO Channel Estimation 

In general, in each data block, the first iVp of the N signals are used for training 

purpose. Defining a pilot matrix consisting of all iVp pilots and the corresponding 

received matrix, respectively, as 

X P ^[x( l ) , - - - ,x ( iVp) ] , 

Y P ^[y ( l ) , - - - , y ( iVp) ] , 

a training-based optimization problem can be written as 

minA= HYp-HXpllJ,. (2.8) 

One efficient way to solve this problem is by using an training-based LS approach, 

yielding an channel estimate as given by 

HLS = YpXp. (2.9) 

Given a constraint on the transmitted training pilot's power as ||Xp||F = NPNT<JX, 

the optimal pilot can be found by minimizing the following cost function 

m i n J i s ^ m i n E j H - HLS 1 subjectto ||XP||J. = NFNTa2
x. (2.10) 

It has been shown in [12] that the optimal pilot matrix should satisfy 

XpXp = NPCTXINT. 

It implies that the optimal pilot matrix should consist of orthogonal vectors with the 

same norm, i.e., \fN?ex. In this case, the MSE of the LS method can be derived as 

M S E L S ^ E { H L S - H 2 U ^ 1 . (2.H) 
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It is obvious that the channel estimation error increases when the number of the 

transmit or receive antennas is increased. On the other hand, the error can be reduced 

by increasing the transmitted power or the number of pilot slots. 

If the channel correlation R H = E {HH f l} is known a priori, a channel estimate 

with improved accuracy can be obtained by using an MMSE estimator [12] 

HMMSE = YP ( X ^ R H X P + Nnall^y1 X$RH. (2.12) 

The performance of this estimator can be evaluated by 

JMMSE = E | ||H - H M M S E O = Trace {(RH
J + N^a^XpX^y1} . 

Given the transmit power constraint ||Xp||F = NpNxcrl, the optimal pilot matrix for 

the MMSE method should satisfy 

XpXp* = - i - {NPNTa2
x + a ^ T r a c e { R H 1 } ) I N R - NRo*vR£. 

ivy 

In this case, it can be shown that the MSE of the MMSE method is given by 

MSEMMSE = 77-77—5-7-77—577 f p - n • (2-13) 
NPNTa£ + ivTcr£Trace {RJJ1 ) 

From (2.11) and (2.13), the gain of the MMSE method over the LS method in terms 

of the MSE is found to be 

1 JV^TraceJRH1} 
^ M ^ - 1 + NPNTal ' ^ 

It should be mentioned that the performance of the MMSE method largely de

pends on R H , which is however unknown in practice. Thus, an accurate estimation of 

R H is of crucial importance for the implementation of the MMSE method. Normally, 
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it can be done by using the second order statistics (SOS)-based methods. These meth

ods, however, require a huge number of samples to obtain an accurate estimate of 

RH- In the next subsection, we will introduce two efficient subspace-based semi-blind 

channel estimation algorithms, which require only a small number of symbols. 

2.2.2 Semi-Blind MIMO Channel Estimation 

First, we introduce the WR-based semi-blind MIMO channel estimation algorithm 

[20,21,23,24]. Its idea originates from a decomposition of the channel matrix, 

H = WQ H , (2.15) 

where W is a whitening matrix and Q is a unitary rotation matrix. Performing the 

singular value decomposition (SVD) of H gives 

H = USV H . (2.16) 

As H has a full column rank, one can partition U and £ according to the signal and 

the noise subspaces of H, namely, 

0 
U = [ U 5 , U J V ] , £ = 

Thus, (2.16) can be rewritten as 

H = U 5 £ S V " . (2.17) 

Obviously, one possible choice of W and Q can be U5S5 and V, respectively. There

fore, the WR-based channel estimation method may be implemented with two steps. 
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The first step is to estimate the whitening matrix W in a blind fashion. From (2.7), 

we can obtain 

RY £ E {y (n) yH (n)} - <ftNR = a2
xHHH (2.18) 

Substituting (2.17) into (2.18) yields 

RY = U 5 S l U f . (2.19) 

Utilizing (2.19), Us and Es can be estimated from the SVD of the matrix Ry = 
J V - 1 

J! E y ( n ) yH (n) ~~ av^NR- Accordingly, an estimate of the whitening matrix W is 
n=0 

obtained as 

W = \Jsts. (2.20) 

We now consider the second step, estimating the rotation matrix Q using the pilot 

signal. As Q is an unitary matrix, the training-based estimation problem of Q can 

be formulated as 

mm 
Q 

YP - WQXp* 2 , subject to QQ H = I. (2.21) 
F 

An ML solution to this optimization problem has been derived in [20,21,23,24] as 

Q = VQUg. (2.22) 

where UQ and VQ are obtained from an SVD of the matrix 

YQ = A ^ I W H Y p X ^ ' (2"23) 

namely, 

YQ = U Q E Q V J . (2.24) 
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It has been proved in [21] that when the pilot matrix is optimal in the LS sense, i.e., 

XpXpf = NpalINr, the Cramer-Rao bound (CRB) of the channel estimate is directly 

proportional to ( the number of unconstrained parameters required to describe H, 

namely, 

E H - H 
F] - 2Npa2

x^ 
(2.25) 

Since the unitary rotation matrix Q has (Q = N% real parameters, from (2.25), one 

can obtain the CRB of the WR-based semi-blind algorithm as [21,23] 

H - H >j-2NPaZ 
(2.26) 

Although the performance of the above semi-blind method is superior to that of 

some training-based methods in the low SNR case, it gets poor with the increase of 

SNR. In the higher SNR case, a nulling-based semi-blind approach may be employed 

[17,18,42,43]. Instead of estimating the whitening matrix W, this approach uses a 

subspace method to obtain an estimate of the nulling subspace of the channel matrix, 

Unun. Then, by utilizing Unuii in conjunction with a training-based LS criterion (2.8), 

a semi-blind cost function can be formulated as 

min A = ||Yp — HXp||F + a UfuiiH (2.27) 

where a > 0 is a weighting factor. Although the solution to this minimization problem 

gives a better estimation performance than the WR-based semi-blind method does for 

high SNRs, its superiority in the high SNR case has not been theoretically justified. 

Moreover, the weighting factor employed to trade off the least square and the blind 

criteria has not been appropriately determined. 
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Figure 2.4: Estimation of time-domain channel of MIMO-OFDM systems 

2.3 Estimation of Time-Domain Channel of MIMO-OFDM 

Systems 

Although the algorithms of estimating frequency-domain channels have a low 

computational complexity, they require a large number of OFDM symbols to ren

der an accurate channel estimation. In this section, we address the issue of esti

mating time-domain channels. As shown in Fig. 2.4, both pilot and data signals 

at all subcarriers can be employed for the estimation of the time-domain channel 

H (/), (I = 0,1, • • •, L — 1). Since the signals on all subcarriers are utilized, a good 

channel estimate can be expected by using only a small number of OFDM symbols 

in this approach. 
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Here, we introduce a training-based LS channel estimation algorithm for MIMO-

OFDM systems [25]. Assume that the Kp sub-carriers, say from ipn0ti to ipn0tKp, of 

each OFDM symbol carry the pilot signal. The transmitted and the received pilot 

vectors for each transmit and receive antenna pair can be defined as 

XjT)Piiot (rn) = [XiT (m, ipii0ti), • • • > XiT (m, iPi\0tKp)] , 

Yjfi,Piiot (m) = [YiR (m, ipii0ti), • • •, YiR (m, ip\\otKp)] • 

It should be noted that the pilot signal might not be located at the same position in 

different OFDM symbols. Let Fi be a K x L matrix formed by the first L columns of 

&KxK DFT matrix F0. For the m-th OFDM symbol, one can form a KpxL matrix, 

say F(m), by taking only the rows of Fj associated with the Kp pilot sub-carriers. 

It can be easily verified that, for the pilot sub-carriers, (2.6) can be rewritten as 

NT 

YiHlPiiot (rn) = ^2 xir,piiot-diag (m) F (m) hifl,iT + ^fl,piiot (m) (2.28) 

where 

Xir,piiot_diag (rn) = diag (XiT)Pilot (m)). 

From (2.28), the frequency-domain pilot signal received at the iR-th. receive antenna 

with respect to g OFDM symbols can be obtained as 

i iK,pik>t = -A-hjw + £iR,Piiot ( z . zy j 

where 

1 iil.pilot = [* iR,pilot V^i ) ' ' ' ) * iR,pilot \9 ~ *•)} > 

30 



- 'M, pilot—diag 

(0)F(0) ••• XNT ,pilot—diag (0) F (0) 
A ^ : , . : 

Xi lPiiot-diag (^ ~ l ) F ( g - 1) • • • X ^ p i l o t - d i a g (0 - 1) F (0 - 1) 

hiR=[Kir--XR,NT]T, (2-30) 

Sijj.pilot = |>ifl,pilot {") i " " ' )Si f l ,pilot \9 ~ *•)] • 

From (2.29), one can easily verify that if A has a full column rank of LNT, the channel 

with respect to the iR-th receive antenna can be estimated using the least squares 

approach as 

"4R ~ "• * i/j,pilot = = "-IR 1 "• Sin.pilot- ("•"•'•/ 

It has been shown in [25] that by using a small number of OFDM symbols in the least 

squares method, the MIMO-OFDM channel can be estimated with a high accuracy. 

In the next chapter, based on the LS MIMO-OFDM channel estimation algorithm, 

we will derive a training-based criterion and combine it with a blind criterion to 

formulate a semi-blind channel estimation problem, leading to an appealing channel 

estimation solution that is superior to the original LS approach. 

2.4 Linear Prediction-based Channel Estimation Algorithms 

for MIMO Systems 

In the previous two sections, we have introduced a few algorithms for MIMO-

OFDM channel estimation. Considering that there exists some similarity between 

the MIMO system model and its OFDM counterpart, one may expect that the chan-
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nel estimation techniques originally proposed for MIMO systems be generalized for 

MIMO-OFDM systems. In this section, we present two efficient MIMO channel es

timation algorithms that are based on linear prediction. This linear prediction idea 

will be extended for MIMO-OFDM channel estimation in the next chapter. Linear 

prediction has been widely used in blind MIMO channel estimation and equaliza

tion [17,39-41,44-46], where the key idea is to represent the received MIMO signal 

as a finite-order autoregressive (AR) process under the assumption that the trans

mitted signals are uncorrelated in time [39]. In the following, we review in brief the 

linear prediction-based blind and semi-blind channel estimation techniques for MIMO 

systems. 

2.4.1 Linear Prediction-based Blind Channel Estimation 

Here, we introduce the MIMO linear prediction and its application to blind channel 

estimation [39]. Consider a MIMO system with NT transmit and NR (> NT) receive 

antennas. The MIMO channel can be characterized by an array of L-tap FIR filters 

described as L matrices H (n) (n = 0,1, • • •, L — 1) of size NR X NT, whose (IR, tT)-th 

element hiTiiR (n) represents the channel response from the ir-th transmit antenna to 

the iR-th receive antenna. Given the transmitted signal vector 

x (n) = [xi (n), • • •, XNT (n)]T , (2.32) 

the received signal vector can be written as 

y (") = [?/i (ri), • • •, yNR (n)]T , (2.33) 
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with its element being given by 

NT 

Via (n) = ^2 hi^T (n) * XiT (n) + viR (n) (2-34) 

where * denotes the linear convolution and ViR (n) is a spatio-temporally uncorrelated 

zero mean noise with variance a^. 

Consider the problem of predicting y (n) from 

yp(n-l)±[yT(n-l),---,yT(n-P))T 

for the noise-free case. The prediction error can be defined as 

y ( i ) |yp(n-i) = y (n) - y (n) |y p („-i) = Ppyp+i (n) 

where P p = [I/vfi, —Pp] and P p is the linear predictor matrix consisting of P NR X NR 

matrices as given by 

P p = [ P p ( l ) , P P ( 2 ) , - . . , P p ( P ) ] . 

Minimizing the variance of the prediction error leads to the following optimization 

problem [17] 

<rjp = minE {y (n) |yp(„_i) yH (n) |y p(„-i) } = minPpRy P # (2.35) 
r p r p 

with 

PpRy P + 1 a\P 0 ••• 0 (2.36) 

Defining 

R(fc = k2 - h) = E [y(n - fc1)y
//(n - k2)} , 
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Rn_! ^ E [ y p ( n - l ) y £ ( n - l ) ] 

R(0) R(l) ••• R ( P - l ) 

R(- l ) R(0) ••• R(P-2 ) 

R ( l - P ) R(2 -P) ••• R(0) 

R„ =E[y(n)y£(n-l)] 

R(l) R(2) ••• R ( P - l ) 

(2.37) 

(2.38) 

the MIMO linear predictor as a solution to the optimization problem in (2.35) can 

be written as [39,40,44,79] 

P p ^ I U i ^ . (2.39) 

It should be mentioned that, if the additive white Gaussian noise (AWGN) is consid

ered, R„_i can be calculated by 

Rn_! = E [yP (n - 1) yp7 (n - 1)] - a2
vI. 

Moreover, from (2.35), the covariance matrix of the prediction error can be derived 

as 

Further, by defining 

< 4 P = R ( 0 ) - P p R ? . 

P 

7 1 = 1 

L - l 

H(z) = £H(n)z-B , 

(2.40) 

n=0 

34 



it has been shown in [39,40] that if the transmitted signals are uncorrelated and 

moreover, PNR > (L + P — 1) NT, one can obtain 

P P ( * ) H ( Z ) = H ( 0 ) , (2.41) 

4 i P = H(0)H*(0) . (2.42) 

Based on (2.41) and (2.42), some blind algorithms have been proposed for MIMO 

channel estimation [39,79,80]. The basic idea is to first acquire an estimate of H (0) 

from that of cr?p according to (2.42), and then use (2.41) to obtain an estimate of 

the channel matrix H (z). 

2.4.2 Linear Prediction-based Semi-Blind Channel Estimation 

Using the above linear prediction along with training data, a semi-blind approach 

for MIMO channel estimation has been developed to achieve a better estimation 

performance [17,42,43]. This approach is briefly described as follows. 

Denote the null column space of H (0) as an NR X (NR — NT) matrix U0nuii- From 

(2.42), one can easily find that Uonuii c a n be estimated from o"|P. Using Uonuii into 

(2.41) gives 

U ^ H (0) = U ^ P p (z) H (z) = 0, (2.43) 

which imposes a blind constraint U^ u HPp (z) on the channel matrix H(z). The 

above equality can then be used to derive a blind constraint B for the channel vector 

defined as 

h ^ [ h [ ( 0 ) , - - - , h ^ ( 0 ) , - - - , h [ ( L - l ) , - - - , h ^ ( L - l ) ] T 
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where h i T (/) = [hiiiT ( / ) , • • • , /ijvR,iT (I)] . By using this blind constraint in conjunc

tion with a training based least square (LS) criterion [75], a semi-blind cost function 

is then formulated as 

YTS — ATsh 
2 

+ a Bh 

where A T s is the pilot signal matrix, YTs the corresponding received signal vector, 

and a > 0 is a weighting factor. The minimization problem (2.44) can be easily 

solved by treating a as a fixed constant, giving a semi-blind solution for the channel 

estimate h. It should be stressed that the estimation accuracy of the above semi-

blind algorithm heavily depends on the choice of the weighting factor. This issue, 

however, has not been investigated. In the next chapter, we will extend the semi-

blind MIMO channel estimation method for estimating MIMO-OFDM channels. We 

will also propose a very efficient scheme for the determination of the value of a 

according to the derived MSE of the least-square estimation as well as that of the 

blind constraint. 

2.5 Conclusion 

In this chapter, we have provided necessary background materials for the study 

of MIMO-OFDM estimation techniques in this dissertation. First, the modelling of 

MIMO-OFDM systems including the transceiver, channel model and signal model has 

been presented. Then, the existing channel estimation approaches of MIMO-OFDM 

systems have been described in detail. In particular, the training-based and semi-blind 

algorithms for the estimation of the frequency-domain channels and a training-based 
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LS algorithm for the estimation of the time-domain channels have been presented. 

At last, linear prediction-based blind and semi-blind channel estimation algorithms 

for MIMO systems have been discussed. 
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Chapter 3 

A Nulling-based Semi-Blind Channel Estimation 

Approach 

3.1 Introduction 

Most of the existing blind and semi-blind MIMO-OFDM channel estimation meth

ods are based on the second-order statistics of a long vector whose size is equal to or 

larger than the number of subcarriers. To estimate the correlation matrix reliably, 

they need a large number of OFDM symbols, which is not suitable for fast time-

varying channels. In addition, since the matrices involved in these algorithms are 

of huge size, their computational complexity is extremely high. In contrast, a linear 

prediction-based semi-blind algorithm that is based on the second-order statistics of 

a short vector with a size only slightly larger the channel length, has been found more 

efficient than the conventional LS methods for the estimation of frequency-selective 

MIMO channels [17,42,43]. In this chapter, we will extend the linear prediction-based 

semi-blind approach to the channel estimation of MIMO-OFDM systems. 

Linear prediction has been widely used in blind MIMO channel estimation and 
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equalization [17,39-41,44-46], and its key idea is to represent the received MIMO 

signal by a finite-order autoregressive (AR) process under the assumption that the 

transmitted signals are uncorrelated in time [39]. Based on the AR process, a lin

ear prediction filter can be obtained to solve a second-order deconvolution problem 

for channel equalization. By combining the linear prediction with a higher-order 

statistics (HOS) or the weighted least-squares method, some blind channel estima

tion algorithms have been derived [39,46]. However, these algorithms require a large 

number of signal samples and moreover, they are not robust. Medles et al. have 

proposed a semi-blind algorithm by incorporating a blind criterion derived from the 

linear prediction into a training-based LS cost function [17,42,43], leading to a closed-

form expression for the estimate of the MIMO channel response. It has been shown 

in their papers that the semi-blind method provides a much better channel estima

tion performance over the pure training-based LS method. However, the superiority 

of the proposed semi-blind method has not been theoretically justified. Moreover, 

the weighting factor employed to trade off the least square and the blind criteria has 

not been appropriately determined. As such, the resulting channel estimation per

formance, though better than that of the LS method, could be further improved. It 

should also be noted that this semi-blind method for MIMO channel estimation can

not be directly applied to MIMO-OFDM systems, due to different signal models in the 

two systems. In MIMO systems, both information data and pilots are generated and 

transmitted in the time-domain, whereas in MIMO-OFDM systems, signals are first 

generated in the frequency domain and then converted to the time domain via the in

verse discrete Fourier transform (IDFT). As a consequence, the training-based LS cost 
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function for MIMO channel estimation cannot be used for MIMO-OFDM systems. 

Also, the uncorrelation among the time-domain MIMO signals, which is desirable for 

linear prediction, may not be available in MIMO-OFDM systems. Therefore, a lot of 

work on the formulation of MIMO-OFDM signals has to be done first to develop a 

new semi-blind estimation solution. 

In this chapter, we propose a channel estimation algorithm for MIMO-OFDM 

systems by employing the afore-mentioned semi-blind strategy. First, a new training-

based LS criterion for MIMO-OFDM channel estimation is obtained through proper 

matrix formulations. Then, by proving that the transmitted time-domain MIMO-

OFDM signals are uncorrelated, we validate the use of linear prediction for the formu

lation of the blind criterion. By employing the LS and the blind criteria, a semi-blind 

channel estimation solution is obtained. As a part of the semi-blind approach, we 

also propose an appealing scheme for choosing the weighting factor, which is shown 

to be very efficient according to our extensive computer simulations. 

The second part of this chapter deals with the analysis of the MIMO linear pre

diction and the corresponding blind constraint. We apply the perturbation theory, 

which has been successfully used in analyzing the antenna array based signal process

ing algorithms [71-74,76,77], to the analysis of the proposed MIMO linear prediction 

based method, justifying the superiority of our semi-blind solution over the blind 

algorithms [39,79,80]. The perturbation analysis of the blind constraint also leads 

to a novel closed-form expression for the mean square error (MSE) of the blind esti

mation that is essential to the calculation of the weighting factor for the semi-blind 

estimation solution. 
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The rest of the chapter is organized as follows. Section 3.2 presents a new semi-

blind approach for the estimation of MIMO-OFDM channels, including the formu

lation of the semi-blind estimation problem, derivation of the blind constraint from 

the linear prediction and development of an appealing scheme for the determination 

of the weighting factor. Section 3.3 conducts a perturbation analysis of the linear 

prediction-based semi-blind method, justifying the superior estimation performance 

of the semi-blind solution over a pure blind method. The analysis also yields a closed-

form expression for the MSE of the blind estimation part of the proposed approach, 

facilitating the calculation of the weighting factor. Section 3.4 comprises a number 

of experimentations validating the proposed method, showing significant advantages 

of the semi-blind solution over the least-square method in terms of the MSE of the 

channel estimate. Finally, Section 3.5 highlights some of the distinct features of the 

proposed approach. 

3.2 Proposed Nulling-based Semi-Blind Channel Estimation 

Algorithm for MIMO-OFDM Systems 

Note that unlike the MIMO signal model in (2.34), the MIMO-OFDM signal given 

by (2.3) involves the circular convolution with a length K. In the following, we would 

like to develop a semi-blind MIMO-OFDM channel estimation approach based on 

(2.3) and the semi-blind criterion in (2.44) [81-83]. 
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3.2.1 The Training based LS Criterion 

In MIMO-OFDM systems, the training signal is transmitted in the frequency 

domain and thus, the LS criterion in (2.44) should be modified. We now derive a new 

LS criterion based on the approach in [25]. By defining 

* pilot = [* l,pilotj " ' ' i * iVft.pilotJ , 

H ^ h j , - - - , ^ ] , (3.1) 

S»pilot = Isl,pilot; ' ' ' > sAT#,pilotJ i 

from (2.29), one can have 

Ypaot = A H + £piiof (3.2) 

Further, letting 

Ypii0t = vec (Ypi i 0 t ) , 

A = I ® A , 

h = vec(H) , 

from (3.2), one can obtain a new LS criterion 

2 

Ypiiot - A h (3-3) 

which will be used for the training signal in the proposed semi-blind method. 

3.2.2 The MIMO Linear Prediction based Blind Criterion 

First of all, we show that the transmitted time-domain MIMO-OFDM signal is 

uncorrelated to validate the use of linear prediction for the received MIMO-OFDM 
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signal. Generally speaking, the frequency-domain signal in MIMO-OFDM systems 

before the DFT module can be considered as an independent identically distributted 

(i.i.d.) Gaussian process with zero mean and variance 5%, implying that the frequency-

domain signal at the ix-th antenna XiT (k) is uncorrelated in both time and spatial 

domains. Given XiT1 (k) and XiT2 (k) being the frequency-domain signals at the in-

th and zr2-th antennas, respectively, the corresponding time-domain signals can be 

written as 

V A , n fc=0 
K-l 

n2/K) 

vK
 k=0 

Consider the correlation between the two time-domain signals, i.e. 

E {xiT1 (m) x*T2 (n2)} = 1 J2 E E {XiT1 (h) X*T2 (k2)} jM^-k^yK {3A) 

fe1=0fe2=0 

Obviously 

E {xiT1 (m) x*T2 (n2)} = 0 if iTl ^ iT2. (3.5) 

If ixi = iT2, (3.4) reduces to 

52
x if (m = n2) 

E {xiT1 (m) x*T2 (n2)} = 1 £ 5l^Kn,-n2),K = < 
K

k=o 
. (3.6) 

0 if (ni ^ n2) 

It is clear from (3.5) and (3.6) that the transmitted time-domain MIMO-OFDM signal 

is uncorrelated. 

We now use the MIMO linear prediction to obtain a blind constraint for the 

channel matrix. By following the linear prediction process in Section 2.4, we can 

obtain a time-domain representation of (2.41), 

[ I , - P P ] H D = [H(0),0,---,0] (3.7) 
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where Pp is the linear predictor as given by (2.39) and H D is a (P + 1) NR X 

(L + P) NT block Toeplitz matrix with the first block row as 

[H(0) , - - - ,H(L-1) , ( ) , • • • ,0 ] . 

Letting 

nF± 

H(0) 

H ( L - l ) 

PQ = 

- P P ( 1 ) 

- P P (P) 

0 

- P P ( 1 ) 

- P P (P) 

(3.7) can be rewritten as 

PgHp = 

H(0) 

0 

0 

(3.8) 

(3.9) 

(3.10) 

Using (2.42), the null column space of H (0), Uonuii, c a n easily be obtained, which is 

then used to form 

PE = ( W ® u 0
H

n u W ) P g - (3.11) 
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From (3.10) and (3.11), we have 

P S H F = 0, (3.12) 

which is equivalent to 

(I <g) P s )vec (H F ) = 0. (3.13) 

Noting that vec(Hp) = Eph, where Ep is a known permutation matrix, (3.13) can 

be rewritten as 

(I <g> P E ) E P h = B h = 0, (3.14) 

implying that B = (I ® P s ) Ep is a blind constraint for the channel vector h. 

In the computation of the linear predictor P p and the covariance matrix er? p , 

one has to estimate various correlation matrices R n _i , R„ and R(0) , as discussed 

in Section 2.4. Considering that the circular convolution is used in MIMO-OFDM 

systems, a more accurate estimate of these correlation matrices can be obtained in 

comparision to that in MIMO systems. For example, the estimate of R„_i in MIMO 

systems is computed as 

1 K~l 

ft»-i = )f E yp{n)y${n)-oll (3.15) 
n = P - l 

where only K — P + 1 received signal vectors yp (n) (n = P — 1, • • •, K — 1), are 

available for estimation. In MIMO-OFDM systems, however, the estimation of R„_i 

can be modified as 

1 K~x 

i*-1 = K ^ yp (n) y" w - <# (3-16) 
n=0 

where yp (n) , (n = 0, • • •, P — 2), can be obtained using y (n — i) = y (n — i + K) 

when n < i due to the circular convolution. Since more signal samples are used in the 
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estimate, a better linear prediction result can be expected in MIMO-OFDM systems. 

Note that, when multiple OFDM symbols are used, R n_i can be easily calculated by 

averaging the results obtained from each OFDM symbol using (3.16). 

3.2.3 The Semi-Blind Solution 

Combining (3.3) and (3.14), a semi-blind cost function for the estimation of the 

channel vector h can be formulated as 

min A = 
h 

Ypiiot - A h 
2 

+ a B h 
2 

(3.17) 

where B is an estimate of the blind constraint. The solution to this minimization 

problem can be obtained by letting 

<9A 
= -AH (Ypiiot - A h ) + a B H B h = 0, 

~\ t 

which gives 

h = ( A " A + c*B*B)TA*Ypaot. (3.18) 

Clearly, the performance of the semi-blind algorithm depends on the choice of a. 

However, the selection of a has not yet been discussed in the existing semi-blind 

MIMO channel estimation methods such as those in [17,42,75,84]. Here, we propose 

an explicit formula for the calculation of a in terms of the estimated MSE of the 

training based LS criterion and that of the blind part. 

It has been shown in [85,86] that the weight for a weighted least-squares (WLS) 

minimization problem can be determined according to the variance of the individual 

estimation error involved provided that the error is Gaussian distributed. A vector 
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version of the WLS problem can be described as 

N N 

S = ^2wi\\ei\\
2 = ^2wi\\yLi-xi\\

2 (3.19) 
i = l i = l 

where Xj denotes the estimate of the true vector x, and Wi the weight for the z-th 

error term, which should be chosen as the reciprocal of the variance of of e*, i.e. 

1 1 
Wi = —r = 1 °? EiWetU2}' 

In order to obtain a closed-form expression for the weighting factor a in (3.17), let 

us consider the following WLS problem, 

minA = WTIICTII +^B| | e B| | (3.20) 

where 

ex = for — h, 

eB = hB - h, 

with hx being the estimate of the channel vector resulting from the training based 

LS criterion and he that from the blind estimation part. Since the error vectors e^ 

and eB can be considered Gaussian, the coefficients w-r and % can be determined 

from the variance of ex and that of eB, respectively, thereby the value of a can be 

estimated. 

We first consider the variance of ex- From [25], one can easily find that the optimal 

pilots are given by 

A H A = (gKpa
2

x) ILNRNT. 

Thus, for the optimal pilots, one can obtain 

A 
F 
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MSEn = E{||eT||2} = EJ|hT-h|2j = NRNTLal 

9KP*1 
(3.22) 

Note that it is not possible to directly compute the variance of eB, since the blind 

solution ha is not available in the proposed method. However, we may use the 

following variance to replace the variance of eB, 

MSEB = E | B (hB - h) 2 j = E i Bh 2 | (3.23) 

It will be shown through simulation study in Section 3.4 that this approximation 

gives an appropriate choice of a in terms of the channel estimation performance. 

Using (3.22) and (3.23), (3.20) can be rewritten as [85,86] 

min A = ^,__ 
h MSET 

+ 
1 

MSEE 

(3.24) 

The above minimization problem can be nearly reformulated as the following least-

square problem 

min A = 
h 

Ypiiot - A h 

+ 
MSEq B 

Bh 
2 

M 
F 

2 

SEB 

(3.25) 

Evidently, the solution of (3.25) is equivalent to that of (3.17) when a is chosen as 

2 

-^ (3.26) 
MSEq 

a = MSE B B 
2 • 

F 

What remains in the computation of a is to determine the MSEB. In the next section, 

a perturbation analysis of the linear prediction-based blind algorithm is performed, 

leading to a novel closed-form expression for MSEB. 
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3.3 Perturbation Analysis of Linear Prediction-based Blind 

Channel Estimation 

It is known that the solution of linear prediction or subspace-based methods is 

always perturbed by various sources, such as finite data length, measurement noise, 

etc [71-74]. Perturbation theory has been successfully applied to the analysis of 

subspace-based methods [72,75-77]. In this section, the first-order perturbation the

ory is employed to analyze the MIMO linear prediction as well as the resulting blind 

constraint. 

