
Regression Test Selection for Distributed Java RMI Programs by

Means of Formal Concept Analysis

Hong Fei Zhu

A thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montreal, Quebec, Canada

December, 2008

© Hong Fei Zhu, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Voire reference
ISBN: 978-0-494-63211-6
Our file Notre reference
ISBN: 978-0-494-63211 -6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Regression Test Selection for Distributed Java RMI Programs by Means of

Formal Concept Analysis

Hong Fei Zhu

Software maintenance is the process of modifying an existing system to ensure that it

meets current and future requirements. As a result, performing regression testing

becomes an essential but time consuming aspect of any maintenance activity. Regression

testing is initiated after a programmer has made changes to a program that may have

inadvertently introduced errors. It is a quality control approach to ensure that the newly

modified code still complies with its specified requirements and that unmodified code has

not been affected by the maintenance activity. In the literature various types of test

selection techniques have been proposed to reduce the effort associated with re-executing

the required test cases. However, the majority of these approach has been focusing only

on sequential programs, and provide no or only very limited support for distributed

programs or database-driven applications.

The thesis presents a lightweight methodology, which applies Formal Concept Analysis

to support a regression test selection analysis, in combination with execution trace

collection and external data sharing analysis, for distributed Java RMI programs. Two

Eclipse plug-ins were developed to automate the regression test selection process and to

evaluate our methodology.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Juergen Rilling, for his

guidance, encouragement and patience throughout this research. Without his continued

support and help, my thesis would not have been possible.

My sincere appreciation is extended to my father, Zhu Heng Lin, my mother, Liu Mei Yu

and my family in China, for their unconditional love and support. I would also like to

give the special thanks to my wife, Zhang Zhi Yu, for always loving me and keeping me

motivated.

IV

Table of Contents

List of Figures vii

List of Tables ix

1. Introduction 1

2. Background 4

2.1 Dynamic Analysis 4
2.1.1 Instrumentation 7
2.1.2 Dynamic Analysis Applications 13

2.2 AOP and Aspect J 17
2.2.1 AspectJ Semantic 18
2.2.2 Tracing with AspectJ 23

2.3 Java RMI 27
2.3.1 Overview of Java RMI 27
2.3.2 Implementation Details 29

2.4 Formal Concept Analysis 31
2.4.1 Definitions 31
2.4.2 Concept Lattice 34

2.5 Regression Testing 36
2.5.1 Overview 36
2.5.2 Regression testing selective techniques 37

3. Research Contributions 42

3.1 Motivation 42
3.2 Research Hypotheses and Research Goals 45

3.2.1 Research Hypotheses 45
3.2.2 Research Goals 49

4. A Selective RTS Methodology for Distributed Systems 52

4.1 Tracing Process 54
4.1.1 Instrumentation 54
4.1.2 Tracing Remote Invocations 55
4.1.3 Tracing External Data States 56

4.2 Selective Regression Testing Analysis 58
4.2.1 Combining RMI traces with FCA 58
4.2.2 External Data Sharing Analysis combined with FCA 60

5. Implementation 64

5.1 The Tracing Plug-in JRPAT-Tracer 64
5.1.1 Tracing Local Calls 66
5.1.2 Monitoring External Data Interactions 68
5.1.3 Tracking Remote Invocations 72
5.1.4 Collecting Traces 76

V

5.1.5 Tracing the Method Invocation Sequence 77
5.1.6 Executing Test Cases 81

5.2 The JRPAT-Analyzer Plug-in 81
5.2.1 Merging Client/Server Traces 82
5.2.2 Constructing External Data Sharing Table 83
5.2.3 Visualizing the FCA Execution Lattice 85
5.2.4 Specifying the Modification Request 87
5.2.5 Performing Regression Test Case Selection 87

6. Initial Evaluation 90

6.1 Case Study 1: M-e-c Schedule 90
6.1.1 Case study setting 90
6.1.2 Tracing Overhead 96

6.2 Case Study 2: External Sharing 99
6.3 Threat to Validity 102
6.4 Related Work 105

6.4.1 Program Tracing 105
6.4.2 Distributed System Comprehension 106
6.4.3 Regression Test Selection 108

7. Conclusions and Future Work 110

8. References 112

vi

List of Figures

Figure 2-1: The general procedure of dynamic analysis 6
Figure 2-2: A simple figure editor 18
Figure 2-3: Tracing process for Java applications through AspectJ 24
Figure 2-4: Java RMI Architecture 28
Figure 2-5: The concept lattice for the Table 2-2 (stars and their characters) 35
Figure 3-1: Test cases dependency on sharing external data states 44
Figure 4-1: The RTS Methodology for Distributed Systems 52
Figure 4-2: The instrumentation workflow 54
Figure 4-3: Exchanging the remote invocation records between Client and Server 56
Figure 4-4: The FCA context of a sample Java RMI program 59
Figure 4-5: The concept lattice of a sample Java RMI program 59
Figure 4-6: The algorithm for RTS through External Data Sharing Analysis 63
Figure 5-1: The general overview of the JRPAT-Tracer plug-in 64
Figure 5-2: The JRPAT-Tracer interface and a sample wizard dialog 65
Figure 5-3: File access instantiation 68
Figure 5-4: The client-side around advice Aspect template 72
Figure 5-5: The server-side wrapper method template 73
Figure 5-6: The working process of tracing remote invocations through the Aspect
template and the wrapper method 74
Figure 5-7: The template for collecting client-side traces 76
Figure 5-8: A distributed, multithreaded client-side source code example 77
Figure 5-9: Application of the stack-based algorithm for creating the invocation sequence
for the program in Figure 5-8 78
Figure 5-10: The client-side traces for the program in Figure 5-8 80
Figure 5-11: The test case name setting interface and a sample test coverage matrix 81
Figure 5-12: The overview GUI of the JRPAT-Analyzer 82
Figure 5-13: Client/Server traces for a test case are merged into a database table 83
Figure 5-14: The External Data Sharing table creation flowchart 84
Figure 5-15: A screenshot of an EDS A table example 85
Figure 5-16: A sample execution dependency lattice 86
Figure 5-17: A sample lattice node list and modification request interface 87
Figure 5-18: The External Data Sharing Analysis flowchart 88
Figure 5-19: A sample graphical presentation of the RTS result 89
Figure 6-1: M-e-c schedule client 91
Figure 6-2: The result of the instrumentation procedure 92
Figure 6-3: The merged traces for the test case "Edit task" 94
Figure 6-4: The execution dependency lattice for M-e-c schedule 95
Figure 6-5: The RTS result lattice for M-e-c schedule 96
Figure 6-6: The execution overhead comparison of the original M-e-c schedule and the
instrumented M-e-c schedule by running the test case "Edit Task" 98
Figure 6-7: The test cases dependency for ExternalSharing 99
Figure 6-8: The execution dependency lattice and the EDS A table 100

vii

Figure 6-9: The RTS result lattice for External Sharing 101

viii

List of Tables

Table 2-1: An example relation table [LINOO] (a characterization of stars) 32
Table 2-2: The Concepts for Table 2-1 33
Table 4-1: Java file handling classes in the "java.io" package 57
Table 4-2: Java database processing classes in the "java.sql" package 57
Table 4-3: An example external data sharing table 61
Table 4-4: The usages and corresponding values of an example external data 61
Table 6-1: The join points captured by the around advice on client and server sides 92
Table 6-2: The tables generated by merging Client/Server traces 93
Table 6-3: The tracing overhead for running three test cases on two computers 97
Table 6-4: The EDSA-based RTS procedure for Tl 102

ix

1. Introduction

Software maintenance is the process of modifying an existing system to ensure that it

meets current and future requirements. Regression testing is initiated after a programmer

has made changes to a program that may have inadvertently introduced errors. It is a

quality control measure to ensure that the newly modified code still complies with its

specified requirements and that unmodified code has not been affected by the

maintenance activity [HAROO]. The easiest method for performing regression testing is

the reuse of an original test suite and rerun all the test cases in it. However, when the

change to a system is minor, a complete rerun of the full test suit is not only often

unnecessary but also expensive. As a result an alternative approach is needed that allows

for the selection and re-execution of only the test cases that are relevant to the specific

modification.

Regression test selection is such an approach that attempts to reduce the cost of retesting,

by identifying and re-executing only a subset of the existing test suite in order to re-test

the code potentially affected by a modification request [GRA01]. Regression test

selection involves the recording of program elements exercised by tests used in previous

releases, and selecting these test cases that exercise elements changed in the current

release. The coverage matrix between the code entities and test cases needs to be

identified by tracing the actual execution paths of the test cases through the code

[SNE04]. Selective regression testing is a well established research domain with a wide

range of existing approaches, varying from the use of control flow information and/or

1

data flow dependencies for procedural, object-oriented and aspect-oriented programs

[CHE94, HSI97, HAR01B, ROT97, ROT00, WHI92, WHI97, XU07, ZHA06]. However,

these existing approaches have focused primarily only on sequential programs, with none

of them providing support for regression test selection for distributed programs (such as

Java RMI applications). Performing selective regression test for distributed programs is

clearly a more challenging task compared to performing it on sequential programs, since

it not only requires to trace client/server activities across multiple threads and processors,

but also to merge local and remote calls by examining causality relationship between

them.

Another shortcoming of these existing regression test selection techniques is that they

only deal with the manipulation of internal program states, and ignore typically external

program states (persistent variables, e.g., database and files) in their analysis. However,

these persistent states not only play an important role in modern software, especially

database-driven system, but also might affect a selective regression testing analysis.

Through the persistent states, the change effect could be transmitted from one code entity

(i.e. function, component, or even program) to other code entities. The omission of the

persistent states could lead to scenarios where test cases affected by the modifications

might not be selected and re-executed.

The research is motivated by the need to provide software maintainers and managers with

the ability to estimate early on during the maintenance cycle, the testing effort associated

with a modification request. In this research, we address this issue of predicting the

2

regression testing effort, by proposing a lightweight methodology, which applies Formal

Concept Analysis to support a regression test selection analysis, in combination with

execution trace collection and external data sharing analysis, for distributed Java RMI

programs. A toolkit was developed, consisting of two Eclipse plug-ins that are used to

automate the regression test selection process and allow us to validate our approach. The

toolkit is able to collect distributed execution traces, implement external data sharing

analysis algorithm to generate the test case dependency table, and visualize the selection

result.

The remainder of the thesis is organized as follows. Chapter 2 provides the background

related to program comprehension, including dynamic analysis, aspect oriented

programming, Java RMI, Formal Concept Analysis, and regression testing. Chapter 3

states the main contributions of this thesis, including the motivation, research hypothesis,

and research goals. Chapter 4 shows the lightweight regression test selection approach for

distributed Java RMI applications. In Chapter 5, the implementation of the tool to support

our methodology for automating the analysis process is introduced. Chapter 6 elaborates

on each step of the problem solving approach through prepared case studies. The

discussions of the advantages as well as limitations of the introduced approach, and the

related researches are also presented. Finally, Chapter 7 concludes the thesis and

discusses potential future work.

3

2. Background

In the following sections, we will introduce background information relevant to this

research. In particular we focus in our review on dynamic analysis (section 2.1), Aspect

Oriented Programming (AOP) and AspectJ (section 2.2), Java RMI (section 2.3), Formal

Concept Analysis (section 2.4), and regression testing (section 2.5).

2.1 Dynamic Analysis

Program Comprehension is the process of acquiring knowledge about a computer

program [RUG95]. It is a cognitive process that uses existing knowledge (i.e. the source

code of a software system) to acquire new knowledge that meets the goals of a code

cognition task. Program comprehension plays a significant role in software maintenance

and evolution. A significant proportion of the time required for maintaining, debugging,

and reusing existing code is spent in understanding existing programs [ST097].

Program comprehension can be performed through two types of analysis: static analysis

(reading the code) and dynamic analysis (running the code) [COR89]. Static analysis

collects its information statically through fact extraction from artifacts such as the source

code, design documents, etc. and then analyzes these collected facts to abstract and

interpret the program properties. In contrast dynamic analysis collects knowledge about

system properties by executing a software system for various inputs [BAL99].

Dynamic analysis supports program comprehension in particular by providing additional

insights with respect to behavioral aspects of a software system, which are often not well

documented in system documentation [GSC03]. Using dynamic program analysis

requires some form of instrumentation of the original software application or its

underlying runtime system to generate traces of real program executions. Through the

analysis of these traces, it is typically possible to identify those parts of the program that

implement the functionality of interest and hence, need to be understood.

Object-oriented systems are difficult to understand by relying only on static analysis, due

to object oriented specific features such as inheritance, dynamic binding and

polymorphism. These language features tend to obscure the relationships among the

system artifacts [STV05]. As a result, the behavior of OO systems can often only be

completely determined through the use of runtime (dynamic) information. Since dynamic

analysis can take advantage of run-time information, it can overcome many of the

shortcomings of static analysis. Also through the use of run-time information (such as

object instantiation and communication, method calls, and branching decisions), dynamic

analysis can provide additional insights on the life cycle of objects, the sequences of

interactions, and the flow of control between components at run-time. Furthermore, given

the more detailed information available for the analysis, dynamic analysis can be more

precise and sensitive to the input data [BAL99], and hence improve the comprehension

process.

5

Figure 2-1 shows a general overview of the major steps involved while performing

dynamic analysis. Firstly, the program under test or its underlying runtime system is

instrumented in order to put probes collecting the dynamic information. Then, the

destination program is executed with a set of test cases. The trace data is produced and

transmitted into some type of repository/data store. Due to the fact that important

interactions are mixed with low-level implementation details, traces can be very large and

hard to understand [HAM03]. Therefore, in the third step, depending on the analysis

focus, traces are either compressed and/or abstracted to remove unnecessary data (i.e.

utility functions, repetitive and recursive calls, redundancy patterns, etc.). At last, the

filtered traces are processed to present the program's high-level behavioral view (i.e.

sequence diagram), or for further analyses (i.e. feature identification).

&

Instrumentation

&

Execution
& Extraction

^

Application

Traces
Repository

Presentation

n
Compression
& Abstraction

Figure 2-1: The general procedure of dynamic analysis

6

2.1.1 Instrumentation

As mention previously, dynamic analysis involves some form of instrumentation of the

system to be analyzed, to allow for the collection of certain run-time states and program

properties. For Java programs, instrumentation is typical performed through one of two

approaches. (1) Code instrumentation; which requires inserting additional statements

(probes) into a program (source or byte code) to allow collecting dynamic behavior

information [HUA78]. (2) Leverage capabilities of the runtime environment, by

monitoring and tracking the runtime behavior of an application through debugging,

profiling or modifying the Java Virtual Machine [SEE05]. In what follows, we provide a

more detailed overview of some major techniques used to collect dynamic information

from Java programs.

2.1.1.1 Source Code Instrumentation

One way for instrumenting a program is to simply add code (probes) needed for the

instrumentation into the source code. These probes become part of the program build and

the resulting object code contains code corresponding to the instrumentation code which

was added to the source code. When executing the program, the code for the probes will

be executed and dynamic information for the application can be obtained. The advantages

of the source code instrumentation are: (1) it supports for statement level source code

instrumentation as it is typically used by source code coverage tools, statements and

branch coverage; (2) it does not require a specialized runtime environment, the

instrumented applications can run within the same program environments as the original

programs. On the other hand, the source code instrumentation also has drawbacks: firstly,

7

the source code of an application must be available; moreover, the instrumentation even

being semantically and syntactically correct alters the original source code. As a result

the source code being executed and analyzed might no longer reflect the behavior of the

source code.

There exist several tools for the source code instrumentation. Clover is a commercial

code coverage analysis tool, developed by Cenqua Pty Ltd. [CLO07]. It copies and

instruments a set of Java source files, and then measures three types of coverage analysis:

statement, branch and method coverage. The Java test coverage and instrumentation

toolkits, query and instr [MCC07], are used to parse Java source programs into an

internal tree form, and perform method and statement source instrumentation. The

toolkits are suited for applications, such as test coverage, metrics, instrumentation,

extraction of information, documentation tools, etc.

2.1.1.2 Bytecode Instrumentation

Java source code is normally compiled into a binary format consisting of a bytecode

instruction set (i.e. the class file) as an intermediate format. After instrumenting the

bytecode, the bytecode instructions are executed by the Java Virtual Machine (JVM)

[LIN99]. Java bytecode instrumentation, also called bytecode injection, is the process of

directly inserting or manipulating Java bytecode. It generally inserts a special, short

sequence of bytecode at the designated points within a Java class file. The introduced

bytecode controls the message passing. The Java bytecode instrumentation can be

8

performed either statically at the compile time or dynamically at the runtime when the

bytecode of the class is being loaded into the JVM.

Static bytecode instrumentation inserts all instrumentation-code before the program under

instrumentation starts execution. The main advantage of this approach is that it causes

less runtime overhead, as all classes are instrumented before the program is executed.

The major drawback of static instrumentation is that dynamically generated or loaded

code is not instrumented. Some high-level bytecode engineering libraries can be

leveraged to perform static bytecode instrumentation. Bytecode Engineering Library

(BCEL) [DAH01] developed by the Apache Software Foundation is a toolkit for the

static analysis and dynamic creation or transformation of Java class files. It enables

developers to implement desired features on a high level of abstraction without handling

all the internal details of the Java class file format. Bytecode Instrumenting Tool (BIT)

[LEE97] developed in the University of Washington, is a collection of Java classes that

allows users to insert instructions to analysis methods anywhere in the bytecode, so that

information can be extracted from the user program while it is being executed. Java

programming assistant (Javassist) [CHI03] is a reflection-based toolkit for developing

Java bytecode translators. The main feature of Javassist is that it allows users to access

Java bytecode in the high source code level, instead of in the low bytecode instruction

level. This means that programmers can modify a class file with source-level vocabulary.

Dynamic bytecode instrumentation is interleaved with the execution of the program under

instrumentation; an instrumentation agent is invoked each time a class is loaded and may

9

augment the loaded bytecode with instrumentation code. The weakness of this approach

is that it introduces extra overhead and may perturb measurements due to the runtime

instrumentation process. The advantage of this method is that it ensures that all loaded

classes will be instrumented and avoids the often tedious bytecode instrumentation prior

to the program startup. Dynamic instrumentation is applied not to all library classes, but

only to those classes that are actually being loaded. Furthermore, it also prevents

problems, such as forgetting to instrument classes after modification and recompilation.

org.jmonde.debug.Trace [JMO07] is an on-the-fly runtime method tracing tool for Java

applications based on the Byte Code Engineering Library. Its working mechanism is as

follows: a custom class loader reads the class file and instruments each method with

tracing code. The class loader also adds a static field to each class. This field has two

states, 'on' and 'off. The tracing code checks this field prior to printing. The command

line options access and modify this static field to control tracing output.

