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ABSTRACT 
Experimental Investigation of the Thermofluid Behaviour 

Within a Flat-Plate Solar Collector 

Steven Sookdeo 

Flat-plate solar collectors are used in solar water heating systems to transfer 

solar energy to water in the form of heat. The research on solar water heating 

systems is mainly focused on the design and optimization of the overall system 

with little attention given to study the thermofluid behaviour inside the collector. 

The collector is a very crucial part of the system as it is where the actual energy 

conversion talks place. In the present research, the thermofluid behaviour within 

the tube of a flat-plate solar collector for a forced circulation solar water heating 

system is experimentally investigated. Particle Image Velocimetry (PIV) was used 

to measure the velocity field within the collector tube, while thermocouples were 

used for temperature measurements. The experiments were performed for six 

flow rates under one unheated and two heated conditions. 

The mean velocity profiles for heated and unheated conditions show that the flow 

behaviour within the collector tube is significantly modified by the heating. With 

the heat addition, the location of the maximum velocity is in the lower half of the 

tube, and the magnitudes of mean and turbulent velocities increased with the 

heat flux. The temperature data indicated the formation of stably stratified layer of 

water in the upper region of the tube, which reduces the heat transfer rate. The 

heat transfer analysis showed that free convection is the dominant mode of heat 

transfer within the flat-plate solar collector. 
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Chapter 1 - Introduction 

Energy usage is under increased scrutiny because of its rising cost, depletion of 

conventional energy sources and damaging environmental effects. One solution 

to this issue is to use alternative energy sources which are advantageous 

because they have a lower impact on the environment, reduced operating costs 

and are sustainable. 

The International Energy Agency, in their World Energy Outlook 2006, analyzed 

and projected world energy resources and needs for the period of 2004 to 2030 

(International Energy Agency, 2006). In their models, they considered 

government policies that were in place in 2006; assumed that the population will 

increase by 1% per year; and that world GPD will grow by 3.4% per year. Their 

analysis shows that the global primary energy demand will increase by an 

average of 1.6% per year - a 53% increase between 2004 and 2030. They also 

presented global supply. At current consumption rates, the proven reserves of 

conventional energy resources are presented in Table 1.1. 

Table 1.1: Proven Reserves of Conventional Energy Resources (International 

Resource 

Coal 
Oil 

Natural Gas 

Energy Agency, 20C 

World's Proven Reserves 

909 Billion Tonnes 
1293 Billion Barrels 

180 Trillion Cubic Metres 

6) 
Projected Demand 

Increase 
[per cent per year] 

1.8 
1.3 
2 

Years 

164 
42 
64 
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Electricity demand is projected to grow by 2.6% per year, with the residential 

sector having the most rapid growth (International Energy Agency, 2006) due to 

population growth and economic development around the world. With limited 

supply, the cost of conventional energy will only increase. 

The environmental impact of using fossil fuels for energy is well documented. 

Their combustion produces many air pollutants: nitrogen oxides, nitrous oxide, 

sulphur oxides, carbon monoxide, carbon dioxide, volatile organic compounds 

(VOCs) and suspended particulates (Health Canada, 2004). The presence of 

these products in the air is damaging to the respiratory system. Some of them 

are key contributors to smog (nitrogen oxides, nitrous oxide, sulphur oxides, 

VOCs and particulate matter) and acid rain (sulphur oxides and nitrogen oxides). 

Carbon dioxide and nitrous oxides are two greenhouse gases. These gases 

absorb sun's energy and prevent heat from leaving the Earth. They contribute to 

global climate change. 

The entire cycle of extracting these resources from the Earth through to the 

delivery of energy to the end user significantly damages local ecosystems. 

Natural habitats disturbed by coal mining or tar sands operations could not revive 

for decades which impacts the local inhabitants and vegetation considerably. In 

addition, the water in local lakes and streams becomes contaminated with 

pollutants endangering the aquatic life. 
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In order to develop sustainability, the use of fossil fuels has to be more 

discriminate. Reducing consumption and redesigning infrastructure and buildings 

can go a long way in mitigating the adverse environmental effects and relaxing 

the strains on the supply of conventional energy sources. Using other energy 

technologies is also an important solution. There are alternative energy sources 

that are being developed and implemented. These sources are renewable: they 

convert natural occurrences to useful energy in the form of electricity or heat. 

They include wind energy, tidal power, geothermal energy and solar energy. 

Wind energy can be converted into electricity using wind turbines. Installed in 

areas of high wind energy, the turbine rotates and turns a generator to produce 

electricity. Individual homeowners can own small turbines to meet their electricity 

needs. Communities may use large wind farms, which are a collection of wind 

turbines concentrated in one area. They are located in open, rural areas or 

offshore. Offshore wind farms are well placed because of consistently high winds 

and their remoteness from population centres. There are a few issues that must 

be considered when introducing a wind turbine to the local ecosystem. They 

cannot be placed near any migratory patterns because birds and bats have been 

killed by flying into the turbine. Another consideration is the noise produced by 

the wind turbine which could affect the nearby community. 

Water, similarly, is used to turn turbines to generate electricity. The most 

common application is the hydroelectric dam where river water is directed to spin 
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turbines located in the dam. There are also tidal and damless stations that 

generate electricity by capturing the energy of the underwater currents. Again, 

the remoteness of these stations is appreciated by the public. However, they are 

intrusive to the environment and affect aquatic life. 

Geothermal energy uses heat that is stored in the Earth to generate electricity or 

for heating. At depths underground, there are regions with hot dry rock. By 

pumping water into these wells to be heated, geothermal power plants use the 

resulting steam to drive turbines just like conventional power plants. For heating, 

a working fluid is circulated through a system of pipes buried underground and a 

heat exchanger is used to capture energy from the warmer ground to dry crops, 

heat buildings or heat water. 

Solar energy uses the sun's radiation for power generation or heating. It is 

estimated that the solar radiation that hits the Earth in 30 minutes is equal to the 

world's annual energy demand (Kalogirou, 2004). Another study indicated that 

the amount of solar energy incident on the Earth is about 15,000 times the 

energy utilized worldwide (Berman, 2006). This indicates that solar energy can 

potentially fulfill global energy demand. Solar energy can be used to generate 

electricity in two ways. First, the sunlight can be used to heat water. At these 

stations, the sun's radiation is concentrated through the use of mirrors, also 

called parabolic reflective troughs, which direct the energy to a water-filled pipe 

located along the focal line of the mirror. The water is continuously heated as it 
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moves downstream becoming steam which then turns turbines. The second way 

is by using photovoltaic solar panels. As sunlight hits the solar panel, which is 

made of a semiconducting material, electrons are freed from their atoms and flow 

as electric current. Like geothermal energy, solar energy has other uses. It is 

used to heat air for space heating or crop drying. It can also heat water that is 

used for domestic consumption such as cooking, bathing, and cleaning. 

In 2004, 347.7 PJ of energy was used for residential water heating in Canada 

(Natural Resources Canada, 2006). It could cost $180 to $480 per year per 

household (Boone, n.d.). Water heating, which utilizes almost one-quarter of the 

total energy (Aguilar et al., 2005), is the second largest residential energy 

consumer. Figure 1.1 shows a breakdown of the residential energy consumption 

in Canada. Due to the significant energy consumption by water heating, it is one 

of the areas where there is a tremendous potential for widespread use of 

alternative energy, specifically the solar energy. 

Figure 1.1: Residential energy end use in Canada in 2002 (Aguilar et al., 2005). 



Systems that use solar energy for water heating are known as Solar Domestic 

Hot Water (SDHW) systems. Solar water heating systems are widely used in 

regions close to the equator. However, in regions closer to the poles like Canada, 

this technology is limited. The amount of solar energy available may not be 

enough to meet the water heating needs of the consumers, especially in the 

winter months. This does not eliminate solar technology as a solution in these 

areas. Rather, they are used seasonally or in tandem with auxiliary water 

heaters. In the latter case, the water is pre-heated to an intermediate 

temperature with solar energy; then, energy from a conventional source, like gas 

or electricity, heats the water to the desired temperature (typically 60°C). 

Consequently, there is reduced energy consumption from conventional sources 

which will reduce the overall energy cost and environmental impact. 

Depending on the location and hot water usage, these systems may provide 

between 1500 and 3000 kWh per year (Natural Resources Canada, 2003). 

Simulations published by Natural Resources Canada (Figure 1.2) have shown 

that potential energy savings can be as high as 53% in Medicine Hat, Alberta. 

The potential savings in Montreal is about 44%. 
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Figure 1.2: Potential energy savings due to solar water heating systems (Natural 
Resources Canada, 2003). 

The main drawback of these systems is the initial cost. Compared to 

conventional water heating systems they are more expensive to buy and install, 

but their lower operating costs make them a viable long-term investment (Boone, 

n.d.). The long term savings are even more significant as the cost of energy from 

conventional sources rises. In addition, some governments offer incentives that 

help reduce the start-up costs for consumers. 
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1.1 Solar Water Heaters 

The main components of solar water heating systems are the solar collector and 

the storage tank. The solar collector is used to capture the sun's energy that 

heats the water. It is the part of the system where the actual energy conversion 

takes place. An insulated tank is used for water storage. Solar domestic water 

heaters can be described by the way the fluid flows through the collector. In 

thermosyphonic systems, water moves by natural convection. That is, as the 

water is heated in the collector, its density decreases causing it to rise and move 

to the tank that is located above the collector. Cooler, denser water from the 

bottom of the tank enters the collector to be heated, as shown in Figure 1.3. 

Water is drawn from the upper portion of the tank which is sent directly to the 

load or to an auxiliary heater. It is replaced by the incoming cold water which 

enters the tank near the bottom. The advantage of thermosyphonic systems is 

that a pump is not required to circulate water through the collector-tank system. 

Solar 

Collector 

To Load or 

Auxiliary 

Cold Supply Water 

Figure 1.3: Schematic of a thermosyphonic system. 
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If the water is pumped through the collector, it is called a forced system. A 

forced system can be further categorized as either direct heating or indirect 

heating. Direct heating systems have the potable water pumped through the 

collector. Water is pumped from the bottom of the tank and returns to the tank 

near the top (see Figure 1.4). This configuration ensures that the cooler water is 

heated. Heated water is drawn from the top of the tank, while incoming cold 

water from the mains enters at the bottom. These systems are good where the 

outdoor temperature remains above freezing. 

Cold Supply Water 

Figure 1.4: Schematic of a direct heating forced system. 

Indirect systems pump a working fluid, such as an ethylene-glycol water solution, 

through the collector. The solar energy heats this secondary fluid which then 

transfers heat to the potable water through a heat exchanger (see Figure 1.5). 

The potable water is pumped from the bottom of the storage tank and returns 
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near the top. These systems are useful when the outdoor temperature drops 

below freezing and water cannot be directly heated by the solar collector. 

Heat 

Exchanger 

^ > X> 

To Load 

Auxiliary 

Heater 

Cold Water Supply 

Figure 1.5: Schematic of an indirect heating forced system. 

Figures 1.4 and 1.5 also show two ways of auxiliary heating. That is, the water 

can be passed to a second storage tank that will heat it to the desired 

temperature. Or, an auxiliary heater can be added to the storage tank. 

The solar collector for these systems is the flat-plate type. These collectors, 

shown in Figures 1.6 and 1.7, are made of an absorber plate, tubes/risers, and a 

glazing inside an insulated box. The absorber plate and tubes are made of a 

material with high thermal conductivity, like copper or aluminium. They have a 

black, highly absorptive coating to maximize the amount of solar radiation 

absorbed by the surface. The glazing is the cover; it is made of transparent glass 

or plastic. Its role is to allow short wavelength incident solar radiation through; 
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block long wavelength radiation emitted by the absorber plate; and minimise 

convection losses from the air trapped inside of the collector. The other sides of 

the box are insulated to reduce heat losses to the surroundings. 

Glazing 

Insulation 

Figure 1.6: Flat plate collector. 

The incident solar radiation heats the surface of the absorber plate and tubes. 

The fluid passing through the riser tubes is at a lower temperature than the 

surfaces. By conduction and convection, heat is transferred through the absorber 

plate and tubes to the fluid inside. 

Headers 

Collector Fluid 
Inlet — 

/ 

Collector Fluid 
Outlet 

Capper _ 
RBers 

Figure 1.7: Solar collector panel. 
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Some thermosyphonic systems use evacuated tube collectors instead of the flat-

plate type. These are made of two concentric glass tubes in which the space 

between them is a vacuum. The inner tube is coated with a highly 

absorptive/minimally reflective coating like the absorber plate of the flat-plate 

collector. The bottom of the tube is closed, while the top is open to the storage 

tank. Usually, there are many tubes per tank. When there is solar radiation 

incident on the absorber surface, the water, located inside of the inner tube, is 

heated and circulates due to natural convection. The warmer water rises along 

the upper part of the tube and moves towards the tank. Cooler water from the 

tank, with higher density, enters the tube to be heated. This process is shown 

schematically in Figure 1.8. 

