
Numerical and Experimental Analysis of Dual Focus Laser for High Aspect Ratio 

Microdrilling 

Jasjit Singh Mann 

A Thesis 

In 

The Department 

Of 

Mechanical and Industrial Engineering 

Presented In Partial Fulfillment of the Requirement 

For the Degree of Master of Applied Science (Mechanical Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

December, 2008 

© Jasjit Singh Mann, 2008 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63231-4 
Our file Notre reference 
ISBN: 978-0-494-63231-4 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



ABSTRACT 

Numerical and experimental analysis of dual focus laser for high aspect ratio 

microdrilling 

Jasjit Singh Mann 

Laser drilling is the most efficient noncontact material removal process. In this research 

project, a simplified approach using "dual focus" has been proposed to improve the 

aspect ratio of the drilling. Dual focus drilling not only changes the kerf angle but also 

increases the depth of drilling due to redistribution of the intensity in the overlapping 

focusing region. The dual focus is achieved by focusing two wavelengths at two different 

foci along the optical axis, using a single lens. A theoretical study of dual beam 

propagation along the optical axis was done for the selection of the radius of curvature of 

the lens to achieve continuity within the two focusing regions to increase the aspect ratio. 

Modeling has been done with numerical approach to understand the impact of intensity 

distribution and optical parameters on the efficiency of dual wavelength drilling. 

Objective of the research work is to optimize the laser as well as optical parameters 

theoretically as well as experimentally with respect to dual wavelength drilling for 

obtaining high aspect ratio drilled holes with minimum power. The microdrilling station 

was setup with second harmonic generation to achieve dual wavelength with maximum 
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conversion efficiency of 20%. Experiments were done individually with laser 

wavelengths of 532nm and 1064nm and with focusing both these wavelengths using a 

single lens at different pulse energies, on 500|am thick silicon wafers. SEM observation 

of results proved that dual frequency drilling is more efficient compared to conventional 

drilling and results show excellent agreement with the results from the theoretical model. 
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Chapter 1 Introduction 

1.1 Introduction 

From its early life as "an invention looking for a job"(Harry Stine) the laser has been 

successfully used in the electrical, mechanical, industrial, biomedical and aerospace 

industry. The first major industrial use of laser was the drilling of holes in diamond wire 

drawing dies in the 1960's [1]. The high reproducibility and precision of the laser drilling 

process make it attractive to industry where it is being used to form small diameter and 

high aspect ratio holes in a wide variety of materials. Moreover, Laser drilling has an 

additional advantage of noncontact drilling which reduce surface damage. 

Laser drilling has ability to drill holes in hard material such as superalloys, ceramics, and 

composites without the high rate of tool wear normally associated with conventional 

machining. Conventional mechanical drilling is slow process and associated with 

difficulties to drill at high angles [2]. In laser drilling, material removal take place either 

by melt ejection or by vaporization. The laser drilling of composites materials such as 

multilayer carbon fiber composites for aircraft application is attracting interest due to 

potential advantages of rapid processing, ability to drill high-aspect ratio at low kerf 

angles and without tool wear [3]. Laser is well suited for the nonconducting and metallic 

substrates coated with nonconducting materials where the electric discharge machining is 

limited. For example, the drilling of thermal barrier-coated super alloys in aerospace 
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application can be well achieved by laser drilling instead of electrical discharge 

machining [4]. Review of literature suggests different methods of micro drilling based on 

different requirements that vary depending upon the drill dimensions, material properties 

as well as the applications. These methods can be broadly classified as laser based and 

non laser based technologies with lots of processes variations to suit particular 

applications. The different methods of micro drilling are shown below in fig 1.1. As there 

are different methods, of micro drilling each has its own advantage and disadvantage over 

the others which are discussed in the subsequent sections. 

Non Jaser based 
drilling 

Mechaincal 
drilling 

Electro 
discharge 
machining 

M U.G.A 

Drilling 

_ _ J 

Single pulse 
drilling 

Laser based 
drilling 

Trepanning 
Percussion 

drilling 
Interference 
based drilling 

Dual focus 
drilling 

! laser drilling 
-j with dual focus 

!• : lens. 

laser drilling 
with optical 
configration 

laser drilling 
with dual 
frequency 

Fig 1.1 Different methods of drilling [5-15]. 
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1.2 Drilling with non laser based technology 

1.2.1 Mechanical drilling 

The micro drilling is process of using a drill tool to produce cylindrical holes in solid 

material. Different tools are used for drilling different types of materials. The hole is 

drilled precisely with reference to the x, y, and z-axes. Thought in mechanical drilling 

holes are produced with good roundness, straightness and surface quality in a short 

machining time, it is not suitable for micro drilling. Micro drilling refers to the drilling 

holes less than d> 0.5 mm. Microdrilling at this small diameter presents greater problems 

since it requires tools of very small diameter, high precision machine with high spindle 

speeds. Moreover, the process limits the aspect ratio due to the large length to diameter 

ratio which causes the drill bit to deflect which can cause misalignment or tool breakage. 

In the mechanical micro drilling of brittle materials, cracks are generated at the exit 

surfaces [5]. Mechanical drilling is not versatile process for example change of holes 

dimension require change of drill bits as well as feed rate and spindle speed. To 

overcome this limitation of mechanical microdrilling, there are non conventional methods 

that are discussed henceforth. 

1.2.2 Etching 

Etching is a process of using strong acid to cut into the unprotected parts of a metal 

surface to create a design in the metal. In general, there are two classes of etching; wet 

etching and dry etching. Wet Etching is a process that utilizes liquid chemicals or 
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etchants to remove materials, usually in specific patterns defined by photoresist masks. 

Materials not covered by masks are etched away by chemicals while those covered by the 

masks are left intact. Wet etching is generally isotropic as shown in fig 1.2, i.e., it 

proceeds in all directions at same rate. Anisotropic etchings, in contrast to isotropic 

etching, means different etch rates in different directions in the material [6]. 

Material 
Mask 

Anisotropic Isotropic 

Fig 1.2 Etching process 

Dry etching is a process that utilizes only dry chemicals or etchants to remove material. 

Dry etching technology can be split into three separate classes; 1) chemical dry etching; 

2) sputtering and reactive ion etching; 3) combination of chemical, sputtering and 

reactive ion etching [7]. Material removal rate is high in dry etching as compared to wet 

etching. Moreover etching process requires mask that make the process complicated and 

time consuming. Moreover when new dimensions are needed, a new mask design is 

required, reducing the versatility of this technique. 
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1.2.3 Electron beam machining 

Electron-beam machining (EBM) is a machining process where high-velocity electrons 

are directed toward a work piece, creating heat and vaporizing the material as shown in 

fig 1.3. EBM machines utilize voltages in the range of 50 to 200 kV to accelerate 

electrons to 200,000 km/s. Electromagnetic lenses are used to direct the electron beam, 

by means of deflection, into a vacuum [8]. The electrons strike the top layer of the work 

piece, removing material, and then get trapped in some layers beneath the surface. The 

requirement of hard vacuum to reduce contamination and to minimize electron collisions 

with air molecules, EBM is best suited for small parts. 

. 
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Fig 1.3 Electron beam machining process [8] 
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1.2.4 Electro discharge machining 

Electro discharge machining (EDM) is a spark erosion process used to create complex 

shapes in electrically conductive work pieces. A thin wire 50 - 300um in diameter with 

an aspect ratio of up to 300:1 is used as an electrode. A DC power supply delivers high 

frequency pulses to the electrode and work piece. The gap between the electrode and the 

work piece is flooded with deionized water, which acts as a dielectric medium and the 

material is machined by spark discharges. Though multiple electrodes can be used to drill 

holes, productivity is relatively low, the capital cost is high and recast layer is formed [9 -

12]. 

In electrochemical machining (ECM) process, metal is removed by a chemical reaction 

rather than the electrical action of the EDM arc. The work piece is positive anode of an 

electrochemical cell. The tool is cathode, which is normally formed in an inverse of the 

shape to be produced. The cathode and the work piece are brought together in a high 

pressure circulation of salt solution electrolyte in a DC electrode cell. In electrochemical 

drilling (ECD) the chemical drill is used. The drill is a conducting cylinder with an 

insulating coating on the outside. The electrolyte is pumped down through the centre of 

the tube. The tool is moved towards the work piece, and material at the base of the 

electrode of removed. Since the outer surface of the tool is insulated, the surface of the 

hole is not machined by the process [13]. The ECM is a well established process in the 

aviation industry for the production of turbine blades and for placement of cooling air 

bore holes. The process of ECM enables the machining of metal independent of their 
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mechanical properties with high material removal rates. As compare to EDM process the 

tool-electrode wear is extremely low and the sub-surface is not damaged. But with ECM 

sharp corners are not possible and work piece material must be homogeneous. 

1.2.5 L.I.G.A. 

LIGA is a German acronym for "Lithograghie, Galvanoformung, Abformung," in 

English (X-ray) Lithography, Electroforming, and Molding [14]. LIGA is one of the 

major techniques to allow on demand manufacturing of high aspect ratio structures with 

lateral precision below one micrometer. One of the defining features of LIGA is the use 

of ultraviolet light sources that have shorter wavelength and higher resolution, which is 

important in the fabrication of MEMS devices. 

Fig 1.4 shows the steps in LIGA process. The first step is to deposit a thick layer of photo 

resist on the substrate [14]. X-rays bombard the photo resist layer, creating precise 

micro-cavities in the shape of the parts that are desired. In the next step, the developed 

photo resist is used as a mould for electroforming. The components are created by 

electrodeposition, with the material filled in the gaps in the photo resist mould. The resist 

is then stripped, leaving behind the metal structure, which can be used either directly or 

as a mould for further processing [16]. However, some disadvantages of LIGA-process 

strongly limit itself in the industrial applications like the use of expensive X-ray source, 

availability of useful photo resists, process complications, time consumed to manufacture 

X-ray mask, and the possibility of only simple-geometry microstructures. 
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Fig 1.4 Steps followed in L.I.G.A [15] 

As discussed above, non laser based drilling methods are characterized by the following 

limitations. Mechanical drilling and electro chemical drilling processes have high tool 
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wear, and are difficult to drill hard materials such as super alloys. In case of etching, 

masks are needed that reduces the versatilities while in EBM hard vacuum is needed 

limiting the work piece size. LIGA is complicated requiring highly skilled operates and 

time consuming. Being a high energy density process laser based micro drilling 

overcome most of these limitations. The developments in laser based drilling are 

discussed in next section. 