2.1.1.3 Interfacing with Java Virtual Machine

Another approach for instrumenting Java source code is by interfacing with the Java

Virtual Machine through the debugging (JVMDI) and profiling (JVMPI, JVMTI)

interfaces. They provide ways to inspect the state and to control the execution of

applications running in the Java virtual machine (JVM). The Java Virtual Machine

Debugging Interface (JVMDI) [SUN99] defines the services a VM provides for

debugging. It includes requests for information (for example, current stack frame),

actions (for example, set a breakpoint), and notification (for example, when a breakpoint

has been hit). The performance penalty using the JVMDI is so significant that its

10

applicability is limited only for very short program executions. The Java Virtual Machine

Profiler Interface (JVMPI) [SUN02] is a two-way method call interface between the JVM

and an in-process profiler agent. JVMPI provides hooks into the JVM that can be used

without modifying the user program or the JVM itself. A profiler agent instructs the

virtual machine to send it the relevant JVMPI events, such as method enter and exit, and

processes the event data into profiling information. The Java Virtual Machine Tool

Interface (JVM TI) [SUN04] is a new profiling interface, which was introduced in J2SE

5.0 and replaced JVMDI and JVMPI. JVMTI provides both a way to inspect the state and

to control the execution of applications running in the Java virtual machine (JVM). It

supports the full breadth of tools that need access to JVM state, including but not limited

to: profiling, debugging, monitoring, thread analysis, and coverage analysis tools.

Profiling tools based on JVMPI or JVMTI can obtain a variety of information for a

comprehensive performance analysis task. Whereas these tools have to be written in

platform native code, and become less transportable.

Currently, most profiling tools are based on profiler agents that use JVMPI or JVMTI.

Optimizelt [OPT07] is a commercial tool and it allows local and remote profiling of Java

programs on multiple platforms. Its main work of the instrumentation is assigned to

JVMPI. Optimizelt collects all the information generated by JVMPI and stores it in his

internal structures. Optimizelt contains a graphic visualizer of all information, and with

this information it offers different types of profiling: CPU profiling, Memory debugging,

Object allocations etc. jProf [JPR07] is a non-commercial profiler developed using

JVMPI, it was constructed to identify the typical problems that appear in Java application

11

developing: excessive memory usage, excessive synchronization and excessive processor

usage. The profiler gets the information generated by JVMPI, produces XML profiling

result, and presents the results of a profiling in HTML format.

2.1.1.4 Instrumented Java Virtual Machine

The Java virtual machine (JVM) is instrumented for monitoring and management,

providing built-in management capabilities for both remote and local access. In particular,

the JVM also can be instrumented statically or dynamically in order to export more

specific and detailed information, such as start and exit time of methods, client/server

interactions, etc. Statically instrumented JVM approaches instrument the JVM program in

order to export some state information available while it executes the bytecode. The

Dynamically Instrumented JVM approach generates and inserts instrumentation code into

the JVM, or removes it from the JVM at runtime. An instrumented JVM does not require

the source code of applications under test, and it can provide more flexibility to users.

However, the development effort of this approach is much higher than using profiling

interfaces such as JVMPI and JVMTI. In addition, the evolution of a supported JVM, or

supporting more JVMs, can induce a high maintenance cost.

In what follows, we will introduce some Java profilers that use instrumented JVM to

collect runtime information. The project of JaViz [KAZOO] started in 1997 at the

University of Minnesota with the idea of providing Java software developers an easy way

to collect performance data and analysis. JaViz uses an instrumented JVM capable of

collect information about start and exit time of methods and to record client/server

12

interactions. When a program is executed with the instrumented JVM, the trace files are

generated. These files are then post processed to create an execution tree. JaViz has a

visualizer that presents the information in an execution tree, with callers being parents of

callees. Jinsight 2.0 [PAU01] is a profiler developed by IBM to show performance

bottlenecks, object creation, garbage collection, thread interaction, deadlocks and

program execution patterns. It offers a modified JVM with which the application must be

executed to obtain the profile. All the performance data extraction is done inside the

instrumented JVM. The trace files are then visualized in different views: the histogram

view, which shows the program's use of resources; the execution view, which shows the

program execution sequence. Jinsight 2.0's subsequent version 2.1 supplies a profiling

agent using the JVMPI for Java 2 instead of using an instrumented JVM.

2.1.2 Dynamic Analysis Applications

Dynamic analysis plays a critical role during program comprehension and is supported

through techniques such as program slicing, visualizing the behavior of the system,

identifying design pattern, feature to code assignment, etc. In what follows, we describe

some of these approaches in more details.

2.1.2.1 Debugging and Program Comprehension

Program slicing is a method of program decomposition, and the process of it deletes

those parts of the program that can be determined to have no effect upon the semantics of

interest. The result of program slicing is a reduced, executable program that preserves the

original behavior of the program with respect to a subset of variables of interest at a given

13

program point [WEI82, WEI84]. Dynamic Slicing was originally introduced in [KOR88],

which aims to reduce the size of a slice and get more accurate slice based on program

executions. In order to compute a dynamic slicing, an execution trace is recorded first,

and then the trace is traversed backwards to derive data and control dependencies to

compute the dynamic slice [AGR90]. Using the run-time information, the approach may

significantly reduce the size of a program slice, and is possibly able to resolve some of

the conservative assumptions that have to be made by static slicing regarding the control

flow.

2.1.2.2 Dynamic Views

There exist several approaches to explore execution traces [BRI03, GUE05, HAM05] to

support the understanding of a program behavior by reconstructing its dynamic views,

such as sequence/scenario, statechart diagram to show program interactions at different

abstraction levels [SAL06]. Also UML v.2 supports the use of composition operators to

combine dynamic diagrams from traces]. Leveraging these methods, maintainers are

provided with diagrams at various abstraction levels, allowing them to check the

conformance between produced diagrams and documented diagrams.

2.1.2.3 Design Pattern Identification

For precise design pattern recognition, especially for object-oriented languages, static

analysis might not be sufficient, due to structural similarities among patterns. Patterns

often rely on polymorphism and dynamic method binding. As a result these patterns are

not distinguishable from each other using static analysis, since they often differ only in

14

their behavior (e.g. method invocations) [HEU02]. Dynamic analysis on the other hand

supports the analysis of runtime behavior. However, the amount of data gathered during

runtime (in the form of traces) used for pure dynamic analysis is often very large.

Depending on the level of information detailed needed for dynamic analysis, the analysis

can become very expensive and in some cases even unfeasible. Therefore, most of these

approaches combine static and dynamic analysis techniques [WEN03, WEN04]. They

use static analysis identify pattern instance candidates to reduce the search space, and

then use dynamic analysis to confirm or weaken the results from static analysis. By this

way, the quality of design pattern identification is highly improved.

2.1.2.4 Feature Location

Software developers are constantly required to modify and adapt application features in

response to changing requirements. However, relying only on static analysis is difficult to

determine how software entities contribute to the runtime behavior of features and how

these features interact. Comparing with static analysis, dynamic analysis is a reliable

means of associating behaviors of a system with the internal components of its

implementation. Based on dynamic analysis, these approaches [EIS01, EIS03] leverage

extracted execution traces to achieve an explicit mapping between the system's externally

visible behavior (features) and the relevant parts of the source code. In these approaches,

features are defined as units of behavior of a system; techniques such as concept analysis,

data mining [GRE05] are used to identify the groups of software entities (i.e. classes,

functions) that implement software features.

15

2.1.2.5 Other Dynamic Analysis Approaches

[ZAI05, WAN05] identify key classes and utility classes in a system by using web-

mining principles or dynamic fan-in, fan-out metrics. Helping software engineers to start

their reconnaissance of the software from important classes, these approaches alleviate

their program comprehension task. Zaidman's work [ZAI04] is centered on the idea that

the relative execution frequency of methods or procedures can tell something about

which methods or procedures are working together to reach a common goal. An iterative

approach using dynamic information to support the recovery and understanding of

collaborations was presented in [RIC02]. In Richner's work [RIC02] collaboration

abstractions are extracted without reliance on visualization techniques. Dynamic analysis

implies large amounts of data. [HAM06] addressed this issue by summarizing the content

of large execution traces. It first identifies utility routines and consequently summarizes

these routine.

16

2.2 AOP and Aspect J

In what follows we provide a brief introduction to Aspect Oriented programming (AOP).

One of the key elements differentiating the AOP programming paradigm from traditional

object-oriented programming is it support for separation concerns. AOP's support for

separation of concerns, specifically cross-cutting concerns, through additional language

constructs. A program can be broken down into distinct parts that overlap in functionality

by separating concerns. All programming methodologies—including procedural

programming and object-oriented programming—support some separation and

encapsulation of concerns into single entities, such as procedures, packages, classes, and

methods [BJO06]. However, some concerns, named as crosscutting concerns, defy these

forms of encapsulation "cut" across multiple modules in a program.

AOP provides language mechanisms that explicitly capture crosscutting. It extracts

scattered concerns from classes and turns them into aspects, which are well modularized

crosscutting concerns. By decoupling these concerns and placing them in aspects, the

original classes are relieved of the burden of managing functionalities orthogonally

related to their purpose. Later, the aspect code is injected into appropriate places by a

process known as weaving. A direct consequence of aspect use is to program crosscutting

concerns in a modular way, and achieves the usual benefits of improved modularity:

simpler code that is easier to develop and maintain, and that has greater potential for

reuse. Logging is one example of a crosscutting concern, because a logging strategy

necessarily affects every single logged part of the system. Logging thereby crosscuts all

logged classes and methods. One of the key advantages of AOP is that it provides native

17

language support for logging and tracing of program execution [ELR01].

AspectJ [ECL07] is a simple and practical aspect-oriented extension to Java. It helps to

manage crosscutting concerns by augmenting Java language with number of new

structures, such as pointcuts and advice. In AspectJ's dynamic join point model, a set of

identifiable points in the execution of the program, called join points, are collected

though pointcuts. Code defined in advice is attached to these poinctcuts and executed

when join points are reached. Aspects are class-like modular units of crosscutting

implementation, comprising pointcuts, advice, and ordinary Java member declarations.

AspectJ files are compiled together with standard Java source files into standard Java

byte code via AspectJ compiler so that platform-independence is assured henceforward.

2.2.1 AspectJ Semantic

Figure

makePoint(..)
makel_ine(..)

Point

getX()
getY()
setX(int)
setY(int)
move(int, int)

* FigureElement

move(int. int)

7

2

\

Line

getP1()
getP2()
setPI (Point)
setP2(Point)
move(int, int)

I I III I I

< l l l l l l l l—. . . I I . I I . I I

Figure 2-2: A simple figure editor

The semantics are presented using a simple figure editor system shown in Figure 2-2. In

this example a Figure class provides factory services and it consists of a number of

FigureElements, which can be either Po in t s or Lines.

2.2.1.1 The Join Point Model

A critical element in the design of any aspect-oriented language is the join point model.

The join point model provides the common frame of reference that makes it possible to

define the structure of crosscutting concerns. The dynamic crosscutting elements of

AspectJ are now based on a model in which join points are certain well-defined points in

the execution of the program. In this model join points can be considered as nodes in a

simple runtime object call graph. These nodes include points at which an object receives

a method call and points at which a field of an object is referenced. The edges are control

flow relations between the nodes. In this model control passes through each join point

twice, once on the way in to the sub-computation rooted at the join point, and once on the

way back out. The different kinds of join points provided by AspectJ are stated as follows:

a call or an execution to a method or a constructor, an exception handler, an initialization

to a class or an object, a field access, etc.

2.2.1.2 Pointcut Designators

In AspectJ, pointcut designators identify collections of join points in the program flow.

They can be categorized to name-based pointcut designators, property-based pointcut

designators and control-flow based pointcut designators.

19

(1) Name-based pointcut designators

The pointcut designators are all based on explicit enumeration of a set of method. For

example, the following pointcut designator identifies all calls to the method getPi ()

defined on Line objects:

call(Point Line.getPl())

Pointcut designators can be combined using a set algebra semantics, such as and, or and

not operators ('&&', '||', ' ! ') ; and it can crosscut classes and identify join points from

many different classes. For example:

pointcut moves():

call(void FigureElement.move(int, int)) ||

call(void Point.setX(int)) ||

call(void Point.setY(int)) ||

call(void Line.setPl(Point)) ||

calls(void Line.setP2(Point));

defines a pointcut named "moves" that designates calls to any of the methods that move

figure elements.

(2) Property-based pointcut designators

AspectJ also provides mechanisms that enable specifying a pointcut in terms of properties

of methods other than their exact name. The simplest of these involve using wildcards in

certain fields of the method signature. For instance:

c a l l (v o i d P o i n t . s e t * (i n t))

identifies calls to any method defined on Point , whose name begins with "set" and it

needs one integer parameter and has no return value, specifically the methods setx (int)

20

and setY(int);and

c a l l (p u b l i c * Po in t . * (. .))

identifies calls to any public method defined on Point with any parameters and return

value.

(3) Control-flow based pointcut designators

These pointcuts capture join points based on the control flow of join points captured by

another pointcut. A control-flow pointcut always specifies another pointcut as its

argument. There are two control-flow pointcuts. The first pointcut is expressed as

cflow(Pointcut) , and it captures all the join points in the control flow of the specified

pointcut, including the join points matching the pointcut itself. The second pointcut is

expressed as cflowbelowtPointcut), and it excludes the join points in the specified

pointcut. For instance:

c f l o w (c a l l (v o i d L i n e . s e t P l (P o i n t)))

identifies all the join points in the control flow of any setpi (Point) method in Line

that is called, including the call to the setpi (Point) method itself.

cf lowbelow(ca l l (void L i n e . s e t P l (P o i n t)))

identifies all the join points in the control flow of any setPl (Point) method in Line that

is called, but excluding the call to the setPl (Point) method itself.

2.2.1.3 Advice

Advice is a method-like construct that provides a way to express crosscutting action at

the join points that are captured by a pointcut. AspectJ has three different kinds of advice

that define additional code running at join points. (1) Before advice runs when a join

21

point is reached and before the computation proceeds, i.e. that runs when computation

reaches the method call and before the actual method starts running. (2) After advice runs

after the computation 'under the join point' finishes, i.e. after the method body has run,

and just before control is returned to the caller. (3) Around advice runs when the join

point is reached, and has explicit control over whether the computation under the join

point is allowed to run at all. In the following code snippet, the advice prints the log

string prior to the execution of any set method in the Point class:

beforeO : c a l l (void Po in t . s e t* (in t)) {

Sys t em.ou t . p r i n t l n ("Be fo re s e t t i n g po in t x or y v a l u e . ") ;

}

2.2.1.4 Aspect

Aspects are modular units of crosscutting implementation. They are defined by aspect

declarations, which have a form similar to that of class declarations. Aspect declarations

may include pointcut declarations, advice declarations, as well as all other kinds of

declarations permitted in class declarations. The following declaration defines an aspect

that implements the behavior of updating display of a line moved recently.

aspect DisplayUpdating {

static boolean movedFlag = false;

pointcut move():
call(void Line.setPl(Point)) ||
call(void Line.setP2(Point));

after() : move() {
movedFlag = true;
Display.update();

}
}

22

2.2.2 Tracing with AspectJ

Tracing involves recording an execution of a software system in order to debug, analyze,

and modify the software system. In fact, tracing is a valid example of a crosscutting

concern since this concern cuts orthogonally across a number of classes and requires

coding in a number of places to perform the same task. The points at which we have to

perform tracing are typically method calls, event invocation etc. are all join points.

Therefore, AOP can be used to solve this problem through the following step:

• Identify individual groups of join-points of interest for tracing activities

• Design pointcuts to filter out these groups

• Associate advice with these pointcuts to perform the logging activities

AspectJ itself provides an efficient programming language environment to create traces

for Java programs. The three main elements of AspectJ, pointcut, advice, and join point,

powerfully support a flexible extraction of the information of source codes. Pointcut

addresses packages, classes, methods, and variables that could be interesting for

developers. Advice arranges appropriate information for the pointcut. Join-point filters

out the information in execution time. Using these three elements, AspectJ enables people

to extract the execution information they want to know from source codes and delve into

important parts iteratively.

23

Existing System
(Java Applications)

Aspect (AspectJ source)
• injects members into classes (advice)
• intercepts events (pointcut)

X/"
Instrumented System

(Java bytecode with trace)

Run

Figure 2-3: Tracing process for Java applications through AspectJ

Given the advanced tracing capabilities of AspectJ, it can be applied for analyzing and

understanding of existing software systems. Its tracing capabilities can also support

reverse engineering by capturing key execution points, identifying the core execution

path, without requiring instrumentation or modification of the destination source code,

etc. Figure 2-3 illustrates the use of AspectJ for tracing existing Java programs. What

follows summarizes the major advantages and disadvantages of current tracing

capabilities in AspectJ.

24

Advantages:

• Non-intrusive instrumentation

AspectJ works at the bytecode level and does not equip source code with any

instrument code. It facilitates configuration management and maintenance: tracing

functionality can be easily added, modified or deleted in a non-intrusive manner

giving complete control on tracing for the entire application.

• Flexible expression

AspectJ offers various expressions (pointcuts) for describing source code locations

to check at run-time. These pointcuts could be generic or specific depending upon

how specific is the filtering criteria. For example, pointcuts can be designed to take

care of join-points associated with discrete points in an inheritance hierarchy.

• Easy refinement

AspectJ allows users to refine the tracing log by adding another condition to

pointcuts. The combination of several pointcuts conditions also reduces the amount

of tracing log; users can reduce the amount of tracing records until they find the

precise information.

25

Limitations:

• Lack of support for trace control flow

AspectJ does not currently provide mechanisms to intercept method control flow,

such as repetitions of message and conditions under which messages are exchanged

by objects. The alternative would be to manually instrument the code or to use

debuggers or profilers.

• Lack of support for tracing outside the package

AspectJ does not allow aspects to be woven into Java's library packages. That means

that if a class is an extension of a class in Java's library, whenever an event is caught

from the former class, the trace will show a method call that seems to come out of

nowhere.

• Requires rebuilding process

In order to weave aspects into Java byte code of the destination, AspectJ files need to

be compiled together with standard Java source files or Java compiled files (class

file, jar file) via AspectJ compiler

26

2.3 Java RMI

2.3.1 Overview of Java RMI

Java Remote Method Invocation (RMI) is an object model for creating distributed Java-

based applications. Simplifying the communication between two objects in different Java

Virtual Machines (JVM), Java RMI enables objects in one JVM to invoke methods on

objects in other JVMs, in the same way as methods of local objects. On one hand, Java

RMI is capable to work as a stand-alone middleware platform. On the other hand, it also

acts as the foundation for other high level frameworks, such as Enterprise JavaBeans and

Jini.

The general Java RMI architecture is shown in Figure 2-4. Java RMI includes three

independent layers:

(1) The stub/skeleton layer is the interface between the application layer and the rest of

the RMI system. A stub for a remote object is the client-side proxy, which forwards

the request from the client to the actual remote object. A skeleton is a server-side

entity, which dispatches calls to the actual object in the server.

(2) The remote reference layer is responsible for carrying out the semantics of the

invocation and sits on top of the low-level. It has the client-side and the server-side

components.

(3) The transport layer is based on TCP/IP connections among different machines in the

network. It is responsible for the set-up and management of the connection and

dispatching the requests to the remote objects.

