
CoMoVA - A Comprehension Measurement Framework

for Visualization Systems

Harkirat Kaur Padda

A Thesis

In the Department

Of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctorate in Philosophy (Computer Science) at

Concordia University

Montreal, Quebec, Canada

March 2009

© Harkirat Padda, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Vote reference
ISBN: 978-0-494-63391-5
Our file Notre reference
ISBN: 978-0-494-63391-5

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

CoMoVA - A Comprehension Measurement Framework for Visualization

Systems

Harkirat Kaur Padda, Ph.D.

Concordia University, 2009

Despite the burgeoning interest shown in visualizations by many disciplines, there yet

remains the unresolved question concerning comprehension. Is the concept that is being

communicated through the visual easily grasped and clearly interpreted? Visual

comprehension is that characteristic of any visualization system, which deals with how

efficiently and effectively users are able to grasp the underlying concepts through suitable

interactions provided for exploring the visually represented information. Comprehension

has been considered a very complex subject, which is intangible and subjective in nature.

Assessment of comprehension can help to determine the true usefulness of visualization

systems to the intended users. A principal contribution of this research is the formulation

of an empirical evaluation framework for systematically assessing comprehension

support provided by a visualization system to its intended users.

To assess comprehension i.e. to measure this seemingly immeasurable factor of

visualization systems, we propose a set of criteria based on a detailed analysis of

information flow from the raw data to the cognition of information in human mind. Our

comprehension criteria are adapted from the pioneering work of two eminent researchers

- Donald A. Norman and Aaron Marcus, who have investigated the issues of human

perception and cognition, and visual effectiveness respectively. The proposed criteria

have been refined with the help of opinions from experts. To gauge and verify the

iii

efficacy of these criteria in a practical sense, they were then applied to a bioinformatics

visualization study tool and an immersive art visualization environment.

Given the vast variety of users and their visualization goals, it may be noted that it is

difficult for one to decide on the effectiveness of different visualization tools/techniques

in a context independent fashion. We therefore propose an innovative way of evaluating a

visualization technique by encapsulating it in a visualization pattern where it is seen as a

solution to the visualization problem in a specific context. These visualization patterns

guide the tool users/evaluators to compare, understand and select appropriate

visualization tools/techniques.

Lastly, we propose a novel framework named as CoMoVA (Comprehension Model

for Visualization Assessment) that incorporates 'context of use', visualization patterns,

visual design principles and important cognitive principles into a coherent whole that can

be used to effectively tell us in a more quantifiable manner the benefits of visual

representations and interactions provided by a system to the intended audience. Our

approach of evaluation of visualization systems is similar to other questionnaire-based

approaches such as SUMI (Software Usability Measurement Inventory), where all the

questions deal with the measurement of a common trait. We apply this framework to two

static software visualization tools in the software visualization domain to demonstrate the

practical benefits of using such a framework.

IV

ACKNOWLDEGEMENTS

I am indebted to my co-supervisors, Dr. Ahmed Seffah and Dr. Sudhir Mudur, for

their helpfulness, guidance and direction throughout my doctoral research. It has been a

wonderful academic experience under their supervision.

I am also thankful to Dr. Krishnan and Dr. Olga Ormandjieva for their valuable

suggestions that helped me to improve my research work. I would also like to thank Dr.

Constantinos Constantinides for his inspirations and kind support.

I am sincerely thankful to all the study participants, practitioners, researchers

especially - Dr. Rachid Gherbi, Dr. Abdelwahab Hamou-Lhadj, and usability experts for

their kind cooperation. Without them, this research work was not possible.

I would like to express my gratitude to colleagues in our human-centered software

engineering group at Concordia, especially - Elaheh Mozzafari, Homa Javahery, Kristina

Pitula, Rozita Naghshin, Mohammad Donyaee, and Jonathan Benn for their feedback and

motivation. I am also thankful to Yojana Joshi, Daniel Sinnig, Bahman Zamani for their

kind support.

Above all, I am grateful to my family. I thank my husband Sukhwinderjit Singh

Padda for his moral support and encouragement throughout my PhD work. I am grateful

to my daughters Banmeet and Eknoor for giving me hope to achieve something in my

life. I am sincerely thankful to my parents and in-laws who gave me continuous

inspiration to do research, and maintained my belief of being capable to do it.

v

Table of Contents

List of Figures xi

List of Tables xiii

Chapter 1. Introduction 1

1.1 Motivation 2

1.2 Research Statement and Objectives 4

1.3 Methodology 6

1.4 Avenues and Investigations 9

1.5 Challenges Encountered 11

1.6 Dissertation Roadmap 12

Chapter 2. Visualization Systems: Comprehension of Visual Information 15

2.1 Visualization Systems: Background 16

2.1.1 History 16

2.1.2 Definitions 16

2.1.3 Classification of Visualization Systems 17

2.1.4 Examples 19

2.1.5 General Problems with Visualizations 21

2.2 Comprehension: Study Rationale 24

2.3 Comprehension Problems in Visualization Systems 25

2.4 Aspects of Comprehension 26

2.5 Summary 33

Chapter 3. Fundamentals of Comprehension Measurement 36

3.1 Comprehension as a Measurable Quality Factor 37

3.1.1 Defining Comprehension 37

3.2 Why Measure Comprehension? 39

3.3 Representational Theory of Measurement 40

3.3.1 Measurement in Software Engineering 42

3.3.2 Measurement Scales 48

3.3.3 Data Types and Data Collection 50

3.3.4 Evaluation Methods in Software Engineering 52

vi

3.4 Measurement of Visualizations 54

3.5 Lessons Learned 57

Chapter 4. Elicitating Criteria for Comprehension Measurement 59

4.1 Evaluation Foundation 60

4.2 Initial Repository of Comprehension Criteria 64

4.3 Refining the Comprehension Criteria 65

4.4 Assessing Completeness by Studying Aspects of Comprehension 67

4.4.1 Categorizing the Comprehension Criteria into Aspects of Comprehension

68

4.4.2 First Iteration -Aftermaths 86

4.5 Confirming Un-ambiguity, Consistency - Experts' Opinion 88

4.5.1 Summary of the Experts' Findings 89

4.5.2 Second Iteration- Aftermaths 93

Chapter 5. Case Studies 94

5.1 Verifying Correctness: Case Study 1 95

5.1.1 ADN-Viewer 95

5.1.2 Evaluating ADN-Viewer 97

5.1.3 Experimental Procedure 97

5.1.4 Experimental Results 99

5.2 Verifying Correctness: Case Study 2 101

5.2.1 OSMOSE 102

5.2.2 Evaluating OSMOSE 103

5.2.3 Experimental Procedure 104

5.2.4 Experimental Results 105

5.3 Third Iteration - Aftermaths 107

5.4 Making the Criteria Testable 107

Chapter 6. Software Visualization Systems: A Study on Maintenance Tasks 110

6.1 Software Visualizations 112

6.2 Evaluation of Software Visualizations 116

6.2.1 Approaches for Empirical Investigations in Software Visualizations.... 116

6.2.2 Relevant Studies 118

VII

6.3 Identifying the Needs of Software Maintainers 124

6.3.1 Current Work 727

6.3.2 Our Perspective 128

6.4 A Survey-Based Empirical Investigation on Visualization Support for Software

Maintenance Activities 135

6.4.1 Survey: Rationale 135

6.4.2 Survey Methodology 135

6.4.3 Discussion 143

6.4.4 Conclusion 146

Chapter 7. Visualization Patterns: A Context-Sensitive Tool to Evaluate

Visualization Techniques 147

7.1 The Need for Visualization Patterns 148

7.2 Patterns Overview 151

7.3 Case Study: A Pattern-Oriented Evaluation of Software Visualization Tools 152

7.3.1 Objective 152

7.3.2 Tools/Techniques 153

7.3.3 Software Program for Analysis 155

7.3.4 Tasks 157

7.3.5 Case Study Results 160

7.3.6 Discussion 167

7.3.7 Conclusion 168

Chapter 8. Put It All Together - Comprehension Model for Visualization

Assessment (CoMoVA) Framework 169

8.1 Comprehension: A Working Definition 170

8.2 CoMoVA- An Integrated Comprehension Measurement Framework for

Visualization Systems 174

8.2.1 Activities in CoMoVA 179

8.3 How to Use the Framework? 182

8.4 Conformance to Measurement Theory 184

8.4.1 CoMoVA is a Quality Model 184

8.4.2 CoMoVA and Its' Relationship to ISO 9126 185

v in

8.4.3 Overall Validation Issues 186

Chapter 9. Operationalization and Overall Validation of the Framework 187

9.1 Measurement Goal Template 188

9.1.1 Context 190

9.2 An Exemplar Study - A Controlled Experiment with Software Visualization

Tools 192

9.2.1 Goals 192

9.2.2 Participants 193

9.2.3 Hypothesis... 795

9.2.4 Experimental Variables 196

9.2.5 Types of Experimental Biases and Their Elimination 197

9.2.6 Experimental Setup 198

9.3 Analyzing the Results of a Controlled Experiment 205

9.3.1 Measurement Strategy 206

9.3.2 Confirming the Expertise 212

9.3.3 Analysis of the Gender Differences 213

9.3.4 Validating the Results with Objective Metrics 213

9.3.5 Applicability of Criteria to Visualization Tools 220

9.3.6 Verifying the Null Hypothesis 227

9.4 Discussion and Perspectives 228

Chapter 10. Conclusions, Contributions and Future Avenues 230

10.1 Concluding Remarks 231

10.2 Contributions 232

10.3 Research Benefits 234

10.4 Future work 236

References 238

Appendix A. The Proposed Questionnaire 267

A.l Glossary 267

A.2 The Questionnaire 268

Appendix B. A Survey-based Empirical Investigation for Software Visualization 277

Appendix C. Proposed Visualization Patterns 282

ix

Appendix D. Participant Evaluation Form 286

D.l Participant's Profile 286

D.2 Software Visualization and Maintenance Knowledge 287

D.3 Application Experience 287

D.4 Hobbies and Interests 287

Appendix E. Informed Consent to Participate in Research 288

E.l Purpose of The Study 288

E.2 Procedure 289

E.3 Conditions of Participation 290

Appendix F. Checklist for Study 291

F.l Before the Test Begins 291

F.2 During the Test 292

F.3 After the Test 292

Appendix G. Analysis of Participants' Responses 293

G.l Normal Distribution Curves for Radial Technique 300

G.2 Normal Distribution Curves for Pyramid Technique 305

G.3 Normal Distribution Curves for NestedView Technique 310

G.4 Normal Distribution Curves for Tree Technique 315

Appendix H. Analysis of Variance (ANOVA) 320

H.l One-Way ANOVA Test 320

H.2 One Factor Repeated Measure ANOVA 324

x

List of Figures

Figure 2.1: Visualization As a Mapping Process 17

Figure 2.2: Numerically Modeled Severe Storm (Wilhelmson et al., 1990) 19

Figure 2.3: StarTree to Navigate and Explore Hierarchical Relationships (1ST, 2005)... 20

Figure 2.4: Treemap View of Program Execution Data (Orso et al., 2003) 20

Figure 2.5: Aspects of Comprehension 27

Figure 2.6: Gestalt Laws of Visual Perception 31

Figure 2.7: Human Memory System (Gray, 2001) 32

Figure 2.8: Visualization System and Human Memory Processor 34

Figure 3.1: Understandability and Comprehension 38

Figure 3.2: McCall' Software Engineering Quality Model 44

Figure 3.3: Boehm's Model 45

Figure 3.4: GQM Framework for An Organization 46

Figure 3.5: ISO 9126 -2000 47

Figure 4.1: The Conceptual Models and The Gulfs 61

Figure 4.2: Assessment Criteria for Comprehensibility in Visualization Environments

(Joshi, 2005) 65

Figure 4.3: Comprehension Criteria for Visualization Interface Aspect 77

Figure 4.4: Comprehension Criteria for Perception Aspect 81

Figure 4.5: Comprehension Criteria for Cognition Aspect 85

Figure 4.6: Criteria for Comprehension Assessment in Visualization Systems 86

Figure 4.7: Refined Comprehension Criteria 93

Figure 5.1: Screenshots from ADN-Viewer 96

Figure 5.2: Test Protocol for ADN-Viewer 98

Figure 5.3: Screenshots from OSMOSE (Davies, 2004) 103

Figure 5.4: Test Protocol for OSMOSE 104

Figure 6.1: Conceptual Views 125

Figure 6.2: Experts' Categorization of Tasks to Maintenance Activities 139

Figure 6.3: Experts' Opinion on Task Importance 140

Figure 6.4: Intermediates' Categorization of Tasks to Maintenance Activities 140

xi

Figure 6.5: Intermediates' Opinion on Task Importance 141

Figure 6.6: Average Opinion on Visualization Category 142

Figure 6.7: Combined Opinion on Tasks* Categorization 143

Figure 6.8: Task Model 145

Figure 7.1: Evaluation Strategy for a Technique 149

Figure 7.2: Mapping Technique to Pattern Instances 150

Figure 7.3: Radial Tree Visualization 162

Figure 7.4: Pyramid Visualization 164

Figure 7.5: NestedView Visualization 165

Figure 7.6: Tree Visualization 166

Figure 8.1: The Proposed Comprehension Framework for Visualization Assessment.. 176

Figure 8.2: The Proposed Comprehension Model for Visualization Assessment

(CoMoVA) 177

Figure 8.3: ISO 9126 185

Figure 9.1: Phases of The Experiment 204

Figure 9.2: Analysis of Test Session with Morae Manager 214

Figure 9.3: Plot of Comprehension Score and Task Time 220

Figure 9.4: Rating of Criteria for Each Technique 225

Figure 9.5: Comprehension Score of Each Technique 227

XII

List of Tables

Table 2.1: Scientific Versus Information Visualization (Gershon and Eick, 1997) 18

Table 2.2: Novice Versus Expert Users Needs 23

Table 2.3: Categorizing Comprehension Problems 25

Table 4.1: Properties of Criteria 66

Table 5.1: Applicability of Criteria to ADN-Viewer 100

Table 5.2: Users' Responses to Criteria 101

Table 5.3: Applicability of Criteria to OSMOSE 106

Table 6.1: Types of Strategies (Freimut et al., 2001) 116

Table 6.2: Factors Relating to Choice of Research Technique (Fenton et al., 1997, pp:

120) 117

Table 6.3: Summary Chart of Studies on SV Tools 123

Table 6.4: Identified Tasks Along With Their Purpose and Supporting Tools 129

Table 6.5: Classification Results 143

Table 7.1: General Format of a Pattern 152

Table 7.2: A Pattern-Oriented Analysis of Tools 161

Table 7.3: A Comparative Summary of Tasks 167

Table 9.1: Measurement Goal Template (Freimut et al., 2001) 188

Table 9.2: Installed Hardware and Software 192

Table 9.3: Background Variables 194

Table 9.4: Classification of Experimental Biases 197

Table 9.5: Participants' Scores of Comprehension Criteria for Radial Technique 209

Table 9.6: Participants' Scores of Comprehension Criteria for Pyramid Technique 210

Table 9.7: Participants' Scores of Comprehension Criteria for NestedView Technique

211

Table 9.8: Participants' Scores of Comprehension Criteria for Tree Technique 212

Table 9.9: Comparative Analysis of Techniques 215

Table 9.10: Verification of Hypothesis 219

Table 9.11: Rating of Criteria for SA4J 222

Table 9.12: Rating of Criteria for Creole 224

Xl l l

Table H.l: Total Comprehension Score of Each Participant 321

Table H.2: ANOVA Results for Radial Technique 322

Table H.3: ANOVA Results for Pyramid Technique 322

Table H.4: ANOVA Results for Nested View Technique 323

Table H.5: ANOVA Results for Tree Technique 323

Table H.6: ANOVA Results for Females' and Males' scores 324

Table H.7: Comprehension Score of a Participant for Each Technique 325

Table H.8: One Factor Repeated Measures ANOVA Results 326

x iv

Chapter 1. Introduction

"Discovery consists of seeing what everybody has seen and thinking what nobody has thought." - Albert

von Szent-Gyorgyi (1893-1986)

Overview

In this thesis, we propose a measurement framework with the principal objective of

evaluating the comprehension support provided by the visualization systems to intended

users. Towards accomplishing this objective, we have reviewed many different areas in

detail - visualization, human computer interaction, and software engineering, and

integrated relevant concepts and solutions in the formulation of this measurement

framework.

This is an introductory chapter that highlights the problem statement and gives a

snapshot of the subject matter presented in this thesis. Here, we present the justification

for empirical investigation of visualization systems from a comprehension perspective,

which forms the main research pursuit of this thesis. We also describe the research

methodology we followed and the investigations we conducted along with various

challenges encountered throughout this research. Finally, we give a synopsis of the

forthcoming chapters of this thesis.

1

1.1 Motivation

The value of visuals in a communication process is well recognized starting from the

ancient wall paintings to today's computer-based visualizations used in various

disciplines. Visualization systems are a form of Human Computer Interaction (HCI),

which consist of view/views of data and a suitable interface for interacting with the

view(s) (Wilkins, 2003). The potential capability to present huge information in a

meaningful and easily perceivable way has resulted in wide promotion of interactive

visualizations as providing solutions to this very difficult problem of getting insight into

the relationships present in complex and large data in many different domains. This

widespread proliferation of visualization tools/techniques in turn highlights the express

need for their empirical evaluation. Knight (2001) rightly states that providing

evaluations of visualizations is one way to demonstrate that they support a purpose and

are adequate for the role claimed for them. The primary role of any visualization is to

communicate information using the visual medium, i.e. to portray a set of data in a

pictorial form that facilitates its' understanding. Inherent to this portrayal process are

constraints in terms of human perceptual and cognitive limitations, physical device screen

sizes on which visualizations are displayed etc., that make it harder to comprehend or

understand these visualizations. Most existing visualization systems, with their sheer

volume of information, place a high cognitive load on the users. It is often unclear as to

the extent of help provided by these systems to interpret the meanings of different visuals

being displayed.

Kosara et al. (2003) state that no matter how efficient a visualization tool/technique

may be, or how well motivated from theory it is, if it does not convey information

2

effectively then its' usefulness is questionable. Therefore, to assess the empirical

evidences of the usefulness/usability of visualization systems from the human point of

view, we need to study and answer questions like -

• How well is the visualization system's intent met through visuals and interaction

techniques?

• How well is the user's intent met by the visualization system?

• How effective are the visual representations displayed by the system in terms of

achieving their major goal of providing 'user insights' for which they were

developed? and

• How can we measure whether the visualization has been appropriately comprehended

by intended users?

Clearly, a framework that enables us to systematically carry out empirical studies for

measuring the comprehension aspects of visualization tools/techniques would be able to

provide answers to the above questions. It is important that this framework provides a

supporting structure to assess comprehension support provided by the visualization

systems in objective terms.

Some evaluation methods have been suggested for visualization systems including

empirical assessments with controlled experiments, usability testing and analytical

assessments like - heuristic evaluation (Zuk et al., 2006) and cognitive walkthrough

(Plaisant, 2004). Despite a growing awareness of the importance of objective evaluation,

formal user studies of visualization systems to assess their effectiveness are relatively

rare. Unfortunately, performing good user studies is time-consuming and requires

substantial expertise in the experiment design and data analysis. In current practice, most

3

of the empirical studies (Storey at al., 1996; Marcus et al., 2005) with visualization

systems are conducted by the original developers/designers and are performed solely for

specific objectives. They do not take into consideration the general criteria to assess the

effectiveness of these systems. The usability factors in these studies do not cover an

important trait of any visualization system i.e. its' ability to ease comprehension of the

underlying information depicted through visual(s). Moreover, these methods do not

provide significant guidance to assess users' comprehension and are not easy to apply by

novices having little knowledge of user interface (UI) practices. On examining the

literature (Rushmeier et al., 1995), we found that the software community, especially

those working on visualization techniques have also expressed the need for benchmarks

or general measurements to evaluate the effectiveness of visualization systems.

Therefore, in our research we are aiming to provide a general measurement

framework that could be applied to any visualization system independent of its

application area. Furthermore, we propose to quantify the effectiveness of a visualization

system in terms of its support for comprehension of the visuals to understand the

underlying system. This is made possible through the proposed comprehension criteria

and measures that have been investigated thoroughly in this research with a number of

usability studies of visualization systems. It is our belief that our research justifies the use

of a questionnaire-based evaluation of visualization systems from comprehension

viewpoint.

1.2 Research Statement and Objectives

We state our research hypothesis as follows:

4

Through the use of measurable attributes, the proposed measures-based framework

provides significant guidance in the systematic evaluation of comprehension support

provided by visualization systems to intended users.

The main objective of this research can now be restated as follows:

- To establish a systematic measurement framework that enables evaluators to assess

the available comprehension support provided by a visualization system to the

intended audience.

To achieve this objective, we further established secondary objectives as follows:

To propose a systematic evaluation mechanism that guides the tool users/evaluators

to compare and select appropriate visualization tools/techniques. In current literature,

the evaluation of visualization techniques is described on an ad-hoc basis, without

matching the applicability of techniques to the available context. Towards this

endeavour, we propose that every visualization technique may be encapsulated in the

form of a visualization pattern describing the applicable 'context of use' (i.e. users',

tasks', and environments' characteristics) for it.

To define a suite of criteria to asses the effectiveness of a visualization system in

providing user comprehension, preferably independent of the domain, qualitatively or

if possible, even quantitatively. Although, researchers in different fields (e.g.

psychology, cognition, and HC1) have suggested a few guidelines and principles to

follow in the design of visualization tools/techniques, the information seems to be

widely scattered and informally defined. Presently, there is no single source that

could guide evaluators to determine if the users are able to comprehend the designer's

intentions in the visually represented information along with supported interaction

5

mechanisms. Our proposed comprehension criteria have resulted from in-depth

studies of earlier work addressing psychological, cognitive, and visual

communication aspects of a visualization system.

In addition to these two secondary objectives, we also established another research

objective for software visualization systems in particular as follows.

In order to test the applicability and effectiveness of our proposed framework, we

opted to use the domain of software visualization. Software visualization systems are

developed to ease the comprehension of artifacts comprising the development of large

software systems with the goal of providing assistance in software maintenance. To

test the effectiveness of software visualization systems, we are proposing an initial

catalogue of software maintenance tasks that are purported to be supported by these

systems, and are important from the viewpoints of software maintainers to perform

maintenance activities. This is required in order to see the functional gaps between

the needs of users and the actual tasks supported by currently available software

visualization systems.

1.3 Methodology

Our research methodology was composed of the following stages -

• The first stage was to conduct a literature review on visualization systems in order to

clearly understand comprehension problems and requirements with visual

information, and the need for systematic assessment of comprehension in these

systems.

• In the second stage, we conducted further studies of the process of comprehension so

as to identify the main aspects involved in the use of any visualization system. We

6

thoroughly investigated the information flow from the raw data to the cognition of

information in human mind. This stage again involved a detailed literature review on

comprehension and how we can measure it using the existing measurement

approaches and models in software engineering.

The third stage was to seek important visual design and cognitive principles for

effective visual communication to the users. This was based on the work of other

renowned HCI researchers who have already investigated the issues of effectiveness

for better user experience. Then, based on these principles we proposed a set of

comprehension criteria and categorized these measurable criteria into various

comprehension aspects explored in the previous stage.

The fourth stage involved the refinement of these criteria with case studies of

visualization systems and opinions of experts as expressed for these criteria. In this

phase, we also described the measures for each of the proposed criteria in order to

quantify them using a controlled experiment approach. The measures are derived in

the form of questions that can be asked to the participants during controlled

experimentation with usage of visualization systems.

The fifth stage was to explore the chosen test domain for our proposed measurement

framework i.e. software visualization systems. We performed an exhaustive literature

review and conducted an online survey with practitioners and researchers to seek a

catalogue of software visualization tasks important from the viewpoints of software

maintainers.

Next, we formulated the process of encapsulating each visualization technique in a

pattern format where the context in which the technique can be used is highlighted.

7

These visualization patterns enable the evaluators and users to compare and

understand the functionality of each visualization technique.

• The seventh stage was to formulate our measurement framework using the results of

all previous investigations. We have named this framework as Comprehension Model

for Visualization Assessment (CoMoVA).

• The last stage encompasses the execution of a controlled experiment with two static

software visualization tools. Here, we use our proposed visualization patterns, the

catalogue of software comprehension and maintenance tasks, the proposed criteria,

and the measures to assess the comprehension support provided by these visualization

systems. The data collected from the questionnaires, audio and video recordings are

then statistically analyzed using the ANOVA (Analysis of Variance) analysis

technique.

Thus our CoMoVA (Comprehension Model for Visualization Assessment)

framework incorporates 'context of use', visualization patterns, visual design' principles

and important cognitive principles into a coherent whole that an evaluator can use to

evaluate the effectiveness of visualization systems. The CoMoVA framework is

composed of following components.

Principles - effective visual communication principles (i.e. principle of organization,

economization, and communication), and cognitive principles (i.e. principle of

naturalness of interaction or mapping, and affordances)

Methods - interviewing technique, online survey, and user studies

8

Artifacts - questionnaires, repository of comprehension criteria (i.e. Reachability,

Simplicity, Clarity, Distinctiveness, Emphasis, Affordance, Dynamism, Appearance,

Legibility, Perspective-ness, and Mapping), visualization patterns (for example in the

domain of software visualization, we have Radial pattern, Pyramid pattern, NestedView

pattern, and Tree pattern), a catalogue of tasks required to be supported by the

visualization system (for example, we created a catalogue of 21 software maintenance

tasks to be supported by software visualization systems)

Stakeholders - evaluators and/or usability experts, participants

Our set of criteria and measures can be seen as continuity in questionnaire based

evaluation approaches, e.g. SUMI (Software Usability Measurement Inventory) which is

used to measure user satisfaction based on five usability scales (Kirakowski, 1996). Our

criteria can also be reformulated into design principles or heuristics to be tested by

experts.

1.4 Avenues and Investigations

A number of avenues have been explored in this research work to achieve the

mentioned objectives. These are briefly explained as follows:

1. To refine our proposed comprehension criteria, we met 2 usability experts and sought

their valuable opinions for verification of these criteria using an open-ended

interviewing technique.

2. To further refine the proposed comprehension criteria, we have conducted two

usability studies in two different visualization environments. The first study was

conducted with a bioinformatics visualization tool called 'ADN-Viewer' (Herisson,

2001). A total of 11 participants from the university community having knowledge of

9

bioinformatics domain participated in this study. The second usability study was

performed with an immersive art visualization environment called 'OSMOSE'

(Davies, 1996), where 25 participants of varying backgrounds were invited to

participate in the study.

3. We have performed an online survey based empirical investigation to categorize the

software visualization tasks, as gathered from currently published literature, into

traditional maintenance activities. A total of 162 participants were invited worldwide

in this investigation. This was done in order to see the effectiveness of software

visualization tools in performing the maintenance activities. Through this survey, we

proposed a catalogue of the software comprehension and maintenance tasks that are

required to be supported by current software visualization tools. This initial repository

of 21 software comprehension and maintenance tasks can provide guidance in

evaluating software visualization tools from 'functional' viewpoint i.e. the evaluator

can determine which of the tasks from this repository are supported by any software

visualization tool in hand.

4. To illustrate the usage of our framework for visualization systems, we conducted a

controlled experiment in our human-centered software engineering lab with two static

software visualization tools i.e. 'Structural Analysis for Java (SA4J)' (Iskold et al.,

2004) and 'Creole' (Callendar, 2006). 15 participants from the university community

having knowledge of software maintenance and visualizations in general participated

in the experiment.

10

1.5 Challenges Encountered

Through out in this research we were trying to measure what would normally be

considered intangible, and regarded usually as immeasurable by the researchers, namely

comprehension support. This has been a very challenging task by itself as a number of

complex issues are involved. Three main human senses (i.e. sight, touch and hearing) are

involved in making sense of the multi-media visualization(s), which further complicates

the problem of comprehension assessment. Therefore, we simply restricted ourselves to

the 'sight' sense in this research. Moreover, we cannot directly look inside the mind of a

person to guess what he/she is thinking about any visualization. Therefore, we adopted an

indirect approach where we investigated the tangible properties of the visualization

systems and saw their impact on the performance of an individual. A number of hurdles

have been encountered throughout this research.

1. The very first problem was the verification of proposed criteria. There is no scientific

method to apply for verification, and therefore we sought the opinions of experts in

relevant fields. However, asking the experts to comment on their judgment was also

not easy.

2. Visualizations are employed in a number of different domains and therefore our

second challenge dealt with selecting a suitable application area to apply our

proposed framework. We selected software visualizations as our application area

because of our background in software engineering field.

3. The third barrier was the selection of appropriate tools for study purposes. We found

that most of the software visualization tools are research prototypes and are not fully

functional. We selected only two static software visualization tools for our study.

11

4. The fourth obstacle in our research was that of selecting suitable participants for

study purposes. During our three in-lab studies and one online survey, we have found

that it is not easy to get people to commit their valued time towards participating in

the usability experiment/survey and performing the assigned tasks.

1.6 Dissertation Roadmap

A brief explanation of the remainder of this dissertation is as follows.

In chapter 2, we discuss the background on visualization systems with a focus on the

concerns for comprehension assessment. In particular, this chapter highlights the need

to evaluate visualization systems from the viewpoint of comprehension aspects

involved in the interaction with these systems, and forms the justification for our

proposed comprehension measurement framework.

In chapter 3, we present the fundamentals of comprehension measurement. In order

to provide a foundation work for the establishment of our framework, we further

study comprehension and explore the current state of art in software measurement,

existing measurement strategies along with related measurement studies of

visualization systems previously reported.

In chapter 4, we propose a set of criteria based on cognitive, perceptual, and visual

interface properties of visualization systems. The criteria introduced in this chapter

are verified for their completeness, consistency, and un-ambiguity properties. A

number of methods, like - conducting a comprehensive literature review and open-

ended interview with experts, have been conducted to propose a minimal set of

comprehension criteria.

12

In chapter 5, we conduct two case studies to test the applicability and effectiveness

of our proposed criteria. The first case study is performed with a bioinformatics

visualization tool to evaluate its' effectiveness based on the proposed comprehension

criteria. The second case study is conducted in immersive art visualization

environment. Both these case studies are analyzed thoroughly in this chapter along

with a final set of measures to assess the proposed comprehension criteria.

In chapter 6, we perform an in-depth investigation of our application area i.e.

software visualization systems. This chapter discusses the related studies on the

empirical investigation of software visualization systems along with our online

survey-based empirical investigation of these systems with an objective to identify

the gap between the needs of users and the tasks supported by current software

visualization systems.

In chapter 7, we formulate and describe the process of encapsulating a visualization

technique in the form of a visualization pattern where the 'context of use' in which

the technique is applicable is appropriately summed up to capture the boundaries of

evaluation. We demonstrate this by devising a set of four visualization patterns for the

four different visualization techniques employed in two software visualization tools

under our investigation.

In chapter 8, we integrate all the knowledge gained from previous chapters to present

our comprehension measurement framework. This chapter describes the components

and structure of our proposed Comprehension Model for Visualization Assessment

(CoMoVA) framework.

13

In chapter 9, we test our proposed measurement framework in software visualization

application area using a controlled experiment approach with two static software

visualization tools. Here, we analyze the results to assess the comprehension support

provided by software visualization systems under our study using the comprehension

criteria in our framework.

Finally chapter 10 summarizes the work, major research contributions that have

resulted, research benefits that can be reaped from our measurement framework, and

future avenues for research in this area.

In addition, a number of appendices are also included which provide details about the

online survey, visualization patterns, the consent and user evaluation forms, the

questionnaire, and more details of ANOVA analysis of the controlled experiment.

14

Chapter 2. Visualization Systems: Comprehension of

Visual Information

"Providing evaluations of visualisations is one way to demonstrate that they support a purpose and are

adequate for the role claimed for them.... " - (Claire Knight, 2001)

Overview

In this chapter, firstly we present our background study on visualization systems and

the general problems with them that highlight the need for evaluation of these systems.

Secondly, we provide our justification for the proposed comprehension measurement

framework in order to evaluate the visualization systems. Towards this main objective,

we also outline the specific comprehension problems and the aspects involved in

comprehending the visual information in visualization systems. We study the information

flow from rendered data to the cognition of information in human mind with an objective

to understand the aspects involved in the process of comprehension of visual information

presented by visualization systems. These are aspects that significantly affect overall user

understanding of displayed visual information.

15

2.1 Visualization Systems: Background

Before addressing the research question, on why we need to have a comprehension

measurement framework for visualization systems, a brief background on the subject of

visualization is presented here. This section introduces the evolution of computer-

generated visualization, its application areas along with some illustrative examples, as

well as the associated potential pitfalls.

2.1.1 History

The pedigree of visualization has its roots in pictorial representations dating back to

the origins of man when pictographs or man made images were used for communication.

"Through the centuries, we have seen human generated maps of the sections of the world

for travel and warfare, images of the positions of stars and other celestial bodies, imagery

of plans for architectural and novel devices, images to enhance stories, and many more

such examples. These early steps comprise the beginnings of the husbandry of

visualizations. To support many of modern endeavours, computer generated data

visualizations called 'plots' appeared in the late 1940's, when tables became too large for

a human to comprehend and manage" (Baker et al., 2005). These visualizations were

followed by the growth of computer graphics and systems that permitted the rapid, often

interactive generation of scientific data sets. With the prosperity of visualization in

scientific computing, professionals from other disciplines like statistics also began using

computer-based visualizations to support their data exploration tasks.

2.1.2 Definitions

In the general context, the term "to visualize" is defined in Oxford English Dictionary

as - "to form a mental vision, image, or picture of (something not visible or present to the

16

sight or of an abstraction); to make visible to the mind or imagination." (OED, 2005)

Visualization is an effective way to communicate abstract as well as concrete ideas

through visual imagery.

According to Foley and Ribarsky (1994), "a useful definition of visualization might

be the binding (or mapping) of data to a representation that can be perceived. The types

of binding could be visual, auditory, tactile, etc. or a combination of these". Visualization

can be also be seen as "a computer generated image or collection of images, possibly

ordered, using a computer representation of data as its primary source and a human as its

primary target" (Baker at al., 2005). Visualization is a mapping process from computer

representations to perceptual representations, choosing encoding techniques to maximize

human understanding and communication (Owen, 1999) as shown in Figure 2.1.

Reality
Computer

representation
of reality (data)

f Picture (s) * Viewer (s)

Figure 2.1: Visualization As a Mapping Process

The back arrows in Figure 2.1 depict that viewer(s) may view visual(s) to get a deeper

understanding of the reality or the mathematical concepts, and/or to get a visual proof of

computer representations derived for physical phenomena or concepts.

2.1.3 Classification of Visualization Systems

As the need and opportunities grew with the advancement of computer technologies,

researchers have shown their burgeoning interest in computer-based visualizations and

have classified them accordingly. In general, there are two main forms of visualizations

i.e. scientific visualization and information visualization.

17

• Scientific visualization mainly deals with visual representation of scientific data to

explore and understand natural phenomenon(s). This data is captured from a physics-

based model(s).

• Information visualization, as opposed to scientific visualization, aims to visually

present abstract data that may have no natural visual representation. This data can be

very complex, containing a large number of elements, structured hierarchically in a

network, linearly, or could even lack any kind of structure.

Comparison of information visualization with scientific visualization in terms of

intended audience, task, input data and input size is shown in Table 2.1.

Table 2.1: Scientific Versus Information Visualization (Gershon and Eick, 1997)

Visualization Type

Scientific

Visualization

Information

Visualization

Audience

Specialized,

highly

technical

Diverse,

widespread,

less

technical

Task

Deep

understanding

of scientific

phenomena

Searching,

discovering

relationships,

including

action (fast,

many times!)

Input

Physical data,

measurements,

simulation

output

Relationships,

nonphysical

data,

information

Input

Quantity

Small to

massive

Small to

massive

These two categories are further classified by visualization researchers according to

the application areas where the visualizations are applied. Therefore, today we are

presented with a broader context of visualizations named according to application

18

domains like - database visualization, software visualization, biomedical and geospatial

visualization and so on.

2.1.4 Examples

Below, we discuss a few of many examples available to illustrate the power of

visualization in gaining insights and understandings into complex data or artifacts.

a) Scientific visualization

In scientific visualization, the goal is typically to visualize scientific phenomena from

data experimentally captured or through simulation programs. Figure 2.2 shows the

famous "visualization of a storm" employed in geophysics, where it has been used by

environmental scientists to study the storm phenomenon.

Figure 2.2: Numerically Modeled Severe Storm (Wilhelmson et al., 1990)

b) Information visualization

In information visualization, one is typically looking for complex relationships that

are not obvious from non-pictorial representations. Figure 2.3 illustrates a hyperbolic

view of a complex hierarchy.

19

iipŝ sLsgsSe&aS tow*
_; #^a«ve,&KM ^ # # W * E S M £

-.. . W

Figure 2.3: StarTree to Navigate and Explore Hierarchical Relationships (1ST,

2005)

c) Software visualization

Software visualization can be viewed as a specialized subset of information

visualization that uses visual representations to make software more visible. This is

because information visualization is the process of creating a graphical representation

of the abstract data and this is what is required when we try to visualize software

components (Knight and Munro, 2001). Software is inherently complex having a

large number of artifacts in the system and their relationships, so we need to visualize

software in order to comprehend the meaning of these artifacts. Software

visualization is concerned with the construction of static and dynamic views of the

software systems. For example, Figure 2.4 depicts the program execution data using a

Treemap technique.

-~ ^ i i - i - ^ - J j t L L i s i

; „. . *
iZ. .r;-j 'ft

• r : - - i •

Figure 2.4: Treemap View of Program Execution Data (Orso et al., 2003)

20

2.1.5 General Problems with Visualizations

Despite the application of visualization in diverse fields as illustrated above, various

researchers have come across many problems with them. Based on the literature survey,

we are summarizing some potential pitfalls associated with visualizations that are

hindering their usefulness to ultimate users.

a. Cognitive overload

First and foremost, we need to address the basic question of 'user insights' for which

visualizations were developed. Due to large amount of information that is displayed

in visualizations they are becoming overly complex, thus burdening users' minds with

information, commonly referred to as the information overload problem. Pfitzner et

al. (2003) state that a higher cognitive load is placed upon the user if the

visualizations are difficult to interpret.

b. Flashy imagery

Ma (2004) points out that many research visualizations tend toward colourful, showy

images rather than informative ones. He says that ineffective visualizations are

typically caused by the careless use of visual metaphors, a rush to publication with

immature research results or a desire to generate eye-catching images for a

publication. Although fascination attracts the audience, it is only temporary and

finally users prefer the visualization based on its' inherent content and usability.

c. Lack of evaluation

While tremendous advances have been made in the field of visual rendering, the

growth of usability studies and empirical evaluations has been relatively slow (Ma,

2004; Chen 2005). According to Ma (2004) many visualization research results are

21

mainly good for publications and demonstrations but are not directly applicable in a

real-world problem-solving environment, and this is because the knowledge of

application scientists is not fed into the visualization tools/techniques by visualization

researchers. Moreover, scientists who are expert in their field do not like to use the

visualizations created by novices (Petre et al., 1998). To deliver truly usable

visualization solutions, we need to measure the effectiveness of the visualization

methods. User study should be added to the introduction of every new visualization

technique to assess the real context in which it is useful (Ma, 2004). Usability studies

need to address whether users can recognize the intended patterns being presented

through visualizations (Chen, 2005).

d. Lack of scalability

Nowadays, another major bottleneck that hinders the making of good visualizations is

the sheer volume of data coming from scientific sources. Many of the present

techniques do not scale with the problem size. We need strategies to organize and

operate on data providing the desired interactivity and display resolution, and with

available computing resources (Ma, 2004).

e. Navigation problems

Non-intuitive navigation is a factor that frustrates the users most while exploring the

visualization environment. Many researchers have noted that visualization

environments are difficult to navigate, and are sometimes even more so when it

comes to interpretation of the results. Furthermore, many of the visualizations do not

offer guidance for 'where to look' and 'what to look for' during the exploration

(Bramer et al., 2002).

22

/ Improper context of use

Generally, most of the visualizations lack the proper guidance on the real context in

which the tool or technique is applicable. There is always a gap between the novice

and expert user's knowledge; novice users normally do not possess the same analytic

abilities as experts, which may hinder their ability to interpret visualizations (Bramer

et al., 2002). Moreover, their needs are not the same, so they have their own

objectives. Table 2.2 highlights some of the varying needs of expert and novice users

while exploring any visualization system.

Table 2.2: Novice Versus Expert Users Needs

Novice Users

• Need a visualization system that is

very easy to use.

• Need clear and detailed help.

• Do not need many different views of

visualization.

Expert Users

• Need a system that complements and

supplements their thinking.

• Need a very flexible system,

allowing seeing different levels of

details.

Many tools and techniques are developed without taking into consideration the

environment in which they will be effective and as a result users falsely assume that

they are universally applicable and then become discouraged with their real use.

g. Interaction difficulty

"A crucial factor in the usefulness of a visualisation system is the ease with which the

analyst can interact with the visualisation to obtain the information they require"

(Pacione, 2004).

23

2.2 Comprehension: Study Rationale

In the previous section, we have seen a number of problems that could negatively

affect the overall value/quality of visualizations. Researchers (Garvin, 1984) and

standards (ISO 9126, 1991) have included "user view" or "user perspective" as one of the

facets of quality of any software product. To assess the "quality in use" or the user's

perspective of the quality of any visualization system, we need to recognize the factors

that affect it. Based on users' viewpoint, when we look at the visualization systems the

most predominant factor that affects their ultimate quality is user comprehension of the

visual information presented. The success of any visualization system relies on its

support for providing 'user insights' to understand underlying artifacts represented

through the visual. If the visualization system does not achieve this objective, it is of little

use or suffers from poor quality. Thus, comprehension of the visual information

presented by the system is the most important feature to determine the quality of any

visualization system.

The justification for this statement, based on the comments of various researchers

found during the literature survey, is as follows:

Saltz and Steinbach (1997) suggest that the innovative display of the information, by

itself, is not enough to ensure the success of the visualization system, as the users

must intuitively understand the visualization that has been created.

- Cross II et al. (1999) state that visualization in and of itself, however, is not

necessarily beneficial. There are many concerns including the cognitive issues

relating to the user and the process of human comprehension that influence the utility

of visualizations.

24

- Friendly (1999) says "Like poor writing, bad graphical displays distort or obscure the

data, making it harder to understand or compare."

Having established a consensus on importance of this characteristic of any

visualization system, we further studied it in order to categorize the specific

comprehension problems that users may encounter in any visualization environment as

discussed further in the following section.

2.3 Comprehension Problems in Visualization Systems

Ekenstierna (2002) has defined a help question model for various user assistance

techniques based on the probing questions that arise in users' mind to make a mental

model of the system like - what, how, why, when, where etc. This classification is

analogous to what the users think about when they interact or explore any visualization

system. Based on this model we can identify five different comprehension problems in

visualization systems as shown in Table 2.3.

Table 2.3: Categorizing Comprehension Problems

Problem Type

Goal-oriented

Descriptive

Procedural

Interpretive

Navigational

Problem Description

What can I do with this visualization?

What is this?

What does this do?

How do I do this?

Why did it happen?

What does it mean?

When is it appropriate?

Where am I?

Which path to follow to go from this position to that?

25

A brief description of these problems is as under:

• Goal-oriented problems are basically the first comprehension problems that come up

when a user starts looking at any visualization system. The user starts thinking of the

overall objective or goal of using the visualization system. The other comprehension

problems start arising only when the user is going to pay more attention to the

problem context displayed in the visualization.

• Descriptive problems are the knowledge acquaintance problems. After the initial

sensing, now the users' working memory starts asking questions to gain an

understanding of the problem domain represented in visualization.

• Procedural problems deal with investigation of systematic procedures to achieve a

particular user goal. These generally address the strategies to be adopted while

accomplishing the goals with any visualization system.

• Interpretive problems are the kind of user comprehension tasks where users make use

of their long-term memory to analyze the current situations. The users make use of

their past knowledge as benchmark data for interpretation of present knowledge.

• Navigational problems are mainly dealing with finding the pathways in complex and

large information spaces represented in visualization systems.

In order to better understand these comprehension problems highlighted by the

review, we further studied the process of comprehending visual information and

identified various aspects involved in it as presented in the next section.

2.4 Aspects of Comprehension

The notion of user' comprehension assessment is not an easy task, as there are many

contributing aspects involved in it. To capture these aspects, we studied thoroughly the

26

communication path starting from data or information that is rendered in visual form to

the perception and cognition of information in human mind. For any visualization system,

data rendered in visual form is perceived or interacted upon by the user of that system as

shown in Figure 2.5.

Figure 2.5: Aspects of Comprehension

As mentioned previously, in this information flow starting from raw data to the

cognition of information in human mind for comprehension, we believe there are

"aspects" which play significant roles and affect one another. We term these aspects as -

"Information Structure", "Visualization Interface", "Perception", and "Cognition" as

shown in Figure 2.5. A detailed explanation of each of these aspects is as under.

• Information Structure

The information structure has a profound affect on user comprehension. Differences

between users' expectations and the actual information structure may cause

comprehension difficulties. Reliability of the data is affected by the nature of gathering or

processing data causing noise to be added to the original data, as well as visualization

27

constraints which result in changing the original information in order to adapt it to the

particular technique (Luzzardi et al., 2004). Gershon (1998) states that flaws in the data

reduce the accuracy and possible usefulness of the resulting visualization. Sometimes the

data that is rendered is not perfect by itself due to many causes like - corruption of data,

incompleteness, inconsistency, information complexity, uncertainty, imperfect

presentation etc (Gershon, 1998). The net affect is that the visual used to represent the

data/information does not represent the whole story and is not easy to comprehend.

Luzzardi et al. (2004) and Brath (1997) have suggested some measures to apply for

information complexity like - data density, data dimension etc. These measures of

information structure are beyond the scope of our research and are not studied in detail

further. In our research, we believe that the data/information that is rendered is free from

the kind of flaws mentioned above by Gershon (1998).

Once the data is visualized, it is presented to the user on screen. So, the next aspect to

consider for user comprehension is visualization itself which includes the view of the

data in the form of a visual and the user interface for its' manipulation.

• Visualization Interface

According to Wilkins (2003), the visualization presented to the user consists of two

parts - a view of the data and a graphical user interface (GUI) associated with the view.

The view is a representation of the data that is derived from various data features and task

requirements. Each view has its own intent that captures the general purpose and

motivation leading to its design (Storey et al., 2005). For example, a graph typically has

the intent of showing trend, a tree shows hierarchy, a graph shows connectivity etc. The

GUI augments the view and usually consists of standard graphical components like -

28

menus, buttons, sliders, list boxes, etc. User interacts not only with the view but also with

the GUI to achieve user goals. The interface is a crucial part of any visualization system,

as it essentially forms the link between the user and the visualization itself. An easily

understandable UI helps the user to interpret the visualization and perform correct

operations. So, in order to comprehend the visualization accurately, we should explore

the view and its accompanying interface.

The next aspect to consider for user comprehension is perception.

• Perception

Perception is an integral part of any visualization and details that can not be perceived

by the observer serves no purpose if displayed (Kjelldahl, 2003). As information

contained in visual must pass through the perceptual system, therefore effectiveness of

visual also depends on their perceptual characteristics (Rheingans and Landreth, 1995).