3.3.1 The MIMO Linear Prediction with Perturbation 

Most of the LP-based blind and semi-blind methods are based on the two key 

equations (2.41) and (2.42). It is important to perform the perturbation analysis of 

these two equations in order to evaluate the linear prediction-based methods. Letting 

H A 4 [ H ( 0 ) , H ( 1 ) , - . . , H ( L - 1 ) ] , 

x L (n) = [xT (n) • • • x T (n - L + 1)]T , for n = 0 ,1 , • • •, K - 1 

where x (n) = [xi (n), • • •, x^T (n)] and noting that x (n) = x (K + n) for n < 0, 

the circular convolution (2.3) can be rewritten in the matrix form as 

y (n) = [yi(n),---, VNR (n)]T = HAxL (n) + v (n) . (3.27) 

Using (3.27), we can obtain 

y p ( n - l ) ±[yT(n-l),...,yT(n-P)]T 

= HfiXp+^.i (n - 1) + v P (n - 1) (3.28) 
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where v P (n - 1) = [vT (n - 1) • • • v r (n - P)]T , HB is a P7V* x (P + L - 1) NT 

block Toeplitz matrix with the first block row given by [H (0), • • •, H (L — 1), 0, • • •, 0]. 

Here, we consider only the perturbation due to the finite data length in the compu

tation of the correlation matrices. 

We now derive the perturbation form of the correlation matrices involved in the 

linear prediction in order to disclose the perturbation in the channel constraint in 

(3.7), the time-domain version of (2.41). Without loss of generality, we let the variance 

of the signal be unity, i.e., o\ = 1. Using (3.28), the correlation matrix R„_i with 

such a perturbation can be written as 

An_i = E [yP (n - 1) y* (n - 1)] - a2
vI = H B [I + ARxl] Hg + AR^ (3.29) 

where ARx l denotes the signal perturbation matrix, 

1 K'X 

ARxi = -%Yl Xp+L-! (n ~ l) *P+L-I (n - 1) - I, 
n=0 

and AR^i the perturbation matrix introduced by the noise, 

AR^i = H B A R H , ! + AHxvlHB + ARu„i, (3.30) 

with 
1 K~1 

ARCTi = ^ J2 x ^ - ! (n - X) "P (n-1), (3.31) 

n=0 

1 K~1 

n=0 

Similarly, Rn is given by 

Rn = E [y (n) y% (n - 1)] - a2
v [1,0, • • •, 0] = HA [Ic + ARx2] Hf + AR„2 (3.32) 
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where 

ONTX(L-1)NT ONTXPNT 

I(L-l)ATTx(L-l)ATT Q(L-l)NTxPNT 

1 K~l 

ARx2 = ^ J ^ x L ( n ) x ^ + L _ 1 ( n - l ) - I C j 
n=0 

AR„2 = HyiARx^2i + A R I v 2 2 H B + AR„„2, 

with 

1 K~l 

ARx„2i = -g ^2 X£ (n) v £ (n - 1), 

n=0 

1 * _ 1 

ARX„22 = -^ ^ Z x ^+^- i (" ~ ! ) v ^ (")> 
n=0 

A R O T ^ - ^ v ( n ) v ? ( n - l ) - ^ [ I , 0 , . , 0 ] . 
n=0 

Based on the above expressions for the correlation matrices with perturbation, we 

now derive the perturbation form of the linear prediction in (3.7). To this end, we 

first derive the perturbation form P p of the linear predictor P p . Using the first-order 

approximation, the pseudo-inverse of R„_i given by (3.29) can be obtained as 

Rn_! « nx - n2ARxlnf - niAR^nf (3.33) 

where 

nx 4 (HflHf ) \ 

n2 = U.HB. 

It should be noted that the noise subspace of R n_i in (3.29) has been omitted in 

obtaining (3.33), and such an omission would not affect the derivation of the pertur

bation form of (3.7) and (2.40). Using (3.32) and (3.33), the linear predictor with 
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perturbation can be derived as follows 

PP «HA[I c + ARx 2]nf-HAI cnfHBARx lnf 

- HA icnf AR^nj + ARt;2n1. 

On the other hand, noting that He can be partitioned as 

(3.34) 

Ho = 
H(o) nE 

0 H B 

where H# = [H (1), • • •, H (L — 1), 0, • • •, 0], the perturbation form of the left hand 

side (LHS) of (3.7) can be written as 

I , - P P uD = [n(o),HE] 0 , P P H B (3.35) 

Using (3.34) and H^ = H^Ic and noting that Hf (H f lHg) fHB = I when H B has 

a full column rank and PNR > (P + L — 1) JVQP, one can deduce 

PpH B = H# + l ip (3.36) 

where 

n P = HAAR l2 - HAIcARx l + AR„2II2 - H A I c I l f A R v l n 2 (3.37) 

respresents the perturbation terms due to both signal and noise. By noting that 

1 K~l 

ARx2 — IcARxi = — / j 

n=0 

x(n) 

0(L-l)jVTxl 

XP+L-l (n ~ 1) . 

E[p can be expressed as 

n P = H (o) ARX4 + n'P 
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where 
K-\ 

ARx4 = ^ Y. x (") x ^ - i (n - X)' (3-39) 
n=0 

n'P £ AR v 2n 2 - H A i c n f A ^ ^ . (3.40) 

It is clear from (3.38) that the perturbation term l ip consists of the signal perturba

tion H (0) ARX4 and the perturbation introduced by the noise, n p . Using (3.36) in 

(3.35) yields 

I , - P ; HD = [ H ( 0 ) , 0 , - - - , 0 ] - [ 0 , n P ] . (3.41) 

Obviously, (3.41) is the perturbation form of (3.7). 

3.3.2 The Covariance Matrix of Prediction Error 

In this subsection, we derive the perturbation form of the covariance matrix in 

(2.42). We now turn to the derivation of the perturbed version of (2.42). The per

turbed form of (2.40) can be written as 

<T|]P = R ( 0 ) - P P R " (3.42) 

where 

R(0) = E[y(n)y" (n ) ] -a„ 2 I . (3.43) 

It is easy to show that 

R (0) = HA [I + ARx3] H£ + AR.3 (3.44) 

where 
K-\ 

AIUs^X^W^W-1' K n 
71=0 
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AR„3 = H^ARX„3 + A R ^ H ^ + A R ^ , 

with 
K-\ 

^Kxvi = -Y.^Lin)^ {n), 
K n 

n=0 
K-\ 

A R . 3 = £ J2 v (n)v* (n) - <#. 
n=0 

Using (3.34), the second term of the RHS of (3.42 ) can be expressed as 

P P C = H A I C I £ H ^ + H A AR x 2 l£E# + HAI cARf2H£ + H A I c n ? A R & 

+ AR„2II2l£H? - H A I c AR x l l gH£ - H A I c n f AR„1n2I^H^(3.45) 

Prom 

ldHc = 
0 NT*NT 0 NTx(L-l)NT 

0{L-l)NTxNT 1(L-l)NTx(L-l)NT 

one can get 

H A [ I - I C I £ ] H ^ = H(0)HH(0) (3.46) 

Using (3.44) and (3.45) along with (3.46), the covariance matrix given by (2.42) has 

the following perturbation form, 

<xf]P = H(0)H"(0) + A<7|iP (3.47) 

where 

HTJH A<Ty P = H^AR^H^ — H A A R X 2 I C H A — HAIcAKx2H.A + H^IcAR x i I c H 

+ AR,3 - H A I c n f ARf2 - AR„ 2n 2 I^Hf + HAICU^ARvlU^H^. (3.48) 

We now show that the perturbation term A(x| P can be split into the signal pertur

bation and the perturbation due to the noise. By using 

1 K~l 

ARx3 - ARx2l£ = - J2 XL (") I*" W > OIX(L_I)JVT] - (I - Iclc) , 
n=0 
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1 K^ 

IcARxll£ - IcARl2 = -^J2 
n=0 

[xH (n),Oix(£_i)jvT] , 
0(n) 

XL-I (n - 1) 

it is easy to verify that the sum of the first four terms in the RHS of (3.48) equals 

H(0)AR x 5H"(0) , where 

K-\ 

Therefore, (3.48) can be rewritten as 

AR*5 = ^ E x ( n ) x " ( n ) - L (3.49) 
n=0 

A 4 p = H(0)ARx 5HH(0) + S (3.50) 

where 

~ A S ^ AR„3 - H A I c n f ARf2 - AR,2n2I«H^ + H A I c n^AR v l n 2 I^H^ (3.51) 

represents the perturbation error caused by the noise. 

Thus far, we have obtained the perturbation form of the two key equations in the 

linear prediction. Based on this result, we would like to point out the advantage of 

the proposed semi-blind method over the conventional linear prediction-based blind 

methods. Note that in the noise-free case, all the perturbation terms caused by the 

noise in the above discussions can be ignored. As such, (3.41) and (3.47) can be 

simplified as 

I , - P i H D = [ H ( 0 ) , 0 I - ) 0 ] - [ 0 ) H ( 0 ) A R a 4 ] 1 

&lP = H (0) H H (0) + H (0) AR^H" (0) 

(3.52) 

(3.53) 

In conventional blind algorithms [39,79,80], an estimate of H (0) is first acquired 

from <x~P, and is then used to estimate the channel matrix H^. This approach 
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would give rise to a large estimation error due to the presence of signal perturbation 

terms as seen from (3.52) and (3.53). In the proposed semi-blind approach, however, 

an ideal nulling constraint on the channel matrix H D has been obtained from the 

ideal null space of H(0), which is not affected by the signal perturbation terms. 

Therefore, the semi-blind method using MIMO linear prediction is superior to the 

blind algorithms [39,79,80]. It should also be pointed out that in the presence of 

noise, although both the semi-blind and the blind methods are subject to the noise 

perturbation terms, the semi-blind method still outperforms the blind one, since the 

perturbation introduced by the noise is in general significantly smaller than the signal 

perturbation. 

3.3.3 The MSE of Blind Channel Estimate 

To derive the MSE expression, a perturbed version of (3.12) needs to be deter

mined. By partitioning UP as l ip = [lip,!, • • •,TLptp+L-i], where IIp^, (i = 1,2, 

• • •, P + L — 1) is an NR X NT matrix and using (3.41), we can derive the perturba

tion form of (3.10), 

P Q H p = [ H " ( 0 ) , 0 , - - - , 0 ] H - Q (3.54) 

where 

Q=[o,n^1,---,n%P+L_1]
H. (3.55) 

On the other hand, using (3.47) along with the first-order approximation [77], one 

can get the estimate of UonuH, 

U w « Vonuii - (H (0) HH (0))T(3-|)pU 
Onull • 
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Using (3.50) into the above equation gives 

Uom.ll » Uonull ~ ( H (0) H H ( 0 ) ) T E U 0 „ „ « 

Substituting (3.56) into (3.11) and using (3.54), we obtain 

P s H ^ = Gj — G2 

(3.56) 

(3.57) 

where 

G ^ (v»nullS
H (H (0) H " (0))f H (0) )* , 0, • • •, 0 

G 2 = ( I P + L ® U & U H ) Q . 

H 

(3.58) 

(3.59) 

Clearly, (3.57) is the perturbed version of (3.12). Using (3.57) and noting that 

B h 

culated as 

P S H F , the MSE of the blind criterion defined in (3.23) can be cal-

MSEB = Trace {E [vec ( d - G2) vec" ( d - G 2 ) ]} . (3.60) 

In Appendix A, we investigate the computation of vec (Gi) and vec (G2) to obtain a 

closed-form expression for M S E B in terms of the correlation of the transmitted signal, 

the correlation of the noise as well as the channel matrix. 

3.4 Simulation Results 

We consider a MIMO-OFDM system with 2 transmit and 4 receive antennas. The 

number of subcarriers is set to 512, the length of cyclic prefix is 10, and the length 

of the linear predictor is P = 4. In our simulation, the QPSK modulation is used 

and a Rayleigh channel modelled by a 3-tap MIMO-FIR filter is assumed, in which 

each tap corresponds to a 2 x 4 random matrix whose elements are i.i.d. complex 
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Gaussian variables with zero mean and unit variance. As the blind constraint of the 

proposed semi-blind algorithm is derived directly from H (0) as seen from (2.41) and 

(2.42), it is necessary to consider in the simulation study the effect of H (0) on the 

channel estimation performance. To this end, we define the following metric 

A |H(0)||2
F 

EHH(n)||J. 
n=0 

and conduct our investigation with respect to different ranges of rj. 

It is seen from (3.26) that one has to choose the value of M S E B to determine 

the parameter a. Although a closed-form expression for M S E B has been obtained 

in Section 3.3, it requires the true channel matrix, which is, however, unknown in 

practice. Therefore, we first estimate the channel matrix using the LS method and 

then utilize the preliminary estimate to compute the M S E B and thereby the value of 

a. To evaluate the proposed algorithm, we also calculate the value of M S E B based on 

the true channel matrix, which gives a reference for the choice of a. The semi-blind 

solution thus obtained is called the reference algorithm. The estimation performance 

is evaluated in terms of the MSE of the estimate of the channel matrix given by 

M S E = - — V h n - h „ 
iVMc ^ II 

where NMC IS the number of Monte Carlo iterations, and h n , h n are the true and the 

estimated channel vectors with respect to the n-th Monte Carlo iteration, respectively. 

Experiment 1: MSE versus weight factor a 

In the first experiment, the channel estimation performance in terms of the plot 

of the MSE versus a is investigated. The simulation is based on four randomly gen-
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Figure 3.1: MSE versus a for different ranges of 77 in which the two points indicated 

by "+" and "o" for each run are obtained from the proposed and reference algorithms, 

respectively. 
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erated channel matrices, each having a value of 77 falling within the range of [0.2,0.3], 

[0.3,0.4], [0.4,0.6] or [0.6,0.8]. For each channel matrix, three runs of the transmission 

of one OFDM symbol at 512 subcarriers, of which 32 are used as pilot for training 

purpose, are performed. Fig. 3.1 shows the MSE plots of the semi-blind algorithm 

with respect to different choices of a in the range of [0, 2] for the four channels at 

an SNR of 15dB. The two points identified by "+" and "o" in each run indicates 

the results from the proposed and reference algorithms, respectively. It is observed 

that the proposed scheme for the determination of a gives a competitive MSE result. 

It is also seen that the use of the preliminary least-square estimate of the channel 

matrix, instead of the true channel characteristic, would suffice for the calculation of 

the value of a. 

Experiment 2: MSE versus 77 

In this experiment, the channel estimation performance in terms of the MSE ver

sus 77 is investigated. The simulation is undertaken based on 5000 Monte Carlo runs 

of the transmission of one OFDM symbol on 512 subcarriers at an SNR of 15dB. 

Fig. 3.2 shows the MSE plots resulting from the proposed as well as the reference 

algorithm along with that from the LS estimation, indicating a high consistency of 

the two semi-blind methods. It is noted that the proposed semi-blind algorithm sig

nificantly outperforms the LS method. It is also clear that the MSE performance of 

the semi-blind estimation depends on the value of 77. A better estimation performance 

is reached when 77 varies from 0.3 to 0.7, which represents a typical mobile communi

cation scenario, where the first arrived path is comparable to or stronger than other 
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Figure 3.2: MSE versus the value of rj for a 2 x 4 frequency-selective channel. One 

OFDM symbol with 32 pilot subcarriers and SNR=15 dB. 
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Figure 3.3: MSE versus SNR for a 2 x 4 frequency-selective channel. One OFDM 

symbol with 32 pilot subcarriers and rj > 0.2. 

paths [87]. From Fig. 3.2, one can find that, when r] is larger than 0.55, the MSE 

becomes a little larger with the increase of rj. We believe the possible reason is that 

the full column rank assumption of H g for the proposed semi-blind algorithm cannot 

be always satisfied in the experiments, since the Rayleigh channel is generated for 

the Monte Carlo iterations. With the increase of the value of rj, especially when rj is 

larger than 0.55, H (1) and H (2) becomes more and more insignificant. As a result, 

the probability that Hg does not have a full column rank becomes larger, making the 

MSE increases slightly. 

Experiment 3: MSE versus SNR 
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Now, we examine the channel estimation performance as a function of the SNR. 

Again, the simulation involves 5000 Monte Carlo runs of the transmission of one 

OFDM symbol. Fig. 3.3 shows the channel estimation results of the three methods, 

when rj > 0.2. It is seen that the performances of the two semi-blind algorithms are 

very close and both can achieve a gain of nearly 3.3 dB over the LS method regardless 

of the level of the SNR. 

Experiment 4: MSE versus pilot length 

Here, we investigate the channel estimation performance of the proposed semi-

blind algorithm versus the number of OFDM symbols as well as the number of pilot 

subcarriers per symbol, in comparison with that of the LS method. The number 

of OFDM symbols is set to be from 1 to 4, and in each case, the number of pilot 

subcarriers per OFDM symbol varies from 8 to 48. Note that the proposed method 

can easily be applied to the case of multiple OFDM symbols, where the calculation 

of Ypiiot, A and B in (3.18) should be based on the multiple OFDM symbols. Fig. 

3.4 shows the MSE plots from 500 Monte Carlo iterations for an SNR of 15 dB, when 

r] > 0.2. It is seen that for the same number of OFDM symbols, the performance of 

all the algorithms improved with increasing number of pilot subcarriers. Again, the 

performance of the proposed method is very close to that of the reference method, 

both being superior to the LS method by 6 dB and 4 dB when the number of pilot 

subcarriers is 8 and 48, respectively. It implies that the proposed semi-blind method 

is more advantageous for pilot signals of a shorter length. Furthermore, it is observed 

that the performance improvement of the proposed semi-blind method over the LS 
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Figure 3.4: MSE versus pilot length for different numbers of OFDM symbols for a 

2 x 4 frequency-selective channel. SNR=15 dB and rj > 0.2. 
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Figure 3.5: BER versus SNR for a 2 x 4 frequency-selective channel. 1 OFDM symbol 

with 8 pilot subcarriers and r] > 0.2. 

method remains almost the same with the increase of the number of OFDM symbols 

employed for channel estimation. 

Experiment 5: BER versus SNR 

In this experiment, the BER performance of the MIMO-OFDM system is investi

gated by using the estimated channel matrix and an ordered vertical-Bell laboratories 

layered space time (V-BLAST) decoder. The simulation involves 5000 Monte Carlo 

runs of the transmission of one OFDM symbol with 8 pilot subcarriers. Fig. 3.5 

shows the BER performance versus the SNR for the LS method and the proposed 

semi-blind method, when rj > 0.2. It is seen that the performance of the proposed 
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semi-blind algorithm is superior to the LS method by 2~5 dB. 

3.5 Conclusion 

In this chapter, a nulling-based semi-blind MIMO-OFDM channel estimation ap

proach that incorporates a linear prediction based blind criterion into the least-square 

method, has been proposed. A practical yet very efficient scheme has been presented 

for the determination of the weighting factor in the semi-blind cost function. The 

perturbation analysis of the MIMO linear prediction has justified the advantage of 

the semi-blind method over the pure blind estimation, and led to a closed-form MSE 

expression for the blind criterion. The proposed method has been simulated and 

compared with the training based LS method, showing a significant improvement in 

terms of the MSE of the channel estimate. 
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Chapter 4 

Frequency-Domain Nulling-based Semi-Blind 

Channel Estimation with Pulse-Shaping 

4.1 Introduction 

It is well known that the pulse-shaping filter as well as the matched filter are 

commonly used in digital communication systems. Perhaps for the sake of simplicity, 

however, many existing channel estimation methods did not take into consideration 

either the effect of the pulse-shaping filter in the transmitter or that of the matched 

filter in the receiver. As such, these methods have actually been developed for the 

estimation of the composite channel including the pulse-shaping and matched filters. 

Considering that both filters are known to the receiver and the only unknown part 

is the discrete-time channel [60], ignoring their existence would lead to less accurate 

estimation results. By utilizing the information of both filters, some improved channel 

estimation algorithms have been obtained for OFDM systems [61,62] and CDMA 

systems [63,64], Motivated by this observation, in this chapter, we will propose a new 

methodology for the channel estimation of pulse-shaped MIMO-OFDM systems with 
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an emphasis on the development of a frequency-domain linear prediction (LP)-based 

semi-blind method for multipath channels whose taps are in line with the sampling 

duration. Another contribution of this chapter is to present an improved least-square 

(LS) method for estimating the multipath channels whose taps occur in a fraction of 

the sampling duration. 

In MIMO-OFDM systems, the received time-domain signal is often corrupted 

due to imperfections caused by some factors such as the frequency offset and the 

larger peak-to-average power ratio (PAPR) etc. Considering that many compensa

tion techniques for these imperfections can only be implemented in the frequency-

domain [61,88,89], a high quality time-domain signal may not be available. Thus, 

the existing time-domain MIMO channel estimation techniques, such as the LP-based 

semi-blind method, cannot be directly applied to MIMO-OFDM systems. To use 

those time-domain methods, an IFFT processor is needed in the receiver to convert 

the good frequency-domain signal to the desired high-quality time-domain signal, 

which imposes an additional computational burden and a long time delay in real-time 

implementation. In this chapter, therefore, we will develop a method of estimating 

the time-domain correlation matrix in the LP-based semi-blind method directly from 

the received frequency-domain signal. 

The structure of this chapter is briefed as follows. Section 4.2 deals with the 

frequency-domain channel estimation of MIMO-OFDM systems with pulse-shaping. 

By utilizing the knowledge of both the pulse-shaping filter and the matched filter, 

two improved frequency-domain channel estimation algorithms are developed. Sec

tion 4.3 develops a frequency-domain estimation algorithm for the time-domain cor-
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relation matrix used in the semi-blind channel estimation. The new development 

includes a derivation of the frequency-domain correlation matrix, the proof of the 

equivalence of the frequency-domain correlation matrix and the time-domain corre

lation matrix, and a direct computation of the time-domain correlation matrix from 

the frequency-domain version. Section 4.4 comprises a number of experimentations 

validating the effectiveness of the proposed method. Finally, Section 4.5 summarizes 

the main contributions of this chapter. 

4.2 Proposed Channel Estimation with Pulse-Shaping 

As the pulse-shaping filter and the matched filter are normally pre-determined in 

a communication system, their knowledge should be exploited to improve the chan

nel estimation accuracy. However, many of the existing channel estimation meth

ods [25-28,31,32,83] have not yet taken into account the pulse-shaping in the trans

mitter and the matched filtering in the receiver. In this section, by utilizing the 

knowledge of pulse shaping and matched filtering, two improved frequency-domain 

channel estimation algorithms are proposed for pulse-shaped MIMO-OFDM systems. 

4.2.1 Channel Modelling of Pulse-Shaped MIMO-OFDM Systems 

A typical pulse-shaping filter in communication systems has the following raised-

cosine impulse response [90] 

, x . /7rt\ cos m) 
g (t) = sine — ^ ^ 
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Figure 4.1: Discrete-time channel model with pulse-shaping 

where (5 is the roll-off factor and T the symbol period. In digital communications, the 

pulse-shaping filter is often realized by an up-sampled raised-cosine FIR filter [91]. 

Thus, the composite channel model should include the pulse-shaping filter, the analog 

multi-path channel Hc (t) and the matched filter as shown in Fig. 4.1 [60-64]. In this 

model, an upsampling is implemented by inserting M — 1 zeros between any two 

consecutive input samples prior to pulse-shaping. As such, the transmit filter gt (t) 

and the receive filter gr (t) in (2.2) are replaced by two root raised-cosine FIR filters 

gt (n) and gr (n), whose sampling period is JJ. In the upsampling domain, namely, 

the discrete-time domain with a sampling duration of -jg, the combination of the D/A 

converter, the multipath channel Hc (t) and the A/D converter can be represented by 

an equivalent discrete-time "multipath" channel He (n). In general, the channel path 

may not arrive at the exact sampling time, but it can be considered as an equivalent 

path occurring at the sampling instant synchronized to He ( ^ ) , since the waveform 

of the D/A converter can normally be assumed as p (t) = 1, 0 < t < jj. Thus, in the 
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case of Ld paths, the discrete-time channel He (n) can be represented by 

He(n)= J2D(i)6(n-k) (4.1) 
t=0 

where D (i) and U are the channel matrix and the delay with respect to the i-th path. 

Now the composite discrete-time channel H (n) can be regarded as a downsampled 

version of the convolution of the transmit pulse-shaping filter gt (n), the discrete-time 

multipath channel He (n) and the received matched filter gr (n). It should be men

tioned that the delay k can be determined prior to channel estimation. In particular, 

in advanced wireless networks, the time of arrivals (TOA) are often estimated at the 

start of communication and updated periodically. For example, the TOA estimation 

is conducted by using the ranging techniques for the uplink synchronization phase of 

the OFDMA (OFDM Access) systems [8] or for some geolocation applications [92]. 

On the other hand, TOA are known to be a slow fading parameter compared with 

the fast fading parameter (i.e. complex fading amplitude), which means that once an 

estimate of TOA is obtained, it can be used to estimate the fading amplitude for a 

relatively larger period of time. In the following, based on the knowledge of TOAs, 

i.e., li, (i — 0,1, • • •, Ld — 1), we develop two improved channel estimation algorithms 

for MIMO-OFDM systems [93]. 

4.2.2 Semi-Blind Estimation of Sampling Duration-based Channels 

Let us consider first the case of sampling duration-based channels in which the 

path delay is measured by a multiple of the sampling duration T, i.e., U = iM. In 

this case, the (in, ir)-th element of the composite discrete-time channel H (n) is given 
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by 

hin,iT(n) = 9o (n) * diR<iT{n) (4.2) 

where rfiH,iT(n) is the (z#, ir)-th element of the discrete-time multipath channel He (n) 

= D(n), and go (n) = g{Mn) with g (n) = gt (n) * gy (n). Note that, in (4.2), 

go(n) = 0, n £ [0,Lg - 1], diRtiT(n) = 0,n ^ [0,Lrf - 1], and L = Lg+Ld-l. It should 

be mentioned that a common assumption used in many existing algorithms is go (n) = 

5(n), which implies H(n) = D(n). In this sense, therefore, the pulse-shaping effect 

has been neglected. However, this assumption is not true in practical systems. In 

what follows, we will improve the semi-blind algorithm proposed in Chapter 3 by using 

(4.2), namely, we will estimate D (n), instead of the large-dimensional matrix H (n), 

with the information of <?o (n). Since the number of channel parameters has been 

considerably decreased, the estimation performance of the new approach is expected 

to be much better than that of those focusing only on the estimation of the composite 

channel H (n) [94,95]. 

Using (4.2), the channel link between the iR-th receive antenna and i^-th transmit 

antenna can be described as the following vector, 

hiR,iT = [hiR,iT (0), • • •, fkRiiT {L - 1)]T = Ad^, iT (4.3) 

where A is an LxLd circulant matrix with its first column given by [go (0), • • •, go (Lg), 

OiX(L-L9)] and diRiiT = [diR:iT (0), • • • ,diRAr (Ld - l ) ] r . Prom (4.3), the iR-th. parti

tion of the composite channel vector h can be written as 

h ^ = [b£,i. • • •, K,NT]T = (INT ® A) diR (4.4) 
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where diR - [dfRl, • • • ,dJR,iT] • Using (4.4), one can obtain 

h = * d (4.5) 

where * = [INR ® (IjvT ® A)] and d = [d[, • • • . d j ^ f . Thus, (4.5) gives a relation

ship between the composite channel vector and the pure multipath channel vector. 

Substituting (4.5) into (3.17), a new semi-blind cost function for MIMO-OFDM 

channel estimation with pulse-shaping can be formulated as 

min A = 
d 

Ypjiot - A ' d + Q 
F 

B'd 
2 

(4.6) 

*" A "* A A •* 

where A' = A*fr and B' = B\]/. Similar to (3.18), the estimate of the channel vector 

can be derived as 

d = ( 7 A ' ) " A ' + a(B')*B') (A^YpUot. (4.7) 

The above equation gives a time-domain semi-blind solution for the channel esti

mation of MIMO-OFDM systems with pulse-shaping. Note that the computational 

complexity of d depends on the sizes of the matrices A' and B', which are determined 

by the length of the pulse-shaping and matched filters as well as the length of the 

pure multipath channel. When the length Lg of the filter g (n) is relatively small as 

compared to the channel length L4, (4.7) gives an efficient channel estimate. For a 

large value of Lg, however, the total length L = Lg + Ld — 1 of the composite channel 

can be very large which may incur a high complexity in the computation of (4.7). 

In what follows, we propose a very efficient frequency-domain estimation approach 

regardless of the relative size of Lg. 

