Efficient Algorithm and Architecture for Implementation of Multiplier Circuits in Modern FPGAs

Jacques Laurent Athow

Department of Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for
Degree of Master of Applied Science
Concordia University, Montréal, Canada

November 2008

© Jacques L Athow, 2008
NOTICE:

The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.
ABSTRACT

Efficient Algorithm and Architecture for Implementation of Multiplier Circuits in Modern FPGAs

Jacques L Athrow

High speed multiplication in Field Programmable Gate Arrays is often performed either using logic cells or with built-in DSP blocks. The latter provides the highest performance for arithmetic operations while being also optimized in terms of power and area utilization. Scalability of input operands is limited to that of a single DSP block and the current CAD tools provide little help when the designer needs to build larger arithmetic blocks. The present thesis proposes an effective approach to the problem of building large integer multipliers out of smaller ones by giving two algorithms to the system designer, for a given FPGA technology. Large word length is required in applications such as cryptography and video processing. The first proposed algorithm partitions large input multipliers into an architecture-aware design. The second algorithm then places the generated design in an optimal layout minimizing interconnect delay. The thesis concludes with simulation and hardware generated data to support the proposed algorithms.
I would like to take the opportunity and thank everyone that made my research possible, which culminated with this thesis. In particular, I am indebted to my professor Asim who always encouraged me. He guided me during my thesis with his useful insight in the field of FPGAs and low level interconnects. He would always make me think out-of-the-box with his no-nonsense approach. To my many professors that I had throughout my stay at Concordia University including Professors Tahar, Amer, Lam, the late Gohary and Ted Obuchowicz, without whom I would never have known the world of VHDL. Indirectly to Peter Alfke and Ray Andraka for their work and guidance on the FPGA usenet forum. To the staff at the AITS helpdesk and the librarians at the Webster library. Finally, to my parents who initially made everything possible and were always there to provide moral support.
TABLE OF CONTENTS

LIST OF FIGURES .. ix
LIST OF TABLES .. xii

1. INTRODUCTION ... 1
 1.1 Contribution ... 3
 1.2 Thesis Organization .. 4

2 Field Programmable Gate Arrays ... 5
 2.1 Basic Multiplication .. 8

3 FPGA Multiplication Algorithms .. 10
 3.1 Serial-Parallel Signed Multiplier ... 10
 3.2 Carry Save Array Multiplier ... 11
 3.3 Constant Coefficient Multiplier .. 12
 3.4 Partial Product Look-Up Table Multiplier 13
 3.5 Partition Multiplication Algorithm (Shuli-Gao et al) 14
 3.6 Summary of Multiplication Algorithms 21

4 Xilinx Virtex Family FPGA .. 22
 4.1 Logic Cells ... 23
 4.2 Virtex Hardware Arithmetic .. 25
 4.3 Xilinx DSP48 Arithmetic Block .. 27
 4.4 Interconnect .. 31
 4.5 Congestion .. 33
 4.6 Summary of Techniques .. 33

5 Partition Algorithm for Virtex-4 FPGA 35
 5.1 Details of Operation ... 36
6.5.1 Area ... 69
6.5.2 Delay ... 70
6.5.3 Power... 70
6.6 Proposed Placement Algorithm ... 71
6.6.1 Area constraints formulation ... 72
6.6.2 Congestion Factor ... 74
6.6.3 Objective function .. 75
6.6.4 Graph theory ... 75
6.7 Proposed Placement Algorithm ... 76
6.8 Results .. 79
6.8.1 Combinational path delay .. 80
6.8.2 Virtex-4 logic slice utilization for placed design 81
6.8.3 Place-and-route tool runtime ... 82
6.9 Summary ... 83
7 Testing strategy ... 84
7.1 Behavioural Testing ... 85
7.2 Timing Analysis .. 86
7.3 Placement Algorithm Testing .. 86
8 Conclusion and future work ... 87
8.1 Partition Algorithm ... 87
8.2 Placement Algorithm .. 87
8.3 Conclusion ... 88
8.4 Future Work .. 89
REFERENCES ... 90
APPENDIX A, VHDL MODELS ... 93
LIST OF FIGURES

Figure 2.1 Current FPGA technologies and trend towards built-in DSP blocks 6
Figure 2.2 Virtex Family FPGA with amount of DSP blocks .. 7
Figure 3.1 Serial Parallel N-bit multiplier architecture .. 11
Figure 3.2 Carry Save Array multiplier architecture ... 12
Figure 3.3 N-bit constant coefficient unsigned multiplier .. 13
Figure 3.4 Architecture for Partial-Product Look-up Multiplier using 6bits LUT 14
Figure 3.5 Long-Integer Multiplication Decomposition according to [4] 16
Figure 3.6 Sequence of addition operation for algorithm [4] when m is even and odd .. 19
Figure 3.7 Graph of gate and interconnect (wire) delay versus technology for Virtex FPGA for a 16x2bit unsigned multiplier ... 21
Figure 4.1 Trend for Xilinx FPGA during past 16 years .. 23
Figure 4.2 Xilinx FPGA logic cell evolution during past 15 years 25
Figure 4.3 Hardware dedicated for arithmetic operations in Virtex FPGA 26
Figure 4.4 Internal view of Virtex-4 DSP48 tile (block) [15] ... 28
Figure 4.5 DSP48 slice to CLB area ratio, as shown in Xilinx FPGAEDITOR 28
Figure 4.6 Different interconnect classes found in the Virtex family of FPGA [19] . . . 32
Figure 5.1 Technology mapping of [4] into proposed architecture for a 68bits unsigned multiplier .. 37
Figure 5.2 DSP48 tile internal configuration ... 38
Figure 5.3 Internal view of Arithmetic Cell A block ... 40
Figure 5.4 Internal view of Arithmetic Cell B block ... 41
Figure 5.5 Internal view of Cascade Register block ... 41
Figure 5.6 Long-integer 68x68bit multiplier generated by proposed algorithm43
Figure 5.7 Area-Delay product for non-pipeline multipliers............................47
Figure 5.8 Combinational path delay for different sized inputs49
Figure 5.9 Amount of Virtex-4 slices used against different sized inputs50
Figure 5.10 Number of DSP48 slices against different sized inputs51
Figure 5.11 Area Delay product (AT^2) performance measure52
Figure 5.12 Power dissipation for different sized inputs53
Figure 5.13 Routing performance degradation for higher word length54
Figure 5.14 Layout of placed 136x136bit multiplier circuit inside a Virtex-4 FX140 FPGA ..55
Figure 6.1 Design using proposed set of algorithm ..59
Figure 6.2 Example of floorplan generated using HPLAN64
Figure 6.3 Usage of Relative Location in hardware descriptive language67
Figure 6.4 Internal logic slice arrangement using RLOC attribute68
Figure 6.4 Hierarchy representation using H_SET and HU_SET69
Figure 6.5 ACA, ACB, CR Macro blocks internal placement72
Figure 6.6 Macro blocks physical dimensions ..74
Figure 6.7 51Bit Multiplier graph ..76
Figure 6.8 51Bit multiplier physical layout graph, as generated by proposed partition algorithm ..79
Figure 6.9 Combinational path delay for designs initially placed using proposed placement algorithm ...80
Figure 6.10 Interconnect delay in placed multiplier designs81
Figure 6.11 Logic slice utilization for placed multipliers designs82
Figure 6.12 Place-and-route run-time for different multiplier designs83
Figure 7.1 Testing hierarchy for multiplier partition algorithm 84

Figure 7.2 Test setup for multiplier designs .. 85
LIST OF TABLES

Table 1.1 Performance of HDL, Coregen, Algorithm [1] and Proposed Algorithm ..2
Table 4.1 Valid opmode for dsp48 block, with respect to z multiplexer [18]............29
Table 4.2 Valid opmode for dsp48 block, with respect to x and y multiplexer [19]. 30
Table 4.3 Carryinsel control bits with corresponding opmode operation [20]........30
Table 5.1 OPMODE/CARRY configuration bits for Slice0 and Slice139
Table 5.2 Performance results for combinational delay, non-pipelined designs46
Table 5.3 Performance results for area utilization, non-pipelined designs47
1. INTRODUCTION

Binary multiplication operations are at the center of many system level blocks used in high performance applications. The efficiency of the operation is crucial in order to have an edge over the competition. As an example, one of the latest television standard developed, the high-definition television (HDTV) is based on the MPEG-2 compression algorithm [1]. This works at a lower level with Discrete Cosine Transforms (DCT) and Inverse DCTs which are bottom-line Fast Fourier Transform (FFT) operations [2]. The performance of FFT [3] is measured by the number of multiplication and addition operations per second. The higher the number, the higher the amount of frame compressed in unit time, hence a better quality. An HD-DVD recorder built around an efficient MPEG compression unit will generally perform better than one made up of conventional system blocks. Other applications of long integer multipliers include cryptography and hardware accelerator for software mathematic packages and algorithms.

Presently there is a lack of Computer Aided Design (CAD) tools available to the system designer, which solve the problem of creating high-performing long-word multiplier circuits in Field Programmable Gate Array chips (FPGA). Current solutions include using the multiplication operator in Hardware Descriptive Languages (HDL) or using CAD applications such as Xilinx COREGenerator, to generate pre-built netlist files. Both solutions have limitations; using the VHDL multiplication operator will request from the HDL synthesizer the corresponding netlist. In most cases, the generated multiplier will not be based on high performance arithmetic blocks.
available in the FPGA or will be un-pipelined. The current COREGenerator software has limitation in terms of size of input operands allowed and is constrained to a maximum of 64 bits. The following table summarizes the performance of various methodologies available to implement unsigned multipliers.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Frequency</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>HIGH</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Pipelining</td>
<td>LIMITED</td>
<td>OPTIMUM</td>
<td>OPTIMUM</td>
<td>OPTIMUM</td>
</tr>
<tr>
<td>Maximum Word Width</td>
<td>UNLIMITED</td>
<td>64 Bits</td>
<td>UNLIMITED</td>
<td>UNLIMITED</td>
</tr>
</tbody>
</table>

The focus of this thesis is the implementation of unsigned long-word hardware multipliers more specifically using Xilinx Field Programmable Gate Array (FPGA) chips. As shown in Table 1.1, the proposed algorithm improves the generic algorithm [4] by increasing performance in terms of maximum frequency of operation. The size of the largest multiplier which can be implemented is limited only by the size of the FPGA, in terms of logic cells and arithmetic blocks used. The proposed partitioning algorithm thus increases utilization of high performance Digital Signal Processing (DSP) blocks available in Xilinx FPGA chips by breaking down long word operands into small subsets and performing multiplications on them.
1.1 Contribution

This thesis presents two algorithms which will help a system designer develop high performance unsigned long-integer word multiplier using Xilinx Virtex-4 family of FPGA. The first proposed algorithm [7] shows how to adapt the Virtex-4 architecture, in particular, DSP48 blocks, to the generic partition multiplier algorithm presented by Shuli Gao et al [4]. A second algorithm [8] further improves solutions generated by the partition algorithm by addressing the problem of placement associated with macro cells used by the proposed partition algorithm and results in an optimal arrangement reducing power, delay or area. The algorithms presented here have been verified for functionality and increase in performance. Algorithms are presented as high-level C++ source code.
1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces Field Programmable Gate Array technology along with a simple multiplication procedure. In Chapter 3, multiplication algorithms that are optimized for FPGA architectures are presented while Chapter 4 gives details about the architecture and arithmetic speed-up techniques available in the Xilinx Virtex FPGA. Chapter 5 elaborates on the proposed partition algorithm which is the central part of the thesis. Furthermore, Chapter 6 gives a new placement algorithm that solves the problem associated with the floorplanning of large multiplier circuits in modern FPGA. Chapter 7 demonstrates how verification was done and how results were obtained. Finally, Chapter 8 concludes the thesis and offers directions for future work.
2 FIELD PROGRAMMABLE GATE ARRAYS

FPGA devices provide an ideal platform to design and test digital systems without the hassle associated with fabrication usually required for gate arrays and Application Specific Integrated Circuits (ASIC) technologies. For a long time though, FPGAs were limited to system clocks not exceeding a few hundreds megahertz but today, with the advent of smaller process technologies, a well pipelined design can go beyond the 400MHz boundary while arithmetic operations such as multiplication can easily reach 550MHz on the latest FPGA generation. In order to achieve the half Gigahertz level, FPGA designers resorted to custom sub-circuits built on the same FPGA die. These low level blocks are optimized for arithmetic operations (DSP) and data processing (microprocessor). The algorithm presented in this thesis employs arithmetic blocks, more precisely Xilinx DSP48, to perform long word multiplication in hardware.

Initially, an analysis of FPGA technologies was performed with the conclusion that FPGA manufacturers had started integrating dedicated and highly optimized sub-circuits into FPGA chips. This trend, which is shown in Figure 2.1, is due to the fact that smaller process technology allows for a denser FPGA and the list of practical innovations includes having high performance application-specific blocks on-chip.
Being on the same hardware support also provides the designer with the most flexible, performing, cost effective, space and power efficient solution. A microprocessor built in the FPGA chip would allow an optimal placement of the support circuitry while incurring the least amount of delay and would not require any area from the printed circuit board. As for power consumption, the microprocessor being a standard cell built using the latest process technology would give reasonable energy utilization. The choice of specialized circuits built in FPGA chips offered by manufactures includes DSP blocks, high-speed I/O, embedded memory and microprocessor blocks.

Figure 2.2 shows the trend in DSP technology for the Xilinx Virtex FPGA family across 4 generations. It clearly indicates that more DSP blocks are provided in the latest FPGA along with rising functionality and performance. From Figure 2.1, it can also be said that generally, the inclusion of these DSP blocks is done by most FPGA manufactures. Thus, it is safe to develop a suitable algorithm to solve the problem of long-word unsigned integer multiplication.
Figure 2.2 Virtex Family FPGA with amount of DSP blocks
2.1 Basic Multiplication

Multiplication is fundamentally based on a sequence of addition operations. We shall define for the purpose of explanation three positive integer variables: X (Multiplicand), Y (Multiplier) and Z (Result).

<table>
<thead>
<tr>
<th>General Multiplication Using Iterated Summation</th>
<th>Decimal Long Multiplication</th>
<th>Binary Long Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = X \times Y$</td>
<td>1234567</td>
<td>101010</td>
</tr>
<tr>
<td>$Z = 0$ if $Y = 0$ or $X = 0$, $Z = X$ if $Y = 1$</td>
<td>$890 \times$</td>
<td>$010 \times$</td>
</tr>
<tr>
<td>$Z = X + \ldots X + X, Y$ times</td>
<td>0000000000</td>
<td>0000000000</td>
</tr>
<tr>
<td>$Z = \sum_{i} X$</td>
<td>0111111030</td>
<td>0001010100</td>
</tr>
<tr>
<td></td>
<td>0987653600</td>
<td>00000000000</td>
</tr>
<tr>
<td></td>
<td>1098764630</td>
<td>0001010100</td>
</tr>
</tbody>
</table>

One way to achieve multiplication is by iterating Y times the summation of X with itself, keeping along the way the running sums of previous steps. The time complexity of such an algorithm is N, meaning that N additions are required before a valid result is obtained. Another approach is to perform a series of base multiplications and additions. The latter is less efficient requiring the knowledge of base multiplication and powers. This is also known as the long multiplication method with time complexity of $n \log(n)$. With the advent of binary computers though, it became easy to implement long multiplication algorithm in hardware. The performance was also better since multiplying by the binary base is a left shift operation and the multiplication itself results in either the operand or zero. Hence the time complexity reduces to only $\log(n)$ additions. This is an improvement over the iterated addition multiplication.
The proposed partition algorithm is based on the large-integer multiplication algorithm presented by Shuli Gao et al [4]. Presented here is an extension of the algorithm with details about an efficient technology mapping using DSP48 blocks. The placement problem which arises with the proposed partition algorithm is also solved with a greedy algorithm where area and delay are used as objective functions.
3 FPGA MULTIPLICATION ALGORITHMS

Different techniques for integer multiplication in FPGA exist in literature. We will investigate only those that are required for a good understanding of the proposed algorithm as well as to provide basis for comparison since the presented architectures in the examples are all designed for FPGA technologies. Serial and array based hardware multipliers are simple algorithms that fit well FPGA implementations. The regular layout and constant amount of routing give reasonable gate delays. Moreover, specific FPGA structures such as look-up tables were initially used to accelerate multiplication operations and are based on the concept of long-hand multiplication.

3.1 Serial-Parallel Signed Multiplier

The serial-parallel signed multiplier offers a compact implementation of the shift-and-add algorithm with very little combinational path delay. Figure 3.1 shows the regularity of the design together with little amount of interconnection between adjacent modules which allows a simple forward FPGA implementation. The system consists of parallel inputs for the multiplicand part which drive a wide bit-multiplier implemented as AND gates. This eventually feeds the first operand of cascaded Carry Save Adder (CSA) cells. The sign-extended multiplier operand is furthermore applied serially to the other input of the serial adder. The final product is obtained after m+n clock cycles, m and n being the size of the input operands.
3.2 Carry Save Array Multiplier

The Carry Save Array (CSA) multiplier [7], as shown in Figure 3.2, is based on the carry save adder architecture where carry bits are propagated down the array instead of being rippled horizontally to adjacent adder cells. In principle, CSA multipliers include extra AND gates at the input of the parallel adder to create partial product words. The adder which consists of Full-Adder (FA) and Half-Adder (HA) compresses further the information into carries and sums. For each partial product row, bits are processed independently and in O(1). The final multiplication row is summed using a carry ripple adder. An FPGA implementation of a CSA multiplier involves the use of cells laid as a regular structured parallelogram. For an N x N multiplier, where N is the size of the input operands, the design is in O(n^2) cells in area. CSA multipliers have better timing characteristics compared to the classical ripple carry array multiplier with a decrease of 33% in delay.
3. 3 Constant Coefficient Multiplier

In [9], an unsigned binary multiplication technique using dynamically updated tables is described. This approach is suitable when one operand is mostly kept constant. Applications, such as video color-space conversion [8], benefit from the high throughput offered by this concept. The generated solution has a small path delay since the only arithmetic operation required is the addition of partial products. The multiplication itself is generated from RAM and hence is in $O(1)$ time delay. The drawback of this algorithm is that in the worst case scenario 2^N writes are needed to update one RAM table, N being the input size of the table. Figure 3.3 presents the architecture and makes use of two dual-ports memory blocks and a parallel adder.
3.4 Partial Product Look-Up Table Multiplier

Another approach involves the use of LUTs to store permanent tables of multiplication [10], similar to algorithm [9]. As shown in Figure 3.4, partial products obtained from the table are shifted and added together as in the long-hand multiplication method. Since the table length storage depends on the input number radix, it is advantageous to use symmetric inputs so that LUT utilization is maximized. A hexadecimal-radix input will have 4 inputs for each operand, multiplicand and multiplier while containing 256 entries in the look-up table. In order to construct an arbitrary size input multiplier $M \times M$, one would need to use $\lceil M / N \rceil^2$ LUTs, where N is the input size of the LUT. The intermediate stage consists of barrel shifters and cascaded parallel adders.
The multiplier’s performance depends on various factors. The number of partial products generated, how intermediate and final adders are implemented, and the relative distance between blocks all affect the critical path of the multiplier, hence the performance. Furthermore, the use of small adders helps to limit the combinatorial delay while pipelining also decreases delay but adds latency to the system. This architecture gives a very good idea how to construct large unsigned integer multiplier from smaller input multipliers.

