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ABSTRACT 

Regression Test Selection for Distributed Java RMI Programs by Means of 

Formal Concept Analysis 

Hong Fei Zhu 

Software maintenance is the process of modifying an existing system to ensure that it 

meets current and future requirements. As a result, performing regression testing 

becomes an essential but time consuming aspect of any maintenance activity. Regression 

testing is initiated after a programmer has made changes to a program that may have 

inadvertently introduced errors. It is a quality control approach to ensure that the newly 

modified code still complies with its specified requirements and that unmodified code has 

not been affected by the maintenance activity. In the literature various types of test 

selection techniques have been proposed to reduce the effort associated with re-executing 

the required test cases. However, the majority of these approach has been focusing only 

on sequential programs, and provide no or only very limited support for distributed 

programs or database-driven applications. 

The thesis presents a lightweight methodology, which applies Formal Concept Analysis 

to support a regression test selection analysis, in combination with execution trace 

collection and external data sharing analysis, for distributed Java RMI programs. Two 

Eclipse plug-ins were developed to automate the regression test selection process and to 

evaluate our methodology. 
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1. Introduction 

Software maintenance is the process of modifying an existing system to ensure that it 

meets current and future requirements. Regression testing is initiated after a programmer 

has made changes to a program that may have inadvertently introduced errors. It is a 

quality control measure to ensure that the newly modified code still complies with its 

specified requirements and that unmodified code has not been affected by the 

maintenance activity [HAROO]. The easiest method for performing regression testing is 

the reuse of an original test suite and rerun all the test cases in it. However, when the 

change to a system is minor, a complete rerun of the full test suit is not only often 

unnecessary but also expensive. As a result an alternative approach is needed that allows 

for the selection and re-execution of only the test cases that are relevant to the specific 

modification. 

Regression test selection is such an approach that attempts to reduce the cost of retesting, 

by identifying and re-executing only a subset of the existing test suite in order to re-test 

the code potentially affected by a modification request [GRA01]. Regression test 

selection involves the recording of program elements exercised by tests used in previous 

releases, and selecting these test cases that exercise elements changed in the current 

release. The coverage matrix between the code entities and test cases needs to be 

identified by tracing the actual execution paths of the test cases through the code 

[SNE04]. Selective regression testing is a well established research domain with a wide 

range of existing approaches, varying from the use of control flow information and/or 
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data flow dependencies for procedural, object-oriented and aspect-oriented programs 

[CHE94, HSI97, HAR01B, ROT97, ROT00, WHI92, WHI97, XU07, ZHA06]. However, 

these existing approaches have focused primarily only on sequential programs, with none 

of them providing support for regression test selection for distributed programs (such as 

Java RMI applications). Performing selective regression test for distributed programs is 

clearly a more challenging task compared to performing it on sequential programs, since 

it not only requires to trace client/server activities across multiple threads and processors, 

but also to merge local and remote calls by examining causality relationship between 

them. 

Another shortcoming of these existing regression test selection techniques is that they 

only deal with the manipulation of internal program states, and ignore typically external 

program states (persistent variables, e.g., database and files) in their analysis. However, 

these persistent states not only play an important role in modern software, especially 

database-driven system, but also might affect a selective regression testing analysis. 

Through the persistent states, the change effect could be transmitted from one code entity 

(i.e. function, component, or even program) to other code entities. The omission of the 

persistent states could lead to scenarios where test cases affected by the modifications 

might not be selected and re-executed. 

The research is motivated by the need to provide software maintainers and managers with 

the ability to estimate early on during the maintenance cycle, the testing effort associated 

with a modification request. In this research, we address this issue of predicting the 
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regression testing effort, by proposing a lightweight methodology, which applies Formal 

Concept Analysis to support a regression test selection analysis, in combination with 

execution trace collection and external data sharing analysis, for distributed Java RMI 

programs. A toolkit was developed, consisting of two Eclipse plug-ins that are used to 

automate the regression test selection process and allow us to validate our approach. The 

toolkit is able to collect distributed execution traces, implement external data sharing 

analysis algorithm to generate the test case dependency table, and visualize the selection 

result. 

The remainder of the thesis is organized as follows. Chapter 2 provides the background 

related to program comprehension, including dynamic analysis, aspect oriented 

programming, Java RMI, Formal Concept Analysis, and regression testing. Chapter 3 

states the main contributions of this thesis, including the motivation, research hypothesis, 

and research goals. Chapter 4 shows the lightweight regression test selection approach for 

distributed Java RMI applications. In Chapter 5, the implementation of the tool to support 

our methodology for automating the analysis process is introduced. Chapter 6 elaborates 

on each step of the problem solving approach through prepared case studies. The 

discussions of the advantages as well as limitations of the introduced approach, and the 

related researches are also presented. Finally, Chapter 7 concludes the thesis and 

discusses potential future work. 
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2. Background 

In the following sections, we will introduce background information relevant to this 

research. In particular we focus in our review on dynamic analysis (section 2.1), Aspect 

Oriented Programming (AOP) and AspectJ (section 2.2), Java RMI (section 2.3), Formal 

Concept Analysis (section 2.4), and regression testing (section 2.5). 

2.1 Dynamic Analysis 

Program Comprehension is the process of acquiring knowledge about a computer 

program [RUG95]. It is a cognitive process that uses existing knowledge (i.e. the source 

code of a software system) to acquire new knowledge that meets the goals of a code 

cognition task. Program comprehension plays a significant role in software maintenance 

and evolution. A significant proportion of the time required for maintaining, debugging, 

and reusing existing code is spent in understanding existing programs [ST097]. 

Program comprehension can be performed through two types of analysis: static analysis 

(reading the code) and dynamic analysis (running the code) [COR89]. Static analysis 

collects its information statically through fact extraction from artifacts such as the source 

code, design documents, etc. and then analyzes these collected facts to abstract and 

interpret the program properties. In contrast dynamic analysis collects knowledge about 

system properties by executing a software system for various inputs [BAL99]. 



Dynamic analysis supports program comprehension in particular by providing additional 

insights with respect to behavioral aspects of a software system, which are often not well 

documented in system documentation [GSC03]. Using dynamic program analysis 

requires some form of instrumentation of the original software application or its 

underlying runtime system to generate traces of real program executions. Through the 

analysis of these traces, it is typically possible to identify those parts of the program that 

implement the functionality of interest and hence, need to be understood. 

Object-oriented systems are difficult to understand by relying only on static analysis, due 

to object oriented specific features such as inheritance, dynamic binding and 

polymorphism. These language features tend to obscure the relationships among the 

system artifacts [STV05]. As a result, the behavior of OO systems can often only be 

completely determined through the use of runtime (dynamic) information. Since dynamic 

analysis can take advantage of run-time information, it can overcome many of the 

shortcomings of static analysis. Also through the use of run-time information (such as 

object instantiation and communication, method calls, and branching decisions), dynamic 

analysis can provide additional insights on the life cycle of objects, the sequences of 

interactions, and the flow of control between components at run-time. Furthermore, given 

the more detailed information available for the analysis, dynamic analysis can be more 

precise and sensitive to the input data [BAL99], and hence improve the comprehension 

process. 
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Figure 2-1 shows a general overview of the major steps involved while performing 

dynamic analysis. Firstly, the program under test or its underlying runtime system is 

instrumented in order to put probes collecting the dynamic information. Then, the 

destination program is executed with a set of test cases. The trace data is produced and 

transmitted into some type of repository/data store. Due to the fact that important 

interactions are mixed with low-level implementation details, traces can be very large and 

hard to understand [HAM03]. Therefore, in the third step, depending on the analysis 

focus, traces are either compressed and/or abstracted to remove unnecessary data (i.e. 

utility functions, repetitive and recursive calls, redundancy patterns, etc.). At last, the 

filtered traces are processed to present the program's high-level behavioral view (i.e. 

sequence diagram), or for further analyses (i.e. feature identification). 

& 

Instrumentation 

& 

Execution 
& Extraction 

^ 

Application 

Traces 
Repository 

Presentation 

n 
Compression 
& Abstraction 

Figure 2-1: The general procedure of dynamic analysis 
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2.1.1 Instrumentation 

As mention previously, dynamic analysis involves some form of instrumentation of the 

system to be analyzed, to allow for the collection of certain run-time states and program 

properties. For Java programs, instrumentation is typical performed through one of two 

approaches. (1) Code instrumentation; which requires inserting additional statements 

(probes) into a program (source or byte code) to allow collecting dynamic behavior 

information [HUA78]. (2) Leverage capabilities of the runtime environment, by 

monitoring and tracking the runtime behavior of an application through debugging, 

profiling or modifying the Java Virtual Machine [SEE05]. In what follows, we provide a 

more detailed overview of some major techniques used to collect dynamic information 

from Java programs. 

2.1.1.1 Source Code Instrumentation 

One way for instrumenting a program is to simply add code (probes) needed for the 

instrumentation into the source code. These probes become part of the program build and 

the resulting object code contains code corresponding to the instrumentation code which 

was added to the source code. When executing the program, the code for the probes will 

be executed and dynamic information for the application can be obtained. The advantages 

of the source code instrumentation are: (1) it supports for statement level source code 

instrumentation as it is typically used by source code coverage tools, statements and 

branch coverage; (2) it does not require a specialized runtime environment, the 

instrumented applications can run within the same program environments as the original 

programs. On the other hand, the source code instrumentation also has drawbacks: firstly, 
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the source code of an application must be available; moreover, the instrumentation even 

being semantically and syntactically correct alters the original source code. As a result 

the source code being executed and analyzed might no longer reflect the behavior of the 

source code. 

There exist several tools for the source code instrumentation. Clover is a commercial 

code coverage analysis tool, developed by Cenqua Pty Ltd. [CLO07]. It copies and 

instruments a set of Java source files, and then measures three types of coverage analysis: 

statement, branch and method coverage. The Java test coverage and instrumentation 

toolkits, query and instr [MCC07], are used to parse Java source programs into an 

internal tree form, and perform method and statement source instrumentation. The 

toolkits are suited for applications, such as test coverage, metrics, instrumentation, 

extraction of information, documentation tools, etc. 

2.1.1.2 Bytecode Instrumentation 

Java source code is normally compiled into a binary format consisting of a bytecode 

instruction set (i.e. the class file) as an intermediate format. After instrumenting the 

bytecode, the bytecode instructions are executed by the Java Virtual Machine (JVM) 

[LIN99]. Java bytecode instrumentation, also called bytecode injection, is the process of 

directly inserting or manipulating Java bytecode. It generally inserts a special, short 

sequence of bytecode at the designated points within a Java class file. The introduced 

bytecode controls the message passing. The Java bytecode instrumentation can be 
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performed either statically at the compile time or dynamically at the runtime when the 

bytecode of the class is being loaded into the JVM. 

Static bytecode instrumentation inserts all instrumentation-code before the program under 

instrumentation starts execution. The main advantage of this approach is that it causes 

less runtime overhead, as all classes are instrumented before the program is executed. 

The major drawback of static instrumentation is that dynamically generated or loaded 

code is not instrumented. Some high-level bytecode engineering libraries can be 

leveraged to perform static bytecode instrumentation. Bytecode Engineering Library 

(BCEL) [DAH01] developed by the Apache Software Foundation is a toolkit for the 

static analysis and dynamic creation or transformation of Java class files. It enables 

developers to implement desired features on a high level of abstraction without handling 

all the internal details of the Java class file format. Bytecode Instrumenting Tool (BIT) 

[LEE97] developed in the University of Washington, is a collection of Java classes that 

allows users to insert instructions to analysis methods anywhere in the bytecode, so that 

information can be extracted from the user program while it is being executed. Java 

programming assistant (Javassist) [CHI03] is a reflection-based toolkit for developing 

Java bytecode translators. The main feature of Javassist is that it allows users to access 

Java bytecode in the high source code level, instead of in the low bytecode instruction 

level. This means that programmers can modify a class file with source-level vocabulary. 

Dynamic bytecode instrumentation is interleaved with the execution of the program under 

instrumentation; an instrumentation agent is invoked each time a class is loaded and may 
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augment the loaded bytecode with instrumentation code. The weakness of this approach 

is that it introduces extra overhead and may perturb measurements due to the runtime 

instrumentation process. The advantage of this method is that it ensures that all loaded 

classes will be instrumented and avoids the often tedious bytecode instrumentation prior 

to the program startup. Dynamic instrumentation is applied not to all library classes, but 

only to those classes that are actually being loaded. Furthermore, it also prevents 

problems, such as forgetting to instrument classes after modification and recompilation. 

org.jmonde.debug.Trace [JMO07] is an on-the-fly runtime method tracing tool for Java 

applications based on the Byte Code Engineering Library. Its working mechanism is as 

follows: a custom class loader reads the class file and instruments each method with 

tracing code. The class loader also adds a static field to each class. This field has two 

states, 'on' and 'off. The tracing code checks this field prior to printing. The command 

line options access and modify this static field to control tracing output. 

2.1.1.3 Interfacing with Java Virtual Machine 

Another approach for instrumenting Java source code is by interfacing with the Java 

Virtual Machine through the debugging (JVMDI) and profiling (JVMPI, JVMTI) 

interfaces. They provide ways to inspect the state and to control the execution of 

applications running in the Java virtual machine (JVM). The Java Virtual Machine 

Debugging Interface (JVMDI) [SUN99] defines the services a VM provides for 

debugging. It includes requests for information (for example, current stack frame), 

actions (for example, set a breakpoint), and notification (for example, when a breakpoint 

has been hit). The performance penalty using the JVMDI is so significant that its 
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applicability is limited only for very short program executions. The Java Virtual Machine 

Profiler Interface (JVMPI) [SUN02] is a two-way method call interface between the JVM 

and an in-process profiler agent. JVMPI provides hooks into the JVM that can be used 

without modifying the user program or the JVM itself. A profiler agent instructs the 

virtual machine to send it the relevant JVMPI events, such as method enter and exit, and 

processes the event data into profiling information. The Java Virtual Machine Tool 

Interface (JVM TI) [SUN04] is a new profiling interface, which was introduced in J2SE 

5.0 and replaced JVMDI and JVMPI. JVMTI provides both a way to inspect the state and 

to control the execution of applications running in the Java virtual machine (JVM). It 

supports the full breadth of tools that need access to JVM state, including but not limited 

to: profiling, debugging, monitoring, thread analysis, and coverage analysis tools. 

Profiling tools based on JVMPI or JVMTI can obtain a variety of information for a 

comprehensive performance analysis task. Whereas these tools have to be written in 

platform native code, and become less transportable. 

Currently, most profiling tools are based on profiler agents that use JVMPI or JVMTI. 

Optimizelt [OPT07] is a commercial tool and it allows local and remote profiling of Java 

programs on multiple platforms. Its main work of the instrumentation is assigned to 

JVMPI. Optimizelt collects all the information generated by JVMPI and stores it in his 

internal structures. Optimizelt contains a graphic visualizer of all information, and with 

this information it offers different types of profiling: CPU profiling, Memory debugging, 

Object allocations etc. jProf [JPR07] is a non-commercial profiler developed using 

JVMPI, it was constructed to identify the typical problems that appear in Java application 
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developing: excessive memory usage, excessive synchronization and excessive processor 

usage. The profiler gets the information generated by JVMPI, produces XML profiling 

result, and presents the results of a profiling in HTML format. 