73 



The frequency-domain signal model between the iR-th. receive antenna and the 

iT-th transmit antenna can be represented by 

YiR (fc) = HiRtiT (k) XiT (k), for k € [0, K - 1] (4.8) 

where HiRtiT (k) = f0fc [ti[RiiT,0ix(K-L)] a n d fofe is the k-th row of the K x K DFT 

matrix F0. From (4.2), we can derive 

HiR,iT(k) = G(k)DiR,iT(k) (4.9) 

where 

G(k) = fofc [g0(0),---,g0(Lg-l),0lx{L„Lg)]
T, 

DiR,iT (ty = fofc [dIR,iT,Qlx(K-Lb)] • 

Using (4.9) into (4.8), we can obtain the received signal after removing the effect of 

the pulse-shaping and matched filters, 

Y<R(k) t G-1 (k)YiR(k) 

= DiR,iT(k)XlT(k) + V'(k) (4.10) 

where V (k) is the frequency-domain noise. Clearly, by applying the IFFT to (4.10), 

a time-domain version of the received signal without the effect of pulse shaping and 

matched filters can be obtained as 

y'iR (
n) = J2 diR*r (n) ® xiT (n) + v'iR (n). (4.11) 

Interestingly, (4.11) is similar to the time-domain signal model in (2.3). Therefore, a 

semi-blind solution for the discrete-time multipath channel d can be obtained by using 
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the semi-blind method discussed in Chapter 3. It should be mentioned that the above 

IFFT operation to convert the frequency-domain signal Y(R (k) to the time-domain 

signal y'iR (n) imposes an additional computational burden and a long time delay for 

the implementation of the semi-blind algorithm. In Section 4.3, we will develop a 

frequency-domain method for the calculation of the time-domain correlation matrix 

which avoids an IFFT operation. 

4.2.3 LS Estimation of Upsampling Duration-based Channels 

Now, we consider the more general upsampling-duration-based channels. By using 

Fig. 4.1 and (4.1) and noting that the equivalent composite channel H (n) is a down-

sampled version of the discrete-time multipath channel He (n) given by (4.1), one can 

express H (n) as 
Ld-\ 

H(n)=Y/D{i)bi(n-mi) (4.12) 
i=0 

where 

, h + M - 1 , 
mi=l ^ J, (4.13) 

h (n) = gq {n) = g (Mn + q), q = m{M - lt. (4.14) 

As li (i = 0,1, • • •, Ld — 1) are known, rrii and 6j (n), (i = 0,1, • • •, Lj — 1) can be ob

tained by using (4.13) and (4.14), respectively. Now, we propose an enhanced LS 

algorithm for the estimation of D (i) (i = 0,1, • • •, Ld — 1), with the information of 

mi&ndbiin) (i = 0,1, • • • ,Ld - 1). 

Assume that the Kp sub-carriers, say from ipi\0ti to iPii0tKp, of each OFDM symbol 

carry the pilot signal. The transmitted and the received pilot vectors for each transmit 
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and receive antenna pair can be defined as 

-^•iy, pilot 

(m) = [XiT (m, ipii0ti), • • •, XiT (m, ip\\0tKp)] , 

YiHlPiiot (m) = [YiR (m, ipii0ti), • • •, YiR (m, ipaot/cp)] • 

It should be noted that the pilot signal might not be located at the same position in 

each OFDM symbol. For the ra-th OFDM symbol, one can form a Kp x L matrix, 

say F (m), by taking only the rows of Fi associated with the Kp pilot sub-carriers. 

It was shown in [25] that 

NT 

YiKlPiiot (m) = ] T X™ ]d iagF (m) hiRtiT + &fl,pilot (m) (4.15) 

where X^, diag = diag (XjT p i l o t (m)) and £ifi (m) represents the frequency-domain 

noise corresponding to viR (m,n) in (2.3). From (4.12), one can obtain 

hiR,ir = [bo, bi , • • •, b / ^ i ] diR>iT (4.16) 

where diRtiT = \diR^T (0), • • • ,diR,%T (Ld ~ 1)] a n d b* is a vector whose fc-th element 

is given by 

bi (k — mi), mi < k < Lg + rrii — 1 

0, otherwise 

From (4.15) and (4.16), the frequency-domain pilot signal received at the tR-th receive 

antenna with respect to g OFDM symbols can be obtained as 

Yj^pjiot = [Yifl)Piiot (0), • • •, Y iR)Pilot (g — 1)J 

= Add i f l + ^,Piiot (4.17) 

^ (fc) = * 
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where 

d = 

X?,diagF (0) XV,d i a f iF (0) 

®\bo,bir--,bLd-i], 

By defining 

difl = [ d iH, l ' ' " ' d iR, iVT] ' 

£ZK,pilot = [£iR.pilot (0) ) " " " i €iR,pilot (# ~~ 1)J • 

I pilot = z 1*1,pilot) " " ' i I Affl.pilotJ > 

D = [ d i , - - - , ^ ] , 

one can have 

Spilot — tSl,piloti ' " " i SiVjj,pilotJ 

Ypilot = A d D + £pilot, 

which gives 

D = AiY n i d * pilot-

(4.18) 

(4.19) 

(4.20) 

Finally, substituting D into (4.12) leads to the enhanced channel estimate H ( n ) . 

It will be shown in Section 4.4 that, when the number of multipath Lj is much 

less than the length L of the composite channel, the performance of the enhanced 

channel estimation approach is significantly superior to that of the original LS method. 

Moreover, the complexity of the enhanced LS method is much lower than that of the 

original version. 
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4.3 Frequency-Domain Estimation of Time-Domain Correla

tion Matr ix 

The core of the semi-blind MIMO-OFDM channel estimation algorithm is the 

computation of three matrices, i.e., R n - i in (2.37), R„ in (2.38), and R(0) given by 

R(0) = E { y ( n ) y " ( n ) } . (4.21) 

As mentioned in Subsection 4.2.2, the IFFT process is required in the receiver to 

obtain the time-domain received signal after removing the effect of pulse shaping and 

matched filters for the calculation of the correlation matrices. In this section, we pro

pose a frequency-domain estimation method for the time-domain correlation matrix 

directly from the frequency-domain signal without requiring the IFFT operation. 

4.3.1 The Time-Domain Correlation Matrix Rr for Semi-blind Channel 

Estimation 

We first give an unified representation of all the three matrices, Rn_i , R n and 

R (0). Suppose the time-domain version of the received signal after the IFFT is given 

by y' (n) = [y[ (n) , y'2 (n) , • • •, y'NR (n)]T. By letting 

y P + 1 (n) ± [ ( / (n))T , (y' (n - 1))T , • • •, (y' (n - P)f]T, 

the 2nd-order statistics in terms of the correlation matrix Ry of yp+i can be estimated 

by 

l K~1 

n=0 
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Note that yp+i (n) for n = 0,1,--- ,P — 1, can be obtained using y(n — j) 

y (K + n — j) for n < j due to the circular convolution. By defining 

•N A 

ft (J) 

£1,1 (0 R\,NR (0 

RNR,I (0 • • • RNR,NR (I) 

, for Z = - P , • • • , ( ) , • • • , P 

where 
i<r-i 

^m,i«2 (0 = -^ 5 ^ yim(n)y*R2(
n - 0. 

(4.22) can be rewritten as 

n=0 

R i 

R(0) R( l ) 

R ( - l ) R(0) 

R(P) 

R ( P - l ) 

R ( - P ) R ( l - P ) ••• R(0) 

By a simple analysis of (2.37), (2.38), (4.21) and (4.22), one can verify that 

R(0) Rn 

R n Rn-l 

= R •T-

(4.23) 

(4.24) 

(4.25) 

(4.26) 

In other words, the estimates Rn_i, Rn and R(0) can directly be obtained from 

the estimate RT- In the following subsections, we develop a new algorithm for the 

computation of the time-domain correlation matrix for the sampling-duration-based 

channel estimation directly from the frequency-domain signal after removing the effect 

of pulse-shaping and matched filters. 
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4.3.2 The Frequency-Domain Correlation Matrix Rp 

Our derivation of the frequency-domain correlation matrix is inspired by the idea 

of frequency-domain equalization. In the noise-free case, the frequency-domain signal 

model corresponding to (2.3) can be written as 

YxCm) 

YJVH (m) 

where 

diag ( F i h u ) • • • diag (Fihi i JVr) 

diag(F1hJVfi,i) ••• diag(Fj 

hjH.ir = [^ifl.tr ( 0 ) , • • • , hiR,iT (L — 1)] 

X!(m) 

XNT (m) 

(4.27) 

(4.28) 

and Fi consists of the first L columns of a K x K DFT matrix F 0 . Let us consider 

a frequency-domain equalization for (4.27), namely, 

Z (m) = [diag (F 2 wi) , • • •, diag (F2w;vJ] 

Yx(m) 

YNR (m) 

(4.29) 

where Wj = [wi (0), • • •, Wi (P)} , (i = 1, • • •, NR) is a transversal equalizer of size 

P + 1 with respect to the i-th receive antenna and F 2 consists of the first P + 1 

columns of the DFT matrix. Substituting (4.27) into (4.29) gives 

Z(m) = 

NR NR 

Y^ diag (F2Wi J diag (Fih^. i ) , • • •, ^ d i a § ( F 2 w i J diag (FihiR]ArT) 

X i ( m ) 

XivT (m) 

(4.30) 

80 



Letting F 3 be the first L + P columns of the DFT matrix and 

A ri 
CiR,iT ~ [CiR,iT \y) ) ' ' ' ) C*H>*T (,-tv + -T — J-JJ 

where 

CiR,iT (n) = WiR ( « ) * kiR,iT ( « ) > 

(4.30) can be rewritten as 

Z(m) = 

[diag [F3 (ca,i + • • • + CJVHII)] , • • •, diag [F3 (C1JNT + ••• + CNR,NT)}] 

X i ( m ) 

X N r (m) 

0 31) 

If a specific set of equalizers Wj, (i — 1, • • •, ./V )̂ with respect to the ix-th transmit 

antenna is designed such that 

I \i{i = iT) 

0 i f ( i ^ i r ) 

then the signal sent by this transmit antenna can be recovered, namely, 

diag [F3 (ci i iT + • • • + cNRtiT)} = < 

Z (m) = X j T (m) 

Thus, if such NT sets of equalizers are determined, all the signals from the NT transmit 

antennas can be recovered, resulting in a frequency-domain equalization for MIMO-

OFDM systems. 

Using the frequency-domain equalization idea, we now derive a frequency-domain 
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correlation matrix. For the fc-th subcarrier, (4.29) gives 

Z (m, k) = [diag (F2 (k) W l ) , • • •, diag (F2 (k) WNR)] 

ViKfc) 

(4.32) 

YNR (m, k) 

where F2 (k) is the k-th row of the matrix F2. For notational simplicity, the index m 

of OFDM symbols is dropped from now on without loss of clarity. Thus, (4.32) can 

be rewritten as 

Z(fc)=[wf,- . - ,w£jY'(A;) (4.33) 

where 

Yi(k) 

(4.34) V (k) ± (INR ® YT
2 (k)) 

YNR (k) 

Note that Y' (k) can be regarded as an input frequency-domain signal for the equalizer 

Wj, (i = 1, • • •, NR) at the fc-th subcarrier. Let us consider the autocorrelation matrix 

ofY'(fc), 

R F ^ l ^ Y ' ( f c ) ( Y ' ( A ; ) f , (4.35) 
fc=0 

which is called, for the sake of convenience, the frequency-domain correlation matrix 

in this work, even though it is actually an estimate. Using (4.34) into (4.35), R F can 

be rewritten as 

A M • • • AhNR 

RF = 

A J V R , I ^N^NR 

(4.36) 
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where 

K-\ 

A w * = ^ E F ^ (*) F2 (fc) * « (*) y 4 (*). fai>«« = 1. • •'. NR) • (4.37) 
fc=0 

It will be shown in the next subsection that the frequency-domain correlation matrix 

Rp contains exactly the same information as the time-domain correlation matrix Rr , 

yet it would significantly facilitate the computation of the second-order statistics in 

channel estimation by avoiding the IFFT operation converting the frequency-domain 

signal Y- (k) to the time-domain signal y'iR (n) in the proposed semi-blind algorithm. 

4.3.3 Computation of RT based on Rp 

In this subsection, we present a frequency-domain method for the computation of 

the time-domain correlation matrix R T via the frequency-domain correlation matrix 

Rp. To this end, we first reveal the relationship between the two matrices. By 

defining <f>(k) = e~^2^klK\ (4.37) can be rewritten as 

1 ^(k) (j)-2(k) ••• <p-p(k) 

0x(fc) 1 4>~l{k) ••• <p-p(k) 

4>2{k) (j)l{k) 1 ••• (j)2-p(k) *1«1>»R2 

1 K~l 

fc=0 

4>p{k) <f>p-l{k) <t>p-2(k) 

Yim(k)Y:(k) 

On the other hand, by letting 

K-\ 

(4.38) 

(4.39) 

(4.40) 
fc=o 
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RiR1,iR2 as defined in (4.24) can be expressed as 

K t^o [vK fc=0 

-l)/K 

1 K-i r 1 K-I 

fc=0 L "=0 

-j2irkn/K Y* (k) Q>27r(kl/K) 

K-\ 

= jc £ y<* (*) y 4 (*) *"' (*) • (4.41) 
fc=o 

It is clear that (4.41) gives the expression for the elements of AjHl!jH2, i. e., 

*H1,»/12 

(0) (1) (2) 

R '*fll ,«R2 ( -1) RiR1,iR2(Q) R 1R1 ,IR2 

^!JJl,tfi2 I ^) RR1,IR2 \ *•) R *fll JR2 

(1) 

(0) 

n *Hl.»iJ2 ( P - l ) 

RiRl,lR2 ("' ^ / 

i?j 
fll,*H2 " P ) ^HX,i«2 C1 _ -P) ^M,iR2 (2 _ P) P «R1,*H2 W 

(4.42) 

Thus, AiRuiR2 can be expressed in terms of RiR1,iR2 (I), (I = — P, —P + 1 • • •, P) as 

p 

&im,iR2= E ^ ™ ^ ) ® 1 ' (4-43) 
/ = - p 

where I; is a partial identity matrix, which has its nonzero elements 1 only in the 

l-th. diagonal and zero elements otherwise. The sequence of the nonzero diagonals is 

demonstrated in Fig. 4.2. For example, I — 0 corresponds to I(p+i)X(p+i), while I = 1 

gives 

0 P x l iPxP 

o o lxP 

Now we utilize the above result to derive the relationship between the frequency-

domain correlation matrix RF and the time-domain version RT- Using (4.43), (4.36) 
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Figure 4.2: Position of the diagonal for the partial identity matrix 

can be rewritten as 

R F = 

£ R.i,i(0®i« 
i=-p 

i=-p 
p 

l=-p 

E *-NR,NR(i)®ii 
i=-p 

] £ R ( 0 ® I J - (4.44) 
= - p 

On the other hand, from (4.25), R T can be expressed as 

R T = J2 JIBR-CO-
l=-p 

(4.45) 

It is interesting to see from (4.44) and (4.45) that the frequency-domain correlation 

matrix RF and the time-domain correlation matrix R T contain exactly the same infor

mation, which is dictated by R (I), (/ = —P, —P + 1, • • •, P), and the only difference 

between the two versions is the order of the Kronecker product. 

It is obvious from (4.44) that once R F has been calculated, R (/), (I — —P, —P + 1, 

• • •, P) can be obtained, and then R T can be determined directly from (4.45). The 

new frequency-domain correlation matrix estimation algorithm can be described as 
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follows. 

Step i) For each subcarrier, compute Y ' (k) using (4.34) based on the received 

frequency-domain signal; 

Step ii) Estimate the frequency-domain correlation matrix R F using (4.35); 

Step Hi) Obtain R (I), (I = -P, -P + 1, • • •, P) from R F in (4.44); 

Step iv) Construct R T from R (I), (I = 1 - P, • • •, P - 1) using (4.45). 

By using the above frequency-domain estimation algorithm in conjunction with the 

original semi-blind channel estimation approach proposed in Chapter 3, a frequency-

domain semi-blind approach for estimating the sampling-duration-based channels can 

be obtained. Note that, since the time-domain correlation matrix has already been 

computed, the practical scheme of determining the weighting factor a suggested in 

the time-domain approach in Chapter 3 can be directly used here. 

Before closing this section, we would like to evaluate the complexity of computing 

R T via the proposed frequency-domain method as opposed to the time-domain esti

mation including the IFFT operation. The frequency-domain method requires the cal

culation of Y ' (k) [V (k)]H and R F , which cost KNR (P2 + 3P + 3) and N2
R (P + l ) 2 

complex multiplications, respectively. Note that the calculation of R F also requires 

(K — 1) NR (P + 1) complex additions. On the other hand, the time-domain estima

tion method mainly consists of the calculation of R T and a .ff-point IFFT process. 

The former requires (K + 1) N% (P + l ) 2 multiplications and (K - 1) N% (P + l ) 2 ad

ditions, while the latter involves NRK\og2 (K) complex multiplications and additions. 

A detailed comparison of the two methods is given in Table 4.1. Considering that 

K is in general much larger than NR and P, we have A'log2 (K) NR S> NR (P + 2). 
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Thus, the complexity of the frequency-domain algorithm is approximately the same 

as that for the calculation of R T in the time-domain algorithm excluding the IFFT. 

It means that, in comparison with the conventional time-domain estimation method, 

the IFFT processing has been avoided in the frequency-domain approach. 

4.4 Simulation Results 

Here we consider a MIMO-OFDM system with 2 transmit and 4 receive antennas. 

The number of subcarriers is set to 512, the length of cyclic prefix is 10, and the QPSK 

modulation is used. A square root raised cosine filter with order 16, oversampling 

rate 4 and rolloff factor 0.15 is used for the pulse-shaping filter and the matched 

filter. In our experiments, we simulate the frequency-domain semi-blind channel 

estimation algorithm for a sampling duration-based channel and the enhanced LS 

channel estimation algorithm for an upsampling duration-based channel. 

4.4.1 Sampling Duration-based Channels 

A Rayleigh channel modelled by a 3-tap MIMO-FIR filter is assumed, in which 

each tap corresponds to a 2 x 4 random matrix whose elements are i.i.d. complex 

Gaussian variables with zero mean and unit variance. The length of the linear pre

dictor is P = 4. As shown in Chapter 3, the channel estimation performance is 

associated with H (0). Accordingly, we use the same metric rj = 2
 F and 

£ HH(n)||J. 
n=0 

conduct a simulation study with respect to different ranges of rj. 

In the experiments, for the purpose of comparison, the composite channel vector 

h is first estimated by the LS method. As for the estimation of the pure discrete-
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Table 4.1: Complexity comparison of time-domain and frequency-domain methods 

for computing RT 

Step 1 

Step 2 

Step 3 

Step 4 

In 

Total 

Frequency-Domain Algorithm 

IW*0 = 

Yi(k) 

: [Y:(k),---,YZR(k)}, 

[ YNR (k) _ 

KNR multiplications 
RB(k) = [lNR®FZ(k)]RA(k), 

(k = 0,---,K-l): 

KNR (P + 1) multiplications 

Rc(k) = RB(k)[INR®F*2(k)}, 

(k = 0,---,K-l): 

KNR (P + l)2 multiplications 

fe=0 

NR (P + l)2 multiplications 

{K - 1) JVj[ (P + l)2 additions 

Multiplications: 

(K+1)N2
R (P + lf+Nl (P + 2) 

Additions: 

(K-l)Nl{P + lf RR 

Time-Domain Algorithm 

a if-length IFFT processing: 

inog2 (K) NR multiplications 

i^log2 (K) NR additions 

R D (n) = yP + i (n) y£+1 (n), 

(n = 0,---,K-l): 

KNR (P + l)2 multiplications 

Rr = £J£RjD(n): 
n=0 

JV£ (P + l)2 multiplications 

(if - 1) NR (P + l)2 additions 

Multiplications: 

Klog.i^NR + iK + ^NKP+l)2 

Additions: 

K\og2(K)NR + (K-l)NR(P+l)2 



time channel vector d, we consider the time-domain LS, the frequency-domain LS 

and the proposed frequency-domain semi-blind method, all with pulse shaping. For 

simplicity, we call these four methods as the basic LS, enhanced time-domain LS 

(TDLS), enhanced frequency-domain LS (FDLS) and enhanced semi-blind methods. 

Note that the LS methods can be easily obtained by setting a to zero in the proposed 

two semi-blind methods with pulse-shaping. The estimation performance is evaluated 

in terms of the MSE of the estimate of the channel matrix given by 

1 NMC 2 / i ^MC 2 \ 

M S E = — - V h n - h „ orMSE= — - V dn - dn 

J V M C ^ H V N MC^H J 

where Nuc is the number of Monte Carlo iterations, and h„ (d„) and hn (dn) are 

the true and the estimated channel vectors with respect to the n-th Monte Carlo 

iteration, respectively. 

Experiment Al: MSE versus r\ 

In the first experiment, the channel estimation performance in terms of the MSE 

versus r\ is investigated. The simulation is undertaken by 1000 Monte Carlo runs of 

the transmission of one OFDM symbol under an SNR of 15dB at 512 subcarriers of 

which 30 are used as pilot for training purpose. Fig. 4.3 shows the MSE plots re

sulting from the proposed enhanced TDLS, FDLS and semi-blind frequency-domain 

methods as well as the basic LS estimation with 20, 40, 60 and 80 symbols, respec

tively. Obviously, the MSE performance of the proposed three enhanced methods are 

significantly better than that of the basic LS. In particular, the performance of the 

enhanced TDLS and FDLS methods with only one symbol is still better than that 
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Figure 4.3: MSE versus 77 for a sampling duration-based channel, 

of the basic LS method with 80 symbols, indicating that the new approach focusing 

on the pure multipath channel vector significantly outperforms other techniques for 

the composite channel vector irrespective of pulse-shaping. One can find a high con

sistency between the enhanced TDLS and the enhanced FDLS methods. Also, the 

semi-blind frequency-enhanced method significantly outperforms the two enhanced 

LS methods. In addition, the performance of the semi-blind method improves with 

the increasing value of 77 when 77 < 0.3, and remains almost the same when 77 is in the 

range of 0.3 to 0.6, which represents typical mobile communication scenarios where 

the first arrived path is comparable to or stronger than other paths. 

Experiment A2: MSE versus SNR 

Now we investigate the channel estimation performance versus the SNR. The sim-
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Figure 4.4: MSE versus SNR for a sampling duration-based channel 

ulation involves 5000 Monte Carlo runs of the transmission of one OFDM symbol. 

Fig. 4.4 shows the channel estimation results of the three enhanced methods and 

that of the basic LS method with 40 and 80 symbols when r\ > 0.2. It is seen that 

the performances of the two LS methods are almost the same, which consistently 

outperform the basic LS method with 80 symbols. In addition, it is observed that 

the semi-blind frequency-enhanced method can achieve a nearly 3~4 dB gain over 

the two enhanced LS methods, when the SNR varies from 5 to 25 dB, respectively. 

Experiment A3: MSE versus pilot length 

Here we investigate the channel estimation performance of the semi-blind frequency-

domain algorithm versus the number of pilot subcarriers per symbol, in comparison 

with that of the two enhanced LS methods. The number of OFDM symbols used in 
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Figure 4.5: MSE versus pilot length for a sampling duration-based channel 

the three methods is set to 2, and the number of pilot subcarriers per OFDM symbol 

varies from 8 to 48. Fig. 4.5 shows the MSE plots from 500 Monte Carlo iterations at 

an SNR of 15 dB when 77 > 0.2. It is seen that the performance of all the algorithms 

is improved with an increasing number of pilot subcarriers. Again, the performance 

of the proposed TDLS and FDLS methods are almost the same, and the semi-blind 

frequency-domain method is superior to both TDLS and FDLS nearly by 6 and 4dB 

when the number of pilot subcarriers is 8 and 48, respectively. It implies that the 

proposed semi-blind method is more advantageous for pilot signals of a shorter length. 

Experiment AJ^: BER versus SNR 

In this experiment, the BER performance of the MIMO-OFDM system is investi

gated by using the estimated channel matrix and an ordered vertical-Bell laboratories 
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Figure 4.6: BER versus SNR for a sampling duration-based channel 

layered space time (V-BLAST) decoder. The simulation involves 5000 Monte Carlo 

runs of the transmission of one OFDM symbol with 8 pilot subcarriers. Fig.4.6 shows 

the BER performance versus the SNR for the FDLS method and the semi-blind 

method, when rj > 0.2. It is seen that the performance of the semi-blind method 

is superior to the LS method by 1.6~3.4 dB when the SNR varies in the range of 

3 ~ 15dB. 

4.4.2 Upsampling Duration-based Channels 

A 3-path Rayleigh channel is assumed, in which each path corresponds to a 2 x 4 

random matrix whose elements are i.i.d. complex Gaussian variables with zero mean 

and unit variance. The delays of the three paths are set to 0, |T , and2T. 

10"'r 
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m 
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Figure 4.7: MSE versus SNR for an upsampling duration-based channel. 

Experiment Bl: MSE versus SNR 

At first, we investigate the channel estimation performance versus the SNR. The 

simulation involves 5000 Monte Carlo runs of the transmission of one OFDM symbol. 

Fig. 4.7 shows the channel estimation result of the enhanced LS method and that 

of the basic LS method with 30 and 60 symbols. It is seen that the enhanced LS 

method with only one symbol can achieve 2.9 dB gain over the basic LS method with 

30 symbols. Moreover, it is observed that 60 symbols are needed for the basic LS 

method to achieve the same performance as given by the enhanced LS method. 

Experiment B2: MSE versus pilot length 

Now we examine the channel estimation performance of the enhanced LS algo

rithm versus the number of pilot subcarriers per symbol. The number of OFDM 
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Figure 4.8: MSE versus pilot length for an upsampling duration-based channel, 

symbols used is set to 2, and the number of pilot subcarriers per OFDM symbol 

varies from 8 to 48. Fig. 4.8 shows the MSE plots from 5000 Monte Carlo iterations 

at an SNR of 15 dB when r? > 0.2. It is seen that the performance of the enhanced LS 

algorithm is improved with the increase of the number of pilot subcarriers. In partic

ular, the enhanced LS algorithm with 18 pilots (2 symbols with 9 pilot subcarriers) 

can achieve a similar result of the basic LS method with 1280 pilots (40 symbols with 

32 pilot subcarriers). In addition, 36 pilots in the enhanced LS method serves as 2560 

pilots in the basic LS method. 
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4.5 Conclusions 

In this chapter, the channel estimation issue of MIMO-OFDM systems with pulse 

shaping has been thoroughly studied. By taking into account the effect of both 

pulse-shaping filter in the transmitter and the matched filter in the receiver, a new 

channel estimation problem focusing on the estimation of the pure multipath channel 

has been formulated. Then, two typical multipath scenarios corresponding to the 

sampling- and upsampling-duration based channels have been identified, for which 

two frequency-domain channel estimation approaches, i.e., the semi-blind and the 

pilot-aided least-square methods, have been developed, respectively. To reduce the 

computational complexity of the semi-blind method, a frequency-domain correlation 

matrix estimation algorithm has also been presented. The effectiveness of the new 

channel estimation mthods have been confirmed by computer simulations with com

parison to the basic LS method as well as its enhanced versions with pulse-shaping. 
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Chapter 5 

Nulling-based Semi-Blind Sparse Channel 

Estimation 

5.1 Introduction 

It is well known that a wireless channel can often be modelled as a sparse channel, 

in which the delay spread could be very large but the number of paths is normally 

very small [52,65-70,96-100]. Broadly speaking, there are two kinds of approaches for 

the sparse channel estimation. The first one estimates the complex amplitude and the 

delay of each path based on a non-sampling spaced parametrical channel modelling 

[52,96,97]. These parameters can be determined through various means depending on 

the underlying wireless systems. For example, they can be obtained by employing a 

special spreading code in code division multiple access (CDMA) systems [96] or using 

the ESPRIT (the estimation of signal parameters via rotational invariance technique) 

with an estimated delay-subspace in OFDM systems [52,97]. The second kind is 

based on the sparsity assumption of the equivalent discrete-time channel [66-70,98-

102], in which only a few taps in the long tapped delay line are considered most 
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significant. By exploiting the sparse structure of the channel, some improved channel 

estimation algorithms have been developed for OFDM systems [65-68] and CDMA 

systems [69,70]. In this chapter, we are concerned with the development of a very 

efficient sparse channel estimation approach for MIMO-OFDM systems that requires 

only a few OFDM symbols. As the non-sampling spaced sparse channel estimation 

requires a large number of OFDM symbols for the estimation of the delay-subspace, 

we focus only on the sampling-spaced approach. 

It should be mentioned that almost all of the sampling-spaced sparse channel es

timation methods in the literature utilize a training sequence and follow two steps: 

(1) detect the position of the most significant taps (MSTs), which are also referred 

to as the nonzero taps in some of the literature; and (2) obtain an improved channel 

estimate by exploiting the position of the MSTs. The key to these methods is the 

first step, i.e., the MST detection. Several techniques based on an LS estimation 

have been developed for MST detection [65-67,98]. In these methods, an unstruc

tured channel, i.e., a channel presumably having all nonzero taps, is considered in the 

initial LS estimation. Using the preliminary estimate, the MST detection can simply 

be conducted by choosing a number of the largest amplitude channel taps [65]. To 

improve the detection accuracy, a generalized Akaike information criterion (GAIC) 

is utilized to estimate the MSTs in an iterative fashion [66], which is then simplified 

to a non-iterative scheme [67]. Another MST detection technique that utilizes the 

preliminary LS estimate in conjunction with the so called on-off-keying (OOK) detec

tion method can be found in [98]. The matching pursuit (MP) based MST detection 

method has also extensively been investigated by many researchers [69,70,99,100]. 
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In the MP method, the MST is detected by sequentially selecting the column in a 

mixture matrix of the pilot signal that matches best the residual vector of the re

ceived signal. The detection performance of the MP method can be improved by 

utilizing the subspace fitting [103] or a group of OFDM symbols [104]. Another MST 

detection, which employs an active tap detection criterion involving the correlation 

between the training pilots and the received signal, has been proposed in [101,102]. 