3.5 Partition Multiplication Algorithm (Shuli-Gao et al)

The paper titled “Efficient Realization of Large Integer Multipliers and Squarers” [4] presents a methodology on how to decompose large integer unsigned multipliers using smaller size multipliers. The idea is not new and the novelty resides in the
application of FPGA technologies with embedded multiplier blocks. The performance
gain from doing the decomposition is significant considering the drawbacks of
alternative means such as HDL arithmetic operator (inflexible) and COREGenerator
solution (limited operand size). The algorithm presented in the paper is generic and
applies to any \(n \times n \) bit multiplier block, although the authors used 18x18 bits
multipliers in their model. They also showed that the same approach can be further
extended to implement unsigned squarers.

The original partition algorithm is explained below. The arithmetic base used is
binary. Assuming that the size of the input operand is \(k \) and is greater than \(n \), the size
of the small multiplier and \(k \) is partitioned into \(m \) segments where \(n(m-1) < k \leq n \times m \),
we have therefore:

1. Inputs \(X \) and \(Y \) in binary format:
 \[
 X = [x_{k-1}x_{k-2}...x_n...x_1x_0]; \quad Y = [y_{k-1}y_{k-2}...y_n...y_1y_0]
 \]
2. \(X \) and \(Y \) grouped into \(k \) segments each sized \(n \):
 \[
 X = [X_{m-1}X_{m-2}...X_1X_0]^n; \quad Y = [Y_{m-1}Y_{m-2}...Y_1Y_0]^n
 \]
3. \(X \) as a summation of shifted segmented binary weights
 \[
 X = 2^{(m-1)n}X_{m-1} + 2^{(m-2)n}X_{m-2} + ... + 2^nX_1 + X_0
 \]
4. \(Y \) as a summation of shifted segmented binary weights
 \[
 Y = 2^{(m-1)n}Y_{m-1} + 2^{(m-2)n}Y_{m-2} + ... + 2^nY_1 + Y
 \]
5. Multiplication \(Z = X \times Y \)
6. \(Z \) in terms of binary operands \(X \) and \(Y \):
 \[
 Z = [x_{k-1}x_{k-2}...x_n...x_1x_0][y_{k-1}y_{k-2}...y_n...y_1y_0]
 \]
7. \(Z \) in terms of binary segmented operands \(X \) and \(Y \):
\[Z = \left(2^{(m-1)n} X_{m-1} + 2^{(m-1)n} X_{m-2} + \ldots + 2^n X_1 + X_0 \right). \]

\[
\left(2^{(m-1)n} Y_{m-1} + 2^{(m-1)n} Y_{m-2} + \ldots + 2^n Y_1 + Y_0 \right)
\]

8. Finally, Z fully expanded and aligned as partial products:

\[Z = \left(2 \left(2^{(m-1)n} X_{m-1} \cdot Y_{m-1} \right) + 2^{(m-2)n} X_{m-2} \cdot Y_{m-2} + \ldots + 2^n X_1 Y_1 + X_0 Y_0 \right) + \left(2^{(m-2)n} X_{m-1} \cdot Y_{m-1} + 2^{(m-3)n} X_{m-2} \cdot Y_{m-2} + \ldots + 2^2 X_1 Y_1 + 2^0 X_0 Y_0 \right) + \left(2^{(m-2)n} Y_{m-1} \cdot X_{m-1} + 2^{(m-3)n} Y_{m-2} \cdot X_{m-2} + \ldots + 2^2 Y_1 X_1 + 2^0 Y_0 X_0 \right) + \ldots + \left(2^{(m-n)2n} X_{m-1} \cdot Y_1 + 2^{(m-2)n} X_{m-2} \cdot Y_0 \right) + (2^{(m-n)2n} Y_{m-1} \cdot X_1 + 2^{(m-2)n} Y_{m-2} \cdot X_0) + (2^{(m-n)2n} X_{m-1} \cdot Y_0) + (2^{(m-n)2n} Y_{m-1} \cdot X_0) \]

In the first statement from equation 8, all segments are squared and shifted as in $2^{2(n-1)} X_{m-1} \cdot Y_{m-1}$. The second level aligns elements that are m segment off each other. This operation of alignment and addition is repeated for every pair until the furthest elements, $X_{m-1} \cdot Y_0$ and $Y_{m-1} \cdot X_0$ are summed at the final step. These steps are shown in Figure 3.5, where the multiplication is done on X and Y using n-bit small multiplier blocks.

Figure 3.5 Long-Integer multiplication decomposition according to [4]
As a simple example, we shall consider the multiplication of two 5 bits unsigned binary number. We shall also assume that \(n=2 \) and \(m=3 \), where \(n \) is the size of the small multiplier and \(m \) is the number of partitions, obtained from \(\lceil 5/2 \rceil = 3 \). Assuming \(X = 13_{10} = 01101_2 \) and \(Y = 25_{10} = 11001_2 \), we have \(Z \times Y = 32510 = 101000101_2 \).

\[
X = 13_{10} = 01101_2 \quad Y = 25_{10} = 11001_2 \quad \text{Initial X and Y values}
\]

\[
X = [00|11|01]_2 \quad Y = [01|10|01]_2 \quad \text{X and Y Partitioning}
\]

\[
X = [2^4X_2 + 2^2X_1 + 2^0X_0]_2 \quad Y = [2^3Y_2 + 2^1Y_1 + 2^0Y_0]_2 \quad \text{Sum of weighted binary values}
\]

\[
Z = X \times Y
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

\[
Z = (2^4X_2 \cdot 2^4Y_2 + 2^2X_1 \cdot 2^2Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^3Y_2 + 2^2X_1 \cdot 2^1Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^2Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0) + (2^4X_2 \cdot 2^0Y_2 + 2^2X_1 \cdot 2^0Y_1 + 2^0X_0 \cdot 2^0Y_0)
\]

The alignment of the partial products with respect to each other is essential when using the algorithm outlined in [4]. There are mainly two situations that need to be considered: when \(m \) is even and when it is odd. In the former, the execution of the addition operation happens pair-wise with \(S_i(m-1) \) aligned with \(Z_0 \), \(S_i(m-2) \) aligned with \(S_1 \) and so on. In other words, for an even number \(m \), the algorithm always aligns the smallest adder through all partial products pairs while propagating un-used bits to
the result. In other words, the symmetry obtained through the second level operands is used to efficiently perform the addition. The scheme presented in [4] reduces the number of additions by half in each stage, given m is even.

On the other hand, when m is odd, the operands are no longer in pairs. Consequently, the grouping operation which is used when m is even fails. To compensate for that, the algorithm is modified and includes an extra level of addition. Initially, Z_0 is added to $S_1(m-1)$, skipping S_{11} and S_{12} is added to $S_1(m-2)$. This is iterated, with the summation of the second partial product postponed and performed at the third level. Adding the first partial product to the last guarantees the use of the smallest adder, similarly to having an even number of segments. In both cases, the total number of addition levels required by the algorithm is $L = \lceil \log_2 m + 1 \rceil$.

Figure 3.6 shows the addition levels needed when the number of segments ‘m’ is even and odd. The algorithm implements the adders in a binary tree format hence reducing combinational delay. Since the adders are made out of logic cells, the largest available in the design (S_11) will constitute the critical path of the system in a pipelined design. The critical delay obtained from adder S_{11} is represented by [16]:

$$t_{adder} = t_{opcy} + t_{hfp} \cdot (k + n(m - 2)) + t_{sum}$$

where t_{adder} is the total propagation time delay of the adder, t_{opcy} is the propagation delay from the output of the function generator to the carry chain and t_{sum} is the propagation delay from the carry chain onto the output.
FIGURE 3.6 SEQUENCE OF ADDITION OPERATION FOR ALGORITHM [4] WHEN M IS EVEN AND ODD

Even though the algorithm outlined in [4] tries to minimize adder lengths, it does not control their implementation. More specifically, the methodology presented by Shuli Gao et al. lacks implementation details at the architectural level. The authors state that in their approach, adders at same level operate in parallel. Their algorithm was demonstrated on the Spartan-3 FPGA which contains multiplier blocks only. Also, for an m-segment multiplier, \(\lceil \log_2 m + 1 \rceil \) adder levels are needed to sum all concatenated partial products generated by the small multipliers. The Spartan-3 FPGA unfortunately does not include any high-speed adder block to perform the arithmetic operation. This is one motivation around this thesis as it is believed that the use of
embedded high-speed adders will increase the performance of the system. The DSP48 block available in newer FPGA such as Virtex-4 provides this technological edge. The algorithm outlined in this thesis also shows precisely how parallelism is achieved by pipelining the system in a systematic way.

The performance of the method presented in [4] indicates better combinational path delay and a smaller number of 4-input LUT used, compared to classical implementations such as using the VHDL multiplication operator or the Xilinx COREGenerator utility. The method in [4] relies heavily on parallelism and hence implicitly makes use of a high number of registers. This amount relies on the size of the input operand as well as the number of stages. For [4], this number is:

$$R = 2 \sum_{i=1}^{\left\lfloor \log_2 m \right\rfloor} (k - i \cdot n)$$

where R=total register count, k=size of large multiplier, n=size of small multiplier, m=number of segments. This number is non-negligible for large-input operands and negatively affects the performance of the system by increasing the amount of interconnects used in the FPGA while also raising power consumption.

Figure 3.7 shows that with smaller process technology such as 90nm (Virtex-4) and 65nm (Virtex-5), interconnect delay contributes more to the overall system delay, hence affecting overall system performance more than in past technologies[14]. Having a good placement of multiplier blocks together with pipeline registers will in theory yield better overall performance compared to just algorithmic [4] and architectural improvements.
3.6 Summary of Multiplication Algorithms

This section introduced different long-integer unsigned multiplier architectures that are suitable for FPGA implementation. These techniques use architecture-specific enhancements that compensate for the main drawbacks of FPGA, which are limited interconnect resources as well as large interconnect delay. In some cases, we even see performance improvements when compared to other classic implementations such as carry-look-ahead style multipliers, which when built using the constant-coefficient method for example, will be much faster while requiring less space. Hence, knowing the basic building blocks available in the FPGA will give a deep understanding and the appropriate knowledge of how to fine-tune the device for an optimum operation. The next section presents these features that are typical in modern FPGA which are used extensively in arithmetic operations.
4 XILINX VIRTEX FAMILY FPGA

The Virtex FPGA family currently at its sixth generation evolved from the XC4000E and XC5200 FPGA series. The first member of the family brought many advanced features such as Delay-Locked Loops (DLL) and discrete RAM blocks (BRAM). The internal wire bus was also re-designed to give a more accurate delay model while providing shorter run time for the routing algorithm. Features like JTAG programming and dedicated multiplication acceleration logic in the Configurable Logic Block (CLB) [11] were also built in. Two generations later, the Virtex-2 series were to incorporate discrete embedded multiplier blocks, which allowed faster DSP operations such as digital filtering. Today, the newest Virtex-5 FPGA family is built around third generation DSP blocks supported by fast routing busses and large amount of embedded memory. The proposed set of algorithms uses DSP48 blocks released in the Virtex-4 series, along with fast routing to improve on speed, area and power.

Modern FPGA chips consist of full-custom Intellectual Property (IP) blocks surrounded by an array of logic elements interconnected by an intricate network of busses. At the lowest level, the Logic Cell (LC) lays the foundation for digital synthesis providing basic structures such as Look-up Tables (LUT), Flip-Flops (FF), fast carry chains and multiplexers. Going up the hierarchy are pre-built high performance IP blocks to execute DSP operations, discrete microprocessors for data handling, high-speed interfacing and clock synthesis and re-conditioning. The underlying interconnect also designed as a hierarchy, provides up to six different types
of routing. These are segmented and have switch boxes to control the flow of data from one point to another.

FPGA are evolving every year as shown in Figure 4.1, with the newest Virtex-5 capable of 1,056 DSP48E slices along with 149,760 LUTs and FFs. The considerable amount of DSP slices together with a high DSP-to-FF ratio (1:141) enables newer algorithms to solve the problem of high speed long-word multiplication more efficiently with the help of pipelining.

![Xilinx FPGA Trend](image)

Figure 4.1 Trend for Xilinx FPGA during past 16 years

4.1 Logic Cells

The logic cell allows implementations of either combinatorial or sequential circuits or a mixture of both. Combinational systems are implemented using 4-inputs (up to 6 in Virtex-5) LUTs while state machines and registers are created out of built-in Flip-Flops. The LUT element can also act as dynamic storage devices turning into
16-bit shift registers. A group of logic cells sharing arithmetic resources is called a slice. In a Virtex FPGA, logic cells within a slice have dedicated carry lines as well as shared inputs. This enables the designer to implement arithmetic operations such as addition and multiplication with small delay penalty while extending the size of the operation. Also, slices are grouped into Configurable Logic Blocks (CLB) and share routing structures.

The basic structure of the logic cell has evolved from a simple two-cell CLB to four then eight cells. The progression among the Xilinx Virtex FPGA family is shown in Figure 4.2, where differences between architectures are highlighted. In addition, arithmetic capability is enhanced with the inclusion of XOR and AND gates for arithmetic addition (Full-Adders based) and 1-bit multiplication respectively. Initially, the XC4000E FPGA included a dedicated carry path that introduced little delay in arithmetic operations. This has since then been added to all subsequent FPGA families. Finally, the newest Virtex-5 FPGA provides faster overall arithmetic operation since the carry path spans four logic cells compared to two in the previous families. This reduces by half the amount of interconnect delay that would be present should the operation be implemented in previous Virtex families.
Figure 4.2 Xilinx FPGA logic cell evolution during past 15 years

4.2 Virtex Hardware Arithmetic

High performance arithmetic operation is achieved through different architectural speed-up techniques built in the Virtex architecture. A logic cell contains extra 2-inputs AND and XOR gates, which process incoming bits, for multiplication and addition without committing an LUT [12]. This makes the design area efficient while reducing the combinational delay. Since most hardware multiplication algorithms are addition based, performance gain is further obtained when multiplication operations use adder blocks. The knowledge of FPGA infrastructures also enables an efficient implementation of arithmetic operations. For instance, addition operations are accelerated through the use of high-speed carry chains [15] which span the vertical
height of the chip while proper placement of arithmetic cells decreases interconnect delay if adjacent cells are packed together in a CLB. The proposed placement algorithm combines layout information with the HDL code so that an optimum placement is achieved within the CLB. The algorithm then places larger CLB based blocks in an optimal arrangement so as to decrease interconnect delay.

Figure 4.3 gives the internal structure of a CLB built in the Virtex FPGA. It shows how a single slice can implement a 3 x 1 bit multiplier using the adder cell (4-LUT, XORCY, MUXCY) together with an extra AND gate (MULT_AND). This can be furthermore cascaded to extend the length of the multiplier. The critical path is along the carry propagate chain and is obtained from:

\[t_{\text{MULT}_2N} = t_{\text{LO}} + t_{\text{BXCY}} \cdot n(t_{\text{BYP}}) + t_{\text{LO}} + t_{\text{BXCY}} \]

where \(t_{\text{MULT}_2N} \) is total propagation delay of the 2xN multiplier, \(t_{\text{LO}} \) is the propagation delay of the 4-inputs look-up table (LUT), \(t_{\text{BXCY}} \) is the propagation delay of output BX of LUT onto the carry chain and \(t_{\text{BYP}} \) is the propagation delay per carry-chain multiplexer.

Figure 4.3 Hardware dedicated for arithmetic operations in Virtex FPGA
Conventional synthesis tool such as XST uses this technique to create adders and eventually allows multipliers of arbitrary length to be created. This is a limitation since higher performance can be achieved if the tool is aware of implementations based on dedicated arithmetic blocks such as the DSP48.

4.3 Xilinx DSP48 Arithmetic Block

The partition algorithm outlined in this thesis is based on the DSP48 block found in the Virtex-4 FPGA. Also known as DSP48 tile, the block contains a multifunctional arithmetic unit capable of 18 bits signed multiplication as well as three operands 48 bits sign-extended addition-subtraction-accumulator. The unit is optimized for low power, high speed operation and offers pipelining at inputs, intermediate levels and outputs. Internally, the DSP48 tile includes two slices each with a set of multiplier and adder. The slice pair also shares internal connections which are used when arithmetic operations exceeding the normal size of the slice are implemented.