2.1.1.4 Instrumented Java Virtual Machine 

The Java virtual machine (JVM) is instrumented for monitoring and management, 

providing built-in management capabilities for both remote and local access. In particular, 

the JVM also can be instrumented statically or dynamically in order to export more 

specific and detailed information, such as start and exit time of methods, client/server 

interactions, etc. Statically instrumented JVM approaches instrument the JVM program in 

order to export some state information available while it executes the bytecode. The 

Dynamically Instrumented JVM approach generates and inserts instrumentation code into 

the JVM, or removes it from the JVM at runtime. An instrumented JVM does not require 

the source code of applications under test, and it can provide more flexibility to users. 

However, the development effort of this approach is much higher than using profiling 

interfaces such as JVMPI and JVMTI. In addition, the evolution of a supported JVM, or 

supporting more JVMs, can induce a high maintenance cost. 

In what follows, we will introduce some Java profilers that use instrumented JVM to 

collect runtime information. The project of JaViz [KAZOO] started in 1997 at the 

University of Minnesota with the idea of providing Java software developers an easy way 

to collect performance data and analysis. JaViz uses an instrumented JVM capable of 

collect information about start and exit time of methods and to record client/server 
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interactions. When a program is executed with the instrumented JVM, the trace files are 

generated. These files are then post processed to create an execution tree. JaViz has a 

visualizer that presents the information in an execution tree, with callers being parents of 

callees. Jinsight 2.0 [PAU01] is a profiler developed by IBM to show performance 

bottlenecks, object creation, garbage collection, thread interaction, deadlocks and 

program execution patterns. It offers a modified JVM with which the application must be 

executed to obtain the profile. All the performance data extraction is done inside the 

instrumented JVM. The trace files are then visualized in different views: the histogram 

view, which shows the program's use of resources; the execution view, which shows the 

program execution sequence. Jinsight 2.0's subsequent version 2.1 supplies a profiling 

agent using the JVMPI for Java 2 instead of using an instrumented JVM. 

2.1.2 Dynamic Analysis Applications 

Dynamic analysis plays a critical role during program comprehension and is supported 

through techniques such as program slicing, visualizing the behavior of the system, 

identifying design pattern, feature to code assignment, etc. In what follows, we describe 

some of these approaches in more details. 

2.1.2.1 Debugging and Program Comprehension 

Program slicing is a method of program decomposition, and the process of it deletes 

those parts of the program that can be determined to have no effect upon the semantics of 

interest. The result of program slicing is a reduced, executable program that preserves the 

original behavior of the program with respect to a subset of variables of interest at a given 
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program point [WEI82, WEI84]. Dynamic Slicing was originally introduced in [KOR88], 

which aims to reduce the size of a slice and get more accurate slice based on program 

executions. In order to compute a dynamic slicing, an execution trace is recorded first, 

and then the trace is traversed backwards to derive data and control dependencies to 

compute the dynamic slice [AGR90]. Using the run-time information, the approach may 

significantly reduce the size of a program slice, and is possibly able to resolve some of 

the conservative assumptions that have to be made by static slicing regarding the control 

flow. 

2.1.2.2 Dynamic Views 

There exist several approaches to explore execution traces [BRI03, GUE05, HAM05] to 

support the understanding of a program behavior by reconstructing its dynamic views, 

such as sequence/scenario, statechart diagram to show program interactions at different 

abstraction levels [SAL06]. Also UML v.2 supports the use of composition operators to 

combine dynamic diagrams from traces]. Leveraging these methods, maintainers are 

provided with diagrams at various abstraction levels, allowing them to check the 

conformance between produced diagrams and documented diagrams. 

2.1.2.3 Design Pattern Identification 

For precise design pattern recognition, especially for object-oriented languages, static 

analysis might not be sufficient, due to structural similarities among patterns. Patterns 

often rely on polymorphism and dynamic method binding. As a result these patterns are 

not distinguishable from each other using static analysis, since they often differ only in 
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their behavior (e.g. method invocations) [HEU02]. Dynamic analysis on the other hand 

supports the analysis of runtime behavior. However, the amount of data gathered during 

runtime (in the form of traces) used for pure dynamic analysis is often very large. 

Depending on the level of information detailed needed for dynamic analysis, the analysis 

can become very expensive and in some cases even unfeasible. Therefore, most of these 

approaches combine static and dynamic analysis techniques [WEN03, WEN04]. They 

use static analysis identify pattern instance candidates to reduce the search space, and 

then use dynamic analysis to confirm or weaken the results from static analysis. By this 

way, the quality of design pattern identification is highly improved. 

2.1.2.4 Feature Location 

Software developers are constantly required to modify and adapt application features in 

response to changing requirements. However, relying only on static analysis is difficult to 

determine how software entities contribute to the runtime behavior of features and how 

these features interact. Comparing with static analysis, dynamic analysis is a reliable 

means of associating behaviors of a system with the internal components of its 

implementation. Based on dynamic analysis, these approaches [EIS01, EIS03] leverage 

extracted execution traces to achieve an explicit mapping between the system's externally 

visible behavior (features) and the relevant parts of the source code. In these approaches, 

features are defined as units of behavior of a system; techniques such as concept analysis, 

data mining [GRE05] are used to identify the groups of software entities (i.e. classes, 

functions) that implement software features. 
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2.1.2.5 Other Dynamic Analysis Approaches 

[ZAI05, WAN05] identify key classes and utility classes in a system by using web-

mining principles or dynamic fan-in, fan-out metrics. Helping software engineers to start 

their reconnaissance of the software from important classes, these approaches alleviate 

their program comprehension task. Zaidman's work [ZAI04] is centered on the idea that 

the relative execution frequency of methods or procedures can tell something about 

which methods or procedures are working together to reach a common goal. An iterative 

approach using dynamic information to support the recovery and understanding of 

collaborations was presented in [RIC02]. In Richner's work [RIC02] collaboration 

abstractions are extracted without reliance on visualization techniques. Dynamic analysis 

implies large amounts of data. [HAM06] addressed this issue by summarizing the content 

of large execution traces. It first identifies utility routines and consequently summarizes 

these routine. 
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2.2 AOP and Aspect J 

In what follows we provide a brief introduction to Aspect Oriented programming (AOP). 

One of the key elements differentiating the AOP programming paradigm from traditional 

object-oriented programming is it support for separation concerns. AOP's support for 

separation of concerns, specifically cross-cutting concerns, through additional language 

constructs. A program can be broken down into distinct parts that overlap in functionality 

by separating concerns. All programming methodologies—including procedural 

programming and object-oriented programming—support some separation and 

encapsulation of concerns into single entities, such as procedures, packages, classes, and 

methods [BJO06]. However, some concerns, named as crosscutting concerns, defy these 

forms of encapsulation "cut" across multiple modules in a program. 

AOP provides language mechanisms that explicitly capture crosscutting. It extracts 

scattered concerns from classes and turns them into aspects, which are well modularized 

crosscutting concerns. By decoupling these concerns and placing them in aspects, the 

original classes are relieved of the burden of managing functionalities orthogonally 

related to their purpose. Later, the aspect code is injected into appropriate places by a 

process known as weaving. A direct consequence of aspect use is to program crosscutting 

concerns in a modular way, and achieves the usual benefits of improved modularity: 

simpler code that is easier to develop and maintain, and that has greater potential for 

reuse. Logging is one example of a crosscutting concern, because a logging strategy 

necessarily affects every single logged part of the system. Logging thereby crosscuts all 

logged classes and methods. One of the key advantages of AOP is that it provides native 
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language support for logging and tracing of program execution [ELR01]. 

AspectJ [ECL07] is a simple and practical aspect-oriented extension to Java. It helps to 

manage crosscutting concerns by augmenting Java language with number of new 

structures, such as pointcuts and advice. In AspectJ's dynamic join point model, a set of 

identifiable points in the execution of the program, called join points, are collected 

though pointcuts. Code defined in advice is attached to these poinctcuts and executed 

when join points are reached. Aspects are class-like modular units of crosscutting 

implementation, comprising pointcuts, advice, and ordinary Java member declarations. 

AspectJ files are compiled together with standard Java source files into standard Java 

byte code via AspectJ compiler so that platform-independence is assured henceforward. 

2.2.1 AspectJ Semantic 

Figure 

makePoint(..) 
makel_ine(..) 

Point 

getX() 
getY() 
setX(int) 
setY(int) 
move(int, int) 

* FigureElement 

move(int. int) 

7 

2 

\ 

Line 

getP1() 
getP2() 
setPI (Point) 
setP2( Point) 
move(int, int) 

I I III I I 

< l l l l l l l l—. . . I I . I . . . . . . I . I I 

Figure 2-2: A simple figure editor 



The semantics are presented using a simple figure editor system shown in Figure 2-2. In 

this example a Figure class provides factory services and it consists of a number of 

FigureElements, which can be either Po in t s or Lines. 

2.2.1.1 The Join Point Model 

A critical element in the design of any aspect-oriented language is the join point model. 

The join point model provides the common frame of reference that makes it possible to 

define the structure of crosscutting concerns. The dynamic crosscutting elements of 

AspectJ are now based on a model in which join points are certain well-defined points in 

the execution of the program. In this model join points can be considered as nodes in a 

simple runtime object call graph. These nodes include points at which an object receives 

a method call and points at which a field of an object is referenced. The edges are control 

flow relations between the nodes. In this model control passes through each join point 

twice, once on the way in to the sub-computation rooted at the join point, and once on the 

way back out. The different kinds of join points provided by AspectJ are stated as follows: 

a call or an execution to a method or a constructor, an exception handler, an initialization 

to a class or an object, a field access, etc. 

2.2.1.2 Pointcut Designators 

In AspectJ, pointcut designators identify collections of join points in the program flow. 

They can be categorized to name-based pointcut designators, property-based pointcut 

designators and control-flow based pointcut designators. 
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(1) Name-based pointcut designators 

The pointcut designators are all based on explicit enumeration of a set of method. For 

example, the following pointcut designator identifies all calls to the method getPi () 

defined on Line objects: 

call(Point Line.getPl()) 

Pointcut designators can be combined using a set algebra semantics, such as and, or and 

not operators ('&&', '||', ' ! ' ) ; and it can crosscut classes and identify join points from 

many different classes. For example: 

pointcut moves(): 

call(void FigureElement.move(int, int)) || 

call(void Point.setX(int)) || 

call(void Point.setY(int)) || 

call(void Line.setPl(Point)) || 

calls(void Line.setP2(Point)); 

defines a pointcut named "moves" that designates calls to any of the methods that move 

figure elements. 

(2) Property-based pointcut designators 

AspectJ also provides mechanisms that enable specifying a pointcut in terms of properties 

of methods other than their exact name. The simplest of these involve using wildcards in 

certain fields of the method signature. For instance: 

c a l l ( v o i d P o i n t . s e t * ( i n t ) ) 

identifies calls to any method defined on Point , whose name begins with "set" and it 

needs one integer parameter and has no return value, specifically the methods setx (int) 
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and setY(int);and 

c a l l ( p u b l i c * Po in t . * ( . . ) ) 

identifies calls to any public method defined on Point with any parameters and return 

value. 

(3) Control-flow based pointcut designators 

These pointcuts capture join points based on the control flow of join points captured by 

another pointcut. A control-flow pointcut always specifies another pointcut as its 

argument. There are two control-flow pointcuts. The first pointcut is expressed as 

cflow( Pointcut) , and it captures all the join points in the control flow of the specified 

pointcut, including the join points matching the pointcut itself. The second pointcut is 

expressed as cflowbelowtPointcut), and it excludes the join points in the specified 

pointcut. For instance: 

c f l o w ( c a l l ( v o i d L i n e . s e t P l ( P o i n t ) ) ) 

identifies all the join points in the control flow of any setpi (Point) method in Line 

that is called, including the call to the setpi (Point) method itself. 

cf lowbelow(ca l l (void L i n e . s e t P l ( P o i n t ) ) ) 

identifies all the join points in the control flow of any setPl (Point) method in Line that 

is called, but excluding the call to the setPl (Point) method itself. 

2.2.1.3 Advice 

Advice is a method-like construct that provides a way to express crosscutting action at 

the join points that are captured by a pointcut. AspectJ has three different kinds of advice 

that define additional code running at join points. (1) Before advice runs when a join 
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point is reached and before the computation proceeds, i.e. that runs when computation 

reaches the method call and before the actual method starts running. (2) After advice runs 

after the computation 'under the join point' finishes, i.e. after the method body has run, 

and just before control is returned to the caller. (3) Around advice runs when the join 

point is reached, and has explicit control over whether the computation under the join 

point is allowed to run at all. In the following code snippet, the advice prints the log 

string prior to the execution of any set method in the Point class: 

beforeO : c a l l (void Po in t . s e t* ( in t ) ) { 

Sys t em.ou t . p r i n t l n ( "Be fo re s e t t i n g po in t x or y v a l u e . " ) ; 

} 

2.2.1.4 Aspect 

Aspects are modular units of crosscutting implementation. They are defined by aspect 

declarations, which have a form similar to that of class declarations. Aspect declarations 

may include pointcut declarations, advice declarations, as well as all other kinds of 

declarations permitted in class declarations. The following declaration defines an aspect 

that implements the behavior of updating display of a line moved recently. 

aspect DisplayUpdating { 

static boolean movedFlag = false; 

pointcut move(): 
call(void Line.setPl(Point)) || 
call(void Line.setP2(Point)); 

after() : move() { 
movedFlag = true; 
Display.update(); 

} 
} 
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2.2.2 Tracing with AspectJ 

Tracing involves recording an execution of a software system in order to debug, analyze, 

and modify the software system. In fact, tracing is a valid example of a crosscutting 

concern since this concern cuts orthogonally across a number of classes and requires 

coding in a number of places to perform the same task. The points at which we have to 

perform tracing are typically method calls, event invocation etc. are all join points. 

Therefore, AOP can be used to solve this problem through the following step: 

• Identify individual groups of join-points of interest for tracing activities 

• Design pointcuts to filter out these groups 

• Associate advice with these pointcuts to perform the logging activities 

AspectJ itself provides an efficient programming language environment to create traces 

for Java programs. The three main elements of AspectJ, pointcut, advice, and join point, 

powerfully support a flexible extraction of the information of source codes. Pointcut 

addresses packages, classes, methods, and variables that could be interesting for 

developers. Advice arranges appropriate information for the pointcut. Join-point filters 

out the information in execution time. Using these three elements, AspectJ enables people 

to extract the execution information they want to know from source codes and delve into 

important parts iteratively. 
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Existing System 
(Java Applications) 

Aspect (AspectJ source) 
• injects members into classes (advice) 
• intercepts events (pointcut) 

X/" 
Instrumented System 

(Java bytecode with trace) 

Run 

Figure 2-3: Tracing process for Java applications through AspectJ 

Given the advanced tracing capabilities of AspectJ, it can be applied for analyzing and 

understanding of existing software systems. Its tracing capabilities can also support 

reverse engineering by capturing key execution points, identifying the core execution 

path, without requiring instrumentation or modification of the destination source code, 

etc. Figure 2-3 illustrates the use of AspectJ for tracing existing Java programs. What 

follows summarizes the major advantages and disadvantages of current tracing 

capabilities in AspectJ. 
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Advantages: 

• Non-intrusive instrumentation 

AspectJ works at the bytecode level and does not equip source code with any 

instrument code. It facilitates configuration management and maintenance: tracing 

functionality can be easily added, modified or deleted in a non-intrusive manner 

giving complete control on tracing for the entire application. 

• Flexible expression 

AspectJ offers various expressions (pointcuts) for describing source code locations 

to check at run-time. These pointcuts could be generic or specific depending upon 

how specific is the filtering criteria. For example, pointcuts can be designed to take 

care of join-points associated with discrete points in an inheritance hierarchy. 