1.3 Drilling with laser based technology 

Laser is basically a light source. The radiation that it emits is not fundamentally different 

than any other form of electromagnetic radiation. Laser has some unique properties 

having, high monochromaticity, high degree of coherence and brightness. In addition 

laser has energy tune ability and can be easily focused to a diffraction limited spot size. 

1.3.1 Laser drilling 

Laser drilling is a process in which the beam is stationary with respect to the work piece. 

The aim is to produce a cavity with high aspect ratio, which is primarily achieved by 

three methods: direct drilling, percussion drilling and trepanning. Laser machining is 

normally performed in air by focusing the laser beam onto the work piece. An assist gas 

is used principally to increase material removal rate using the melt shearing mechanism. 

In laser drilling material properties also play role to decide the laser parameters like 
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absorption relative to wavelength, latent heat, and ablation threshold value etc [17]. Laser 

drilling is carried out by using continuous wave mode or pulsed laser mode. 

Continuous wave 

A continuous wave (CW) is an electromagnetic wave of constant amplitude and 

frequency; and in mathematical analysis, of infinite duration. Fig 1.5 shows power 

distribution with respect to time, in case of CW laser the 't' in fig 1.5 is infinite and the 

laser power is constant with respect to time. Long pulse lasers having pulse widths of the 

order of few microseconds also fall under this category. Although continuous wave 

operation offers the advantages of smooth surfaces after machining the material removal 

is primarily due to melting and it is associated with high amount of heat generation. Due 

to which it is mostly used for industrial purposes where change in material properties are 

not critical. The laser damage threshold for continuous lasers is more difficult to measure. 

P* 
pert 

avg 
-*• time 

Fig 1.5 Temporal mode of laser power [18] 
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Pulsed laser 

In pulsed laser the output of a laser varies with respect to time as shown in fig 1.5. Where 

t is pulse duration and Ppeak is peak power of pulse. Peak pulse can be increased by 

reducing pulse width or by increasing repetition rate. Pulsed laser micromachining is 

based on the interaction of laser light with the material. Focused beam interacts with the 

work piece for small interval of time depending on the pulse width. Pulsed laser has 

lesser or no heat affected zone. Material removal process in pulsed laser micromachining 

can be divided in two categories; pyrolithic (thermal) and photolithic [19-22]. In 

pyrolithic process, material is removed by heating, melting and partial evaporation of the 

heated volume of the material. Nanosecond and microsecond pulsed lasers work on 

pyrolithic process. In photolithic process the proton energy of pulsed laser is sufficient to 

break the chemical bonds and aid material removal [22]. Picosecond and femtosecond 

lasers fall under this category of material removal. A figurative material removal 

mechanism of different lasers and their effects on the work piece is shown is fig 1.6. 
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Shock waves 

Fig 1.6 Laser ablation mechanism [23] 

1.3.2 Ultra short pulse laser machining 

Femtosecond pulsed lasers are ultrafast pulsed lasers. In femtosecond laser the fluence of 

the laser beam can be tightly controlled in such a way that sub spot size features can be 

machined that is why it is mostly used in research work related to surface patterning and 

sub micron machining [19, 24, and 25]. As mentioned in the previous section 

femtosecond pulsed laser works on photolithic process of material removal. Principle 

behind the material processing with femtosecond pulsed laser is multi-photon absorption. 

This does not depend on the presence of free electrons on the work piece therefore most 
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of the material including glass can be processed with femtosecond lasers. Machining with 

femtosecond lasers has no heat affected zone due to thermal diffusion time between two 

electrons is in the range of pico seconds which is larger than the pulse width. The 

ablation depth per pulse in femtosecond pulsed laser is given by equation 1.1 

Za~ a1 Ln [Fa/Fth] (1.1) 

Where Za is the ablation depth, Fa is the absorbed fluence; F,/, is the threshold fluence and 

a is the ablation depth [26-28]. Femtosecond laser are still not common in industries due 

to their high down time, low average energy and high initial cost. 

A picosecond laser is a laser that emits pulse in the regime of pico seconds. The thermal 

diffusion time between two electrons is approx 10 ps range due to which heat transfer is 

almost negligible during material processing with picosecond lasers. In contradiction to 

femtosecond pulsed lasers where no liquid phase exists during material processing, 

picosecond laser have a liquid phase [29]. The ablation depth per pulse in picosecond is 

same as femtosecond pulsed lasers. 

1.3.3 Short pulse laser machining 

Nanosecond pulsed laser works on pyrolithic process of material removal, therefore heat 

affect zone is associated with nanosecond pulsed lasers. The ablation per pulse is given 

by equation 1.2 
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Za ~ V (at) Ln [Fa/FtfJ (1.2) 

Where Za is the ablation depth, Fa is the absorbed fluence, Fth is the threshold fluence, 

and (a.t) is the thermal diffusion depth [[29-34]. The material removal mechanism is 

discussed in the following section. 

1.3.4. Mechanisms of material removal 

Material removal mechanisms during laser drilling are vaporization and the physical 

expulsion of the melt. Hole drilled with purely evaporative material removal mechanisms 

are generally marked with clean surface and sharp boundaries without recast layer, 

spatter. Material removal by melt expulsion is an energetically efficient mechanism. 

Generally, the energy required to remove the material via melt expulsion is about one 

quarter of that required to vaporize the same volume [35-36]. However the material 

removal by melt expulsion is generally irregular and may result in asymmetric and 

irregular holes shapes. When a laser beam of intensity is irradiated on the surface of 

material, it results in the excitation of free electrons in metals, vibrations in insulators, or 

both in semiconductors. This excitation energy is rapidly converted into heat which is 

followed by various heat transfer processes such as conduction into the materials, and 

convection and radiation from the surface. The most significant heat transfer process 

being the heat conduction into the material. The generation of heat at the surface and its 

conduction into the material establishes the temperature distribution in the material 

depending on the thermo-physical properties of the material and laser parameters. If the 
14 



incident laser intensity is sufficiently high, the absorption of the laser energy can result in 

the phase transformations such as surface melting and evaporation. Generally these phase 

transformations are associated with threshold laser intensities referred to as melting and 

evaporation thresholds. 

The depth of melting cannot increase to infinitely large value with increasing laser energy 

density and pulse time because the location of the melting point in the temperature and 

depth is limited by the maximum achievable surface temperature. Once the surface 

temperature reaches the boiling point, the depth of melting reaches the maximum value. 

Further increase in the laser energy density or the pulse time cause the evaporative 

material removal from the surface without further increase in the depth of melting. So 

different drilling techniques have been devised to increase the aspect ratio, which are 

discussed below. 

1.4 Techniques of laser drilling 

In laser drilling the high intensity laser beam is focused onto the surface to heat, melt and 

subsequently eject the material in both liquid and vapor phases. In general there are three 

approaches of laser drilling; single pulse, trepanning, and percussion drilling are shown in 

fig. 1.7. Where t is thickness of work piece and d is diameter of hole. 
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1.4.1 Single pulse drilling 

Single pulse drilling is used for drilling less than (|)lmm holes through thin plates. High 

pulse energies are supplied in drilling with single pulse because the irradiated energy 

levels must be sufficient to vaporize the material in single pulse. 

T ' T ' T 
H-11— —I <•• b- —l ' 'h-

(a) Single pulse (b) Trepanning (c) Percussion 

Fig 1.7 Various techniques in laser drilling [37] 

1.4.2 Trepanning drilling 

In trepanning wider holes less than 3mm in thicker plates are produced by drilling a 

series of overlapping holes around a circumference of a circle so as to cut a contour out 

of the plate. Trepanning can be performed by translating either the work piece or the 

focusing optic. The process similar to contour cutting and can be performed by the laser 

operating in the continuous wave or pulsed mode. CO2 and Nd: YAG lasers are most 

commonly used in trepanning. Trepanning drilling requires a motion system to allow 
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piercing with the laser and then motion of the beam relative to the part to cut out the hole. 

Trepanning allows for a diameter tolerance that about half that of percussion drilling. 

Holes drilled in metals are judged by the hole diameter tolerance, taper, recast thickness, 

and micro cracking. Hole diameter in percussion drilled holes is generally less than +/-

50um and in trepanned holes the tolerance tightens to about +/- 25um. Recast is molten 

metal that resolidified around the hole's inner diameter and recast thickness varies with 

the material and hole depth but is generally held to less than lOOum. Hole depth can be 

as high a 50mm but most drilling tasks will have hole depths of less than 15mm. 

1.4.3 Percussion laser drilling 

In percussion drilling a series of short pulses (10" to 10" s) separated by longer time 

periods (10"2s) are directed on the same spot to form a through hole. Each laser pulse 

contributes to the formation of the hole by removing a certain volume of the material 

[38]. Pulsed Nd: YAG laser are most commonly used for percussion drilling because of 

their higher energy per pulse. Percussion drilling is used to produce narrow holes (less 

than 1.3mm) through relatively thicker (up to 25mm) metals plates [39]. The parameters 

and number of pulses are chosen to produce a good quality hole. Holes in the 25um to 

lOOOum diameter range can be drilled using this method but the limits vary according to 

the material to be drilled and the thickness. Most percussion drilled holes are in the 

300um-600um diameter range. Percussion drilling can take advantage of pulse-shaping 

to improve the interaction of the laser beam with the material and help control taper and 
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improve drilling speed. Pulse shaping is programming the laser's pulse temporal profile. 

By breaking up a long drilling pulse into two three or four shorter segments separated by 

off-time the hole quality can be improved and speed increased. Debris coming out of the 

hole can interfere with end of a long duration pulse so breaking it up improves efficiency 

and reduces drilling time. 