As shown in Figure 4.4, the internal structure of a DSP48 slice reveals that the three operands 48 bits adder can only add two operands if used with the multiplier since the two partial products generated from the multiplier block are combined by the adder. The proposed algorithm uses internal pipelining registers when required for the highest performance.
Figure 4.4 Internal view of Virtex-4 DSP48 tile (block) [17]

Figure 4.5 gives the internal view of a Xilinx Virtex-4 FPGA chip, as obtained from FPGAEDITOR [30]. The height of a DSP48 tile is equivalent to that of four CLBs [34], or eight slices. Since one tile consists of two DSP48-slices, we can calculate the height of a single DSP48 slice to be that of 4 logic-slices, with a width of 1 logic-slice. This is clearly indicated in Figure 4.5.

Figure 4.5 DSP48 slice to CLB area ratio, as shown in Xilinx FPGAEDITOR [35]
The internal operation of the DSP48 tile is fully programmable with the help of OPMODE and CARRY bits. The OPMODE defines how inputs X, Y and Z are used. X and Y each has two bits dedicated to their internal configuration and can be programmed in six different modes. The output from the X multiplexer can be zeroed, coming from the first partial-product multiplier, coming from port P or be concatenated with B. Similarly, the Y multiplexer allows only three valid combinations; zeroed, propagating the second partial-product or outputting port C. The OPMODE also controls the Z multiplexer and has 3 bits reserved for it. Out of eight possibilities, only six are used with the actual combination shown in Table 4.1.

<table>
<thead>
<tr>
<th>OPMODE PROGRAMMING BITS</th>
<th>Z MULTIPLEXER OUTPUT DRIVING ADDER/SUBTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Y</td>
</tr>
<tr>
<td>000</td>
<td>XX</td>
</tr>
<tr>
<td>001</td>
<td>XX</td>
</tr>
<tr>
<td>010</td>
<td>XX</td>
</tr>
<tr>
<td>011</td>
<td>XX</td>
</tr>
<tr>
<td>100</td>
<td>XX</td>
</tr>
<tr>
<td>101</td>
<td>XX</td>
</tr>
<tr>
<td>110</td>
<td>XX</td>
</tr>
<tr>
<td>111</td>
<td>XX</td>
</tr>
</tbody>
</table>

Table 4.1 gives the configuration bits of the second and third operand multiplexes driving the adder (MUX X, MUX Y). In order to program the DSP block to perform \(f = P \pm (A \times B + C_{IN}) \), the following bits would be needed in the OPMODE register: 0100101.
Table 4.2 Valid OPMODE for DSP48 Block, with Respect to X and Y Multiplexer [19]

<table>
<thead>
<tr>
<th>OPMODE BITS</th>
<th>Z MULTIPLEXER OUTPUT</th>
<th>Z MUX OUTPUT</th>
<th>X MUX OUTPUT</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>

Finally, Table 4.3 shows configuration bits for the CARRYINSEL register which controls how the carry input is connected to the adder. Furthermore, the mode of operation for the carry input is dependent on the value entered in the OPMODE register.

Table 4.3 CARRYINSEL Control Bits with Corresponding OPMODE Operation [20]

<table>
<thead>
<tr>
<th>CARRYINSEL [1:0]</th>
<th>OPMODE</th>
<th>CARRY SOURCE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>XXXXXX XXX</td>
<td>CARRYIN</td>
<td>GENERAL FABRIC CARRY SOURCE (REGISTERED OR NOT)</td>
</tr>
<tr>
<td>01</td>
<td>Z MUX OUTPUT = P OR SHIFT(P)</td>
<td>~P[47]</td>
<td>Rounding P or Shift(P)</td>
</tr>
<tr>
<td>01</td>
<td>Z MUX OUTPUT = PCIN OR SHIFT(PCIN)</td>
<td>~PCIN[47]</td>
<td>Rounding Cascaded PCIN or Shift(PCIN) from adjacent slice</td>
</tr>
</tbody>
</table>
4.4 Interconnect

The present work describes a placement algorithm which requires a clear understanding of the wire infrastructure available in the Virtex FPGA. The interconnect network can be seen as a hierarchy of wire connecting CLBs, DSP48s, clock generators, Input/Output ports and so on together.

Hierarchy of interconnect [13]:

(a) Local Routing (High speed)
 1.1 Connection between LUTs, Flip-Flops and General Routing Matrix (GRM) switch box.
 1.2 Internal CLB feedback routes connecting output to LUT input with minimum delay.
 1.3 Direct path between horizontal adjacent CLBs (Virtex).
 1.4 Direct path between adjacent CLBs in sixteen directions (Virtex-II and above) [21].

(b) General Purpose Routing (Low-medium speed)
 1.5 Routing between GRM switch boxes.
 1.6 Single-length lines connecting adjacent GRMs in four directions.
 1.7 Buffered Hex lines connecting GRM to other GRMs placed six blocks further in each of the four directions.
 1.8 Buffered Longlines bidirectional wires that span the full length of the FPGA chip either horizontally or vertically.

(c) Global Routing (Low skew)
1.9 Primary global routing includes high-fanout signal lines such as clock networks and are designed to have minimal skew.

1.10 Secondary global routing is mainly secondary clock routing consisting of backbones lines distributed across the top and bottom portion of the FPGA. They connect to Longlines interconnect.

(d) Dedicated Routing (High speed)

1.11 Constrained interconnect for the arithmetic carry chain.

1.12 Horizontal routing for three-state busses.

1.13 Dedicated SOP chain for each slice row [21].

1.14 Shift-chain routing, one per CLB [21].

The proposed placement algorithm relies on adjacently placed CLBs to minimize interconnect delay and consequently falls into the Local Routing class. Moreover, Dedicated Routing is implicitly used by the carry chain infrastructure in the realization of adders and DSP48 blocks. Figure 4.6 shows five types of routing technologies found in the Virtex-2 FPGA. Since the Virtex-4 is based on the same routing infrastructure, a placement algorithm that first uses local, then direct, double, hex and finally long lines will reduce overall interconnect delay and hence improve on timing performance.

Figure 4.6 Different interconnect classes found in the Virtex family of FPGA [21].
4.5 Congestion

Congestion is a concentration measure of active interconnects in part of the routing resource. It negatively affects performance since a congested region is very unlikely to allow free routing of wires or would provide so with heavy delay penalty. Congestion also decreases area utilization because CLB is eventually used in the most congested regions as passthrough logic, logic that acts as simple wires to add extra routing resources. This quick-fix increases the interconnect delay significantly and should be used as a last resort.

Anticipating congestion and increasing the region allocated to routing resources minimize most of the effect. The placement algorithm uses congestion as an objective function, where a slack region between CLBs is added if congestion is high. The placement algorithm models congestion using graph theory with congestion defined as the number of vertices sourced or sank at a node per unit area.

4.6 Summary of Techniques

This chapter presented the Virtex FPGA family at the low level, giving information about logic cell, arithmetic implementation techniques, the DSP48 block, the routing infrastructure and finally congestion. The focus of this thesis is to present an algorithm that will increase performance of long-integer multiplication operations. Using DSP48 blocks provide the user with processing elements that have the lowest delay, power and area. On the other hand, care should be taken in order not to increase
interconnect delay which would negate the use of DSP48 blocks. Hence, knowledge of the routing hierarchy as well as an understanding of congestion is essential.
5 PARTITION ALGORITHM FOR VIRTEX-4 FPGA

The algorithm for partitioning unsigned multiplication operations is originally proposed by Shuli-Gao et al [4] and solves the problem using small but high-performing DSP blocks abundantly found in modern FPGAs. The algorithm is generic in nature and hence does not specify with what technology the actual addition and multiplication operations are implemented. The algorithm is also modified depending on whether \(m \) is even or odd, \(m \) being \(\lceil k/n \rceil \), \(k \) being the size of the large multiplier input operand and \(n \) being the size of the small multiplier input operand. In case of \(m \) being odd, an extra adder level is needed. Finally, the generated multiplier relies on pipelining to reduce combinational delay as the circuit is in the form of an array multiplier, similar to the Carry Save Array multiplier. The algorithm can be expressed as:

\[
Z = X.Y = \sum_{i=0}^{m-1} 2^{(k\cdot i)} X_i \sum_{j=0}^{n-1} 2^{(k\cdot j)} Y_j, m = \left\lceil \frac{k}{n} \right\rceil - 1
\]

\[
= \sum_{i=0}^{m-1} 2^{m/2} X_i Y_i + \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} 2^{(i+1)} [(X_{i,j+1}Y_j) + (X_{i,j+1})]
\]

where \(Z \) is the output of the large integer multiplier, \(k \) is size of the operand at the large multiplier input and \(n \) is size of the small multiplier.

Our proposed algorithm adapts [4] to use the more efficient DSP48 block available in Virtex-4 FPGAs. This gives better overall performance since DSP48 is superior to the multiplier circuits available in the Spartan-3 FPGA. The physical location of hardware blocks is also crucial in order to get an optimal result. Using DSP48 allows the software mapper to lock blocks in reserved vertical regions which
minimizes the amount of interconnect. Since the partition algorithm does not include locality information, a second algorithm is described in this thesis that adds placement information. This reduces interconnect delay caused by pipelining structures used by the partition algorithm as well as in groups participating in the critical path.

5.1 Details of Operation

From the original algorithm, dataflow can be separated into different operation levels. This is also true in the proposed partition algorithm and initially, the multiplication of all sub-words of length m, m being the length of our DSP48 block operand, into their respective squares, Zo, is summed to the product of X_i with Y_{i+1} and X_{i+1} with Y_{i}, where 0 ≤ i < N, N=number or levels of multiplication, X_{i} and Y_{i} are sub-words from the long-integer numbers, into the partial word, Z_i. At the third level, Z_i is added with X_{i}*Y_{i+2} and X_{i+2}*Y_{1} where 0 ≤ i < N - 1. Additions at each stage is repeated in the same way until only a single addition/multiplication level is left which happens at i=0. This generates the middle range values for the multiplication. At each level, an extra adder is required to sum the carry bit of the current level with the most significant bit of the previous partial product.

Since DSP48 multipliers operate with signed 18bits values, our implementation can only use the lower 17bits with the sign (most significant) bit connected to logic ‘0’. This results in the length of the input operand ‘m’ being equal to 17. The proposed algorithm performs all the required steps for partitioning long integer numbers including the creation of interconnects between DSP48 blocks and inclusion of intermediate pipeline registers.
The multiplier as well as adder blocks can be reorganized as shown in Figure 5.1. There is also a noticeable change in the proposed architecture, which removes the necessity of having to deal with odd and even number of segments \(m \). This is required because the original architecture does not allow for a direct combination of adders and multipliers blocks into a unified module.

Figure 5.1 Technology mapping of [4] into proposed architecture for a 68bits unsigned multiplier

As presented in this algorithm, the innovative aspect is the mergence of the addition block together with the multiplication block into a single entity: the Arithmetic Cell A (ACA). This is very different from the architecture proposed in [4], where no implementation details are given. A single DSP48 tile can therefore be
effectively used as a three operands adder with two inputs coming from 17bits multipliers. The resulting architecture shown in Figure 5.2 uses built-in pipeline registers and takes advantage of the dedicated routing infrastructure by making use of internal connection for data propagation between adjacent DSP48 slices. Using internal pipeline registers also decreases the amount of interconnect hence reducing congestion. Overall power consumption is also reduced when using built-in pipeline registers since the DSP48 tile is power optimized.

![Figure 5.2 DSP48 tile internal configuration](image)

The DSP48 block is configured to perform the sum of three operands with two of them obtained from unsigned multipliers. The operation is speed-up by the use of built-in high-speed adders with integrated carry chain. The main drawback present in the original algorithm which was implemented in the Spartan-3 FPGA is thus mitigated with the use of the more powerful Virtex-4 DSP48 block. Internally, SLICE0 is configured to multiply the words A0 and B0 with the resulting product added to the summation of CIN with the C input. The result at the output of the DSP48 tile includes a carry out as the two most significant bits along with the final sum of length 2m, m being the length of the DSP48 input operand.
The functionality of the DSP48 block is programmed at compilation time with attributes for the operation mode and carry type written as attributes in the hardware descriptive language source. Table 5.1 gives binary values for the OPMODE as well as that of the CARRY register. Once set, they will control how the internal datapath of the DSP48 is setup and also, which registers are enabled.

<table>
<thead>
<tr>
<th>SLICE CONFIGURATION</th>
<th>CONFIGURATION BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPMODE</td>
</tr>
<tr>
<td>SLICE0</td>
<td>0 1 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>SLICE1</td>
<td>0 0 1 0 1 0 1 0 0</td>
</tr>
</tbody>
</table>

5.2 Arithmetic Cell A Block

The proposed algorithm defines two types of arithmetic cells which are based on the Virtex-4 DSP48 block. Arithmetic Cell A (ACA) (Figure 5.3) encapsulates the operation:

\[
P = (A_0 \cdot B_0) + (A_1 \cdot B_1) + C \quad \text{Eq. 1}
\]

The total latency is equal to that of SLICE0 combined with SLICE1 and results in 4 registers. The external registers on A0, B0, C, A1, B1 inputs are needed in order to synchronize the arrival of data at the DSP48 tile, with respect to their internal latency. Furthermore, registers REGC and REGp are optional. REGp is needed when ACA is used internally and not in the last column while REGC is required at the second level only. The proposed algorithm generates the correct ACA block with the use of E0 (Enable of REGC) and E1 (Enable of REGp). REGp is also of constant depth (4 registers) which equals to the latency of one DSP48 tile. The input of REGp is taken
from the most significant 17 bits of output P and ranges from bit \(P_{17} \) to bit \(P_{33} \). The output of \(\text{REG}_p \) is then reconnected to signal P, hence delaying only the upper part of P when needed. If \(\text{REG}_p \) is disabled, then the output of the DSP48 tile bypasses \(\text{REG}_p \) and connects directly to the product P. COUT represents carry-out bits and connects the two most significant bits of P to adjacent ACA and ACB blocks. CIN is the carry input of ACA and is internally pipelined by the DSP48 slice.

Figure 5.3 Internal view of Arithmetic Cell A block

5.3 Arithmetic Cell B Block and Cascade Register

The Arithmetic Cell B (ACB) (Figure 5.4) performs the operation \(R = X + Y \) (Eq. 2). Input X is unregistered and connects directly to the first operand of the adder block. Input Y conversely has registers \(m \)-bits wide and of depth \(D_0 \) which connects to the second operand of the adder. The result R at the output can also be registered with a depth of \(D_1 \). A single DSP48 slice is sufficient to perform the addition operation
together with some pipelining (4 registers). Alternatively, the adder can be constructed using logic cells.

The proposed partitioning algorithm finally makes use of a third type of block, the Cascade Register (CR) (Figure 5.5). It consists of a series of cascaded registers of fixed width (m) and of variable depth \(D_2 \).

![Figure 5.4 Internal view of Arithmetic Cell B block](image)

![Figure 5.5 Internal view of Cascade Register block](image)

5.4 Partition Algorithm Description

When run at a high level, the time complexity of the algorithm is in \(O(N^2) \) while requiring constant amount of space, hence in \(O(1) \) space-wise. Initial parameters are needed for the input length of operands (n) and the size of the small multiplier (m). The algorithm is described in pseudo code format in the Algorithm 1a listing. First, the number of levels (N) is calculated in line 1. Then, input segments of length m are squared together to produce \(Z_0 \) (lines 2 to 4). This is accomplished by using N
unsigned multipliers created from DSP48 tiles, where N=number of levels, resulting
in an aggregated 2mN partial product word, where m is the small multiplier operand
size, representing the square of the input values grouped with length 2m.

Algorithm 1a Proposed Partition Algorithm

\[
N = \left\lfloor \frac{n}{m} \right\rfloor - 1
\]

1. For i=0 to N-1 loop
2. \(Z(2m(i+1)-1 .. 2mi) = \text{DIN}_A(m(i+1)-1 .. mi) \times \text{DIN}_B(m(i+1)-1 .. mi)\)
3. End for
4. M(16 .. 0) = Z_0(16 .. 0)
5. Latency \(D_2 = 2N-1\)

For i=0 to N-1 loop
6. For j=i to N-1 loop
7. Generate Arithmetic Cell A (ACA)
8. If i=0 then \(E_0 = 1\) else \(E_0 = 0\)
9. If i=N-1 then \(E_i = 0\) else \(E_i = 1\)
10. Latency \(D_i = i+j\)
11. \(A_0 = \text{DIN}_A(m(j-i+1)-1 .. m(j-i))\)
12. \(B_0 = \text{DIN}_B(m(j+2)-1 .. m(j+1))\)
13. \(A_1 = \text{DIN}_A(m(j+2)-1 .. m(j+1))\)
14. \(B_1 = \text{DIN}_B(m(j+i+1)-1 .. m(j+i))\)
15. \(C = Z(2m(j+i+1)-1 .. m(j+i+1))\)
16. \(Z_{i+1}(2m(j+i+1)-1 .. 2m(j+i)) = P\)
17. \(C(t) = C(2(j+i)); C(2(j+i+2)-1 .. 2(j+i+1)) = \text{COUT}\)
18. End for
19. Generate Arithmetic Cell B (ACB)
20. If i=0 then \(D_0 = 3\) else \(D_0 = 0; D_i = N-i-1\)
21. \(X = \text{CIN}(2(j+i+1)-1 .. 2(j+i))\)
22. \(Y = Z(2(j+i+2)-1 .. m(2(j+i)+1))\)
23. \(M(m(2N+2)-1 .. m(2N-i+1)) = R\)
24. Generate Cascade Register (CR)
25. \(D_2 = 2(N-i-1)\)
26. \(DIN = Z(16 .. 0)\)
27. \(M(m(i+2)-1 .. m(i+1)) = \text{DOUT}\)
28. End for

Line 6 represents the first partial product generated, as obtained from \(Z_0\) and
completes part of the output \(M\) of the large multiplier. Two nested loops (lines 7,8)
then take care of producing the main array multiplier. Iterator ‘i’ goes from 0 to N-1
while ‘j’ starts from i and ends at N-1. The main purpose of j is to generate multipliers
across a particular level while i iterates through the levels. Furthermore, blocks of type
ACA (line 9), ACB (line 21) and CR (line 26) will be generated at each level. For the
first level (line 10), pipeline registers are present on all inputs of the ACA blocks. In
every step, the latency D of the block is calculated with the formula $D = i + j$, while inputs to the ACA block are taken either from the large input word (m) or from the result obtained at the previous level (line 13 through 17). The output at each ACA block from one level consists of Z_{i+1} and carry-lines, which are propagated through adjacent ACA blocks. At each level, an ACB-CR block pair is required to sum the current carry information with the previous data obtained and to delay the resulting data respectively (line 21 to 28). ACB blocks are positioned at the end of the column while CR blocks are placed at the beginning. Finally, the output from both CR and ACB blocks drives the final output of the large multiplier (M).