• Easy refinement 

AspectJ allows users to refine the tracing log by adding another condition to 

pointcuts. The combination of several pointcuts conditions also reduces the amount 

of tracing log; users can reduce the amount of tracing records until they find the 

precise information. 
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Limitations: 

• Lack of support for trace control flow 

AspectJ does not currently provide mechanisms to intercept method control flow, 

such as repetitions of message and conditions under which messages are exchanged 

by objects. The alternative would be to manually instrument the code or to use 

debuggers or profilers. 

• Lack of support for tracing outside the package 

AspectJ does not allow aspects to be woven into Java's library packages. That means 

that if a class is an extension of a class in Java's library, whenever an event is caught 

from the former class, the trace will show a method call that seems to come out of 

nowhere. 

• Requires rebuilding process 

In order to weave aspects into Java byte code of the destination, AspectJ files need to 

be compiled together with standard Java source files or Java compiled files (class 

file, jar file) via AspectJ compiler 

26 



2.3 Java RMI 

2.3.1 Overview of Java RMI 

Java Remote Method Invocation (RMI) is an object model for creating distributed Java-

based applications. Simplifying the communication between two objects in different Java 

Virtual Machines (JVM), Java RMI enables objects in one JVM to invoke methods on 

objects in other JVMs, in the same way as methods of local objects. On one hand, Java 

RMI is capable to work as a stand-alone middleware platform. On the other hand, it also 

acts as the foundation for other high level frameworks, such as Enterprise JavaBeans and 

Jini. 

The general Java RMI architecture is shown in Figure 2-4. Java RMI includes three 

independent layers: 

(1) The stub/skeleton layer is the interface between the application layer and the rest of 

the RMI system. A stub for a remote object is the client-side proxy, which forwards 

the request from the client to the actual remote object. A skeleton is a server-side 

entity, which dispatches calls to the actual object in the server. 

(2) The remote reference layer is responsible for carrying out the semantics of the 

invocation and sits on top of the low-level. It has the client-side and the server-side 

components. 

(3) The transport layer is based on TCP/IP connections among different machines in the 

network. It is responsible for the set-up and management of the connection and 

dispatching the requests to the remote objects. 
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Figure 2-4: Java RMI Architecture 

The basic procedure a client uses to communicate with a server is as follows: © First a 

server creates a remote object and registers it to a local registry. © The client obtains the 

reference of the remote object in the registry, and receives an instance of the local stub 

class. The stub class is transferred from the remote JVM, and automatically pre-generated 

from the target server class and implements all the methods that the server class 

implements. © When the client invokes a method on the remote object, the method is 

actually invoked on the local stub. The stub marshalls all the information associated to 

the method call, including the name of the method and the arguments, and sends this 

information to the associated skeleton on the server side ©. © The skeleton demarshalls 
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the data and makes the method call on the actual remote object. The remote object 

executes the method and passes the return value back to the skeleton © , the skeleton 

marshalls the return value, and sends it to the associated client-side stub 0 . At last, the 

stub demarshalls the return value and passes it to the client object © . 

2.3.2 Implementation Details 

2.3.2.1 Server Side 

One of the requirements for a server process to be visible to a client object is that the 

server must implement the java.rmi.Remote interface. Any methods which are intended 

to be called by a remote object must be placed in an interface that extends the 

java.rmi.Remote interface. That interface must be implemented by the class whose 

methods will be called remotely. In addition, each method that will be called remotely 

must fulfill the following requirements: 

(1) Must include the exception java.rmi.RemoteException (or one of its super classes 

such as java.io.IOException or java.lang.Exception) in its throws clause, in addition 

to any application-specific exceptions (application-specific exceptions do not have to 

extend java.rmi.RemoteException). 

(2) A remote object declared as a parameter or return value (either declared directly in 

the parameter list or embedded within a non-remote object in a parameter) must be 

declared as the remote interface and not the implementation class of that interface. 

29 



Furthermore, a server class is required to implement an interface that extends the 

java.rmi.Remote interface, by extending the java.rmi.server.UnicastRemoteObject class. 

By extending the UnicastRemoteObject (in the java.rmi.server package) the class is given 

access to the remote behavior of both, the java.rmi.server.RemoteObject and 

java.rmi.server.RemoteServer. A server must also bind its unique name to the RMI 

registry, allowing clients to be able to "find" the server through the RMI registry. Once 

the server code is completed, the code must be compiled with the RMI compiler. By 

doing this, the skeleton code for the server is generated. The skeleton code handles all of 

the underlying networking needs of the communication. This includes, but is not limited, 

to setting up a connection, accepting the marshalled method invocation and potentially 

accompanying parameters and sending a response. 

2.3.2.2 Client Side 

A client can send a reference to the server by using the java.rmi.Naming class. The 

java.rmi.Naming class also provides access to services such as binding (already 

mentioned for the server process) unbind, lookup and listing the name-object pairings 

maintained on the host. Upon completion of the client code, the code must be compiled 

with the RMI compiler, thus generating the client stub code. The client stub code is used 

to send the marshalled messages to the server process, to receive and demarshall the 

response from the server. 
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2.4 Formal Concept Analysis 

Formal Concept Analysis is a mathematical technique that provides insights into binary 

relations. It is a branch of lattice theory that provides a way to identify maximal 

groupings of objects that have common attributes [WIL81]. The mathematical foundation 

of formal concept analysis was laid by Birkhoff in 1940 [BIR67]. It is now gaining wide 

acceptance and has been applied to various application domains, such as to evaluate class 

hierarchies, explore configuration structures of preprocessor statements, for 

redocumentation, and to recover components. 

2.4.1 Definitions 

Formal concept analysis is based on a relation % between a set of objects O and a set of 

attributes ft, hence ^ . c O x J l The triple C = (O, ft, %) is called formal context. For a set 

of objects O c O the set of common attributes q is defined as: 

<r(0) = {a € ft | Vo e O : (p, a) e %} 

Analogously, the set of common objects x for a set of attributes .4 ^ft is defined as: 

T(A) = {o e O | \fa e ft: (o,a) e %} 

The mappings are antimonotone: 

O, c 02 => a (02) c a (0/) 

^/ c A2 => x (A2) c x (/*/) 

and extensive: 
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O c x(a(0)) and ^ c a(x(^)) 

To illustrate concept analysis, we use the binary relation between a group of stars and 

their characteristics shown in Table 2-1 as an example. 

C-. 
o 
li 
.S 

C 

Merkur 

Venus 

Earth 

Mars 

Jupiter 

Sat/urn 

Uranus 

Neptune 

Pluto 

C lontext (O.A.'Tl) 

Attributes A 

X 

X 

X 

X 

X 

V- V V* O- O V-

X X 

X X 

X X 

X X 

X X X 

X X X 

X X X 

X X X 

X X 

Table 2-1: An example relation table [LINOO] (a characterization of stars) 

In the example, the objects are the different kinds of stars; the attributes are the 

characteristics small, no moon, etc. An object star has attribute characteristic if row i and 

column/ is marked with a x. For this relation table, the following equations hold: 

a ({Merkur}) = {small, near, no moon} 

x ({distant, moon}) = {Jupiter, Saturn, Uranus, Neptune, Pluto} 

A pair (O, A) is called concept if A = CT(O) A O = x{A) holds, i.e., all objects share all 

attributes. For a concept c = (O, A), O is the extent of c, denoted by extent(c), and A is the 

intent of c, denoted by intent{c). Informally, a concept corresponds to a maximal 
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rectangle of filled table cells modulo row and column permutations. In the example, 

({Earth, Mars}, {moon, small, near}) is a concept, whereas ({Earth, Pluto}, {moon, 

small}) is not a concept: a ({Earth, Pluto}) = {moon, small}, x ({moon, small}) = {Earth, 

Mars, Pluto}. The following table contains the concepts for the relation in Table 2-1. 

Concept 1 

Concept 2 

Concept 3 

Concept 4 

Concept 5 

Concept 6 

Concept 7 

Concept 8 

Concept 9 

Concept 10 

Concept 11 

Concept 12 

({}, {moon, medium, distant, small, large, near, nomoon}) 

({Pluto}, {moon, distant, small}) 

({Uranus, Neptune}, {moon, medium, distant}) 

({Merkur, Venus}, {small, near, nomoon}) 

({Jupiter, Saturn}, {moon, distant, large}) 

({Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon, distant}) 

({Earth, Mars}, {moon, small, near}) 

({Earth, Mars, Pluto}, {small, moon}) 

({Merkur, Venus, Earth, Mars}, {small, near}) 

({Merkur, Venus, Earth, Mars, Pluto}, {small}) 

({Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon}) 

({Merkur, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {}) 

Table 2-2: The Concepts for Table 2-1 

The set of all concepts of a given formal context forms a partial order via: 

(01,^0 < {02,A2)0 O, c 02 

or equivalently with 

(OuAi)< (02,A2)oA, =>A2 

If ci < C2 holds, then c\ is called a subconcept of C2and ci is called superconcept of c\. 
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For instance, ({Jupiter, Saturn}, {moon, distant, large}) is a subconcept of ({Jupiter, 

Saturn, Uranus, Neptune, Pluto}, {moon, distant}) 

2.4.2 Concept Lattice 

The set L of all concepts of a given formal context and the partial order < form a 

complete lattice, called concept lattice: 

L(Q ={(0, A) e 2°x 2* I A = a(0) A O = x(A)} 

Concept lattices are usually visualized as hierarchical graphs, often with non-redundant 

labeling (presents each object and each attribute only once) to improve their readability. 

Each node represents a different concept. The node with an attribute a eJA. represents the 

most general concept that has a in its intent, called the top element; on the other hand, 

the node with an object oeOrepresents the most specific concept that has o in its extent, 

called the bottom element. Figure 2-5 shows an example of concept lattice graph derived 

from the previous context table in Table 2-2. In this figure, the bottom element, Concept 

1, ({}, {moon, medium, distant, small, large, near, nomoon}) contains the empty set of 

objects coupled with all the attributes. The top element, Concept 12, ({Merkur, Venus, 

Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {}) includes an empty set of 

attributes coupled with all the objects. 
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Figure 2-5: The concept lattice for the Table 2-2 (stars and their characters) 

The content of a node N in this representation can be derived by passing attributes down 

and passing objects up [LINOO]: 

• the objects of TV are all objects at and below N, 

• the attributes of TV are all attributes at and above N. 

For example, to read Concept 8, one must pass all the objects from the lower level up to 

Concept 8, and one will get {Earth, Mars, Pluto} as the object list of Concept 8. Then, 

one must pass all the attributes from the upper levels down to Concept 8, and one will get 

{small, moon} as the attribute list of Concept 8. Therefore, Concept 8 represents ({Earth, 

Mars, Pluto}, {small, moon}) which corresponds to the list of concepts in Table 2-2. 
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2.5 Regression Testing 

2.5.1 Overview 

Throughout the software life cycle, the cost of maintenance activities dominates the 

overall cost of a software product. A significant part of this maintenance cost is spent on 

testing to be performed after a modification request was performed. Among the different 

types of testing performed during maintenance, regression testing plays an important role. 

Regression testing attempts to validate modified software to ensure that no new errors are 

introduced into previously tested code [HAROO]. 

Regression testing can be defined as the process of reusing (parts of) a test suite that was 

used for testing the original version of the software. One approach to regression testing is 

to rerun all test cases in the test suite. However, due to the size of software products and 

the associated size of the test suite, re-executing an entire test suite may require days or 

even weeks. Therefore, retest-all approach are considered often too expensive, especially 

when only a small portion of a system was modified as part of a performed maintenance 

request. Due to the substantial effort associated with the re-test all approach, kinds of 

regression test selection techniques have been developed to reduce the cost of regression 

testing [ROT96]. 

Regression test selection (RTS) techniques attempt to reduce the testing cost by selecting 

and running only a subset of the test cases from a program's existing test suite, exercise 

the software entities that have been changed or are most likely to be affected by the 

change [GRA01]. Rothermel and Harrold provide the following selective retest strategy 
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for regression testing [ROT96]. The strategy is presented as a solution to the following 

problem: 

Given program P, its modified version / " , and test set Tused 

previously to test P. Find a way of making use of T, to gain 

sufficient confidence in the correctness of P'. 

(1) Select 7"e T, a set of tests to execute o n / 5 ' . 

(2) Test P' with T, to establish the correctness of P' with respect to 7". 

(3) If necessary, create 7" , a set of new functional or structural tests for P'. 

(4) Test P' with T", to establish the correctness of P' with respect to 7" . 

(5) Create I"", a new test suite and test history for P', from T, 7", and 7" . 

2.5.2 Regression testing selective techniques 

A significant body of existing work on regression test selection exists in the literature. 

These regression testing techniques can be differentiated by their programming 

languages support, e.g., procedural languages [ROT97], object-oriented languages 

[HAR01B], aspect-oriented languages [XU07], as well as by the type of applications they 

support, e.g., COT-based applications [ZHE06], database-driven applications [HAR04]. 

In general, RTS approaches can be used for code or specifications. Specification-based 

selection techniques focus on changes at the specification level. They are independent of 

the code, but require properly-maintained specifications. Code-based selection techniques 

are based on the available source code. They record the program elements exercised by 
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the tests during previous releases and select based on the existing information, the test 

cases that exercise elements changed in the current release. A number of code-based 

selection techniques focus on different programming elements: control-flow [ROT97], 

data-flow [HAR89], program slices [GUP96], firewall concept [WHI92], and they 

operate at different granularity levels, such as fine-grained [ROT97] or coarse-grained 

[CHE94]. 

[GRA01] presents a typical classification of regression test selection techniques. In terms 

of the testing goal, RTS approaches are grouped into five families: Retest-All Technique, 

Ad Hoc/Random Techniques, Minimization Techniques, Dataflow Techniques, Safe 

Techniques. Among them, the later three methods are often used in practice. Dataflow-

coverage-based techniques select tests that cover those program entities, which are 

modified or affected by modifications. Like the dataflow methods, minimization 

techniques are fundamentally coverage based analysis approaches. However, the 

minimizations techniques attempt to identify a minimal set of tests from the set of all test 

cases T If the coverage of two test cases is exactly the same, the new test suite will only 

keep one of them. Both minimization and dataflow techniques are not designed to be safe, 

and they can fail to select a test case that would have revealed a fault in the modified 

program. In contrast, safe RTS techniques make certain that they will not omit any test 

cases in the original test suite Tthat can reveal faults inP' . 
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In what follows, we provide a more detailed review of some of these regression test 

selection techniques. 

• [ROT97] proposes a safe regression test selection technique which supports 

statement level analysis for procedural programs. In this approach, a Control flow 

graph (CFG) is used as program representation to select tests, which contains nodes 

for each simple or conditional statement, and edges between nodes representing the 

flow of control between statements. At first, a CFG is established for the original 

program, a test history table is also constructed to record which test cases correspond 

to each traversed edge in the CFG. In the following, another CFG is built for the 

modified program. Then simultaneous traversals are performed on two CFGs through 

each node and edge to identify the difference between them; and the test cases in the 

history table being related to the changed entities are selected. After comparison is 

finished, system gathers all test cases that need to be rerun. 

• Using the similar method introduced above to perform selective retesting for C 

program, the tool TestTube [CHE94], on the other hand, employs relatively coarse­

grained analysis of the system under test, and produces a reasonable and practical 

tradeoff between granularity of analysis and time/space complexity. A technique for 

safe regression test selection for Java programs is described in [HAR01B]. This 

technique is an adaptation of the method of [ROT97], which uses Java Inter class 

Graph (JIG) extended of CFG to explicitly represent various specific features in Java 

programs and then detect dangerous arcs on it. Based on the research reported by 
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[HAR01B], [ZHA06] develop their approach for AspectJ programs, utilizing AspectJ 

Inter-module Graph (AJIG). With this control-flow representation, they determine a 

set of dangerous AJIG edges corresponding to semantic source-code-level changes 

made by a programmer. 