1.5 Interference based laser micro-drilling 

In this method interference principle is used to form fringes. When two or more light 

waves of the same frequency overlap at a point, the resultant effect depends on the phases 

of the waves as well as their amplitudes. The resultant wave at any point at any instant of 

time is governed by the principle of superposition [40]. The combined effect at each point 

of the region of superposition is obtained by adding algebraically the amplitudes of the 

individual waves. 
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Fig 1.8 a) 2D profile of the conventional non-interfered Gaussian laser beam, b) 2D 

profile of the interfered Gaussian laser beam [41]. 
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At certain points, the two waves are in phase, where the amplitude of the resultant wave 

(AR) is equal to the amplitudes of the two waves, hence, the intensity of the resultant 

wave is given by equation 1.3 

IR °° AR
2=22A2=22I (1.3) 

The interference produced at this point is known as constructive inference. If the two 

waves are in opposite phase, then the resultant intensity is less than the sum of the 

intensities due to individual waves and point is known as destructive interference [40]. 

The intensity distribution due to interference principle is shown in fig 1.8. In interference 

laser micromachining the intensity distribution varies along the fringes, intensity 

distribution is high at centre and reduces outward. Only those fringes in which intensity is 

higher than the threshold fluence of the material will contribute to machining. By this 

method, machining depends upon fringe width which cannot be less than wavelength of 

the light. Moreover the depth is limited for drilling, because if the energy is increased, 

other fringes start contributing in machining and increase heat affect zone. To avoid this 

dual focus laser drilling offer significant advantages to increase the intensity distribution 

along the depth, the research and development on dual focus micro drilling over the last 

few years are discussed in next section. 
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1.6 Dual focus laser micro-drilling. 

Dual focus laser drilling is newly developed high aspect ratio drilling technique that has 

two focal points from a single laser source. Having two focal points, the intensity 

distribution at focus is increased along the depth of the focus which increases the drilling 

depth significantly without increasing the feature size. The different method of dual-focus 

drilling has been available in literature which is discussed below. 

1.6.1 Dual focus laser drilling with dual focus lens 

The first method of dual focus laser drilling is dual focus lens which was invented by S. 

E. Nielsen. The central portion of laser beam passes through centre of the lens, which has 

a longer focal length than the outer part of the lens as shown in the fig 1.9. Dual focus 

lens has two radii of curvature on one side, at centre of lens high radius curvature as 

compare to the remaining portion [42]. 

Fig 1.9 Dual focus lens [42] 
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Due to this, the beam is focused at two focal points. The shorter focal length is set near to 

the top surface of the work piece, and longer focal length set at the bottom surface of the 

work piece. The difference between two foci is AF as shown in fig 1.9. though dual focus 

lens improves the material removal rate and machining quality, but machining is 

restricted to macro size due to its large spot size (greater than a few hundred microns) and 

wide distance between two foci (over 1mm) [43]. Presently it's only used for CO2 laser 

cutting. AF can only be changed by changing the lens, which is expensive. To overcome 

this there is other methods of dual focus generation by optical configuration. 

1.6.2 Dual focus laser drilling with optical configuration 

Laser drilling using dual focal point from single laser source, as discussed above by using 

dual focus lens, improves processing speed, and kerf quality. But it also has some 

disadvantages as macro spot size, and wide distance between two foci. B. Tan et al 

describe an optical configuration to generate the dual-focus from single laser source. A 

collimated laser beam is incident on a modified Newton's ring setup, which consists of a 

polarization plate beam splitter and a convex mirror [43] as shown in fig 1.10. 
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Fig 1.10 Optical configuration to generate the dual focus [43] 

Laser beam is made to impinge on the optical configuration, the beam deflected from the 

beam splitter is collimated (dark line in fig 1.10) and the output beam which is reflected 

from the mirror is divergent (dashed line in fig 1.10) has divergent angle 0 given by 

9=D/R (1.4) 

Where D is the diameter of the incident beam, and R is the radius of curvature of the 

convex mirror. After passing through the focusing lens, the beam focuses at two points; 

beam deflected from beam splitter is focused at designed focal length of the lens and 

diverged beam from the convex mirror focuses far from focal length of the lens. Rear 

spot size is large when compare to front spot size. Distance between two foci is adjusted 

by changing the radius of curvature of convex mirror or by changing laser beam 

diameter. Polarization coating on the rear side of the beam splitter and AR coating on its 

front side helps in arrangement of predetermined laser intensity ratio between the two 
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spots by varying the polarization using the half waveplate. In this method wavelength 

specific equipment is required, which restrict this setup to one specific wavelength. To 

avoid this, other method of dual focus drilling with dual wavelength is discussed in next 

section. 

1.6.3 Dual focus laser machining with dual frequency beam 

Second harmonic crystal is used to generate the dual frequency from single source. The 

emitted laser beam is guided to harmonic crystal, which double the optical frequency 

[44]. The energy ratio of the two frequencies is depends upon the transmission efficiency 

of the crystal. After traversing the harmonic crystal a dual frequency collimated beam is 

obtained. B. Tan et al develop this method with femtosecond laser to drill the thick 

PMMA plate. Due to different wavelength, the reflective index of the focusing medium is 

also different. So they focus at two different points in the same optical axis. Smaller 

wavelength will focus first and higher wavelength focuses after smaller wavelength as 

shown in fig. 1.11. 
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Fig 1.11 Dual focus based on longitudinal achromatic aberration 

For this method, different wavelength combination can be used by changing the harmonic 

crystal. They also conclude that at the same drill depth the focus of dual frequency beam 

reduces the diameter of opening. Consequently, the aspect ratio is increased. Advantage 

of dual frequency laser drilling is the ability to choose the energy ratio according to 

absorption properties of the material with respect to the wavelength, by which drilling 

can be done with minimum power. 

1.7 Problem definition 

Due to increasing demand to miniaturize, there is a need for micro drilling with high 

aspect ratio from various industrial sectors like microelectronic, biomedical, aerospace 
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etc. Comprehensive review of literature suggests various mechanisms for microdrilling 

that are characterized with relative advantages and disadvantages. Like high tool wear, 

and difficult to drill hard material or super alloy, mask limits the versatility and work 

piece size limitation due to vacuum chamber, process complication requires highly 

skilled operates and time consuming. Being a high energy density process laser based 

micro drilling overcome most of these limitations. 

1.8 Objective and scope of the work 

High aspect laser drilling with dual frequency nanosecond pulsed laser with minimum 

power. The scope of the thesis include 

1. Theoretical study of single and dual frequency micromachining and comparing the 

effect of power to understand the minimum requirement to induce maximum 

drilling depth 

2. Theoretical analysis of the effect of radius of curvature of the piano convex lens on 

achieving continuity in dual frequency microdrilling 

3. Setting up of the experimental system including the second harmonic generation 

(S.H.G) to perform dual frequency microdrilling 

4. Study the effect of efficiency of S.H.G on microdrilling parameters 

5. Perform microdrilling on 500um thick silicon wafers with single and dual 

frequencies and optimizing the power of the laser for achieving maximum drill 

depth at high aspect ratio. 
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Chapter 2 Theoretical modeling 

2.1 Introduction 

Theoretical modeling has been done to predict and compare the drilling with single as 

well as with dual wavelength drilling with respect to different laser and optical 

parameters. Dual wavelength drilling has been proposed for high aspect ratio drilling 

with lower kerf angle. Principle of achromatic aberration has been used in the proposed 

project to focus two wavelengths at two different foci with a common focusing lens. 

Numerical modeling has been done with the help of MATLAB to study the high aspect 

ratio dual frequency drilling on silicon wafers at minimum possible power with respect to 

different laser as well as optical parameters. 

2.2 Intensity distribution of single wavelength 

All theoretical modeling have been done by considering single focusing lens with high 

transmissivity at the given wavelengths. The minimum focused spot radius 'w' and the 

depth of focus 'dof which defines a working range for laser machining depends upon the 

focal length (fl), wavelength (k) and unfocused beam diameter (d). For TEM00 mode the 

following relationships are applicable [17]. 

w= 1.22*^*fl/d (2.1) 

dof = 2A4*\*fl2/ d2 (2.2) 
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Fig 2.1 Single beam focusing characteristics [65] 

From the equation 2.1 & 2.2 it could be understood that by increasing the focal length, 

the depth of focus can be increased; however, the spot diameter also increases, which 

ultimately reduces the energy density or intensity of the laser beam. For laser 

micromachining, it is good to use the shorter focal length in order to obtain minimum 

feature size and high laser intensity per unit area. The spot diameter can be decreased to 

reduce the feature size either by decreasing the focal length or by increasing the 

unfocused beam diameter. But increase in unfocused beam diameter also decreases the 

depth of focus which ultimately affects the aspect ratio of the drilling. As shown in fig 

2.1 spot diameter varies due to which the energy density also varies along the z axis. 

Energy density above the material damage threshold helps in machining and energy 

density below the material damage threshold only contributing towards heating the 

material. Theoretically, depth of focus is considered as the length up to which machining 

can be done with minimum laser power above threshold fluence. After the Rayleigh 

range, which is defined as depth of focus, the laser beam diverges sharply. Divergent 
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nature of laser beam reduces the laser intensity drastically and the machining will stop 

due to higher threshold fluence in comparison to available intensity. 
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Fig 2.2 Intensity distribution of532nm at surface of the silicon wafer 

Fig 2.2 shows the intensity distribution at the surface of silicon wafer of laser beam of 

532nm wavelength having beam diameter 1.6mm and focused with a lens of 12.9mm 

radius of curvature. Solid black line along the x-axis is damage threshold value of silicon 

and vertical straight lines at the interface shows the spot size on basis of intensity above 

the damage threshold value of silicon. In this fig 'w' is kept constant in both cases only 

pulse power is varied, (a) pulse energy is 100 uJ and (b) pulse energy is 140 uJ of 532nm 

wavelength. From this fig it can observed that with increase in pulse energy spot size also 

increases. This is due to per unit area intensity is increased which help in machining. As 
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discussed above, spot size varies along the 'z' due which per unit area intensity varies 

which varies the spot size. 