27

Client Node

Client Object

Uisrzs;

©

Stub

Remote Reference Layer

Transport Layer

0
Server Node

Registry

Server

Remote Object

@ v
0

Skeleton

Remote Reference Layer

Transport Layer

a

e
Figure 2-4: Java RMI Architecture

The basic procedure a client uses to communicate with a server is as follows: © First a

server creates a remote object and registers it to a local registry. © The client obtains the

reference of the remote object in the registry, and receives an instance of the local stub

class. The stub class is transferred from the remote JVM, and automatically pre-generated

from the target server class and implements all the methods that the server class

implements. © When the client invokes a method on the remote object, the method is

actually invoked on the local stub. The stub marshalls all the information associated to

the method call, including the name of the method and the arguments, and sends this

information to the associated skeleton on the server side ©. © The skeleton demarshalls

28

the data and makes the method call on the actual remote object. The remote object

executes the method and passes the return value back to the skeleton © , the skeleton

marshalls the return value, and sends it to the associated client-side stub 0 . At last, the

stub demarshalls the return value and passes it to the client object © .

2.3.2 Implementation Details

2.3.2.1 Server Side

One of the requirements for a server process to be visible to a client object is that the

server must implement the java.rmi.Remote interface. Any methods which are intended

to be called by a remote object must be placed in an interface that extends the

java.rmi.Remote interface. That interface must be implemented by the class whose

methods will be called remotely. In addition, each method that will be called remotely

must fulfill the following requirements:

(1) Must include the exception java.rmi.RemoteException (or one of its super classes

such as java.io.IOException or java.lang.Exception) in its throws clause, in addition

to any application-specific exceptions (application-specific exceptions do not have to

extend java.rmi.RemoteException).

(2) A remote object declared as a parameter or return value (either declared directly in

the parameter list or embedded within a non-remote object in a parameter) must be

declared as the remote interface and not the implementation class of that interface.

29

Furthermore, a server class is required to implement an interface that extends the

java.rmi.Remote interface, by extending the java.rmi.server.UnicastRemoteObject class.

By extending the UnicastRemoteObject (in the java.rmi.server package) the class is given

access to the remote behavior of both, the java.rmi.server.RemoteObject and

java.rmi.server.RemoteServer. A server must also bind its unique name to the RMI

registry, allowing clients to be able to "find" the server through the RMI registry. Once

the server code is completed, the code must be compiled with the RMI compiler. By

doing this, the skeleton code for the server is generated. The skeleton code handles all of

the underlying networking needs of the communication. This includes, but is not limited,

to setting up a connection, accepting the marshalled method invocation and potentially

accompanying parameters and sending a response.

2.3.2.2 Client Side

A client can send a reference to the server by using the java.rmi.Naming class. The

java.rmi.Naming class also provides access to services such as binding (already

mentioned for the server process) unbind, lookup and listing the name-object pairings

maintained on the host. Upon completion of the client code, the code must be compiled

with the RMI compiler, thus generating the client stub code. The client stub code is used

to send the marshalled messages to the server process, to receive and demarshall the

response from the server.

30

2.4 Formal Concept Analysis

Formal Concept Analysis is a mathematical technique that provides insights into binary

relations. It is a branch of lattice theory that provides a way to identify maximal

groupings of objects that have common attributes [WIL81]. The mathematical foundation

of formal concept analysis was laid by Birkhoff in 1940 [BIR67]. It is now gaining wide

acceptance and has been applied to various application domains, such as to evaluate class

hierarchies, explore configuration structures of preprocessor statements, for

redocumentation, and to recover components.

2.4.1 Definitions

Formal concept analysis is based on a relation % between a set of objects O and a set of

attributes ft, hence ^ . c O x J l The triple C = (O, ft, %) is called formal context. For a set

of objects O c O the set of common attributes q is defined as:

<r(0) = {a € ft | Vo e O : (p, a) e %}

Analogously, the set of common objects x for a set of attributes .4 ^ft is defined as:

T(A) = {o e O | \fa e ft: (o,a) e %}

The mappings are antimonotone:

O, c 02 => a (02) c a (0/)

^/ c A2 => x (A2) c x (/*/)

and extensive:

31

O c x(a(0)) and ^ c a(x(^))

To illustrate concept analysis, we use the binary relation between a group of stars and

their characteristics shown in Table 2-1 as an example.

C-.
o
li
.S

C

Merkur

Venus

Earth

Mars

Jupiter

Sat/urn

Uranus

Neptune

Pluto

C lontext (O.A.'Tl)

Attributes A

X

X

X

X

X

V- V V* O- O V-

X X

X X

X X

X X

X X X

X X X

X X X

X X X

X X

Table 2-1: An example relation table [LINOO] (a characterization of stars)

In the example, the objects are the different kinds of stars; the attributes are the

characteristics small, no moon, etc. An object star has attribute characteristic if row i and

column/ is marked with a x. For this relation table, the following equations hold:

a ({Merkur}) = {small, near, no moon}

x ({distant, moon}) = {Jupiter, Saturn, Uranus, Neptune, Pluto}

A pair (O, A) is called concept if A = CT(O) A O = x{A) holds, i.e., all objects share all

attributes. For a concept c = (O, A), O is the extent of c, denoted by extent(c), and A is the

intent of c, denoted by intent{c). Informally, a concept corresponds to a maximal

32

rectangle of filled table cells modulo row and column permutations. In the example,

({Earth, Mars}, {moon, small, near}) is a concept, whereas ({Earth, Pluto}, {moon,

small}) is not a concept: a ({Earth, Pluto}) = {moon, small}, x ({moon, small}) = {Earth,

Mars, Pluto}. The following table contains the concepts for the relation in Table 2-1.

Concept 1

Concept 2

Concept 3

Concept 4

Concept 5

Concept 6

Concept 7

Concept 8

Concept 9

Concept 10

Concept 11

Concept 12

({}, {moon, medium, distant, small, large, near, nomoon})

({Pluto}, {moon, distant, small})

({Uranus, Neptune}, {moon, medium, distant})

({Merkur, Venus}, {small, near, nomoon})

({Jupiter, Saturn}, {moon, distant, large})

({Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon, distant})

({Earth, Mars}, {moon, small, near})

({Earth, Mars, Pluto}, {small, moon})

({Merkur, Venus, Earth, Mars}, {small, near})

({Merkur, Venus, Earth, Mars, Pluto}, {small})

({Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon})

({Merkur, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {})

Table 2-2: The Concepts for Table 2-1

The set of all concepts of a given formal context forms a partial order via:

(01,^0 < {02,A2)0 O, c 02

or equivalently with

(OuAi)< (02,A2)oA, =>A2

If ci < C2 holds, then c\ is called a subconcept of C2and ci is called superconcept of c\.

33

For instance, ({Jupiter, Saturn}, {moon, distant, large}) is a subconcept of ({Jupiter,

Saturn, Uranus, Neptune, Pluto}, {moon, distant})

2.4.2 Concept Lattice

The set L of all concepts of a given formal context and the partial order < form a

complete lattice, called concept lattice:

L(Q ={(0, A) e 2°x 2* I A = a(0) A O = x(A)}

Concept lattices are usually visualized as hierarchical graphs, often with non-redundant

labeling (presents each object and each attribute only once) to improve their readability.

Each node represents a different concept. The node with an attribute a eJA. represents the

most general concept that has a in its intent, called the top element; on the other hand,

the node with an object oeOrepresents the most specific concept that has o in its extent,

called the bottom element. Figure 2-5 shows an example of concept lattice graph derived

from the previous context table in Table 2-2. In this figure, the bottom element, Concept

1, ({}, {moon, medium, distant, small, large, near, nomoon}) contains the empty set of

objects coupled with all the attributes. The top element, Concept 12, ({Merkur, Venus,

Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {}) includes an empty set of

attributes coupled with all the objects.

34

Figure 2-5: The concept lattice for the Table 2-2 (stars and their characters)

The content of a node N in this representation can be derived by passing attributes down

and passing objects up [LINOO]:

• the objects of TV are all objects at and below N,

• the attributes of TV are all attributes at and above N.

For example, to read Concept 8, one must pass all the objects from the lower level up to

Concept 8, and one will get {Earth, Mars, Pluto} as the object list of Concept 8. Then,

one must pass all the attributes from the upper levels down to Concept 8, and one will get

{small, moon} as the attribute list of Concept 8. Therefore, Concept 8 represents ({Earth,

Mars, Pluto}, {small, moon}) which corresponds to the list of concepts in Table 2-2.

35

2.5 Regression Testing

2.5.1 Overview

Throughout the software life cycle, the cost of maintenance activities dominates the

overall cost of a software product. A significant part of this maintenance cost is spent on

testing to be performed after a modification request was performed. Among the different

types of testing performed during maintenance, regression testing plays an important role.

Regression testing attempts to validate modified software to ensure that no new errors are

introduced into previously tested code [HAROO].

Regression testing can be defined as the process of reusing (parts of) a test suite that was

used for testing the original version of the software. One approach to regression testing is

to rerun all test cases in the test suite. However, due to the size of software products and

the associated size of the test suite, re-executing an entire test suite may require days or

even weeks. Therefore, retest-all approach are considered often too expensive, especially

when only a small portion of a system was modified as part of a performed maintenance

request. Due to the substantial effort associated with the re-test all approach, kinds of

regression test selection techniques have been developed to reduce the cost of regression

testing [ROT96].

Regression test selection (RTS) techniques attempt to reduce the testing cost by selecting

and running only a subset of the test cases from a program's existing test suite, exercise

the software entities that have been changed or are most likely to be affected by the

change [GRA01]. Rothermel and Harrold provide the following selective retest strategy

36

for regression testing [ROT96]. The strategy is presented as a solution to the following

problem:

Given program P, its modified version / " , and test set Tused

previously to test P. Find a way of making use of T, to gain

sufficient confidence in the correctness of P'.

(1) Select 7"e T, a set of tests to execute o n / 5 ' .

(2) Test P' with T, to establish the correctness of P' with respect to 7".

(3) If necessary, create 7" , a set of new functional or structural tests for P'.

(4) Test P' with T", to establish the correctness of P' with respect to 7" .

(5) Create I"", a new test suite and test history for P', from T, 7", and 7" .

2.5.2 Regression testing selective techniques

A significant body of existing work on regression test selection exists in the literature.

These regression testing techniques can be differentiated by their programming

languages support, e.g., procedural languages [ROT97], object-oriented languages

[HAR01B], aspect-oriented languages [XU07], as well as by the type of applications they

support, e.g., COT-based applications [ZHE06], database-driven applications [HAR04].

In general, RTS approaches can be used for code or specifications. Specification-based

selection techniques focus on changes at the specification level. They are independent of

the code, but require properly-maintained specifications. Code-based selection techniques

are based on the available source code. They record the program elements exercised by

37

the tests during previous releases and select based on the existing information, the test

cases that exercise elements changed in the current release. A number of code-based

selection techniques focus on different programming elements: control-flow [ROT97],

data-flow [HAR89], program slices [GUP96], firewall concept [WHI92], and they

operate at different granularity levels, such as fine-grained [ROT97] or coarse-grained

[CHE94].

[GRA01] presents a typical classification of regression test selection techniques. In terms

of the testing goal, RTS approaches are grouped into five families: Retest-All Technique,

Ad Hoc/Random Techniques, Minimization Techniques, Dataflow Techniques, Safe

Techniques. Among them, the later three methods are often used in practice. Dataflow-

coverage-based techniques select tests that cover those program entities, which are

modified or affected by modifications. Like the dataflow methods, minimization

techniques are fundamentally coverage based analysis approaches. However, the

minimizations techniques attempt to identify a minimal set of tests from the set of all test

cases T If the coverage of two test cases is exactly the same, the new test suite will only

keep one of them. Both minimization and dataflow techniques are not designed to be safe,

and they can fail to select a test case that would have revealed a fault in the modified

program. In contrast, safe RTS techniques make certain that they will not omit any test

cases in the original test suite Tthat can reveal faults inP' .

38

In what follows, we provide a more detailed review of some of these regression test

selection techniques.

• [ROT97] proposes a safe regression test selection technique which supports

statement level analysis for procedural programs. In this approach, a Control flow

graph (CFG) is used as program representation to select tests, which contains nodes

for each simple or conditional statement, and edges between nodes representing the

flow of control between statements. At first, a CFG is established for the original

program, a test history table is also constructed to record which test cases correspond

to each traversed edge in the CFG. In the following, another CFG is built for the

modified program. Then simultaneous traversals are performed on two CFGs through

each node and edge to identify the difference between them; and the test cases in the

history table being related to the changed entities are selected. After comparison is

finished, system gathers all test cases that need to be rerun.

• Using the similar method introduced above to perform selective retesting for C

program, the tool TestTube [CHE94], on the other hand, employs relatively coarse­

grained analysis of the system under test, and produces a reasonable and practical

tradeoff between granularity of analysis and time/space complexity. A technique for

safe regression test selection for Java programs is described in [HAR01B]. This

technique is an adaptation of the method of [ROT97], which uses Java Inter class

Graph (JIG) extended of CFG to explicitly represent various specific features in Java

programs and then detect dangerous arcs on it. Based on the research reported by

39

[HAR01B], [ZHA06] develop their approach for AspectJ programs, utilizing AspectJ

Inter-module Graph (AJIG). With this control-flow representation, they determine a

set of dangerous AJIG edges corresponding to semantic source-code-level changes

made by a programmer.

• An incremental testing system that can also be used for regression testing is

described in [HAR89]. This tool leverage incremental data flow analysis to provide

reuse of original test cases. Data flow analysis employs definitions and uses of

variables to compute def-use associations. Uses are classified as either computation

uses (c-uses) or predicate uses (p-uses). A c-use occurs whenever a variable is used

in a computation statement, and a p-use occurs whenever a variable is used in a

conditional statement. During the initial testing, the system stores the previous data

flow analysis result and test cases. After program changes, the system analyzes the

effect of the modifications on the test history, and reruns the test cases traversing

every definition-use pair that is deleted from the original program, new in the

changed program, or modified for the changed program.

• [GUP96] presented an approach to data flow based regression testing that uses

slicing algorithms to explicitly detect definition-use associations that are affected by

a program change. The slicing algorithms include backward and forward walk

algorithms, both of them require no past history of data flow information. Given a

program point, the backward walk algorithm identifies statements containing

definitions of variables that will affect the point when the program execution reaches

at it; the forward walk algorithm identifies uses of variables that are directly or

40

indirectly affected by either a change in a value of a variable at the program point or

a change in a predicate. This approach does not need to maintain a test suite and also

can achieve the same testing coverage as a complete retest of the program with

respect to the affected definition-use associations.

• A testing firewall methodology for regression testing has been developed by White

and Leung in [WHI92], which considers both control-flow dependencies and data­

flow dependencies. The firewall concept is defined to represent affected areas that

include changed modules and all other modules affected by them. When one program

entity is changed, then all test cases being related to it and to other entities in its

"firewall" will be identified and re-executed.

41

3. Research Contributions

In this chapter, we present our research contribution, a relative lightweight regression test

selection approach for Java RMI applications. The section will introduce the motivation

behind this research, its research hypothesis, research goals and the approach developed

to address the problem.

3.1 Motivation

The goal of regression testing is to ensure that the modified software still satisfies its

intended requirements. Due to the cost associated with regression testing, regression test

selection (RTS) techniques can be applied to reduce the overall cost for re-running test

cases. A variety of RTS techniques have been introduced for many kinds of programs,

such as procedural programs [CHE94, ROT97, WHI92], object-oriented programs

[HSI97, ROT00, WHI97, HAR01B], and aspect-oriented programs [XU07, ZHA06].

RTS methods are also being applied to component-based [MAO05] and COTS-based

applications [ZHE06]. However, most of these approaches focus on sequential programs,

with none of them providing support for regression test selection for distributed programs

(such as Java RMI applications).

Firstly, identifying distributed code entities (e.g. classes, methods), which are exercised

by a particular test case is one of the key issues for RTS. Using dynamic analysis can

provide a more complete and reliable analysis, and it can be achieved by using traces that

42

correspond to the actual execution paths of the test cases through the code [SNE04]. As

introduced earlier, Java RMI applications distribute objects and execute across different

hosts. The methods of remote Java objects can be invoked from other Java virtual

machines on different hosts. These features of Java RMI make it difficult to establish the

relation table between test cases and program components that is typically required for

regression test selection approaches. In this case, all individual execution events from

multiple machines need to be collected separately and then merged together properly into

a single, complete trace for an entire application. There exist some tools for profiling Java

RMI applications, such as Jinsight [PAUOO], JaViz [KAZOO], VisOK [LEEOO], JRastro

[SIL03]. However, some of these tools do not provide a sufficient level of detail to allow

for a more detailed analysis of the traces, and/or they are closed source (commercial)

tools, which cannot be customized.

Secondly, existing RTS approaches rely typically on one or several of the following

information resources: control flow information [ROT97], data flow information [HAR89]

or the firewall concept [WHI92] to identity which test cases are associated with

modifications. Nevertheless, these techniques only consider internal data states (program

state) to select test cases, external data states (such as databases, files) are not considered

in their analyses. For many applications working with databases or files, this omission

could lead to scenarios where test cases affected by the modifications might not be

selected and re-executed.

43

Method A2

Test Case A / ^ A I V — • >(^£\-—• •/

Test Case B

External Data Repository

Retrieves

-0
Method B3

Figure 3-1: Test cases dependency on sharing external data states

As depicted in Figure 3-1, test case A, method A2 updates an external data state; while

for test case B, method B3 retrieves the same data state. As a result one can observe that

there exists a write/read access between test case A and B, and in case of a modification

to method A2, both scenarios, test case A and B should be retested due to the data

dependency existing between the methods A2 and B3. However, most of the existing

regression testing techniques will fail to include test to cover these external data

dependencies.

There are several approaches addressing RTS for database-driven applications by using

database states [HAR04, WIL05]. However, common to these techniques is that they rely

on complete statement level instrumentation. Therefore, they require the recording of

huge amounts of data in the execution traces, making the analysis of these traces

expensive and often not feasible.

44

Furthermore, in many cases maintainers or project managers might want to perform an

initial (more lightweight) RTS prior to actually performing the modification, to identify

an estimate of the testing effort associated with the modification. This information might

be applicable to determine the level of testing and evaluation required, and the estimated

management cost to implement a modification request. We refer the reader for more

details on applying modification analysis activities to the IEEE maintenance standard

[ISO/IEC 14764:2006(E) IEEE Std 14764-2006].

Given these limitations and restrictions of existing tools and approaches in tracing and

performing regression test selection analysis for Java RMI programs, we decided to

implement our own tracing tool to collect the corresponding execution data and to

perform our own regression test analysis for Java RMI programs

3.2 Research Hypotheses and Research Goals

3.2.1 Research Hypotheses

In this research we present a lightweight regression test selection approach for Java RMI

applications that combines both execution trace collection and external data sharing

analysis. In particularly, we focus on estimating the potential testing efforts involved in a

change request during modification analysis. Our research hypothesis can therefore be

defined as follows:

45

Research Hypothesis:

A methodology can be developed to collect traces from distributed Java RMI

applications that allows for performing a lightweight regression test selection

analysis on these traces during the modification request analysis.

We expect our research hypothesis to hold if the following acceptance criteria can be

validated:

1. Automated tracing of distributed Java programs implemented using RMI

There exist a number of tracing approaches, which mainly focus on profiling sequential

programs [LEE97, GOL03, SEE05, SYS01]. As state earlier, to perform regression test

selection for RMI based distributed Java applications, execution traces from these

distributed systems have to be collected. However, tracing of distributed systems is more

complex and requires the tracing environment itself to be distributed, to allow for data

collected not only within an individual node but also from the distributed nodes.