In psychology and cognitive sciences, perception is the process of acquiring, interpreting,

selecting, and organizing sensory information (Wikipedia, 2007). There are five classical

senses - sight, hearing, touch, smell, and taste. Each of these senses plays a significant

role in perceiving the information around us. In our research, we limit our scope to the

study of factors in visualization systems that affect the "sight sense" or the "vision

capability" of the users. There are various perceptual attributes of visuals, like - color,

line orientation, contrast, transparency, position and size etc., that make them easier to

comprehend by eyes. Lowe (1999 and 2003) has conducted studies on visualization and

perception, and has shown that perceptual features of a visual can interfere with

successful comprehension. According to Wiinsche and Lobb (2001) perception of a scene

is processed in two stages: pre-attentive and focused attention stage. They state that the

29

pre-attentive stage allows perception of very simple primitive textual features, like -

length, width, orientations and interactions along with shape, color, intensity, texture

depth etc., without conscious attention. This initial stage is followed by focused attention

stage, which entails conscious examination of a scene, rapid mental calculations and

quantitative reasoning for complex information objects. Schiffman (1996) suggests that

perception can also be dependent on previous stimuli, and familiar shapes and

configurations can improve recognition of a target. To utilize the strengths of human

visual system and to reduce cognitive load there are a set of basic organizing principles

called Gestalt Laws. The Gestalt approach emphasizes that we perceive visual

components as well-organized patterns rather than separate components. Gestalt is a

German word that translates to "configuration or pattern". According to Gestalt theory,

there are six main laws that determine how we group things according to visual

perception, these are - Proximity, Similarity, Closure, Symmetry, Common fate and

Continuity (c.f. Figure 2.6). Each of these laws describes the strengths of human visual

system in perceiving visual objects. A brief explanation of these laws is as follows:

- The law of proximity states that objects that are close together will tend to be

perceived as a group.

- In the same way, similarity law states that objects of similar physical attributes like -

shape, size, color etc. tend to be grouped together.

- The principle of continuity states that continuous forms are more likely to dominate a

scene in comparison to forms that have abrupt changes in direction, i.e. objects that

lie along a common line or curve tend to be grouped together.

30

Connectedness, which is a form of continuity states that connected objects are

perceived as groups.

Closure is the form of common enclosed region.

Principle of common fate states that objects that have the same orientation or motion

are also grouped together.

0 00
000
000
000
000

0 0
0 0

000
000

0 0 0 0 0 0 0 0
AAAAAAAA
00000000
AAAAAAAA
0 0 0 0 0 0 0 0

Proximity Similarity Continuity

MM ''llf/
\ \ l l i l l

\\ \mi
Closure Common fate

Figure 2.6: Gestalt Laws of Visual Perception

The final aspect to consider for comprehension is cognition.

• Cognition

In order to judge the degree of comprehension, it is also necessary to understand

human information processing or the cognition of information in human mind. This is

important because humans have limited information processing capacity. The classic

model of human memory system shown in Figure 2.7 is composed of three major

components: sensory memory storage, short-term or working memory, and long-term

memory. In this information-processing model of mind, sensory information enters

'sensory storage' which behaves like an input buffer in a computer.

31

file:////llill

Once in the sensory storage, the information is either passed to short-term memory

component by the attentional mechanism, or it is lost, i.e. being "written over" or

"masked by" successive information or "decays" (in approximately 200-250 milliseconds

for the visual sensory memory, or iconic storage, and approximately 4-7 seconds for the

auditory sensory memory, or echoic storage) if it is not refreshed (Hewett, 2003). When

the information is selected for further processing then it is passed to short-term memory.

Maintenance Rehearsal

Sensor)' input

Unrehearsed
information
is quickly

Some
information
may be lost

Unattended
Information
is quickly

Figure 2.7: Human Memory System (Gray, 2001)

Short-term or working memory (STM) is a buffer where concepts are stored during

the initial stage of comprehension. STM limitations vary depending on the individual and

on what kind of information is being retained (Kintsch, 1998). According to Hewett

(2003) - "STM is also described as having a limited storage capacity (seven plus or

minus two chunks) for a relatively brief duration (estimates range from 12 to 30 seconds

without rehearsal) before information is lost through simple decay or when new

information displaces the older information; however, information can be maintained in it

for periods of time longer than 20 seconds with maintenance rehearsal." Kintsch and Dijk

(1978) claim that the risk of comprehension errors increases with the density of

information stored in STM. The information is finally encoded into Long-term memory

32

(LTM), where information is represented as concepts and associations between concepts

is presented through schemas or patterns. The retrieval performance of LTM depends on

the density of associations between these concepts (Anders and Kintsch, 1995). Several

types of information are encoded in LTM, including things like - facts and events, motor

and perceptual skills, knowledge of physical laws and systems of mathematics, a spatial

model of the world around us, attitudes and beliefs about ourselves and others etc.

(Hewett, 2003). Practically, LTM is considered as unlimited in capacity. However, it also

fades over time. A list of general concepts, once remembered, deteriorates to a level of

about 60% after 3 months and stabilizes at around 25% after 3 years (Reed, 1996).

In short, from above explanations, we conclude that cognition being an important

component of the comprehension process is a complex aspect by itself. Therefore, direct

assessment of each user's cognition is a problematic task as users have varying cognitive

qualities, which are also impacted by several physical, social, and environmental factors.

The study of these external factors is beyond the scope of this research. So, in order to

measure each user's cognitive aspect of comprehension, we simply observe those factors

in the visualizations systems that impact the cognitive capabilities of the users.

2.5 Summary

As we have seen in the previous section, grasping information from the visualization

and interpreting them mentally is a complex process that involves a number of different

aspects. We also observed that direct assessment of comprehension is not feasible as

these aspects are interrelated and affect one another to make a mental model of any data

represented through visualization(s). Therefore, to measure this seemingly immeasurable

characteristic of visualization systems, we are limiting our scope as discussed further.

33

long-Term Memory

Working Memory

Visual Image Store Auditory Image Store

Perceptual Processor •(,•• Cognitive Processor \

Motor Processor

/ • < > "\-/

Figure 2.8: Visualization System and Human Memory Processor

In Figure 2.8, the large dashed oval depicts the model of human processor as

proposed by Card et al. (1983) and small dashed oval illustrates the "Information

Structure" aspect of comprehension. In the model of human processor, three inputs (i.e. -

visual, audio and movement) into human brain are processed by three different internal

processors. Although, both of these concepts represented in dashed ovals influence the

comprehensibility of the visualization systems, the direct measurement of their impact on

comprehension is not possible. Therefore, in our research we just look at those visible

34

features in any visualization system that contribute to these abstract concepts and could

guide us to indirectly measure the comprehensibility of any user. To measure

comprehension, we study the "Visualization Interface" aspect in detail along with those

features in the visualizations that affect the "Perception" and "Cognition" aspects of

comprehension. We study these aspects further in order to determine the criteria affecting

user comprehension of a visualization system. The audible input to the perceptual

processor of the human processor model as shown in Figure 2.8 is also not part of the

scope of this research, as we are limiting ourselves only to the visual attributes of the

visualization system.

35

Chapter 3. Fundamentals of Comprehension

Measurement

"...when you can measure what you are speaking about, and express it in numbers, you know something

about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a

meagre and unsatisfactory kind.... " — Lord Kelvin (1824-1907)

Overview

This chapter deals with the basics of measurement in general. It begins with our

requirement that comprehension should be a measurable quality factor of visualization

systems. It then discusses the current state of art in measurement by elaborating various

issues pertaining to the measurement process like - measurement models, measurement

scales, data collection procedures, and evaluation methods. Related studies on

measurement in visualizations by other researchers are also discussed here. Finally,

distilling knowledge from the above, we present our concluding remarks for the

establishment of our framework.

36

3.1 Comprehension as a Measurable Quality Factor

We consider comprehension of visual information presented as a fundamental

characteristic that influences the overall quality of any visualization system. Being a

quality factor, we believe that it must be decomposable into measurable attributes that

can be measured using some measurement scheme.

In order to further proceed with its measurement, we first describe how various

researchers perceive comprehension in the context of software and information

visualization.

3.1.1 Defining Comprehension

In simple terms, comprehension refers to activities that humans do: understanding,

conceptualizing, and reasoning about the artifact under consideration. Klemola and

Rilling (2003) state that comprehension consists of several processes including -

recognition, learning, grouping concepts or chunking, searching for occurrences of a term

or tracing, and depends on the familiarity of an individual with the artifact in question. In

another paper (Klemola and Rilling, 2002), these authors have identified a hierarchy of

five comprehension tasks, which are -

• the recognition of a familiar term,

• the tracing of references to a term,

• the memorizing of new information,

• the learning of information, and

• the creation of information.

Many other researchers have defined the term 'comprehension' as follows:

37

- In cognitive science, comprehension is often characterized as the construction of a

mental model that represents the objects and semantic relations described in a text

(Kintsch and Dijk, 1978).

- It is a constructive process in which an individual uses prior knowledge, information

presented in the external media, and skills of reasoning and mental visualization to

build a mental model of the system (Narayan, 1997).

Comprehension is often confused with understandability. However, according to

Cioch (1991), understandability consists of two components: comprehension and lack of

misinterpretation as shown in Figure 3.1.

Information ^*^
is presented \

The recipient -
j / ' mentally grasps ^^^

the information \

The recipient does
not mentally grasp
the information

Information
^ ^ correctly

interpreted:
comprehension

\ . Information
incorrectly
interpreted:
misinterpretation

Figure 3.1: Understandability and Comprehension

"When one wishes to ascertain the understandability of a particular software-related

product, one is often concerned not only with the degree to which, or the ease with

which, the information is grasped mentally, but also with the degree to which it is

misinterpreted by the person examining the product" (Cioch, 1991). So, comprehension is

one aspect of understandability, which means that the person is able to mentally grasp the

information and to interpret it correctly. Lack of comprehension means the person is

unable to mentally grasp the information. Misinterpretation implies that the person is able

to mentally grasp the information but interprets it incorrectly due to any of several factors

like - the person is erroneously confident that he/she has comprehended the information,

38

the information is ambiguous (has multiple possible interpretations) or when the

presenter and the recipient have divergent perspectives on the information (Cioch, 1991).

3.2 Why Measure Comprehension?

There are many different visualization tools/techniques being implemented in the

plethora of visualization systems available today. However, the widespread proliferation

of visualization tools/techniques also highlights the need for their empirical evaluation.

We are still lacking a measurement framework, which could objectively tell us the

benefits of one tool/technique over the other for a specific task. "Once the visualisation

has been designed and built it must be evaluated to see if it is capable of supporting the

user in their tasks and meets all of the desired usability criteria" (Wilkins, 2003). The

success of any visualization technique depends on the expressiveness and effectiveness of

underlying graphical language in exploiting the capabilities of the output medium and the

human visual system (Mackinlay, 1986). No matter how efficient a visualization

technique may be, or how well motivated from theory, if it does not convey information

effectively, it is of little use (Kosara et al., 2003). So, to quantify effectiveness i.e. to

determine the extent to which a visualization system proves useful in practice, we need to

measure it. Any visualization system is effective only if it is serving its main objective

i.e. facilitate understanding of the underlying pattern in the data. Comprehension is

crucial for overall effectiveness of any visualization system. This is the primary

motivation for us to consider comprehension measurement.

On examining the literature, we found that the software professionals working on

software visualization have also expressed the need for some benchmarks to evaluate the

effectiveness of visualization systems. Rushmeier et al. (1995) state:

39

"There is also a general agreement that there are characteristics of visualization systems

that make them very useful for some problems, and characteristics that make them

essentially unusable for other problems. Unfortunately, very little work has been done to

rigorously define what a good visualization or visualization system is. Currently, we have

no measures to guide users in generating reliable, accurate and effective visualizations.

Developers of visualization systems have no community-accepted standards and

benchmarks to use in designing and validating their products. Purchasers of visualization

software have no guidelines for comparing products."

Therefore, in our research we are aiming to provide a measurement framework where

we could express the comprehension of any visualization system by the intended user in

quantitative terms. To assist us in the formulation of a measurement framework for

comprehension assessment in visualization systems, we further studied the current state

of measurement in software engineering, which we believe is the most closely related and

also more advanced in this aspect.

3.3 Representational Theory of Measurement

Measurement has become a necessary tool to provide an objective vision on the

quality of our daily activities. Thus, nowadays measurement is an integral part of any

human activity whether it is social, economic, industrial, academic, environmental,

medical, etc (Khelifi et al., 2004). In general, measurement is the process by which

numbers or symbols are assigned to objects either real or abstract, that we observe in our

intellectual environment. An example of a real object is a person (human being) and an

example of an abstract object is an algorithm. Each instance of these objects has certain

properties or attributes. However, the process of identifying the attributes of an abstract

40

object, like comprehension support provided by a visualization system, is not nearly so

simple. Most of us have little or no training in the determination of the properties

(attributes) of abstract objects. Thus, it is very difficult for us to measure these attributes.

Roberts in his book (Roberts, 1979) suggests that measurement has something to do

with assigning numbers that correspond to or represent or preserve certain observed

relations. A formal definition of measurement given by Fenton and Pfleeger (1997) is that

it is a mapping from empirical world to the formal, relational world i.e. it is a process by

which numbers or symbols are assigned to attributes of entities in the real world in such a

way as to characterize the attributes by clearly defined rules. In the mapping, the real

world is the domain and the mathematical world is the range. The mapping is called

'representation' or 'homomorphism' and it must preserve intuitive and empirical

observations about the attributes and entities in the real world. The property of the

entities that determines the mapping according to the prescribed rule is called a

magnitude, the measurable attribute. The number assigned to a particular object by the

mapping rule is called its measure, the amount or degree of its magnitude. The mapping

rule will define both the magnitude and the measure.

The term metrics has been used widely to describe the act of measurement, and to

imply the qualitative or quantitative performance indication. Its purpose is to accurately

quantify an aspect of an existing or proposed system. Originally, a metric is defined as a

criterion to determine the difference or distance between two entities, like the distance of

two locations or the distance of a query and a document in information retrieval systems

(Zuse, 1998). The Institute of Electrical and Electronics Engineers (IEEE) standard for

Software Quality Metrics Methodology define the term 'software quality metric' as - "a

41

function whose inputs are software data and whose output is a single numerical value that

can be interpreted as the degree to which the software possesses a given attribute that

affects its quality" (IEEE, 1998). According to ISO/IEC 15939 (2007), measure is to

make a set of operations having the object of determining a value of quantitative or

categorical representation of one or more attributes. The term "metric" should be no

longer used as synonymous of "measure" according to this standard.

The rest of this section is further divided into four parts - first part describes

measurement models based on measures-based evaluation (an approach similar to what

we will be using in our research), second part lists the measurement scales that can be

used during measurement, third part explains the data types and methods of data

collection, and the fourth part presents some of the evaluation strategies that could be

applied for visualization systems.

3.3.1 Measurement in Software Engineering

Rombach (1991) states that in order for measurement to be successful, effective 'top-

down' strategies that derive metrics from goals and interpret measurement data in the

context of goals, are needed. We studied relevant models/standards in software

engineering that are grounded in the theory of metrics-based evaluation. These

models/standards are used by software engineers and usability specialists to measure the

quality of software products. A brief explanation for each of them is as under.

Q McCall's Model

McCall et al. (1977) proposed one of the earliest quality models. This model is also

called GE (General Electric) model or FCM (Factor, Criteria and Metric) model. This

model describes quality as being made up of a hierarchical relationship among the quality

42

factors, quality criteria, and quality metrics. The term "quality factor" is a key

characteristic of the software product. "Quality criterion" is an attribute of the quality

factor that defines the product. "Quality metric" denotes a measure that can be used to

quantify the criterion. McCall et al. described a systematic approach to quantify quality

as:

Determine all of the factors that would have an effect on the software quality.

Identify the criteria forjudging each factor.

- Define metrics for each of the criteria and establish a normalization function that

defines the relationship between the metrics and all the criteria pertaining to each

factor.

Evaluate the metrics.

- Correlate the metrics to a set of guidelines that every software development team

could follow.

Develop recommendations for the collection of metrics.

As depicted in Figure 3.2, McCall et al. identified 11 quality factors, 25 criteria and

41 metrics to measure these criteria. These metrics involved questions dealing with the

degree of compliance to the criteria and had either a "yes" or a " n o " for an answer.

That is why the metrics results are highly subjective and it is generally difficult to

interpret them.

43

V " F * " o r CrKerta

Product
operat ion

Product
revision

Product
transit ion

j_^*. Operabittty

j . 1 Usabi l i ty 1 ^ "

/ ^ - H Integrity | N > - \ "

s^" ' X O i f e i • 1 Ef f ic iency h w ^ N . ^ " 1

^ \ ^ s ^ S
^ v ^ * ^ 1 C orrec Iness l^" *^ > V v " N ' 1

\ •" \ ^ - O s
^ j Rel iabi l i ty h ^ N * . ^ V * ^

j**- i Ma in ta inab i l i ty J - ^ v V ^ O * "

^ - V^A-V
^ \ ^

"""^l F lex ib i l i ty] ^ _ ^ S ^ N

^*<*\ Reusabi l i ty j ^ ^ N ^ ^ V ^

^ " • j interoperabi l i ty (^ x X ^ V *

Trammg

Communicnitvencs*

|.<0 vo)umc

) U r»c

Access conUitl

AcvcMt audii

Sftway* efficiency

Trace ability

Completeness

Accuracy

ttmyr lolerBtti*:

Consistency

Simplicity

Conciscncss

instrumentation

txpaiwlabiltty

Generality

Setf-descripit v*n*ss

Modularity

Machine independence

S>w system independence

Ccwnmi commonality

D*ta commonality

• M e t r i c *

Figure 3.2: McCalF Software Engineering Quality Model

• Boehm Model

This model was developed in 1978 by a team of researchers, lead by Barry W. Boehm

(Boehm et al., 1978). Like the McCall model, this model also focuses on the final

product. Both McCall and Boehm models assume that the quality attributes are at too

high-level to be meaningfully measured, and therefore further decomposition is needed.

The quality characteristics at a lower level are called quality criteria In a third level of

decomposition, the quality criteria are associated with a set of directly measurable

attributes called quality metrics. Boehm's model of software quality is depicted in Figure

3.3.

44

It incorporates 19 quality factors encompassing product utility, product

maintainability, and product portability. The criteria in McCall and Boehm models are

not independent, and they interact with each other in a conflicting manner.

Primary uses nfcrmediate constructs Primit ive constructs

As is utility

(General utility

•laintainabilitM,

Human engineering

Tesiabilily

Understandabilily

Modi fiabi I irv

Device Independence |

Completeness""

Device efficiency

Accsstbthtv

Communicativeness

Siructuredncss

Set f descr i pi iveness

conciseness

luccibililv

Augmemabihiy

Figure 3.3: Boehm's Model

• The GQM Paradigm

The Goal-Question-Metric paradigm was proposed by Victor Basili, as a means of

measuring software in a purposeful way (Basili and Rombach, 1987). The main idea

behind the GQM is that measurement should be goal-oriented and based on context

characterization.

Goals are refined in an operational, tractable way into a set of quantifiable questions.

Questions in turn imply a specific set of metrics and data for collection. GQM defines

measurement at three levels (Figure 3.4):

1. Conceptual level (Goals): Goals are defined for an object based on specific needs,

from various points of view and relative to a particular environment.

2. Operational level (Questions): A set of questions is defined for the model of the

object that characterizes and assesses a specific goal.

45

3. Quantitative level (Metrics): A set of metrics based on the model of the object under

study is defined for each question in order to answer it in a measurable manner.

O r g a 11 i z u i i u ••

* ^ ^ t

;.<3o«nidl v

TV -^p3^
Kse^t.Ii Q u e s t £ O west. 2 Q u Q > m t . I Q u e s t .2 Q u e l - ' O n e s ' I Q u e s t . 2 Q u e s t . I Q u e s t . 2 Q u e s t - J

V l e g r i t rvf-ettfEC M e t r i c V l e l r i i - ?v$efr,ic rvfeirse N i e t r i c X i e l r i c iVSelrie rvfetrs

Figure 3.4: GQM Framework for An Organization

Q ISO 9126 Standard

For many years, there was a desperate need for a unique, unambiguous and usable

software quality model. In 1991, an international standard was proposed for software

quality measurement i.e. ISO 9126: "Software Product Evaluation: Quality

Characteristics and Guidelines for their Use" (ISO 9126-1, 1991). This standard

incorporates six quality characteristics - five of them (reliability, usability, efficiency,

maintainability and portability) are similar to those in McCalPs model and sixth i.e.

functionality (Are the required functions available in the software product?) is the new

one. These quality characteristics can be further refined into sub-characteristics that can

have measurable attributes. Revision of the model in 2000, introduced the concept of

quality in use as the seventh software quality characteristic (c.f. Figure 3.5).

46

Q u a l i t y * " U s e

E f f e c l j v e n e s s , P r o d u '

F u n c t i o n a l i t y

A c c u r a c y
S u i t a b i l i t y
I n t e r o p e r a b i l i t y
S e c u r i t y

i t t i - v i t y , . S a f t t y , fiicti S a t i s f a c t i o n

I t e J I a b i l i t y

T V l a t u r i t y
F a u l t T o l e r a n c e
JE%.cc o v e r a b i l i t y
. A v a i l a b i l i t y

T J s a b i l i t y
U n d e r s t a n d a b i l i t y
L c a r n a l r i l i t y
O p e r a i b i l i t y
A t t r a c t i v e n e s s

E i T 3 < i g « » » * y
T i m e B c h a v i c
R e s o u r c e
XTt i l i j za t i o n

TVTe»8»n#gif l -—ialfcamy Po-a-t a*> a u t y
A n a l y z L a b i 1 i t y
C h a n g e a b i l i t y
S t a b i l i t y
T e s t a b i 11 t y

A d o p t a b i l i t y
I n s t a l l a b i l i t y
C o - e x i s t e n c e
R.ep»l a c c a b i l i t y

Figure 3.5: ISO 9126 -2000

Quality in use is the combined effect of the six software product quality

characteristics and is determined in terms of the following four high-level quality

attributes:

Effectiveness - The capability of the software product to enable users to achieve

specified goals with accuracy and completeness in a specified context of use.

Productivity - The capability of the software product to enable users to expend

appropriate amounts of resources in relation to the effectiveness achieved in a specified

context of use.

Safety - The capability of the software product to achieve acceptable levels of risk of

harm to people, business, software, property or the environment in a specified context of

use.

Satisfaction - The capability of the software product to satisfy users in a specified context

of use.

• QUIM

Quality In Use Integrated Map (QUIM) is a framework for specifying and measuring

quality in use (Seffah et al., 2006). QUIM is also based on a hierarchical decomposition

47

like most other software engineering models. The difference is that it distinguishes five

levels called - factors, criteria, metrics, data and artifacts for data collection purposes.

The relationship between the elements of these layers is an N-M relationship. QUIM

knowledge map is a repository of 10 factors, 27 criteria and more than 125 metrics for

assessing quantitative as well as qualitative aspects of quality in use. Factors in this

repository are applicable as generic characteristics of all software products, and the

models are seen as specific subsets of this knowledge map, which have context specific

characteristics. It further refines factors into measurable criteria and then maps the

criteria into usability metrics. Empirical rules for understanding and interpreting metrics

are also included in QUIM. This framework is also supported by a tool called QUIM

editor. It allows the software developers to establish usability goals and create usability

requirement specification. Software developers can evaluate the usability of their

software products based on the specification.

3.3.2 Measurement Scales

When measurement is viewed as the mapping from the empirical properties to

numbers (Zuse, 1998), the empirical and numerical relations are usually called the scale

of the measurement. Scales provide values and units for describing the attributes of

entities. For example, number of colors used in visualization is '4'; legibility of the text

in visualization is "average" etc. Each of these observations has been quantified (or

labelled) with a value from a (presumably) well-defined scale. Generally, there are five

types of scales used in measurement as explained below.

a) Nominal scale

48

A nominal scale provides a name or label as the value for an attribute of an entity.

Here, each entity is placed in a particular class or category based on the value of some

attribute. The empirical relation system consists of different classes; there is no

ordering among the classes. The only comparisons that can be made between variable

values are equality and inequality. There are no "less than" or "greater than" relations

among classifying names, nor operations such as addition or subtraction. Nominal

measures are often used to classify entities so that they can be sorted prior to counting

the number of occurrences or aggregating measured values. Examples are: first

language of a person (English, French, other), color of a person's hair (red, brown,

black, blonde, other), numbers for football players (nominal values limited to one

player per number), and identifying attributes such as part numbers, job codes, defect

classes etc. Among the admissible statistical functions for this scale, one can refer to

frequency or mode.

b) Ordinal scale

An ordinal scale permits measured results to be placed in ascending (or descending)

order. The empirical relation system consists of classes that are ordered with respect

to an attribute. Any mapping that preserves the ordering is acceptable, e.g.

comparisons of greater and less can be made, in addition to equality and inequality.

The numbers represent ranking only; so addition, subtraction, and other arithmetic

operations have no meaning. In addition to frequency or mode, one can use median as

another statistical operation.

c) Interval scale

49

An interval scale adds the concept of distance. This scale captures information about

the size of intervals that separate the classes, i.e. this scale preserves differences

between any two of the ordered classes in the range of the mapping. Addition and

subtraction are acceptable on the interval scale, but not multiplication and division.

Meaningful statistics are the comparisons of arithmetic means, standard deviation,

Pearson correlation coefficient and all that apply to ordinal scale.

d) Ratio scale

It is a measurement mapping that preserves ordering, the size of intervals between

entities, and ratio between entities. The measurement mapping must start at zero and

increase at equal intervals. All arithmetic operations can be meaningfully applied to

the classes in the range of the mapping. Geometric mean and coefficient of variation

are one of the appropriate statistical analysis techniques that can be applied on the

ratio scale.

e) Absolute scale

The measurement for an absolute scale is made simply by counting the number of

elements in the entity set. The attribute always takes the form "number of occurrences

of x in the entity". There is only one possible measurement mapping, namely the

actual count. All arithmetic analysis of the resulting count is meaningful. Meaningful

statistics are all that apply to above scales.

3.3.3 Data Types and Data Collection

Any empirical investigation results in data. Data can be classified into two categories

- quantitative data and qualitative data. Quantitative data is expressed in the form of

numbers and is obtained by assigning a numerical value or a symbol to a property or

50

attribute of a software engineering entity (Fenton and Pfleeger, 1997). Qualitative data

(i.e. information expressed in the form of words and pictures) plays an important role in

addressing the human aspects (Seaman, 1999). The advantage of qualitative data is that it

is more informative. However, being subjective in nature it is more difficult to analyze

this kind of data.

Data collection plays a crucial role in order to obtain insight and knowledge about

software products (Zelkowitz and Wallace, 1998). A variety of data collection methods

exist to collect data like - observation, interviews and questionnaires (Robson, 1993). An

observation provides an opportunity to document activities, behaviour, and physical

aspects without having to depend upon people's willingness and ability to respond to

questions. Interview is a kind of conversation with a specific purpose, for example to get

an opinion of a person on a particular topic. The interview is a flexible and adaptable way

of finding information (Freimut et al., 2001). Interviews are often distinguished based

upon the degree of structure or formality of the interview (Robson, 1993). The fully

structured interview applies a predetermined set of questions. The semi-structured

interview applies a set of questions that have been worked out in advance, but the

interviewer is free to modify the order based upon the perception of what seems most

appropriate in the context of the conversation. During an unstructured interview the

interviewer has a general area of interest and concern, but lets the conversation develop

within this area. Questionnaires are a popular means of collecting data that are often

difficult to design. Questionnaires comprise of open or closed ended questions.

51

3.3.4 Evaluation Methods in Software Engineering

There are many evaluation methods that are applied in software engineering and are

also possible for visualization systems, as described in this and the next section. Each

evaluation method may find different types of problems in a visualization system, and has

its own benefits and drawbacks.

1. Controlled User Studies

User studies offer a scientifically sound method to measure visualization's

performance (Kosara et al., 2003), and are particularly useful for evaluating the

strengths and weaknesses of different visualization techniques. User studies involve

real users to obtain both qualitative and quantitative data that is then used for

calculating subjective and objective metrics respectively. Quantitative data typically

measures task performance (e.g. time to complete a specific task) or accuracy (e.g.

number of mistakes) and it can also be collected from user ratings on questions like

task difficulty or preference. Qualitative data may be obtained through questionnaires,

interviews, or observation of subjects using the system. According to Walenstein

(2002) formal user studies can be time-consuming, expensive, and difficult to design.

A clear objective, controlled experiment setting, and strictly-limited simple tasks are

essential for drawing clear conclusions. Although, they quickly highlight problems in

interfaces (e.g., it is easy to see whether a user can find the button to perform a task),

user studies do not always identify problems and benefits of visualization ideas (Tory

and Moller, 2004).

2. Usability Inspections

52

There are some other evaluation methods recognized in HCI (human computer

interaction) which include - 'cognitive walk-throughs' where an expert 'walks

through' a specific task using a prototype system thinking carefully about potential

problems that could occur at each step, and 'heuristic evaluations' where an expert

evaluates an interface with respect to several predefined heuristics (Mack and

Nielsen, 1995). For example, Blackwell et al. (2001) describe 'cognitive dimensions'

which is a set of heuristics for evaluating cognitive aspects of a system, and

Baldonado et al. (2000) designed a set of heuristics specific to multiple view

visualizations.

These usability inspection methods avoid many of the problems with user studies and

may be beneficial for evaluating visualizations. However, usability inspection

methods are (for the most part) designed for user interface testing and they limit our

ability to find unexpected errors as they exclude end users from the evaluation

process (Tory and Moller, 2004). Though, expert reviews can provide quantitative

results without many resources and can be conducted in a short time, expert reviews

should not be overly used, as the results of an expert review are limited by the

experts' experience or their own personal biases. Therefore, an expert review should

only be viewed as an alternative supplement to formal user studies.

3. Case studies of the tools in realistic environment (Plaisant, 2004)

This is an uncommon type of evaluation method, where the advantage is that users

work in their natural environment doing their real tasks, demonstrating feasibility and

in-context usefulness. However, the disadvantage is that they are time consuming to

conduct and results are not repeatable.

53

4. Guidelines and Checklists

User interface could be evaluated based on the general design guidelines

(Shneiderman, 1998; Nielsen, 1994). The conformance of user interface elements to

these guidelines or checklists could be verified. The frequent use of 'visualization

mantra' (Overview first, zoom and filter, then details-on-demand) is evidence that

many visualization practitioners find it very helpful to evaluate different design

scenarios (Craft and Cairns, 2005). However, researchers such as Welie et al. (2000)

have noted, guidelines are often difficult to select, interpret and apply; they may be

too simplistic, and they may even contradict each other.

3.4 Measurement of Visualizations

There has been a substantial amount of work done on how people comprehend

information from graphs and visualizations in general (e.g. Kosslyn, 1989; Pinker, 1990;

Tan et al., 1990; Trafton et al., 2000). However, lack of measures and evaluation

techniques that give precise indications on the goodness of any visualization system is

still an open problem (Bertini and Santucci, 2004). An exhaustive literature survey was

conducted to find the related works that have been done by researchers in the field of

measuring visualization systems. Unfortunately, this field is rather immature and there

has not been a lot of work done on it. We were able to find only few studies relevant to

our proposed research, which are as under:

3.4.1 The Visual Display of Quantitative Information (Tufte, 1983)

Description: Tufte was the foremost researcher who presented some preliminary work in

this area. He proposed some measures to estimate the quality of 2D representations of

static data. His work suggested measures like:

54

'data-ink ratio'- which represents the proportion of a graphic's ink devoted to the

non-redundant display of data information,

'the lie factor'- that is the ratio of the size of an effect as shown graphically to its size

in the data, and

'the data density'- that takes into account the size of the graphic in relation to the

amount of data displayed.

Moreover, Tufte has explored 3D in his recent works (Tufte, 90; Tufte, 96) and has

applied an extended version of these metrics to a 3D environment.

Relevance: These measures have been proposed for paper-based representations, and are

not directly applicable to interactive, computer-based visualizations.

3.4.2 Metrics for Effective Information Visualization (Brath, 1997)

Description: Starting with Tufte's proposal, Brath defined new metrics for static 3D

images. He has proposed heuristic guidelines and metrics for 3D interactive

representations of business data. He has identified a few metrics to assess the efficacy of

static 3-D presentations, which are:

'number of data points', i.e. the number of discrete data values represented on the

screen at an instant,

'data density', that resemble Tufte's approach aiming at measuring visual image

complexity given by number of data points divided by number of pixels,

'number of simultaneous dimensions displayed', which seeks to give an estimate of

complexity by measuring the number of data attributes that are displayed at the same

time,

55

'occlusion percentage', to provide a measure of occluded elements in the visual

space, and

'percentage of identifiable points', i.e. the number of visible data points identifiable

in relationship with every other visible data point.

Relevance: The proposed metrics are objective and fairly easy to measure. On the

negative side, they are for static pictures and thus have not been extended to interactive

models (Miller et al., 1997).

3.4.3 ViCo: A Metric for the Complexity of Information Visualizations

(Gartner et al., 2002)

Description: The authors introduced ViCo, a metric for assessing information

visualization' complexity. The proposed metric allows for the measurement of

information visualization complexity with respect to tasks and users. ViCo is actually an

algorithm that allows a quantitative comparison of the relative complexity of a set of

visualizations for any given situation. The authors conceptualize the complexity of

visualizations in terms of the operations or cognitive elements that are needed to

accomplish the tasks by users. The proposed metric of complexity does not deliver a

single number but describes a function with various variables (e.g., number of items to be

compared).

The algorithmic steps of ViCo (Visualization and Complexity) to develop the metric

of complexity for a chosen set of visualizations are:

1. Analyze the tasks to be accomplished by the use of a set of given visualizations and

select those tasks to be taken as the basis of measurement.

56

2. Define minimal reading, writing, comparing, and calculating operations with respect

to users' groups and variables of the data set to be visualized.

3. Develop the functions that describe the number of such operations needed to

accomplish such a task.

Relevance: This study reveals the importance of context (expressed by users and tasks)

in any visualization. However, it does not provide the evaluation criterion by itself and

asks the evaluators to analyze the visualizations to seek the basis of measurement. The

authors also assume that the visualizations under consideration include all the

information necessary to complete various tasks like minimal reading, writing, comparing

and calculating operations. However, similar visualizations may vary substantially in

what tasks they allow users to work on.

3.5 Lessons Learned

From above discussions, we draw two main lessons that will further lead us to

formulate our measurement framework. These are as follows -

• In our proposed research, we believe that comprehension is a measurable quality

factor that can be measured by using the same 'top-down' hierarchical manner, as

applied by other models/standards explained in section 3.3.1 to identify useful

measures. During the masters' work (Padda, 2003), we have worked on a hierarchical

decomposition of quality in use factors into measurable criteria and metrics. We will

use the knowledge gained from the masters' work to define criteria and measures to

assess comprehension.

• We believe that using controlled experiment approach, as discussed in section 3.3.4,

to derive the measurement results is a feasible and accurate evaluation strategy. The

57

hypothesis and the variables of the experiment are defined more clearly in the later

chapters of this thesis.

58

Chapter 4. Elicitating Criteria for Comprehension

Measurement

"Perfection is achieved, not when there is nothing more to add, but -when there is nothing left to take

away." - Antoine de Saint-Exupery (1900 - 1944)

Overview

In this chapter, we explore the means to achieve comprehension measurement and

propose comprehension criteria that have resulted from the in-depth studies of earlier

work (presented in chapter 2) addressing psychological, cognitive and visual

communication aspects of a visualization system. Towards our main objective to measure

comprehension support of visualization systems, we further decompose these high-level

factors called 'aspects' into measurable criteria. The primary basis for these

comprehensibility criteria is previous work by two renowned researchers - Norman's

Theory of Human Action Cycle which describes how humans tend to interact with the

outside world and Effective Visual Communication by Aaron Marcus which describe the

principles that should be followed so that graphical user interfaces become effective

media for communication with users. These principles aid in deriving an initial repository

of comprehension criteria. Further, borrowing ideas from the area of non-functional

requirements in systems engineering, we also present a verification scheme consisting of

completeness, consistency, non-ambiguity, correctness and testability, enabling further

refinement of these criteria. Experts having specialization in this field of comprehension

have also been consulted in order to verify the proposed criteria.

59

4.1 Evaluation Foundation

To determine the criteria for each of the aspects (excluding 'Information Structure'

aspect), we shall use well-defined principles from cognitive psychology and visual

communication. These principles are the result of pioneering work of two eminent

researchers - Donald A. Norman and Aaron Marcus, who have investigated the issues of

human perception and cognition, and visual effectiveness respectively. The following

paragraphs give a detailed explanation of these principles as applied to the identified

aspects of comprehension in order to seek measurable criteria.

• Norman's Cognitive Principles from the Theory of Human Action Cycle

(Norman, 1990)

Donald A. Norman is a famous cognitive psychologist, who describes the psychology

behind 'good' and 'bad' designs, through case studies, and proposes various design

principles for understandability and usability. According to him, for a design to be

successful, the system image should reflect a clear and conceptual model of the

designer's view to the intended users as shown in Figure 4.1. In this figure, the design

model is the designer's initial conceptual model of the system. The system image results

from the physical structure that has been built using the available hardware and software

resources. The user's model is the mental model developed by the user through

interaction with the system. All communication between the design model and user's

model takes place through the system image. If the system image does not make the

design model clear and consistent, then the user will end up with an incorrect mental

model.

60

Figure 4.1: The Conceptual Models and The Gulfs

Furthermore, to form a mental model of the system, there are two gulfs that are

encountered by a user while interacting with any system as shown in Figure 4.1. These

are explained as below:

'Gulf of execution'

It is the difference between the intentions of the user and the allowable actions of the

system. One measure of this gulf is how well the system allows the person to do the

intended actions directly, without requiring extra effort i.e. if the actions provided by

the system match those intended by the person?

'Gulf of evaluation'

It reflects the amount of effort that a person must spend to interpret the physical state

of the system, and to determine how well the expectations and intentions have been

met. This gulf is small when the system provides information about its state in a form

that is easy to perceive, interpret, and matches the way the person thinks of the

system.

61

To deal with this these two gulfs, Norman proposes a set of design principles,

including the principles of 'Naturalness of interaction or Mapping' and 'Affordances' as

follows:

Naturalness of interaction or Mapping -

Natural Mapping is a term denoting the extent to which the relationship between two

things, e.g. between the controls on screen and the actions, are apparent to the user.

Natural mappings take advantage of physical analogy and cultural standards to guide

immediate understanding. Natural mappings entail the least amount of efforts from the

users' side in selecting the next action to interact.

Affordances -

Affordances are aspects of an object, which suggest how an object should be used, i.e.

a visual clue to its function and usage. It means the perceived and actual fundamental

properties of the object should determine how the object works. Affordances are essential

for understanding the potential for interaction and manipulation in an environment. Well-

designed objects are easy to interpret and understand, as they contain visible clues to their

operation. Poorly designed objects can be difficult and frustrating to use, as they provide

no clues or sometimes false clues. Poor design traps the user and thwarts the normal

process of interpretation and understanding.

• Visual Communication Principles (Marcus, 1995)

Aaron Marcus, a renowned specialist in graphics design has proposed three basic

principles to gauge the effectiveness of visual communication. According to him, an

information-oriented, systematic graphic design helps the user to understand and process

complex visual representations correctly. The design principles proposed by Marcus are

62

grounded on the pioneering work of Dondis (1973), who has proposed a number of

principles for visual literacy. The key principles for effective visual communication

proposed by Marcus are - 'principle of organization', 'principle of economization' and

'principle of communication' described as follows.

Principle of organization -

"Provide the user with a clear and consistent conceptual structure". It signifies that

the information presented to the user should be clear enough to perceive and understand

easily. Consistency should be established internally within one user interface, externally

across several, and in relation to real-world experience. The relationships among different

parts of the information should be apparent, along with a clear primary and secondary

focus for the user's attention.

Principle of economization -

"Maximize the effectiveness of visual representation by using a minimal set of

metaphors/cues". It means one should include only the essential elements in order to

make the visual representation more effective to the user. The simplicity and clarity of

information should be focused by including only the essential elements, and by avoiding

information ambiguity. The visuals should be made distinctive, and emphasized by

distinguishing the important features.

Principle of communication -

"Match the presentation to the capabilities of the user". It implies that the visual

representation should also take into account the psycho-social needs, desires, education

and other user-related characteristics. The visual design should ensure ergonomic design

by establishing legibility, readability, and multiplicity of references (aliases).

63

We believe that these basic principles effectively cover the three aspects of

comprehension (i.e. Visualization Interface, Perception, and Cognition) that we are

concerned with, and therefore are appropriate to be used as the basis to seek appropriate

criteria for the assessment of comprehension in visualization systems as discussed below.

4.2 Initial Repository of Comprehension Criteria

In my masters' work (Padda, 2003), comprehension was described as a potential

factor to assess the 'quality in use' or the user perspective of the quality of software

systems. It is considered as an important trait of visualization systems that affect their

overall quality or value to the users. In general, comprehension is always prone to

subjective interpretations unless it is quantified. In order to quantify the

comprehensibility of a visualization system, one needs - to define criteria that the

visualization system has to meet. Further for each of the criteria we must identify a set of

measurable attributes, and finally measure them according to some specified procedure.

Towards this endeavour, the first raw classification of criteria was proposed by one of

masters' student in Concordia's human-centered software engineering research group as

follows.

Joshi (2005) in her masters' thesis, proposed a set of comprehensibility criteria for

modeling the comprehension gap between the user and visualization environment by

combining two sets of principles from cognitive psychology and visual communication as

explained in section 4.1. In a collaborative work with Joshi during two usability studies,

an initial set of 19 comprehensibility criteria was identified as depicted in Figure 4.2.

64

Navigabil i ty
Affordane© Dynamism

Consis tency Cluster ing Constraints Depth Percept ion

ORGANIZE

Figure 4.2: Assessment Criteria for Comprehensibility in Visualization

Environments (Joshi, 2005)

This classification of comprehension criteria was based on the three basic visual

communication principles proposed by Marcus (1995) i.e. organize, communicate and

economize. The details of this classification scheme can be accessed in her thesis. We

further refined this initial repository of comprehension criteria as follows.

4.3 Refining the Comprehension Criteria

In this section, we explain our approach towards the verification and refinement of

the above proposed criteria for assessing user's comprehension support provided by

visualization systems. Comprehension criteria are the usability criteria of any

visualization system and therefore come into the category of non-functional requirements

of a visualization system that are important from the users' point of view. With the lack

of standardized verification techniques, non-functional requirements are rather

considered as hard to quantitatively and objectively verify. Same is the case with our

65

criteria. However in software engineering literature some properties are provided in order

to verify non-functional requirements. In our case, we have adapted these properties to

verify the proposed criteria as shown in Table 4.1.

Table 4.1: Properties of Criteria

Property

Name

Completeness

Unambiguous

Consistent

Definition

Determine if all the criteria needed to

assess comprehension have been

specified i.e. the criteria cover all

aspects of users' comprehension. If

any aspect is missing, it should be

identified and described thoroughly.

This requires us to check if the criteria

are precise, clear and there is

unambiguous interpretation. The

meaning of each criterion has to be

well-understood.

It should be verified that no criterion

conflicts with other criteria in the list.

Related criteria should be kept

together. The set of criteria should be

internally consistent leading to a

structured hierarchy of criteria.

How to achieve it?

This can only be done by a

comprehensive analysis of

related literature, which

can later be refined by the

experts' judgments.

This property can be

verified by describing each

criterion at adequate level

of detail so that readers

can get a clear definition

of the criterion. Moreover,

we need to get experts'

opinion on whether a

criterion can be merged

into other criterion/criteria

in order to make it as a

sub-criterion.

We can verify for

consistency by getting the

opinion of experts in

related fields.

66

Table 4.1 (continued)

Property

Name

Correctness

Testable

Definition

It should be confirmed that the set of

criteria is appropriate and not error

prone in the sense that it does not

contain any irrelevant criteria. This

requires us to assess if the criteria are

relevant to the problem in hand and all

of them lead to measure some aspect

of user comprehension in a

visualization system.

Can the criteria be tested?

How to achieve it?

In our research, we are

verifying this property by

analyzing the results of

usability studies in

different domains and

verifying if we are able to

extract certain features

from visualization systems

that could guide us to

measure those criteria.

In order to verify this

requirement, we need to

devise a set of questions

independent of the domain

and related to each

criterion in order to

measure them quanti

tatively or qualitatively.

In the following sections we provide detailed answers to all the questions related to

each of the above listed properties.

4.4 Assessing Completeness by Studying Aspects of

Comprehension

The original list of criteria proposed by Joshi (2005) (c.f. Figure 4.2) were

categorized based on Marcus's visual communication principles (Marcus, 1995), and

67

were used by her in order to characterize the comprehension gap between visualization

environment and the user. The formal verification of these criteria was not performed in

her work. In our research, we want to quantify the comprehension support of any

visualization system based on its' perceptual, cognitive and presentation qualities to the

intended users. This is possible only by studying the relevant criteria for each aspect of

comprehension as follows.

4.4.1 Categorizing the Comprehension Criteria into Aspects of

Comprehension

This process of categorization is straightforward where we are taking into

consideration the criteria proposed by Marcus and Norman for respective principles. In

addition, we are also adding other criteria based on our literature survey of respective

aspects of comprehension. This section illustrates our initial repository of criteria for each

of the aspects, which were refined later by experts' opinion. The three aspects of

comprehension i.e. Visualization Interface, Perception and Cognition are further

categorized into measurable criteria as follows.

4.4.1.1 Visualization Interface

We need to study those characteristics or attributes of both - the interface and the

visual representation, which contribute towards user comprehension. Marcus proposed

that in order to understand the visual representation correctly, the visualization design has

to follow the organization principle of visual communication. Kosslyn et al. (1992) also

affirm this view as they say that pictures may be hard to fathom not only when they are

too small or blurry, but also when the material in them is not organized in a way that we

can comprehend easily. In case of software visualization systems, according to this

68

principle, visual representation should be organized in order for the users to get a clear

and conceptual model of software structure. So, the organization and clarity of

information matters, as it is not easy to distinguish when we have a mixture of many

things. Organization is also related to overall layout of a visual representation that

includes analyzing how easy it is to locate an information element in the display and to be

attentive of the overall distribution of information elements in the representation

(Luzzardi et al., 2004).

The main criteria introduced by Marcus (1995) that contribute to organization

principle are - consistency, navigability, and spatial layout. A detailed explanation of

each of these criteria suitably adapted in the context of visualization systems is given

below.

1. Consistency

According to Jakob Nielsen (1997), "consistency is the key to usable interaction

design". A consistent visualization interface is the one that has an appealing look and feel

and is easier for the user to operate because of the ease of remembrance and similarity of

terminology on all screens. Consistency in labelling terms, actions' output and structural

representation of visuals do impact users' comprehension.

Defining Consistency

Here are a few definitions of consistency that is considered as an important trait of all

usable interfaces.

'Agreement or harmony of parts or features to one another or a whole' (Merriam-

Webster, 2007)

69

'The degree of uniformity, standardization, and freedom from contradiction among

the documents or parts of a system or component' (IEEE, 1990)

'Consistency means that similar user actions lead to similar results' (Wolf, 1989)

'Consistency refers to common actions, sequences, terms, units, layouts, colors,

typography and more within an application program...' (Shneiderman, 1992)

'Attributes that bear on the visual uniformity of user interface' (Lin et al.,1997)

Types of Consistency

Grudin (1989) in his article "The Case against User Interface Consistency" states that

there are three types of user interface consistency, which are:

- The internal consistency of a design with itself. User interface designers deal with

internal design consistency by looking at consistency in physical and graphic layout,

command naming and use, selection techniques, dialogue forms, etc.

- The external consistency of a design with other interface designs familiar to a user.

- An external analogical or metaphoric correspondence of a design to features in the

world beyond the computer domain.

2. Navigability

With respect to a visualization system, the term navigability means the degree to

which the user can steer through or manoeuvre within a visualization system i.e. the

capability of the system to assist or direct the course of user's navigation. According to

Marcus (1995) a visualization system should provide an initial focus for the user's

attention, and then must direct further navigation throughout the visualization

environment by providing attention to important, secondary, or peripheral items.

Defining Navigability

70

A few basic definitions of navigability can be given as:

- It is the degree to which a user can move around in the application.

It is the ability to manoeuvre within a system.

- It is the ability of an interface to focus attention on the appropriate information and to

lead one through the massive information.