Figure 1.8: Schematic of an evacuated tube collector (Morrison et al., 2005). 
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Depending on the conditions, evacuated tube collectors may be more efficient 

than the flat-plate type. Since there is vacuum space between the absorber and 

the environment, heat is not lost through conduction or convection from the 

evacuated tube. This is especially advantageous in winter conditions. However, 

when the difference between temperature of the ambient air and the water at the 

collector inlet is reduced, flat-plate collectors may perform better. Furthermore, 

the evacuated tubes are more susceptible for damage and their performance 

drops significantly if the vacuum is lost. Flat-plate collectors may have two other 

advantages over evacuated tube types: aesthetics and cost. The first is matter of 

personal taste, while the latter, described in terms of energy per dollar spent, can 

greatly influence which type of system is used. 

1.2 Literature Review 

1.2.1 Collector Flow Rate 

The flow rate through the collector influences the collector efficiency and the 

overall system performance. The efficiency of the collector is given by the 

following equation (Duffie and Beckman, 2006): 

where r\ is the collector efficiency, Qu is the useful heat gain, Ac is the collector 

surface area, Gr is the incident solar radiation, m is the mass flow rate of the 
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collector fluid, Cp is the specific heat capacity at constant pressure of the 

collector fluid, T0 is the fluid outlet temperature and 7} is the fluid inlet 

temperature. As Equation (1.1) shows, the collector efficiency can be improved 

by increasing the mass flow rate or the fluid temperature difference. For cases 

where the outlet temperature is specified, the fluid inlet temperature has to be 

reduced. For a while, high collector flow rates were used because the effect of 

the flow rate on the system's behaviour was overlooked. However, when 

considering the overall performance of the system, lower flow rates are 

advantageous because it permits the water in the storage tank to become 

stratified. That is, there is little, if any, mixing in the tank; water settles into layers 

by their density with the lighter, warm fluid at the top and heavy cool fluid at the 

bottom. The cold water from the mains enters the tank near the bottom. In direct 

heating systems, the water in the collector loop is withdrawn from the bottom and 

returns near the top. As a result, the fluid entering the collector is at a low 

temperature which improves the efficiency. Another benefit is that less energy is 

"lost" in the mixing of water when the tank is stratified. As well, system costs 

may decrease because using a lower flow rate would require a less powerful 

pump and smaller diameter pipes/fittings. In the studies that follow, the optimum 

performance was found to occur when the flow rate through the collector is 

equivalent to one storage tank volume per day. 

Van Koppen et al. (1979) performed simulations of a pumped direct heating 

system. They noticed that the energy gain by the system was optimum at a low 
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flow rate. At higher flow rates, the heat gained was lower. They showed that the 

difference in heat gained by a system with a tank that is stratified compared to 

one where the water is mixed is greatest at lower flow rates. The difference 

reduces as the flow rate increases because the stratification is suppressed by the 

high fluid turnover. 

Gordon and Zarmi (1981), through analytical investigation, found that when no 

hot water is drawn from the tank, the daily efficiency of thermosyphon systems is 

about the same regardless of the number of passes. A single pass system is 

described as a system where the entire volume of water in the storage tank 

passes through the collector once during the day. These systems have lower 

flow rates compared to multi-pass systems where the water from the tank passes 

through the collector many times per day. Since the flow rates are higher in 

multi-pass systems, the increase in temperature per pass is less than that for the 

single pass system, and hence more passes are required to achieve the same 

overall water temperature increase. The performance of the two systems varies 

when the daytime usage is considered. Multi-pass systems deliver more useful 

energy, but since the water temperature increases incrementally in these 

systems, auxiliary heat may be required to heat water early in the day, whereas 

in single pass systems, there may be no need for the additional heat. The 

suitability of a single pass or multi pass system for a given application depends 

on its specific load condition. 
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Robertson and Patera (1982) conducted theoretical analysis of solar water 

heaters when the output temperature is specified. For fixed inlet temperature, Tj, 

outlet temperature, T0, and irradiance, they argued that there is no advantage of 

using multi-pass systems because the time required to heat the fluid to the outlet 

temperature is independent of the number of passes. Rather, the increased 

pump work required makes the overall multi-pass system less efficient. 

Phillips and Dave (1982) presented a theoretical model for forced, indirect 

heating systems. They concluded that the maximum system performance may 

be achieved with lower collector flow rates. In their analysis, they define the 

system heat removal factor (F/) as the product of the collector heat removal 

factor (Fr: the ratio between the actual rate of heat transfer to the working fluid 

and the rate of heat transfer at the minimum temperature difference between the 

absorber and the environment), heat exchanger penalty factor (F^: the decrease 

in the collector performance due to the presence of a heat exchanger) and 

stratification coefficient (Ks: the ratio of actual useful energy gain to the energy 

gain if there were no thermal stratification in the tank (Phillips, 1981)). 

F; =FrFhKs (1.2) 

At high flow rates, Fr increases and Ks decreases. The effect of the stratification 

coefficient offsets the benefit of Fr. They suggested that high collector flow rates 

may not be needed because F/, which should be maximized, is not as sensitive 

to collector flow rate as Fr. 
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Jesch and Braun (1984) numerically examined solar water heaters that have 

variable storage volumes. A variable volume system is one that does not 

recirculate the water through the collector. This ensures that the collector inlet 

temperature is always the lowest (the mains temperature) and allows the volume 

in the storage tank to vary depending on the load. Their results showed that a 

fixed volume stratified tank, operating at low flow rates, performed the best. 

Systems that had variable tank volume and variable flow rates were considered a 

significant improvement over high flow rate systems with no tank stratification but 

did not perform as well as fixed volume tank systems. They suggested that more 

work in the design and control of these systems may improve variable volume -

variable flow systems. 

Joudi and Abd - Alzahra (1984) experimentally investigated a forced system 

operating at two flow rates and under different load conditions. They found that 

the system is more efficient when there is a load (water withdrawal) because it 

results in a lower inlet water temperature to the collector compared to the no load 

case. An added benefit is that there is less heat loss and subsequently more 

useful energy transferred to the fluid. They also found that at the higher flow 

rate, an intermittent load (large volume drawn in a relatively short period of time) 

had an overall efficiency of 49.5% which is higher than the no load condition 

(44.1%). For the continuous loading condition, the system was analysed at two 

different flow rates. They observed an improvement in efficiency of 51.6% and 

49.6% for the higher and lower draw off rates, respectively. Additionally, they 
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observed heat reversal which means that heat was leaving the tank and going to 

the collector. To manage this, they used a thermostat that was dependent on the 

temperature difference between the collector and the tank to control the pump. 

They found that the water in the tank reaches a higher temperature without the 

thermostat in operation. 

Morrison and Braun (1985) simulated a thermosyphon system. They found that 

the optimum system performance is achieved when the ratio of the daily volume 

that flows through the collector to the daily load volume is approximately one. 

They noted that forced circulation systems perform similar to the thermosyphon 

systems under these conditions. 

Wuestling et al. (1985) showed that the annual system performance improves 

from 11.5% to 14.7% when they are operated at low flow rates and have 

stratified tanks. Similar to Jesch and Braun (1984) when variable flow strategies 

are employed, there is an improvement of 9.5% over the conventional systems, 

but not as much as low flow systems with tank stratification. They found that the 

optimum system performance is achieved when the monthly-averaged daily total 

collector flow rate was equal to the daily total load. 

Furbo and Mikkelson (1987) compared the performance of three systems under 

the same conditions (irradiance and consumption of hot water). The three 

systems included a reference system that was a pumped, indirect system with 
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the heat exchanger in the bottom of the storage tank; a thermosyphonic system; 

and a direct heating system with a low flow rate. Their results showed that the 

pumped low flow system performed 20% better compared to the reference 

system and 10% better than the thermosyphonic system when the fluid enters 

the storage tank from the top. They attributed the benefits to stratification in the 

storage tank. 

Lawaetz and Nielsen (1987) simulated two solar water heating systems. The first 

(conventional) was an indirect heating type with the heat exchanger in the bottom 

1/5 of the storage tank and a heater in the top 1/5. The second system, which 

had a low flow rate, was also an indirect system, but had the heat exchanger in 

the bottom 4/5 of the tank (the water flowed from the bottom to the top) and a 

heater in the top 1/5. The conventional system showed performance that is 

independent of flow rate at high flow rates, while an optimum performance was 

found for the second system. Comparing the two configurations, the conventional 

system at a flow rate of 1.0 l/min per m2of collector area performed similar to the 

second system with a flow rate of 0.15 l/min per m2 of collector area. 

Fanney and Klein (1988) compared the effect of flow rate on direct and indirect 

systems through experimental investigations. They used identical solar water 

heating systems and showed that the reduction of collector flow rates improve 

system performance significantly. They also examined the use of tank 

stratification enhancing return tubes (the tubes that the flow from the collector 
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enters the storage tank through). Standard return tubes ensure that the flow 

enters at a specified depth in a single axial flow stream. The stratification 

enhancing return tubes have regularly spaced holes that redirect the downward 

flow into numerous radial streams. In their long term test of direct systems, they 

observed 17% increase in solar energy delivered to the tank, 37% decrease in 

auxiliary energy consumption, and a reduction of parasitic energy by 17% when 

the lower flow rate (for tank stratification) was used. The collector flow to load 

flow ratio was 1.3. They observed that a low flow-rate system with a standard 

return tube performs slightly better than system with the stratification enhancing 

tube at standard flow rate. In systems with stratification enhancing return tubes, a 

reduced flow rate performs better. They measured a 6% increase in the collected 

solar energy. The also measured the effect of the heat exchanger flow rate used 

in indirect systems and showed that lowering it did not improve the system 

performance. 

Carvlho et al. (1988) experimentally compared three identical systems under 

different operating strategies. They examined single-pass, multi-pass and 

thermosyphonic systems. It is important to note that they had modified the single-

pass system to ensure that there was no storage tank mixing. For this system, 

an equivalent amount of water per day was drawn from an additional tank and 

passed through the collector. They found that the single-pass system delivered 

more energy than the multi-pass system. As the available radiation decreased, 

they found that the difference in thermal performance between these two 
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increased. They also found that the thermosyphonic system performed slightly 

better than the multi-pass system but not as good as the single-pass system. 

They suggest that the modification that they made for the single-pass system 

would be a good strategy for large systems, but thermosyphonic systems, upon 

considering the economics and energy usage, are adequate for smaller domestic 

systems. 

Fahmy and Abd - El Sadek (1990) developed a model of a pumped solar water 

heating system that considers heat loss through the storage tank, as well as the 

variation in solar radiation, ambient air temperature and cold water temperature. 

They specifically examined three cases: no heat exchangers (Case 1); heat 

exchanger in the withdrawal loop and placed inside of the tank (Case 2); heat 

exchanger in the collector loop and placed inside of the tank (Case 3). For the 

first and second cases, they found that increases in the withdrawal flow rate 

increased the efficiency but lowered the outlet water temperature when the 

collector flow rate is held constant. When the withdrawal flow rate is held 

constant, increases in the collector flow rate resulted in higher outlet water 

temperature and higher efficiency. For Case 3, they observed that the increase 

in the collector flow rate increased the outlet water temperature and efficiency, 

whereas the increase in the withdrawal rate resulted in lower outlet water 

temperature but higher efficiency. 
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Antonopolous and Rogdakis (1991) used the finite difference method to estimate 

the optimum collector flow rate for one tank forced systems. They simulated the 

system and predicted the performance over a range of values for a number of 

parameters (collector characteristics and area; load profile; collector and load 

mass flow rates; volume of storage tank per unit collector area; thermal loss 

coefficient of the storage tank; temperature of mains cold water; and weather 

conditions). They observed that the optimum ratio of collector to mean load 

mass flow rate ranged between 0.4 and 1.4. They showed that this correlation 

can be expressed in terms of the ratio of mean load mass flow rate to collector 

area providing a simple and quick method to determine the optimum collector 

flow rate. 

Hollands and Brunger (1992) studied systems with counterflow exchangers. 

Unlike the system used by Fanney and Klein (1988) where the overall heat 

exchanger conductance, (UA)X, was increasing with flow rate, they analysed a 

system where (UA)X was constant. Using this premise, they provided a design 

strategy that can be used to find the optimum collector and exchanger flow rates. 

Furbo et al. (2005) measured the thermal performance of a solar water heating 

system over two years. The system had a total collector area of 336 m2 and a 

10000 L storage tank. It was an indirect heating system with an antifreeze 

solution passing through the collector that was installed to supply hot water to 

425 apartments and a laundry in Sundparken, Elsinore, Denmark. In the two 
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year period, the average daily consumption was 98 L and 94 L which correspond 

to 4.9 kWh and 4.7 kWh per apartment per day, respectively. As expected, 

consumption varied according to the seasons. The yearly net utilized solar 

energy was 366 and 455 kWh per m2 of solar collector area for the first and 

second years, respectively; the yearly solar fraction was 8% and 10%, 

respectively. Their system compared favourably to other large systems in 

Denmark. They attributed the good system performance and solar radiation 

utilization to the high hot water consumption and good system design. They 

recommended that future large solar heating systems are designed as low-flow 

with the external exchangers and stratification enhancing inlet pipes. 

1.2.2 Forced Systems 

Sodha et al. (1982a) examined a forced circulation heating system under two 

withdrawal cases: constant flow rate and constant hot water temperature. They 

used a system with and without a heat exchanger placed in the outlet water loop. 