Figure 5.6 shows a long-integer multiplier of size 68bits generated using the proposed algorithm. The structure consists of 4 levels, including the squarers at the input, and intermediate levels consisting of ACA, ACB and CR blocks. The output is obtained at M after 5 latency cycles.

Figure 5.6 Long-integer 68x68bits multiplier generated by proposed algorithm
5.5 Resources Utilization

The amount of FPGA resources needed for a multiplier generated by the algorithm can be derived in terms of the input word length \(n \), the DSP48 operand size \(m \) and the number of levels \(N \).

\[
\text{Number of levels (N)} = \left\lfloor \frac{n}{m} \right\rfloor - 1 \quad \text{Eq. 3}
\]

Number of input multipliers = \(N+1 \) \hspace{1cm} \text{Eq. 4}

Number of Arithmetic Cell A blocks = \(\frac{N(N+1)}{2} \) \hspace{1cm} \text{Eq. 5}

Number of Arithmetic Cell B blocks = \(N \) \hspace{1cm} \text{Eq. 6}

Number of DSP48 slices used (ACB implemented with logic cells) = \((N + 1)^2 \) \hspace{1cm} \text{Eq. 7}

For a pipelined design, the algorithm further defines the following terms:

DSP48 block latency (\(L \)) = 4 \hspace{1cm} \text{Eq. 8}

Number of Cascade Register blocks = \(N \) \hspace{1cm} \text{Eq. 9}

Total pipeline latency = \(4(2N - 1) \) \hspace{1cm} \text{Eq. 10}

5.6 Performance Equations

The following equations describe the performance of the proposed partition algorithm when the width '\(n \)' is changed, while \(m \), the size of the DSP48 input is kept constant. In the equations, \(L=4 \) and represents the latency of a DSP48 block.
Number of levels (N) = \left\lfloor \frac{n}{m} \right\rfloor - 1 \quad \text{Eq. 11}

Number of multiplier blocks = \frac{N^2}{2} + 3N + 1 \quad \text{Eq. 12}

Number of registers for pipeline design = mL(\sum_{j=0}^{N-1} \sum_{i=j}^{N-1} 4(i + j) + 1) + N^2 - N - 1 \quad \text{Eq. 13}

Worst case combinational delay \(T_p = T_{DSPDO\text{_BPL}} \text{ ns} \) \quad \text{Eq. 14}

Maximum frequency of operation \(F_{MAX} = \frac{1}{T_{DSPCKO_PCOUTP} + T_{DSPDO_BPL} + T_{DS}} \text{ MHz} \) \quad \text{Eq. 15}

where \(T_{DSPDO_BPL} \), \(T_{DSPCKO_PCOUTP} \) and \(T_{DS} \) are defined in [33].

5.7 Non-Pipeline Design

From Eq. 13, a generated design has an area that exhibits a quadratic behaviour in N. Instead, the design can also be used with less pipelining stages. This is a trade-off of area against speed of operation. As such, the proposed partition algorithm is modified for a non-pipelined design, with the configuration of the DSP48 blocks also changing in order to reflect this, as shown in Algorithm 1b.
Algorithm 1b Proposed Partition Algorithm (Non-Pipelined)

\[N = \frac{n}{m} - 1 \]

1. For \(i = 0 \) to \(N - 1 \) loop
2. \[Z_0(2m(i+1)-1 .. 2m) = Din_A(m(i+1)-1 .. 2m) \times Din_B(m(i+1)-1 .. 2m) \]
3. End for
4. \(M(16 .. 0) = Z_0(16 .. 0) \)
5. For \(i = 0 \) to \(N - 1 \) loop
6. For \(j = i \) to \(N - 1 \) loop
7. Generate Arithmetic Cell A (ACA)
8. \(AO = Din_A(m(j+1)-1 .. 2m) \)
9. \(BO = Din_B(m(j+2)-1 .. 2m) \)
10. \(AI = Din_A(m(j+2)-1 .. 2m) \)
11. \(BI = Din_B(m(j+1)-1 .. 2m) \)
12. \(C = Z_0(2m(j+1)+m-1 .. 2m) \)
13. \(Z_{i+1}(2m(j+1)-1 .. 2m) = P \)
14. \(CI = C(j+1); C(j+2)-1 .. 2m) = COU \)
15. End for
16. Generate Arithmetic Cell B (ACB)
17. \(X = Cin(2m(j+1)-1 .. 2m) \)
18. \(Y = Z_0(m(2m(j+2)-1 .. 2m)) \)
19. \(M(m(2m+2)-1 .. 2m+1) = R \)
20. Generate Cascade Register (CR)
21. \(M(m(j+2)-1 .. m(i+1)) = Z_0(16 .. 0) \)
22. End for

Synthesis results as obtained from the Xilinx ISE tool [30] show that timing performance for the proposed algorithm decreases when compared to an implementation such as using the multiplication operator as obtained from the HDL library. The timing result of our proposed implementation is still better than solutions obtained from COREGenerator.

Table 5.2 Performance results for combinational delay, non-pipelined designs

<table>
<thead>
<tr>
<th>Multiplier Width</th>
<th>34bits</th>
<th>64bits</th>
<th>136bits</th>
<th>221bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Algorithm</td>
<td>10.195ns</td>
<td>22.948ns</td>
<td>73.069ns</td>
<td>111.428ns</td>
</tr>
<tr>
<td>Implementation using VHDL multiplication operator</td>
<td>9.514ns</td>
<td>15.190ns</td>
<td>21.925ns</td>
<td>28.485ns</td>
</tr>
<tr>
<td>COREGenerator</td>
<td>10.596ns</td>
<td>40.742ns</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
TABLE 5.3 PERFORMANCE RESULTS FOR AREA UTILIZATION, NON-PIPELINED DESIGNS

<table>
<thead>
<tr>
<th>Multiplier Width</th>
<th>34bits</th>
<th>64bits</th>
<th>136bits</th>
<th>221bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Algorithm</td>
<td>16 Slices</td>
<td>64 Slices</td>
<td>256 Slices</td>
<td>676 Slices</td>
</tr>
<tr>
<td>Implementation using VHDL multiplication operator</td>
<td>16 Slices</td>
<td>143 Slices</td>
<td>800 Slices</td>
<td>2288 Slices</td>
</tr>
<tr>
<td>COREGenerator</td>
<td>16 Slices</td>
<td>64 Slices</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

As shown in Table 5.3, a design generated by our algorithm (non-pipelined) does not consume any logic cell with all arithmetic operations taking place in DSP48 blocks. The table uses the logic slice to DSP48 slice ratio of 4:1, as introduced in Chapter 4.3.

The delay product (AT^2) is given in Figure 5.7 and shows the performance of three non-pipeline implementation methods. When measured in AT^2, the proposed algorithm for non-pipelined designs is actually worse than HDL and Coregen implementations. This is so since the DSP48 block is highly optimized for pipelining operations, which is not the case here.

![Figure 5.7 Area-Delay product for non-pipeline multipliers](image-url)
5.8 Results

The partition algorithm presented was originally designed to use a pipelined architecture. This was decided since the building block itself, the DSP48, is optimized for pipelining under which it will operate at a theoretical 500MHz. With the following figures, the reader will get an idea of how well multipliers generated by the algorithm perform against classical implementations which are readily available to the designer. For comparison, designs with input width of 34bits, 68bits, 136bits and 221bits were chosen because they are very close to practical multiplier lengths while at the same time, are multiplies of the DSP48 block input size. Classical implementations were obtained from two sources:

(a) Components generated from the COREGenerator utility [30].

(b) VHDL synthesis of the multiplication operator, as provided by the language's arithmetic library.

Also, for comparison, results from the original partition algorithm are included to get an idea of the improvement that the proposed algorithm brings to the end user. Graphs for combinational path delay, amount of logic slices, DSP48 slices and power dissipation against changing input sizes are given. Area-Delay product (AT^2) is given to understand where the proposed partition algorithm is best at, either in terms of delay or area. The graph of interconnect and gate delay is given which shows where improvements exist.

Data for the given graphs were obtained from report files generated by the Mapping and Place-and-route tools and included area and delay respectively.
5.8.1 Combinational path delay

Combinational delay of the critical path in the multiplier is given for changing input sizes. The critical path includes gate as well as interconnect delay. Figure 5.9 shows that multipliers generated using our algorithm outperform other methods available. Data for “Coregen” and “Original algorithm” were either unrealizable or not available for input sizes above 64bits.

![Figure 5.8 Combinational path delay for different sized inputs](image-url)
5.8.2 Virtex-4 logic slice utilization

The amount of resources in terms of slices used is presented in Figure 5.9. The number of DSP48 used is also factored in with an equivalent number of four slices per DSP48 block used. The proposed algorithm uses a large number of logic slices to implement pipeline datapaths, which is revealed in the graph.

![Figure 5.9 Amount of Virtex-4 slices used against different sized inputs](image-url)
5.8.3 Virtex-4 DSP48 slice usage

The amount of DSP48 slices is shown in Figure 5.10. The number is the same in all implementations, which means that there is no advantage in using one method over another, if DSP48 usage is considered.

![Figure 5.10 Number of DSP48 slices against different sized inputs](image-url)
5.8.4 Area delay (AT^2) product

The area delay-squared product is a performance measure used to benchmark designs. Multipliers of various sizes generated by the proposed algorithm are hence evaluated using this method and compared with more commonly used HDL and Coregen implementations (Figure 5.11). Also, results obtained from the original algorithm [4] are included.

![Figure 5.11 Area Delay product (AT^2) performance measure](image-url)
5.8.5 Power dissipation

Power dissipation is obtained from the Xilinx Xpower [36] software. The utility takes into account static as well as dynamic power dissipation. Results were obtained for HDL, Coregen and the multipliers generated by the proposed algorithm (Figure 5.12). The frequency of operation was fixed at 50MHz while the activity rate was set at 50%.

Figure 5.12 Power dissipation for different sized inputs
5.8.6 Other results

To conclude the analysis of the proposed partition algorithm, two additional figures are included that put in perspective the main problem arising in large pipeline designs. The first graph shows gate and interconnect delay against input size. The proposed multiplier algorithm has constant gate delay, independent on input size while interconnect delay increases, as shown in Figure 5.13.

![Interconnect delay vs. Gate delay](image)

Figure 5.13 Routing performance degradation for higher word length
Figure 5.14 shows the final placement of logic blocks along with DSP48 slices as produced by the Xilinx place-and-route tool [30]. It shows the drawback associated with the automated placement tool used, where logic placement is not relatively placed with respect to DSP48 blocks.

![Figure 5.14 Layout of placed 136x136bits multiplier circuit inside a Virtex-4 FX140 FPGA](image-url)
5.9 Summary

The partition algorithm presented in this thesis uses DSP48 blocks efficiently to create large-input unsigned multipliers. Figure 5.8 shows that the proposed solution outperforms other methods if compared using critical path delay. Since the design is heavily pipelined, improved delay performance comes at a price of higher logic-cell consumption. Another performance measure (AT^2) has been presented (Figure 5.11), where it is shown that for input sizes of less than 64 bits, the COREGeneator implementation method was marginally better, while the proposed partition algorithm has a much lower value for AT^2 across all input sizes when compared to HDL implementation using the multiplication operator. To conclude, problems arising when doing pipeline designs are outlined and possible solutions to the placement problem are further discussed in Chapter 6.
Chapter 5 outlined a partition algorithm that can be used to develop arbitrary sized multipliers based on small but efficient DSP48 arithmetic blocks available in the Xilinx Virtex-4 FPGA. The improvement achieved is mainly dependant on the ability to fit the algorithm presented in [4] into the architecture using both multiplier and adder elements of the DSP48 slice. Even though the main cause of delay reduction is the use of high-performance DSP blocks, delay is also minimized with the use of local wire interconnect since a DSP48 block packs together a source (multiplier) along with its sink (adder) in the same physical component and thus avoids using the FPGA routing channels. The consequence of this improvement is also an increase in the amount of wire in the multiplier design to connect ACA, ACB and CR blocks together. This is shown at the end of Chapter 5 (Figure 5.13), where gate delay is constant while overall interconnect delay actually increases almost linearly.

6.1 Introduction

The proposed partition algorithm needs only a timing constraint on the clock input to generate a solution. The software auto-placer then decides where DSP blocks and pipeline registers should be located. The running time to get a solution is generally long because finding a possible placement is considered an NP-complete problem [22]. The placement tool uses an algorithm which can be manually adjusted to find a
reasonable answer according to rules supplied by the designer such as high speed or
low power.

A long-integer multiplier generated by the proposed partition algorithm consists
mainly of DSP blocks connected to pipelining registers without any control logic. The
next improvement will be to place the various hardware blocks in an optimum
arrangement so that area, delay and power are minimized. A logical placement of
critical blocks will also reduce the set of solution which can be obtained, decreasing as
a result the running time of the Place-And-Route (PAR) algorithm used by the
implementation CAD tool and giving consistent timing results between PAR
iterations. A new placement algorithm is hence proposed which is partly based on the
greedy algorithm concept and uses property of the heterogeneous placement algorithm
proposed by Love Singhal et al. [23].

Figure 6.1 shows the required steps in order to partition and place an arbitrary
length multiplier with the proposed set of algorithms. The resulting design can either
be used as a single unit residing on the FPGA, as in the case of an arithmetic
accelerator, or alongside other systems, similar to a System-On-Chip (SOC)
methodology. In the case of a SOC design, the partitioning and placement algorithm
has to be executed first before any other placement in order to guarantee the highest
performance. The placement algorithm is also generic and can be ported across other
FPGA families (Virtex-2 and upwards).
Figure 6.1 Typical design flow using proposed set of algorithm

6.2 Placement Problem Formulation

A circuit generated by the placement algorithm consists primarily of nets and modules. Modules can be either of type ACA, ACB or CR. ACA and ACB have further restrictions to their physical location on the FPGA, DSP blocks being located in dedicated DSP columns spanning the vertical height of the chip and have input/output ports located to one side of the column. The placement problem is in finding suitable locations for elements of the circuit that will either minimize or maximize objective functions supplied by the designer, which are usually minimum delay, minimum power and minimum area. The solution hence improves on the
original design according to the objective functions. Optimum placement can also be
seen as a search problem where a solution that satisfies all objective functions is
enough. The search space is very large in modern FPGA hence the reason why the
complexity is NP-complete.

Formally, the general placement problem can be written as follows. A circuit \(W \) is
a set containing nets and basic elements, the set of nets being \(N = \{ N_1, N_2, \ldots, N_i \} \)
while the set of elements is \(E = \{ E_1, E_2, \ldots, E_j \} \). Furthermore, a group of elements and
nets is called a module and the set of modules \(M = \{ M_1, M_2, \ldots, M_k \} \). We associate
with each module in \(M \) a subset of \(N \) and a subset of \(E \) which correspond to nets and
elements present in a particular module. Therefore, \(M_i \in M, N_{M_i} \subseteq N \) where \(M_i \) is a
module from set \(M \), and \(N_{M_i} \) is a subset of \(N \) related to \(M_i \). Similarly, \(M_p \in M,
E_{M_p} \subseteq E \) where \(M_p \) is a module from set \(M \) which contains a subset of basic elements
of set \(E \). Also, elements are constrained to specific locations and the set of locations
\(L_E = \{ L_{E_{0,1}}, L_{E_{0,2}}, \ldots, L_{E_{x,y}} \} \) where \(0 \leq x \leq sx \) and \(0 \leq y \leq sy \), \(sx \) and \(sy \) being the
horizontal and vertical resource counts for the chip used. Placement difficulty arises
when we need to find locations in \(L_E \) for modules in \(M \) that will optimize the objective
function(s):

\[
 f = c_1 \cdot \text{delay}(f) + c_2 \cdot \text{power}(f) + c_3 \cdot \text{area}(f)
\]

The main objective function is to decrease system delay. Given that gate delay is
in \(O(1) \), only reduction in interconnect delay can be achieved using this methodology.
Also, all resources have to fit inside the perimeter of the chip which is guaranteed by
the x-y coordinates limit of \(L_E \).
6.3 Related Work on Placement Algorithms

Placement algorithms can be classified as being either homogeneous or heterogeneous. The former applies to the placement of blocks having identical form, such as logic cells in an FPGA, while the latter applies to designs which contain different structures, such as DSP48, BRAM and logic cells. A heterogeneous placer reflects the trend of modern FPGA technologies. Several placement algorithms for FPGA are described in literature, with Simulated Annealing (SA) [24] among the most commonly referred to.

6.3.1 Placement algorithms for FPGA

Simulated Annealing falls into the class of non-deterministic algorithms which are used to solve global optimization problems such as logic cells placement. SA can be used as an approximation algorithm that yields an acceptable solution to the global minimum, for a given function in finite time. This is done on a large search space, where other methods would require an exhaustive enumeration of all possible combinations. The concept of SA finds its roots in metallurgy and energy levels of atoms. An SA algorithm usually begins with an acceptable solution which is improved by looking for a nearby replacement obtained from a probability function. Initial parameters for SA are determined experimentally and thus, can be challenging to find.

Another approach presented in [25] involves placement of modules in terms of logic cells and macro blocks. The design is broken down hierarchically into a tree which can either be flatten into a single level or allowed to keep its original form. The
algorithm then proceeds to placing blocks obtained from the hierarchy into quadrants. The solution is generic in terms of macro blocks and does not consider hard-wired macros such as the DSP48.