In the literature, several approaches for tracing distributed Java RMI programs have been

proposed [KAZOO, GHO02, BRI05, CHE04]. After execution data from each individual

machine are captured, the data has to be transferred to a centralized repository. In

[ZOL04], different modes of trace transportation are described. In the local mode

approach, interceptors write the collected information (including timestamps) to local

files, and these files are later merged in one tracing file. An example implementation for

the local mode approach is JaViz [KAZOO]. For the buffer mode approach, events are

46

buffered locally in each component's name space, and then propagated to the center. The

communication may either be arranged using the common channels or through dedicated

channels. An example for the buffer mode approach is VisOK [LEEOO].

Merging both local execution data and remote invocation between components, can be

achieved by matching the corresponding entries on the server and client profiles. One

approach addressing this issue adopts a similar method as JaViz, which records unique

identifier for remote objects and methods, the machine names of client and server, as well

as the client-side TCP/IP connection port number to support a consistent merging of the

execution traces. Rather than developing a stand-alone tracing tool we plan to integrate

our tracing tool as an Eclipse plug-in within the Eclipse IDE. Based on the existing work

on tracing sequential and distributed programs we anticipate that a RMI based Eclipse

plug-in tracing tool can be developed.

2. Implement a lightweight regression test selection method for distributed Java

RMI applications to estimate the testing effort involved prior to performing a

program change.

RTS techniques have been applied previously to verify that the applications still complies

with its specified requirements after a program change. As part of this research we focus

on the analysis of applying selective regression testing technique to provide some

guidance in estimating the potential testing effort involved during the modification

request analysis. The goal is to provide decision makers with some guidelines with

respect to the number of test cases that have to be retested, prior to actually performing

the modification.

47

A number of regression test selection techniques that use dynamic system traces to build

coverage matrices between test cases and program entities (e.g. statements, methods,

classes, or modules) have been proposed for procedural, object-oriented and aspect-

oriented applications. However, most of these test selection approaches focus on

identifying test cases to be re-run for sequential applications. This is due to the fact that

their underlying tracing approach is limited to the collection of runtime communications

within components, and do not examine causality relationship between local invocations

and remote calls. Therefore these methods are typically not suitable for analyzing

distributed systems such as RMI based programs.

Moreover, existing RTS approaches have mainly focused only on the change propagation

through the internal program state (i.e. variables) manipulation, and do not consider

change impacts involving persistent states (i.e. databases, files). Although several papers

[HAR04, WIL05] have addressed RTS for database applications, these approaches are

typically heavy weight approaches, requiring fine grained traces at the statement level,

making them very precise but also computational expensive.

Based on the above criteria, we can then also define our Null-Hypothesis when to reject

our research hypothesis.

Null-Hypothesis:

The research hypothesis will be rejected if it is not possible to collect a

consistent set of distributed Java RMI applications traces or no tool can be

developed to support a selective regression testing analysis for these traces.

48

3.2.2 Research Goals

In what follows we further refine the research hypothesis to specify our primary research

goals as follows:

Research-Goal 1:

Develop an Eclipse Plug-in to trace and collect run-time information of

distributed Java RMI applications at different levels of granularity, including

external data states, without the need for any major user involvement

This research goal can be further decomposed into several sub-goals:

1. Define a methodology for tracing and merging trace information

For tracking dynamic behaviour of distributed Java RMI programs, the methodology

is required not only to trace local calls within a node, but also to capture remote

method invocations between different machines. It should allow to specify different

levels of granularities (i.e. function-level, class-level) at which the information is

collected, as well as to select which component (i.e. a method with a specific name)

in an execution to be monitored. Moreover, the approach should not require the user

to manually modify any source code for the collection of the execution traces.

49

2. Develop an Eclipse plug-in to automate the tracing environment for distributed

Java RMI applications

The plug-in should support the extraction and merging of execution information from

different running nodes as well as associate these traces to the execution of specific

test cases. Furthermore, messages of remote method invocations and external data

states (e.g. databases, files) access must also be intercepted and included as parts of

the collected tracing information.

Research-Goal 2:

Apply execution traces to support a lightweight regression test selection

approach.

This research goal can be further decomposed into several sub-goals, they are:

1. Apply Formal Concept Analysis (FCA) to support a lightweight RTS analysis

Formal Concept Analysis (FCA) is capable to perform sensible grouping of objects

that have common attributes, and helps extract dependency information. Using test

cases as the objects and execution trace elements that are executed by a particular set

of test cases as the attributes, an execution dependency lattice resulting from FCA

can identify all the test cases that execute a particular software component, and then

can be used to estimate the test cases that should be rerun after the software change is

made.

2. Include the external data state analysis to improve the FCA based

RTS analysis

The test case selection method is expected to enrich our previous FCA based RTS

approach by taking into account external data sharing relationship among the

program entities of different test cases. When program components of several test

cases accessing the same external data, if one test case is selected to be retested, the

others will be analyzed whether or not to be re-executed. Some test cases which are

omitted by the previous approach will now be complementally added.

3. Implement an Eclipse plug-in to evaluate the improved RTS analysis

Based on the execution traces, the plug-in should have the capability to establish an

external data sharing table among system test cases, and use the table to conduct the

proposed RTS method. It is also expected to support both textual information and

graphical representations of the dependency structure between execution traces and

test cases. Evaluate the approach through some initial case studies.

51

4. A Selective RTS Methodology for Distributed Systems

In what follows we introduce a general overview of our novel regression testing

methodology for Java RMI programs. The methodology overview is followed by a more

detailed description of the various parts of our methodology in the subsequent sections

and subsections.

Java RMI Program
with Tracing Aspect

Test Cases
Maintainer

©

Modification
Request

JRPAT- Tracer
(Eclipse Plug-in)

Deployment

Tracing code generation

"4
Source Code Scan

Java RMI Program

I Client | | | j Server ||J

SQL (JDBC)

JRPAT-Analyzer
(Eclipse Plug-in)

GIH

Execution Traces
Database

V.

0
Execution
Dependency
Lattice with
RTS Result

Execution
Dependency

Lattice

Figure 4-1: The RTS Methodology for Distributed Systems

The RTS methodology is briefly described in step © to step ©.

O - Select a destination program:

Select a Java RMI-based distributed program to be analyzed.

© - Perform instrumentation on the destination program:

52

Utilize the tracing plug-in (the JRPAT-Tracer) to instrument the Java RMI program

on both client and server sides for collecting runtime data.

© - Run the instrumented destination program with test cases:

The execution traces are collected and stored in the server-side central database by

the JRPAT-Tracer.

© - Perform analysis on the tracing information:

The analysis plug-in, the JRPAT-Analyzer, consists of three major components. (1)

An External Data Sharing Analysis (EDSA) component to analyze the external states

accessing. (2) A formal concept analysis (FCA) component to perform the logical

grouping of the traces. (3) A visualization component to represent textual and

graphical information. In this step, the JRPAT-Analyzer merges the client/server

execution traces and uses them to build the external data sharing table for test cases.

© - Visualize FCA result:

The JRPAT-Analyzer invokes the FCA component to compute the FCA concepts and

the relations among them, and then calls an external tool Graph Viz to generate a

graph file of the result. After that, the JRPAT-Analyzer visualizes the graph file, an

execution dependency lattice, in its specific view.

© - Input modification request:

Given the execution dependency lattice from step ©, a modification request can now

be specified at the concept level.

© - Conduct regression test case selection:

The JRPAT-Analyzer performs the selective regression testing analysis and identifies

the test cases that have to be potentially retested as part of the modification request.

53

© - Visualize test case selection results:

Both the changed node and the test cases that required re-testing are highlighted in the

concept lattice.

4.1 Tracing Process

4.1.1 Instrumentation

For the instrumentation of Java RMI programs, we utilize AspectJ [KIC01], an extension

of the Java language to support aspects. AspectJ instruments the bytecode of Java

applications and thus does not require the modification of the source code. We selected

AspectJ due to its additional flexibility, compared to other byte code instrumentation

approaches during monitoring the program execution and logging of the trace

information. It supports both the collection of trace information for classes, methods,

packages and threads, as well as the collection of run-time objects and actual arguments.

In addition, AspectJ allows for parameterization, to specify tracing which entities (e.g.

classes, methods and packages), which interactions (e.g. non-static, static, constructor and

remote calls) and which positions (e.g. before, after and around executions).

Source

code scan

(1)

Program static

information
Java

code

Code
generation

(2)
AspectJ

code
ajc

Aspect

templates

Deployment

Program with

tracing aspect

M)

Figure 4-2: The instrumentation workflow

54

The instrumentation workflow is illustrated in Figure 4-2. (1) A fact extraction of source

code is first performed to collect static information about the distributed Java RMI

program analyzed (e.g. interface classes in which RMI remote methods are defined,

package names, etc.). (2) Then, based on the derived source code information, the

Aspect J tracing codes are generated and inserted into the destination project

automatically. In the next step (3), the Java codes and the AspectJ codes are compiled

(weaved) to create the tracing enable version of the program. Those steps stated above

are performed on both client and server sides. In the last step (4) the RMI system is

deployed. The stub and skeleton classes required by RMI are automatically constructed

on the server side, and the stub classes along with the interface classes are deployed from

the server to the client through TCP/IP socket transfer.

4.1.2 Tracing Remote Invocations

The RMI middleware has previously been used to provide extended services for the

intercept of remote invocations [CHE04]. In what follows we use AspectJ for the

interception of these remote procedure calls. As description in Section 2.3, a remote

method call includes the invocation to the reference remote method of stub instance on

the client side, and the invocation to the real remote method on the server side.

Leveraging AspectJ, both the client and server-side information of a remote call can be

collected separately. However, the collected information is not sufficient to establish a

mapping between the server-side and the client-side tracing records. We remedy this

problem by exchanging the remote invocation record between the client and the server to

establish the traceability among them (Figure 4-3). The invocation record on the client

55

(i.e. the sender host name, the name of the method invoked, etc.) is transmitted to the

server, and also the server-side method call information (i.e. the receiver host name, the

receiver class name, etc.) is sent to the client.

The client-side
traces before
invoking the

remote method M

The server-side
traces of the
remote method
M invocation

Figure 4-3: Exchanging the remote invocation records between Client and Server

4.1.3 Tracing External Data States

In database-driven applications, program components typically utilize different external

data state (elements). This is in particular of interest for scenarios such like when one test

case involves a write access to some external data element and another test case performs

a read access to the same external data element. During the RTS analysis, there is a need

to identify these often indirect data dependencies with external data elements to

determine the appropriate set of test cases that have to be re-run after a modification

request.

56

Through AspectJ, we are able to trace external data access information by monitoring the

corresponding access operations in the source code at runtime. Java provides several

classes in the "java.io" package for file handling shown in Table 4-1. These classes can

be monitored to generate the file sharing relation among test cases.

class FilelnputStream

class FileOutputStream

class FileReader

class FileWriter

class RandomAccessFile

A file input stream obtains input bytes from a file.

A file output stream for writing data to a file.

Convenience class for reading character files

Convenience class for writing character files.

Instances of this class support both reading and writing to a
random access file.

Table 4-1: Java file handling classes in the "java.io" package

The following classes (Table 4-2), being parts of the "java.sql" package, are designed for

database processing, and hence we can trace these classes to establish the database

sharing relation among test cases.

interface Statement

interface
PreparedStatement
(extends Statement)

interface ResultSet

An object used for executing a static SQL statement and
returning the results it produces.

An object that represents a precompiled SQL statement. The
SQL statement is precompiled and stored in a
PreparedStatement object, and the object can then be used to
efficiently execute this statement multiple times.

A table of data representing a database result set, which is
usually generated by executing a statement that queries the
database.

Table 4-2: Java database processing classes in the "java.sql" package

57

4.2 Selective Regression Testing Analysis

The RTS analysis presented in this research extends a previous FCA-based regression test

selection approach [PAB06] to distributed programs (especially for Java RMI

applications), and complements it with external data states analysis to provide the ability

to estimate testing effort more precisely prior to performing a modification request.

4.2.1 Combining RMI traces with FCA

In the existing FCA-based regression test selection approach [PAB06], an execution

dependency lattice is generated to represent the test case coverage based on runtime

traces collected. In this concept lattice, test cases are objects and the execution traces

accounting for each test case are their attributes". Given the lattice representation one can

identify which test cases execute which software component. Starting from the node

(represents a method exercised by test cases) to be modified; we can traverse the

execution dependency lattice downward and identify all the reachable leaf nodes

(represent test cases) and therefore the associated test cases that need to be retested.

In this research, we perform the FCA-based regression test selection analysis on Java

RMI programs. Runtime data of the distributed Java applications is collected from

multiple hosts and transmitted to the central database. The collected execution traces for

each test case are then merged to provide the input for the execution dependency lattice.

In the lattice, methods and test cases can be identified by their unique names, which are

created by combining the test case names and the name of the host they were executed on.

58

In Figure 4-4, the FCA context contains four execution traces captured from a Java RMI

distributed program.

The test case name is
combined^vith its host
name.

The methodname is
also consisted of its
hostname. 'R* means
that the metho d is a
remote method.

^slovenia read db: Dl(san-marino) executeQuery(san-marino)
GetConnection(san-marino) ReleaseConnection(san-marino)
remoteCallB(san-marino_R)

slovenia_read_fiXe: <init>(san-marino) D2(san-marino)
remoteCallB(san-marino_R)

sXovenia_write_db: CI(san-marino) executeUpdate(san-marino)
"JV GetConnect ion(san-mar ino) ReleaseConnect ion(san-mar ino)

remoteCal1A(san-mar ino_R)

slovenia_write_file: <init>(san-marino) C2(san-marino)
remoteCallA(san-marino R)

Figure 4-4: The FCA context of a sample Java RMI program

In the context, test cases are the objects and the methods in execution traces accounting

for each test case are the attributes. In this example, test cases are started on the client

slovenia, and they invoke remote methods (i.e. remoteCallA, remoteCallB) on the

server san-marino. Figure 4-5 shows the resulting concept lattice generated from the

FCA context.

concept lattice

Figure 4-5: The concept lattice of a sample Java RMI program

59

4.2.2 External Data Sharing Analysis combined with FCA

A limitation of our previous approach is that it does not consider external data flow; the

define-use relationship that might exist among program components executed by

different test cases. Therefore, it might ignore some test cases that need to be rerun based

on a particular change. To overcome the limitation of the former FCA-based approach,

the improved regression test case selection methodology will extend the approach

through the use of external data sharing as follows:

Build the external data sharing table among test cases based on execution traces

gathered. Analyze the retesting test cases selected by the FCA-based RTS method with the

external data sharing table, identify all other test cases which have define-use

relationship with the FCA selected test cases, and add them into the retesting list.

Next we present our lightweight RTS approach that leverages external data sharing

relations to further refine the RTS analysis. The approach considers each file or table in a

database as a variable, and traces their usages. External data in files are normally

accessed through some type of read or write access. We refer to them as r-use and w-use

operations. For the external data in database tables we concentrate on SQL-based systems

and identified the following four main access strategies: select, delete, insert, and update.

Select usage is used to retrieve data from tables and is denoted as r-use. Delete, insert,

and update usages are employed to modify data in tables and are denoted as w-use. If

both read and write operations are performed to the same external data, then the usage of

60

the data is denoted as rw-use. Test case A will affect test case B only if A modifies (w-

use or rw-use) an external data that is retrieved (r-use or rw-use) by B.

^ \ T e s t Cases

External Data^.
Dl
D2
D3
D4

Tl

R

W

T2

R
W

T3

R

RW

T4

R
w

T5

'•:., W

R

Table 4-3: An example external data sharing table

Table 4-3 illustrates such an external data sharing table. In the example, T5 is initially

identified as a test case that needs to be re-executed, it reads {r-use) D4 and writes (w-use)

D2. In the next step a further analysis is performed, since T5 may affect other test cases

accessing the same external data D2. T2 and T4 all use D2, with T2 has write access (w-

use) on D2, and T4 has read access (r-use) on D2. Based on the above definitions, only

T4 has defme-use relationship with T5 and therefore needs also to be retested. We can

define this external data sharing analysis more formally as follows:

Given is dk, an external data shared by program components executed by different test

cases. We use a notational convention usage(d/J to denote the usage of the external data

d^ and its value is defined as the table below:

The usage of dk
Empty

r-use
w-use
rw-use

The value of usage(dk)
<t>
0
1
2

Table 4-4: The usages and corresponding values of an example external data

61

Assume that t'j is a test case selected to be retested; r, is a test case being checked to see

whether it is affected by t'j. Then for an external data dk, if the following equation holds:

(tj.usage (dk)±<f>) o (t' j.usage(d^^>) n (ti.usage(d^l) o (t'j.usagefd^O) =1

There exists a define-use relationship between the two test cases, tt is affected by t'j and

also need to be re-executed.

Note that a define-use relationship among test cases is transitive. Whenever a

modification is made to one test case, this transitivity can result in a ripple effect. For

example, in Table 4-3, test case T4 is selected as being affected by the selected test case

T5. As part of the ripple effect analysis, we have to check now whether there exists

another test case which has define-use relationship with T4. Since T4 writes (w-use) D3

and test case T3 reads and writes (rw-use) D3, T3 is also added to the retesting list. Then

we need to continue examine T3, T3 will not affect any other test cases because it only

has two r-use usages of external data. Till now, the analysis for the effect of T5 is

finished.

Let T be the original test suite the program under test. Let T'(T'^T) be a set of test

cases which are selected to be retested. A typical regression test selection through

external data sharing analysis proceeds as follows.

(1) Select a set of test cases 71, 71 s T but 71 £ T.

(2) Analyze 71 and V with the equation discussed above to find out TV, a set of test

cases in 71 that are affected by 7", add 7T to T.

(3) Select a set of test cases T2,T2zT but T2 £ T.

62

(4) Analyze T2 and TV with the equation discussed above to find out TT, a set of

test cases in 72 that are affected by TV, add TT to T.

The pseudo code for the algorithm performing the RTS approach is shown as Figure 4-6.

Algorithm: PerformEdsaRTS
Input: The RTS result list selected by the FCA-based approach
Output: The complemented RTS result list including both the result of FCA and the result of
External Data Sharing Analysis (EDSA)

Denote TFCA to be the list of test cases which are selected by the FCA-based approach
Denote TE to be the list of test cases which are identified accessing external data
Denote TA to be the list of test cases which are selected and able to affect other test cases
Denote TC to be the list of test cases being checked if they are affected by the selected test cases
Denote TR to be the list of test cases which are in TC and affected by the test cases in TA
Denote TEDSA to be the list of test cases including both the FCA result and the EDSA result

Save all test cases from TFCA into TEDSA
Select test cases which are in both TFCA and TE, and have w-use or rw-use usages of external
data, save them in TA
Identify the test cases which are in TE but NOT in TFCA, and have r-use or rw-use usages of
external data, save them into TC

NoNewTestCaseFound = false

WHILE NOT NoNewTestCaseFound, DO
FOR each test case tq in TC, DO

Check tCj with every test case taj in TA
IF they use the same external data, THEN

Add tci into the result list TR

IF TR is not empty, THEN
Save all test cases from TR into TEDSA
Clear TA
Identify the test cases which are in TR, and have w-use or rw-use usages of
external data, save them into TA
Identify the test cases which are in both TR and TC, remove them from TC
Clear TR

ELSE
NoNewTestCaseFound = true

RETURN TEDSA

Figure 4-6: The algorithm for RTS through External Data Sharing Analysis

63

5. Implementation

In what follows we discuss the implementation details of our Java RMI-based Programs

Analysis Toolkit (JRPAT) that was developed as part of this research. In the first part of

the chapter, we focus on the Eclipse plug-in designed to trace distributed Java RMI

applications. We refer to this plug-in as the JRPAT-Tracer. This plug-in is used to

establish the link between test cases and execution traces required for the RTS approach.