• An incremental testing system that can also be used for regression testing is 

described in [HAR89]. This tool leverage incremental data flow analysis to provide 

reuse of original test cases. Data flow analysis employs definitions and uses of 

variables to compute def-use associations. Uses are classified as either computation 

uses (c-uses) or predicate uses (p-uses). A c-use occurs whenever a variable is used 

in a computation statement, and a p-use occurs whenever a variable is used in a 

conditional statement. During the initial testing, the system stores the previous data 

flow analysis result and test cases. After program changes, the system analyzes the 

effect of the modifications on the test history, and reruns the test cases traversing 

every definition-use pair that is deleted from the original program, new in the 

changed program, or modified for the changed program. 

• [GUP96] presented an approach to data flow based regression testing that uses 

slicing algorithms to explicitly detect definition-use associations that are affected by 

a program change. The slicing algorithms include backward and forward walk 

algorithms, both of them require no past history of data flow information. Given a 

program point, the backward walk algorithm identifies statements containing 

definitions of variables that will affect the point when the program execution reaches 

at it; the forward walk algorithm identifies uses of variables that are directly or 
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indirectly affected by either a change in a value of a variable at the program point or 

a change in a predicate. This approach does not need to maintain a test suite and also 

can achieve the same testing coverage as a complete retest of the program with 

respect to the affected definition-use associations. 

• A testing firewall methodology for regression testing has been developed by White 

and Leung in [WHI92], which considers both control-flow dependencies and data­

flow dependencies. The firewall concept is defined to represent affected areas that 

include changed modules and all other modules affected by them. When one program 

entity is changed, then all test cases being related to it and to other entities in its 

"firewall" will be identified and re-executed. 
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3. Research Contributions 

In this chapter, we present our research contribution, a relative lightweight regression test 

selection approach for Java RMI applications. The section will introduce the motivation 

behind this research, its research hypothesis, research goals and the approach developed 

to address the problem. 

3.1 Motivation 

The goal of regression testing is to ensure that the modified software still satisfies its 

intended requirements. Due to the cost associated with regression testing, regression test 

selection (RTS) techniques can be applied to reduce the overall cost for re-running test 

cases. A variety of RTS techniques have been introduced for many kinds of programs, 

such as procedural programs [CHE94, ROT97, WHI92], object-oriented programs 

[HSI97, ROT00, WHI97, HAR01B], and aspect-oriented programs [XU07, ZHA06]. 

RTS methods are also being applied to component-based [MAO05] and COTS-based 

applications [ZHE06]. However, most of these approaches focus on sequential programs, 

with none of them providing support for regression test selection for distributed programs 

(such as Java RMI applications). 

Firstly, identifying distributed code entities (e.g. classes, methods), which are exercised 

by a particular test case is one of the key issues for RTS. Using dynamic analysis can 

provide a more complete and reliable analysis, and it can be achieved by using traces that 
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correspond to the actual execution paths of the test cases through the code [SNE04]. As 

introduced earlier, Java RMI applications distribute objects and execute across different 

hosts. The methods of remote Java objects can be invoked from other Java virtual 

machines on different hosts. These features of Java RMI make it difficult to establish the 

relation table between test cases and program components that is typically required for 

regression test selection approaches. In this case, all individual execution events from 

multiple machines need to be collected separately and then merged together properly into 

a single, complete trace for an entire application. There exist some tools for profiling Java 

RMI applications, such as Jinsight [PAUOO], JaViz [KAZOO], VisOK [LEEOO], JRastro 

[SIL03]. However, some of these tools do not provide a sufficient level of detail to allow 

for a more detailed analysis of the traces, and/or they are closed source (commercial) 

tools, which cannot be customized. 

Secondly, existing RTS approaches rely typically on one or several of the following 

information resources: control flow information [ROT97], data flow information [HAR89] 

or the firewall concept [WHI92] to identity which test cases are associated with 

modifications. Nevertheless, these techniques only consider internal data states (program 

state) to select test cases, external data states (such as databases, files) are not considered 

in their analyses. For many applications working with databases or files, this omission 

could lead to scenarios where test cases affected by the modifications might not be 

selected and re-executed. 
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Figure 3-1: Test cases dependency on sharing external data states 

As depicted in Figure 3-1, test case A, method A2 updates an external data state; while 

for test case B, method B3 retrieves the same data state. As a result one can observe that 

there exists a write/read access between test case A and B, and in case of a modification 

to method A2, both scenarios, test case A and B should be retested due to the data 

dependency existing between the methods A2 and B3. However, most of the existing 

regression testing techniques will fail to include test to cover these external data 

dependencies. 

There are several approaches addressing RTS for database-driven applications by using 

database states [HAR04, WIL05]. However, common to these techniques is that they rely 

on complete statement level instrumentation. Therefore, they require the recording of 

huge amounts of data in the execution traces, making the analysis of these traces 

expensive and often not feasible. 
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Furthermore, in many cases maintainers or project managers might want to perform an 

initial (more lightweight) RTS prior to actually performing the modification, to identify 

an estimate of the testing effort associated with the modification. This information might 

be applicable to determine the level of testing and evaluation required, and the estimated 

management cost to implement a modification request. We refer the reader for more 

details on applying modification analysis activities to the IEEE maintenance standard 

[ISO/IEC 14764:2006(E) IEEE Std 14764-2006]. 

Given these limitations and restrictions of existing tools and approaches in tracing and 

performing regression test selection analysis for Java RMI programs, we decided to 

implement our own tracing tool to collect the corresponding execution data and to 

perform our own regression test analysis for Java RMI programs 

3.2 Research Hypotheses and Research Goals 

3.2.1 Research Hypotheses 

In this research we present a lightweight regression test selection approach for Java RMI 

applications that combines both execution trace collection and external data sharing 

analysis. In particularly, we focus on estimating the potential testing efforts involved in a 

change request during modification analysis. Our research hypothesis can therefore be 

defined as follows: 
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Research Hypothesis: 

A methodology can be developed to collect traces from distributed Java RMI 

applications that allows for performing a lightweight regression test selection 

analysis on these traces during the modification request analysis. 

We expect our research hypothesis to hold if the following acceptance criteria can be 

validated: 

1. Automated tracing of distributed Java programs implemented using RMI 

There exist a number of tracing approaches, which mainly focus on profiling sequential 

programs [LEE97, GOL03, SEE05, SYS01]. As state earlier, to perform regression test 

selection for RMI based distributed Java applications, execution traces from these 

distributed systems have to be collected. However, tracing of distributed systems is more 

complex and requires the tracing environment itself to be distributed, to allow for data 

collected not only within an individual node but also from the distributed nodes. 

In the literature, several approaches for tracing distributed Java RMI programs have been 

proposed [KAZOO, GHO02, BRI05, CHE04]. After execution data from each individual 

machine are captured, the data has to be transferred to a centralized repository. In 

[ZOL04], different modes of trace transportation are described. In the local mode 

approach, interceptors write the collected information (including timestamps) to local 

files, and these files are later merged in one tracing file. An example implementation for 

the local mode approach is JaViz [KAZOO]. For the buffer mode approach, events are 
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buffered locally in each component's name space, and then propagated to the center. The 

communication may either be arranged using the common channels or through dedicated 

channels. An example for the buffer mode approach is VisOK [LEEOO]. 

Merging both local execution data and remote invocation between components, can be 

achieved by matching the corresponding entries on the server and client profiles. One 

approach addressing this issue adopts a similar method as JaViz, which records unique 

identifier for remote objects and methods, the machine names of client and server, as well 

as the client-side TCP/IP connection port number to support a consistent merging of the 

execution traces. Rather than developing a stand-alone tracing tool we plan to integrate 

our tracing tool as an Eclipse plug-in within the Eclipse IDE. Based on the existing work 

on tracing sequential and distributed programs we anticipate that a RMI based Eclipse 

plug-in tracing tool can be developed. 

2. Implement a lightweight regression test selection method for distributed Java 

RMI applications to estimate the testing effort involved prior to performing a 

program change. 

RTS techniques have been applied previously to verify that the applications still complies 

with its specified requirements after a program change. As part of this research we focus 

on the analysis of applying selective regression testing technique to provide some 

guidance in estimating the potential testing effort involved during the modification 

request analysis. The goal is to provide decision makers with some guidelines with 

respect to the number of test cases that have to be retested, prior to actually performing 

the modification. 
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A number of regression test selection techniques that use dynamic system traces to build 

coverage matrices between test cases and program entities (e.g. statements, methods, 

classes, or modules) have been proposed for procedural, object-oriented and aspect-

oriented applications. However, most of these test selection approaches focus on 

identifying test cases to be re-run for sequential applications. This is due to the fact that 

their underlying tracing approach is limited to the collection of runtime communications 

within components, and do not examine causality relationship between local invocations 

and remote calls. Therefore these methods are typically not suitable for analyzing 

distributed systems such as RMI based programs. 

Moreover, existing RTS approaches have mainly focused only on the change propagation 

through the internal program state (i.e. variables) manipulation, and do not consider 

change impacts involving persistent states (i.e. databases, files). Although several papers 

[HAR04, WIL05] have addressed RTS for database applications, these approaches are 

typically heavy weight approaches, requiring fine grained traces at the statement level, 

making them very precise but also computational expensive. 

Based on the above criteria, we can then also define our Null-Hypothesis when to reject 

our research hypothesis. 

Null-Hypothesis: 

The research hypothesis will be rejected if it is not possible to collect a 

consistent set of distributed Java RMI applications traces or no tool can be 

developed to support a selective regression testing analysis for these traces. 
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3.2.2 Research Goals 

In what follows we further refine the research hypothesis to specify our primary research 

goals as follows: 

Research-Goal 1: 

Develop an Eclipse Plug-in to trace and collect run-time information of 

distributed Java RMI applications at different levels of granularity, including 

external data states, without the need for any major user involvement 

This research goal can be further decomposed into several sub-goals: 

1. Define a methodology for tracing and merging trace information 

For tracking dynamic behaviour of distributed Java RMI programs, the methodology 

is required not only to trace local calls within a node, but also to capture remote 

method invocations between different machines. It should allow to specify different 

levels of granularities (i.e. function-level, class-level) at which the information is 

collected, as well as to select which component (i.e. a method with a specific name) 

in an execution to be monitored. Moreover, the approach should not require the user 

to manually modify any source code for the collection of the execution traces. 
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2. Develop an Eclipse plug-in to automate the tracing environment for distributed 

Java RMI applications 

The plug-in should support the extraction and merging of execution information from 

different running nodes as well as associate these traces to the execution of specific 

test cases. Furthermore, messages of remote method invocations and external data 

states (e.g. databases, files) access must also be intercepted and included as parts of 

the collected tracing information. 

Research-Goal 2: 

Apply execution traces to support a lightweight regression test selection 

approach. 

This research goal can be further decomposed into several sub-goals, they are: 

1. Apply Formal Concept Analysis (FCA) to support a lightweight RTS analysis 

Formal Concept Analysis (FCA) is capable to perform sensible grouping of objects 

that have common attributes, and helps extract dependency information. Using test 

cases as the objects and execution trace elements that are executed by a particular set 

of test cases as the attributes, an execution dependency lattice resulting from FCA 

can identify all the test cases that execute a particular software component, and then 

can be used to estimate the test cases that should be rerun after the software change is 

made. 



2. Include the external data state analysis to improve the FCA based 

RTS analysis 

The test case selection method is expected to enrich our previous FCA based RTS 

approach by taking into account external data sharing relationship among the 

program entities of different test cases. When program components of several test 

cases accessing the same external data, if one test case is selected to be retested, the 

others will be analyzed whether or not to be re-executed. Some test cases which are 

omitted by the previous approach will now be complementally added. 

3. Implement an Eclipse plug-in to evaluate the improved RTS analysis 

Based on the execution traces, the plug-in should have the capability to establish an 

external data sharing table among system test cases, and use the table to conduct the 

proposed RTS method. It is also expected to support both textual information and 

graphical representations of the dependency structure between execution traces and 

test cases. Evaluate the approach through some initial case studies. 
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4. A Selective RTS Methodology for Distributed Systems 

In what follows we introduce a general overview of our novel regression testing 

methodology for Java RMI programs. The methodology overview is followed by a more 

detailed description of the various parts of our methodology in the subsequent sections 

and subsections. 

Java RMI Program 
with Tracing Aspect 

Test Cases 
Maintainer 

© 

Modification 
Request 

JRPAT- Tracer 
(Eclipse Plug-in) 

Deployment 

Tracing code generation 

"4 
Source Code Scan 

Java RMI Program 

I Client | | | j Server ||J 

SQL (JDBC) 

JRPAT-Analyzer 
(Eclipse Plug-in) 

GIH 

Execution Traces 
Database 

V. 

0 
Execution 
Dependency 
Lattice with 
RTS Result 

Execution 
Dependency 

Lattice 

Figure 4-1: The RTS Methodology for Distributed Systems 

The RTS methodology is briefly described in step © to step ©. 

O - Select a destination program: 

Select a Java RMI-based distributed program to be analyzed. 

© - Perform instrumentation on the destination program: 
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Utilize the tracing plug-in (the JRPAT-Tracer) to instrument the Java RMI program 

on both client and server sides for collecting runtime data. 

© - Run the instrumented destination program with test cases: 

The execution traces are collected and stored in the server-side central database by 

the JRPAT-Tracer. 

© - Perform analysis on the tracing information: 

The analysis plug-in, the JRPAT-Analyzer, consists of three major components. (1) 

An External Data Sharing Analysis (EDSA) component to analyze the external states 

accessing. (2) A formal concept analysis (FCA) component to perform the logical 

grouping of the traces. (3) A visualization component to represent textual and 

graphical information. In this step, the JRPAT-Analyzer merges the client/server 

execution traces and uses them to build the external data sharing table for test cases. 

© - Visualize FCA result: 

The JRPAT-Analyzer invokes the FCA component to compute the FCA concepts and 

the relations among them, and then calls an external tool Graph Viz to generate a 

graph file of the result. After that, the JRPAT-Analyzer visualizes the graph file, an 

execution dependency lattice, in its specific view. 

© - Input modification request: 

Given the execution dependency lattice from step ©, a modification request can now 

be specified at the concept level. 

© - Conduct regression test case selection: 

The JRPAT-Analyzer performs the selective regression testing analysis and identifies 

the test cases that have to be potentially retested as part of the modification request. 

53 



© - Visualize test case selection results: 

Both the changed node and the test cases that required re-testing are highlighted in the 

concept lattice. 

4.1 Tracing Process 

4.1.1 Instrumentation 

For the instrumentation of Java RMI programs, we utilize AspectJ [KIC01], an extension 

of the Java language to support aspects. AspectJ instruments the bytecode of Java 

applications and thus does not require the modification of the source code. We selected 

AspectJ due to its additional flexibility, compared to other byte code instrumentation 

approaches during monitoring the program execution and logging of the trace 

information. It supports both the collection of trace information for classes, methods, 

packages and threads, as well as the collection of run-time objects and actual arguments. 

In addition, AspectJ allows for parameterization, to specify tracing which entities (e.g. 

classes, methods and packages), which interactions (e.g. non-static, static, constructor and 

remote calls) and which positions (e.g. before, after and around executions). 