Most visualization tools lack any form of navigational assistance, which would guide

users through their information seeking process. For example, current navigational

practices in most visualization systems are - clicking back and forward buttons, scanning

the history list, selecting links through a combination of highlighted link text. Users are

often guessing which link to follow next without any certainty of whether they are

heading in the right direction. A problem which is often encountered in the use of large

computer-based information systems is that of getting lost. For example, Elm and Woods

(1985) define three categories of being lost in hypertext and hypermedia systems as:

- Not knowing where to go next

Knowing where to go but not how to get there

- Not knowing a current location in relation to an overall context

According to Tory and Moller (2004) for a visualization system to have effective

navigation, the following variables should always be visible.

Cues should be present to help the user understand how to navigate through the

display,

Details at the current location,

Details of the local neighbourhood, and

- Navigation history in terms of a list of previously explored display parameters.

71

3. Spatial Layout

The layout of any interactive visualization system consists of interaction objects (for

example - list boxes, radio buttons, push buttons and so on) and interactive objects (for

example - text, image, picture, video motion and so on) (Bodart and Vanderdonckt,

1994). Spatial organization or layout is concerned with - object location and spatial

orientation, which tell us how easy it is to locate an information element in the display

along with the context displaying the overall distribution of information elements

(Luzzardi et al., 2004). In any visualization system, often the user wants to view a

particular information object in detail while keeping its neighbourhood context visible on

screen. Sometimes, locating an information element can be hard if the layout does not

follow a logical organization and if some objects are occluded by others (Luzzardi et al.,

2004). Luzzardi et al. (2004) also propose that degree of object occlusion and logical

order are characteristics to be measured in visual representation concerning the location

of objects. Spatial orientation is dependent on the display of reference context while

showing details of one or more specific elements. Spatial organization can be measured

by using qualitative measures to determine the ease in locating an object and the degree

of awareness of the context (Luzzardi et al., 2004).

In addition to the principle of organization, principle of economization proposed by

Marcus also impacts the visual interface effectiveness or user comprehension as it means

inclusion of only the essential elements. The criteria proposed by Marcus (1995) which

add to this principle are - simplicity, clarity, distinctiveness, and emphasis. These

criteria are explained in the context of visualization systems as follows.

72

4. Simplicity

Simplicity is the quality of being uncomplicated or lack of impediment in

accomplishing the desired goals. It means elimination of the extraneous and enhancement

of user experience, while at the same time not sacrificing the quality of information.

Anything in addition to the necessary detail distracts the visual message and confuses the

users (Joshi, 2005). The visual design should display the most important controls, objects,

and group related tasks together offering only a few choices at any time. It also depends

on the visual designer's intention; the intention should be avoidance of confusion, even at

the expense of beautification or attractiveness. The word 'simplicity' can be interpreted

through three dimensions - functionality reduction, understandability and ease of use of

application. The central idea behind simplicity is that users will feel more pleasure in

their experience and have more positive reactions to a software system.

Defining Simplicity

A few basic definitions of simplicity are:

Simplicity means lack of complexity or lack of impediment in accomplishing the

user-defined goals

It means to eliminate the extraneous and enhance the user experience, while at the

same time not sacrificing the quantity of information.

Types of Simplicity

The design principles set by Cognetics Corporation (Kreitzberg, 1998) states that

several types of simplicity contribute to a well-designed user interface, which are:

73

Visual simplicity is achieved by showing only the most important controls and

objects. Screen layout should follow good visual design practices. Use white space as

a visual element to define perceptual areas.

Verbal simplicity comes from the use of direct, active, positive language.

Task simplicity is achieved when related tasks are grouped together, and only a few

choices are offered at any one time.

Conceptual simplicity is accomplished by using natural mappings and semantics, and

by using progressive disclosure.

5. Clarity

The second factor for achieving screen economy is clarity, i.e. to design all

components so that their meaning is not ambiguous (Marcus, 1995). Cioch (1991) also

states that information ambiguity (has multiple possible interpretations) can cause

misinterpretation and decrease the level of comprehension as well.

Types of Clarity

According to Dudycha (2003), clarity can be achieved in two ways as follows.

Conceptual clarity depends on the visualization designer having a clear understanding

of the phenomena being represented in the visual(s). Only with a clear understanding

of the concepts involved in the problem at hand would it be possible to design a

solution that not only showed the spatial distribution of conceptual entities but also

revealed something of the underlying processes and spatial interrelationships among

those entities. Conceptual clarity requires a clear statement of goals and

understanding of the spatial patterns and processes to be represented on the visual(s).

Conceptual clarity is rendered into the graphic design of visualization through careful

74

selection of important information, eliminating any unnecessary detail, and including

a legend that identifies the intended meaning of all icons/symbols used in the

visual(s).

Visual clarity refers to the transformation of software features into graphic symbols

on the visual. A well-conceived visual may still be poorly understood if the choice of

icons/symbols used is not thoughtfully considered. Visual clarity can be improved by

avoiding overlapping icons/text and lines, using a small number of related symbols or

patterns, limiting the number of colors or fonts on screen and also selecting the

icons/symbols according to their cultural meanings.

6. Distinctiveness

In order to achieve screen economy, it is also important to distinguish important

properties of essential elements. Essential elements must stand out based on perceptual

attributes like color, brightness, texture etc., and appear distinct. Distinctiveness can be

achieved if there is less similarity among concepts. According to Schmidt (1991),

distinctiveness enhances memory by increasing the saliency of the relevant information.

Distinctiveness also promotes the use of visual techniques to direct the focus of the user

to important objects or parts of the scene (Wickens, 1992).

Types of distinctiveness

Kurniawan (2000) has worked on the visual distinctiveness of icons, and proposes that

icon's distinctiveness could be divided into two types as under.

Physical distinctiveness is related to recognition of the objects the icon is comprised

of, and it can be improved by -

a) maximizing the size of the objects in the icon,

75

b) minimizing the spatial frequency of gratings ("a grating is any regularly spaced

collection of essentially identical, parallel, elongated elements" (Wikipedia,

2007)), and

c) minimizing the use of color.

- Perceptual distinctiveness is related to understanding of what the objects in the icon

represent. Perceptual distinctiveness can be improved by -

a) maximizing the familiarity of the objects used in the icon, and

b) maximizing the clarity, uniqueness, and completeness of the objects in the icon to

represent its referent.

7. Emphasis

The dictionary meaning of word 'emphasis' means - to accent the appearance, to

underline, to put in bold, make something more significant or important (Wikipedia,

2007). Emphasis, in typography is defined as the visual enhancement of a part of

information to make it noticeable. Emphasis refers to the visual process of accentuating

important messages to the user in order to direct user attention to an important event or

scene within a visualization artifact (Bugajska, 2005).

According to Marcus (1995), to achieve screen economy it is essential to make the

most important elements salient, i.e. easily perceived. This can be done by de-

emphasizing non-critical elements and minimizing clutter so that critical information is

not hidden. Features in visualizations systems that are likely to catch attention are those

that are brightly coloured, moving or changing, defined by sharp boundaries, or are

highly saturated (Rheingans and Landreth, 1995). In a visualization system, we want to

76

observe if such an emphasis affects user's attention i.e. if they are able to observe the

critical elements of visualization that are being emphasized (Joshi, 2005).

Figure 4.3 summarizes all the criteria and sub-criteria related to visualization

interface aspect.

Internal Consistency

External Consistency

Real-world Consistency

Object Location

Spatial Orientation

Visual Simplicity

Verbal Simplicity

Task Simplicity

Conceptual Simplicity

Visual Clarity

Conceptual Clarity

Physical Distinctiveness

Perceptual Distinctiveness

Figure 4.3: Comprehension Criteria for Visualization Interface Aspect

The second aspect 'perception' is categorized into criteria as follows.

77

Consistency

Navigability

Spatial Layout

Visualization
Interface Simplicity

Clarity

Distinctivenes

Emphasis

4.4.1.2 Perception

Gleaning from literature on visual perception, we again propose a number of criteria

that can be qualitatively assessed to determine the impact of visual perception on human

comprehension. These are defined as under.

1. Affordance

James Gibson (1979) in his ecological approach to visual perception states that the

environment is perceived by an individual as a set of affordances, i.e. 'the actions a given

environment affords to a given acting observer'. Thus, according to this theory,

perception and action are tightly coupled. A user who perceives correctly will be able to

perform correct operations or actions. This idea of affordances was later formulated by

Norman as one of the cognitive principles that affect visual perception. Norman defines

affordances as - aspects of an object which suggest how an object should be used; a

visual clue to its functions and usage (Norman, 1990). It says that the perceived and

actual fundamental properties of the thing are the ones that determine how the thing could

possibly be used. According to Norman, perceived affordances are essential for

understanding the potential for interaction and manipulation in the environment.

Affordance provides strong clues to the operation of objects as users can figure out what

to do by just looking at them (Norman, 1990). For example, a software package if it is

being represented by a file folder metaphor then it clearly indicates to the user that it

contains a collection of files. Similarly, having a plus sign in front of a node indicates that

it can be expanded further. Affordance is supported by previous experience or learning of

how to use the particular interface. If the visualization system has a familiar feel to it, the

users can be surer of what they are doing. They feel safe interacting with the visuals,

78

knowing that something unexpected would not happen. Thus, they get the feeling of

control. Affordances are the means of communicating the design model to the user, and

designers can evaluate a system in terms of functions that they made clear or emphasized

to the users through affordances (Mohnkern, 1997).

2. Symbolism/ Metaphors

All visualization systems make use of certain metaphors that act as a mapping

between the visual components used in the realization of visualization and the underlying

data set. The design of the metaphor can greatly influence the usability of the

visualization (Knight and Munro, 2001) and hence the user understanding. Marcus (1994)

states that metaphors are the figurative similarities of fundamental concepts, terms, and

images by which and through which information is easily recognized, understood, and

remembered. Visual symbols are used to describe ideas, and interaction semantics. The

advantage of symbols/metaphors is that they address everyday experience and facilitate

understanding of the content being portrayed through visuals. Good metaphors in user

interfaces enable users to comprehend, use, and retain information more quickly, with

greater ease, and with deeper satisfaction by effectively managing the users' expectation

and comprehension (Marcus, 1998).

3. Dynamism/Animation

The human visual system is extremely sensitive to motion or kinematics. Animation

is a particularly salient attribute of our peripheral vision capability (Pfitzner, 2003), and it

is a suitable method to represent dynamism. Being a pre-attentive visual feature,

animation is particularly suited to attract the user's attention and its detection happens at

the early stages of visual perception (Ware, 2000). Motion has been extensively used in

79

psychology to extend the viewer's ability to perform basic exploration tasks. In

visualization systems, animation can be employed to highlight information which is

particularly important for the user to perceive quickly. Therefore, animation can be used

in the fast, pre-attentive visualization of complex data (Healey et al., 1995; Healey et al.,

1996) or for filtering and brushing techniques in visualization systems (Bartram and

Ware, 2002). It allows moving patterns to pop out, and aids in the identification of a focal

point in the visual by potentially alleviating visual interpretation complexity (Burd et al.,

2002). In software visualizations for example, especially dynamic visualizations, use of

animation is extremely important as programs are fundamentally dynamic and animations

helps to illustrate how the program changes from state to state and how the software

program evolves over time (Mukherjea and Stasko, 1993). According to (Nakakoji et al.,

2001), in a visualization system a user interacts with animated visualizations in order to

identify data points where the values change prominently,

find a snapshot of a particular point of time, and

acquire a feeling of immersion to more intuitively understand data.

4. Appearance

The dictionary definition of the word appearance means the visible aspect of a thing.

We use this word to represent the user perception of the visual in terms of its visual

attributes. According to Smolnik et al. (2003), the perception of an information-

transmitting stimulus is a prerequisite for processing presented information. Therefore,

we believe the appearance of visual objects is one of the more important criteria in the

process of complete comprehension, as what appears on screen is what is perceived. We

want to study those features of visualizations that make their appearance to be

80

comprehended readily. All visualizations are composed of certain basic visual attributes

like color, line orientations, transparency, position, size etc. These basic visual attributes

are utilized for performing more complex visual tasks like perception of shape, Gestalt,

and depth (Ferweda, 1998). Shape perception is highly dependent on orientations

(Wunsche, 2004) and is derived from luminance, motion, binocular disparity, color and

texture (Davidoff, 1991). Perception of gestalt is influenced by proximity, similarity,

closure, symmetry, common fate and continuity laws. Depth perception is achieved

through both binocular vision using stereo goggles or head mounted displays, and visual

clues like- size, brightness, textures, perspectives (Wunsche, 2004). As one of criteria, we

want to observe if users are able to perceive the appearance of different objects

represented using various visual attributes.

The criteria for the perceptual aspect of comprehension are depicted in Figure 4.4.

y» Affordance

/ ^^* Symbolism / Metaphors

Perception ^ > ^ "

^ \ Dynamism / Animation

Appearance

Figure 4.4: Comprehension Criteria for Perception Aspect

The final aspect to consider for comprehension is cognition and is further classified

into measurable criteria as discussed below.

81

4.4.1.3 Cognition

The visualization tool/technique should provide an ergonomic design that matches the

cognitive capabilities of the user. This is what is stated in the third principle of effective

visual communication by Aaron Marcus (1995). To ensure ergonomics properties of any

visualization system that affect human cognition, Marcus (1995) has proposed a set of

criteria like - legibility, readability, multiple views, effects of color. These criteria are

explained further.

1. Legibility

Adapting its definition originally from city planning, legibility for visualization

systems can be defined as the ease with which people are able to learn the layout of

visualization and then use this knowledge to perform wayfinding tasks (Ingram and

Benford, 1996). According to the linguists, legibility determines whether an item can be

read or deciphered, i.e. whether it is capable of being read (Haramundanis, 2001). It

means the individual characters, symbols, and graphic elements should be easily

noticeable and distinguishable. It has been noticed that character size and luminance

contrast affect legibility of text on screen (Ayama et al., 2007). Inadequate contrast

frequently occurs when the background and text color are similar. As a general rule, the

darker, spectrally extreme colors such as red, blue, magenta, brown etc. make good

backgrounds while the brighter, spectrum-centered, and de-saturated hues produce more

legible text (Baecker et al., 1995). Moreover, the environment in which the visualization

system is used also significantly affects the legibility of displayed visualizations.

According to Baecker et al. (1995) dark screen backgrounds in brightly lighted rooms

82

may cause distracting reflections that can diminish screen legibility and in contrast,

brightly lighted screens in dark rooms may be too glaring and hard to see.

2. Readability

The term readability means that the display is comprehensible, i.e. easy to identify

and interpret, as well as inviting and attractive (Baecker et al., 1995). The concept of

readability incorporates the interaction or engagement of a user with the system (Kane et

al., 2006). The term applies both to the text and graphics. Readability of text is dependent

on a number of factors like - its' syntactic difficulty, semantic difficulty, legibility and

text organization (Chall, 1958). The readability of a graphic representation can be defined

as the relative ease with which the user finds the information he/she is looking for

(Ghoniem et al., 2004). According to Entin and Klare (1985) apart from readability of

text, reader's comprehension of text is influenced by readers' levels of interest and their

prior knowledge as well. On the graphics side, readability studies have been performed

for 2D graph drawing (Purchase et al., 1996), where it has been seen that the readability

is associated with (often conflicting) aesthetic criteria such as - minimization of edge

crossings and area of the graph, and the maximization of symmetries.

3. Multiple views

Multiple views provide multiple perspectives of the visual representation in order to

make it easier to understand. A multiple view system uses two or more distinct views to

support the investigation of a single conceptual entity (Baldonado et at., 2000). By

looking at multiple views of an object simultaneously, users are helped to get a clearer

picture of the structure of the object. Same concept or object can be shown at different

levels of abstraction in order to comprehend it at various levels of detail, like representing

83

the software architecture as the component hierarchy or code hierarchy abstractions.

Multiple views offer a variety of benefits like - discovery of unforeseen relationships,

improved user performance and so on (North and Shneiderman, 1997). Multiple views

significantly impact cognitive overhead including time and effort to learn a system, load

on user's working memory, effort required for comparison tasks, and effort required for

context switching (Baldonado et al., 2000). On the other hand multiple views minimize

some of the cognitive overhead engendered by a single complex view of data (Baldonado

et al., 2000). The facility to see multiple views at once provides cognitive support

(Walenstein, 2003) as it reduces the memory load on the user.

Many renowned cognitive scientists (e.g: Card et al., 1999; Norman, 1993) have

studied how visual representations aid in cognition and the principle of naturalness is

proposed by all for developing effective visual representations.

4. Naturalness of interaction / Mapping

Defining Mapping

Dictionary definition of the word mapping states it as a correspondence by which

each element of a given set has associated with it another element(s) of a second set.

In the context of visualization system, mapping means the natural relationship

between user's actions and their effect on visual representation.

According to Norman (1990), "Mapping is a technical term that relates actions and

results... Natural mapping takes advantage of the physical analogies and cultural

standards that lead to immediate understanding... and natural mappings require the least

amount of effort from user' side in deciding the next action to interact." The author

84

argues that natural mappings be suitably exploited so that user can determine the

relationships:

- Between intentions and possible actions,

Between actions and their effects on the system,

Between actual system state and what is perceivable by sight, sound, or feel, and

Between the perceived system state and the needs, intentions, and expectations of the

user.

According to Norman (1993), experiential cognition is most effective when the

properties of the visual representation most closely match the information being

represented. In order to achieve natural mappings the metaphor used in the interface

should be most appropriate (i.e. natural) for the application domain. The terminology

used in the interface should also be based on the application domain's terminology.

The criteria for the cognition aspect of comprehension are presented

diagrammatically in Figure 4.5.

Cognition

Legibility

Readability

Multiple Views

Naturalness of interaction / Mapping

Figure 4.5: Comprehension Criteria for Cognition Aspect

85

4.4.2 First Iteration - Aftermaths

Putting together all the criteria for comprehension assessment discussed in the

previous section, Figure 4.6 shows all of them along three dimensions i.e. Visualization

Interface, Perception and Cognition.

Naturalness of interaction / Mapping

c
.2
' c
CD
O

o

Multiple Views

• Readability

• Legibility

Consistency x

Navigability

Spatial Layout

Simplicity

Clarity *

Distinctiveness

\ ' ^

Y&
>#

Perception

1 Appearance

Dynamism / Animation

Symbolism / Metaphors

Affordance

7
Figure 4.6: Criteria for Comprehension Assessment in Visualization Systems

When comparing Figure 4.2 and Figure 4.6, one can see that criteria Clustering,

Constraints, Depth Perception, Effects of Color, Contextualization, and Responsiveness

have apparently been excluded in this version of comprehension criteria. A detailed

explanation for these changes is as follows:

86

In our work, we have merged criteria Clustering and Depth Perception together and

named it as criterion Appearance. The Appearance criterion is about all those visual

properties that are designed in the system with the intention to show some

representative features of the dataset like - clustering of similar objects or depth factor

of an object. The visualization(s) uses some of the basic visual attributes to depict

these features of the dataset.

The criterion Constraints in Joshi (2005)'s thesis is actually a part of Affordance

criteria in this refined version. The Constraints is defined as the forces, conventions

that confine the set of possible actions. This definition by itself relates to Affordance,

which is about the possible uses, actions and functions of an object. According to

Norman (1990), "Affordances suggest the range of possibilities; Constraints limit the

number of alternatives". Therefore, we believe that the criteria Constraints can be

merged in criteria Affordance to describe the possible interaction mechanisms in

visualization systems.

- Effects of Color by Joshi (2005) was described as one of the criteria for

communication principle. We believe that color is a basic visual attribute that affects

many of other criteria like - Emphasis, Distinctiveness, Legibility, Readability,

Appearance etc., and therefore cannot be described at the level of other criteria.

Hence, the criterion Effects of Color is used as a measure to assess these criteria in the

refined version.

Contextualization in Joshi (2005)'s work is expressed in the form of "focus +

context'' or "overview + detail" interaction mechanisms used in various visualization

techniques. She said that in a visualization environment, often, the user wants to view

87

a particular part of complex visual representation in detail while keeping its context

visible. This criterion deals with more about the spatial context and the navigation

mechanisms that are provided in the visualization system, and therefore this is already

included in our revised version under the Spatial Layout and Navigability criteria.

The criteria Responsiveness is the quality of being responsive to user actions. We

believe that this criterion is an effective parameter to determine the utility of a

visualization system. A visualization system if it is not properly responding to a user

action is likely to be less useful or usable, and users will not probably use it

regardless of the comprehensibility of displayed visualization(s). Therefore, we were

not sure of its inclusion in this revised version and for the purpose of second iteration

we do not consider it further. We needed to seek expert opinion on this criterion and

where it fits in overall distribution of criteria in one of three basic dimensions (i.e.

Visualization Interface, Perception and Cognition in Figure 4.6). The accomplishment

of this task of expert judgment is described in the forthcoming section where this

criterion is further verified.

These criteria depicted in Figure 4.6 are further verified for their unambiguous,

consistency properties by seeking the experts' opinion in related fields as follows.

4.5 Confirming Un-ambiguity, Consistency - Experts'

Opinion

In the second iteration for verification, we met two experts having expertise in

relevant fields. The first one was consulted to seek his viewpoints on the criteria for

'Visualization Interface', and second expert was asked to judge the criteria for both

88

'Perception' and 'Cognition' aspects respectively. Our approach to experts' selection was

based on our three basic aspects of comprehension i.e. Visualization Interface, Perception

and Cognition. One of the experts was specialist in User Interface Design Fundamentals

and human factors related in HO field, other was a professional in cognitive and

psychology side of the users. A detailed explanation of characteristics of our experts in

significant domains is as follows.

Visualization Interface expert - An associate professor of computer science at a

university level. His research interests are in human-centered software engineering. He is

a member of many professional advisory committees. He has more than 10 years of

experience in the field of human factors, user interface design and empirical studies. He

is also the writer of numerous articles in scientific proceedings, journals and book

chapters.

Cognition and Perception expert - An associate professor of psychology at a university

level. She was an associate director of the center for usability in design and assessment.

She has more than 8 years of expertise in areas of attention, perception, cognition and

human factors. She has over 50 publications in areas relating to human performance,

human factors and human-computer interaction.

After this second step of verification, the judgment of the experts was used to further

refine our proposed set of criteria. The summary of findings based on expert

consultations is given below.

4.5.1 Summary of the Experts' Findings

Our experts have suggested the following changes in our criteria.

89

• Changes in Visualization Interface criteria

Our expert on Visualization Interface aspect recommended removing Consistency and

Spatial Layout criteria, as according to him both the criteria are feeding other criteria

on Visualization Interface along with Perception and Cognition dimension. He also

pointed that both of these criteria are properties of the visualization interface, and are

not the quality attributes to measure comprehension from users perspectives. He

states that for a visualization system to be simple, legible, and easily perceptible in

terms of appearance, it needs to be consistent. He further added that consistency

contributes to navigability by giving an example of city map. He said that if the signs

displayed on the street boards are not consistent then a person will encounter great

difficulties in reaching his/her destination. He also expressed his opinion to remove

spatial layout criterion, as this is a sub-criteria which is needed in order to have a

good navigational mechanism and to achieve task simplicity in a visualization system.

The expert also suggested to rename Navigability as Reachability, as navigability is

mostly defined as a property of interaction and can be calculated using some simple

formulas. For example, in graph theory it can be measured by distance between two

nodes. The term Reachability is more appropriate to express the navigation

mechanism of a visualization system. Reachability refers to the possibility of

navigation through the observable system states i.e. whether the user can navigate

from any given state to any other state.

He also proposed to rename the term 'Visualization Interface' as Presentation in

order to signify the presentation qualities of both an interface and visualization(s) that

affect the users' comprehension.

90

• Changes in Perception and Cognition criteria

- The expert on cognition and perception suggested that we merge Affordances and

Symbolism/Metaphors criteria together and name them as Affordances only. This is

because metaphors are a means to convey certain affordances. Designers create

appropriate visual affordances via metaphors. Affordances communicate the design

model to the users through the use of metaphors that the users are already familiar

with. This suggestion is also supported by another researcher Ken Mohnkern (1997),

who says in a bulletin for Special Interest Group on Computer-Human Interaction,

"We can readily see the relationship between metaphor and affordance. When a

metaphor is applied to a system, it gives the system a particular set of affordances.

Metaphor is a container for a particular set of affordances.... When we create an

interface metaphor, we are, in essence, dumping the contents of the metaphor (its

affordance set) onto the computer system. Some of those affordances fit nicely onto

the system's feature set (else that metaphor would not have been chosen), others do

not have a corresponding feature in the system, and some of the system's features are

left affordance-less, invisible."

The expert also suggested that we combine Readability and Legibility criteria into one

criterion called Legibility. According to the expert, both terms are used

interchangeably; however Legibility appears to be at a level higher than Readability.

This viewpoint is also supported by Aernout de Beaufort Wijnholds (1996), who

states that -

"The difference between the legibility and readability may best be expressed in terms

of their relationship. When a text is of low legibility, its readability is also low. When

91

a text is not very readable, on the other hand, it is still possible that it is highly

legible. Consider an instruction manual, for example, of which the characters are

hardly identifiable; the print is so small and the characters have such indistinct

shapes, that readers can hardly distinguish between the M' and the '1' or the 'h' and

the 'b ' . In such a case, the text is of low legibility. As a result, the text is not very

readable either. Even if a clear distinction can be made between separate words and if

it is clear which part of the text corresponds to which drawn illustration, this will be

of little use to the reader. If the instruction manual was reprinted in a more legible

way, the same conditions of easy word distinction and correspondence between text

and illustrations would make a more readable text. It is also possible, however, that

the text has become highly legible, but that the illustrations are not numbered and are

referred to in the text on a different page. In this case, readability would be low."

- The expert also suggested labelling Dynamism/Animation criterion as Dynamism

only, because animation or motion is one of the techniques to show the dynamics of

the data set. According to Pfitzner et al. (2003) dynamic variations can be shown by -

animating or moving objects, changing the sizes of objects displayed on screen, and

changing the brightness or color etc.

The criterion Naturalness of Interaction/Mapping was suggested to be labelled as

Mapping only because naturalness of interaction is an internal property of a chosen

mapping.

The criterion Multiple Views was renamed as Perspective-ness in order to express it at

a higher level where multiple views could be applied to show different perspectives

of the visual entities.

92

4.5.2 Second Iteration- Aftermaths

Based on our experts review, our second revision of comprehension criteria is

illustrated in Figure 4.7.

Affordance Legibility

Dynam

Appearance

Perspective-ness

Mapping

Simplicity

Reachability

Emphasis

Distinctiveness

Figure 4.7: Refined Comprehension Criteria

These criteria impact one another as the three aspects of presentation, perception and

cognition are inseparable when it comes to comprehension, as to understand anything we

need to perceive its presentation and then we need to use our cognitive capabilities to

fully comprehend it.

93

Chapter 5. Case Studies

"The man of science has learned to believe in justification, not by faith, but by verification." - Thomas

Huxley (1825-1895)

Overview

For the further verification of the criteria formulated in the previous chapter, two

different visualization systems were evaluated as preliminary case studies. The first

system was a three-dimensional bioinformatics visualization tool, and the second was an

immersive art visualization environment. Two usability studies were conducted in

Concordia's human-centered software engineering lab with these systems, where

participants were invited to use these visualization systems and required observations

were made.

In this chapter, we explain in detail the conduct of these studies along with the

analysis of their results, and finally we present measures and a measurement scheme to

analyze the results of our comprehension criteria.

94

5.1 Verifying Correctness: Case Study 1

In order to verify correctness of criteria, we analyzed the applicability of our refined

list of criteria in the usability results obtained from a collaborative controlled experiment

conducted with Joshi (2005) for a bioinformatics visualization tool. This was done in

order to determine the appropriateness of criteria in judging the users' comprehension of

a visualization system. The details of this study can be accessed in her thesis (Joshi,

2005). The research results presented in this chapter are the contributions of the author. A

summary of the analysis conducted for the purpose of verification of criteria is as

follows.

5.1.1 ADN-Viewer

ADN-Viewer (Herisson, 2001) is a bioinformatics visualization tool developed at the

L1MSI-CNRS an institute in France, screenshots are shown in Figure 5.1. This is a tool

for 3D modeling, stereoscopic visualization focused on virtual exploration and

bioinformatics analysis of genomic sequences. The tool provides 3D visualization of the

DNA sequence, represented in the form of text as well as a 3D structure model of the

naked DNA.

95

a) 3D visualization of genes (Zoom Off)

b) 3D visualization of yeast (Zoom On)

c) Grayscale screenshot of selecting a particular gene

Figure 5.1: Screenshots from ADN-Viewer

96

In the following, we describe the more important aspects of this case study in detail

along with our analysis of the results for the proposed comprehension criteria.

5.1.2 Evaluating ADN-Viewer

To evaluate ADN-Viewer in terms of its ability to support comprehension, our

hypothesis was that users' task performance should depend on the comprehension

support provided by ADN-Viewer as assessed by our criteria. To verify this premise, we

analyzed the results of a controlled experiment that was carried out with 11 participants

from the field of bioinformatics. Based on their different characteristics like - education

level, bioinformatics domain knowledge and experience, and skill level with

bioinformatics visualizations, we categorized 3 of them as novice, 5 as intermediate and 3

as expert users. Before the actual experimentation, all the participants had a training

session, where they were trained to freely explore the tool to make them at ease in using

it. A pilot study was conducted with one of the evaluators who explored the ADN-Viewer

for the first time.

5.1.3 Experimental Procedure

During the experiment, the participants were asked to perform the following two

tasks that were recognized as the most important tasks by the developers of the tool -

1. Group a set of sequences according to similarity in their 3D structures.

2. Find a pair of genes that are spatially close to each other but are far in the textual

sequence.

The experimental procedure for each user is outlined in Figure 5.2. Experiments were

run one at a time in order to observe the participants using Morae remote viewer tool. In

the study, each user experiment lasted between 30-40 minutes.

97

Welcome to
participant

Consent
Form

Pre-Tcst
Questionnaire

User
introduction

to test

User Reference
for Key Controls

Coaching method
User exploration

of software

Thinking Aloud
Protocol for Task 1:

3D Sequence Grouping

Control Group
(Regular screen)

Thinking Aloud Protocol for
task 2: 3D Structure Analysis

Post-Test
Questionnaire

•••»/ E n d J

Figure 5.2: Test Protocol for ADN-Viewer

98

In addition to the pre-test questionnaire, participants were asked to answer from three

questionnaires in total - first after task 1 (comprising 4 questions), second after task 2 (a

set of 14 questions) and third (18 questions in total) to assess their overall experience

with the tool including any comprehension difficulties. The pre-test and post

questionnaires were proposed by Joshi (2005) and can be accessed in her thesis. Thinking

aloud protocol was used in the study where the participants were asked to speak aloud

their thoughts, opinions, emotions and sentiments about their experience of using the

system. To get an idea of the comprehension difficulties, the actions of the

users/participants during their interaction with the visualization system were also

recorded. The strategies to record were the notes of the evaluator, and the voice and video

recording of the participants with the Morae tool.

In the following, we describe the results obtained through this case study for our

proposed comprehension criteria.

5.1.4 Experimental Results

Based on our analysis of audio and video recordings along with the post-test

questionnaires, Table 5.1 shows the combined participants' comments on the

comprehension issues in ADN-Viewer. Here, we have categorized the users' verbal

findings expressed using a think aloud protocol during the experiment with ADN-Viewer

according to the concerned comprehension criterion. Table 5.2 shows the actual results

obtained on analyzing the answers to the questions for each criterion. The users' rating

depicted for each criterion in this table is the maximum value in percentage (i.e. excellent

value on Likert-scale) assigned by all the participants. On averaging the responses for all

99

criteria (i.e. Sum of all the scores / Number of criteria), we found that comprehension

score for ADN-Viewer is 64.18%.

Table 5.1: Applicability of Criteria to ADN-Viewer

Criteria Applicability tojADN-Viewer
Reachability ADN-Viewer provides a navigational mechanism to explore a DNA

sequence from all directions. However, on finding a particular gene, it
is not possible to see its location in overall context.

Simplicity The view is simple displaying only two colors for genes and inter-
gene regions. The icons/labels on the interface are also
understandable.

Clarity The 'start' and 'end' used to depict the start and end of the gene is not
clear and causing misinterpretations. It is also not consistent with
what is used in bioinformatics domain (where 3 ' and 5 " are used
rather to depict the start and end of the gene). The participants expect
to see the structure of the DNA in the form of A, T, C, G nucleotides
rather than the thin line in 3D space displayed using ADN-Viewer.

Distinctiveness 3D DNA structure trajectory is displayed on a black background with
yellow color for genes to add distinctiveness and violet for inter-gene
regions.

Emphasi s A selected gene is highlighted by a bounding box and it indicates the
boundaries of the gene.

Affordance It is hard to select correctly a particular gene from a cluster of many
genes, as the lines used to depict the genes in 3D are very thin.
Clicking on appropriate gene is not an easy task in a cluster. The
operations for the devices usage are perceived correctly by the
participants before actually exploring the system. In addition,
participants desire to see perceived affordances to the mouse pointer
like showing a hand, grabbing the sequence etc.

Dynamism Clicking on one gene create the animation effect of zooming onto the
selected gene. It is causing confusion as a result of losing context by
rotating the entire sequence.

Appearance The depth factor and other gestalt laws, observed through stereo
goggles, are helping in accomplishing task 1 to arrange the DNA's
according to matched structure.

Legibility Displaying all genes names is not legible and view gets cluttered.
Comparing all the 3D sequences together is troublesome as number
of genes increases.

Perspective-ness The classical and perspective views provide different viewpoints of
looking at one 3D DNA structure and are helping in understanding
the structure of genes.

Mapping Keyboard and mouse actions are natural, except for zooming in and
out of 3D DNA structure that can be made easier by just scrolling the
wheel without having to press it.

100

We also observed that first task was accurately completed by 86% of the participants

where they were able to group the sequences having similar shapes based on their

geometry. In the second task, a pair of spatially close genes was found correctly by 41%

of the participants. On averaging these two task performances, we obtained a score of

63.5% which is quite close to our comprehension value and thus the result supports our

hypothesis.

Table 5.2: Users' Responses to Criteria

Users' ratings (in

C
ri

te
ri

a

°/4

R
ea

ch
ab

ili
ty

44

S
im

pl
ic

ity

82

C
la

rit
y

46

m
in

D
is

tin
ct

iv
en

e

82

in
m
CO

-£=
CL

E
LU

100
A

ffo
rd

an
ce

46

D
yn

am
is

m

50

A
pp

ea
ra

nc
e

67

Le
gi

bi
lit

y

55

LO
CO
0)
d

P
er

sp
ec

tiv
e-

60

M
ap

pi
ng

74

In this case study, we have observed that task performance of the participants (i.e. the

percentage of the participants who were able to correctly perform the two assigned tasks)

with ADN-Viewer was approximately equivalent to the total comprehension support as

assessed by our criteria. Therefore, based on the results of this case study, we concluded

that our proposed set of comprehension criteria is correct and is able to appropriately

judge the comprehension support provided by a visualization system to its intended users.

5.2 Verifying Correctness: Case Study 2

The second case study was performed with an art visualization environment called

OSMOSE (Davies, 1996), and was accomplished in a collaborative work with colleagues

in Concordia's human-centered software engineering group. The details of this case study

101

can be accessed in Joshi (2005). A summative analysis of this study is the contribution of

the author and is presented below for the purpose of verification of our criteria.

5.2.1 OSMOSE

OSMOSE is a virtual artwork of renowned Canadian new media artist Char Davies.

OSMOSE consists of nearly a dozen realms including - tree, forest, pond, subterranean

earth, source code and so on, all situated around a central clearing (Davies, 2004). It is an

immersive environment where 3D immersion is achieved using a head mounted display

(HMD), and interaction is accomplished with the use of body movements and breathing.

The artist's conception of OSMOSE is to have an unconscious apprehension of being in a

virtual world. Some screenshots of OSMOSE are shown in Figure 5.3.

102

a) Participant using
HMD and vest to
explore the
visuali22tion

b) Tree and pcfid in
the virtual world

c) Forest grid in
OSMOSE

d) Code world in
OSKcOSE

Figure 5.3: Screenshots from OSMOSE (Davies, 2004)

5.2.2 Evaluating OSMOSE

The objective of the study was to understand the applicability of the proposed criteria

to the visualization system in order to assess the communicativeness or comprehensibility

of the artwork to the participant. In case of OSMOSE, all participants were of varying

background and the only task was to explore freely the virtual art environment. 25

participants from the university community participated in the study including

administrative staff, professors, undergraduate and graduate students, and some family

members.

103

5.2.3 Experimental Procedure

A different protocol as depicted in Figure 5.4 was used for OSMOSE.

(Welcome to
participant

Consent
Form

Pre-Test
Questionnaire

Coaching user how to
interact with environment

using HMD and vest

User
introduction

to test

Using Thinking Aloud
Protocol while exploring the

immersive environment

Post-Test
Questionnaire

End

Figure 5.4: Test Protocol for OSMOSE

Here participants from varying backgrounds were initially invited to fill in a user

evaluation form, and asked to wear HMD and vest to explore the immersive environment.

Then, the participants were taught how to navigate in the immersive environment by

moving the head and breathing in or out using the vest. They were asked to explore freely

for 15 minutes using breathing actions and body movements. After experiencing

104

OSMOSE, the participants were asked to fill in a post-test questionnaire to assess

different aspects of comprehension. Again, the pre-test and post-test questionnaires were

part of Joshi (2005)'s research and can be accessed in her thesis.

5.2.4 Experimental Results

Summarizing the comments of participants in audio and video recordings along with

their answers to the post-test questionnaire, we sought the answers to our proposed

criteria as shown in Table 5.3. We could not produce a user rating (like in Table 5.2 for

ADN-Viewer) for each of the criteria in OSMOSE study, as the post-test questionnaire in

Joshi's (2005) work was not described for each of the criteria. However, we were able to

obtain a combined score for all the criteria in terms of participants' answer to the

following question -

"Were you able to understand what was going in the immersive environment?"

Analyzing the responses from the post-test questionnaire, overall 64% of the users

answered yes as a value on the Likert-scale to the answer to this question. Therefore, we

may summarize that 64% of the users seemed capable of comprehending the environment

using the interaction mechanisms provided in OSMOSE.

In short, through this case study we have found that our proposed set of

comprehension criteria was also applicable to assess the communicativeness or

comprehensibility of the artwork to the participant based on the assessment of provided

features in the visualization system. For all of the proposed criteria, we were able to seek

appropriate features in OSMOSE that were signifying some aspect of the user

comprehension.

105

Table 5.3: Applicability of Criteria to OSMOSE

Criteria Applicability to OSMOSE
Reachability Navigation depended on user actions- breathing in and out to go up and

down, looking around by turning head and leaning forward and backward

to move in respective direction. It was not easy to focus on one particular

object while viewing other objects in the scene as the environment was

moving.

Simplicity Simplicity was not applied as the designer intention was to give a

creative and attractive environment.

Clarity Many objects were causing different interpretations. Some objects like

abyss was not clear to many participants.

Distinctiveness The objects were made distinctive by using different perceptual

attributes.

Emphasis The main target was the tree being emphasized by its size, position and

luminosity.

Affor dance The hardware objects (HMD with headphone afford seeing and hearing,

vest afford stretching and loosening). Text afford reading and leaves

afford touching. Metaphor of forest, having elements like - tree, leaves,

rocks, sounds of birds etc., was used to give the feeling of immersion in

the forest. At the same time, there was some inconsistency from real

world with no sense of touch or collision detection while passing through

objects of the scene.

Dynamism The environment was moving in the form of moving bugs, moving

source code along with the moving world. Most of the time it was

difficult to control this movement especially with the breathing metaphor.

Appearance The Gestalt laws of proximity and continuity were observed by feeling

the proximity of leaves and white light sources or bugs emerging "in a

line" respectively.

Legibility The text was legible as the participants were able to speak it loud when

they were immersed in source code. The graphics was also interpretable

by most of the participants.

Perspective-ness The OSMOSE environment had multiple views - ground, water,

subterranean earth etc. to give a feeling of being immersed in them.

Mapping Breathing was not natural to feel in immersive environment as the

participants were running out of breath. The HMD was heavier for some

of the participants.

106

5.3 Third Iteration - Aftermaths

By applying our criteria to conduct a comprehensive analysis of two different

visualization systems, one from scientific visualization category and other from

information visualization, we were able to verify the usefulness of our criteria in the

practical sense. We describe these criteria basically by observing the user's physical

actions to the visualization environment's responses, and by analyzing their assessment

of the visualization systems in respective questionnaires. On analyzing the results of two

usability studies, we found that each of the proposed criteria contributes partly to signify

some aspect of user comprehension. In this analysis, our immediate goal was to seek the

features in the visualization systems that enable us to measure the corresponding criteria

in some objective manner. This knowledge helped us to derive a general questionnaire to

assess each criterion.

The case studies demonstrate the potential benefits of our set of criteria as an

important aid to the task of evaluating comprehension of visualization tools/techniques.

Our results have shown that our set of criteria could enable evaluators to effectively

gauge the comprehension support provided by a visualization system. Therefore, based

on our analysis of these two studies, we assume that our refined set of criteria is correct

and does not contain any criteria that cannot be assessed using the features in

visualization systems. We further verified our criteria for testable property as follows.

5.4 Making the Criteria Testable

To verify if our criteria can be tested, we devised a questionnaire (given in Appendix

'A') comprising of questions for each of the criteria. The questions for each criterion are

derived based on the comprehensive literature analysis of their definitions as explained in

107

previous chapter. These definitions guided us to seek important features in visualization

systems. For example, to test the 'reachability' in any visualization system, we should

look into three main features as follows-

1. the easiness with which users can navigate in the visualization environment,

2. the ability of the visualization system to support undo operations, and

3. the capacity of the visualization system to show current location within an 'overall

context' of objects displayed in the visualization.

Therefore, we derived three questions to measure 'reachability' in any visualization

system as under.

1. Are you able to navigate from one location to another in the visualization?

Yes Somewhat No

If somewhat, briefly explain why?

2. Are you able to undo your manipulation operations (e.g. select, click, move etc.)

with the visualization to go back successfully to previously displayed screen?

Yes Somewhat No

If somewhat, briefly explain why?

3. Are you able to see the location of any information object with respect to an overall

context of other information objects in the display?

Yes Somewhat No

If somewhat, briefly explain why?

108

We selected a Likert-scale having three values as answers to each of the question;

where 'Yes' means 100%, 'Somewhat' is 50% and 'No' is assigned 0% value. Being an

ordinal scale, the meaningful statistics that can be applied is the frequency or mode, and

the median of the collected responses.

109

Chapter 6. Software Visualization Systems: A Study on

Maintenance Tasks

"Much software is designed and built with little consideration for how it will be used and how it can best

support the work its users will be doing. " - Larry L. Constantine & Lucy A.D. Lockwood (1999)

Overview

In this chapter, we study the domain of software visualization (SV) with the intent of

subsequently applying our proposed comprehension measurement framework to this

domain. A primary application of software visualization is to assist in program

comprehension for software maintenance purposes. This chapter presents a thorough

empirical investigation of systems in this domain, conducted by us to seek an initial

catalogue of software visualization tasks that are required to be fulfilled to accomplish

maintenance activities. This task catalogue will be reused in the forthcoming chapters of

this thesis.

Specifically, this chapter presents a detailed literature review of software

visualization systems, and empirical investigations in related studies by other researchers

and practitioners. This chapter also reports on a thorough literature study to prepare a

comprehensive catalogue of maintenance tasks that are mentioned in research literature,

and are purported to be supported by software visualization tools. We perform an online

survey to derive a consistent categorization of software maintenance tasks into traditional

maintenance activities. We provide our analysis based on the statistics obtained from the

data gathered through this survey, which addresses the categorization and importance of

tasks in software maintenance from the viewpoints of experts and intermediates in

software maintenance activities. The immediate goal of this study is to be able to identify

110

the gaps between the needs of software maintainers and the tasks supported by current

software visualization tools intended for use in maintenance activities.

I l l

6.1 Software Visualizations

Any software system is a pile of code that does something; it is abstract, invisible,

and intangible in nature. To seek the meaning of an abstract entity like a software system,

we need to represent it in some tangible form. In this respect, software visualization

technologies help us by providing graphical representations of various abstractions of the

huge source code and ease our perception by giving it altogether a different aspect than

that of a source code. Price et al. (1998) defined software visualization as "...the use of

the crafts of typography, graphic design, animation, and cinematography with modern

human-computer interaction technology to facilitate both the human understanding and

effective use of computer software". Software visualization tries to make the invisible

code visible by giving it some form that sheds light on the hidden software structure or

meaning of the code. Software structure refers to a collection of artifacts that software

engineers use to form mental models while understanding software systems. Artifacts

include both software components (e.g. subsystems or packages, classes, interfaces etc.)

and also the dependencies among these components (e.g. method calls, data accesses

etc.).

Software visualizations are further decomposed into two main categories (Anslow et

al., 2004) as under.

1. Static visualizations - these visualizations can be created from either the source or

binary files, and provide descriptions of the static elements of source code. They may

contain the descriptions of involved packages, classes along with their methods and

variables. They also depict the inheritance hierarchies between classes and

dependency hierarchies among classes in the source code. The information that is

112

extracted through these visualizations directly depends on the programming

languages or paradigms used for coding. For example, visualizations of object-

oriented code give an overview of the classes, methods, attributes, inheritance

hierarchies etc. included in the source code; whereas the visualizations of programs

written in functional paradigms show the program structure in the form of functions

and function calls etc.

2. Dynamic/run-time visualizations - these visualizations are created by examining the

behaviour of programs during execution to gather the events in a program trace.

Various types of information can be displayed with these visualizations like - object

creation and deletion, method calls and returns, field accesses and modifications,

exceptions, and multi-threading etc.

These two facets of software visualization support many software development

activities including analysis, modeling, testing, debugging, and maintenance. Out of these

activities, software maintenance is considered rather a heavy and time-consuming activity

that involves understanding of complex evolving software systems. IEEE standard

defines software maintenance as the process of modifying a software product after

delivery to correct faults, improve performance or other attributes, or adapt the product to

a modified environment (IEEE, 1998). Software maintenance traditionally involves four

basic types or activities i.e. corrective, adaptive, perfective and preventive maintenance

(Pressman, 2005). Each activity plays an important role in the evolution and maintenance

of any software product and requires a very good understanding of the underlying

software system. Although this basic classification scheme of software maintenance has

113

been enhanced by taking into consideration other objective factors (Chapin et al., 2001),

in practice these four conventional activities are the ones most familiar to practitioners.

Pfleeger (2001) describes each of the four familiar types of software maintenance

activities as follows:

Corrective maintenance is simply the effort devoted to the removal of defects caused

by the routine errors or day-to-day failures. It is needed so that the system complies

with the specified performance criteria.

- Adaptive maintenance is required to accommodate the changes occurring in the

environment in which the system is used. The most common environmental changes

are - changes in the input data, changes in the processing environment (like -

installation of a new operating system or an addition of a debugger to enhance a

compiler).

Perfective maintenance activities are carried out to enhance or improve the

performance of the software system. It involves making changes to improve some

aspect of the system, even when there are no visible errors or failures. There can be

major or minor software enhancements depending upon different circumstances.

Jones (1998) has described five types of enhancements - block functions, modified

blocks, modification and deletion, scatter updates, and hybrid enhancements. A brief

explanation for each of these enhancements is as under.

The first type of enhancement is that of adding new features to an application,

without the new features causing any extensive internal changes to the original source

code. In the second type of enhancement or modified block, it is necessary to make

internal changes to the original application in order to attach the additional feature.

114

These updates are possible only for applications that were originally designed in a

very modular, well-structured manner. For the third type, modification and deletion

enhancement, the new feature being added to the software replaces a current feature

that is actually eliminated. With scatter updates or type 4, several new features are

being added at the same time. Type 5 updates or hybrid enhancements come across

the classic form of maintenance of poorly structured, aging legacy applications.

Preventive maintenance is performed for the purpose of preventing the problems

before they occur (IEEE, 1998). This is somewhat similar to perfective maintenance

in the sense that it involves changing some aspect of the system to prevent failures.

However, it usually takes place when one finds an actual or potential fault that has not

yet caused the damage.