In the second part of this chapter we introduce the analysis Eclipse plug-in, which

performs the actual RTS analysis. The plug-in is referred to as the JRPAT-Analyzer.

5.1 The Tracing Plug-in JRPAT-Tracer

The JRPAT-Tracer plug-in was developed to instrument distributed Java RMI programs,

collect runtime data from both local calls and remote invocations, and store the collected

information in a central persistent data storage. Figure 4-1 shows a general overview of

the JRPAT-Tracer plug-in:

f

K.

Client A

Tracer

*

r~~

^

Clie ntN

Tracer

"̂ C-"̂ Network

Figure 5-1: The general overview of the JRPAT-Tracer plug-in

64

A wizard like approach was implemented to guide users during the instrumentation

process, by providing a sequence of dialogs. These dialogs include project selection,

tracing code generation and instrumentation, RMI stub/skeleton class deployment, etc.

Figure 5-2 shows the JRPAT-Tracer interface used to support a wizard based

instrumentation of the programs to be analyzed.

A sample wizard dialog of
the JRPAT-Tracer

B <& RimServer J

& j B ™i
H t f i tracer

[+' (?) DBConnection.java
i+ [S] LogManager.java
M jTj ThreadTracing.java
[+i |T| Traceltem.java
i+' § TracingServerSide.aj
[+i [Tj TransmitManager.java
t Uj Variables.Java

W A, JRE System Library [jrel.5.d 07]
M g,. ASPECTJRT_LIB - C:\PrograiTFiles\eclil

j i j build.ajproperties
, dbs.ldb

@] dbs.mdb
test.tmp

/SERVER SIDE/ Static analysis and Code generation

(I) Please input the path of the destination testing project

Root source directory;

J Ti\h\hon_z\workspace2\RmiServer Browse..

< Back Finish. Cancel

L The menu and toolbar of the JRPAT-Tracer

Figure 5-2: The JRPAT-Tracer interface and a sample wizard dialog

Next, we illustrate in more detail, how the actual client and server side instrumentation is

performed through the JRPAT-Tracer plug-in.

65

file://C:/PrograiTFiles/eclil

5.1.1 Tracing Local Calls

Local calls, which correspond to method call sequences between components running on

the same Java Virtual Machine, are traced through Aspect templates. These calls can be

categorized into four groups:

(1) Non-static method calls. This type of method calls are invoked on an instance of a

class. These calls are captured through the following Aspect template:

Object around (Object targetObj):

call(public * PACKAGE_NAME..*(..)) &&

target(targetObj)

{

ADVICE_BODY

return proceed(targetObj);

}

(2) Static method calls. Static methods are invoked directly within a class, the target ()

pointcut will not automatically match calls to such a method. These calls are traced by

using the following Aspect template:

Object around():

call(public static * PACKAGE_NAME..*(..))

{

ADVICE_BODY

return proceed();

}

(3) Constructor method calls. Constructor method call is a specific case of non-static

method call. A constructor method is automatically called when an object is created using

66

the keyword new. The following template is used to collect the execution of the

constructor methods.

Object around():

call(PACKAGE_NAME.new (. .))

{

ADVICE_BODY

return proceed();

}

(4) Thread starting calls. Threads are created by calling the s t a r t () function on objects

whose class implements the interface j ava. lang. Runnabie. The template below is used

for collecting the executions involved in these calls:

Object around (Object targetObj):

call(* java.lang.Runnable+.start(..)) &&

target(targetObj)

{

ADVICE_BODY

return proceed(targetObj);

}

Given this Aspect template we can now identify the starting calls of thread to allow for

the tracing of the method invocation sequences in multiple threads.

For single threaded programs, class names, object identifiers and timestamp are sufficient

to identify a trace record. However, for distributed multithreaded programs, a thread

identifier is needed to identify each trace record. Moreover, since the same thread

identifier might be assigned to several threads operating on different nodes at the same

time, the node name on which the thread is running has to be included in each trace

record.

67

5.1.2 Monitoring External Data Interactions

As previously introduced (Section 4.1.3) we consider in our approach external data (e.g.

files or databases) elements. While monitoring external data interactions, we in particular

interested not only in identifying and tracing the source code involved in the external data

access but also the type of data access performed (i.e. read, write access).

5.1.2.1 File Access

In the context of this research we restrict the monitoring of external file to the I/O access

types shown in Table 4-1, and the supported file access types to read, write, and random

access. Common to Java is that both the access type and I/O name that are accessed are

specified during the object instantiation. Figure 5-3 shows some of these file access

instantiation we support in our approach.

File access type

FilelnputStream fin = new FileInputStreamCFILE_NAME.dat");
A

FileOutputStream fout = new FileOutputStreamCFILE_NAME.dat");
A

FileReader fr = new FileReader("FILE_NAME.dat");
A

FileWriter fw = new FileWriter("FILE_NAME.dat");
A

RandomAccessFile fra = newRandomAccessFileCFILE_NAME.dat","rw");
A

Figure 5-3: File access instantiation

68

We can now trace these file I/O through the following AspectJ pointcut called

fiie_mutators. This pointcut monitors all the constructor calls to these file access

classes.

pointcut file_mutators():

(

call(java.io.FileInputStream.new(..))

|| call(java.io.FileOutputStream.new(..))

|| call(java.io.FileReader.new(..))

|| call(java.io.FileWriter.new(..))

|| call(java.io.RandomAccessFile.new(..))

) ;

5.1.2.2 Database A ccess

External data accessed in database tables can be monitored through the following Java

classes, Statement, PreparedStatement and Resul tSe t . In what follows, we describe

the tracing of these classes using AspectJ.

(1) Statement

There are several methods provided by the class statement to provide database access:

• executeQueryO, which retrieves data from a table using a SELECT statement

(r-use).

• executeupdate (), which can be used to INSERT, UPDATE, or DELETE

records in a table by executing SQL statements (w-use).

• e x e c u t e d , it can work as executeQuery () or executeupdate () specified by

the given SQL statement (r-use or w-use).

69

If users require frequent insertions/updates/deletions of a database, they can improve the

database performance by using the addbatch () and executebatch () methods of the

statement objects. Utilizing batch statements to process the database, the tracing related

information is collected when the method addbatch () is invoked with a SQL statement

as its parameter, for example:

stmt.addBatchf"UPDATE TableName SET ColumnName = * ") ;

accordingly, the pointcuts for tracing these two methods are

c a l l (* j a v a . s q l . S t a t e m e n t * . e x e c u t e * (. .))

| | c a l l (* j a v a . s q l . S t a t e m e n t * . * B a t c h (. .))

Each of the pointcuts collects invocations to any method in the statement class or its

subclasses and supports any argument and returns type and their name either begins with

execute or ends on Batch.

(2) PreparedStatement

The prepared statement provides database table operations, through the support of SQL

PreparedStatement pstmt = con .prepareSta tement

("UPDATE TableName SET ColumnName = ? WHERE ColumnName = ?") ;

The invocation of these operations can be captured through the following pointcut

c a l l (* j a v a . s q l . C o n n e c t i o n * . p r e p a r e S t a t e m e n t (. .))

The pointcut captures all calls to the method prepareStatement in the connection class

or its subclasses.

70

(3) ResultSet

The ResultSet is a table corresponding to the results returned from a database access. It

is generated by executing the method executeQuery () or execute o to query the

database. The following are two examples for creating such ResultSet instances:

ResultSet rs = stmt.executeQuery(SQL statement);

or

stmt.execute(SQL statement);

ResultSet rs = stmt.getResultSet();

The ResultSet class defines the insertRowt) method that inserts a row into a table, the

deleteRow() method that deletes a row from a table, and the updateRow () method that

updates a row in a table. The execution of these methods can be captured by using the

pointcuts below:

call(* java.sql.Statement+.execute*(. .))

|| call(* java.sql.ResultSet+.*Row(..))

The first pointcut is used to trace the database table associated with a ResultSet object,

the second pointcut captures information about the type of table access that is being

performed by the ResultSet object.

71

5.1.3 Tracking Remote Invocations

Within our tracing environment both client and server message exchanges through

remote invocations are traced. The tracing of these remote invocation is performed by

using the around advice Aspect template shown in Figure 5-4 for the client side, and the

wrapper method template shown in Figure 5-5 for the server side.

Object around(Object targetObj):

call(* java.rmi.Remote+.*(..)) &&

target(targetObj)

{

• Collects the client-side trace of the remote invocation,

including the name of the remote method and the arguments passed

to it;

• Redirect the call to the wrapper method with above data as

parameters;

• Gets the result from the wrapper method and passes the result

and control back to the invocation.

}

Figure 5-4: The client-side around advice Aspect template

The around advice Aspect template captures the call to a remote method that is

intercepted by the following pointcut:

call(* j ava.rmi.Remote+.*(..))

This pointcut intercepts all calls to methods defined in any of the classes that implement

the java.rmi.Remote interface. Whenever the call is advised by the around advice, the

method's context information, such as the target object on which the method is called

(target (targetObj)) and the method's arguments are collected. Leveraging the Java

72

reflection mechanism, the advice can determine the wrapper method at runtime

(t a r g e t O b j . g e t C l a s s () . g e t M e t h o d ()) , and redirects the call to it (i n v o k e ()) . The

redirected call includes the original method's arguments and additional arguments (i.e.

the name of the real remote method, the client-side trace of the remote invocation).

Finally, the advice receives the result from the wrapper method and passes both the

result and the control back to the method invocation.

p u b l i c O b j e c t PACKAGE_NAME.INTERFACE_NAME.WrapperMethod (

c l i e n t s i d e _ i n v o c a t i o n _ r e c o r d , remote_method_name,

r emote_method_a rgumen t s) throws RemoteExcep t ion

{

• P r o c e s s e s t h e c l i e n t s i d e _ i n v o c a t i o n _ r e c o r d ;

• F i n d s t h e o r i g i n a l r e m o t e method s p e c i f i e d by

remote_method_name and i n v o k e s i t w i t h r e m o t e _ m e t h o d _ a r g u m e n t s ;

• G e t s t h e r e s u l t of t h e c a l l t o t h e o r i g i n a l r e m o t e method, adds

w i t h t h e s e r v e r - s i d e i n v o c a t i o n r e c o r d and r e t u r n s them back t o

t h e c l i e n t s i d e .

}

Figure 5-5: The server-side wrapper method template

Figure 5-5 shows the server side wrapper method that wraps all methods defined in the

interface class extending java. rmi. remote. This wrapper method is added to the server-

side interface class, and the body of the wrapper is implemented in the server-side tracer.

The wrapper method works like a regular RMI remote method; it receives the remote call

from the client side with parameters including the client-side remote method invocation

trace information, the name and arguments of the original remote method. The wrapper

method uses the latter two parameters to get and invoke the original remote method, and

then returns the invocation result, as well as the server-side remote method invocation

trace back to the client.

Client

The Remote

Method Invoker

join point

Client-side

Tracer

Stub Class

D

J j Dummies of original remote methods

(() Implementations of original remote methods

The Remote Method

Imclementer

Server

(9)
Server-side

Tracer

Skeleton Class

D

y y Dummy of the wrapper method

y Interface of the wrapper method

\ y Implementation of the wrapper method

Figure 5-6: The working process of tracing remote invocations through the Aspect

template and the wrapper method

Figure 5-6 shows the process on how the Aspect template and the wrapper method work

together in tracing remote method calls. The involved steps (1) to (13) are described

below in chronological order:

74

(1) The client-side method invokes the remote method.

(2) The invocation is captured as a join point through a pointcut defined by the

AspectJ class (advice) as part of the client-side tracer.

(3) The advice calls the wrapper method on the instance of the client-side stub class

(STUB), passes the client-side tracing record, the name and the arguments of the

remote method as parameters.

(4) STUB then communicates with the skeleton class on the server side (SKEL)

through the object serialization protocol for the remote invocation.

(5) SKEL invokes the wrapper method; its interface is compiled in the remote method

implementation class (IMPL) of the destination application.

(6) This invocation is transmitted to the AspectJ class in the server-side tracer, which

has the whole body of the wrapper method.

(7) The server-side AspectJ class gets parameters listed in (3), and calls the actual

remote method in IMPL specified by the method name and arguments it received.

(8) The result of the invocation to the actual remote method is returned back to the

server-side AspectJ class from IMPL.

(9) The AspectJ class passes the result of the wrapper method, which includes the

actual remote method and the server-side tracing record, to IMPL.

(10) IMPL delivery the return value of the wrapper method to SKEL.

(11) SKEL marshalls the return value and sends it over the wire to STUB.

(12) STUB demarshalls the return value and returns it to the client-side AspectJ class.

(13) The result and the control are returned back to the join point, the client-side

remote method call.

75

5.1.4 Collecting Traces

One of the main challenges while tracing distributed programs is the need not only to

collect local trace information from clients and servers, but also to merge the data for

further analyses. In our approach, the traces are first buffered locally and then propagated

to the sever-side database by leveraging the communication channel provided by Java

RMI. During the execution of a test case, first both client-side and server-side traces are

stored in a local memory buffer. After the execution of the test case is completed, the

server-side traces are stored in a database hosted on the server. The client-side tracer first

ensures that not only the local execution is complete but also the server-side application

is not busy. Next the local client runtime data can be transmitted to the server by

invoking a server-side remote method. This remote method is implemented by the server-

side tracer and uses the RMI communication channel to transfer the client-side traces to

the database on the server. The template for the remote method is shown in Figure 5-7:

public boolean PACKAGE_NAME.INTERFACE_NAME.TransmitMethod

(ArrayList recvBuffer, int dataType) throws RemoteException

{

• Makes sure that the server application is not busy;

• Processes the tracing records received, which are

execution data or test coverage information;

• Saves the records into the central database on the server.

}

Figure 5-7: The template for collecting client-side traces

76

5.1.5 Tracing the Method Invocation Sequence

In AspectJ, method executions can be identified through join points and intercepted by

pointcuts. When entering, executing or leaving a join point, additional advice operations

can be performed, like before, around, and after . These advices are used to implement

a stack-based algorithm that we use to (1) identify the parent-child relationship and (2)

establish the invocation sequence among method calls at runtime.

Within our environment, an algorithm is implemented to maintain stacks of executed

methods. A method is pushed on a stack each time when its before advice is reached.

The execution related information of this method is stored in the output buffer when its

associated around advice is executed. The method is popped off the stack through its

af ter advice. If a method calls child methods, its execution is only completed after all

the nested child method executions are completed.

public class Client {

public void M(RemoteInterface rm) {

P();

ThreadA tl = new ThreadA(rm);

ThreadB t2 = new ThreadB(rm);

t1.start();

new Thread(t2).start();-

public void P() {

K{);

}

class ThreadA extends Thread {

public void run() {

A();

R K) ;

>

class ThreadB implements Runnable {

public void run() {

B();

R2();

>

Figure 5-8: A distributed, multithreaded client-side source code example

77

For a multithreaded application, the algorithm of tracking method calls has to be further

extended, since method executions in different threads can be interleaved. In this case,

tracking the sequence of method invocations requires to create multiple stacks - one stack

per thread.

The example in Figure 5-8 shows a distributed and multithreaded client-side program,

and the result of applying the stack algorithm on this example is shown in Figure 5-9.

Stack
ThreadB

Stack
ThreadA

1

1.3

©
start

o
1.3.1

0
B

0
1.3-2

0
R2

0

Create a stack, pop start()
pushstartQ

pushB popB pushR2 popR2

1.2

&
start

0
1.2.1

0
A

© <

1.2.2

0
Rl

€>

Create a stack,
push start ()

pop startQ push A pop A push Rl popRl

Stack
Main

0

1 M

0
1.1

1

P

M

i

1.1.1

1.1

1

V

K

P

M

0
I.I

l

p

M

©

1 M

©

pushM pushP pushK popK popP popM

Figure 5-9: Application of the stack-based algorithm for creating the invocation

sequence for the program in Figure 5-8

(1) In the first execution step, method M () calls method P (), and p () calls its child

method K (). These invocations are captured by the Aspect template shown below:

78

before()

call(public * PACKAGE_NAME..*(..)) &&

!call(* java.lang.Runnable+.start(. .))

{

... pushes the method captured into the stack it belongs to

}

The pointcut specifies that any invocation of non-static or static method on any class in a

given package (defined by PACKAGE_NAME) except the s t a r t () method calls in the

interface Runnabie or its subclasses are captured. The before advice then pushes the

methods calls traced on their associated stack (©).

(2) In the next step (©), the af ter advice pops the completed method calls K () , p () off

their associated stack. The pointcuts below capture any invocation of non-static or static

methods on any class in a given package (defined by PACKAGE_NAME), and the s t a r t ()

method calls on the interface Runnabie or its subclasses.

after() :

call(public * PACKAGE_NAME..*(..)) ||

call(* Java.lang.Runnable+.start (..))

{

... pops the method captured off its associated stack

}

(3) In the next step (©), method M() calls methods new t i . s t a r t () and

Thread (t2) . s t a r t () to start two new threads. The calls to the s t a r t () method are

intercepted by the following Aspect template. In the template, the pointcut matches the

s t a r t () method call in the interface Runnabie or its subclasses, and intercepts the thread

starts. The before advice then generates a new stack for the newly created thread, and

79

pushes the s t a r t () method on the stack prior to the execution of the actual s t a r t {)

method.

b e f o r e () :

call(* j ava.lang.Runnable+.start(..))

{

c r e a t e s a new s tack for the t h r ead ,

And pushes the s t a r t () method i n t o the s t a ck

(4) After the completion of the s t a r t () method (0) , the af ter advice pops the s t a r t ()

method off the stack. The invocations of the methods involved in different threads, e.g.

A (), RI (), B (), R2 (), are also intercepted and advised through the previously introduced

Aspect templates.

Figure 5-10 shows the traces generated for the above example program. The execution

records in Stack Main, Stack ThreadA and Stack ThreadB are marked as ©, © and ©.

Thread A, which extends the
class Thread, is started.

! -sl&MJh',.Itt^X'l&s&WU

Thread B, which implements the
interface Runnable. is started.

•! J 0b Edit yiew Insert Fgrmat Records lools Type a question rar help 9 x

sequenceid|

1

1.1

1.1.1

1.2

1.2.2

1-3

1.3

1.3.2 0".