Source 

code scan 

(1) 

Program static 

information 
Java 

code 

Code 
generation 

(2) 
AspectJ 

code 
ajc 

Aspect 

templates 

Deployment 

Program with 
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M) 

Figure 4-2: The instrumentation workflow 
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The instrumentation workflow is illustrated in Figure 4-2. (1) A fact extraction of source 

code is first performed to collect static information about the distributed Java RMI 

program analyzed (e.g. interface classes in which RMI remote methods are defined, 

package names, etc.). (2) Then, based on the derived source code information, the 

Aspect J tracing codes are generated and inserted into the destination project 

automatically. In the next step (3), the Java codes and the AspectJ codes are compiled 

(weaved) to create the tracing enable version of the program. Those steps stated above 

are performed on both client and server sides. In the last step (4) the RMI system is 

deployed. The stub and skeleton classes required by RMI are automatically constructed 

on the server side, and the stub classes along with the interface classes are deployed from 

the server to the client through TCP/IP socket transfer. 

4.1.2 Tracing Remote Invocations 

The RMI middleware has previously been used to provide extended services for the 

intercept of remote invocations [CHE04]. In what follows we use AspectJ for the 

interception of these remote procedure calls. As description in Section 2.3, a remote 

method call includes the invocation to the reference remote method of stub instance on 

the client side, and the invocation to the real remote method on the server side. 

Leveraging AspectJ, both the client and server-side information of a remote call can be 

collected separately. However, the collected information is not sufficient to establish a 

mapping between the server-side and the client-side tracing records. We remedy this 

problem by exchanging the remote invocation record between the client and the server to 

establish the traceability among them (Figure 4-3). The invocation record on the client 
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(i.e. the sender host name, the name of the method invoked, etc.) is transmitted to the 

server, and also the server-side method call information (i.e. the receiver host name, the 

receiver class name, etc.) is sent to the client. 

The client-side 
traces before 
invoking the 

remote method M 

The server-side 
traces of the 
remote method 
M invocation 

Figure 4-3: Exchanging the remote invocation records between Client and Server 

4.1.3 Tracing External Data States 

In database-driven applications, program components typically utilize different external 

data state (elements). This is in particular of interest for scenarios such like when one test 

case involves a write access to some external data element and another test case performs 

a read access to the same external data element. During the RTS analysis, there is a need 

to identify these often indirect data dependencies with external data elements to 

determine the appropriate set of test cases that have to be re-run after a modification 

request. 
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Through AspectJ, we are able to trace external data access information by monitoring the 

corresponding access operations in the source code at runtime. Java provides several 

classes in the "java.io" package for file handling shown in Table 4-1. These classes can 

be monitored to generate the file sharing relation among test cases. 

class FilelnputStream 

class FileOutputStream 

class FileReader 

class FileWriter 

class RandomAccessFile 

A file input stream obtains input bytes from a file. 

A file output stream for writing data to a file. 

Convenience class for reading character files 

Convenience class for writing character files. 

Instances of this class support both reading and writing to a 
random access file. 

Table 4-1: Java file handling classes in the "java.io" package 

The following classes (Table 4-2), being parts of the "java.sql" package, are designed for 

database processing, and hence we can trace these classes to establish the database 

sharing relation among test cases. 

interface Statement 

interface 
PreparedStatement 
(extends Statement) 

interface ResultSet 

An object used for executing a static SQL statement and 
returning the results it produces. 

An object that represents a precompiled SQL statement. The 
SQL statement is precompiled and stored in a 
PreparedStatement object, and the object can then be used to 
efficiently execute this statement multiple times. 

A table of data representing a database result set, which is 
usually generated by executing a statement that queries the 
database. 

Table 4-2: Java database processing classes in the "java.sql" package 
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4.2 Selective Regression Testing Analysis 

The RTS analysis presented in this research extends a previous FCA-based regression test 

selection approach [PAB06] to distributed programs (especially for Java RMI 

applications), and complements it with external data states analysis to provide the ability 

to estimate testing effort more precisely prior to performing a modification request. 

4.2.1 Combining RMI traces with FCA 

In the existing FCA-based regression test selection approach [PAB06], an execution 

dependency lattice is generated to represent the test case coverage based on runtime 

traces collected. In this concept lattice, test cases are objects and the execution traces 

accounting for each test case are their attributes". Given the lattice representation one can 

identify which test cases execute which software component. Starting from the node 

(represents a method exercised by test cases) to be modified; we can traverse the 

execution dependency lattice downward and identify all the reachable leaf nodes 

(represent test cases) and therefore the associated test cases that need to be retested. 

In this research, we perform the FCA-based regression test selection analysis on Java 

RMI programs. Runtime data of the distributed Java applications is collected from 

multiple hosts and transmitted to the central database. The collected execution traces for 

each test case are then merged to provide the input for the execution dependency lattice. 

In the lattice, methods and test cases can be identified by their unique names, which are 

created by combining the test case names and the name of the host they were executed on. 
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In Figure 4-4, the FCA context contains four execution traces captured from a Java RMI 

distributed program. 

The test case name is 
combined^vith its host 
name. 

The methodname is 
also consisted of its 
hostname. 'R* means 
that the metho d is a 
remote method. 

^slovenia read db: Dl(san-marino) executeQuery(san-marino) 
GetConnection(san-marino) ReleaseConnection(san-marino) 
remoteCallB(san-marino_R) 

slovenia_read_fiXe: <init>(san-marino) D2(san-marino) 
remoteCallB(san-marino_R) 

sXovenia_write_db: CI(san-marino) executeUpdate(san-marino) 
"JV GetConnect ion(san-mar ino) ReleaseConnect ion(san-mar ino) 

remoteCal1A(san-mar ino_R) 

slovenia_write_file: <init>(san-marino) C2(san-marino) 
remoteCallA(san-marino R) 

Figure 4-4: The FCA context of a sample Java RMI program 

In the context, test cases are the objects and the methods in execution traces accounting 

for each test case are the attributes. In this example, test cases are started on the client 

slovenia, and they invoke remote methods (i.e. remoteCallA, remoteCallB) on the 

server san-marino. Figure 4-5 shows the resulting concept lattice generated from the 

FCA context. 

concept lattice 

Figure 4-5: The concept lattice of a sample Java RMI program 
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4.2.2 External Data Sharing Analysis combined with FCA 

A limitation of our previous approach is that it does not consider external data flow; the 

define-use relationship that might exist among program components executed by 

different test cases. Therefore, it might ignore some test cases that need to be rerun based 

on a particular change. To overcome the limitation of the former FCA-based approach, 

the improved regression test case selection methodology will extend the approach 

through the use of external data sharing as follows: 

Build the external data sharing table among test cases based on execution traces 

gathered. Analyze the retesting test cases selected by the FCA-based RTS method with the 

external data sharing table, identify all other test cases which have define-use 

relationship with the FCA selected test cases, and add them into the retesting list. 

Next we present our lightweight RTS approach that leverages external data sharing 

relations to further refine the RTS analysis. The approach considers each file or table in a 

database as a variable, and traces their usages. External data in files are normally 

accessed through some type of read or write access. We refer to them as r-use and w-use 

operations. For the external data in database tables we concentrate on SQL-based systems 

and identified the following four main access strategies: select, delete, insert, and update. 

Select usage is used to retrieve data from tables and is denoted as r-use. Delete, insert, 

and update usages are employed to modify data in tables and are denoted as w-use. If 

both read and write operations are performed to the same external data, then the usage of 
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the data is denoted as rw-use. Test case A will affect test case B only if A modifies (w-

use or rw-use) an external data that is retrieved (r-use or rw-use) by B. 

^ \ T e s t Cases 

External Data^. 
Dl 
D2 
D3 
D4 

Tl 

R 

W 

T2 

R 
W 

T3 

R 

RW 

T4 

R 
w 

T5 

'•:., W 

R 

Table 4-3: An example external data sharing table 

Table 4-3 illustrates such an external data sharing table. In the example, T5 is initially 

identified as a test case that needs to be re-executed, it reads {r-use) D4 and writes (w-use) 

D2. In the next step a further analysis is performed, since T5 may affect other test cases 

accessing the same external data D2. T2 and T4 all use D2, with T2 has write access (w-

use) on D2, and T4 has read access (r-use) on D2. Based on the above definitions, only 

T4 has defme-use relationship with T5 and therefore needs also to be retested. We can 

define this external data sharing analysis more formally as follows: 

Given is dk, an external data shared by program components executed by different test 

cases. We use a notational convention usage(d/J to denote the usage of the external data 

d^ and its value is defined as the table below: 

The usage of dk 
Empty 

r-use 
w-use 
rw-use 

The value of usage(dk) 
<t> 
0 
1 
2 

Table 4-4: The usages and corresponding values of an example external data 
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Assume that t'j is a test case selected to be retested; r, is a test case being checked to see 

whether it is affected by t'j. Then for an external data dk, if the following equation holds: 

(tj.usage (dk)±<f> ) o ( t' j.usage(d^^> ) n ( ti.usage(d^l ) o ( t'j.usagefd^O) =1 

There exists a define-use relationship between the two test cases, tt is affected by t'j and 

also need to be re-executed. 

Note that a define-use relationship among test cases is transitive. Whenever a 

modification is made to one test case, this transitivity can result in a ripple effect. For 

example, in Table 4-3, test case T4 is selected as being affected by the selected test case 

T5. As part of the ripple effect analysis, we have to check now whether there exists 

another test case which has define-use relationship with T4. Since T4 writes (w-use) D3 

and test case T3 reads and writes (rw-use) D3, T3 is also added to the retesting list. Then 

we need to continue examine T3, T3 will not affect any other test cases because it only 

has two r-use usages of external data. Till now, the analysis for the effect of T5 is 

finished. 

Let T be the original test suite the program under test. Let T'(T'^T) be a set of test 

cases which are selected to be retested. A typical regression test selection through 

external data sharing analysis proceeds as follows. 

(1) Select a set of test cases 71, 71 s T but 71 £ T. 

(2) Analyze 71 and V with the equation discussed above to find out TV, a set of test 

cases in 71 that are affected by 7", add 7T to T. 

(3) Select a set of test cases T2,T2zT but T2 £ T. 
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(4) Analyze T2 and TV with the equation discussed above to find out TT, a set of 

test cases in 72 that are affected by TV, add TT to T. 

The pseudo code for the algorithm performing the RTS approach is shown as Figure 4-6. 

Algorithm: PerformEdsaRTS 
Input: The RTS result list selected by the FCA-based approach 
Output: The complemented RTS result list including both the result of FCA and the result of 
External Data Sharing Analysis (EDSA) 

Denote TFCA to be the list of test cases which are selected by the FCA-based approach 
Denote TE to be the list of test cases which are identified accessing external data 
Denote TA to be the list of test cases which are selected and able to affect other test cases 
Denote TC to be the list of test cases being checked if they are affected by the selected test cases 
Denote TR to be the list of test cases which are in TC and affected by the test cases in TA 
Denote TEDSA to be the list of test cases including both the FCA result and the EDSA result 

Save all test cases from TFCA into TEDSA 
Select test cases which are in both TFCA and TE, and have w-use or rw-use usages of external 
data, save them in TA 
Identify the test cases which are in TE but NOT in TFCA, and have r-use or rw-use usages of 
external data, save them into TC 

NoNewTestCaseFound = false 

WHILE NOT NoNewTestCaseFound, DO 
FOR each test case tq in TC, DO 

Check tCj with every test case taj in TA 
IF they use the same external data, THEN 

Add tci into the result list TR 

IF TR is not empty, THEN 
Save all test cases from TR into TEDSA 
Clear TA 
Identify the test cases which are in TR, and have w-use or rw-use usages of 
external data, save them into TA 
Identify the test cases which are in both TR and TC, remove them from TC 
Clear TR 

ELSE 
NoNewTestCaseFound = true 

RETURN TEDSA 

Figure 4-6: The algorithm for RTS through External Data Sharing Analysis 
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5. Implementation 

In what follows we discuss the implementation details of our Java RMI-based Programs 

Analysis Toolkit (JRPAT) that was developed as part of this research. In the first part of 

the chapter, we focus on the Eclipse plug-in designed to trace distributed Java RMI 

applications. We refer to this plug-in as the JRPAT-Tracer. This plug-in is used to 

establish the link between test cases and execution traces required for the RTS approach. 

In the second part of this chapter we introduce the analysis Eclipse plug-in, which 

performs the actual RTS analysis. The plug-in is referred to as the JRPAT-Analyzer. 

5.1 The Tracing Plug-in JRPAT-Tracer 

The JRPAT-Tracer plug-in was developed to instrument distributed Java RMI programs, 

collect runtime data from both local calls and remote invocations, and store the collected 

information in a central persistent data storage. Figure 4-1 shows a general overview of 

the JRPAT-Tracer plug-in: 

f 

K. 

Client A 

Tracer 

* 

r~~ 

^ 

Clie ntN 

Tracer 

"̂ C-"̂  Network 

Figure 5-1: The general overview of the JRPAT-Tracer plug-in 
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A wizard like approach was implemented to guide users during the instrumentation 

process, by providing a sequence of dialogs. These dialogs include project selection, 

tracing code generation and instrumentation, RMI stub/skeleton class deployment, etc. 

Figure 5-2 shows the JRPAT-Tracer interface used to support a wizard based 

instrumentation of the programs to be analyzed. 

A sample wizard dialog of 
the JRPAT-Tracer 

B <& RimServer J 

& j B ™i 
H t f i tracer 

[+' (?) DBConnection.java 
i+ [S] LogManager.java 
M jTj ThreadTracing.java 
[+i |T| Traceltem.java 
i+' § TracingServerSide.aj 
[+i [Tj TransmitManager.java 
t Uj Variables.Java 

W A, JRE System Library [jrel.5.d 07] 
M g,. ASPECTJRT_LIB - C:\PrograiTFiles\eclil 

j i j build.ajproperties 
, dbs.ldb 

@ ] dbs.mdb 
test.tmp 

/SERVER SIDE/ Static analysis and Code generation 

( I ) Please input the path of the destination testing project 

Root source directory; 

J Ti\h\hon_z\workspace2\RmiServer Browse.. 

< Back Finish. Cancel 

L The menu and toolbar of the JRPAT-Tracer 

Figure 5-2: The JRPAT-Tracer interface and a sample wizard dialog 

Next, we illustrate in more detail, how the actual client and server side instrumentation is 

performed through the JRPAT-Tracer plug-in. 
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5.1.1 Tracing Local Calls 

Local calls, which correspond to method call sequences between components running on 

the same Java Virtual Machine, are traced through Aspect templates. These calls can be 

categorized into four groups: 

(1) Non-static method calls. This type of method calls are invoked on an instance of a 

class. These calls are captured through the following Aspect template: 

Object around (Object targetObj): 

call(public * PACKAGE_NAME..*(..)) && 

target(targetObj) 

{ 

ADVICE_BODY 

return proceed(targetObj); 

} 

(2) Static method calls. Static methods are invoked directly within a class, the target () 

pointcut will not automatically match calls to such a method. These calls are traced by 

using the following Aspect template: 

Object around(): 

call(public static * PACKAGE_NAME..*(..)) 

{ 

ADVICE_BODY 

return proceed(); 

} 

(3) Constructor method calls. Constructor method call is a specific case of non-static 

method call. A constructor method is automatically called when an object is created using 
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the keyword new. The following template is used to collect the execution of the 

constructor methods. 

Object around(): 

call(PACKAGE_NAME.new (. .)) 