Visualization tools claim to improve the productivity of software maintainers by

providing insights into the invisible code. If this claim is true, then evaluating

visualizations should seek to determine how well visualizations aid user* (i.e. software

maintainer) comprehension or provide visual insights to invisible code. Therefore, in the

domain of software visualization, our research is focused on the evaluation of static

software visualizations that assert to provide insights to software maintainers and help

them to understand complex software structure.

Towards achieving this goal, we performed literature review on related studies to

gather different strategies that can be applied for empirical evaluations/investigations of

software visualization systems, and how other researchers have conducted the evaluations

of these systems.

115

6.2 Evaluation of Software Visualizations

In this section, firstly we examine the possible strategies that can be applied for an

empirical investigation of software visualization tools.

6.2.1 Approaches for Empirical Investigations in Software

Visualizations

Empirical studies result in empirical knowledge or proven concepts that help us to

quantify the benefits of software visualization tools. Without measurement in some form,

it is very difficult to realize the true value of visualizations to the software community. In

a famous book on software metrics, Fenton et al. (1997) suggest that there are mainly

three types of strategies that can be used to conduct empirical studies, which are -

experiment, case study, and a survey as shown in Table 6.1.

Table 6.1: Types of Strategies (Freimut et al., 2001)

Strategy

Experiment

Case Study

Survey

Definition

A detailed and formal investigation that is performed in controlled

conditions.

A detailed investigation of a single case or a number of related cases

with typical representative projects.

A broad investigation, where a number of people having experience in

a related field participate and present their views on specific issues

using standardized forms provided by the surveyors.

According to Fenton et al. (1997) - "a survey is a retrospective study of a situation to

try to document relationships and outcomes after an event has occurred... When

performing a survey, the evaluator has no control over the situation at hand. The

evaluator can record the situation and compare it with similar ones, but he/she cannot

116

manipulate the variables of the study." Surveys can be done for descriptive, explanatory

and/or exploratory purposes (Wohlin et al., 2000). A survey is appropriate to find out the

characteristics, behaviour or opinions of a particular population and to see the differences

and commonalities in their responses.

On the other hand, according to Fenton et al. (1997) -"both case studies and formal

experiments are usually not retrospective. The evaluator decides in advance what he/she

wants to investigate and then plans how to capture data to support his/her investigation...

A case study is a research technique where the evaluator identifies key factors that may

affect the outcome of an activity and then document the activity in terms of inputs,

constraints, resources and outputs. By contrast, a formal experiment is a rigorous,

controlled investigation of an activity, where key factors are identified and manipulated

to document their effects on the outcome... In an experiment, an evaluator has control

and can manipulate relevant variables directly, precisely and systematically."

Fenton et al., 1997 also suggest various factors that can contribute to a choice of

research techniques as shown in Table 6.2.

Table 6.2: Factors Relating to Choice of Research Technique (Fenton et al., 1997,

pp:120)

Factor

Level of control

Difficulty of control

Level of replication

Cost of replication

Experiments

High

Low

High

Low

Case Studies

Low

High

Low

High

As can be seen from the Table 6.2, the key discriminator between experiments and

case studies is the degree of control over behavioural events and variables they represent.

117

A formal experiment is carefully controlled and contrasts different values of the

controlled variables; its results are more generalizable. Moreover, controlled experiments

are increasingly common in literature as they best enable researchers to rigorously

measure and conclusively compare different visualizations (North, 2006). In all,

knowledge on the actual effectiveness of the available techniques and tools can be gained

only through controlled experimentation (Tonella, 2005).

Due to these advantages of experiments over case studies, we believe that the

controlled experiment approach using predefined tasks is the most appropriate to

determine the comprehension performance of software visualization tools. Thus, we

would prefer to use controlled experiment technique in our research.

We further conducted a thorough literature survey to observe the results of

comparable studies as follows.

6.2.2 Relevant Studies

There is still little progress in the evaluation of software visualizations, as most

research effort is being spent on the development of novel visualization techniques, ideas

and technological innovations rather than judging the current state of SV

tools/techniques. Therefore, the field of empirical investigation of software visualization

tools/techniques is rather immature and a few researchers have worked informally to

characterize and assess the usefulness of these SV tools/techniques. In the following

paragraphs, we summarize various related studies conducted by other researchers in the

domain of software visualization.

1. Storey et al. (1996) describe the design and execution of an experiment to assess the

usability of three interfaces of a reverse engineering tool. Three game programs of

118

similar complexity but different sizes were used under study. Twelve users

participated in the empirical study, where they were asked to perform eight abstract

and concrete tasks with each interface. The users were asked a post-test questionnaire

comprising of 20 questions to compare the effectiveness of these three interfaces. The

questions were categorized based on five different classes - 'overall" to access user

satisfaction, 'sysuse' to evaluate interface usefulness, 'interquaF to judge interface

quality, 'organization' to evaluate helpfulness of module organizations in the

interface, and 'confidence' to determine user confidence in the answers generated by

the interface.

2. Storey et al. (1997) performed a user study that compares three tools for browsing

source code and exploring software structure. In this study, thirty participants were

randomly assigned to Rigi, ShriMP, SNIFF tools and were asked to perform seven

high-level program understanding tasks in a controlled experiment. The goals of the

experiment were - to observe the strategies used by participants while

comprehending program under study, how the tools were supporting this set of

preferred strategies, devise a framework to characterize comprehension tools, and

provide feedback for tool developers.

3. Bassil and Keller (2001) conducted an online survey of software visualization tools

using a questionnaire approach. The online questionnaire was publicized via mailing

lists, newsgroups, and emails. The questionnaire was designed using existing

taxonomies to extract a list of properties of software visualization tools. The objective

of the study was twofold - to assess the functional, practical and cognitive aspects of

visualization tools that users' desire, and to evaluate support of code analysis in the

119

various existing tools that users' use in their environment. The authors recognized a

total of 34 functional aspects along with 13 different practical properties of software

visualization tools. They also summarized the cognitive aspects of visualization tools

in terms of various usability elements like - 'ease of use', 'effectiveness', and 'degree

of satisfaction' etc.

4. Knight and Munro (2001) discuss briefly two main perspectives that should be taken

into account when deciding whether or not visualization is effective. These are - the

suitability for the tasks that the visualization is intended to support, and the suitability

of representation, metaphor and mapping based on the underlying data. They also

highlight that domain and data structure has a considerable affect on the effectiveness

of any visualization.

5. Pacione et al. (2003) conducted an empirical evaluation of five dynamic visualization

tools. The aim of their study was to compare the performance of these tools in general

software comprehension and specific reverse engineering tasks. The performance of

the tools was judged by conducting a case study with a drawing editor. The

evaluation was carried out by a single user who had the knowledge of the drawing

editor and dynamic visualization tools. The tools were compared based on four

categories - extraction technique, analysis technique, presentation technique, and

abstraction level. The questionnaire was divided into two sections - large-scale

questions expressing the course of a software comprehension effort, and small-scale

questions resembling the course of a specific reverse engineering effort.

6. Storey et al. (2005) proposed a framework for describing, comparing and

understanding visualization tools that provide awareness of human activities in

120

software development. Their framework has five key dimensions: Intent (to capture

the general purpose and motivation that led to the design of visualization),

Information (data sources that a tool uses to extract relevant information),

Presentation (how the tool presents the extracted and derived information to users),

Interaction (refers to interactivity of the tools), Effectiveness (determines if the

proposed approach is feasible and if tool has been evaluated, deployed). The authors

have conducted a survey of twelve software visualization tools and listed the

characteristics of these tools with respect to the proposed five dimensions. They have

made a number of observations along these dimensions and raised several questions

for discussion. They commented that their framework could be used as a discussion

tool with software developers, tool designers and researchers.

7. Marcus et al. (2005) conducted a usability study to assess the effectiveness of a

software visualization tool named sv3D. The aim of the study was to determine the

usefulness and improvement of sv3D as a new technology to support program

comprehension. The source program was a documentation software application that

was rendered using 3D metaphor of poly cylinders and containers. A total of 35

participants participated in a usability study. The participants were divided into two

groups: one group answered the questions using sv3D tool, and other group

responded to the questions using tabular data with metrics and source code utilizing

the search features in Visual Studio.NET. The answers were analyzed and compared

to judge the effectiveness of sv3D tool.

121

http://Studio.NET

Table 6.3 summarizes the results of these studies on five different dimensions, which

are - number of participants, method used for the study, tools used, the program or case

study used, and number of tasks involved in the study.

122

Table 6.3: Summary Chart of Studies on SV Tools

Studies
Storey et
al. (1996)

Storey et
al. (1997)

Bassil
and
Keller
(2001)

Knight
and
Munro
(2001)
Pacione
et al.
(2003)

Storey et
al. (2005)

Marcus et
al. (2005)

Participants
12

30

107

1

35

Method
Controlled
experiment

Controlled
experiment

Online survey

Expert opinion

Questionnaire

Experts opinion

Controlled
Experiment

Tools
Rigi,
Command-
Line,
Multi-Win,
SHriMP
Rigi,
SHriMP,
SNiFF
Over 40
different tools

AVID,
J insight,
jRMTool,
Together
ControlCenter
diagrams,
Together
ControlCenter
debugger

SeeSoft,
VRCS, Tukan,
Advizor,
Xia/Creole,
Palantir, Jazz,
softChange,
Evolution
Matrix, Augur,
Beagle,
Spectrograph
sv3D,
VisualStudio.
NET

CaseStudy
Fish
Hangman
Monopoly

Monopoly

JHotDraw

HMS

Tasks
8 Tasks

7 Tasks

Four aspects-
Functional,
Practical,
Cognitive,
Technical
Suitability
Equation

9 large-scale
questions, 6
small-scale
questions,
and 6 small-
scale
questions for
the case
study

Five
Dimensions
- Intent,
Information,
Presentation,
Interaction,
Effectiveness

22 questions

123

As can be seen from this table, most of the research (Marcus et al., 2005; Storey et al.,

1996; Storey et al., 1997) describes the evaluation of the software visualization tools

from the perspectives of tool developers only, where they test the tools for a set of tasks

that are supported by those tools. That is, these studies attempt to test the effectiveness of

software visualizations from their functional viewpoints only but do not attempt to

evaluate the comprehensibility of visual information provided by these systems to the

actual users. Although, Storey et al. (1996) have used an IBM Post-Study System

Usability Questionnaire (PSSUQ) (Lewis, 1995) to evaluate and compare the usability of

the interfaces, the questionnaire is not addressing the comprehension features of

visualization systems. The questionnaire used by Marcus et al. (2005) to evaluate the

usability of their tool is also very specific to their own study only.

Furthermore, most of the independent evaluators like us need to first analyze the

research literature on software maintenance and software visualizations to seek the

appropriate tasks for further evaluation. Clearly, we need to have a catalogue of software

visualization tasks that could be accessed during the evaluation of software visualization

systems in general. Towards this endeavour, and to identify the gaps between the needs

of software maintainers and tasks supported by current software visualization tools to

support software maintenance activities, we conducted a comprehensive literature review

as discussed further below.

6.3 Identifying the Needs of Software Maintainers

Many software visualization tools are emerging in research community with the

purpose of easing the maintenance of complex software systems. Each tool claims to

support a certain set of tasks, related to the information needs of a software maintainer, to

124

accomplish one or more maintenance activities. However, little is known about what may

constitute a comprehensive set of tasks for a maintenance activity. Activities are further

broken down into sub-activities (Swanson, 1976; IEEE, 1998) in their definitions.

Therefore, it becomes important to a have a catalogue of maintenance tasks that are

required and should be supported by the SV tools. It is through this catalogue that the tool

evaluators could empirically investigate the claims of the visualization tools of being able

to provide insights into code for comprehension and support of maintenance activities.

This is because if these tools are not designed to be capable of supporting these tasks then

their usefulness to the software maintainers is questionable.

Visualization tools for software maintenance are developed in order to fulfill the

information needs of the software maintainers and therefore, the user tasks that these

tools support are linked to or are derivable from the typical and elementary information

needs of software maintainers as shown in Figure 6.1.

X IVIaintainers'
C n e e d s

d >
CZ3

;

. t » *

Figure 6.1: Conceptual Views

The system designers, using the available hardware and software resources, transform

some of these maintainers' needs into the visualization tool support that is then used by

125

the intended users. The end users are not necessarily the domain experts who possess

background expertise in the maintenance of complex software systems. In Figure 6.1, we

can see three different conceptual views of the persons involved in the formation and

utilization of software visualizations -

• the first one is of the original software maintainers who have specific maintenance

needs to perform maintenance activities and perceive software visualization systems

to be capable of fulfilling the desired needs,

• the second view is of the system designers' who are constrained by the existing

hardware and software technologies and think of software visualization systems

capable of performing a subset of the required functionality, and

• the third view is of the end-users who utilize these visualization systems based on

their perceptual and cognitive capabilities and try to infer the design intent along with

the interactions to explore the visually represented information.

To be effective, visualizations must match the information they provide with the

needs of their users (Cox et al., 2005). Therefore, before conducting the user' evaluation

of software visualization tools, the foremost step is to determine the gap between the

information needs of software maintainers and the user's tasks supported by the SV tools

for software maintenance. We have noted and as also pointed out by Knight and Munro

(2001), the software engineering community would benefit from a clear indication of

what kinds of tasks are being supported by current software visualization tools. In this

regard, we have collected descriptions of a comprehensive set of maintenance tasks that

are mentioned in published literature, and are also supported by many currently available

software visualization tools.

126

6.3.1 Current Work

Von Mayrhauser et al. have performed an extensive research (Mayrhauser and Vans,

1997; Mayrhauser et al., 1997; Mayrhauser and Vans, 1998), on understanding the needs

of professional software maintainers during the maintenance of large-scale software,

using observational field study technique. They have examined the traditional classes of

software maintenance quite thoroughly and have identified the information needs of

software maintainers to accomplish their tasks. Their categorization of comprehension

tasks to individual tool capabilities is described in terms of their three models for code

comprehension, is very general and encompasses a variety of tool support including

software visualization tools for software maintenance.

Chapin et al. (2001) have proposed a fine-grained classification of the types of

software evolution and software maintenance based on the objective evidence of

maintainers' activities observed in the software, code, and customer-experienced

functionality. They have organized the activities based on four general clusters, which

are - support interface, documentation, software properties, and business rules. This

classification is again very general, and it includes a variety of factors having impact on

the overall maintenance and evolution of the software.

Koskinen et al. (2004) have further studied the 24 most frequent information needs of

software maintainers as presented in the empirical studies by Mayrhauser et al., and have

discussed the four information sources (i.e. source code, code execution, documentation

and other written material, and session history) from where the needed information may

be attained. Their classification of the information needs is based on those sources.

127

6.3.2 Our Perspective

In contrast to these previous studies, our work is more specific; as we are seeking the

information needs of software maintainers from the viewpoint of software visualization

tools only. The needs are described in terms of the tasks that are required to be supported

by the visualization tools for software maintenance. Our list of needs is actually based on

a literature review of the work of other researchers in software visualization.

Table 6.4 shows the results of our literature survey conducted to determine the

software maintenance tasks required and/or supported by current software visualization

tools. We have studied thoroughly the tasks supported by current static software

visualization tools (which presently form the scope of our research); at the same time, we

also tried to seek other tasks that are mainly supported by dynamic visualization tools.

The tasks listed in Table 6.4 are concrete tasks that are commonly carried out by

software maintainers to attain larger maintenance goals of fixing errors or understanding

the complete software structure. This list is not exhaustive as the tasks identified above

are mainly intended for support by static software visualization tools, which makes up the

focus of our present investigation. The table does however provide a comprehensive

catalogue of maintenance tasks that may be supported by any static software visualization

system. We believe that it could act as a starting point for the development of a

comprehensive standardized catalogue of maintenance tasks that can be added to,

updated, and maintained for wider use.

128

Table 6.4: Identified Tasks Along With Their Purpose and Supporting Tools

No. Tasks Purpose Examples of

supporting

visualization tools /

environments

1 Get the execution

trace of source

code.

The dynamic analysis of the source

code gives an insight to determine

the source of errors and

performance bottlenecks.

Get the static

structure of the

software system

(Systaetal., 2001;

Pacione et al.,

2004).

To know class descriptions along

with their methods and variables,

inheritance hierarchies between

classes and dependency hierarchies

amongst classes (Anslow et al.,

2004).

Find the location of To seek the location of problematic

desired code code segment or the segment that

segment needs modification.

(Mayrhauser et al.,

1997).

List of all artifacts Call graph display to know what

that call a specific other artifacts are effected by the

artifact (Mayrhauser problematic artifact (Koskinen et

etal., 1997). al., 2004).

TraceVis (Deelen,

2006), Jive (Cattaneo

et al., 2004), VET

(McGavin et al.,

2006), Evospaces

(Alam and Dugerdil,

2007)

SA4J (Iskold et al.,

2004), Creole

(Callendar, 2006),

Evospaces (Alam and

Dugerdil, 2007),

StructurelOl

(Chedgey, 2007)

TraceGraph (Lukoit et

al., 2000)

TraceVis (Deelen,

2006), Rigi (Storey et

al., 1997)

129

Table 6.4 (continued)

No. Tasks Purpose Examples of

supporting

visualization tools /

environments

Determine the

impact of change

without having to

do it first (Pacione

et al., 2004; Iskold

et al., 2004) / Ripple

effect (Koskinen et

al., 2004).

Does the run-time

behaviour contain

regular repeated

behavioural patterns

(Systa etal., 2001)?

7 When was an

exception thrown or

when did an error

occur (Systa et al.,

2001)?

To see what the result of a change

made to the software system will

have on the rest of the software

system. This is required to see the

result of removal of the problematic

artifact on other good artifacts

(Koskinen et al., 2004).

This is required to investigate

patterns of repeated behaviour in the

system's execution (Pacione et al.,

2004). Repeated patterns are the

source of common concerns or

aspects that can be refactored to

improve the software code.

Information about thrown exceptions

is essential for understanding the

unexpected behaviour of a target

software system (Systa et al., 2001).

SA4J (Iskold et al.,

2004), StructurelOl

(Chedgey, 2007),

Jinsight (Pauw

and Vlissides, 1998)

Jinsight (Pauw

and Vlissides, 1998),

TraceVis (Deelen,

2006)

Shimba (Systa et al.,

2001),Jlint(Artho

and Havelund, 2003)

8 Find the location to Location of where to put changes

insert a new artifact. (Koskinen et al., 2004).

SA4J (Iskold et al.,

2004), Creole

(Callendar, 2006)

130

Table 6.4 (continued)

No. Tasks Purpose Examples of

supporting

visualization tools /

environments

9 Add an artifact and Adding a new artifact along with

dependencies (if dependencies is a fundamental task

any). that is required during adaptive and

perfective maintenance. The

visualization needs to be roundtrip,

so that adding or modifying an

artifact in the visualization itself

should reflect the addition or

modifications in the code

respectively (Charters et al., 2003).

10 Find an artifact that Dangling or orphaned code segments Bauhaus (Raza et al.,

is not used (Storey (dead code) that are not used and 2006)

et al., 1996; Systa et have no pointers to other code

al., 2001). segments need to be removed during

software maintenance.

11 Find an artifact that Based on the number of interactions/ TraceVis (Deelen,

is heavily used in message traffic of other artifacts in 2006), SA4J (Iskold et

the execution trace the execution trace or on the number al., 2004)

or static structure of of relationships with other artifacts

the software system in static structure, locate the heavily

(Storey et al., 1996). used artifact. This is required in

order to improve that artifact to

achieve greater software system's

performance.

131

Table 6.4 (continued)

No. Tasks Purpose Examples of

supporting

visualization tools /

environments

12 Determine which

clusters of objects

are closely related

to one another,

based on the

amount of message

traffic between

them (Iskold et al.,

2004).

13 Find identical coding

pattern segments

within the source

code (Jin, 2001).

14 What is the load on

each component of

the software system

at runtime (Systa et

al., 2001;Pacioneet

al., 2004)?

It is needed to improve SA4J (Iskold et al.,

modularization and re factoring the 2004)

software systems in appropriate

aspects for greater

understandability. It is also

appropriate in case of knowing the

impact of changing any object in the

cluster on other objects.

Pattern matching to identify the LSEdit (Kapser and

identical coding pattern segments or Godfrey, 2006)

"aspects" within the source code.

It is required in order to determine

the performance of each object.

Runtime load can be measured in a

number of ways including memory

or CPU usage, object population, or

method call frequency (Pacione et

al., 2003).

Jinsight (Pauw

and Vlissides, 1998)

132

Table 6.4 (continued)

No. Tasks Purpose Examples of supporting

visualization tools /

environments

15 History of past

modifications

(Koskinen et al.,

2004).

16 Nesting Level of a

particular method

(Koskinen et al.,

2004).

17 Where in the

software system are

the hotspots to add

additional

functionality?

(Pacione et al.,

2003) (it is included

in type 1

enhancement by

Jones (1998))

18 Modify an artifact

and dependencies

(if any) (type 2

updates from Jones

(1998)).

For evolving software systems, it is

important to know how many

modifications have been made or

how many versions have been

released.

Determine the location of method

within the inheritance hierarchy in

order to judge the structural

complexity.

Hotspots are points in a software

system where the system designer

intends for extensions to be made.

These are already defined places in

the software, which are left for

future enhancements by the system

designers.

To make internal changes to

existing artifacts in order to adapt

the system or enhance/improve the

performance.

CodeCrawler (Lanza,

2004), StructurelOl

(Chedgey, 2007)

Creole (Callendar,

2006), StructurelOl

(Chedgey, 2007)

HotSpotter (Flores et al.,

2005)

Creole (Callendar,

2006)

133

Table 6.4 (continued)

No. Tasks Purpose Examples of

supporting

visualization tools /

environments

19 Delete an artifact and

dependencies (if

any) (type 3

enhancements from

Jones (1998)).

20 Find an exact

location to set a

breakpoint

(Mayrhauser et al.,

1997; Koskinenet

al., 2004).

21 Find all artifacts that

directly or indirectly

depend on artifact

"A" or Find all

artifacts on which

artifact "A" directly

or indirectly

depends (Storey et

al., 1996).

To delete some artifact in order to

improve some aspect of the system,

even when there are no visible errors

or failures.

In order to reduce amount of run-time Shimba (Systa et al.

information, breakpoints are needed 2001)

to start and stop recording events

during the program execution. This

is done to split the event trace into

manageable chunks so as to examine

only interested parts of the source

program.

A dependency analysis is performed SA4J (Iskold et al.,

to determine the reliance of system 2004), Creole

components on other internal or (Callendar, 2006),

external components (Jin, 2001). Structure 101

(Chedgey, 2007)

134

We followed this literature driven compilation by conducting an online survey of

these identified tasks in order to get an independent opinion of practitioners and

researchers on various software maintenance tasks and the available visualization

support. The details of this survey are as follows.

6.4 A Survey-Based Empirical Investigation on Visualization

Support for Software Maintenance Activities

6.4.1 Survey: Rationale

This survey is notably motivated from the work of Mayrhauser et al. to identify the

needs of software maintenance professionals during the corrective, adaptive and

perfective maintenance of large-scale software. They offer us an interesting basis for

further analysis to categorize these maintenance activities into maintenance tasks or

needs of software maintainers. The needs are described in terms of the tasks that are

required to be supported by the visualization tools for software maintenance. Using this

survey technique, we wanted to see the difference and commonalities in terms of tasks

among the traditional activities (i.e. Corrective, Adaptive, Perfective, and Preventive) of

software maintenance as perceived by the practitioners. The survey also illustrated how

the practitioners' perception of these tasks varies with their experience in the domain of

software maintenance.

6.4.2 Survey Methodology

This section presents the main phases of our survey.

1. Establish objectives

To conduct a survey, we established two main objectives as follows -

135

• To categorize the identified tasks into conventional maintenance activities, and

• To rate the tasks in order of their importance in fulfilling the software maintenance

goals in general.

Our secondary objectives were -

• To classify the tasks in accordance with support by static and/or dynamic

visualization tools, and

• To get the feedback of participants on other visualizations tasks not listed in the

survey, but are important from the viewpoint of software maintainers.

2. Questionnaire design

To achieve these objectives, we wanted to have independent opinions of practitioners

in the field of software maintenance about software visualization tasks, and this was

made possible through the publication of an online questionnaire. We sampled our

participants based on one simple profile question i.e. what is their number of years in the

field of software maintenance? We prepared a short questionnaire, where the participant

was asked to answer three basic questions for each of the 21 identified tasks as follows -

1. Required to accomplish which maintenance activity? (Tick all that apply)

Corrective

Adaptive !"

Perfective I

Preventive J~~

2. Apply to which Software Visualization category? (Tick all that apply)

Static r

Dynamic ^

136

3. Rate the task in order of importance

Not important **"'

Somewhat important <""

Extremely important *""

We applied close-ended multiple choice answers strategy because we wanted to

make it easier for the participants to answer the survey, taking atmost 10 minutes of their

time, as it is not easy to ask remote participants to type answers for subjective questions.

Moreover, it was also easy to compare and analyze the results afterwards. We also asked

one open-ended question where the participants were asked to comment on additional

software visualization tasks not listed in the survey.

3. Online implementation of the questionnaire

The questionnaire was prepared using PHP scripting language and tested with

Adobe's Dreamweaver web development application tool before publishing it online to

the research community. Responses to the questionnaire were automatically stored in a

text file. MS excel software was used for the analysis of the responses.

4. The published questionnaire

Appendix 'B ' presents the questionnaire along with the informed consent that was

published online to the research community.

5. Data collection

An explicit invitation was circulated to various practitioners and researchers working

worldwide in the field of software maintenance and software visualizations. Practitioners

were selected based on their acquaintance with us and/or our colleagues. Researchers

were identified by searching publications in IEEE and ACM digital libraries, along with

137

Journals on software maintenance where their work was published in this domain. The

invitation message was sent to these practitioners and researchers along with their current

students. We also requested the developers of software visualization tools.

In total, 162 people were requested during the March 2007. The response rate1 was

17.28%, with a total of 28 participants who participated in the study. 2 participants had

not answered the questionnaire in total and therefore their answers were not appropriate.

Excluding these 2 responses, we were left with a total of 26 responses.

6. Data analysis

The ideal approach to carry out an analysis would have been to base it on the concept

of persona where various personal characteristics are assessed to determine representative

groups of participants from the surveyed population. However, in order to keep the

questionnaire answering efforts to the minimum, we have not included questions enabling

persona creation in our survey. Based on the number of years of experience in the field of

software maintenance/software visualizations, we did get responses that enabled us to

create three categories of participants namely experts (high experience), intermediates

(medium experience), and novices (little or no experience).

Out of these 26 participants, 17 were identified as 'experts' having an experience of

more than 3 years, 7 of them were 'intermediates' having experience of 1 to 3 years and 2

'novices' were of less than a year experience in software maintenance/software

'The low response rate is indicative of the general difficulty involved in carrying out survey-based

investigations. However, given that the responses were all voluntary from all parts of the world and from

different people with different levels of experience and expertise, we believe that that there is no bias and

that it is also representative.

138

visualization field. The novices were students who had completed a course in software

maintenance and comprehension.

The answers to the survey questions were analyzed to determine how each category

of participants (i.e. experts, intermediates and novices) classify the given tasks into the

four software maintenance activities along with how they assign importance to each task

in accomplishing software maintenance in general. The results of this analysis are shown

in Figure 6.2 and Figure 6.3 for experts, and Figure 6.4 and Figure 6.5 for intermediates.

On analyzing the responses of novices, we saw some drastic variations from both experts

and intermediates, and we realized that their answers were not reliable. We believe that it

was because of their limited familiarity and their lack of experience with software

maintenance and also software visualizations.

2 120 i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

• Corrective Maintenance H Adaptive Maintenance
• Perfective Maintenance I Preventive Maintenance

Figure 6.2: Experts' Categorization of Tasks to Maintenance Activities

139

I

I

100% T

90%

80%

70%

60%-I

50%

40%

30%

20%-

10%-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

• Not important I Somewhat important • Extremely important

Figure 6.3: Experts' Opinion on Task Importance

9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

• Corrective Maintenance

D Perfective Maintenance

0 Adaptive Maintenance

1 Preventive Maintenance

Figure 6.4: Intermediates' Categorization of Tasks to Maintenance Activities

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

D Not important « Somewhat important • Extremely important

Figure 6.5: Intermediates' Opinion on Task Importance

Looking at Figure 6.2 and Figure 6.4, we can see that task 7 (i.e. when was an

exception thrown or when did an error occur?) has been categorized for corrective

maintenance by all (100%) the experts and intermediates. Interestingly, we saw in Figure

6.3 and Figure 6.5 that most of the experts (70.59%) and intermediates (85.71%) had

assigned 'no importance' to task 16, which was to know the nesting level of a particular

method. Task 2 (i.e. get the static structure of the software system) was assigned as

extremely important by both experts (76.47%) and intermediates (85.71%) in Figure 6.3

and Figure 6.5 respectively.

The participants were also asked to assign each task to visualization tool category (i.e.

static and/or dynamic). Figure 6.6 shows the results of participants' responses. Based on

the mean of responses shown by dashed line in Figure 6.6, we can see that tasks 3, 4, 5,

10, 11, 17, and 21 should be supported by both static and dynamic visualization tools,

tasks 1, 6, 7, 12, 14, and 20 by dynamic visualizations tools, and tasks 2, 8, 9, 13, 15, 16,

18, and 19 by static software visualizations tools.

141

On averaging the responses of both experts and intermediates, we derived the

categorization of each task in four maintenance activities as shown in Figure 6.7. To

classify each of the tasks in terms of maintenance activities, we further divided the

participants' responses. Table 6.5 shows the results of this classification where we took

those tasks for each activity that are above the 50% range shown through dashed line in

Figure 6.7.

120

100

1 80

B0 H

§ 40

1
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

D Static Visualization • Dynamic Visualization

Figure 6.6: Average Opinion on Visualization Category

142

120

100

40

20

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21

Tasks

-Corrective Maintenance —•—Adaplive Maintenance -k-Perfective Maintenance —x-Preventive Maintenance

Figure 6.7: Combined Opinion on Tasks' Categorization

Table 6.5: Classification Results

Maintenance

activity

Tasks

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21

Corrective X X X X X

Preventive

X X X X X X X X

Adaptive X X X X X X X X X X X X

Perfective X X X X X X X X X X X X X X X X X X

X X X X X X X X

6.4.3 Discussion

Researchers in the field of software maintenance have given different meanings to

these four maintenance activities and there is a lack of agreement on more precise

definition of these terms (Chapin et al., 2001). We also agree with this viewpoint, as it is

usual to do the same task while performing different maintenance activities as shown in

143

Table 6.5. Moreover, the definitions given in the literature for some of the tasks are not

clear enough as there appears to be incorrect interpretation of these tasks. For example, in

our viewpoint many practitioners in our survey seem to have misunderstood task 8 (i.e.

find the location to insert a new artifact) and task 17 (i.e. where in the software system

are the hotspots to add additional functionality?) and have assumed these to be the same.

However, the more correct interpretation is as follows. Task 8 is meant for those

additions which are required to fulfill the changing needs not known at system deign

time. In contrast to this, task 17 points out 'hotspots' that were kept by the designers who

were already aware of the future needs for system's expansion. Therefore, logically for

the changes that were not previously known, we need to categorize them to adaptive

maintenance. In contrast, for the other changes that are kept for expansion or

enhancement, we need to classify them into perfective maintenance category.

We also believe that the 'context of use' notion is better elucidated through the use of

task model. Hence we created a raw task model of the identified tasks using a CTTE

(Mori et al., 2002) tool. Figure 6.8 shows the snapshot of the first iteration of this model.

This model can be refined further to include other elements of the task model like the

interaction, application and user tasks to capture the context of use in which the

visualization tool can be used to support the required tasks. Figure 6.8 depicts how the

tasks are interrelated, for example - task 9 which is to add a new artifact and

dependencies (if any) can be accomplished first by getting the static structure of the

software system (task 2) and then we have two choices either to find the location to insert

a new artifact (task 8) or to find the hotspots to add additional functionality (task 17) and

144

on adding an artifact we need to find all those artifacts that depend on the newly added

artifact either directly or indirectly (i.e. task 21).

Q—a—Q

Q—n—Q

Q Q
Task 21 Task 21

Figure 6.8: Task Model

In response to the survey question to comment on additional tasks not listed in the

survey, participants have suggested some literature references (like - Reiss, 2005) to

monitoring tasks required to judge the behaviour of the software system like -

• which classes are currently executing,

• which classes are being allocated resources currently, and

• what are the threads in the system and in which state (running, running synchronized,

waiting, blocking, sleeping, doing I/O, or dead etc.) each thread is in along with the

amount of time spent in each state etc.

In addition, some of the participants have suggested other tasks like -

• finding dependencies between deployed components,

• performance of individual modules in a heavily distributed system, and

• assess impact of mixed technologies in a heavily modular system especially when

various modules are managed by different groups.

145

6.4.4 Conclusion

In this survey, we have highlighted the differences in the definitions of the traditional

maintenance activities by classifying them using the maintenance tasks supported by

current software visualization tools. This task-based categorization can help to clearly

delineate out the ambiguities among the definitions of these activities. Through this

survey, we also observed that task descriptions themselves are perceived differently by

the software maintainers and need clearer definitions to be interpreted correctly.

We tried to make our questionnaire short by offering a limited number of closed-

ended questions. Yet the response rate was low (17.28%). This clearly shows the

difficulty in collecting empirical evidences from practitioners in the software engineering

community. The list of maintenance tasks is still far from being exhaustive; only some of

the currently reported tasks in existing research for static and dynamic visualization tools

are listed here for survey purposes.

The proposed classification of visualization tasks in software maintenance activities

can guide developers to evaluate their SV tools for respective tasks. We believe that this

classification can act as a task model for other independent evaluators like us to

empirically investigate the visualization tools for their comprehension and maintenance

support. In addition, the identified tasks could guide us to create a task model for

software visualization systems that could enable prospective tool developers to build

appropriate functionalities in their tools.

146

Chapter 7. Visualization Patterns: A Context-Sensitive

Tool to Evaluate Visualization Techniques

"...encapsulate the concept that varies" - Erich Gamma, Gamma et al Design Patterns

Overview

In this chapter, we discuss the preparatory phase of comprehension assessment by

proposing a systematic evaluation mechanism called 'visualization patterns' that guides

the evaluators and users of visualization systems to compare and understand the

functionalities of the underlying visualization techniques. In this chapter, we highlight the

need for capturing the problem, context and design solution of any visualization

technique in the form of visualization patterns. These patterns are described in two

formats - one for evaluators to determine the available task support of visualization

techniques applied for the two static software visualization tools under study, and other

for the users or participants of the study to understand the capabilities of these techniques

in order to explore them during the controlled experiment.

147

7.1 The Need for Visualization Patterns

Widespread proliferation of visualization tools/techniques has made it difficult for

both the users and evaluators to decide on the applicability of a given tool/technique to

the visualization problem in hand. The tool users/evaluators have no guidance mechanism

that could describe the suitability of visualization tools/techniques to fulfill their

objectives i.e. the user/evaluator has no clue if a technique is useful to accomplish his/her

required tasks. This is because the context in which a technique can be used dominates

the utility of the technique to the user or evaluator. The context describes the main

objective of the technique and provides a snapshot of the basic use of the technique.

This context of use is a fundamental and universal characteristic to judge the utility of

any software product like - a visualization system. Therefore, we cannot evaluate a

visualization technique in isolation without considering the applicable 'context of use'.

Sam Uselton (Rushmeier et al., 1995) also says that true quality of visualization can only

be measured in the context of a particular purpose, as the same image generated from the

same data may be excellent for one purpose and abysmal for another. In the same

manner, we cannot say that a visualization technique is universally applicable to all

visualization problems. A technique can be good in one context and bad in another.

Generalizations made about the observed usefulness of a particular visualization for one

task are highly inappropriate as using the same visualization for different tasks often

causes the usefulness of the technique to disappear (Casner, 1991). We have to evaluate

its' effectiveness in a more abstract manner; by encapsulating the visualization technique

in a visualization pattern as mentioned by Wilkins (2003),

148

"The visualization community has developed a number of techniques that can solve

visualization problems that are independent of domain. In effect these techniques are

being reused to solve recurring problems. This is the definition of a pattern. Therefore it

should be possible to formalize these techniques into patterns ".

Consequently, evaluations should be made in a certain context where the visualization

technique can be seen as a solution for a specific problem (c.f. Figure 7.1). The way that

we encapsulate a visualization technique with context, solution and problem is apparent

to the notion of patterns. We define a visualization pattern as a visualization problem that

occurs in a certain context and for which the visualization technique can be a solution. A

visualization pattern is different from visualization technique with context, problem, and

solution, all made explicit and a rationale provided for the solution.

Evaluation Evaluation

Figure 7.1: Evaluation Strategy for a Technique

A visualization technique could be applied to solve a number of visualization

problems (1 to many). For example, TreeMap (Treemap, 2003) is a well known technique

that has been applied to solve different problems in a number of distinct domains like -

financial (Stock Market TreeMap), bioinformatics (TreeMap Cluster View), information

149

(NewsMap), business (PeetsCoffee Map), software (Performance Map, DiskUsage Map)

and so on. Consequently, a technique has many particular uses, in various domains, with

each use being a visualization pattern instance as depicted in Figure 7.2.

Figure 7.2: Mapping Technique to Pattern Instances

Moreover, we cannot compare any two visualization tools/techniques directly without

matching their applicable 'context of use'. This observation is supported by Tory and

Moller (2004), who say "comparison of tools may produce results confounded by the

many differences between the tools. Missing or inappropriate features in the test tool or

problems in the interface can easily dominate the results..." Each visualization technique

has its own limitations. We can only compare patterns when they are similar. Therefore,

we can say a technique is better than another only in a certain context.

Patterns also act like a quick reference manual or a short user's guide that help its'

users to comprehend existing systems. Users may simply refer to patterns in order to

understand the capabilities and usefulness of a visualization tool to solve the problem in

hand. A preliminary benefit of using patterns is to improve the comprehension of existing

visualization systems by getting answers to some probing questions as follows -

Who can use this technique or in which domain is it relevant?

What can be done with this technique?

150

How can it be used?

Under what circumstances should it be used?

7.2 Patterns Overview

The concept of design patterns initially proposed by an architect Christopher

Alexander for urban planning has been studied and applied in vast research areas. A

pattern describes a generic solution to a common problem in context (Alexander et al.,

1977). Design patterns have found prominence in many fields including - Software

Engineering (Gamma et al., 1995), Graphical User Interfaces (Tidwell, 2005) and

Visualizations (Wilkins, 2003). In the visualization domain, Wilkins (2003) has proposed

'structure', 'interaction' and 'composition' patterns for the design of novel visualizations.

We differ from earlier work in the sense that former patterns are actually useful for the

design of new visualizations, whereas the patterns we are proposing are beneficial for

selection/evaluation of current visualization tools/techniques. For the purposes of our

study, we encapsulate a visualization technique in a pattern, where we express it in terms

of the visualization problem for which it is suitable, the applicable context and the

proposed design solution. We have chosen the pattern format as described by Borchers

(2000) and have adapted it to our needs for visualization techniques. The general format

of a pattern for any visualization technique is shown in Table 7.1.

151

Table 7.1: General Format of a Pattern

Name or

Title

Context

Problem

Forces

Solution

Examples

Related

pattern (s)

Helps to refer to the pattern's central idea quickly and builds a vocabulary

for communication.

The visualization situations in which the pattern can be used.

A statement of the visualization problem that needs to be addressed.

The factors which must be considered when applying the pattern under

current context of use.

The proposed visualization design solution to the problem.

Show existing situations or cases in which the problem at hand can be (or

has been) encountered, and how it has been solved in those situations.

Reference to some patterns that solve similar or related problems and to

patterns that refine the pattern under describing.

To further test the usefulness of our pattern-oriented evaluation approach, we

conducted a case study with the two popular static software visualization tools, IBM's

Structural Analysis for Java (SA4J) and Creole as follows.

7.3 Case Study: A Pattern-Oriented Evaluation of Software

Visualization Tools

Patterns in general have been used by many researchers (like - Zhu et al., 2004; Berg

and Ahlstrom, 2005; Georgiakakis et al., 2006) in different domains as an important aid

for an evaluator. In this case study, we are exploring how visualization patterns can guide

an evaluator to perform a comparative analysis of static software visualization

tools/techniques. The detailed explanation of the case study is as follows.

7.3.1 Objective

The objective of this case study is to evaluate the suitability of given static

visualization tools in visualizing the structural dependencies in a software system. The

152

techniques used in these tools are encapsulated in a pattern format, where the constraints

or forces that limit the use of these techniques are described in terms of the tasks that are

supported for software maintenance/comprehension and interactions with a software

system. The three primary elements of our case study, i.e. - tools/techniques, system

under study, and tasks required for evaluation, are described as below.

7.3.2 Tools/Techniques

The tools evaluated in this case study are used for the structural analysis of a software

program. Being independent evaluators, we were looking for tools developed by other

researchers/practitioners. Unfortunately, most of the tools on Internet (Small Wiki, 2007)

are commercial and are not accessible for usability evaluation. Others are research

prototypes and are not fully functional. However, we do believe that the tools we have

chosen are representative of the kinds of tools that are developed in industry and

academia to support software comprehension during software maintenance.

For our study purposes, we have chosen two tools - Structural Analysis for Java

(SA4J) (Iskold et al., 2004) and Creole (Callendar, 2006). Each tool uses more than one

visualization technique to visually represent the software structure. A detailed

explanation of the capabilities and functionalities of each tool is given below:

• Structural Analysis for Java (SA4J) (Iskold et al., 2004)

SA4J is a tool introduced by IBM for structural analysis of Java applications. SA4J

analyzes the class files in order to show the static structures of Java applications. SA4J

measures the stability of an application structure by evaluating the web of dependencies

among different objects like - packages, classes, and interfaces of a Java application.

This analysis provides quantitative and deterministic evaluation of the application

153

structure. SA4J provides browsing for detailed exploration of anti-patterns (bad design

elements) in the dependency web, and enables 'what if analysis in order to assess the

impact of change on the functionality of the application. It also provides a spreadsheet

view of various items along with a dependency pyramid view of an application. Here, the

basic idea is to represent the software as a pyramid of dependencies; where the objects

that do not depend on anything are at the bottom, objects that depend on them are on the

second level and so on. SA4J is a standalone system, pre-packaged with Java Run-time

Environment (JRE) 1.4.101, and can be installed on many platforms like - Windows

2000/XP/NT, Linux, and Sun Solaris 8/9. This tool is freely available and can be

downloaded from the host IBM or sourceforge.net site.

• Creole (Callendar, 2006)

Creole is an integration of Simple Hierarchical Multi-Perspective (SHriMP) with Java

Development Tools included in the Eclipse platform (Lintern et al., 2003). SHriMP is

both an application and a technique, designed for visualizing and exploring software

architecture, developed by the University of Victoria's Department of Computer Science.

This visualization technique is incorporated into the Rigi reverse engineering system

which is developed to extract, navigate, analyze, and document the structure of evolving

software systems (Storey et al., 1995). Creole adds its own perspective to the Eclipse

platform and explores the Java source code visually by displaying its structure in the form

of different software objects (packages, classes, interfaces etc.) and the relationships

(calls, accesses, extended-by and so on) between these objects. Creole uses five different

layouts to provide multiple perspectives of the software structure. In Creole views, the

source code is an integral part of the structural documentation, as opposed to opening a

154

http://sourceforge.net

file containing the artifact's corresponding source code in a separate text editor like in

many other tools. The relevant source code for software artifacts represented by leaf

nodes is displayed directly inside the nodes in these views. This allows the user to browse

source code while simultaneously visualizing the location of the code in a software

hierarchy. The most recent version, Creole 1.6.1, works as a plug-in for the Eclipse

platform, and needs Java to be installed.

7.3.3 Software Program for Analysis

To select an appropriate software system to analyze using the visualization tools

under study, a number of factors have been considered. These include - programming

domain, program size, complexity, quality, and availability. The detailed explanations for

each of these program characteristics are as follows.

Programming domain

The software visualization tools that are available currently are developed by

different developers and have different hardware/software requirements. So, we were

looking for a platform independent source language that most of these tools could

support. We opted to use Java as a source language for the software program to be

analyzed, as both our study tools (i.e. SA4J and Creole) visualize the Java

applications. Our experience and comfort level with Java language was another

reason for our experimentation with a Java source program.

Program size

The size of the program is being constrained by the scalability issues of the software

visualization tools under study. Scalability concerns the space and time complexity of

155

visualization techniques, for instance - automatic layouts for large graphs, as well as

the need to avoid information overload for the viewer (Koschke, 2003).

Complexity

In general, simple programs may not have the same need for visual analysis, as they

could be comprehended more easily. However, as a software program becomes

cumbersome and complex, it necessitates the use of software visualization tools.

Broadly speaking, there is not a standard threshold limit for the complexity factor of a

software program, i.e. how complex a software program should be so that

visualization becomes helpful. For our study purposes, we decided to use a medium

size software program, which we consider as being neither too simple nor too

complex.

Quality

Quality of the code is also taken under consideration while selecting appropriate

system for study. The source project should be free of bugs or other exceptional

errors. This is required in order to compile the code completely and use its byte code

or source code to make visualizations with the software visualization tools in hand.

Some tools require the class files and not the source files to produce visualizations,

and if the source code is not free of errors or is not of good quality then the tool may

not create the required visualizations.

- Availability

Availability of the source program is another contributing factor for its selection. We

decided to take the source project from the list of open source projects that are freely

available.

156

Based on above considerations, we decided to use for our case study an open source

application called BORG (Berger-Organizer), which is a calendar and task tracking

system written in Java. The calendar's functionality is similar to that of other personal

information managers such as - Microsoft Outlook, Mozilla Calendar, Palm Desktop,

Yahoo Calendar and so on (Berger, 2007). The system, with its latest version 1.6, has

evolved to a stable system. On the source forge site, this project is ranked at position

3,348, downloaded more than 75,000 times and is described as highly active project

having activity rating of 98.33% (BORG ranking, 2007). SA4J gives a summary of

BORG as - 99% stable system comprising of 239 objects (i.e. 54 packages, 172 classes,

and 13 interfaces) and 351 relationships among these objects.

7.3.4 Tasks

Tasks are a key component to conduct any form of empirical evaluation. Maletic et al.

(2002) rightly state that the tasks are the driving force behind a classification of software

visualization systems. Having an appropriate task list is a prerequisite before conducting

any evaluation. Toward this endeavour, we conducted a thorough literature survey (as

explained in chapter 6 of this thesis) to seek the software comprehension and

maintenance tasks that are mentioned by other researchers, and are required to be fulfilled

by software visualization tools. Our task list that comprises the tasks supported by current

static software visualization tools is described below.

• Maintenance tasks

To understand the static structure of a software system and perform maintenance

during maintenance activities by any static software visualization, typically, following are

the tasks that are required to be accomplished.

157

Ml Get the static structure of the software system (Systa et al., 2001; Pacione et al.

2004).

M2 Find the location of desired artifact (Mayrhauser et al., 1997).

M3 Find an artifact that is not used in the static structure of a software system (Storey

etal., 1996; Systa et al., 2001).

M4 Find an artifact that is heavily used in the static structure of a software system

(Storey et al., 1996).

M5 Find all artifacts that directly or indirectly depend on artifact "A" (Storey et al.,

1996; Mayrhauser et al., 1997) or Find all artifacts on which artifact "A" directly or

indirectly depends (Storey et al., 1996).

M6 Determine the impact of change without having to do it first (Iskold et al., 2004;

Pacione et al., 2004) or Ripple effect (Koskinen et al., 2004).

M7 Add an artifact and dependencies (if any).

M8 What is the history of past modifications (Koskinen et al., 2004)?

M9 What is the nesting level of a particular method (Koskinen et al., 2004)?

M10 Where in the software system are hotspots to add additional functionality? (Pacione

et al., 2003) (it is included in type 1 enhancement by Jones (1998))

M i l Modify an artifact and dependencies (if any) (type 2 updates from Jones (1998)).