2.3 Dual wavelength beam focusing 

The objective of the research project is to design a drilling technique which employs 

chromatic aberration to focus two different wavelengths at two different depths in drilling 

to obtain high aspect ratio drilling. Chromatic aberration is caused due to lens having 

different refractive indices for different wavelengths of light, which focuses the different 

wavelengths at different foci. In dual focus drilling, it is important to consider the design 

of the lens in such a way that depth of focus of both the wavelengths makes continuity 

with each other. Different parameters play their role in continuity like beam diameter, 

wavelength of laser beam, radius of curvature, and refractive index of the lens material. 

The refractive index of lens material BK7 with respect to different wavelengths is shown 

in fig 2.3 
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Fig 2.3 Refractive index ofBKl material [48] 
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As shown in fig 2.3 refractive index of BK7 reduces as the wavelength increases. Effect 

of refractive index on the focal length of different wavelengths is used to focus the dual 

wavelength at two different foci on same axis. Fig.2.4 shows the two different foci of 

dual wavelength with Piano convex lens. 

Collimated dual 
wavelength 

Beam 

1064 nm 
&532nm 

R2 / 

Focal 
point 
532nm 

Focal point 
1064nm 

Lens 

Fig 2.4 Dual focus chromatic aberration 

Laser beam of different wavelengths refracted at different angles due to different 

refractive index of the material for different wavelengths. Principle of dual wavelength is 

explained above with the help of fig.2.4, smaller wavelength focuses ahead of longer 

wavelength, 'dd' is the distance between the focal points of wavelengths under 
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consideration. The distance 'dd' plays an important role in dual frequency drilling to 

maintain the continuity. Different laser and optical parameters e.g. radius of curvature of 

the lens, and beam diameter affects the distance 'dd'. In the next section, modeling has 

been done to analyze the effect of optical parameters e.g. radius of curvature on dual 

wavelength drilling. 

2.4 Lens design for dual focus drilling 

The objective of this work is to drill high aspect ratio hole with dual frequency at 

minimum possible laser power. To drill with minimum possible power using dual 

frequency it is important to maintain the continuity between the drilling done by both the 

wavelengths. In dual frequency micro drilling, smaller wavelength starts machining first 

as it focuses first, whereas the longer wavelength, which will focus later will just heat the 

material work piece and also contribute its intensity in drilling at the start. Longer 

wavelength starts machining from its focal point and drill up to its depth of focus. Hence, 

to maintain continuity, distance 'dd' should be equal to or lesser then the depth of focus 

of smaller wavelength or in other words Rayleigh range of longer wavelength should start 

from or before the point where Rayleigh range of smaller wavelength finishes. On the 

basis of difference between dd and dofs, drilling can be classified into three categories, as 

shown in fig. 2.5. 

(1) Continuous drilling (dd = dofs) 

(2) Overlapped drilling (dd < dofs) 
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(3) Discontinuous drilling (dd > dofs) 
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Fig 2.5 Dual focus drilling (a) Continuous drilling (b) Discontinuous drilling (c) 

Continuous drilling but overlap 

Fig 2.5 shows the drilling with dual focus laser beam. In continuous drilling, 'dd' is equal 

to the depth of focus of smaller, and in case of overlap it is also continuous but depth of 

focus of longer wavelength overlap with the depth of focus of smaller wavelength which 

ultimately affects the depth of drilling at a given laser power and will reduce the aspect 

ratio of the drilled hole. In case of discontinuous drilling 'dd' is higher than the depth of 

focus of smaller wavelength, longer wavelength takes time to start machining which 

depends upon power density of longer wavelength, sometimes there might not be any 

machining from longer wavelength, due to power density is lesser than the damage 

32 



threshold of the material, as nanosecond pulse laser can only machine at the surface of 

material. After the depth of focus of smaller wavelength, smaller wavelength starts 

diverging, due to this energy per unit area reduces, it takes more time to melt the material 

or to machine the material. To reduce these losses and increase the efficiency, it is 

important to choose the right radius curvature of lens which is primary parameter in 

calculating depth of focus and focal point. 

2.4.1 Effect of radius of curvature on continuity 

Numerical modeling is done to predict the radius of curvature of piano convex lens with 

respect to different possible wavelength combinations, which satisfies the condition of 

continuity. The focal length of the particular wavelength will depend on refractive index 

of the lens material and the radius of curvature of the lens as described in equation (2.3). 

The distance (dd) between the two foci depends on the difference between the two focal 

lengths corresponding to two wavelengths as given by equation (2.4). 

l/flx = (Nx-l)*(l/R,-l/R2) (2.3) 

dd = fi„-flx2 (2.4) 

where fix & N^ is focal length & Refractive index of the BK7 lens for a specific 

wavelength; Ri and R2 are the radii of curvature of the two surfaces of the lens. For a 

piano convex lens, R2 is infinite, so 

l/flx = (Nx-l)*(l/Ri) (2.5) 
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and continuity depends upon focal length and depth of focus. 

Depth of focus (dot) = 2.44*X*(fl/d)2 

Theoretical spot Size (w) = 2.44*A*(fl/d) 

(2.6) 

(2.7) 

where fl is focusing length and d is the beam diameter. To study the effect of radius of 

curvature on continuity, modeling was done by keeping the beam diameter, 'd' constant 

at 1.6mm for all the wavelength combinations. Fig 2.6 shows the three combinations of 

wavelengths 1064nm and 532nm, 532nm and 355nm, and 1064 and 355nm, which are 

higher harmonic order of fundamental wavelength 1064nm. 
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The difference of dd and dofs with respect to radius of curvature is shown in fig 2.6. In 

the fig, y-axis shows the difference between distance 'dd' and depth of focus of smaller 

wavelength, and x-axis shows the radius of curvature of BK7 piano convex lens (Ri). 

Solid line along the x-axis is where distance 'dd' is equal to the depth of focus of smaller 

wavelength. Region above the solid line, where dd > dofs, is discontinuous drilling and 

below the solid line is continuous drilling but with overlap of depth of focus of both the 

wavelengths. For this work 12.9mm radius of curvature has been selected for 1064nm 

and 532nm wavelengths because at this radius of curvature, with the mentioned 

wavelengths the overlapping is minimum therefore drilling can be done with high 

efficiency in terms of laser energy. 

2.5 Intensity distribution of dual focus 

For the numerical analysis of dual focus drilling, the Gaussian profile of the laser 

intensity distribution for TEMoo mode is considered to calculate the spot size. Gaussian 

intensity distribution is given by 

I=Io exp (-2r2/w2) (2.11) 

Where I is the intensity at any point r along the radius of the beam, w is the beam waist 

and Io is the maximum intensity at the center of the laser beam. 
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Fig 2.7 Area considered for calculating the intensity distribution of dual wavelength 

Fig. 2.7 shows the area which is considered to calculate the intensity distribution. 

Hatching (//) line shows the area of 532nm wavelength and (\\) line shows the 1064nm 

wavelength and crossed hatching area shows the area under both the wavelengths. For 

numerical analysis depth of focus is divided into equal elements at the distance 'x' from 

each other. Fig. 2.7 shows the element at the distance of 'x' from the surface of the 

silicon wafer which form the 2nd element in analysis as surface of the silicon wafer is 1st 

element for numerical analysis, and element at distance (n-l)*x from the surface is the nth 

element in analysis. In this modeling the intensity distribution is calculated at the 
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elements which are separated by 'x' distance along the drilling depth the 'x' is 3 urn. For 

the numerical analysis the depth was separated into three regions to calculate the intensity 

distribution on each element. In next section the intensity distribution at the surface of the 

silicon sample is predicted. 

2.5.1 Intensity distribution at the surface of the silicon sample 

Initially intensity distribution was calculated at the surface of the sample for each set of 

wavelengths (532nm and 1064nm) and finally the total intensity distribution was also 

calculated as shown in Fig 2.8. While calculating the intensity distribution for each 

wavelength their absorption 35% for 1064nm and 62 % for 532nm on silicon materials 

[49] was considered. Based on the total intensity distribution, initial spot size of the 

drilled hole was calculated with respect to damage threshold of silicon. For this part of 

analysis, efficiency of second harmonic generator was kept at 20% with pulse energy of 

600uJ. 
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Fig 2.8 Intensity distribution at the surface of the Silicon sample 

From the intensity distribution curves in Fig 2.8 it can be said that machined spot size 

(47um) in dual frequency wavelengths depends on the total intensity distribution shown 

by the red curve as discussed in section 2.2. Intensity distribution per unit area varies 

along the depth as the longer wavelength focuses and smaller wavelength spot size varies 

with Rayleigh range. This effect the total intensity distribution along the depth due to 

which final drill spot will vary. So to intensity distribution on the elements along the 

depth in the remaining two regions is discussed below. 

2.5.2 Intensity distribution within depth of focus of smaller wavelength 

As discussed in the previous section the intensity distribution is similarly calculated on 

elements within the depth of focus of smaller wavelength. The total intensity distribution 
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was calculated on each element separately. A snap shot of the intensity distribution at 

three different elements within the dof of smaller wavelength (a) at 50 urn below the 

surface (b) at 150 urn below surface (c) at 250 urn below the surface is shown in Fig 2.9. 

From Fig 2.9 it can be seen that the intensity distribution of longer wavelength increases 

along the depth of focus of smaller wavelength, where as the intensity distribution for 

shorter wavelength remain almost, due to which the total intensity increases along the 

depth. Spot size will decreases along the depth, due to the erosion front is propagating 

into material, laser energy power density reduces due to the increasing distance from the 

focal plane [66]. Solid line along the x-axis shows the damage threshold value of silicon. 