Once the MST information has been acquired in the first step, a refined channel 

estimate can be obtained in the second step by using the structured channel, in which 

only the detected MSTs are taken into account. This is usually implemented with the 

structured version of the training-based approaches such as the LS method [66,67,69, 

98,99] and the LMS method [101,102]. It has been shown that the performance of 

these sparse channel estimation methods is much better than that of the unstructured 

channel estimation alternatives. 

The common problem of the above mentioned sparse channel estimation meth

ods is that a large number of pilots is needed in order to render an accurate MST 

detection and channel estimation. To increase the spectral efficiency, the available 

information of users data could be applied to both the MST detection and the channel 

estimation. Unfortunately, very little work on blind MST detection and blind sparse 

channel estimation is found in the existing literatures. To the best knowledge of the 

author, there is only one cyclic-prefix (CP)-based blind method dealing with the MST 

detection of the sparse channel estimation for OFDM systems [68], in which a blind 

estimation of the sparse channel is, however, not considered. Moreover, this detection 

scheme needs a large number of OFDM symbols as well as a large CP length in order 
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to obtain precise MST positions. 

The objective of this chapter is to develop, for MIMO-OFDM systems, an efficient 

semi-blind sparse channel estimation approach, which comprises the MST detection 

and sparse channel estimation both in a semi-blind fashion. First, the analysis of 

the second-order statistics of the received signal passing through a sparse channel is 

conducted, leading to a relationship between the positions of the most significant taps 

and the lags of the nonzero correlation matrices of the received signal. Based on this 

relationship, an efficient MST detection algorithm, which requires only a few OFDM 

symbols and a very small number of pilots, is proposed by utilizing the lag information 

of the nonzero correlation matrices. Then, by using the acquired MST position, an 

LS criterion and a blind constraint on the sparse channel vector with respect to the 

most significant taps are derived to develop a semi-blind sparse channel estimation 

approach. In addition, a brief perturbation analysis of the proposed approach is 

conducted, showing that the new semi-blind sparse solution is not subject to the 

signal perturbation error in the M-rate sparse channel case, i.e., the sparse channel 

is a decimated version of the full FIR channel under consideration. 

The rest of the chapter is organized as follows. Section 5.2 performs an analysis 

of the second-order statistics of the received signal through a sparse channel, leading 

to a relationship between the positions of the most significant taps and the lags of 

the nonzero correlation matrices of the received signal. Section 5.3 proposes a highly 

efficient MST detection algorithm that requires only a few OFDM symbols and a 

small number of pilots for the least-square based detection. Section 5.4 proposes a 

semi-blind approach for the estimation of sparse MIMO-OFDM channels, including 
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the formulation of a training-based LS criterion and a blind constraint on the sparse 

channel vector with respect to the most significant taps. Section 5.5 conducts a 

perturbation analysis of the proposed sparse semi-blind approach, justifying that a 

blind constraint that is not affected by signal perturbation terms can be obtained for 

an M-rate sparse channel. Section 5.6 comprises a number of experiments validating 

the proposed approach, showing the significant advantage of the sparse semi-blind 

solution over the sparse LS method as well as the regular LS and semi-blind techniques 

in terms of the MSE of the channel estimate. Finally, Section 5.7 concludes the 

chapter by highlighting some of the contributions presented. 

5.2 Second-Order Statistics of the Received Signal through 

Sparse MIMO Channel 

A wireless channel can very often be modelled as a sparse channel that contains 

many zero taps in the uniform delay line [66-70,98-102]. In this case, the channel 

matrix with respect to the d-th (d = 0,1, • • •, D — 1) most significant tap (namely, 

the nonzero tap in the noise free case) can be expressed as 

Z(d) = H(*d) (5.1) 

where Id (d — 0,1, • • •, D — 1) are integers with 0 = /0 < î < • • • < ID-I- TO distin

guish from H (/), Z (d) is referred to as the effective channel matrix. In the following, 

we analyze the second-order statistics of the signal received through the sparse MIMO 

channel. 

It is well known that the correlation matrix of the received signal vector y (n) 
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plays a crucial role in blind or semi-blind channel estimation [36,105,106], which can 

be in general defined as 

R(0 = E { y ( n ) y " ( n - 0 } , ( / = 0,l,---,P) (5.2) 

Obviously, (5.2) includes the autocorrelation matrix of y (n) as a special case when 

I = 0. In this section, we would like to express R( / ) in terms of the effective sparse 

channel matrix Z (d), (d = 0,1, • • •, D — 1), in the absence of noise, and show that 

R (I) has only a few most significant lags (MSLs), i.e., most of the matrices R (I) with 

I G [0, P] are zero matrices, due to the sparse nature of the channel. 

Using (2.3), (2.32), (2.33) and (5.1) into (5.2), we can obtain 

R (I) = ZARX,D (0 ZA (5.3) 

where 

Z „ £ Z(0) Z ( l ) ••• Z ( D - l ) (5.4) 

Rx,D (I) = E < 

x(n) 

x ( n — l\) 

1 H\ 

x ( n — I) 

x ( n — l\ — I) 

x ( n - / u _ i - / ) 

> . (5.5) 

x(n-Zz>_i) 

Clearly, the structure of R(Z) mainly depends on Rx,£>(0- Due *° * n e ^ac^ that 

E {x (n — i) x H (n — j)} = cr^5 (i — j ) I, we can rewrite (5.5) as 

RX,D (0 = AD (I) ® < # (5.6) 
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where 

AD (0 = 

8(1) 8(l + h) 

6{l-h) 8(1) 

S(l + h-i) 

8(l + lD-i -h) 
(5.7) 

8(l-lD-i) 8(l-lD-X + h) ••• 8(1) 

It is obvious from (5.7) that AD (I) is a lower triangular matrix for I € [0, P]. More

over, the nonzero elements of AD (I) occur only when / = /—lj, (i, j — 0,1, • • •, D — 1; 

i > j). Since the channel is sparse, i.e., D <C L < P, there is only a small number 

of choices of I which makes A^ (I) a nonzero matrix. In other words, A# (/) is a 

zero matrix for most of the values of / ranging from 0 to P. It is clear from (5.3) 

and (5.6) that as long as AD (I) is a zero matrix, HXID (0 is a zero matrix and so 

is R(Z). Moreover, even if A© (I) is a nonzero matrix, most of its lower triangular 

elements are zero. Therefore, AD (I) is a sparse matrix, which makes Rx,r> (I) also 

sparse. Note that the position of the nonzero elements of A# (I), and in turn that 

of the corresponding nonzero submatrices of Rx,£> (I) depend on the values of I and 

Id. We now show that since the nonzero submatrices of HX<D (0 a re simply identity 

matrices multiplied by ax) R(Z) with respect to its MSLs can be expressed in terms 

of the effective matrix Z (d). 

Let us consider first the simplest case when D = 2. In this case, there are only 

two nonzero effective channel matrices Z (0) and Z(l) corresponding to H(0) and 

H (li), respectively. Without loss of generality, we assume a unit signal variance, i.e., 

ax = 1. From (5.3), (5.4) and (5.6), one can find that there are only two nonzero 

103 



matrices of R(Z), i.e., 

R(0) = Z(0) Z(l) 
I 0 

0 I 

R(h) = Z(0) Z(l) 

Z"(0) 

Z"( l ) 

0 0 

1 0 

= Z(0)ZH(0) + Z(1)Z"(1) , (5.8) 

ZH(0) 

ZH(1) 
= Z(1)Z"(0) , (5.9) 

which means that the MSL position of R(Z) is Z = 0, l\. 

When D = 3, RXi3 (Z) has different sparse structures depending on the relationship 

between Zx and Z2, which leads R(Z) to have different expressions. Using(5.3), (5.4) 

and (5.6), one can obtain the following results. 

Case DS.l: ]il2 = 2lu 

£ Z (i) ZH (i) if I = 0 
4=0 

Z(1)Z*(0) + Z(2)ZH(1) if Z = ZX 

Z (2) ZH (0) if I = Z2 

0 otherwise 

R(Z) = < (5.10) 

Case D5.2: if Z2^2Zi, 

R(2) = < 

£z(z)ZH(i) if / = 0 
i=0 

Z(1)Z"(0) if Z = Za 

Z (2) Z " (1) if Z = Z2 - h (5.11) 

Z (2) ZH (0) if Z = Z2 

0 otherwise 

It is seen that the main difference between the two cases DS.l and D3.2 lies in the 

number of MSLs in addition to the expression of R (Z). The two common MSLs in the 

104 



two cases are R(0) and R(^)- Other MSLs depend on the relationship between lt 

and l2. If h is not identical to l2 — h, for any value of /, 5 (I — l\) and 5 (I — l2 + h) in 

(5.7) cannot be unity at the same time, leading to two different MSLs, i.e., R(h) = 

Z (1) ZH (0) and R(Z2 - h) = Z (2) ZH (1). However, if h equals l2~h, both 5 (I - h) 

and 8(1 — l2 + h) could be unity simultaneously. Then, the two presumable MSLs 

overlap, yielding the only MSL, i.e., R (I = h = h - h) = Z (1) ZH (0) + Z (2) ZH (1). 

In the case of D = 4, one can easily obtain R (/) with respect to the first and the 

last MSLs as 
3 

R(0) = X ) Z ( i ) Z * ( t ) , (5.12) 

R(/3) = Z(3)ZH(0) , (5.13) 

which is similar to the cases of D = 2 and D = 3. All other MSLs can be determined 

from the relationship amongst h, l2, h — h, h — h and h — l2- As some of these 

values could be identical as discussed for the case of D = 3, the number of the MSLs 

of R (/) can be different. As such, the position of the MSLs and the expression of 

R(/) are dependent on the values of l\, l2, I3 and their differences. Using (5.3), (5.4), 

(5.6) and (5.7), one can have a total of 8 possible cases as summarized in Table 5.1, 

where Rjj = Z (i) ZH (j). Note that the correlation matrices with respect to the first 

and the last MSLs, which are common to all the 8 cases, are not included in Table 

5.1 for notational simplicity. Evidently, Case D4-8 indicates a possibility of having a 

maximum of 7 MSLs of R (/) including the first and the last ones. When some of the 

values of h, l2, l2 — h, h — h and £3 — l2 happen to be identical, the number of the 

MSLs would be reduced. For example, Case D4-2 corresponds to a possibility that 
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Table 5.1: Expression of correlation matrix R ( 0 for D = 4 

Case D4.1: 

h : /2 : /3 = 1 : 2 : 3 

Case D4.2: 

h •• h •• h = 1 : 2 : 4 

Case D4.3: 

h • h • h = 2 : 3 : 4 

Case D4-4: h — h + h 

h # 2 / i , h :l2 5^2 : 3 

Case D4.5: h ¥"h+h 

(2 = 2 /1 , (3^2 /2 

Case D4.6: h ^h+h 

h / 2 / i , 2/2 = h + h 

Case D4.7: h • h = 1 : 2 

/l : ( 2 5^2 : 3 

Case D4.8: h # d + Z2, /2 / 2d 

/l : / 2 ^ 2 : 3 , 2 / 2 ^ / 3 + /i 

/ 

R( / ) 

/ 

R ( ' ) 

/ 

R(J) 

/ 

R( / ) 

/ 

R( l ) 

/ 

R( / ) 

/ 

R(J) 

/ 

R( / ) 

h 

R.1.0+R2.1 +R-3.2 

h 

Ri,o + R.2,i 

h 

Ri,o + R 3 , i 

h 

R.l.O + R.3,2 

h 

Ri,o + R 2 , i 

h 

R.1,0 

h 

Ri,o + R 3 , i 

d 

Ri.o 

h 

R-2,0 + R-3,1 

h 

R-2,0 + R3,2 

h 

R2,0 

h 

R2,o + Ra.i 

h 

R2,0 

h 

R2,0 

h 

R2,0 

h 

R2,0 

h-h 

R 3 , i 

h-h 

R2,l + R3,2 

h-h 

R2,l 

h-h 

R 3 , i 

h-h 

R 2 , l + R 3 , 2 

h-h 

R2,i 

h-h 

R2,l 

/ 3 - / 2 

R3,2 

h-h 

R 3 , i 

h-h 

R3,2 

( 3 - / l 

R 3 , i 

( 3 - / 2 

R3,2 

the MSLs at l\ and l2 — l\ are overlapped as well as the MSLs at l2 and /3 — l2 are 

overlapped. 

We have obtained in the above the expression of the correlation matrices R( / ) , 

(I = 0,1, • • •, ID-I) in terms of the effective channel matrix Z (d), (d = 0,1, • • •, D — 1) 

for the cases with respect to D = 2,3,4. When D > 4, a table similar to Table 5.1 

can easily be designed by a simple computer programming. Noting that IQ = 0, 

all the potential MSLs can be written as ê - = U — lj (i > j), each corresponding to 

Rjj =H(l — k — lj). If any two of e -̂'s are identical, the corresponding two potential 

MSLs are overlapped, and thus the corresponding two Rj,/s are combined. 
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As seen in the next section, the structure of R (/) can be exploited to detect the 

MSTs of the sparse channel. In Section 5.4, we will use the expression of R (I) at its 

MSLs to derive a blind constraint for the semi-blind estimation of the sparse channel. 

5.3 Detection of Most Significant Taps (MSTs) 

The MST detection is usually conducted by utilizing some training sequences. The 

available MST detection methods include the GAIC-, OOK- and MP-based methods 

[66,67,69,70,98-100,103,104]. These methods in general require a large number of 

pilots to render an accurate MST detection. In addition to training-based methods, 

a CP-assisted blind approach was developed for OFDM systems in [68]. This method 

still needs a large number of OFDM symbols plus a large CP length in order to obtain 

a satisfactory detection result. We now propose an efficient MST detection algorithm 

based on the structure of R (I) as analyzed in the previous section. The idea is to 

determine the MST position based on the MSL position of R(Z) [107,108]. It will 

be shown through simulation studies that, by using very few OFDM symbols plus 

only a small number of pilots, our new MST detection method has a high detection 

accuracy. 

Prior to developing the new method, we first introduce the estimated version 

R ( 0 of R(Z). For the sake of simplicity, only one OFDM symbol is considered. The 

correlation matrix of y (n) can be estimated as 

*(0 = ; | £ y ( n ) y " ( r c - 0 (5.14) 
71=0 
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where y (n) = y (K + n) for n < 0. By letting 

xr>(n) = [ x T ( n - / 0 ) ! x T ( n - Z 1 ) , - - - , x T ( n - h-i)] , (n = 0,1, • • • ,K - 1) 

where x (n) = x (K + n) for n < 0, the received signal vector y (n) as described by 

the circular convolution (2.3) in the noisy case can be rewritten in the matrix form 

as 

y (n) = ZAXLD (n) + v (n) (5.15) 

where v (n) = [v\ (n), v\ (n), • • •, v^R (n)] . Substituting (5.15) into (5.14) and using 

(5.3) yield 

R{l) = R(l) + ZAARXtD(l)Z% + Rv (5.16) 

where 

1 K _ 1 

ARI]fl (0 = - Y, *D (n) x o (n-l)~ RX,D (I) (5.17) 
71=0 

represents the signal perturbation and R^ is the perturbation error introduced by the 

noise. 

Obviously, the first term in the right hand side (RHS) of (5.16) is an ideal cor

relation matrix of the received signal vector y (n) without the signal perturbation 

as well as the noise corruption, while the second and the third terms are the errors 

introduced by the signal and noise perturbations, respectively. Note that in the noisy 

case, R (I) is in general a nonzero matrix even if R (I) = 0. However, the MSLs can 

be detected from the norm of R(0> since the first term in the RHS of (5.16), R(Z), 

would be dominant provided that the signal-to-noise ratio (SNR) is not extremely 

low. Accordingly, the first step of our method is to detect the MSLs of R (/) by 
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comparing its norm with a threshold, which is defined in this thesis as 

* = p^h£iift(0ll (5-18) 

^ l=Q 

where PL is a predetermined length and the coefficient Ke is used to adjust the average 

norm of R(Z). Once the MSLs of R(/) are acquired, their position information can 

be utilized to determine the MST position Id of the sparse channel via the MSL of 

R (I) obtained in the previous subsection. The second step of the new MST detection 

algorithm can be described as follows. 

Assume a total of W MSLs of R ( 0 have been detected, whose positions are 

denoted as rrij with m0 < mi < • • • < mw-i- We now determine the possible Ẑ 's 

according to the structures of R(/) with respect to different values of D and W. 

Although we have in general D < W, it is clear that the positions of the first and the 

last MSTs are simply given by 

l0 = m0 = 0, (5.19) 

lD-i = mW-\- (5.20) 

Obviously, (5.19) and (5.20) give the only two nonzero taps if W = 2. In the following, 

we determine Id (d — 1,2, • • • ,D — 2) from mw (w = 1,2, • • •, W — 2) for the cases of 

W>2. 

If W = 3, we have only the case D3.1 according to (5.10). Then, there is only 

one additional tap Id to be determined, which is readily given by 

h = m1 = — . 

If W — 4, we should have case D3.2 from (5.11) or D4-1 in Table 5.1. Then, one can 

have the following three possible solutions, 
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Case W4.I: when D = 3 with l2 > 2li, we have mi = l\ and m2 = l2 — h, which 

gives Zi = mi and l2 = m\ + m2 = m3; 

Case W4-2: when L> = 3 with Z2 < 2Zi, we obtain m\ = l2 — h and m2 = h, which 

yields l\ = m2 and l2 = mi + m2 = m3 ; 

Case W4-3: when D = 4 with /1 : Z2 : 3̂ = 1 : 2 : 3, we readily have l\ = mi and 

l2 = m2 . 

In order to make a decision among the three choices, we propose a sparse LS method 

as described below. 

By letting l'd (d = 0,1, • • •, D' — 1) be the potential MSTs of the sparse channel 

matrix and using (5.1), (2.28) can be rewritten as 

Y. Yjfi,piiot (m) = ^2 XiT,piiot-diag (m) F ' (m)z ' i R i r + &HiPii0t (m) (5.21) 

where z'iR<iT = [z'iRiT (0), • • •,z' iRiT (D' - 1)] and F ' (m) is a KP x D' matrix, whose 

d-th column is the Z^-th column of F (m), (d = 0,1, • • •, D' — 1). By further letting 

z' -

(3.2) can be rewritten as 

( Z L l ) ' " ' ' {ZiR,NT) 

2 = [zli " - " >ZNRJ ) 

Ypiiot — A Z + ^piiot 

(5.22) 

(5.23) 

(5.24) 

where 

A ' ^ 

,pilot—diag 

(0) F (0) 
,pilot—diag 

(0) F (0) 

Xi,Piiot-diag (g - 1) F ' (g - 1) • • • XjvT,piiot_diag (# - 1) F {g - 1) 

(5.25) 
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From (5.24), an LS estimate of the sparse channel with respect to the potential MSTs, 

l'd (d = 0,1, • • •, D' — 1) can be obtained as 

Z ' ^ A ' ^ Y p i f c t . (5.26) 

Using the idea of joint channel estimation and zero detection proposed in [98], a cost 

function for the new MST detection method can be established as 

J(l'or--, I'D'-I) = Ypuot - A'Z' * . (5.27) 
F 

Evidently, the cost J reaches its minimum when l'd (d = 0 ,1 , • • •, D' — 1) gives true 

MSTs. 

In the case of W = 4, our MST detection only needs to calculate a few costs with 

respect to Cases W4-1, W4-2 and W4-3, denoted as J4il, J4,2 and J4]3. The complete 

scheme is shown in Fig.5.1, which gives three possible MST detection results, namely, 

Case W4-1: h = mi; Case W4-2: li = m2 and Case W4-3: lx = m i , ^ = "^2-

It should be stressed that the detection scheme in Fig.5.1 is already the improved 

version of a straightforward implementation. First, instead of computing all the 

three costs 74,1, J\ti and J4)3 and making a detection among the three values, a test 

on the three MSLs mi, m2 and m3 has been performed to possibly reduce the three 

candidates to two, which could not only save the calculation of one cost but also 

enhance the detection performance by excluding the false MST candidate Case W4-3 

from comparison. Second, when the test on the three candidates is passed, we have 

found that J4]3 could be very close to J4ii (J4,2) if Case W4-1 (Case W4-2) is true, 

indicating a possibility of mis-detecting Case W4-1 (Case W4-2) as Case W4-3 at 

a low level of SNR. On the other hand, when Case W4-3 is true, J4)3 is found to be 
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much smaller than Ji%\ and J42. In the improved detection scheme, therefore, we have 

employed a scaling coefficient c to distinguish W4-3 from W4.I and W4-2. The value 

of c should be chosen according to the level of SNR. For example, for a moderate 

SNR, we have found c = 0.8 ~ 0.9 is a proper choice. 

Similarly, for W = 5, one can have the following possible situations: 

Case W5.1: m\ = l\, m2 = l2 and 1713 = h — h, when D = 4 and l\ : I2 • h = 1 : 

2 : 4 ; 

Case W5.2: raj = l2 — l\, m2 = /1 and m3 = Z2, when .0 = 4 and Zi : Z2 : Z3 = 2 : 

3 : 4 ; 

Case W5.3: mi = l\, m2 = l2 — h and 7/13 = Z2, when D = 4, I3 = l\ + l2 and 

Z2 > 2/ i ; 

Case W5.4: m\ = l2 — Zi, 7712 = Zi and m3 = Z2, when D = 4, Z3 = Zi + l2 and 

Z2 < 2Zi; 

Case W5.5: mi = Z1( m2 = l2 and m3 = Z3, when D = 5 and Zi : Z2 : Z3 : Z4 = 1 : 

2 : 3 : 4 . 

The corresponding MST detection scheme is described in Fig.5.2, which gives the 

following five detection results. 

Case W5.1: h = TTT-I, Z2 = m2; Case W5.2: h = m2M = m3; Case W5.3: 

Zi = m1,Z2 = m3; 

Case W5.4- h = ^2,^2 = ra3; and Case W5.5: l\ = mi,Z2 = rn2,l3 = m3. 

Clearly, the key to the above detection scheme is to design a table listing all the 

possible MST candidates corresponding to the same value of W using the expression 

of R (Z) obtained in the previous subsection. This table can easily be constructed 
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Calculate J4 j , 

Case W4.3 )( Case W4.2 jf Case W4.1 

Figure 5.1: MST detection scheme for W — 4 
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even if W has a large value, since the expression of R(Z) can simply be derived 

by computer programming as stated before. In comparison with many of the MST 

detection methods available in the literature, which normally require to search all the 

possible MST candidates over the entire channel length L, the proposed detection 

method reduces the search range to a very small number of MST candidates, by 

exploiting the MSL information of R (I). More importantly, the conventional methods 

need a large number of pilots or OFDM symbols to conduct a training-based or CP-

assisted MST detection. In contrast, our technique uses only a few OFDM symbols 

with a small number of pilots to achieve an accurate detection. 

5.4 Semi-Blind Estimation of the Sparse Channel 

In this section, we extend our previously developed nulling-based MIMO-OFDM 

semi-blind approach for the sparse channel estimation. It will be shown that, by using 

the available user data, the sparse semi-blind approach significantly outperforms the 

training-based sparse method. 

The key idea of the sparse semi-blind method is to derive a blind constraint for the 

effective channel matrix Z (d) that is to be incorporated in the training-based LS cost 

function [109]. As shown in Chapters 3 and 4, the blind constraint in the semi-blind 

cost function is derived from the correlation matrices of the received signal, i.e., Rn_i 
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Figure 5.2: MST detection scheme for W = 5 
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in (2.37) and Rn in (2.38), namely, 

R-n-l = 

R(0) R ( l ) 

R ( - l ) R(0) 

R ( l - P ) R ( 2 - P ) 

R ( P - l ) 

R ( P - 2 ) 

R(0) 

(5.28) 

R-n = R( l ) R(2) ••• R(P) (5.29) 

Theorem 5.1: In the absence of noise, R(Z) can be expressed in terms of H (I) as 

H(i)HH(i-l), l = Q,l,---,L-l 
(5.30) 

E H ( i ) H f l ( t - l ) , l = 0,l,---,L-l 
R ( 0 = < i=/ 

0, 1>L-1 

The proof of this theorem is given in Appendix C. 

It should be noted that (5.30) is the corner stone of the linear prediction-based 

blind or semi-blind channel estimation method. In a manner similar to obtaining 

(5.30), one can construct the matrices 

Rz(d)= °Y;Z(i)ZH(i-d)= EVi-<*, (d = 0,l ,--- ,Z?-l) 
i=d i=d 

(5.31) 

Letting 

• r t Z , n - l — 

Rz(0) Rz( l ) 

R z ( - l ) Rz(0) 

Rz (D - 2) 

Rz (D - 3) 

R-Z,n 

R Z ( 2 - . D ) R z (3 -L>) ••• R z(0) 

R z ( l ) Rz(2) ••• Rz(D-l) 

(5.32) 

(5.33) 
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a constraint on Z (d) (d = 0,1, • • • ,D — 1) can be obtained by using the linear predic

tion method shown in Section 3.2. Therefore, once the matrices Rz {d) {d = 0,1, • • •, 

D — 1) are available, a semi-blind estimation problem for the effective channel matrix 

Z (d) (d = 0,1, • • •, D — 1) can be formulated. 

Assuming that the MSTs have been correctly estimated, we now discuss the esti

mation of Rz {d) (d = 0,1, • • •, D — 1) with respect to different values of D by utilizing 

the analysis results of Section 5.2. Our objective here is to express R^ {d) in terms 

of R(Z). For the simplest case when D = 2, it is clear from (5.8) and (5.9) that 

R z(0) = R(0) , (5.34) 

R z ( l ) = R( / i ) . (5.35) 

When D = 3, utilizing (5.10) and (5.11), one can estimate Rz (d) (d = 0,1,2) as 

follows: 

R z(0) = R(0) , (5.36) 

Rz (1) = R (h) + R (l2 - h) [1 -8(l2- 2*0], (5-37) 

Ra(2) = R(Z2). (5.38) 

In a similar manner, when D = 4, from (5.12) and (5.13), we have 

R z(0) = R(0) , (5.39) 

Rz(3) = R(*3). (5.40) 

Using Table 5.1, the estimates Rz (1) = Ri,o + R-2,1 + R3,2 and Rz (2) = R2,o + R-3,1 

in terms of R (/) with respect to different cases of D = 4 can be attained as shown 
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Table 5.2: Estimation of correlation matrix Rz (d) for different cases of D = 4 

Case D4.1: 

Case D4.2: 

Case D4.3: 

Case D4.4: 

Case D4.5: 

Case D4.6: 

CaseD4.7: 

Case D4.8: 

Rz(0) 

R(0) 

R(0) 

R(0) 

R(0) 

R(0) 

R(0) 

R(0) 

R(0) 

R z ( l ) 

R(i i ) 

R ^ O + R ^ - R ^ o 

Ri,o + R(^2 — 1̂) 

R(/ i ) + R ( i 2 - i i ) 

R ( / l ) + R ( Z 3 - i 2 ) 

R(i i ) + R ( Z 2 - i i ) 

Rl,0 + R ( ^ 2 - ^ l ) + R ( ' 3 - / 2 ) 

Mh) + Mh-h) + Mh-h) 

Rz(2) 

R(fe) 

R2,0 + R(^3 — ^l) 

R ( ' i ) - R i , o + R ( k ) 

R(i2) 

R ( i 2 ) + R ( Z 3 - / i ) 

R(/2) + R ( / 3 - / i ) 

R ( J i ) - R i , o + R(i2) 

R(i2) + R ( l 3 - i i ) 

Rz(3) 

R(/3) 

R(is) 

Mh) 

R(is) 

Mh) 

R(/3) 

R(is) 

R(J3) 

in Table 5.2. Note that for Cases D4.2, D4.3 and D4.7 in Table 5.2, besides R(/), 

R-1,0 or R.2,0 is required. In our method, both Ri i0 and R2,o can be calculated based 

on the estimate of Z (d) using the sparse LS method. The above discussion can be 

easily extended to the case of a larger value of D. 

Once R z (d) (d = 0,1, • • •, D — 1) are obtained, RZ)„_i and RZ]„ can be con

structed by using (5.32) and (5.33); these can be further used to estimate a blind 

constraint B z on the effective channel vector z = vec(Z), where Z is formed by 

the true MSTs obtained from (5.23). Then, a semi-blind sparse channel estimation 

problem similar to (3.17) can be formulated as 

minA = Ypiiot — A z z + a B zz (5.41) 

where A z = I ® A', with A' being given by (5.25) and corresponding to the true 
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MSTs. The solution to this optimization problem is given by 

'AfYpnot- (5.42) 

The proposed semi-blind sparse channel estimation approach can be summarized 

as follows: 

1. MSLs are first estimated by comparing the norm of the correlation matrices 

with the threshold calculated from (5.18). 

2. The estimated MSLs are utilized, together with a small number of pilots, for 

the estimation of MSTs. 

3. Based on the estimated MSTs, the channel coefficients are estimated in a semi-

blind fashion as given by (5.42). 