In [26], an optimized design flow for FPGA is described which maps an RTL netlist onto different FPGA architectures using an algorithm that allows interaction among various implementation processes such as partitioning, mapping, floorplanning and block placement. The algorithm keeps structural information obtained from the RTL netlist, which it uses during the partition step in a database. Information is furthermore shared among the module generator, the partitioner and the floorplanner. If the amount of logic cell used by a module exceeds the amount that the FPGA can provide, the partitioner is called upon to break the module further. Hence, [26] provides an iterative methodology to the placement problem.

In [27], Emmert et al. presents a method for floorplanning FPGA addressing both hard and soft macros placement. For their solution, a hard macro is defined as a sub-circuit which possesses both fixed size and shape while soft macros possess fixed size but variable shape. This is a subtle difference from current hard-macros present in modern FPGA devices, which deal with custom-built sub-circuits of fix size, shape and location. The algorithm uses the notion of clusters which are groups of macros with an area constraint limit. Once formed, clusters are collected into a cluster set B following with a Tabu Search optimization on B.

Finally, [28] demonstrates an approach to the problem of 3D placement in integrated circuits, with the proposed methodology equally suitable for ASIC and FPGA designs. The proposed framework addresses issues such as higher power dissipation for ASIC and challenging 3D connectivity and switch-box for FPGA.
6.3.2 Heterogeneous Floorplanner for FPGA

The first heterogeneous floorplanner algorithm for FPGA was developed by Cheng and Wong [29]. In their proposed solution, a design is represented using slicing tree with polish notation for the nodes. Leafs and internal nodes are then converted to an irreducible realization list (IRL). An irreducible element is by definition a node of the slicing tree with distinct height and width (distinct blocks properties). A feasible solution is finally obtained using simulated annealing with area and half-perimeter wirelength as parameters for the objective function.

6.3.3 HPLAN Heterogeneous Floorplanner

The main disadvantage found in the first generation of heterogeneous floorplanners [23] is a waste of resources as a result of placing related modules with disproportionate ratio of logic cells to heterogeneous resources. For example, the placement of a group of components using [29] will take up a large area on the FPGA if the group contains a high number of BRAM elements but little logic cells. This is a consequence of the algorithm in [29] using dimensions of the BRAM block as parameters for the IRL, a BRAM unit being four times the vertical height of a logic cell. The ideal heterogeneous floorplanner hence should aim at distributing related but different logic efficiently. The HPLAN floorplanner presented by Love Singhal et al. solves this problem by tying a layer to one type of resource and eventually treating each layer as a smaller placement problem. This is intuitively accurate as a logic designer usually sees each heterogeneous component as separate sets when allocating...
resources and then considers related components as groups while decreasing their relative distances with respect to each other (if objective function is minimum delay). Thus, HPLAN looks at the problem differently and adds the concept of layers, defining three initially for Block RAM, CLB and DSP components. HPLAN then places layers along with resulting bounding boxes simultaneously. This allows modules with different resources types to overlap each other given that they are in different layers.

Figure 6.2 shows how placement using HPLAN is achieved using three defined layer types. An efficient floorplanning using SA [23] is then performed on each layer.

Figure 6.2 Example of floorplan generated using HPLAN

6.3.4 HPLAN problem formulation

The multi-layer floorplanning of block b_i requires a resource allocation vector $\phi_i = (n_1, n_2, ..., n_k)$ that details each block's resource utilization in terms of CLB (n_1), RAMs (n_2) and so on. A block b_i in layer j is represented by a rectangular bounding box, b_{bij}. A floorplan, which is a non-overlapping 2-dimensional placement of all
blocks B in the ith layer is represented by the set $F = (f_1, f_2, \ldots, f_k)$. The criteria to validate a floorplan are:

(a) F is free to overlap blocks in other layers but itself

(b) F fits inside the device physical boundaries

(c) F consume up to the maximum resource allocated to each layer

The problem statement is completed with the objective function for the placement algorithm which is to find a feasible solution F to minimize the cost function:

$$C(F) = c_1 \cdot \text{area}(F) + c_2 \cdot \text{wirelength}(F) + c_3 \cdot \text{aspect ratio penalty}(F) + c_4 \cdot \text{bounding box deviation}(F)$$

For the first term $\text{area}(F)$, the final area of the floorplan (F) is obtained by multiplying the maximum height with the maximum width of all layers. The second term, $\text{wirelength}(F)$, is obtained using half-perimeter of bounding boxes through each layer. For third term, $\text{aspect ratio penalty}(F)$ is obtained from the difference between the aspect ratio of floorplan F and the one of the device used. The final term $\text{bounding box deviation}(F)$ is obtained from the displacement between boxes and is used to bring them close to each other.

HPLAN also uses a notation to represent multiple floorplans for each layer. The arranged enumeration gives information of the placement of modules of a particular layer with respect to one another. The sequence pair for multiple bounding boxes, commonly called multiBox Sequence Pair (BSP) is defined as follows:

$$\text{BSP}_A = (\ldots, p, \ldots, q, \ldots, q, \ldots)$$

$\Rightarrow bb_{p_j}$ is left of bb_{q_j} $\forall j, 1 \leq j \leq k$

$$\text{BSP}_B = (\ldots, p, \ldots, q, \ldots, q, \ldots)$$

$\Rightarrow bb_{p_j}$ is above of bb_{q_j} $\forall j, 1 \leq j \leq k$
The BSP criteria accordingly states that each bounding box of a layer is linked to all others which belong to the same layer according to either BSP_A or BSP_B.

6.3.5 Comments

The methodology presented in [23] shows how to properly separate and place heterogeneous blocks into large FPGA devices. The algorithm is effective with disproportionate design. The objective function as well as the final placement algorithm is chosen such that most designs are covered. Area and wirelength in particular are used as cost function while SA is used for final block placement. To support their claim, the author used as an example a design containing a Microblaze processor with coprocessors for DES, CRC and FFT and was eventually targeted to a Xilinx Virtex-4 FPGA. The placement algorithm writes a user-constraint file (UCF) at the end of the process which gives the explicit location of each block.

In the context of a multiplier design with pipelining, the placement algorithm can be further enhanced since the critical path of the design is known beforehand. Also, the cost function can also include a power component which would make the new placement algorithm aware of how power is affected if more logic cells are used. In the remaining document, we explain modifications that are brought to [23] along with a different final placement algorithm based on a greedy algorithm instead of SA, as originally suggested by the authors.
6.4 Relative Placement Macros

The Xilinx toolset [30] gives a convenient way of representing hardware structures together with their physical, absolute or relative locations. Relationally Placed Macros (RPM) [31] add location attributes along with hierarchical relationships to a structural HDL model. Synthesis transfers that information to the netlist file which is then used at the mapping stage. Most basic elements in the FPGA fabric can have a relative location compared to an initial reference element. The attribute RLOC is used to convey the placement information to the mapper. For example, in a VHDL design, RLOC is defined as:

```
--DECLARATIVE PART
attribute RLOC : string;

--DECLARATIVE PART OF GENERATE
attribute RLOC of ACA_00 : label is "XmYn"
```

Figure 6.3 Usage of Relative Location in hardware descriptive language

As shown in Figure 6.3, ACA_00 is an instance of component ACA (Arithmetic Cell A), which is a module used in the proposed multiplier algorithm. RLOC also uses the Cartesian coordinate system as the relative physical placement grid, which began with Virtex-2 family of FPGA. The notation is X_m and Y_n, where m and n are integer values. The X and Y values are translated to absolute coordinates by the synthesizer using the difference between RLOC and the reference element.

In Figure 6.4, Arrangement2, the RLOC notation is used to place up to four flip-flops per CLB, accounting for half of its utilization. This is because RLOC works at
the slice level where each slice consists of two flip-flops [32]. A turn around is to place the same RLOC for two components within the same hierarchy, thus forcing the mapper to put two flip-flops in the same slice.

![Diagram](image)

Figure 6.4 Internal logic slice arrangement using RLOC attribute

Along with specifying locations, components can also be grouped according to rules. The keywords H_SET, U_SET and HU_SET are used to create or modify relationships among basic elements in a design. Elements under the same hierarchy are by default labelled with auto-generated H_SET attributes, indicating that they belong to one particular set and are hence related. Moreover, U_SET attributes have an arbitrary but distinct name. Any component with same U_SET will belong to the same group, irrespective of their design hierarchy. Finally, HU_SET modifies the H_SET set attribute to allow arbitrary set names. The proposed partition algorithm generates structural VHDL, hence implicitly enabling the use of H_SET.

Figure 6.5 shows how RLOC organizes a design using either H_SET or HU_SET. Component A and B inherit by default their parent “hset” name. This is different in the second case (Hierarchy with HU_SET), where HU_SET is used in component C. This forces the synthesizer to rename components in D and E with the arbitrary name “TEMP”.

6. 5 Area, delay and Power Heuristics

6.5.1 Area

Area is bound to have a minimum value representing the sum of all slices used in the hardware multiplier. In addition, pass-through look-up tables are used whenever interconnect resources are exhausted as a consequence of highly congested regions. A possible heuristic to the area problem is: Knowing in advance the area of high-congestion and eventually adding slack space to accommodate for more routing resources will decrease the amount of slices used as pass-through logic. Also, predicting the amount of congestion and planning for additional area will increase the chance of finding a solution while also reducing the placer run-time.

A block with high fan-in and fan-out is bound to have a highly congested region, hence increasing area, delay and power. Blocks falling in this category should be placed first. A possible heuristic to the second area problem is: Finding the maximum
cut between two vertices permits placement according to high fan-in, fan-out and maximum delay.

6.5.2 Delay

Obtaining the critical path and therefore blocks that include it allows the algorithm to place that block first, hence increasing likelihood of meeting timing constraints. A possible heuristic to the delay problem is: Finding the longest combinational path in part of the graph which covers a block yields an accurate estimation for delay and allows high-priority placement for that block.

A loaded net will have buffers inserted automatically by the synthesis tool to reduce delay. An optimum placement for the buffer would be one with minimum length to all sinks, or more importantly, one that would not increase the worst case delay. A possible heuristic for redundant buffer removal is: Select an edge with a certain load, insert a new node (buffer) and place it so that the overall delay of the system is unchanged.

6.5.3 Power

Minimizing area and interconnect length all have an indirect but positive effect in power reduction. Using empirical data, the cost function for power will be obtained.
6.6 Proposed Placement Algorithm

The partition algorithm for long-unsigned multiplication as presented in Chapter 5 is improved with a new placement algorithm that takes into consideration important details of placement in FPGA technologies, such as a reduction in long-type interconnect, removal of pass-through logic and placement according to critical combinational path. Also, part of the new algorithm is based on work presented in [23] and relates to placement of the blocks within the physical limit of the FPGA device.

A generated multiplier design is initially updated with locality information, using Xilinx RLOC attributes. The partition algorithm defines two main arithmetic units, Arithmetic Cell A (ACA) and Arithmetic Cell B (ACB) in addition to cascade register (CR) blocks. The placement algorithm considers ACA, ACB and CR as atomic blocks having predefined layouts which it then arranges optimally. Figure 6.6 shows the improvement in delay and PAR runtime when using RLOC to create arithmetic cells. The blocks ACA, ACB and CR are in O(L) area-wise and in O(1) delay-wise, where L is the latency. The area is a function of latency only since for each increment in L, the depth of the pipeline is increased by L while the datapath's width remains constantly at either 17 or 34 bits. Delay of a block is also constant given that the distance between pipelining columns is fixed and that the local interconnect is used as routing resource.
6.6.1 Area constraints formulation

The proposed placement algorithm is partly based on the HPLAN heterogeneous floorplanner [23]. HPLAN decomposes a complete system into basic primitives, groups the primitives into different layers, adds bounding-box constraints at all layers and finally produces a result by combining the layers if and only if:

(a) The resources needed do not exceed the total available in the FPGA.
(b) There are no collisions between bounding-boxes.
(c) All layers fit in their respective primitive sets.

The proposed placement algorithm restricts the HPLAN resource allocation vector \(\phi_i \) to primitives only used by the proposed partition multiplier algorithm, which are DSP48 \((n_1) \) and FLIP-FLOPS \((n_2) \), thus \(\phi_i = \{n_1, n_2\} \). Since \(|\phi_i| = 2 \), the number of layers needed is also two. The set of high level blocks used is defined as \(H = \{ACA, ACB, CR, DSP48\} \). The generated floorplan \(F \) is the aggregate of \(f_i, f_i \) being
the non-overlapping placement of \(\phi \), in each layer. The problem is simplified as only elements in \(H \) have to be placed. It can be proven that elements have to be mutually exclusive in order to satisfy the second HPLAN criteria. The set of all components used to build the large-integer multiplier is \(B = \{ \text{ACA}_0, \text{ACA}_1, \ldots, \text{ACB}_0, \text{ACB}_1, \ldots, \text{CR}_0, \text{CR}_1, \ldots, \text{DSP48}_0, \text{DSP48}_1, \ldots \} \).

We also define the cardinality of \(B \) as \(B_c = |B| \). The bounding box for each element in \(B \) is \(\text{bb}_{ij} \) where \(i = \{1,2\} \) and \(j = \{1, \ldots, B_c\} \). As each ACA block consists of 2 DSP48 blocks, \(\text{bb}_{ij}(\text{ACA}) = 2 \). An ACB block contains a 17bits adder with optional pipeline registers hence \(\text{bb}_{ij}(\text{ACB}) = 1 \). Lastly, cascade register CR consists of only flip-flops thus \(\text{bb}_{ij}(\text{CR}) = 0 \). Figure 6.7 depicts the physical layout of arithmetic blocks and gives worst case scenarios for the heights and widths. We can hence find the flip-flops count, which is represented by \(n_2 \) and obtained from the following equations:

\[
\text{bb}_{2j}(\text{ACA})_i = 34(1 + xL + 2y + 2L) \quad \text{Eq. 16}
\]

\[
\text{bb}_{2j}(\text{ACB})_{L_0} = 17(L_0 + L_1) \quad \text{Eq. 17}
\]

\[
\text{bb}_{2j}(\text{CR})_L = 17L \quad \text{Eq. 18}
\]

where \(L \) = latency, \(x \) = register-e enable \(\{0, 1\} \), \(y \) = output register enable \(\{0, 1\} \), \(L_0 \) = input register latency, \(L_1 \) = output register latency. This completes the analysis for HPLAN.
6.6.2 Congestion Factor

Congestion adversely affects performance of a design by increasing area and delay components. The Xilinx auto-placer first adds extra route-through Look-Up Tables (LUT) to accommodate for more routing resources when local interconnect is exhausted. LUT adds delay penalty of the order of nanoseconds which can be up to ten times higher than local interconnect. To solve the problem of congestion, the algorithm assumes that it is always present and adds slack regions, which are peripheral zones around a macro block to compensate for the extra routing needed. The peripheral region is measured in terms of row and column slices. The algorithm uses area coefficients for the three types of blocks present: ACA, ACB and CR.
6.6.3 Objective function

The aim of the placement algorithm is to minimize area, delay, power and congestion. The general objective function is:

\[F = C_A \cdot F_A + C_D \cdot F_D + C_P \cdot F_P \]

where \(C_A \) is the cost factor for area, \(C_D \) is the cost factor for delay and \(C_P \) is the cost factor for power. In order to achieve a monotonous function, \(F \) is modified with the terms for power and area combined into a single coefficient. This is true, considering that as area increases, so is the amount of interconnect and hence capacitance. Since \(P = CV^2f \) where \(C \) is the node capacitance, \(V \) is the voltage and \(f \) frequency of operation, power relates to area but not linearly. Furthermore, the congestion coefficient is added to the objective function. The new \(F_A \) is now \(C_{AI} = C_A + C_P + C_C \), where \(C_C \) is the congestion coefficient while the refined objective function is:

\[F = C_{AI} \cdot F_A + C_D \cdot F_D \]

6.6.4 Graph theory

Figure 6.8 shows an equivalent graph for a 51bits input multiplier. The input is broken down into three 17bits segments that feed the DSP48 multipliers \(M_0 \) to \(M_2 \). All blocks except \(CR_X \) are based on DSP48 cores. According to HPLAN, layer \(n_1 \) will contain DSP48 cores only while \(n_2 \) will have registers. Since DSP48s are further constrained to specific columns in the FPGA fabric, they are given the highest placement priority over registers (\(n_2 \)) which are mapped to regular logic cells. The algorithm also determines the critical path of the circuit and the fan-out for each macro block, both of which are used as criteria in the algorithm. To simplify the
process, the large multiplier design is considered as a graph with the mentioned properties added to vertices and edges. The algorithm can hence determine the shortest path in the graph or get a list of nodes in a specific order according to criteria such as highest delay in critical path or highest fan-out.

![Figure 6.8 51Bits Multiplier graph](image)

Figure 6.8 51Bits Multiplier graph

6.7 Proposed Placement Algorithm

The question of where DSP48 blocks should be placed can be answered by choosing a greedy algorithm which will place the largest of all ACA blocks first. As the number of DSP48 in one ACA is fixed, the factor which determines the size is actually the latency of the block. In a Cartesian coordinate system, the latency of an ACA block can then be evaluated as: \(L_{XY} = X + Y - 1 \). The choice of a greedy strategy which places block according to the largest size criteria is suitable since this always minimizes delay. The algorithm thus uses area as its decision factor and places first the largest block also containing the critical path. In the next iteration, the resulting sub-circuit contains a new critical path and a new largest block is selected and placed with little increase in delay. Part of the HPLAN methodology is also used and consists of breaking the design into primitives and treating each one on its own layer.
Algorithm 2.a Proposed Placement Algorithm
1. B=List of blocks to be placed; Relocate CR₀ at end of list
2. L₁=List of bounding box bb₁,ᵢ
3. L₂=List of bounding box bb₂,ᵢ
4. Sort B in decreasing order of area
5. Do
6. Remove E₀ from list B
7. If E₀ is an ACA and is a predecessor for an ACB
8. RealPlacer(E₀)
9. E₁=GetSuccessor(E₀)
10. RealPlacer(E₁)
11. Else
12. RealPlacer(E₀)
13. While |B|>0
14. Validate solution with HPLAN criteria

Algorithm 2.b Proposed Placement Algorithm
15. RealPlacer(E)
16. Update E with slack factor for congestion
17. Get free region F₀ in Φ₁, with bb₁,ᵢ from L₁
18. Place DSP48 from E in region F₀ which minimizes F
19. Get free region F₁ in Φ₂, with bb₂,ᵢ from L₂
20. Place register from E in region F₁ which minimizes F

The proposed placement algorithm consists of two parts, Algorithm 2.a and 2.b. First, 2a implements a greedy algorithm with elements further obtained from 2.b according to criteria obtained from HPLAN.