They showed that the efficiency increases with the outlet water flow rate, but the 

mean tank water temperature decreases. Furthermore, there were no gains in 

the outlet water temperature whether or not the heat exchanger was used. They 

suggested that the heat exchanger should not be used unless its surface area is 

very long or is necessary because an anti-freeze fluid is used in the collector. 

Their results showed that the outlet flow rate needs to be controlled in order to 

obtain hot water at a constant temperature. 
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Sodha et al. (1982b) analysed a forced system with a heat exchanger in the 

collector loop under two withdrawal cases: constant flow rate and constant hot 

water temperature. They showed that the overall efficiency and tank outlet water 

temperature can be increased, although not substantially, if the collector flow rate 

is increased. The overall efficiency of the system can also be increased by 

increasing the hot water withdrawal rate because that will lower the mean 

storage tank temperature and, subsequently, thermal losses. 

Shukla and Tiwari (1983) performed transient analysis of a forced system with n-

collectors in series. They considered two withdrawal cases: constant flow rate 

and constant hot water temperature. They concluded that more than five 

collectors are not useful for flow rates on the order of 10 kg/hr because of the 

additional heat loss. They also reported that the hourly variation of the outlet 

water temperature is affected by the flow rate and retrieval period. They 

suggested the use of greater number of collectors to meet higher water demands 

at elevated temperatures. However, in both withdrawal cases, the overall 

efficiency of the system decreases with the increase in the number of collectors. 

Sodha et al. (1983) analyzed a water heating system with n identical forced 

circulation systems connected in series for the case when the water was 

withdrawn at a constant flow rate. They concluded that the optimal number of 

systems to get the maximum water temperature is 3 or 4. They showed that 

when the number of connected systems is held constant, an increase in the 
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outlet flow rate causes a gradual decrease in the water temperature. The overall 

system efficiency increased with the number of systems used until n = 3. They 

also found that the amount of heat that the system receives increased with the 

increase in the number of connected systems. 

Yadav and Tiwari (1988) conducted a parametric study of the performance of a 

heat exchanger coupled to a panel of flat plate collectors. They considered a 

double-pipe exchanger where the hot fluid from the collectors flowed in the outer 

pipe and the cold fluid from the supply source flowed in the inner tube. They 

compared the counterflow and parallel flow modes and showed that the 

counterflow performed better. They also showed that increasing in the length of 

the heat exchanger or the tube's inner diameter increases the outlet temperature. 

They also argued that the heat exchanger performance can be improved if the 

fluid with a high thermal conductivity is used in the inner tube. 

Sinha and Tiwari (1992) theoretically examined a commercial system that 

delivers hot water at a constant temperature using an iterative method. They 

concluded that the length of the heat exchanger has a significant influence on the 

mass flow rate. As the length increases, the mass flow rate must increase in 

order to maintain a constant delivery temperature. They also showed that the 

mass flow rate would have to change with the time of day, but the flow rate is not 

very dependent on the number of collectors used in series. According to their 
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results, the system's overall efficiency decreases with the number of collector 

panels but increases with the length of the heat exchanger. 

Bojic et al. (2002) simulated a solar water heating system using a time marching 

model. They considered an indirect heating system with the heat exchanger in 

the collector loop placed inside of the storage tank. Their results showed that the 

size of the storage tank influences the solar fraction, which increases as the 

storage tank size increases until an asymptotic value that depends on the 

required water temperature. They also observed that the solar fraction is slightly 

lower for cases with the variable load profile compared to the constant load 

profile. 

Hobbi (2007) designed and fabricated a flat-plate solar collector that was used to 

investigate the use of heat transfer enhancing devices. Specifically, three types 

of tube inserts were examined: a twisted strip used to induce swirl; a coil-spring 

to induce swirl and turbulence; and conically shaped ridges (diverging nozzles) 

used to generate longitudinal vortices. Under the same heating and flow 

conditions, these devices did not produce significant improvements to the heat 

transfer to the collector fluid, signifying that free convection is the dominant mode 

of heat transfer and that the thermal stratification suppresses the turbulence 

induced by the mean shear. In addition, using the TRNSYS simulation program, 

the applicability of solar domestic water heaters for a single family residential unit 

in Montreal was studied. The results showed that a system could provide 85% to 
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100% of the hot water demand in the summer and 30% to 40% of the demand in 

the winter. 

1.2.3 Evacuated Tube Thermosyphon Systems 

Due to the widespread use of evacuated tube thermosyphonic solar water 

heaters, significant research has been done to study and improve their 

performance. In the following, a summary of research that is relevant to the 

study of the flow characteristics in thermosyphonic systems is presented. 

Morrison and Ranatunga (1980) used Laser Doppler Anemometry (LDA) to 

measure the flow rate in a thermosyphon solar collector. They showed that the 

equations that were accepted at that time to predict the flow rate in 

thermosyphon systems were inadequate because they underestimated 

(Reynolds numbers less than 300) and overestimated (high Reynolds number) 

the flow rate. Specifically, they pointed out that the accuracy of the correlations 

could be improved by considering friction effects in the developing regions of the 

flow. 

Gaa et al. (1996) used LDA to study the velocity behaviour in inclined open 

thermosyphon systems. From the experimentally obtained axial velocity profiles, 

they showed two distinct flow zones - a bifilamental profile. At the bottom of the 

cross-section, the water flows down towards the closed end, and at the top, 
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warmer water flows up towards the open end, and the tank. There is with a 

naturally occurring boundary between the two streams. 

Behnia and Morrison (1996) used rheoscopic tracing particles to study the flow 

pattern and temperature variation in a thermosyphon system. They examined a 

situation when the bottom half of the tube was heated at a higher rate than the 

top, which is similar to what is found in evacuated tube solar water heating 

systems, for three different tube inclinations. To achieve the differential heating, 

the tube was immersed in a water jacket that was partitioned so that the top half 

of the tube was surrounded by water at a lower temperature than the water 

surrounding the bottom half. They defined the heating condition by considering 

the temperature difference between the fluid in the reservoir (storage tank) and 

the fluids in the water jacket. Unlike the uniformly heated condition where there 

was a stagnant region, they observed density induced circulations, which they 

termed a multi-cellular region, located at the closed end of the tube when bottom 

of the tube was heated more than the top. The length of this region increased 

with tube inclination and as the temperature difference between the reservoir and 

the fluid in the lower partition increased (greater heating differential). When the 

top half of the tube was heated higher than the bottom half, they did not observe 

a stagnant or multi-cellular region at the closed end. Rather the water was 

heated throughout the tube length. 
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Morrison et al. (2004) used a numerical model to study axial velocity contours in 

the tube. They describe the flow as bifilamental. That is, there is a cooler layer of 

water in the bottom part of the tubes cross-section that descends to the closed 

end and a warmer layer of water in the upper portion of the cross-section that 

returns the water to the storage tank. When there was uniform heating on the 

tube wall, they observed a stagnant region near the closed end dependent on the 

Rayleigh number and aspect ratio. This region of inactivity was not seen when 

the heat flux on the tube wall was variable. 

Morrison et al. (2005) compared the results of a CFD model with the results from 

Particle Image Velocimetry (PIV) experiments of a water-in-glass evacuated tube 

solar collector. Both results showed that when the top of the tube is heated, the 

flow becomes bifilamental. Fluid in the top section of the tube cross-section is 

warmer and flows back to the tank. The cold fluid from the tank flows in the 

bottom part of the tube. The numerical and experimental results correlated well. 

There was a discrepancy near the bottom of the tube where the numerical results 

predicted a definite peak that was not as pronounced in the experimental results. 

Also, the PIV seeding limited the number of data points along the tube radius so 

that, while the PIV experiments showed a triangular velocity profile in the top part 

of the tube, the CFD showed a parabolic shape. At the opening of the tube, they 

found that the CFD and PIV results agreed well. Using the CFD model, they 

examined the effect of the circumferential heat distribution. The simulations 

showed that as the distribution of heat moved from the bottom of the tube to the 
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top, the flow rate increased. Compared to the extreme top heating, the flow rate 

at the uniform heating condition was reduced slightly. The reduction in flow rate 

when there is extreme bottom heating is more pronounced: it was nearly half. 

When there is extreme top heating, the proportion of the tube cross-section at % 

length occupied by the hot and cold streams were similar. With extreme bottom 

heating, most of the cross-section was taken up by the top, warmer stream. 

1.2.4 Heat Transfer in Tubes with Longitudinal Fins 

The flat-plate collector can be modelled as a tube with two external longitudinal 

fins having solar radiation incident on the upper surface of the tube and fins. 

However, there is scarcity of studies on the flow behaviour within such geometry. 

Barozzi et al. (1985) experimentally investigated mixed convection in horizontal 

and inclined tubes. Under axially uniform wall heat flux and laminar flow 

conditions for a horizontal pipe, they observed that the local Nusselt number 

(Nux) decreased from high values at the inlet to a minimum at a downstream 

location and then to an asymptotic condition further downstream. They attribute 

the rapid decrease at the inlet to entrance effects which are in balance with the 

free convection effects at the location where the minimum local Nusselt number 

occurs. They also found that the mean Nusselt number (Num) decreased with 

downstream location. They performed one experimental set at high heat flux and 

relatively low flow rates. The resulting behaviour was very different: downstream, 
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there was not any asymptotic behaviour. Flow rates at Reynolds numbers in the 

transition region behaved quite differently. The local Nusselt number at the 

entrance was very high and decreased to a minimum, the downstream trend is 

not asymptotic but increasing. They suggested that Reynolds number, Prandtl 

number and Rayleigh or Grashof number have independent effects on the heat 

transfer rate for these cases. When the pipe was inclined and there was 

ascending laminar flow, they found that the mean Nusselt number decreased as 

the flow moved downstream. As the tube inclination angle increased, they found 

that there were slight decreases in the mean Nusselt number. The variation in 

Num with inclination angle decreased with increasing Reynolds number. They 

suggested that the influence of the inclination angle can be disregarded for 

practical applications. 

Ouzzane and Galanis (2001) numerically analysed heat transfer in a tube with a 

longitudinal fin. This system is modelled as a flat-plate collector. The heat flux 

(solar radiation) was incident on the top surface. The bottom surface was 

insulated. Their results showed that most of the energy is conducted to the fluid 

in the bottom half of the tube. They observed that, far downstream, the top half 

behaves as if it was under an isothermal condition. Also, the secondary flow, 

caused by natural convection, is symmetric about the vertical axis. The fluid near 

the tube wall is heated and rises along the wall. The fluid near the centre plane 

is cooler, causing it to move towards the bottom. These eddies become stronger 

as the fluid moves downstream until a maximum intensity is reached. After 
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which, the intensity decreases until the fully developed condition is achieved. 

They found that the axial velocity distribution was symmetric at the entrance. 

Downstream, the buoyancy effects of the natural convection became pronounced 

causing the axial velocity profile to no be longer symmetric; i.e. it is a distorted 

parabolic shape. The maximum velocity occurs in the top half. The flow velocity 

increased along the length of the tube. Finally, they showed that the thermal 

performance decreased as the width of the fins increased when the collector's 

dimensions were held constant. 

1.2.5 Non-Uniform Heating 

Horizontal tubes under non-uniform heating have been studied under two heating 

conditions - heating from below and heating from above. Only the latter case is 

reviewed since it relates to flat-plate collectors. 

Patankar et al. (1978) numerically investigated a tube in which the top half was 

heated and the bottom half was insulated. They showed that there was a 

tendency for the flow to be stratified. The degree of stratification increased with 

the modified Grashof Number Gr*. They found that, as Gr* increased, the 

secondary flow profile became an increasingly distorted "kidney bean" shape. 

They found that when (2/n)Gr* was 106, there were four eddies in the cross 

section. 
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Ouzzane and Galanis (1999) numerically investigated convection in inclined 

tubes heated in the top half with an adiabatic bottom. Their results showed that 

all of the heat is supplied to the fluid in the top half of the tube at the entrance. 

With an increase in the downstream distance, the heat started to reach the 

bottom through wall conduction. They note that further downstream, more heat is 

supplied to the fluid in the bottom than in the top. As buoyancy effects become 

more prominent, the location where the fraction of heat supplied to the fluid in the 

bottom is equal to the fraction supplied to the fluid in top moves upstream rapidly. 

There is a Grashof number, in their case Gr = 2x105, where this location starts to 

gradually move downstream. They found that the counter-rotating eddies are 

more intense at larger values of the Grashof number. The eddy intensity evolved 

along the tube length becoming more intense until a peak was met and then, 

decreased until it reached the fully developed state. They presented the velocity 

profiles for three different Grashof numbers (Gr = 0, 105, 106). For all cases, they 

found that the maximum velocity occurs far downstream. However, the peak of 

the distorted parabola for the Gr = 105 case is in the bottom half of the tube, while 

it shifts to the top half for the larger Grashof number (Gr = 106). 