Similarly intensity distribution after the depth of focus of smaller wavelength is discussed 

in next section. 
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2.5.3 Intensity distribution after depth of focus of smaller wavelength 

The procedure for calculating the intensity has already been explained in section 2.5.2 

and is repeated for the region beneath the depth of focus of smaller wavelength for the 

whole machining depth. The machining depth is the region where the intensity is more 

than the threshold fluence of silicon. A snapshot of intensity distribution after the dofs at 

three different elements at (a) dofs+50|im (b) dofs+150um (c) dofs+250um is shown in 

Fig 2.10. 
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Fig 2.10 Intensity distribution of 600/iJ after depth of focus of smaller wavelength 

From Fig 2.10 it can be said that along the depth of focus of longer wavelength the 

intensity distribution of smaller wavelength reduces whereas intensity distribution for the 

longer wavelength remains almost constant, which reduces the total intensity distribution. 
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Total intensity distribution on each element was calculated and compared with the 

threshold of the silicon. Machining will take place on the elements where the intensity of 

the laser beam is above the threshold thus deciding the machining spot size at that 

element. The calculations were done on all the elements along the depth and final feature 

shape along the depth was obtained after integrating the spot size at each element, as 

shown in fig 2.11 values. All further numerical analyses are done on the basis of this 

discussion. Fig 2.11 shows the predicted profile of the drill hole on the basis of the above 

discussion. Further study on drilling, the effect of power and efficiency are discussed in 

the following sections. 
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Fig 2.11 Numerical value of spot size along the depth of drilling with dual wavelength 
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2.6 Effect of pulse energy on drilling 

Numerical analysis for calculating the spot size was done on the basis of damage 

threshold of silicon with different pulse energies along the machining depth. Effect of 

pulse energy on feature size of drilling was analyzed as discussed earlier. Pulse energy of 

laser can be varied either with average energy of the laser or with repetition rate of the 

pulse laser. Drilling dimensions were mathematically calculated for different average 

powers up to possible drilling depths. The variation in the drilling dimensions with 

average energy is plotted in Fig 2.12 
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Fig 2.12 Effect of average power on drilling with 20% efficiency ofS.H.G. 

From fig 2.12 it can be said that with the increase in average energy of the laser beam the 

drilled spot size will increase. The increase in spot size with average energy of the laser is 
42 
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attributed to changed Gaussian intensity distribution. Since absorption of material 

depends on wavelength, so power ratio between two wavelengths plays significant role in 

dual frequency drilling. Efficiency of second harmonic generation varies the power ratio 

of two wavelengths. So the effect of S.H.G efficiency is discussed, in the next section. 

2.7 Effect of second harmonic conversion efficiency on drilling parameters 

Energy distribution of wavelengths also play important role on dual frequency laser 

drilling. In dual frequency laser drilling energy distribution changes the drilling 

parameters such as depth and spot size of drilling. Each material has its own optical 

properties with respect to wavelength, like absorption, transmission and reflection. For 

example silicon absorbs 35% for 1064nm and 62% for 532nm wavelengths respectively 

[49]. Fig 2.13 shows the intensity distribution of 20 and 50% conversion efficiency of 

fundamental wavelength. 
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Fig 2.13 shows intensity distribution of dual frequency generated from S.H.G crystal 

having 20 & 50% efficiencies of 600uJ of fundamental wavelength. In fig 2.13 red curve 

shows the 532nm, blue line shows the 1064nm and green line shows the total intensity 

distribution of both the wavelength considering absorption for silicon sample at the 

surface. From fig 2.13 it can be observed that spot size (47um) at 20% efficiency is high 

and at 50% efficiency the spot size (34um) is lesser. It is due to 532nm wavelength 

having higher absorption as compared to 1064nm and at high efficiency of S.H.G crystal 

the power of 532nm high, and it is focused at the surface which increases the energy per 

unit area, hence conversion efficiency of 30% is good for silicon wafer. While 1064nm 

wavelength is converging at the surface of silicon wafer, due to this energy per unit area 

is lesser or below the damage threshold of silicon, due which the spot size reduces. From 

this calculation it shows that S.H.G efficiency play significant role on feature size of dual 

focus microdrilling. 

Theoretical maximum efficiency of KTP crystal is 30%. Numerical analysis was done 

with three different efficiencies of harmonic generation possible with KTP crystals with 

nano second lasers and 50% conversion efficiency of other S.H.G crystal as discussed in 

earlier section. Variation in spot size along the depth of drilling was plotted in Fig 2.14. 
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Fig 2.14 Effect of Second Harmonic generation Efficiency at 600juJ. 

From Fig 2.14 it can be seen that with the increase in the efficiency of second harmonic 

generation the spot size reduces at beginning, whereas with low efficiency of generation 

the variation in spot size along the depth of drilling is quit high as comparison to higher 

efficiency generation. With increase in efficiency of second harmonic generation kerf 

angle will be reduced. Kerf angle is defined as the angle generated from the difference in 

widths between the top and bottom of the drilled hole. However for silicon, when the 

conversion efficiency of 50% the 1064nm wavelength will not have enough power to 

drill if 532nm wavelength is diverging. Fig 2.15 shows the comparison of single and dual 

wavelength drilling with same power. 
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Fig 2.15 Drilling with single and dual wavelength at same power 

Fig 2.15 shows the drilling with single wavelength of 532nm and dual wavelength of 

532nm and 1064nm with laser pulse power of 600uJ and for dual wavelength S.H.G 

crystal having efficiency of 20%. From the fig it is shown that at same laser power 

drilling depth is less when compared with dual wavelength as it is focuses at two 

different points which provides optimal intensity distribution to increase the aspect ratio. 

In single wavelength most of the energy is lost in conduction to surrounding as energy 

density is high in single wavelength, which increase the heat affect zone and the spot 

size. 
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2.8 Summary 

From the theoretical modeling it can be summarized that dual wavelength drilling can act 

as a tool for high aspect ratio drilling, due two both wavelength focused at two foci which 

increases the depth of drilling. Different laser parameters have been studied and the effect 

of those parameters on drilling has been predicted. From the results of the modeling it can 

be concluded that diameter of the drilled hole can be controlled with the help of laser 

power whereas depth of drilling can be controlled with all the three laser parameters laser 

power, rep. rate and number of pulses hitting the surface. Modeling has been done to 

predict the effect of simple harmonic generation efficiency of the drilling parameters. 

Effect of dual wavelength intensity distribution has been studied in detail with MATLAB 

and it can be predicted from the modeling that kerf angle of the drilled holes can be 

decreased with dual wavelength drilling which is not possible with single wavelength. 
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Chapter 3 Experimental setup 

3.1 Introduction 

As discussed in the Section 1.8 of this thesis objective of this research work is to perform, 

high aspect ratio drilling with a dual frequency nanosecond laser on silicon wafer. To 

accomplish this task a simple optical setup with minimum alignment requirements has 

been designed. The experimental setup consists of two parts, first part was designed in 

such a way that the primary frequency from the nanosecond laser source was converted 

into dual frequency and the second part of the design consists of optimizing the setup for 

micro drilling. In the first part, the frequency doubling was achieved by second harmonic 

generator crystal. The output of S.H.G was two beams on the same axis, one having the 

primary frequency of the laser and the second which was frequency doubled. As such the 

output beams have the fundamental wavelength of 1064nm and the frequency doubled 

wavelength of 532nm. The challenge was to achieve maximum efficiency by proper 

procedure for alignment. 

The second part of the experimental setup was to use dual wavelength to focus at 

different points along the optical axes to achieved high aspect ratio microdrilling. The 

distance between the focal points can be varied by the beam diameter, radius of curvature 

of the Piano convex focusing lens and the lens material, as discussed in chapter 2. The 
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challenge in this part is to select the optimum distance for achieving continuity in drilling 

thick material at minimum power. 

3.2 Optical setup description 

The optical setup has been designed in such a way that maximum conversion efficiency 

can be achieved with minimum reflection losses of the fundamental wavelengths and 

micro drilling can be achieved with minimum alignment by using both second harmonic 

and fundamental wavelengths simultaneously. Schematic of the experimental setup which 

comprises of two parts is shown in fig 3.1. 

CD (II) 

Jl 
V 

N 
1064nm & v 

532am 

\ 

Half Waveplate Converging Lens Collimating Lens Focusing Lens 

Fig 3.1 Sketch of experimental setup 

In this work a nanosecond laser with fundamental wavelength of 1064 nm is used for 

experiments. The first part of the alignment is aimed to achieve the maximum efficiency 

from the second harmonic generator. Using polarization and focusing optics before the 
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S.H.G crystal. Half wave plate was used to change the polarization of fundamental 

wavelength after which a converging lens was used to change the energy density of the 

beam impinging on the second harmonic generator. The S.H.G crystal was mounted with 

maximum degree of freedom on all the three (x, y, and z) axes to achieve the maximum 

alignment flexibility. 

Output of the S.H.G crystal is a diverging laser beam with dual frequency. The divergent 

laser beam was collimated to achieve a desired constant diameter using a convex lens. 

Collimated beam was then focused on to workpiece for high aspect ratio microdrilling. 

The functionality, selection, and the alignment of the major components in the 

experimental setup are discussed in the subsequent sections. 

3.3 Maximizing the conversion efficiency of S.H.G. 

As shown in fig 3.1, the first part of experimental setup comprises of nanosecond laser, 

waveplate, converging lens and S.H.G crystal for dual frequency generation. The 

selection of the components and the alignment requirement with respect to maximum 

conversion efficiency is discussed below. 

3.3.1 Nd: YV04 Laser (Neodymium Doped Yttrium Orthvanadate) 

Laser used for the experimental work was manufactured by Coherent laser (model 

PRISMA 1064-16V). This is a solid state laser with Nd: YV04 (Neodymium doped 
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Yttrium Orthvanadate) crystal that has an average power of 14W. Among the various 

available laser crystals like Nd: YAG, Nd: YVO4 and Nd: YLF for diode laser pumping, 

Nd: YVO4 laser has the advantage over the others due to temperature control of a diode 

laser, lower dependency on pump wavelength, high absorption coefficient and high 

damage threshold [50]. 

This laser has a dual output; continuous and pulsed, with tunable repetition rates ranging 

from 20-100 kHz and output power tunable through the diode current (13 - 34 Amps). 

Repetition rate is number of pulses coming out from the laser in one second. By varying 

diode current average power of the laser will be increased due to increase in excitement 

of atoms in the crystal at constant repetition rate, which increases peak pulse power 

resulting in material removal. 