In line 1, the placement algorithm building a list of arithmetic blocks to be placed, obtained from the partition algorithm. At the same time, RLOC attributes are added to the VHDL code. Blocks are of type CR, ACA and ACB. For each element in the list, it furthermore defines corresponding bounding boxes which are stored in two lists, L₁ for n₁ and L₂ for n₂ as shown in steps 2 and 3. Step 4 is the greedy part of the algorithm and sorts the list B in decreasing order of area. Statements 6 to 12 are repeated for the amount of elements present in list B. Step 6 removes an element E from list B. Step 7 uses the data flow graph representation of the multiplier to place ACA and ACB blocks. In steps 8 to 10, if element E is an ACA and sinks an ACB the algorithm places E and its successor. Conversely, only E is placed in step 12. Both placements are accomplished using the RealPlacer procedure which implements the
HPLAN methodology with F as objective function. Operations are executed in $O(1)$ except for sorting which takes $O(n \log n)$ when implemented using Quicksort while the loop at line 5 is in $O(n)$.

The last step is to verify if all conditions necessary for HPLAN are satisfied, namely, if all blocks located in different layers are mutually exclusive, that they do not lie outside of the FPGA boundaries and that primitives used fit inside their allocated regions. The placement algorithm can then be applied to the graph in Figure 6.8 and results in $B=\{A_2, A_1, B_0, CR_0, CR_1, A_0, B_1\}$. At first, $E=A_2$ and on the initial iteration, A_2 and B_1 are placed. The second iteration will then place A_1 and B_0 along with CR_1 which is placed adjacently to A_1. Multipliers M_2, M_1 and M_0 are next placed while CR_0 is placed at the end. The RealPlacer procedure uses a seed location to indicate the initial placement of the first block to be placed (A_2). By default, the seed locates A_2 at the bottom of the FPGA die and augments the Y coordinate for each pass.

Figure 6.9 illustrates the resulting layout for a 51 bits multiplier with the proposed placement algorithm. Initially, block A_2 is placed using HPLAN using an initial seed having the coordinate of the first DSP48 in the column. The next step iteratively places B_1, A_1 and B_0, A_0, CR_1, M_2, M_1, M_0 and finally CR_0. There can be other solutions for the same design if different seeds are used. Since the critical path is minimized, the difference in performance for other placements is negligible.
Figure 6.9 51Bits multiplier physical layout graph, as generated by proposed partition algorithm

6.8 Results

Performance results in terms of area and delay are given below. Delay is furthermore broken down in terms of interconnect and combinational path delay, the latter including both gate and interconnect delay. Efficiency of the proposed placement algorithm is also measured quantitatively with the run-time of the place-and-route tool for different input sizes. In the graphs, “Tool placed” represents cases where the placement algorithm is not used and with values that were initially obtained using only the provided CAD placement algorithm.

The placement algorithm was modified for the tests, with the addition of a threshold level that stopped execution if the size of the current block placed was less
than a certain number. This allowed the place-and-route tool to take over and do a regular placement. Consequently, this modification prevented the use of large segmented nets which appeared at the end in the proposed placement algorithm, for very large input length.

6.8.1 Combinational path delay

Combinational path delay of various multipliers placed with the proposed placement algorithm is shown in Figure 6.10. Since the gate delay is constant as stated in Eq. 14, the net combinational delay depends solely on interconnect delay. The figure shows that for widths between approximately 32bits and 151bits (Region of interest), the proposed placement algorithm generates solutions that outperform those obtained from the alternative placement tool.

![Figure 6.10 Combinational path delay for designs initially placed using proposed placement algorithm](image)

Figure 6.10 Combinational path delay for designs initially placed using proposed placement algorithm
Figure 6.11 shows how interconnect delay progresses with changing width size. Using the proposed placement algorithm with an area threshold of 1500 registers minimizes the effect of wire segmentation present in the FPGA interconnect. Consequently, the result is improved until approximately 151 bits, where curves for “Placed with area threshold” and “Tool placed” intersect each other.

![Interconnect delay in placed multiplier designs](image)

6.8.2 Virtex-4 logic slice utilization for placed design

The proposed placement algorithm treats ACA, ACB and CR blocks as atomic elements without merging them. The mapping part of the implementation flow is not as effective in removing duplicate logic as it could be. Hence, an increase in terms of logic cells used is noted and shown in Figure 6.12. To offset this, the graph algorithm used should be modified to take into accounts inputs and latency registers that have
similar delays and further combine them together. Then, outputs from these register banks would be used to drive ACA and ACB blocks.

![Graph showing Logic slice utilization for placed multipliers designs](image)

Figure 6.12 Logic slice utilization for placed multipliers designs

6.8.3 Place-and-route tool runtime

As shown in Figure 6.13, the proposed placement algorithm makes it easier for the place-and-route (PAR) algorithm built in the design tool to execute. Consequently, the proposed algorithm gives a gain in performance of approximately 9% when compared to running the PAR without the initial placement step.
6.9 Summary

The placement algorithm presented in this chapter increases the multiplier's timing performance by as much as 20% in the case of an input width of 64 bits. The algorithm itself will improve on an unplaced design for input sizes in the range of 32 bits to 151 bits. Since the cost function used and hence heuristics employed consider minimizing delay as the main objective, area utilization suffers to a certain extent. In this view, the proposed algorithm can be enhanced by using a refined graph model that would instead treat ACA, ACB and CR block as non-atomic and remove redundant elements. Once done, the algorithm would then regroup the basic blocks and continue with steps outlined. Finally, the run-time for implementing large multiplier designs is also reduced.
The final stage in the design of the partition and placement algorithm is to verify the proper operation of solutions generated. The objective of the first algorithm is to break down a large-input unsigned multiplier design using smaller 17bits ones, with which the actual multiplication operations are performed. Also, 34bits adders are used to sum partial products into the final result. The partition algorithm makes use of custom-made discrete blocks, ACA, ACB and CR, where each has specific behaviours when subjected to particular input combinations. The large-input multiplier uses the forth-mentioned modules, interconnected together to form a working entity.

Since the generated solution can be viewed as a hierarchy of components as shown in Figure 7.1, the strategy adopted was to test the functionality of each block at each level and then test the multiplier entirely. Initially, DSP48 blocks and register components were assumed to be working properly. This represents the lowest level of component and is provided by the FPGA vendor, while VHDL models were also available. They have been already tested and are assumed to be trustworthy.

![Testing hierarchy for multiplier partition algorithm](image)

Figure 7.1 Testing hierarchy for multiplier partition algorithm
7.1 Behavioural Verification

ACA, ACB and CR are tested with VHDL testbenches and the test flow is shown in Figure 7.2. Stimulus signals are first applied at the multiplier’s inputs while having its outputs recorded. The behaviour is then compared to expected results as obtained from Eq. 1 and Eq. 2. Finally, the large integer multiplier is tested at the top-level, with random stimulus given using a VHDL testbench. The behaviour is again recorded and compared against the expected result obtained from the multiplier operator provided by the VHDL unsigned library.

Figure 7.2 Test setup for multiplier designs

Figure 7.2 shows one possible test procedure. This was used for testing all the basic blocks and the final multiplier designs. Furthermore, timing analysis was done
using this set-up by replacing UUT with the gate-level HDL model containing the appropriate delays.

7.2 Timing Analysis

Timing analysis and simulation consist of running the place-and-route (PAR) step of the CAD tool. This will generate a structural model containing delays along with a timing report from which information such as critical path delay and maximum frequency of operation are obtained. Timing simulation catches timing errors such as setup and hold violations, which are not present in the post-synthesis model. The report also provided data for the graphs presented in Chapters 5. The PAR step required a constraint file containing the targeted frequency of operation.

7.3 Placement Algorithm Testing

The placement algorithm decreases combinational delay while removing pass-through gates which are look-up tables used as interconnect. Placement information was added either in the VHDL file description or in the constraint file. Since the basic arithmetic blocks and connections are unchanged, no simulation was done in the placement phase. Data for critical path delay, area utilization and maximum frequency of operation were collected from report files and used in Chapter 6.
This thesis presented algorithms that increase the efficiency of DSP48 blocks so as to realize large-integer unsigned multiplication.

8.1 Partition Algorithm

The generic algorithm presented by Shuli Gao et al. [4] paved the way for the proposed partition algorithm. As such, the research involved finding a suitable mapping that would allow an even higher performance for these classes of hardware parallel multipliers. It was noted that high timing performance could be further enhanced by the use of pipelining as the DSP48 block reaches maximum frequency of operation under specific condition. The suggested partition method and resulting algorithm [5] minimize gate delay, as shown in Figure 5.13. Routing performance degradation for higher word length. The method makes use of pipelining registers present in any DSP48 block.

8.2 Placement Algorithm

Research in the area of floorplanning as obtained from a survey of placement algorithms gave more insight on newer generations of algorithms and heuristics for FPGA technologies, particularly ones that are related to heterogeneous placers. By
positioning groups of related logic units together according to certain rules, interconnect delay is hence mitigated to a certain extent. The most pertinent method for heterogeneous floorplanners was proposed by Love Singhal et al. [23], which attempts to solve the problem by assigning resources to layers and applying the placement algorithm on these layers.

Our placement algorithm tries to reduce interconnect delay by placing large arithmetic units first while also placing components related to the critical path [6]. Resource allocation is performed using HPLAN [23]. The proposed concept is based on the greedy model which considers local optimum solutions. The method also minimizes congestion by giving slack space around the basic building blocks of the multiplier. It was shown that when using this methodology, interconnect delay and consequently maximum frequency of operation for very large multiplier circuits were enhanced. Use of the placement algorithm is of course optional but should be employed if the highest timing performance is needed.

8.3 Conclusion

Presented here are two algorithms that will help in designing multiplier circuits implemented in the Virtex-4 family of FPGA. Performance measure, in terms of Area-Delay product for both fully-pipelined and non-pipelined versions is provided to give an idea of what to expect for a certain input length. Consequently, the designer has the choice of picking the appropriate large-integer multiplier design for the best cost function of the project.
8.4 Future Work

The algorithms presented in this thesis are not perfect. They were designed to optimize speed and minimize both interconnect and gate delay. Area used up by the pipelining registers can be further reduced when the placement algorithm is used. Using data flow graphs, a better algorithm can be obtained that would remove equivalent registers and hence decrease area utilization.

The given algorithms can be easily adapted to newer FPGA such as the Virtex-5, which possesses better DSP blocks. Since the designing approach of the partition algorithm is modular, one would just need to update ACA, ACB and CR with newer equivalent models.
REFERENCES

[17] Xilinx “XtremeDSP for Virtex-4 FPGA User Guide”, UG073, October 2007, Figure 1-3, pp. 20.

[19] Xilinx “XtremeDSP for Virtex-4 FPGA User Guide”, UG073, October 2007, Table 1-4, Table 1-5, pp. 29.

[35] Xilinx FPGA Editor, Release 8.2.03i, 2006

[36] Xilinx XPower, Release 8.2.03i, 2006
APPENDIX A, VHDL MODELS
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity register_cascade is
 generic(width : integer :=17; depth : integer := 4);
 Port (reset : in STD_LOGIC;
 elk : in STD_LOGIC;
 data_in : in STD_LOGIC_VECTOR (width-1 downto 0);
 data_out : out STD_LOGIC_VECTOR (width-1 downto 0));
end register_cascade;

architecture Behavioral of register_cascade is

 constant pipelineO : integer :=1; —1
 signal int_register : std_logic_vector((width*depth)-1 downto 0);

begin

 gen0:
 if depth/=0 and pipeline0/=0 generate
 process(clk)
 begin
 if clk'event and clk='l' then
 if reset='l' then
 int_register<=(others=>'0');
 else
 int_register(width-1 downto 0)<=data_in;
 for i in 2 to depth loop
 int_register((width*i)-1 downto width*(i-1)))<=int_register((width*(i-1))-1 downto width*(i-2));
 end loop;
 end if;
 end if;
 end process;
 data_out<=int_register;
 end generate;

 gen1:
 if depth=0 or pipeline0=0 generate
 data_out<=data_in;
 end generate;

end Behavioral;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
library UNISIM;
use UNISIM.VComponents.all;

entity dsp48reg_wrapper is
 --generic (bcin_en : boolean);
 Port (clk : in STD_LOGIC;
 reset : in STD_LOGIC;
 cin : in STD_LOGIC;
 din_a : in STD_LOGIC_VECTOR (16 downto 0);
 din_b : in STD_LOGIC_VECTOR (16 downto 0);
 din_c : in STD_LOGIC_VECTOR (16 downto 0);
 din_d : in STD_LOGIC_VECTOR (16 downto 0);
 din_e : in STD_LOGIC_VECTOR (33 downto 0);
 bcin : in std_logic_vector(17 downto 0);
 bcout : out std_logic_vector(17 downto 0);
 result : out STD_LOGIC_VECTOR (35 downto 0));
end dsp48reg_wrapper;

architecture Behavioral of dsp48reg_wrapper is

constant pipelineO : integer := -1;
constant pipeline1 : integer := -2;

signal int_al, int_bl, int_a0, int_b0 : std_logic_vector(17 downto 0);
signal int_cl, int_c0 : std_logic_vector(47 downto 0);
signal int_p0, int_p : std_logic_vector(47 downto 0);
signal int_res : std_logic_vector(47 downto 0);
signal int_reg_din_e : std_logic_vector(33 downto 0);
signal int_carry0, int_carry1 : std_logic;

attribute RLOC : string;
 --attribute RLOC of DSP48_inst_slice2: label is "X0Y0";
 --attribute RLOC of DSP48_inst_slice1: label is "X0Y1";
begin
 int_p0<=(others=>'0');
 int_a0<='0'^din_a;
 int_b0<='0'^din_b;
 int_al<='0'^din_c;
 int_bl<='0'^din_d;
 int_c0<=b"00_0000_0000_0000"^int_reg_din_e;

 genO: if pipelineO=1 generate
 process(clk)begin
 if clk'event and clk='l' then
 if reset='l' then
 int_reg_din_e<=(others=>'0');
 int_carry0<='0';
 else
 int_reg_din_e=din_e;
 int_carry0<=cin;
 end if;
 end if;
 end process;
 end generate;

 gen1: if pipelineO=0 generate
 int_reg_din_e=din_e;
 int_carry0<=cin;
 end generate;

 DSP48_inst_slice2 : DSP48
 generic map (
 AREG => pipelineO, -- Number of pipeline registers on the A input, 0, 1 or 2
 BREG => pipelineO, -- Number of pipeline registers on the B input, 0, 1 or 2
 watermark => '1');
 DSP48_inst_slice1 : DSP48
 generic map (
 AREG => pipelineO, -- Number of pipeline registers on the A input, 0, 1 or 2
 BREG => pipelineO, -- Number of pipeline registers on the B input, 0, 1 or 2
 watermark => '0');
B_INPUT => "DIRECT", -- B input DIRECT from fabric or CASCADE from another DSP48
CARRYINREG => pipeline0, -- Number of pipeline registers for the CARRYIN input, 0 or 1
CARRYINSELREG => 0, -- Number of pipeline registers for the CARRYINSEL, 0 or 1
CREG => pipeline0, -- Number of pipeline registers on the C input, 0 or 1
LEGACY_MODE => "MULT18x18", -- Backward compatibility, NONE, MULT18x18 or MULT18x18S
MREG => pipeline0, -- Number of multiplier pipeline registers, 0 or 1
OPMODEREG => 0, -- Number of pipeline registers on OPMODE input, 0 or 1
PREG => pipeline0, -- Number of pipeline registers on the P output, 0 or 1
SUBTRACTREG => 0) -- Number of pipeline registers on the SUBTRACT input, 0 or 1
port map (
 BCTN => "000000000000000000", -- Bcin, -- 18-bit B cascade input
 BCOUT => open, -- 18-bit B cascade output
 A => int_a0, -- 18-bit A data input
 B => int_b0, -- 18-bit B data input
 C => int_c0, -- 48-bit cascade input
 PCIN => int_p0, -- 48-bit PCIN input
 P => open, -- 48-bit product output
 FCOUT => int_p, -- 48-bit cascade output
 CARRYIN => int_carry0, -- Carry input signal
 CARRYINSEL => "00", -- 2-bit carry input select
 OPMODE => "0110101", -- 7-bit operation mode input
 CEA => '1', -- A data clock enable input
 CEB => '1', -- B data clock enable input
 CEC => '1', -- C data clock enable input
 CECARRYIN => '1', -- CARRYIN clock enable input
 CECINSUB => '1', -- CINSUB clock enable input
 CECYRL => '1', -- Clock Enable input for CTRL registersL
 CEM => '1', -- Clock Enable input for multiplier registers
 CEP => '1', -- Clock Enable input for P registers
 CLK => clk, -- Clock input
 RSTA => reset, -- Reset input for A pipeline registers
 RSTB => reset, -- Reset input for B pipeline registers
 RSTC => reset, -- Reset input for C pipeline registers
 RSTCARRYIN => reset, -- Reset input for CARRYIN registers
 RSTCTRL => reset, -- Reset input for CTRL registers
 RSTM => reset, -- Reset input for multiplier registers
 RSTP => reset, -- Reset input for P pipeline registers
 SUBTRACT => '0' -- SUBTRACT input
);

 int_cl<=(others=>'0');
DSP48_inst_slice1 : DSP48
generic map (
 AREG => pipeline1, -- Number of pipeline registers on the A input, 0, 1 or 2
 BREG => pipeline1, -- Number of pipeline registers on the B input, 0, 1 or 2
 B_INPUT => "DIRECT", -- B input DIRECT from fabric or CASCADE from another DSP48
 CARRYINREG => 0, -- Number of pipeline registers for the CARRYIN input, 0 or 1
 CARRYINSELREG => 0, -- Number of pipeline registers for the CARRYINSEL, 0 or 1
 CREG => pipeline1, -- Number of pipeline registers on the C input, 0 or 1
 LEGACY_MODE => "MULT18x18", -- Backward compatibility, NONE, MULT18x18 or MULT18x18S
 MREG => pipeline0, -- Number of multiplier pipeline registers, 0 or 1
 OPMODEREG => 0, -- Number of pipeline registers on OPMODE input, 0 or 1
 PREG => pipeline0, -- Number of pipeline registers on the P output, 0 or 1
 SUBTRACTREG => 0) -- Number of pipeline registers on the SUBTRACT input, 0 or 1
port map (
 BCTN => "000000000000000000", -- Bcin, -- 18-bit B cascade input
 BCOUT => open, -- 18-bit B cascade output
 A => int_a1, -- 18-bit A data input
 B => int_b1, -- 18-bit B data input
 C => int_c1, -- 48-bit cascade input
 FCIN => int_p, -- 48-bit FCIN input
 F => int_res, -- 48-bit product output
 FCOUT => open, -- 48-bit cascade output
CARRYIN => '0', -- Carry input signal
CARRYINSEL => "00", -- 2-bit carry input select
OPMODE => "0010101", -- 7-bit operation mode input