1.3 Motivation 

The majority of the previous studies on solar collectors were focused on 

evaluating and analyzing their overall performance and, specifically, the 

thermosyphon-type of collectors. The flow behaviour inside the collector fluid has 
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not been investigated in detail and thus, it is poorly understood. The thermofluid 

interactions inside of the collector tube are complex. The heat flux to the water 

inside is circumferentially non-uniform. Through circumferential conduction, most 

of the heat flux reaches the water from the bottom part of the tube. This results 

in buoyancy induced secondary flow where heat is transferred within the fluid 

through natural convection. Thus, the overall heat transfer inside the collector 

tube is mixed convection. To improve the performance of flat plate collectors, it 

is desired to improve the heat transfer. However, a previous study has shown 

that the conventional mixing strategies used to enhance the heat transfer do not 

work in flat-plate solar collectors (Hobbi, 2007). It is vital to understand the flow 

behaviour inside the collector tube and then use this information to develop 

techniques to enhance the heat transfer inside the collector tube. This would 

improve the thermal performance of solar collectors making them more feasible 

for cold regions like Canada. 

1.4 Objectives 

The objective of this research project is to investigate the thermofluid behaviour 

inside the flat-plate collector used in solar domestic water heating systems. The 

results from this study would provide better insight into the flow structure inside 

collector tube. This will allow researchers to develop improved numerical models 

and heat transfer enhancement strategies. This will eventually lead to the 

development of more efficient solar water heating systems. 
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1.5 Thesis Layout 

This thesis is organized into four chapters. In Chapter 1, the main types of solar 

water heaters are described after detailing the potential of solar energy for water 

heating. It includes a literature review consisting of work relating to the collector 

flow rate; forced and evacuated tube solar water heating systems; heat transfer 

in tubes with longitudinal fins; and heat transfer in tubes that are non-uniformly 

heated from above. The motivation and objectives of this work conclude Chapter 

1. Chapter 2 describes the experimental apparatus and procedure. It outlines the 

PIV measurement technique and the image processing method. The results of 

the experiments are presented in Chapter 3. Specifically, the mean velocity 

profiles and collector tube temperatures are interpreted with heat transfer 

parameters and turbulent velocity characteristics to describe and characterize the 

physical phenomenon occurring within the collector tube. Chapter 4 summarizes 

these results and recommends future work that can be researched. 

35 



Chapter 2 - Experimental Setup and 

Technique 

2.1 Experimental Apparatus 

The main experimental apparatus used in this study was designed by Mr. A. 

Hobbi as part of his Master's thesis (Hobbi, 2007). It was modified for the present 

work. The schematic of the apparatus is shown in Figure 2.1. In real applications, 

the collector tubes are inclined. However, due to experimental challenges, it was 

not possible to consider the inclined tube in the present study. The different 

components of the apparatus are described in detail in the following. 
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Figure 2.1: Schematic of the setup. 
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The flat-plate collector was made of !4 inch Type K copper pipe (13.38 mm 

diameter, 1.24 mm wall thickness) soldered onto a copper plate that was 915 mm 

x 152 mm * 1.1 mm (see Figure 2.2). The plate area was 0.145 m2. 

Test Section 

Insulated A" 
Around 

r 
I 
I 
I Panel Heater 

Figure 2.2: Front view of the test section. 

The pipe and plate of the collector were painted with black, high temperature 

paint (Tremclad High Heat Enamel). The upstream end of the collector was 

connected to a >2 inch 1.6 m long copper tube to ensure that the flow was fully 

developed at the collector's entrance (see Figure 2.1). A similar copper tube of 

the same length was attached at the downstream end of the collector to allow the 

flow to settle down. The flow rate was controlled by a rotameter (Omega 

Engineering, Model FL-1448-G) connected downstream of the collector. The 

range of the rotameter is 4.5 to 577 ccm. 

The present work is focused on the velocity measurements inside the tube using 

the Particle Image Velocimetry (PIV) technique. This method, described in 

Section 2.2, requires optical access into the tube to remotely measure the 

velocity field. For this purpose, the apparatus was modified to fit a transparent 

glass window to allow optical access. Pyrex glass test tubes of 15.8 mm outer 
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diameter and 14.3 mm inner diameter were cut into the lengths of 50 mm and 

inserted at the measurement locations. The inner diameter of the glass tube was 

6.7% larger than the inner diameter of the copper pipe; however, the influence of 

this change in flow area is insignificant compared to the effect of the heating. To 

mitigate the optical distortion due to the curvature of the glass tube, a water-filled 

acrylic box was constructed and to surround the glass tube at the measurement 

section. This is described in Section 2.3. 

A high temperature infrared panel heater (Omega QF-063610-T) supplied 

thermal energy to the collector through radiation. The maximum heater density is 

15500 W/m2 and the wavelength of the output thermal radiation is between 2.5 

and 6 microns. Although the heater cannot cover the radiation spectrum of solar 

energy, the radiant heat flux from the heater was within the acceptable range. 

The face of the heater was black quartz-ceramic cloth and was installed 50 mm 

above the collector (see Figure 2.2). The surface dimensions of the radiant 

heater were same as that of the collector (i.e. 915 * 152 mm). 

The temperatures of water and collector surface were measured via type K 

thermocouples. The water temperature was measured at the inlet and exit of the 

collector to quantify the heat transferred to water. The inlet temperature was also 

used to verify that the temperature of the water entering the collector remained 

almost constant during each experiment. The wall surface temperature of the 

collector tube was measured at nine different locations as shown in Figure 2.3. 
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Three circumferential temperatures, the top of the tube; bottom of the tube; and 

the joint of the tube and plate, were measured at the inlet, middle and outlet of 

the tube. The temperatures were recorded using a National Instruments (Nl 

SCX-1000) data acquisition system with a 16 channel card (PCI-6063-E). The 

data was acquired using the LabVIEW 7 Express software. The sampling rate 

was 100 Hz. The system was enclosed with Reflectix R-4 thermal insulation with 

reflective surfaces as shown in Figure 2.4. In addition to minimizing thermal 

losses, it also helped protect the camera used in the PIV measurements from the 

heat. 
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Figure 2.3: Location of the thermocouples on the collector tube. 

Figure 2.4: Flat-plate collector and heater enclosed in the insulation. 

Hobbi (2007) used city water directly from the tap for his experiments. A new 

source had to be found for the PIV measurements because air bubbles in the city 

water had a tendency to stick to the inner wall of the glass. Even though the 
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bubble size is very small relative to the test section, they cover a considerable 

area and reduce the optical access to the measurement region resulting in very 

poor quality images. Two solutions were considered. One was to use distilled 

water. The second was to use tap water that was allowed to settle in a reservoir 

for at least 24 hours prior to the experiments so that the air bubbles would be 

removed from the water. The latter option was successfully tried and then used 

for all of the experiments. The water was stored in a tank of size 46 cm x 46 cm 

x 64 cm (outer dimensions, wall thickness 6 mm). A large volume of water was 

used to ensure that the temperature did not vary significantly during the 

experiments. As an additional preventative measure, the glass tubes were 

washed with diluted hydrochloric acid to clean any residual impurities on the 

surfaces. 

Water was circulated through the collector by a magnetic pump (Little Giant 

Pump Company, Model 4-MD). A valve was installed at the pump outlet to help 

control the bulk flow rate. The precise flow rate for a given case was adjusted 

through the rotameter. 
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2.2 PIV Technique 

2.2.1 Introduction to PIV 

Particle image velocimetry (PIV) is a nonintrusive optical technique used to 

measure flow velocities. A typical PIV system consists of a laser as the light 

source, a camera to capture the images, a PC equipped with a frame grabber to 

record and store the images, and a delay generator to control the timing of the 

laser pulses with respect to the camera frames. In this technique, the flow is 

seeded with neutrally or near-neutrally buoyant tracer particles that follow the 

flow. A pulsed laser light sheet illuminates a plane in the flow causing the tracer 

particles to glow. The camera records the image of the particles which shows 

their position at that instant of time (t). A short time later (At), a second pulse 

illuminates the same plane creating a second image of the particles showing their 

position of the particles at the second instant of time (t + At). In this way, a series 

of image pairs are obtained. Each image pair is then processed to compute the 

displacement of the particles between the first and second images of the image 

pair. The velocity field is obtained by dividing the particle displacement by the 

time difference (At) between the two images of the image pair. 

A more detailed description of the velocity field computation by PIV image pairs 

is described as follows. The first image of the image pair is divided into small 

regions called the interrogation windows such that the velocity of particles in this 

region is approximately uniform. In the present study, the size of each 

interrogation window was set equal to 32 * 32 pixels. The second image is 
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divided into relatively larger regions called the search windows. The dimensions 

of the search window are typically set to twice the dimensions of the interrogation 

window so that the particles in the interrogation window of the first image can be 

found within the corresponding search window in the second image. The size of 

the search window in the present study was set equal to 64 x 64 pixels. Cross-

correlation between the interrogation region in the first image and the search 

region in the second image is performed and the maximum of the cross-

correlation function gives the average particle displacement within that 

interrogation region. The cross-correlation operation is performed on all 

interrogation windows in the given image pair to obtain the velocity field over the 

entire image. A sample of these images is displayed in Figure 2.5. 

Figure 2.5: An image pair showing an interrogation region (left) and the 
corresponding search region (right). The size of each interrogation region is 32 * 

32 pixels and the size of each search region is 64 * 64 pixels. 

The particle shift between the two images of an image pair depends on the time 

interval (At) between the two images. Since the particle velocity for each 
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experimental run varied, the time interval between the two images of the image 

pair was adjusted for each flow rate to maintain a good particle shift. 

Due to unavoidable particle accumulation and air bubbles on the glass tube wall, 

the optical access to the measurement region was poor in some regions. As a 

result, several velocity vectors computed in these regions were spurious. 

However, one favourable aspect was that the position of accumulated particles 

and air bubbles on the glass tube wall was constant during a particular 

experimental run. Therefore, these regions and the corresponding spurious 

vectors could be readily isolated from further analyses. For this purpose, each 

set of images was examined to find any consistent sources of discrepancies 

(particle accumulation, reflections and air bubbles). A binary threshold image of 

the same dimensions as the original image was created for each run, where the 

regions with low or bad optical access were marked. A typical binary threshold 

image is shown in Figure 2.6. In the image "1s" (white regions) correspond to the 

regions with bad quality of particle images and "Os" (black regions) correspond to 

the regions with good quality of particle images. 
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Figure 2.6: Original PIV image (left) and the corresponding Binary Threshold 
Image (right). The particle accumulation on the top and bottom walls, as well as 

some reflections and air bubbles are clearly visible in the PIV image. 

A Matlab code was used to find and correct any spurious vectors in the good 

region using a local medial test (Siddiqui et al., 2001). The code was modified to 

consider the bad regions from the binary threshold image (white areas) and 

exclude the velocity data in these regions from further analyses. In the modified 

code, the parts of the data that corresponds to white areas on the threshold 

images are replaced with NaN (Not-A-Number). These data points are ignored in 

the rest of the code. Each velocity vector (magnitude and direction) is then 

compared with the median of its eight neighbouring vectors. Note that if NaN is 

one of the neighbours, then it is not considered in the median test. If the 

magnitude and direction of the given velocity vector is outside a pre-determined 

range, it is replaced by the median of its neighbours. Finally, the code converts 

the values of each vector from pixels to cm/s. The conversion factor was 

determined by taking an image of a ruler that is inserted into the test section 

under experimental conditions and measuring the number of pixels between 
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graduations. An example of a velocity field that corresponds to the same case as 

the binary image in Figure 2.6 is shown in Figure 2.7. 

— i 1 i 1 1 r — 

100 200 300 400 500 BOO 

Figure 2.7: Sample velocity field. 

2.2.2 PIV Setup 

The PIV system used in the present study consists of a SoloPIV 120XT Nd:YAG 

laser and a CCD camera (JAI CV-M2) with the resolution of 1600 x 1200 pixels. 

The camera was connected to a PC equipped with a frame grabber (DVR 

Express, IO Industries, London, Ontario) that acquired 8-bit images at 30 Hz. For 

each experimental run, 1500 images (750 image pairs) were recorded. The 

timing of the laser pulses was controlled with a four channel digital delay 

45 



generator (555-4C, Berkely Nucleonics Corporation, San Rafael, CA). The time 

intervals between the two images of the image pair for all flow rates are 

presented in Table 2.1, 

Table 2.1: Time Interval between the Two Images (Image Pair) for All Flow Rates 

Mass Flow 
Rate [kg/s] 
0.00781 
0.00626 
0.00494 
0.00354 
0.00232 
0.00113 

Pulse 
Interval [ms] 

2.5 
2.5 
3.0 
3.5 
4.0 
4.5 

A beam from the laser was shone through the spherical and cylindrical lenses to 

form a laser sheet that was reflected up in the test section of the glass tube as 

shown in Figure 2.8. The laser sheet was located at the centre of the tube cross-

section so that the long axis was parallel to the flow. The water was seeded with 

silver covered glass spheres (Potter Industries, Paoli, PA) with a mean diameter 

of 15 urn. With a specific gravity of 1.65, they were not neutrally buoyant. To 

check whether these particles were acceptable for these measurements, the 

particle response time was calculated using the following equation, 

T = p 

36v 
1 + 2 

W \ 

PP 

'wj 

(2.1) 

where, Tp is the particle response time (Snyder and Lumley, 1971), Dp is the 

particle diameter, vw is the kinematic viscosity of fluid, and pp and pw are 
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densities of particle and fluid, respectively (Siegel and Plueddemann, 1991). The 

response time is the time taken by the particles to respond to the changes in the 

flow. For the present study, the response time of particles was found to be 

0.0268 ms. The smallest time scale of any flow is the Kolmogorov time scale. 