It will be shown in Section 5.6 that the performance of the proposed sparse channel 

estimation approach is significantly superior to that of the original semi-blind method. 

Clearly, the complexity of the sparse estimation method is much lower than that of the 

original version for non-sparse channels due to D < L. Typically, the computational 

complexity of the original semi-blind algorithm is in the order of 0(L3) , while that 

for the proposed sparse approach is only O (D3). 

5.5 A Case Study for M-Rate Sparse Channel Estimation 

It is known that the linear prediction- or subspace-based channel estimation meth

ods are always perturbed by various sources, such as finite data length and measure

ment noise [71,72]. In our previous chapters, we have successfully applied the per-
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turbation theory to the analysis of MIMO and MIMO-OFDM channel estimation. In 

this section, we evaluate the performance of the proposed sparse channel estimation 

approach from the perspective of the perturbation analysis [110]. 

We consider only the perturbation due to the finite data length in the computation 

of correlation matrices. In the noise-free case, (5.16) can be rewritten as 

R (I) = ZARX,D (I) ZH
A + ZAARX)jD (0 ZH

A (5.43) 

where ARX ) .D (Z) is given by (5.17), which represents an error term introduced by 

the signal perturbation. Based on (5.43), we would like to investigate the signal 

perturbation error of the blind constraint Bz in the proposed semi-blind approach. 

To this end, we need to derive the perturbation term ARz (d) of Rz (d) by employing 

A R X , D (I). Let us consider first the case of an "M-rate" sparse channel case, i.e., the 

sparse channel is a decimated version of the full-length FIR channel by a factor of M, 

Z (d) = H {dM). (5.44) 

In this case, (5.17) is still applicable except that x# (n) is replaced by 

XD (n) = 
i H 

(5.45) xH(n) xH(n-M) ••• xH (n - (D - 1) M) 

On the other hand, from (5.30), (5.31) and (5.44), we have 

Rz (d) = R (dM), for d = 0,1, • • •, D - 1. (5.46) 

Using (5.43) and (5.46), we obtain 

A R Z (d) = AR(dM) = Z A AR I ) D (dM) ZH
A. (5.47) 
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By defining x M (n) = x(nM) and using (5.3), (5.17) and (5.45), (5.47) can be rewrit

ten as 

A R Z (d) = ZA 

1 K~l 

-jz J2 *MD (n) X-MD (n ~ d) 
n=0 

Zjf - Rz (d) (5.48) 

where 

XMD (n) (5.49) x £ ( n ) x £ ( n - l ) ••• x $ ( n - L > + l ) 

Interestingly, (5.48) and (5.49) indicate that A R Z (d) can be viewed as the pertur

bation term of the correlation matrix of the received signal through a regular FIR 

channel characterized by Z (/), (/ = 0,1, • • •, D — 1) with respect to the transmitted 

signal X M ( J I ) , Thus, the perturbation analysis of the regular channel estimation 

method in Section 3.3 can be directly applied to the M-rate sparse channel case. As 

a result, an ideal nulling constraint on the effective channel vector z is obtained, lead

ing to a signal-perturbation-free sparse channel estimation. Moreover, the practical 

scheme of computing the weighting factor a suggested in Chapter 3 can also be used. 

In a non-M-rate sparse channel case, since the expression of ARz (d) as given in 

(5.48) and (5.49) is not available, an ideal nulling constraint on the channel vector z 

cannot be obtained, even in the absence of noise. Therefore, the non-M-rate sparse 

channel estimation is in general subject to signal perturbation error. Recall that to 

determine the weighting factor a, the M S E B needs to be calculated, which, as shown 

in Chapter 3, can easily be implemented online by using a closed-form expression. 

In the non-M-rate sparse channel estimation, it is difficult to obtain a closed-form 

expression for M S E B due to the existence of the signal perturbation error. Considering 

that the M S E B varies only slightly with the change of the channel, however, one can 
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estimate the MSEB using a training signal, and then compute the weighting factor a 

off-line for the semi-blind sparse channel estimation. 

5.6 Simulation Results 

We consider a MIMO-OFDM system with 2 transmit and 4 receive antennas. The 

number of subcarriers is set to 1024, the length of cyclic prefix is 30, and the length 

of the linear predictor in the semi-blind algorithm is P = L. In our simulation, the 

QPSK modulation is used and a sparse Rayleigh channel modelled by a 3- or 4-nonzero 

tap MIMO-FIR filter is assumed, in which each tap corresponds to a 4 x 2 random 

matrix whose elements are i.i.d. complex Gaussian variables with zero mean and unit 

variance. For the non-M-rate sparse channel, the value of MSEB is calculated off-line 

based on the true channel matrix by 500 Monte Carlo iterations. The constant Ke in 

(5.18) is set to 0.8. 

For the purpose of comparison, the channel vector h is first estimated by the 

original LS and semi-blind methods. As for the estimation of the effective channel 

vector z, we consider the proposed sparse LS method and sparse semi-blind method 

both with the MST detection. To evaluate the proposed sparse methods, an ideal 

sparse LS method and an ideal semi-blind method with the knowledge of the true 

MST information are also simulated. For easy citation, we call these four methods as 

the sparse LS, sparse semi-blind, ideal sparse LS and ideal sparse semi-blind methods. 

The estimation performance is evaluated in terms of the MSE of the estimate of the 
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channel matrix as given by 

MSE = — - V hn - h„ 
iVMc ^ II 

where JVMC is the number of Monte Carlo iterations and h„ and hn are the true 

and the estimated channel vectors with respect to the n-th Monte Carlo iteration, 

respectively. 

A simulation study with comparison is conducted for each of the following sparse 

channel models: 

Channel A (Case D3.2 & Case W4-1): A 3-tap sparse channel with l0 = 0, h = 4 

and I2 = 11; 

Channel B (Case D4.4 & Case W5.3): A 4-tap sparse channel with /0 = 0, l\ = 6, 

l2 = 14 and l3 = 20; 

Channel C (Case D4-2 & Case W5.1): A 4-tap sparse channel with /0 = 0, h = 5, 

l2 = 10 and l3 = 20; 

Channel D (Case D4-1 & Case W4-3): A 4-tap sparse channel with Z0 = 0, h = 4, 

l2 = 8 and l3 = 12; 

Channel E (Case D3.2 & Case W4-1)' A 3-tap sparse channel with IQ = 0, l\ = 4 

and I2 = 12. 

Experiment 1: Channel A 

In the first experiment, the channel estimation performance in terms of the MSE 

as a function of the SNR is investigated for Channel A. The simulation involves 20000 

Monte Carlo runs of the transmission of one OFDM symbol at 1024 subcarriers, of 

123 



Table 5.3: Error probability of the MST detection versus different SNR for Channels 

A, B and C 

SNR(dB) 

5 

9 

13 

17 

21 

Channel A 

2.7 x 1(T3 

4 x 10~4 

3 x 1(T4 

1(T4 

1(T4 

Channel B 

1.24 x 10~2 

1.9 x 1(T3 

2 x 1(T4 

2 x 1(T4 

2 x 10-4 

Channel C 

1.47 x l(r2 

6 x 1(T3 

4.8 x 10~3 

3.6 x 1(T3 

3.8 x 10-3 

0 

-5 

S -10 
HI 
w 

-15 

-20 

5 10 15 20 
SNR (dB) 

Figure 5.3: MSE versus SNR of proposed sparse LS and semi-blind algorithms for 

Channel A. Also shown for reference is the MSE of the original LS and semi-blind 

methods. One OFDM symbol with 30 pilot subcarriers. 
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Figure 5.4: MSE versus pilot length for different numbers of OFDM symbols for 

Channel A. SNR=10 dB. 
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which 30 are used as pilot for training purpose. The error probability of the MST 

detection versus SNR is shown in the second column of Table 5.3. It is clear that a 

high performance of the MST detection is achieved despite only one OFDM symbol 

used. In particular, when SNR > 17dB, the error probability is 10~4. Fig. 5.3 shows 

the MSE plots from the proposed as well as the reference sparse methods along with 

two original methods. It is seen that the sparse LS method and the sparse semi-

blind method are highly consistent with their ideal versions, respectively. It is also 

noted that the proposed two sparse methods significantly outperform the two original 

methods. Specifically, the sparse semi-blind method is superior to the original semi-

blind method nearly by 5.7 dB and 4.6 dB when SNR is 5 dB and 21 dB, respectively. 

Moreover, the performance of the sparse semi-blind method is superior to the sparse 

LS method by 2 dB and 0.6 dB at the two SNR levels, respectively. It implies that 

the sparse semi-blind method is more advantageous for a lower SNR. 

We now investigate the channel estimation performance of the proposed sparse 

methods versus the number of OFDM symbols as well as the number of pilot subcar-

riers per symbol. The number of OFDM symbols used is set to be from 1 to 4, and in 

each of the four cases, the number of pilot subcarriers per OFDM symbol varies from 

15 to 75. Fig. 5.4 shows the MSE plots from 2000 Monte Carlo iterations for an SNR 

of 10 dB. It is seen that for the same number of OFDM symbols, the performance of 

all the algorithms is improved with increasing number of pilot subcarriers. Again, the 

two sparse LS methods have almost the same performance similar to the two sparse 

semi-blind methods. One can find that when only one OFDM symbol with 15 pilots is 

used, the sparse semi-blind method can achieve a gain of 6.8 ~ 8.6 dB over the other 
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Figure 5.5: MSE versus SNR for Channel B. One OFDM symbol with 30 pilot sub-

carriers. 

methods. When the total number of pilots is not less than 30, it is observed that 

the performance improvement of the sparse semi-blind method over the sparse LS 

method remains almost the same with the increase of the number of OFDM symbols 

employed for channel estimation. Obviously, the proposed sparse semi-blind method 

is more advantageous for pilot signals of a shorter length. 

Experiment 2: Channel B 

Now, we examine the channel estimation performance as a function of the SNR 

for Channel B. The simulation involves 10000 Monte Carlo runs of the transmission 

of one OFDM symbol, of which 30 are used as pilot for training purpose. The error 
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Figure 5.6: MSE versus SNR for Channel C One OFDM symbol with 30 pilot sub-

carriers. 

probability of the MST detection versus SNR is also shown in Table 5.3, showing that 

the MST detection error is still very small when the channel length L and the number 

D of MSTs become 20 and 4, respectively. Fig. 5.5 shows the channel estimation 

results of the six methods. Again, the sparse LS method and the sparse semi-blind 

method each perform equally well to their respective ideal versions. It is seen that 

the sparse semi-blind method can achieve a gain of 9.1 ~ 9.8 dB over the original 

semi-blind method, meaning that the sparse channel estimation approach is more 

advantageous for a larger channel length. 

Experiment 3: Channel C 
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Using the same condition as in Experiment 2, the channel estimation result and 

the error probability of the MST detection versus SNR are shown in Fig. 5.6 and 

Table 5.3, respectively. It is seen that although the error probability of the MST 

detection is a little larger than that of the previous channel models, the performance 

of the sparse LS method and that of the sparse semi-blind method are still consistent 

with their ideal cases. This is due to the fact that the mis-detection of the 4-tap sparse 

channel with l0 = 0, li = 5, \<i = 10 and Z3 = 20 as a 5-tap sparse channel with l0 = 0, 

l\ = 5, I2 = 10, Z3 = 15 and I4 = 20, still leads to a very good estimation performance. 

Also, one can find that the sparse semi-blind method can achieve a 0.5 ~ 1.4 dB gain 

over the sparse LS method, confirming the effectiveness of calculating R^o by using 

the sparse LS channel estimate. 

Experiment 4: Channel D 

Here, we investigate the estimation performance of the proposed method for an 

M-rate sparse channel. Fig. 5.7 shows the channel estimation performance versus the 

SNR obtained using the same condition as in Experiment 2. Again, the performances 

of the sparse LS and semi-blind methods are consistent with that of the ideal ones, 

which are significantly better than that of the original LS and semi-blind estima

tion methods. Furthermore, it is observed that the performance improvement of the 

sparse semi-blind method over the sparse LS method remains almost the same with 

the increase of SNR. This is different from the previous non-M-rate sparse channel 

examples, where the performance improvement decreases with the increase of SNR. 

This phenominon confirms our analysis result in Section 5.5, namely, the sparse semi-
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blind method is not subject to the signal perturbation error in the M-rate sparse 

channel case. 

Now, the BER performance of the MIMO-OFDM system is investigated by using 

the estimated channel matrix and an ordered vertical-Bell laboratories layered space 

time (V-BLAST) decoder. The simulation involves 4000 Monte Carlo runs of the 

transmission of one OFDM symbol with 20 pilot subcarriers. Fig. 5.8 shows the 

BER performance versus the SNR of the proposed sparse LS and semi-blind methods 

as well as their original versions. Clearly, the performance improvement of the pro

posed sparse semi-blind method gets more prominent compared to the original one 

with the increase of SNR. For example, when SNR is increased to 17 dB from 5 dB, 

the performance gain of the proposed sparse semi-blind method over the original one 

is boosted to 13.2 dB from 2.8dB. Moreover, it is seen that the performance of the 

sparse semi-blind method is superior to that of the sparse LS method by 0.42~0.8 dB. 

Experiment 5: Channel E 

With the same simulation condition as in Experiment 2, Fig.5.9 shows the channel 

estimation results of the previously mentioned six methods together with two other 

reference sparse methods: the sparse LS and semi-blind methods using Channel D 

as the MST detection result. It is seen that the sparse LS method consistently 

outperforms the same method with Channel D by about 1.1 ~ 1.4 dB MSE. One can 

also observe that when SNR < 14.4 dB, the sparse semi-blind method can achieve a 

better performance than the same method using Channel D, while the performance 

of the former becomes worse than that of the latter when SNR > 14.4 dB. This 
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Figure 5.9: MSE versus SNR for Channel E. One OFDM symbol with 30 pilot sub-

carriers. 
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interesting outcome suggests that if a non-M-rate sparse channel can be converted to 

a M-rate one by adding several zero taps, then using the MST detection result from 

the M-rate channel may yield a much better channel estimation performance in the 

case of large SNRs. 

5.7 Conclusion 

In this chapter, a nulling-based semi-blind sparse channel estimation approach 

has been proposed for MIMO-OFDM systems. The relation between the most sig

nificant taps (MST) of the sparse channel and the most significant lags (MSL) of 

the correlation matrices of the received signal has first been disclosed. This relation 

has then been exploited to develop a highly efficient MST detection algorithm that 

requires only a few OFDM symbols and a small number of pilots for a least-square 

based detection. By employing the acquired MST information, a semi-blind approach 

incorporating a training-based LS criterion and a blind constraint on the sparse chan

nel vector consisting of only a few MSTs has been proposed. As the new approach 

does not require estimating all the channel taps, it has saved a large amount of com

putations compared to a regular channel estimation method. It has also been shown 

via a perturbation analysis that the proposed semi-blind solution is not subject to 

the signal perturbation error when the sparse channel is a decimated version of a 

full channel. Computer simulations based on various sparse channels have confirmed 

that the proposed sparse semi-blind approach significantly outperforms the sparse LS 

method as well as the regular LS and nulling-based semi-blind techniques. 
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Chapter 6 

Signal-Perturbation-Free Whitening Rotation 

based Estimation of Frequency-domain Channels 

6.1 Introduction 

As discussed in Section 2.2, the channel estimation is sometimes implemented by 

using a frequency-domain approach due to some constraints such as the low complex

ity requirement and only a small number of subcarriers used for the data transmission 

of a mobile user in OFDMA systems. In this case, channel estimation algorithms for 

the frequency-flat fading MIMO channel can be directly applied to the estimation 

of each frequency-domain channel Hp (k). Usually, the frequency fiat fading MIMO 

channel can be estimated by using the training-based algorithms [12] or the blind 

channel estimation algorithms like those proposed in [13-16,45]. As a combination of 

the training-based and blind algorithms, a semi-blind estimation technique can po

tentially enhance the quality of MIMO channel estimation [17,18,75]. With a small 

number of training symbols, problems such as ambiguities and mis-convergence of the 

blind methods can be solved by semi-blind techniques. On the other hand, the use of 
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the available information data yields an improved accuracy of the channel estimation. 

More recently, a whitening-rotation (WR)-based semi-blind algorithm has been 

proposed for frequency-flat MIMO channel estimation [17,20,21,23,24]. The idea 

of this algorithm was first briefly presented in [17] as a simplified version of a semi-

blind algorithm for the estimation of frequency-selective MIMO channels. It was 

then fully disclosed in [20,21,23], in which a training-based constrained ML method 

was developed for the estimation of an ambiguity matrix for general MIMO systems. 

This method was later further extended for MIMO systems with maximum ratio 

transmission in [24]. The WR-based semi-blind algorithm consists of two steps: (1) 

estimation of a whitening matrix utilizing information data; and (2) estimation of a 

unitary rotation matrix using pilots. The Cramer-Rao bound (CRB) of this semi-

blind technique shows that it can achieve a better channel estimation performance 

than the conventional LS method, when the number of receive antennas is greater 

than or equal to the number of transmit antennas. However, this method is found to 

be efficient only in the case of low SNRs. 

A nulling-based semi-blind MIMO channel estimation approach, which can achieve 

a better performance in moderate to high SNR cases, was developed in [18,42]. In

stead of estimating the whitening matrix, this method uses the information data 

to obtain a blind constraint for the channel matrix, which is then combined with a 

training-based LS cost function so as to produce a semi-blind solution for the MIMO 

channel response. This method can be considered as a modified LS solution involving 

a weighted blind constraint. It has been shown in [42] that the semi-blind method 

provides a better channel estimation performance over the pure training-based LS 
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method. However, this superiority has not been theoretically proved, and the weight

ing factor employed to trade off the least square and the blind criteria has not well 

been determined. 

In this chapter, we first apply the perturbation theory [71-77,111,112] to the anal

ysis of the above mentioned two semi-blind algorithms, showing that in the noise-free 

case the blind part of the WR-based method is subject to a signal perturbation error, 

whereas the nulling-based method gives an ideal nulling constraint on the channel 

matrix, thus avoiding the signal perturbation error. Our analysis concludes that the 

nulling-based method is superior to the whitening-rotation-based method in the mod

erate to high SNR cases. We then derive a closed-form expression for the mean square 

error (MSE) of the blind estimation to facilitate the calculation of the weighting factor 

in the nulling-based method. 

In the second part of this chapter, we propose a novel signal-perturbation-free 

transmit scheme to improve the performance of the WR-based method in the mod

erate to high SNR cases. By utilizing the eigenvalue decomposition (EVD) of the 

transmit signal perturbation matrix, a very efficient transmit scheme is designed for 

the elimination of the signal perturbation error in the receiver, leading to a signal-

perturbation-free WR-based semi-blind approach. It is shown that the new approach 

provides a much better performance than the original WR-based method as well as 

the nulling-based method does for all SNR cases. 

The third part of this chapter deals with the analysis of the new WR-based semi-

blind method with the proposed transmit scheme. The first-order perturbation theory 

is employed to analyze the first step of the WR-based method, leading to an expres-
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sion of the perturbation term of the whitening matrix. For the second step of the 

WR-based method, a perturbation analysis of the SVD of a square matrix involv

ing only the signal subspace is conducted, yielding an closed-form expression for the 

perturbation term of the rotation matrix. By utilizing the perturbation terms of the 

whitening matrix and the rotation matrix, a closed-form expression for the MSE of 

the new WR-based method with the proposed transmit scheme is then derived. 

The rest of the chapter is organized as follows. Section 6.2 conducts a perturba

tion analysis of two subspace-based semi-blind approaches, justifying why the nulling-

based method is superior to the WR-based method in the moderate to high SNR case. 

The analysis also yields a closed-form expression for the MSE of the blind estimation 

part of the nulling-based approach. Section 6.3 presents a novel signal-perturbation-

free transmit scheme for the WR-based method that can eliminate the signal per

turbation error at the receiver. Section 6.4 provides a perturbation analysis of the 

new WR-based approach with the proposed transmit scheme and the derivation of a 

closed-form expression for the MSE of the proposed method. Section 6.5 comprises 

a number of experiments verifying the significant advantages provided by the new 

WR-based approach over the regular WR-based method as well as the nulling-based 

method. Finally, Section 6.6 highlights some of the distinct features of the proposed 

approach. 
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6.2 Per turbat ion Analysis of Subspace-based Blind Channel 

Estimation 

It is known that the solution of subspace based methods is always perturbed by 

various sources, such as the finite data length and the measurement noise [71-74]. The 

perturbation theory has been employed for the analysis of subspace based methods 

[72,76,77, 111, 112]. In this section, the first-order perturbation analysis is used to 

evaluate the performance of the two subspace-based channel estimation methods [113]. 

6.2.1 Analysis of the WR-based Method 

Here, we consider only the perturbation due to the finite data length in the com

putation of the correlation matrices. Our objective is to show that the whitening 

matrix would be perturbed even in the absence of noise. Using (2.7), the autocor

relation matrix of the received signal, Ry, with such a perturbation can be written 

as [83] 

RY = E [y (n) yH (n)] - a2
vl = H [I + ARX] UH + AR„ (6.1) 

where ARX denotes the signal perturbation matrix 

AR* = ^ f > ( n ) x " ( n ) - ^ I , (6.2) 

and ARy the perturbation matrix introduced by the noise 

AR„ = HAR^ + AH£,H* + AR™ (6.3) 

with 

1 N 

AROT = - 5 > ( n ) v " ( n ) , (6.4) 
n = l 
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A 1 
N 

A R™HEv(n)v"(n)-^2 L 
n = l 

In the noise-free case, all the perturbation terms introduced by the noise would 

disappear. Then, (6.1) reduces to 

R Y = H [I + ARX] HH . (6.5) 

Based on the above perturbation forms, we can derive the estimate of W. Using 

(2.16) into (6.5), one can get 

RY = UI^TI^U", 

l iV rxA r7' 

0 (NR-NT)xNT 

T ^ E2 + £SV"ARXVE< 

(6.6) 

(6.7) 

(6.8) 

where £# is a diagonal matrix satisfying £ = I A ^ S . Since T is Hermitian and the 

signal perturbation matrix ARX has a small norm, the singular value of T would be 

different from but close to S5. Thus, the SVD of T can be written as 

T = ns (£5 + A£s)
2 nf (6.9) 

where II5 is a unitary matrix and A £5 is considered as the perturbation error of £$. 

Substituting (6.9) into (6.6), comparing it with (6.5) and noting that H = UEV, one 

can obtain an estimate of the whitening matrix W as 

W = UE = U I A n s (E s + AES) (6.10) 

From (6.10), one can find that, even in the noise-free case, W consists of two 

perturbation terms II5 and AE5, which are dictated by the signal perturbation 
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matrix ARX. This could explain why the performance of the WR-based method is 

very poor in the moderate to high SNR cases. 

6.2.2 Analysis of the Nulling-Based Method 

In the nulling-based method proposed in [18,42], a nulling constraint Unuii on the 

channel matrix H is obtained from the SVD of R y . It can be verified from (6.5) that 

in the absence of noise, the nulling constraint Unun is ideal, namely, 

U?ul lH = 0. 

This implies that in the noise-free case the blind constraint of the nulling-based 

method is perfectly satisfied without being affected by the signal perturbation terms, 

and therefore, the nulling-based method is superior to the WR-based method. In the 

following, we derive a closed-form expression for the MSE of the blind estimate in the 

nulling-based method for the noisy case. 

The MSE of the blind estimate is denned as 

MSEB = E | | | u ^ u U H | y . (6.11) 

Using (6.1) and (6.3) along with the first-order approximation [77], one can get an 

estimate of \Jnuii'-

Unul l « Unul, - (HH / / ) t HAR x v U n u l I . (6.12) 

For the medium to high SNR, the perturbation matrix ATlvv of the noise autocor

relation can be neglected. Thus, substituting (6.12) into (6.11), and noting that 

HH (HH)* H = I when H has a full column rank and NR > NT, one can obtain 

MSEB = E U " A R ? 2 
null Vru (6.13) 
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Due to the fact that \\A\\2
F = vec (A) vec^ (A) , MSEB can be calculated by 

MSEB = Trace[(l <g> U^ull) KAxv (I ® Unull)] (6.14) 

where 

RAxv ± E {vec ( A R f J vec" ( A R * ) } 

Theorem 6.1: RAXV can be calculated in terms of the signal and noise variances 

a\ and a2,, namely, 

(6.15) 
1_ 

N' 
R-Axv = ~^axav^NRNT-

The proof of the theorem is given in Appendix D. 

Substituting (6.15) into (6.14) yields 

MSEB = , U X 2 T r a c e [INT ® (Uful lUnul l)] = ^ala2
vNT (NR - NT). (6.16) 

N N 

We now utilize the above closed-form expression of M S E B to calculate the weight

ing factor in the nulling-based method. The weight factor a can be chosen as [81,83] 

a = 
MSET IIXpl 
M S E P 

u null 
2 ' (6.17) 

where M S E T represents the MSE of the training-based LS estimation of the channel 

vector. For orthogonal training pilots, it can be easily verified that 

\XP\\2
F = KNTa: 

MSET = E {iftr-Hlf,} 
U 

2 1 = NRNTat 
F Kal X 

null = NR - NT. 

(6.18) 

(6.19) 

(6.20) 
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Thus, by substituting (6.16), (6.18), (6.19) and (6.20) into (6.17), the weighting factor 

a of the nulling-based semi-blind method can be calculated as 

a- NN*N\ . (6.21) 

What remains in the nulling-based method is to solve the minimization problem 

in (2.27). This can be easily done by calculating the derivative of the cost function 

in (2.27) with respect to the channel vector, h = vec(H), namely, 

_ = - (XP ® INR) [vec (YP) - (X£ <g> INR) h] +a (lNr ® Unull) [(ljvr ® U^ull) h 

(6.22) 

Letting -^j be zero gives a closed-form solution for the channel vector, 

h = { [(XPX£) ® INR] + a [lNT ® (unullU^uI1)] } f (XP ® 1^) vec (YP) . (6.23) 

As will be seen from the simulation results in Section 6.5, the nulling-based solution 

given by (6.23) outperforms the WR-based method in the case of medium to high 

SNRs. 

6.3 Proposed Signal-Perturbation-Free Transmit Scheme 

The idea of the new signal-perturbation-free transmit scheme is to send informa

tion of the signal perturbation matrix ARX to the receiver. The received version of this 

information will be then exploited to cancel the signal perturbation error [114,115]. 

The novel idea begins with the eigenvalue decomposition (EVD) of ARX, which is 

re-defined as the scaled version of (6.2) for notational convenience, 

N 

n = l 
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As A R A is a Hermitian matrix, it can be verified that the EVD of AR^ can be 

written as [116] 

AR A = [ui,u2 ,--- ,Uiv r] 

ffi 0 

0 CT2 

0 u 
H 

u; 
H 

U H 
•NT 

(6.25) 

0 0 ••• aNr 

where &i, (i — 1, 2, • • •, iVy), are the eigenvalues in the range of (—oo, oo), and Uj, 

{% = 1,2, • • •, NT) , are the corresponding eigenvectors. Using (6.25), one can separate 

A R A into two parts as 

A R , = ARn i-A — ^-^-T^-pos ^ • W ' n e g 

where 

'-Aivpos — / j <7pos,iupos,iu
Pos,j) 

t = l 

AK.neg — y j { crnegjj uneg]iUneg)j 

(6.26) 

(6.27) 

(6.28) 
i = l 

Here, apoSti represents a positive eigenvalue, up0Sij is the eigenvector associated with 

'pos,ii and the Lpos is the total number of positive eigenvalues. Likewise, crneg,i, u neg.u "neg,] 

and Lneg refer to similar quantities with respect to the negative eigenvalues. In what 

follows, we will derive a further decomposed form of A R ^ based on (6.26) such that 

the information of ARp o s and ARn e g can easily be transmitted to the receiver, which 

will then be employed to cancel the signal perturbation error. 

By letting 

ARp o s = rjXposX»os, (6.29) 

ARn e g = r/XnegX^, (6.30) 
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(6.26) can be rewritten as 

ARA = 77 (XposXfos - XnegX£g) (6.31) 

where 77 is a scaling factor, and Xpos and Xneg are two matrices containing the in

formation of ARp0S and that of ARneg, respectively. We now first show that as long 

as Xpos and Xneg are transmitted to the receiver, the signal perturbation error can 

completely be cancelled. We will then show that Xpos and Xneg can easily be con

structed using the singular values and the singular vectors of AR^. As shown later, 

the size of Xpos and Xneg can be made comparable to the dimension of AR^, namely, 

the number of the transmit antennas NT- Therefore, the spectral resources used for 

transmitting Xpos and Xneg is negligible as compared to that of the user data. 

Letting Ypos and Yneg be the received signals corresponding to Xpos and Xneg, 

respectively, namely, 

Ipos = -H.-X.pos + V p o s , (O.OZj 

Yneg = HXneg + V neg (6.33) 

where Vpos and Vneg are the corresponding noise matrices, the received version of the 

signal perturbation matrix can be defined as 

ARY = 1 [(YposYfos - YnegYfeg) - (ATpos - iVneg) a
2
vl] (6.34) 

where Npos and Nneg denote the number of columns of Ypos and that of Yneg, re

spectively. Using (6.32) and (6.33) into (6.34) and noting that ARA = NARX, we 

obtain 

ARY = HARXHH + AR^, (6.35) 
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where AR„P represents a perturbation term introduced by the noise. By utilizing (6.1) 

and (6.35), the received correlation matrix without the signal perturbation error can 

be obtained from 

RY = RY - ARY = nHH + AR; (6.36) 

where 

AR; = AR„ - AR„p. (6.37) 

As a result, the signal perturbation error has been completely eliminated through the 

transmission of Xpos and Xneg. What remains to be done in the proposed scheme is 

to determine the matrices Xpos and Xneg from the singular values <7; and the singular 

vectors u;. 