CEA => '1', -- A data clock enable input
CEB => '1', -- B data clock enable input
CEC => '1', -- C data clock enable input
CECARRYIN => '1', -- CARRYIN clock enable input
CECINSUB => '1', -- CINSUB clock enable input
CECTRL => '1', -- Clock Enable input for CTRL registers
CEM => '1', -- Clock Enable input for multiplier registers
CEP => '1', -- Clock Enable input for P registers
CLK => clk, -- Clock input

RSTA => reset, -- Reset input for A pipeline registers
RSTB => reset, -- Reset input for B pipeline registers
RSTC => reset, -- Reset input for C pipeline registers
RSTCARRYIN => reset, -- Reset input for CARRYIN registers
RSTCTRL => reset, -- Reset input for CTRL registers
RSTM => reset, -- Reset input for multiplier registers
RSTP => reset, -- Reset input for P pipeline registers
SUBTRACT => '0' -- SUBTRACT input

result<=int_res(35 downto 0);
end Behavioral;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arithmetic_cell is
 generic (depthO : integer := 16; reg_c_en : boolean := false; mode : integer := 1);
 Port (reset : in STD_LOGIC;
 elk : in STD_LOGIC;
 cin : in STD_LOGIC;
 cout : out std_logic_vector(1 downto 0);
 din_a : in STD_LOGIC_VECTOR (16 downto 0)
din_b : in STD_LOGIC_VECTOR (16 downto 0);
 din_c : in STD_LOGIC_VECTOR (16 downto 0);
 din_d : in STD_LOGIC_VECTOR (16 downto 0);
 din_e : in STD_LOGIC_VECTOR (33 downto 0);
 bcin :
 bcout : in std_logic_vector(17 downto 0);
result : out STD_LOGIC_VECTOR (33 downto 0));
end arithmetic_cell;

architecture Behavioral of arithmetic_cell is
 COMPONENT register_cascade
 generic (width : integer; depth : integer);
 PORT(
 reset : IN std_logic;
 clk : IN STD_LOGIC;
 data_in : IN std_logic_vector(16 downto 0);
 data_out : OUT std_logic_vector(16 downto 0)
);
 END COMPONENT;

 COMPONENT register_cascade_u
 generic (width : integer; depth : integer);
 PORT(
 reset : IN std_logic;
 clk : IN STD_LOGIC;
 data_in : IN std_logic_vector(33 downto 0);
 data_out : OUT std_logic_vector(33 downto 0)
);
 END COMPONENT;

 COMPONENT dsp48reg_wrapper
 PORT(
 elk :
 reset : IN std_logic;
 cin : IN std_logic;
 din_a :
 din_b :
 din_c :
 din_d :
 din_e :
 bcin :
 bcout : OUT std_logic_vector(35 downto 0);
result : OUT std_logic_vector(35 downto 0)
);
 END COMPONENT;

 COMPONENT dsp48_wrapper
 PORT(
 elk :
 reset : IN std_logic;
 cin : IN std_logic;
 din_a :
 din_b :
 din_c :
 din_d :
 din_e :
 result : OUT std_logic_vector(35 downto 0)
);
 END COMPONENT;
COMPONENT dsp48regben_wrapper
PORT(
 clk : IN std_logic;
 reset : IN std_logic;
 cin : IN std_logic;
 din_a : IN std_logic_vector(16 downto 0);
 din_b : IN std_logic_vector(16 downto 0);
 din_c : IN std_logic_vector(16 downto 0);
 din_d : IN std_logic_vector(16 downto 0);
 din_e : IN std_logic_vector(33 downto 0);
 bcin : IN std_logic_vector(17 downto 0);
 bcout : OUT std_logic_vector(17 downto 0);
 result : OUT std_logic_vector(35 downto 0)
);
END COMPONENT;

begin

 gen_blkl:
 if depth0/=0 generate
 Inst_register_cascade_a: register_cascade
 GENERIC MAP(width => 17, depth => depth0)
 PORT MAP(
 clk => clk,
 reset => reset,
 data_in => din_a,
 data_out => int_din_a
);

 Inst_register_cascade_b: register_cascade
 GENERIC MAP(width => 17, depth => depth0)
 PORT MAP(
 clk => clk,
 reset => reset,
 data_in => din_b,
 data_out => int_din_b
);

 Inst_register_cascade_c: register_cascade
 GENERIC MAP(width => 17, depth => depth0)
 PORT MAP(
 clk => clk,
 reset => reset,
 data_in => din_c,
 data_out => int_din_c
);

 Inst_register_cascade_d: register_cascade
 GENERIC MAP(width => 17, depth => depth0)
 PORT MAP(
 clk => clk,
 reset => reset,
 data_in => din_d,
 data_out => int_din_d
);
 end generate;

 gen_blk2:
 if depth0=0 generate
 int_din_a<=din_a;
 int_din_b<=din_b;
 int_din_c<=din_c;
 int_din_d<=din_d;
 int_din_e<=din_e;
 end generate;

 gen_blk3:
 if reg_c_en=true and depth0/=0 generate
 Inst_register_cascade_e: register_cascade

GENERIC MAP(width => 34, depth => depth0)
PORT MAP(
 clk => clk,
 reset => reset,
 data_in => din_e,
 data_out => int_din_e
);
end generate;

gen_blk4:
 if depth0/=0 and reg_c_en=false generate
 int_din_e<=din_e;
 end generate;

--DSP48 BLOCK PIPELINED IN DIRECT FROM FABRIC MODE FOR BCIN

gen_blk5:
 if mode=1 generate
 Inst_dsp48reg_wrapper: dsp48reg_wrapper PORT MAP(
 clk => clk,
 reset => reset,
 cin => cin,
 din_a => int_din_a,
 din_b => int_din_b,
 din_c => int_din_c,
 din_d => int_din_d,
 din_e => int_din_e,
 bcin => bcin,
 bcout => bcout,
 result => int_result
);
 result<=int_result(33 downto 0);
 cout<=int_result(35 downto 34);
 end generate;

--DSP48 BLOCK ONLY WITHOUT PIPELINE

gen_blk6:
 if mode=0 generate
 Inst_dsp48_wrapper: dsp48_wrapper PORT MAP(
 clk => clk,
 reset => reset,
 cin => cin,
 din_a => int_din_a,
 din_b => int_din_b,
 din_c => int_din_c,
 din_d => int_din_d,
 din_e => int_din_e,
 result => int_result
);
 result<=int_result(33 downto 0);
 cout<=int_result(35 downto 34);
 end generate;

--DSP48 PIPELINED IN CASCADE MODE FOR BCIN

gen_blk7:
 if mode=2 generate
 Inst_dsp48regben_wrapper: dsp48regben_wrapper PORT MAP(
 clk => clk,
 reset => reset,
 cin => cin,
 din_a => int_din_a,
 din_b => int_din_b,
 din_c => int_din_c,
 din_d => int_din_d,
 din_e => int_din_e,
 bcin => bcin,
 bcout => bcout,
 result => int_result
);
 result<=int_result(33 downto 0);
 cout<=int_result(35 downto 34);
 end generate;

--DSP48 PIPELINED IN CASCADE MODE FOR BCIN, WITH EXTRA OUTPUT

gen_blk8:
 if mode=3 generate
 Inst_dsp48reg_wrapper: dsp48reg_wrapper PORT MAP(
 clk => clk,
reset => reset,
cin => cin,
din_a => int_din_a,
din_b => int_din_b,
din_c => int_din_c,
din_d => int_din_d,
din_e => int_din_e,
bcin => bcin,
bcout => bcout,
result => int_result

Inst_register_cascade_a: register_cascade
GENERIC MAP(width => 17, depth => 4)
PORT MAP(
 clk => clk,
 reset => reset,
data_in => int_result(33 downto 17),
data_out => int_p_reg
);
result<=int_p_reg&int_result(16 downto 0);
cout<=int_result(35 downto 34);
end generate;

end Behavioral;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arithmetic_celll is
 generic (latencyl : integer:=2; latency2 : integer:=2);
 Port (elk : in STD_LOGIC;
 reset : in STD_LOGIC;
 din_a : in STD_LOGIC_VECTOR (16 downto 0);
 din_b : in STD_LOGIC_VECTOR (1 downto 0);
 result : out STD_LOGIC_VECTOR (16 downto 0));
end arithmetic_celll;

architecture Behavioral of arithmetic_celll is

 COMPONENT register_cascade
 GENERIC (width : integer; depth : integer);
 PORT(
 reset : IN std_logic;
 elk : IN std_logic;
 data_in : IN std_logic_vector(16 downto 0);
 data_out : OUT std_logic_vector(16 downto 0)
);
 END COMPONENT;

 signal int_reg_din_a : std_logic_vector (16 downto 0);
 signal int_result : std_logic_vector (16 downto 0);

begin

acl_gen1:
 if latencyl/=0 generate
 Inst_register_cascade0: register_cascade --input register for din_a
 GENERIC MAP(width=> 17 ,depth=> latencyl)
 PORT MAP(
 reset => reset,
 clk => clk,
 data_in => din_a(16 downto 0),
 data_out => int_reg_din_a(16 downto 0)
);
 end generate;

acl_gen2:
 if latencyl=0 generate
 int_reg_din_a(16 downto 0)<=din_a(16 downto 0);
 end generate;

process(int_reg_din_a, din_b)
 variable x : std_logic_vector(18 downto 0);
begin
 x:=("00"&int_reg_din_a)+din_b;
 int_result<=x(16 downto 0);
end process;

acl_gen3:
 if latency2/=0 generate
 Inst_register_cascade1: register_cascade --output register for result
 GENERIC MAP(width=> 17 ,depth=> latency2)
 PORT MAP(
 reset => reset,
 clk => clk,
 data_in => int_result(16 downto 0),
 data_out => result(16 downto 0)
);
 end generate;

acl_gen4:
 if latency2=0 generate
 result<=int_result;
 end generate;

end Behavioral;
library IEEE;
library UNISIM;
use UNISIM.VComponents.all;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity top_level_68 is
 generic(width : integer := 68);
 Port (da : in STD_LOGIC_VECTOR (width-1 downto 0);
 db : in STD_LOGIC_VECTOR (width-1 downto 0);
 r : out STD_LOGIC_VECTOR ((width*2)-1 downto 0);
 reset : in std_logic;
 elk : in STD_LOGIC);
end top_level_68;

architecture Behavioral of top_level_68 is

constant dsp_block_latency : integer := 4;

COMPONENT arithmetic_cell
 generic(latency1 : integer; latency2 : integer);
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 din_a : IN std_logic_vector(16 downto 0);
 din_b : IN std_logic_vector(16 downto 0);
 result : OUT std_logic_vector(16 downto 0));
END COMPONENT;

COMPONENT arithmetic_cell
 generic(depth0 : integer; reg_c_en : boolean; mode : integer);
 PORT(reset : IN std_logic;
 clk : IN std_logic;
 cin : IN std_logic;
 cout : out std_logic_vector(1 downto 0);
 din_a : IN std_logic_vector(16 downto 0);
 din_b : IN std_logic_vector(16 downto 0);
 din_c : IN std_logic_vector(16 downto 0);
 din_d : IN std_logic_vector(16 downto 0);
 din_e : IN std_logic_vector(33 downto 0);
 bcin : IN std_logic_vector(17 downto 0);
 bcout : OUT std_logic_vector(17 downto 0);
 result : OUT std_logic_vector(33 downto 0));
END COMPONENT;

COMPONENT register_cascade
 GENERIC (width : integer; depth : integer);
 PORT(reset : IN std_logic;
 clk : IN std_logic;
 data_in : IN std_logic_vector(16 downto 0);
 data_out : OUT std_logic_vector(16 downto 0));
END COMPONENT;

--Number of levels is: 3
--Generating signal declaration
signal Z0 : std_logic_vector(135 downto 0);
signal Z1 : std_logic_vector(101 downto 0);
signal Z2 : std_logic_vector(67 downto 0);
signal Z3 : std_logic_vector(33 downto 0);
signal C0 : std_logic_vector(7 downto 0);
signal C1 : std_logic_vector(5 downto 0);
signal C2 : std_logic_vector(3 downto 0);
signal int_reset : std_logic;
begin
int_reset<=reset;
--Generating input multipliers Xi*Yi
Z0(33 downto 0) <= DA(16 downto 0) * DB(16 downto 0);
Z0(67 downto 34) <= DA(33 downto 17) * DB(33 downto 17);
Z0(101 downto 68) <= DA(50 downto 34) * DB(50 downto 34);
Z0(135 downto 102) <= DA(67 downto 51) * DB(67 downto 51);

--Generating Output register with latency: 5
Inst_register_cascadeO: register_cascade
GENERIC MAP(width=> 17, depth=> (5*dsp_block_latency))
PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Z0(16 downto 0),
 data_out => R(16 downto 0)
);

--iteration for Zl
C0(1 downto 0) <= "00";
--Generating Arithmetic Cell A with connection:
Inst_arithmetic_cellA_00: arithmetic_cell
GENERIC MAP(depth0 => (0*dsp_block_latency), reg_c_en => true, mode=> 3)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => C0(0),
 cout => C0(3 downto 2),
 din_a => DA(16 downto 0),
 din_b => DB(33 downto 17),
 din_c => DA(33 downto 17),
 din_d => DB(50 downto 34),
 din_e => Z0(33 downto 17),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Zl(33 downto 0)
);

--Generating Arithmetic Cell A with connection:
Inst_arithmetic_cellA_01: arithmetic_cell
GENERIC MAP(depth0 => (1*dsp_block_latency), reg_c_en => true, mode=> 3)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => CO(2),
 cout => CO(5 downto 4),
 din_a => DA(33 downto 17),
 din_b => DB(50 downto 34),
 din_c => DA(50 downto 34),
 din_d => DB(33 downto 17),
 din_e => Z0(67 downto 51),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Zl(67 downto 34)
);

--Generating Arithmetic Cell A with connection:
Inst_arithmetic_cellA_02: arithmetic_cell
GENERIC MAP(depth0 => (2*dsp_block_latency), reg_c_en => true, mode=> 3)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => CO(4),
 cout => CO(7 downto 6),
 din_a => DA(50 downto 34),
 din_b => DB(67 downto 51),
 din_c => DA(67 downto 51),
 din_d => DB(50 downto 34),
 din_e => Z0(118 downto 85),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Zl(118 downto 32)
);

--Generating Arithmetic Cell B with connection:
Inst_arithmetic_cellB_0: arithmetic_cell
GENERIC MAP(latency1 => (3*dsp_block_latency), latency2 => (2*dsp_block_latency))
PORT MAP(
 clk => clk,
 reset => int_reset,
 din_a => Z0(135 downto 119),
 din_b => C0(7 downto 6),
 result => R(135 downto 119)
);

--Generating Output register with latency: 4
Inst_register_cascadel: register_cascade
GENERIC MAP(width=> 17 ,depth=> (4*dsp_block_latency))
PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Zl(16 downto 0),
 data_out => R(33 downto 17)
);

--iteration for Z2
C1(1 downto 0)="00";

--Generating Arithmetic Cell A with connection:
Inst_arithmetic_cellA_ll: arithmetic_cell
GENERIC MAP(depth0 => (2*dsp_block_latency), reg_c_en =>false, mode=> 3)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => C1(0),
 cout => C1(3 downto 2),
 din_a => DA(16 downto 0),
 din_b => DB(50 downto 34),
 din_c => DA(50 downto 34),
 din_d => DB(16 downto 0),
 din_e => Zl(50 downto 17),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Z2(33 downto 0)
);

--Generating Arithmetic Cell A with connection:
Inst_arithmetic_cellA_12: arithmetic_cell
GENERIC MAP(depth0 => (3*dsp_block_latency), reg_c_en =>false, mode=> 3)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => C1(2),
 cout => C1(5 downto 4),
 din_a => DA(33 downto 17),
 din_b => DB(67 downto 51),
 din_c => DA(67 downto 51),
 din_d => DB(33 downto 17),
 din_e => Zl(84 downto 51),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Z2(67 downto 34)
);

--Generating Arithmetic Cell B with connection:
Inst_arithmetic_cellB_l: arithmetic_cell
GENERIC MAP(latency1 => (0*dsp_block_latency), latency2 => (1*dsp_block_latency))
PORT MAP(
 clk => clk,
 reset => int_reset,
 din_a => Zl(101 downto 85),
 din_b => C1(5 downto 4),
 result => R(118 downto 102)
);

--Generating Output register with latency: 2
Inst_register_cascade2l: register_cascade
GENERIC MAP(width=> 17 ,depth=> (2*dsp_block_latency))
PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Z2(16 downto 0),
 data_out => R(50 downto 34)
);