M12 Delete an artifact and dependencies (if any) (type 3 enhancements from Jones

(1998)).

In addition to the maintenance tasks, we believe that appropriate interaction

mechanisms are also required to be provided by any visualization tool. This is because

interaction is the basic requirement to help in achieving the maintenance tasks required of

158

visualization tools. The interaction mechanisms providing for the navigational needs of

the users are explained below.

• Interaction mechanisms

With current technologies, visualization tools provide a variety of interaction

mechanisms to users. Interaction mechanisms allow the users to directly interact with the

visualizations and dynamically change the visualizations according to their exploration

objectives. According to Knight and Munro (2001), interactions allow users to

investigate, browse, and interrogate various aspects of information without relying on

predefined fixed views. Visual Information Seeking Mantra by Shneiderman (1996)

defines seven basic information seeking mechanisms or interaction techniques that all

visualizations should support, and are explained as follows -

11 Overview: Get an overview of the entire collection of data that is represented through

visuals. With large systems, this often results in incomprehensible visualizations. This

task can be accomplished by using overview strategies like - 'overview plus detail'

views i.e. zoomed out views of each data type to see the entire collection in addition

to an adjoining detailed view, and 'fisheye approach' where the fisheye-lens

metaphor is applied by magnifying the objects in the center of the view while

reducing the size of objects away from the center. Fisheye views provide context and

detail in one view.

12 Zoom: In general, users are interested in only some parts of the visualization where

they want to focus while retaining the global context of the overall visualization. The

visualization tools should provide the functionalities to control the zoom-focus and

zoom-factor in visualizations. Zooming can be done in one dimension at a time by

159

moving the zoom bar controls or can be accomplished in 2D by adjusting the size of

the field-of-view-box.

13 Filter. In order to tackle the clutter in visualizations, it is also necessary to filter out

uninteresting or unwanted items. Maletic et al. (2002) point out that in order not to

disturb the global context by filtering there should also be some kind of abstraction of

removed parts.

14 Details-on-demand: To facilitate understanding of each artifact in the visual clearly, it

is also important to get its details on demand. The common approach used to fulfill

this task is to simply click on an item to get a pop-up window which shows the values

of each of its attributes.

15 Relate: For a hierarchical data structure, users need to view relationships among

items. Users can select an item and then highlight items having similar attributes.

16 History: A history of the actions performed with visualization should be recorded to

support various operations like - undo, replay and do progressive refinement. It helps

to tackle the 'where was I syndrome' in visualizations, allowing users to go back to

their previous state in exploring the visualizations.

17 Extract: A visualization tool should allow extractions of sub-collections and of the

query parameters. This task concerns saving the current state of visualization for

future explorations (Maletic et al., 2002).

7.3.5 Case Study Results

Table 7.2 summarizes the results of our pattern-oriented evaluation of these tools,

where we have encapsulated the underlying visualization techniques used for each tool in

visualization patterns that are named according to the layout styles used in respective

160

techniques. Here, all the visualization techniques solve a common visualization problem

of displaying a hierarchical structure showing dependencies among software objects in a

software system. The context or situations in which the pattern can be used is also similar

in these patterns. However, the forces and solutions vary, and these significantly

differentiate each technique from the other. The forces factor of each pattern is described

in terms of supported maintenance tasks and interaction tasks.

Table 7.2: A Pattern-Oriented Analysis of Tools

Name or

Title

Context

Problem

Forces

Solution

Examples

Related

pattern

Structural Analysis for Java (SA4J)

Radial tree Pyramid

Creole

Nested view Tree

The display consist of number of software objects (packages, classes, and interfaces) and their

inter-relationships or structural dependencies in the source code

How to display large hierarchical tree structures showing dependencies among software

objects?

{Ml, M2, M3, M4,

M5,M6}

{H, 12,0,14,15,16,

17}

Use a radial tree

representation

Sunburst, Radviz

Pyramid, Treemap,

Tree, Cone Tree,

Explorer

{M1,M2,M5,M6}

{11,12,14,15,16,17}

Use a skeleton view

Icicle plot

Radial tree, Treemap,

Tree, Cone Tree,

Explorer

{Ml, M2, M3, M4,

M5,M9,M11,M12}

{11,12,13,14,15,17}

Use nested rectangles

PhotoMesa Image

Browser,

SmartMoney,

NewsMap

Radial tree, Pyramid,

Tree, Cone Tree,

Explorer

{Ml, M2, M3, M4,

M5,M9,M11,M12}

{11,12,13,14,15,17}

Use a standard tree

view

Visualize it!

Pyramid, Radial tree,

Treemap, Cone Tree,

Explorer

In the following, we describe summative results of our pattern-oriented evaluation of

visualization techniques employed in SA4J and Creole by explaining in detail the forces

and solution elements of corresponding patterns.

161

• Structural Analysis for Java (SA4J)

SA4J uses two different visualization techniques called 'radial tree' and 'pyramid or

skeleton view' to show the static structure of a software system. The patterns

corresponding to these techniques are as under,

a) Radial tree pattern

Radial tree technique displays different software objects like - packages, classes, and

interfaces of an application along with their relationships in a radial fashion as shown in

Figure 7.3. The idea is that object nodes are placed around the circle and their

relationships are shown with directed lines emanating from the source to destination

node. With this technique, complete static structure of the software system can be shown

very efficiently.

F.te . '.WBtfuttfori . Owaraiw • .Analysts: Opttona y*wtow Hefc>

Figure 7.3: Radial Tree Visualization

This technique fulfills all the maintenance tasks from Ml to M6. However, the tasks

of adding/modifying/deleting an artifact or dependency in the visual(s) are not possible

with this technique. It is because the classes/byte code cannot be altered once visualized

162

in this tool. Other tasks like finding hotspots or nesting level of a particular method are

also not supported by this technique.

This technique is excellent in terms of its interactivity. It supports all the seven

interactions tasks to navigate in large static structures effectively. It uses focus plus

context viewing, allowing enormous structures to fit within fixed space of computer

screen. It provides a fine zooming capability to zoom on a particular node while keeping

the neighbouring context intact. A data-tip is tuned with every node in the structure to

display details on demand. Filtering, relate operations are also fulfilled with this

technique. A navigation history of a total of 30 actions can be accessed to support undo

and other operations. This technique also permits one to save specific shots of

substructures in jpg or DIR file exchange formats.

b) Pyramid pattern

This technique shows a dependency pyramid view of an application (c.f. Figure 7.4).

The basic idea here is to represent the software as a pyramid of dependencies - the

entities with only outgoing dependencies on the bottom, those with only incoming

dependencies on the top. Each square corresponds to either one object

(class/interface/package) or one tangle (set of objects that change together). In this view,

a stable system should have a normal pyramid shape. An unstable system may look like

an upside down pyramid shape.

This technique did not accomplish tasks M3 and M4 as was done by Radial tree.

There is no special visual attribute that could tell the analyst which artifact is heavily

used or not used in the static structure. Again, like Radial tree it does not support tasks

from M7 to Ml2.

163

Navtgatton Dbtcpams Anatyejs Otflons. VVHctow H»«p

•jrJ Is i Jt! m;ID -&) fcj • la . SSS^S vi

Figure 7.4: Pyramid Visualization

This technique did not support the task of filtering unrelated items, as we were

expecting the tool to show the filtered items in the form of pyramid of related items.

However, it was illustrating the related items in a radial fashion using the radial technique

as described previously. This technique coped quite well with rest of the interaction tasks.

• Creole

Creole uses five different layouts to provide multiple perspectives of the software

structure. These are - 'Nested view', 'Spring*, 'Tree', 'Radial', and 'TreeMap'. "The

'Nested layout or Grid' arranges all the children (or sub-nodes) of a specific node to fit

into the inner bounds of that node in a rectangular format. It does not take arcs into

consideration when laying out the nodes. The 'Spring' layout simulates a mechanical

system where highly connected nodes tend to be pulled together and more isolated ones

tend to be pushed away from each other. The 'Tree' layout extracts an acyclic graph from

a set of nodes by tracing their relationships. The 'Radial' layout positions the nodes and

arcs in a radial pattern or format. 'TreeMap' layout is a space-filling method of

visualizing large hierarchical data sets. It visualizes the hierarchical structure by

164

representing the nodes with nested rectangles" (Creole User Manual, 2006). For our

further usability study purposes, we explored two out of these five visualization

techniques as follows.

a) Nested view pattern

This is the default layout in Creole and a screenshot is shown in Figure 7.5. It is based

on the standard "contains" relationship, which means that a node contained within

another node indicates a parent-child relationship between them. It is a space-filling

approach of visualizing large hierarchical data sets (packages, classes and interfaces) and

their inter-relationships or structural dependencies in the source code.

BlBMBSffliMB

Q u i c k > F0e £«fit Node Navigate Tools Help

«•»»» ; ; ^ ^ s i ; =*» 4, # i M : (EEJasx»»<iH sm=~^m sa

il

B bog_!JC.EiCF:GCaisf>janjl.jJc.n6<.5f^>39.Lti

0 MalnMenu <~J flopcintnitnlPanel S3 TasIXorfiauatcr . £•& TaskVieA-

0 To*>Vlew & CataidarPare. 1 i 3 TadtlstPanet & fipPWoxRarwl *& flcpc^*tm^a.tsWey&ip. Adc tass ' v * ^ ApptDavBoxLa

^ PicjectPans. (" & Si=efcrf.lew &> tVfcfrUstV'igw' - <& jft^ec.tvtew @-MLiBbView. fcj M s ^ i r t J ? h f t ^ g C t X : f % ^ a . H ' j A ^ ^

BeiTBnd?rPcp6& U « ^ f f e « j p M m i ^ ^ v j ^ ^ ^ ^ P a h ^

^ ^ ^

mm 1*2
Root:b^w«jr(:.BORGCalendaiUl.wt.net.sf,boro.uf Node Labels; ^Above Node (Fixed) "" I Arc Lebeb; f_j Navigation; ^Magnify M

Figure 7.5: Nested View Visualization

This technique performs well with most of the tasks from the studied set. However, it

does not tackle the "impact analysis", "adding an artifact" directly on the visual etc. as

shown in Table 7.2. The most interesting feature of Creole views is that source code for

software artifacts is displayed directly inside the nodes. This allows the user to browse

source code and make changes simultaneously along with visualizing a software

165

hierarchy. This technique presents software structures using fisheye views of the nested

graphs. The fisheye-lens metaphor magnifies the nodes of interest in the graph while

concurrently shrinking the remainder of the graph. This technique also provides a

mechanism for presenting details of a large information space while also displaying

contextual cues at the same time. The history mechanism is not supported properly by

this technique. Although, there are forward and backward buttons on the interface itself,

they are of no use once you alter the location of nodes within the visual. The image can

be exported in formats jpg or png. The snapshots can also be saved on a filmstrip.

b) Tree pattern

This is another layout that is provided by Creole and is shown in Figure 7.6. Nodes

may represent software artifacts, and edges may represent semantic relationships among

those artifacts.

BWaSBff lMI
Hie Edit Navigate Search Protect Run Window Help

Q u t c J t '. FBe Edft Node Navigate Tools Help

CVS

55

i& bag_src.BCPGCali3-iii irUI.srcnet.sf.t-3$ul

p.
0 Navia;

•

D D D D D D D D n n • n • n • n • • c -
i f * Mi <Miiffim.

\ Herarchy: contains Root: borg_src. BORGCalendartJI. src.net. sf.borg.ul Nadelabets:: Above Node (Fixed) v : Are Labels: £ J . Navigation: jMagrtfy -*<|

Figure 7.6: Tree Visualization

It is based on the general metaphor of a tree where branches from the root node(s)

emanate to child or leaf node(s) and so on until the complete hierarchy is formed. This is

166

http://src.net

a very basic technique of depicting the hierarchical structure; however, it can easily

become clumsy with large structures. As shown in Table 7.2, this technique supports the

same set of tasks as are carried by nested view technique.

7.3.6 Discussion

A big gap between desired tasks and the tasks supported by SA4J and Creole is

observed. As can be see from Table 7.3, no tool is able to address all the listed

maintenance tasks. Both the tools provide very good interaction mechanisms, with radial

technique superseding all other techniques. We must remark here that the tasks' support

does not imply that Creole is more effective than SA4J in fulfilling the common

visualization problem of displaying the static structure. This classification through

patterns is a first step to empirically assess the value of these visualization techniques to

the ultimate users. The actual effectiveness of these tools/techniques can only be judged

through usability evaluations with the real users and real experiments. During our

analysis, we have seen that SA4J is more efficient than Creole based on the response time

while exploring the visual(s). Proper usability assessments of these tools can further tell

us the effectiveness of these tools.

Table 7.3: A Comparative Summary of Tasks

Tools
Visualization
Technique

Maintenance
tasks (12)
Interaction
tasks (7)
Total task
support (19)

'•'• SA4J
Radial

6

7

68.4%

Pyramid

4

6

52.6%

Creole
Nested View

8

6

73.7%

Tree

8

6

73.7%

167

7.3.7 Conclusion

This case study, a comparative analysis of SA4J and Creole, demonstrates the

benefits of using visualization patterns as an important aid for an evaluator in the task of

appropriate selection and evaluation of visualization tools/techniques. We have seen that

patterns are valuable tools, for capturing and communicating the acquired

understandings/experience with visualization techniques, to guide in proper selection of

visualization tools for solving the visualization problems under consideration.

Like the benefits of using patterns in other works (for example: Georgiakakis et al.,

2006), we also believe that use of the visualization pattern approach will help minimize

the overhead in the preparatory phase of the evaluation process of visualization

techniques, and also allow any novice user to understand the functionality of the

visualization technique without little or no assistance. To ease the participants'

comprehensibility of visualization techniques that are used in the static software

visualizations tools (i.e. SA4J and Creole) under our investigation, we have prepared a

simplified version of corresponding patterns (given in 'Appendix C) . These patterns are

used by our participants to get an overview of the visualization techniques during the

controlled experimentation with these techniques.

168

Chapter 8. Put It All Together - Comprehension Model

for Visualization Assessment (CoMoVA) Framework

"Knowledge comes by taking things apart: analysis. But wisdom comes by putting things together." - John

A. Morrison

Overview

This chapter describes our proposed measurement framework referred as 'CoMoVA'

to measure comprehension support provided by visualization systems, and is based on

integrating the knowledge gained from our earlier investigations in previous chapters. In

this chapter, firstly we present a clear working definition of what we mean by

comprehension and then outline our proposed framework by describing in detail the

various components of this framework and the activities to be carried out by an evaluator

and participants. Secondly, we provide an example scenario to illustrate the usage of our

framework. Finally, we discuss the conformance of the framework to existing

measurement models and issues concerning its overall validation.

169

8.1 Comprehension: A Working Definition

Whenever, we talk of comprehension assessment we cannot perform it independently

of the notion of 'intent', which can be the intent of the visualization system or of the

visual itself or of the user who uses the visualization system. Every visualization system

will have its own intention:

• usually to provide easier comprehension of some aspects of the data by interacting

suitably with visual representations of the data, e.g. trends through a graph display,

and/or

• to enable the user to comprehend 'hidden' aspects of the data, say, unknown

associations/relationships in data through other visual forms.

Comprehension measurement should address how well the visualization system's

intent is met through its visuals and interaction techniques, and how well the user's intent

is met by the system.

Moreover, comprehension performance always depends on 'context of use' that

includes - users' profiles (i.e. who the users are), tasks' characteristics, and hardware,

software, physical or organizational environments. Lack of knowledge about context, in

which the visualization tool/technique is used, may lead to unrealistic comprehension

measurement plan. A detailed description of the elements of 'context of use' is given

below.

• Users and their characteristics

We know that users are not a homogeneous group of people and they differ from each

other in many ways as follows -

170

a) Physical factors

It includes factors like - age, gender, vision, and spatial-ability (left-handed or right-

handed). These are explained as follows.

Age: Age is a factor that is considered in almost all the empirical studies, as it affects

directly the performance of an individual involved in study. We human beings have

limited amount of working or short-term memory that reduces with our age, and we lose

our ability to recognize and remember the things we used to remember when we were

young and had good memories. That is our ability to comprehend visual information is

affected by our age.

Gender. Gender is found to be a good predictor of navigation performance, with males

outperforming females (Velez et al., 2005). A number of studies (for example - Cutmore

et al., 2000; Hubona and Shirah, 2004 and so on) emphasize the fact that gender

differences have a strong effect in virtual reality navigation.

Vision: The readability in visualizations is also affected by the capacity of human's eye to

perceive various perceptual attributes like - color, shape, lines etc. Color is a basic

perceptual attribute that is extensively used in most of the visualizations. It has been

observed that 8% of the maie population is colorblind against only 2% of the female

population.

Spatial-ability: Spatial-ability is regarded as the skills involving retrieval, retention and

transformation of visual information in a spatial context (Halpern, 2000). A study by

Velez et al. (2005) reveals that spatial-ability is related to visualization comprehension

and individuals have highly variant spatial-abilities.

171

b) Socio-cultural factors

It consists of background and education, which are described as under.

Background: As stated earlier users are not always a homogeneous group of people. They

come from different cultures and have different first languages. They may have culturally

different meanings for the same terms or icons used in visualizations.

Education: In almost all empirical evaluations, education level is listed as one of the

basic characteristic to classify the users.

c) Knowledge and Experience

It comprises application domain knowledge, expertise, programming language

knowledge, and the familiarity with the software products under study. These are

described as under.

Application domain knowledge and expertise: An acquaintance of the users with various

domain concepts helps them to comprehend the underlying information. For example,

experience with various software maintenance activities helps the users to look for

specific tasks in software visualization tools.

Domain specific skills: For example, in case of software visualization systems, hands on

experience with the source language of the software that is visualized should also be

considered. A user who knows the programming language very well can comprehend the

structure of the visualized software system quite easily.

Familiarity with the visualization tools: A-priori knowledge and experience of the users

with the visualization tool also counts when they try to infer information from the tools

that they are already familiar with. Such users can more easily perform different tasks

with the visualization tools under study.

172

• Tasks

It includes the type of task, complexity of the task, time to perform the task, cost

constraints and other task related factors. Generic user tasks for any visualization system

a r e -

Search: The users search in visualization systems for specific items or look for patterns in

displayed visuals.

Browse: The users browse the visual space in order to explore it.

Analysis: The users perform suitable analysis operations to make comparisons, seek

differences, and to find outliers or extreme patterns.

Assimilation: The users attempt to understand and to learn some new concepts from the

data being visualized.

Monitor: The users examine some potential events.

Awareness: The users are made aware of some critical conditions.

• Environment

It incorporates a number of factors like - hardware platform (e.g. PC, laptop,

handheld computer, mouse, keyboard etc.), software platform, noise level, ambient

qualities, type of references and access to experts etc. All these environmental factors

affect the way in which the user can interact with a visualization system.

Based on above discussion, we do not see comprehension in isolation from 'context

of use' and therefore define comprehension as -

The degree to which information represented through visualization can be grasped and

interpreted correctly in a specified context of use.

173

8.2 CoMoVA- An Integrated Comprehension Measurement

Framework for Visualization Systems

A framework by its definition is a basic conceptual structure used to solve or address

complex issues and a 'conceptual framework' is used in research to outline possible

courses of action or to present a preferred approach to an idea or thought (Wikipedia,

2007). A measurement framework, in general, is a supporting structure where

measurement activities can be carried out. It defines a measurement environment where a

set of related metrics and data collection mechanisms can be applied to assess the value

of interested features.

Our measurement framework (shown in Figure 8.1) is a systematic structure that links

various artifacts to deal with the measurement of comprehension in visualization systems,

and is derived from integrating a set of concepts that we have learned in previous

chapters. The framework termed as 'Comprehension Model for Visualization

Assessment' (CoMoVA) includes a protocol for controlled experimentation of

visualization systems. Below, we provide answers to the basic questions of who, what,

when and how for this framework -

• Who can use the framework?' - the primary stakeholders in this model are an

evaluator and the participants of the controlled experiment for evaluation of the

visualization systems in hand. In addition, usability experts may reuse the proposed

comprehension criteria and measures to specify design rules or heuristics for

visualization systems.

174

• What can be done with this framework?' - the activities that can be performed by the

evaluator (illustrated as 1 to 5 in Figure 8.1) and participants (depicted as 1' to 5' in

Figure 8.1) for measuring the comprehension support of visualization systems.

• 'When is it appropriate to conduct evaluation/assessment?' - the artifacts that are

required by the evaluator and partipants during controlled experimentation are

available, so as to enable measurement of the comprehension support of visualization

systems. For example - the questionnaires, repository of comprehension criteria,

visualization patterns and tasks.

• 'How can we achieve the main objective of assessing comprehension?' - through the

methods and techniques used to propose the set of comprehension criteria,

questionnaires and task catalogue. For example, as illustrated in Figure 8.1, the

opinions of HCI/Usability experts collected through interviewing technique, existing

principles and case studies used to propose the hierarchy of comprehension factors,

criteria and measures.

175

0 0

Visualization
System

©
U—expIo res-

Participant

Figure 8.1: The Proposed Comprehension Framework for Visualization Assessment

Like other software engineering models (for example - GQM (Goal Question

Metric), ISO 9126, and QU1M (Quality in Use Integrated Measurement)), our

measurment model also deals with the measurement of comprehension by characterizing

it first in terms of factors or aspects of comprehension. These three factors (i.e.

Perception, Presentation, and Cognition) are then sub-divided into 11 measurable criteria

as shown in Figure 8.2. Finally, for each of the proposed criteria a number of measures

based on answers to questions are derived to measure them. The questions are numbered

176

(c.f. Figure 8.2) according to their order in the proposed questionnaire given in Appendix

'A'.

Perception

Affordance Dynamism

Q13, Q14

Appearance

Qi.5, Q16 Q17.Q18

Comprehension

Presentation

Reachability Simplicity

Q1,Q2,Q3

C!ar%

0 4 , 0 5 . Q6

Distinctiveness

Q7,Q8

Cognition

r- u • . -._•.•* Perspective-
Emphasis Legibility 1 »

09, QIC 011 ,012 019. Q20. Q21

Mapping

022.Q23 Q24. Q25

Figure 8.2: The Proposed Comprehension Model for Visualization Assessment

(CoMoVA)

This hierarchy of Factors —> Criteria —> Measures is derived using the inputs from

three sources (c.f. Figure 8.1) as follows -

1. HCI/ Usability Experts - We sought the opinions of HCI experts on the perceptual,

cognitive and presentation capabilities of visualization systems. Two open-ended

interviews were conducted with two experts.

2. Principles - To seek the appropriate criteria to measure comprehension of

visualization systems, we sought guidance from two sets of well-established HCI

principles. Three visual communication principles proposed by Marcus (Marcus,

1995) i.e. 'Principle of Organization', 'Principle of Economization' and 'Principle of

Communication' along with Norman's cognitive principles (Norman, 1990) such as

'Affordances', 'Mapping' etc. from the theory of human action cycle are our guiding

principles. We believe that these basic principles are fundamental for the overall

177

comprehension of any visualization system regardless of its domain. These guiding

principles are applied to determine their affect on various aspects of human

comprehension and to derive the corresponding comprehension criteria.

3. Case Studies - Two case studies with two different visualization systems have been

conducted to further verify the proposed criteria. These case studies conducted in

different domains help us test our proposed hierarchy of comprehension factors,

criteria and measures.

Each element of the proposed hierarchy is explained in detail as follows -

• Factors

It represents three aspects of comprehension i.e. - 'Visualization Interface' or

'Presentation', 'Perception' and 'Cognition' as studied in chapter 2 of this thesis. The

fourth comprehension aspect i.e. 'Information Structure' lies outside the scope of this

research. The 'Visualization Interface' or 'Presentation' aspect represents the

presentation capabilities of a visualization system i.e. those visual characteristics that

ease the comprehension of underlying information, whereas the 'Perception' and

'Cognition' aspects signify those properties in a visualization system that ease the users'

visual and cognitive abilities to perform certain other functions with it. These aspects are

interrelated as they affect each other for the overall comprehension process. These three

aspects or high-level factors are further mapped into measurable criteria as discussed

further.

• Criteria

A total of 11 criteria (i.e. Reachability, Simplicity, Clarity, Distinctiveness, Emphasis,

Affordance, Dynamism, Appearance, Legibility, Perspective-ness, and Mapping) have

178

been derived for these three aspects of comprehension with guidance from the well-

established and recognized principles in HC1 community. To measure these criteria, a

number of questions have been proposed in the next stage.

• Measures

We have devised a sample questionnaire (given in Appendix 'A'), comprising a set of

questions for each criterion, to be asked in a controlled experiment. The questions

address those features of the visualization systems that have impact on corresponding

comprehension criteria. For example, one of the questions to measure Simplicity criteria

is as follows:

• Does the organization of menus seem logical (i.e. are related tasks grouped

together)?

Yes Somewhat No

If somewhat, briefly explain why?

The questionnaire is designed using a three-point (i.e. 'Yes', 'Somewhat', and 'No')

rating scale, where a detailed explanation is asked for each middle (i.e. 'Somewhat')

answer. The subjective response from the participants is then statistically analyzed to

compute the total comprehension score of each individual participant.

8.2.1 Activities in C o M o V A

Our CoMoVA framework describes a variety of tasks and activities that take place

during the process of comprehension measurement of any visualization system. These

activities/tasks are illustrated from the viewpoint of two main stakeholders i.e. - an

evaluator and a participant, involved in the controlled experimentation of these systems.

179

Evaluator Activities

Before the actual evaluation of a visualization system by the participant, an evaluator

has to perform the following main activities (shown as 1 to 5 in Figure 8.1) during the

preliminary phase of the evaluation.

1. An evaluator begins with the exploration of the visualization system under study to

test any difficulties or problems related to its' running, i.e. verifies if the system is

utilizable or not.

2. He/she then identifies the 'context of use' of the visualization system. The 'context of

use' is a basic requirement to begin any evaluation, as it captures the boundaries of

evaluation. The evaluation environment should be described clearly in terms of users'

characteristics, tasks' characteristics and environment's characteristics, so that the

elements that may influence the evaluation are appropriately summed up. Each of

these elements of the 'context of use' contributes to various artifacts in our CoMoVA

framework as follows.

Pre-test Questionnaire - The study of users' characteristics enables the evaluator to

better understand the target participants from the user population. The

users/participants are screened using a pre-test questionnaire that comprises a set of

questions related to their physical factors, background knowledge and expertise. An

example of a pre-test questionnaire used for static software visualization systems

under our study is illustrated in Appendix 'D' .

Task Catalogue - Tasks are a key component of any empirical investigation, as they

enable an evaluator or a user/participant to understand the functionalities of a

visualization system. An evaluator needs to set up a catalogue of tasks that are

180

supported by the visualization system. He/she can then select appropriate tasks from

this set that are to be asked to the participants during experimentation.

Experimental Setup - The environment characteristics of a visualization system

capture the hardware, software, physical and social context of its applicability in the

real world. To simulate the same environment during the experimentation of the

visualization system with the participants, an evaluator has to clearly identify this

element of'the context of use' thoroughly. The study of environmental characteristics

leads to a proper experimental setup of the corresponding visualization system.

3. As we have seen in chapter 7, a visualization tool/technique can be good in one

context and bad in another. So, for accurate comparisons of visualization techniques,

an evaluator needs to encapsulate a visualization technique in a pattern using the

applicable context for it. Each visualization technique should be expressed in terms of

a visualization problem for which it is suitable, the applicable context and the

proposed design solution. Examples of these patterns for software visualization

systems are given in Appendix ' C of this thesis. These patterns are stored in a pattern

library to assist users/participants during the experimentation of visualization

systems.

4. An evaluator has to select appropriate criteria from the proposed repository of

comprehension criteria, as some of the proposed criteria may not be suitable for study

purposes. For example, while studying the comprehensibility of static software

visualization systems under our investigation we did not consider the 'Dynamism'

criteria from this repository. As the investigated visualization systems were static in

nature, this criterion was not applicable.

181

5. Based on the decision to select appropriate criteria, an evaluator has to modify the

proposed questionnaire to be asked to the participants.

Participant Activities

Our CoMoVA framework facilitates the following user/participants tasks (shown as

1' to 5' in Figure 8.1) during the controlled experimentation of visualization systems -

1. A participant uses the experimental setup established by the evaluator.

2. He/she fills in pre-test questionnaire to describe various users' characteristics.

3. He/she then uses the description document from the visualization pattern library to

understand the problem the visualization technique is addressing, the context in which

it is used and the proposed design solution.

4. After reading the pattern description, the participant is asked to perform a set of

assigned tasks from the task catalogue.

5. On performing the required tasks with the visualization system in hand, the

participant is asked a questionnaire to evaluate its' comprehension support as

perceived by him/her for various comprehension criteria.

8.3 How to Use the Framework?

In this section, we are giving an example scenario to demonstrate how our framework

can be applied for evaluation of visualization systems.

Usage scenario for comparative evaluation

Assume a person comes with two visualization systems and the task lists to be

performed using these systems. He wants to know which system is more effective in

terms of comprehension of the underlying information for accomplishing these tasks.

Solution

182

An evaluator using our CoMoVA framework will achieve this goal by designing and

conducting a comparative test. In this comparative test, there are six stages.

1. Firstly, he/she needs to define a specific 'context of use' in which the test will be

conducted to compare two visualization systems. The 'context of use' will comprise

the test-users who mimic the original users of visualization systems, the task

characteristics in terms of the task size and actual allotted time for the tasks, and the

environment in terms of hardware and software platform that will be used for these

systems. There can be some elements of 'context of use' that are different, for

example one visualization system is using Windows environment and other one is

using UNIX environment.

2. The evaluator has to focus on a specific visualization problem that the underlying

visualization techniques in both the systems can solve; otherwise it is not feasible to

compare them.

3. The evaluator has to describe each visualization technique in terms of a visualization

pattern. As stated earlier, the visualization problem is same; it is the solution that

varies in these two systems. CoMoVA framework provides a template for defining

these patterns.

4. Then, the evaluator will select the most appropriate criteria from our set of proposed

criteria in CoMoVA. These criteria are the indicators that help in overall assessment

of comprehension. An evaluator can select those that he/she wants to focus in his/her

evaluation.

5. The evaluator will design a controlled experiment, where a set of selected users will

be asked to do specific tasks with two visualization systems using visualization

183

patterns as user guides. During the test, two type of information will be collected:

observation and measure (or data to calculate measure).

6. The last stage will consist of interpretation and analysis of the measurement results.

The analyst will compare the results of test based on measures with the results from

observation.

In this process of comparative evaluation, the framework provides help in the

following tasks.

Define the context of use

- Define the visualization patterns

Provide predetermined assessment criteria

Define measures

- Compare the measure and observation

8.4 Conformance to Measurement Theory

8.4.1 CoMoVA is a Quality Model

According to Firesmith (2003), "a quality model first decomposes the general concept

of quality to create a taxonomy of its component quality factors and sub-factors (i.e.,

aspects, attributes, or characteristics). The quality model then provides specific quality

criteria (i.e. descriptions) and measures (i.e. means of measurement) that can be used to

turn these general high-level quality factors into detailed and specific measurable

descriptions that can be used to specify the associated aspect of quality or to determine

during testing if that aspect of quality actually exists."

In accordance with this definition, our Comprehension Model for Visualization

Assessment (CoMoVA) also creates a hierarchy of quality factor (i.e. Comprehension),

184

sub-factors (i.e. Perception, Presentation and Cognition), criteria and measures as shown

in Figure 8.2. Moreover, the same standard approach of dividing the high-level factors

into low-level measurable attributes has been applied in many software engineering

models (for example - McCall, Boehm, ISO 9126, QU1M and so on). Therefore, we

believe that our top-down measurement model conforms to existing standards in

measurement theory.

8.4.2 C o M o V A and Its' Relationship to ISO 9126

ISO 9126 (2001) is the most recent standard that is applied by many software and

system-engineering professionals to measure some aspect of the quality of products. We

therefore wanted to see the relationship between our proposed CoMoVA and ISO 9126.

As we stated earlier (in chapter 3, section 3.3.1), 'Quality in Use' is the combined

effect of six software product quality characteristics and is determined in terms of

effectiveness, productivity, safety and satisfaction (c.f. Figure 8.3). We can see that

'Understandability' is a sub-characteristic of the 'Usabililty' of any software product in

this model.

C ^ M s d i t y I n U s e

! B f T e c t i v e n e s s , I > *-o< luc t i 'v i ty 5 . S a f e t y , S a t i s f a c t i o n

F u n c t i o n a l i t y

A c c u r a c y
S u i t a b i l i t y
I n t e r o p e r a b i l i t y
S e c u r i t y

XJs a b i l i t y

U n d e r s t a n d a b i l i t y
L e a m a b i l i t y
O p e r a b i l i t y
A t t r a c t i v e n e s s

IVIaunrt a £ n s i l > i l x t r y

A n a l y z a b i 1 i t y
C h a n g e a b i l i t y
S t a b i l i t y
T e s t a b i l i t y

R e K a b i H t ^ '

I V I a t v i r i t y
F a u l t T o l e r a n c e
R e c o v e r a b i l i t y
Arvail a b i l i t y

E f f i c i e n c y
T i m e B e h a v i o r
R e s o u r c e
TJti 1 i z a t i o n

P o x - t a b Q i t y

A d a p t a b i l i t y
I n s t a l l a b i l i t y
C o - e x i s t e n c e
R e p l a c e a b i l i t y

Figure 8.3: ISO 9126

185

According to Cioch (1991), Understandability consists of two components:

'Comprehension' and 'Lack of Misinterpretation'. Therefore, we believe that our set of

comprehension criteria affects the 'Understandability' characteristic, which in turn affects

the 'Usability' quality characteristic, and ultimately affecting the 'Quality in Use'

characteristic of any software product. Therefore, we can conclude that if a visualization

system supports its' users to comprehend underlying information using the applied

interaction mechanisms, then its' users

- are able to achieve the specified goals with accuracy and completeness in a specified

context of use,

are able to expend appropriate amount of resources in relation to the effectiveness

achieved in a specified context of use,

are aware of the safety issues in a specified context of use, and

- express overall satisfaction with that system.

We will see the effect of comprehensibility of an individual on some of these four

high-level quality characteristics in the next chapter of this thesis.

8.4.3 Overall Validation Issues

This work is the first and foremost in the current state of comprehension

measurement of visualization systems. Validating the framework is a long-term objective

that will involve conduct of large-scale experiments with different visualization systems

using different contexts. Such a work goes beyond the scope of this thesis. As a first stage

and part of this research, we conducted a controlled experiment with two static software

visualization tools to test the applicability and effectiveness of our proposed CoMoVA

framework. This experiment is explained in detail in next chapter.

186

Chapter 9. Operationalization and Overall Validation of

the Framework

"There are two possible outcomes: if the result confirms the hypothesis, then you've made a measurement.

If the result is contrary to the hypothesis, then you've made a discovery. " - Enrico Fermi (1901-1954)

Overview

In this chapter, we describe in detail a controlled experiment conducted by us to

demonstrate the use of our proposed CoMoVA framework. In this experiment, two static

software visualization systems, SA4J (Structural Analysis for Java) and Creole are

studied for their comprehension support using our CoMoVA framework. A total of 15

participants from the university community were invited to perform a controlled

experiment with these visualization systems in our human-centered software engineering

lab. The participants were asked to perform various activities outlined in CoMoVA

framework using the proposed artifacts (i.e., visualization patterns, questionnaire etc.).

The responses from the participants were statistically analyzed to validate their scores.

187

9.1 Measurement Goal Template

Freimut et al. (2001) suggest five key elements of an experiment and organize them

in the form of a measurement goal template as shown in Table 9.1. According to them,

the purpose of a measurement goal template is to ensure that important aspects of an

experiment are defined before planning and execution take place (Freimut et al., 2001).

Table 9.1: Measurement Goal Template (Freimut et al., 2001)

Elements

of an

experiment

Object(s)

Purpose

Quality

focus

Perspective

Definition

The entity that is studied or

observed in the experiment. It

can be product, process, model,

metric or theory.

It defines the intention behind

the experiment. It is closely

connected to the research

question.

The quality focus is the

primary effect under study in

the experiment.

It tells the viewpoints from

which the experiment results

are interpreted.

Measurement Goal

Software visualization tools that

visualize the static structure of a

software system.

The purpose of the experiment is to

determine the effectiveness of

visualization tools/techniques to the

users in terms of their supported

comprehension i.e. to quantify the

comprehension performance of these

tools objectively.

Quality focus of the experiment is the

users' comprehension performance

with the visualization systems.

The perspective of this experiment is

mainly the user who uses these tools.

188

Table 9.1 (continued)

Moments

of an

experiment

Context

Definition Measurement Goal

The environment in which the

experiment is run. The

experiment context can be

characterized in terms of the

characteristics of subjects (or

participants) and objects

involved in the study, along

with the domain in which the

experiment is conducted.

Software professionals who have the

knowledge and expertise in the field

of software maintenance and

visualizations in general conduct the

experiment. All categories of users

(i.e. novice, intermediate and expert

software professionals) are the

subjects of the study to understand the

differences among different users'

characteristics and their impact on

overall comprehension of

visualizations provided by the

software visualization tools. The

objects or artifacts of the study is a

software project coded in object-

oriented language mainly Java, with

enough size and complexity to be a

realistic example of the projects that

are encountered by software

maintainers in their regular routine

work.

The main contributing factor i.e. 'context' in Table 9.1, which affects the empirical

performance of an experiment, is explained in detail as follows:

189

9.1.1 Context

To be repeatable, an experiment has to be conducted under a specific context where

each of its elements should be described in detail. In HCI terminology, context of an

experiment can be described using three basic dimensions - user characteristics, task

characteristics, and environment characteristics in which the experiment is conducted.

Each of these plays a critical role in the planning and execution of an experiment and is

described in detail in this section.

• Users and their characteristics

As we are going to investigate static software visualization tools mainly used for the

purpose of maintaining software, it is quite obvious that our users should have some

background knowledge of fundamental practices in software maintenance. Based on our

previous discussion of various user characteristics (c.f. chapter 8, section 8.1), we have

prepared our pre-test questionnaire (c.f. Appendix 'D').

• Tasks

The tasks selected for evaluation should be representative of what the users do with

the visualization systems and must be manageable and suitable for a laboratory

evaluation. Ideally speaking, to judge the comprehensibility of visualization systems, the

users should be free to explore anywhere in the visualization and should explore almost

all the functionality offered in the visualization system. However, this is not feasible

within the time constraints of a controlled experiment. Therefore, we adopted an

alternative approach where we ask the users to explore freely for first few minutes of

their test, and then ask them to perform one simple task, which is regarded as the main

task to be performed using the visualization system.

190

The chosen task

The task we have chosen for evaluation is a concrete task, a core-level program

understanding task that involves understanding of a small portion of the test program.

Our test program i.e. BORG (Berger-Organizer) calendar system (c.f. chapter 7, section

7.3.3) consists of 54 packages, 172 classes, and 13 interfaces. The visually presented

form of this complete system is cluttered and it is hard for any person to understand the

relationships among various components of the system. Therefore, for our controlled

experiment we used only a small portion of this system and studied the visual affect of 1

package containing 40 classes and 1 interface. This package, the main component of the

whole system, performs most of the functionality of the software. The chosen package is

also the largest package in terms of its size among all the packages of the calendar

system. Specifically, for this particular experiment, the participants were asked to

perform a simple search task as follows:

Find a class "MultiView", and related information objects (i.e. classes, packages or

interfaces) in the visualization.

The goal of this task is to see if the visualization system supports effective graphic

layout where it is easy to find the relevant information. A reasonable time limit of 5

minutes is set to ensure that all the participants can complete this task.

• Environment

In our case, the environment is kept same for all the visualization tools/techniques

used for our study. The hardware and software needed for the experiment are summarized

in Table 9.2.

191

Table 9.2: Installed Hardware and Software

Hardware

• PC - Dell, Intel Pentium (R) 4 CPU 2.80

GHz, 1:00 GB RAM

• Camera - Logitech's QuickCam Pro

4000

• Microphone system - Sony's WCS-999

Wireless Microphone System consisting

of a wireless transmitter and receiver

• Keyboard, mouse

Software

• Microsoft Windows XP Professional

version 2002,

• Java Run-time Environment (JRE

1.4.2_13andl.5.0_12),

• Berger Organizer (BORG) Calendar

system,

• Eclipse Software Development Kit

(SDK 3.2.2)

• TechSmith's MORAE usability

testing software

9.2 An Exemplar Study - A Controlled Experiment with

Software Visualization Tools

This section describes a controlled study to evaluate the comprehension support of

four visualization techniques applied in two static software visualization tools. This study

was conducted in human-centered software engineering lab at Concordia University in

winter 2008.

9.2.1 Goals

We had four main goals in mind as follows.

1. To demonstrate that the framework CoMoVA is usable and can be used.

2. To observe whether the visualization patterns are really useful in assisting the users to

understand the underlying visualization techniques.

192

3. To determine the comprehensibility of four visualization techniques employed in two

tools based on the responses of the participants to the corresponding questionnaires.

4. To compare the effectiveness of one visualization tool with another, based on the

cumulative comprehension scores of various participants.

9.2.2 Participants

For the experiment, 15 participants (7 females and 8 males) having some experience

of using visualization systems in general were recruited from the university community.

Prior to the actual experimental sessions, we asked each participant to complete a pre-test

questionnaire as given in Appendix 'D' of this thesis. Through this questionnaire, we

collected various background variables as shown in Table 9.3 to categorize our

participants based on their knowledge and experience in software maintenance domain.

193

Table 9.3: Background Variables

Variable
Gender

Female
Male

Age (years)

First Language
English
Other

Education level
Bachelor
Masters
PhD

Left handed
No
Yes

Color-blinded
No
Yes

Number of graduate-level software
maintenance courses taken

None
1 -2 courses
>2 courses

Knowledge of software
maintenance

None
Basic
Intermediate
Advanced

Experience with chosen software
visualization tools (i.e. Creole and
Structural Analysis for Java (SA4J)

None
Basic
Intermediate
Advanced

Experience with Java language
None
Basic
Intermediate
Advanced

Number

7
8

2
13

0
9
6

12
3

15
0

7
8
0

0
4
10
1

12
2
1
0

0
2
9
4

%

46.67
53.33

13.33
86.67

0.00
60.00
40.00

80.00
20.00

100.0
0.00

46.67
53.33
0.00

0.00
26.67
66.66
6.67

80.00
13.33
6.67
0.00

0.00
13.33
60.00
26.67

Mean

29.20

SD

6.64

Range

23-46

194

We further applied a grouping scheme as follows to classify our participants.

Grouping scheme

The participants were grouped in three groupings (i.e. Novice, Intermediate, and

Expert) based on their knowledge of software maintenance in general and the number of

graduate-level software maintenance courses taken by them. This scheme is described as

follows.

Novice - A novice is a subject who has basic knowledge of software maintenance domain

and has undertaken at most 1 graduate-level software maintenance course i.e. 'Basic' A

(<= 1 course) —• Novice

Intermediate - An intermediate is a subject who has 'intermediate' knowledge of

software maintenance domain and has completed '0 ' graduate-level software

maintenance course, i.e. 'Intermediate' A (no courses) —> Intermediate

Expert - An expert is a subject who has advanced or intermediate knowledge of software

maintenance domain and has completed at least ' 1' graduate-level software maintenance

course, i.e. ('Advanced' V 'Intermediate') A (> 0 courses) —> Expert

9.2.3 Hypothesis

As already stated earlier in chapter 7, each visualization system employs a number of

visualization techniques to facilitate comprehension of the underlying information and

therefore, the assessment of comprehension support needs to be conducted for the

corresponding visualization techniques. In our study, we are investigating the

comprehensibility of two static software visualization tools - SA4J (Structural Analysis

for Java) and Creole. SA4J employs two visualization techniques termed as 'Radial' and

'Pyramid/Skeleton View' to depict the static structure showing dependencies in a

195

software system. On the other hand, Creole uses five different visualization techniques to

display the static structure of a software system. Out of these five visualization

techniques, only two techniques named as 'NestedView' and 'Tree' are explored within

the timeframes of our controlled experiment. Therefore, for our experiment we invited

participants to explore and comment on the comprehensibility of four visualization

techniques i.e. Radial, Pyramid/Skeleton, NestedView, and Tree.

To assess the comprehension support of these visualization techniques, we outlined a

null hypothesis of this experiment as follows.

Null hypothesis - Radial, Pyramid, NestedView and Tree techniques are equally

effective in terms of comprehension under the same conditions.

In order to validate our results obtained from the proposed questionnaire to assess

comprehension, we further studied the users' task performance for a simple exploratory

task. The chosen task is supported by all the underlying visualization techniques. We

captured this additional effort in a hypothesis as follows:

HI — The users' task performance with visual representations should depend on the

comprehension support of underlying visualization techniques as assessed by our

questionnaire.

9.2.4 Experimental Variables

The independent variables in the experiment are:

- the visualization tools (i.e. SA4J and Creole) and the underlying visualization

techniques (i.e. Radial, Pyramid/Skeleton, NestedView, and Tree),

- the software program (i.e. Berger-Organizer) that is visualized,

- knowledge and expertise of the participants, and

196

- the complexity of software maintenance task.

The following dependent variables are assumed to be influenced:

- the comprehension score as assessed for various criteria like - Reachability,

Simplicity, Clarity, Distinctiveness and so on,

- time taken to complete the assigned task, and

- correctness of the performed task.

9.2.5 Types of Experimental Biases and Their Elimination

Many practical difficulties may arise in running an empirical experiment. Although,

we cannot entirely prevent experimental biases but we can enumerate them, as shown in

Table 9.4, to minimize their overall affect on our results.

Table 9.4: Classification of Experimental Biases

Cause

Single

experimenter

A fixed

order of

studying

each tool

Affect

Although, one experimenter will

reduce the communication

difference that may arise with

several experimenters. However,

one can feel tired or bored by

repeating the same information

to the users or participants, and

as a result can miss some

pertinent information to the test.

It is quite natural that users may

get tired of executing the same

task for each tool and it may

impact their comprehension

performance of the later tools

being studied.

Remedy

There should be a significant gap

between two consecutive tests and

experimenter should consult an

experimenter's handbook while

conducting a test.

Introducing short breaks within each

tool study to start afresh for next

one. To remove the impact of

tiredness on study results, randomize

the order in which the tools should

be tested by the set of participants.

197

Table 9.4 (continued)

Cause

A single

source

project is

visualized

with many

visualization

tools.

Affect

The knowledge gained by the

participant while exploring the

source project using one

visualization tool can impact on

using the same source project in

another visualization tool.

Reined \

Ideally speaking, a different source

project of similar size and

complexity is needed for each

visualization tool. However, our

main objective is to measure the

comprehension support of different

visualization systems for the same

underlying software program.

Therefore, we left this bias as such

and only observed its affect on our

participants during the experiment.

9.2.6 Experimental Setup

In any experiment, a well-designed setup is needed to obtain results with reasonable

confidence. Towards this objective, we designed various structural elements of an

experiment as follows.

9.2.6.1 Experimental Phases

90 minutes to 2 hours session with each of the participants contained two different

types of phases as follows.

One-timed: These phases are to be completed only once for each participant and take in

total 5 minutes of the total session time. These are - orientation (3 min) and background

evaluation (2 min).

198

Repetitive: These phases should be repeated for each of the visualization techniques. It

includes various phases like - training task (2 to 3 min), free exploration (5 min), formal

task (maximum of 5 minutes), and questionnaire evaluation (-16 minutes).

A brief explanation of each of these phases is as under.

a) Orientation

The experimenter begins the experiment by welcoming and briefly orienting the

participant. Each participant is reminded of the purpose of the experiment i.e. to

devise a comprehension model for evaluation of visualization systems. A consent

form (shown in Appendix 'E') was already electronically mailed to the participants

when they were invited for the study. The same consent form is given to the

participant to outline the procedure of the study. The participant is informed that the

test session will be audio and video recorded for study purposes, and he/she is assured

that the collected information will remain anonymous. Also, to relax our participants,

it is emphasized that it is the visualization systems and not the participants that are

being tested in the experiment.

b) Background evaluation

A preliminary participant evaluation form given in Appendix 'D' is given to the

participant to determine various background variables for study purposes.

c) Training tasks

To facilitate understanding of the visualization techniques and to ease the preliminary

phase of the experiment, the participants are given visualization patterns as a quick

user guide. These patterns, as described in Appendix ' C , emphasize the

functionalities of the corresponding visualization techniques in an abstract manner.