The Kolmogorov time scale for the present experiments ranged from 2.37 to 93.8 

ms. The comparison shows that the response time of the particles is two to three 

orders of magnitude smaller than the Kolmogorov timescale of the given flow. 

Thus, it is concluded that the given tracer particles accurately follow the flow. 
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Figure 2.8: Schematic of the PIV setup. 
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2.3 Optical Effects Due to the Glass Tube 

2.3.1 Glass Tube Assembly 

Since the PIV technique requires optical access to the flow, the copper pipe at 

the test sections (the collector inlet and outlet) was replaced with the transparent 

glass tubes to act as a window. The glass tubes were connected to the copper 

pipe using Vi inch copper couplings. The couplings had an inner diameter of 16 

mm, outer diameter of 17.5 mm, and a length of 25.9 mm. Figure 2.9 shows 

these components before they were assembled. After assembly, the glass 

window length was 25 mm. 

To assemble the sections, the couplings were soldered to the copper tube first 

and then the glass tube was inserted into the coupling. Initially, glue was used to 

attach the glass to the coupling, but it was found that silicone provided a more 

flexible seal, so it was used for the remaining experiments. The flexibility of the 

seal was a welcome benefit because the glass was very brittle; any shock 

caused by moving the piece or tightening the fittings could have caused the glass 

to crack or break. The copper pieces near the glass tube were blackened to 

prevent unwanted reflections from the laser light as shown in Figure 2.10. 
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Figure 2.9: Components of the glass tube assembly. 

Figure 2.10: Inlet section piece, assembled. 
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2.3.2 Optical Effects Due to Water and Tube Curvature 

An essential part of the PIV technique is the conversion of particle displacement 

from pixels in the image to real length units (cm). The conversion factor was 

determined by measuring the distance in pixels between graduations on an 

image of a ruler that was inserted into a water-filled tube. When analysing the 

image, the distances between graduations measured near the tube walls were 

much less than the distances measured at the centre of the tube. While 

developing a measurement scheme, two effects were noticed: distortion due the 

curvature of the tube and magnification by the water. 

A couple of experiments were performed to examine these effects further by 

considering them separately. For these experiments, a set of special test strips 

of laminated strips of paper with solid dots printed on them (see Figure 2.11) and 

a ruler with vertical and horizontal graduations (see Figure 2.12) were prepared. 

Two test containers were developed, as well. One container had a flat glass wall 

and the other container was a glass tube (curved surface). The container with 

the flat glass wall was used to understand the magnification effect. An image of 

each test strip inserted into the water filled container was recorded. These 

images were compared with images of the strips in the container without water 

and without the container (only air). Specifically, the distance between the 

graduations on the ruler or corresponding edges of each dot was measured for 

all three media. It was noted that the degree of magnification depended on the 

distance between the strip and the glass or, the amount of water in front of the 
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strip. The distortion effect was examined by conducting a similar comparison 

with the other container. These experiments offered insight regarding how to 

determine the length scale. It was found that, even though the dots were solid 

circles drawn in AutoCAD, their edges could not be consistently selected 

resulting in inaccurate measurements. Therefore, it was decided to forego using 

them and only use the ruler. This decision was reinforced during the first 

collector experiment. 

Figure 2.11: Image of the dotted-strip in the tube with water. 
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Figure 2.12: Image of the ruler-strip in the tube with water. 

2.4 Length Scale Compensated for Optical Effects 

2.4.1 Experiment Using Only the Tube 

An experiment was conducted to verify that the PIV technique would yield 

positive results. They were conducted using a tube similar to Figure 2.10 at the 

inlet section of the apparatus. Problems arose when converting units. Since 

there was non-uniform vertical distortion, a parabolic correlation function was 

fitted to relate the displacement of the particles from pixels to cm using the 

following procedure. However, the resulting function was not accurate. 
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Using the ruler strip, the number of pixels between millimetre graduations in the 

image was measured. For each graduation line, its pixel location was 

determined by taking the average of five measurements along the line. The 

difference between successive graduations was tabulated to determine the 

calibration function. An additional check was performed to determine if the 

vertical location of the graduation line had any effect on the horizontal scale. It 

was checked by taking measurements at the same vertical location on the two 

longest graduations and comparing them. 

All of the resulting measurements were consistent within acceptable error. The 

difference between the top and bottom of the vertical graduation lines was 

negligible which implies that the tube's curvature had no effect on the horizontal 

scale. The horizontal conversion factor was considered to be constant. The 

vertical scale, however, was affected by the curvature of the tube. The measured 

number of pixels per millimetre was plotted against the vertical location and a 

second order best-fit line was fitted to the data. 

There are a few sources of error for the measurements. For one, it had to be 

determined what constitutes the edge of the graduation line. Every effort was 

made to be consistent. As well, anything that could have caused the ruler to not 

be perfectly parallel or perpendicular to the flow, such as a slight tilt in the strip, 

may have had an effect. Again, these were minimised as best as possible. 
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While the resulting function for the vertical scale was second order, a symmetric 

parabola could not be fitted because there was not enough data and too much 

variation. With very little confidence in these results, a modification to the 

apparatus was made: a water-filled box surrounding the glass tube was 

assembled to eliminate the effects of the curvature. 

2.4.2 Experiments Using a Water-Filled Box 

The distortion effects were removed by using a water-filled box surrounding the 

glass test tube. Consider that light rays from the particles in the flow must bend 

twice. First, they bend because of the interface between the water and the inside 

wall of the glass. Then they bend at the interface between the outside wall of the 

glass and the outside fluid. From the law of diffraction, the angles of incidence 

and refraction are related by the index of refraction of the two materials: 

«, sin / = n2 sin p (2.2) 

where ni and nz are the indices of refraction of the two materials, respectively; / is 

the angle of incidence; and r is the angle of refraction. As shown in Figure 2.13, 

when air is the surrounding fluid, the light will not bend enough and the images 

will appear distorted. When the surrounding fluid is water, the distortion effects 

are negated because the indices of refraction are the same; the image appears 

magnified. The magnification effects affect all particles equally so that when 

acquiring the image of a ruler inserted inside the tube at the measurement 
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location, the graduations on the ruler are also magnified by the same factor. 

Therefore, having a water-filled box ensures that the measured vertical 

displacement of the particles was constant. 

Glass \Surrounding Fluid 

Figure 2.13: Refraction due to the changing materials. 

2.4.3 The Surrounding Box 

The surrounding box was made of 3 mm thick acrylic on three sides. The bottom 

and front walls are made of glass to allow good optical access to the camera 

(through the front wall) and laser light sheet (through the bottom wall). The glass 

sections were made from Pyrex glass. The dimensions of the front and bottom 

section are 60 mm * 47 mm and 44 mm x 60 mm, respectively. The side walls 

were 44 mm x 44 mm with a 20 mm hole on two side walls for the coupling. The 

centre of the hole was located 20 mm from the bottom (see Figure 2.14). 

Installation of the surrounding box at the collector inlet was straightforward. One 
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of the fittings was removed so that the box could slide on and be set in place 

using silicone. The fitting was then replaced (see Figure 2.14). 

Figure 2.14: The surrounding box at the inlet. 

The installation of the surrounding box and the glass window at the collector 

outlet required more work. The tube was cut and a coupling was installed 

immediately next to the edge of the plate. A second coupling was affixed to the 

removed tube. Before the two pieces were rejoined, the box was slid onto the 

tube. The glass tube was affixed to the other coupling and the box attached in 

the proper place as shown in Figure 2.15. Wooden stands, one at the inlet and 

one under the collector, were built to support the apparatus and reduce the load 

on the glass tube. 
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Figure 2.15: The surrounding box at outlet. 

Using the same measurement procedure, the conversion factors between pixels 

and cm were computed. The variation amongst all of the individual data points 

was on average, within 4 pixels, which shows that using a constant factor was 

acceptable. The sources of error in the measurements are the same as before. 

2.5 Experimental Procedure 

Before each experimental run, water at a high flow rate was pumped through the 

system for 10 minutes to remove any air bubbles that may have been trapped 

inside. For the heated experiments, the heater was also turned on and set to the 

surface temperature (300°C or 400°C), and left to reach steady state. Placed 50 

mm above the collector, the heater surface temperatures produced absorber 
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surface temperatures that are similar to what would be achieved under operating 

conditions with the sun. Experiments were also conducted for an unheated 

condition. 

The experimental procedure was as follows: 

• Adjust the flow rate. 

• Set the pulse generator to the correct time interval. 

• Wait 10 minutes for the flow and temperature to reach steady state. 

• Check and clean the exterior of the glass tube to remove any bubbles. 

• Turn on the laser and begin recording the temperature measurements 

using LabVIEW. 

• Record the PIV images. 

• Turn off the laser and stop recording temperature data. 

• Process one image pair and check its velocity field to ensure that the data 

is satisfactory. 

• Repeat the procedure for each flow rate. 

At the end of a set of experiments, the heater was turned off, but the pump was 

kept on for a few minutes for the system to cool. The interior of the glass tube 

was cleaned with a soft brush to remove any particles that had accumulated 

along the wall during the experiments. 
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2.6 Uncertainty Analysis 

2.6.1 Error Estimate for the PIV Measurements 

As outlined in Cowen and Monismith (1997) the total error in PIV measurements 

is the sum of errors due to gradients, particle diameter, out-of-plane motion, 

dynamic range, peak locking and AGW interpolation. The procedure used to 

estimate the error was adapted from Siddiqui (2002). The non-dimensional 

particle diameter in the present study was 0.67 pixels. Particles that are smaller 

than one pixel always occupy on pixel area in a PIV image. Consequently, the 

true position of the particle within a pixel cannot be resolved. 

According to Fincham and Spedding (1997), peak locking occurs in any type of 

image velocimetry technique where sub-pixel determination of the correlation 

peak is attempted. However, it can be minimized by using a suitable peak-fitting 

scheme. There are several sub-pixel peak fitting schemes that include the three-

point Gaussian, parabolic and centre-of-mass estimators. The three-point 

Gaussian estimator was considered to be the best sub-pixel fit (Cowen and 

Monismith, 1997). 

The results of Cowen and Monismith (1997) and Prasad et al. (1992) were used 

to estimate the errors in the PIV data. The errors were estimated using the raw 

data. A detailed procedure to estimate the errors in the PIV data is given below. 
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1. The mean values of the largest velocity gradients in the streamwise and 

vertical directions were computed from the raw PIV data. In the present 

study, the mean streamwise velocity gradients were 1% and the mean 

vertical velocity gradients were zero. Thus, the mean streamwise 

velocity gradients were considered for the error estimation. 

2. The error due to velocity gradients were estimated using Figure 5(e) in 

Cowen and Monismith (1997). This figure gives the approximate errors 

due to velocity gradients and is based on a particle size of 2.0 pixels. 

The total error due to velocity gradients is the sum of the mean and RMS 

errors. The error due to velocity gradient was estimated to be: 

£u = 0.08 pixels (based on 1% gradient) (2.3) 

where £u is the errors associated with the streamwise velocity. 

3. Since the particle diameter in the present study was 0.67 pixels, the errors 

due to smaller particle diameter should be accounted for. Figure 5(a) in 

Cowen and Monismith (1997) was used, which is the plot of the errors as 

a function of the particle size. The errors due to a particle diameter of 1.0 

pixel were estimated since this was the smallest particle diameter that 

Cowen and Monismith (1997) considered. The error for a particle diameter 

of 1.0 pixel and the same velocity gradients was: 
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£u = 0.07 pixels (2.4) 

4. The errors corresponding to a particle diameter of 0.67 pixels were 

estimated using Figure 13 in Prasad et al. (1992), which shows the 

variation in the bias (peak locking error) and RMS errors as a function of 

particle diameter. Using the figure, the estimated errors associated with a 

particle diameter of 0.67 pixels would be 20% larger than the errors 

associated with a particle diameter of 1.0 pixel. The estimates of Prasad 

et al. (1992) were based on center of mass peak-fitting scheme, which is 

the scheme that is most susceptible to peak-locking errors (Flncham and 

Spedding, 1997). The errors in the present case would be smaller 

because a three-point Gaussian estimator, which is much less susceptible 

to peak locking than the center of mass scheme (Cowen and Monismith, 

1997), was used. Therefore, a more realistic estimate of the increase in 

the errors is 10% due to the small particle size. Hence, the final error 

estimate based on 10% increase in errors was: 

su = 0.157 pixels (2.5) 

5. The in-plane vertical displacement based on the mean and standard 

deviation of the vertical displacement was estimated to be: 

W = w + aw = 0.5955 pixels* 13.3 jum (2.6) 
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The out-of-plane motion was expected to be less than or equal to the 

vertical displacement. Since the thickness of the laser light sheet was 

approximately 200 urn, the out-of-plane motion in the present case was 

assumed to be negligible. 