1185290421734 main void rmi. Client. II Otaotfclnt 11

1185290421816 main void rmi.Client.FO

185290421816main void rmi.Client.KO

185290421843 main void rmi.ThreadA. startO

1185290421859 Thread-3 void rmi. LocalHethod. A0

1185290421859 Thread-3 int rmi.Renotelnterface.Rl,

®. 185290421843 main void rmi.ThreadB.start 0

1185290421859 Thread-4 void rmi.Localmethod.B0

1185290421859 Thread-4 int rmi.Rs«oteInter£ace.R2(21

Client

Client

Client

Client

ThreadA

ThreadA

Client

ThreadB

ThreadB

" i l l

rni.Clienteia45Tb6

rmi. Client?! a45Tb6

rni.Clientsa45Tb6

Ihread[Thread-3,5, main]

Ihread[Thread_3,5, main]

rmi.Clienteia45Tt6

Thread[Thread_4,5, main]

Thread[Thread-4,5, main]

Client

Client

Client

Thread

LocalH

Remote

Thread

LocalM

Remote

Record: (H j T J f

Datasheet View

" [TJ (H]@. f 9

Distributed hosts can be distinguished with
different names in the parameter "receiverhost"

Figure 5-10: The client-side traces for the program in Figure 5-8

80

5.1.6 Executing Test Cases

Users of our system are provided with an interface to specify and associate a meaningful

alias test name prior to executing a test case (Figure 5-11). A test case database table is

created, containing the input conditions for the test cases and information about the host

on which the test case is executed. The resulting test case table is used as a look up table

to associate later on test cases with different unique sequence ids.

Eclipse SDK

Source Refactor Navigate Search Project JRPAT Tracer Tomcat Run

ill? 111?

I (ps Test Case Input •..kdftfo&v:.

Please input the name of the coming test:

Itestcasel

OK

i • TzsTCOvmmmmmi^^mmm

Re

tes tcase
AddTask
AddTask
AddTask
AddTask
AddTask
DeleteTask
DeleteTask
DeleteTask
DeleteTask
DeleteTask
DeleteTask

cord: 1*1. < 11

| host | sequenceid
western Sahara 24
western Sahara 22
western Sahara] 19
western Sahara 23
western Sahara 20
western Sahara 74
western Sahara 79
western Sahara 80
western Sahara 73
western Sahara 75
western Sahara 76

l • I • ! (• * ! of 80

1HI
|"f

1
c

i

x |

-1

i_rJ

Figure 5-11: The test case name setting interface and a sample test coverage matrix

5.2 The JRPAT-Analyzer Plug-in

The JRPAT-Analyzer plug-in provides services for merging the client/server traces, by

constructing an external data sharing table among system test cases, visualizing the

execution dependency concept lattice, and supporting the proposed RTS method. An

overview of the plug-in's GUI is shown in Figure 5-12.

81

Die Edit levigate Search frolect JRPAT Trater Iomcat B.un yyjndow Help

HJ^I

I «• J S»
OSelecti S - T v " S f

B • Test Cases
; italy_deposit
! italy loginaccount

italy_openaccount

; itaV_showbaIance

i EDSA Table

Execution Lattice

Lattice Node List

RTS Lattice

P J& Q*7 .

D EDSA Table

segld

12
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.1.1
2.2.2
2.2.2.1

<i- '

M.s®m,%- j .
iC Execution Dependency L

timestamp i j y p e | senderhost ^

1167620946750 21 italy
1187620945468 11 san-marino
1187620945531 11 san-marino
1187620945531 11 san-marino
1187620945531 11 san-marino
1187620945562 11 san-marino
1187620945562 11 san-marino
1187620945562 11 san-marino
1187620945562 10 san-marino
1187620945562 10 san-marino

© Function View s T y ,

Traces merging and EDSA table building

i U Lattice Node List \.U

senderpackage_j sendercfass

Bank BankClient
Bank BankManagerlmpt
Bank Account
Bank Account
Bank Account
Bank BankManagerlmpI
Bank BankTest
Bank BankTestSon
Bank BankTest
Bank BankTestSon

j Generate execution lattice j

RTS Result Lattice

senderinstance

null
BankManagerl..,
Bank. Account...
Bank. Account...
Bank. Account...
BankManagerl...
Bank.BankTest..,
Bank.BankTest,,,

Bank.BankTest..,
null

_J

jUBS
receiverhost

san-marino
san-marino
san-marino
san-marino
san-marino

san-marino
san-marino
san-marino
san-marino
san-marino

Modification request for RTS 1

rpatjsnalyze

WSi%N

>

= a
jreceiverpackajge j

Bank
Bank
Bank
java.sql
Bank
Bank
Bank
Bank
Bank
Bank

JLi
= D

Figure 5-12: The overview GUI of the JRPAT-Analyzer

In what follows we discuss in more detail the main functionality of the plug-in and its

implementation.

5.2.1 Merging Client/Server Traces

The client/server traces are merged by analyzing the invocation sequence (Section 5.1.5)

and the test coverage matrix (Section 5.1.6). As a result of this analysis a merged

database table is created for every test case executed, with each table being identified by

a unique name (a combination of the test case and its host name). For the example in

Figure 5-13, we first get the information of testeasel (©), including its host name (italy)

and its base sequence id (7) from the test coverage matrix. This information is used to

find and match the related records in the client-side traces (©). In the next step client-

82

side records (©) and server-side records (0) are linked through the sequence id (e.g.

1.1.2), and the remote sender host name (e.g. Italy). Finally all records are selected and

stored in a table named Italy Jestcasel (©).

D y f U v A

•

—

stqueneeitf

1 ^

1.1
1
1
1

1
1
1
1
1
1

1

1.1

1 2
12 0 1.3 ™y
1,2,1
1,2,1.2
121.1
1.21.3

1.22
1.2.2.1 J

Records H i < 1 I

*'.
I type
11

60
10
21
21

,«t
11
!1
11
11
11

80
i

I swdwhost
:4aly

ilalj
Italy
italy
staly
stalj?
san-imanno
san-msrino
$an imsrino
san manno
$an manno

san rn»nno
• lH|»«lcf n

J f l l i '
(senijij

rmi |
rem i

iimi
rurti '
rimi

nrit
nmi
rmi
rmi
rmi
rtni

rmi »

J T*fes

is H18SOI
_J 5lovenJaJestc35e2

J TESTCASEimniST

.10? * i '

Gra^w

(tend M f ' l l 1 >1M!>• !<<?

_ I 1 2 1

L i t 1211
_ 1 1.2.1,2

,1.1.2.1.3
1.1.2.2
1.1.2.2.1
1,1?
1.1.2.1

. 1.1.2.1,1
r .11.2.1.2
_ l .1.2.1.3
_ 11,2.2
_ J . 1.2.2.1
*

11
11

r* 11

o< 11
80
21
11
11
11
11
11
80

f«sf* j i L t l i

sam-manrto
san-maiino
saft-matinp
sarvmarirto
san-manno
gan-matino
Slovenia
san-manno
san-manno
san-mawio
$an-maiin.o
sara-manno
san-mawto

t » J M J M J

rfalv
rtalv
tialv
italv
rtalv
rtalv
slowfcnia
slcwia
Slovenia
slwsnis
slwgnia
stove riia
slwenia

< * # • " , ' , ' . . . j * j j

rmi
rmi
rmi
mti
rmi
rmi
rmi
rmi
rmi
rmi
rmi
rmi
rmi

.3

Figure 5-13: Client/Server traces for a test case are merged into a database table

5.2.2 Constructing External Data Sharing Table

The external data sharing analysis (EDSA) table is created by the JRPAT-Analyzer plug-

in by querying the database for all execution traces collected from the executed test cases.

The flowchart in Figure 5-14 describes the algorithm used to create this external data

sharing table in more detail.

83

Gel records accessing database
data from one table

No

Yes

Process record one by one based on
their database handling way

Process record one by one based
on their file handling way, and
put its data usage information

into daiaUsagcBuffcr

Save the data usage information
into the PDSA table

Put lis data usage information
into dependencyBuffcr

Yes

Save the data usage information
into the EDSA table

Check dependency Buffer to
confirm action, and put its data

usage information into
dataUsageBuffcr

(End)

Figure 5-14: The External Data Sharing table creation flowchart

Figure 5-15 shows a screen capture of the table created by the JRPAT-Analyzer plug-in

based on the external data sharing analysis. As discussed earlier, the external data sharing

84

table allows us to further enrich traditional data dependency analysis, which focuses

typically only on internal program states, to include also external data states (e.g. files,

databases).

p jrpat_analyzer perspective - EDSA Tab!

01e Edit Mavigate Search Efoject JRPATTracer. Iomcat Run Window fclelp
lQlxJ

TIM- s i
•tt*"J &Wi |&53!

- J ^ J ^

<P

l i j ^ j r p a t .analyze.,

fiJ3ava

3 Test Cases

Execution Lattice
Lattice Node List
RTS Lattice

iED5A Table 23 V

testcase data host
western_sahara.read.db Account western-sahara
western.sahara.read.file test.tmp western-sahara
western_sahara_write_db Account western-sahara
western_sahara_write_file test.tmp western-sahara

Data type, 1 represents file,
2 represents database

3? Function View £3 \

Data usage, 0 represents read, 1
represents write, 2 represents read
and write

Traces merging and EDSA table building I Generate execution lattice] Modification request for RT5 |

Figure 5-15: A screenshot of an EDSA table example

5.2.3 Visualizing the FCA Execution Lattice

As discussed in Section 4, we use FCA to analyze traces to identify test cases that have to

be re-executed as part of a modification request. Within the JRPAT-Analyzer plug-in, the

recorded execution traces are pre-analyzed to convert them into a FCA context

compatible format. In the next step we invoke our existing FCA algorithm to perform the

85

http://western_sahara.read.db

formal concept analysis. The formal concept analysis algorithm creates an output as a dot

format file, which is with the standard Graphviz file format. Graphviz is an open source

graph visualization application which provides different options for representing

structural information as abstract graphs or networks [ATTOO]. Using the dot format file,

the JRPAT-Analyzer invokes Graphviz to create the corresponding graph. The graph is

then displayed within the JRPAT-Analyzer (shown in Figure 5-16).

Figure 5-16: A sample execution dependency lattice

86

5.2.4 Specifying the Modification Request

In order to specify a modification request, the user will have to determine which node

will be modified as part of the change request. Every node in the lattice is identified by a

node id, which can be found in the node list view of the JRPAT-Analyzer (Figure 5-17).

File Edn N j i i a h , 5«3ich P t o w t J f W T r u i i , Tnrii j f Run Wind.Ai 4<Jp

-iOlxl

9?\&-&\. j ^ ' l - J l ^ J fJ P
0= -

f r f |%]rpat_analyze.. .

4feJJava

D I >¥' Execution Dependency Lattice 1 U Lattice Node List

[±] Test Cases

JEDSA Table

• Execution Lattice

Lattice Node List
: RTS Lattice

Uffis,.
C2(western-sahara) 1
western_sahara_write_file 1
executeUpdate(western-sahara) 2
CI (western-sahara) 2
western_sahara_write_db 2
remoteCallA(western-sahara_R) 3
D2(western-sahara) 4
western_sahara_read_file 4
<init>(western-sahara) 5
executeQuery(western-sahara) 6
Dl (western-sahara) 6
western_sahara_read_db 6
GetConnection(western-sahara) 7
ReleaseConnection(western-sahara) 7
remoteCallB(western-sahara_R) 8

S= Modif icat ion Requests

fucntion
testcase
fucntion
fucntion
testcase
fucntion
fucntion
testcase
fucntion
fucntion
fucntion
testcase
fucntion
fucntion
fucntion

X).

Please input the node number that will be changed:

OK Cancel

Traces merging and EDSA table building j Generate execution lattice I Modification request for RTS j

Figure 5-17: A sample lattice node list and modification request interface

5.2.5 Performing Regression Test Case Selection

After specifying the node to be modified, the JRPAT-Analyzer invokes the FCA

algorithm to determine the list of test cases that need to be retested after the program

modification. The set of test cases identified by the FCA analysis is used as input to our

87

External Data Sharing Analysis. The EDS A uses this initial set of regression test cases to

further analyze the existence of data dependencies with external data. Including these

external data members might result in additional test cases that have to be included as

part of the regression test selection. The flowchart depicted in Figure 5-18, illustrates the

regression test selection process that includes the external data sharing analysis using the

EDSA table, which corresponds to the algorithm discussed in Section 4 (Figure 4-6).

/ Read the test cases selected by the \
\FCA approach into TestRerunBuffer/

Use TestAffectedBuffer to store
the test cases which are in
TestRerunBuffer and have write-
usage or read&write-usage of the
external data

Use TestCheckingBuffer to store
the test cases which are NOT in
TestRerunBuffer and have read-
usage or read&write-usage of the
external data

Get one test case from
TestCheckingBuffer and check it
with all test cases in
TestAffectedBuffer

Add the test case into
TestTempBuffer

Clear TestAffectedBuffer,
identify the test cases in
TestTempBuffer which have
write-usage or read&write-usage
of the external data, add them into
TestAffectedBuffer for further
ripple effect checking

Remove the test cases being
added into TestTempBuffer from
TestCheckingBuffer

Add all test cases of
TestTempBuffer into
TestRerunBuffer, clear
TestTempBuffer

jf Return \
\TestRerunBuffer/

Figure 5-18: The External Data Sharing Analysis flowchart

The resulting graphical representation of the RTS results is shown in Figure 5-19. In the

lattice, the filled diamond corresponds to the program entity that will be modified, the

two filled ellipses are the test cases selected by the FCA, and the two filled hexagons

correspond to the additional test cases identified by the EDSA.

f jrpaLanalyzer perspective - RI5 Result tatt ice:-;Eci ips| ;SpE*^|:8^^^^^^^B Sf#l§5
EJe &8 [jamgate Seych &oj*t WATTrassr Iomcat Jim grata jjek

_*y :*-* i*) ia.4 ' .3| .) i££si«x
JtattaNodeList

The program entity that
will be changed

Additional retesting test
cases identified by the
EDSA

Retesting test cases selected
by the FCA

Figure 5-19: A sample graphical presentation of the RTS result

89

6. Initial Evaluation

In this chapter we present results of two initial case studies performed to evaluate the

presented approach: in section 6.1 we present a case study performed on M-e-c Schedule.

This case study was used to evaluate the applicability of our JRPAT plug-in for

instrumenting Java RMI distributed program and to extract execution traces from it. The

second case study (section 6.2) is performed on a sample RMI Java program called

External Sharing that was used to evaluate the tools applicability in performing regression

test selection.

6.1 Case Study 1: M-e-c Schedule

This case study is based on an open source Java RMI distributed program, M-e-c

schedule1. The scheduling program was used to illustrate the applicability of the JRPAT

plug-in for instrumenting and collecting execution traces, and representing them through

both in either textual (table) or graphical (concept lattice) views. We also used this case

study to analyze and evaluate the overhead associated with collecting the execution traces.

6.1.1 Case study setting

M-e-c schedule is built on client-server architecture consisting of a console based server

application and SWING based client (Figure 6-1). The system allows users to schedule

1 http://sourceforge.net/proiects/mec-schedule.

90

http://sourceforge.net/proiects/mec-schedule

tasks on the server through the client. After initiating a task with a start date and a

periodic repeat, users are able to manage (edit, stop, resume, delete, etc.) the task.

M-e-c schedule consists of 71 classes, which implement 6 different functionalities: Add

task, Edit task, Stop task, Resume task, Delete task and Refresh (task). We treat each

function as a separate test case.

rn • i -.. •* w - . . . I - _ . _ _ » nr-ii- - « _ - ». _ J ^ ..,«.„., „ -' — - - - . . -TH, " ~ 1

File Help

; "|3 Add task ST Edit task CI Stop task ^aesuins ;a;k 5 ; Delete task §§§ Refresh

State Schedule date Command Repeat

Figure 6-1: M-e-c schedule client

Both, the client and server programs of the M-e-c schedule program are instrumented

through the JRPAT-Tracer running on both sides and the corresponding AspectJ tracing

packages are generated and added to the project.

91

/""'Resumes the selected task*/

protected void resumeActualTask() {

//request the selected task

He cT inner Task actualTask = this.getSe

//show the wait cursor

this.status.setPredefined(HecStatus:

try{

Reque3t0bject requestDeleteTask

|3 Aspect] markers at this Nne|ct) this. sender. sew

this. status .'clear () ;

this.refreshTaskList() ;

}

catch(Exception e){

this.status.setPredefined(HecStaf

>

Object around(Object targetObj)

Trace local non-static methods

1109 Aspect] markers at this line| t a rge tOb j) :
(

da t abase_muta to r s ()
| | (caU.(pubXic * de .mendelson.se
/ / I I c a l l (p u b l i c * r r o i . . * (. .))

)
ss t a r g e t (t a r g e t O b j)
ss l e a n (*. * .new(. .))
SS !calX(* j a v a . r m i . R e m o t e + . * (. .))
SS ! c a l l (* J a v a . l a n g . R u n n a b l e + . * [. .))
ss i gnore m u t a t o r s ()

Figure 6-2: The result of the instrumentation procedure

Figure 6-2 shows the source code after the instrumentation of the destination program.

The left side shows a source code snippet of ClientGuiPanel.java, a client side based GUI

class. The sample includes the entries to the test case functionalities listed above (i.e.

resume task, add task). After instrumentation, this class file contains additional execution

points (AspectJ join points) which are used to capture and generate the execution traces

during runtime. The right side of Figure 6-2 shows parts of TracingClientSide.aj, a

tracing aspect class for the M-e-c schedule client program. The part shown is the around

advice for local non-static method calls. The around advice monitors 109 join points in

the M-e-c schedule client program. Table 6-1 lists the join points in M-e-c schedule for

both the client and server side programs, which are captured by the around advice in the

tracing AspectJ class.

Application

Client-Side

Server-Side

The around advice
Join Point Type

static method calls
non-static method calls

constructor calls
thread start calls

static method calls
non-static method calls

constructor calls
thread start calls

Join Point Total Number
37
109
4
4
15

100
4
3

Table 6-1: The join points captured by the around advice on client and server sides

92

http://de.mendelson.se

In the next step we execute both, the instrumented client and server programs, by

executing selected test cases. The JRPAT-Tracer calculates the coverage achieved by the

test case and generates execution traces for both local and remote calls. The traces are all

stored as part of the system database on the server side. The server-side and client-side

execution traces are initially stored within 2 separate tables, one for the client side and

one for the server side. These tables are then analyzed and trace information related to a

specific test case is merged from above two tables into a separate, test case specific table.

For this case study, 6 tables based on available and executed test cases were created (start

up of the client and server applications were not executed as part of a separate test case

and therefore no specific tables were created for them). These 6 tables include 62 classes,

134 methods and 285 tracing records. The detailed information is shown in Table 6-2.

Test Cases

The client
starts up

The server
starts up

Add
Edit
Stop

Resume
Refresh
Delete

Table Name

No table

No table

slovenia AddTask
slovenia EditTask
slovenia StopTask
slovenia ResumeTask
slovenia RefreshTask
slovenia DeleteTask

Coverage
(sequence id

range)

1-18

1-13

19-30
31-45
46-55
56-65
66-71
72-80

Classes

9

8

14
11
9
9
7
12

Methods

15

14

32
27
18
18
12
27

Records

24

40

83
51
30
31
28
62

Table 6-2: The tables generated by merging Client/Server traces

Figure 6-3 uses a textual view to show the merged execution traces for an example test

case: Edit task.