Note that the total power of NT transmit antennas in each time slot can be written 

as amt — NT<TX- It is found from a large number of simulation experiments that the 

value of <JPos,i is much larger than amt. To transmit ap0s,i with a small number of 

slots, it is first divided by the scaling factor 77 and then is split into -/VpoS); terms of 

<Tint plus o n e fractional term as 

= (•^Vpos.iO'int + Cpos-frac,;) ( 6 . 3 8 ) 

where 

Wpo. . i=L—J. (6-39) 
7?CTint 

•^pos—frac,i — •• "'pos,i(-rint- ^0 .4Uj 

Letting 

Xpos—int.i V ^"int^poSjti 
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Xpos—frac.i — y ^pos—frac,iUp0s,i) 

one can construct an NT X (iVpoS)i + 1) matrix XpoS)j for the i-th. singular value by 

stacking iVpoSij consecutive vectors xpos_jnt;i and one vector xpos_fraC)j, which satisfies 

Thus, the complete Xpos can be formed as 

Xpos
 = [Xpos,l) Xp0Si2, • • • , XpoSiiposJ . (6-41) 

•kpos 

Obviously, the number of columns of Xpos is given by iVpos = Lpos + Y2 Npos,i-
i = l 

In a similar manner, Xneg can be constructed as follows 

Xneg = [Xneg,i, Xneg)2, ' • • , Xneg,LnegJ (6-42) 

where Xnegii consists of Nnegti = [a"e?,'j consecutive vectors xneg_int,i and one vector 

Xneg-frac,i as given by 

Xneg—int,i = y <^intUneg,i) ^D.4oJ 

"neg—frac.i y ^neg—frac,iUneg,i> ^ 0 . 4 4 j 

<^neg—frac.i = •' 'neg.i^'int- ^ 0 . 4 0 J 

Note that the number of columns of Xneg is 

-^neg 

Nneg = ^neg + J ] iVneg,;. (6.46) 
i = l 

From the above discussion, a new transmit structure, which consists of conventional 

pilots, user's data and the additional data Xpos and Xneg, can be obtained as shown 

in Fig.6.1. It is now clear that the total column size of Xpos and Xneg is inversely 
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Figure 6.1: Signal-perturbation-free transmit structure for flat-fading channel 

proportional to the scaling factor 77. It can be shown that when 77 is sufficiently large, 

as less as NT slots can be used for the transmission of Xpos and Xneg. In general, the 

choice of 77 should depend on the number of the transmit antennas as well as on the 

length of the user data. Our extensive simulations show that 77 = 16 is a proper choice 

to achieve a very good channel estimate for a 4 x 8 MIMO system, in which case, 

the transmission of Xpos and Xneg requires only 9 slots when the user data length is 

about 1000. 

In summary, the scheme developed above gives a signal-perturbation-free estimate 

of the whitening matrix in the noise-free case as seen from (6.36), leading to an ideal 

WR-based method. It should be pointed out that in the presence of noise, although 

the WR-based method with the new transmit scheme is subject to the noise pertur

bation, the proposed method still outperforms the WR-based method, since the per

turbation introduced by the noise is, in general, significantly smaller than the signal 

perturbation. It should also be mentioned that the proposed signal-perturbation-free 

transmit scheme is also very useful for other correlation-based methods for MIMO 

channel estimation. 
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6.4 Analysis of New WR-based Method with Proposed Trans

mit Scheme 

In this section, the first-order perturbation theory is employed to analyze the 

proposed WR-based method, in which the channel estimate can be denoted as H = 

WQ H . We first derive the perturbation errors of the whitening matrix W and the 

rotation matrix Q due to the noise, and then reveal a closed-form expression for the 

MSE of the WR-based method with the proposed transmit scheme. 

6.4.1 The Perturbation Error of the Whitening Matrix W 

First of all, from (6.36), the ideal correlation matrix Ry without both the signal 

and the noise perturbation terms can be written as 

R Y ^ H H H = [Us,Ujv] 

In obtaining (6.47), we have employed the SVD of H as given by 

Vf (6.48) 

where Vs = V under the assumption of the full-column rank of H. 

In the case of noise perturbation but without the signal perturbation error, the 

autocorrelation matrix of the received signal can be written as 

RY = HH" (6.49) 

where H denotes the estimate of the channel matrix containing the noise perturbation 
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error. Let the SVD of H be given by 

H = USV H . (6.50) 

As H has a full column rank, one can partition U and £ according to the signal and 

the noise subspaces of H as 

U = [ U S , U W ] , t 
s5 

0 

From (6.49) and (6.50) along with the above partitioned form, we have 

RV = [Us,U,v] 
v 2 

0 

uf (6.51) 

Clearly, (6.51) gives an SVD of Ry, implying that U s and S5 can be obtained from 

the SVD of RY . Using (6.49) and (6.51) and noting that H = W Q H , we can obtain 

the perturbed version of W, 

W = U S S S - (6.52) 

By defining AU5 = U5 — U5 and AS5 = Ss — S5, the perturbation error of W can 

be expressed as 

AW = W - W = U s S 5 - U s S s , 

A U S £ S + U S A £ S (6.53) 

where the terms involving the second-order perturbation error have been neglected. 

In the following, we simplify the computation of AW by investigating AU5 and ASg. 

Using the first-order approximation [77], it can be shown that 

AUS « U J V U ^ A R ^ U S E ^ (6.54) 

150 



From (6.37), one can easily verify that, when N 3> A/pius+A n̂eg, AR„P can be neglected 

and AR4 approximates to AR^,. Using this result into (6.3) and neglecting the 

perturbation matrix AR„„ of the noise autocorrelation for a medium to high SNR, 

we have 

AR; « HAR^ + AR£,HH. (6.55) 

Substituting (6.55) into (6.54) and utilizing (6.48), one can obtain 

AUS = UyvU^AR^VsEi1 . (6.56) 

On the other hand, using (6.36), (6.51) and the first-order approximation [72], one 

can show that 

(E5 + AES)2 - S | » Uf AR;U5 . (6.57) 

Using (6.48) and (6.55), (6.57) can be rewritten as 

(E 5 + AES)2 - E | = E s V f AIWvUs + Uf AR* V s Ef , (6.58) 

which, under the assumption that the second-order perturbation error terms can be 

ignored,leads to 

AE S « Uf AR£VS . (6.59) 

Using (6.56) and (6.59) into (6.53), AW can be rewritten as 

AW « U J V U # A R £ V 5 + U s U f A R £ , V S . (6.60) 

Recalling that U N U ^ + U 5 Uf = I, (6.60) reduces to 

AW « ABgVs. (6.61) 

As will be shown in the following subsections, (6.61) can be used to derive the MSE 

of the proposed signal-perturbation-free WR-based approach. 
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6.4.2 The Perturbation Error of the Rotation Matrix Q 

Prior to the derivation of the perturbation error of Q, we first conduct an analysis 

for the training-based estimation of Q given in [23]. In the noise-free case, the rotation 

matrix Q can be calculated from 

Q = V Q U g (6.62) 

where U Q and V Q are obtained from an SVD of the matrix 

YQ = 1T1WHYPXP> (6-63) 

namely, 

YQ = U 0 £ Q V g . (6.64) 

By noting that W = U s E s and 

j^YpX" = H, (6.65) 

(6.63) can be rewritten as 

Y Q = E* V f . (6.66) 

As such, one realization of the SVD of YQ is given by 

U Q = I , E O = E | , V Q = V S . (6.67) 

Using (6.67) into (6.62) yields 

Q = V s . (6.68) 

The above discussion indicates that the method in [23] gives an ideal rotation matrix 

V s in the noise-free case. In the following, we derive the expression of the perturbation 

error AQ of Q in the presence of noise. 
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In the noisy case, (6.63) should be modified to 

YQ = ^ W F Y P X ? (6.69) 

where W = W 4- AW is the perturbed version of W, which has been discussed in 

the previous subsection. Noting that a^ = 1, one can easily verify that 

1 Y P X £ = H + A R £ I P (6.70) 

where 
K 

A I W ^ J > (n) v" (n). (6.71) 
n = l 

Using (6.61) and (6.70), (6.69) can be expressed as 

= E | V f + Vf ARX,H + W " AR£ i P > (6.72) 

which can be rewritten, utilizing (6.66), as 

YQ = YQ + AYQ (6.73) 

where 

AYQ = Vf A R ^ H + WHAR^, )P . (6.74) 

Our next goal is to disclose an expression for AQ in terms of the perturbation 

error A Y Q of Y Q that is caused by noise. Let us consider the SVD of YQ: 

YQ = U Q S Q V j = [(U0 + AUQ) P] ( S Q + ASQ) [(VQ + AV0) P]H (6.75) 

where P is a diagonal unitary matrix used to represent a general form of the SVD, 

since the SVD of YQ is not unique. By utilizing UQ = (UQ + A U Q ) P and VQ = 
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(VQ + AVQ) P, we have 

AQ 4 Q - Q = V Q U g - V g U £ 

« A V Q U g + VQAUg. (6.76) 

Using (6.67), (6.76) reduces to 

AQ = AVQ + V s AUg. (6.77) 

In general, if the noise subspace of Y Q exists, the expressions for A V Q and A U Q can 

be easily derived in terms of the perturbation error A Y Q by utilizing the analysis 

results of the existing perturbation theory such as that in [71-77, 111, 112]. However, 

these results are not applicable to our case, since only the signal subspace exists 

in Y Q . TO overcome this difficulty, we propose the following theorem to derive an 

expression for AQ in terms of the perturbation error A Y Q . 

Theorem 6.2: Given an SVD of a full rank M x M matrix Z, Z = U z S z V f , 

where "Ez = diag (crZl, aZ2, • • •, aZM), for a small perturbed term AZ, the SVD of 

Z = Z + AZ is defined as 

Z = U z S z V f = [(Uz + AUZ) P z] ( S z + AEZ) [(Vz + AV2) PZ]H (6.78) 

where P z is a diagonal unitary matrix whose role is the same as P in (6.75). Then, 

it can be shown that 

n ^ AUf Uz + Vf AVZ = Tz o (Vf AZHUZ - Uf AZVZ) (6.79) 
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where 
1 

2<r2 

<72,+<T2 

0-2 1 +<T2 

1 
2(T20 

1 

1 

"z2+"zM 

L ^ M + ^ l ^ M + ( r 2 2 2<T2 

The proof of the theorem is given in Appendix E. 

In order to use Theorem 6.2, we first rewrite (6.77) as 

AQ = V 5 ( A U g l + V f A V Q ) . 

(6.80) 

(6.81) 

With replacements AUZ = AUQ, U z = I, V z = V s , AVZ = AVQ, S z = S | and 

AZ = A Y Q in (6.79), we immediately obtain 

AQ = vs(rgon) (6.82) 

where 

Q 

lai ?S^°\ °'L +°2 

7s2^s1 

T! +o'l 

2CT s2 

^2 

7V T 

— " 5 >5 
(To +<To s 2 SNT 

SNT 

n = V £ A Y £ - A Y Q V s . 

(6.83) 

(6.84) 

Note that as{, {i = 1,2, • • •,iV^) is the diagonal element of S5. Substituting (6.74) 

into (6.84), we obtain 

n = S 5 U f A R ^ V s + Vf ARX„,PUS£5 - Vf ARX„U5£S - £ 5 U f A R £ P V 5 . 

(6.85) 
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As a result, the perturbation error of Q has been expressed in terms of the perturba

tion errors, ARX1) and ARxl),p- In the next subsection, we will derive the MSE of the 

proposed signal-perturbation-free WR-based approach by utilizing the expression of 

AW and AQ given by (6.61) and (6.82), respectively. 

6.4.3 MSE of the Proposed Signal-Perturbation-Free WR-based Method 

The estimation error of the channel matrix H due to the perturbation error can 

be written as 

AH = H - H = W Q " - W Q " « AWQ" + WAQ". (6.86) 

Substituting (6.61) and (6.82) into (6.86) gives 

AH = AR* + U 5 S 5 (TQ o UH) Vf. (6.87) 

Thereby, we have 

vec (AH) = vec (AR*) + [V*s ® (USES)] [vec (rQ) o vec (n H ) ] . (6.88) 

Then, the MSE of the channel estimate can be calculated as 

MSEWR = Trace {E [vec (AH) vec" (AH)] } = G0 + Gx + G2 + G*2 (6.89) 

where 

NRNT 2 
Go = —Jf-av, (6-90) 

G1 = Trace {E {[V£ ® (U s£5)] { [vec (rQ) vec" (rQ)] 

o [vec ( i l") vec" ( n " ) ] } [V*s ® (U 5E 5 ) ]"}} , (6.91) 
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G2 = Trace { E {vec (AR*,) [vec ( r 0 ) o vec (UH)]H [V*s ® (U 5 £s) ] "}} . (6.92) 

In obtaining G0 in (6.90), (D-3) has been used. For the computation of G\ and G2, 

we have the following theorem. 

Theorem 6.3: G\ and Gi denned by (6.91) and (6.92), respectively, have the 

following closed-form expression. 

N*(N-K)o*v 
Gl ~ 2KN ' ( 6-9 3 ) 

G2 = 0. (6.94) 

The proof of the theorem is given in Appendix F. Using (6.90), (6.93) and (6.94 ) 

into (6.89) yields 

_ NRNTal N*{N-K)ol 
MSEWR - —jj— + 2/HV • ( } 

The above result gives the MSE of the proposed signal-perturbation-free WR-

based method in terms of the system configuration and the noise variance, when the 

signal energy a\ is normalized to unity. As will be shown in the next section, the 

theoretical value of the MSE given by (6.95) is highly consistent with the simulation 

result. It is to be noted that when AW = 0, the WR-based method turns to the ideal 

case, where the whitening matrix is obtained directly from the true channel matrix. 

In this case, the second term on the RHS of (6.72) vanishes due to AW = 0, and one 

can prove that the above analysis would lead to the following MSE expression 

Nla2 

MSEWR,ideal = ~^f. (6.96) 

It is of interest to note that (6.96) is the same as the Cramer-Rao bound of the 

WR-based method derived in [23]. 
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6.5 Simulation Results 

We consider a MIMO system with 4 transmit and 8 receive antennas, in which the 

QPSK modulation is used and a Rayleigh channel, whose elements are i.i.d. complex 

Gaussian variables with zero mean and unit variance, is assumed. Here, the orthogo

nal pilots are generated by using the scheme proposed in [25]. It is noted that a joint 

optimization approach has been proposed in [23] to improve the estimation of the 

whitening matrix. Although this approach can improve the estimation accuracy of 

the whitening matrix slightly, the complexity of this method is extremely high since 

it involves many iterations in the computation of the "fminunc" function in MAT-

LAB, making its implementation very difficult for real-world applications. Thus, this 

approach is not considered in our experiments. Instead, an ideal WR-based method, 

which obtains the whitening matrix directly from the true channel matrix, is simu

lated in our experiments for comparison. 

Experiment 1: MSE versus SNR 

In the first experiment, the channel estimation performance in terms of the MSE 

versus the SNR is investigated. The simulation is undertaken based on 20000 Monte 

Carlo runs of the transmission of one data frame with 1000 slots out of which 100 are 

used as pilots. Fig. 6.2 shows the MSE plots of the LS method, the ideal WR-based 

method, the WR-based method, the nulling-based method and the proposed method 

with 77 = 1,4,9,16, respectively. It is seen that the MSE of the proposed method is 

closest to that of the ideal WR-based method in comparison to the other methods 
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Figure 6.2: MSE versus SNR of the proposed WR method for a 4 x 8 frequency-fiat 

channel. Also shown for reference is MSE of the LS, the nulling and the ideal WR 

methods. Pilot length is 100. 
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Figure 6.3: MSE versus pilot length for a 4 x 8 frequency-flat fading channel. SNR=10 

dB. 

irrespective of the choice of 77. Interestingly, the different values of 77 only make a 

little difference on the MSE result. However, the number of slots for the transmission 

of Xpos and Xneg depends largely on the value of 77. We have found that 77 = 16 is a 

very good choice for the proposed method, since it requires only 9 slots for Xpos and 

Xneg while significantly outperforming the WR-based, the nulling-based and the LS 

methods at all SNR levels. 

Experiment 2: MSE versus pilot length 

Here, we investigate the channel estimation performance versus the pilot length. 

Fig. 6.3 shows the MSE plots of the channel estimate from 20000 Monte Carlo runs 
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Figure 6.4: BER versus SNR for a 4 x 8 frequency-flat fading channel. Pilot length 

is 10. 

of the transmission of one data frame of 1000 slots for an SNR of 10 dB, indicat

ing a high estimation consistency of the proposed method with different values of 77. 

Clearly, the improvement in the performance of the proposed method becomes more 

prominent compared to the WR-based method with the increase of the pilot length. 

For example, when the pilot length is increased to 100 from 30, the performance gain 

of the proposed method over the WR-based method is boosted to 3.4 dB from 2dB. 

Experiment 3: BER versus SNR 

Now, the BER performance is investigated by using the estimated channel ma

trix and an ordered vertical-Bell laboratories layered space time (V-BLAST) decoder. 

161 



T • " I — • 1 1 I 

J I I I 1 

5 10 15 20 25 30 
SNR (dB) 

Figure 6.5: Theoretical MSE versus SNR for a 4 x 8 frequency-flat channel. 

The simulation involves 50000 Monte Carlo runs of the transmission of one data frame 

with 100 slots out of which 10 are used as pilots. Fig. 6.4 shows the BER performance 

versus the SNR. It is seen that the BER performance of the proposed method with 

77 = 16 becomes much better than that of the WR-based method with the increase of 

SNR. In particular, when SNR is 12 dB, the BER of the proposed method is about 

3.3 dB over that of the WR-based method. 

Experiment 4: The theoretical value of MSE 

In this experiment, we compare the proposed method with the ideal WR-based 

method as well as the LS method in terms of their theoretical MSE expressions. 

Using the same conditions as in Experiment 1 and Experiment 2, the three MSE 
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Figure 6.6: Theoretical MSE versus pilot length for a 4 x 8 frequency-flat channel, 

plots calculated from (6.95), (6.96) and (6.11) are shown in Fig. 6.5 and Fig. 6.6, 

respectively. By comparing Fig. 6.5 to Fig. 6.2 and Fig. 6.6 to Fig. 6.3, one can see 

that the theoretical MSE values are consistent with the simulation results, confirming 

the high accuracy of the derivation of the MSE expressions in Section 6.4. 

6.6 Conclusion 

In this chapter, a new signal-perturbation-free WR-based semi-blind approach has 

been proposed for the estimation of frequency-domain channel. A perturbation anal

ysis of two subspace-based semi-blind MIMO channel estimation algorithms has been 

performed, justifying that the WR-based method is efficient only in the low SNR case, 
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and the nulling-based method is a better choice when the SNR is moderate or high. 

To improve the performance of the WR-based method in the high SNR case, a new 

transmit structure, which contains user specific data bearing the information of the 

signal perturbation matrix, has been proposed for the cancellation of the signal per

turbation error at the receiver. Furthermore, based on a novel perturbation analysis 

of the SVD of the square matrix without the noise subspace, a closed-form expres

sion for the MSE of the new WR-based method integrating the proposed transmit 

scheme is derived. Simulation results have confirmed that, by using a small number of 

additional slots conveying the information of the autocorrelation matrix of the trans

mitted signal, a significant improvement both in the MSE of the channel estimate 

and in the BER of the data transmission can be achieved over the WR-based method 

as well as the nulling-based method for all SNRs. 
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Chapter 7 

Signal-Perturbation-Free Linear Prediction based 

Estimation of Time-domain Channels 

7.1 Introduction 

By using the perturbation theory [71,72,77], our previous study on the LP-based 

blind channel estimation given in Chapter 3 has shown that some conventional LP-

based blind algorithms such as those in [46,79,80] are subject to a signal perturbation 

error due to the finite data length effect in the calculation of the correlation matrix 

of the received signal. It means that these algorithms would suffer from a poor 

performance in the MIMO-OFDM channel estimation if the number of the OFDM 

symbols is not large enough. In contrast, the semi-blind algorithm proposed in Chap

ter 3 imposes an ideal nulling constraint on the channel matrix in the absence of 

noise and therefore, gives a better channel estimation performance. In Chapter 6, 

we have proposed a signal-perturbation-free (SPF) transmit scheme for the estima

tion of frequency-domain channels, based on which the signal perturbation error can 

be cancelled at the receiver, leading to a signal-perturbation-free semi-blind algo-
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rithm for the estimation of the frequency-domain channels. In this chapter, we will 

extend the idea of the signal perturbation error cancellation to the estimation of time-

domain channels. By developing a new signal-perturbation-free transmit scheme, we 

will achieve an efficient semi-blind solution for the estimation of time-domain MIMO-

OFDM channel. 

The rest of the chapter is organized as follows. Section 7.2 presents a novel 

signal-perturbation-free transmit scheme for the LP-based blind estimation of time-

domain channels. We will first discuss the signal perturbation error in the LP-based 

blind estimation and show the signal perturbation error cancellation principle of the 

proposed scheme, and then develop a detailed transmit structure that can be used 

in the receiver to cancel the signal perturbation error in the estimated correlation 

matrix of the received signal. In Section 7.3, based on the proposed transmit scheme, 

a signal-perturbation-free semi-blind algorithm is developed for the estimation of 

the time-domain channel using the MIMO linear prediction in conjunction with a 

whitening rotation (WR) algorithm. The new approach is considered semi-blind in 

the sense that the ambiguity matrix in the WR algorithm is estimated by means 

of a training-based maximum likelihood method. Section 7.4 conducts a simulation 

study comprising a number of computer simulation based experiments to validate 

the proposed signal-perturbation-free semi-blind algorithm and show its significant 

advantages over some of the existing channel estimation techniques. Finally, Section 

7.5 concludes the chapter by highlighting some of the contributions presented. 
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7.2 A Novel Signal-Perturbation-Free Transmit Scheme 

In this section, the perturbation form of the correlation matrix of the transmit

ted signal used in linear prediction is first revisited, showing that the existence of 

perturbation error in the estimated correlation matrix of the received signal would 

degrade the performance of the linear prediction-based estimation methods. To im

prove the channel estimation performance of the LP-based blind algorithms, a signal-

perturbation-free transmit scheme is proposed for the cancellation of the signal per

turbation error [117,118]. 

7.2.1 Revisit to Signal Perturbation in Linear-Prediction 

It is clear from Section 2.4 that the estimation of the correlation matrix 

R y (0 4 E {y (n) yH (n - I)} , for I = 0,1, • • •, P (7.1) 

of the received signal at the receiver plays a key role in the linear prediction-based 

blind method. For the sake of simplicity, only one OFDM symbol with K subcarriers 

is considered here. Letting 

H ^ [ H ( 0 ) , H ( 1 ) , - . . , H ( L - 1 ) ] 

x (n) = [xi {n), • • •, XNT (n)]T 

x L ( n ) = [ x T ( n ) - - - x T ( n - L + l ) ] T , forn = 0,1, • • • ,K - 1 

where x (n) = x {K + n) for n < 0, the circular convolution (2.3) can be rewritten in 

the matrix form as 

y (n) = H A x L (n) + v (n) . (7.2) 
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Using (7.2), the estimate of Ry (/) can be expressed as 

R, (/) = E [y (n) yH (n - I)] - 52
VS (I) I N R = H A R x L (I) H ^ + AR, {I) (7.3) 

where 
K-\ 

*W(0 = ^X>L(n)x£(n-0 (7.4) 
n=0 

and AR„ (I) is the perturbation error introduced by the noise. Clearly, RX<L (I) can 

be rewritten as 

Rx,L (0 — 

Rx(0 

Rx (/ - 1) 

Rx (/ +1) 

Rx(0 

Rx{l-L + 1) Rx(l-L + 2) 

Rx{l + L-1) 

Rx(l + L-2) 

Rx(l) 

(7.5) 

where 
K-\ 

Rx(l) = ^T,x(n)xH(n-l). (7.6) 
n=0 

It has been proved in Chapter 3 that, when the transmitted frequency-domain sig

nal is considered as an i.i.d. Gaussian process with zero mean and unit variance, 

the transmitted time-domain MIMO-OFDM signal is uncorrelated, i.e., Rx (/) = 

E {x(n) xH (n — I)} = 6 (I)IjvT. Thus, (7.6) can be rewritten as 

Rx (/) = Rx (0 + ARX (0 

where ARX (/) is the perturbation term of Rx (I) as given by 

K-\ 

(7.7) 

ARX (I) 4 1 J2 x (n) x " (n - 0 - 5(1) INT. 
n=0 

(7.8) 

Note that, when multiple OFDM symbols are used, RX (I) as well as RX)L (/) can be 

easily calculated by averaging the results obtained from each OFDM symbol. 
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It is clear from the above analysis that the existence of the signal perturba

tion terms ARX (/) would in general introduce the perturbation error to the linear 

prediction-based estimation methods. By conducting a perturbation analysis, it has 

been shown in [83] that, even in the noise-free case, the conventional blind algorithms 

such as those proposed in [39,79,80] are subject to a signal perturbation error, while 

the semi-blind algorithm is free of signal perturbation error since it gives an ideal 

nulling constraint on the channel matrix. It should also be pointed out that in the 

presence of noise, although both the semi-blind and the blind methods are subject to 

the noise perturbation terms, the semi-blind method still outperforms the blind one, 

since the perturbation introduced by the noise is in general significantly smaller than 

the signal perturbation. In order to improve the performance of the conventional 

blind approach, in the next section, we will propose an efficient signal-perturbation-

free transmit scheme to cancel the signal perturbation error in MIMO-OFDM channel 

estimation. Our idea is to send information of the signal perturbation matrix ARX (I) 

to the receiver. The received version of this information will be then exploited to can

cel the signal perturbation error. The idea of cancelling the signal perturbation error 

is first presented in the following subsection. 

7.2.2 The Principle of Signal Perturbation Cancellation 

The new idea begins with the computation of the signal perturbation matrix 

ARX (/) at the transmitter using the frequency-domain data. Define the transmitted 

frequency-domain signal vector at the A;-th subcarrier as 

X(k) = [X1(k),---,XNT(k)f. (7.9) 
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It is proved in Appendix G that the estimated correlation matrix of the time-domain 

signal x (n), Rx (I), can be calculated as 

A* (o = j? E x ( * ) x " (fc) *~' (*) (7-10) K
k=o 

which, using (7.7), leads to 

K-\ 

ARX (/) = 1 Y, X (*0 * " (fe) 0 " ' (A:) - <5 (0 Ijv r. (7.11) 
fc=0 

Interestingly, Rx (I) given by (7.10) can be regarded as the IDFT of ~K(k)X.H (k). 

Accordingly, the estimate of the correlation matrix of the received signal y (n), Ry (I), 

can be represented as an IDFT of Y (k) YH (k), where Y (k) is the frequency-domain 

version of y (n). In order to develop a new transmit scheme to cancel the perturbation 

error ARy (I) = Ry (I) — Ry (I) due to ARX (/), we would like to express ARX (/) as 

an IDFT of a set of data T(k). From (7.1), (7.3) and (7.5), one can see that the 

range of Z for ARX (/) is given by 

' -Lx < I < L2, (Lj = L - 1, L2 = P + L - 1). (7.12) 

As such, the size of the IDFT should be at least KT — Lx + L2 + 1. Considering 

that the total number of subcarriers usually satisfies K 3> L\ + L2 + 1, it would be 

sufficient and convenient to choose KT = jg > L\ + L2 + 1 where M is the largest 

possible integer such that KT is the smallest possible power of two. By using the 

periodicity property of IDFT, we have 

[ KZT(k)^kl/^,(l = 0,l,---L2) 
ARx(l)={ KT 1

 k=° . (7.13) 
J2 T (k) e>^{KT+i)/KT^ y = _Lu 1 _ Lu ^ 
fc=0 
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Clearly, (7.13) gives a KT-size IDFT of T (k) with a gain of KT, which means T (k) 

can easily be obtained from a Kr-size DFT of ARX (/) with a gain of 1/KT, namely, 

1 
T<*> KT 

L2 KT-\ 

J^ARx{l)e-j2M/KT+ J2 &Rx(l-KT)e-j2M/KT 

.1=0 l=KT-Li 

fork = 0,l,---,KT-l. (7.14) 

In what follows, we show that as long as the NT X NT matrix T (fc) can be factorized 

into 

T (k) = TL (k) Tg (*) (7.15) 

and TL (k) and Tg (k) are transmitted to the receiver, the signal perturbation error 

in Ry (I) can be eliminated in the absence of noise. 

First of all, we reveal that only a small number of subcarriers are needed to 

transmit T(fc). Noting that &**KI+KT)/KT = ^M/KT = ^kMi/K^ ( 7 1 3 ) c a n b e 

rewritten as 

KT-1 

AKx(l)= ^2 T(A;)0-M/(fc),for/ = - L 1 , - L 1 + l,---L2 . (7.16) 
fc=0 

Interestingly, (7.16) corresponds to an M-rate decimated version of the if-size DFT 

of T'(A;), where T' (k) is an up-sampled version of T (k) by a factor of M, i.e., 

it can easily be obtained by inserting M — 1 zero matrices following each T(k). 