6. The error due to AGW interpolation was estimated from Figure 5(f) in 

Cowen and Monismith (1997) and it was 0.058 pixels. Thus, the total 

error in the streamwise velocity was estimated to be: 

£u = 0.077 + 0.08 = 0.157 pixels (2.7) 

This RMS error expressed in velocity units is: 

eu = 0.175 cm/s (2.8) 

It was assumed that the errors in the vertical velocity (w) were the same 

as the errors in the streamwise velocity (u). Since the larger gradients in 

the vertical direction (ie: du/dz) will produce errors in both u and w, the 

error in V, where V = Vw2 + w2 is: 

£u = 0.248 cm/s (2.9) 

The errors in the vorticity measurements were estimated from the errors in 

the velocity measurement. The vorticity (CJ) is given by: 
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<9u dw 

oz ox 

where duldz and dwldx are the streamwise and vertical velocity gradients, 

respectively. The streamwise velocity gradient can be written as: 

— = — (2.11) 
dz Ax 

where Au = u-i - 1/2, that is, the difference in the streamwise velocities at 

two grid points and Az is the vertical distance between two grid points. 

The central difference method was used to compute vorticity; therefore, Az 

in the present case is equal to 0.071 cm (32 pixels * 0.002234 cm/pixel). 

The variance of the errors (£2) in Au can be estimated as: 

e2(Au) = e\ux) + s2(u2) = 2e\u) = 2(0.nS)2 = 0.0612cmV2 (2.12) 

where £2(Au), £2(Atv-i) and £2(Au2) are the variance of the errors in Au, u<\, 

and 1/2. respectively (Kennedy and Neville, 1976). The variance of the 

errors in duldz is then given by: 

s2(Au/Az) = £2(Au)/Az = 0.0612/.071 = 0.862^2 (2.13) 

Since the assumed magnitude of the errors in w was equal to those in u, 

the variance of the errors in dwldx is given by: 
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£2(Aw/Ax) = £2(Aw)/Ax = 0.0612/.071 = 0.862s"2 (2.14) 

where Ax is equal to 0.071 cm (32 pixels * 0.002234 cm/pixel). The 

variance of the errors in the vorticity, £2(Aw), is then given by: 

E1 (m) = s2 (Au IAz) + s2 (Aw /Az) = l. 727s'2 (2.15) 

Thus, the RMS error in the vorticity, £2(Acu), is then given by: 

s(m) = ^£2(m) =1.315-' (2.16) 

Hence, the average RMS errors in the instantaneous velocity and vorticity 

estimates are ±0.24cm/s and ±1.31s"1. 
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Chapter 3 - Results and Analysis 

3.1 Data Reduction 

The average temperatures of the water and pipe surfaces for each experiment 

were obtained by time averaging. The water properties were calculated at the 

average water temperature (Tf,avg) computed as: 

T +T 
Tf^=Jj^J± (3-D 

Following Barozzi et al. (1985), the average heat transfer rate per unit length to 

the water was calculated by considering the overall enthalpy rise of the water as: 

q^^pVf^ 7/.J (3_2) 

The average wall heat flux was computed by: 

To account for the variation in the inlet water temperature for each experiment, 

the temperature data was normalized by the inlet fluid temperature as done by 

Habib and Negm (2001): 
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T-T 
0= ''<" 

q,/ (3-4) 

where, 9 is the normalized temperature, and kf is the thermal conductivity of 

water (Habib and Negm, 2001). The average Nusselt number was calculated as 

(Mohammed and Salman, 2007): 

Nu-=wtvf <3-5> 
The average Grashof number is calculated using the following relation: 

Gr=SMT„-T/t) ( 3 6 ) 
v2 

The dimensionless parameters that are relevant for mixed convection heat 

transfer in pipes are: 

Reynolds Number R e - ^ (3.7) 
V 

Prandtl Number Pr = - (3.8) 
a 

Rayleigh Number Ra = GrVr (3.9) 

Richardson Number Ri = sPDV»-Tf,b) ( 3 1 0 ) 

u2 
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As described in Chapter 2, experiments were conducted at two heating 

conditions that correspond to the heater temperatures of 300°C and 400°C and 

with the collector unheated. For each condition, the experiments were conducted 

at six flow rates. Since the density and viscosity change when heat is applied, 

the volumetric flow rate and Reynolds number vary at each flow rate for the 

heated and unheated conditions. Therefore, the results are presented in terms of 

mass flow rate. The mass flow rates considered were: 0.00781 kg/s, 0.00626 

kg/s, 0.00494 kg/s, 0.00354 kg/s 0.00232 kg/s and 0.00113 kg/s. Hereinafter, 

they will be referred to as Case I to VI, respectively. However, there is no data 

for Case VI at 400°C because water in the tube began to evaporate under those 

conditions. 

3.2 Temperature Results 

The water temperature at the inlet and outlet of the collector were recorded 

during each experiment. The temperature of the collector tube surface was also 

recorded at three circumferential locations: top, bottom and the plate-tube joint. 

These measurements were made at three axial locations of the tube: the inlet, 

the middle and the outlet. The temperatures used for the analysis are the time-

averaged values at each location. 

When heat was applied, the temperature of the water increased as it passed 

through the collector, as expected. Figure 3.1a shows the increase in water 
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temperature inside the collector for all heated cases. The plot shows that the 

change in water temperature between the inlet and outlet decreased with an 

increase in the flow rate. The same trend is shown when examining the 

normalized temperature increase (Figure 3.1b). It is clear that there is an 

exponential relationship between the change in water temperature and the 

Reynolds number. 
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Figure 3.1a: Change in water temperature for the heater temperatures of 

300°C(»)400°C(o). 

68 



0 . 4 I 1 jg—i 1 1 1 1 1 1 1 1 

0.35 -

0.3 -

0.25 -

£ 0-2- # 0 

0.15-

• O 

0.1 -
• O 

• O 
0.05 - • ° -

0 I i i i i i i i i i i 

0 100 200 300 400 500 600 700 800 900 1000 1100 
Reynolcte Number 

Figure 3.1b: Normalized change in water temperature for the heater 
temperatures of 300°C (•) 400°C (o). 

The circumferential wall temperatures at the inlet (Figure 3.2a), middle (Figure 

3.2b) and outlet (Figure 3.2c) of the collector tube are plotted for both heater 

surface temperatures (400°C and 300°C). The trends are similar for both heating 

cases. To understand the phenomenon, the heat exchange between within the 

tube wall, within the water, and between the tube and the water must be 

considered. 

Comparison of Figures 3.2a to 3.2c shows that along the circumference, the wall 

temperatures at the inlet and exit are lower than that in the middle of the 

collector. This is likely due to the axial conduction heat loss upstream and 

downstream from the inlet and exit, respectively. 
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Figure 3.2: Circumferential wall temperature at each flow rate at heater 
temperatures of 300°C (Closed Symbols) and 400°C (Open Symbols) at (a) inlet, 

(b) middle, (c) outlet. 
Case I (•), Case II (•), Case III (•), Case IV (A), Case V ( • ) , Case VI (* ) 

Figure 3.2a shows that the collector wall temperature increases from the top of 

the tube until the joint of the collector tube and plate, which is located in the lower 

half of the tube (see Figure 2.2 and 2.3 in Chapter 2). The maximum temperature 

is observed at this location at all flow rates for both heater temperature cases. 

The wall temperature decreased until it reached the bottom of the tube where the 

lowest temperature was observed. For the 300°C experiments, the wall 

temperature at the joint was 20.1% higher than that at the top of the tube and 

30.7% higher than the temperature of the bottom of the tube at the highest flow 

rate (Case I). These percentages changes to 18.5% and 34.5%, respectively, at 

the lowest flow rate (Case VI). The temperature difference between the top and 
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bottom of the tube was 15.3% and 24.4% at highest and lowest flow rates, 

respectively. As the flow rate changed, there was no clear trend as to its affect 

on the wall temperatures. This is probably due to axial conduction in the tube 

wall upstream. The differences between the highest and lowest temperatures 

were 8.1% at the top, 5.59% at the joint, and 12.6% at the bottom. At the heater 

surface temperature of 400°C, the temperatures at the top and bottom were 

26.1% and 43.2% higher than that at the joint for the highest flow rate (Case I), 

respectively. At the lower flow rate (Case V), the differences decrease to 22.3% 

and 42.2%, respectively. The temperature at the top was 30.0% higher than the 

bottom for the highest flow rate, and 34.4% higher for the lowest flow rate. As 

the flow rate changed, there was a 13.3% difference between the highest 

temperature and lowest temperature recorded at the top of the tube; 11.4% at the 

joint; and 10.6% at the bottom. For each flow rate, raising the heater 

temperature from 300°C to 400°C resulted in an increase in the measured wall 

temperatures. At the inlet, the temperature increases due to the heater 

temperature increase ranged from 16.1% to 27.7% at the top, 25.8% to 37.8% at 

the joint, and 3.37% to 16.5% at the bottom. 

This distribution can be explained by a considering the heat transfer process at 

this section. The heat influx to the upper portion of the tube is through thermal 

radiation which is conducted circumferentially around the tube wall. Whereas, 

the radiant heat incident on the plate is conducted through the joint to the tube. 

Due to the larger surface area of the plate compared to the tube, the radiant heat 
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flux incident on the plate is higher than the tube. Thus, the heat transfer at the 

joint is higher than the circumferential heat transfer, which results in higher wall 

temperature at the joint. The heat transfer to the portion of the tube above the 

joint is due to radiation and circumferential conduction heat transfer. The heat 

transfer to the portion of the tube underneath the joint is only due to 

circumferential heat transfer as this section is not exposed directly to the incident 

thermal radiation. There is also heat conduction along the tube axially. The axial 

conduction upstream preheats the fluid inducing secondary flow due to natural 

convection. 

As the water is heated from the bottom, it rises and is replaced by water from the 

upper portion inducing unstable stratification due to continuity. However, near 

the upper edge of the tube, the warm and less dense water remains in the upper 

portion inducing stable stratification. Ouzzane and Galanis (2001) numerically 

analyzed a tube with an external longitudinal fin and noted that the 

circumferential distribution of the interfacial heat flux peaked in the area near the 

plate which is consistent with the present experimental observation. They also 

showed that, except for a short distance at the tube's entrance, the energy to the 

water is split unevenly with most coming from the bottom half of the tube. This 

occurs because the warmer fluid accumulates in the top part of the tube cross-

section due to buoyancy. 
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The circumferential tube wall temperature distribution at the middle of the tube is 

shown in Figure 3.2b. The plot shows that the temperature at the top is very 

close to the temperature at the joint at the middle of the tube. The heat transfer 

analysis presented above suggests that the temperature at the joint should be 

higher than that at the top of the tube. For Case I, the temperature at joint of the 

tube is 4.09% higher than that at the top and 51.8% higher than the bottom at the 

lower heater temperature. The temperature at the top was higher by 98.9% 

compared to the bottom of the collector tube. For Case VI, the temperature at 

the joint was higher by 4.14% than the top and 55.6% higher than the bottom. 

The temperature at the top was 115.7% higher than the bottom. Generally, the 

wall temperatures increased with flow rate. As the flow rate changed, the 

difference between the largest and smallest temperatures measured was 16.3% 

at the top, 16.4% at the joint and 11.3% at the bottom. At the heater temperature 

of 400°C, the wall temperature at the joint was 1.64% and 59.4% higher than at 

the top and bottom, respectively, for Case I. For Case V, the temperature at the 

joint was 0.97% and 60.8% higher than the top and bottom, respectively. The 

temperature at the top was 142.3% higher than the bottom at the highest flow 

rate and 152.8% higher at the lowest flow rate. At this heater temperature, the 

results did not indicate a trend with respect to flow rate. The difference between 

the maximum and minimum recorded wall temperatures for the five cases were 

5.07%, 2.82%, and 7.21% for top, joint, and bottom of the collector tube, 

respectively. The wall temperatures were higher when the heater surface was at 

400°C. The increase ranged from 48% to 64.5% at the top of the tube, 44.9% to 
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60.5% at the joint, and 25% to 35.1% at the bottom. The higher top wall 

temperature suggests that the heat transfer to water in the upper portion of the 

tube is reduced. This is due to the formation of stably stratified layer in the upper 

portion of the tube which results in less fluid mixing and hence reduced heat 

transfer. The numerical results of Ouzzane and Galanis (2001) showed that the 

top half of the tube eventually behaves almost isothermally. However, the 

significantly large temperature gradients between the water and tube wall 

observed in the present study suggests that it is very unlikely to have a fluid layer 

in the upper half of the tube. Detailed water temperature measurements inside 

the tube are necessary to understand the actual thermal structure. 

The circumferential wall temperature distribution at the outlet is shown in Figure 

3.2c. The results show that the temperature is highest at the top of the tube and 

decreased gradually toward the bottom for the 300°C experiments. The 

temperature was 19.9% higher at the top than at the joint and 61.6% higher than 

the temperature at the bottom for Case I. For Case VI, these differences 

changed to 23.8%, 1.63% and 33.4%, respectively. The general trend was that 

the wall temperature increased with flow rate. Subsequently, the differences 

between the maximum and minimum temperatures (due to flow rate variation) 

were 19.9%, 41.4%, and 45.3% at the top, joint and outlet, respectively. At the 

higher heater temperature, the wall temperature at the top was higher than the 

temperature at the joint by 24.2% for Case I and 31.6% for Case V. Compared 

to the temperature at the bottom of the collector tube, the temperature at the top 
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was 83.2% and 52.4% for the highest and lowest flow rates, respectively. The 

joint temperature was 27.9% higher than the bottom for the highest flow rate and 

3.98% higher for the lowest flow rate. At the bottom, the wall temperature 

increased with flow rate. However at the other two locations, the relationship 

was not clear. The difference between the largest and smallest wall temperatures 

recorded were 15.2%, 3.17% and 34.7% at the top, joint and bottom, 

respectively. As the heater surface temperature was increased to 400°C, the 

increases in measured wall temperature ranged from 38.2% to 47.3% at the top, 

from 13.5% to 60.8% at the joint and from 25.3% to 33.9% at the bottom. 