{ 

ADVICE_BODY 

return proceed(); 

} 

(4) Thread starting calls. Threads are created by calling the s t a r t () function on objects 

whose class implements the interface j ava. lang. Runnabie. The template below is used 

for collecting the executions involved in these calls: 

Object around (Object targetObj): 

call(* java.lang.Runnable+.start(..)) && 

target(targetObj) 

{ 

ADVICE_BODY 

return proceed(targetObj); 

} 

Given this Aspect template we can now identify the starting calls of thread to allow for 

the tracing of the method invocation sequences in multiple threads. 

For single threaded programs, class names, object identifiers and timestamp are sufficient 

to identify a trace record. However, for distributed multithreaded programs, a thread 

identifier is needed to identify each trace record. Moreover, since the same thread 

identifier might be assigned to several threads operating on different nodes at the same 

time, the node name on which the thread is running has to be included in each trace 

record. 
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5.1.2 Monitoring External Data Interactions 

As previously introduced (Section 4.1.3) we consider in our approach external data (e.g. 

files or databases) elements. While monitoring external data interactions, we in particular 

interested not only in identifying and tracing the source code involved in the external data 

access but also the type of data access performed (i.e. read, write access). 

5.1.2.1 File Access 

In the context of this research we restrict the monitoring of external file to the I/O access 

types shown in Table 4-1, and the supported file access types to read, write, and random 

access. Common to Java is that both the access type and I/O name that are accessed are 

specified during the object instantiation. Figure 5-3 shows some of these file access 

instantiation we support in our approach. 

File access type 

FilelnputStream fin = new FileInputStreamCFILE_NAME.dat"); 
A 

FileOutputStream fout = new FileOutputStreamCFILE_NAME.dat"); 
A 

FileReader fr = new FileReader("FILE_NAME.dat"); 
A 

FileWriter fw = new FileWriter("FILE_NAME.dat"); 
A 

RandomAccessFile fra = newRandomAccessFileCFILE_NAME.dat","rw"); 
A 

Figure 5-3: File access instantiation 
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We can now trace these file I/O through the following AspectJ pointcut called 

fiie_mutators. This pointcut monitors all the constructor calls to these file access 

classes. 

pointcut file_mutators(): 

( 

call(java.io.FileInputStream.new(..)) 

|| call(java.io.FileOutputStream.new(..)) 

|| call(java.io.FileReader.new(..)) 

|| call(java.io.FileWriter.new(..)) 

|| call(java.io.RandomAccessFile.new(..)) 

) ; 

5.1.2.2 Database A ccess 

External data accessed in database tables can be monitored through the following Java 

classes, Statement, PreparedStatement and Resul tSe t . In what follows, we describe 

the tracing of these classes using AspectJ. 

(1) Statement 

There are several methods provided by the class statement to provide database access: 

• executeQueryO, which retrieves data from a table using a SELECT statement 

(r-use). 

• executeupdate (), which can be used to INSERT, UPDATE, or DELETE 

records in a table by executing SQL statements (w-use). 

• e x e c u t e d , it can work as executeQuery () or executeupdate () specified by 

the given SQL statement (r-use or w-use). 
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If users require frequent insertions/updates/deletions of a database, they can improve the 

database performance by using the addbatch () and executebatch () methods of the 

statement objects. Utilizing batch statements to process the database, the tracing related 

information is collected when the method addbatch () is invoked with a SQL statement 

as its parameter, for example: 

stmt.addBatchf"UPDATE TableName SET ColumnName = * " ) ; 

accordingly, the pointcuts for tracing these two methods are 

c a l l ( * j a v a . s q l . S t a t e m e n t * . e x e c u t e * ( . . ) ) 

| | c a l l ( * j a v a . s q l . S t a t e m e n t * . * B a t c h ( . . ) ) 

Each of the pointcuts collects invocations to any method in the statement class or its 

subclasses and supports any argument and returns type and their name either begins with 

execute or ends on Batch. 

(2) PreparedStatement 

The prepared statement provides database table operations, through the support of SQL 

PreparedStatement pstmt = con .prepareSta tement 

("UPDATE TableName SET ColumnName = ? WHERE ColumnName = ?" ) ; 

The invocation of these operations can be captured through the following pointcut 

c a l l ( * j a v a . s q l . C o n n e c t i o n * . p r e p a r e S t a t e m e n t ( . . ) ) 

The pointcut captures all calls to the method prepareStatement in the connection class 

or its subclasses. 
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(3) ResultSet 

The ResultSet is a table corresponding to the results returned from a database access. It 

is generated by executing the method executeQuery () or execute o to query the 

database. The following are two examples for creating such ResultSet instances: 

ResultSet rs = stmt.executeQuery(SQL statement); 

or 

stmt.execute(SQL statement); 

ResultSet rs = stmt.getResultSet(); 

The ResultSet class defines the insertRowt) method that inserts a row into a table, the 

deleteRow() method that deletes a row from a table, and the updateRow () method that 

updates a row in a table. The execution of these methods can be captured by using the 

pointcuts below: 

call(* java.sql.Statement+.execute*(. .)) 

|| call(* java.sql.ResultSet+.*Row(..)) 

The first pointcut is used to trace the database table associated with a ResultSet object, 

the second pointcut captures information about the type of table access that is being 

performed by the ResultSet object. 
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5.1.3 Tracking Remote Invocations 

Within our tracing environment both client and server message exchanges through 

remote invocations are traced. The tracing of these remote invocation is performed by 

using the around advice Aspect template shown in Figure 5-4 for the client side, and the 

wrapper method template shown in Figure 5-5 for the server side. 

Object around(Object targetObj): 

call(* java.rmi.Remote+.*(..)) && 

target(targetObj) 

{ 

• Collects the client-side trace of the remote invocation, 

including the name of the remote method and the arguments passed 

to it; 

• Redirect the call to the wrapper method with above data as 

parameters; 

• Gets the result from the wrapper method and passes the result 

and control back to the invocation. 

} 

Figure 5-4: The client-side around advice Aspect template 

The around advice Aspect template captures the call to a remote method that is 

intercepted by the following pointcut: 

call(* j ava.rmi.Remote+.*(..)) 

This pointcut intercepts all calls to methods defined in any of the classes that implement 

the java.rmi.Remote interface. Whenever the call is advised by the around advice, the 

method's context information, such as the target object on which the method is called 

(target (targetObj)) and the method's arguments are collected. Leveraging the Java 
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reflection mechanism, the advice can determine the wrapper method at runtime 

( t a r g e t O b j . g e t C l a s s ( ) . g e t M e t h o d ( ) ) , and redirects the call to it ( i n v o k e ( ) ) . The 

redirected call includes the original method's arguments and additional arguments (i.e. 

the name of the real remote method, the client-side trace of the remote invocation). 

Finally, the advice receives the result from the wrapper method and passes both the 

result and the control back to the method invocation. 

p u b l i c O b j e c t PACKAGE_NAME.INTERFACE_NAME.WrapperMethod ( 

c l i e n t s i d e _ i n v o c a t i o n _ r e c o r d , remote_method_name, 

r emote_method_a rgumen t s ) throws RemoteExcep t ion 

{ 

• P r o c e s s e s t h e c l i e n t s i d e _ i n v o c a t i o n _ r e c o r d ; 

• F i n d s t h e o r i g i n a l r e m o t e method s p e c i f i e d by 

remote_method_name and i n v o k e s i t w i t h r e m o t e _ m e t h o d _ a r g u m e n t s ; 

• G e t s t h e r e s u l t of t h e c a l l t o t h e o r i g i n a l r e m o t e method, adds 

w i t h t h e s e r v e r - s i d e i n v o c a t i o n r e c o r d and r e t u r n s them back t o 

t h e c l i e n t s i d e . 

} 

Figure 5-5: The server-side wrapper method template 

Figure 5-5 shows the server side wrapper method that wraps all methods defined in the 

interface class extending java. rmi. remote. This wrapper method is added to the server-

side interface class, and the body of the wrapper is implemented in the server-side tracer. 

The wrapper method works like a regular RMI remote method; it receives the remote call 

from the client side with parameters including the client-side remote method invocation 

trace information, the name and arguments of the original remote method. The wrapper 

method uses the latter two parameters to get and invoke the original remote method, and 



then returns the invocation result, as well as the server-side remote method invocation 

trace back to the client. 

Client 

The Remote 

Method Invoker 

join point 

Client-side 

Tracer 

Stub Class 

D 

J j Dummies of original remote methods 

( ( ) Implementations of original remote methods 

The Remote Method 

Imclementer 

Server 

(9) 
Server-side 

Tracer 

Skeleton Class 

D 

y y Dummy of the wrapper method 

y Interface of the wrapper method 

\ y Implementation of the wrapper method 

Figure 5-6: The working process of tracing remote invocations through the Aspect 

template and the wrapper method 

Figure 5-6 shows the process on how the Aspect template and the wrapper method work 

together in tracing remote method calls. The involved steps (1) to (13) are described 

below in chronological order: 
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(1) The client-side method invokes the remote method. 

(2) The invocation is captured as a join point through a pointcut defined by the 

AspectJ class (advice) as part of the client-side tracer. 

(3) The advice calls the wrapper method on the instance of the client-side stub class 

(STUB), passes the client-side tracing record, the name and the arguments of the 

remote method as parameters. 

(4) STUB then communicates with the skeleton class on the server side (SKEL) 

through the object serialization protocol for the remote invocation. 

(5) SKEL invokes the wrapper method; its interface is compiled in the remote method 

implementation class (IMPL) of the destination application. 

(6) This invocation is transmitted to the AspectJ class in the server-side tracer, which 

has the whole body of the wrapper method. 

(7) The server-side AspectJ class gets parameters listed in (3), and calls the actual 

remote method in IMPL specified by the method name and arguments it received. 

(8) The result of the invocation to the actual remote method is returned back to the 

server-side AspectJ class from IMPL. 

(9) The AspectJ class passes the result of the wrapper method, which includes the 

actual remote method and the server-side tracing record, to IMPL. 

(10) IMPL delivery the return value of the wrapper method to SKEL. 

(11) SKEL marshalls the return value and sends it over the wire to STUB. 

(12) STUB demarshalls the return value and returns it to the client-side AspectJ class. 

(13) The result and the control are returned back to the join point, the client-side 

remote method call. 
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5.1.4 Collecting Traces 

One of the main challenges while tracing distributed programs is the need not only to 

collect local trace information from clients and servers, but also to merge the data for 

further analyses. In our approach, the traces are first buffered locally and then propagated 

to the sever-side database by leveraging the communication channel provided by Java 

RMI. During the execution of a test case, first both client-side and server-side traces are 

stored in a local memory buffer. After the execution of the test case is completed, the 

server-side traces are stored in a database hosted on the server. The client-side tracer first 

ensures that not only the local execution is complete but also the server-side application 

is not busy. Next the local client runtime data can be transmitted to the server by 

invoking a server-side remote method. This remote method is implemented by the server-

side tracer and uses the RMI communication channel to transfer the client-side traces to 

the database on the server. The template for the remote method is shown in Figure 5-7: 

public boolean PACKAGE_NAME.INTERFACE_NAME.TransmitMethod 

(ArrayList recvBuffer, int dataType) throws RemoteException 

{ 

• Makes sure that the server application is not busy; 

• Processes the tracing records received, which are 

execution data or test coverage information; 

• Saves the records into the central database on the server. 

} 

Figure 5-7: The template for collecting client-side traces 
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5.1.5 Tracing the Method Invocation Sequence 

In AspectJ, method executions can be identified through join points and intercepted by 

pointcuts. When entering, executing or leaving a join point, additional advice operations 

can be performed, like before, around, and after . These advices are used to implement 

a stack-based algorithm that we use to (1) identify the parent-child relationship and (2) 

establish the invocation sequence among method calls at runtime. 

Within our environment, an algorithm is implemented to maintain stacks of executed 

methods. A method is pushed on a stack each time when its before advice is reached. 

The execution related information of this method is stored in the output buffer when its 

associated around advice is executed. The method is popped off the stack through its 

af ter advice. If a method calls child methods, its execution is only completed after all 

the nested child method executions are completed. 

public class Client { 

public void M(RemoteInterface rm) { 

P(); 

ThreadA tl = new ThreadA(rm); 

ThreadB t2 = new ThreadB(rm); 

t1.start(); 

new Thread(t2).start();-

public void P() { 

K{); 

} 

class ThreadA extends Thread { 

public void run() { 

A(); 

R K ) ; 

> 

class ThreadB implements Runnable { 

public void run() { 

B(); 

R2(); 

> 

Figure 5-8: A distributed, multithreaded client-side source code example 
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For a multithreaded application, the algorithm of tracking method calls has to be further 

extended, since method executions in different threads can be interleaved. In this case, 

tracking the sequence of method invocations requires to create multiple stacks - one stack 

per thread. 

The example in Figure 5-8 shows a distributed and multithreaded client-side program, 

and the result of applying the stack algorithm on this example is shown in Figure 5-9. 
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Figure 5-9: Application of the stack-based algorithm for creating the invocation 

sequence for the program in Figure 5-8 

(1) In the first execution step, method M () calls method P (), and p () calls its child 

method K (). These invocations are captured by the Aspect template shown below: 
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before() 

call(public * PACKAGE_NAME..*(..)) && 

!call(* java.lang.Runnable+.start(. .)) 

{ 

... pushes the method captured into the stack it belongs to 

} 

The pointcut specifies that any invocation of non-static or static method on any class in a 

given package (defined by PACKAGE_NAME) except the s t a r t () method calls in the 

interface Runnabie or its subclasses are captured. The before advice then pushes the 

methods calls traced on their associated stack (©). 

(2) In the next step (©), the af ter advice pops the completed method calls K () , p () off 

their associated stack. The pointcuts below capture any invocation of non-static or static 

methods on any class in a given package (defined by PACKAGE_NAME), and the s t a r t () 

method calls on the interface Runnabie or its subclasses. 

after() : 

call(public * PACKAGE_NAME..*(..)) || 

call(* Java.lang.Runnable+.start (..)) 

{ 

... pops the method captured off its associated stack 

} 

(3) In the next step ( © ), method M() calls methods new t i . s t a r t ( ) and 

Thread (t2) . s t a r t () to start two new threads. The calls to the s t a r t () method are 

intercepted by the following Aspect template. In the template, the pointcut matches the 

s t a r t () method call in the interface Runnabie or its subclasses, and intercepts the thread 

starts. The before advice then generates a new stack for the newly created thread, and 
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pushes the s t a r t () method on the stack prior to the execution of the actual s t a r t {) 

method. 

b e f o r e ( ) : 

call(* j ava.lang.Runnable+.start(..)) 

{ 

c r e a t e s a new s tack for the t h r ead , 

And pushes the s t a r t ( ) method i n t o the s t a ck 

(4) After the completion of the s t a r t () method (0 ) , the af ter advice pops the s t a r t () 

method off the stack. The invocations of the methods involved in different threads, e.g. 

A (), RI (), B (), R2 (), are also intercepted and advised through the previously introduced 

Aspect templates. 

Figure 5-10 shows the traces generated for the above example program. The execution 

records in Stack Main, Stack ThreadA and Stack ThreadB are marked as ©, © and ©. 
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Figure 5-10: The client-side traces for the program in Figure 5-8 
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5.1.6 Executing Test Cases 

Users of our system are provided with an interface to specify and associate a meaningful 

alias test name prior to executing a test case (Figure 5-11). A test case database table is 

created, containing the input conditions for the test cases and information about the host 

on which the test case is executed. The resulting test case table is used as a look up table 

to associate later on test cases with different unique sequence ids. 
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Figure 5-11: The test case name setting interface and a sample test coverage matrix 

5.2 The JRPAT-Analyzer Plug-in 

The JRPAT-Analyzer plug-in provides services for merging the client/server traces, by 

constructing an external data sharing table among system test cases, visualizing the 

execution dependency concept lattice, and supporting the proposed RTS method. An 

overview of the plug-in's GUI is shown in Figure 5-12. 