This observation gives us an idea that TL (k) and T R (k) need be transmitted over 

the A;M-th subcarriers only (k = 0,1, • • •, KT — 1), which is very advantageous to 

practical applications, since only a small number of subcarriers are required for the 

transmission of T (k). 

In order to exploit the received version of TL (k) and T R (k) for the cancellation of 

signal perturbation error ARy (I), let us first express the estimated correlation matrix 
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of the received signal in terms of the channel matrix and the estimate of the correlation 

matrix of the transmitted signal. Noting that the received frequency-domain signal 

at the fc-th subcarrier Y (k) can be written as 

Y(fc) = HF(fc)X(fc) (7.17) 

where H F (k), (k = 0,1, • • •, K — 1) is the frequency-domain channel matrix defined 

by 
L-l 

H F ( f c ) ^ H ( 0 ^ ( f c ) , ( f c = 0 , l , - - - , t f - l ) . (7.18) 
i=o 

In a manner similar to the derivation of (7.10) as shown in Appendix G, one obtains 

Ky(l) = ^J2Y(k)YH(k)rl(k), (7.19) 
fe=0 

which, using (7.17) and (7.18), leads to 

&y (0 = E E H (M Jc E tX (*) X" (*) *"{l~h+h) (*)] H" (M • (7'2°) 
i1=oi2=o fc=o 

Further by using (7.10) into (7.20), we have 

L-l L-l 

&y (0 = E E H &) ft* (* - Z> + ^) H H (M • (7.21) 
;1=o/2=o 

On the other hand, by using the received noise-free version of the user specific 

data T L (k) and TR, (k), denoted as 

YTL(A;) = HF(A ;M)TL(fc), (7.22) 

YTR(fc) = HF(A:M)TR(fc), (7.23) 

we can construct matrices R Y T (0 , (I = 0,1, • • •, L — 1) as 

KT-I 

RYT (I) = J2 Y T L (k) Y£R (k) rm (k). (7.24) 
fc=o 
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Using (7.18), (7.22) and (7.23) in (7.24) yields 

RYT (0 = E E H CO E tT^ (*) TR (*) 0"M( '- / l+ '2) (*)] H * (Z2), (7.25) 

l1=Ol2=0 k=0 

which, by using (7.15) and (7.16), can be rewritten as 

L - l L - l 

RYT (i) = Y, E H &) AR* (z - h + / 2 ) H" &) • (7-26) 
;1=o(2=o 

From (7.21) and (7.26), and noting that ARX (1) = Rx (I) - Rx (I) and ARy (I) = 

Ry (/) — Ry (Z), it is now clear that RYT (0 gives exactly the signal perturbation error 

ARy (Z). Therefore, the correlation matrix of the received signal without the signal 

perturbation error can be calculated by 
R ; ( 0 = R y ( 0 - R Y T ( 0 (7.27) 

L - l L - l 

= E E H ^ ) R * (* - h + ^ H " (/2) = ̂  (0 • (7-28) 
ii=0i2=0 

The above discussion shows that via the transmission of TL (k) and T R (A;), the signal 

perturbation error in the receiver has been completely eliminated in the noise free case. 

From (7.28), it is interesting to note that, under the assumption of Rx (Z) = 5(l)I^T, 

the ideal correlation matrix of the received signal, Ry (Z), can be expressed in terms 

of the channel matrices H (Z), i.e., 

L - l 

Ry(l) = ^2H(i)HH(i-l), (l = 0,l,---,L-l). (7.29) 
i=l 

It should be mentioned that, in the noisy case, Ry (Z) calculated using (7.27) would be, 

in general, different from ~Ry (I) obtained from (7.28) or (7.29) due to the existence of 

both signal and noise perturbation errors in Ry (Z). However, it is consistently found 
2 

through a computer simulation study that Ry (/) — Ry (/) <C Ry (Z) — Ry (Z) 
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as seen from Fig. 7.2 in the simulation section. This is because the noise perturbation 

is much smaller than the signal perturbation whereas the latter has been completely-

cancelled in Ry (I) by using (7.27). This means that the estimation accuracy of the 

correlation matrix of the received noisy signal has been significantly improved using 

TL (k) and TR (k). In the following subsection, we will propose a detailed structure 

for T L (k) and TR (k) for the implementation of the new transmit scheme. 

7.2.3 The Signal-Perturbation-Free Transmit Structure 

Our idea is to obtain TL (k) and TR (k) by using the singular value decomposition 

(SVD) technique. Performing the SVD on T (k) gives 

T (k) = UT (k) S T (k) V£ (jfc) (7.30) 

where 

UT (fc) = [ur,i (k), uTj2 (k), • • •, uTtNT (k)}, 

V r (fc) = [vr,i (k), vT|2 (k), • • •, VT,NT (k)}, 

and TIT (k) is a diagonal matrix conposed of the singular values GT,% (k), (i = 1,2, • • •, 

NT) of T(k). We now construct the matrices TL (k) and TR(/C) using the singular 

values or,i (k) and the singular vectors u^j (k) and v^j (k). 

Note that the total power of NT transmit antennas at one subcarrier in each 

OFDM symbol can be written as 5jnt = NT- Clearly, the power required to transmit 

TL (k) and TR (k) depends on aT>i (k). It is found from extensive computer simula

tions that the value of aT,i (k) is much smaller than <5int. In order to ensure a reliable 

transmission of the SPF data in noisy conditions, we should allow the use of one 
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or multiple OFDM symbols at the kM-th subcarrier to carry an amplified version of 

art (k). To this end, we split OT,I (k) into MT,J (A;) > 0 times of 5[nt plus one fractional 

term <5T,I (k) as 

where 

By letting 

one can construct an NT X [MT,J (k) + 1] matrix TL,J (A;) for the i-th singular value 

by stacking MT,J (k) consecutive vectors TL_ i n tj (k) and one vector TL_frac,i (k). In 

a similar manner, by using the right singular vector \T,i (k), an NT X [MT,» (k) + 1] 

matrix TR, ; (k) that satisfies 

can be constructed. Thus, the complete T L (k) and T R (k) can be formed as 

T L (k) = [TLil (k), TL,2 (fc), • • •, TUNT (k)], (7.34) 

T R (k) = [TR,! (fc), TR,2 (k), • • •, T R I J V T (*)]. (7.35) 

NT 

Obviously, each of T L (k) and T R (k) has a total of NT + 2 MTJ (&) columns. 

From the above discussion, a new transmit structure, which consists of user's 

data, pilots and the signal-perturbation-free (SPF) data T L (k) and T^(k), can be 
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(7.33) 
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Figure 7.1: Signal-perturbation-free transmit structure for MIMO-OFDM systems 
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designed as shown in Fig.7.1. Here the pilots allocated in the first gp OFDM symbols 

are transmitted only at the subcarriers k = 0, M, • • •, (KT — 1) M as normally spec

ified in OFDM systems. As such, the SPF data TL (k) and T R (k) are presumably 

transmitted at the same subcarriers as the pilot. Note that the pilots will be utilized 

to estimate the ambiguity matrix of the blind channel estimation, as will be explained 

in the next section. The zero symbol, namely, the symbol with zero amplitude, pro

ceeding the SPF data is used to identify TL (k) and T R (k). It is now clear that the 

total column size of TL (k) and T R (k) is inversely proportional to the scaling factor 

rj. One can easily find a value of rj such that as low as 2NT symbols are required 

for the transmission of TL (k) and T R (k). In general, the choice of r\ should depend 

on the number of the transmit antennas as well as the length of the user data. Our 

simulations show that, for a 2 x 4 MIMO-OFDM system, with a properly chosen value 

of 77, on the average, up to 8 OFDM symbols per SPF subcarrier are required for the 

transmission of SPF data to sufficiently suppress the signal perturbation error. This 

overhead is negligible as compared to the pilot budget required by OFDM systems. 

It should be mentioned that the construction of TL (k) and TR (k) is rather simple 

since they are readily obtained by stacking a scaled version of the left and right sin

gular vectors of NT X 7VT matrix T (k). Moreover, T (k) can easily be computed by 

a Kx-size DFT of ARX (/) where KT is a small number, for example, KT = 8 in 

our study. It should be noted that the SPF data TL (k) and TR (k) suffers from the 

channel noise during its transmission just as the pilot and user data do. However, 

this noise effect has been significantly reduced by using multiple OFDM symbols to 

bear properly scaled singular vectors of T (k). As will be seen from Fig.7.2 in Section 

177 



7.4, the proposed signal perturbation cancellation scheme is indeed very efficient at 

moderate to high SNR levels. 

7.3 Proposed Signal-Perturbation-Free LP-based Semi-Blind 

Algorithm 

7.3.1 Signal-Perturbation-Free LP-based Semi-Blind Channel Estimation 

By employing the above signal-perturbation-free transmit scheme, the correlation 

matrix of the received signal after the signal perturbation cancellation, R^ (I), can be 

obtained from (7.27). Then, by employing (2.37) and (2.38), the estimate of R„_i and 

Rn is obtained, which is to be used to compute the MIMO linear predictor (2.39). In 

the following, we will derive a blind channel estimate subject to an ambiguity matrix 

by utilizing the the properties of linear prediction in (2.41) and (2.42). The ambiguity 

matrix will then be estimated using the pilot-assisted maximum likelihood method. 

We first derive the expression for H (i), (i = 1,2, • • •, L — 1) in terms of H (0) in 

the absence of noise. Letting the predictor length P = L — 1 and substituting (3.8) 

and (3.9) into (3.10), one can obtain 

- P P ( 1 ) H ( 0 ) + H(1) = 0, (7.36) 

- P P (2) H (0) - P P (1) H (1) + H (2) = 0, (7.37) 

- P P (L - 1) H (0) - P P (L - 2) H (1) 

- P P ( l ) H ( L - 2 ) + H ( L - l ) = 0. (7.38) 

178 



From (7.36)-(7.38), one can derive 

H(i) = PR(i)H(0),(i=l,2,---,L-l) (7.39) 

where P p (i) in (7.39) can be iteratively calculated by using (7.36)-(7.38), namely, 

PH( l ) = P p ( l ) , P f i ( 2 ) = Pp(2 ) + P p ( l ) P p ( l ) ) P f i ( 3 ) = Pp (3 ) + P p ( 2 ) P P ( l ) + 

P P (1) P P (2) + P P (1) P P (1) P P (1), etc.. Eq. (7.39) indicates that once the channel 

matrix H (0) is available, the matrices at other taps H (i) (i — 1,2, • • •, L — 1), can 

be obtained. Therefore, the key to the estimation of H (i) is to obtain H (0). 

We now use the whitening rotation (WR) algorithm [21,23] to determine H(0) . 

The idea of WR method starts from the decomposition of H (0) as 

H(0) = WoQo" (7.40) 

where W 0 is a whitening matrix and Qo is a unitary rotation matrix. By using the 

singular value decomposition (SVD) of H (0), 

H(0) = U 0 £ o V o " , (7.41) 

one can see that a possible choice of W 0 and Q0 is U 0 S 0 and V0 . In [21,23], 

Wo = UoS 0 was estimated by a subspace-based method and Q0 was obtained via a 

training-based ML method. However, this method was proposed for the frequency-

flat MIMO channels, and it is not applicable to our case. We now estimate Wo using 

the MIMO linear prediction. Substituting (7.41) into (2.42) gives 

SjtP = U o E o S M , (7-42) 

implying that Wo = Uo£o can easily be estimated from the SVD of the prediction 

error <5~ P , provided that the MIMO linear-prediction has been performed as discussed 
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in Chapter 3. Using the estimate of W0 along with (7.39) and (7.40), we have thus far 

estimated in a blind fashion the channel matrix H (i), (i = 1,2, • • •, L — 1) subject to 

an unitary ambiguity matrix Qo-

We now propose a new ML method for the estimation of Q0 by using the training 

pilots available in the A;M-th subcarriers (k = 0,1, • • •, KT — 1) during the first gp 

OFDM symbols as shown in Fig.7.1. By stacking a pilot matrix from all gp symbols 

at the kM-th. subcarrier as 

X P (k) = [X (kM, 1), X (kM, 2), • • •, X (kM, gp)\, (7.43) 

a received version of Xp (k) can be expressed as 

Yp (fc) = HF (kM) X P (k). (7.44) 

On the other hand, using (7.39) in (7.18) gives 

HF(fc) = Pfl,F(fc)H(0) (7.45) 

where 
L - l 

P * , F (*:) = ! > * (*)<£'(*)• (7-46) 
z=o 

By defining 

YQ (fc) ^ W 0 "P£ F (k) Yp (k) X ? (k), (7.47) 

we have proved in Appendix H that the rotation matrix Q0 can be calculated as 

Qo = VQUg (7.48) 

where UQ and VQ are obtained from an SVD of the matrix 

KT 

YQ = £ Y Q ( f c ) , (7.49) 
fc=i 
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namely, 

Y g = U Q S Q Vg. (7.50) 

Having estimated Wo and Q0, the channel matrix H (/), (/ = 0,1, • • •, L — 1) can 

easily be obtained from (7.39) and (7.40). 

7.3.2 Identification of the 111 Condition 

It should be mentioned that, in the noisy case the blind estimation part of the pro

posed channel estimation algorithm suffers from the common ill-conditioning problem 

as many other LP-based blind methods like the one proposed in [46]. As mentioned 

in [46], the ill condition arises from the pseudo-inverse of the matrix Rn_i in (2.37). 

Performing the SVD of Rn_i gives 

Rn-i = U R „ £ H „ V £ „ . (7.51) 

Based on (7.51), the pseudo-inverse of the matrix Rn_i can be obtained from 

H i . ! = V ^ S ^ U l . (7.52) 

Occasionally, £# n is quite ill-conditioned. To solve this problem, a regularized pseudo-

inverse 

Rl_i = VRn (S*„ + a ^ I ) - 1 Ugn (7.53) 

with ajin > 0, was used in [46]. However, it has been found through a large amount 

of computer simulations that in ill-conditioned cases, the performance of the LP-

based methods using the regularized scheme is still much worse than the traditional 

LS method, leading to a poor overall channel estimation performance. Therefore, 
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we suggest replacing the LP-based channel estimation solution with our previously 

developed nulling-based semi-blind algorithm in Chapter 3, once the ill-condition 

case is identified. Thus, what remains is to identify the ill conditions of the proposed 

signal-perturbation-free LP-based method [119]. 

Here, we first give an LS-based criterion to identify the ill condition. 

1. Calculate the cost of the LS estimate: 

A LS Ypii0t — AIILS 
2 

(7.54) 

where hLs is the LS channel estimate resulting from the method in [25]. 

2. Calculate the cost of the SPF semi-blind estimate: 

A: SB Ypiiot — AhsB 
2 

(7.55) 

where hsB is the semi-blind channel estimate, which can be obtained in the 

previous subsection. 

3. Define a coefficient pi to evaluate the deviation of ASB from ALS as 

|ASB - ALs| . . 
Pi = T • (7-56) 

ALS 

4. If pi is larger than a predetermined threshold T\ , the SPF semi-blind channel 

estimate is considered as ill conditioned. 

As the above criterion may not cover all the ill-conditioned cases, we suggest 

another testing to further improve the reliability of the ill condition identification. 
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1. Obtain a difference matrix of 5% P between the LP-method and the LS method 

as 

T = SlP - HLS (0) H? s (0). (7.57) 

where <5~ P is an estimate of 5 | P given in (2.40), HLS (0) is the first tap of the 

LS channel estimate. 

2. Perform the eigenvalue decomposition on T, giving the largest and the second 

largest eigenvalues as an and <Tx2-

3. Define a coefficient p-i as 

p2 = o"Ti/o"r2- (7.58) 

4. If p2 is larger than a predetermined threshold T2, the SPF semi-blind channel 

estimate is considered as ill-conditioned. 

We will show in the next section that by using both the above ill-condition test rules, 

the proposed semi-blind algorithm performs very well. 

7.4 Simulation Results 

We consider a MIMO-OFDM system with 2 transmit and 4 receive antennas. The 

number of subcarriers is set to 512, the length of cyclic prefix is 10. In this simula

tion, the QPSK modulation is used and an SUI-3 type MIMO channel is considered. 

In particular, the channel is modelled as a 3-tap MIMO-FIR filter, in which each 

tap corresponds to a 2 x 4 random matrix whose elements are i.i.d. complex Gaus

sian variables with zero mean and an equal variance. Moreover, the channel has an 
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exponentially decaying profile, giving 0 dB, -5 dB and -10 dB powers for the first, 

second and third taps, respectively. In our simulation, M and A/p are set to be 64 

and 8, respectively, suggesting that the pilots and SPF data are transmitted only in 

the subcarriers indexed by 64 x k, (k = 0,1, • • •, 7), which, for the convenience, are 

referred to as the SPF subcarriers. 

For the purpose of comparison, the channel vector h is estimated by the proposed 

SPF LP-based semi-blind algorithm, the LP-based semi-blind algorithm without using 

the SPF transmit scheme, the LS and the nulling-based semi-blind methods. For easy 

citation, we call these four methods as the SPF LP semi-blind, LP semi-blind, LS, and 

nulling semi-blind methods. In the SPF LP semi-blind and LP semi-blind algorithms, 

the ill condition is identified if p\ > 0.5 or p2 > 5 or p\ x p2 > 0.2. The estimation 

performance is evaluated in terms of the MSE of the estimate of the channel matrix 

given by 

1 ^ M ? 2 
MSE = — - V h n - h n (7.59) 

JVMC ^ " 

where JVMC is the number of Monte Carlo iterations, and hn and h„ are the true 

and the estimated channel vectors with respect to the n-th Monte Carlo iteration, 

respectively. 

Experiment 1: MSE versus SNR 

In the first experiment, the channel estimation performance in terms of the MSE 

versus the SNR is investigated. The simulation involves 2000 Monte Carlo runs of the 

transmission of 60 OFDM symbols with pilot length gp = 20. Here, the scaling factor 

in the SPF scheme is set to be r] = 9.5 x 10~4, which corresponds, on the average, to 
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• using SPF scheme 
without using SPF scheme 
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22 

Figure 7.2: MSE of the estimated correlation matrix of the received signal versus 

SNR 
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Figure 7.3: MSE of the time-domain channel estimate versus SNR 

186 



5.8 OFDM symbol per SPF subcarrier used for the transmission of TL (k) and TR, (fc). 

First of all, Fig. 7.2 shows the MSE of the estimated correlation matrix of the received 

signal resulting from ATMC Monte Carlo iterations, which is defined in a manner similar 

to (7.59) by using the norm of the error correlation matrix. Clearly, the conventional 

correlation matrix estimation without using the proposed SPF cancellation scheme 

achieves very little gain in the MSE with increasing the SNR level. In contrast, by 

using the SPF cancellation scheme, the MSE of the estimated correlation matrix has 

been significantly improved, which is linearly propertional to the increase of the SNR. 

Fig. 7.3 shows the channel estimation results of the SPF LP semi-blind, LP semi-

blind, nulling semi-blind methods as well as the LS method with 20 pilot symbols. 

Moreover, the result from the LS method using 60 pilot symbols which is three times 

the pilot length of other methods is also provided for comparison. It is seen that the 

SPF LP semi-blind algorithm consistently outperforms the nulling semi-blind method 

and the LS method. Also, one can find that the performance gain of the SPF LP 

semi-blind algorithm over the LP semi-blind algorithm becomes larger with increas

ing SNR value. In particular, the MSE is improved by 3.2 dB when the SNR is 22 dB. 

Experiment 2: The effect of scaling factor 77 on the channel estimation perfor

mance 

In this experiment, the channel estimation performance in terms of MSE for dif

ferent scaling factors 77 is investigated. Using the same condition as in Experiment 1, 

the simulation is undertaken based on 2000 Monte Carlo runs for the scaling factor 77 

given by 771 = 1.9 x 10"3, 772 = 9.5 x 10~4 and 773 = 4.7 x 10~4, respectively. Table 7.1 
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scaling factor 

average number of SPF sym

bols 

171 = 1.9 x 

10-3 

4.1 

772 = 9.5 x 

10-4 

5.8 

V3 = 4.7 x 

10-4 

9.7 

Table 7.1: The average number of SPF symbols needed for the transmission of T L (k) 

and T R (k) vs value of 77 
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Figure 7.4: The effect of the scaling factor 77 on the MSE of channel estimate versus 

SNR 
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OFDM block size 

40 

60 

80 

100 

120 

1st singular value 

2.8 x 10~3 

2.2 x 10~3 

1.9 x 10-3 

1.7 x 10-3 

1.6 x 10"3 

2st singular value 

1.7 x 10~3 

1.4 x 10"3 

1.2 x 10-3 

1.1 x 10-3 

1.0 x 10-3 

Table 7.2: The two average singular values for five OFDM block sizes with 2 transmit 

antennas 

shows the average number of OFDM symbols per SPF subcarrier used for TL (k) and 

T R (k) for three values of 77. Clearly, more OFDM symbols are needed for a smaller 

value of 77. Fig. 7.4 shows the MSE plots of the LP semi-blind algorithm and the 

SPF LP semi-blind algorithm for the three 77 values. It is seen that the performance 

of the SPF LP semi-blind algorithm for all three cases is better than that of the LP 

semi-blind algorithm. Moreover, the performance of the SPF LP semi-blind algorithm 

corresponding to each value of 77 depends on the SNR range. For example, 772 gives 

the best MSE when the SNR is between 10 and 18 dB. 

Experiment 3: The effect of OFDM block size on the channel estimation perfor

mance 

Now, we examine the effect of the OFDM block size on channel estimation perfor

mance. In order to have a fair comparison, we first need to determine a proper value 
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OFDM block size 

40 

60 

80 

100 

120 

The normalized 1st 

singular value 

1.227 

1 

0.861 

0.765 

0.702 

The normalized 2nd 

singular value 

1.223 

1 

0.869 

0.774 

0.711 

The value of rj 

1.164 x 10~3 

9.5 x 10"4 

8.216 x 10-4 

7.313 x 10-4 

6.712 x 10-4 

Table 7.3: The normalized average singular values and the selected rj values for five 

OFDM block sizes . 

- SPF LP semi-blind 
- LP semi-blind 
- - Nulling semi-blind 
O LS with same pilots 

70 80 90 
OFDM block size 

120 

Figure 7.5: MSE versus the OFDM block size for a fixed number of pilots 
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of 77 for a different OFDM block size such that the same average number of OFDM 

symbols is used for the transmission of the SPF data. Table 7.2 shows the two av

eraged singular values aT>i (k), (i = 1,2) which are obtained from 1000 Monte Carlo 

runs at an SNR of 15 dB for the OFDM block size g = 40, 60, 80, 100, 120. From 

Table 7.2, we now normalize the 1st average singular value of the five cases according 

to the 1st singular value corresponding to g = 60, as shown in the 2nd columns of 

Table 7.3. A similar operation is applied to the 2nd averaged singular values, giving 

the normalized singular values in the third column of Table 7.3. It is interesting to 

see that, in each of the five cases, the two normalized averaged singular values are 

very close. Here, we would like to set 77 = 9.5 x 10-4 for the case of g = 60. Consider

ing that 77 is proportional to the singular values GT,% {k) as seen from (7.31), one can 

calculate the 77 value for the other four cases by multiplying 77 = 9.5 x 10-4 with the 

average of the corresponding normalized 1st and 2nd singular values as given in the 

last column of Table 7.3. It has been verified through simulations that the average 

number of OFDM symbols for the SPF data is then 5.8 for all the five cases. 

Fig. 7.5 shows the channel estimation results of the SPF LP semi-blind and the 

LP semi-blind algorithms as a function of the OFDM block size based on 5000 Monte 

Carlo runs for the pilot length gp = 20. For comparison, the performance of the LS 

method and the nulling semi-blind method with the same pilot length is also included. 

It is seen that the performance of both the SPF LP semi-blind and the LP semi-blind 

algorithms get much better with increasing OFDM block size. Although the LP semi-

blind method can achieve a much better performance than the LS method, in general 

it does not perform as well as the nulling semi-blind method. However, the SPF LP 
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Figure 7.6: MSE versus pilot length for a block of 120 OFDM symbols 

semi-blind algorithm outperforms the nulling semi-blind method when the OFDM 

block size is larger than 50, and becomes more advantageous as the OFDM block size 

increases. In particular, when g = 120, the SPF LP semi-blind algorithm gains about 

3.3 dB over the nulling semi-blind method. 

Experiment 4- MSE versus pilot length 

Here, we investigate the channel estimation performance of the proposed algorithm 

versus the pilot length. Fig. 7.6 shows the MSE plots from 500 Monte Carlo iterations 

for g = 120 at an SNR of 15 dB. It is seen that the performance of all the algorithms 

is improved with increasing pilot length except for the LP semi-blind method. Again, 

the SPF LP semi-blind algorithm outperforms the other three methods for all pilot 
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lengths. In particular, when the pilot length is 20, the gain of the SPF LP semi-blind 

algorithm over the LS, the LP semi-blind and the nulling semi-blind algorithms is 9 

dB, 2.8 dB and 2.9 dB, respectively. 

7.5 Conclusions 

We had previously shown in Chapter 3 that the LP-based blind channel estimation 

method is subject to signal perturbation error and therefore gives a poor estimation 

performance in the moderate to high SNR levels. To improve its performance, in this 

chapter, we have developed a new scheme that transmits user specific data bearing 

the information of the correlation matrix of the information signal to cancel the 

signal perturbation error at the receiver. The new transmit structure has then been 

used to develop a semi-blind LP-based approach for the estimation of time-domain 

channels. In the new approach, the whitening rotation algorithm is used along with 

linear prediction to obtain a blind channel estimate subject to an ambiguity matrix, 

and the ambiguity matrix is then estimated via a pilot-assisted maximum likelihood 

method. It has been shown that the new semi-blind MIMO-OFDM channel estimation 

solution is devoid of any signal perturbation error in the noise-free case and is capable 

of efficiently suppressing the signal perturbation error in the noisy case. Simulation 

results have confirmed that, by using a small number of additional slots for the 

transmission of the user specific SPF data, the new semi-blind approach can achieve 

a significantly improved channel estimation performance as compared to the LP-based 

semi-blind method without using the signal-perturbation-free transmit scheme, the 
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LS method as well as the nulling-based semi-blind technique. 
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Chapter 8 

Conclusion and Future Work 

8.1 Concluding Remarks 

In this dissertation, the semi-blind channel estimation issue of MIMO-OFDM sys

tems has been thoroughly studied. Based on the MIMO linear prediction technique, 

a nulling-based semi-blind channel estimation approach has been first proposed for 

the estimation of the time-domain MIMO-OFDM channels. It has been then ex

tended to the channel estimation of pulse-shaped MIMO-OFDM systems and further 

applied to the estimation of the sparse MIMO-OFDM channels. By conducting a 

perturbation analysis, the proposed semi-blind channel estimation approaches have 

been shown to significantly outperform some other blind and semi-blind methods re

cently reported in open literature, in the case of moderate to high SNR levels. In 

order to improve the performance of those methods for high SNRs, two novel signal-

perturbation-free transmit schemes have also been proposed for the estimation of 

frequency-domain channels and that of time-domain channels, leading to two very 

efficient signal-perturbation-free channel estimation techniques. 
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The first part of the thesis has been devoted to the development of nulling-based 

semi-blind estimation approaches for the time-domain MIMO-OFDM channels. By-

using a training-based least-square method in conjunction with a blind constraint 

on the channel vector, that is derived from MIMO linear prediction, a nulling-based 

semi-blind MIMO-OFDM channel estimation approach has been developed. As a 

part of the new approach, a practical yet very efficient scheme has been proposed 

for the determination of the weighting factor in the semi-blind cost function. The 

perturbation analysis of the MIMO linear prediction has justified the advantage of the 

semi-blind method over the pure blind estimation, and led to a closed-form expression 

for the MSE of the blind constraint. This study can be regarded as a significant 

extension of the existing linear prediction-based MIMO channel estimation. 

The proposed nulling-based semi-blind approach has then been extended to the 

channel estimation of pulse-shaped MIMO-OFDM systems. By exploiting the pulse-

shaping filter available in the transmitter and the matched filter in the receiver, a very 

efficient semi-blind estimation algorithm and an enhanced LS algorithm have been 

developed for sampling- and upsampling-duration-based channels, respectively. To 

reduce the computational complexity of the semi-blind method, a frequency-domain 

estimation algorithm for the time-domain correlation matrix has also been presented. 

The significance of this work lies in the study of, for the first time, the pure wireless 

channel estimation of MIMO-OFDM systems with pulse shaping, a practical yet 

very complicated issue, which results in a significantly improved channel estimation 

performance. 

The proposed nulling-based semi-blind estimation idea has also been applied to 
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the estimation of sparse MIMO-OFDM channels. It is revealed for the first time that 

the most significant taps (MST) of the sparse channel can be expressed in terms of the 

most significant lags (MSL) of the correlation matrices of the received signal. This 

finding has helped develop a highly efficient MST detection algorithm that requires 

only a few OFDM symbols and a small number of pilots for a least-square based 

detection. By employing the detected MST information, a semi-blind approach in

corporating a training-based LS criterion and a blind constraint on the sparse channel 

vector consisting of only a few MSTs has been proposed. As the new approach does 

not require estimating all the channel taps, it has saved a large amount of compu

tations compared to a regular channel estimation method. It has also been shown 

via a perturbation analysis that the proposed semi-blind solution is not subject to 

the signal perturbation error when the sparse channel is a decimated version of a full 

wireless fading channel. Computer simulations based on various sparse channels have 

confirmed that the proposed sparse semi-blind approach outperforms much better 

than the sparse LS method as well as the regular LS and semi-blind techniques. 