This shows that the stable fluid layer at the top causes an additional resistance to 

the heat transfer to the bulk fluid throughout the collector. These results also 

indicate that the heat transfer to the fluid is heavily weighted towards the bottom, 

and also suggests that the water inside the tube is divided into two distinct zones 

comprised of stable and unstable layers. The interaction between the two layers 

and the superposition of the buoyancy-driven convective motions on the mean 

axial flow make the flow field complex. 

Figure 3.3 shows that the average wall heat flux increases as the flow rate 

increases for both heater surface temperatures. Since the heater surface 

temperature was constant, this result implies that there is more radiant exchange 

between the collector and the heater surface at the higher flow rates. These 

observations are consistent with Hobbi (2007). 
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Figure 3.3: Average wall heat fluxes for heater temperatures of 
300°C(»)400°C(o). 

3.3 Mean Velocity 

The mean velocity was computed by averaging the velocity data at each depth 

temporally and spatially. That is, the time series were extracted at each grid point 

for each experimental run. The average velocity was obtained at each grid point 

by time-averaging. The time-averaged velocities at all grid points at a particular 

radial location were then spatially averaged. This provided the spatial-temporal 

averaged velocity at each radial location. Due to particle accumulation on the top 

and bottom walls of the tube, the data in those areas was rendered inadequate. 

Using a threshold image, as described in Section 2.2.1, these and other problem 

areas on the images (due to bubbles, reflections, etc.) were not considered in the 
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analysis. Due to the unavailability of reliable data in these regions, some of the 

resulting profiles are incomplete near the tube walls. 

As mentioned in Chapter 2, the velocity fields inside the collector were measured 

at the two heated conditions (300°C and 400°C heater surface temperatures) and 

an unheated condition. This allows an investigation in the impact of radiant 

heating (solar heating in the actual case) on the flow behaviour inside the 

collector tube. 

3.3.1 Unheated Collector 

The experiments without any applied heat were performed for two orientations of 

the apparatus. For the unheated condition, the velocity fields were measured at 

a section immediately upstream of the collector. Since the flow is developed, the 

velocity profile at this section is expected to be unchanged through and 

downstream of the collector. For the first orientation, the collector tube was setup 

in a way that the flow direction was from west to east. While for the second 

orientation, the collector was rotated by 90° and the flow direction was from north 

to south. The mean velocity profiles at the two collector orientations for all flow 

rates are plotted in Figures 3.4a to 3.4f for cases I to VI, respectively. The 

analytical velocity profile for the laminar flow in a tube or channel has a parabolic 

shape with the maximum velocity along the centreline of the tube (Fox, 2004). 

The results, however, showed that the velocity profiles behave differently with the 
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change in the orientation of the tube. It is observed that when the flow direction 

is towards the east, the maximum velocity is shifted towards the upper half of the 

tube resulting in an asymmetric mean velocity profile across the tube. As the tube 

orientation is changed to south, the maximum velocity location moved closer to, 

but still above, the tube centreline. Also, the peak location moved towards the 

centreline as the flow rate decreased. 

The asymmetry in the profile may be caused by the Coriolis force due to the 

Earth's rotation. Draad and Nieuwstadt (1998) investigated the effect of Coriolis 

forces on the laminar flow in pipes. Through experimental and numerical 

analyses, they concluded that the Coriolis Effect is significant for laminar flow in 

the high Reynolds number range. Using Laser Doppler Velocimetry, they 

observed velocity profiles that had deviated significantly from the theoretical 

parabolic shape despite taking precautions to eliminate all sources of flow 

disturbances. Through perturbation analysis of the continuity and Navier-Stokes 

equations, they showed that the Coriolis forces have an effect in the r- and 9-

directions that must be balanced by a viscous force. As a result, there is 

secondary flow in the radial direction which, by balancing inertial and viscous 

forces, influences the axial velocity. The Ekman number, Ek, relates the viscous 

force to the Coriolis force and is given as: 
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where, v is the kinematic viscosity, Q is the angular velocity of the Earth, D is the 

pipe diameter, and a is the angle between the pipe axis and the Earth's rotation 

axis (Draad and Nieuwstadt, 1998). Using the results of linear perturbation 

analysis that was conducted by Benton (1956), they concluded that the 

secondary flow is very weak but significantly modifies the velocity profile for their 

cases (Ek = 5.23 at high Reynolds number). They also showed that the Coriolis 

effects scale with the Reynolds number. After solving the Navier-Stokes 

equations numerically, they observed axial velocity profiles in the horizontal and 

vertical planes that deviated from the theoretical shape, too. It is important to 

remember that their experiments were for long pipes with a large diameter. They 

suggested that the reason that this phenomenon has not been previously seen 

for smaller diameter pipes using water as the fluid is because the Ekman number 

increases as the pipe diameter decreases which means that the Coriolis effects 

become less significant. 

Based on the approximate values of a for the present experiments, the Ekman 

number was estimated to be 26.3 and 37.2 for east-bounded and south-bounded 

flow cases, respectively. This indicates that the Coriolis forces have relatively 

larger influence on east-bounded flow compared to the south-bounded flow. This 

is also evident from the mean velocity profiles in Figure 3.4 which shows that the 

deviation of the peak velocity from the pipe centerline is more significant for east-

bounded flow compared to the south-bounded flow. 
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The present results show that this phenomenon is also very significant in small 

diameter pipes where the Ekman number is relatively large. In addition to the 

Draad and Nieuwstadt (1998), an asymmetric velocity profile has been observed 

in a square channel at low Reynolds laminar flow by Gajusingh (2006). More 

experiments at several different tube orientations and geometry need to be done 

to further explore this phenomenon. 

Although the solar collectors are installed south facing, the present results 

suggests that the orientation of collector tubes with respect to the flow direction 

would influence the flow behaviour inside the collector tube and could influence 

the collector's performance. 
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Figure 3.4: Non-dimensional unheated mean velocity profiles for two different 
pipe orientations, (a) Case I, (b) Case II, (c) Case III, (d) Case IV, (e) Case V, 
(f) Case VI. East-bounded (Solid Line), South-bounded (Dashed Line). The 

location of the plate-tube joint is shown with the dotted line. 

3.3.2 Heated Collector 

The velocity measurements for the heated collector were performed at the exit of 

the collector for the same flow rates as for the unheated condition and at heater 

surface temperatures of 300°C and 400°C. All experiments for the heated 

condition were performed with the north-south orientation of the collector. The 

mean velocity profiles for both heating conditions are plotted in Figures 3.5a to 

3.5f for cases I to VI, respectively. The corresponding mean velocity profiles for 

the unheated condition are also plotted in the figures for comparison. Note that 

the case at the lowest flow rate at a heater surface temperature of 400°C was 
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omitted because water in the tube was evaporating which resulted in 

uncontrollable bubbles on the tube's surface which did not allow correct and 

reliable data to be obtained. This scenario is not realistic for solar water heating 

either. 

The mean velocity profiles followed a similar trend. The velocity was generally 

higher for the 400°C case compared to the 300°C case. The shape of the profiles 

suggest that there is considerable buoyancy induced mixing for the heated 

condition. When the collector is heated, the peak velocity is shifted towards the 

bottom half of the tube. The results indicate that the location of the velocity peak 

is closer to the joint of collector plate and tube. Ouzzane and Galanis (2001) 

numerically showed that when a horizontal tube with an external longitudinal fin 

is heated from the top and insulated at the bottom, more heat is being transferred 

to the fluid in the bottom part of the tube compared to the top, after an initial entry 

length. The peak interfacial heat flux was found closer to the location of fin. 
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Figure 3.5: Mean velocity profiles for unheated and heated conditions, (a) Case I, 
(b) Case II, (c) Case III, (d) Case IV, (e) Case V, (f) Case VI. Unheated condition 
(Solid Line), heated condition at 300°C (Dashed Line), heated condition at 400°C 
(Dash-dotted line). The location of pipe-plate joint is shown with the dotted line. 
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When examined in sequence, Figures 3.5 (a) to (f) show the development of the 

flow over the length of the collector tube. Consider the non-dimensional axial 

location Z as given by: 

Z = 
DRePr 

(3.12) 

where z is the axial location of the measurements, D, is the tube diameter, Re, is 

the Reynolds number, and Pr is the Prandtl number (Ouzzane and Galanis, 

2001). The values of Z for the given cases are listed in Table 3.1. 

Table 3.1: Non-Dimensional Length for the Two Heating Conditions 

Case 

I 

II 

III 

IV 

V 

VI 

Z 

300°C 

0.01399 

0.01748 

0.02212 

0.03119 

0.04799 

0.09824 

400°C 

0.01414 

0.01761 

0.02240 

0.03186 

0.04861 

XX 
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The results in Table 3.1 show that Z increases with the decrease in the flow rate. 

This indicates a longer development length at lower flow rates. The comparison 

of the changes in the general shape of the profile from high to low flow rates 

(Case I to VI) in sequence is similar to seeing how the flow develops along the 

tube. As an example, for Case VI, the flow would have had an axial velocity 

profile similar in shape to the first case close to the entrance. As the flow 

continues to move downstream, the velocity profiles will shift and adopt the 

profiles of the later cases until they have the shape of the fully developed profile. 

Awareness of how the shape changes may become important when developing 

mixing strategies because the fully-developed condition may not be reached in 

the flat plate collectors that are available commercially. 

Table 3.2 shows the comparison of the peak velocity magnitudes for heated and 

unheated cases. The results show that at the higher heater surface temperature, 

the difference in the peak velocity magnitude between heated and unheated 

cases ranged from 1.82% to 18.17%. With ascending flow rate, the percent 

difference increased to a maximum (Case III) and then decreased. This 

suggests that the added energy (heat) is primarily used to accelerate the flow 

and little energy is used for mixing at the higher flow rates. At a lower flow rate, 

the reverse occurred. That is, more energy is being used to mix the fluid in the 

pipe. The 300°C heating case shows a similar trend where the difference in peak 

velocities ranged from -0.58% to 14.65%. At the lowest flow rate (Case VI), 

however, the difference in peak velocity was 43.44%. The cause of this large 

90 



difference is speculated to be due to Case VI being the only case where the 

secondary flow intensity reached the fully-developed condition upstream from 

where the measurements were taken. Ouzzane and Galanis (2001) presented 

the axial evolution of the secondary flow where they illustrated that the 

magnitude of the secondary flow velocity increases from the lowest at the tube 

entrance to a maximum at a downstream location and then reduces to the fully-

developed condition at a location further downstream. In the first five cases, it is 

thought that the fully-developed region would require a longer collector. 

Considering that there is not any data for this flow rate at the 400°C heater 

temperature because the water started to evaporate, it is reasoned that Case VI 

reached fully-developed very early in the collector. Since it was fully-developed, 

the additional heating of the fluid until the measurement section caused the water 

to accelerate to a significantly higher velocity compared to the unheated 

condition. 

Table 3.2: Comparison of Heated to Unheated Peak Velocities 

Case 

I 
II 
III 
IV 
V 
VI 

Percent Difference in 
Peak Velocity [%] 

300°C 
-0.58 
5.35 
14.65 
4.23 
-0.23 
43.44 

400°C 
1.82 
8.29 
18.17 
15.17 
13.01 
XX 

The difference in peak velocity magnitude between the 300°C and 400°C cases 

at different flow rates are presented in Table 3.2. As expected, the velocities 
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were larger for the higher heating condition. The peak velocity magnitude 

increased with the decrease in the flow rate. It increased from 2.4% for Case I to 

15.2% for Case V. 

Table 3.3: Difference in Peak Velocities for the 300°C and 400°C Heating 
Conditions 

Case 

I 
II 
III 
IV 
V 

Nominal 
Difference 

[cm/s] 
0.24 
0.28 
0.33 
0.62 
0.47 

Percent 
Difference 

[%] 
2.4 
3.2 
4.3 
12.9 
15.2 

3.4 Heat Transfer Analysis 

As the above results indicate that the thermo-fluid behaviour inside the collector 

tube is complex which involves the superposition of buoyancy driven flow on the 

mean shear flow. Thus, the mode of heat transfer from collector's wall to the fluid 

is mixed convection which involves both forced and free convection. Therefore, it 

is important to quantify the contribution of forced and free convection modes to 

improve the understanding of the fundamental heat transfer process inside the 

collector. 

The Grashof number represents the ratio of the buoyancy forces to the viscous 

forces acting on the fluid. Its role in free convection is analogous to the role that 

Reynolds number has in forced convection in determining the transition from 
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laminar to turbulent flow. The parameter Gr/Re2 represents the ratio of 

buoyancy forces to inertial forces. It can be used to determine the relative 

importance of free convection. When Gr/Re2 «1 , free and force convection are 

of comparable magnitudes. If Gr/Re2 « 1 , the forced convection is dominant. 