--iteration for Z3
C2(1 downto 0)<="00";
--Generating Arithmetic Cell A with connection:
 Inst_arithmetic_cellA_22: arithmetic_cell
 GENERIC MAP(depth0 => (4*dsp_block_latency), reg_c_en =>false, mode=>
1)
PORT MAP(
 clk => clk,
 reset => int_reset,
 cin => C2(0),
 cout => C2(3 downto 2),
 din_a => DA(16 downto 0),
 din_b => DB(67 downto 51),
 din_c => DA(67 downto 51),
 din_d => DB(16 downto 0),
 din_e => Z2(50 downto 17),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Z3(33 downto 0)
);

--Generating Arithmetic Cell B with connection:
 Inst_arithmetic_cellB_2: arithmetic_cell
 GENERIC MAP(latency1 => (0*dsp_block_latency), latency2 =>
(0*dsp_block_latency))
PORT MAP(
 clk => clk,
 reset => int_reset,
 din_a => Z2(67 downto 51),
 din_b => C2(3 downto 2),
 result => R(101 downto 85)
);

--Generating Output register with latency: 0
 Inst_register_cascade3: register_cascade
 GENERIC MAP(width=> 17 ,depth=> (0*dsp_block_latency))
PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Z3(16 downto 0),
 data_out => R(67 downto 51)
);

R(84 downto 68) <= Z3(33 downto 17);

--Done!
--Statistics- Input multiplier: 4
--Statistics- DSP slice count: 16 Register count: 5168
--Statistics- ACA: 6 ACB: 3 CR: 3
--Statistics- Total external DSP block register: 59
--Statistics- Total ACB block register: 6
--Statistics- Total CR register: 11

end Behavioral;
--Programmer: Jacques Laurent Athow
--Objective: Generated 51 bits multiplier design using proposed partition algorithm with placed blocks
--Project: Master thesis, Concordia University, November 2008

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity top_level_alg_51_rpm is
 Port (da : in STD_LOGIC_VECTOR (50 downto 0);
 db : in STD_LOGIC_VECTOR (50 downto 0);
 r : out STD_LOGIC_VECTOR (101 downto 0);
 --generated_result : out std_logic_vector(135 downto 0);
 reset : in std_logic;
 elk : in STD_LOGIC);
end top_level_alg_51_rpm;

architecture Behavioral of top_level_alg_51_rpm is
 constant dsp_block_latency : integer :=4;

 COMPONENT aca_rpm
 generic(depth : integer; reg_c_en : integer; mode : integer);
 PORT(
 reset : IN std_logic;
 clk : IN std_logic;
 cin : IN std_logic;
 cout : out std_logic_vector(1 downto 0);
 din_a : IN std_logic_vector(16 downto 0);
 din_b : IN std_logic_vector(16 downto 0);
 din_c : IN std_logic_vector(16 downto 0);
 din_d : IN std_logic_vector(16 downto 0);
 din_e : IN std_logic_vector(33 downto 0);
 bcin : IN std_logic_vector(17 downto 0);
 bcout : OUT std_logic_vector(17 downto 0);
 result : OUT std_logic_vector(33 downto 0)
);
 END COMPONENT;

 component acb_rpm
 generic(input_width : integer; input_depth : integer; output_depth : integer);
 PORT(
 reset : IN std_logic;
 clk : IN std_logic;
 din_a : IN std_logic_vector(16 downto 0);
 din_b : IN std_logic_vector(16 downto 0);
 result : OUT std_logic_vector(16 downto 0)
);
 END COMPONENT;

 COMPONENT reg_cascade_rpm
 GENERIC (width : integer; depth : integer; interleave : integer)
 PORT(
 reset : IN std_logic;
 clk : IN std_logic;
 data_in : IN std_logic_vector(16 downto 0);
 data_out : OUT std_logic_vector(16 downto 0)
);
 END COMPONENT;

 --Number of levels is: 2
 --Generating signal declaration

 signal Z0 : std_logic_vector(101 downto 0);
signal Z1 : std_logic_vector(67 downto 0);
signal Z2 : std_logic_vector(33 downto 0);
signal Z3 : std_logic_vector(5 downto 0);
signal Z4 : std_logic_vector(3 downto 0);

 signal int_reset : std_logic;

 attribute RLOC_ORIGIN : string;
 attribute RLOC_ORIGIN of Inst_aca_rpm_00: label is "X15Y5";
 attribute RLOC_ORIGIN of Inst_aca_rpm_01: label is "X2Y25";
 attribute RLOC_ORIGIN of Inst_aca_rpm_01: label is "X2Y55";
attribute RLOC_ORIGIN of Inst_acb_rpm_0: label is "X13Y43";
attribute RLOC_ORIGIN of Inst_acb_rpm_1: label is "X10Y75";
attribute RLOC_ORIGIN of Inst_reg_cascade_rpm0: label is "X10Y95";
attribute RLOC_ORIGIN of Inst_reg_cascade_rpm1: label is "X10Y95";
attribute RLOC_ORIGIN of Inst_reg_cascade_rpm2: label is "X22Y150";

begin

int_reset<=reset;

--Generating input multipliers \(X_i \times Y_i\)
Z0(33 downto 0) <= DA(16 downto 0) * DB(16 downto 0);
Z0(67 downto 34) <= DA(33 downto 17) * DB(33 downto 17);
Z0(101 downto 68) <= DA(50 downto 34) * DB(50 downto 34);

--Generating Output register with latency: 3
Instr_reg_cascade_rpm0: reg_cascade_rpm
GENERIC MAP(width=> 17 ,depth=> (3*dsp_block_latency), interleave=>0)
PORT MAP(
reset => int_reset,
clk => clk,
data_in => Z0(16 downto 0),
data_out => R(16 downto 0)
);

--iteration for Z1
C0(1 downto 0)<="00";
--Generating Arithmetic Cell A with connection:
Instr_aca_rpm_00: aca_rpm
GENERIC MAP(depth => (0*dsp_block_latency), reg_c_en =>1, mode=> 3)
PORT MAP(
clk => clk,
reset => int_reset,
cin => C0(0),
cout => C0(3 downto 2),
din_a => DA(16 downto 0),
din_b => DA(33 downto 17),
din_c => DA(33 downto 17),
din_d => DA(50 downto 34),
din_e => Z0(84 downto 51),
bcin => b"00_0000_0000_0000_0000",
bcout => open,
result => Z1(33 downto 0)
);

--Generating Arithmetic Cell A with connection:
Instr_aca_rpm_01: aca_rpm
GENERIC MAP(depth => (1*dsp_block_latency), reg_c_en =>1, mode=> 3)
PORT MAP(
clk => clk,
reset => int_reset,
cin => C0(2),
cout => C0(5 downto 4),
din_a => DA(33 downto 17),
din_b => DB(50 downto 34),
din_c => DA(50 downto 34),
din_d => DB(33 downto 17),
din_e => Z0(84 downto 51),
bcin => b"00_0000_0000_0000_0000",
bcout => open,
result => Z1(67 downto 34)
);

--Generating Arithmetic Cell B with connection:
Instr_acb_rpm_0: acb_rpm
GENERIC MAP(input_width => 17, input_depth=> (2*dsp_block_latency),
output_depth => (1*dsp_block_latency))
PORT MAP(
clk => clk,
reset => int_reset,
din_a => Z0(101 downto 85),
din_b => C0(5 downto 4),
result => R(101 downto 85)
);
---Generating Output register with latency: 2
Inst_reg_cascade_rpm: reg_cascade_rpm
 GENERIC MAP(width=> 17 ,depth=> (2*dsp_block_latency), interleave=>0)
 PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Zl(16 downto 0),
 data_out => R(33 downto 17)
);

--iteration for Z2
Cl(l downto 0)<="00";

---Generating Arithmetic Cell A with connection:
Inst_aca_rpm_ll: aca_rpm
 GENERIC MAP(depth => (2*dsp_block_latency), reg_c_en =>0, mode=> 1)
 PORT MAP(
 elk => elk,
 reset => int_reset,
 cin => CI (0),
 cout => CI(3 downto 2),
 din_a => DA(16 downto 0),
 din_b => DB(50 downto 34),
 din_c => DA(50 downto 34),
 din_d => DB(16 downto 0),
 din_e => Zl(50 downto 17),
 bcin => b"00_0000_0000_0000_0000",
 bcout => open,
 result => Z2(33 downto 0)
);

---Generating Arithmetic Cell B with connection:
Inst_acb_rpm_l: acb_rpm
 GENERIC MAP(input_width=>17, input_depth => (0*dsp_block_latency),
 output_depth => (0*dsp_block_latency))
 PORT MAP(
 elk => elk,
 reset => int_reset,
 din_a => Zl(67 downto 51),
 din_b => CI(3 downto 2),
 result => R(84 downto 68)
);

---Generating Output register with latency: 0
Inst_reg_cascade_rpm2: reg_cascade_rpm
 GENERIC MAP(width=> 17 ,depth=> (0*dsp_block_latency), interleave=>0)
 PORT MAP(
 reset => int_reset,
 clk => clk,
 data_in => Z2(16 downto 0),
 data_out => R(50 downto 34)
);

R(67 downto 51) <= Z2(33 downto 17);

---Done!
---Statistics- Input multiplier: 3
---Statistics- DSP slice count: 9 Register count: 1768
---Statistics- ACA: 3 ACB: 2 CR: 2
---Statistics- Total external DSP block register: 18
---Statistics- Total ACB block register: 3
---Statistics- Total CR register: 5
end behavioral;
APPENDIX B, C++ SOURCE CODE
// Programmer: Jacques Laurent Athow
// Objective: C++ source to implement proposed partition algorithm
// Project: Master thesis, Concordia University, November 2008

#include "stdafx.h"
#include <math.h>
#include <iostream>
#include <string>
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 const int len=68;
 //const int N = 3; //number of levels
 const int m=17; //size of multiplier operands
 const int dsp_blk_k=4;
 char buff[100];
 char x;
 int xO;
 int mode=0;

 int N=(int)ceil((double)len/m)-1;
 int dsp_block_count=0;
 int register_count=0;
 int cella=0, cellb=0, cellc=0;
 int aca_reg=0;
 int cr_reg=2*N-1;
 int acb_reg=N;
 int au=0;

 cout<<"—Number of levels is: "<<N<<endl;

 cout<<"—Generating signal declaration
"
 for (int i=0; i<N+l; i++)
 { sprintf(buff, "signal 2%i : std_logic_vector(%i downto 0);
", i, (N-i+1)*m*2-l);
 cout<<buff;
 }
 for (int i=0; i<N; i++)
 { sprintf(buff, "signal C%i : std_logic_vector(%i downto 0);
", i, 2*(N+l-i)-l);
 cout<<buff;
 }
 cout<<endl;

 //—iteration for Z0 first level output
 cout<<"—Generating input multipliers Xi*Yi
"
 for (int i=0; i<N; i++)
 { sprintf(buff, "lnst_mult_dsp_%i: mult_dsp port map(dout=>Z0 (%i downto
", i, 2*m*(i+l)-l, m*i, m*(i+l)-l,

 cout<<buff;
 }

 cout<<endl;

 //—Generating output register with latency: "<<2*N-l<<endl;
 cout<<"lnst_reg_cascade0: reg_cascade_rprn
"
 sprintf(buff, "GENERIC MAP(width=> 17 ,depth=> (%i*dsp_block_latency),
", 2*N-1, 0);
 cout<<buff;

 cout<<"TPORT MAP\n";
 cout<<"treset => int_reset,\n"
 cout<<"tclk => clk,\n"
 cout<<"tdata_in => Z0(16 downto 0),\n"
 cout<<"tdata_out => R(16 downto 0)\n"
 cout<<"t:\n"
 for (int i=0; i<N; i++)
 { sprintf(buff, "\n--iteration for Z%i<<i+1<<"n";
 cout<<buff;
 int j;
 for (j=i; j<N; j++)
 { aca_reg+=(4*(i+j));
 }
if (i==N-1)
 mode=1;
else{
 mode=3;
 aca_reg++;
}

cout<<"\t--Generating Arithmetic Cell A with connection:\n";

if (i==0){
 if (mode==3)
 au=34*(3+4*(i+j)+(2*4*(i+j)));
 else
 au=34*(1+4*(i+j)+(2*4*(i+j)));
 sprintf(buff, "\t--Area utilization: %i\n", au);
 cout<<buff;
 sprintf(buff, "\t\tGENERIC MAP(depth =>
(\%i*dsp_block_latency), reg_c_en =>%s, mode=> %i)
aca_reg++=2;)
}

else{
 if (mode==3)
 au=34*(3+(2*4*(i+j)));
 else
 au=34*(1+(2*4*(i+j)));
 sprintf(buff, "\t--Area utilization: %i\n", au);
 cout<<buff;
 sprintf(buff, "\t\tGENERIC MAP(depth =>
(\%i*dsp_block_latency), reg_c_en =>%s, mode=> %i)
aca_reg++=2;)
}

cout<<buff;

cout<<"\t\tPORT MAP(
";

cout<<"\t\tclk => clk,\n";
cout<<"\t\treset => int_reset, \n;"

sprintf(buff, "\t\tcin => C%i(%i),\n", i, (j-i)*2);
cout<<buff;

sprintf(buff, "\t\tcout => C%i(%i downto %i),\n", i, (j+2-i)*2-
1, (j+1-i)*2);
cout<<buff;

cout<<"\t\tdin_a => DA(%i downto %i),\n", m*(j-i));
cout<<buff;

cout<<"\t\tdin_b => DB(%i downto %i),\n", m*(j+1));
cout<<buff;

cout<<"\t\tdin_c => DA(%i downto %i),\n", m*(j+1));
cout<<buff;

cout<<"\t\tdin_d => DB(%i downto %i),\n", m*(j-i));
cout<<buff;

cout<<"\t\tdin_e => Z%i(%i downto %i),\n", i, 2*m*(j-
1)-1, 2*m*(j-i));
cout<<buff;

cout<<"\t\thcin => b"00_0000_0000_0000_0000",\n";
cout<<"\t\thcout => open,\n";

cout<<"\t\tresult => Z%i(%i downto %i),\n", i+1, 2*m*(j-
i+1)-1, 2*m*(j-i));
cout<<buff;

cout<<"\t\t);\n";

cella++;

//implement the output registers and arithmetic cell B
cout<<"Generating Arithmetic Cell B with connection:\n";

if (i==0)
 x0=N;
else
 x0=0;

acb_reg+=N-i-1;
sprintf(buff, "\t--Area utilization: %i\n", 17*(x0+N-i-1)*4);
cout<<buff;
sprintf(buff, "\tInst_acb_dsp48_rpm_%i: acb_dsp48_rpm\n", i);
cout<<buff;
sprintf(buff, "\t\tGENERIC MAP(input_width=>17, input_depth =>
(v*i)*4);
cout<<buff;
sprintf(buff, "\t\tPORT MAP(
(cycle_latency), output_depth => (v*i)*4);
cout<<buff;
 clk => clk,
 reset => int_reset,
 din_a => Z%i(%i downto %i),
 din_b => C%i(%i downto %i),
 result => R(%i downto %i)
);

cr_reg+=2*(N-i-1);

if (i==0)
 cr_reg+=N-i-1;

---Statistics- Input multiplier: "<<N+l<<endl;
---Statistics- ACA register count : "<<acb_reg<<" , ACB register count :
<<acb_reg<<" , CR register count : "<<cr_reg;
---Statistics- DSP slice count: "<<cella*2>>%i<<endl;
---Statistics- ACB: "<<cellb<<" ACB: "<<cellb<<endl;
---Statistics- Total ACB block register: "<<acb_reg<<endl;
---Statistics- Total CR register: "<<cr_reg<<endl;
cin>>x;
return 0;

#include "stdafx.h"
#include <math.h>
#include <iostream>
#include <string>
#include "graph.h"
#include "HPLAN.h"
#include "quicksort.h"
#include "fpga_resource.h"

using namespace std;

float k=0.5;

int _tmain(int argc, _TCHAR* argv[])
{
 int seed=0;
 int threshold=11;

 String fpga_type="XC4V140FX";
 List* curr_list_ptr=openDesign();
 List bounding_box1_list, bounding_box2_list;
 Elem generic_elem, generic_elem1;
 Hplan hplan[seed];

 buildResource(fpga_type);

 //build bounding box lists
 while(curr_list_ptr->size()){
 generic_elem=new Elem(curr_list_ptr->getElem());
 if (generic_elem.type()==ACA)
 bounding_box_list1.addElem(generic_elem);
 if (generic_elem.type()==ACB)
 bounding_box_list2.addElem(generic_elem);
 }
 curr_list_ptr=openDesign();
 quicksort(curr_list_ptr);
 do{
 generic_elem=new(generic_elemcurr_list_ptr->removeElem());
 cout<<"now placing: "<<generic_elem.getInfo()<<endl;
 if (generic_elem.type()==ACA &&
 (generic_elem.getPredecessor()).type()==ACB){
 cout<<"ACA is largest block..."<<endl;
 cout<<"Placing it and its predecessor"
 <<endl;
 realPlacer(generic_elem, hplan, bounding_box_list1,
 bounding_box_list2);
 cout<<"Predecessor is: ";
 generic_elem1=new element(generic_elem.getSuccessor());
 cout<<generic_elem1.getInfo()<<endl;
 realPlacer(generic_elem1, hplan, bounding_box_list1,
 bounding_box_list2);
 }
 else{
 realPlacer(generic_elem, hplan, bounding_box_list1,
 bounding_box_list2);
 }
 }while(curr_list_ptr->size());
 hplan.validate();
 cout<<"Done with placing!\r\n";
 cin>>x;
void realPlacer(Elem working_element, Hplan & hplan_working, List working_list1, List working_list2){
 int size_x = working_element.getXSize();
 int size_y = working_element.getYSize();

 working_element.adjustSlack(size_x * k, size_y * k);

 hplan_working.getFreeResource(working_list1, 0);
 hplan_working.placeElement(working_element);

 hplan_working.getFreeResource(working_list1, 1);
 hplan_working.placeElement(working_element);
}
return 0;