The second part of the dissertation has been focused on the development of com

pletely new transmit schemes for the cancellation of signal perturbation errors in the 

the estimation of frequency-domain as well as time-domain MIMO-OFDM channels. 

The novelty of this idea lies in the transmission of limited user-dependent data bear

ing partial information of the correlation matrix of the transmitted signal that can be 

exploited to enhance the estimation accuracy of the second-order statistics of the re

ceived signal at the receiver, leading to a signal-perturbation-free channel estimation 

algorithm. 
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Firstly, a new signal-perturbation-free semi-blind approach has been proposed 

for the estimation of the frequency-domain channel of MIMO-OFDM systems. A 

perturbation analysis of two subspace-based semi-blind frequency-flat MIMO channel 

estimation algorithms has been performed, justifying that the existing WR-based 

method is efficient only in the low SNR case, and the nulling-based method is a better 

choice when the SNR is moderate or high. To improve the performance of the WR-

based method in the high SNR case, a new transmit structure, which contains known 

data bearing the information of the signal perturbation matrix, has been proposed 

for the cancellation of the signal perturbation error at the receiver. Furthermore, 

in the computation of second order statistics of the received signal via an in-depth 

perturbation analysis, a closed-form expression for the MSE of the new WR-based 

method integrating the proposed transmit scheme is derived. Simulation results have 

confirmed that, by using a small number of additional slots bearing the information 

of the autocorrelation matrix of the transmitted signal, a significant improvement in 

terms of both the MSE of the channel estimate and the BER of the data transmission 

can be achieved over the WR-based method as well as the nulling-based method for 

all SNR cases. 

Secondly, a signal-perturbation-free linear prediction-based semi-blind approach 

has been proposed for the estimation of time-domain channels. We have developed 

a new scheme that transmits user specific data bearing the information of the corre

lation matrix of the information signal to the receiver for the cancellation of signal 

perturbation error at the receiver. The new transmit structure has then been used to 

develop a semi-blind LP-based channel estimation approach. In the new approach, a 
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whitening rotation-based algorithm is used along with linear prediction to obtain a 

blind channel estimate subject to an ambiguity matrix, and the ambiguity matrix is 

then estimated via a pilot-assisted maximum likelihood method. It has been shown 

that the new semi-blind MIMO-OFDM channel estimation solution is devoid of any 

signal perturbation error in the noise-free case and is capable of efficiently suppress

ing the signal perturbation error in the noisy case. Simulation results have confirmed 

that, by using a small number of additional slots for the transmission of the user 

specific data, the new semi-blind approach can achieve a significantly improved chan

nel estimation performance as compared to the LP-based semi-blind method without 

using the signal-perturbation-free transmit scheme as well as the LS method. 

8.2 Suggestions for Future Investigation 

Considering that a number of original ideas have been proposed in this thesis and 

the related channel estimation algorithms have been developed only over a four-year 

span, several aspects of the proposed techniques are worth well further studying. The 

following lists a number of directions for future research. 

• As shown in Chap. 4, the time of arrivals (TOA) are needed for the chan

nel estimation of pulse-shaped MIMO-OFDM systems. Normally, they can be 

estimated by using some training-based techniques. For example, the TOA 

estimation was conducted by using the ranging techniques for the uplink syn

chronization of the OFDMA (OFDM Access) systems [8] or for some geolocation 

applications [92]. The TOA can be also estimated by using beamforming meth-
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ods such as the MUSIC and ESPRIT [52,54,56-58]. In general, the TOA are 

considered sparse in the upsampling domain. Therefore, our semi-blind MST 

detection algorithm proposed for sampling-spaced sparse channels can be ex

tended to the estimation of TOA. Accordingly, the proposed sparse semi-blind 

algorithm for the sampling-spaced sparse channel estimation can be extended 

for the estimation of upsampling duration-based channels. 

• The proposed frequency-domain estimation algorithm for the correlation matrix 

could be generalized to develop other second-order statistics-based blind or semi-

blind algorithms of MIMO systems for MIMO-OFDM systems. 

• The signal-perturbation-free transmit scheme proposed for the MIMO-OFDM 

channel estimation can be extended to improve other signal processing algo

rithms for multiple antenna systems. Whenever such algorithms are based on 

second-order statistics, they are subject to signal perturbation error. Then, a 

similar signal-perturbation-free transmit scheme could be developed to cancel 

the signal perturbation at the receiver. 

• The proposed semi-blind channel estimation approaches could be extended for 

the estimation of time-varying MIMO-OFDM channels in urban areas. In an 

urban scenario, the channel can be regarded as a combination of a large number 

of multipaths, which can be modelled as Rayleigh or Rician process. In this case, 

the maximum Doppler frequency can be estimated using some of the existing 

methods such as those in [120,121], which can then be utilized to determine the 

AR model parameters for the Kalman filter-based channel tracking [48,122]. 
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• The proposed semi-blind approaches could also be extended for the estimation 

of time-varying MIMO-OFDM channels in suburban areas. In the suburban 

environment, the MIMO channel can be modelled as a combination of a few 

multi-paths, each of which may be characterized by a DOA, DOD, TOA, doppler 

frequency and complex fading amplitude. The proposed semi-blind channel 

estimation approaches can be extended for the joint estimation of the multi-

path parameters including the Doppler frequency, by combining our proposed 

virtual array processing techniques [123,124] with some of the existing training-

based or blind parameter estimation algorithms such as those in [125-127]. 
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Appendix A 

Derivation of MSEB in Nulling-based Semi-Blind 

Estimation 

We formulate first vec(Gi). Defining 

* i = 
>-(NR-NT)NTX(NR-NT)NT 

0(NR-NT)(P+L-1)NTX(NR-NT)NT 

and using (3.58), we can derive 

vec (GO = * l Vec {uo"nu„S* (H (0) HH (0))f H (0)} = f^vec (B*) (A-l) 

where 

n t ^ #! {[nT (o) (H (o) HH (o))1] ® u ^ } , (A-2) 

vec (SH) = vec (ARf3) - *lVec (AR„2) - *2vec (ARf2) + *3vec (AR£) , (A-3) 

with 

* i ^ (II2I£H2)T®I JVH 

* a 

*2 ^ [i£fi ® (HAicnf)], 

(n2i2H£)T®(HAicnf) 
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It is clear from (3.59) that, to obtain vec (G2), one needs to first compute vec (Q). 

To this end, we define a transformation matrix <&2 = [0, S^i )" ' " > * V > + L - I ]
 s u c n 

that its submatrices, being of the same size and satisfying [$2,1, • • • ,&2,P+L-I] = 

I (P+L-I)WT - Thus (3.55) can be rewritten as 

Q = (IP+L ® n P ) * 2 . (A-4) 

From which we have 

vec (Q) = ($1 ® I (P+L)JvH)vec(Ip+L ® l i p ) . (A-5) 

We now simplify vec (Q) by introducing another transformation matrix <J>3. Our idea 

is to construct 3>3 such that 

vec(IP + L <g> n P ) = * 3vec ( l i p ) , 

which leads vec (Q) to 

vec (Q) = ($% <g> I(P+L)jvfl) *3vec ( n P ) . (A-6) 

To obtain such a <&3, we define a [(P + L)2 (P + L — 1) NRNT]-dimensional vec

tor, denoted as 

iF 2 = vec(Ip+i / ®Ip i ) 

where Ipi is an NR x (P + L — 1) NT matrix whose elements are all unity. The 

matrix $ 3 of size [(P + L)2 ( P + L - 1) NRNT] x [(P + L - 1) NRNT] can then be 

constructed according to the following rules: 

(i) If the n-th element of vector ip2 is zero, the n-th row of $3 is set to a zero 

vector, 
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(ii) If the n-th element of vector ip2 is 1, then only one element in the n-th row 

of <fr3 is 1 and all the other elements are zero. The position of the element 1 shifts to 

the right by one entry with respect to the previous row with an element of 1. If the 

element 1 in the previous reference row happens at the last column, the next element 

1 returns to the first column. Note that the first element in the first row of <£>3 is 

always 1. As an example, considering P + L = 3, NR = 1 and NT = 1, we have 

iF2 = vec(I3<g>[l,l]) = 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

Then, the corresponding $3 is readily given by 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

1 T 

Using (3.59) and (A-6) gives 

vec(G2) = ft2vec(nP) (A-7) 

where 

« 2 = [l(P+L)NR ® (lp+L ® ^Onull)] {&2 ® I(P+L)NR)®3, 

vec (lip) = *4vec (AR^2) - *5vec (AR^) 

(A-8) 

(A-9) 

with 

* 4 = n^®iArR, 

tt5 = itf®(HAicn?). 

Note that l ip has been replaced by TL'P in (A-7), since the signal perturbation term 

has been eliminated. 
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Finally, by using (A-l) and (A-7) in (3.60) and noting that AR^i = AR^ and 

AR„3 = AR^, the MSE of the blind criterion can be derived as 

MSEB = Trace {fix {Tx + T2 + i f ) fif + n2T3n% - iliT4il^ - n 2 l f fi? } 

(A-10) 

where 

Ti = RAVA + *lRAW2*f + * 2 R A „ 3 * ? + * 3 R A „l*f , 

r 2 = - R ^ 9 * f - R & 1 0 * ? + R L 7 * 3 H + * i R A , 8 * f - * i R & 5 * ? - * 2 B & 6 * ? , 

T3 = * 4 RA,2*f - * 4 R L 5 * f - * 5 RA,5*f + # 5 R A „ 1 * ? , 

r 4 = R ^ 9 * f - R & 7 * ? - * i R A , 2 * f + * i R & 5 * f - * 2 R L 8 * f + * 2 R L 6 * f + 

* 3 R A „ 5 # ? - * 3 R A „l*f , 

with RAl)i, (i = 1, • • •, 10) being given by 

RAvl = E{vec(AR l ;i)vec / /(AR t )1)}, 

RA^2 = E {vec (AR„2) vec" (ARi;2)}, 

R A , 3 = E {vec (ARf2) vec" (ARf2)}, 

RA^4 = E {vec (AR„3) vec" (AR„3)}, 

RAV5 = E {vec (AR„i) vec" (AR„2)}, 

RAv6 = E {vec (AR„i) vec" (ARf2)}, 

RAv7 = E{vec(AR„i)vec"(AR„3)}, 

RA.S = E {vec (AR,2) vec" (ARf2)}, 

RAv9 = E {vec (AR„2) vec" (AR^)}, 

RA^IO = E {vec (ARf2) vec" (AR„3)}. 

The closed-form expression of RAvi, (i = 1, • • •, 10) is derived in Appendix B. 
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A p p e n d i x B 

Derivat ion of RAW» {i — 1> 2, • • •, 10) 

We now derive the closed-form expression of RAW, (« = 1, • • •, 10). First of all, 

we consider R A ^ I • For a medium to high SNR, the perturbation matrix of the noise 

autocorrelation matrix can be neglected. Thus, from (3.30), one can get 

vec(AR t )i) « (IpNR ® H B ) vec (AR x v l ) + (H.% ® I P i V J vec ( A ^ ) . 

Since the noise element ViR (n) is circularly symmetric with equal variance 5^/2 for 

the real and imaginary part, one can verify that E {viR (n) ViR (n)} = \$l — \5"l = 0 

and E {yiR (n) v* (n)} = | ^ + \5l = 5%. In addition, it can be easily verified that 

E [vec ( A R ^ j ) vec" ( A R ^ ) ] = 0. Therefore, RAvl can be calculated by 

R A „ I ~ (IPAT« ® H B ) E {vec (ARxt)1) vecH (ARx t )1)} (IPNR <g> H f ) 

+ (HJ, ® I ? J V J E {vec ( A R * J vec" ( A R f J } (H£ ® IPNR) . (B-l) 

To this end, the following two correlation matrices are to be determined 

T i = E {vec (ARxi ;1) vecH (AKxvl)} , (B-2) 

T i ^ E {vec ( A R * J vec" (ARf s l ) } . (B-3) 
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To compute Ti , one can obtain from (3.31), 

K-\ 

vec (AIUi) = ^ YJ ( X n (")Vp (n ~ ^ (B~4) 
n=0 

where Xn (n) = IPNR ® x P + i _! (n — 1). Substituting (B-4) into (B-2) gives 

T l = ^ E E E X « (ni) R i vi ("i - "2) Xg (n2) ^ (B-5) 

where Rivi (^i — ^2) = E (vp (ni — 1) Vp (n2 — 1)). It can be easily shown that 

Rivi (ni — n2) is a partial identity matrix. Further, it can be proved that 

Xn (ni) Rivi (nx - n2) X^ (n2) = Rivi (ni - n2) <8> Rixi (^i - n2) (B-6) 

where Rixi (^1 — n2) = E {x.P+L_i [n\ — 1) Xp+ L - 1 (n2 — 1)), which is also a partial 

identity matrix. Thus, substituting (B-6) into (B-5) gives 

1 P~1 

T l = 1? Y R i v i (*) ® R i x i (*) • (B"7) 
* « = I - P 

Similarly, one can derive 

1 P _ 1 

T'i = - Y, R ix i (») ® Rivi (i) • (B-8) 
i = l - P 

Thus, by using (B-7) and (B-8) into (B-l), one can obtain 

® H f ) + (ITfl (8) T'x (H- ® (B-9) 

As a result, RA<UI
 c a n n o w be explicitly computed in terms of Ti , T[ and the channel 

matrix H^. 

In a similar manner, one can derive the expressions for RA™, (i = 2,3, • • •, 10). 

RA,2 « (IPNR ® HA) T2 ( I P N H ® H£) + (HJ, ® IJVJ T 2 (H£ ® 1^) , 
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RA„3 « (H^ ® IP i VJ Y3 (Hj <g> I P W R ) + (INR ® HB) T£ ( 1 ^ ® H f ) , 

R A , 4 ~ (INR <8> HA) T 4 ( 1 ^ ® H£) + (Hi (8) INR) T 4 (Hj ® IN f i) , 

RA,5 « (Ipivfl ® Hfl) T 5 ( I P ^ ® H£) + (Hfl ® IP J VJ T'5 (H£ ® INjl) 

RAV6 ~ (IPNR <8> Hfl) T 6 ( 1 ^ ® Hf) + (Hfl <g> IPNR) T'6 (HT
A ® IPJVji) 

RA.T ~ (Ip;vfl ® HB) T 7 (I^B ® Hjf) + (HB ® IPJvH) T'7 (Hj ® 1^) , 

RA.S ~ (IPNR ® HA) T 8 ( 1 ^ ® Hf) + (HB ® INR) T8 (H£ ® IpWfi) , 

RA,9 ~ (Ipjv« ® HA) T 9 (IJV« ® H^) + (Hfl ® I,vR) T£ (H£ ® 1^) , 

RA.IO ~ (HA ® IPJV«) T10 (HJ ® 1^) + (Ijv* ® Hfl) r'10 (INR ® H£) 

?2 = £ £ RlVl(0®RlX2(^), 
t = l - L 

Y'2 - -^IjVflWrCP+i-l)) 

T s = £ £ Rix2(i)®Rivi(0, 
i=\-L 

"^3 = ^IjVflWT(P+Z,-l), 

*- 4 — ^ *-NRNTLi 

* 5 = £ £ RlVl( i )®RlX3( i ) . 
i=l-p 

T"5 = ^ E R I X I W ® R I V 2 W , 
i = l 

^ 6 = ^ E R I V 2 W ® R I X I W , 

1 = 1 

^ 6 = ^ £ RiX3( i )®(»)Riv i ( i ) , 

i=\-P 
Y 7 = ^ E R I V 2 W ® R I X 3 W , 

i=\ 

Y 7 = ^ E R I X 3 W ® R I V 2 ( 0 , 
j = l 

L-2 
Y 8 = £ £R*V2(i )®R.IX4(t ) , 

1 = 1 

^ = £ £ RlX3(i)®RlV3(i) , 
t = l - L 
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L - l 

Y9 = £ ER-iv2(i)®Rix2(i), 
t = i 

n = #Rix3(o)®i^„, 

TlO = £ERlX2«<8>RlV2W, 
i = l 

T'10 = §IjvR®R I X 3(0) , 

with 

RiX2 (i = ni- n2) = E (xL (m) xf (n2)), 

RiX3 (i = ni - n2) = E (xP+L_i (m - 1) xf (n2)), 

RiX4 (i = ni - n2) = E (xL (m) x^+L_j (n2 - 1)), 

RiV2 {i = ni- n2) = E (vP (m - 1) v^ (n2)), 

Riva (i = nx - n2) = E (v (m) v£ (n2 - 1)). 
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Appendix C 

Proof of Theorem 5.1 

Letting 

H ^ [ H ( 0 ) , H ( 1 ) , - - - , H ( L - 1 ) ] 

xL (n) = [x r (n) • • • xT (n - L + 1)]T , (n = 0,1, • • •, K - 1) 

where x (n) = x (iC + n) for n < 0, the circular convolution (2.3) in the noise-free 

case can be rewritten in the matrix form as 

y in) = HAxL (n). (C-l) 

Substituting (C-l) into (5.2) yields 

R(l) = KARXiL(l)H« (C-2) 

where 

R X i i (0 = E { x i ( n ) x f ( n - / ) } . (C-3) 

When / = 0, one can easily verify that 

RX,L (0) = INTL. (C-4) 
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Using (C-4) into (C-2) gives 

L-l 

R(0) = Y/H(i)HH{i). 
i = 0 

When 1 = 1, (C-3) reduces to 

Rx,L (1) = 
0 NTx(L-l)NT 0 'NTxNT 

I(Z,-l)JVTx(L-l)ArT 0(L-l)NTxNT 

leading to 
L - l 

R(l) = £ H ( i ) H " ( i - l ) . 
i = l 

In a similar manner, one can derive 

L - l 

R{1) = ^2H(i)HH (i - I), ii I = 2r • • ,L - 1. 

(C-5) 

(C-6) 

(C-7) 

(C-8) 

Obviously, when I > L — 1, one gets R ( 0 = 0 due to the fact that RXJL (/) = 0. 

Thus, (5.30) is obtained. 
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Appendix D 

Proof of Theorem 6.1 

Here, we simplify the calculation of HAXV = E {vec (AR^,) vecH (AR^,)} by-

using the statistical property of the signal as well as the noise. Using (6.4), one can 

get 

1 N 

vec (AR£) = - J2 i(x* (») ® W vec (v («)]} - P"1) 

which leads to 

n = l 

AT JV 

E {vec (AR*) vec" (AR») } = ±E ] T £ [x* (m) ® 1^] 
l . n i = l n2= l 

E [v (m) v* (n2)] [xT (n2) ® IJVJ } . (D-2) 

Noting that E [v (m) v H (n2)] = 5(rai - n2)<^I and E [x(n)xH (n)] = ^ 1 , we can 

obtain 

E{vec(AR£)vec*(AR£)} = | | E ±fy(n)xr(n) 
n = l 

W f l 

JJSX5VINRNT- (D-3) 
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Appendix E 

Proof of Theorem 6.2 

Since Z is a full rank square matrix, we have azi > aZ2 > • • • > aZM > 0. By 

letting * ! = AUf U z and * 2 = Vf AV^, ft can be rewritten as 

ft = * j + * 2 . (E-l) 

In what follows, we compute the elements of ft, i.e., those of * i and ty2- Let us 

consider the non-diagonal elements first. Noting that Uf \Jz ~ Uf \Jz + ^ f + * i 

and UfUz = Uf Uz = I, one can get 

*! + * f = 0, (E-2) 

implying that &i is a skew-Hermitian matrix. Using (6.78) and neglecting the second-

order error terms, one can prove that 

Uf (ZZ" - ZZ") U z » * f S | + S | * i + 2 £ Z A £ Z . (E-3) 

Using the SVD of Z and that of Z = Z + AZ into (E-3) gives 

ttf £ | + E | * ! « (Uf AZVZ - A £ z ) E z + S z (Uf AZVZ - A S Z ) H . (E-4) 
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By pre- and post-multiplying both sides of (E-4) by E z
x , one can get 

E ^ f E z + E ^ E ^ E ^ A + A ^ 1 (E-5) 

where 

A = Uf AZVZ - AEZ . (E-6) 

Using (E-2) as well as (E-5), one can obtain 

&X Zj ^J Z-i 

We now consider the non-diagonal elements of \J>2- Utilizing V|fVz « V|f Vz + 

* ^ -I- *2 and noting that Vf V^ = VfV^ = I, one can show that \1>2 is also skew-

Hermitian. In order to determine the non-diagonal elements of SÊ , we compute from 

(6.78) 

Vf ( z H Z - Z " z ) Vz » * 2 E | + E | * f + 2EZAEZ . (E-8) 

In a manner similar to the derivation of (E-5), one can obtain 

E i 1 * 2 E ^ + E z * f E i 1 = AE^1 + E ^ A H , (E-9) 

which leads the non-diagonal elements of \&2 to 

* 2 (i,j) = Z3 _x ^ — T M l i , (i ? j). (E-10) 

Using (E-7) and (E-10) into (E-l), one can eventually obtain the non-diagonal ele

ments of ft as 

0* + crZj 

We now determine the diagonal elements of CI. From (6.78), one can have 

AZ - U z A E z V f « U z E z A V f + A U z E z V f . (E-12) 
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Premultiplying Uf and postmultiplying Vz on both sides of (E-12) give 

Uf AZV^ - A £ z = S z A V f Vz + Uf AU Z E Z . (E-13) 

Using (E-6) and (E-13) and noting that * x = AUf Uz and * 2 = Vf AVZ, one can 

verify 

* 2 S Z + Hz^x = A " (E-14) 

Recall that £ z is a real diagonal matrix and both * i and *2 are skew-Hermitian 

which implies that their diagonal elements are imaginary. That is to say the diagonal 

elements of ^^^z + E z ^ i are imaginary. As a result, we have 

( ^ ) 
diag ( * 2 S Z + E z * i) = diag . (E-15) 

Using (E-l) and (E-15), the diagonal elements of fi are readily given by 

n(i,o = A ' ( M l " A ( M ) . (E-16) 

From (E-6), (E-ll) and (E-16), the theorem is proved. 
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Appendix F 

Proof of Theorem 6.3 

Letting 

T - E { [vec (TQ) vec" (TQ)] o [vec (n*) vec" (nH)] } , (F-l) 

G\ given by (6.91) can be rewritten as 

Gx = TVace {[Y*s ® (U5SS)] T [V*s ® (UsVs)]H } • (F-2) 

In order to determine G\, we first compute E [vec ( n " ) vec" ( n " ) ] . From (6.85), 

one can get 

n " = V f ARX„USSS + S s U f ARf„ ]PVs - S s U f AR£V S - Vf ARx„,pUsEs. 

(F-3) 

Obviously, the computation of E [vec ( n " ) vec" (11^)] involves a total of 16 terms. 

It can be shown that computing these terms requires the auto-correlation as well as the 

cross-correlation matrices of vec (AROT), vec (AR^,), vec (ARCT]p) and vec (AR^, P ) . 

Following a manner similar to Appendix D, one can derive 

E {vec (ARXI)) vec" (ARxt))} = E {vec (AR£) vec" (AR£) } = ^INRNT, (F-4) 
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E {vec (AROTiP) vec" (ARX„,P)} = E {vec (ABgiP) vec" (AR^p) } = ^INRNT, 

(F-5) 

E {vec (ARX„) vec" (ARW,P)} = E {vec (AR£) vec" (AR£,P)} = | W T , 

(F-6) 

E {vec (ARX„,P) vec" ( A R ^ P ) } = E {vec (ARX„) vec" (AR£)} = 0, (F-7) 

E {vec (ARX„,P) vec" (AR£)} = E {vec (ARX„) vec" ( A R ^ P ) } = 0. (F-8) 

Then, the first term in the computation of E [vec ( n " ) vec" ( n " ) ] can be calculated 

using (F-4) as 

E [vec (Vf ARX„USES) vec" (Vf ARX ,USS5)] 

= | [ (E 5U|) ® Vf ] [(U5£5) ® VS] = | ( S | ® 1^) . (F-9) 

In a similar manner, all the other terms can be computed using (F-4) to (F-8). By 

adding all the 16 terms together, we obtain 

E [vec ( n " ) vec" (il")] = {N ~ * } ^ ( £ s ® I„T + I*T ® E | ) . (F-10) 

Utilizing (6.83) and (F-10), one can easily verify that T is a diagonal matrix with 

diagonal elements being given by 

p(l = i + NT(j-l))={N~*)6\2 * ,(i,j = l,2,-,Jyr). (F-ll) 

is. iv a , + a% 

Letting u^ and v#. be the z-th and j-tYi column vectors of Us and V5, respectively, 

one can find the l-th. column vector of V*s <g) (Us 52$) as crSiv*s. <g>Usr Therefore, (F-2) 

can be expressed as 
G ' = l J 1 ^ N U T , j : ^ T ^ ' a ^ ( v J ^ u s , ) ( v J j 8 u S i ) . (F-12) 
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Since Trace vs, ® uS i (v£. ®u S i ) (vj . ®u S i ) 

of Gi can be found to be 

(N-K)S^^ oj _N*{N-K)5l 

= 1, from (F-12), the value 

Gi 
KN EE 2KN 

(F-13) 

Now we determine the value of G2. The first two terms of the RHS of (6.92) can 

be rewritten as 

E {vec (AR£) [vec ( r 0 ) o vec {UH)f} 

= \l • vec (TQ)H] o E {vec (AR£) vec" (UH)} . (F-14) 

Using (F-3), (F-7) and (F-8), we have 

E {vec (AR£) vec" ( n " ) } = E [vec (AR£) vec" ( A R ^ P ) ] [Vj ® ( S s U f ) ] " 

- E [vec (AR*) vec" (AR*)] [v£ ® ( S s U f ) ] " . (F-15) 

Using (F-4) and (F-6) into (F-15) gives 

E {vec (AR*) vec" ( n " ) } = | [V£ ® ( S s U f ) - V£ ® (E 5 Uf ) ] " = 0. (F-16) 

Therefore, from (6.92), (F-14) and (F-16), we have G2 = 0. 
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Appendix G 

Frequency-Domain Estimation of Correlation 

Matrix Rx (I) 

From (7.6) and x (n) = [x\ (n), • • •, x^T (n)]T, we have 

R*(0 

4, i (I) 4,2 (0 

4,i (0 4,2(0 

Rl,NT (0 

R2,NT (I) 

RNT,I (0 RNT,2 (0 • • • RNT,NT (0 

where 
K-\ 

4T1,iT2 (0 = ^ 5 ^ a:<Tl (U) X?T2 (« ~ 0 • 
n=0 

(G-l) 

(G-2) 

Note that xiT2 (n) for n < I can be obtained using XiT2 (n — I) = xiT2 (K + n — l) due 

to the circular convolution. Utilizing 

K-\ 

"»T1 

fc=o 

. K - I 

x. 

(G-3) 

(G-4) 
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3-j2vk(n-l)/K 

RiT1,iT2 as defined in (G-2) can be written as 

i K~I r 1 K~x 

= jr E [7P E *<™ W ^ H K, (*) e^(H/J0 

fc=0 [v-fi n = 0 J 

= ^ E ^ i (*) XL (k) *"' {k) • (G-5) 

Substituting (G-5) into (G-l) yields 

1 K~1 

fc=0 

tf-1 

Xi (fc) X* (k) Xx (fc) X* (fc) 

X2 (fc) X* (fc) X2 (k) X2* (fc) *2 (fc) X^ T (fc) 

I w r W ^ W XJVT (fc) X2* (k) ••• XNT(k)X*NT(k) 

rl(k), 

= ^Ex( f c)x H( f c)^'w- (G-6) 
fc=0 
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Appendix H 

Estimation of Rotation Matrix Q( 

Assuming orthogonal training pilots, namely, Xp (k) Xp (k) = gk^NTi from (7.44), 

one can obtain 

YP(k)X»(k) = gknF(kM). (H-l) 

Using (7.45) in (H-l) and then substituting (H-l) into (7.47), we have 

YQ (k) = <fcW?PgF (k) Pfi,p (k) H (0). (H-2) 

Using (7.40) into (H-2) gives 

YQ (k) = gk [PR,F (k) WQf [PR,F (k) W0] Q*. (H-3) 

Define 

YQ = f> Q ( fc ) . (H-4) 
fc=i 

Substituting (H-3) into (H-4) yields 

YQ = 0 Q ^ (H-5) 

where 
KT 

@ = J2{gk [PRJT (k) W0f [PR,F (k) W0]} . (H-6) fc=i 
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Clearly, © is an NT x NT Hermitian matrix, whose SVD can be written as 

0 = U©£0Ug. (H-7) 

Utilizing (H-5) and (H-7) and noting that Qo is an unitary matrix, the SVD of YQ 

can be written as 

YQ = U Q £ 0 V g = [UeO] S e [QoUefi]" (H-8) 

where S7 is a diagonal unitary matrix used to represent a general form of the SVD of 

Y Q , since, given a matrix, its SVD is not unique. Consequently, from (H-8), we have 

VQUg = QoU©ft [U e f t f = Qo- (H-9) 
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