3.3.2 Second Harmonic Generation 

Lasers generate coherent radiation at many wavelengths ranging from meter wavelength 

region to the soft X-rays region. However it is not possible to produce light covering all 

wavelengths of interest in spite of the fact that a large number of active materials are 

available and lasers can be built using them. Therefore it is necessary to transform the 

frequency of light generated by the laser into light of desired frequency. Harmonic 

generation, sum and difference frequency generation and parametric oscillation are some 
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common processes that utilize the principle of nonlinear optics for laser light frequency 

transformations. 

7 11 

Lasers produce light of the field strength of the order of 10 to 10 V/m, which are of the 

order of the atomic field strengths. Therefore, the intense light of the lasers is in a 

position to cause non linearity of P and influence the optical parameters of the medium as 

shown in Fig.3.2. When the electric field E in the light is very large, the parameters %, and 

E become the functions of E. eQ is the permittivity of free space and x, is dimensionless 

constant known as electric susceptibility of the medium. Since the directions of P and E 

coincide in an isotropic medium, we can express x as power series in the field strength as, 

Polarization (P) 

A 

t> Electric Field (E) 

Fig 3.2 Non linear medium [51] 
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X(E) = Xi + X2E + X3E2+ (3.1) 

P = SoX(E)E (3.2) 

P= So (xiE + X2E2 + X3E3 + ) (3.3) 

Where xi is linear susceptibility and is much greater than the coefficients of the non linear 

terms X2, X3 a nd s o on- Non linear terms contribute only at very high amplitudes of 

electric fields. The second order nonlinear polarization is given by equation (3.4) 

P2 = £o X2E2 (3.4) 

And third order nonlinear polarization by equation (3.5) 

P3 = £oX3E3 (3.5) 

Non linear polarization leads to nonlinear optical effects. Materials, in which polarization 

exhibits non linear dependence on the field strengths, are called non linear media. In 

optically isotropic materials, the coefficients of even power of E in equation (3.3) are 

zero. But in case of anisotropic materials, coefficients of both odd and even powers of E 

exist. Strictly speaking, any medium becomes non linear provided the electric field of the 

incident radiation is very high. 

Second harmonic generation which utilizes the nonlinearity was first demonstrated by P. 

A. Franken, et.al, at the University of Michigan, in 1961. The demonstration was made 
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possible by the invention of the laser, which created the required high intensity 

monochromatic light [52]. In S.H.G, photons interacting with a nonlinear material are 

effectively combined to form new photons with twice the energy and therefore twice the 

frequency and half the wavelength of the initial photons [53]. 

Fig 3.3 S.H. G experimental setup 

Fig 3.3 shows the optical setup for second harmonic generation where the 1064nrn 

wavelength from the laser source, after passing through the waveplate and converging 

lens, impinges on the nonlinear crystal to generate dual frequency light comprising both 

1Q64IHXI and 532nrn wavelengths. Most commonly used materials for second harmonic 
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generation are Lithium Triborate LiE^Os (LBO), beta-BaB204 (BBO) and Potassium 

Titanyl Phosphate KTiOPC>4 (KTP). These commonly used crystals are either negative 

crystal or positive crystals. In a negative crystal, if the fundamental light is a linearly 

polarized ordinary wave, the resulting second harmonic will be an extraordinary wave. 

The reverse is the situation in case of positive crystals [54]. In this work, for all the 

experiments KTP crystal is used as Second harmonic generator, which is described 

below. 

3.3.3 Potassium Titanyl Phosphate KTiOP04 (KTP) 

KTP is a widely used material for frequency-doubling Nd: YAG and other Nd-doped 

laser systems that emit 1064nm fundamental wavelength [55]. KTP has some properties 

that make it unique for second-order nonlinear-optical applications and S.H.G of Nd 

lasers in particular. Its large nonlinear coefficient combined with low absorption and 

wide acceptance angle [56 - 58], makes it the preferred doubling crystal, when the 

available peak power is limited. The unusually large temperature bandwidth of KTP is 

particularly advantageous for maintaining pulsed energy stability of the frequency 

converted beam [58]. The temperature bandwidth and relatively good thermal properties 

provide advantage to KTP for frequency doubling of lasers with high average powers 

[59]. Experiments of intracavity frequency doubling have shown that KTP is much less 

susceptible to bulk damage than, other crystals at relatively high average-power levels 

[60, 61]. Moreover, KTP has very low absorption loss at 1 urn wavelength, makes this 

material the primary choice of all interactivity frequency doubling applications for 
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nanosecond lasers at 1064nm wavelength. Some of the properties of KTP crystal are 

listed in table 3.1. 

Properties 

Crystal structure 

Cell parameters 

Melting point 

Curie point 

Mohs hardness 

Density 

Colour 

Hydroscopic susceptibility 

Specific heat 

Thermal conductivity 

Electrical conductivity 

Values 

Orthorhombic, Space group Pna2, point group mm2 

a = 0.6404 nm, b = 1.06nm, c = 1.28 nm, Z = 8 

1172°C 

936° C 

~ 5 

3.01 g W 

Colourless 

No 

0.1643 cal/g°C 

0.13W/cm/°K 

3.5* 10"8s/cm(22°C,lkHz) 

Table 3.1 Properties of KTP crystal [62] 

3.3.4 Alignment for second harmonic generation. 

In dual frequency laser micromachining, conversion efficiency of SHG is an important 

aspect. Change in efficiency will change the drilling profile due to change in the ratio of 

fundamental wavelength and second harmonic wavelength. Efficiency of the S.H.G 
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depends on alignment axes of crystal with respect to polarization of laser beam and 

position of the crystal with respect to the axis of the laser beam. Efficiency of the S.H.G 

is given by equation (3.6) [63] 

n = P2co/ Pco = L2k (Pco*sin2 (Ak*L/2))/ (A (Ak*L/2)2 (3.6) 

Where P2C0 is power of second order wavelength, Pco is the power of fundamental 

wavelength, L is the length of the non-linear crystal, k is a constant relative to the 

fundamental beam and the crystal material, A is the area of the fundamental beam on the 

crystal surface, and Ak is the wave number difference. The conversion efficiency depends 

on the length of the crystal (L), the power density which is a function of A, and the phase 

mismatch (Ak) [63]. The harmonic energy is at maximum when Ak = 0, which is termed 

phase matching. It is possible by the choice of polarization and direction of propagation it 

is often possible to obtain Ak = 0. The non-linear crystal is machined to make the plane 

of beam incidence perpendicular to the optical axis. 

In order to get maximum efficiency in terms of wavelength energy, the orientation of the 

crystal should be phase matched. This can be done by phase matching the angle by which 

the crystal is rotated along the optical axis. In this kind of phase matching, SHG crystal 

rotated along x-axis, to form a 45° angle between the diagonal of the polished surface and 

the direction of polarizing of the input light. This can be achieved by rotating the crystal 
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along the x-axes or rotating the polarization with the help of half waveplate as shown in 

fig 3.9. 

Fig 3.4 Alignment ofSHG crystal 

All the adjustments related to SHG or focusing optics were done at lower power levels 

for avoiding the risk of optics damage. The specific alignment requirements with respect 

to crystal axes are shown in fig 3.4. In order to phase match the crystal with polarization 

of the incoming beam, half waveplate was rotated along the x-axis. To get the incoming 

beam to incident perpendicular to the polished face of the crystal, the crystal was rotated 

the y and z axis. Converging lens was used to change the area of the beam impinging on 

the crystal. Considering the damage threshold, the crystal was placed at short distance 

away from the focal point of the converging lens. Every step in the alignment plays role 
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in increasing the efficiency, the power of the second harmonic light was measured and 

optimized after every step. Since the output has two wavelengths, and the requirement to 

measure the power of one of the wavelengths following scheme was devised as show in 

fig 3.5. 

Fig 3.5 Experimental set up for measuring the conversion efficiency ofSHG. 

Power is measured (power meter LabMax-TOP) after reflecting the beams using two 

mirrors having 100% reflection of 532nm and 4% for 1064nm wavelengths. Output 

power measured after the crystal comprises the power of both 1064 and 532nm 

represented by x and y respectively in the fig. subsequent reflections reduces the x 

component while maintaining the y component, from which the individual powers of 
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1064, and 532nm and the conversion efficiency of S.H.G crystal can be determined. All 

these adjustments were iteratively done to maximized the S.H.G efficiency 

Diode Current 

Ampere 

25 

26 

28 

30 

32 

34 

Average power (W) after first 

mirror (y +0.04x) 

1.575 

1.78 

2.03 

2.23 

2.5 

2.63 

Average power (W) after second 

mirror (y+0.0016x) 

1.5 

1.67 

1.91 

2.12 

2.38 

2.5 

Table 3.2 average power of532nm wavelength after reflecting mirror 

Table 3.2 shows the average power 532nm wavelength after reflecting from mirror as 

discussed above. 

3.4 Optical setup for micro drilling 

Optical parameters were optimized to obtain good machining results and also to avoid 

risk of accidents. In laser beam alignment it is important to impinge the laser at the centre 

of the optics to get the maximum transmission and to reduce the reflectivity from the 

60 



optics. It even more important in case of laser drilling not only to reduce the losses but 

also to reduce the chances of accident due to scattering and reflection. In this part of the 

experimental setup, the dual frequency divergent beam was collimated with the help of a 

convex lens. By this collimating lens beam diameter can also be modified as given below 

d,/ FL,=d0/FL0 (3.7) 

Where do and di is initial and collimated diameter of the beam, FLo and FLi is focal 

length of the converging and collimating lens. Combination of collimating lens and piano 

convex focusing lens can affect the beam diameter, focal spot size, depth of focus and 

distance between two foci which are very important in optimization of high aspect ratio 

micro drilling. 