199

The visualization patterns enable the participant to quickly learn and easily

understand the basic features of corresponding visualization techniques.

d) Free exploration

The participants are then allowed to freely explore the tested visualization technique

to understand and assimilate the basic concepts displayed on screen. This phase helps

the participant to become familiar with the techniques and the supported interaction

mechanisms. During this initial exploration, they are instructed to explore anywhere

on the display (with an exception for Creole visualization techniques - where they are

asked not to explore the upper toolbar belonging to Eclipse platform). The

participants are encouraged to ask questions about the visualization techniques.

e) Formal task

After the free exploration, the participants are asked one formal task to search for a

specific class in the hierarchy of other information objects (i.e. packages, classes, and

interfaces). The participants are also encouraged to think-aloud while performing the

assigned task in order to note down the comprehension difficulties encountered by

them in the corresponding visualization techniques.

f) Questionnaire evaluation

Participants are asked one questionnaire for each visualization technique to assess the

effectiveness of these techniques in terms of comprehension. As both the tools used

for evaluation were static i.e. they didn't show the dynamic aspects of the software

system, therefore the Dynamism criteria in our model did not apply in this case. Thus,

the questionnaire presented to all the participants was slightly modified from its'

original version as given in Appendix 'A' by excluding the questions to assess

200

Dynamism criteria. The questionnaire is presented to a participant after the formal

task is completed with a given visualization technique. The participants are persuaded

to interact with the visualization tools while answering the questionnaires. We

selected a Likert-scale having three values as answers to each of the question; where

'Yes' means 100%, 'Somewhat' is 50% and 'No' is assigned 0% value. For any

'somewhat' answer, the participants are asked to explain in detail of their reasoning.

The ordering of all questions in the questionnaire is kept same for all the participants.

The questions are classified to assess ten comprehension criteria as follows:

Reachability: questions 1-3 measure the reachability or navigability in a visualization

technique.

Simplicity: questions 4-6 assess the simplicity features of a visualization technique

Clarity: questions 7-8 measure the clarity criteria

Distinctiveness: questions 9-10 evaluate the distinctiveness characteristics of a

visualization technique

Emphasis: questions 11-12 enable assessment of emphasis property

Affordance: questions 13-14 corresponds to affordance criteria

Appearance: questions 15-16 deals with the appearance criteria

Legibility: questions 17-19 assess the legibility requirements of a visualization

technique

Perspective-ness: questions 20-21 measure the perspective-ness issue of a

visualization technique

Mapping: questions 22-23 determine the mapping criteria for comprehension in a

visualization technique

201

In addition to the questionnaire, the following question is asked in the study after

a participant completes testing all of the visualization techniques.

1. Rank the four visualization techniques in the order of your likeability to depict the

static structure of underlying software system.

9.2.6.2 Dry Run

To discover problems with the initial experimental design, a dry run of the

experiment was performed. A dry run of the study was conducted with a novice

participant to determine the maximum time-limit for each phase of the experiment. In this

preliminary test, we noted down the mistakes in the conduct of the experiment. For

example -

Earlier, we were asking a formal task to find an interface called 'Navigator' and

related information objects rather than a class 'MultiView' and related information

objects. During the pilot test, we realized that our pilot participant was able to find the

asked interface in a very short span of time. This was because there was only one

interface in the tested package and almost all the visualization techniques (except

Pyramid/Skeleton View) were emphasizing the interface with some visual attribute.

Therefore, we realized that with this task we would not be able to compare our

results. Thus, we changed our formal task to find a class and related information

objects. This class was not readily visible and thus it took some time for the

participants to explore the visualizations. In addition, we also observed that some

default parameters should be kept constant for all the participants, otherwise our

results might vary for each participant under different conditions.

202

9.2.6.3 Experimenter's Handbook

A detailed experimenter's handbook, as given in Appendix 'F ' , was written for the

experimenter to provide consistency and control over the running of each experimental

session. This handbook outlined various general instructions and the checklists (common

to all tools) that should be taken into consideration before, during and after each

participant's session. It enabled the experimenter to draw the structure of the experiment

by following various rules of conduct or procedures to be followed for each successful

trial, and provides general instructions on setting up the workstation for the trial. The

same copy of the handbook was used for each session. These protocols ensure that the

experiment proceeds smoothly and in a consistent manner, reducing the likelihood of

mistakes that might affect the results of the study later on.

9.2.6.4 Experimental Procedure

A protocol for the study with each participant is outlined in Figure 9.1. Tests were run

one at a time in order to observe the participants using 'Morae' recorder tool. In the

study, each test lasted between 1.5 and 2 hours. The experimenter's handbook was used

throughout the experiment.

203

Welcome to
participant

User reference in the
form of a visualization

pattern

Pre-Test
Questionnaire

2 Experiment timeline

Free exploration of the visual
representation and the IJI

Task:
Find a particular class and
related information objects

,^-^1s there more visualization""-^ Yes
techniques to test?

No

Task:
Prioritize the visualization

techniques in terms of likeability

Figure 9.1: Phases of The Experiment

Experimenter's
handbook

204

9.2.6.5 Recording Observations

It is not possible to collect all the relevant information from the answers to the

questionnaires alone. An experimenter always needs some complementary resources in

the form of audio and video recorders that adds to this collected information. These

recorded observations can be subsequently used to determine the difficulties experienced

by the participants during the test session. In our study, we used several methods of

recording observations:

a) Thinking-aloud

The participants were asked to verbalize their thoughts as they explored the

visualization techniques and performed the assigned task. This allowed the

experimenter to gain a better understanding of what each participant was trying to

accomplish during the experiment.

b) Video and audio taping

The video and audio recordings of the test session were captured using the QuickCam

camera and the wireless microphone system respectively. Using a Morae Recorder

software tool, we were also able to record the user's facial expressions and their

actions on the computer screen using the mouse and keyboard.

c) Experimenter comments

The observed behaviour of the participant during the experiment was also written by

an experimenter in the form of brief comments.

9.3 Analyzing the Results of a Controlled Experiment

A detailed 'pie-chart' summary of the participants' responses to the questionnaires for

each technique is given in Appendix 'G'. Furthermore, we also observed the normal

205

distribution of the collected responses as shown in Appendix 'G'. Considering the

distribution of participants' responses normally distributed, the median is same as the

mean for that sample of participants. Therefore, instead of calculating median value as

the score for each criterion, we devised a measurement strategy to determine mean value

as given below.

9.3.1 Measurement Strategy

Similar to the work of (Stavrinoudis et al., 2005), comprehension of a visualization

system, from a single user viewpoint, can be expressed in quantitative terms using a

weighted arithmetic average of all the criteria as follows:

10 . .

2_j {weight of criterion (J * value of criterion (2 k)

u , = io o)
weight of criterion (J

Here,

Uj is the comprehension score of a single user ' i ' ;

Ck = {'Reachability*, 'Simplicity', 'Clarity', 'Distinctiveness', 'Emphasis', 'Affordance',

'Appearance', 'Legibility', 'Perspective-ness', 'Mapping'}, such that Q = 'Reachability',

C2= 'Simplicity' and so on;

k is an integer value in the range [1..10], where number '10' indicates the total number of

studied criteria excluding 'Dynamism' criterion;

In Equation (1), weight of criterion depicts the relative importance of each criterion to

the total comprehension. This relative importance can be derived on a ratio scale by the

mutual comparison of all the criteria for comprehension. The weight can be assigned by

counting the number of relationships a criteria have with other criteria. For our analysis,

I

206

we assume each criterion to be equally important for comprehension, i.e. weight of each

criterion is assigned unity or value ' 1'. This results in the following equation.

£ / • = A value of criterion (j I Total number of criteria (2)

The value of each criterion can be further described in terms of the weighted

arithmetic average of the associated measures as follows:

y[weight ofmeasure M * value of measure M)

Value of criterion (Jk = — ^ (3)

Vweight of measure M

Here,

Mn is the related measure for criterion Ck;

N is the total number of measures that are used to measure corresponding criterion Ci<;

value of measure = {x | x s (100%, 50%, 0%), where 100% means 'Yes', 50% means

'Somewhat', and 0% means 'No' }; and

n is an integer in the range [1.. N]

In the same manner as for criteria, the weight of each measure depicts the relative

importance of each measure in assessing the corresponding criterion. For making our

analysis simpler, we assign equal weight to all the measures associated with each

criterion. Therefore, Equation (3) reduces to Equation (4) as follows:

(N } /
Value of criterion (J = V value of measure J[/f n IN (4)

V« = i ")/

On combining Equation (2) and (4), we have a combined formula to measure a user's

comprehension based on our criteria as follows:

207

f]ofN i Yi /
TJ - V V value of measure][f N / Total number of criteria (5)

\k=\ \n=\ 7))l

Finally, in order to measure average users' opinion of the comprehension support of a

visualization system, we need to compute the average over the scores of all the users that

is weighted by their expertise as follows

(m ^ /(m \
Total comprehension of a visualization system = 2~i y£i * U , / L2_i ^ , -

Here,

Qi is the expertise value assigned to a particular user 'P, where set Q, = {1, 2, 3 | 1 =

Novice, 2 = Intermediate and 3 = Expert};

m is the total number of users/participants that participated in the experiment;

i is an integer in the range [1 ..m];

With the above formula to measure comprehension of a visualization system, we

weigh users' opinion according to their expertise.

Tables 9.5 to 9.8 show the results of each individual participant's score of

comprehension criteria for the four visualization techniques. The participants' answers

for each of the technique are analyzed using the above formulae.

For example -

Suppose a participant has checked 'Yes' in question 1, 'Somewhat' in question 2, and

'No' for question 3. Then, his/her score for Reachability criteria is (100+50+0)/3 or 50%.

The total comprehension score for each individual participant is the average value of the

scores for 10 criteria.

208

Table 9.5: Participants' Scores of Comprehension Criteria for Radial Technique

2 'C

Participant # £j

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
ea

ch
ab

ili
ty

100

83.3

100

100

100

100

100

83.3

100

83.3

100

100

66.7

83.3

100

Si
m

pl
ic

ity

100

100

100

100

66.7

100

83.3

100

100

66.7

100

100

50

83.3

83.3

C
la

ri
ty

75

100

100

75

50

100

75

75

75

25

100

100

50

75

75

D
is

tin
ct

iv
en

es
s

100

100

75

75

75

75

75

75

75

75

75

100

25

75

25

Em
ph

as
is

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

A
ff

or
da

nc
e

75

25

75

75

75

100

75

75

100

100

75

100

50

25

75

A
pp

ea
ra

nc
e

75

75

25

50

50

50

75

50

100

25

50

75

50

75

25

Le
gi

bi
lit

y

100

100

100

100

100

100

100

83.3

100

83.3

100

100

50

50

83.3

Pe
rs

pe
ct

iv
e-

ne
ss

50

50

50

50

50

50

50

100

100

50

50

75

50

50

75
M

ap
pi

ng

100

100

75

100

75

75

100

100

100

75

100

100

75

75

75

T
ot

al
 C

om
pr

eh
en

si
on

87.5

83.3

80.0

82.5

74.17

85.0

83.33

84.16

95.00

68.33

85.00

95.00

56.67

69.16

71.67

209

Table 9.6: Participants' Scores of Comprehension Criteria for Pyramid Technique

.9
'u
a>

Participant # y
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
ea

ch
ab

il
it

y

33.3

33.3

33.3

100

33.3

33.3

66.7

83.3

83.3

50

100

66.7

33.3

50

33.3

Si
m

pl
ic

it
y

83.3

83.3

66.7

83.3

66.7

66.7

50

100

66.7

66.7

83.3

66.7

33.3

33.3

50

C
la

ri
ty

50

50

50

75

75

100

75

75

50

25

100

50

25

50

100

D
is

ti
nc

ti
ve

ne
ss

75

75

25

50

50

75

50

75

0

0

75

75

25

50

25

E
m

ph
as

is

100

100

100

75

100

75

50

100

50

100

100

50

50

50

100

A
ff

or
da

nc
e

75

100

50

75

75

100

50

75

25

100

100

75

75

25

50

A
pp

ea
ra

nc
e

0

50

0

0

50

25

0

0

50

25

75

75

25

50

0

L
eg

ib
il

it
y

100

100

100

83.3

100

100

100

83.3

83.3

83.3

83.3

100

50

100

100

P
er

sp
ec

ti
ve

-n
es

s

0

0

25

25

0

0

0

0

0

0

50

0

0

0

50
M

ap
pi

ng

50

50

50

75

75

25

50

50

25

50

50

50

50

50

50

T
ot

al
 C

om
pr

eh
en

si
on

56.67

64.16

50.00

64.16

62.50

60.0

49.17

64.16

43.33

50.0

81.67

60.84

36.67

45.83

55.83

210

Table 9.7: Participants' Scores of Comprehension Criteria for NestedView

Technique

.2
41

Participant# IJ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
ea

ch
ab

il
it

y

66.7

66.7

66.7

66.7

83.3

66.7

100

83.3

50

66.7

66.7

83.3

50

33.3

83.3

S
im

pl
ic

it
y

100

66.7

83.3

100

100

100

66.7

100

100

50

100

100

66.7

100

83.3

C
la

ri
ty

25

75

100

75

50

75

100

75

75

75

100

75

25

100

75

D
is

ti
nc

ti
ve

ne
ss

25

100

100

100

75

100

100

75

100

75

100

75

25

100

75

E
m

ph
as

is

100

100

100

100

50

100

100

100

50

75

50

50

100

75

100

A
ff

or
da

nc
e

100

50

50

100

50

50

0

75

100

75

75

50

50

75

100

A
pp

ea
ra

nc
e

50

25

25

50

50

50

25

75

25

50

75

25

50

50

50

L
eg

ib
il

it
y

66.7

83.3

83.3

100

100

100

66.7

100

100

66.7

100

100

66.7

83.3

33.3

P
er

sp
ec

ti
ve

-n
es

s

0

25

50

25

0

25

0

50

75

50

50

25

0

75

75

M
ap

pi
ng

50

100

50

100

50

25

100

75

75

75

100

50

100

100

50
T

ot
al

 C
om

pr
eh

en
si

on

58.34

69.17

70.83

81.67

60.83

69.17

65.84

80.83

75.00

65.84

81.67

63.33

53.34

79.16

72.49

211

Table 9.8: Participants' Scores of Comprehension Criteria for Tree Technique

.2
V

Participant # °V

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
ea

ch
ab

il
it

y
66.7

50

50

50

33.3

66.7

66.7

83.3

50

66.7

66.7

83.3

66.7

0

100

Si
m

pl
ic

it
y

100

83.3

83.3

100

66.7

100

66.7

100

50

50

100

100

66.7

66.7

83.3

C
la

ri
ty

75

75

100

50

100

100

50

75

50

25

50

50

25

50

50

D
is

ti
nc

ti
ve

ne
ss

100

100

100

100

75

100

100

100

100

75

100

75

50

100

50

E
m

ph
as

is

100

75

75

100

100

100

50

100

100

75

50

100

100

100

100

A
ff

or
da

nc
e

75

100

50

75

75

25

100

75

25

100

75

75

50

75

50

A
pp

ea
ra

nc
e

100

50

50

75

0

50

100

50

50

100

100

100

75

50

50

L
eg

ib
il

it
y

66.7

83.3

66.7

100

66.7

83.3

66.7

50

83.3

50

66.7

100

66.7

66.7

83.3

P
er

sp
ec

ti
ve

-n
es

s

100

25

50

25

0

0

0

100

0

50

75

75

50

0

50
M

ap
pi

ng

75

100

50

100

50

100

100

75

75

100

100

100

100

100

100

T
ot

al
 C

om
pr

eh
en

si
on

85.84

74.16

67.50

77.50

56.67

72.50

70.01

80.83

58.33

69.17

78.34

85.83

65.01

60.84

71.67

9.3.2 Confirming the Expertise

By applying the grouping scheme as explained in section 9.2.2, we determined that

out of 15 invited participants, 6 participants were experts, 5 were intermediates, and 4

were novices in the domain. The opinions of the participants as expressed in Tables 9.5 to

9.8 should be weighted according to their expertise. However, before computing the

average participants' opinion on the comprehensibility of respective techniques for this

sample of participants we should make sure if our groups of participants (i.e. Novices,

212

Intermediates, and Experts) came from different populations or not. This can be done by

performing an ANOVA (Analysis of Variance) test, which can tell us the non-normality

of the groups. Our single factor ANOVA test for Radial, Pyramid, NestedView, and Tree

technique is presented in detail in Appendix 'H'.

From our ANOVA results, we have seen that variations within group are higher than

variations between groups for all the four visualization techniques. Therefore, based on

ANOVA results, we can conclude that there is no significant difference among the

opinions of different groups. This means all the three groups (i.e. Novices, Intermediates,

and Experts) came from same population; and so, the opinions of all participants are

assigned equal weight-age in computing the average comprehension of the respective

visualization techniques.

9.3.3 Analysis of the Gender Differences

In our sample of 7 females and 8 males, one-way ANOVA test was computed to see

the difference in the means of these two groups. Our ANOVA result (Table H.6 in

Appendix 'H') has shown that for all the visualization techniques the value of F (1, 13)

<1. This means that there is no significant difference between the scores obtained by

males' and females', i.e., the means of these groups are not reliably different.

9.3.4 Validating the Results with Objective Metrics

Furthermore, to validate our results obtained from the participants' responses, we

looked at their task performance for the formal task during the experiment. To analyze

participants' task performance in terms of task time, and effort in terms of number of

mouse clicks, we took the help of Morae manager software. The screen shot of this tool is

shown in Figure 9.2. With this tool, we can observe all the recorded events in each test

213

session and we can also automatically generate various metrics like - task time, number

of mouse clicks during a specific period of time etc.

•! (;T|:oh;r5innleM Moi.1; rM-agor

Ffe Segment Marker Search View Player Hdp

DPlTf1:f[#
Analyzer - Project

- i f j c h i r a g

.+: :*J Segments

+ £? Segments

-^CiLateh

;+i £p Segments

3 Andrew

1:15:19.15
Sixth Participant'"
Yes
Yes
Yes
Yes
Yes
TechSmith Scree
5.0

Video Resolution: 1024 x 768
Video Bit Depth: 32-bit
Ĉamera Codec: ffoosoft Video

•Camera FP5: 15.0
•Camera Resolution: 320 x 240
Camera Bit Depth; 24-bit *

I Camera

Click the Search button to start a search

Elapsed Time Event

HE 1 1
.-Nellies
i Selected Duration:

0:00:00.00)

N̂umber of Events:

I Total: 0

I Selected: 0

Window 1MB : Clicks Modifier.

&

Parent : TBneJDate

Figure 9.2: Analysis of Test Session with Morae Manager

Table 9.9 shows the comparative analysis of each technique based on the response

time for a given task and number of mouse clicks to perform that task, which were

generated using Morae manager. It also shows the order of techniques as tested by the

participants and the comprehension value as assessed by our criteria along with the

likeability of each participant.

214

Table 9.9: Comparative Analysis of Techniques

Participant

1

2

3

4

5

6

Technique

(order of

evaluation)

Radial

NestedView

Pyramid

Tree

NestedView

Radial

Tree

Pyramid

Tree

NestedView

Pyramid

Radial

Pyramid

Tree

NestedView

Radial

Tree

Radial

NestedView

Pyramid

NestedView

Pyramid

Radial

Tree

Total

Comprehension

(in %)

87.50

58.34

56.67

85.84

69.17

83.33

74.16

64.16

67.50

70.83

50.00

80.00

64.16

77.50

81.67

82.50

56.67

74.17

60.83

62.50

69.17

60.00

85.00

72.5

Correctness

of the task

(Y: Yes)

(N: No)

Y

Y

N

Y

Y

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

N

Y

Y

N

Y

Y

Y

Y

Response

time

(h:mm:ss.ms)

0:00:10.90

0:01:36.75

0:02:29.98

0:00:16.97

0:01:59.48

0:00:35.35

0:01:08.60

0:01:31.17

0:02:17.54

0:00:39.44

0:03:22.69

0:00:29.95

0:01:30.48

0:01:11.95

0:00:42.34

0:00:13.70

0:01:19.40

0:00:13.45

0:01:35.28

0:01:11.46

0:00:21.70

0:00:51.72

0:00:11.67

0:00:12.19

6
•©

••.:••£

1

13

15

3

55

6

45

27

48

9

48

7

28

20

19

3

18

1

24

9

3

6

1

2

Likeability

1. Tree

2. Radial

3. NestedView

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Radial

2. NestedView

3. Tree

4. Pyramid

1. Radial

2. Tree

3. Pyramid

4. NestedView

215

Table 9.9 (continued)

Participant

7

8

9

10

11

12

13

Technique

(order of

evaluation)

Pyramid

Radial

NestedView

Tree

NestedView

Tree

Pyramid

Radial

Tree

NestedView

Radial

Pyramid

NestedView

Radial

Pyramid

Tree

Tree

NestedView

Pyramid

Radial

NestedView

Pyramid

Radial

Tree

Radial

Pyramid

Tree

NestedView

Total

Comprehension

(in%)

49.17

83.33

65.84

70.01

80.83

80.83

64.16

84.16

58.33

75.00

95.00

43.33

65.84

68.33

50.00

69.17

78.34

81.67

81.67

85.00

63.33

60.84

95.00

85.83

56.67

36.67

65.01

53.34

Correctness

of the task

(Y: Yes)

(N: No)

Y

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Response

time

(h:mm:ss.ms)

0:04:27.56

0:00:16.59

0:00:22.94

0:00:20.97

0:01:58.07

0:02:10.57

0:02:13.69

0:00:04.40

0:01:55.77

0:00:15.18

0:00:03.07

0:02:27.60

0:00:47.80

0:00:12.40

0:02:49.68

0:00:04.68

0:04:27.10

0:00:38.04

0:01:12.82

0:00:12.18

0:02:19.07

0:04:05.69

0:00:08.55

0:00:28.53

0:00:08.52

0:00:20.76

0:00:03.67

0:00:17.04

Number

of

mouse

clicks

35

3

5

5

18

64

40

1

49

2

1

39

5

1

3

1

88

10

13

2

32

26

1

4

1

5

2

7

Likeability

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. NestedView

2. Tree

3. Radial

4. Pyramid

1. NestedView

2. Tree

3. Radial

4. Pyramid

1. Radial

2. Tree

3. NestedView

4. Pyramid

1. Tree

2. Radial

3. NestedView

4. Pyramid

216

Table 9.9 (continued)

Participant

14

15

Technique

(order of

evaluation)

Radial

Pyramid

Tree

NestedView

Radial

Tree

NestedView

Pyramid

Total

Comprehension

(in%)

69.16

45.83

60.84

79.16

71.67

71.67

72.49

55.83

Correctness

of the task

(Y: Yes)

(N: No)

Y

Y

N

Y

Y

Y

Y

N

Response

time

(h:mm:ss.ms)

0:01:17.05

0:01:44.95

0:00:54.20

0:00:10.97

0:01:00.36

0:03:18.07

0:00:46.93

0:05:23.71

Number Likeability

of

mouse

clicks

18

17

30

1

5

68

7

50

1. Tree

2. Radial

3. NestedView

4. Pyramid

1. Radial

2. Pyramid

3. NestedView

4. Tree

In Table 9.9, we can see that some of the participants had trouble in correctly

performing the assigned task (i.e. to find a class 'MultiView' and related information

objects). Out of 15 participants, all (100%) were able to perform the asked task using the

Radial technique, 11 (73.33%) participants performed the task correctly with Pyramid

technique, 14 (93.33%) participants completed the task with NestedView technique, and

13 (86.67%) participants carried out the task completely with Tree technique.

Brief descriptions for the incorrect task performances are as under.

- Participants # 1, #2, #5, and #15 were not able to complete their assigned task with

the 'Pyramid' technique correctly. They quitted before actually finding the asked

class in the pyramid of other information objects.

- The participants # 5 and #14 changed the layout of visual representation from 'Tree'

technique to 'NestedView' technique for this task. Therefore, the task time for Tree

technique for participants # 5 and #14 is also not correct.

217

- The participant # 7 mistakenly selected the wrong class while finding the required

class using the 'NestedView' technique.

Thus, we believe that the task time spent for the incomplete task as listed in Table 9.9

for these participants is not signifying the correct relationship with the comprehensibility

of corresponding visualization technique as assessed through the questionnaire. Under

this belief, we assume that actual task time for performing the complete task is more than

this time, which then correctly portrays a relationship with the comprehensibility of

corresponding visualization technique.

Verifying the hypothesis HI

In order to validate the responses obtained through our questionnaire with the scores

obtained using objective metrics, we verified our defined hypothesis HI (given in section

9.2.3) as shown in Table 9.10. In this table, we can see a clear relationship between the

participants' comprehensibility of underlying visualization techniques as assessed by our

questionnaire and their task performance with these visual representations except for

three participants (i.e. participant # 2, #5, and #14). However, these three participants are

those who were not able to complete their assigned task for some of the techniques as

explained earlier. Therefore, we believe that their task times are inaccurate to consider for

verifying our premise. Thus, we believe that our criteria seem to be able to give fairly

accurate indication on the comprehensibility of each visual system for each of the

participants with respect to this specific task.

The relationship between the comprehensibility and task time is not linear, as still

there are a number of other external variables (outside the scope of this research) that are

influencing this relationship. For example, comprehension is an individual's total

218

property of a visualization system and this can be accurately estimated by considering all

the tasks that are supported by the visualization system. Moreover, there is one aspect

('Information Structure') of comprehension that is also beyond the scope of our

evaluation and it may have a significant influence on the task performance.

Table 9.10: Verification of Hypothesis

Participant

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R —> Radial Technique, P—• Pyramid Technique, N—» NestedView

Technique, and T—* Tree Technique

Observed order for

Comprehension score

R>T>N>P

R>T>N>P

R>N>T>P

R>N>T>P

R>P>N>T

R>T>N>P

R>T>N>P

R>T=N>P

R>N>T>P

T>R>N>P

R>N=P>T

R>T>N>P

T>R>N>P

N>R>T>P

N>R=T>P

Observed order of

task time for each

technique

R<T<N<P

R<T<P<N

R<N<T<P

R<N<T<P

R<P<T<N

R<T<N<P

R<T<N<P

R<N<T<P

R<N<T<P

T<R<N<P

R<N<P<T

R<T<N<P

T<R<N<P

N<T<R<P

N<R<T<P

Accept (\/) or

Reject (x)

Hypothesis (HI)

y

X

y

y

X

y

y

y

y

y

y

y

y

X

y

The comprehensibility of each visualization technique along with the time taken for

the formal task is plotted in Figure 9.3 for each participant. From this figure, one can see

219

that for each participant the task time (except for incorrect tasks) is inversely proportional

to the comprehensibility as assessed through our criteria, i.e. more the task time less is the

comprehension support of corresponding visualization technique to the participant. Based

on these results, we can conclude that the proposed framework can help in correctly

estimating the comprehensibility of an individual for a particular visualization technique.

Figure 9.3: Plot of Comprehension Score and Task Time

9.3.5 Applicability of Criteria to Visualization Tools

Based on the comprehension problems reported by the participants during their tests

with visualization techniques, we are summarizing the collective responses for each of

the criteria as follows -

• Applicability of Criteria to Structural Analysis for Java (SA4J)

Reachability - The reachability in Radial technique was excellent, where the forward and

backward buttons were clearly pointing where to look for specific objects in the

220

visualization. However, the reachability in Pyramid visualization was very poor, as the

participants had no clue of the visited squares on the visualization. The participants did

not know how to look for a particular information object on the Pyramid visualization.

The 'Find' function for the pyramid visualization was not comprehensible by the

participants.

Simplicity - Both the Radial and Pyramid visualizations were simple displaying only the

necessary and relevant information on the screen. Some participants reported few

redundancies in the menu bar options like - 'Project Wizard' option under the 'Option'

menu item and 'New Java Project' option under the 'File' menu item were same. The

participants also commented on the unutilized screen space in Pyramid visualization.

Clarity - Many of the icons on the interface for Radial technique were not clear to the

participants. The most problematic icon was the 'Max Neighborhood' icon, which has a

greyish background. The participants were falsely assuming that this icon is disabled.

Other icons like - 'Hide Controls' was also not clear to the participants as they were

thinking of it as opening another window object. For the Pyramid technique, the most

problematic icon was the 'Skeleton' icon, which was like a run button. The participants

were assuming that clicking it they were going to run some movie objects, but actually it

was displaying to them the recently clicked information object.

Distinctiveness - For Radial technique, the visual attributes were helping the participants

to identify each information object. However, for Pyramid technique this was not the

case, as the same visual attributes were used to show classes and interfaces in the

visualization.

221

Emphasis - This was good in both the Radial and Pyramid visualization techniques

according to the feedback of participants.

Affordance - The visual clues to the functionality of some of the icons and symbols in

both techniques were not clear at first glance. But, with the tool tip and after the initial

exploration, the participants were able to comprehend the usage of these icons. The size

of the squares in Pyramid technique was not clickable for all the participants.

Appearance - The layout of various information objects (i.e. packages, classes, and

interfaces) in case of Radial visualization was revealing the features of underlying

information. However, this was not easy in Pyramid technique as the relationships among

the information objects were not directly visible.

Legibility - The screen was legible in terms of font size, font shape and color contrast.

Perspective-ness - The participants expressed the need to have other synchronized views

to comprehend the whole software system. Most of the participants expressed the

difficulty with Pyramid technique to find a specific information object.

Mapping - The interaction mechanisms along with the representations of information

objects (i.e. classes, packages and interfaces) were quite natural to the participants.

Table 9.11 shows the average participants' rating of comprehension criteria for SA4J.

Table 9.11: Rating of Criteria for SA4J

II

C
ri

te
ri

a

Radial

Pyramid

Pan

R
ea

ch
ab

ili
ty

93.33

55.55

Si
m

pl
ic

ity

88.88

66.67

C
la

ri
ty

76.67

63.33

D
is

tin
ct

iv
en

es
s

73.33

48.33

ticipants' ra

Em
ph

as
is

100.0

80.00

A
ff

or
da

nc
e

73.33

70.00

ting

A
pp

ea
ra

nc
e

56.67

28.33

Le
gi

bi
lit

y

90

91.11

Pe
rs

pe
ct

iv
e-

ne
ss

60.00

10.00

M
ap

pi
ng

88.33

50.00

222

• Applicability of Criteria to Creole

Reachability - The reachability in both the NestedView and Tree technique was average,

where the forward and backward buttons were not working as intended. To look for a

specific information object on visualization, the participants tried to use the provided

search function. However, this function did not work out and the participants had to find

the specific information object only by manually exploring the visualizations.

Simplicity - Both NestedView and Tree visualizations were simple displaying only the

necessary and relevant information on the screen. The menu options were properly

organized having related tasks together.

Clarity - The most problematic icon was the one used to arrange the visualization

according to different styles like - alphabetical order, by number of children, by number

of relationships and so on. This icon was not comprehensible to the participants.

Distinctiveness - For both the NestedView and Tree technique, the participants

commented on the ambiguities of the icons in 'Quick Views' bar. Here, three icons

representing 'Package Dependencies via Field Accesses', 'Package Dependencies via

Method Calls', and 'Package Dependencies via Method Calls Field Accesses' were all

shown with same visual attributes. Using the same icon for three different purposes was

causing confusion to the participants.

Emphasis - This was good in both the NestedView and Tree visualization techniques

according to the feedback of participants.

Affordance - The most problematic thing in Creole was that participants did not know

how to change the layout in visualizations. They tried to change the layouts using the

buttons provided on the interface. However, it was possible only through firstly selecting

223

the whole package and then clicking on the corresponding layout button. The

manipulations in the visualizations were also not very easy as sometimes the vertical

scrollbar was only partially visible.

Appearance - The layout of various information objects (i.e. packages, classes, and

interfaces) in case of Tree visualization was revealing the features of underlying

information. However, this was not easy in NestedView as the relationships among the

information objects were sometimes crossing and getting cluttered.

Legibility - The screen was legible in terms of font size, font shape and color contrast for

NestedView technique. However, this was somewhat problematic with Tree

visualizations as many of information objects were overlapped and cluttered in one place.

Perspective-ness - The participants expressed the need to have other synchronized views

to comprehend the whole software system.

Mapping - The interaction mechanisms along with the representations of information

objects (i.e. classes, packages and interfaces) were quite natural to the participants.

Table 9.12 shows the average participants' rating of comprehension criteria for

Creole.

Table 9.12: Rating of Criteria for Creole

Visualization

Technique S
U

NestedView

Tree

Participants' rating

R
ea

ch
ab

ili
ty

68.88

60.00

Si
m

pl
ic

ity

87.77

81.11

C
la

ri
ty

73.33

61.67

D
is

tin
ct

iv
en

es
s

81.67

88.33

Em
ph

as
is

83.33

88.33

A
ff

or
da

nc
e

66.67

68.33

A
pp

ea
ra

nc
e

45.00

66.67

Le
gi

bi
lit

y

83.33

73.33

Pe
rs

pe
ct

iv
e-

ne
ss

35.00

40.00

M
ap

pi
ng

73.33

88.33

224

A comparative analysis of all four visualization techniques based on the participants'

rating of comprehension criteria is shown in Figure 9.4.

120

100

'•=• 80

c
(0
a.
'o
t m
0.

60

40

20

/ • * * #

<f-
/ *

&
&

^ •S? f f / *
4?

,0 #
& ^

Comprehension criteria

m Radial Technique
Q NestedView Technique

D Pyramid Technique
• Tree Technique

Figure 9.4: Rating of Criteria for Each Technique

A brief comparative analysis of each of the criteria based on the participants' rating is

as under.

Reachability - The reachability in Radial technique scored highest (93.33%) among all

the four visualization techniques. For the visualization techniques supported by Creole,

NestedView was the one having higher rating than Tree visualization.

Simplicity - Both the Radial technique (88.88%) and NestedView technique (87.77%)

were rated as simple, symmetric and well-organized.

225

Clarity- Radial (76.67%) and NestedView (73.33%) techniques were also rated as clear,

where it was easy to identify various information objects despite any overlapping among

them.

Distinctiveness - Tree (88.33%) and NestedView (81.67%) techniques were rated better

than their counterparts for distinctiveness property i.e. these techniques have fewer

ambiguities for the meanings of different icons/symbols displayed in them and

information objects displayed in these visualizations are distinguishable.

Emphasis - Radial technique was rated as a technique where 100% emphasis is placed in

the centre of the screen and the participants were intuitively focusing their attention on

the main information object (i.e. a package).

Affordance - All the four visualization techniques were easing some cognitive load by

using a certain set of affordances, where a highest value for affordance was observed for

Radial Technique (73.33%).

Appearance - To depict the static structure of the software system, Tree technique

(66.67%) was rated as the highest for the visual design, whereas the layout of Pyramid

technique (28.33%) was rated as poorly designed among all four visualization techniques.

Legibility - The legibility in terms of font size, font type and color contrast was better in

both the techniques (i.e. Radial and Pyramid) of SA4J (Structural Analysis for Java) tool

than Creole's visualizations.

Perspective-ness - The need for having the perspective views was expressed for all the

four visualization techniques, where again Radial technique (60%) was rated as an

effective technique to fulfill the underlying task. The Pyramid technique (10%) was the

most ineffective among all the four visualization techniques to fulfill the assigned task.

226

Mapping - The interaction styles with Radial and Tree technique were equally natural to

the participants. The domain terminology was also familiar to the participants in these

techniques.

9.3.6 Verifying the Null Hypothesis

The ANOVA analysis of the total comprehension score per participant of each

visualization technique was computed to reject our null hypothesis (given in section

9.2.3). Through this analysis, we obtained an F ratio of 23.91 (computed in section H.2 of

Appendix 'H'), which is far greater than the F-critical value (i.e. F (3, 42)) of 4.29 at p <

0.01. Thus, it clearly demonstrates that all the four visualization techniques have different

comprehensibility of the underlying information, with Radial technique having highest

average comprehension score as shown in Figure 9.5. The score is averaged as all our

participants are observed to be a homogenous group (based on ANOVA results in Section

9.3.2), and therefore their opinions are equally weighted.

100

a.

i Radial Technique

D Pyramid Technique

• NestedView Technique j

• Tree Technique

Maximum score

95

8"U57~ '

81.67 :

85.84

Average score

80.05

56.33

69.83

71.61

Minimum score

56.67
: 3 a 6 7 "; j

53.334

156.67

Figure 9.5: Comprehension Score of Each Technique

227

9.4 Discussion and Perspectives

Through this experiment, we have demonstrated the potential use of our framework to

measure the comprehension support of visualization systems. We have seen that our

framework is able to capture all the phases of a controlled experiment and is effectively

gauging the comprehension support provided by the studied visualization systems. We

have also observed that our proposed visualization patterns are a useful assistance

mechanism to guide participants, as all our participants were able to understand the use of

each visualization tool and their respective visualization techniques through the use of

these patterns reasonably well.

Moreover, in this experiment we have witnessed a link between the responses of

participants for the comprehension criteria and their actual task performances with the

visualization techniques. We have also observed that overall satisfaction of the

participants in terms of'likeability' was highest for the Radial technique among all the

four studied visualization techniques.

Using the statistical analysis techniques, we have seen that all the visualization

techniques enable all the participants, irrespective of their expertise, to solve the simple

exploration task i.e. there is not much variation in the comprehensibly of a novice and an

expert user for these techniques. Furthermore, for these techniques, we also did not see

any gender difference in the comprehension scores of our participants.

In order to produce more comprehensive validation results, more participants should

be invited in the study. Moreover, a longer experiment time along with selective tasks is

needed to truly capture the comprehension difficulties of the participants. We believe that

to support a useful analysis at least two experimenters should be involved in the running

228

of the experiment. A concern with the current experiment design is that participants can

learn from performing tasks with preceding visualizations techniques, influencing their

performance with subsequent visualization techniques. One possible solution would have

been to slightly alter the names of the information objects in the source code to mimic

different visualizations.

Despite the above listed drawbacks and corresponding need for improvements in

conducting usability experiments, we believe that these experiments show without doubt

the usefulness of CoMoVA framework in systematic assessment of comprehension

support provided by visualization systems.

229

Chapter 10. Conclusions, Contributions and Future

Avenues

"Reasoning draws a conclusion, but does not make the conclusion certain, unless the mind discovers it by

the path of experience. " - Roger Bacon (1214-1294)

Overview

This chapter concludes the thesis work with a few concluding remarks, summary of

significant contributions, benefits of this research, and potential avenues for further

investigation.

230

10.1 Concluding Remarks

The main topic of this research has been measurement of the comprehension support

provided by visualization systems, an intangible and seemingly immeasurable

characteristic. Our journey has been a long and arduous one, but also a successful one.

We have investigated a number of different disciplines including visual representations,

human cognition, human computer interaction, visualization systems, software

engineering, usability studies and measurement processes. We have adapted relevant

ideas, principles, concepts, processes, and methods and formulated a novel framework to

systematically assess in a quantitative fashion the comprehension support provided by a

visualization system to its intended users. Such comprehension assessment can help to

determine the effectiveness of visualization systems in providing users insights and

understandings of the complex underlying artifacts represented through visual(s). This

thesis is the first one to address this very fundamental characteristic of any visualization

system. We have devised a hierarchical model in the form of:

• three factors/aspects (i.e. Presentation, Perception, and Cognition) that are involved in

fully comprehending the presented visual information,

• eleven criteria (i.e. Reachability, Simplicity, Clarity, Distinctiveness, Emphasis,

Affordance, Dynamism, Appearance, Legibility, Perspective-ness, and Mapping) that

are the main building blocks of improving the visual comprehension, and

• related measures assessed empirically through suitably designed usability

experiments.

231

The proposed set of criteria categorized according to different aspects in the

communication of visual message is founded on the current work done in the field of

perception, cognition and user interfaces by eminent researchers in HCI community.

Further, in this thesis, we propose a systematic evaluation mechanism in the form of

visualization patterns that guides the tool users/evaluators to compare, understand and

select appropriate visualization tools/techniques. Our approach for evaluation of

visualization systems is similar to other questionnaire-based approaches such as - SUMI

(Software Usability Measurement Inventory), where all the questions measure some

properties of the common objective.

Empirical evaluation with appropriately crafted usability experiments on software

visualization systems has demonstrated the veracity of our research hypothesis stated in

the beginning of this thesis.

10.2 Contributions

The main contributions of this research are as follows -

1. A principal contribution of this research is the formulation of an empirical evaluation

framework for systematically assessing comprehension support provided by a

visualization system to its intended users. The proposed CoMoVA framework defines

a clear protocol for controlled experimentation of visualization systems and provides

a supporting structure that links various artifacts to deal with the measurement of

comprehension in visualization systems.

In current practice, the evaluation of visualization systems is conducted in an ad-hoc

manner without considering those fundamental characteristics of these systems that

improve the understandings of their users. For example, the latest assessment of

232

visualization systems with heuristics (Zuk et ah, 2006) covers three different

perspectives and has no common focus for evaluation. This set of heuristics is not

clearly defined and some of heuristics require domain expertise to understand and

apply. However, in our framework, we are proposing a clear set of measurable

attributes that are all focused on investigation of comprehension. It also requires no

special expertise to apply the framework to assess comprehension support provided

by any visualization system.

2. Earlier, the users/evaluators had no guidance mechanism to know the use of any

visualization tool/technique and under which situations it was really useful. Through

our proposed visualization patterns, the evaluators and users get a clear description of

the problem that the visualization technique is addressing, the context in which it can

be used and the design solution that it is supporting. With these patterns they can

easily compare and understand the use of a visualization technique in a certain

context.

3. In this research, we have also investigated in detail the needs of software maintainers

and categorized them according to the four traditional maintenance activities. This

thorough analysis can help to determine the success of current software visualization

tools to fulfill the needs of software maintainers, i.e. the evaluators can seek the

functional gap between the capabilities of existing tools/techniques and what is

actually needed by the software maintainers. For example, in our studied software

visualization systems, we found that only 50 to 60% of the maintenance tasks are

supported by SA4J (Structural Analysis for Java) and Creole.

233

10.3 Research Benefits

We believe that our proposed research can contribute in many ways. We are

highlighting five main benefits of measurement in general as under.

1. Characterization/comparison: Measurements produce objective results and convey the

accurate view by empirically biasing some tool/technique with respect to other for

some task. They can objectively tell us which tool/technique is more appropriate for a

particular problem.

2. Appropriateness: The visualization tools/techniques are evaluated to judge their

strengths and weaknesses. Measurements can show that a new visualization

tool/technique is useful in a practical sense, according to the level of comprehension

that can be achieved with it, for a specific task.

3. Prediction: A more fundamental goal of conducting measurements is to seek insight

into why a particular visualization tool/technique is more effective. This can guide

future efforts to improve existing tools/techniques. We want to understand the

limitations of existing tools/techniques in terms of their supported tasks to

comprehend the visuals presented through them. This knowledge is critical because

we can guide developers to show multiple views or use multiple techniques where a

single technique is not effective.

4. Improvement: Measures also help us plan and track improvement efforts. We need to

be sure that new techniques are really better than old ones. Measures of current

performance give us baselines to compare against, so that judgment can be made

based on whether or not the improvement actions are working as intended and what

the side effects are. Measurements show us how an abstract visualization design

234

theory applies under certain practical conditions. Measurement results can prove

when the theories hold and how they need to be improved to function correctly for

real-world data and tasks.

5. Supplementing experts' performance: A final use of measurements is to supplement

expert users choice of a visualization tool/technique based on their expertise, with the

measurement results derived from measures. Measurement will add the objective

results with the subjective evaluation of expert users' performance.

In addition to these general benefits, our proposed framework will be a reusable

solution that can be applied in real-world settings to measure comprehension.

Specifically, we expect the following benefits from the use of our measurement

framework:

1. Prior attention to the most important visual design principles for understanding what

characteristics of a visualization system can influence users' comprehension.

2. Provide a flexible hierarchy of the factors, criteria and measures, so that evaluators

could select those that are most appropriate according to their evaluation objectives.

3. Appropriate documentation of the test environment, in terms of 'context of use' and

encapsulation template for visualization techniques in terms of visualization patterns,

for better understanding and analysis.

4. During usability experiments, data collection efforts will be concentrated, since the

required data elements are already defined.

5. Interpretation of data from usability experiments will be more efficient and

effectively tied to selected objectives.

Therefore, we believe that our framework will be of maximum use to the software

235

community.

10.4 Future work

We believe that further applications of CoMoVA framework with additional systems

would provide more evidence regarding its support for measuring comprehension. There

are still a number of other avenues that can be explored further as follows -

a) Validate the questionnaire - A questionnaire' validity is the extent to which it

measures what it claims to measure. A technique called 'factor analysis" that is

normally applied in psychometric questionnaires evaluation can also be applied for

the confirmatory analysis of our questionnaire. Factor analysis is a statistical

procedure that examines the correlations among variables to discover clusters of

related variables (Nunally, 1978). With the responses obtained from the participants,

we can apply the multiple group method of the factor analysis technique to study the

relationship among various criteria.

b) Measurement scale to validate the values of measures - We have chosen a three point

(i.e. 'Yes', 'Somewhat* and 'No') likert-scale for answering the questionnaire.

However, we realized that having a seven point scale would produce more reliable

results. Furthermore, more studies with other visualization systems are needed in

order to define the threshold limits for the values of these measures.

c) Inclusion of 'Information Structure' aspect - In this research, we did not consider

'Information Structure' aspect of comprehension. This aspect also impacts the

accuracy of displayed visualizations, and therefore it needs further elaboration to

determine the flaws in the data that can cause comprehension difficulties.

236

d) The software maintenance tasks identified in this thesis through literature review can

be reused to create a standardized library of needs of the maintainers, which can help

to identify the differences in the task support of any software visualization tool. This

initial task model can also be refined further to include other elements like - the

interaction, application and user tasks to capture the context of use in which the

visualization tool can be used to support the required tasks.

237

References

[1] Alam, S., Dugerdil, P., "EvoSpaces Visualization Tool: Exploring Software

Architecture in 3D", in Proceedings of 14' Working Conference on Reverse

Engineering (WCRE), Vancouver, Canada, 2007, pp: 269-270.

[2] Alexander, C , Ishikawa, S., Silverstin, M., Jacobson, M., Fiksdahl-King, I., and

Angel, S., A Pattern Language - Towns, Buildings, Construction, Oxford

University Press, New York, 1977.

[3] Anders, E.K., Kintsch, W., "Long-Term Working Memory", Psychological

Review, Volume 102, Issue 2, 1995, pp: 211-245.

[4] Anslow, C , Marshall, S., Noble, J., and Biddle, R., "Software Visualization Tools

for Component Reuse", in Proceedings of ACM Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), Vancouver,

Canada, October 2004.

[5] Artho, C , Havelund, K., "Applying Jlint to Space Exploration Software", Lecture

Notes in Computer Science (LNCS), Springer Berlin/Heidelberg, Volume 2937,

2003, pp:61-75.

[6] Ayama, M., Ujike, H., Iwai, W., Funakawa, M., and Okajima, K., "Effects of

Contrast and Character Size upon Legibility of Japanese Text Stimuli Presented

on Visual Display Terminal", Optical Review, Volume 14, Issue 1, 2007, pp: 48-

56.

[7] Baecker, R.M., Grudin, J., Buxton, W., and Greenberg, S., Readings in Human-

Computer Interaction: Toward the Year 2000, Morgan Kaufmann Publishers, San

Francisco, CA, 1995.

238

[8] Baker, P., Domik, G., Grinstein, G., Hewett, T.T., McGrath, M., and Owen,

"ACM SIGGRAPH Curriculum for Visualization", Editor: G. Domik., 2005.