93

BJKSlJliiBl!j£g^
Fife Ejdit yavigats Search Eroject JRPAT Tracer MyEclipse Bun Window t M p

<4k' D ffcf jrpat_analy

l | J Java

<$ Selection V n S>J Test Case

t- Test Cases

slovenia_AddTask

s lovenia_De leteTask

slovenla_EditTask

slovenia _RefreshTask

s lovenia_ResumeTask

slovenia_StopTask

EDSA Table

Execution Lattice

Lattice Node List

= RTS Lattice

seqld

; 32
33
34
34.1
35
36
36,1
36.1.1
36.1.1.1
36.1.1.1.1
36.1.1,1.1,1
37
38
38.1
38.1.1
38.1.2
38.1.3
38.1.4
38.1.4.1
38.1.4,10
38.1.4,11
38.1.4.12
38.1.4.13
38.1.4.14
38.1.4.2

[•<

times tamp

1187832713328
1187832717953
1187832717984
1187832718000
1187832718000
1187832720906
1187832720906
1187832720906
1187832720906
1187832720906
1187832720906
1187832720921
1187832720953
1187832720953
1187832720953
1187832720968
1187832720968
1187832720968
1187832720968
1187832720968
1187832721031
1187832721031
1187832721031
1187832721031
1187832721031
1187832720968

type
11
11
11
10
10
11
11
11
11
11
11
11
11
11
21
10
11
11
11
11
11
11
11
11
11
11

senderhost
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
italy
Italy
Italy
Italy
Italy
Italy

Italy
Italy
Italy
italy
italy

senderpackage
de. mendelson. scheduler, client
de. mende Ison, scheduler. c 1 lent
de. mende Ison. scheduler, client
de.mendelson.scheduler. client
de. mende Ison. utll
de, mende Ison, scheduler. c 1 ient
de. mende Ison. scheduler, c 1 lent
de. mende Ison. util
de, mende Ison. utll
de. mende Ison, util
de. mende Ison, utll
de. mende Ison. util
de. mende Ison. scheduler. c 1 ient
de. mende Ison. scheduler, client
de. mende Ison. util.r mi
de. mende Ison, schedulers mi
de. mende Ison, scheduler, r m i
de. mende Ison. scheduler, r m i
de, mende Ison. scheduler. r m i
de. mende Ison. scheduler
de, mende Ison. scheduler. server
de. mende Ison. scheduler. server
de. mende Ison, scheduler, server
de. mende Ison. scheduler, server
de. mende Ison, scheduler. server
de. mende Ison. scheduler

sender class
CIlentGuiPanel
ClientGuiPanel
TaskDiafog
TaskDiabg
DialogUtil
ClientGuiPanel
ClientGuiPanel
MecStatusBar
MecStatusBar
MecStatusBar
MecStatusBar
MecStatusBar
ClientGuiPanel
ClientGuiPanel
RMISender
MecRe motel...
MecRe motel...
MecRe motel...
MecRemotel...
MecTimerTask
MecTimer
MecTimer
MecTimer
MecTimer
MecTimer
MecTimerTask

senderinstance
de.mendelson....
de.mendelson....
de.mendelson,...
de. mendelson....
null
de. mendelson..,.
de.mendelson,..,
de. mende Ison....
de.mendelson,...
de. mendelson,,..
de. mendelson....
de. mendelson....
de. mende Ison....
de. mendelson... .
de. mende Ison....
MecRemotel m...
MecRemotel m...
MecRemotel m...
MecRemotel m...
de. mende bon....
de. mende Ison..,.
de. mendelson....
de, mendelson..,.
de mendelson
de mendelson
cte mendelson

receiver
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
slovenia
Italy
Italy
italy
italy
italy
Italy
italy
Italy
italy
Italy
Italy
Italv

J Post Process] | Generate dependency lattice | | Modification Request j

Figure 6-3: The merged traces for the test case Edit task

Figure 6-4 shows the concept lattice generated from all M-e-c schedule test cases. The

interpretation of the lattice is as follows: test cases represent "the lattice objects" and the

functions executed by the test cases correspond to the "attributes of objects". From the

concept lattice, one can identify an test case generated execution traces by traversing

upwards the lattice from the node containing the test case name until the root node is

reached. For example, the executed functions of the test case slovenia StopTask ©

includes all the functions in the nodes which are located in the route (marked with arrows)

passing from the node © to the root node ©, such as getTask, getCommand and so on.

In above functions, function © getTask(italy) and function © getTask(slovenia) are the

same functions running on different hosts (host italy and host slovenia).

94

i s s f s J l i M y i i & G ^

Figure 6-4: The execution dependency lattice for M-e-c schedule

In Figure 6-4, utility functions (used by more test cases) and specific functions (used by

less test cases) are separated by their locations in the concept lattice, the former are at the

top of the lattice while the later are at the bottom of the lattice. Through this concept

lattice, we can also identify that several test cases that share the same functions are more

close grouped together.

In Figure 6-5 the regression testing selection result for modifying the function getTask

(the filled diamond node) are shown. All filled ellipse nodes represent test cases that need

to be retested. These nodes are identified by passing the nodes down from the modified

node to the bottom node.

95

[File Edit Navigate Search Erojact WAT Tracer MyEclpse BL.I J.IZJ.. L*U

tJJava

Figure 6-5: The RTS result lattice for M-e-c schedule

6.1.2 Tracing Overhead

It is a known fact that tracing program executions is not free and will cause an additional

overhead in terms of execution time and resource requirements. In what follows we

present some results with respect to the execution time overhead caused by our approach.

We report execution times (in milliseconds) for three test cases, namely "Add", "Edit"

and "Refresh". We compared for this evaluation the instrumented and non-instrumented

versions of M-e-c schedule. The evaluation was performed on two computers running

Windows XP with 3.0 GHz Pentium 4 CPU and 1 GB RAM. Each use case was executed

several times in order to evaluate the affect of the execution length (memory

96

requirements) on the overhead. In order to be able to create execution traces of various

lengths, we introduced loop iterations which basically allowed us to repeatable execute

the same use case. Table 6-3 shows observed tracing overhead for the three test cases.

The table includes the loop iterations, the execution times of the original programs, the

execution times for the instrumented (bytecode level) programs, and the percentage

increase of the execution times.

-—__̂_____̂ Loop Iterations
Test Cases "-—-~^_^^

Add

Edit

Refresh

Number of Execution
Statements
Original Program
Execution Time
Instrumented
Program Execution
Time

Increasing Percentage

Number of Execution
Statements
Original Program
Execution Time
Instrumented
Program Execution
Time

Increasing Percentage

Number of Execution
Statements
Original Program
Execution Time
Instrumented
Program Execution
Time

Increasing Percentage

5

415

31ms

78ms

252%

255

25ms

43ms

143%

140

16ms

24ms

150%

10

830

63ms

235ms

373%

510

47ms

76ms

162%

280

31ms

57ms

184%

30

2490

141ms

546ms

387%

1530

63ms

141ms

224%

840

45ms

109ms

242%

50

4150

281ms

1133ms

403%

2550

78ms

219ms

281%

1400

62ms

172ms

277%

100

8300

578ms

2425ms

420%

5100

172ms

517ms

301%

2800

156ms

451ms

289%

Table 6-3: The tracing overhead for running three test cases on two computers

97

a — —

/
/

V

^,
_ — « - " "

>
/

/
/

ĴB

J.̂
J

1

Instrumented App.
Original App.

Using the test case "Edit Task" as an example, Figure 6-6 illustrates the difference of the

execution times between the original program and the instrumented program.

Execution Time (ms)

550
500
450
400
350
300
250
200
150
100
50
0

5 10 30 50 100 Loop Iteration

255 510 1530 2550 5100 Execution Statements

Figure 6-6: The execution overhead comparison of the original M-e-c schedule and

the instrumented M-e-c schedule by running the test case "Edit Task"

From the above results, we can observe that bytecode-level instrumentation causes as

expected an execution overhead compared to the non-instrumented version. Also as

expected the overhead is directly related to the loop iteration and the length of the

execution, with the increase in the number of loop iteration and execution statements, the

time consumption grows. For instance, the execution time increases 143% when running

the program 5 times (255 records in the execution trace), while the execution time

increases 301% when running the program 100 times (5100 records in the execution

trace). Though the overhead is significant, it is not overwhelming, because the tracing

facility does not change the basic system's behavior. In addition, since the RMI-based

application is not a real-time application, this kind of overhead could be ignored.

98

6.2 Case Study 2: ExternalSharing

The goal of the second case study was to evaluate the impact of the external data sharing

analysis on the regression test case selection. We were in particular interested in

identifying the impact of the external data states (e.g. files, databases) on the test case

selection. For the case study we implemented a Java program, ExternalSharing. Figure 6-

7 illustrates the test cases dependency of ExternalSharing based on five test cases (Tl to

T5). These test cases access four external data variables, with Dl and D2 being two

database tables, and D3 and D4 corresponding to two files. For example, Test case 1 (Tl)

reads data from the table Dl and writes data to the file D4.

Test Cases

Database Tables

External Data

Read Write Read & Write
Test <-, ——Data Test—• *Data Test < *Data

Figure 6-7: The test cases dependency for ExternalSharing

99

Figure 6-8 shows the execution dependency lattice and the external data sharing analysis

(EDSA) table that are generated after executing the five test cases.

Figure 6-8: The execution dependency lattice and the EDSA table

Figure 6-9 shows an example for a regression test cases selection. In this example, the

function readDl (filled diamond) would be modified as part of a modification request.

Using the FCA-based regression testing selection method, test cases Tl and T2 (filled

ellipses) were identified as the test cases that at the minimum to be retested. As part of

our evaluation, we also performed our external data sharing analysis for the same

modification request to see whether additional test cases need to be retested, due to the

existence of external data sharing in the system. The external data sharing analysis

uncovered the need for three additional test cases T3, T4 and T5 (the filled hexagons) that

should be retested after changing the function readDl.

100

' andnfrajn andorra_Tl *mdorra_T4 andoria/D
Uorra) R2<&an<:e_R) Rl(fr«neeJ9 writeD4(ftance) Tl(«ndorca) TtA$tna<:t_fy T4Candona) teadD2(&«nce3 T3(andi)rr»Xf««dD3(iSan«)

Figure 6-9: The RTS result lattice for ExternalSharing

In what follows we describe in more detail the EDSA-based RTS procedure performed

on the two initially selected test cases, Tl and T2. Table 6-4 shows the results of the

EDSA analysis for Tl. From the table one can identify that Tl has write access to the

external data member D4, while T5 has read access to it ©• During retesting using Tl,

we also need to re-execute T5. Next, we check the ripple effect of T5. As part of the re-

testing strategy, T4 is selected to be retested, because T5 writes data to D2 and T4 reads

data from it ©. The analysis continues with checking T4 and T3 is selected, due to T4

writes the data structure D3 and T3 has read access to the same data © . Since analyzing

T3 does not select any new test cases, the EDSA-based RTS procedure for Tl is finished.

T5, T4 and T3 need to be rerun after retesting Tl.

101

' "----^Test Cases
External Data"-—-^_

Dl
D2
D3
D4 O

Tl

R

W

T2

R
W

@

T3

&

T4

R
« j

T5

W

R

Table 6-4: The EDSA-based RTS procedure for Tl

Similar to the RTS procedure performed on Tl, we also applied the analysis on T2, and

identified that T4 and T3 need to be retested after rerunning T2. Therefore, after changing

readDl, all five test cases (T1-T5) need to be rerun. The result lattice is depicted in

Figure 6-9.

6.3 Threat to Validity

Based on the results from our initial experiments and observations made during the case

studies, our system is able to trace distributed Java RMI applications. The regression test

selection analysis was performed with reasonable overhead and only limited human

intervention. The test case selection technique presented in this research was not only

considering internal control flow but also external data sharing relationships among

program entities and test cases. As expected, considering external data states in the

change impact analysis affects the set of potentially affected parts in the program and

therefore has also directly affects the change impact set.

Our experimental evaluation has shown that our dynamic approach to regression test

selection can reduce the imprecision of static analysis techniques in examining causality

relationship between local invocations and remote calls. As a result our EDSA approach

102

was able to increase the accuracy of the analysis compared to our initial FCA-based RTS

approach. The EDSA included some (i.e. T3, T4, T5 in Figure 6-9) test cases that were

originally ignored by our FCA only based approach. The more precise handling of these

relationships is due to the collect runtime communications among multiple threads on

different nodes. As a result, our approach is capable of performing regression test

selection on distributed and multi-threaded programs, while most of other methods are

only suitable for analyzing single-threaded sequential programs [CHE94, HSI97, ROT00,

WHI92, WHI97, XU07, ZHA06]. Furthermore, in comparison with many heavy weight

approaches [ROT97, HAR01B] typically require fine grained traces at the statement level

our approach is less expensive, since it is based on runtime data collected at the function

level, which allows for smaller traces. Finally, our approach is quite intuitive and easy to

use. A graphical representation, a concept lattice, is used to visualize the RTS results,

and also simplifies the interpretation of these results. The presented methodology

supports a selective regression test selection approach which is almost completely

automatic, requiring only a minimum of user intervention. Like the instrumentation part

which is supported by wizard dialogs, and the RTS analysis part takes advantage of an

easy-to-use GUI.

It has to be noted that our approach also has some limitations. First of all, even though

the approach is based on function-level execution traces; scalability might still remain a

major limitation. Our approach currently lacks support for trace optimization and filtering

techniques, e.g. pattern matching, sampling. As a result, when applying the approach on

some large programs, the execution dependency lattice can become complex and

103

unmanageable. Due to this potential scalability problem, both the concept lattice and the

table representation in the system are limiting factors. Moreover, the analysis plug-in, the

JRPAT-Analyzer, is theoretically able to perform the RTS method on the applications

written in multiple programming languages, since the inputs of it are execution traces,

which can be generated in most existing programming environments. However, the

JRPAT-Tracer and the underlying tracing plug-in for collecting runtime data are

implemented based on AspectJ. Therefore, our approach is presently limited to regression

test selection problems encountered when developing or maintaining Java programs.

Finally, in order to perform RTS, our approach requires test suites which are traceable to

the user functions they cover. The accuracy level of the RTS result depends on the

coverage achieved by the existing test suite. If the test cases achieve a poor coverage, our

methodology will miss executions which are related to a specified modification, and

therefore is not able to provide an accurate RTS result. For this reason our approach is

neither minimum nor a safe selective regression testing approach.

Given the fact that our approach is based on the use of FCA for the analysis/clustering of

the trace information, some of the existing FCA limitations also will affect our

methodology. Firstly, consistency between the actual source code, test cases and the

concept lattice becomes an issue. In our current implementation it would be necessary to

re-run all the test cases after a completed modification, to update the concept lattice with

the new test cases that might have been the result of the previously performed

modifications. One way to address this problem would be to apply an incremental lattice

update algorithm, which would not require the recreation of the complete concept lattice

104

after each modification to the system. Secondly, scalability of the concept lattice might

become an issue for larger software systems. The scalability problem can be addressed by

including various visualization techniques, which would allow for different levels of

abstractions (e.g. zoom, collapsing, contextual views).

6.4 Related Work

In this section we will discuss and compare our work with existing research that is

closely related to ours.

6.4.1 Program Tracing

There exist a number of program tracing approaches, which mainly focus on profiling

single-threaded sequential programs [LEE97, GOL03, SEE05, SYS01]. Since these

approaches only collect runtime communications within components, they lack the

capability of tracing client/server activities across multiple hosts. Our approach differs

from these approaches by being able to capture separated trace records from various

processes, and examine causality relationship between local invocations and remote calls.

As a result, our approach is suitable for tracing multi-threaded distributed systems,

especially Java RMI programs. Other approaches to trace Java RMI programs can be

found in [KAZOO, LEEOO, BRI05]. JaViz [KAZOO] focuses on detailed method-level

execution data. It is able to trace distributed Java RMI applications and show the point

where the distributed application behavior is worse in a single trace. The drawback of

JaViz is its dependency on a modified JVM. VisOK [LEEOO] is a visualization tool to

debug distributed Java programs. The limitations of this tool are: it modifies the

105

implementation of RMI to trace interactions among remote objects; it cannot be used to

find method sequences, since the granularity of its traces is at the class level but not at

method level. Differing from these works, our approach leverages AspectJ to reduce the

implementation effort. The most closely related work to ours is [BRI05], in which the

authors present a method that uses AspectJ as instrumentation strategy to produce

execution traces, and then perform reverse engineering sequence diagrams for distributed

Java RMI systems. The main disadvantage of this work is that users have to manually

analyze the source code of the destination system (i.e. identify the RMI interface classes).

Furthermore they also have to perform the instrumentation manually. In comparison to

this work [BRI05], the instrumentation procedure within our approach is based on wizard

dialogs and only involves limited human interaction.

6.4.2 Distributed System Comprehension

In the literature, several approaches for comprehending distributed applications have

been proposed [BRU93, MEN01, MOE01, MOE02, GHO02, BRI05]. In them, BEE++

[BRU93] and X-Ray [MEN01] all aim to comprehend distributed systems written in

C/C++. BEE++ uses dynamic method while X-Ray employs static techniques for their

underlying analysis. BEE++ performs source code instrumentation to monitor the

execution of distributed systems. The execution is considered as a stream of events, and

the run-time events are dispatched to various distributed software comprehension tools.

X-Ray recovers the architecture of distributed systems relying on the static analysis of

C/C++ source code. The client-server relationships are identified using clustering

techniques and clues from the source code. Johan Moe et al. proposed a three step

106

method in [MOE01, MOE02], which uses execution trace data to help developers

understanding and improving CORBA-based distributed system. First, remote procedure

calls are traced using CORBA interceptors. Next, the trace data is parsed to construct

RPC call-return sequences, and summary statistics are generated. Finally, a visualization

tool is used to study the statistics and look for anomalous behavior. According to the

researcher, this method is able to provide a fast overview of the run-time behavior and

performance of the system.

Similar to our approach, [GHO02, BRI05] also analyze distributed Java RMI applications.

A comprehensive runtime interaction validation strategy for distributed Java RMI

applications is studied in [GHO02]. This approach proposes techniques for visualizing

interactions, specifying and verifying assertions, and checking design conformance based

on system execution traces. Local method sequences are collected after source code

instrumentation is performed by using a custom security manager or the Throwable class

in the Java API. For tracking remote method sequences, the approach leverages RMI

logging facility, portable interceptors over RMI-IIOP, or customized RMI classes.

[BRI04] addresses a methodology that reverse engineers UML sequence diagrams for

distributed Java systems based on RMI. This approach defines two separate metamodels

for traces and scenario diagrams, and it also defines the mapping rules between them. By

means of the metamodels and the rules, it leverages AspectJ to produce execution traces,

and then transforms the traces into scenario diagrams.

107

However, to the best of our knowledge, no previous work exists on performing regression

test selection for distributed Java RMI applications. In this research, we perform the

FCA-based regression test selection analysis on Java RMI programs. Our approach

combines the benefits of dependency analysis and clustering capabilities of FCA. It

collects runtime data of the distributed Java application from multiple hosts, and merges

the execution traces for each test case properly to generate the visual representations of

the test coverage matrixes. In our approach, different view can be easily generated, and

maintainers and managers are able to better understand the impact of a requirement

change before actually committing to or implementing the change.