Free convection heat transfer is dominant when Gr/Re2 » 1 . In this case, the 

Nusselt number is a function of the Grashof number and Prandtl number (Ozisik, 

1985). The Grashof number was computed using Equation 3.6. The values of 

Grashof number for both heated conditions are presented in Figure 3.6 for cases 

I to VI. The Grashof numbers ranged between 3.25x106 and 8.14><106. The ratio 

Gr/Re2 ranged from 3.57 to 162.44, indicating that free convection effects are 

dominant. 
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Figure 3.6: Grashof number versus Reynolds number for heater temperatures of 
300°C(«)400°C(o). 

.a 
E 
3 
o 
w 

<5 

• 

93 



The Rayleigh number is a dimensionless parameter that relates buoyant and 

viscous forces acting on the fluid. When the Rayleigh number is sufficiently 

small, viscous forces are more dominant than the buoyancy forces and any 

disturbance due to the buoyancy are damped by the viscous forces. When the 

Rayleigh number exceeds a critical value of 1708, disturbances in the flow are 

not damped out but rather propagate and develop into a quasi-steady motion. 

The transition to fully turbulent free convection occurs when the Rayleigh number 

is of the order of 106. The Rayleigh number is calculated using Equation 3.9. 

The values of Rayleigh number for the two heat conditions are plotted in Figure 

3.7. For both conditions, the Rayleigh number is of the order of 107 which confirm 

that the fluid inside the collector is undergoing turbulent free convection. 
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Figure 3.7: Rayleigh number versus Reynolds number for heater temperatures of 
300°C (•) 400°C (o). 
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The Richardson number is another way to characterize the importance of 

buoyancy effects relative to inertia effects in a flow. It also quantifies the relative 

magnitudes of turbulence produced by buoyancy to the turbulence produced by 

the mean shear. It can be expressed as: 

«-^4 (3.13) 
p u 

where p is the density, g is the gravitational constant, h is a characteristic length 

and u is the flow velocity (Cebeci, 1984). Typically, when Ri » 1, forced 

convection is negligible compared to natural convection. Calculated using 

Equation 3.10, the Richardson number is plotted against the Reynolds number in 

Figure 3.8. The result shows that as the Reynolds number decreased, Ri 

increased from approximately 4 to 160 at 400°C, and from approximately 6 to 60 

at 300°C. It shows that in all cases, the buoyancy effects are dominant compared 

to the inertia forces. In other words, the turbulence produced by the mean shear 

is negligible and the main source of turbulence is buoyancy. If the buoyancy 

forces are stronger, the turbulence produced by the mean shear is utilized by 

working against the buoyancy forces (Turner, 1973). That is, buoyancy damps 

the shear produced turbulence. Hobbi (2007) studied the impact of heat 

enhancement devices on the performance of the flat-plate solar collector. He 

found no improvement in the performance of collector by inserting the heat 

enhancement devices. He concluded that due to the large values of Richardson 

number in the collector, turbulence produced by the mean shear was damped by 
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the strong buoyancy forces and thus, the heat enhancement devices which are 

based on enhancing the shear-produced turbulence are ineffective in solar 

collectors. The results in Figure 3.8 also show that the damping of shear-

produced turbulence is very significant at lower flow rates. 

180 

160 

140 

_ 120 

£ 
z 100 
c 
o 
to 

-5 80 
03 

* 60 

40 

20 

0 100 200 300 400 500 600 700 800 900 1000 1100 
Reynolds Number 

Figure 3.8: Richardson number versus Reynolds number for heater temperatures 
of 300°C (•) 400°C (o). 

The Nusselt number represents the ratio of heat transfer by convection to heat 

transfer by conduction across a fluid layer. A Nusselt number of unity means that 

the heat transfer is purely through conduction. The Nusselt number is calculated 

using Equation 3.5. In Figure 3.9, the mean Nusselt number is plotted against 

Reynolds number for each experiment. It suggests that there is significant 

conduction between the fluid layers at the lowest flow rate. Unfortunately, since 
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the heat transfer problem in this work is unique, these results cannot be 

compared to other experimental studies. Other studies have dealt with similar 

geometry (horizontal pipes) but with different heating conditions (isothermally, 

uniform and non-uniform constant heat flux) or flow conditions (higher Reynolds 

numbers in the forced convection range). 

T 1 1 1 1 1 1 1 1 = 1 

• o 

o 

o • 

• ° 
o 

J I I I I I I I I I 

' 0 100 200 300 400 500 600 700 800 900 1000 1100 
Reynolds Number 

Figure 3.9: Nusselt number versus Reynolds number for heater temperatures of 
300°C(«)400°C(o). 

3.5 Turbulent Velocity Characteristics 

To find the turbulent characteristics for each experiment, the turbulent velocity 

fields were calculated. The turbulent velocity was calculated by subtracting the 

time-averaged mean velocity from the instantaneous velocity at each grid point. 
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The turbulent velocity data was then used to compute different turbulent 

properties. These properties were averaged at each location in the vertical plane 

along the radius of the tube. It must be noted that particle accumulation on the 

tube walls resulted in some data being unusable. Subsequently, the data near 

the walls in the profiles is missing. 

The profiles of root-mean-square (RMS) horizontal turbulent velocity for cases I 

to VI are plotted in Figures 3.10 (a) to (f), respectively, for the heated and 

unheated conditions. Generally, the profiles increase to a peak near the tube 

walls and recede to a near-constant magnitude in the centre region. Again, due 

to the particle accumulation, this shape was not seen for all cases. Therefore, 

comparisons with respect to the location and magnitude of the peak cannot be 

made. The turbulent RMS velocity for 400°C heating condition tended to be 

larger in magnitude compared to the 300°C heating condition; the only exception 

is Case III. Similarly, the first and second cases are the only ones where the 

unheated condition had a larger magnitude than the 300°C condition. Only the 

unheated condition showed any possible relationship with respect to mass flow 

rate: magnitude increases with mass flow rate, but Case I did not fit this trend. 

At the higher flow rate (Case I), the magnitude of horizontal turbulent velocity at 

400°C is significantly large in the lower portion of the collector tube compared to 

other conditions, whereas the horizontal turbulent velocity magnitude in the upper 

portion of the tube is higher for the unheated condition. The velocity magnitude at 
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300°C is low and almost constant over the depth. The results for the unheated 

condition for Case II did not have a well pronounced constant region compared to 

the other unheated cases. There was more variation amongst the depths. As 

mentioned, Case III was the only case where the magnitude of the RMS 

horizontal turbulent velocity at the higher heating condition was less than the 

magnitude for the lower heating condition. Also, there are two other things 

noticed. First, the 300°C results showed a pronounced minimum near the tube 

centreline. The second observation is that the average magnitude in the 

constant region varied significantly for the three heating conditions. The other 

cases show similarity in magnitude for the centre region. It's only Case IV where 

this disparity is noticed again where the 400°C results are dramatically larger 

than the other two cases. At the lower flow rate (Case V), the profiles are similar 

for heated and unheated condition; however, the magnitudes are different. In 

Case VI, again, a definite minimum value is shown for the 300°C condition. 

Comparison of Figure 3.10 (a) and (e) shows that the magnitude of horizontal 

turbulent velocity in the upper and lower portions of the tube, decreased with the 

decrease in flow rate. This could be due to the reason that as the flow rate 

decreases, the buoyancy effects become more dominant and the turbulence is 

utilized in working against the buoyancy. 
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Figure 3.10: The radial profiles of the RMS Horizontal Turbulent Velocity for the 
unheated and heated conditions, (a) Case I, (b) Case II, (c) Case III, (d) Case IV, 

(e) Case V, (f) Case VI. Unheated (o), 300°C (o), 400°C (A). The location of 
plate-tube joint is shown with the solid line. 
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The profiles of RMS vertical turbulent velocity are plotted in Figure 3.11 (a) 

through (f) for Cases I to VI, respectively, at the heated and unheated conditions. 

The profiles appear to have a similar shape as the horizontal RMS turbulent 

velocity where the peak magnitudes are observed near the tube walls and a near 

constant magnitude in the centre region of the cross-section. The magnitude of 

the RMS vertical velocity increased with the tube heating. In the centre region, 

the variation in magnitude along the depths was less than 1 cm/s for all cases, 

often much less. The vertical turbulent velocity fluctuations are expected to be 

lower in magnitude near the upper edge of the tube due to the formation of stably 

stratified layer. Due to the particle accumulation, no data is available but the 

profiles show a decreasing trend as they approach the upper layer. 
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Figure 3.11: The radial profiles of the RMS Vertical Turbulent Velocity for the 
unheated and heated conditions, (a) Case I, (b) Case II, (c) Case III, (d) Case IV, 

(e) Case V, (f) Case VI. Unheated (n), 300°C (o), 400°C (A). The location of 
plate-tube joint is shown with the solid line. 
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Chapter 4 - Summary and Conclusion 

Solar water heaters have tremendous potential in Canada. In addition to 

providing hot water for domestic applications, solar energy use reduces the 

dependence on conventional, non-renewable energy sources. However, more 

research must be conducted in order to improve their performance in cold 

climates. Also, individual components, like the collector, have not been studied 

in depth. Rather, the overall system design and performance have been given 

the most attention. The collector is a vital component of the solar water heating 

system because the actual energy conversion occurs inside of it. The work in 

this thesis examined the thermofluid behaviour within a flat-plate collector. 

Two dimensional velocity fields were measured inside the collector tube using 

Particle Image Velocimetry (PIV) and temperature measurements were made 

using thermocouples. Special modifications have been made to the collector tube 

to allow optical access to enable PIV measurements. The measurements were 

performed for one unheated and two heated conditions at six flow rates that 

ranged from 0.00113 kg/s to 0.00781 kg/s. The results showed that the 

orientation of the collector tube with respect to the Earth's axis influences the 

overall flow behaviour inside the collector. While the shape of the mean axial 

velocity profile remained parabolic, the location of the maximum velocity changed 

with the orientation of the tube and stayed above the tube's centreline. The 

deviation of the peak from the centerline increased with the decrease in the 

Ekman number and was more significant at the higher flow rates. The present 
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results provide the first evidence that the Coriolis forces have a significant effect 

on low Reynolds number laminar flow in small diameter pipes. It was concluded 

that the orientation of collector tubes with respect to the flow direction would 

influence the flow behaviour inside the collector tube and could influence the 

collector's performance. 

When the collector is heated, more heat to be transferred to the water in the 

lower portion of the tube because of the plate. Consequently, the peak velocity 

was in the bottom half of the tube because the axial component of the buoyancy 

force accelerates the water. As the water is heated, it rises along the tube wall as 

its density decreases. Eventually, a stably stratified layer in the upper portion of 

the tube is formed. 

The circumferential wall temperature of the collector at the inlet, middle and 

outlet were measured during the experiments. The circumferential temperature 

distribution changes along the tube. At the inlet, the temperature at the plate-tube 

joint is higher due to the higher heat flux on the plate and circumferential heat 

conduction. At a downstream location, the temperature at the top of the tube 

overtakes the temperature at the joint which indicates the presence of a stably 

stratified region that reduces in the amount of heat transferred to the fluid in this 

region. Instead, heat is transferred circumferentially through conduction so that 

more heat reaches the bottom part of the tube, which always has the lowest 

temperature. The heat transfer analysis shows that free convection is the 
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dominant mode of heat transfer in the collector tube as indicated by the 

Richardson number ranging from 3.57 to 162.44. Rayleigh numbers on the order 

of 107 signify that there is turbulent free convection within the collector tube. 

4.1 Future Work 

This work is focused on the thermofluid behaviour within a flat-plate collector. 

With very little research available, a lot of work must be done in order to improve 

the understanding of the thermofluid behaviour inside the collector and to use 

this knowledge to improve their performance. Some specific issues that should 

be studied in future are described below: 

• In the present experiments, the collector had a slight incline to help 

remove air bubbles. It is worth investigating the effect of an increase in the 

inclination angle on the thermofluid behaviour inside the collector. 

Specifically, determining if it would affect the stably stratified layer. The 

focus should be on collector angles that are used commercially. 

• In the present experiments, the outside wall temperature of the collector 

tube was measured at three circumferential locations. To help understand 

the development of the stably stratified region, the temperature 

measurements inside of the tube at several spatial locations should be 

taken at different axial locations. 
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• The affect that the flow orientation has on the velocity profile for low 

Reynolds number laminar flow in tubes with small diameters needs to be 

further studied. Specifically, what impact that the Coriolis effects due to 

the Earth's rotation has on the flow behaviour inside the collector tube and 

whether it could be exploited to improve the collector's performance. 

• Using the PIV technique, the effect of the heat transfer enhancement 

devices that Hobbi (2007) used can be investigated to further the 

understanding of their affect. 

4.2 Contribution 

The work of this thesis relates to the thermofluid behaviour within flat-plate 

collectors used for solar water heating. This is an area where very little work has 

been done previously. Most of the other studies are focussed on thermosyphonic 

systems which have limited potential in colder climates like Canada. There is little 

available regarding tubes heated non-uniformly from above with or without a 

longitudinal fin or a flat-plate. This work is specific in filling the current void of 

experimental work that focuses on the flow characteristics and wall temperature 

development along the length of the collector tube. The present study provided 

the first experimental measurements of the flow field inside a flat-plate solar 

collector tube. The impact of the radiant heating on the flow structure inside the 

flat-plate collector tube was also shown for the first time. 
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