81 



Die Edit levigate Search frolect JRPAT Trater Iomcat B.un yyjndow Help 

HJ^I 

I «• J S» 
OSelecti S - T v " S f 

B • Test Cases 
; italy_deposit 
! italy loginaccount 

italy_openaccount 

; itaV_showbaIance 

i EDSA Table 

Execution Lattice 

Lattice Node List 

RTS Lattice 

P J& Q*7 . 

D EDSA Table 

segld 

12 
2.1 
2.1.1 
2.1.2 
2.1.3 
2.2 
2.2.1 
2.2.1.1 
2.2.2 
2.2.2.1 

<i- ' 

M.s®m,%- j . 
iC Execution Dependency L 

timestamp i j y p e | senderhost ^ 

1167620946750 21 italy 
1187620945468 11 san-marino 
1187620945531 11 san-marino 
1187620945531 11 san-marino 
1187620945531 11 san-marino 
1187620945562 11 san-marino 
1187620945562 11 san-marino 
1187620945562 11 san-marino 
1187620945562 10 san-marino 
1187620945562 10 san-marino 

© Function View s T y , 

Traces merging and EDSA table building 

i U Lattice Node List \.U 

senderpackage_j sendercfass 

Bank BankClient 
Bank BankManagerlmpt 
Bank Account 
Bank Account 
Bank Account 
Bank BankManagerlmpI 
Bank BankTest 
Bank BankTestSon 
Bank BankTest 
Bank BankTestSon 

j Generate execution lattice j 

RTS Result Lattice 

senderinstance 

null 
BankManagerl.., 
Bank. Account... 
Bank. Account... 
Bank. Account... 
BankManagerl... 
Bank.BankTest.., 
Bank.BankTest,,, 

Bank.BankTest.., 
null 

_J 

jUBS 
receiverhost 

san-marino 
san-marino 
san-marino 
san-marino 
san-marino 

san-marino 
san-marino 
san-marino 
san-marino 
san-marino 

Modification request for RTS 1 

rpatjsnalyze 

WSi%N 

> 

= a 
jreceiverpackajge j 

Bank 
Bank 
Bank 
java.sql 
Bank 
Bank 
Bank 
Bank 
Bank 
Bank 

JLi 
= D 

Figure 5-12: The overview GUI of the JRPAT-Analyzer 

In what follows we discuss in more detail the main functionality of the plug-in and its 

implementation. 

5.2.1 Merging Client/Server Traces 

The client/server traces are merged by analyzing the invocation sequence (Section 5.1.5) 

and the test coverage matrix (Section 5.1.6). As a result of this analysis a merged 

database table is created for every test case executed, with each table being identified by 

a unique name (a combination of the test case and its host name). For the example in 

Figure 5-13, we first get the information of testeasel (©), including its host name (italy) 

and its base sequence id (7) from the test coverage matrix. This information is used to 

find and match the related records in the client-side traces (©). In the next step client-
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side records (©) and server-side records ( 0 ) are linked through the sequence id (e.g. 

1.1.2), and the remote sender host name (e.g. Italy). Finally all records are selected and 

stored in a table named Italy Jestcasel (©). 
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Figure 5-13: Client/Server traces for a test case are merged into a database table 

5.2.2 Constructing External Data Sharing Table 

The external data sharing analysis (EDSA) table is created by the JRPAT-Analyzer plug-

in by querying the database for all execution traces collected from the executed test cases. 

The flowchart in Figure 5-14 describes the algorithm used to create this external data 

sharing table in more detail. 
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dataUsageBuffcr 

( End ) 

Figure 5-14: The External Data Sharing table creation flowchart 

Figure 5-15 shows a screen capture of the table created by the JRPAT-Analyzer plug-in 

based on the external data sharing analysis. As discussed earlier, the external data sharing 
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table allows us to further enrich traditional data dependency analysis, which focuses 

typically only on internal program states, to include also external data states (e.g. files, 

databases). 
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Figure 5-15: A screenshot of an EDSA table example 

5.2.3 Visualizing the FCA Execution Lattice 

As discussed in Section 4, we use FCA to analyze traces to identify test cases that have to 

be re-executed as part of a modification request. Within the JRPAT-Analyzer plug-in, the 

recorded execution traces are pre-analyzed to convert them into a FCA context 

compatible format. In the next step we invoke our existing FCA algorithm to perform the 
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formal concept analysis. The formal concept analysis algorithm creates an output as a dot 

format file, which is with the standard Graphviz file format. Graphviz is an open source 

graph visualization application which provides different options for representing 

structural information as abstract graphs or networks [ATTOO]. Using the dot format file, 

the JRPAT-Analyzer invokes Graphviz to create the corresponding graph. The graph is 

then displayed within the JRPAT-Analyzer (shown in Figure 5-16). 

Figure 5-16: A sample execution dependency lattice 
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5.2.4 Specifying the Modification Request 

In order to specify a modification request, the user will have to determine which node 

will be modified as part of the change request. Every node in the lattice is identified by a 

node id, which can be found in the node list view of the JRPAT-Analyzer (Figure 5-17). 
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Figure 5-17: A sample lattice node list and modification request interface 

5.2.5 Performing Regression Test Case Selection 

After specifying the node to be modified, the JRPAT-Analyzer invokes the FCA 

algorithm to determine the list of test cases that need to be retested after the program 

modification. The set of test cases identified by the FCA analysis is used as input to our 
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External Data Sharing Analysis. The EDS A uses this initial set of regression test cases to 

further analyze the existence of data dependencies with external data. Including these 

external data members might result in additional test cases that have to be included as 

part of the regression test selection. The flowchart depicted in Figure 5-18, illustrates the 

regression test selection process that includes the external data sharing analysis using the 

EDSA table, which corresponds to the algorithm discussed in Section 4 (Figure 4-6). 
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jf Return \ 
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Figure 5-18: The External Data Sharing Analysis flowchart 



The resulting graphical representation of the RTS results is shown in Figure 5-19. In the 

lattice, the filled diamond corresponds to the program entity that will be modified, the 

two filled ellipses are the test cases selected by the FCA, and the two filled hexagons 

correspond to the additional test cases identified by the EDSA. 

f jrpaLanalyzer perspective - RI5 Result tatt ice:-;Eci ips| ;SpE*^|:8^^^^^^^B Sf#l§5 
EJe &8 [jamgate Seych &oj*t WATTrassr Iomcat Jim grata jjek 

_*y :*-* i* ) ia.4 ' .3| . ) i££si«x 
JtattaNodeList 

The program entity that 
will be changed 

Additional retesting test 
cases identified by the 
EDSA 

Retesting test cases selected 
by the FCA 

Figure 5-19: A sample graphical presentation of the RTS result 
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6. Initial Evaluation 

In this chapter we present results of two initial case studies performed to evaluate the 

presented approach: in section 6.1 we present a case study performed on M-e-c Schedule. 

This case study was used to evaluate the applicability of our JRPAT plug-in for 

instrumenting Java RMI distributed program and to extract execution traces from it. The 

second case study (section 6.2) is performed on a sample RMI Java program called 

External Sharing that was used to evaluate the tools applicability in performing regression 

test selection. 

6.1 Case Study 1: M-e-c Schedule 

This case study is based on an open source Java RMI distributed program, M-e-c 

schedule1. The scheduling program was used to illustrate the applicability of the JRPAT 

plug-in for instrumenting and collecting execution traces, and representing them through 

both in either textual (table) or graphical (concept lattice) views. We also used this case 

study to analyze and evaluate the overhead associated with collecting the execution traces. 

6.1.1 Case study setting 

M-e-c schedule is built on client-server architecture consisting of a console based server 

application and SWING based client (Figure 6-1). The system allows users to schedule 

1 http://sourceforge.net/proiects/mec-schedule. 
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tasks on the server through the client. After initiating a task with a start date and a 

periodic repeat, users are able to manage (edit, stop, resume, delete, etc.) the task. 

M-e-c schedule consists of 71 classes, which implement 6 different functionalities: Add 

task, Edit task, Stop task, Resume task, Delete task and Refresh (task). We treat each 

function as a separate test case. 

rn • i -.. •* w - . . . I - _ . _ _ » nr-ii- - « _ - ». _ . ... J ^ ..,«.„., „ -' — - - - . . -TH, " ~ 1 

File Help 

; "|3 Add task ST Edit task CI Stop task ^aesuins ;a;k 5 ; Delete task §§§ Refresh 

State Schedule date Command Repeat 

Figure 6-1: M-e-c schedule client 

Both, the client and server programs of the M-e-c schedule program are instrumented 

through the JRPAT-Tracer running on both sides and the corresponding AspectJ tracing 

packages are generated and added to the project. 
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/""'Resumes the selected task*/ 

protected void resumeActualTask() { 

//request the selected task 

He cT inner Task actualTask = this.getSe 

//show the wait cursor 

this.status.setPredefined( HecStatus: 

try{ 

Reque3t0bject requestDeleteTask 

|3 Aspect] markers at this Nne|ct) this. sender. sew 

this. status .'clear () ; 

this.refreshTaskList() ; 

} 

catch( Exception e ){ 
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Object around(Object targetObj) 

Trace local non-static methods 
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SS ! c a l l ( * J a v a . l a n g . R u n n a b l e + . * [ . .) ) 
ss i gnore m u t a t o r s ( ) 

Figure 6-2: The result of the instrumentation procedure 

Figure 6-2 shows the source code after the instrumentation of the destination program. 

The left side shows a source code snippet of ClientGuiPanel.java, a client side based GUI 

class. The sample includes the entries to the test case functionalities listed above (i.e. 

resume task, add task). After instrumentation, this class file contains additional execution 

points (AspectJ join points) which are used to capture and generate the execution traces 

during runtime. The right side of Figure 6-2 shows parts of TracingClientSide.aj, a 

tracing aspect class for the M-e-c schedule client program. The part shown is the around 

advice for local non-static method calls. The around advice monitors 109 join points in 

the M-e-c schedule client program. Table 6-1 lists the join points in M-e-c schedule for 

both the client and server side programs, which are captured by the around advice in the 

tracing AspectJ class. 

Application 

Client-Side 

Server-Side 

The around advice 
Join Point Type 

static method calls 
non-static method calls 

constructor calls 
thread start calls 

static method calls 
non-static method calls 

constructor calls 
thread start calls 

Join Point Total Number 
37 
109 
4 
4 
15 

100 
4 
3 

Table 6-1: The join points captured by the around advice on client and server sides 
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In the next step we execute both, the instrumented client and server programs, by 

executing selected test cases. The JRPAT-Tracer calculates the coverage achieved by the 

test case and generates execution traces for both local and remote calls. The traces are all 

stored as part of the system database on the server side. The server-side and client-side 

execution traces are initially stored within 2 separate tables, one for the client side and 

one for the server side. These tables are then analyzed and trace information related to a 

specific test case is merged from above two tables into a separate, test case specific table. 

For this case study, 6 tables based on available and executed test cases were created (start 

up of the client and server applications were not executed as part of a separate test case 

and therefore no specific tables were created for them). These 6 tables include 62 classes, 

134 methods and 285 tracing records. The detailed information is shown in Table 6-2. 

Test Cases 

The client 
starts up 

The server 
starts up 

Add 
Edit 
Stop 

Resume 
Refresh 
Delete 

Table Name 

No table 

No table 

slovenia AddTask 
slovenia EditTask 
slovenia StopTask 
slovenia ResumeTask 
slovenia RefreshTask 
slovenia DeleteTask 

Coverage 
(sequence id 

range) 

1-18 

1-13 

19-30 
31-45 
46-55 
56-65 
66-71 
72-80 

Classes 

9 

8 

14 
11 
9 
9 
7 
12 

Methods 

15 

14 

32 
27 
18 
18 
12 
27 

Records 

24 

40 

83 
51 
30 
31 
28 
62 

Table 6-2: The tables generated by merging Client/Server traces 

Figure 6-3 uses a textual view to show the merged execution traces for an example test 

case: Edit task. 
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Figure 6-3: The merged traces for the test case Edit task 

Figure 6-4 shows the concept lattice generated from all M-e-c schedule test cases. The 

interpretation of the lattice is as follows: test cases represent "the lattice objects" and the 

functions executed by the test cases correspond to the "attributes of objects". From the 

concept lattice, one can identify an test case generated execution traces by traversing 

upwards the lattice from the node containing the test case name until the root node is 

reached. For example, the executed functions of the test case slovenia StopTask © 

includes all the functions in the nodes which are located in the route (marked with arrows) 

passing from the node © to the root node ©, such as getTask, getCommand and so on. 

In above functions, function © getTask(italy) and function © getTask(slovenia) are the 

same functions running on different hosts (host italy and host slovenia). 
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Figure 6-4: The execution dependency lattice for M-e-c schedule 

In Figure 6-4, utility functions (used by more test cases) and specific functions (used by 

less test cases) are separated by their locations in the concept lattice, the former are at the 

top of the lattice while the later are at the bottom of the lattice. Through this concept 

lattice, we can also identify that several test cases that share the same functions are more 

close grouped together. 

In Figure 6-5 the regression testing selection result for modifying the function getTask 

(the filled diamond node) are shown. All filled ellipse nodes represent test cases that need 

to be retested. These nodes are identified by passing the nodes down from the modified 

node to the bottom node. 
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Figure 6-5: The RTS result lattice for M-e-c schedule 

6.1.2 Tracing Overhead 

It is a known fact that tracing program executions is not free and will cause an additional 

overhead in terms of execution time and resource requirements. In what follows we 

present some results with respect to the execution time overhead caused by our approach. 

We report execution times (in milliseconds) for three test cases, namely "Add", "Edit" 

and "Refresh". We compared for this evaluation the instrumented and non-instrumented 

versions of M-e-c schedule. The evaluation was performed on two computers running 

Windows XP with 3.0 GHz Pentium 4 CPU and 1 GB RAM. Each use case was executed 

several times in order to evaluate the affect of the execution length (memory 
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requirements) on the overhead. In order to be able to create execution traces of various 

lengths, we introduced loop iterations which basically allowed us to repeatable execute 

the same use case. Table 6-3 shows observed tracing overhead for the three test cases. 

The table includes the loop iterations, the execution times of the original programs, the 

execution times for the instrumented (bytecode level) programs, and the percentage 

increase of the execution times. 

-—__̂_____̂  Loop Iterations 
Test Cases "-—-~^_^^ 

Add 

Edit 

Refresh 

Number of Execution 
Statements 
Original Program 
Execution Time 
Instrumented 
Program Execution 
Time 

Increasing Percentage 

Number of Execution 
Statements 
Original Program 
Execution Time 
Instrumented 
Program Execution 
Time 

Increasing Percentage 

Number of Execution 
Statements 
Original Program 
Execution Time 
Instrumented 
Program Execution 
Time 

Increasing Percentage 

5 

415 

31ms 

78ms 

252% 

255 

25ms 

43ms 

143% 

140 

16ms 

24ms 

150% 

10 

830 

63ms 

235ms 

373% 

510 

47ms 

76ms 

162% 

280 

31ms 

57ms 

184% 

30 

2490 

141ms 

546ms 

387% 

1530 

63ms 

141ms 

224% 

840 

45ms 

109ms 

242% 

50 

4150 

281ms 

1133ms 

403% 

2550 

78ms 

219ms 

281% 

1400 

62ms 

172ms 

277% 

100 

8300 

578ms 

2425ms 

420% 

5100 

172ms 

517ms 

301% 

2800 

156ms 

451ms 

289% 

Table 6-3: The tracing overhead for running three test cases on two computers 
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Using the test case "Edit Task" as an example, Figure 6-6 illustrates the difference of the 

execution times between the original program and the instrumented program. 