6.4.3 Regression Test Selection

Similar to the program tracing approaches, most of the work on regression test selection

has been focused on the sequential programs [CHE94, ROT97, WHI92, HSI97, ROT00,

WHI97, HAR01B]. Among these researches, [CHE94, HAR01B, ROT00] explore

selective regression testing for C/C++ and Java application by combing static

programming analysis and dynamic system tracing. Other approaches utilizes control

flow information [ROT97], data flow information [HAR89] or the firewall concept

[WHI92] to identity which test cases are associated with modifications. However, to the

best of our knowledge, there exists no previous work providing support for regression test

selection for distributed programs (such as Java RMI applications).

Furthermore, most traditional RTS approaches have focused only on the change

propagation through the internal program state (i.e. variables) manipulation, and do not

108

consider change impacts involving persistent states (i.e. databases, files). Several papers

[HAR04, WIL05] have addressed RTS for database-driven applications that take into

account the interactions of the program with database states. [HAR04] proposed a

regression testing approach for stored procedures in databases. [WIL05] presented a safe

regression selection algorithm for database-driven applications. However, compare with

our approach, these approaches are typically heavy weight, requiring fine grained traces

at the statement level, making them very precise but also computational expensive.

109

7. Conclusions and Future Work

In this research, we introduced a methodology to support a lightweight FCA-based

regression test selection analysis for distributed Java RMI programs. Our approach

combines execution trace collection, external data sharing analysis and selective

regression test selection. As part of this research we developed a toolkit, the Java RMI-

based Programs Analysis Toolkit (JRPAT), to support our methodology and its

automation. The JRPAT consists of two Eclipse plug-ins, which are capable to collect

distributed execution traces, implement an External Data Sharing Analysis (EDSA)

algorithm to establish test cases dependency information, perform regression test case

selection, and visualize the result in both textual and graphical (with the help of a external

graph drawing software integrated) representations. Using two initial case studies, we

finally demonstrated and discussed the applicability of the proposed methodology and its

tool support. The major contributions of this thesis can be summarized as follows:

(1) We introduce a novel RTS methodology by means of combining run-time

information with Formal Concept Analysis for distributed Java RMI applications.

(2) Introduced an external data sharing analysis to explore the define-use relationship

among program components of different test cases due to external data elements.

We also performed a RTS analysis to estimate the potential testing effort required

prior to implementing an actual modification request.

(3) Designed and developed a proof of concept toolkit, the JRPAT, which

implements the proposed methodologies and automates the analysis process. We

no

showed that this tool can be used to trace distributed Java RMI applications and

perform successful regression test selection.

As part of future investigation, we plan to address scalability issues related to tracing and

analyzing large-scale Java applications. Since the size of the trace can become very large,

also the corresponding execution dependency lattice might become too complex and

unmanageable. Potential solutions might include selective tracing, viewing the trace in

different level (e.g. object-level, class-level, component-level etc.), or filtering the trace

through pattern matching, sampling etc. This would also allow omitting unrelated parts in

the concept lattice representation.

Moreover, there is also a need to improve the granularity level of the external data

sharing analysis. Each column in the table has to be considered as a separate variable, and

the data flow relations existing from the usage of each column need to be traced

separately.

Finally, for regression test selection, it would be interesting to develop and apply some

prioritizing techniques to allow for a further reduction of the number of test cases, or

compare our approach with other selective regression techniques in terms of performance,

accuracy and effectiveness.

i n

8. References

[BAL99] T. Ball. The Concept of Dynamic Analysis. In Proc. Seventh European
Software Eng. Conf. Held Jointly with the Seventh ACM SIGSOFT Symp.
Foundations of Software Eng., pages 216-234, Sept. 1999.

[BIR67] G. Birkhoff. Lattice Theory. American Mathematical Society, Providence,
2nd Edition, 1967.

[BJO06] Dines Bjorner, The Role of Domain Engineering in Software Development.
Invited keynote paper for the Special Interest Group of Software
Engineering (SIGSE), Information Processing Society of Japan (IPSJ)
IPSJ/SIGSE Software Engineering Symposium Tokyo, Japan, Oct. 2006.

[BRI03] L. C. Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of
UML sequence diagrams. In Proceedings of the 10th Working Conference
on Reverse Engineering (WCRE'03), pages 57-66, 2003.

[BRI05] L.C. Briand, Y. Labiche, and J. Leduc. Tracing distributed systems
executions using AspectJ. In Proc. of the 21st IEEE International
Conference on Software Maintenance (ICSM 2005), pages 81-90, Sep.
2005.

[BRU93] B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program
analysis. In Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOSLA93), Washington, USA, Sep. 1993.

[CHE94] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: A system for
selective regression testing. In Int. Conf. Software Engineering, pages 211-
220, 1994.

[CHE04] J. Chen, K. Wang, Experiment on embedding interception service into Java
RMI. In Proc. of International Workshop on Scientific Engineering on
Distributed Java Applications. Lecture Notes in Computer Science 2952,
pages 48-61, Springer-Verlag, 2004.

[CLO07] Clover, Frequently Asked Questions.
http://www.cenqua.com/clover/doc/faq.html, retrieved September 2007.

[COR89] T.A. Corbi, Program Understanding: Challenge for the 1990s, IBM
Systems J., vol. 28, no. 2, pages 294-306, 1989.

112

http://www.cenqua.com/clover/doc/faq.html

[ECL07] The Eclipse Foundation, The AspectJ Project,
http://www.eclipse.org/aspectj/, retrieved September 2007.

[EIS01] E. Eisenbarth, R. Koschke, and D. Simon. Aiding Program Comprehension
by Static and Dynamic Feature Analysis. In Proc. Int'l Conf. Software
Maintenance (ICSM '01), pages 602-611, Nov. 2001.

[EIS03] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code.
In IEEE Transactions on Software Engineering, 29(3):210-224, March 2003.

[ELR01] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher. Discussing
aspects ofAOP. Communications of the ACM, 44(10):33.38, 2001.

[GHO02] S. Ghosh, N. Bawa, S. Goel, and Y. R. Reddy. Validating run-time
interactions in distributed Java applications. In IEEE International
Conference on Engineering of ComplexComputer Systems, pages 7-16,
2002.

[GOL03] A. Goldberg, K. Havelund. Instrumentation of Java bytecode for runtime
analysis. In Proc. FormalTechniques for Java-like Programs, Technical
Reports from ETH Zurich, Vol. 408, Switzerland, ETH Zurich, 2003.

[GRA01] T. L. Graves, M. J. Harrold, Y. M. Kim, A. Porter, and G. Rothermel, An
Empirical Study of Regression Test Selection Techniques. ACM Trans, on
Software Engineering and Methodology, 10(2), pagesl 84-208, 2001.

[GRE05] O. Greevy and S. Ducasse. Correlating features and code using a compact
two-sided trace analysis approach. In Proceedings IEEE European
Conference on Software Maintenance and Reengineering (CSMR 2005),
pages 314-323, Los Alamitos CA, 2005.

[GSC03] T. Gschwind and J. Oberleitner. Improving dynamic data analysis with
aspect-oriented programming. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering (CSMR2003),
Benevento, Italy, March 2003.

[GUE05] Y.-G. Gueheneuc and T. Ziadi. Automated reverse-engineering ofUML v2.0
dynamic models. In proceedings of the 6th ECOOP Workshop on Object-
Oriented Reengineering. Springer-Verlag, July 2005.

[GUP96] R. Gupta, M. J. Harrold, and M.L. Sofa. Program slicing-based regression
testing techniques. In Software Testing, Verification and Reliability 6 (2),
pages 83-111,1996.

[HAM03] A. Hamou-Lhadj and T. C. Lethbridge, Techniques for Reducing the
Complexity of Object-Oriented Execution Traces, In Proc. of the 2nd

113

http://www.eclipse.org/aspectj/

"DESIGNFEST" on Visualizing Software for Understanding and Analysis
(VISSOFT'03), Amsterdam, The Netherlands, pages 35-40, 2003.

[HAM05] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering
behavioral design models from execution traces. In Proceedings of CSMR
2005 (9th European Conference on Software Maintenance and
reengineering. IEEE Computer Society Press, 2005.

[HAM06] A. Hamou-Lhadj and T. Lethbridge. Summarizing the content of large
traces to facilitate the understanding of the behaviour of a software system.
In Proceedings of International Conference on Program Comprehension
(ICPC 2006), pages 181-190, IEEE Computer Society, 2006.

[HAR89] MJ. Harrold and M.L. Soffa. An incremental dataflow testing tool. In 6th
Int. Conf. Testing Computer Software, Washington, D.C., 1989.

[HAR00] M. J. Harrold. Testing: a roadmap. In A. Finkelstein, editor, The Future of
Software Engineering, Special Volume published in conjunction with ICSE
2000, 2000.

[HAR01A] R. A. Haraty, N. Mansour, and B. Daou. Regression testing of database
applications. In Proceedings of the 2001 ACM Symposium on Applied
Computing (SAC), March 11-14, 2001, Las Vegas, NV, USA, pages 285-
289. ACM, 2001.

[HAR01B] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.
A. Spoon, and A. Gujarathi. Regression test selection for Java software. In
Conf. Object-Oriented Programming Systems, Languages, and Applications,
pages 312-326, 2001.

[HAR04]

[HEU02]

[HSI97]

[HUA78]

R. A. Haraty, N. Mansour, and B. Daou. Regression test selection for
database applications. In K. Siau, editor, Advanced Topics in Database
Research, volume 3, pages 141- 65. Idea Group, 2004.

D. Heuzeroth, T. Holl and W. Lowe. Combining Static and Dynamic
Analyses to Detect Interaction Patterns. In Proceedings of the Sixth
International Conference on Integrated Design and Process Technology
(IDPT), June, 2002.

P. Hsia, X. Li, D. C. Kung, C.-T. Hsu, L. Li, Y. Toyoshima, and C. Chen. A
technique for the selective revalidation of OO software. J. Software
Maintenance, 9(4):217-233, 1997.

J. C. Huang. Program instrumentation and software testing. COMPUTER,
10(4), 1978.

114

[JMO07] org.jmonde.debug. Trace, http://www.geocities.com/mcphailmj/Trace/,
retrieved September 2007.

[JPR07] jProf profiler, http://perfinsp.sourceforge.net/jprof.html, retrieved
September 2007.

[KAZOO] I. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok, J. A.
Konstan, D. J. Lilja, P. C. Yew. JaViz: A client/server Java profiling tool.
IBM Systems Journal, Volume 39, Number 1, pp.96-117. 2000.

[KIC97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proc. of European
Conference on Object-Oriented Programming (ECOOP 97). Lecture Notes
in Computer Science,Vol. 1241, pages 220-242. Springer-Verlag, 1997.

[KIC01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jerey Palm, and
William G. Griswold. Getting Started with AspectJ. In Communications of
the ACM, 44(10): pages 59-65, Oct. 2001.

[LEE97] H. Lee and B. Zorn, BIT: A Tool for Instrumenting Java Bytecodes,
USENIX Symposium on Internet Technologies and Systems, pages 73-83,
December 1997.

[LEEOO] D. W. Lee, R. S. Ramakrishna. VisOk: A Flexible Visualization System for
Distributed Java Object Application. In Proceedings of 14th International
Parallel and Distributed Processing Symposium. Cancun, Mexico. 2000.

[LI99] Yuejian Li, Nancy J. Wahl. An Overview of Regression Testing, ACM
SIGSOFT SoftwareEngineering Notes, vol 24 no 1, pages 69-73, January
1999.

[LIN99] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Second
Edition, Sun Microsystems Inc., 1999.

[LINOO] C. Lindig. Introduction to Formal Concept Analysis. Harvard University,
2000.

[MAO05] C. Mao, Y. Lu. Regression Testing for Component-based Software Systems
by Enhancing Change Information. In Proc. of APSEC'05, IEEE Press,
pages 611-618, 2005.

[MCC07] McCluskey, Glen, Java Test Coverage and Instrumentation Toolkits, Glen
McCluskey & Associates LLC, http://www.glenmccl.com/instr/index.htm,
retrieved September 2007.

115

http://www.geocities.com/mcphailmj/Trace/
http://perfinsp.sourceforge.net/jprof.html
http://www.glenmccl.com/instr/index.htm

[MEN01] N.C. Mendonca, J. Kramer. An Approach for Recovering Distributed System
Architectures. In Automated Software Engineering, 2001 (8), pages 311-354,
2001.

[MOE01] Johan Moe, David A. Carr. Understanding Distributed Systems via
Execution Trace Data. In Ninth International Workshop on Program
Comprehension (IWPC'01), pages 60-67, 2001.

[MOE02] Johan Moe, David A. Carr. Using Execution Trace Data to Improve
Distributed Systems. In Software- Practice and Experience, 32, pages 889-
906, 2002.

[OPT07] Optimizeltl The ultimate Java performance profiler,
http://www.optimizeit.com/, retrieved September 2007.

[PAB06] Leelahapant Pabhanin, Predictive Regression Test Selection Technique by
means of Formal Concept Analysis. Thesis of Master, Concordia University,
Montreal, Canada, 2006.

[PAU00] W.D. Pauw, G. Sevitsky, E. Jensen. Jinsight: A tool for visualizing the
execution of Java programs, 2000.
http://www-106.ibm.com/developerworks/library/jinsight/,
http://www.alphaworks.ibm.com/formula/jinsight.

[ROT96] G. Rothermel and M. Harrold. Analyzing regression test selection
techniques, IEEE Trans, on Software Engineering, 22(8), pages 529-551,
Aug. 1996.

[RIC02] Tamar Richner and Stephane Ducasse. Using dynamic information for the
iterative recovery of collaborations and roles. In Proceedings IEEE
International Conference on Software Maintenance (ICSM 2002), page 34-
43, Los Alamitos CA, October 2002.

[ROT97] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection
technique. ACM Trans. Software Engineering and Methodology, 6(2), pages
173-210,1997.

[ROT00] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for
C++ software. J. Software Testing, Verification and Reliability, 10(2):77-
109,2000.

[SAL06] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta. Scenario-driven
dynamic analysis for comprehending large software systems. In Proc. of 10
th IEEE European Conference on Software Maintenance and Reengineering,
pages 71-80, 2006.

116

http://www.optimizeit.com/
http://www-106.ibm.com/developerworks/library/jinsight/
http://www.alphaworks.ibm.com/formula/jinsight

[SEE05] A. Seesing and A. Orso. InsECTJ: A Generic Instrumentation Framework
for Collecting Dynamic Information within Eclipse. In Proc. of the eclipse
Technology eXchange (eTX) Workshop at OOPSLA 2005, pages 49-53,
Oct. 2005.

[SIL03] G. Silva, L. Schnorr, B. Stein. JRastro: A Trace Agent for Debugging
Multithreaded and Distributed Java Programs, Proceedings of the 15th
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD'03), 2003.

[SNE04] H. Sneed. Reverse engineering of test cases for selective regression testing.
In Proceedings of the 8th European Conference on Software Maintenance
and Reengineering (CSMR'04), pages 69-74, 2004.

[ST097] M.-A. D. Storey, F. D. Fracchia, H. A. Muller. Cognitive Design Elements
to Support the Construction of a Mental Model During Software
Visualization. Proceedings of the IEEE 5th International Workshop on
Program Comprehension, Dearburn, Michigan, pages 17-28, May 1997.

[STV05] Bjarte M. Stvold and Thor Kristoffersen, Analysis of object-oriented
programs: a survey, In Norsk Regnesentral, August 19, 2005.

[SUN99] Sun Microsystems Inc. Java Virtual Machine Debug Interface (JVMDI),
1999. http://iava.sun.eom/products/idk/l.2/docs/guide/ivmdi/ivmdi.html

[SUN02] Sun Microsystems, Inc. Java Virtual Machine Profiler Interface (JVMPI),
2002. http://iava.sun.eom/i2se/l.4.2/docs/guide/ivmpi/

[SUN04] Sun Microsystems, Inc. Java Virtual Machine Tool Interface (JVMTI),
2004. http://iava.sun.eom/i2se/l.5.0/docs/guide/ivmti/ivmti.html

[SYS01] T. Systa, K. Koskimies, H. A. Muller. Shimba - An Environment for
Reverse Engineering Java Software Systems. In Software-Practice Practice
and Experience, 31(4), pages 371-394, 2001.

[WAN05] Y. Wang, Q. Li, P. Chen, C. Ren. Dynamic Fan-in and Fan-out Metrics for
Program Comprehension. In Proceedings of the 1 st International Workshop
on Program Comprehension through Dynamic Analysis (PCODA'05), pages
38-42, 2005.

[WEN03] L. Wendehals. Improving Design Pattern Instance Recognition by dynamic
Analysis. In Proc. of the ICSE 2003 Workshop on Dynamic Analysis
(WODA), Portland, USA, pages 29-32, May 2003.

117

http://iava.sun.eom/products/idk/l.2/docs/guide/ivmdi/ivmdi.html
http://iava.sun.eom/i2se/l.4.2/docs/guide/ivmpi/
http://iava.sun.eom/i2se/l.5.0/docs/guide/ivmti/ivmti.html

[WEN04] L. Wendehals. Specifying Patterns for Dynamic Pattern Instance
Recognition with UML 2.0 Sequence Diagrams. In Proc. of the 6th
Workshop Software Reengineering (WSR), Bad Honnef, Germany,
Softwaretechnik-Trends, volume 24/2, pages 63-64, May 2004.

[WHI92] L. J. White and H. K. N. Leung. A firewall concept for both control-flow
and data-flow in regression integration testing. In Int. Conf. Software
Maintenance, pages 262-270, 1992.

[WHI97] L. J. White and K. Abdullah. A firewall approach for regression testing of
object-oriented software. In 10th Annual Software Quality Week, May 1997.

[WIL05] D.Willmor and S. M. Embury. A safe regression test selection technique for
database-driven applications. In Proc. of the 21st IEEE International
Conference on Software Maintenance (ICSM 2005), pages 421-430, Sep.
2005.

[WIL81] R.Wille. Restructuring Lattice Theory: An Approach Based on Hierarchies
of Concepts. Ordered Sets, I. Rival, ed., NATO Advanced Study Inst., pages
445-470, Sept. 1981.

[XU07] G. Xu, A. Rountev. Regression Test Selection for AspectJ Software, In
Proceedings of the 29th International Conference on Software Engineering
(ICSE07), pages 65-74, May 2007.

[ZAI04] A. Zaidman and S. Demeyer. Managing trace data volume through a
heuristical clustering process based on event execution frequency. In
CSMR'04, pages 329-338, 2004.

[ZAI05] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining
techniques to execution traces to support the program comprehension
process. In CSMR'05, pages 134-142, 2005.

[ZHA06] J. Zhao, T. Xie, and N. Li. Towards regression test selection for AspectJ
programs. In Proc. 2nd workshop on Testing aspect-oriented programs,
pages 21-26, July 2006.

[ZHE06] J. Zheng, B. Robinson, L. Williams and K. Smiley. Applying Regression
Test Selection for COTS-based Applications. In 28th IEEE International
Conference on Software Engineering (ICSE'06), pages 512-521, May 2006.

[ZOL04] Zoltan Adam Mann and Karoly Kondorosi. Tracing system-level
communication in distributed systems. Software: Practice and Experience,
Volume 34, Issue 8, pages 727-755, Apr. 2004.

118