3.4.1 Piano convex lens 

A lens is an optical device with axial symmetry which transmits and refracts light, or can 

converge or diverge a beam. A plano-convex lens mainly known as a convergent or 

positive is a lens consist of one flat side and variable thickness, the lens thickness is more 

in the centre as compared to the edges as shown in Fig. 3.6 [64]. 
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Center 
Thickness 

L_ Focal J 
~ Length * 

Fig 3.6 Piano convex lens [65] 

Considering the principle of optics, the focal length of the piano convex lens is given by 

l/FU = (Nx-l)*(l/Ri) (3.8) 

Where FLx & Nx is focal length & refractive index of the lens for a specific wavelength; 

Ri and R.2 are the radii of curvature of the two surfaces of the lens, R.2 is infinite for Piano 

convex lens. In the experiments, a collimated light with beam diameter of 1.6mm was 

made to impinge on a BK7 piano convex lens (Ri = 12.9mm). 1064nm and 532nm 

wavelength focused at two different foci and as discussed in theory for micro drilling. 

3.5 Summary 

The setup was designed and aligned for drilling with dual as well as single wavelength 

using a simple setup. Dual wavelengths were generated with KTP nonlinear crystal, 

aligned for maximum efficiency with respect to conversion of fundamental wavelength to 

second harmonic. The dual wavelength light was focused on the substrate with a common 
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focusing lens. Parameters like radius of curvature of the focusing lens, and the beam 

diameter were maintained constant as discussed in chapter two for continuous drilling 

with minimum available power. 
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Chapter 4 Experimental results and discussion 

4.1 Introduction 

Experiments for dual wavelength and single wavelength pulsed laser drilling were done 

by configuring the setup discussed in the previous chapter. Effect of nanosecond pulsed 

laser on drilling of silicon wafer was studied with respect to different laser and optical 

parameters. The set of experiments was designed to evaluate material removal rate with 

respect to laser power, both in single and dual wavelengths and optimize the parameters 

to achieve continuity using dual wavelength at minimum power. Experiments were 

performed in ambient condition with different repetition rates, laser energies and with 

different number of pulses that contributes towards drilling. In all the cases the drilled 

holes were studied with the help of SEM images. 

4.2 Influence of laser energy 

Laser energy is the primary parameter in laser drilling which affects the spot size, depth 

of machining, and kerf angle. To study the impact of laser energy on the silicon wafer, 

experiments were done at different laser energy levels with all other parameters 

maintained constant. Repetition rate was maintained at 20 kHz; radius of curvature of 

piano convex lens Ri 12.9 mm, the collimated beam diameter of 1.6 mm for single as 

well as for dual wavelength drilling. 
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All materials transmit, reflect, or absorb light at different ratios depending on their optical 

properties. The light absorbed by the material is converted into heat and will contribute 

in drilling. Absorption of light within a material depends upon the wavelength of light. 

Material, like silicon has different optical absorption at different wavelengths, as 

mentioned earlier. For all energies, different spots were drilled with 1064nm, 532nm and 

dual wavelengths. The spots were studied with SEM images and discussed in the 

subsequent sections. 

4.2.1 Influence of laser energy on drilling with 1064nm wavelength 

As discussed above, to study the effect of energy a wavelength of 1064nm, silicon wafer 

was drilled with different energies ranging from 150uJ to 600uJ sample SEM images 

spots drilled on silicon wafer using 1064nm at different powers are shown in Fig. 4.1 
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(c) 

Fig 4.1 SEM images of different spots drilled with 1064 nmfor 3 second 

From the Fig 4.1 it can be observed that with increase in the laser pulse energy drilled 

spot size on silicon wafer also increases. Increase in laser pulse energy also increases the 

depth of drilling and reduces kerf angle. Kerf angle is defined as the angle generated from 

the difference in widths between the top (<j)I) and bottom ((j)B) surface of the drilled hole 

as shown in fig 4.2. As it seen from S.E.M image ((|)B) increases with increase in the 

pulse energy which results in lesser kerf angle. Top diameter (cj)I) also increases with 

increase in the pulse energy. 
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Kerf angle 

0 0 Bottom Suface 

Work Piece Thickness 

Fig 4.2 Kerf angle diagram 

Laser pulse energy of the beam can also be changed by varying the repetition rate. 

Repetition rate is important parameter of the pulsed laser drilling. In this section of 

experiments nanosecond laser was used that can be tunable for different repetition rates 

starting from 20 kHz to 100 kHz. Different spots were drilled at different repetition rates 

thus each time vary the number of pulses hitting the silicon wafer sample consequently 

varying pulse energy. Theoretical modeling was already done with respect to equation 4.1 

given as 

Energy per pulse (Joules) =Energy average (watt)/repetition Rate (kHz). (4.1) 
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(a) (b) 

(c) (d) 

Fig 4.3 SEM image at 7 SOX of different spots drilled with same energy for 3 second at 

different repetition rate 

Experiments were done with different rep. rate values at approximately same average 

laser power for same time of machining and obtained results are shown in Fig 4.3. From 

SEM image it can be concluded that drilling at 20 kHz is deeper and wider as compared 

to the drilling in fig (c) and (d). Fig 4.3 (c) shows shallow depth of drilling when compare 
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with fig (b). Fig 4.3 (d) Shows material condenses in hole due to lack of sufficient energy 

which is require to eject the molten material from the hole. From this set of experiments 

it can be concluded that drilling spot size decreases at higher repetition rate. This 

decrease in drilled spot was due to the decrease in the peak energy with the increase in 

repetition rate according to equation 4.1. Effect of lens focal length on spot size was 

discussed in next section. 

The damage threshold value of material affects the amount of energy that it requires for 

ablation. However since the damage threshold in nanosecond laser is not clearly defined 

increase in the drilled spot size is verified by experiments and justified by Gaussian 

distribution of intensity as predicted and discussed earlier in section 2.2. The 

experimental results shown in the Fig 4.1 were summarized and compared with the 

theoretical results shown in fig 4.3 

no 
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80 

75 
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Experimental 

125 225 325 425 525 

Peak pulse energy (uJ) 

625 

Fig 4.4 Comparison of experimental and theoretical spot size values with 1064 nm 

wavelength 
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Fig 4.4 shows the comparison of theoretical and experimental value of spot size, x-axis 

represents the peak pulse energy and y-axis represents the spot size in microns. From fig 

4.3 it can be concluded that in nanosecond pulsed laser drilling, the spot size of 1064 nm 

wavelength vary with the pulse energy while maintaining other parameters constant. The 

theoretical value is lesser than the experimental values. Difference increases as pulse 

energy increases. Increase in pulse energy not only increases the spot size, but also 

increases the heat affected zone. In case of nanosecond laser, since the interaction with 

the material surface is pyrolythic, material removal is by melting expulsion. In 

nanosecond laser pulse duration is high, so excess energy is conducted to the surrounding 

of spot, it starts machining when the material temperature reaches its melting point. 

Variation in the theoretical and experiments values can be attributed due to conduction. 

4.2.2 Influence of laser energy on drilling with 532nm wavelength 

Similarly influence of laser energy of 532nm wavelength on drilling was studied with 

different pulse energies on silicon wafer. All the parameters were same as in the case of 

1064nm wavelength, only the pulse energy ranges from 75 uJ to 125 uJ. Pulse energy is 

lesser as compare to 1064nm wavelength because achieved conversation efficiency of 

S.H.G was only 20%. However while drilling with 532nm wavelength; the spot size is 

smaller which increases the intensity per unit area. Also, as discussed earlier, silicon has 

higher absorption at 532nm. The S.E.M image of silicon sample drilled with 532nm 

wavelength are shown in fig 4.4 
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Fig 4.5 SEM image of different spots drilled with 532 nmfor 3 second 

From Fig 4.5 it can be observed that with the increase in the pulse energy the spot size 

increases. As per literature it can be said that silicon absorption for 532nm wavelength is 

more as compared to 1064nm. As a result of which drilling with 532nm wavelength 

requires less pulse energy as compared to the 1064nm. The experimental results shown in 

the Fig 4.5 were compared with the theoretical results in Fig 4.6. 
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Fig 4.6 Comparison of experimental and theoretical spot size values of532nm 

wavelength 

Fig. 4.6 shows the comparison of experimental and theoretical spot size value of 532nm 

wavelength, where x-axis shows peak pulse energy and y-axis shows the spot size in 

microns. From fig 4.6 it can be concluded that with increase in pulse energy size of the 

drilled hole also increase which has been explained earlier. From this it is shown that 

with increase in peak pulse power the difference in theoretical and experimental value 

increase which is due to conduction losses. Conduction losses increase the top spot size 

and reduce the bottom spot size. Similarly influence of laser energy with dual frequency 

is discussed in next section. 
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4.2.3 Influence of laser energy on drilling with dual frequency 

Due to chromatic aberration of piano convex lens both the wavelengths focused at two 

different foci on the same optical axis as discussed in theoretical modeling. Two different 

foci increase the depth of focus which increases aspect of ratio. Influence of laser pulse 

energy on the drilling of silicon with dual frequency wavelengths are shown with S.E.M 

images in fig 4.6. 
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Fig 4o7 S£M images of different spots drilled with dual wavelength for 3 second 
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From Fig 4.6 it can be observed that size of the drilled spot is smaller as compared to the 

1064nm wavelength and bigger than 532nm wavelength. The drilling with dual 

wavelength is better in terms of the kerf angle, where kerf angle is more with single 

wavelength as discussed previously. It can also be seen that redopostion of material in 

dual wavelength drilling as compared to the single wavelength drilling is more on the 

edges of the spot ablated due to high material removal. This is because the combined 

effect of both the wavelength has significant effect on energy absorbed. Depth of drilling 

was increased with dual wavelength due to increase in depth of focus. As smaller 

wavelength focus exactly on the surface of the silicon, so it will focus the intensity of 

532nm wavelength at the surface and 532nm wavelength focused in smaller diameter as 

compare to 1064nm wavelength, which ultimately increases the aspect ratio of drilling. 