Execution Time (ms) 

550 
500 
450 
400 
350 
300 
250 
200 
150 
100 
50 
0 

5 10 30 50 100 Loop Iteration 

255 510 1530 2550 5100 Execution Statements 

Figure 6-6: The execution overhead comparison of the original M-e-c schedule and 

the instrumented M-e-c schedule by running the test case "Edit Task" 

From the above results, we can observe that bytecode-level instrumentation causes as 

expected an execution overhead compared to the non-instrumented version. Also as 

expected the overhead is directly related to the loop iteration and the length of the 

execution, with the increase in the number of loop iteration and execution statements, the 

time consumption grows. For instance, the execution time increases 143% when running 

the program 5 times (255 records in the execution trace), while the execution time 

increases 301% when running the program 100 times (5100 records in the execution 

trace). Though the overhead is significant, it is not overwhelming, because the tracing 

facility does not change the basic system's behavior. In addition, since the RMI-based 

application is not a real-time application, this kind of overhead could be ignored. 
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6.2 Case Study 2: ExternalSharing 

The goal of the second case study was to evaluate the impact of the external data sharing 

analysis on the regression test case selection. We were in particular interested in 

identifying the impact of the external data states (e.g. files, databases) on the test case 

selection. For the case study we implemented a Java program, ExternalSharing. Figure 6-

7 illustrates the test cases dependency of ExternalSharing based on five test cases (Tl to 

T5). These test cases access four external data variables, with Dl and D2 being two 

database tables, and D3 and D4 corresponding to two files. For example, Test case 1 (Tl) 

reads data from the table Dl and writes data to the file D4. 

Test Cases 

Database Tables 

External Data 

Read Write Read & Write 
Test <-, ——Data Test—• *Data Test < *Data 

Figure 6-7: The test cases dependency for ExternalSharing 
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Figure 6-8 shows the execution dependency lattice and the external data sharing analysis 

(EDSA) table that are generated after executing the five test cases. 

Figure 6-8: The execution dependency lattice and the EDSA table 

Figure 6-9 shows an example for a regression test cases selection. In this example, the 

function readDl (filled diamond) would be modified as part of a modification request. 

Using the FCA-based regression testing selection method, test cases Tl and T2 (filled 

ellipses) were identified as the test cases that at the minimum to be retested. As part of 

our evaluation, we also performed our external data sharing analysis for the same 

modification request to see whether additional test cases need to be retested, due to the 

existence of external data sharing in the system. The external data sharing analysis 

uncovered the need for three additional test cases T3, T4 and T5 (the filled hexagons) that 

should be retested after changing the function readDl. 
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Figure 6-9: The RTS result lattice for ExternalSharing 

In what follows we describe in more detail the EDSA-based RTS procedure performed 

on the two initially selected test cases, Tl and T2. Table 6-4 shows the results of the 

EDSA analysis for Tl. From the table one can identify that Tl has write access to the 

external data member D4, while T5 has read access to it ©• During retesting using Tl, 

we also need to re-execute T5. Next, we check the ripple effect of T5. As part of the re-

testing strategy, T4 is selected to be retested, because T5 writes data to D2 and T4 reads 

data from it ©. The analysis continues with checking T4 and T3 is selected, due to T4 

writes the data structure D3 and T3 has read access to the same data © . Since analyzing 

T3 does not select any new test cases, the EDSA-based RTS procedure for Tl is finished. 

T5, T4 and T3 need to be rerun after retesting Tl. 
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Table 6-4: The EDSA-based RTS procedure for Tl 

Similar to the RTS procedure performed on Tl, we also applied the analysis on T2, and 

identified that T4 and T3 need to be retested after rerunning T2. Therefore, after changing 

readDl, all five test cases (T1-T5) need to be rerun. The result lattice is depicted in 

Figure 6-9. 

6.3 Threat to Validity 

Based on the results from our initial experiments and observations made during the case 

studies, our system is able to trace distributed Java RMI applications. The regression test 

selection analysis was performed with reasonable overhead and only limited human 

intervention. The test case selection technique presented in this research was not only 

considering internal control flow but also external data sharing relationships among 

program entities and test cases. As expected, considering external data states in the 

change impact analysis affects the set of potentially affected parts in the program and 

therefore has also directly affects the change impact set. 

Our experimental evaluation has shown that our dynamic approach to regression test 

selection can reduce the imprecision of static analysis techniques in examining causality 

relationship between local invocations and remote calls. As a result our EDSA approach 
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was able to increase the accuracy of the analysis compared to our initial FCA-based RTS 

approach. The EDSA included some (i.e. T3, T4, T5 in Figure 6-9) test cases that were 

originally ignored by our FCA only based approach. The more precise handling of these 

relationships is due to the collect runtime communications among multiple threads on 

different nodes. As a result, our approach is capable of performing regression test 

selection on distributed and multi-threaded programs, while most of other methods are 

only suitable for analyzing single-threaded sequential programs [CHE94, HSI97, ROT00, 

WHI92, WHI97, XU07, ZHA06]. Furthermore, in comparison with many heavy weight 

approaches [ROT97, HAR01B] typically require fine grained traces at the statement level 

our approach is less expensive, since it is based on runtime data collected at the function 

level, which allows for smaller traces. Finally, our approach is quite intuitive and easy to 

use. A graphical representation, a concept lattice, is used to visualize the RTS results, 

and also simplifies the interpretation of these results. The presented methodology 

supports a selective regression test selection approach which is almost completely 

automatic, requiring only a minimum of user intervention. Like the instrumentation part 

which is supported by wizard dialogs, and the RTS analysis part takes advantage of an 

easy-to-use GUI. 

It has to be noted that our approach also has some limitations. First of all, even though 

the approach is based on function-level execution traces; scalability might still remain a 

major limitation. Our approach currently lacks support for trace optimization and filtering 

techniques, e.g. pattern matching, sampling. As a result, when applying the approach on 

some large programs, the execution dependency lattice can become complex and 
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unmanageable. Due to this potential scalability problem, both the concept lattice and the 

table representation in the system are limiting factors. Moreover, the analysis plug-in, the 

JRPAT-Analyzer, is theoretically able to perform the RTS method on the applications 

written in multiple programming languages, since the inputs of it are execution traces, 

which can be generated in most existing programming environments. However, the 

JRPAT-Tracer and the underlying tracing plug-in for collecting runtime data are 

implemented based on AspectJ. Therefore, our approach is presently limited to regression 

test selection problems encountered when developing or maintaining Java programs. 

Finally, in order to perform RTS, our approach requires test suites which are traceable to 

the user functions they cover. The accuracy level of the RTS result depends on the 

coverage achieved by the existing test suite. If the test cases achieve a poor coverage, our 

methodology will miss executions which are related to a specified modification, and 

therefore is not able to provide an accurate RTS result. For this reason our approach is 

neither minimum nor a safe selective regression testing approach. 

Given the fact that our approach is based on the use of FCA for the analysis/clustering of 

the trace information, some of the existing FCA limitations also will affect our 

methodology. Firstly, consistency between the actual source code, test cases and the 

concept lattice becomes an issue. In our current implementation it would be necessary to 

re-run all the test cases after a completed modification, to update the concept lattice with 

the new test cases that might have been the result of the previously performed 

modifications. One way to address this problem would be to apply an incremental lattice 

update algorithm, which would not require the recreation of the complete concept lattice 
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after each modification to the system. Secondly, scalability of the concept lattice might 

become an issue for larger software systems. The scalability problem can be addressed by 

including various visualization techniques, which would allow for different levels of 

abstractions (e.g. zoom, collapsing, contextual views). 

6.4 Related Work 

In this section we will discuss and compare our work with existing research that is 

closely related to ours. 

6.4.1 Program Tracing 

There exist a number of program tracing approaches, which mainly focus on profiling 

single-threaded sequential programs [LEE97, GOL03, SEE05, SYS01]. Since these 

approaches only collect runtime communications within components, they lack the 

capability of tracing client/server activities across multiple hosts. Our approach differs 

from these approaches by being able to capture separated trace records from various 

processes, and examine causality relationship between local invocations and remote calls. 

As a result, our approach is suitable for tracing multi-threaded distributed systems, 

especially Java RMI programs. Other approaches to trace Java RMI programs can be 

found in [KAZOO, LEEOO, BRI05]. JaViz [KAZOO] focuses on detailed method-level 

execution data. It is able to trace distributed Java RMI applications and show the point 

where the distributed application behavior is worse in a single trace. The drawback of 

JaViz is its dependency on a modified JVM. VisOK [LEEOO] is a visualization tool to 

debug distributed Java programs. The limitations of this tool are: it modifies the 
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implementation of RMI to trace interactions among remote objects; it cannot be used to 

find method sequences, since the granularity of its traces is at the class level but not at 

method level. Differing from these works, our approach leverages AspectJ to reduce the 

implementation effort. The most closely related work to ours is [BRI05], in which the 

authors present a method that uses AspectJ as instrumentation strategy to produce 

execution traces, and then perform reverse engineering sequence diagrams for distributed 

Java RMI systems. The main disadvantage of this work is that users have to manually 

analyze the source code of the destination system (i.e. identify the RMI interface classes). 

Furthermore they also have to perform the instrumentation manually. In comparison to 

this work [BRI05], the instrumentation procedure within our approach is based on wizard 

dialogs and only involves limited human interaction. 

6.4.2 Distributed System Comprehension 

In the literature, several approaches for comprehending distributed applications have 

been proposed [BRU93, MEN01, MOE01, MOE02, GHO02, BRI05]. In them, BEE++ 

[BRU93] and X-Ray [MEN01] all aim to comprehend distributed systems written in 

C/C++. BEE++ uses dynamic method while X-Ray employs static techniques for their 

underlying analysis. BEE++ performs source code instrumentation to monitor the 

execution of distributed systems. The execution is considered as a stream of events, and 

the run-time events are dispatched to various distributed software comprehension tools. 

X-Ray recovers the architecture of distributed systems relying on the static analysis of 

C/C++ source code. The client-server relationships are identified using clustering 

techniques and clues from the source code. Johan Moe et al. proposed a three step 
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method in [MOE01, MOE02], which uses execution trace data to help developers 

understanding and improving CORBA-based distributed system. First, remote procedure 

calls are traced using CORBA interceptors. Next, the trace data is parsed to construct 

RPC call-return sequences, and summary statistics are generated. Finally, a visualization 

tool is used to study the statistics and look for anomalous behavior. According to the 

researcher, this method is able to provide a fast overview of the run-time behavior and 

performance of the system. 

Similar to our approach, [GHO02, BRI05] also analyze distributed Java RMI applications. 

A comprehensive runtime interaction validation strategy for distributed Java RMI 

applications is studied in [GHO02]. This approach proposes techniques for visualizing 

interactions, specifying and verifying assertions, and checking design conformance based 

on system execution traces. Local method sequences are collected after source code 

instrumentation is performed by using a custom security manager or the Throwable class 

in the Java API. For tracking remote method sequences, the approach leverages RMI 

logging facility, portable interceptors over RMI-IIOP, or customized RMI classes. 

[BRI04] addresses a methodology that reverse engineers UML sequence diagrams for 

distributed Java systems based on RMI. This approach defines two separate metamodels 

for traces and scenario diagrams, and it also defines the mapping rules between them. By 

means of the metamodels and the rules, it leverages AspectJ to produce execution traces, 

and then transforms the traces into scenario diagrams. 
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However, to the best of our knowledge, no previous work exists on performing regression 

test selection for distributed Java RMI applications. In this research, we perform the 

FCA-based regression test selection analysis on Java RMI programs. Our approach 

combines the benefits of dependency analysis and clustering capabilities of FCA. It 

collects runtime data of the distributed Java application from multiple hosts, and merges 

the execution traces for each test case properly to generate the visual representations of 

the test coverage matrixes. In our approach, different view can be easily generated, and 

maintainers and managers are able to better understand the impact of a requirement 

change before actually committing to or implementing the change. 

6.4.3 Regression Test Selection 

Similar to the program tracing approaches, most of the work on regression test selection 

has been focused on the sequential programs [CHE94, ROT97, WHI92, HSI97, ROT00, 

WHI97, HAR01B]. Among these researches, [CHE94, HAR01B, ROT00] explore 

selective regression testing for C/C++ and Java application by combing static 

programming analysis and dynamic system tracing. Other approaches utilizes control 

flow information [ROT97], data flow information [HAR89] or the firewall concept 

[WHI92] to identity which test cases are associated with modifications. However, to the 

best of our knowledge, there exists no previous work providing support for regression test 

selection for distributed programs (such as Java RMI applications). 

Furthermore, most traditional RTS approaches have focused only on the change 

propagation through the internal program state (i.e. variables) manipulation, and do not 
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consider change impacts involving persistent states (i.e. databases, files). Several papers 

[HAR04, WIL05] have addressed RTS for database-driven applications that take into 

account the interactions of the program with database states. [HAR04] proposed a 

regression testing approach for stored procedures in databases. [WIL05] presented a safe 

regression selection algorithm for database-driven applications. However, compare with 

our approach, these approaches are typically heavy weight, requiring fine grained traces 

at the statement level, making them very precise but also computational expensive. 
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7. Conclusions and Future Work 

In this research, we introduced a methodology to support a lightweight FCA-based 

regression test selection analysis for distributed Java RMI programs. Our approach 

combines execution trace collection, external data sharing analysis and selective 

regression test selection. As part of this research we developed a toolkit, the Java RMI-

based Programs Analysis Toolkit (JRPAT), to support our methodology and its 

automation. The JRPAT consists of two Eclipse plug-ins, which are capable to collect 

distributed execution traces, implement an External Data Sharing Analysis (EDSA) 

algorithm to establish test cases dependency information, perform regression test case 

selection, and visualize the result in both textual and graphical (with the help of a external 

graph drawing software integrated) representations. Using two initial case studies, we 

finally demonstrated and discussed the applicability of the proposed methodology and its 

tool support. The major contributions of this thesis can be summarized as follows: 

(1) We introduce a novel RTS methodology by means of combining run-time 

information with Formal Concept Analysis for distributed Java RMI applications. 

(2) Introduced an external data sharing analysis to explore the define-use relationship 

among program components of different test cases due to external data elements. 

We also performed a RTS analysis to estimate the potential testing effort required 

prior to implementing an actual modification request. 

(3) Designed and developed a proof of concept toolkit, the JRPAT, which 

implements the proposed methodologies and automates the analysis process. We 
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showed that this tool can be used to trace distributed Java RMI applications and 

perform successful regression test selection. 

As part of future investigation, we plan to address scalability issues related to tracing and 

analyzing large-scale Java applications. Since the size of the trace can become very large, 

also the corresponding execution dependency lattice might become too complex and 

unmanageable. Potential solutions might include selective tracing, viewing the trace in 

different level (e.g. object-level, class-level, component-level etc.), or filtering the trace 

through pattern matching, sampling etc. This would also allow omitting unrelated parts in 

the concept lattice representation. 

Moreover, there is also a need to improve the granularity level of the external data 

sharing analysis. Each column in the table has to be considered as a separate variable, and 

the data flow relations existing from the usage of each column need to be traced 

separately. 

Finally, for regression test selection, it would be interesting to develop and apply some 

prioritizing techniques to allow for a further reduction of the number of test cases, or 

compare our approach with other selective regression techniques in terms of performance, 

accuracy and effectiveness. 
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