Available from:

<http://wwwcs.uni-paderborn.de/fachbereich/AG/agdomik/visualisierung/vis-

report/download/curriculum.pdf> [Accessed July 04, 2006].

[9] Baldonado, M.Q.W., Woodruff, A., and Kuchinsky, A., "Guidelines for Using

Multiple Views in Information Visualization", in Proceedings of Working

Conference on Advanced Visual Interfaces (A VI), Palermo, Italy, 2000, pp: 110-

119.

[10] Bartram, L., Ware, C , "Filtering and Brushing with Motion", Information

Visualization, Volume 1, Issue 1, 2002, pp: 66-79.

[11] Basili, V.R., Rombach, H., "Tailoring the Software Process to Project Goals and

Environments", in Proceedings of the 9th International Conference on Software

Engineering, 1987, pp: 345-357.

[12] Bassil, S., Keller, R.K., "Software Visualization Tools: Survey and Analysis", in

Proceedings of the 9th International Workshop on Program Comprehension

(IWPQ, Toronto, Canada, 2001, pp: 7-17.

[13] Berg, F. F., Ahlstrom, U., "Evaluating Controller Use of Advanced Weather

Products By Evaluating User Interaction Patterns", in Proceedings of the Human

Factors and Ergonomics Society 49' Annual Meeting, 2005, pp: 30-34.

[14] Berger, M., BORG Calendar 1.6.1, 2007, Available from:

<http://mbcsoft.com/index.php?option=com content&task=vew&id=23&Itemid=

38> [Accessed September 06, 2006].

239

http://wwwcs.uni-paderborn.de/fachbereich/AG/agdomik/visualisierung/vis-
http://mbcsoft.com/index.php?option=com

[15] Bertini, E., Santucci, G., "Quality Metrics for 2D Scatterplot Graphics:

Automatically Reducing Visual Clutter", in Proceedings of 4th International

Symposium on Smart Graphics, Springer-Verlag, Lecture Notes in Computer

Science, Volume 3031, 2004, pp: 77-89.

[16] Blackwell, A.F., Britton, C , Cox, A., Green, T.R.G., Gurr, C , Kadoda, G., and

Kutar, M.S., et al., "Cognitive Dimensions of Notations: Design Tools for

Cognitive Technology", in Proceedings of Cognitive Technology, 2001, pp: 325-

341.

[17] Bodart, F., Vanderdonckt, J., "Visual Layout Techniques in Multimedia

Applications", in Proceedings of Conference on Human Factors in Computing

Systems, Boston, USA, 1994, pp: 121-122.

[18] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., and Merritt,

M.J., Characteristics of Software Quality, North-Holland Publishing Company,

New York, 1978.

[19] Borchers, J. O., "A Pattern Approach to Interaction Design", International

Conference on Designing Interactive Systems, New York, USA, 2000, pp: 369-

378.

[20] BORG ranking from Sourceforge.NET, 2007, Available from:

<http://sourceforge.net/search/7type of search=soft&words-BORG> [Accessed

October 07, 2007].

[21] Bramer, D.J., Scheitlin, T., Deardorff, R., Elliott, D., Hay, K., Marlino, M.R.,

Middleton, D., Pandya, R., Ramamurthy, M.K., Weingroff, M., and Wilhelmson,

R.B., "Using an Interactive Java-Based Environment to Facilitate Visualization

240

http://Sourceforge.NET
http://sourceforge.net/search/7type%20of%20search=soft&words-BORG

Comprehension", in Proceedings of 18th International Conference on Interactive

Information and Processing Systems (UPS), American Meteorological Society,

Orlando, FL, 2002.

[22] Brath, R., "Metrics for Effective Information Visualization", in Proceedings of

IEEE Symposium on Information Visualization, Washington, DC, USA, 1997, pp:

108-111(126).

[23] Bugajska, M., "Framework for Spatial Visual Design of Abstract Information", in

Proceedings of the 9th International Conference on Information Visualisation,

London, UK, 2005, pp: 713-723.

[24] Burd, E., Overy, D., and Wheetman, A., "Evaluating Using Animation to Improve

Understanding of Sequence Diagrams", in Proceedings of the 10th International

Workshop on Program Comprehension (IWPC'02), June 2002, pp: 107 - 113.

[25] Callendar, C , Creole, The CHISEL Group, University of Victoria, BC, Canada,

2006, Available from:

<http://www.thechiselgroup.org/creole> [Accessed February 04, 2008].

[26] Card, S.K., Mackinlay, J.D., and Shneiderman, B., Readings in Information

Visualization: Using Vision to Think, Morgan Kaufman, Los Altos, California,

1999.

[27] Card, S.K., Moran, T.P., and Newell, A., The Psychology of Human-Computer

Interaction, Lawrence Erlbaum Associates Inc., New Jersey, USA, 1983.

[28] Casner, S.M., "Task-analytic Approach to the Automated Design of Graphic

Presentations", ACM Transactions on Graphics, Volume 10, Issue 2, 1991, pp:

111-151.

241

http://www.thechiselgroup.org/creole

[29] Cattaneo, G., Faruolo, P., Ferraro-Petrillo, U., and Italiano, G.F., "JIVE: Java

Interactive software Visualization Environment", IEEE Symposium on Visual

Languages and Human-Centered Computing (VL/HCC), Rome, Italy, September

2004, pp:41-43.

[30] Chall, J., "Readability: An Appraisal of Research and Application", Bureau of

Educational Research Monographs, Issue 34, The Bureau of Educational

Research Ohio State University, 1958.

[31] Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., and Tan, W.G., "Types of

Software Evolution and Software Maintenance", Journal of Software

Maintenance Evolution: Research and Practice, Volume 13, Issue 1, 2001, pp: 3-

30.

[32] Charters, S.M., Thomas, N., and Munro, M., "The End of The Line for Software

Visualization? ", in Proceedings of 2nd IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT), Amsterdam,

Netherlands, 2003, pp: 110-112.

[33] Chedgey, C, StructurelOl, 2007, Available from:

<http://www.headwaysoftware.com/products/structure 101 /index.php> [Accessed

February 04, 2008].

[34] Chen, C, "Top 10 Unsolved Information Visualization Problems", IEEE

Computer Graphics and Applications, Volume 25, Issue 4, July 2005, pp: 12 -

16.

[35] Cioch, F.A., "Measuring Software Misinterpretation", Journal of Systems

Software, Elsevier Science Publishing, 1991, pp: 85-95.

242

http://www.headwaysoftware.com/products/structure%20101%20/index.php

[36] Cox, A., Fisher, M., and Muzzerall, J., "User Perspectives on a Visual Aid to

Program Comprehension", in Proceedings of 3rd IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT), Budapest,

Hungary, 2005, pp: 70-75.

[37] Craft, B., Cairns, P., "Beyond Guidelines: What Can We Learn from the Visual

Information Seeking Mantra?", in 9th Annual International Conference on

Information Visualisation, Greenwich, UK, 2005.

[38] Creole User Manual, The CHISEL Group, University of Victoria, BC, Canada,

2006, Available from:

<http://www.thechiselgroup.org/shrimp manual> [Accessed February 04, 2008].

[39] Cross II, J.H., Hendrix, T.D., Mathias, K.S., and Barowski, L.A., "Software

Visualization and Measurement in Software Engineering Education: An

Experience Report", in 29th Annual FRONTIERS IN EDUCATION

CONFERENCE on Designing the Future of Science and Engineering Education,

San Juan, Puerto Rico, Volume 2, 1999, Available from:

<http://fie.engrng.pitt.edu/fie99/papers/1288.pdf> [Accessed July 04, 2005].

[40] Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., and Hawgood,

G., "Cognitive and Gender Factors Influencing Navigation in a Virtual

Environment," International Journal of Human-Computer Studies, Volume 53,

Issue 2, 2000, pp: 223-249.

[41] Davidoff, J. B., Cognition Through Color, MIT Press, Cambridge, Massachusetts,

1991.

243

http://www.thechiselgroup.org/shrimp%20manual
http://fie.engrng.pitt.edu/fie99/papers/1288.pdf

[42] Davies, C , OSMOSE, Immersence, 1996, Available from:

<http://www.immersence.com/index.html> [Accessed September 06, 2005].

[43] Davies, C , "Virtual Space", Space: In Science, Art and Society, Editors: Penz, F.,

Radick, G., and Howell, R., Cambridge University Press, Cambridge, England,

2004, pp: 69-104.

[44] Deelen, P., TraceVis, Department of Mathematics and Computing Science,

Technische Universiteit Eindhoven, 2006, Available from:

<http://www.win.tue.nl/~wstahw/proiects/finished/PieterDeelen/index.html>

[Accessed February 06, 2008].

[45] Dondis, D.A., A Primer of Visual Literacy, The MIT Press, Cambridge, 1973.

[46] Dudycha, D. J., "Principles of Map Design", Lecture notes on a course titled -

Introduction to Cartography and Remote Sensing, Department of Geography,

Faculty of Environmental Studies, University of Waterloo, Canada, 2003,

Available from:

<http://www.fes.uwaterloo.ca/crs/geogl65/mapdesign.htm> [Accessed July 17,

2004].

[47] Ekenstierna, M., "Evaluation of User Assistance in Graphical User Interface

Software", Masters thesis in Lund Institute of Technology, Lund University,

2002, Available from:

<http://serg.telecom.lth.se/education/master theses/docs/ Rep.Ekenstierna.pdf>

[Accessed September 16, 2004].

244

http://www.immersence.com/index.html
http://www.win.tue.nl/~wstahw/proiects/finished/PieterDeelen/index.html
http://www.fes.uwaterloo.ca/crs/geogl65/mapdesign.htm
http://serg.telecom.lth.se/education/master%20theses/docs/%20Rep.Ekenstierna.pdf
http://Rep.Ekenstierna.pdf%3e

[48] Elm, W. C , Woods, D.D., "Getting Lost: A Case Study in Interface Design", in

Proceedings of the Human Factors Society, Santa Monica, CA, 1985, pp: 927-

931.

[49] Entin, E., Klare, G., "Relationships of Measures of Interest, Prior Knowledge, and

Readabilty to Comprehension of Expository Passages", Advances in

Reading/Language Research, Volume 3, 1985, pp: 9-38.

[50] Fenton, N.E., Pfleeger, S.L., Software Metrics - A Rigorous & Practical

Approach, 2nd edition, Revised Printing, PWS Publishing Company, Boston,

MA, 1997.

[51] Ferweda, J. A., "Fundamentals of spatial vision", Applications of Visual

Perception in Computer Graphics, Course #32, Association for Computing

Machinery's Special Interest Group on Graphics and Interactive Techniques

(SIGGRAPH), 1998, pp: 1-27.

[52] Firesmith, D., "Using Quality Models to Engineer Quality Requirements",

Journal of Object Technology, Volume 2, Issue 5, 2003, pp: 67-75.

[53] Flores, N., Soares, D., Ferreira, H., and Rodrigues, M., "HotSpotter: a JavaML-

based Approach to Discover Framework's Hotspots", in Proceedings of XML:

aplicacoes e tecnologias associadas (XATA), Braga, Portugal, February 2005.

[54] Foley, J., Ribarsky, B., "Next-generation Data Visualization Tools", Scientific

Visualization, Advances and Challenges, Editors: Rosenblum, L., Earnshaw,

R.A., et al., Academic Press, 1994.

245

[55] Freimut, B., Punter, T., BiffI, S., and Ciolkowski, M., "State-of-the-Art in

Empirical Studies", Technical Report ViSEK/007/E, Virtuelles Software

Engineering Kompetenzzentrum (ViSEK), Version 1.0, 2001.

[56] Friendly, M , "Gallery of Data Visualization", Statistical Consulting Service and

Psychology Department, York University, 1999, Available from:

<http://www.math.yorku.ca/SCS/Gallery/> [Accessed July 04, 2005].

[57] Gamma, E., Helm, R., Johnson, R., and Vlissedes, J., Design Patterns - Elements

of Reusable Object Oriented Software, Addison Wesley, Readings, MA, 1995.

[58] Gartner, J., Miksch, S., Carl-McGrath, S., "ViCo: A Metric for the Complexity of

Information Visualizations", in Proceedings of'2nd International Conference on

Theory and Application of Diagrams, Springer, Berlin, 2002, pp: 249-263.

[59] Garvin, D.A., "What Does "Product Quality" Really Mean?" Sloan Management

Review, Volume 26, Issue 1, 1984, pp: 25-43.

[60] Georgiakakis, P., Psaromiligkos, Y., Retalis, S., "The Use of Design Patterns for

Evaluating Personalisable Web-based Systems", in Proceedings of 5th Workshop

on User-Centered Design and Evaluation of Adaptive Systems, Dublin, Ireland,

June 2006, pp: 440-449.

[61] Gershon, N., "Visualization of an Imperfect World", IEEE Computer Graphics

and Applications, Volume 18, Issue 4, 1998, pp: 43-45.

[62] Gershon, N., Eick, S.G., "Visualization Information", IEEE Computer Graphics

and Applications, 1997, Available from:

<http://www.cs.duke.edU/courses/spring03/cps296.8/papers/GuestEditor%27slnfo

VisIntroduction.pdf> [Accessed September 16, 2004].

246

http://www.math.yorku.ca/SCS/Gallery/
http://www.cs.duke.edU/courses/spring03/cps296.8/papers/GuestEditor%27slnfoVisIntroduction.pdf
http://www.cs.duke.edU/courses/spring03/cps296.8/papers/GuestEditor%27slnfoVisIntroduction.pdf

[63] Ghoniem, M., Fekete, J.D., Castagliola, P., "A Comparison of the Readability of

Graphs Using Node-Link and Matrix-Based Representations", IEEE Symposium

on Information Visualization, Austin, Texas, USA, October 2004, pp: 17-24.

[64] Gibson, J.J., The Ecological Approach to Visual Perception, Houghton Mifflin,

Boston, 1979.

[65] Gray, P. O., Psychology, 4th edition, Worth Publishers, 2001.

[66] Grudin, J., "The Case Against User Interface Consistency", Communications of

ACM, Volume 32, Issue 10, 1989, pp: 1164-1173.

[67] Halpern, D. F., Sex Differences in Cognitive Abilities, 3rd edition, Lawrence

Erlbaum Associates, Mahnawah, NJ, 2000.

[68] Haramundanis, K., "Learnability in Information Design", ACM Special Interest

Group for Design of Communication (SIGDOC'01), Santa Fe, New Mexico,

USA, October 2001, pp: 7-11.

[69] Healey, C. G., Booth, K. S., and Enns, J. T., "Visualizing Real-time Multivariate

Data Using Pre-attentive Processing", ACM Transactions on Modeling and

Computer Simulation, Volume 5, Issue 3, 1995, pp: 190-221.

[70] Healey, C. G., Booth, K. S., and. Enns, J. T., "High-speed Visual Estimation

Using Preattentive Processing", ACM Transactions on Computer-Human

Interaction, Volume 3, Issue 2, 1996, pp: 107-135.

[71] Herisson, J., ADN-Viewer, LIMSI (Laboratoire d'lnformatique pour la

Mecanique et les Sciences de l'lngenieur), 2001, Available from:

<http://www.limsi.fr/> [Accessed July 10, 2004].

247

http://www.limsi.fr/

[72] Hewett, T., "Extract from Cognitive Factors in Design: Basic Phenomena in

Human Memory and Problem Solving", in Proceedings of Computer Human

Interaction on Cognitive Factors in Design, 2003. Available from:

<http://www.chi2003.org/docs/t08.pdf> [Accessed September 16, 20041.

[73] Hubona, G. S., Shirah, G. W., "The Gender Factor Performing Visualization

Tasks on Computer Media," Proceedings of the 37th Annual Hawaii International

Conference on System Sciences (HICSS'04) - Track 4, Big Island, HI, 2004.

[74] IEEE Standard Computer Dictionary, A Compilation of IEEE Standard Computer

Glossaries, New York, 1990.

[75] IEEE Standard for Software Quality Metrics Methodology, IEEE Std 1061-1998,

1998, pp: 2-3, Available from:

<http://csdl2.computer.Org/comp//proceedings/hicss/2005/2268/01/22680029c.pdf

> [Accessed September 16, 2004].

[76] IEEE, IEEE Standard for Software Maintenance (IEEE Std 1219-1998), Institute

for Electrical and Electronics Engineers, NY, 1998.

[77] Ingram, R., Benford, S., "The Application of Legibility Techniques to Enhance

Information Visualizations", The Computer Journal, Volume 39, Issue 10, 1996,

pp: 819-836.

[78] Iskold, A., Kogan, D., Begic, G., Structural Analysis for Java (SA4J), An

alphaworks Java technology from IBM, 2004, Available from:

<http://www.alphaworks.ibm.com/tech/sa4j> [Accessed 06 February 2008]

[79] ISO 9126-1: Software Product Evaluation - Quality Characteristics and

Guidelines for Their Use, ISO/IEC Standard, ISO-9126, International

248

http://www.chi2003.org/docs/t08.pdf
http://csdl2.computer.Org/comp//proceedings/hicss/2005/2268/01/22680029c.pdf
http://www.alphaworks.ibm.com/tech/sa4j

Organization for Standardization, Geneva, 1991 and Revised Draft, February

1997.

[80] ISO 9126-1: Software Engineering - Product Quality - Parti: Quality Model,

International Organization for Standardization, Geneva, 2001.

[81] 1SO/IEC 15939: Systems and Software Engineering - Measurement Process,

International Organization for Standardization, Geneva, 2007.

[82] 1ST, Inxight Star Tree: Illuminating Relationships, Networks and Large

Information Hierarchies. Available from:

<http://www.inxight.com/products/sdks/st/> [Accessed July 28, 2005].

[83] Jin, D., "Exchange of Software Representations among Reverse Engineering

Tools", External Technical Report, Department of Computing and Information

Science, Queen's University, ISSN-0836-0227-2001-454, 2001, pp: 1-131.

[84] Jones, C , The Year 2000 Software Problem Quantifying the Costs and Assessing

the Consequences, Addison-Wesley, New York, USA, 1998.

[85] Joshi, Y., "Assessment Criteria for Comprehensibility in Visualization

Environments", Masters Thesis, Department of Computer Science and Software

Engineering, Concordia University, Canada, 2005.

[86] Kane, L., Carthy, J., and Dunnion, J., "Readability Applied to Information

Retrieval", Lecture Notes in Computer Science, Springer Berlin/Heidelberg,

Volume 3936, 2006, pp: 523-526.

[87] Kapser, C.J., Godfrey, M.W., "Supporting the Analysis of Clones in Software

Systems: A Case Study", Journal of Software Maintenance and Evolution:

Research and Practice, Volume 18, 2006, pp: 61-82.

249

http://www.inxight.com/products/sdks/st/

[88] Khelifi, A., Abran, A., and Buglione, L., "A System of References for Software

Measurements with ISO 19761 (COSMIC-FFP)", in Proceedings of 14th

International Workshop on Software Measurement (MetriKon), Berlin, Germany,

2004.

[89] Kintsch, W., Comprehension a paradigm for Cognition, Cambridge University

Press, New York, 1998.

[90] Kintsch, W., Dijk, T.A.V., "Towards a Model of Text Comprehension and

Production", Psychological Review, Volume 85, 1978, pp: 363-394.

[91] Kirakowski, J., Software Usability Measurement Inventory, 1996, Available

from:

<http://www.ucc.ie/hfrg/questionnaires/sumi/> [Accessed September 19, 2005].

[92] Kjelldahl, L., "A Survey of some Perceptual Features for Computer Graphics and

Visualization", in Linkoping Electronic Conference Proceedings of the Annual

SIGRAD Conference, Special Theme - Real-Time Simulations, Umea University,

Umea, Sweden, November 2003.

[93] Klemola, T., Rilling, J., "Modeling Comprehension Processes in Software

Development", in Proceedings of the 1st IEEE International Conference on

Cognitive Informatics, 2002, pp: 329 - 336.

[94] Klemola, T., Rilling, J., "A Cognitive Complexity Metric Based on Learning

Category", in Proceedings of the 2nd IEEE conference on cognitive informatics,

2003.

[95] Knight, C , "Visualisation Effectiveness", in Proceedings of Workshop on

Fundamental Issues in Visualisation, Las Vegas, Nevada, USA, 2001.

250

http://www.ucc.ie/hfrg/questionnaires/sumi/

[96] Knight, C , Munro, M , "Visualisations; functionality and interaction", in

International Conference on Computational Science, Editors: Alexandrov, V. N.,

Dongarra, J., Juliano, B. A., Renner, R. S., and Tan, C. J. K., Springer, LNCS,

San Francisco, CA, Volume 2074, 2001, pp: 470-475.

[97] Kosara, R., Healey, C.G., Interrante, V., Laidlaw, D.H., and Ware, C , "User

Studies: Why, How and When? ", Visualization Viewpoints: Column in IEEE

Computer Graphics and Applications, Editor: Rhyne, T. M., 2003, pp: 20-25,

Available from:

<http://www.cs.brown.edu/research/vis/docs/pdf/Kosara-2003-TUS.pdf>

[Accessed July 20, 2005].

[98] Koschke, R., "Software Visualization in Software Maintenance, Reverse

Engineering, and Re-engineering: A Research Survey", Journal of Software

Maintenance and Evolution: Research and Practice, Volume 15, Issue 2, April

2003, pp: 87 -109 .

[99] Koskinen, J., Salminen, A., and Paakki, J., "Hypertext Support for The

Information Needs of Software Maintainers", Journal of Software Maintenance

and Evolution: Research and Practice, Volume 16, 2004, pp: 187-215.

[100] Kosslyn, S.M., "Understanding Charts and Graphs", Applied Cognitive

Psychology, Volume 3, 1989, pp: 185-226.

[101] Kosslyn, S.M., Gershon, N.D., Levkowitz, H., and Pearlman, J.D., "Improving

Visualization: Theoretical and Empirical Foundations", in Proceedings of 3rd

IEEE Visualization Conference,, Boston, Massachusetts, October 1992, pp: 372 -

374.

251

http://www.cs.brown.edu/research/vis/docs/pdf/Kosara-2003-TUS.pdf

[102] Kreitzberg, C , "User Centered Design Principles", in LUCID Framework by

Cognetics Corporation, 1998, Available from:

<http://ei.cs.vt.edu/~cs3724/notes/lucid-appdx-a.pdf> [Accessed November 17,

2004].

[103] Kurniawan, S.H., "A Rule of Thumb of Icons' Visual Distinctiveness", in

Proceedings of Conference on Universal Usability, Arlington, Virginia, USA,

2000, pp: 159-160.

[104] Lanza, M., "CodeCrawIer - Polymetric Views in Action", in Proceedings of 19th

IEEE international conference on Automated software engineering (ASE), 2004,

pp: 394-395.

[105] Lewis, J. R., "IBM Computer Usability Satisfaction Questionnaires: Psychometric

Evaluation and Instruction for Use", International Journal of Human-Computer

Interaction, Volume 7, Issue 1, 1995, pp: 57-78.

[106] Lin, H.X., Choong, Y.Y., and Salvendy, G., "A Proposed Index of Usability: A

Method for Comparing the Relative Usability of Different Software Systems",

Behaviour and Information Technology, Volume 16, Issue 4, 1997, pp: 267-278.

[107] Lintern, R., Michaud, J., Storey, M. A., and Wu, X., "Plugging-in Visualization:

Experiences Integrating a Visualization Tool with Eclipse", in Proceedings of the

ACM Symposium on Software Visualization (SOFTVIS), San Diego, USA, June

2003, pp: 47-56 (209).

[108] Lowe, R.K., "Extracting Information from an Animation during Complex Visual

Learning", European Journal of Psychology of Education, Volume 14, Issue 2,

1999, pp:225-244.

252

http://ei.cs.vt.edu/~cs3724/notes/lucid-appdx-a.pdf

[109] Lowe, R.K., "Animation and Leaning: Selective Processing of Information in

Dynamic Graphics", Learning and Instruction, Volume 13, Issue 2, 2003, pp:

157-176(20).

[110] Lukoit, K., Wilde, N., Stowell, S., and Hennessey, T., "TraceGraph: Immediate

Visual Location of Software Features", in Proceedings of International

Conference on Software Maintenance (ICSM), 2000, pp: 33 - 39 .

[I l l] Luzzardi, P.R.G., Frietas, C.M.D.S., Cava, R.A., Duarte, G.D., and Vasconcelos,

M.H.S., "An Extended Set of Ergonomic Criteria for Information Visualization

Techniques", in Proceedings of 7th IASTED Conference on Computer Graphics

and Imaging (CGIM), Kauai, Hawaii, USA, 2004, pp: 144-152.

[112] Ma, K.L., "Visualization: A Quickly Emerging Field", VISFILES: Column in

ACMSIGGRAPH Computer Graphics, Volume 38, Issue 1, 2004, pp: 4 - 7 .

[113] Mack, R. L., Nielsen, J., "Usability Inspection Methods: Executive Summary",

Readings in Human-Computer Interaction: Toward the Year 2000, 2nd edition,

Editors: Baecker, R.M., et al., Morgan Kaufmann Publishers, 1995, pp: 170- 181.

[114] Mackinlay, J., "Automating the Design of Graphical Presentations of Relational

Information", ACM Transactions on Graphics, Volume 5, Issue 2, April 1986, pp:

110-141.

[115] Maletic, J. 1., Marcus, A., Collard, M.L., "A Task Oriented View of Software

Visualization", in Proceedings of 1st International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT), Paris, France, 2002, pp: 32-

40.

253

[116] Marcus, A., "Managing Metaphors for Advanced User Interfaces", in

Proceedings of the Workshop on Advanced Visual Interfaces, Bari, Italy, 1994,

pp: 12-18.

[117] Marcus, A., "Principles of Effective Visual Communication for Graphical User

Interface Design", Human Computer Interaction - Towards the year 2000, 2nd

edition, Morgan Kaufmann, San Francisco, 1995, pp: 425-441.

[118] Marcus, A., "Metaphor Design in User Interfaces", Journal of Computer

Documentation, Volume 22, Issue 2, May 1998, pp: 43-57.

[119] Marcus, A., Comorski, D., and Sergeyev, A., "Supporting the Evolution of a

Software Visualization Tool Through Usability Studies", in Proceedings of

International Workshop on Program Comprehension (IWPC), St. Louis, MO,

2005, pp: 307-316.

[120] Mayrhauser, A.V., Vans, A.M., "Program Understanding Needs During

Corrective Maintenance of Large Scale Software", in Proceedings Computer

Software and Applications Conference COMPSAC, IEEE Computer Society

Press: Los Alamitos CA, 1997, pp: 630-637.

[121] Mayrhauser, A.V., Vans, A.M., "Program Understanding During Software

Adaptation Tasks", in Proceedings of International Conference on Software

Maintenance (ICSM), IEEE Computer Society Press: Los Alamitos CA, 1998, pp:

316-325.

[122] Mayrhauser, A.V., Vans, A.M., and Howe, A.D., "Program Understanding

Behaviour during Enhancement of Large-scale Software", Journal on Software

Maintenance: Research and Practice, Volume 9, Issue 5, 1997, pp: 299-327.

254

[123] McCall, J.A., Richards, P.K., and Waiters, G.F., "Factors in Software Quality",

Rome Air Force Development Center, Technical Report RADC TR-77-363,

Griffis Air Force, Rome, New York, 1977.

[124] McGavin, M., Wright, T., and Marshall, S., "Visualisations of Execution Traces

(VET): An Interactive Plugin-based Visualisation Tool", in Proceedings of

Australasian User Interface Conference, ACM International Conference

Proceeding Series (50) 2006, pp: 153 - 160.

[125] Merriam Webster Dictionary, 2007, Available from:

<http://www.m-w.com/home.htm> [Accessed August 03, 2004].

[126] Miller, N., Hetzler, B., Nakamura, G., and Whitney, P., "The Need for Metrics in

Visual Information Analysis", in Proceedings of the Workshop on New

Paradigms in Information Visualization and Manipulation (NPIV), Las Vegas,

USA, 1997, pp: 2 4 - 2 8 .

[127] Mohnkern, K., "Visual Interaction Design: Beyond the Interface Metaphor",

SIGCHI Bulletin, Volume 29, Issue 2, 1997, Available from:

<http://sigchi.Org/bulletin/1997.2/vid.html> [Accessed November 22, 2004].

[128] Mori, G., Paterno, F., and Santoro, C , "CTTE: Support for Developing and

Analyzing Task Models for Interactive System Design", in Proceedings of

Transactions in Software Engineering (TSE), Volume 28, Issue 9, 2002.

[129] Mukherjea, S., Stasko, J.T., "Applying Algorithm Animation Techniques for

Program Tracing, Debugging, and Understanding", in Proceedings of the 15th

International Conference on Software Engineering, May 1993, pp: 456 - 465.

255

http://www.m-w.com/home.htm
http://sigchi.Org/bulletin/1997.2/vid.html

[130] Nakakqji, K., Takashima, A., and Yamamoto, Y., "Cognitive Effects of Animated

Visualization in Exploratory Visual Data Analysis", in Proceedings of 5th

International Conference on Information Visualisation, 2001, pp: 77-84.

[131] Narayan, N.H., "Model-Based Hypermedia Design: Using Cognitive Models of

Multimodal Information Comprehension to Design Hypermedia Visualizations",

Position Paper for CHI 97 Basic Research Symposium, 1997, Available from:

<http://www.eng.auburn.edu/users/narayan/brs97.html> [Accessed September 16,

2004].

[132] Nielsen, J., Usability Engineering, AP Professional Press, Boston, 1994.

[133] Nielsen, J., "Top Ten Mistakes in Web Design", in Alertbox Column, 1997,

Available from:

<http://www.useit.com/alertbox/9706b.html> [Accessed September 16, 2004].

[134] Norman, D.A., The Design of Everyday Things, Doubleday, New York, 1990.

[135] Norman, D.A., Things That Make Us Smart: Defending Human Attributes in the

Age of the Machine, Perseus, Reading, Massachusetts, 1993.

[136] North, C , "Toward Measuring Visualization Insight", IEEE Computer Graphics

and Applications, Volume 26, Issue 3, 2006, pp: 6-9.

[137] North, C , Shneiderman, B., "A Taxonomy of Multiple Window Coordinations",

University of Maryland Computer Science Department, Technical Report, #CS-

TR-3854, 1997.

[138] Nunally, J.C., Psychometric Theory, McGraw-Hill, New York, 1978.

[139] OED, Oxford English Dictionary, Available from:

<http://www.oed.com/> [Accessed July 04, 2005].

256

http://www.eng.auburn.edu/users/narayan/brs97.html
http://www.useit.com/alertbox/9706b.html
http://www.oed.com/

[140] Orso, A., Jones, J., and Harrold, M.J., "Visualization of Program Execution Data

for Deployed Software", in Proceedings of the ACM symposium on Software

visualization, San Diego, California, 2003, pp: 67 - 75.

[141] Owen, G.S., "HyperVis - Teaching Scientific Visualization Using Hypermedia",

A project of the ACM S1GGRAPH Education Committee, the National Science

Foundation (DUE-9752398), (DUE 9816443) and the Hypermedia and

Visualization Laboratory, Georgia State University, 1999, Available from:

<http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm>

[Accessed September 16, 2004].

[142] Pacione, M.J., "Effective Visualisation for Comprehending Object-Oriented

Software: A Multifaceted, Three-Dimensional Abstraction Model for Software

Visualisation", Technical Report #EFoCS-52-2004, Department of Computer and

Information Sciences, University of Strathclyde, Glasgow, UK, 2004, Available

from:

<http://www.cis.strath.ac.uk/~efocs/home/Research-Reports/EFoCS-52-

2004Screen.pdf> [Accessed July 04, 2005].

[143] Pacione, M.J., Roper, M., and Wood, M., "A comparative evaluation of dynamic

visualisation tools", in Proceedings Working Conference on Reverse Engineering

(WCRE), 2003, pp: 1095-1350.

[144] Pacione, M.J., Roper, M., Wood, M., "A Novel Software Visualization Model to

Support Software Comprehension", in Proceedings of ll'h Working Conference

on Reverse Engineering (WCRE), Delft, Netherlands, 2004, pp: 70-79.

257

http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://www.cis.strath.ac.uk/~efocs/home/Research-Reports/EFoCS-52-2004Screen.pdf
http://www.cis.strath.ac.uk/~efocs/home/Research-Reports/EFoCS-52-2004Screen.pdf

[145] Padda, H.K., "QUIM map: A Repository for Usability/Quality in Use

Measurement", Masters thesis, Department of Computer Science, Concordia

University, Montreal, 2003.

[146] Pauw, W.D., Vlissides, J., "Visualizing Object-Oriented Programs with Jinsight",

Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, Volume 1543,

1998, Available from:

<http://www.alphaworks.ibm.com/tech/jinsight> [Accessed February 06, 2008].

[147] Petre, M., Blackwell, A.F., and Green, T.R.G., "Cognitive Questions in Software

Visualisation", Software Visualization, programming as a Multi-Media

Experience, Editors: Stasko, J., Domingue, J., Brown, M., and Price, B., MIT

Press, 1998, pp: 453-480.

[148] Pfitzner, D., Hobbs, V., and Powers, D., "A Unified Taxonomic Framework for

Information Visualization", in Proceedings of the Australian symposium on

Information visualization, Adelaide, Australia, Volume 24, 2003, pp: 57 - 66.

Available from:

<http://crpit.com/confpapers/CRPlTV24Pfitzner.pdf> [Accessed July 04, 2005].

[149] Pfleeger, S.L., Software Engineering Theory and Practice, 2nd edition, Prentice

Hall, 2001.

[150] Pinker, S., "A Theory of Graph Comprehension", Artificial intelligence and the

future of testing, Editor: R. Freedle, Lawrence Erlbaum Associates Inc., Hillsdale,

N.J., 1990, pp: 73-126.

258

http://www.alphaworks.ibm.com/tech/jinsight
http://crpit.com/confpapers/CRPlTV24Pfitzner.pdf

[151] Plaisant, C , "The Challenge of Information Visualization Evaluation", in

Proceedings of the Working Conference on Advanced Visual Interfaces, Gallipoli,

Italy, 2004, pp: 109-116.

[152] Pressman, R.S., Software Engineering - A Practitioner's Approach, 6th edition,

McGraw-Hill, New York, 2005.

[153] Price, B.A., Baecker, R., and Small, I.S., "A Principled Taxonomy of Software

Visualization", Journal of Visual Languages and Computing, Volume 4, lssue3,

1998, pp: 211-266.

[154] Purchase, H. C , Cohen, R. F., and James, M, "Validating Graph Drawing

Aesthetics", Graph Drawing '95, Lecture Notes in Computer Science, Springer-

Verlag, volume 1027, 1996, pp: 435-446.

[155] Raza, A., Vogel, G., Plodereder, E., "Bauhaus - A Tool Suite for Program

Analysis and Reverse Engineering", Reliable Software Technologies, Ada

Europe, 2006.

[156] Reed, S.K., Cognition: Theory and Applications, Brooks/Cole Publishing

Company, 1996.

[157] Reiss, S.P., "Dynamic Detection and Visualization of Software Phases", in

Proceedings of Workshop on Dynamic Analysis (WODA), St Louis, MO, May

2005.

[158] Rheingans, P., Landreth, C , "Perceptual Principles for Effective Visualizations",

Perceptual issues in Visualization, Editors: Grinstein, G., and Levkowits, H.,

Springer-Verlag, 1995, pp: 59-74.

259

[159] Robson, C , Real Word Research: A Resource for Social Scientists and

Practitioners- Researchers, Blackwell, 1993.

[160] Roberts, F.S., Measurement Theory, Addison-Wesley, Reading, MA, 1979.

[161] Rombach, H.D., "Practical Benefits of Goal-Oriented Measurement", Software

Reliability and Metrics. Editors: Fenton, N., Littlewood, B., London, Elsevier

Science Publishing Company, 1991, pp: 217-235.

[162] Rushmeier, H., Botts, M., Uselton, S., Walton, J., Watkins, H., and Watson, D.,

"Panel: Metrics and Benchmarks for Visualization", in Proceedings of the 6th

IEEE Visualization Conference (VISUALIZATION '95), pp: 422.

[163] Saltz, J.S., Steinbach, J.M., "Understanding Information Visualizations",

COD AT A Euro-American Workshop on Data and Information Visualization:

Where We Are and Where Do We Go From Here? Paris, France, 1997, Available

from:

<http://www.codata.org/archives/1997Vis/sp4.htm> [Accessed July 04, 2005].

[164] Schiffman, H.R., Sensation and Perception: An Integrated Approach, 4th edition,

John Wiley & Sons, 1996.

[165] Schmidt, S. R., "Can we have a distinctive theory of memory? ", Memory and

Cognition, Volume 19, 1991, pp: 523- 542.

[166] Seaman, C , "Qualitative Methods in Empirical Studies of Software Engineering",

IEEE Transactions on Software Engineering, 1999, pp: 557-572.

[167] Seffah, A., Donayee, M., Kline, R.B., Padda, H.K., "Usability Measurement: A

Roadmap for a Consolidated Model", Software Quality Journal, Springer

Netherlands, Volume 14, Issue 2, June 2006, pp: 159 - 178.

260

http://www.codata.org/archives/1997Vis/sp4.htm

[168] Shneiderman, B., Designing the user interface: Strategies for Effective Human-

Computer Interaction, 2nd edition, Addison-Wesley Publishing Company, MA,

1992.

[169] Shneiderman, B., "The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations", in Proceedings of the IEEE Symposium on Visual

Languages, Boulder, USA, 1996, pp: 336-343.

[170] Shneiderman, B., Designing the User Interface: Strategies for Effective Human-

Computer Interaction, 3rd edition, Addison-Wesley, Reading, Massachusetts,

1998.

[171] Small Wiki, A non-exhaustive list of Software Visualization tools. Software

Composition Group, University of Bern, Switzerland, 2007, Available from:

<http://smaIlwiki.unibe.ch/codecrawler/anon-

exhaustivelistofsoftwarevisualizationtools/> [Accessed November 08, 2006].

[172] Smolnik, S., Nastansky, L., Knieps, T., "Mental Representations and

Visualization Processes in Organizational Memories", in Proceedings of the 7th

International Conference on Information Visualization, 2003.

[173] Stavrinoudis, D., Xenos, M., Peppas, P., and Christodoulakis, D., "Early

Estimation of Users' Perception of Software Quality", Software Quality Journal,

Volume 13, 2005, pp: 155-175.

[174] Storey, M.A.D., Cubranic, D., German, D.M., "On the Use of Visualization to

Support Awareness of Human Activities in Software Development: A Survey and

a Framework", in Proceedings of the ACM Symposium on Software Visualization,

St. Louis, Missouri, 2005, pp: 193-202 (216).

261

http://smaIlwiki.unibe.ch/codecrawler/anon-exhaustivelistofsoftwarevisualizationtools/
http://smaIlwiki.unibe.ch/codecrawler/anon-exhaustivelistofsoftwarevisualizationtools/

[175] Storey, M.A.D., Miiller, H.A., "Manipulating and documenting software

structures using SHriMP views", in Proceedings of International Conference on

Software Maintenance (ICSM), Opio (Nice), France, 1995, pp: 275- 284.

[176] Storey, M.A.D., Wong, K., and Miiller, H.A., "Rigi: A Visualization Environment

for Reverse Engineering", in Proceedings International Conference on Software

Engineering (ICSE), Boston, Massachusetts, USA, 1997, pp: 606-607, Available

from:

<http://www.rigi.csc.uvic.ca/index.html> [Accessed December 10, 2007].

[177] Storey, M.A.D., Wong, K., Fong, P., Hooper, D., Hopkins, K., and Muller, H.A.,

"On Designing an Experiment to Evaluate a Reverse Engineering Tool", in IEEE

Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE),

Monterey, CA, 1996, pp.31-40.

[178] Swanson, E.B., "The Dimensions of Maintenance", in Proceedings of

International Conference on Software Engineering (ICSE), IEEE Computer

Society, Long Beach, CA, 1976, pp: 492-497.

[179] Systa, T., Koskimies, K., and Muller, H., "Shimba- an Environment for Reverse

Engineering Java Software Systems", Software-Practice and Experience, Wiley,

New York, Volume 31, Issue 4, 2001, pp: 371-394.

[180] Tan, J.K.H., Benbasat, I., "Processing of Graphical Information: A

Decomposition Taxonomy to Match Data Extraction Tasks and Graphical

Representations", Information Systems Research, Volume 1, Issue 4, 1990, pp:

416-438.

262

http://www.rigi.csc.uvic.ca/index.html

[181] Tidwell, J., Designing Interfaces: Patterns for Effective Interaction Design,

O'Reilly Media, CA, USA, 2005, Available from:

<http://time-tripper.com/uipatterns/> [Accessed March 13, 2006].

[182] Tonella, P., "Workshop on Empirical Studies in Reverse Engineering", in

Proceedings of the 13th IEEE International Workshop on Software Technology

and Engineering Practice (STEP), 2005, pp: 61-64.

[183] Torry, M., Moller, T., "Human Factors in Visualization Research", IEEE

Transactions on Visualization and Computer Graphics, Volume 10, Issue 1,

2004, pp: 72-84.

[184] Trafton, J.G., Kirschenbaum, S.S., Tsui, T.L., Miyamoto, R.T., Ballas, J.A., and

Raymond, P.D., "Turning pictures into numbers: Extracting and Generating

Information from Complex Visualizations", International Journal of Human

Computer Studies, Volume 53, Issue 5, 2000, pp: 827-850.

[185] Treemap, Human Computer Interaction Lab, University of Maryland, USA, 2003,

Available from:

<http://www.cs.umd.edu/hcil/treemap/> [Accessed August 12, 2006].

[186] Tutte, E.R., The Visual Display of Quantitative Information, Graphics Press,

Cheshire, CT, 1983.

[187] Tutte, E.R., Envisioning Information, Graphics Press, Cheshire, CT, 1990.

[188] Tufte, E.R., Visual Explanations: Images and Quantities, Evidence and Narrative,

Graphics Press, Cheshire, CT, 1996.

[189] Turner, J.R., Thayer, J. F., Introduction to Analysis of Variance: Design, Analysis,

& Inteipretation, Sage publications Inc., 2001.

263

http://time-tripper.com/uipatterns/
http://www.cs.umd.edu/hcil/treemap/

[190] Velez, M. C , Silver, D., Tremaine, M., "Understanding Visualization through

Spatial Ability Differences", in Proceedings of the IEEE Visualization,

Minneapolis, MN, 2005, pp: 511 -518.

[191] Walenstein, A., "Cognitive Support in Software Engineering Tools: A Distributed

Cognition Framework", Doctoral dissertation, Computing Science Department,

Simon Fraser University, Burnaby, B.C., Canada, 2002.

[192] Walenstein, A., "Observing and Measuring Cognitive Support: Steps Toward

Systematic Tool Evaluation and Engineering", in Proceedings of the 11th

International Workshop on Program Comprehension, 2003, pp: 185-195.

[193] Ware, C , Information Visualization: Perception for Design, Morgan Kaufmann,

San Francisco, 2000.

[194] Welie, M., Veer, G.C., and Eliens, A., "Patterns as Tools for User Interface

Design", International Workshop on Tools for Working with Guidelines, Biarritz,

France, 2000, pp:313-324.

[195] Wickens, CD., Engineering Psychology and Human Performance, Harper

Collins, New York, 1992.

[196] Wijnholds, A.B., "Using Type: The Typographer's Craftsmanship and the

Ergonomist's Research", Utrecht University, April 1996, Available from:

<http://www.plainlanguagenetwork.org/tvpe/typehimn.htm> [Accessed August

20, 2006].

[197] Wikipedia, Online encyclopedia, 2007, Available from:

<http://en.wikipedia.org/wiki/Main Page> [Accessed February 10, 2007].

264

http://www.plainlanguagenetwork.org/tvpe/typehimn.htm
http://en.wikipedia.org/wiki/Main%20Page

[198] Wilhelmson, R. B., Jewett, B. F., Shaw, C , Wicker, L. J., Arrott, M., Bushell, C.

B., Bajuk, M., Thingvold, J., and Yost, J.B., "A Study of the Evolution of a

Numerically Modeled Severe Storm", International Journal of Supercomputing

Applications, Volume 4, Issue 2, 1990, pp: 20-36.

[199] Wilkins, B., "MELD: A Pattern Supported Methodology for Visualisation

Design", Doctoral dissertation, School of Computer Science, University of

Birmingham, UK, 2003.

[200] Wohlin, C, Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.,

Experimentation in Software Engineering - An Introduction, The Kluwer

International Series in Software Engineering, Kluwer Academic publishers, 2000.

[201] Wolf, R., "Consistency as Process", Coordinating User Interfaces for Consistency

Checking, Editor: Nielsen, J., London, Academic Press Inc., 1989, pp: 89-92.

[202] Wiinsche, B., "A Survey, Classification and Analysis of Perceptual Concepts and

their Application for the Effective Visualisation of Complex Information",

Australasian Symposium on Information Visualisation, Christchurch, New

Zealand, Volume 35, 2004.

[203] Wiinsche, B., Lobb, R., "A Scientific Visualization Schema Incorporating

Perceptual Concepts", in Proceedings of Image and Vision Computing '01 New

Zealand (IVCNZ '01), University of Otago, Dunedin, November 2001, pp: 31-36.

[204] Zelkowitz, M. V., Wallace, D.R., "Experimental Models for Validating

Technology", IEEE Computer, Volume 31, Issue 5, 1998, pp: 23-31.

[205] Zhu, L., Babar, M.A., Jeffery, R., "Mining Patterns to Support Software

Architecture Evaluation", in Proceedings of Fourth Working IEEE/IFIP

265

Conference on Software Architecture (WICSA), Oslo, Norway, June 2004, pp: 25-

34.

[206] Zuk, T., Schlesier, L., Neumann, P., Hancock, M.S., and Carpendale, S., "

Heuristics for Information Visualization Evaluation", in Proceedings of AVI

Workshop on BEyond Time and Errors: Novel Evaluation Methods for

Information Visualization, Venice, Italy, 2006, pp: 1-6.

[207] Zuse, H., A framework of Software Measurement, Walter de Gruyter, Berlin, New

York, 1998.

266

Appendix A. The Proposed Questionnaire

Overview

This questionnaire has been refined in three iterations with suggestions from our

colleagues in human-centered software engineering lab. It was decided to use the same

scheme for all the questions, and a detailed answer for the middle choice only to see the

range of comprehension difficulties within the two extreme values ('Yes' for 100% to

'No' for 0% comprehensibility). This was also done in order to keep the question

answering efforts minimum and within the time-constraints of a controlled experiment.

A.l Glossary

Before presenting the questionnaire to the readers, we want to clarify the following

terms used in this questionnaire.

Information objects:

Information elements displayed in the visualization, like - classes, packages, interfaces

Icons:

Icons are pictorial representations of screen objects, like a picture of a house icon

meaning 'home'.

Symbols:

Symbols are signs, characters, or other concrete representations of ideas, concepts, or

abstractions that represents something, such as '$' is a symbol for dollars,'+' is a symbol

for plus, and a flag is a symbol of a country.

267

A.2 The Questionnaire

The proposed questionnaire is designed to measure each comprehension criterion as

follows.

Questions to measure Reachability criterion

1. Are you able to navigate from one location to another in the visualization?

Yes Somewhat No

If somewhat, briefly explain why?

2. Are you able to undo your manipulation operations (e.g. select, click, move etc.)

with the visualization to go back successfully to previously displayed screen?

Yes Somewhat No

If somewhat, briefly explain why?

3. Are you able to see the location of any information object with respect to an overall

context of other information objects in the display?

Yes Somewhat No

If somewhat, briefly explain why?

268

Questions to measure Simplicity criterion

1. Does the organization of menus seem logical (i.e. are the related tasks grouped

together)?

Yes Somewhat No

If somewhat, briefly explain why?

2. Is the visualization symmetrically well-represented (i.e. organized vertically or

horizontally) to utilize the screen space?

Yes Somewhat No

If somewhat, briefly explain why?

3. Is there only necessary (i.e. non redundant, reasonable) information on the screen?

Yes Somewhat No

If somewhat, briefly explain why?