Fig 4.7 shows the comparison of theoretical and experiment results of drilled spot size 

with peak pulse power at 20% efficiency of S.H.G. 
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Fig 4.8 Comparison of experimental and theoretical spot size values of dual wavelength 
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From fig 4.7 it can be shown that even with dual frequency beam spot size will increase 

with increase in pulse energy, x-axis represent the peak pulse power and y-axis represent 

spot size, difference in experimental and theoretical value increases with increase in peak 

pulse power. In nanosecond pulsed laser during drilling with dual wavelength the size of 

the drilled hole is limited by smaller wavelength whereas the depth of drilling is 

increased due to the combined effect of dual wavelength which ultimately increases the 

aspect ratio of the drilling. Efficiency of S.H.G also affects the aspect ratio or the size of 

the drilling as ratio of the energy of the two wavelengths depends on it; as discussed 

earlier and explained in theoretical modeling. 

4.3 Effect of focal length of lens on spot size 

Drilling spot size is directly proportional to the focal length of the lens used, higher the 

focal length higher the spot size as seen from the mathematical formula (4.2) of spot size. 

Spot size = 2.44 wavelength * focal length/ Beam diameter (4.2) 

Focal length of the focusing length not only increases the spot size but also increases the 

depth of focus of the laser beam. Increase in spot size with focal length reduces the 

intensity per unity area which increases the demand of energy for same amount of 

drilling. Experiments were done at two different focusing lenses 25.4 and 50.8 

respectively and the S.E.M images of the drilled holes from two different focal length 

lenses are shown in Fig 4.9. 
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From fig 4.9 it can be concluded that spot size of 50.8 mm focal length is bigger as 

compared to the spot size of focal length 25.6 mm. Experimental spot size of 50.8 mm 

focal length is 150 um with pulse energy of 600 uJ. Similarly spot size of 25.6 mm focal 

length is 86.27 urn with same pulse energy. This difference in spot size is due to 

difference in focal point of wavelength are closer to each and 1064nm wavelength having 

high energy which increases the spot size. And difference in drill depth is due the depth 

of focus of both the wavelength overlap each other as discussed in chapter 2. This overlap 

reduces the drilling depth. 

4.4 Effect of dual frequency on depth of drilling 

Experiments were done with nanosecond pulsed laser having a pulse width of 14ns, with 

20% efficiency of S.H.G 1064nm is converted into 532nm wavelength. Beam diameter of 

the pulsed laser was kept constant at 1.6mm and radius of curvature of the piano convex 

lens used was 12.9mm. Experiments were done with different pulse energies at a constant 

repetition rate of 20 kHz by focusing short wavelength focused exactly at the top surface 

of silicon sample. For each case separate set of experiments were conducted and the 

results were analyzed with the help of SEM Images are shown in fig.4.10. 
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Fig 4.1§ S.E.M images of drilled hole along the depth at different pulse power. 



Fig. 4.10 shows S.E.M images of drilled hole at different pulse powers with constant 

beam diameter and radius of curvature as discussed earlier. From the fig. it can be 

observed that with the increase in pulse energy the spot size of drilling was increased and 

this affect is attributed to change in Gaussian intensity distribution as discussed under the 

section 2.5. Fig 4.10 shows with increase of pulse energy depth of drilling also increases. 

At higher pulse powers the kerf angle is less as shown from S.E.M images the bottom 

spot is bigger in higher pulse energy and smaller in lower pulse energy. 
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Fig 4.11 Experimental value of drilling depth of dual frequency drilling. 

Fig.4.11 shows the experimental value of the drilled depth of dual frequency at different 

pulse power be keeping other parameter kept constant, in fig. y-axis shows the drilling 

depth in micron and x-axis shows the peak pulse power. From the fig. it can be concluded 
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that drilling depth is increases with the increase in the pulse energy. But after certain 

value the ratio of increase in pulse power and drilling depth is reduces. But high pulse 

power helps in reducing the kerf angle but increase the spot size. Comparison of 

numerical and experimental value of drill diameter along the drill depth is shown in 

fig.4.12. 
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From fig.4.12 it can be concluded that feature size of drilled diameter decreases along the 

depth of drilling which found to be in good agreement with the corresponding results 

from the theoretical model. The deviation in the feature size at the surface of the silicon 

sample is probably due to higher intensity values of 1064nm which was blocked at the 

surface however during the course of drilling that block intensity heat up the material 

edges and increases the feature size. Moreover, as seen from fig. 4.10 (c), due to heat 
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affected zone on the wafer surface the material has chipped which could also influence 

the measurement. Whereas at the remaining portion experimental values are lower than 

the theoretical ones. This deviation in experimental value is because exact conduction, 

convection and radiation losses that are not considered in numerical analysis. 

Drilling with dual frequency increase the drilling depth as compare to single wavelength, 

also the spot size in dual frequency drilling is smaller than the spot size of longer single 

wavelength. Due to increase in depth and decrease in spot size dual frequency drilling 

increases the aspect ratio. Dual frequency not only increase the aspect ratio, but also 

requires less power for drilling, because same power intensity is distributed into two foci 

to increase the depth of focus. Due to this, intensity distribution along the depth increases 

while decreasing along the spot size. 

4.5 Summary 

From the experimental results related to various laser parameters it can be summarized 

that the quantity and the quality of the laser based drilling with single as well as dual 

wavelength depends significantly on laser parameters e.g. power, rep. rate and number of 

pulses hitting the surface. Increase in pulse energy, which can be achieved, either by 

increasing average power of the laser or by decreasing the rep rate, increases the feature 

size of the drilling with more amount of heat affected region. From the experimental parts 

it can be proved that feature size of the drilled hole with dual wavelength remains almost 

84 



constant along the drilling depth whereas the same cannot be maintained with single 

wavelength drilling. 
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Chapter 5 Conclusion and future work 

5.1 Conclusion 

Miniaturization of the feature size is the current focus of the research. Shift from 

continuous laser based micromachining to pulsed laser machining is to reduce the feature 

size, increase the aspect ratio and to improve the quality of the machining. Different 

available drilling methods are studied with respect to non laser based as well as laser 

based techniques. Non laser techniques either involves mechanical methods in which the 

feature size is limited by the drill bit or it involves time in setting the equipment with 

slight change in any drill dimensions, tool material also change with respect to the work 

piece material. On the other hand chemical based methods e.g. ECM, chemical etching, 

are not clean process so the application are restricted. Some special techniques like LIGA 

are specifically intended for the MEMS design and require several steps in a sequence 

manner. Laser based drilling has an additional advantage of non contact drilling which 

reduce surface damage, there is no need to change the tool only need to change the pulse 

power according to the damage threshold of the material. Different techniques are 

available for high aspect ratio drilling, from which laser based dual focus drilling studied 

to increase the aspect ratio drilling. With the proposed drilling method aspect ratio of the 

drill hole is increased with minimum optical as well as laser alignment. 
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In dual focus drilling there are different methods available to focus the laser beam at 

different foci. Due to limitation of lens replacement with change of dimension in dual 

focus lens. In optical configuration wavelength specific equipment is required, which not 

useful for other wavelength, as wavelength is directly proportionate to spot size and laser 

beam absorption of material is also depends on wavelength, so to change the feature size 

it is a primary parameter. To change the feature size or with change in work piece 

material, setup has to modify according to the requirement, which restrict this method for 

one specific wavelength. From available literature dual frequency drilling is having 

advantages on over other available drilling methods. Dual frequency drilling method is 

wavelength sensitive method; feature size can easily modify by changing the beam 

diameter or by changing the wavelengths. Dual frequency drilling method is studied to 

increase the aspect ratio with minimum power. Theoretical modeling has been done to 

predict and compare the drilling of dual wavelength with single wavelength drilling. 

Modeling has been done separately to optimized the laser as well as optical parameters 

for high quality dual as well as single wavelength drilling of silicon .Efforts has also been 

made to select the common focusing lens parameters for drilling with dual wavelength in 

such a manner that high aspect ratio can be maintain with minimum power. Theoretical 

modeling has shown that continuity in dual wavelength depends on the radii of curvature 

of the focusing lens for a particular selection of wavelengths and laser beam diameter. In 

the case of wavelengths combination of 532nm and 1064nm 12.9mm is the optimum size 

of the radii of curvature of the lens for 1.6mm laser beam to maintain the continuity. 
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Dual wavelengths are generated from single laser beam with the help S.H.G crystal, KTP 

crystal is used for S.H.G., conversion efficiency from fundamental to second harmonic 

depends on the intensity and polarization of the laser beam incident on the KTP crystal. 

The optical setup designed for the experiments can be used with minimum optical 

alignment requirements as it involves few optical components and a single focusing lens 

was used for focusing both the wavelengths and single wavelength. 

Experiments were done in two separate sets, one set of experiments were done with 

single wavelengths (532nm and 1064nm) drilling with different laser parameters whereas 

in the second set of experiments dual wavelength was used for drilling and comparing the 

results with single wavelength drilling. Experiments were done with different pulse 

energies (75uJ -600uJ) and it was found that with the increase in pulse energy feature 

size of the drilled hole also increases, whereas on the other hand with increase in rep rate 

of the laser feature size decreases due to energy of each pulse decreases. These effects 

were found to same in both types of drilling single as well as dual. For single 532nm 

wavelength drilling on silicon wafer 106uJ is appropriate pulse power at which there is 

less affect zone, and for drilling with 1064nm wavelength on silicon with pulse power of 

600uJ is appropriate. Drilling with dual wavelength of 532nm and 1064nm laser pulse 

power of 600uJ and S.H.G efficiency of 20% is appropriate of high depth of silicon wafer 

drilling. From theoretical modeling it can be concluded that 20% efficiency of S.H.G. 

appropriate of high depth of drilling as with increase in efficiency S.H.G kerf angle 
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decreases but depth of drilling decreases. Major advantage associated with dual 

wavelength drilling is reduction in kerf angle which is high in single wavelength drilling, 

and aspect ratio of the drilling has also been increased due to intensity distribution over 

depth of focus of both the wavelengths. 

5.2 Future work 

In the proposed research project a drilling method based on dual wavelength has been 

proposed with 532nm and 1064nm. Further work can be done with different set of 

wavelengths as well as third wavelength can also be involved in the experimental as well 

as theoretical modeling. Modeling work can also include numerical analysis and 

incorporate material properties like thermal conductivity to better understand the effect of 

multi-frequency drilling. 
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