269

Questions to measure Clarity criterion

1. Are you able to understand the meanings of icons/symbols/labels used in the

display?

Yes Somewhat No

If somewhat, briefly explain why?

2. Are you able to clearly identify the information objects displayed in the

visualization despite any overlapping?

Yes Somewhat No

If somewhat, briefly explain why?

Questions to measure Distinctiveness criterion

1. Are the used visual attributes (like - size, shape, color, texture etc.) for icons/

information objects appropriate to distinguish them in display?

Yes Somewhat No

If somewhat, briefly explain why?

270

2. Can the icons/symbols/labels be interpreted or expressed in only one way (i.e. there

is no ambiguity in their meaning)?

Yes Somewhat No

If somewhat, briefly explain why?

Questions to measure Emphasis criterion

1. Are you able to see the most important element in the display based on any visual

attribute like - color, motion, shape, size, texture etc.?

Yes Somewhat No

If somewhat, briefly explain why?

2. Are you able to differentiate (based on visible change in shape/color/size/brightness

etc.) the object that you select from the one that is not selected?

Yes Somewhat No

If somewhat, briefly explain why?

271

Questions to measure Affordance criterion

1. Is it easy to figure out how to use various artifacts (e.g. buttons, links, information

objects, icons and so on) in the visualization based on the given visual cues?

Yes Somewhat No

If somewhat, briefly explain why?

2. Are you able to easily manipulate (e.g., select, move, click etc.) all the artifacts (e.g.

buttons, links, information objects, icons and so on) in the visualization?

Yes Somewhat No

]f somewhat, briefly explain why?

Questions to measure Dynamism criterion

1. Are you able to understand what is going on in the animation?

Yes Somewhat No

If somewhat, briefly explain why?

272

2. Are you able to detect the location in the visualization where the critical changes

occur?

Yes Somewhat No

If somewhat, briefly explain why?

Questions to measure Appearance criterion

1. Just looking at the visualization, can you answer which information objects are

related to one another?

Yes Somewhat No

If somewhat, briefly explain why?

2. Do you think the visual design of the information objects reveals the features of the

underlying information? (For example: size of a 'class' or depth of an information

object in the information hierarchy)

Yes Somewhat No

If somewhat, briefly explain why?

273

Questions to measure Legibility criterion

1. Are the icons/labels readable?

Yes Somewhat No

f somewhat, briefly explain why?

2. Is the color used for symbols/labels in good contrast to the background color?

Yes Somewhat No

If somewhat, briefly explain why?

3. Is the font size and font type used for labels appropriate?

Yes Somewhat No

If somewhat, briefly explain why?

274

Questions to measure Perspective-ness criterion

1. Do you think with this visualization you are able to effectively perform the intended

tasks (Take an example: task 1 to show the related dependencies in a software

system)?

Yes Somewhat No

If somewhat, briefly explain w hy';

2. Do you think that there is no need of some other related views in the form of

different visualizations to fully understand the underlying system?

Yes Somewhat No

If somewhat, briefly explain why?

Questions to measure Mapping criterion

1. Are the interaction methods of input devices, like - mouse, keyboard or vests in

HMD etc., natural to you? (For example: if clicking the buttons on the mouse leads

you to what you want to do with the visualization system?)

Yes Somewhat No

If somewhat, briefly explain w hy;

275

2. Are the icons/symbols used in the visualizations similar to the one that are used in

the underlying domain? (For example: symbols used to depict relationships in

UML.)

Yes Somewhat No

If somewhat, briefly explain why?

276

Appendix B. A Survey-based Empirical Investigation

for Software Visualization

us univsrs^v

engineering & Cetnputef Science

i_ Humar:
Lertere<

Software
Engineering :
Group

Informed Consent to Participate in Research

This is to state that I agree to participate in a research study on Developing a

Framework to Measure Comprehension Support Provided by Visualization Systems

conducted at the Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada. The main researchers are: Dr. Ahmed Seffah, Dr. Sudhir

Mudur and Mrs. Harkirat Kaur Padda. Mrs. Padda, PhD candidate

(padda@encs.concordia.ca, phone 514-848-2424 ext. 7165) is in charge of the study.

A. Purpose of the study

I have been informed that the purpose of the research is to rate the tasks supported by

any software visualization tool to help in software maintenance activities. In addition, I

will be asked to comment on other task(s) that in my opinion are suitable for software

visualization tools and are not included in the list.

B. Procedure

The study is designed to ask software professionals having some experience with

software visualizations or software maintenance to share their knowledge of software

maintenance tasks supported/required of software visualization tools. You will be asked

to answer a questionnaire comprising a list of tasks supported by current software

visualization tools and rate them on a scale provided on questionnaire. In addition, you

277

mailto:padda@encs.concordia.ca

are requested to comment on additional tasks that you may think are not added in the list

and are also supported by software visualization tools for software maintenance purposes.

This should take no more than 10 minutes of your time.

We anticipate no risk to you as a result of your participation in this study other than

the inconvenience of the time to complete the questionnaire. As a result of your

participation in this study, it is hoped that we may gain valuable information about the

tasks supported by software visualization tools.

All provided information and data collection will be stored anonymously in a

database, with no information that can identify participants. Results from the survey will

be reported only in aggregate form in scientific communications like articles, workshops,

and conference presentations.

C. Copyright

The questionnaire provided below is a copyright property of the researchers

mentioned above and a reproduction of any sort is not allowed.

Name: 1

If you wish to receive the results of this study, please check the box below and

provide an e-mail address

n

Mail address: I

If at any time you have questions about your rights as a research participant, please

contact Adela Reid, Research Ethics and Compliance Officer, Concordia University, at

(514) 848-7481 or by email at areid(a),alcor.concordia.ca.

278

Questionnaire

Tasks

1. Get the execution trace of
source code

2. Get the static structure of
the software system

3. Find the location of
desired code segment

4. List of all artifacts that call
a specific artifact

5. Determine the impact of
changing an artifact
without having to do it
first

6. Does the run-time
behavior contain regular
repeated behavioral
patterns?

7. When was an exception
thrown or when did an
error occur?

8. Find the location to insert
a new artifact

Required to
accomplish
which
maintenance
activity?

(Tick all that
apply)
Corrective ~~
Adaptive P
Perfective "
Preventive "

Corrective P
Adaptive ~
Perfective P
Preventive P
Corrective ~~
Adaptive P
Perfective P
Preventive P
Corrective ~"
Adaptive P
Perfective ~
Preventive p
Corrective r*
Adaptive "
Perfective P
Preventive ^
Corrective ~"
Adaptive P
Perfective P
Preventive P-
Corrective f
Adaptive P
Perfective P
Preventive P
Corrective P
Adaptive P
Perfective P
Preventive ~

Apply to which
Software
Visualization
category?

(Tick all that
apply)

Static P
Dynamic ""

Static P
Dynamic P

Static P
Dynamic P

Static P
Dynamic P

Static p
Dynamic P

Static P
Dynamic P

Static P
Dynamic P

Static P
Dynamic P

Rate the task in
order of
importance

Not important f*
Somewhat C
Extremely f
important

Not important C
Somewhat C
Extremely C
important
Not important C
Somewhat C
Extremely C>
important
Not important C
Somewhat C
Extremely C
important
Not important C
Somewhat r
Extremely C
important
Not important C
Somewhat C
Extremely C
important
Not important C
Somewhat c
Extremely C
important
Not important C-
Somewhat f*
Extremely C
important

279

Questionnaire (continued)

; .Tasks-.

9. Add an artifact and
dependencies (if any)

10.Find an artifact that is not
used

11 .Find an artifact that is
heavily used

12.Determine which clusters
of objects are closely
related to one another,
based on the amount of
message traffic between
them

13.Find identical coding
pattern
segments within the
source code

14. What is the load on each
component of the software
system at runtime?

15. History of past
modifications?

16.Nesting Level of a
particular method

Required to
accomplish
which
maintenance
activity?

(Tick all that
apply)
Corrective P
Adaptive ~"
Perfective ~
Preventive P
Corrective P
Adaptive P
Perfective ~
Preventive ~
Corrective P
Adaptive P
Perfective "~
Preventive P
Corrective *"•
Adaptive P
Perfective P
Preventive P

Corrective P
Adaptive P
Perfective P
Preventive P

Corrective p
Adaptive P
Perfective r
Preventive p
Corrective P
Adaptive P
Perfective P
Preventive P
Corrective P
Adaptive P
Perfective ^
Preventive ""

Apply to which
Software
Visualization
category?

(Tick all that
apply)

Static P
Dynamic P

Static P
Dynamic p

Static P
Dynamic P

Static P
Dynamic P

Static P
Dynamic P

Static P
Dynamic p

Static P
Dynamic P

Static r
Dynamic P

Rate the task in
order of
importance

Not important C
Somewhat C
Extremely C
important
Not important p
Somewhat P
Extremely P
important

Not important P
Somewhat p
Extremely p
important
Not important P
Somewhat p
Extremely p
important

Not important P
Somewhat p
Extremely P
important

Not important P
Somewhat p
Extremely p
important
Not important P
Somewhat p
Extremely P
important
Not important P
Somewhat p
Extremely P
important

280

Questionnaire (continued)

Tasks

17. Where in the software
system are the hotspots to
add additional
functionality?

18. Modify the artifact and
dependencies(if any)

19.Delete an artifact and
dependencies (if any)

20.Find an exact location to
set a breakpoint

21.Find all artifacts that
directly or indirectly
depend on artifact "A" or
Find all artifacts on which
artifact "A" directly or
indirectly depends

Required to
accomplish
which
maintenance
activity?
(Tick all that
apply)
Corrective p
Adaptive P
Perfective P
Preventive P

Corrective P
Adaptive P
Perfective P
Preventive P
Corrective P
Adaptive P
Perfective P
Preventive P

Corrective "*
Adaptive r~
Perfective P
Preventive P
Corrective P
Adaptive P
Perfective P
Preventive P

Apply to which
Software
Visualization
category?

(Tick all that
apply)
Static p
Dynamic p

Static P
Dynamic P

Static p
Dynamic P

Static p
Dynamic P

Static P
Dynamic p

Rate the task in
order of
importance

Not important C
Somewhat C-
Extremely f
important

Not important C
Somewhat C
Extremely C
important
Not important C
Somewhat C
Extremely C
important

Not important C
Somewhat r
Extremely 0
important

Not important C
Somewhat C
Extremely C
important

Comments on additional tasks that you may think are not added in the list and are
also supported by software visualization tools for software maintenance purposes.

I 1

iLJ':: . .., ^

281

Appendix C. Proposed Visualization Patterns

Title Radial tree

Context
The display consists of a number of software objects (packages*

c] a s s e s ^ a arKj interfaces ^ " ^) , and their inter-relationships or structural

dependencies in the source code.

Problem How to display large hierarchical tree structures showing dependencies

among software objects?

Forces To visualize and navigate large trees in a radial space

Get an overview of the entire collection of data

Zoom in on a particular item while keeping in view of the

neighbourhood context

Filter out uninteresting or unwanted items

Get details on demand by simply clicking on an item to get a pop-up

window which shows the values of each of its attributes

View relationships among software objects directly

Get history of the actions performed with visualization

Extract sub-collections of items based on query parameters

Solution Use a Radial Tree representation

» :

To display the detailed picture of relationships between application

objects and detailed map of dependencies and dependents of every package,

class or interface in an application. The idea is to display different software

objects and their relationships in a radial fashion, where the object nodes

are placed around the circle and their relationships are shown with directed

lines emanating from the source to destination node.

Examples Sunburst, RadViz

282

Title Pyramid or Skeleton View

Context
The display consists of a number of software objects (package

classes™"*> and interfaces*"™), and their inter-relationships or structural

dependencies in the source code are shown indirectly by highlighting the

dependent items when a user clicks on an item under selection.

Problem How to display large hierarchical tree structures showing dependencies

among software objects?

Forces To visualize and navigate large software structures within fixed space of

a computer screen

Overview of entire structure of software system in the form of pyramid

of small squares

Details on demand by providing a 'data tip' to access the detailed

information about any object under selection

View relationships among software objects in-directly

Get history of the actions performed with visualization

Extract sub-collections of items based on query parameters

Solution Use a Skeleton View

Examples

This layered view of the system is constructed by putting objects (class/

interface/package) that do not depend on anything at the bottom of the

visualization. The objects that are dependent on the lowest layer appear in

the layer above, and so on. Each square corresponds to either one object

(class/interface/package) or one tangle (a square with many objects that

change together).

Icicle plot

283

Title Nested View

Context The display consists of a number of software objects (packages'—', classes

I I and interfaces!—I) and their inter-relationships or structural

dependencies in the source code.

Problem How to display large hierarchical tree structures showing dependencies

among software objects?

Forces To make efficient use of the available screen space, as tree structured

node-link diagrams can grew too large to be useful

Overview of entire structure of software system in the form of nested

rectangles

Zoom in on a particular item while keeping in view of the

neighbourhood context

Filter out uninteresting or unwanted items

Details on demand by clicking on any object under selection

View relationships among software objects directly

Extract sub-collections of items based on query parameters

Solution Use a Nested View

ii-o!^LE;ya==k=^;

A space filling approach of visualizing large hierarchical data sets

(packages, classes and interfaces) and their inter-relationships or structural

dependencies in the source code. It allows to visualize the hierarchical

structure (tree) by representing (mapping) the nodes with nested rectangles.

The relationships among nodes are shown directly with directed lines

emanating from source to destination node.

Examples PhotoMesa Image Browser, SmartMoney, HoneyComb, NewsMap

284

Title

Context

Tree

The display consists of a number of software objects (packages

classes! I and interfaces!—I) and their inter-relationships or structural

dependencies in the source code.

Problem How to display large hierarchical tree structures showing dependencies

among software objects?

Forces To visualize and navigate small software structures within fixed space of

a computer screen

Overview of entire structure of software system in the form of nodes and

links

Zoom in on a particular item while keeping in view of the

neighbourhood context

Filter out uninteresting or unwanted items

Details on demand by clicking on any object under selection

View relationships among software objects directly

Extract sub-collections of items based on query parameters

Solution Use a Tree View

It displays the hierarchical structure (tree) by representing an acyclic

graph of a set of nodes and their relationships. Nodes may represent

software objects like packages, classes, interfaces and so on. Edges may

represent semantic relationships among those software objects. In this

structure, each element may be logically followed by two or more other

elements, there is one element with no predecessor called the root node,

every other element has a predecessor, and there are no circular lists.

Examples Visualize it!

285

Appendix D. Participant Evaluation Form

Thank you for completing this form based on your own background and experiences. All

responses will remain anonymous and results will be used solely for research purposes.

D.l Participant's Profile

1. Age: years

2. Gender: • Male • Female

3. What is your first language?

• English • French • Other (Please specify):

4. What is your field of study?

5. What is your highest level of education?

6. What is your current position/employment?

• Professor • Student • Employee

• Other (Please specify):

7. Are you a left-handed person? • Yes • No

8. Do you wear glasses? • Yes • No

9. Color Blinded-ness i.e. difficulty in distinguishing certain colors?

• No • Yes (Please specify):

286

D.2 Software Visualization and Maintenance Knowledge

1. How many graduate-level software maintenance courses have you taken?

• None D 1-2 • >2 courses

2. How would you rate your knowledge of the Software Maintenance?

• None • Basic • Intermediate • Advanced

3. Have you ever used any Visualization tool?

• No D Yes If yes, which one(s) and for what purpose?

4. How would you rate your experience with Software Visualization tools (i.e. Creole

and Structural Analysis for Java (SA4J)?

• None • Basic • Intermediate • Advanced

D.3 Application Experience

1. How would you rate your experience with Java language?

• None • Basic • Intermediate • Advanced

D.4 Hobbies and Interests

1. Please list some of your hobbies and interests below:

Thank You!! » J

287

Appendix E. Informed Consent to Participate in

Research

-'"" - «W5¥lRSiTf t Human

C^Concordia "v*^ s ^ ^ ,
\rS , < 'engineering
^ U N I V E R S I T Y ' X Group

This is to state that I agree to participate in a research study on Developing a

Framework to Measure Comprehension Support Provided by Visualization Systems

conducted at the Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada. The main researchers are: Dr. Ahmed Seffah, Dr. Sudhir

Mudur and Harkirat Kaur Padda. Harkirat Padda, a PhD candidate

(padda@encs.concordia.ca, phone 514-848-2424 ext. 7165) is in charge of the study.

E.l Purpose of The Study

I have been informed that the purpose of the research is to evaluate two software

visualization tools, Structural Analysis for Java (SA4J) and Creole. These tools visualize

the static structure of a Java software system depicting the dependencies among various

software objects using the underlying visualization techniques. The tool SA4J uses two

techniques, i.e. 'radial visualization' and 'pyramid or skeleton visualization', to show the

static structure of a Java program. Creole uses techniques like 'treemap' and 'tree'

visualization to represent the structure of a Java software system. For the comprehension

study, these four visualization techniques will be considered.

288

mailto:padda@encs.concordia.ca

E.2 Procedure

The study is designed to ask software professionals, having knowledge and

experience in the field of software maintenance and visualizations in general, to explore

the two software visualization tools - SA4J and Creole. You will be asked to answer a

questionnaire comprising of 23 multiple choice questions for each of the 4 visualization

techniques, and to accomplish 1 simple task using these visualization tools. This should

take no more than 120 minutes of your time.

For the purposes of the study, an audio and video recording of your interactions with

the tools will be stored in the database.

We anticipate no risk to you as a result of your participation in this study other than

the inconvenience of the time to complete the questionnaire and to use the visualization

tools. While there may be no immediate benefit to you as a result of your participation in

this study, it is hoped that we may gain valuable information about your experiences to

develop a comprehension measurement framework.

All provided information and data collection will be stored anonymously in a

database, with no information that can identify participants. Results from this study will

be reported only in aggregate form in scientific communications like articles, workshops,

and conference presentations. A complete summary of the results will be published in a

thesis.

If you wish to receive the results of this study, please check the box below and

provide an e-mail address.

Name:

• Mail address:

289

E.3 Conditions of Participation

• I understand that I am free to withdraw my consent and discontinue my participation

at anytime without negative consequences.

• I understand that my participation in this study is CONFIDENTIAL (i.e., the

researcher will know, but will not disclose my identity)

• I understand that the data from this study may be published.

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS

AGREEMENT. I FREELY CONSENT AND VOLUNTARILY AGREE TO

PARTICIPATE IN THIS STUDY.

NAME (please print)

SIGNATURE

If at any time you have questions about your rights as a research participant, please

contact Ms. Adela Reid, Research Ethics and Compliance Officer, Concordia University,

at (514) 848-7481 or by email at areid(a),alcor.concordia.ca or Adela.Reid(fb,concordia.ca

290

Appendix F. Checklist for Study

F.l Before the Test Begins

1. The following documents should be ready:

a. Consent form

b. Pre-test questionnaire

c. Task document

d. Visualization patterns documents

e. Post-test questionnaires

2. Tools should be running and software program should be parsed.

3. Webcam should be adjusted for sharp image.

4. Both the microphone sets should be adjusted to same 'RF channel' and should be

powered on throughout the recording.

5. Morae Recorder settings should be set as follows:

a. File name should be given for saving the recording

b. Check that the folder for saving the recording is not changed

c. Capture options should be ticked for microphone, keystrokes, screen text and

mouse clicks

d. Ensure that the 'mouse clicks' options should be ticked for highlighting the

effects of left mouse clicks, middle mouse clicks, and right mouse clicks

e. Visibility during recording should be set to 'minimize to tray'

f. 'Start details' and 'Stop details' should be adjusted to manual setting

g. The Settings option under the Record menu should be adjusted for 'Lossless

video' and the audio of the wireless device should be set to maximum

291

6. For SA4J: Make sure the UI skin is adjusted to 'Structural Analysis'

7. For Creole: Make sure the Node Labels are adjusted to Above Node (fixed) and

Navigation to 'Fisheye'

8. Perform a test recording to make sure that recording will be successful and is audible

later on.

F.2 During the Test

1. Welcome the participant

2. Get consent form signed

3. Get the pre-test questionnaire filled in

4. Give visualization patterns for the coaching session

5. Give the task document and the questionnaires

6. Persuade them to think-aloud while performing the assigned task

F.3 After the Test

1. Ask a final question: rank the four visualization techniques in order of your likeability

to depict the static structure of underlying software system?

2. Ask the participant for signatures after giving a thanking gift.

292

Appendix G. Analysis of Participants' Responses

1. Are you able to navigate from one location to another in the visualization?

Radial

Some
wha t , N o

0% \ / 0 %

Yes
100%

Pyramid

No
7% i

Some

Yes
80%

NestedView

Some
what N o

20% 0 %

Yes
80%

Tree

No
7%:

Some
w h a t ^ L ^

13%H^B
Yes
80%

2. Are you able to undo your manipulation operations (e.g. select, click, move etc.) with

the visualization to go back successfully to previously displayed screen?

Radial

No
Some 0%

what — 3 « g ^
13% f | ^ k

Yes
87%

Pyramid

Yes
^n^^33%

60% l ^ ^ S 0 / " 6
^-- what

7%

NestedView

Yes
13%

40%(JH^ Some

Tree

Yes
20%

(^ ^ Some
N o V _ ^ ? x what

67% ^ " ^ 13%

3. Are you able to see the location of any information object with respect to an overall

context of other information objects in the display?

Radial

Some
what —
27%

No
0%

n^
^ ^ ^ Y e s

73%

Pyramid

Yes

No / " ~ ^ 3 3 %
4 7 % vJL s ° m r V_fiSK w h a t

20%

NestedView

No
7%

S - * ^ ^

27% 66%

Tree

No
20%

^ ^ 5 Y 3 %

what
27%

4. Does the organization of menus seem logical (i.e. are related tasks grouped

together)?

293

Radial

No
Some 0%

Yes
80%

Pyramid

No
Some 0%
what — j j S l i ^ ^
20% H ^ B

Yes
80%

NestedView

Some N o

what ^ J > %
7% ^ ^

Yes
93%

Tree

Some N o

what ^ ^ 0 %
7% ^ ^

fP
Yes
93%

5. Is the visualization symmetrically well-represented (i.e. organized vertically or

horizontally) to utilize the screen space?

Radial

No
13%

Some /
what \ ^ . - ^ - ^ ^
7% ^ ^ P A

Yes
80%

Pyramid

Yes
7 % \ Some

,—Mb. z what

NestedView

No

Some 1 3 " ; *

what " ~ ^ ^ ^ ^

0% M ^ B
Yes
87%

Tree

No

Some
what
20%

6. Is there only necessary (i.e. redundant, not reasonable) information on the screen?

Radial

Some N o

iB^n
^H^V

Yes
87%

Pyramid

No
Some ; jo/
what x ,'

13% \ j f ^

IP Yes
80%

NestedView

No
13%
/

Some J-^^
what fwjI^VA
13% mj^mm

^ ^ Yes
74%

Tree

Some
what ^
20%

No
, ! 7%

|§ ^ ^ ^ Y e s
73%

7. Are you able to understand the meanings of icons/symbols/labels used in the

display?

294

8. Are you able to clearly identify the information objects displayed in the

visualization despite any overlapping?

Radial

No
(7 %
1

Pyramid

No
20%

j Yes

Some
what
4 7 %

NestedView

No
20%

j

Some
what
33%

Tree

Yes

No 2 0 %

—58** \ ^ what
27%

9. Are the used visual attributes (like - size, shape, color, texture etc.) for

icons/information objects appropriate to distinguish them in display?

Radial

Some N o

Yes
87%

Pyramid

No
1 3 % \ Yes

\ Some
\ what

87%

NestedView

No
f 7 %
l

66%

Tree

Some
what ^
13%

No

\ / 0 %

Yes
87%

10. Can the icons/symbols/labels be interpreted or expressed in only one way (i.e. there

is no ambiguity in their meaning)?

Radial

No
13%

Yes

Some
what
67%

Pyramid

No
33%

Some
what
27%

NestedView

No

f7 %
Some I

what " \ d~^±.
20% j ^ ^

^ ^ ^ Y e s
73%

Tree

No
13%

Some /
what ~^^ i - ^ ^
7% ^ ^ ^ k

Yes
80%

11. Are you able to see the most important element in the display based on any visual

attribute like - color, motion, shape, size, texture etc.?

295

Radial
Some

what N o

0 % / 0 %

•
Yes

100%

Pyramid

No
27%

f " ^ ^ 60%
Somef
what J
13%

NestedView

No
27%

Some H^FYes

what / 66%
7%

Tree

No
Some 13%
what -. I

Yes
87%

12. Are you able to differentiate (based on visible change in shape/color/size/brightness

etc.) the object that you select from the one that is not selected?

Radial
Some
what I^Q

0 % / 0 %

Yes
100%

Pyramid

Some No
what % f 7o/0

0% \ J

4fc
Yes
9 3 %

NestedView

Some
wha t A No
7% \ / 0 %

4»
Yes
9 3 %

Tree

Some
what - \
2 0 %

No
/ 0 %

Yes
8 0 %

13. Is it easy to figure out how to use various artifacts (e.g. buttons, links, information

objects, icons and so on) in the visualization based on the given visual cues?

Radial

No
/ o%

Pyramid

No
13%

/

Some
w h a t J

4 0 %

NestedView

No
1 3 %

Somej
what -'
4 0 %

Tree

No
3 3 %

Some
what
2 0 %

14. Are you able to easily manipulate (e.g., select, move, click etc.) all the artifacts (e.g.

buttons, links, information objects, icons and so on) in the visualization?

296

Radial

No
13%

S o m e / ^ ^ 5 4 %

what ^
33%

Pyramid

No
20%

I

13% 6 7 %

NestedView

No
13%

Somel
what J
40%

Tree

No

15. Just looking at the visualization, can you answer which information objects are

related to one another?

Radial

No

mf^k Yes
Some i i l g ^ p 4 / %

53%

Pyramid

Yes
KI„ 13% No ^ - ^ ^

5 4 % \ / H & Some
\ M P - what
V J P ^ 33%

NestedView

No

I ^P^k Yes
Some < W ^ P 4 / %

5 3 %

Tree

Some

2 0 %

No
1 3 %

6 7 %

16. Do you think the visual design of the information objects reveals the features of the

underlying information? (For example: size of a 'class' or depth of an information

object in the information hierarchy)

Radial

No Y e s

4 6 % \ ^ ~ ^ : ' 0 / °

\ Some
^ what

2 7 %

Pyramid

Yes
1 3 %

e£K(J|/ £

NestedView

Yes

7% Some

I ™ l 20%

7 3 %

Tree

No
2 7 %

ys^r
Some
what
33%

17. Are the icons/labels readable?

297

Radial

Some ^

Yes
87%

Pyramid

Some jgo

Yes
80%

NestedView

Some N°

^ ^ ^ Y e s
73%

Tree

No Y e s

\ Some
^ what

13%

18. Is the color used for symbols/labels in good contrast to the background color?

Radial

No

67%

Pyramid

Some ^

^ ^ ^ Y e s
73%

NestedView

No
Some •] 2%
what >. /
0% \ /

Yes
87%

Tree
Some
what MO
0% / o %

•
Yes

100%

19. Is the font size and font type used for labels appropriate?

Radial

Some (^

Yes
87%

Pyramid

Some
what. No
7% \ / 0 %

•
Yes
93%

NestedView

No
13%

20% 6 ? %

Tree

No

20. Do you think with this visualization you are able to effectively perform the intended

tasks (Take an example: task 1 to show the related dependencies in a software

system)?

Radial

Some

7% \ / 0 %

ik
•B ^P Yes

93%

Pyramid

Yes
13%

(HI— N°_-V_y
7 4 %

Some
what
13%

NestedView

27%

U-^Yes
(11 - ^ B 4 U %

^ ^ ^ ^

Some
what
33%

Tree

No Yes
4 0 % ' i ^ ^ 2 7 %

(JBfc \MW
\ Some

\ what
33%

298

21. Do you think that there is no need of some other related views in the form of

different visualizations to fully understand the underlying system?

Radial

No
67% "

Yes
13%

(« —
Some

- what
20%

Pyramid

Some
what
no/ Y e s

fa
No /

100%'

NestedView

Some
what

Yes 27%

73% ""

Tree

N o
60% \

Yes
/ ^ ^ 3 3 %

^- ^ \ Some
^ what

7%

22. Are the interaction methods of input devices, like - mouse, keyboard or vests in

HMD etc., natural to you? (For example: if clicking the buttons on the mouse leads

you to what you want to do with the visualization system?)

Radial
Some
what N o

° % / 0 %

•
Yes

100%

Pyramid

Some N o

Yes
87%

NestedView

Some
what , N o

Yes
93%

Tree
Some
what N o

° % /0%

Yes
100%

23. Are the icons/symbols used in the visualizations similar to the one that are used in

the underlying domain? (For example: symbols used to depict relationships in

UML.)

Radial

Some
what -
47%

N o
/ 0 %

/ ifflF^^
n^^B ""~

Pyramid

Some
Yes , what
0%~~- _ / 13%

^ - \ / / > m . (W\

8 7 %

NestedView

N o

40%!
i / " " " ^ . Yes

f J^"0%

Some
what
20%

Tree

Some
what -~~
20%

N o
1 3 %

/
^-^^ A'T^k

6 7 %

299

G.l Normal Distribution Curves for Radial Technique

-t 0

0.02 -

0.015 -

0.01 -

0.005 -

. I

/ \

y x
I 50 100

I ReachabilityDistribution

Mean (p) = 93.33
Standard Deviation (cr) =

150 200

• DataPoints

17.18

2 ' iO

-1 50
I

-100

_Q.Q4Q.__

0.016 -

0.014 •

0.012 -

0.01 -

0.008-

0.006 -

,0.004-

0.002 -

„ „ n, i

-50 1
n n m

/

/

/

J
t 50 100

SimplicityDistribution •

Mean (p) = 88.88
Standard Deviation (cr) = 25.86 !

i
f

150 200 250 31

DataPoints

DO

300

http://_Q.Q4Q.__

f

{
{

1
I

i

-1 50 -100

0.016 -]

0.014 •

0.012 -

0.01 -

0.008 -

0.006-

0.004 -

0.002-

-50 (

.._ . . „ . „

Mean (|j) = 76.67
Standard Deviation (a) = 28.56

/ \ !

/ \ !

/ \ 1

J \ |

1 50 100 150 200 250 300

ClarilyDistribution • DataPoints

-2 DO -150 -100

0r014-i

0.012 •

0.01 -

0.008 -

0.006 -

0.004 -

0.002-

-50 (

..., ._ ,.,

I 50 100

DistinctivenessDistribution

. . . , „ „ „

Mean (JJ) = 73.33
Standard Deviation (cr) = 31.44

150 200 250 300 350

• DataPoints

301

1 n

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

n -

c) 20 40 BO

EmphasisDistribution

Mean (\i) = 100
Standard Deviation (oj = 0

80

• DataPoints

100 1: 20

I , , r—

-2bO -150 -100 -50

Mean (p) = 73.33
Standard Deviation (cr) = 31.44

150 200 250 300 3§0

304302̂

-AffordanceDistribution • DataPoints

302

s

i

-3(B -200

n n n

001 -

0.008. •

0.006 •

0.004 •

oW-

^"T- „!n.

-100 (

n nrv?

/ \ • "

l 100

AppearanceDistribution •

Mean (p) = 5B.67
Standard Deviation (cr) = 38.80

\ i

200 300 400

DataPoints

-1 30 -50

n n^

0.02 -

0,015 -

0.01 -

0.005 -

U
(

n nn^

A

Mean (p) = 90
Standard Deviation (cr) = 20.22

/ \ !

/ V :

J V
1 —1 - « , 1 •' 1

1 50 100 150 200 250

LegibilityDistribution • DataPoints

303

-3 JO -200

Q..Q1 _

0.009 -

0.008 -

0.007 -

0.006-

0.005-

0.004 -

0.003/-

0.002 -

01301 -

/ n

??° oooti
1

1 100

PerspectivenessDistribution

Mean (p) = 60
Standard Deviation (a) = 46.23

- v .
T E I I

200 300 400 500

• DataPoints

-1 30 -50

n n? .

0.015-

0.01 -

0.005-

n

(

n nn*?

/ *

J
\ 50 100

MappingDistribution

Mean (JJ) = 88.33
Standard Deviation (a) = 21.50

150 200 250 300

• DataPoints

304

G.2 Normal Distribution Curves for Pyramid Technique

j

j

-4 DO -300 -200

0.008-

0.007 -

0.006 -

0.005 -

O.OO4)

0.003/-

0.002 -
/

•0IJO1 -

•S 0
-100 t

n nni
i 100

ReachabilityDistribution •

Mean (p) = 55.55
Standard Deviation (cr) = 46.73 1

i

2 00

DataPoints

1 1 1

300 400 5Q0

-3]0
1

-200

n ni~>

0 01 -

0.008 -

0.006-

0.004 -

0.002/

1 . . f l • • •

100 (

Mean (̂ J) = 66.67
Standard Deviation (cr) = 41.28

l 100 200 300 4(

LMJUr— -

SimplicityDistribution • DataPoints

O

305

sfttw^fc
Mean (p) = 63.33
Standard Deviation (o) - 31.98

— , , , 1

100 150 200 250 300 3§0 -200 -150 -100

ClarityDistribution • DataPoints

QMA
Mean {\i) = 48.33
Standard Deviation (cr) = 33.43

-3fiDt MM illffll m&i, mo
^082^

•DistinctivenessDistribution • DataPoints

306

-3 30 -200

n m A

0.012 -

0.01 -

0.008 -

0.006 -

0.004 j

0.001-

^ n

100 (
n nni

I

EmphasisDistribution

Mean (M) = 80
Standard Deviation (cr) = 38.50

x
100 200 300 400

• DataPoints

-3 30
1

-200

„£Ln±3__ - -

0.01 -

0.008 -

0.006-

0.004 -

0.002 i

A
100 (

n nrn

t

I

AffordanceDistribution

Mean (p) = 70
Standard Deviation (cr) = 38.50

V

\

X ^

100 200 300 4[

• DataPoints

10

307

r^y^y^fr"
Mean (p) = 28.33
Standard Deviation (a) = 36.39

3pn:;: 200

-aelp
§ilo

-AppearanceDistribution • DataPoints

-1 30.
1

-50

n n?£

0.02-

0.015 -

0.01 •

0.005 •

n
u

(

- -0.005 -

f\
Mean ftj) = 91.11
Standard Deviation (o) = 19.33

/ \

/ \

J V
^y \ ^

I 50 100 150 200 2J

LegibilityDistribution • DataPoints

iO

308

Mean ftj) = 10
Standard Deviation (a) = 27.54

250 -200 -150 -100 150 200 mo
SBTOOS*

•PerspectivenessDistribution • DataPoints

nj&QQfe
Mean (\i) = 50
Standard Deviation (a) = 47.34

4«B W&. i i f t f i e^
3005 500

MappingDistribution • DataPoints

309

G.3 Normal Distribution Curves for NestedView Technique

Mean fo) = 68.88
Standard Deviation (a) - 37.36

3011 -200 -100
-STOO^

-ReachabilityDistribution • DataPoints

;3DD| MD

-1: 50
1

-100

n m A

0.012 -

0.01 -

0.008 -

0.006 -

0.004 -

0.002 -

n J

-50 { I •''-.' 50 100

— SimplicityDistribution

Mean (p) = 87.77
Standard Deviation (a) = 30.44

150 200 250 300 350

• DataPoints

310

-2 M -100

n n u

0.012 •

0.01 -

. 0.008 -

0.006 -

0.004 -

0.002 -

. . _ o-o
(l 100

ClarityDistribution

Mean (p) = 73.33
Standard Deviation (a) = 34.07

'

200 300 400

• DataPoints

-2 30 -150 -100

_ n.(iiA_

0.012 -

0.01 -

0.008 -

0.006-

0.004 -

0.002 -

-50 (

A
/ \
/ ^

I 50 100

DistinctivenessDistribution

Mean (p) = 81.67
Standard Deviation (a) = 30.74

L *

\ i

150 200 250 300 3!

• DataPoints

iO

311

-2 DO -150

n m A

0.012 •

0.01 -

0.008 -

0.006-

0.004 -

0.002 -

-100. -50 (
rLnryx-

5 0 - 1 0 0

EmphasisDistribution •

Mean (p) = 83.33
Standard Deviation (a) = 35.55 I

|

150 200 250 300 350

DataPoints

-3 30
t

-200

n ni"*

0.01 -

0.008 -

0.006-

0.004-

0.002 t

-4
100 (

n nn*?

Mean (p) = 66.67
Standard Deviation (o-) = 35.55

!
!

I
:
i

/ \ t

i \

t . 100 . 200 300 4

AffordanceDistribution • DataPoints

i

00

!

312

-3]0 -200

nn i9 .

V 0.01 •

0.008-

0.006-

O.cW-

O.0JB2 -

- ^ * \ n.„.

-100 1

n nfp

Mean (p) = 45
Standard Deviation (tj) =

l 100 200 300

—— AppearanceDistribution • DataPoints

- 40.15 I

;

;

j

4Q0

i

-200 -150 -100

n m 4

0.012 -

0.01 •

0.008 -

0.006 -

0.004 -

0.002 -

-50 1
n n m

•

Mean (p) = 83.33
Standard Deviation (<r) = 31.98

/ V
i: 50 100 150 200 250 300 3!

• u . u u i

LegibilityDistribution • DataPoints

iO

313

dGMti?
Mean (\i) - 35
Standard Deviation (a) = 39.71

— i —

2X3
— • —

300 301 m®<
^s|j:Q|j^*i.

•PerspectivenessDistribution • DataPoints

fm

1

-300 -200 -1

n m n

0.01 -

0.008-

0.006-

0.004 -

0.002i

- < i U

00 (

n nn?

Mean (\i) = 73.33
Standard Deviation (<r) = 40.96

1 \

1 100 200 300 4(

MappingDistribution • DataPoints

10

314

G.4 Normal Distribution Curves for Tree Technique

rGHBfc
Mean (p) = 60
Standard Deviation (a) = 44.72

— J —

400 3O0j ;-20£S
^OrEftJT*" mm

ReachabilityDistribution • DataPoints

MO

n n i A

-200 -100

0.012 -

0.01 -

0.008 •

0.006-

0.004 -

0.002-

(
n n m

I 100

SimplicityDistribution

Mean (p) = 81.11
Standard Deviation (cr) = 34.19

5

j

i
i
i
3
i

i
3

3

200 300 400

• DataPoints

315

-mh

"MSM,

>:Q:Q04?

Mean (p) =61.67
Standard Deviation (a) = 42.91

-300; -IWl

J^€M382~

ClarityDistribution • DataPoints

13001 I»0

n n i c

!
1
t
t
t

i

1

i

-150 -100

0.014 -

0.012 •

0.01 -

0.008 -

0.006 -

0.004 -

0.002 -

n •

-50 (
n n r n

Mean (\i) = 88.33
Standard Deviation (a) = 28.41

I 50 100 150 200 250 300 :

DistinctivenessDistribution • DataPoints

- 1

350

316

rBMBl
Mean (|j) = 88.33
Standard Deviation (cr) = 28.41

-150 -100 50 100 150 200 250 300 350
ift982-

-EmphasisDistribution • DataPoints

'

-3 DO -200

n m i

0.01 -

0.008-

0.006 -

0.004 -

0.002 J

-fT ft..

100 (

Mean (|j) = 68.33
Standard Deviation (cr) = 38.24

^ s ^ i
i

1 100 200 300 400

-U.UU2 J "•

AffordanceDistribution • DataPoints

317

n ni*">

—!
-100

Mean (p) = 66.67
Standard Deviation (cr) = 40.11

-30M aoffi; 3001 ««J0

AppearanceDistribution • DataPoints

^y_y^2^-.

Mean (p) = 73.33
Standard Deviation (cr) = 39.31

-LegibilityDistribution • DataPoints

318

!^"J~4XT"?

•-ffiflBF

Mean (pj = 40
Standard Deviation (a) = 44.33

PerspectivenessDistribution • DataPoints

-1 50
1

. -100

n niK

0.014 -

0.012 -

0.01 -

0.008 •

0.006 -

0,004 -

0.002 -

n '

-50 (
-0:002—

* 1

50 100

— MappingDistribution

Mean (p) = 88.33
Standard Deviation (cr) = 28.41

150 200 250 300 3i

• DataPoints

iO

319

Appendix H. Analysis of Variance (ANOVA)

Overview

ANOVA is a powerful and versatile statistical technique that is a primary used to

compare the means of several groups of observations (Turner and Thayer, 2001). The

analysis is based upon the theory that the samples come from normally distributed

populations with the same standard deviation. It is assumed that the variable of interest is

normally distributed within each group and that each group has the same standard

deviation for that variable. The total variance of any sample data set is partitioned into

two classes - between-group variability and within-group variability. The between-group

variability measures how the sample mean of each group differs from the overall or grand

mean. Within-group variability is used to estimate the variation within each group, and it

measures the variation about the mean of each group. The main goal in ANOVA is to see

whether or not the between-group variability is significantly greater than that of within-

group variability. This difference helps to determine if the groups came from different

populations or not.

H.l One-Way ANOVA Test

The total comprehension score for each of the participant is shown in Table H.l.

These values are then used to perform one-way ANOVA test to confirm the groupings of

participants into experts, intermediates, and novices for each visualization technique as

shown in Tables H.2 to H.5. In all the tables from H.2 to H.5, the degree of freedom

between groups is 'k-T and degree of freedom within-groups is 'N-k' (where 'k' is the

number of groups i.e. 3 in our case, and 'N' is the number of participants i.e. 15)

320

Table H.1: Total Comprehension Score of Each Participant

Participant#

M: Male

F: Female

1(F)

2(M)

3(M)

4(M)

5(M)

6(F)

7(F)

8(M)

9(M)

10(F)

11(M)

12(F)

13(M)

14(F)

15(F)

Category

E: Expert

I: Intermediate

N: Novice

E

E

I

E

I

E

E

I

N

I

N

E

N

I

N

Total Comprehension Score

Radial

Technique

87.5

83.3

80

82.5

74.17

85

83.33

84.16

95

68.33

85

95

56.67

69.16

71.67

Pyramid

Technique

56.67

64.16

50

64.16

62.5

60

49.17

64.16

43.33

50

81.67

60.84

36.67

45.83

55.83

Nested View

Technique

58.34

69.17

70.83

81.67

60.83

69.17

65.84

80.83

75

65.84

81.67

63.33

53.34

79.16

72.49

Tree

Technique

85.84

74.16

67.5

77.5

56.67

72.5

70.01

80.83

58.33

69.17

78.34

85.83

65.01

60.84

71.67

321

Table H.2: ANOVA Results for Radial Technique

Radial Technique Summary

Groups

Experts

Intermediates

Novices

ANOVA

Source of

Variation

Between Groups

Within Groups

Total

Count

6

5

4

Sum

516.63

375.82

308.34

Average

86.105

75.164

77.085

Variance

22.17055

47.01363

276.563

Sum of

squares

(SS)

374.5079

1128.596

1503.104

Degrees

of

freedom

(df)

2

12

14

Mean

square

variance

(MS)

187.254

94.04968

F

1.991011

P-value

0.179183

F crit

3.885294

Table H.3: ANOVA Results for Pyramid Technique

Pyramid Technique Summary

Groups

Experts

Intermediates

Novices

ANOVA

Source of

Variation

Between Groups

Within Groups

Total

Count

6

5

4

Sum

355

272.49

217.5

Average

59.16667

54.498

54.375

Variance

31.90559

68.24612

394.1977

Sum of

squares

(SS)

80.34918

1615.106

1695.455

Degrees

of

freedom

(df)

2

12

14

Mean

square

variance

(MS)

40.17459

134.5921

F

0.298491

P-value

0.747288

F crit

3.885294

322

Table H.4: ANOVA Results for NestedView Technique

Nested View Technique Summary

Groups

Experts

Intermediates

Novices

ANOVA

Source of

Variation

Between Groups

Within Groups

Total

Count

6

5

4

Sum

407.52

357.49

282.5

Average

67.92

71.498

70.625

Variance

61.87168

73.01447

147.794

Sum of

squares

(SS)

38.32758

1044.798

1083.126

Degrees

of

freedom

(df)

2

12

14

Mean

square

variance

(MS)

19.16379

87.06653

F

0.220105

P-value

0.805603

F crit

3.885294

Table H.5: ANOVA Results for Tree Technique

Tree Technique Summary

Groups

Experts

Intermediates

Novices

ANOVA

Source of

Variation

Between Groups

Within Groups

Total

Count

6

5

4

Sum

465.84

335.01

273.35

Average

77.64

67.002

68.3375

Variance

46.21652

85.22057

74.12596

Sum of

squares

(SS)

367.1706

794.3428

1161.513

Degrees

of

freedom

(df)

2

12

14

Mean

square

variance

(MS)

183.5853

66.19523

F

2.773392

P-value

0.102306

F crit

3.885294

323

Using the same tabular data as depicted in Table H.l, the one- way ANOVA test is

performed for two groups of 7 females, and 8 males having 1 degree of freedom between

groups and 13 degrees of freedom within group as shown in Table H.6.

Table H.6: ANOVA Results for Females' and Males' scores

Visualization technique

Radial

Pyramid

NestedView

Tree

F

0.000332

0.547128

0.730557

0.668854

P-value

0.985735

0.47264

0.408179

0.428187

F crit

4.667193

4.667193

4.667193

4.667193

H.2 One Factor Repeated Measure ANOVA

One factor repeated measure ANOVA was applied to test the variation in the sample

of participants for each of the individual technique, as the same participants were

repeatedly testing each technique. The tabular data depicted in Table H.l is rewritten in

Table H.7 for the purposes of following calculations.

Number of participants = 15

Number of techniques = 4

Therefore N (total number of scores) = 15 *4 = 60

IX or T (i.e. sum of all the scores) = 4167.49

Therefore, T2/N = 289466.2

IX2 (i.e. sum of squares of all scores) = 299249

324

Table H.7: Comprehension Score of a Participant for Each Technique

Participant#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ColumnSUM

Radial
87.5
83.3

80
82.5

74.17
85

83.33
84.16

95
68.33

85
95

56.67
69.16
71.67

1200.79

Pyramid
56.67
64.16

50
64.16

62.5
60

49.17
64.16
43.33

50
81.67
60.84
36.67
45.83
55.83

844.99

NestedView
58.34
69.17
70.83
81.67
60.83
69.17
65.84
80.83

75
65.84
81.67
63.33
53.34
79.16
72.49

1047.51

Tree
85.84
74.16

67.5
77.5

56.67
72.5

70.01
80.83
58.33
69.17
78.34
85.83
65.01
60.84
71.67

1074.2

RowSUM
288.35
290.79
268.33
305.83
254.17
286.67
268.35
309.98
271.66
253.34
326.68

305
211.69
254.99
271.66

SSBETWEEN PARTICIPANTS
 = ((sum of squares of all RowSUM scores)/Number of

techniques)) - T7N = 2902.728

SSJECHNIQUES
 = ((sum of squares of all ColumnSUM scores)/Number of participants)) -

T2/N = 4339.623

SSpARTlClPANTS * TECHNIQUES = £ X 2 - TVN - SSBETWEEN PARTICIPANTS ~ SSjECHNlQUES =

2540.47

df (BETWEEN PARTICIPANTS) = Number of participants- 1 = 14

df (TECHNIQUES) = Number of techniques - 1 = 3

The ANOVA results for all the four visualization techniques is shown in Table H.8

325

Table H.8: One Factor Repeated Measures ANOVA Results

Groups

Radial

Pyramid

NestedView

Tree

ANOVA

Source of

Variation

SSBETWEEN

PARTICIPANTS

SSTECHNIQUES

Error

(PARTICIPANTS *

TECHNIQUES)

Total

Count

15

15

15

15

SS

2902.728

4339.623

2540.47

9782.821

Sum

1200.79

844.99

1047.51

1074.2

df

14

3

42

59

Average

80.05267

56.33267

69.834

71.61333

MS

207.3377

1446.541

60.48739

Variance

107.3646

121.1039

77.36614

82.96524

F

23.91475

P-value

<0.01

F crit

4.29

326

